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Abstrak 

Untuk mencirikan pergantungan risiko yang ekstrem, konsep kebersandaran ekor 

bagi fungsi taburan bivariat telah diperkenalkan. Kopula Gaussian, sebagai contoh, 

tidak mempunyai kebersandaran atas maupun bawah - ia menunjukkan ketaksandaran 

asimptot tanpa mengira korelasi yang mungkin wujud antara pembolehubah. Dalam erti 

kata lain, nilai ekstrem dalam pembolehubah yang berbeza berlaku secara bebas 

walaupun terdapat korelasi yang tinggi antara kedua pembolehubah. Konsep kopula 

bertujuan untuk mengatasi masalah kebersandaran ekor.  

Kopula Archimedean membentuk keluarga kopula yang penting yang mempunyai 

bentuk mudah dengan sifat-sifat seperti associability dan memiliki pelbagai struktur 

kebersandaran. Khususnya, kopula Archimedean untuk satu set data bivariat boleh 

dibina dengan mudah oleh fungsi penjana. Secara unik, penjana menentukan kopula 

Archimedean dan pilihan penjana yang berbeza menghasilkan banyak keluarga kopula.  

Akibatnya, sifat kebersandaran kopula ini adalah agak mudah untuk dibangunkan 

kerana mereka mengurangkan kepada hartanah analisis penjana. Kebanyakkan kopula 

Archimedean dengan keluarga penjana satu parameter,  kopula Gumbel atau Clayton 

sebagai contoh, dapat menjelaskan samada kebersandaran atas atau bawah, tetapi tidak 

kedua-duanya.  

Pembaharuan dalam tesis ini adalah pembinaan sebuah keluarga yang baru 

Archimedean kopula dengan mengeksploitasi sifat fungsi trigonometri,  dengan 

kelebihan tambahan yang mempunyai hanya satu parameter. Lima kopula trigonometri 

dibina, dinamakan Cot-, CotII, CSC, CscII dan CscIII-kopula. Hasil dapatan kami 

menunjukkan kesemua kopula mempunyai sifat kebersandaran positif yang di analisis 
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dengan mempertimbangkan sifat penuaan setiap kopula. Dari segi sifat kebersandaran 

yang diukur melalui kebersandaran ekor dan Kendall tau, Cot-kopula dan Csc-kopula 

berupaya untuk menguasai kedua-dua kebersandaran ekor bagi data simetrik dan tak-

simetrik. Hasil dapatan juga menunjukkan bahawa Cot-kopula adalah lebih tepat apabila 

kebersandaran ekor bawah adalah lebih berat daripada kebersandaran ekor atas, dan  

keadaan yang sebaliknya untuk CSC-kopula. Tidak seperti keluarga ke-12 Archimedean 

kopula dengan kedua-dua kebersandaran ekor, Cot-dan Csc-kopula mempunyai liputan 

kebersandaran yang luas. Kelebihan Csc-kopula berbanding Cot-kopula adalah  

keupayaannya dalam menerangkan hampir keseluruhan kebersandaran dalam [0, 1]. 

Kami juga melanjutkan kopula trigonometri bivariat kepada kopula multivariat melalui 

struktur vine (menjalar). Dalam perluasan multivariat, Cot-kopula dan Csc-kopula telah 

dipilih untuk digunakan sebagai blok binaan dalam fungsi pengagihan multivariat. 

Kelebihan kopula tersebut dalam struktur vine adalah disebabkan bilangan parameter 

yang sedikit yang dapat mengurangkan kesilapan anggaran terutamanya dalam dimensi 

yang tinggi. Akhirnya kami menunjukkan kaedah yang dibangunkan melalui simulasi 

dan data-data kewangan dan hidrologi. Dalam aplikasi kewangan, keputusan 

menunjukkan kelebihan menggunakan Cot-dan Csc-kopula dalam meguasai 

kebersandaran  ekor yang kukuh antara indeks Eropah. Kami berjaya membentuk 

kebersandaran multivariat antara pasaran Asia melalui struktur C-vine kerana terdapat 

kebersandaran kesemua pasaran ke indeks Singapura. 
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Abstract 

In order to characterize the dependence of extreme risk, the concept of tail 

dependence for bivariate distribution functions was introduced. The Gaussian copula, 

for example, does not have upper or lower tail dependence - it shows asymptotic 

independence regardless of the correlation that may exist between the variables. In other 

words, the extreme values in different variables occur independently even if there is a 

high correlation between these variables. The concept of copula aims at overcoming the 

tail dependence problem.  

The Archimedean copulas form an important family of copulas which have a 

simple form with properties such as associability and possess a variety of dependence 

structures.  Specifically, the Archimedean copula for a bivariate data set can easily be 

constructed by a generator function. The generator uniquely determines an 

Archimedean copula and different choices of generator yield many families of copulas.  

As a consequence, many dependence properties of such copulas are relatively easy to 

establish because they reduce to analytical properties of the generator. Most of the 

Archimedean copulas with one-parameter families of generators, the Gumbel or Clayton 

copula for example, can explain either the upper or lower tail dependence but not both.  

The novelty of this thesis is to construct a new Archimedean family of copula by 

exploiting the properties of trigonometric functions, with an added advantage of having 

only one parameter. Five trigonometric copulas are constructed, namely the Cot-copula, 

CotII-copula, Csc-copula, CscII-copula and CscIII-copula.  Our results show that these 

copulas have positive dependence properties which were analyzed by considering the 

aging properties of the respective copula. In terms of dependence properties measured 
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by tail dependence and Kendall’s tau, the Cot-copula and Csc-copula are able to capture 

both tail dependences in symmetric and asymmetric data. Our result also shows that 

Cot-copula is more accurate when the lower tail dependence is heavier than the upper 

tail dependence, and the opposite applies to Csc-copula.  Unlike the 12
th

 family of 

Archimedean copula with both tail dependences, the Cot- and Csc-copula have wider 

dependence coverage. The advantage of Csc-copula rather than Cot-copula is its ability 

in capturing almost complete dependence in [0, 1]. We also extend the bivariate 

trigonometric copula to multivariate copula via the vine structure. For multivariate 

extension, the Cot-copula and Csc-copula are selected as building blocks in multivariate 

distribution function. The advantage of these copulas in vine structure is due to the 

small number of unknown parameters which reduce the estimation error especially in 

high dimension.  Finally we demonstrate the methods developed in this study through 

simulation and real financial and hydrological data. In financial applications, the results 

show the advantage of using Cot- and Csc-copula in capturing strong tail dependences 

between the European market indexes. We are able to construct the multivariate 

dependence between the Asian markets via C-vine structure since these markets are 

dependent on the Singapore market index.   
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Chapter 1: Introduction 

This chapter provides an overview of the mandate of the thesis. We begin with 

motivation and scope of the research together with a brief history of dependence, copula 

and its application which is the key issue in this research. The objective of the research 

is delineated in three sections: problem statement, research objective and significant 

contribution of the study. Finally, different structures of the thesis are outlined, each 

with a brief description. 

1.1   Motivation  

Dependence plays an important role in most of the subjects. This is due to the fact 

that the occurrence of every event may be related to other variables. In financial risk 

models for example, whether for market or credit, risks are inherently multivariate 

(McNeil, Frey, & Embrechts, 2005). In measuring risk, an accurate model of 

dependence is essential to compute the value at risk, expected shortfall and financial 

contagion. On the other hand, portfolio management deals with the dependence between 

international financial markets, different classes of assets and currencies (Genest, 

Gendron, & Bourdeau-Brien, 2009). The importance of dependence structure between 

random variables in hydrology is also significant; discovering the dependence structure 

of rainfall variables is required in many water resources projects. A good understanding 

of the dependence between random variables in various fields of interest allows for 

proper risk measurement. Thus, the concept of dependence is important and must be 

clearly understood to both academics and practitioners. 

The classical approach to measuring dependence in financial or hydrology studies 

is based on the multivariate normal distributions or more generally, the elliptical 
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distributions. The mean, covariance matrix and the type of marginal distributions used, 

are the elements that uniquely determine an elliptical distribution. The advantage of 

using such distributions lies in its simplicity and analytical manageability with 

dependence being determined by its correlation matrix.  However, empirical research in 

most areas, including hydrology and finance, suggest that the use of multivariate normal 

distributions is no longer adequate; the statistical analysis of the distribution of 

individual asset returns frequently finds fat tails, skewness and other non-normal 

features which lead to the underestimation of this dependence measure (for example see 

(Ang & Bekaert, 2002; Ang & Chen, 2002; Bae, Karolyi, & Stulz, 2003; Longin & 

Solnik, 2001)). 

The dependence structure of joint distributions can be described by copula. A 

copula is a function which binds or ‘couples’ univariate marginal distributions and the 

multivariate distribution. By allowing different marginal distributions and a dependence 

structure which is not solely determined by covariance, the copula is able to generate 

multivariate distributions with flexible marginals. This is indeed useful in application, 

because one is often interested in linear combinations of margins from possibly 

different distributions. 

The Archimedean copulas form an important family of copulas. These copulas 

have a simple form and enjoy certain properties such as being associative and 

possessing a variety of dependence structures. The Archimedean copula can be 

specifically and easily constructed by a generator function for a bivariate data set. As a 

generator uniquely determines an Archimedean copula, different choices of generator 

yield many families of copulas (see Table 4.1 of Nelsen (Nelsen, 2006), for the list of 

one-parameter Archimedean copulas). As a result, since many dependence properties of 
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these copulas reduce to analytical properties of the generator, they are fairly easy to 

establish; see for example,  (Genest & MacKay, 1986a, 1986b; Joe, 1997; Muller & 

Scarsini, 2005) and (Nelsen, 2006). Furthermore, many parametric families of 

Archimedean copulas which have attractive stochastic features and result in statistically 

tractable models for continuous data have already been constructed. Some important 

applications of the Archimedean copulas can be found in studies of marketing, finance 

(Elizalde, 2006) and hydrology (AghaKouchak, Bárdossy, & Habib, 2010). 

Extending bivariate Archimedean copulas to multivariate are not easy tasks. 

Every single member of this family should be studied separately. This problem can be 

solved by considering a structure of dependence. Vines are graphical structures that 

represent joint probability distributions (Kurowicka & Joe, 2010). A special case of 

vines, called regular vine, can be used successfully to model high-dimensional 

dependence together with copula.  A regular vine is a special case for which all 

constraints are either two-dimensional or conditional two-dimensional. This structure 

can be combined with Archimedean copula in constructing multivariate distribution 

function. 

Next, we will briefly cover the scope of the research and review the literature on 

dependence and copula.  

1.2   History of Dependence and Copula  

Verbal definition of independence has been made available since the eighteenth 

century. But the most fascinating definition, according to Keynes (Wilkinson, 1872), 

was introduced by (Boole, 1854) namely: “Two events are said to be independent when 

the probability of the happening of either of them is unaffected by our expectation of the 
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occurrence of failure of the other.” In 1997, Mosteller and Tukey emphasized on the 

importance of distinguishing between “dependence” and “exclusive dependence”. They 

mentioned that “y being a dependent on x” means failure of independence, while 

exclusive dependence means that if x is given, the value of y follows a mathematical 

formula, )(XfY   (Mari, Kotz, & ebrary, 2001). 

Correlation was started by Francis Galton who is often ascribed with the title of 

“father of correlation” (Galton, 1886). In 1892 Edgeworth changed the name of 

“coefficient of co-relation” to “coefficient of correlation” (Edgeworth, 1893) and later 

in 1986 Pearson derived the analytic product-moment formula, known as Pearson 

correlation (Chatterjee, 2003). The concept of correlation coefficient was widely 

accepted across a wide range of statistical fields. It is due to the fact that in social 

sciences the correlation analysis has been widely used to determine the relationship 

between the occurrences of economic or social events. Moreover, the role of the 

correlation within regression analysis is worthless (Dorey & Joubert, 2007; Mari et al., 

2001). 

There is a long history of restriction of the Pearson’s correlation outside the 

Gaussian’s (elliptical) framework. The most impressive paper was written by Embrecht 

which emphasizes on the misunderstanding and confusion about the correlation in risk 

management (Embrechts, McNeil, & Straumann, 1999, 2002). Moreover, under a 

strictly growing transformation of variables, the correlation would not be invariant (Ane 

& Kharoubi, 2003). Also, in case of a given marginal distribution of random variables, 

none of the linear correlations between -1 and 1 can be achieved through a suitable 

specification of the joint distribution(Ane & Kharoubi, 2003). Therefore, the lack of 
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robustness associated with Pearson’s correlation has given rise to many alternative 

measures of association (Mosteller & Tukey, 1977; Wilcox, 2005). 

There are too many measures of associations to be compared separately. As 

Jogdeo notes (Jogdeo, 1982), the refractory nature of dependence can enjoy various 

forms, therefore, in order to control dependence, some specific assumptions should be 

made. We categorise the different measures of association in this study into four groups, 

namely concordance, measure of dependence, quadrant and tail dependence (Nelsen, 

2006). 

The definition of non-parametric measures Kendall’s τ and Spearman’s ρ are 

based on concordance and discordance measure. Once “large” values of one tend to be 

associated with “large” values of the other and “small” values of one with “small” 

values of the other, a pair of random variables is concordance. In terms of concordance, 

Kendall’s τ  (Kruskal, 1958) can be defined as the difference between the number of 

concordance pairs from discordance pairs divided by number of distinct pairs 

(Hollander & Wolfe, 1999; Lehmann & D'Abrera, 1975). Spearman’s ρ , named after 

the English psychologist, Spearman, who suggested this measure in 1904 (Spearman, 

1904). Spearman’s ρ is defined to be proportional to the probability of concordance 

minus the probability of discordance for a pair of vectors with similar margins, of which 

one of the vectors enjoys the distribution function H, while the components of the other 

vector are independent (Kruskal, 1958; Nelsen, 2006). 

Measuring monotonic dependence between random variables rather than linear 

dependence is the first advantage of concordance measure toward correlation. 

Moreover, monotonic dependence is invariant under increasing transformation of 
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variables. In addition, it has the ability to handle any rank correlation in the interval 

]1,1[  for any arbitrary marginal (Ane & Kharoubi, 2003). However, a drawback for 

this measure is that zero concordance does not imply independence in random variables. 

There are many examples where there is a zero measure of concordance, but the random 

variables are not independent (Nelsen, 2006). 

The non- parametric measure of association, namely “measure of dependence” is 

based on distance. According to Lancaster (Lancaster, 1982), dependence relates to the 

closeness of random variables with the independent and monotone dependence (Jogdeo, 

1982; Lancaster, 1982; Nelsen, 2006; Schweizer & Wolff, 1981).  More precisely, the 

affinity of joint distribution function in random variables will be measured by 

independent or monotone dependence’s joint distribution functions. 

Tail dependence on the other hand, measures the dependence between the 

variables in the upper-right quadrant and in the lower-left quadrant on the unit square. 

This dependence is similar to the dependence concept which is designed to describe 

how large (or small) values of one variable appear with large values of the other 

(Nelsen, 2006). 

For a couple of random variables, dependence property can be considered a subset 

of a set of all joint distribution functions. For example, the property of independence 

corresponds to the subset of all members that have independent joint distribution 

function (Nelsen, 2006).  This is similar to the monotone functional dependence which 

is related to the Frèchet bound distribution functions. Every dependence structure can be 

described by the joint distribution which lies between independence and monotone 



7 

 

dependence. It is a clear point for advent of copula in dependence concept, since the 

copula give a more flexible way to construct distribution function (Wolff, 1980). 

According to (Durante & Sempi, 2010) the history of copula started with the 

following problem proposed by Frèchet (Fréchet, 1951): Given the distribution 

functions 
1F  and 

2F  of two random variables 
1X  and 

2X defined on the same 

probability space ),,( Pf , what can be said about the set ),( 21 FF of the bivariate 

distribution functions whose margins are 
1F  and 

2F ? The set  ),( 21 FF , Frèchet class, 

is not empty since the independent distribution function always belongs to ),( 21 FF ; 

however,  it was not clear which other elements of  ),( 21 FF existed. 

The profoundest answer to this question was introduced in 1959 by Sklar (Sklar, 

1959) with the notion of copula. This concept of copula was extended just in the 

framework of the theory of probabilistic metric space for about 15 years (Moore & 

Spruill, 1975; Schweizer & Sklar, 1983; Sklar, 1973). 

The copula came into the framework of statistic with the work of Scheweizer and 

Wolff (Schweizer & Wolff, 1981). The concept was stabilized in this framework later 

by two reference books which were written by Joe and Nelsen (Joe, 1997; Nelsen, 

2006). 

Toward the end of 20
th

 century, the discovery of the notion of copulas by 

researchers in several applied fields like finance increased its popularity. At the same 

time, the importance of this concept in constructing more flexible multivariate models 

was demonstrated in different fields like hydrology (Genest & Favre, 2007; Salvadori & 

De Michele, 2007). 
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1.3   Objectives of Study  

Concept of the problem statment and the objective of study is discussed in this 

section.   

1.3.1   Problem Statement 

The concept of tail dependence for bivariate distribution functions was first 

introduced by Joe, so as to portray the dependence of extreme risk (Joe, 1997). This 

suggests that lower (upper) tail dependence between two variables (such as two asset 

returns) exists when the probability of joint negative (positive) extreme events is larger 

than what we would expect from the marginal distributions. For example, there is no 

upper or lower tail dependence in the Gaussian copula- it shows asymptotic 

independence irrespective of the correlation that may exist between the variables. In 

other words, despite the possibility of a high correlation between variables, the extreme 

values in different variables happen independently.  

For the Archimedean copulas with one- parameter families of generators, the 

Gumbel copula for example, can explain the upper tail dependence but not the other. 

Another example of the Archimedean family is the Clayton copula C  which has a 

tendency to be independent between the variables once the parameter 0 . Its tails 

also show asymmetry, with strong lower tail dependence and relatively weak upper tail 

dependence. Meanwhile, the dependence in the tails of the Frank copula is relatively 

weak, which is an indication that this copula is appropriate for data that exhibit weak 

tail dependence. With the exception of the12
th 

family, most Archimedean copulas 

introduced in Table 4.1 of Nelsen (Nelsen, 2006) cannot simultaneously explain both 
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tail behaviours observed on financial markets. In order to obtain copulas with bivariate 

tail dependence measures, many authors construct new copulas which are convex linear 

combinations of two copulas; examples are Joe-Clayton (Joe, 1997), Gumbel-Clayton 

(Ane & Kharoubi, 2003) and many more.  

Alternatively, the number of parameters in bivariate Archimedean copula is 

important, especially in the case of multidimensional extension via vine structure. Vines 

are structures which uses bivariate distribution to construct a multivariate distribution. 

Through this structure, the dependence properties of the multivariate copula inherit the 

bivariate ones. As such, if the bivariate copula contains several parameters then the 

multivariate copula will be more complex. To reduce such complexity, we try to build 

some bivariate copula with less number of parameters which carry some beneficial 

dependence properties.  

1.3.2   Research Objective 

In this thesis our research objectives are as follow: 

1) To document the copula theory in mathematical and statistical literature in 

the most beneficial way for our research. This involves searching and 

collecting the copula theory in mathematics, statistics, finance and hydrology. 

2) To construct new one parameter family of Archimedean copula. This 

involves introducing some new bivariate Archimedean copulas with a one-

parameter family, which we refer to as trigonometric copulas.  

3) To determine the properties of dependence which are most useful in real 

word analysis.  

4) To calculate the dependence properties of constructed copula.  
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5) To compare the performance of the proposed copula with those in the 

literature, for example Gumbel, Clayton and 12
th

 family of Archimedean 

copula. The performance measure will be based on dependence properties, 

dependence measures and goodness of fit.  

6) To establish multivariate copula according to constructed bivariate copula. 

This involves establishing multivariate copula with trigonometric copula 

according to vine structure.  

7) To verify the properties with real data in finance subject. This involves 

application of trigonometric copula in real word application to validate the 

theoretical part of our research.  

1.3.3   Significant Contribution to the Subject  

The significance of the study can be divided into two parts: theory and 

application. The theoretical part is divided into two main contributions:  

Theory 1: In this study we first introduce some Archimedean copulas which are 

built on trigonometric functions. The importance of this family is due to dependence 

properties of these copulas. Some of them have flexible upper and lower tail 

dependences with a wide dependence coverage which forms the basic building blocks in 

multivariate copula.  

Theory 2: We construct multivariate copula via vine structure by using 

trigonometric copula. The advantage of vine structure with trigonometric copula is that 

it can simultaneously capture the upper and lower tail dependences, with one parametric 

family. This is important because in multivariate dimension, the estimation error 

increases with dimensions. 
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The application contribution is as follow:  

Applications: In most of the copula applications in finance and hydrology, 

bivariate copula are used to find the joint distribution between two random variables. 

However, in real situation, one event may be related to more than two variables.  In 

such situations, applying multivariate copula instead of bivariate copula can provide 

more accurate information. To demonstrate the usefulness of the proposed multivariate 

copula, some datasets from finance are used.  

1.4   Thesis Structure  

The thesis is structured on six chapters which cover both the theory and 

application aspects of the research.  The flowchart for the thesis is displayed in  

Chapter 1 sets the context of the research and motivation, explores the 

significance of the research together with objectives and the structure of the thesis.   

Chapter 2  is divided into two parts: the first part extensively reviews the literature 

concerning copula in three sections: the first section tracks the concept of copula in 

mathematic context with exact definition of copula. Some mathematical theories related 

to copula are also considered. The second section introduces the concept of copula 

which relates to statistical literatures. An overview of past research concerning 

estimation and goodness of fit method for copula is summarized.  The third section 

explores different family of copulas where the major focus is on elliptical and 

Archimedean copula. This chapter ends with the development of trigonometric family 

of copula, which forms the basis for future chapters.  
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Chapter 3 focuses on the literature review on the dependence which is employed 

in the later part of this chapter, to investigate the dependence properties of trigonometric 

copula. To ease explanation, we divided the chapter into four sections. The first section 

provides the literature review on dependence concept while the second section studies 

the dependence properties for all trigonometric copulas. Section three provides an 

overview on different measures of dependence. Finally, section four computes 

dependence measures in trigonometric copula.  

Chapter 4 focuses on concept of vine structure which is used to construct 

multivariate trigonometric copula. The chapter ends with a simulation study on 

multivariate copula in finance datasets.  

Chapter 5 presents an analysis of data used in finance. In the first section, we 

illustrate some application via bivariate copula on seven indices from three continents, 

Asia, Europe and America. Then, we compare the ability of trigonometric copula in 

capturing tail dependence with existing one-parameter and two- parameter families of 

copula. Later and in the second section, we construct multivariate copula via vine 

structure on four dependence indices. The result of trigonometric multivariate copula is 

then compared to the optimal choice from the existing copulas.  

Chapter 6 presents the conclusions of the research in terms of theory and 

application and suggests some future research direction.  
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Figure ‎1.1: Structure of the thesis 
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Chapter 2: Copula 

The main focus of this chapter is to introduce bivariate copula and their 

properties. It is also organized to introduce the proposed trigonometric copulas for the 

first time. The first section addresses the copula definition and the important theories in 

mathematics. The second section covers estimation and goodness of fit for copula. 

Specifically, we will focus on elliptical and Archimedean family of copulas including 

trigonometric copula as a sub-set of the Archimedean family.  

 2.1   The Copula and Its Properties  

According to Oxford English Dictionary, the term “Copula” is in fact, a Latin 

word which means “to fast or fit.” Technically, it describes the relation between two 

things, in our case, the marginal distributions.    

To define a copula we start by clarifying the concept of copula in two dimensions. 

A pair of random variables,  X  and Y  with respective cumulative distribution 

functions     RxxXPxF  ,  and     ,, RyyYPyG    and a joint 

distribution function     RyxyYxXPyxH  ,,,, ,  on a common 

probability space are assumed. For some function IIC 2:  each pair     YGXF ,   in 

the unit plane 2I  corresponds to the number Iz  given by the relation

      yGxFCyxHz ,,  . The definitions of copula of d  random variables 

generalize the bivariate definition of copula presented above.    

Definition 2. 1.  A function IIC d :  is a d-copula if the following properties 

hold:  
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(i)  For every    
jj uuCdj  1,...,1,,...,1,,...,2,1   

 (ii)  0),...,(],1,0[ 1  ni uuCu

 

if at least one of the iu is  zero.   

 (iii)  C  is grounded and d-increasing. 

From this definition, we can claim the fact that a copula is a multivariate 

distribution function with support in 
d]1,0[ and uniform margins. The important part of 

this mathematical object is that they are useful for constructing multivariate distribution 

function with arbitrary marginals. The following theorem provides support for this 

statement. 

Sklar’s Theorem (Sklar, 1959): Let F be a joint distribution function with 

continuous marginal distribution function iF  for .,...,1 ni 
 Then there exists a unique 

copula function C, such that: 

 .)(),...,(),...,( 111 nnn xFxFCxxF                                                                   (2.1) 

On the contrary, if C  is a copula and iF   are marginal distribution functions, then 

F defined above is a joint distribution with margins iF .  

Corollary 1 (Nelsen, 2006): Let )(
1

ii uF


 
for  ni ,...,1  denote the generalized 

inverses of the uniform marginal distribution function iu  for ni ,...,1 . Then for every 

),...,( 1 nuu  in the unit n cube, there exists a unique copula 
nC ]1,0[:  such that  

  ),,...,()(),...,( 1

1

1

1

1 nnn uuCuFuFF 


 
where ],)(:[inf)( 1

1

1 iiii uxFxuF 


 for ni ,...,1

.  
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Taking the derivatives with regards to ),...,( 1 nuu and using the chain rule, the 

copula density is defined by  

,
,...,

),...,(
),...,(

1

1

1

n

n

n

n
uu

uuC
uuc




  

The joint probability distribution function may then be recovered as follows:  
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1

1     (2. 2) 

  )()....(,..., 111 nnn xfxfuuc  

This result shows that it is always possible to identify a joint density function by 

specifying the respective marginal densities of the random variables and a copula 

density. Taking this fact into account, it can be claimed that all the information about 

the dependence structure among random variables exists in the copula.  

Some of the copula properties such as being invariant to strictly increasing 

transformation of the random variables and the ability to measure concordance between 

random variables are indeed extremely helpful in the dependence study.  

Invariance Theorem: Consider n  continuous random variables ,,...,1, niX i 
 

with copula C . Then, if ,,...,1),( niXh ii    are increasing on the range of 
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,,...,1, niX i    the random variables ,,...,1),( niXhY iii    have exactly the same 

copula C .  

It validated from the invariance theorem that the full dependence among random 

variables is entirely captured by the copula [without considering the shape of marginal 

distributions]. This is shown in equation (2.2).  

Next, we state several useful properties of copula. 

Property 1 (Nelsen, 2006): Given a copula  C , for all 10  iu  and 10  iv  ,    

ni ,...,1 ,  

||...|||),...,(),...,(| 1111 nnnn vuvuvvCuuC  . This reflects that any 

copula is uniformly continuous.  

Property 2 (Nelsen, 2006): Let copula C  be an n-copula. For almost all ]1,0[iu  

and  ni ,...,1 , the partial derivative of C  with respect to ,iu
 

ni ,...,1  exists and, 

.1
,...,

),...,(
0

1

1 





n

n

n

uu

uuC
 

These two properties indicate that copula enjoys a nice regular condition, means 

enough diferentiable, which is useful for numerical simulation. The next property 

provides the boundaries of copulas.  

Property 3 (Nelsen, 2006): Given a copula C , for all iu  for ni ,...,1 ,

       .,...,min,...,|),...,(|0,1...max,..., 11111 nnnnn uuuuMuuCnuuuuW   
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The upper bound is always a copula and signifies the strongest type of 

dependence between random variables. However, its lower bound is a copula in merely 

two dimensions. Those upper and lower copulas known as Frèchet-Hoeffding bounds or  

simply Frèchet bounds in the two dimensions with variable  vu,  are represented in 

Figure ‎2.1. 

 

 

Figure ‎2.1: Frèchet-Hoeffding bounds 

 

 

 

Some basic instances of copulas are as follows: 

Independent copula, 



n

i

in uu
1

)( , is associated with a random vector 

 nUUUU ,...,, 21  whose components are independent and uniformly distributed on 

 1,0 . 
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The comonotonicity copula,  nn uuuM ,...,,min 21 , is associated with a random 

vector  nUUUU ,...,, 21  whose components are uniformly distributed on  1,0  and is 

such that equality hold, nUUU  ...21 , almost surely.  

The counter monotonicity copula, }0,1max{ 212  uuW  , is associated with a 

random vector ),( 21 UUU   whose components are uniformly distributed on  1,0  and is 

such that 21 1 UU  , almost surely.  

Frèchet-Mardia copula is defined by a convex linear combination of independent 

and comonotonicity copula )()1()()( uMuuC nn

FM

n   . In general every convex 

linear combination of copula is a copula. 

Another important concept in copula is survival copula as define in definition 2.2. 

However, the subject of survival copula is beyond the scope of this study. 

Definition 2.2: Given n  random variables niX i ,...,1,   , with marginal survival 

distribution  iF    for  ni ,...,1
  and joint survival distribution  F  , the survival copula 

C  is such that: 

  ).,...,()(),...,( 111 nnn xxFxFxFC   

The dual copula 
*C  of the copula C of niX i ,...,1,  is defined by: 

].1,0[,...,),1,...,1(1),...,( 111

*  nnn uuuuCuuC  
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2.2   Estimation of Copulas 

This section provides two important topics on estimation of copula. The first topic 

studies and evaluates the most representative approaches in estimating copulas. The 

focus of the second topics is the problem of model selection and goodness-of-fit test. 

Estimation of copulas enjoys a huge body of literature which can be divided into 

three groups, depending on the methods of estimating the marginal cumulative 

distribution functions (CDF) and joint CDF. Based on the assumptions made on CDF 

functions, some functions are estimated (i) parametrically, (ii) semi or (iii) non-

parametrically (Charpentier, Fermanian, & Scaillet, 2007; Choroś, Ibragimov, & 

Permiakova, 2010; Fermanian & Scaillet, 2003; Genest, Ghoudi, & Rivest, 1995).  In 

this section, we summarize the most popular techniques for parametric, semi-parametric 

and non-parametric methods simultaneously.  

2.2.1   Parametric Estimation 

Among different methods of parametric estimation of copula, we will focus on 

Maximum Likelihood Estimation (MLE) and the method of Inference Function for 

Margins (IFM) since they are the most effective methods.  

The log likelihood function of multivariate distribution function ),...,( 1 nxxf of a 

random sample of identically independent (i.i.d) vectors  mjxxxx j

n

jjj ,...,2,1),...,,( 21    

is 





m

j

j

n

jj xxxfL
1

21 )...,,(log  
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  



m

j

j

n

jj

n

j xfxfxFxFc
1

111111 )()....()(),...,(log      (2.3) 
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CL  is the log likelihood contribution from the dependence structure of joint 

distribution function and iL  is log likelihood contribution from the margins (Joe, 1997). 

Let us further assume that the copula belongs to a family of copulas indexed by a 

vector of parameters  , );,...,( 1 nuuC . We also assume that nixF iii ,...,2,1),(   

are margins with the corresponding univariate densities ),( iii xf   with parameters i . 

The maximum likelihood estimation of the model parameters );,...,,( 21  n  

corresponds to simultaneous maximization of log-likelihood L  in equation (2.3): 
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Since the computation of MLE is time consuming and cannot be done easily  

especially in high dimensional case, the method of inference function for margins (IFM) 

has been introduced (Joe, 1997). In the first stage of the IFM, the estimation of the 
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parameters is projected from the log likelihood iL of each margin under independence 

assumption. The result from this stage yields the estimation of  IFM

n

IFMIFM
 ˆ,...,ˆ,ˆ

21 . 

In the second stage of IFM, the estimator 
IFM̂  of the copula parameter 

IFM   is 

computed by maximizing the copula likelihood with the margins estimators calculated 

in the first stage.  

The MLE and IFM coincide when the copula is multivariate Gaussian with 

univariate Normal margins. Both the MLE and IFM estimators are consistent and 

asymptotical normal under the usual regularity condition (Frees & Valdez, 1998; Joe, 

1997; Klugman & Parsa, 1999).   

Although the method of MLE estimation optimize all parameters simultaneously, 

the IFM is more effective when dealing with samples of different length. In such cases, 

the complete sets of samples are used for the estimation of marginal parameters. While 

the MLE is asymptotically more efficient than the IFM, the accuracy of IFM is much 

higher when the sample size is small (Joe, 1997; Patton, 2006).  

2.2.2   Semi-Parametric Estimation 

Basically, there are two methods of semi-parametric estimations. The first one is 

based on concordance measure and the second one is a Pseudo maximum likelihood 

estimation.  

The concordance estimation method is a simple method based on non-parametric 

estimation of parameters which depends merely on the copula. For this procedure, 

concordance measures like the Kendall’s τ and Spearman’s ρ, for example, are 
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computed easily, and then parametric family of copulas will be estimated as a function 

of those estimated quantities.  

For example, the Kendall’s τ is estimated according to the bivariate sample of size 

,n  )},(),...,,{(: 11 nn yxyxT  by using the following formula   

 
,

)1(

2
ˆ






TT

DC
  

where C  (resp. D ) denote the number of concordant (resp. discordant) pairs, that is, a 

pair  ii yx , and  jj yx ,  such that     0 jiji yyxx ,  (resp. 0 ) (Genest & Favre, 

2007; Oakes, 1982). 

For the elliptical copula, the Spearman’s ρ can be estimated by ,ˆ
2

sinˆ 







 


  

based on relation 


 arcsin
2


 
(Nelsen, 2006).  

The alternative semi-parametric estimation method is based on Pseudo Maximum 

Likelihood (PML) estimation. This model is similar to the IFM procedures discussed in 

the parametric method, motivated by density representation and decomposition of log 

likelihood function of equation (2.3).  

For PML, empirical distribution function  iF̂
 
 is employed to estimate the margins 

in first stage. In the second phase, the copula parameters are estimated through the 

maximization of likelihood function from the dependence structure which is represented 

by copula function ),,...,( 1 nuuC as    
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 








 


m

j

j

n

j xFxFc
1

111 ),(ˆ),...,(ˆlogmax 



. 

The estimator ̂  is consistent and asymptotically normal under suitable regularity 

condition. While concordance measure of estimation is simple and robust, the pseudo 

likelihood estimation method is more accurate in general (Genest et al., 1995). 

2.2.3   Non-Parametric Estimation  

Considering the inverse formula of  )(),...,(),...,( 111 nnn xFxFCxxF  , most of the 

non parametric estimation of copula can be constructed. Suppose F̂  is a nonparametric 

estimation of distribution function F  and 
1ˆ 

iF
 
for  ni ,...,1

  are a non parametric 

estimation of the pseudo-inverses })(|{)(1 stFtsF ii  on the univariate margins iF  

for ni ,...,1 , then empirical estimated copula is given by (Deheuvels, 1981)  

  )(ˆ),...,(ˆ),(ˆˆ),...,,(ˆ 1

2

1

21

1

121 nnn uFuFuFFuuuC  .  

The problem with this estimation is that even if the marginal distributions are 

continuous, their empirical distributions are not. Therefore, one cannot determine a 

unique estimate of copula Ĉ . Following this approach, a unique non-parametric 

estimator of C  defined at T discrete point 








T

i

T

i

T

i n,...,, 21 with },...,2,1{ Tik  , would be  












T

k

TixkxTixkx
n

nnnTT

i

T

i

T

i
C

1

)};()(),...,;()({
21

111
1

1
,...,,ˆ .    (2.4) 
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where );( Tkxp
 denotes the k

th
 order statistics of the sample. According to Deheuvels 

(Deheuvels, 1981), any copula which satisfied the equation (2.4) is an empirical copula. 

The empirical copula is a multivariate distribution function which almost surely 

converges uniformly to the underlying copula.  

Another approach of estimation is to smooth the margins and joint CDFs. To this 

end, Kernel based approach is the simplest method to employ. Consider a univariate 

kernel function    1,: KK  , and a bandwidth sequence  0Th , and 0Th

when sample size  T . Then the kth margin distribution function, )(ˆ xFk
,  can be 

estimated by (Fermanian & Scaillet, 2003) 

,
1

)(ˆ

1











 


T

i

ki
k

h

Xx

T
xF   

for every real number x, where   is the primitive function of   


x

Kx)(  . Similarly, 

the kernel estimation of joint CDF F  can be obtained by 









 


T

i

i

h

Xx

T
xF

1

1
)(ˆ  , with 

n dimensional kernel  


nxx

Kx
1

...)( .  

Under mild regularity condition(Abdous, Genest, & Rémillard, 2005), the kernel 

method is asymptotically Guassian: )).(,0()()(ˆ uCNuCuC   

To sum up this section, we summarize the advantages and disadvantages of 

different estimation methods. While non-parametric estimators provide a robust and 

universal way of estimation, they have some drawbacks: from the visual viewpoint, the 

graphical representation of copula is not pleasant. Moreover, since the copula estimator 
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is not differentiable, it cannot be used directly to derive an estimate of the associated 

copula density or for optimization purposes. Smoothed estimators are more suitable for 

graphical use but they suffer from the curse of dimensionality. In other words, when the 

dimension increases, the complexity of the problem increases exponentially 

(Charpentier et al., 2007).  

The advantages of having a family of copulas which are differentiable in semi-

parametric/parametric approach solve the problem of estimation of copula density and 

optimization problem. However, they can lead to several underestimations when the 

parametric models for margins/copula are misspecified (Genest et al., 1995; Joe, 1997). 

2.3   Goodness of Fit Test  

The problem of estimation of copulas is evident when copula C is unknown but is 

assumed to belong to a specific class of copulas. The problem of goodness of fit is then 

to test the null hypothesis of };{:0  CCH  against the alternative

};{:1  CCH . Although the goodness of fit is relatively new compared to 

copula estimation, there are some interesting literatures available which measures the 

goodness of fit (Genest, Remillard, & Beaudoin, 2009; Genest & Rivest, 1993):   

1) The method which is developed to test specific dependence structure as normal 

copula.  

2) The methods that can be used for any class of copula but the implementation need 

some strategic choice. 

3) Blanket test that can be used for all classes of copula without considering any 

strategic choice.  
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Berg (Berg, 2009) classified the methods into binned approach, multivariate 

kernel density estimation and dimension reduction approach.  

The most important goodness of fit method, considering the classification of Berg 

and Genest, is considered in this section. We provide some preliminaries and overview 

of the five methods under their classification.  

2.3.1   Preliminary  

The goodness-of-fit of ML estimates is usually measured by the log likelihood or 

some statistics based on it, for example, the AIC.  An alternative approach is based on 

matching the proportions predicted under a specified model (in terms of the expected 

proportion) to those of the empirical model (observed data).  For the goodness-of-fit of 

the copula, the latter approach leads to the testing of the validity of the null hypothesis

00 : CCH  .   

Data  

Since copula alone is important in concept of goodness of fit for copula, the ideal 

is not to consider any assumption regarding marginal distributions. One solution to 

overcome the problem of margins is to carry the test based on rank data. Suppose there 

are d independent sample ),...,(),...,,...,( 11111 dnddn xxXxxX  from n-dimensional 

random vector X . Then the goodness of fit test for copula is based on pseudo-samples

),...,(),...,,...,( 11111 dnddn zzZzzZ  , where 

.
1

,...,
1

),...,(
1

1 













n

R

n

R
zzZ

jnj

jnjj
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where 
jiR is the rank of 

jix amongst ),...,( 1 dii xx . This transformation is often denoted as 

the empirical marginal transformation. Although the pseudo sample is a sample from 

the underlying copula, it is no longer independent. To overcome this problem we need 

to apply bootstrap procedures to achieve reliable P-value estimates. 

  

Rosanblatt’s Transformation (Rosenblatt, 1952) 

By Rosenblatt transformation, a set of dependent variables with given multivariate 

distribution function transform to a set of independent variables in ].1,0[   

Definition: Let ),,...,( 1 nZZZ 
 

denote a random vector with marginal 

distributions ),()( iiii zZPzF  and conditional distributions  

 ,,...,| 11111,...,1|   iiiiii zZzZzZF
 
for  ni ,...,1 .  

The Rosenblatt transformation of Z   is defined as ),,...,( 1 nVVV  where 

).,...,|(),...,|()(

),|()|()(

),()()(

111,...,1|1111

121|21122222

1111111

 





dnnnnnnnnnn zzzFzZzZzZPZRV

zzFzZzZPZRV

zFzZPZRV


 

One of the interesting applications of such transformation is multivariate goodness 

of fit test. The goodness of fit test is based on independence of vectors. When assuming 

a multivariate distribution function is from a parametric family of copula which is the 

null hypothesis, the result of transformation should be independent.  
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2.3.2   Approach 1 

The first approach is based on Rosenblatt’s transform proposed by Breymann 

(Breymann, Dias, & Embrechts, 2003) which was generalized later by (Berg & Bakken, 

2005). The hypothesis in this approach is that the resulting sample from Rosenblatt’s 

transform ),...,( 1 nvv  is a sample from the independent copula, nn vvvv ...)( 21 . The 

next step to reduce the n dimensions useing },...,1{},;{ ,

1

1 njvW ji

d

i

j 


  where   is 

a weight function. Breymann suggest  
2

,

1

, )(};{ jiji vv    but Berg (2005) shows that 

the Anderson-Darling statistics with weight function |5.0|};{ ,,  jiji vv 
 
performs 

particularly well for testing C  from Gaussian null hypothesis.  

According to the Berg classification this approach is a dimension reduction 

approach and it is also the blanket test. 

2.3.3   Approach 2 and 3 

Approaches based on empirical copula are important since the empirical copula is 

non-parametric. Therefore, they provide the main objective benchmark for testing the 

copula goodness of fit test (Genest, Remillard, et al., 2009). We state three statistics 

which works on empirical copula.  

Following Deheuvels (Deheuvels, 1979), the empirical copula is defined as 

,},...,{
1

1
)(ˆ

1

11






d

j

njnj uZuZI
d

uC  



30 

 

where 
jZ  is as defined in section (2.2.4) and .]1,0[),...,( 1

n

nuuu   An obvious 

goodness of fit test would then be to measure the distance between the empirical copula 

)(ˆ zC   and estimated copula  )(ˆ zC


, that is,   .)()(ˆ)ˆ( ˆˆ zCzCnCCd



  

Genest 

and Remillard (Genest & Rémillard, 2008) considered rank based version of Cramer-

von Mises (CvM) and Kolmogorov-Smirnov (KS) statistics. These tests are shown to 

convergence (Genest & Rémillard, 2008).  

2.3.4   Approach 4 

The combination of Rosenblatt’s transform and empirical copula propoces an 

interesting goodness of fit test which was proposed by (Genest, Remillard, et al., 2009). 

In this method, the data is first transformed via )(ZV   by the Rosenblatt’s 

transform, then empirical copula )(ˆ vC  is compared with independent copula, )(ˆ vC
. 

Then CvM statistic approach is applied. Genest shows the convergence of this method 

(Genest, QUESSY, & Rémillard, 2006).  

2.3.5   Approach 5 

A blanket test based on Kendall’s transform which was examined by Genest and 

Rivest (Genest & Rivest, 1993) and Wang and Wells (Wang & Wells, 2000), can be 

used as a goodness of fit test to compare the goodness of fit of the estimated copulas.   

Let 2 ,}...,,2,1{   ,  ddiX i  
be a random sample. We consider the specific 

mapping  ), ,...,()( 1 nuuCXHVX  where },...,2,1{  ,)( njXFu ijj 
 

and joint 

distribution of ) ,...,( 1 nuuu   is C . This transformation is called Kendall’s transform 

(Barbe, Genest, Ghoudi, & Rémillard, 1996). Now, let nK
 
be the empirical distribution 
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function based on pseudo-observations )(),...,( 11 dd UCVUCV



 
and ]1,0[K  the 

distribution function of the random variable )(XHV   . nK is a consistent estimator of 

the distribution function K . 

Now under the null hypothesis the vector ) ,...,( 1 nuuu 
 
is distributed as C  for 

some  , and hence the Kendall’s transform has distribution K . Thus, the new null 

hypothesis is }.:{:''

0  KKH  Since ''

0

'

0 HH  , the non rejection of "

0H does not 

entail the acceptance of null hypothesis. Therefore, tests based on the empirical process 

)}()({ tKtKn n 
 
are not generally consistent (Genest et al., 2006). Acknowledging 

such limitation, Genest proposed this method by CvM and KS statistics.  

(Wang & Wells, 2000) show that the null hypothesises, former and latter, are 

equal in the case of bivariate Archimedean copula; therefore Archimedean copulas are 

one of the well-known families of distributions that the method is consistent (Barbe et 

al., 1996).  The distribution function K for the Archimedean copula can be written very 

simply, using the generator function )(t  for copula )(ZH  as follows: 

),(
!

)(
)1()( 1

1

1

tf
i

t
ttK i

id

i

i







 
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where 
)(

1
)(

'0
t

tf



  
and 
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)(
)(

'

1

t

tf
tf i

i




 . 

Numerous metrics or distance measures can be employed as goodness-of-fit 

statistics to measure the difference between the empirical models and the hypothesis 

model. The measure used in this study is the 2L norm distance:  
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           ,...,, 2

1
22

22

2

11 nn pqpqpqpqdqpd   

where  npppp ,...,, 21  and  nqqqq ,...,, 21  are two points in Euclidean n-space.  

 As mentioned by Berg and Genest (Berg, 2009; Genest, Remillard, et al., 2009), 

it is not an easy task to come up with a specific method as the best goodness of fit 

statistic. But from the simulation, some interesting result emerge: among those tests 

which have both KS and CvM, CvM tend to be more powerful. For CvM transform, 

there is a little different in choosing between the Kendall’s transform and empirical 

based method. Finally we can emphasis on the number of sample in the power of 

goodness of fit (Genest et al., 2006).  

2.4   Family of Copulas  

In this study we focus on two important families of copula: elliptical and 

Archimedean copula. Following this, we construct trigonometric copulas which are a 

subset of the Archimedean copulas. Although some concepts are defined in multivariate 

dimension, we will focus on two dimensions for ease of explanation. The extension of 

these trigonometric copulas to multivariate dimension will be discussed in chapter 4 

when the concept of vine structure is introduced. 

2.4.1 Elliptical Family  

Elliptical copulas are deriven from multivariate elliptical distributions. The 

advantage of elliptical copulas is due to their numerically synthesizing property which 

makes them convenient for numerical simulation. Here, the two most significant 

instances are illustrated, namely, the Gaussian and t-copulas.  
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Gaussian copula is a natural setting for generalizing Gaussian multivariate 

distribution to meta- Gaussian distribution. The meta- Gaussian distribution has exactly 

similar dependence structure as the Gaussian distribution while the different in margins 

can be arbitrary (Fang, Fang, & Kotz, 2002; Hahn, Wagner, & Pfingsten, 2002).  

To define a Gaussian copula we assume that   is a standard normal distribution 

function while 
n, is n dimensional standard Gaussian distribution with correlation 

matrix  . Then, the Gaussian n copula with correlation matrix  is  

 ,)(),...,(),...,( 1

1

1

1

,1, uuuuC nnn

    

where density is 

,)())((
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with  )(),...,()( 1

1

1

1 uuuyt    and  nI   is identity matrix. 

Like Gaussian copula, t-copula is derived from the Student multivariate 

distribution. In the form of meta-elliptical distribution t-copula have precisely similar 

dependence structure as the t- student distribution with arbitrary margins.  

Suppose 
vnT ,,
 is n dimensional student distribution function with v degrees of 

freedom and a shape matrix  . The t-copula which corresponds to t- student 

distribution function is  



34 

 

    ,)(),...,(,..., 1
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where T is univariate student distribution with v degrees of freedom, and its copula 

density, 
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here  )(),...,()( 1

1

1

1 uTuTuy t  .  

The explanation of copula parameter depends on two parameters: the shape  , 

and the degrees of freedom v. A precise estimation of degree of freedom v is fairly 

difficult and has an effect on the estimation of the shape  . So, the student’s copula 

might be more challenging to employ than Gaussian copula.  

2.4.2 Construction of Archimedean Copula  

In this part, one of the important classes of copula which is called Archimedean 

family of copula will be introduced. The importance of these copulas comes from the 

fact that they can be constructed easily and also some of the important copulas belong to 

this family. Also they possess some nice properties which is derived from their 

generator functions (Nelsen, 2006). We demonstrate the definition and the properties of 

Archimedean copula in two dimensions. Then we consider the family of Archimedean 

copula with one- and two-parameters.  
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A bivariate Archimedean copula C can be generated by considering a class   of 

functions    ,01,0:  which are continuous, strictly decreasing, convex, and for 

which   01  .  This copula can be constructed, based on its generator ,  as follows: 

  ,1,0,)()(),( ]1[   vuvuvuC   

More generally we can extend this formula to include several dimensions, that is, 

    ,10,)(),...,(),(...,,, 2211

]1[

21  

innn

n uuuuuuuC   














.)0(0

),0(0)(1

]1[

t

tt




  

where 
]1[  is the pseudo-inverse of the continuous and strictly decreasing function   

with domain ),0[]1[  and range ]1,0[]1[  .                                                                        

The pseudo-inverse 
]1[  is equal to the usual inverse function 

1  if   .0   An 

important subclass of  , as noted by Nelsen (Nelsen, 2006) includes those elements    

which has two continuous derivatives with   0 t   and    0 t  for  1,0t .   

The family of Archimedean copula can be constructed by one or more generator 

function. A single generator function can be constructed according to the following 

theorem: 

Theorem: Let   in    and let   and   be positive real numbers and define 

)()(1,



  tt   and 
  )]([)(,1 tt 

 
(Nelsen, 2006). 

1) If  1   , then 
 ,1  

is an element of  . 
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2) If   1,0 ,  then 
1,  

is an element of  . 

3) If   is twice differentiable and t  is non-decreasing on  1,0 , then )(1, t  
is an 

element of   for all 0 . 

The family of Archimedean copula which was built on the )()(1,



  tt   structure 

is called interior power family and those which are built on the 
  )]([)(,1 tt  structure 

is called the exterior family of copula. Following this, we introduce two members, 

Clayton and Gumbel, of this family (Nelsen, 2006).  

The Clayton copula is given by 

  

1

1),(



  vuvuC c
 

The Clayton copula has a generator,  1  t
 
while     

1
11 1)()(


  ttt  

where 0 . It is completely monotonic; when ,0 uvvuC c ),(  and when ,  the 

upper Frèched-Hoefding bound is attained.  

The Gumbel copula which belongs to the Extreme Values (EV) family (Nelsen, 

2006) is expressed as  

     ,lnlnexp),(
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


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
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vuvuCG  
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Its generator is    tln  while    














  

1

11 e x p t . The parameter 

 controls the strength of dependence; 1 , implies  uvvuCG ),( , which reflects 

independence; and as  , it yields a perfect dependence. 

Two parametric family of Archimedean copula can be constructed easily by 

combining the interior and exterior structure for a specific generator function. For 

example by considering generator function 
 )1()(, tt   , we have the following 

two-parametric Archimedean copulas: 
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An example of a two- parameter family of Archimedean copula is the Joe-Clayton 

copula that belongs to the family of BB7 (Joe, 1997)and is expressed as 
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The convex combination of two generator functions also can be a generator 

function to shape an Archimedean copula. For example, for ]1,0[ and two 

Archimedean copulas, namely, Clayton CC and Gumbel GC , we define 

     vuCvuCvuC GCGC ,1,),(    
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We denote this equation as a mixed Clayton-Gumbel (CG) copula. The features of 

these copulas can be derived from those of CC and GC . 

2.4.2.1   Trigonometric Family 

Finally, we end this chapter by introducing five new copulas from Archimedean 

family, called trigonometric copula, since the generator function is based on the 

trigonometric functions. We propose two new generators based on cotangent and 

another three based on cosecant of trigonometric function. The dependence properties of 

these copulas will be discussed later in Chapter 3.  
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Based on cotangent function we first define the generator as 
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In addition, 
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From (2.5) and (2.6) the corresponding copula, called Cot-copula, is then defined 

as,  
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CotII-Copula  

An alternative generator is defined by  
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The following properties for a generator function are satisfied by conditioning

0 . 
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The corresponding copula, which is called CotII-copula, is defined as:  
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Csc-Copula 

Now, based on cosecant function the third generator is defined as: 
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The corresponding copula, called Csc-copula, is then defined by the following 
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with density function given by 
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CscII-Copula 

The fourth generator is defined by  0,1
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Similar to the previous case, the strict inverse exists since
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The corresponding copula which is called CscII-copula is then defined by the 

following function  

01
2

csc
2

csccsc
2

),(

1








































 






 vuavuC  

with density function, given by 

   
,

1

1

)11

2
1

12
),(

22222

2
1













































AAA

B

AA
Bdfdfvuc vu


  

where: 

,11
2

csc1
2

csc 


































  

vuA  

  ,csc
2

AarcB



 



44 

 

  ,
2

cot
2

csc
2

1


















  
uuudfu  

  .
2

cot
2

csc
2

1


















  
vvvdfv  

CscIII-Copula 

Finally we propose another generator according to the cosecant function, defined 

by  .0,1
2

csc)( 







 


  tt  

The following properties of generator function is satisfied when ,0  

  0)1(i   

  00
2

cot
2

csc
2

)(ii 















 


  ttt  

  0
2

csc
2

cot
2

csc
2

)(iii 2

2










































 





  tttt

   

As in previous cases, the strict inverse exists since  
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. Therefore, the inverse function of this generator is 

shown to be: 
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The corresponding copula, CscII-copula, which is then defined by the following 

function  

,01
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with density function given by 
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Considering the definition of the interior and exterior Archimedean copula, one 

can see the Cot and Csc copula are exterior copula while CotII and CscII are interior 

copulas. Finally, we can define interior copula by Gumbel generator as  
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      0lnlnexp),(
1

  vuvuc  

Note that CscIII is neither interior nor exterior Archimedean copula. The 

trigonometric copulas are summarized in Table ‎2.1. 

 

Table ‎2.1: Trigonometric Copulas 
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Chapter 3: Dependence and Trigonometric Copula 

3.1   Introduction 

In this chapter, the concept of dependence is presented and the properties of 

trigonometric copulas proposed in the previous section are studied. We further consider 

several important measures of dependences along with the dependence measure for 

trigonometric copulas. We end the chapter with simulation results using both data from 

symmetric and asymmetric distribution to compare specifically the ability of tail 

dependence measure for trigonometric copula.   

3.2   Dependence Concept  

In this section the most important theories of the consept of depndnece is 

reviewed.  

3.2.1   Theory  

Dependence relations between two random variables are important in determining 

the strength of their association or relationship. The initial concept of dependence was 

introduced by Karl Pearson by defining the measure of strength of linear relationship 

between two random variables (Balakrishnan & Lai, 2009; Joe, 1997; Nelsen, 2006).  

Technically, the best way of presenting dependence between random variables is 

to define independence as a unique concept. Stochastically independence entails X and 

Y  being completely useless in predicting one another. Using this approach, we next 

define the concept of dependence.   
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At a glance, if random variable X  is a function of Y  and Y  is function of X , 

each of these random variables can be predicted from the other which contradicts with 

independence. 

If there is a function b  such that 1)](Pr[  XbY  then random variable Y  is said 

to be completely dependent on X . If the function b  is a one-to-one function, then X  

and Y  are mutually completely dependence. The notion of mutual completely 

dependence is an antithesis of stochastic independence.  

Kimeldorf and Sampson (1980) construct a pair of mutually completely dependent 

random variables, with uniform distribution function that converge to a pair of 

independent random variables. Therefore, mutual complete dependence is not a perfect 

opposite of independence.  The concept of monotonically dependent is defined when b  

in 1)](Pr[  XbY  is a strict monotone function. More specifically, if b  is an 

increasing (decreasing) function, we say random variables are increasingly 

(decreasingly), dependent. The necessary and sufficient condition that X  and Y  are 

increasingly (decreasingly) monotonically dependent is that its joint distribution 

function of random variables are Frèchet bounds  (Kimeldorf, May, & Sampson, 1980)   

and ((Kimeldorf & Sampson, 1978).  

X  and Y  are functionally dependent, if either )(YaX   or )(XbY   for some 

function a  and b , and if )()( YbXa  , then X  and Y  are implicitly dependent. 

Therefore, the different notions of total dependence in decreasing order of strength are 

as follows:  

 Linear dependence, 
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 Monotone dependence, 

 Mutually completely dependence,  

 Functional dependence,  

 Implicit dependence. 

The second concept of dependence which is introduced in this chapter is positive 

dependence. Positive dependence means that large values of Y  tend to accompany 

large value of X , and similarly small values of Y  tend to accompany small value of 

X . By the same principle, negative dependence between two random variables means 

large value of Y  tend to accompany small value of X  and vice versa (Harris, 1970).  

Kimeldorf and Sampson (Kimeldorf & Sampson, 1987) define condition of 

positive dependence concept on joint distribution function H  of X and Y  as follow: 

 H ∈ F
+
 ⇒ H(x, y) ≥ F(x) G(y) for all x and y. 

 If H(x, y) ∈ F
+
, so does H

+
(x, y). 

 If H(x, y) ∈ F
+
, so does H0(x, y) = F(x) G(y). 

 If (X, Y) ∈ F
+
, so does (φ(X), Y) ∈ F

+
, where φ is any increasing function. 

 If (X, Y) ∈ F
+
, so does (Y, X). 

 If (X, Y) ∈ F
+
, so does (−X, −Y). 

 If Hn converges to H in distribution, then H ∈ F
+
. 

where F
+
 is a subfamily of distributions satisfying positive dependency. Recall that 

H
+
(x, y) = min (F(x), G(y)) and H

−
(x, y) = max (0, F(x) + G(y) − 1) are the upper and 

lower Frèchet bounds, where F(x) and G(y) are the marginal distributions of X  andY , 

respectively. We list positive dependence concepts accordingly. 
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3.2.2   Positive Quadrant Dependence 

Two random variables YX , are Positive Quadrant Dependence (PQD) if and only 

if: 

yxallyYxXPyYPxXP ,),()()(       (3.1) 

or equivalently, if  

yxallyYxXPyYPxXP ,),()()(                   (3.2) 

For (3.1) and (3.2), every increasing function a  and b  defined on the real line R 

implies that  0))(),(cov( YbXa  (Lehmann, 1966). 

The PQD cannot be extended to multivariate dimension since equation (3.1) and 

(3.2) are equivalent only in two dimensions. In case of multivariate dimension, the 

random variables are said to be Positively Upper Orthant Dependent (PUOD) if  

).,...,()( 21

1

nnii

n

i

xXxXxXPxXP 
  

3.2.3   Left-Tail Decreasing (LTD) and Right-Tail Increasing (RTI) 

Consider two random variables denoted by X  and Y  respectively. A random 

variableY is Left-Tail Decreasing (LTD) in ,X denoted by ),|( XYLTD  if 

)|( xXyYP   is decreasing in x for all y  (Balakrishnan & Lai, 2009; Joe, 1997; 

Nelsen, 2006). That is 

 ;)|()|( yxxxXyYPxXyYP   
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The random variable X  is Left-Tail Decreasing (LTD) in random variable ,Y

denoted by ),|( YXLTD  if )|( yYxXP   is decreasing in y for all x . That is 

.)|()|( xyyyYxXPyYxXP   

Similarly Y is Right-Tail Increasing (RTI) in random variable ,X  denoted by 

),|( XYRTI  if )|( xXyYP   is increasing in x for all y : 

;)|()|( yxxxXyYPxXyYP   

Likewise, X is Right-Tail Decreasing (RTI) in random variable ,Y denoted by 

),|( YXRTI  if )|( yYxXP   is decreasing in y for all x : 

.)|()|( xyyyYxXPyYxXP   

Suppose Y  is RTI in X  then 

.)|()|( yxxxXyYPxXyYP    

When x  results ).,()()( yYxXPyYPxXP   Hence 

),|()( xXyYPyYP   which means RTI is PQD, and similarly LTD implies 

PQD. 

As additional tool to identify the property of LTD/RTI of copula (Avérous & 

Dortet-Bernadet, 2004) offered a link between the LTD/RTI dependence consept of a 

generator function and its alpha family assiaoated with. Based on the properties, if 

copula C with generator function  is  LTD/RTI then the alpha family, 


C  associated 

with the   is LTD/RTI.  
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3.2.4   Stochastically Increasing 

A random variable Y is Stochastically Increasing (SI) which is also called 

Positive Regression Dependent in ,X ),|( XYSI  if )|( xXyYP   is increasing in x

for all :y  

.)|()|( yxxxXyYPxXyYP    

Likewise X  is )|( YXSI  in ,Y  if )|( yYxXP    is increasing in y for all x  

.)|()|( xyyyYxXPyYxXP    

3.2.5   Positive K-Dependent 

The fourth concept of dependence is based on the probability integral 

transformation which is studied by Genest and Rivest (Genest & Rivest, 1993). Let K  

be the distribution function of a random variable V , which is a transformation of two 

random variables X and Y , via the copula C , ).,( YXCV  For the Archimedean 

copula C , the corresponding function K is denoted by K in order to characterize the 

copula. This function is defined by: 

.10,
)(

)(
)()( 





v

v

v
vvvvK




  

where the )(  v  denotes the first derivative of   at v . Copula C  is Positive K-

Dependent (PKD) if and only if )()(
0

vKvK 
 
for all 10  v . )(

0
vK corresponds to 

independence distribution function by )ln()(0 xx  (Avérous & Dortet-Bernadet, 

2004).
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Generally, we state the following chain of implication for various concepts of 

dependence 

PQD

YXSIYXLTDPKDXYRTIXYSI



 .)|()|()|()|(

  (3.3) 

A similar nesting feature is also valid for Negative Quadrant Dependence (NQD), 

Left Tail Increasing (LTI), Stochastically Decreasing (SD) and Negative K-Dependence 

(NKD) which is define by reversing the inequalities in the preceding definitions. 

NQD

YXSDYXLTINKDXYRTDXYSD



 .)|()|()|()|(

 (3.4) 

3.2.6   Aging Properties and Archimedean Copula Dependence  

Verifying the distribution function with positive or negative dependence is not 

straight forward. Fortunately, in the case of Archimedean copula there is a connection 

between dependence and aging properties of their generator function which help us to 

find out the dependence properties of Archimedean copula in a simple way. These 

results also depend on the following notion of aging (Barlow & Proschan, 1975):  

Let )(tF  denotes univariate cumulative distribution function for each generator 

function  which defined by 0)(1)( 1   tttF  .  Let  )(1)( tFtF    then, 

 Increasing Failure Rate (IFR): F  is IFR if Fln is a convex function. 
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 Increasing Failure Rate in Average (IFRA): F  is IFRA if Fln is a star-

shaped function; i.e. xxF )(ln   is increasing in x .  

 New Better than Used (NBU): F  is NBU if Fln is a super additive function; 

i.e.; .0,)(ln)(ln)(ln  yxyFxFyxF   

The corresponding negative concept of Decreasing Failure Rate (DFR), 

Decreasing Failure Rate in Average (DFRA), and New Worse than Used (NWU) can be 

defined mutatis mutandis. Recall also that a life distribution F with density function f

is said to be strongly unimodal if fln  is a convex. These properties imply that F is 

IFR. 

Now, let  denote the set of continues generator function of Archimedean copula 

and * denote the subset of  of generators that are differentiable on (0, 1). From  

(Avérous & Dortet-Bernadet, 2004) we have the following results:  

Proposition 3.1: 

1) Let * . Then: 

a) C is PQD  F is NWU. 

b) C is NQD  F is NBU. 

2) Let * . If  f denote the density function of  F then: 

a) C is SD  F is strongly unimodal. 

b) C is SI  fln is convex. 



55 

 

3) Let * . Then, 

a) C is PKD  F is DFRA. 

b) C is NKD  F is IFRA. 

4) Let * . Then, 

a) C is LTD  F is DFR. 

b) C is LTI  F is IFR. 

3.3   Trigonometric Dependence Properties 

We first study the dependence properties of trigonometric copula by employing 

the chain properties (3.3) and (3.4) of the trigonometric copula. By starting with the 

strongest dependence properties which is SI/SD, we continue to check the other 

properties until one of these properties satisfied. The results compare to the other 

wellknown parametric Archimedean copula such as the 12
th

 family, Gumbel and 

Clayton.  

3.3.1   Cot Copula 

According to Proposition 3.1 Cot copula is SI if and only if fln is a convex 

function, where f denotes the density function of F .  For Cot copula, f is given by, 

.
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1
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
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Now, according to the basic concept in calculus, the convesity of fln is 

determined by specifying the sign of )(tg which defined as: 
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In general to specify the sign we calculate the second derivative. For this, 
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)(tg  is not a convex or concave function because when 1  equation (3.5) is  
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which has a root at 1t . Our result shows that for the case 2.1 , the Cot- copula is 

stochastically Increasing (SI).  

To verify if Cot copula is Left Tail Decreasing (LTD), we need to check if )ln(F

is a convex function. Let  )(1)( 1 ttF     and  )(1)( tFtF  10  t . Then  
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Properties 1: Cot copula is Left Tail Decreasing (LTD).  
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the calculation we check the convexity of )(tF . Then since   tgtF exp)(   convexity 

of  )(tF  implies convexity of )(tg .  
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To investigate whether the value 
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Following the chain properties of (3.3), it is obvious that Cot- copula has the 

weaker dependence properties PKD and PQD.  

3.3.2   Cot II Copula  

Since the SI/SD in Archimedean copula implies the other positive dependence 

concept, we first start with this concept. For  Cot II: 
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Since the sign of )(tg   in equation (3.6) is not absolute positive or absolute 

negative, the original function )(tg  it is not convex or concave (SI/SD) function. The 

result of simulation study with Matlab program is available in appendix.  

The next strong dependence property is LTD or LTI. Since Cot II copula is an 

alpha family of generator 







 tt

2
cot)(


 , LTD property of this generator can imply the 

LTD of Cot II copula.   

In similar manner as Cot-copula we define  tarctF cot
2
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  for generator )(t . 

Then we check the convexity of function  
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       .1cot2cot1)(
222 


tarcttarcttg  

Since the value of  1)cot(2 tarct  is equal to zero at gt  ,4297.0  is not a 

convex/concave function. Which means Cot II is not LTD/LTI. 

The next property in the chain dependence properties is PKD/NKD which is 

indicated by IFRA/DFRA according to proposition 1. Considering the aging properties, 
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copula is IFRA/DFRA if the function )(tg  in equation (3.7) be increasing/decreasing in 

t.  
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It can be simply check by the sign of first derivatives 
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From the results in appendix )(tg in equation (3.8) is not positive or negative. 

Therefore Cot II is not PKD/NKD.  

Final step in chain property is the PQD/NQD which is matched by NWU/NBU.  F 
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therefore  
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therefore CotII is not NQD or PQD.  

3.3.3   Csc Copula 

Properties 2: Csc copula is Stochastically Increasing (SI).  

We start with the strongest dependence properties, SI/SD. For special case of Csc 
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To ease the calculation we check the convexity of )(tf . Then since 

  tgtf exp)(   convexity of  )(tf  implies convexity of )(tg . 
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The value of )(tf   is always positive for 5.0,0  t . The test of convexity 

can also be done graphically. According to the Figure ‎3.1 the function )(tg  in equation 
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(3.9) is convex. Therefore, it is SI function. According to the chain properties, it is also 

LTD, PKD and PQD as well. Program in MATLAB can be found in appendix. 

 

Figure ‎3.1: )(tg plot of Csc-copula for different value of  5.0  

 

3.3.4   CscII Copula 

To investigate whether CscII copula has the strongest property of dependence, 

SI/SD, we check the function ))(ln()( tftg  to be convex/concave:  
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Simulation result of )(tg  in equation (3.10) for different parameter value ,0  

and 0t proves that )(tg  is a convex function. Result of this simulation can be found 

in Figure ‎3.2 the program in MATLAB can be found in appendix.  

 

Figure ‎3.2: )(tg plot of CscII for different value of  0  

 

3.3.5   CscIII Copula  

Properties 3: CscIII copula is Stochastically Increasing (SI).  

To investigate whether CscIII copula has the strongest property of dependence, 

SI/SD, we check the function ))(ln()( tftg  to be convex/concave:  
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To ease the calculation we check the convexity of )(tf . Then since 

  tgtf exp)(   convexity of  )(tf  implies convexity of )(tg in equation (3.11). 
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which is always positive for 0,0  t . Therefore CscIII is SI function 
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)(tf   in equation (3.12) is always positive which implies the )(tg  is convex 

function. It means CscIII is SI function. Therefore, considering the chain properties of 

dependence it is LTD, PKD and PQD. 

3.3.6   Clayton Copula  

Since trigonometric family of copula are Archimedean copula, we also recall the 

dependence properties of Gumbel, Clayton and A12
th

 of this family. We start with the 

property of SI/SD for Clayton copula. According to proposition 1 Clayton, copula is 

SI/SD if and only if fln is convex/concave function. Where f is derivative of 

)(1)( 1 ttF    and for Clayton copula is define as 

  1
1

1
1 

 



tf  . 

Then we rename logarithmic function f  as g(t) 

  












1
1

1
1

ln)( 


ttg .  

To investigate where )(tg  is a convex function we find the second derivatives as 

follow: 

  2
11

1
)(











 ttg


 , which is greater than zero for all value of 0,0  t . 

Therefore, the Clayton copula is a Stochastically Increasing (SI) function. 

Consequently, it follows that the Clayton copula also got the properties of LTD, PKD 

and PQD.  
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3.3.7   Gumbel Copula 

To consider the dependence properties of Gumbel copula, we start with the 

(SI/SD) property.  
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which is always positive for 1,0  t . Therefore, Gumbel copula is SI and 

consequently it is LTD, PKD and PQD.  

3.3.8   12
th

 Family of Archimedean Copula  

Starting with the (SI/SD) property for A12 we have 
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we have the followings:  
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)(tg   is always positive, and therefore, the 12
th

 family of Archimedean copula is 

Stochastically Increasing (SI) which implies the properties of LTD, PKD and PQD.  

The summarized results are listed in Table  3.1. From Table ‎3.1, all copulas are 

positive dependence. Although the entire proposed copula do not have stronger positive 

dependence concept SI, they are similar to the properties of positive dependence since 

they are at least PKD. It implies that these copulas eventually enjoy similar properties. 

For example, positive dependence implies positive covariance between random 

variables. 

Table ‎3.1: Dependence properties of trigonometric copulas  

 
Dependence 

Concept 

SI 

SD 

RTD/LTI 

RTI/LTD 

PKD 

NKD 

PQD 

NQD 

Cot - LTD PKD PQD 

CSC SI LTD PKD PQD 

CSC II SI LTD PKD PQD 

CSC III SI LTD PKD PQD 

Gumbel SI LTD PKD PQD 

Clayton SI LTD PKD PQD 

A12 SI LTD PKD PQD 

 

3.4   Dependence Measure 

Fundamental researches which has been done on the concept of dependence 

measures show the importance of this topic. Obtaining a measure which can capture the 
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dependence relationship between random variables is the final objective of those 

researches. Since dependence is an extensive concept and variables can be dependent in 

different aspects, one special measure can only capture dependence from one 

perspective. For example, the correlation coefficient measure the linear dependence 

between random variables and it is not equivalent to dependence. It means two 

independent random variables are surely uncorrelated while two uncorrelated random 

variables are not necessarily independent.  

In this section, we review the global concept of dependence which every measure 

should have. Then some important measure of dependence such as correlation 

coefficient, rank correlation and tail dependence measure will be discussed.  

3.4.1   Global Measure of Dependence 

If X  and Y  are not totally dependent, then it may be helpful to find some 

quantities that can measure the strength or degree of dependence between them. If such 

a measure is a scalar, then we can refer to it as index. Let  YX ,  denotes an index of 

dependence between X and Y. The following conditions are the global dependence 

properties (Balakrishnan & Lai, 2009): 

1) δ(X, Y ) is defined for any pair of random variables, neither of random variables 

being constant, with probability 1.  

2)    XYYX ,,   . While independence is a symmetric property, total dependence 

is not, (as one variable may be determined by the other, but not vice versa). 

3)   1,0  YX .  
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4)   0, YX  if and only if X  and Y are mutually dependent (Notice how strong 

this condition is made by the “only if” part). 

5)       YXYbXa ,,   . The condition means that the index remains invariant 

under one-to-one transformation of the marginal random variables (Functions a   

and b  map the spaces of X  and Y , respectively, onto themselves, in a one-to-one 

manner). 

6)   1, YX  if and only if X  and Y are mutually completely dependent. 

7) If X  and Y are jointly normal, with correlation coefficient  , then  

     
   YX ,  . 

8)     kYX , , where k  is a function of   for any family of distributions defined 

by a vector parameter  . 

9) If  YX ,  and  nn YX , , ,...2,1n  are pairs of random variables with joint 

distributions H  and  nH , respectively, and if converges to H , as n , then 

   YXYX nn ,,lim    (Hahn et al., 2002) .  

Three most prominent global measures of dependence are correlation coefficient, 

Kendall’s τ, and Spearman’s correlation coefficient which are under rank correlation.  

3.4.2   Correlation Coefficient  

Correlation coefficient, also called Pearson product correlation coefficient, 

measures the strength and the direction of a linear relationship between two variables 

(Mari et al., 2001).  
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The correlation coefficient is given by,  

      
,

,cov

YX

YX

YX

YXEYX
r








  

where 
X  and 

Y are the standard deviation of random variables, X and Y  respectively.  

Since r lies between [-1,1], a strong positive linear relationship represent with 

1r  and negative relationship with 1r  and 0r  indicate none or weak linear 

correlation between these random variables.  

 3.4.3   Rank Correlation  

The circumstance of moving random variables, X and Y  toward each other 

without considering the exact mathematical relation can be defined as a measure of 

dependence, concordance measure or rank correlation, which is a fundamental tool for 

financial risk management. Here, we are interested to know that “the prices of two (or 

more) assets that tend to rise or fall together”. Informally, a pair of random variables is 

concordant if large values of one tend to be associated to large value of the other and 

analogously for small values. Let X and Y are continuous random variables, then  

),( ii yx
 
       and ),( jj yx         are concordant if ji xx        and ji yy       or 

if ji xx        and ji yy       . Similarly, ),( ii yx        and ),( jj yx are discordant 

if ji xx 
 
and ji yy       , or if ji xx   and ji yy       . For concordance, we note 

that 0))((  jiji yyxx                   and discordance where  

0))((  jiji yyxx                  . Any concordance measure of dependence 

 should satisfy the following properties (Kimeldorf et al., 1980) :  
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1) It defines for any pair of continuous random variables X  and Y .  

2)    XYYX ,,   , which implies symmetry.  

3)   1,1  YX , and reach these bounds in countermonotonic and comonotonic 

respectively. 

4)   0, YX  if  X  and Y  are independent random variables.  

5) if the pair of random variables  21 , XX  is more dependent than the pair  21 ,YY  in 

the following sense:  

( , ) ( , ) , [0,1]X YC u v C u v u v  
 , then the same ranking holds for any 

concordance measures  , it means that 1 2 1 2( , ) ( , ).X X Y Y 
 

This section introduces two well-known concordance measures, Kendall’s τ and 

spearman’s ρ. 

3.4.3.1   Kendall’s τ (τ)  

By definition Kendall’s τ is the difference between the probability of concordance 

and the probability of discordance. To define the sample version of Kendall’s τ, let

    nn yxyx ,,,..., 11  
denote a random sample of n observations from a vector ( , )X Y of a 

continuous random variables. There are 
2

n 
 
 

distinct pairs  ii yx ,  and  
jj yx ,  , let c 

denote the number of concordant pairs and d the number of discordant pairs. Then 

Kendall’s τ for the sample is defined as 


















2

n

dc

dc

dc
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Mathematically Kendall’s τ is defined as 

         00 22112211, 11
 YXYXPYXYXPYX  

where  11 ,YX  and  22 ,YX  be two independent and identically distributed random 

vectors. This quantity is invariant under increasing transformation of the marginal 

distributions. Accordingly, Kendall’s τ depends only on the copula of  YX , . Following 

theorems show the relation between Kendall’s τ and copula (Nelsen, 2006).  

Theorem (Nelsen 2006): Let (X1,Y1) and (X2,Y2) be independent vectors of 

continuous random variables with joint distribution functions H1 and H2, respectively, 

with common margins F (of X1 and X2) and G (of Y1and Y2). Let C1 and C2 denote the 

copulas of (X1,Y1) and ( X2,Y2), respectively, so that 1 1( , )  C ( ( ), ( ))H x y F x G y  and 

2 2( , )  ( ( ), ( ))H x y C F x G y . Let Q denote the difference between the probabilities of 

concordance and discordance of (X1,Y1) and ( X2,Y2), i.e., let 

1 1 1, 1 1 1 2 2 1 1 2 2( , ) : [( )( ) 0] [( )( ) 0]X YX Y P X Y X Y P X Y X Y             

Then  

21 2, 1 1 2 2 1 24 ( , ) ( , ) 1.X X
I

C u u dC u u    

Therefore:  

Theorem (Nelsen 2006): Let X  and Y  be continuous random variables with 

copula C. Then the population version of Kendall’s τ for X  and Y is given by 
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the computation of this is difficult, there is a simple expression of Kendall’s τ for the 

Archimedean copulas in terms of its generator   , 
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3.4.3.2   Spearman’s ρ (ρS)  

As with Kendall’s τ, the population version of the measure of association known 

as Spearman’s ρ (denoted by ρS) is also based on concordance and discordance. Let 

 11,YX ,  22,YX  and  33,YX  be three independent pairs of random variables with a 

common distribution function H. Then, ρS is defined to be proportional to the 

probability of concordance minus the probability of discordance for the two pairs 

 11,YX  and  32,YX , 

        003 31213121  YYXXPYYXXPS
.
 

In terms of the copula we have the following results: 
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By rewriting the above equation as  
 

12/1
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

UVE
S  . 

This simply means Spearman’s rank correlation between X  and Y  is Pearson’s 

product moment correlation coefficient between the uniform variates U and V (Nelsen, 

2006).  

The relation between Kendall’s τ and Spearman’s rank correlation for any copula 

C is as following formula: 
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Figure ‎3.3, reflects the strong relation between Kendall’s and spearman’s ρ.  

 
Figure ‎3.3:  Relationship between Kendall’s   and spearman’s ρ 

 

3.4.4   Tail Dependence  

In most financial applications, it is helpful to find the relation from the points of 

two random variables instead of focusing on the strong relation between every two 
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points. The, tail dependence quantifies the properties of two random variables at the 

extreme movements; this provides a good measure of extreme risk.  

Let X  and Y  be continuous random variables with distribution functions F  and 

G , respectively. The upper tail dependence denoted as u  is defined as the probability 

of extremes in Y occurring, conditioned on the presence of extremes in X, that is,  
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The joint distribution is said to be asymptotically dependent if ],1,0(u  and 

independent if .0u  When C  is Archimedean with generator φ, the upper tail 

dependence can be expressed as  
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Likewise, the lower tail dependence parameter l is the limit (if it exists) of the 

conditional probability that Y is less than or equal to the 100 t -th percentile of G given 

that F is less than or equal to the 100 t -th percentile of F as  t  approaches 0, that is,  
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 Again, when C is Archimedean with generator φ, the lower tail dependence is 

expressible as (Nelsen, 2006),  
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 3.5  Trigonometric Dependence Measure  

Using the definition of measure of dependences given in subsection 3.4, we next 

define the dependence measure of the proposed trigonometric functions. 

3.5.1   Cot Copula 

For the Cot generator 







 tt

2
cot)(


   define in chapter 2 the upper and lower tail 

dependence (
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The Kendall’s τ  for the generator 
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From this expression, the Cot-copula function has a range of dependency between 
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3.5.2   Cot II Copula 

According to the information in previous section, for the Cot II generator


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The Kendall’s τ for the generator )
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3.5.3   Csc  Copula  

In case of Csc function with generator




 
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calculated by following formula: 
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According to the definition of Kendall’s τ for two random variables X  and Y we 

have following formula for 
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According to the Kendall’s τ the dependence coverage for the Csc copula is 

 1,0051.0  which provide a wider range of dependence compared to the Cot copula.    

3.5.4   CscII Copula 

Tail dependence for CscII with generator function 1
2

csc)( 







 

 tt  is 

calculated as 
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And in case of Kendall’s τ for this function with generator function  

1
2

csc)( 







 

 tt :  

dt

ttt

t

dt
t

t
XX 































1

0 1

1

0

',

2
cot

2
csc

2

1
2

csc

41
)(

)(
41

21












  































1

0 1

2
cot

2
csc

1
2

csc
8

1 dt

ttt

t










  (3.14) 

.

2
cot

2
csc

1

2
cot

18
1

1

0

1

0 11












































  



dt

ttt

dt

tt  
 

 

3.5.5   CscIII Copula 

The tail dependence for CscIII with generator function 1
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3.5.6   Gumbel II Copula 

Tail dependence for Gumbel II with generator function )ln()(  tt   is given 

by: 
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Using the definition of Kendall’s τ for Gumbel II, we have  
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According to the Kendall’s τ the dependence coverage for the Gumbel II- copula 

is null. 

3.5.7   Gumbel Copula 

The tail dependence for Gumbel with generator function   tt ln)(   and 
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The Kendall’s τ for the Gumbel is given by  
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Thus, the dependence coverage for Gumbel copula is [0, 1]. Though it has a wider 

coverage, the lower tail dependence is always constant, that is zero (independent of  ). 

3.5.8   Clayton Copula 

The tail dependence for Clayton with generator function )1()(   tt  is 

calculated as 
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The corresponding Kendall’s τ the formula for Clayton is calculated as 
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Accordingly the dependence coverage for Clayton is [0, 1]. Though it has a wider 

coverage, the upper tail dependence is always zero (independent of  ). 

3.5.9   12
th

 Family of Archimedean Copula (A12) 

According to the Table 4.1 of Nelsen (Nelsen, 2006), the 12
th

 families of 

Archimedean copula has both the upper and lower tail dependence. The tail dependence 

for A12 with generator function 
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Therefore, the dependence coverage for 12
th

 family is [0.34, 1].     
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Information regarding the lower and the upper tail dependences together with 

Kendall’s τ to compare the dependence coverage of these copulas is summarized in 

Table ‎3.2. 

Table ‎3.2: Both lower and upper tail dependence with dependence coverage  

for trigonometric copulas 

 

Trigonometric 

copula 
Lower tail Upper Tail Kendall’s τ 

Dependence 

Coverage 

Cot 

1

2


 

1

22   2

8
1

 
[0.19,1] 

Cot II 1 0 Ref. (3.13) [0.19,1] 

CSC 

1

2



 2

1

22  
)1)2(ln(

16
1

2


  
[0.005,1] 

CSC II 

1

2


 
22  Ref. (3.14) [0.5, 1] 

CSC III 

1

2


 
22  Ref. (3.15) [0.5, 1] 

Gumbel 0 

1

22  

 1

 
[0,1] 

Gumbel II 1 
1

2
2









 
0 0 

Clayton 

1

2


 
0 

2



 
[0,1] 

A12 

1

2


 

1

22  6

4
1

 
[0.34, 1] 

 

Since we are interested in those copulas with both upper and lower tail 

dependences, we first choose a proper copula based on tail dependence. The Cot-copula 

and CSC-copula have flexible upper and lower tail dependences which is comparable 

with A12. Both the Cot-copula and CSC-copula have better dependence coverage than 

A12. Finally, we can conclude that CSC-copula is more superior in terms of tail 

dependence and also dependence coverage. An additional advantage of the CSC-copula 

is that it is a one-parameter copula with bivariate tail dependences. Figure ‎3.4 shows the 

differences between Clayton, Gumbel and Cot copula. 
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Figure ‎3.4:  Tail dependence for (a) Clayton, (b) Gumbel and (c) Cot copula. 

 

3.6   Illustrative Examples 

In this section, we analyze a large bivariate data set to demonstrate the ability of 

the new bivariate copula to capture tail dependences in symmetric and asymmetric data 

sets.  

Symmetric data are generated from t-Copula; specifically from 
2t  , t-copula with 2 

degree of freedem, and  
4t , t-copula with 4 degree of frredem, with correlation 

coefficient in the range [0, 1). Our results showed that when the correlation coefficient 

is big, 5.0 , with heavier tails, the Cot-copula and CSC-copula  provide the best 

estimates among these copulas (in terms of GOF and tail dependences). Details of the 

lower and upper tail dependence calculation for t-Copula can be found in (Genest & 

MacKay, 1986b). Although the Gumbel and the Clayton capture a good range of tail 

dependence, they have the limitation of dealing with just one tail.  The 12
th

 family of 

Archimedean copula captures both upper and lower tail dependence but with a smaller 

range of dependence; examples given for t(0.5, 2) and t(0.5, 4). The problem of over-

estimation of lower tail dependence for the Cot-copula under a small correlation 

coefficient 5.0 is attributed to the fact that the lower tail coverage is [0.5, 1] while in 
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case of CSC-copula, the lower tail coverage is [0.25, 1].  Table ‎3.3 up to Table ‎3.9 show 

the results of estimation in different ranges of tail dependence. Graphical 

representations of goodness of fit based on Kendall’s process are shown in Figure ‎3.5 

up to Figure ‎3.11. The Cot-copula, in general, provides good tail estimates when the 

underlying distribution is heavy-tail with correlation coefficient ranging from moderate 

to large. This result is even better in the case of CSC-copula since the dependence 

coverage is wider.  
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Table ‎3.3: Estimated copulas with 1000 data from t-copula  t (0.9, 2) 

 

 
Lower 

tail 

Upper 

tail 

Goodness 

of fit 
parameter 

Simulated data 0.72 0.72   

Gumbel 0.0 0.7671 0.0002 3.3107 

Clayton 0.8127 0 0.0013 3.3429 

12th family 0.8007 0.7511 0.0006 3.1189 

Cot 0.7746 0.7090 0.0001 2.7141 

CSC 0.65815 0.7673 0.0001 1.6570 

Csc2 0.61491 0.5857 0.0006 2.8508 

Csc3 0.78255 0.5857 0.0006 2.8270  
Figure  3.5: Goodness of fit representation of Table  3.3. 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

 

 

e-copula

cot

gumbel

clayton

12

csc

csc2

csc3



89 

 

Table ‎3.4: Estimated copulas with 1000 data from t-copula t 

(0.5, 4) 

 

 Lower tail Upper tail 
Goodness of 

fit 
parameter 

Simulated data 0.25 0.25   

Gumbel 0 0.4058 0.0001 1.4862 

Clayton 0.3520 0 0.0012 0.6638 

12
th

 family 0.6876 0.5457 0.0068 1.8507 

Cot 0.5651 0.2304 0.0012 1.2145 

CSC 0.3882 0.3950 0.0003 0.7326 

Csc2 0.0343 0.5858 0.0011 0.4112 

Csc3 0.1136 0.5858 0.0004 0.3186 
 

 
 Figure  3.6: Goodness of fit representation of Table  3.4.  
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Table ‎3.5: Estimated copulas with 1000 data from  t-copula, t (0 , 2) 

 
 Lower tail Upper tail Goodness of fit parameter 

Simulated data 0.18 0.18   

Gumbel 0 0.0913 0.0007 1.0723 

Clayton 0.0019 0 0.0006 0.1108 

12
th

 family 0.6502 0.4620 0.0268 1.6103 

Cot 0.5114 0.0448 0.0066 1.0338 

CSC 0.2853 0.1279 0.0016 0.5527 

Csc2 0.0367 0.5858 0.0158 0.4196 

Csc3 0.0000 0.5858 0.0085 0.0206 
 

 

 Figure  3.7: Goodness of fit representation of Table  3.5. 
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Table  3.6: Estimated copulas with 1000 data from t-copula, t (0.5, 4). 

 
 Lower tail Upper tail Goodness of fit parameter 

Simulated data 0.08 0.08   

Gumbel 0.0 0.0054 0.0001 1.0039 

Clayton 0.0000 0.0 0.0001 0.0049 

12
th

 family 0.6468 0.4539 0.0282 1.5909 

Cot 0.5015 0.0060 0.0064 1.0044 

CSC 0.2668 0.0640 0.0012 0.5246 

Csc2 0.0338 0.5858 0.0173 0.4093 

Csc3 0.0 0.5858 0.0093 0.0000 
 

 

 
Figure  3.8:  Goodness of fit representation of  Table  3.6. 
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The asymmetric data has been generated from the Joe –Clayton copula. The results illustrates that for heavy asymmetric tail dependence, Cot-

copula and CSC-copula serve a good one parameter distribution functions. Also from the Table ‎3.7 , we note that when the lower tail is heavier than 

the upper tail, the Cot-copula gives better coverage.  

Table  3.7: Estimated copulas with 1000 data from  BB7(2,2) 

 
 Lower tail Upper tail Goodness of fit parameter 

Simulated data 0.7071 0.5858   

Gumbel 0.000 0.6517 0.0007 2.3197 

Clayton 0.7573 0.000 0.0005 2.4939 

12
th

 family 0.7584 0.6814 0.0020 2.5061 

Cot 0.7083 0.5881 0.0001 2.0094 

CSC 0.5579 0.6611 0.0002 1.1876 

Csc2 0.5232 0.5858 0.0001 2.1399 

Csc3 0.7211 0.5858 0.0001 2.1202 
 

 

 
Figure  3.9: Goodness of fit representation of Table  3.7. 
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For the cases of heavy lower and upper tail dependence, the results are satisfactory for both the Cot and CSC copulas as shown in Table ‎3.8. 

Table  3.8: Estimated copulas with 1000 data from  BB7(3,2) 

 

 Lower tail Upper tail Goodness of fit parameter 

Real data simulated 0.7071 0.7401   

Gumbel 0.000 0.7417 0.0002 3.0171 

Clayton 0.7786 0.000 0.0016 2.7691 

12
th

 family 0.7850 0.7262 0.0009 2.8638 

Cot 0.7546 0.6748 0.0001 2.4618 

CSC 0.6316 0.7417 0 1.5084 

Csc2 0.5359 0.5858 0.0006 2.2226 

Csc3 0.7331 0.5858 0.0005 2.2328 
 

 

 
Figure  3.10: Goodness of fit representation of  Table  3.8. 
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Our results support that the CSC-copula serves as an alternative proper distribution function when upper tail is heavier than the lower tail.   

Table  3.9: Estimated copulas with 1000 data from BB7(4, 2) 

 
 Lower tail Upper tail Goodness of fit parameter 

Simulated data 0.7071 0.8108   

Gumbel 0 0.7795 0.0002 3.4785 

Clayton 0.7900 0 0.0018 2.9402 

12
th

 family 0.7995 0.7493 0.0009 3.0981 

Cot 0.7750 0.7096 0.0002 2.7187 

CSC 0.6690 0.7774 0.0001 1.7242 

Csc2 0.5660 0.5858 0.0008 2.4350 

Csc3 0.7521 0.5858 0.0006 2.4334 
 

 

 
Figure  3.11: Goodness of fit representation of  Table  3.9.  
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Chapter 4: Multivariate Copulas and Vine Structure  

This chapter provides the concept of multivariate Archimedean copula together 

with the examination of the extension of Cot-copula and Csc-copula. Here, the problem 

of classical multivariate extension is considered as the starting point for introducing the 

vine structure and vine copula. We then extend the bivariate trigonometric copula into 

multivariate copula by using vine structure.  

4.1   Multivariate Archimedean Copula  

A bivariate Archimedean copula with a strict generator     ,01,0:  can be 

extended to n dimensional copula     ,01,0:
n

C  defined as 

        .,...,, 21

1

nuuuuC   

This extension is possible if and only if 1  is entirely monotonic on R, i.e., if 



 L1 with   mktRL kk

m   ,0)()1(,0)(,1)0(|1,0: )( . 

By considering this property, it is necessary then to check whether the Cot- and 

Csc-copula can be extended to multivariate dimension.  

The inverse generator function of the Cot-copula is considered as

)cot(
2

)()(

1

1 


 tarcttg   . To examine whether g(t) is a complete monotonic function 

we proceed as follow:  
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The same logic can be applied to the Csc-copula inverse function. The result 

would be similar as the Cot-copula, where the function is not extendable to higher 

dimensions.  

Beside the fact that multivariate extension of trigonometric copulas is not 

possible, there are some more reasons for considering vine structure as a logic way of 

extension of multivariate copula.  

  As mentioned in (Joe, Li, & Nikoloulopoulos, 2010) a competent multivariate 

copula families has the following properties: 

 Wide range of positive and negative dependence.  

 Flexible range of upper and lower tail dependence.  

 Computationally feasible density for (likelihood) estimation.  

 Lower order margins belong to the same parametric family, means: Closure property 

under marginalization.  

According to the literatures, none of the existing family of copulas satisfies all the 

conditions. Below some classified literatures is illustrated as proof. 
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The multivariate normal copula (Abdous et al., 2005; Fang et al., 2002)  satisfied 

all properties except tail dependence. The multivariate t copula family (Demarta & 

McNeil, 2005) however does not have this problem. Multivariate t copula reflects the 

symmetric tail dependence. Thus for any bivariate margins, multivariate t copula 

resulted in the same value for the upper and lower tail dependence. Such advantage 

resulted in the extensive use of the t copula in the context of modeling multivariate 

financial return data (Breymann et al., 2003).  However, the literatures reports that the 

financial data are asymmetric (Longin & Solnik, 2001), (Ang & Chen, 2002) and 

(Hong, Tu, & Zhou, 2007) and as such the t copula does not satisfy all the desired 

properties of multivariate copula family. There are some research done to improve the t 

copula for asymmetric data, which posses skewed tail dependence, for example 

(Demarta & McNeil, 2005), (Kotz & Nadarajah, 2004). However, this improvement 

resulted in expensive computations. The problem with Archimedean copula is related to 

the narrow range of negative dependence and exchangeable structure (Joe, 1997), 

(McNeil & Nešlehová, 2009). To overcome these problems, researchers extend the 

Archimedean copula to partially symmetric copula (Joe, 1993) and max-id copulas (Joe 

& Hu, 1996). Joe’s (1993) proposal overcomes the problem of exchangeability but the 

problem with flexible tail dependence still persists. The max-id copula provides a 

flexible upper tail dependence but not the lower tail.  

Arbitrary dimension problem of multivariate distribution can be overcome via 

vine structure. The vine copulas are a flexible graphical model for describing 

multivariate distributions built up using a cascade of bivariate copulas, so called pair-

copulas. Because of this flexibility, the vine copulas do not face any of the previous 
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multivariate copulas’ problems by choosing appropriate bivariate copula (Brechmann & 

Schepsmeier).  

By considering the advantages and the limitations in extending to multivariate 

copula, we now consider constructing the multivariate trigonometric copula via the vine 

structure.   

The next part of this chapter covers the concept of vine structure and vine copula. 

In section 4.2 we provide an introduction of vine based on current available literatures. 

Section 4.3 provides precise mathematical definition of vine and vine copulas together 

with various types of vines. Section 4.4 presents copula vine or pair copula 

construction. The important dependence properties of copula will be given in section 

4.5.  The concept of copula estimation and model inference will be presented in section 

4.6 and 4.7 respectively. Section 4.8 provides a structure of Archimedean vine copula 

with introducing trigonometric vines.  Application of multivariate vine copula on US 

and Asia index will be presented in section 4.9.  

4.2   Introduction to Vine 

Vines are graphical structures that represent joint probability distributions. They 

were named for their close visual resemblance to grapes (see  Figure ‎4.1) (Kurowicka & 

Joe, 2010).  

 
Figure ‎4.1: Comparison of vine structure with grapes. 
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An ordinary vine is a particular case for which all constraints are two-dimensional 

or conditional two-dimensional. Regular vines generalize trees, and are themselves 

specializations of something called Cantor trees (Kurowicka & Joe, 2010). The regular 

vine can be used successfully to model high-dimensional dependence together with 

copula.  

Vine copula structure was first introduced by Joe (Joe, 1996) when he used the 

pairwise construction based on Sklar theorem (Sklar, 1959). Extension of this 

construction was done by Bedford and Cooks (Bedford & Cooke, 2001), (Bedford & 

Cooke, 2002). They used a graphical representation of the tree to make a 

multidirectional density by product of bivariate copulas, called pair-copula, instead of 

Sklar theorem. They called the structure as regular vine since it is based on graphical 

trees. Gaussian copula was used as bivariate copula in their structure. Using arbitrary 

pair-copula for the first time was conducted by Aas et.al,. (Aas, Czado, Frigessi, & 

Bakken, 2009). They developed standard Maximum Likelihood (ML) estimation for C- 

and D-vine copulas.  The importance of C- and D-vine copulas are shown later by 

(Czado, 2010) where he shows that can be constructed in a simple recursive condition.  

4.3   Definition and Concepts   

A vine v on N variables is a nested group of trees T, where the edges of tree j , 
jE  

are the nodes of tree 1j ; 2,...,1  Nj  and every tree contains the most number of 

edges (Kurowicka & Cooke, 2003).   An ordinary vine on n variables is a vine in which 

two edges in tree j  are combined by an edge in tree 1j  only if these edges share a 
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common node, 2,...,1  Nj . The formal definition follow according to (Kurowicka & 

Cooke, 2003; Kurowicka & Joe, 2010)  

Definition (Regular Vine): v  is a regular vine on n  elements with edges 

11 ...)(  nEEvE if 

1) },,...,{ 11  nTTv  

2) 
1T  is a connected tree with nodes },...,1{1 nN  and edges 

1E ;and   for 1,...,2  ni , 

iT  is a tree with nodes .1 ii EN  

3) (Proximity) for 1,...,2  ni , 2)(#,},{  baEba i
, where   denotes the symmetric 

differences operator . To put it another way,   if  a and b  are nodes of 
iT  linked by an 

edge where },{ 21 aaa   and },,{ 21 bbb  then precisely one of the
ia  

are equivalent to 

one of the  
ib  

and  #  denotes the cardinality of a set.  

Definition (C-vine): A regular vine is labeled a canonical or C-vine if each tree 
jT  

has a unique node of degree ,1n thus has the highest possible degree. 

Definition (D-vine): A regular vine is labeled a D-vine if all nodes in 
1T  has a 

degree of two or less.  

The three important concepts known as conditioning, constraint and conditioned 

set of an edge is defined as follows: 

Definition (Constraint, Conditioning and Conditioned set):  
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1) For an element, ,1,  niEe i
the Constraint set associated with e  is the complete 

union *

eU  of e , that is, the subset of },...,1{ n reachable from e  by the membership 

relation.  

2) For 1,...,1  ni  , 
iEe  if   },{ kje  then  the conditioning set associate with e  is 

**

kje UUU   

3) The conditioned set associated with e  is }.\,\{},{ **

,, ekejkeje DUDUCC   

Definition (m-child, m-descendent): If node e  is an element of node f, we say that 

e  is an m-child of f; similarly, if e  is reachable from f via the membership relation: 

fe ... we say that e is an m-descendent of f. 

To visualize the concept of the above definitions, we construct the following 

examples:  

Example 4.1 (Non Regular vine): Figure ‎4.2 visualizes a regular and a non-

regular vine. Figure ‎4.2(b) is not regular, because in
2T , with edges }2,1{a and 

}4,3{b there is not any common nodes in tree
1T . Accordingly Figure ‎4.2 (a) is a 

regular vine.  

 
 

   (a)                                                     (b) 

Figure ‎4.2: Regular Vine (a) and Non Regular Vine (b) 
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Example 4.2 (C-vine): Figure ‎4.3 shows an example of C-vine with 5 nodes, n=5, 

with following trees: 

a) }5,4,3,2,1{: 11 NT and }5,1;4,1;3,1;2,1{}}5,1{},4,1{},3,1{},2,1{{1 E , 

b) 
122 : ENT  and }5,4,3,1|,2{}}15,12{},14,12{},13,12{{2  iiE , 

c) 
233 : ENT  and }5,4,2,1|,3{}}1|5,2;1|3,2{},1|4,2;1|3,2{3  iiE , 

d) 
344 : ENT  and }3,2,1|5,4{}2,1|5,3;2,1|4,3{4 E . 

For edges  .1|2,3  The Conditioning set is: },1{}3,1{}2,1{   and the 

Conditioned set is },3,2{}1{\}3,1{}1{\}2,1{   

 

Figure ‎4.3: C-Vine with 5 Nodes  

 
 

Example 4.3 (D-vine): Figure ‎4.4 shows a D-vine structure with five nodes, n=5 

with following trees  

a) }5,4,3,2,1{: 11 NT and }5,4;4,3;3,2;2,1{}}5,4{},4,3{},3,2{},2,1{{1 E , 

b) 
122 : ENT  and }4,3,2,1,1|2,{}}45,34{},34,23{},23,12{{2  iiiiE , 

c) 
233 : ENT  }2,1,2,1|3,{}}4|5,3;3|4,2{},3|4,2;2|3,1{{3  iiiiiE , 
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d) 
344 : ENT  and }4,3,2|5,1{}4,3|5,2;3,2|4,1{4 E . 

The Conditioning set is: },2{}3,2{}2,1{   and the Conditioned set is 

},3,1{}2{\}3,2{}2{\}2,1{   

 

Figure ‎4.4:  D-Vine with 5 nodes 
 

Considering the vine definitions, we present some important properties of vines.  

Properties 4.1: Let },,...,{ 11  nTTv be a regular vine then 

1) The number of edges is ,2/)1( nn  

2) Each pair of variables occurs exactly once as a conditioned set, this property is called 

doubleton, 

3) If two edges have the same conditioning set, then they are the same edge. 

Properties 4.2:  For any node K of order k > 0 in a regular vine, if variable i  is a 

member of the conditioned set of K, then i  is a member of the conditioned set of exactly 

one of the m-children of K, and the conditioning set of an m-child of K is a subset of the 

conditioning set of K. 

Theorem 4.1(Bedford & Cooke, 2002) Bedford & Cooke, 2002): 
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1) For any regular vine on 1n  elements, the number of regular n dimensional vines 

which extend this vine is 
32 n

. 

2) There are
2/)3()2(2)!2(

2








 nnn
n

 labeled regular vines in total.  

Interestingly all vines are in the same class when 3n . All regular vines for 

4n are C- or D-vines. But for 5n , there are many vines that are not either C or D-

vines.  

4.4   Copula Vine or Pair Copula Construction  

Although the idea of copula vine started from pair copula decomposition from 

Sklar’s theorem, the abstract breakthrough of constructing of multivariate copula is 

based on the vine structure. The graphical vine structure gives a bigger perspective of 

how multivariate copula can be constructed from a bivariate copula. In this section, we 

introduce the general idea and the theory of vine copula, and then we proceed to the 

concept of C- and D-vine copula. Finally, we touch the starting point of this idea by 

revising the concept of copula decomposition.  

By Skalar’s theorem, the world of statistical model has changed due to the 

breakthrough idea of decomposition of margins and dependence between random 

variables. The success of copula in bivariate rather than multivariate case is due to the 

shadow area in dependence. This shadow area is covered by concentrating mainly on 

the structure of dependence which is represented by vine as a graphical structure.  
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A vine copula is a specific type of regular vine which is constructed by assigning 

a bivariate copula to each edge in the
11 ...)(  nEEvE  . The set of 









2

n
copula is 

denoted by B which can be chosen independently from each other.  

Theorem 4.2 gives the structure of the joint density of a regular vine copula with 

margins, 
nFF ,...,1

.  

Theorem 4.2 (Bedford & Cooke, 2002) : Let  121 ,...,,  nvvvv  be a regular vine 

on n  elements. For an edge )(vEe with conditioned elements 
21,ee and conditioning 

set
eD , let the conditioning copula and its density be 

eDeeC |, 21

and 
eDeec |, 21

 respectively. 

For a given marginal distributions 
iF  

with densities nifi ,...,1,   , the vine dependent 

distribution is uniquely determined with density given by:  

).,(... |||,1,...,1 2121 eee DeDeDeenn FFcfff 
 

Vine copula have closed form densities when 
nFF ,...,1

 and the bivariate copula in 

B are differentiable.  

Following examples are vine copula based on C- and D- vine structure which is 

defined in section 4.3.  

Example 4.4: Consider a C-vine with 5 nodes as previously discussed in example 

4.2. The set of bivariate copulas on every tree denoted separately as 

a) :1T  },,,,{

}15,14,13,12{}}5,1{},4,1{},3,1{},2,1{{

151413121

1

CCCCB

E




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b) :2T  
},,,{

}5,4,3,1|,2{}}15,12{},14,12{},13,12{{

1|251|241|232

2

CCCB

iiE




 

c) :3T  
},,{

}5,4,2,1|,3{}}1|5,2;1|3,2{},1|4,2;1|3,2{

12|3512|343

3

CCB

iiE




 

d) :4T
}.{

}3,2,1|5,4{}2,1|5,3;2,1|4,3{

123|454

4

CB

E




 

Then the set of all copulas on regular C-vine is denoted by .4321 BBBBB 

Note that 
iF  and 

eDeeC |, 21  
are assumed to be differentiable with density nifi ,...,1,    

and
eDeec |, 21

. Then according to theorem 4.2 the density function is given by  

 

).,(.

),().,(.

),().,().,(.

),().,().,().,(.

...

123|5123|4123|45

12|512|312|3512|412|312|34

1|31|21|251|31|21|241|31|21|23

5115411431132112

515,...,1

FFc

FFcFFc

FFcFFcFFc

FFcFFcFFcFFc

fff 

                     (4.1)
 

Equation 4.1 is a five-dimensional distribution function according to the C-vine 

structure, defined from copula that joints the bivariate random variables.  

Example 4.5: Consider D-vine structure with a five nodes. For a graphical 

representation, consider the example 4.3 from section 4.3. We define the set of all 

bivariate copulas for D-vine structure as follows: 

a) :1T
},,,,{

}5,4;4,3;3,2;2,1{}}5,4{},4,3{},3,2{},2,1{{

453423121

1

CCCCB

E




 

b) :2T
},,,{

}4,3,2,1,1|2,{}}5,4;4,3{},4,3;3,2{},3,2;2,1{{

4|353|242|132

2

CCCB

iiiiE




 

c) :3T
},,{

}2,1,2,1|3,{}}4|5,3;3|4,2{},3|4,2;2|3,1{{

34|2523|143

3

CCB

iiiiiE




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d) :4T
}.{

}4,3,2|5,1{}4,3|5,2;3,2|4,1{

234|154

4

CB

E




 

The set of all bivariate copulas on regular D-vine with five nodes is denoted by

4321 BBBBB  . By assuming differentiability as in the previous example, the 

five-dimensional density function is given by equation 4.2 as  

       

     
   
 .,

,,

,,,

,,,,

...

234|5234|1234|15

34|534|234|2523|423|123|14

4|54|34|353|43|23|242|32|12|13

5445433432232112

515,...,1

FFc

FFcFFc

FFcFFcFFc

FFcFFcFFcFFc

fff 

               (4.2)
 

Equation 4.2 is a five dimensional distribution function according to the D-vine 

structure based on D-vines and theorem 4.2.  

Extension of C- and D-vine copula from five-dimension to n -dimension is 

straightforward. It merely involves the definition of bivariate copula set. In case of C-

vine a general definition of all bivariate copula sets is defined as

}1:{ 211,...,1| 121
niiC iii 

. This gives the following decomposition of a multivariate 

density, the C-vine density with root nodes  n,...,1 . 

      













1

1 1

)1(:1||,1111)1(:1|,

1

,..,1 ,|,...,|,,...,|
n

i

in

j

ijiiijiiiijii

n

k

kn xxxFxxxFcfxf   (4.3) 

In case of D-vine is defined as  niiC iiii  211,...,1| 1:
2121  

which gives equation 

4.4 as multivariate density.  
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 

    
















1

1 1

)1(:1|,1111)1(:1|,

1

,..,1

,|,...,|,,...,|
n

i

in

j

ijjijjijjijijjjijjijj

n

k

kn

xxxFxxxFc

fxf

     

(4.4) 

where ,,...,1, nkfk   denote the marginal distributions and 
)1(:1|,  ijiic  and 

)1(:1|,  ijjijjc are 

bivariate marginal distribution functions with parameters   
)1(:1||,  ijii   and    

.)1(:1|,  ijjijj  

Although  the vine structure gives a wide perspective of the concept of vine 

copula, the idea started from pair- copula decomposition by Joe (Joe & Hu, 1996) who 

constructed the family of some multivariate distributions which were later called as D-

vine. In the following sections, we try to explain the idea of vine copula according to 

Joe’s point of view. 

The joint density function of n  random variables can be used as a starting point of 

definition of pair copula decomposition. We consider n  random variables 

),...,( 1 nXXX   with a joint density function ),...,( 1 nxxf . The density can be factories as  

),,...,|()...,|()|()(),...,( 211211 nnnnnnnn xxxfxxxfxxfxfxxf             (4.5) 

According to Sklar’s theorem (Sklar, 1959), every multivariate distribution F with 

margins 
nFFF ,...,, 21
can be written as   

)).(),...,(),((),...,( 22111 nnn xFxFxFCxxF   

For an absolutely continuous F  with strictly increasing, continuous marginal 

density 
nFFF ,...,, 21
  we have  
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)()...())(),...,(),((),...,( 112211...121 nnnnnn xfxfxFxFxFcxxf                  

The components of equation (4.5) can be rewritten based on copula for example in 

case of two variables )())(),(()|( 11111,1   nnnnnnnnnn xfxFxFcxxf  . It is because  

)()())(),((),( 11111,1 nnnnnnnnnnnn xfxfxFxFcxxf    

To illustrate, as the number of variables increases, we have several alternatives to 

decompose the conditional density of 
1X  given 

2X  and 
3X  according to equations (4.6) 

and (4.7).  

),|())|(),|((),|( 31323|2313|13|12321 xxfxxFxxFcxxxf     (4.6) 

or 

),|()).|(),|((),|( 21232|3212|12|13321 xxfxxFxxFcxxxf     (4.7) 

Further decomposition of  (4.7) leads to  

)()).(),(()).|(),|((),|( 11221112232|3212|12|13321 xfxFxFcxxFxxFcxxxf  , 

Accordingly, it is obvious that each terms is able to be decomposed into the 

proper pair-copula times a conditional general density, through the general formula  

),|()).|(),|(()|( | jjjvvxv vxfvvFxxFcvxf
jjj 

   

for a d-dimensional vector v . Here 
jv  is one arbitrarily chosen component of v  and 

jv

denotes the v vector, excluding the jth  component.  
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Marginal conditional distributions involving pair-copula construction can be 

calculated as (Joe, 1996) 

,
)|(

))|(),|((
)|(

|

jj

jjvxv

vvF

vvFjvxFC
vxF

jj











 

where 
kjiC |,
is a bivariate copula distribution function. The function ),,( vxh represent 

the conditional distribution function where X  and V  are uniform, i.e. 

xxFvfxf  )(,1)()( and ,)( vvF   thus, 

,
),,(

)|(),,(
,

v

vxC
vxFvxh

vx







  

To sum up, under suitable regularity conditions, a multivariate density is able to 

be expressed as a product of pair-copula, acting on several different conditional 

probability distributions. Needless to say that the construction is iterative in its nature, 

and that given a specific factorization, there are still many different re-parameterizations 

(Aas et al., 2009). As explained earlier, this re-parameterizations can be done by 

graphical regular vine structure.   

4.5   Properties: Tail Dependence Properties of Vine Copula 

The following dependence properties for vine copula can be found in (Joe, 1996; 

Joe et al., 2010): 

a) Let the edge e  be in 
lF  with 1l and let the conditioned set },{ 21 eee  . If  

eC is more 

concordant than 
eC  , then the margin  

2,1 eeF  is more concordance than 
2,1' eeF . 
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b) If 
eC has upper (lower) tail dependence for all 

1Ee , and the remaining copula have 

support on 2]1,0[ , all bivariate margins of ),...,( 1...1 nn xxF  have upper (lower) tail 

dependence. 

c) For parametric vine copula with a parameter 
e  associated with 

eC , a wide range of 

dependence is obtained if each )(., eeC   can vary from the bivariate Frèchet lower 

bound to the Frèchet upper bound. Consider the Kendall tau triple  231312 ,,   for n = 

3. It is shown in (Joe et al., 2010) for a 3-dimensional vine copula that if 
1|23C  is the 

conditional Frèchet upper (lower) bound copula, and then 23  achieves the maximum 

(minimum) possible bond, given 1312, . 

4.6   Copula Estimation 

Estimation of copula vine or pair-copula construction is different from normal 

multivariate distribution. It is due to the fact that the assumption on the dependence 

between random variables and conditional random variables are based on graphical vine 

structure which is separated from the density function. From the theoretical point of 

view, one has to check the best possible vine structure, but it is impossible in 

application since the number of vines structure increases rapidly with dimensions. 

Therefore, to estimate the parameters, we first assume that the vine structure is fixed. 

We further assume that the conditional copula do not depend on conditioning variables.  

With these assumptions, the estimation of copula parameters is achieved using 

maximum likelihood principle sequentially from the first tree. In this part, we present 

the maximum likelihood estimation method, developed by Aas et al. (Aas et al., 2009) 

for C- and D-vine. Although the maximum likelihood procedure can be extended for 

arbitrary regular vine, the corresponding algorithm is rather vague. 
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  Let  niXXX Tiii ,...,1),,...,( ,1,   denote the i th random variable observe at T  

time points. Initially, for the sake of simplicity, it is assumed that the T  observations of 

every variable are independent over time. This assumption is not limiting, because when 

the  temporal dependence is present, univariate time-series models can be fitted to the 

margins and the analysis could henceforward proceed with the residuals (Kurowicka & 

Joe, 2010). Moreover, since the method focuses on copula estimation, the marginal 

distributions can be estimated separately using a two-stage procedure or normalized 

rank of data. Next, we assume that the conditional bivariate copulas are constant over 

the values of the conditioning variables (Kurowicka & Joe, 2010). 

Let ),(
2121 |, iimii uuC  denote the copula with conditioned set },{ 21 ii    and 

conditioning set  m . For partial derivatives with respect to 
1i

u and 
2i

u we use following 

notation based on (Kurowicka & Joe, 2010): 

.)|():|(

,),():|(

1

21

12121212

2

21

21212121

|

:|:|

|

:|:|

i

mii

iimiiiimii

i

mii

iimiiiimii

u

C
uuCmxxF

u

C
uuCmxxF











 

4.6.1   C-vine Model Estimation  

Consider a C-vine copula with n nodes and 2)1( nn  pair-copulas are arranged 

on )1( n trees according to the C-vine structure. In the first C-vine tree, 
1T , the 

dependence with respect to one particular variable, the first root node is modeled using 

bivariate copulas for each pair. Conditioned on this variable, pairwise dependencies 

with respect to a second pairwise variable are modeled the second root node. In general, 

a root node is chosen in each tree and all pairwise dependencies with respect to this 
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node are modeled, conditioned on all previous root nodes. As mention in section 4.2, C-

vine trees have a star structure with density function as in equation 4.3.   

The log-likelihood for C-vine is given by  

    ,|,...,|,...,|(ln)(ln
1

1 1 1

)1(:1||,,1,1,|,1,1|)1(:1|,






 


n

i

in

j

T

t

ijiitittjitittiijii xxxFxxxFcxf     (4.8) 

The number of parameters depends on the different type of copula used. The log-

likelihood function must be maximized numerically all over the parameters. In case if 

marginal are estimated by maximum likelihood method, they can be added in the 

logarithmic function in equation (4.8):  

.);(ln
1

,



T

t

itixfL   

Since the maximum likelihood estimation for C-vine copula is clear, the flowchart 

is straightforward: 
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Figure ‎4.5:  Flowchart C-vine copula inference 

 

where )}.,,(log{),,(
1

)1(:1|,, 


 
T

t

ttijiiiji vycvyL 
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Starting point for numerical maximization can be determined by 

1) Estimate all parameters of copula in first tree from the original data. 

2) Simulate the data in second tree using conditional distribution function from the 

first tree.  

3) Estimate the copula parameter in second tree by data from (b).  

4) Iterate until convergence. 

Since the data set in each step is bivariate the computation is easy to perform.   

4.6.2   D-vine Inference 

The pattern is exactly the same as inference method in C-vine. The log-likelihood 

function is defined as logarithm of density function in equation 4.4. The maximum 

likelihood applies sequential from the first tree by considering the bivariate copula and 

D-vine structure. Interested reader refer to (Aas et al., 2009; Kurowicka & Joe, 2010; 

Nikoloulopoulos, Joe, & Li, 2012).    

4.7   Model Inference  

As mentioned in section 4.6, maximum likelihood estimation is based on the 

assumption of fixed vine copula, but full inference for pair-copula decomposition 

should in principle take into account (a) the selection of a regular vine, (b) the choice of 

(conditional) copula types, and (c) the estimation of the copula parameters. In this 

section, the problem of selecting a regular vine is considered. 
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Two approaches have been suggested for choosing the best regular vine; the first 

one is a sequential estimation and the second one is based on mutual information. The 

detail of sequential estimation will be reviewed in this section. 

The first step in sequential estimation method relies on choosing either the C- or 

D-vine copula. When there is a canonical variable which the other variables depend on 

it, C-vine may be more appropriate than D-vine; otherwise use  D-vine.  

In model inference the parametric shape of every pair copula needs to be 

specified. It is obvious that the multivariate distribution is valid if the parametric copula 

best fit the data. It is possible to choose on predefining class of copula, but a more 

accurate strategy is to choose a copula for each pair of observation separately.  To 

implement this method, we can apply the following algorithm (Kurowicka & Joe, 

2010):  

1) Determine the type of copulas to employ in first tree, 
1T   , by plotting the original 

data, and checking for tail dependence or asymmetries (these are the patterns that 

make the multivariate normal copula inadequate). 

2) Estimate the parameters of the selected copula using the original data. 

3) Transform observations as required for the second tree, 
2T , using the copula 

parameters from 
1T  and the conditional functions in Section 3.7. 

4) Identify the type of copula to use in 
2T (in the same way as in 

1T ). 

5)  Continue the steps until
1nT . 

Therefore, each copula selection depends on the selected copula in previous level. 

This selection does not guarantee a global optimal fit. By having the appropriate 
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parametric shapes for each copula we can estimate the parameters according to 

maximum likelihood method, as in equation (4.8).  

4.8   Archimedean C- and D-Vine Copula  

In this section, we implement some examples of a three-dimensional copulas 

according to the C- and D-vine structure based on Gumbel and Clayton copula. Two 

important trigonometric copula, Csc and Cot copulas have been chosen to be a building 

block for C- and D- vine copula.   

Since the role of different copula does not affect the structures, we construct the 

C- and D-vine distribution function in general, then specific copula density is 

calculated. According C-vine structure, we have following C-vine distribution function:  

       

         

    .|,|

,,

,,

31211|23

31132112

321321

xxFxxFc

xFxFcxFxFc

xfxfxfxxxf 

 

Likewise, the density function with D-vine structure is given as 

       

         

    .|,|

,,

,,

23212|13

32232112

321321

xxFxxFc

xFxFcxFxFc

xfxfxfxxxf 

 

4.8.1   Clayton Copula  

To illustrate the construction of vine copula, we choose Clayton copula with the 

following distribution function:     ., 12
1212

1

212112
 

 uuuuC  

The Clayton density is then:  
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4.8.2   Gumble Copula 

The Gumble copula distribution function is: 

       .lnlnexp, 12
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For this copula we have  
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4.8.3   Cot Copula  

The Cot copula distribution function is: 

121212

1

212112 ))
2

(cot)
2

(cot(cot
2

),(
 


uuarcuuC 

 

The Cot copula density is then 
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4.8.4   Csc Copula  

The Csc copula distribution function is 
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The Csc density is define as 
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4.9   Application: US-Asia Index  

The objective of this section is to model a multivariate distribution function with a 

copula-EGARCH model. We demonstrate the multivariate distribution function with C- 

and D-vine structure.  

We examine daily data of three stock index returns: the Strait Times Index (STI) 

of Singapore, the Kuala Lumpur Composite Index (KLCI) of Malaysia and Standard 

and Poor index (SP500) of USA for the period January 01st, 1998 through December 

31st, 2008. The data sets collected from DataStream consist of daily closing price with a 

total of n = 2780 observations. In the database, the daily return 
, , 1,...,9i tR i   consisted 

of daily closing price
,i tP , which is measured in local currency and computed as 

, , , 1ln( ).i t i t i tR P P   

Before proceeding to the estimation of the marginal and copula models, it is 

useful to assess their descriptive statistical properties. Table ‎4.1 reports the descriptive 

statistics of the daily financial market returns for the time series under consideration. 

Notably, in terms of daily returns, SP500 has the lowest mean returns with negative sign 

(-0.002%). The mean returns of KLCI and STI financial markets are positive with 

0.014% and 0.004% respectively. It is clear that Malaysian financial market offer higher 

average returns than the most advanced financial markets, that is, US and Singapore 

financial markets but these high returns are also characterized by larger volatility, which 

is common for emerging financial markets and is consistent with previous studies (Abu 

et al. 2009; Miyakoshi T. 2003). 
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Table ‎4.1 displays the skewness, kurtosis, and related tests of the data collected. 

The Ljung-Box Q-statistics )10(Q  and )10(2Q  which test for serial correlation in daily 

and squared returns, respectively, rejects the null hypotheses of non-serial correlation. 

These time series display typical features of stock returns such as fat tail, spiked peak, 

and persistence in variance.  With evidence of ARCH effects as indicated by LM test, it 

is possible to proceed to the next step of the analysis which focuses on the bivariate 

EGARCH(1, 1) modeling of the dynamics of market’s volatility in estimating the 

marginal distributions.  

Table ‎4.2 presents the estimation results for the parameter and the use of 

asymmetric EGARCH model seems to be justified with all asymmetric coefficients 

significant at standard levels. The EGARCH model seems are reasonably good at 

describing the dynamics of the first two moments of the series as shown by the Ljung-

Box statistics for the squared standardized residuals.  LM test for presence of ARCH 

effects at lag 10, indicate that the conditional hetroskedasity that existed when the test 

was performed on the pure return series (see Table ‎4.1) are removed. The leverage 

effect term i  in the marginal EGARCH models are statistically significant, 

furthermore, with i  negative sign, as expected that negative shocks imply a higher next 

period conditional variance than positive shocks, indicating that the existence of 

leverage effect is observed in returns of the financial market series. Briefly, looking at 

the overall results, we can argue that EGARCH model adequately explains the data set 

under investigation. The marginal models seem to be able to capture the dynamics of 

the first and second moments of the returns of the financial time series. The time series 

plots of the returns are given in Figure ‎4.6.  
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The three return series behave similarly over time, exhibit periods of high and low 

volatility, and sometimes take on extremely large and small values, particularly STI and 

SP500 series for the more recent period.  

Table ‎4.1: Summary statistics for daily equity market returns 

 

 Mean Std. Skewness Rob.Sk Kurtosis Rob.Kr Q(10) Q(10) ARCH(5) 

STI 0.0036 1.311 -0.1214 -0.021 8.5771 0.2701 17.895 912.2** 344.8** 

KLCI 0.0135 1.506 0.5695 -0.004 60.2395 0.3758 85.29** 1365.9** 787.6** 

SP500 -0.002 1.336 -0.1187 0.013 10.5733 0.3204 61.95** 2096.7** 572.1** 

Rob.Sk and Rob.Kr are outlier-robust versions of skweness and kurtosis described as Sk2 and Kr2 in Kim 

and White (2004). **,* Significant at 1% and 5% respectively. 

 

 

Table ‎4.2: Parameter estimates of marginal models. 

 

 i
 i  i  i  

Q(10) Q
2
(10) LM(10) 

STI 
-0.166** 

[0.015] 

0.237** 

[0.023] 

0.981** 

[0.004] 

-0.229** 

[0.053] 
27.88** 10.788 10.035 

KLCI 
-0.141** 

[0.015] 

0.192** 

[0.021] 

0.981** 

[0.004] 

-0.358** 

[0.067] 
100.58** 2.786 2.709 

SP500 
-0.082** 

[0.011] 

0.120** 

[0.016] 

0.991** 

[0.002] 

-0.508** 

[0.099] 
11.74 12.781 12.777 

Note: **,* Significant at 1% and 5% respectively. Standard errors are given in square brackets. 
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Figure ‎4.6: Daily log returns on (a) STI, (b) KLCI and (c) SP500 indices. 

As mentioned earlier, the main aim of this section is to model a multivariate 

distribution function between international markets. In this framework, we have used 

the Inference for the Margins (IFM) method, to estimate the margins and the copula 

parameters. Firstly, the marginal distributions of each stock index are independently 

estimated via maximum likelihood through an EGARCH model. Then the standardized 

residuals are transformed into uniform margins with empirical probability integral 

transformation to copula data on (0, 1).  

To investigate the best multivariate distribution function, we start with analyzing 

the residuals. Figure ‎4.7 shows the scatter plot of data. The scatter plot suggests week 

dependence among almost all indices. Therefore, the strongest positive dependence is 

between STI-SP500 which is also supported by evidence of chi- and k-plot of data in 

Figure ‎4.8. This result is in accordance with the result of Kendall’s τ in Table ‎4.3.  

Interestingly, the empirical upper and lower tail dependence between the random 

variable given in Table ‎4.3 is not zero.  By considering all dependence facts between 

random variables, Normal, Frank and t- copula has been selected for negative week 

dependence between KLCI-STI, KLCI –SP while a wider family of copula is selected 

for SP-STI.  The estimation results of bivariate analysis are summarized in Table ‎4.4, 

Table ‎4.5, Table ‎4.6.  

According to Cramer-von Mises (CvM) and Kolmogorov-Smirnov (KS)- 

goodness of fit method, the t-copula is the best to capture dependence properties 

between the pair of random variables. 
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Table ‎4.3: Kendall’s τ calculation 

 

 KLCI SP500 STI 

KLCI 1.0000 -0.0064 -0.0084 

SP500 -0.0064 1.0000 0.0499 

STI -0.0084 0.0499 1.0000 

AbsSum: 1.0148 1.0562 1.0583 

 

 

Figure ‎4.7:  Scatter Plot of (KLCI-STI-SP). 

 

 

Figure ‎4.8: K-plot and Chi plot of stocks’ pairs 
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Table ‎4.4: KLCI- SP500 

  

 Param 1 Param 2 
Lower 

Tail 

Upper 

Tail 

Stat 

CVM 

P-value  

CVM 

Stat 

KS 

Normal 
-0.0114 

[0.0192] 

0 

[0] 
0 0 0.5392 0.02 1.4448 

t-Student 
-0.0093 

[0.0210] 

10.6125 

[0] 
0.0051 0.0051 0.2065 0.15 1.0143 

Frank 
-0.0578 

[0.1198] 

0 

[0] 
0 0 0.3581 0 1.1920 

Note: Significant at  5% 

 

Table ‎4.5: KLCI- STI 

 

 Param1 Param2 
Lower 

Tail 

Upper 

Tail 

Stat 

CVM 

P-value 

CVM 

Stat 

KS 

Normal 
-0.0114 

[0.0192] 

0 

[0] 
0 0 0.5392 0.02 1.4448 

t-Student 
-0.0093 

[0.0210] 

10.6124 

[2.6109] 
0.0051 0.0051 0.2065 0.15 1.0143 

Frank 
-0.0578 

[0.1198] 

0 

[0] 
0 0 0.3581 0 1.1920 

Note: Significant at  5% 

 

 

 

Table ‎4.6: STI-SP500 

 
 

Param1 Param2 
Lower 

Tail 

Upper 

Tail 

Stat 

CVM 

P-value 

CVM 

Stat 

KS 

P-value 

KS 

Normal 
0.0746 

[0.0191] 

0.0000 

[0.0000] 
0.0000 0.0000 0.2685 0.0900 1.0183 0.2000 

t-Student 
0.0791 

[0.0227] 

3.4896 

[0.3057] 
0.1142 0.1142 0.1205 0.6600 0.8343 0.6400 

Clayton 
0.1155 

[0.0238] 

0.0000 

[0.0000] 
0.0025 0.0000 0.3332 0.0100 1.1957 0.0100 

Gumbel 
1.0657 

[0.0127] 

0.0000 

[0.0000] 
0.0000 0.0837 0.4212 0.0000 1.2029 0.0100 

Frank 
0.4718 

[0.1228] 

0.0000 

[0.0000] 
0.0000 0.0000 0.4526 0.0000 1.1981 0.0100 

BB1 
0.0659 

[0.0249] 

1.0459 

[0.0132] 
0.0000 0.0600 0.4976 0.0000 1.2996 0.0000 

BB6 
1.0010 

[0.0561] 

1.0649 

[0.0442] 
0.0000 0.0840 0.4210 0.0000 1.2061 0.0200 

BB7 
1.0621 

[0.0171] 

0.0865 

[0.0237] 
0.0003 0.0795 0.4394 0.0000 1.2337 0.0000 

BB8 
1.0956 

[0.0191] 

0.9988 

[0.0004] 
0.0000 0.0000 0.4822 0.0000 1.4901 0.0000 

Note: Significant at  5%.  

Trigonometric copula is not applicable in this simulation due to the weak dependence among the three 

stock indices 
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There are many alternative ways to build a multivariate distribution functions 

based on C- or D-vine structure by considering different order of variables. Here, we 

consider five different models; three based on C- and two based on D-vine model. The 

final multivariate distribution function will be chosen from those models.  

The C-vine copulas are useful when one expects a variable to dominate the 

dependence with all other variables. This specific variable represents the canonical node 

in structure of multivariate copula. Considering the dependence properties of our data, 

STI index has dependence with SP500 from one side and the KLCI from the other side 

while the dependence between SP500 and KLCI is weak. Using this fact, the two 

models based on C-vine structure, MC1 and MC2, the STI would be the canonical node. 

Different ordering in second and third nodes between SP500 and KLCI will result in 

different models, MC1 and MC2. To compare the result, we also consider MC3 where 

KLCI with weak dependence, is canonical node in the C-vine structure.     

We also implement the D-vine copula, since in our data set the difference in 

absolute sum of the empirical Kendall’s τ dependence is not significant. Among several 

ordering of variables in D-vine structure, we consider two models MD1 and MD2.  

 The result of estimation for five methods, MC1, MC2, MC3, MD1 and MD2, 

based on sequential and MLE are listed in Table ‎4.7. The results indicate that the 

differences between the estimated parameters using both methods, sequential and MLE 

are insignificant. This property highlights the goodness of sequential estimation in 

application. Note that for each pair, t-copula has been selected as optimal bivariate joint 

distribution. This aligns with bivariate analysis seen above which suggests t-copula for 

every pair of random variables.  
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Table ‎4.7: Estimation of Parameters  C- and D- vine models  

 

Method NO Tree Copula 

Sequential 

 

MLE 

 

Para 1 Para 2 Para 1 Para 2 

MC 1 

1 

STI-SP500 t 0.0275 2.8662 0.0239 2.8675 

STI-KLCI t 0.0035 3.0844 0.0084 3.1378 

2 SP500-KLCI t 0.0258 4.2294 0.0259 4.2121 

MC 2 

1 

STI-KLCI t 0.0275 2.8662 0.0239 2.8675 

STI-SP500 t 0.0035 3.0844 0.0084 3.1378 

2 KLCI- SP500 t 0.0258 4.2294 0.0259 4.2121 

MC 3 

1 

KLCI- STI t 0.0275 2.8662 0.0239 2.8675 

KLCI-SP500 t 0.0035 3.0844 0.0084 3.1378 

2 STI-SP500 t 0.0258 4.2294 0.0259 4.2121 

MD 1 

1 

STI- SP500 t 0.0275 2.8662 0.0245 2.8621 

SP500-  KLCI t 0.0328 2.9459 0.0267 2.9506 

2 STI-KLCI t 0.0087 4.6053 0.0087 4.6043 

MD 2 

1 

SP-STI t 0.0275 2.8662 0.0245 2.8621 

STI-KLCI t 0.0328 2.9459 0.0267 2.9506 

2 SP-KLCI t 0.0087 4.6053 0.0087 4.6043 

 

To find the best fitting multivariate distribution function for our data set, we 

compare the goodness of fit for all models based on AIC and BIC criteria in Table ‎4.8. 

The D-vine structure shows a better result compared to C-vine, which is attributed 

to weak dependence between the three stocks indices. However, the importance of 
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canonical nodes in C-vine structure is obvious by comparing the result of MC1 and 

MC2 with MC3 where the KLCI is considered as canonical nodes instead of STI. 

Finally, the differences in MD1 and MD2 emphasize on the importance of ordering in 

D-vine structure. To conclude, we confirm the importance of both selection of vine 

structure and ordering of variables in construction a multivariate copula.  The MD2 

method is reported as the best among all models which suggests that there is no 

preference surmount variable due to weak dependence. In addition, it also suggests the 

importance of ordering in structure where STI depends on both KLCI and SP500.  

 

 

Table ‎4.8: Goodness of Fit Test based on AIC and BIC criteria  

 

 MC1 MC2 MC3 MD1 MD2 

AIC MLE -564.724 -564.7243 -563.2700 -568.1453 -569.5996 

AIC seq. -564.608 -564.6079 -564.6079 -568.0563 -569.5106 

BIC MLE -529.467 -529.4667 -529.4667 -532.8877 -533.2077 

BIC seq. -529.35 -529.3504 -529.3504 -532.7988 -533.6748 

Log-likelihood  MLE 288.3621 288.3621 286.9078 290.0726 291.4184 

Log-likelihood Seq. 288.304 288.3040 286.6497 290.0282 291.0405 

Parameters 6 6 6 6 6 

 

Note: Significant at  5% 
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Chapter 5: Copula and Its Application 

This chapter demonstrates the application of copula in modelling the finance data. 

We begin by analysing bivariate pairs of indices from three different continents, 

America, Europe and Asia, and examine the ability of trigonometric copula in capturing 

the dependence properties of indices. The second part of the finance application 

describes the design and characterization of multivariate joint distribution function 

which is built according to vine structure.  

5.1   Bivariate Analysis of Index 

This section critically examines the ability of bivariate trigonometric copula in 

seven indices from three continents: America, Europe and Asia.  

Daily data of seven stock indices return were recruited for this study. Three index 

returns: German DAX, The French CAC40 and British FTSE 100 index from Europe, 

together with the Strait Times Index (STI) of Singapore, the Kuala Lumpur Composite 

Index (KLCI) of Malaysia and the Chinese composite index (SSE) from Asia and the 

Standard and Poor index (SP500) of USA for the period January 1st, 2000 to July 15
th

, 

2012 were downloaded from Yahoo Finance. In the database, the daily return 

7,...,1,,  iiR ti
consisted of daily closing price 

tiP,
which is measured in local currency 

and computed as )/ln( 1,,,  tititi PPR .  

As the first step, it is useful to describe the statistical properties of returns. The 

results obtained from the preliminary analysis of returns are presented in Table ‎5.1. It is 

apparent from this table that Asian indices have the highest mean returns with China 

index, SSE, as the biggest return value.  It is followed by the European index with only 
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Germany DAX index with positive return. The minimum value of returns during this 

period belongs to America S&P500 with -0.00405. High returns in Germany and China 

is characterized by larger volatility.  The Minimum volatility belongs to the Malaysia 

market, KLCI, which also can be observed in Figure ‎5.1.  The skewness, kurtosis, and 

related tests of the data collected in Table ‎5.1. The Ljung-Box Q-statistics Q
2
(10) which 

test the serial correlation in squared returns rejects the null hypotheses of non-serial 

correlation.  

Table ‎5.1: Summary statistics of Indices 

 

 
Mean 

 

Std. 

 

Skewness 

 

Kurtosis 

 

Q2 (10) 

 

CAC40 -0.0192 1.5779 0.0700 4.4664 2.2e-16 

DAX 0.0000 1.6437 0.0335 3.8323 2.2e-16 

FTSE100 -0.0063 1.3120 -0.1128 5.5717 2.2e-16 

SP500 -0.0041 1.3704 -0.1529 7.1188 2.2e-16 

KLCI 0.0620 1.1611 -0.3203 84.3633 2.2e-16 

STI 0.0227 1.2778 -0.4792 5.5651 2.2e-16 

SSE 0.0396 1.6014 -0.1122 4.4683 2.2e-16 

Note: Significat at 5% 
 

With evidence of ARCH effects as indicated by Ljung-Box Q-statistics Q
2
(10) 

test of squared returns, it is possible to proceed to the next step of the analysis which 

focuses on the bivariate GARCH(1, 1) modelling of the dynamics of market’s volatility 

in estimating the marginal distributions. Table ‎5.2 presents the estimated results for the 

parameter and the use of GARCH model seems to be justified with all coefficients 

significant at the standard levels. The GARCH model seems reasonably good at 

describing the dynamics of the first two moments of the series as shown by the Ljung-

Box statistics for the standardized residuals with lag 10.  LM test for presence of ARCH 
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effects at lag 10, indicates that the conditional hetroskedasity that existed in the pure 

return series (Table 1) is removed. Briefly, looking at the overall results, it can be 

argued that a GARCH(1,1) model adequately explains the data set under investigation. 

The marginal models seem to be able to capture the dynamics of the first and second 

moments of the returns of the financial time series. Figure ‎5.1 shows the time series plot 

of indices.  

Table ‎5.2: Time series GARCH model  

 

 
Mu 

 

Omega 

 

Alpha1 

 

Beta1 

 

Shape 

 

Q(10) 

 

LM Arch 

 

CAC40 0.0462* 0.0167** 0.0889*** 0.9075*** 10.00*** 
16.0740 

[0.0975] 

23.2844 

[0.0254] 

DAX 0.0002** 0.0176*** 0.0887*** 0.9078*** 10.00*** 
7.6124 

[0.6666] 

19.8766 

[0.0695] 

FTSE100 0.0441** 0.0127*** 0.1033*** 0.8935*** 10.00*** 
11.7567 

[0.3017] 

26.9114 

[0.08] 

SP500 0.0404*** 0.0102*** 0.0868*** 0.9099*** 8.3562*** 
13.8987 

[0.1777] 

18.0392 

[0.1145] 

KLCI 0.0789*** 0.0672*** 0.2482*** 0.7014*** 5.0690*** 
17.8975 

[0.0567] 

0.1476 

[1.0000] 

STI 0.0706*** 0.0145*** 0.0819*** 0.9104*** 7.6272*** 
17.1819 

[0.0704] 

8.1499 

[0.7733] 

SSE 0.0667** 0.0296** 0.0718*** 0.9227*** 4.1883*** 
24.8060 

[0.0518] 

27735 

[0.9969] 

***,**,* Significant at 0.0 , 0.001 and 0.01 respectively. P-values are given in square brackets. 
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STI 

 

SSE 

 
Figure ‎5.1: Time series of indices. 
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After removing the seasonality and trend by GARCH model from the data, the 

resulting standardized residuals of these models are transformed using the empirical 

probability integral transformation to copula data in [0,1]. To increase the reliability of 

analysis on data, we plot some graphical test for the purpose of presentation of the 

dependence among returns. 

 Figure ‎5.2 shows the scatter plot among seven returns. The figure is quite 

revealing in several ways. First, it highlights the strong dependence among European 

returns. Moreover, it shows relatively strong dependence between America and Europe 

markets while the dependence between America and Asia is weak. It is apparent from 

the figure that Asian data resulted in the lowest dependence compared with other 

markets.  

By considering the K- and Chi- plot, the structure of dependence can be studied in 

more details. For convenience, the data can be classified into three main subgroups. 

Europe and American index was chosen as the first groups because of strong 

dependence between indices. Figure ‎5.3 compares the result of K- and Chi plot for this 

group. From this data set, a strong positive dependence among all pairs can be observed.  

This result is also confirmed, according to the empirical Kendall’s τ  and Spearman’s ρ  

dependence measure.  
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Figure ‎5.2: Scatter plot of returns. 
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Figure ‎5.3: Chi- Plot and K-plot  of European and America index 

 

 

Table ‎5.3 illustrates some of the main characteristics of the dependence.  The 

most striking result to emerge from the data is almost the same strong positive range of 

dependence between European indices by itself. This also appears among America and 
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European indices with weaker dependence. Interestingly, the trend is the same for tail 

dependence as well.  

Table ‎5.3: P-value of independence test, empirical Kendall’s τ , Spearman’s ρ   

and both upper and lower tail dependence 

INDEX Independence 
Empirical 

Kendall’s τ 

Empirical 

Spearman’s ρ 

Lower 

Tail 

Upper 

Tail 

CAC40-DAX 0.0000 0.7188 0.8779 0.6540 0.7729 

CAC40-FTSE 0.0000 0.6800 0.8517 0.7241 0.7437 

CAC40-SP500 0.0000 0.3695 0.5095 0.4123 0.4597 

FTSE-DAX 0.0000 0.6142 0.7915 0.6576 0.6774 

DAX-SP500 0.0000 0.3943 0.5418 0.4512 0.4858 

FTSE-SP500 0.0000 0.3521 0.4873 0.4215 0.4413 

SP500-KLCI 0.0000 0.0542 0.0793 0.0432 0.0749 

SP500-STI 0.0000 0.1314 0.1893 0.0987 0.1878 

SP500-SSE 0.0449 0.0239 0.0352 0.0124 0.0355 

KLCI-STI 0.0000 0.2953 0.4182 0.2381 0.3388 

KLCI-SSE 0.0000 0.1127 0.1661 0.05321 0.1201 

STI –SSE 0.0000 0.1332 0.1955 0.1176 0.1529 

DAX-KLCI 0.0000 0.1213 0.1773 0.1023 0.1409 

DAX-STI 0.0000 0.2388 0.3407 0.2750 0.2921 

DAX-SSE 0.0001 0.0468 0.0699 0.0283 0.0523 

 

The evidence from the dependence results suggests using some strong positive 

copula which can capture both tail dependences. Considering this fact, trigonometric 

copulas are compared with other one-parameter Archimedean copula at the first stage in 

order to investigate the best one-parameter copula to fit on data.  

Two pairs CAC40-DAX and DAX-SP500 were chosen. First pair can be a 

representative of the dependence structure between European indices, while the second 
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one is an indicator of the dependence between America and Europe index. Therefore by 

choosing these two pairs, we can represent the dependence structure among European 

market which is slightly different with the dependence pattern among Europe and 

American indices. In order to assess the best fit among one-parameter copula family, 

several copula families are chosen. The result of parameter estimation and goodness of 

fit with tail dependence are listed in Table ‎5.4 and Table ‎5.5 CAC40-DAX and DAX-

SP500 respectively.  
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Table  5.4: One – parameter estimation of Archimedean copula  

CAC40-DAX 

 

 Lower tail Upper tail Goodness of fit parameter 

Empirical tail 0.6540 0.7729   

Gumbel 0 0.7703 0.0002 3.3529 

Clayton 0.8203 0 0.0012 3.4993 

12
th

 family 0.8029 0.7545 0.0004 3.1573 

Cot 0.7766 0.7123 0.0001 2.7413 

CSC 0.6603 0.7694 0.0001 1.6702 

Csc2 0.7939 0.5858 0.0006 3.0038 

Csc3 0.7904 0.5858 0.0006 2.9474 
 

 

                                         Figure  5.4: Goodness of fit representation of 

Table  5.4 
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Table  5.5: One – parameter estimation of Archimedean copula 

DAX-SP500 

 

 Lower tail Upper tail 
Goodness of 

fit 
parameter 

Empirical tail 0.4512 0.4858   

Gumbel 0 0.482 0.0003 1.6606 

Clayton 0.4945 0 0.0008 0.9844 

12th family 0.7051 0.5817 0.0059 1.9837 

Cot 0.6009 0.3358 0.0005 1.3609 

CSC 0.4306 0.4761 0 0.8226 

Csc2 0.3664 0.5858 0.0006 0.6904 

Csc3 0.3272 0.5858 0.0004 0.6204 
 

 

                                         Figure  5.5: Goodness of fit representation of 

Table  5.5 
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It is apparent from Table ‎5.4 that Csc-copula and Cot-copula represent the best fit 

copula in terms of the goodness of fit measure as well as the closeness to the empirical 

tail measures. This result is confirmed by graphical representation of the goodness of fit 

plot. Further analysis on upper and lower tail dependence against the empirical 

measures also confirm this result. The Gumbel, Clayton, Csc2 and Csc3 copulas cannot 

represent both upper and lower tail dependence simultaneously; while 12
th

 family 

overestimate the value of tails. Between Cot and Csc, Csc copula yields similar upper 

tail dependence as the empirical tail dependence, this making Csc a superior choice. The 

result of Table ‎5.5 is similar to those in Table ‎5.4. The only difference is that it 

highlights the weak property of 12
th

 family of Archimedean copula which has small 

dependence coverage.  

Following this, we compare the Cot- and Csc-copula with some two-parameter 

family of copulas. This analysis was chosen because the flexibility of capturing tail 

dependence is increased with the number of parameters.  Table ‎5.6 and Table ‎5.7 

present the result of this analysis for CAC40-DAX and CAC40-SP500 respectively. 

These tables show the value of parameters for each copula together with tail 

dependences and goodness of fit criteria. For this study, Cramer-von Mises (CvM) and 

Kolmogorov-Smirnov (KS) criteria was used to explore the goodness of fit for the given 

data. The most striking result is the ability of Csc copula compared with two- parameter 

family of copulas. It is not surprising that the performance of Frank and BB8 copula is 

the weakest among all since the dependence among pairs are strong. Although a clear 

benefit of using BB1 and BB7 rather than t-student could not be identified in the 

analysis of tail dependence, the goodness of fit tests show the priority of t-copula. In 

conclusion, we can emphasis on the ability of Cot- and Csc-copula in capturing strong 
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dependence among the random variables while considering the asymmetric upper and 

lower tail dependences.  

Table ‎5.6: Two – parameter estimation of Archimedean copula CAC40-DAX 

 
Param 

1 

Param 

2 
Lower Tail 

Upper 

Tail 

Stat 

CVM 

P-value 

CVM 

Stat 

KS 

P-value 

KS 

t-Student 0.9034 2.5721 0.6947 0.6947 0.2374 0.9100 1.1731 0.7000 

Frank 12.4895 0.0000 0.0000 0.0000 0.9807 0.0000 1.6703 0.0000 

BB1 0.8374 2.4899 0.7172 0.6790 0.0456 0.3300 0.5127 0.6900 

BB7 2.9951 2.8323 0.7829 0.7396 0.8101 0.0000 1.9207 0.0000 

BB8 6.0000 0.8943 0.0000 0.0000 4.0178 0.0000 3.8716 0.0000 

Cot 2.7413 - 0.7766 0.7123 0.1302 0.9000 0.7558 0.9900 

Csc 1.6702 - 0.6603 0.7694 0.2108 1.0000 1.0583 1.0000 

 

 

Table ‎5.7: Two – parameter estimation of Archimedean copula DAX-SP500 

 
Param 

1 

Param 

2 

Lower 

Tail 

Upper 

Tail 

Stat 

CVM 

P-value 

CVM 

Stat 

KS 

P-value 

KS 

t-

Student 
0.5807 2.8164 0.3738 0.3738 0.4136 0.9300 1.6495 0.7400 

Frank 4.2508 0.0000 0.0000 0.0000 2.0382 0.0000 2.5851 0.0000 

BB1 0.3586 1.4452 0.2625 0.3845 0.3955 0.0000 1.5514 0.0000 

BB7 1.5604 0.7190 0.3813 0.4407 0.1015 0.1700 0.8911 0.1200 

BB8 3.1238 0.8324 0.0000 0.0000 3.2899 0.0000 3.6042 0.0000 

Cot 1.3609 - 0.6009 0.3358 1.8525 0.23 2.2746 0.13 

Csc 0.8226 - 0.4306 0.4761 0.0543 0.97 0.6704 0.96 

 

The same structured approach which was conducted for the first group is 

employed for the second group of pairs with rather weak dependence properties. The 

data set include pairs of Asia market, Europe- Asia and America- Asia indices. Figure 

‎5.2 demonstrates a weak dependence among almost all pairs. The result of Chi- and K-
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plot also confirms this week dependence. Regarding the first analysis on the data set, we 

also consider Table ‎5.3 for empirical Kendall’s τ , Spearman’s ρ and tail dependences. 

This table is quite revealing in several ways. First, it shows the weak dependence of 

Asia market among themselves and also with America and Europe. In Asia market, STI-

KLCI has the strongest dependence. It is interesting that the dependence between China 

and the other two countries is almost the same and is unrelated to country; while the 

dependence in Malaysian market is defined according to the specific countries. 

Generally, Asia’s market is more dependent to European rather than American market. 

What is interesting in data is that while Singapore, STI, has the highest dependence with 

America and European market, China acts almost independently from both markets.  

Considering the different range of dependence in Table ‎5.3, we choose three 

representative pairs of indices: DAX-STI as almost strong dependence from Asia-Eroup 

market, KLCI-SSE as relatively weak dependence represented from Asia and SSP500-

SSE as the lowest range of dependence in all pairs. We believe the result of analysing 

these pairs can be extended for the other pairs as well since these set of pairs are 

representing all range of dependences on data.  

We start by analysing the data with the one-parameter family of Archimedean 

copula. Table ‎5.8, Table ‎5.9 and Table ‎5.10 represent the results for these three pairs.  

The best fit copula with regard to the goodness of fit test and tail dependence 

measure, given in Table ‎5.8, is Csc-copula. The result also shows that Cot-copula 

cannot capture the lower tail dependence in this range. Although Gumbel and Clayton 

show a relatively proper goodness of fit, they fail to measure both tail dependences. The 
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result also indicates that the 12
th

 family of Archimedean copula is not able to cover this 

range of dependence.  

Interestingly, the best copula to fit the data given in Table ‎5.9 is Csc-copula 

although the problem of overestimation of lower tail dependence is conspicuous. 

Finally, Table ‎5.9 shows that Csc-copula is not working for almost zero dependence 

range. 
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Table  5.8: One – parameter estimation of Archimedean copula DAX-STI 

 

 Lower tail Upper tail Goodness of fit parameter 

Empirical tail 0.2750 0.2921   

Gumbel 0 0.2864 0.0003 1.2870 

Clayton 0.266 0 0.0002 0.5235 

12
th

 family 0.6735 0.5151 0.0111 1.7533 

Cot 0.5354 0.1321 0.0009 1.1094 

CSC 0.3404 0.286 0.0001 0.6432 

Csc2 0.2456 0.5858 0.0040 0.4937 

Csc3 0.0607 0.5858 0.0021 0.2475 
 

 

 

                                        Figure  5.6: Goodness of fit representation of 

Table  5.8 
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Table  5.9: One – parameter estimation of Archimedean copula KLCI-

SSE 

 

 Lower tail Upper tail Goodness of fit parameter 

Empirical tail 0.05321 0.1201   

Gumbel 0 0.1187 0.0002 1.0968 

Clayton 0.0493 0 0 0.2304 

12
th

 family 0.6531 0.4688 0.0179 1.6270 

Cot 0.5062 0.0245 0.0022 1.0181 

CSC 0.2892 0.1405 0.0002 0.5587 

Csc2 0.1892 0.5858 0.0095 0.4163 

Csc3 0 0.5858 0.0048 0.0374 
 

 

 

                                          Figure  5.7: Goodness of fit representation of 

Table  5.9 
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Table  5.10: One – parameter estimation of Archimedean copula SP500-SSE 

 

 Lower tail Upper tail Goodness of fit parameter 

Empirical tail 0.0124 0.0355   

Gumbel 0 0.0308 0 1.0229 

Clayton 0 0 0 0.0525 

12
th

 family 0.6444 0.4482 0.0241 1.5775 

Cot 0.5022 0.0088 0.0047 1.0064 

CSC 0.2685 0.0703 0.0007 0.5272 

Csc2 0.1599 0.5858 0.0145 0.3781 

Csc3 0 0.5858 0.0075 0 
 

 

 

                     Figure  5.8: Goodness of fit representation of 

Table  5.10 
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We next compare the Cot and Ccs copula with the two–parameter family of 

copulas. The results are summarized in Table ‎5.11, Table ‎5.12 and Table ‎5.13. The 

results emphasizes that Csc-copula as the best fit for the first two pairs, DAX-STI and 

KLCI-SSE, of data compared with two-parameter family of copulas. Regarding the 

KLCI-SSE, t-copula is the best among all.  

Table ‎5.11: Two – parameter estimation of Archimedean copula DAX-STI 

 Param1 Param2 
Lower 

Tail 

Upper 

Tail 

Stat 

CVM 

P-value 

CVM 

Stat 

KS 

P-

value 

KS 

t-

Student 
0.3665 4.3842 0.1708 0.1708 0.1295 0.4600 0.8234 0.5800 

Frank 2.3376 0.0000 0.0000 0.0000 0.9004 0.0000 1.7066 0.0000 

BB1 0.3298 1.1341 0.1567 0.1573 0.0318 0.8900 0.5844 0.7000 

BB7 1.1665 0.4338 0.2024 0.1884 0.0251 0.9700 0.4246 0.9900 

BB8 6.0000 0.3476 0.0000 0.0000 1.1728 0.0000 2.0785 0.0000 

Cot 1.1094 - 0.5354 0.1321 3.6744 0.3400 3.1552 0.4200 

Csc 0.6432 - 0.3404 0.2860 0.2362 0.9900 0.9453 0.9800 

Note: Significant at 5% 

 

 

Table ‎5.12: Two – parameter estimation of Archimedean copula KLCI-SSE 

 Param1 Param2 
Lower 

Tail 

Upper 

Tail 

Stat 

CVM 

P-value 

CVM 

Stat 

KS 

P-value 

KS 

t-Student 0.1757 13.5842 0.0062 0.0062 0.1292 0.4400 0.9560 0.3300 

Frank 1.0380 0.0000 0.0000 0.0000 0.4739 0.0000 1.4872 0.0000 

BB1 0.1983 1.0240 0.0329 0.0322 0.0452 0.6700 0.7227 0.2400 

BB7 1.0265 0.2155 0.0401 0.0355 0.0419 0.8000 0.6601 0.4700 

BB8 6.0000 0.1765 0.0000 0.0000 0.5337 0.0000 1.5632 0.0000 

Cot 1.0181 - 0.5062 0.0245 8.2010 0.0000 4.5625 0.0000 

Csc 0.5587 - 0.2892 0.1405 1.1392 0.9900 2.0720 0.9600 

Note: Significant at 5% 
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Table ‎5.13: Two – parameter estimation of Archimedean copula SP500-SSE 

 Param1 Param2 
Lower 

Tail 

Upper 

Tail 

Stat 

CVM 

P-value 

CVM 

Stat 

KS 

P-value 

KS 

t-Student 0.0359 15.3698 0.0012 0.0012 0.0965 0.6000 0.8311 0.4800 

Frank 0.2173 0.0000 0.0000 0.0000 0.0591 0.4000 0.6342 0.4200 

BB1 0.0411 1.0107 0.0000 0.0146 0.0638 0.3900 0.6484 0.4600 

BB7 1.0135 0.0462 0.0000 0.0184 0.0587 0.4800 0.6264 0.5700 

BB8 6.0000 0.0420 0.0000 0.0000 0.0592 0.5900 0.6354 0.6100 

Cot 1.0064 - 0.5022 0.0088 15.4633 0.0000 5.9034 0.0000 

Csc 0.5272 - 0.2685 0.0703 3.7655 0.0000 3.3406 0.0000 

 

Note: Significant at 5% 

 

This study set out to determine the ability of Cot- and Csc-copula in modelling of 

dependence between two random variables. One of the more significant findings to 

emerge from this study is that in high dependence range both Cot- and Csc-copula are 

capable even compare with two–parameter family of copulas. The results also 

emphasize on the capability of Csc copula in low range of dependence compared with 

even two parameter families of copulas.  

5.2   Multivariate Vine Copula in Indices  

Now we turn to the modelling multivariate joint distribution function using 

trigonometric copulas. The data sample consists of the first group of indices from the 

previous section; Europe and America indices. This sample is chosen because of strong 

dependence among random variables. Besides, we considered the Asian indices with 

weak dependence in Chapter 4 of this thesis.  
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The main issue addressed in this section is the importance of using trigonometric 

copula in modelling multivariate distribution functions. There are many alternative 

ways to building a multivariate distribution functions based on C- or D-vine structure by 

considering different order of variables. Therefore, we solve the problem of choosing 

vine structure before further analyses.  

C-vine copulas are useful when one expects a variable to dominate the 

dependence with all other variables, while the guideline structure to use the D-vine 

copula is based on equivalent dependence among all variables. To compare the 

dependence between random variables we calculate the Kendall’s τ  for every variable. 

It is apparent from Table ‎5.14 that there is no significant difference in sum of the 

Kendall’s τ  for every index. According to this result, the D-vine structure is chosen to 

build multivariate distribution function. To reduce the effect of ordering of variables, we 

choose the same order for both models. The estimation of parameters has been done 

based on MLE and sequential estimation.  

Table ‎5.14: Kendall’s τ  dependence between random variable 

 

 CAC40 DAX FTSE SP500 

CAC40 1.0000 0.7188 0.6800 0.3695 

DAX 0.7188 1.0000 0.6142 0.3943 

FTSE 0.6800 0.6142 1.0000 0.3521 

SP500 0.3695 0.3695 0.3521 1.0000 

SUM 2.7683 2.7025 2.6463 2.1159 

 

The result of the estimation based on sequential and MLE for both models are 

presented in Table ‎5.15.  Model MD1 choose the optimal bivariate copula from excising 
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copula while the second one includes the trigonometric copula as well. Based on the 

results, in first model the best bivariate copula is t-copula. Interestingly, the Csc copula 

is the best option for all pairs in the second model.  

Table ‎5.15: Estimation parameters based on Sequential and MLE 

 

Method No Tree Copula 
Sequential MLE 

Par 1 Par 2 Par 1 Par 2 

MD1 

1 

CAC40-DAX t -0.00599 6.033364 -0.01416 5.996535 

DAX-FTSE t -0.02931 4.275707 -0.01966 4.455765 

FTSE-SP500 t -0.02499 4.811807 -0.03603 5.48559 

2 

CAC40-FTSE | 

DAX 
t -0.03567 3.806965 -0.03575 3.82682 

DAX-SP500 | FTSE t -0.06262 3.708806 -0.07108 3.534773 

3 
CAC-SP | DAX, 

FTSE 
t -0.05115 4.310417 -0.05127 4.250052 

MD2 

1 

CAC40-DAX Csc 1.016719 - 1.018019 - 

DAX-FTSE Csc 1.014252 - 1.016095 - 

FTSE-SP500 Csc 1.012815 - 1.013139 - 

2 

CAC40-FTSE| 

DAX 
Csc 1.012334 - 1.012804 - 

DAX-SP500 | FTSE Csc 1.013516 - 1.013719 - 

3 
CAC-SP | DAX, 

FTSE 
Csc 1.022395 - 1.02296 - 

 

We compared these two models based on AIC and BIC goodness in Table ‎5.16. 

Results show a significant difference in AIC, BIC and Log-likelihood value between 
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two models. Obviously, the second method, MD2, performs better than the first model. 

Further analysis on the number of parameters also show the advantage of the second 

model towards the first one where the number of parameters is reduced by a half, which 

is important in reduction of error estimation.  

Table ‎5.16: AIC and BIC goodness of fit 

 

 MC1 MC2 

AIC MLE -325.8528 -859.713 

AIC seq. -322.4941 -857.191 

BIC MLE 397.77092 -787.089 

BIC seq. 407.12965 -784.568 

Log-likelihood  MLE 289.42641 441.8566 

Log-likelihood Seq. 287.24705 440.5957 

Parameters 12 6 

Note: Significant at 5% 

 

This chapter has shown the importance of bivariate and multivariate trigonometric 

copula in finance data.  One of the more significant finding to emerge from this study is 

the ability of Csc copula in modelling the multivariate probability joint distribution 

function with different range of dependence. 
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Chapter 6: Conclusion  

This dissertation has investigated the importance of trigonometric copula as a one-

parameter family of Archimedean copula in modelling joint probability distribution 

function of random variables.  In this investigation, the main aim was to assess the 

dependence properties of copulas which were built on trigonometric generators.  

This study has focused on five new Archimedean copulas based on trigonometric 

generators.  The result of the dependence analysis on these functions suggests that the 

Cotangent (Cot) and Cosecant (Csc)-copulas emerged as reliable copula in modelling 

joint probability distribution function of random variables. The result of this study 

illustrates that both Cot and Csc-copula possess the flexible upper and lower tail 

dependences. The Csc-copula, however, covers a wider dependence than Cot-copula. 

The second major finding of this study is the construction of multivariate vine copula 

using Cot and Csc-copula as its basis. The advantage of having asymmetric upper and 

lower tail dependences with a single parameter copula contributes to constructing 

multivariate probability distribution function with the hope of less estimation error. 

Finally, the findings of this study suggest that the use of Cot and Csc-copula as a 

reliable tool for modelling joint probability distribution function of real data sets.   

A number of caveats need to be noted with regards to the present study. Although 

Csc-copula cover all dependence between ],1,0[  the dependence coverage of Cot-

copula is in the range of ].1,18.0[  The lower tail dependence in Csc-copula is ],1,25.0[  

whereas the Cot-copula suffer as it ranges in ].1,5.0[  The limitation of the lower tail 

dependences has effect on modelling random variables with lower tail dependence that 

exceed the coverage ranges. This limitation was shown clearly for the Cot-copula in our 
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simulation studies and application parts where the Csc-copula was chosen as the 

superior model.  

For further research, the following work should be undertaken: with reference to 

the trigonometric copula that is, a study similar to one–parameter trigonometric copula 

should be carried out on two parameter families of trigonometric generators together 

with its dependence properties to compare by one-parameter family. As for the 

multivariate vine structure, future analysis on the choice of optimal structure of vine 

should be carried out while considering different dependences among the random 

variables that should be explored. The application of these finding can be implemented 

for hydrology and marketing data.  
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Appendix  

Appendix A 

Cot copula is Left Tail Decreasing (LTD).  

The property  100)(  ttg  when 05.1  implies that Cot copula is 

LTD. )(tg  is define as  
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Then the result of simulation for different value of 1   and for 10  t is 

given in Table A.1:  

Table A.1: Simulation result of )(tg  to identify Min and Max value.  

 
θ 1.05 1.1 1.15 1.20 1.25 1.30 2 3 4 5 6 7 

Min 0.0309 0.5406 0.9081 1.0516 1.1635 1.2728 2.6416 4.3791 6.0332 7.6540 9.2581 10.8527 

Max Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

 

Matlab Programming is provided as  

function MXMI=cotplot 

 
a=[1 1.05 1.1 1.15 1.20 1.25 1.30 2 3 4 5 6 7]; 
t= [0:0.01:1]; 
for i=1:length(a) 

  
    term1= t.^((1/a(i))-2); 
    term2= (a(i)-1); 
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    term3= (a(i)+1).*(t.^(2/a(i))); 
    term4= acot(t.^(1/a(i))); 
    term5=term2+term3; 
    term6=term5.*term4; 
    term7= term6-t.^1/a(i); 
    g=term1.*term7; 

  
   %plot(t, g, 'r'  ) 

  
MXMI(:,i) = [min(g), max(g)]; 
end  

 

CotII copula is not SI/SD 

Table A.2: Simulation result to identify Min and Max value for )(tg  . 

 
θ 1 1.05 2 3 4 5 6 7 

Min -2.00 -1.98 -1.80 -1.73 -1.70 -1.68 -1.66 -1.65 

Max 0.00 0.04 0.41 0.54 0.61 0.65 0.68 0.69 

 

θ 8 9 10 11 40 70 100 1000 1000000 
Min -1.65 -1.64 -1.64 -1.63 -1.60 -1.60 -1.60 -1.60 -1.59 

Max 0.71 0.72 0.73 0.74 0.79 0.80 0.80 0.81 0.81 

 

As shown in table the value of )(tg  is negative for min value while it is positive 

for maximum value. Therefore )(tg  is not convex of concave function.  

Matlab Programming is provided 

function MXMI= cot2plot  

a=[1 1.05 2 3 4 5 6 7 8 9 10 11 40 70 100 1000 1000000 ]; 

t= [0:0.01:1]; 

for i=1:length(a) 

    term1=1-1./a(i); 

    term2=1./(1+t.^2); 

    term3=(acot(t)).^(-2); 
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    term4=(2.*t.^2-2)./(1+t.^2).^2; 

     

    g = term1.*term2.*term3 + term4;     

     

MXMI(:,i) = [min(g), max(g)]; 

end  

 

CotII copula is not PKD/PQD 

Table A.3: Simulation result to identify Min and Max value for )(tg . 

 
θ 1 1.05 2 3 4 5 6 7 8 

Min -0.06 -0.05 -0.03 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 

Max 0.20 0.19 0.10 0.07 0.05 0.04 0.03 0.03 0.03 

 

θ 9 10 11 40 70 100 1000 1000000 
Min -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 

Max 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.00 

 

Matlab program is provided for this simulation.  

function MXMI = cot2pkd 
a=[1 1.05 2 3 4 5 6 7 8 9 10 11 40 70 100 1000 1000000 ]; 
t= [0:0.01:1]; 
for i=1:length(a) 
    term1= a(i).*(1+t.^2).*acot(t); 
    term2 = log(((2/pi).*acot(t)).^(1./a(i))); 

     
    g=((t./term1)+term2)./(t.^2); 

     
     plot(t, g)       
MXMI(:,i) = [min(g), max(g)]; 
end  

 

Csc copula is SI. 
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Matlab programming for simulation  

function MXMI= cscSIplot  
a=[0.55 0.6 0.7 0.8 0.9 1 ]; 

t= [0:0.01:1]; 
for i=1:length(a) 
    A= t.^(1./(2.*a(i))-1); 

     
    B= t.^(1./a(i))+1; 

     
    C= sqrt(t.^(1./a(i))+2); 

     
    K= 2./(pi.*a(i)); 

     
    g = K.*(A./(B.*C));     

     
MXMI(:,i) = [min(g), max(g)]; 
plot (t,g) 
title('Plot of f(t) for CSC for different \Theta') 
hold on 
end  

CscII copula is SI. 

Matlab programming for simulation  

function MXMI= csc2SIplot  
a=[ 0.6 0.7 0.8 0.9 1 2 3 4 5]; 
t= [0:0.01:1]; 
for i=1:length(a) 
    A= abs(t+1).*sqrt(t.^2+2.*t); 
    B= acsc(t+1).^((1./a(i))-1); 

     
    C= 4./(a(i).*(pi.^2)); 

     
    g = C.*(B./A);     

     
MXMI(:,i) = [min(g), max(g)]; 

  
plot(t, g) 
title('Plot of f(t) for CSCII for different \Theta') 
hold on 
end 

 

Appendix B 

 MATLAB programming for Estimation and goodness of fit test of trigonometric 

copulas:  
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function [ y ,d , p] = tchek2(x) 

  
[k,l ] = size(x); 
for i=1:k  
    for j=1:l 
        if x(i,j)==1 
             x(i,j)=0.999; 
        elseif x(i,j)==0 
            x(i,j)=0.0001; 
        end  
    end  
end  

  
pclayton = copulafit ('Clayton', x); 
pgumbel = copulafit('gumbel', x); 
tclayton = 2^(- 1/ pclayton) ; % lower tail dependnece in Clayton 

(alpha >= 0 ) 
tgumbel = 2- 2^(1/pgumbel); 
y1 = [0 , tgumbel; tclayton , 0 ];  

  
pcot  = cotfit (x(:,1), x(:,2)); 
pcot2 = cot2fit (x(:,1), x(:,2)); 
p12 = fit12 (x(:,1), x(:,2)); 
pcsc  = cscfit (x(:,1), x(:,2)); 
pcsc2 = csc2fit (x(:,1), x(:,2)); 
pcsc3 = csc3fit(x(:,1), x(:,2)); 

  
pkcot=kendalcot(x); 

  

  
tucot =  2- 2^(1/pcot);   %  upper tail similar to Gumbel. 
tlcot =  2^(- 1/ pcot);   %  lower tail similar to Clayton.   

  
tucot2 =  0 ;   %  upper tail similar to Gumbel. 
tlcot2 =  2^(- 1/ pcot2);   %  lower tail similar to Clayton.   

  
tu12 =  2- 2^(1/p12);   %  upper tail similar to Gumbel. 
tl12 =  2^(- 1/ p12);   %  lower tail similar to Clayton.   

  
tucsc =  2- 2^(1/(2*pcsc));   %  upper tail simila to Gumbel. 
tlcsc =  2^(- 1/ pcsc);   %  lower tail similar to Clayton.  

  
tucsc2 =  2 - sqrt(2);   %  upper tail similar to Gumbel. 
tlcsc2 =  2^(- 1/ pcsc2);   %  lower tail similar to Clayton. % change 

from 4 to 2 

  
tucsc3 =  2 - sqrt(2) ;   %  upper tail similar to Gumbel. 
tlcsc3 =  2^(- 1/ pcsc3);   %  lower tail similar to Clayton.  

  
[dcot, w, q, z]= kfun ('cot', x, pcot); 
plot(w,q,'k','LineWidth',1) %comparsion of u - K(u) 
hold on 
plot(w,z,'b') 

  
[dgumbel, w, q, z] = kfun ('gumbel', x, pgumbel); 
plot(w,z,'-.r') 
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[dclayton, w, q, z] = kfun ('clayton', x, pclayton); 
plot(w,z, '--g') 

  
[d12, w, q, z] = kfun ('12', x, p12); 
plot(w,z,':c') 

  
[dcsc, w, q, z] = kfun ('csc', x, pcsc); 
plot(w,z,'b:') 

  
[dcsc2, w, q, z] = kfun ('csc2', x, pcsc2); 
plot(w,z,'g') 

  
[dcsc3, w, q, z] = kfun ('csc3', x, pcsc3); 
plot(w,z,'r') 

  
%legend('e-copula','cot','clayton', '12', 'csc', 'csc2', 'csc3', 0) 
legend('e-copula','cot','gumbel','clayton','12','csc','csc2',... 

,'csc3', 0) 
hold off 
y = [y1 ; tl12 , tu12 ;tlcot ,  tucot ; tlcsc , tucsc ; tlcsc2 , 

tucsc2 ; tlcsc3 , tucsc3 ]; 
y = round(y*10000)/10000; 
p = [ pgumbel ;  pclayton ; p12 ; pcot ; pcsc ; pcsc2 ; pcsc3]; 
p = round(p*10000)/10000; 
d = [ dgumbel ;  dclayton ; d12 ; dcot ; dcsc ; dcsc2 ; dcsc3]; 
d = round(d*10000)/10000; 

 

R program for Estimation and Goodness of fit test: 

# Data  

 

secdfKLCI=ecdfKLCI[1:500] 

secdfSP=ecdfSP[1:500] 

secdfSTI=ecdfSTI[1:500] 

# PAirs Function  

panel.cor <- function(x, y, digits=2, prefix="", cex.cor, ...) 

{ 

  usr <- par("usr"); on.exit(par(usr)) 

  par(usr = c(0, 1, 0, 1)) 

  r <- abs(cor(x, y)) 

  txt <- format(c(r, 0.123456789), digits=digits)[1] 

  txt <- paste(prefix, txt, sep="") 

  if(missing(cex.cor)) cex.cor <- 0.4/strwidth(txt) 

  text(0.5, 0.5, txt, cex = cex.cor * r) 

} 

 

x=matrix(c(secdfKLCI, secdfSP, secdfSTI),1000,3) 

colnames(x, do.NULL = FALSE) 

colnames(x) <- c("KLCI", "SP500", "STI") 

pairs(x, lower.panel=panel.cor) 

 

# Kendalls tau Correlation  

 

ken1 = cor(ecdfKLCI,ecdfSP,method="kendall") 
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ken2 = cor(ecdfKLCI,ecdfSTI, method= "kendall") 

ken3 = cor(ecdfSP,ecdfSTI, method= "kendall") 

 

ken=c(ken1, ken2, ken3) 

 

write.table(ken , file = "Kendall.csv", sep = ",", col.names = NA,        

 qmethod = "double") 

 

 

# Estimation of Parametres  

 

u1=ecdfCAC40 

u2=ecdfDAX 

 

c1= BiCopEst(u1,u2,family=1,method="mle",se=TRUE) 

c2= BiCopEst(u1,u2,family=2,method="mle",se=TRUE) 

c3= BiCopEst(u1,u2,family=3,method="mle",se=TRUE) 

c4= BiCopEst(u1,u2,family=4,method="mle",se=TRUE) 

c5= BiCopEst(u1,u2,family=5,method="mle",se=TRUE) 

c7= BiCopEst(u1,u2,family=7,method="mle",se=TRUE) 

c8= BiCopEst(u1,u2,family=8,method="mle",se=TRUE) 

c9= BiCopEst(u1,u2,family=9,method="mle",se=TRUE) 

c10= BiCopEst(u1,u2,family=10,method="mle",se=TRUE) 

 

 

# Rewrite for parameters table  

 

p1  = c(c1$par,  c1$par2) 

p2  = c(c2$par,  c2$par2) 

p3  = c(c3$par,  c3$par2) 

p4  = c(c4$par,  c4$par2) 

p5  = c(c5$par,  c5$par2) 

p7  = c(c7$par,  c7$par2) 

p8  = c(c8$par,  c8$par2) 

p9  = c(c9$par,  c9$par2) 

p10 = c(c10$par, c10$par2) 

 

 

outpara = matrix( c(p1, p2, p3, p4, p5, p7, p8, p9, p10), 9, 2, byrow= 

"T") 

write.table(outpara , file = "parameter-SP-STI.csv", sep = ",", 

col.names = NA, qmethod = "double") 

 

 

# Rewrite for estandard error table  

 

se1  = c(c1$se, c1$se2) 

se2  = c(c2$se, c2$se2) 

se3  = c(c3$se, c3$se2) 

se4  = c(c4$se, c4$se2) 

se5  = c(c5$se, c5$se2) 

se7  = c(c7$se, c7$se2) 

se8  = c(c8$se, c8$se2) 

se9  = c(c9$se, c9$se2) 

se10 = c(c10$se, c10$se2) 

 

 

outpara = matrix( c(se1, se2, se3, se4, se5, se7, se8, se9, se10), 9, 

2, byrow= "T") 
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write.table(outpara , file = "Estandard-SP-STI.csv", sep = ",", 

col.names = NA, qmethod = "double") 

 

# tail dependnece  

 

tail1  = BiCopPar2TailDep(1,  c1$par,  c1$par2  ) 

tail2  = BiCopPar2TailDep(2,  c2$par,  c2$par2  ) 

tail3  = BiCopPar2TailDep(3,  c3$par,  c3$par2  ) 

tail4  = BiCopPar2TailDep(4,  c4$par,  c4$par2  ) 

tail5  = BiCopPar2TailDep(5,  c5$par,  c5$par2  ) 

tail7  = BiCopPar2TailDep(7,  c7$par,  c7$par2  ) 

tail8  = BiCopPar2TailDep(8,  c8$par,  c8$par2  ) 

tail9  = BiCopPar2TailDep(9,  c9$par,  c9$par2  ) 

tail10 = BiCopPar2TailDep(10, c10$par, c10$par2 ) 

 

tail =matrix(c(tail1, tail2, tail3, tail4, tail5, tail7, tail8, tail9, 

tail10 ),9,2, byrow="T") 

 

write.table(tail, file="taildependneceSP-STI.csv", sep = ",", 

col.names = NA, qmethod = "double") 

 

# Goodness of fit calculation 

 

  

gofc1  =  BiCopGofKendall(u1,u2, family= 1,  B=100, level=0.05) 

gofc2  =  BiCopGofKendall(u1,u2, family= 2,  B=100, level=0.05) 

gofc3  =  BiCopGofKendall(u1,u2, family= 3,  B=100, level=0.05) 

gofc4  =  BiCopGofKendall(u1,u2, family= 4,  B=100, level=0.05) 

gofc5  =  BiCopGofKendall(u1,u2, family= 5,  B=100, level=0.05) 

gofc7  =  BiCopGofKendall(u1,u2, family= 7,  B=100, level=0.05) 

gofc8  =  BiCopGofKendall(u1,u2, family= 8,  B=100, level=0.05) 

gofc9  =  BiCopGofKendall(u1,u2, family= 9,  B=100, level=0.05) 

gofc10 = BiCopGofKendall(u1,u2, family= 10, B=100, level=0.05) 

 

# rewrite the parametre for table:  

 

gofcvm = c(gofc1$statistic.CvM, gofc2$statistic.CvM, 

gofc3$statistic.CvM, gofc4$statistic.CvM, gofc5$statistic.CvM, 

gofc7$statistic.CvM, gofc8$statistic.CvM, gofc9$statistic.CvM, 

gofc10$statistic.CvM) 

 

pvaluecvm = c(gofc1$p.value.CvM, gofc2$p.value.CvM, gofc3$p.value.CvM, 

gofc4$p.value.CvM, gofc5$p.value.CvM, gofc7$p.value.CvM, 

gofc8$p.value.CvM, gofc9$p.value.CvM, gofc10$p.value.CvM) 

 

gofKS = c(gofc1$statistic.KS, gofc2$statistic.KS, gofc3$statistic.KS, 

gofc4$statistic.KS, gofc5$statistic.KS,gofc7$statistic.KS, 

gofc8$statistic.KS, gofc9$statistic.KS, gofc10$statistic.KS) 

 

 

pvalueKS = c(gofc1$p.value.KS, gofc2$p.value.KS, gofc3$p.value.KS, 

gofc4$p.value.KS, gofc5$p.value.KS, gofc7$p.value.KS, 

gofc8$p.value.KS, gofc9$p.value.KS, gofc10$p.value.KS) 

 

 

 

outgof = matrix(c(gofcvm, pvaluecvm, gofKS, pvalueKS),9,4, byrow="F") 

write.table(outgof, file="gof-SP-STI.csv", sep=",", col.names=NA, 

qmethod="double") 
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#********************** MULTIVARITE COPULA ********************* 

 

# data wit specific order  

 

#dataCvine1 = matrix(c(ecdfSTI, ecdfSP, ecdfKLCI), 2634, 3, byrow="T") 

dataCvine1  = matrix(c(ecdfKLCI, ecdfSTI, ecdfSP), 2634, 3, byrow="T") 

# dataDvine = c(ecdfKLCI, ecdfSTI, ecdfSP) 

 

#Selection of family   

 

select1= 

CDVineCopSelect(dataCvine1,type=1,familyset=c(1:10,13,14,23,24)) 

 

fam = select1$family 

 

#Estimation of CDvine copula of data sequential method  

 

est = CDVineSeqEst(dataCvine1, fam , 1, method="mle", se=TRUE, 

progress=TRUE) 

 

cdest = matrix( c(est$par, est$par2), 3,2, byrow="F") 

cdse  = matrix( c(est$se,  est$se2) , 3,2, byrow="F") 

  

write.table(cdest, file="MD2-Seq-ESTIMATION.csv", sep=",", 

col.names=NA, qmethod="double") 

 

write.table(cdse, file="MD2-Seq-serror.csv", sep=",", col.names=NA, 

qmethod="double") 

 

#Estimation of CDvine copula of data via MLE 

 

estMLE = CDVineMLE(dataCvine1, fam , start=cdest[,1], start2= 

cdest[,2], 1 ) 

 

cdestMLE  = matrix( c(estMLE$par, estMLE$par2), 3,2, byrow="F") 

# cdseMLE = matrix( c(estMLE$se,  estMLE$se2), 3,2, byrow="F") 

 

write.table(cdestMLE, file="MD2-MLE-ESTIMATION.csv", sep=",", 

col.names = NA, qmethod="double") 

# write.table(cdseMLE, file="MD2-MLE-Serror.csv", sep=",", 

col.names=NA, qmethod="double") 

 

 

# GOODNESS OF FIT TEST  

 

MLEgofAIC= CDVineAIC(dataCvine1,fam, estMLE$par, estMLE$par2,1) 

SeqgofAIC= CDVineAIC(dataCvine1,fam, est$par, est$par2,1) 

 

MLEgofBIC= CDVineBIC(dataCvine1,fam, estMLE$par, estMLE$par2,1) 

SeqgofBIC= CDVineBIC(dataCvine1,fam, est$par, est$par2,1) 

 

# Log-liklihood function  

 

MLEliklihood= CDVineLogLik(dataCvine1,fam, estMLE$par, estMLE$par2,1) 

seqliklihood= CDVineLogLik(dataCvine1,fam, est$par, est$par2,1) 
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# GOF and Liklihood function  

gof=c(MLEgofAIC$AIC, SeqgofAIC$AIC, MLEgofBIC$BIC, SeqgofBIC$BIC, 

MLEliklihood$loglik , seqliklihood$loglik) 

 

write.table(gof, file="MD2-gof.csv", sep=",", col.names=NA, 

qmethod="double") 

 

R programm for Multivaraite simulation in Chapter 5  

# Kendalls tau Correlation  

 

u1= ecdfCAC40 

u2=ecdfDAX 

u3=ecdfFTSE 

u4=ecdfSP500 

 

ken1 = cor(u1,u2,method="kendall") 

ken2 = cor(u1,u3, method= "kendall") 

ken3 = cor(u1,u4, method= "kendall") 

ken4 = cor(u2,u3, method="kendall") 

ken5 = cor(u2,u4, method= "kendall") 

ken6 = cor(u3,u4, method= "kendall") 

 

 

ken=c(ken1, ken2, ken3, ken4, ken5, ken6) 

 

write.table(ken , file = "Kendall.csv", sep = ",", col.names = NA, 

qmethod = "double") 

 

 

 

 

#**************************** MULTIVARITE COPULA *************** 

 

# data wit specific order  

 

#dataCvine1 = matrix(c(ecdfSTI, ecdfSP, ecdfKLCI), 2634, 3, byrow="T") 

dataCvine2  = matrix(c( u1, u2, u3, u4), 3140, 4, byrow="T") 

 

# dataDvine=c(ecdfKLCI, ecdfSTI, ecdfSP) 

 

#Selection of family   

 

select1= 

CDVineCopSelect(dataCvine2,type=2,familyset=c(1:10,13,14,23,24)) 

 

#fam = select1$family 

 

fam = c(7,7,7,7,7,7) 

 

#Estimation of CDvine copula of data sequential method  

 

est = CDVineSeqEst(dataCvine2, fam , 2, method="mle", se=TRUE, 

progress=TRUE) 

 

cdest = matrix( c(est$par, est$par2), 6,2, byrow="F") 

cdse = matrix( c(est$se,  est$se2), 6,2, byrow="F") 

 



164 

 

write.table(cdest, file="MD2-Seq-ESTIMATION.csv", sep=",", 

col.names=NA, qmethod="double") 

write.table(cdse, file="MD2-Seq-serror.csv", sep=",", col.names=NA, 

qmethod="double") 

 

#Estimation of CDvine copula of data via MLE 

 

estMLE = CDVineMLE(dataCvine2, fam , start=cdest[,1], start2= 

cdest[,2], 2 ) 

 

cdestMLE  = matrix( c(estMLE$par, estMLE$par2), 6,2, byrow="F") 

# cdseMLE = matrix( c(estMLE$se,  estMLE$se2), 3,2, byrow="F") 

 

write.table(cdestMLE, file="MD2-MLE-ESTIMATION.csv", sep=",", 

col.names=NA, qmethod="double") 

# write.table(cdseMLE, file="MD2-MLE-Serror.csv", sep=",", 

col.names=NA, qmethod="double") 

 

 

# GOODNESS OF FIT TEST  

 

MLEgofAIC = CDVineAIC(dataCvine2,fam, estMLE$par, estMLE$par2,2) 

SeqgofAIC = CDVineAIC(dataCvine2,fam, est$par, est$par2,2) 

 

MLEgofBIC = CDVineBIC(dataCvine2,fam, estMLE$par, estMLE$par2,2) 

SeqgofBIC = CDVineBIC(dataCvine2,fam, est$par, est$par2,2) 

 

# Log-liklihood function  

 

MLEliklihood = CDVineLogLik(dataCvine2,fam, estMLE$par, estMLE$par2,2) 

seqliklihood = CDVineLogLik(dataCvine2,fam, est$par, est$par2,2) 

 

# GOF and Liklihood function  

gof = c(MLEgofAIC$AIC, SeqgofAIC$AIC, MLEgofBIC$BIC, SeqgofBIC$BIC, 

MLEliklihood$loglik , seqliklihood$loglik) 

 

write.table(gof, file="MD2-gof-t-copula.csv", sep=",", col.names=NA, 

qmethod="double") 
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