Chapter Two

Preparation

Of

Organotin Compounds

2.1 Main methods of synthesis

Organotin compounds (OTCs) can be prepared by four main methods.

These methods are:

- 1. Grignard reaction
- 2. Wurtz reaction
- 3. Reaction by organoaluminium
- 4. Direct synthesis.

2.1.1 Grignard reaction

The tetraorganotins, R_4Sn can be prepared by this method by first forming the Grignard reagent of RMgBr derived from the reaction between Mg turning and an organic bromide, RBr. Subsequent reaction of the Grignard reagent with stannic chloride, SnCl₄ afforded R₄Sn. R₃SnX, R₂SnX₂ and R₃SnX₃ are prepared from the tetraorganotin by comproportionantion reaction between R₄Sn and stannic chloride at ca. 200C^o for several hours. Redistribution reactions have also been used for preparation of asymmetric OTCs.

$$4RMgX + SnX_4 \longrightarrow R_4 Sn + 4MgX_2$$
(2-1)

2.1.2 Wurtz method:

This method is based on *in situ* reaction of Na, alkyl halide with SnX₄ (Reaction 2.2).

$$SnX_4 + 4RX + 8Na \longrightarrow R_4Sn + 8NaX$$
 (2-2)

One of the disadvantages of this method is that large amount of solvent should be used. This method proceeds by following steps:

$$\operatorname{SnX}_{4} \xrightarrow{\operatorname{RX} + 2\operatorname{Na}} \operatorname{RSnX}_{3} \xrightarrow{\operatorname{RX} + 2\operatorname{Na}} \operatorname{R}_{2}\operatorname{SnX}_{2} \xrightarrow{\operatorname{RX} + 2\operatorname{Na}} \operatorname{R}_{3}\operatorname{SnX} \xrightarrow{\operatorname{RX} + 2\operatorname{Na}} \operatorname{R}_{4}\operatorname{Sn} \operatorname{R}_{4}\operatorname{Sn} \xrightarrow{\operatorname{RX} + 2\operatorname{Na}} \operatorname{R}_{4}\operatorname{Sn} \operatorname{R}_{4}\operatorname{Sn} \xrightarrow{\operatorname{RX} + 2\operatorname{Na}} \operatorname{R}_{4}\operatorname{Sn} \xrightarrow{\operatorname{RX} + 2\operatorname{Na}} \operatorname{R}_{4}\operatorname{Sn} \xrightarrow{\operatorname{RX} + 2\operatorname{Na}} \operatorname{R}_{4}\operatorname{Sn} \operatorname{R}_{4}\operatorname{Sn}$$

2.1.3 Organoaluminium method:

This reaction is also accompanied with the formation of R₃SnX, R₂SnX₂ and RSnX₃

2.1.4 Direct synthesis:

Sir Edward Frankland (1825-1899) was the first person who prepared OTCs by direct method (Frankland,1854).

$$2EtI + Sn \longrightarrow Et_2SnI_2$$
(2-4)

The order of reactivity is RI > RBr > RCl and for a given halogen MeX > EtX > PrX

2.1.5 Rochow method:

The direct reaction of organosilicon compounds discovered by Rochow in 1944 and was applied for the preparation of methyltin and phenyltin.

$$\operatorname{Sn} + \operatorname{CH}_{3}\operatorname{Cl} \xrightarrow{300-400^{\circ}\operatorname{C}} \operatorname{CH}_{3}\operatorname{Sn}\operatorname{Cl}$$
 (2-5)

Cu or Zn can be used as catalyst.

2.1.6 Sisido method:

In 1953 Sisido and his coworkers found that dibenzyltin chloride, tribenzyltin chloride and diallyltin dibromide were prepared in high yield by refluxing reactive halides such as benzyl chloride and allyl chloride or allyl bromide with tin powder in water or toluene in the presence of a trace amount of water. The reaction in a strongly polar solvent gives

triorganotin compounds on the other hand, in a weakly polar solvent gives diorganotin compounds.

$$2PhCH_2Cl + Sn \xrightarrow{110 \text{ °C } 88\%} (PhCH_2)_2SnCl_2$$
(2-6)

$$3PhCH_2Cl + 2Sn \xrightarrow{100^{\circ}C} 94\%$$
water (PhCH₂)₃SnCl + SnCl₂ (2-7)

2.1.7 Redistribution reaction (Kocheskov Reaction):

As mentioned already, R_4Sn is the starting material for the preparation of R_3SnX , R_2SnX_2 , and $RSnX_3$, this reaction also named comproportionation reactions.

$$R_4 Sn + Sn X_4 \longrightarrow 2R_2 Sn X_2$$
(2-8)

$$3R_4Sn + SnX_4 \longrightarrow 4R_3SnX$$
 (2-9)

$$R_4 Sn + 3Sn X_4 \longrightarrow 4RSn X_3$$
(2-10)

The commercial production of OTCs starts with the conversion of metallic tin into $SnCl_4$ and then convert to R_4Sn by Grignard reagent, R_4Sn serves as starting material for the synthesis of other organotin halides that can be generated through redistribution reaction with $SnCl_4$. In the final step the remaining chloride anions can be substituated by the desired anion (e.g. oxide, hydroxide, thioglycolate, carboxylate trizolite, (Poller, 1970; Sander et al., 2004).

2.2 Organotin carboxylates:

One of the categories of OTCs that recently attention has been paid to that is organotin carboxylates. This is because of the potential biological activities of these compounds, such

as antitumor activity and was found to be active against various types of cancers. There are several methods for prepration of organotin carboxylates (Yip Foo et al., 2006).

- 1. Synthesis by reaction of carboxylic acid and dibutyltin oxide (DBTO).
- 2. Synthesis by reaction of salt of carboxylic acid with TBTCl.
- 3. Synthesis by reaction of silver salt of carboxylic acid.
- 4. Synthesis by using amines.
- 5. Synthesis by reaction of carboxylic acid with SnCl₄.

Some of the dibutyltin caboxylates were prepared by heating dibutyltin oxide (Bu_2SnO) with the respective acid (1:1) in mixture of toluene to produce carboxylate (Szoresik et al., 2003). Usually the preparation required the use of Dean-Stark apparatus for the separation of the water.

$$Bu_2SnO + 2RCOOH \longrightarrow H_2O + Bu_2 Sn(OCOR)_2$$
 (2-11)

The carboxylate ligand can be bonded to metal ion in different modes as shown below:

Figure 2.1 Different bonding modes of carboxylate ligand to metal

In a typical reaction 0.015 mol of Bu_2SnCl_2 in 150 ml CH_2Cl_2 was stirred in the dark with AgOCOCH₃ (0.039 mol) for 24 hours and then was filtered, the filtrate was evaporated and dried in vacuum (Bonire et al., 1998).

$$R_2 SnCl_2 + 2AgOCOR' \longrightarrow R_2 Sn(OCOR')_2 + 2AgCl$$
(2-12)

28

In another example, thiosalicylic acid is converted to its salt by using NaOEt and then reacts with R_2SnCl_2 (Handong et al., 2005).

 $R = Me, nBu, Ph, 3Cl-PhCH_2$

By using triethylamine as a base, organotin carboxylate can be prepared from organotin halides.

$$R_2SnCl_2 + 2LHNEt_3 \longrightarrow R_2SnL_2 + 2Et_3NHCl$$
(2-17)

$$R_{3}SnCl + LHNEt_{3} \longrightarrow R_{3}SnL + Et_{3}NHCl \qquad (2-18)$$

HL = 4-(2,5Dioxo-2,5-dihydro -1H-pyrrol-1-yl)benzoic acid

2.3 Spectroscopic investigation of organotin compounds:

After the organotin compounds (OTCs) are prepared, they are usually characterized by using IR, NMR (¹H NMR, ¹³C NMR, ¹¹⁹Sn NMR) and Mossbauer spectroscopies.

2.3.1 ¹¹⁹Sn NMR spectroscopy:

There are ten naturally occurring isotopes of tin, of these only ¹¹⁵Sn, ¹¹⁷Sn and ¹¹⁹Sn have nuclear spin quantum number of +1/2. ¹¹⁵Sn has abundance of only 0.35%, ¹¹⁷Sn abundance is 7.61% and ¹¹⁹Sn has abundance of 8.58% and is usually selected for spectroscopic investigation because of larger abundance. The sensitivity of ¹¹⁹Sn is 4×10^{-3} times of ¹H and 25 times of ¹³C and is highest in multinuclear species.

¹¹⁹Sn NMR, chemical shift of OTCs covers a range of 600 ppm and are referenced by tetra methyltin (Omae, 1989). There is no solvent effect unless the solvent coordinated to the Sn atom. A large shift difference is observed with very slightly differing in electron density around Sn atom. As shown in Table 2 .1, the Sn bonds to electron withdrawing agent causes deshielded of tin and the δ ¹¹⁹Sn moves to lower field. From the series, Me₃SnX to MeSnX₃ (X = Cl, Br, I), the δ ¹¹⁹Sn values moves up field with the increase in the number of inorganic group (X).

Compound	X = Cl	X = Br	$\mathbf{X} = \mathbf{I}$
Me ₃ SnX	+ 164.4	+ 128	+ 38.6
Me ₂ SnX ₂	+ 140	+ 70	- 159
MeSnX ₃	+ 21	-165	-
SnX ₄	- 150	- 638	-170.1

Table 2.1: ¹¹⁹Sn chemical shift (δ) of Me_nSnX_{4-n} (ppm) (OMAE, 1989)

This may be due to the back-donation of the halogen p- ion pair electron into an empty 5d orbital on Sn having π symmetry, resulting in a (p-d) overlap between these two orbitals and shielding Sn and moving to high field shift. Effect of alkyl group R on ¹¹⁹Sn NMR chemical shift is shown in Table 2.2 (Wilkinson, 1995).

R	RSnCl ₃	R_2SnCl_2	R ₃ SnCl
Me	+20	+141	+164
Et	+6.5	+126	+155
Bu	+6.0	+122	+141
Bu ^t	-	+52	+50
Ph	-63	-32	-48

Table 2.2: ¹¹⁹Sn Chemical shift (ppm) of different alkyltin chlorides (Wilkinson, 1995)

An increase in the coordination number of the Sn causes shielding and shifting to high field. Four coordination compounds have chemical shifts (δ) ranging from +200 to -60 ppm, five coordination compounds from -90 to -190 ppm and six coordinated compounds from -210 to -400 ppm. Coordination of donor solvent to Sn causes ¹¹⁹Sn chemical shift moves to high field, for example as the mole ratio of a mixture of Me₃SnCl and pyridine in carbon tetrachloride is altered from 1:0 to 1:12 the ¹¹⁹Sn chemical shift moves from +159 ppm to -9 ppm.

Four coordinate compounds		Five coordinate compounds		Six coordinate compounds	
Ph ₃ SnOOBu	-95	Ph ₃ Sn(oxin)	192	Me ₂ Sn(acac) ₂	-365
Ph ₃ SnSMe	-47	Ph ₃ Sn(edtc)	-191	Me ₂ Sn(oxin) ₂	-237
Me ₃ SnSMe	+85.1	Me ₃ Sn(mdtc)	+25	Ph ₂ Sn(acac) ₂	-514
Me ₃ Sn(OBt) ₂	-1.8	Me ₂ Sn(SAB)	-150	Me ₂ Sn(mdtc) ₂	-338
Me ₂ Sn(SMe) ₂	+144	Me ₂ SnCl(oxin)	-92		
		Ph ₂ Sn(SAB)	-329		
		Me ₂ SnCl(mdtc)	-204		

Table 2.3: Effect of coordination number on ¹¹⁹Sn chemical shift (ppm) [Otera, 1981]

acac = acetylacetonate, oxin = oxinate, mdtc and, edtc = N, N'-dimethyl and N, N' diethyldithiocarbamate, SAB = N –(2–hydroxyphenyl)salicylaldimine.

2.3.2 Infrared Spectroscopy of OTCs:

The stretching frequencies of functional groups bonded, such as Sn-C, Sn-O, Sn-Halogen and Sn-N are important.

Sn-C Streching frequencies:

The di and tri-alkyltin compounds generally show two bands asymmetric Sn-C vibration essentially in the range 500-600 cm⁻¹ and the second band at approximately 470-530 cm⁻¹ due to symmetric Sn-C vibration band. Monoalkyltin compounds exhibit a single Sn-C stretching band. The two bands for butyltin trichloride belong to two conformational isomer of this compound. Information on the factors which affect the position of Sn-C band is not known but it has been observed in methyltin halides that electronegativity of halogen and greater the number of halogen causes greater effective nuclear charge on tin and hence the

higher of Sn-C frequencies. Infrared of some Sn-C stretching vibration of OTCs is shown in Table 2.-4. It can be seen from the table that the position of \overline{v} Sn-C bands are not particularly sensitive to change in the coordination number of tin (Poller, 1970).

Tin -halogen stretching frequencies:

Some recent tin-halogen stretching frequencies assignment for the alkyl and phenyl-tin halides is shown in Table 2.5, \overline{v} Sn-Cl are in the range 385 - 318 cm⁻¹, \overline{v} for Sn-Br 264-222 cm⁻¹ and \overline{v} for Sn-I are 207-170 cm⁻¹.

The tin-halogen stretching frequencies are very sensitive to changes in the coordination of the tin atom. Conversion of a 4 coordinate dichloride to a 6-coordinate adduct with a Lewis base causes a reduction in the frequency of the \bar{v} Sn-Cl bonds by some 100 cm⁻¹. Similar results for the reduction of frequencies are observed for other halides.

Sn-N sreching frequencies:

The \overline{v} Sn-N absorption bands occur over a wide range of frequencies and appears to be very sensitive to changes in the molecular environment of the Sn-N group. Organotin oxinate bands are in the region of 406-387 cm⁻¹ that has been assigned to Sn-N mode, Sn-N frequency in Me₂SnX₂ .2pyridine is about 200 cm⁻¹. The \overline{v} Sn-N in N-trimethylstannyl aniline occurs at 843 cm⁻¹ for a compound that shows the N atom incorporated into the aromatic ring, the stretching vibration for Sn - N coordinated compounds occurs at a lower frequency. The Sn-N stretching frequencies for some OTCs is shown in Table 2.6.

Sn-O stretching frequencies:

An empirical calculation indicated that Sn-O stretching frequencies should occur in the range of 575-550 cm⁻¹. Although frequency of trimetyltin hydroxide solution is in this

range, but solid state spectrum show that different frequencies was observed. The Sn-O frequencies for some OTCs are shown in Table 2.7.

Compound	State		$v \text{ cm}^{-1}$	
Compounds with 4 Sn-C	bonds			
Me ₄ Sn	Liauid		528s	
Et ₄ Sn	Liquid		508s	
Pr ₄ Sn	Liquid	590s		500s
Bu ₄ Sn	Soln. in	592s		503s
	CS_2			
$Me_3SnC \equiv CH$	Liquid	538vs		517w
Compounds with 3 Sn-C	bonds			
Me ₃ SnCl	Soln. in	542s		513w
	Cyclohexane			
Me ₃ SnBr	Soln. in	539s		511m
	Cyclohexane			
Me ₃ SnI	Soln. in	536m		508w
	Cyclohexane			
Me ₃ SnOH			540s	
Me ₃ SnOH	Solid	571m		504m
	Soln in			
Me ₃ SnOCOH	CCI_4	550	555s	512
Me ₃ SnOCOH	Solid Sola in	550m		513W
$Me_{n}SnMn(CO)_{n}$	CHC1	517s		500s
$Me_3SnCF_2CF_3Mn(CO)_2$	Solid	5399		500s 518m
Et ₂ SnC1	Solid	518vs		4898
	Soln. in	21010		1070
	cyclohexane			

Table 2.4: Infrared stretching frequencies of Sn–C for some (aliphatic) OTCs (Poller, 1970)

Table 2.4 Continued:

Compound	State		v cm ⁻¹	
Et ₂ SnC1 ₂	Soln. in CS2	531		497
Et ₂ SnBr ₂	Soln. in Benzene	528m		493m
Et_2SnI_2				
	Soln. in	520m		490m
Et ₂ SnO	Benzene			
$(Et_2SnS)_3$	Solid	532s		493m
Pr_2SnC1_2	Solid	524m-s		493s
	Soln. in	598		512
Pr_2SnI_2	CS_2			
	Soln. in	589		501
Bu_2SnC1_2	CS_2			
	Soln. in	602		517
Bu_2SnBr_2	CS_2			
	Soln. in	600m		511m
Bu_2SnI_2	Benzene			
	Soln. in	592m		508s
$(C_8H_{17})_2SnC1_2$	Benzene			
	Soln. in	606		518
$R_2Sn(OR')_2$	CS_2			
Me ₂ SnC1 ₂ .2pyridine	Solid	~600	563m	521-504
Me ₂ SnC1 ₂ .bipy	Solid		572m	
$Me_2SnC1_2.2Me_2So$	Solid			
$[\mathrm{Me}_{2}\mathrm{SnC1}_{4}]^{26}$	Solid	575m	580m	507vw
Me ₂ SnC1 ₂ .phen ^c	Solid		578m	
Me ₂ SnBr ₂ .2pyridine	Solid		563m	
Me ₂ SnBr ₂ .2bipy	Solid		571w	
Me ₂ SnBr ₂ .phen	Solid			
$[Me_2SnBr_3]^{\circ}$	Solid	572m		551w
Me ₂ SnI ₂ .2pyridine	Solid	566	5 (0)	522
Me ₂ SnI ₂ .bipy	Solid	550m	569m	514vw
Me ₂ SnI ₂ .phen	Solid	5.00	raab	CC 4 1
$[\mathrm{Me}_{2}\mathrm{Sn}(\mathrm{OH})_{4}]^{20}$	Solid	560m	523°	554sh
	Soln. in			
$Et_2SnCl_2.2pyridine$	water	500		5 21 m
Et ₂ SnCl ₂ .bipy	50110 Solid	380W		331m 491
$Et_2SnCl_2.phen$	Solid	529m	102-	401W
Et ₂ SnCl ₂ .dipyam ⁴	Solid	323III	4938	470W
$Et_2SnCl_2.tripyam$	Solid		4038	
$Et_2SnBr_2.bipy$	Solid		520m	
$Et_2SnBr_2.phen$	Solid		J20W	
Et ₂ SnBr ₂ .d1pyam	Solid		4008	

Compound	State	$v \text{ cm}^{-1}$		
Et ₃ SnBr	Soln. in	510m		484w
	Cyclohexane			
Et ₃ SnI	Soln. in	506m		482w
	Cyclohexane	- 1 0		
Et ₃ SnOH	Solid	510vs		485m(sh)
$(Et_3Sn)_2O$	Liquid	509vs	500	485s(sh)
$(Et_3Sn)_2S$	Liquid	505vs	520	483s
Et ₃ SnOCOH	Solid		525	
Et ₃ SnOCOH	Soln. in			
Et S. OCOD	Heptanes	501 517		400 497
Et Sa Sa Et	Solid	521-51/VS		490-48/m
$Et_3SnSnEt_3$		496VS		4/5VS
$(Et_3Sn)_2SO_4$	Solid	5248		490VW
$(El_3SII)_2CU_3$		518VS		491111 512m
	Liquid Soln in	6018 500a		513m 502m
DU3SIIDI	Sulli. III Cycloboxono	3998		30311
BusSpI	Soln in	508s		501s
Du35III	Cyclobeyone	5708		5018
$(Bu_2Sn)_2O$	Soln	6/18 895		509
Me ₂ SnOP	Soln.	648+3		510
Me ₂ SnCl pyridine	Solid	601+6		512vw
Me ₂ SnCl biny ^a	Solid	541s		544w
Me ₃ SnBr pyridine	Solid	554w		509vw
Me ₂ SnBr bipy	Solid	542s		543w
Me ₃ SnLpvridine	Solid	551w		504vw
Me ₃ SnI bipy	Solid	5418		538w
1,10,5,5,11,6,19,5	S office	567w		22011
Compounds with 2 Sn-C	bonds			
Me ₂ SnCl ₂	Soln. in	560		524
	CS_2			
Me_2SnBr_2	Soln. in	554m		518w
	Benzene			
Me_2SnI_2	Soln. in	542m		511w
	Cyclohexane			
Me ₂ SnCO ₃	Solid	576		523w
Me_2SnSO_4	Solid		600s	
$[Me_2Sn]^{2\Theta}$	Soln. in		529 ^b	
	water			

Table 2.4 continued

Compound	State		$v \text{ cm}^{-1}$	
Et ₂ SnI ₂ .bipy	Solid	514m		504
Et ₂ SIII ₂ .phen Bu SnCl Dhon	Solid	515W		5940W 587w hr
Bu ₂ SnBr ₂ , hiny	Solid	024 vw		588w
Bu ₂ SnBr ₂ .orpy	Solid	15vw		584w
Bu ₂ SnL ₂ .orpy	Solid	613w		582w
Bu ₂ SnL ₂ phen	Solid	610w		302 W
	Solid	010 W		
Compounds with 1 Sn –	C bond			
MeSnCl ₃	Soln		551-546w-	
			m	
MeSnBr ₃	Soln			
MeSnI ₃	Soln. in		538m	
	Cyclohexane		527w	
EtSnCl ₃	Soln. in			
	Benzene		522w	
EtSnBr ₃	Soln. in		C 1 1	
D. G. Cl	Benzene	506	511m	510
BuSnCl ₃	Liquid	596		518
BuSnBr ₃	Soin. in	390W		515W
MasnCl hiny	Solid		526	
MaShCl phon	Solid		530W	
MeShCl3.phen MeShBr, biny	Solid		529W	
MeSnBraphen	Solid		515m 508w	
MeShB13.phen	Solid		515111,508W	
MeSnI ₃ .bipy	Solid		497m	
MeSnI ₃ .phen	Solid		500w,495w	
EtSnCl ₃ .bipy	Solid		504w	
EtSnCl ₃ .phen	Solid		507w	
EtSnBr ₃ .bipy	Solid		484w	
EtSnBr ₃ .phen	Solid		496w,479w	
BuSnCl ₃ .bipy	Solid		592w	
BuSnCl ₃ .phen	Solid		608w	
BuSnBr ₃ .bipy	Solid		595w	
BuSnBr ₃ .phen	Solid		595w	

Bipy = 2,2'bipyridil , phen = 1,10 – phenantrolin , dipyam = 2,2'– dipyridylamine , tripyam = 2,2',2''tripyridylamine

Compound			ν	cm ⁻¹
Bu ₃ SnF ^b				330
Ph_3SnF^b				350
Ph_3SnF^b	_			372
$(C_6F_5)_3SnF^b$	_			330
R ₃ SnCl				336-318
Ph ₃ SnCl				346-332
R ₃ SnBr				234-222
Ph ₃ SnBr	_			256
R ₃ SnI	_			189-182
Ph ₃ SnI				170 ^c
Pr_2SnF_2		330		_
R_2SnCl_2	361-356		356-340	_
Ph_2SnCl_2	364		356-350	—
R_2SnBr_2	260-248		241-238	—
R_2SnI_2	204-169		186-176	—
RSnCl ₃	384-376		368-358	_
BuSnCl ₃		355 ^c		—
PhSnCl 3		385-364		—
RSnBr ₃	264-256		253-225	—
MeSnI ₃	207		174	-

Table 2.5: Tin- halogen stretching frequencies (cm⁻¹) for some OTCs (Poller, 1970)

Compound		v cm ⁻¹
Ph ₃ SnCl.phepy ^b	1 or 2 bands	226
R ₂ SnCl ₂ .bipy ^c	1 or 2 bands	244-215
R ₂ SnCl ₂ .phen ^d		247-220
Et ₂ SnCl ₂ .Dipyam ^e		284, 275sh
Et ₂ SnCl ₂ .tripyam ^f		247br
Bu ₂ SnCl ₂ .4,4'-bipy ^g		247-231br
Bu ₂ SnCl ₂ .2phepy	1 or 2 bands	225-200br
R ₂ SnCl ₂ .2Me ₂ SO		244-187
[Me ₂ SnCl ₃] ^{Θ}		333, 322, 235
$[Me_2SnCl_4]^{2\Theta}$		227
Ph ₂ SnCl ₂ .2pyridine		248
Ph ₂ SnCl ₂ .bipy		252, 246
Ph ₂ SnCl ₂ .dipyam		265, 254sh
Ph ₂ SnCl ₂ .trypyam		262, 248
Ph ₂ SnCl ₂ .4,4'-bipy	1 or 2 bands	240-228br
R ₂ SnBr ₂ .bipy	1 or 2 bands	169-140
R ₂ SnBr ₂ .phen	2 bands	169-149
R ₂ SnI ₃ .bipy	2 bands	156-139
R ₂ SnI ₃ .phen	2 bands	147-126
RSnCl ₃ .bipy	1 or 2 bands	294-267
RSnCl ₃ .phen		299-270
PhSnCl ₃ .4,4'-bipy	2 or 3 bands	330-318, 286-281
RSnBr ₃ .bipy	2 or 3 bands	201-170
RSnBr ₃ .phen		200-177
MeSnI ₃ .bipy		176, 159, 147
MeSnI ₃ .phen		184, 158, 140

 Table 2.6: Sn-N stretching frequency (cm⁻¹) for some OTCs

Compound	state	Absorption bands and assignments (cm ⁻¹)
Me ₃ SnOH	Solid	917m (Sn-OH)
Et ₃ SnOH	Solid	885s (Sn-OH)
Ph ₃ SnOH	Solid	897s, 912s (Sn-OH)
Me ₃ SnOH	Solution	576m v (Sn-O),531s b (Sn-O)
Ph ₃ SnOSnPh ₃	Solid or solution	777-770s vas (SnOSn)
R ₃ SnOSnR ₃	Liquid	784-769 vas (SnOSn)
Bu ₃ SnOr	Solution	1100-946w-m vas (SnOC), 525-514w
Ph ₃ SnOP(O)Ph ₂	Solid	vs (SnOC)
R ₂ SnO	Solid	394m v (Sn-O)
Ph ₂ SnO	Solid	576-561s v (Sn-O)
$[Me_2Sn(OH)_4]^{2\Theta}$	Solution	575-571s v (Sn-O)
$R_2Sn(OR')_2$	Solution	555br ^a v (Sn-O)
R ₂ Sn(OH)NO ₃	Solid	~600w ^b vas(OSnO), 487-466w vs (OSnO)
$RR'Sn(acac)_2^c$	Solid	2 bands in the range 594-398s v (Sn-O)
$(Me_3SiO)_nSnMe_{4-n} (n = 1-4)$	Liquid	461-404 v (Sn-O)
$Me_nSnOx_{4-n}^d$ (n=2,3)	Solid or liquid	1070-938 vs (SiOSn)
Me ₂ SnX ₂ .2Ph ₃ PO	Solid	528-517 v (Sn-O)
Me ₂ SnX ₂ .2Ph ₃ AsO	Solid	320-300 v (Sn-O)
Me ₂ SnCl ₂ .2PyO ^e	Solid	380-370 v (Sn-O)
		325s, br v (Sn-O)

 Table 2.7 : Sn-O stretching frequencies for some OTCs (Poller, 1970)

^a Raman spectrum ^b overlap with CSnC , ^c acetylacetonate ^d 8-hydroxyquinoline ^epyridine– N-oxide

2.3.3 ¹¹⁹Sn Mossbauer spectroscopy:

Mossbauer spectroscopy is a powerful tool for investigating the stereochemistry and bonding in OTCs. The two most important parameter in mossbauer spectroscopy are isomer shift and quadruple splitting.

The isomer shift values are dependent on the s- electron density at ¹¹⁹Sn nucleus and for all tin compounds fall in the range of ± 5 mms⁻¹ with a positive corresponding to an increase in electronegativity of the halogen attached to tin causes reduction of s-electron density and smaller isomer shift. The isomer shift increase with the electron donating power of alkyl group. Phenyl group with stronger electron–withdrawing nature attached to tin lowers the isomer shift (Omae, 1989). ¹¹⁹Sn isomer shift of some OTCs are summarized in Table 2. 8.

R _n SnX _{4-n}	Х	Methyl	Ethyl	n-Propyl	n-Butyl	Phenyl
	F	1.24	1.41	1.44	1.42	1.23
R ₃ Sn X	Cl	1.47	1.49	1.62	1.53	1.34
	Br	1.41	1.52	1.50	1.61	1.33
	Ι	1.48	1.56	1.52	1.47	1.26
	F	1.31	1.42	1.45	1.42	1.28
R_2SnX_2	Cl	1.55	1.64	1.70	1.62	1.38
	Br	1.59	1.74	-	1.68	1.43
	Ι	-	1.72	-	1.80	1.51

 Table 2.8: Isomer shift of ¹¹⁹Sn Mossbauer of some OTCs (mms⁻¹) (OMAE, 1989)

A change in coordination number or stereochemistry at the tin atom will also affect the isomer shift parameter. In general an increase in the coordination number of tin atom is associated with a decrease in isomer shift since the increased use of the metal's 5d orbital

for bonding result in a reduction in the 5 s electron density at the tin nucleolus. For example chemical shift for Ph_2SnI_2 and Ph_2SnI_2 .bipy are $\delta = 1.51 \text{ mms}^{-1}$ and $\delta = 1.41 \text{ mms}^{-1}$ respectively. Stereochemistry of tin compounds also affect on chemical shift. In table 2.9 shows the isomer shifts of *cis and trans* isomers of R_2SnX_4 .

Cis R ₂ SnX ₄	δ (mms ⁻¹)	Trans R ₂ SnX ₄	δ (mms ⁻¹)
Me ₂ Sn(Ox) ₂	0.88	Me ₂ Sn(acac) ₂	1.18
Ph ₂ Sn(NCS) ₂ .bipy	0.82	Ph ₂ SnCl ₂ .bipy	1.22
Ph ₂ Sn(NCS) ₂ .PhenPh ₂ Sn	0.81	Ph ₂ SnCl ₂ .Phen	1.21
(OCOC ₅ H ₄ N ₂) ₂	0.83	$Ph_2Sn(OCOC_5H_4N_3)_2$	1.29

Table 2.9: Comparison isomer shift of *cis and trans* complexes R₂SnX₄ (Wilkinson, 1995)

The *cis* complexes have lower isomer shift than the *trans* complexes and this is probably due to higher percentage of s character of the Sn-C in the *trans* isomers. The δ isomer shift values for most organotin compounds fall within the approximate range -0.5 to 2.7 mms⁻¹. For R₄Sn (R = Me, Et, n-Pr, Ph, Ph-Cl, CH₃COO⁻) only a single line is observed. However any deviation of the¹¹⁹Sn nuclear Charge from cubic results in a two line. The quadruple splitting of some tetrahedral OTCs are compared in Table 2.10.

The quadrupole-splitting is a separation between two peaks; hence the quadrupole splitting parameter is useful for determination stereochemistry of OTCs. The quadrupole splitting of ¹¹⁹ Sn is shown in Figure 2.2.

Isomer shift quadruple splitting

Figure2.2 Quadruple splitting of ¹¹⁹Sn

 Table 2.10: Quadruple splitting of some OTCs (Wilkinson, 1995)

R ₃ SnX	$\Delta E_Q \text{ mms}^{-1}$	R_2SnX_2	$\Delta E_{Q} (mms^{-1})$
Ph ₃ SnSSn Ph ₃	1.46	$(Ph_2SnS)_3$	1.60
Ph ₃ SnSC ₆ H ₄ Bu	1.41	Me ₂ Sn(OSiPh ₃) ₂	2.45
{Me ₃ Si) ₂ CH ₃ }SnCl	2.18	(Me ₂ SnS) ₃	1.51
Ph ₂ Sn(CH ₂) ₄ SnPh ₂	2.37	Ph ₂ SnSCH ₂ CH ₂ S	1.69

Quadruple parameter is a valuable data that aids in the assignment of structure between *cis* and *trans* isomer in octahedral (diorganotin compounds). The values for the *trans* isomer is double that of the *cis* isomer.

Normally this parameter increase smoothly with increasing C-Sn bond angle, for octahedral diorganotin complexes from 2.00 mms⁻¹ for the *cis* derivatives to 4.00 for *trans* isomers (Wilkinson, 1995; Blunden et al., 1987) . The quadruple splitting of some OTCs with different geometries are shown in Table 2.11. The effect of coordination number and geometry on the quadruple splitting is shown in Table 2.12.

$cisR_2SnX_4$	$\Delta E_Q \text{ (mms}^{-1}\text{)}$	Trans R ₂ SnX ₄	$\Delta E_Q (mms^{-1})$
Me ₂ Sn(ox) ₂	2.02	Me ₂ Sn(acac) ₂	4.02
Ph ₂ Sn(SCSNEt ₂) ₂	1.72	Ph ₂ SnCl ₂ . 2DMSO	3.86
Me ₂ Sn(ONHCOMe) ₂	1.99	Me ₂ SnCl ₂ .py	4.00

 Table 2.11:
 Comparison quadruple splitting of cis and trans R₂SnX₄ (Wilkinson, 1995)

Table 2.12: Quadrupole splitting (mms⁻¹) of some OTCs with different geometries

