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ABSTRACT 

 

In this dissertation, erbium/aluminium (Er/Al) and erbium/ytterbium (Er/Yb) 

codoped on silica-on-silicon waveguide films were fabricated by flame hydrolysis 

deposition (FHD) via solution doping. Based on the morphology and microstructure 

observations, the layers pre-sintered around 800˚C provide the best surface adherence 

for solution doping. A few process parameters involved in solution doping has been 

investigated to study the impregnation of rare-earth in planar waveguide. It is observed 

that the solution strength and dipping period strongly influenced the RE concentration 

in silica film. Multiple solution doping method was demonstrated in the present work. 

The results indicated that the multiple cycles of solution doping of the soot layer 

increases the rare-earth concentration in the glass layer.    
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ABSTRAK 

 

Dalam disertasi ini, pendopan unsur-unsur erbium/aluminium (Er/Al) dan 

erbium/ytterbium (Er/Yb) pada pandu gelombang jenis silika-atas-silikon telah 

difabrikasikan dengan gabungan kaedah mendapan secara hidrolisis api dan pendopan 

menggunakan pelarut. Berdasarkan pemerhatian morfologi dan mikrostruktur, lapisan 

sampel yang telah disinterkan separa pada sekitar 800˚C mempunyai ciri pelekapan 

permukaan yang paling memuaskan untuk proses pendopan menggunakan pelarut. 

Penyelidikan ke atas beberapa pengubah parameter bagi kaedah pendopan 

menggunakan pelarut telah dilaksanakan untuk mengetahui tentang pendopan unsur 

bumi-nadir dalam pandu gelombang jenis planar. Didapati bahawa parameter seperti 

kepekatan pelarut dan masa pencelupan telah mempengaruhi kandungan unsur bumi-

nadir dalam lapisan silika. Di samping itu, kaedah pengulangan proses pendopan 

menggunakan pelarut telah ditunjukkan dalam kajian ini. Berdasarkan keputusan yang 

diperolehi, kaedah pengulangan pendopan ini berjaya menambahkan kandungan bumi-

nadir dalam lapisan kaca.        
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CHAPTER 1  

INTRODUCTION 

1.1 OPTICAL NETWORK 

The first generation of optical networks emerged as early as the 1960s. Work in 

installing the first point-to-point connection was completed in the 1980s. This point-to-

point connection utilized 800nm signals [1-3]. As such, the signal can only be 

transmitted about 15km distance without amplification. The deployment of additional 

fiber for capacity expansion is considerately expensive as there are no branching, 

routing or multiplexer components available. Around 1982, a large-scale optical 

network has been deployed due to the deregulation in the telecommunications industry, 

which in turn resulting the long-haul telecommunications being carried out using optical 

fiber systems [4].  

In the 1990s, the advent of Densed Wavelength Division Multiplexer (DWDM) 

has led to the rapid expansion of network capacity at lower cost. This is due to the 

availability of low cost broadband optical amplifiers and dense wavelength filtering 

technique, where transmission was performed by multiplexing few frequencies in a 

single optical fiber. The DWDM transmission systems consist of operating wavelength 

utilized at 1550nm and a capacity increment range from 45Mb/s to 1.7Gb/s. Current 

optical networks are strongly dependent on Reconfigurable Optical Add Drop 

Multiplexers (ROADMs), which is also based on PLC integration technology. 

ROADMs allow for high-speed data services, grid computing and “triple play” [3]. The 

operating wavelength has switched to 1550nm. 
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The primary drive for the change in the network is due to the continuingly 

increasing demand for the enormous communication system capacity in the network. 

This is the impact shown by tremendous growth of users surfing the Internet and the 

World Wide Web [5]. The conventional copper cabling systems have evolved over the 

years in order to overcome the bandwidth limitation, however, the effective length of 

copper cable is eventually limited as the data rates increase [6].  

Optical fiber provides high bandwidth [7], excellent signal integrity, noise 

immunity and applicable in long-haul transmission. Besides, optical fiber is less 

susceptible to certain kind of electromagnetic interferences [5]; hence it is somehow 

electrically isolated. All of the above shows that optical fiber has the capability far 

beyond the limitation of copper and therefore is an alternative solution to the copper 

system limitation. Optical networks not only promise to provide enormous capacity in 

the network but with the technological advances and the good innovation in fiber 

installation techniques, optical network construction is also much more economical [5-

6]. Hence, many have moved slowly on fiber to the home (FTTH) deployments over 

cost concerns.  

 

1.2 OPTICAL AMPLIFIERS 

Optical network limitation during optical signal transmission is denoted as either 

dispersion limited or loss limited. In the mid-1980s, dispersion-shifted fibers have been 

implemented to overcome the dispersion limitation [8]. Meanwhile, loss limitation 

cause by attenuation (signal weakening) was overcome using optical amplifier [5].  
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Generally, optical amplifier is the optical fiber device that used to reduce the 

required pump power in order to observe a gain in glass medium. The optical laser were 

first suggested in the 1960s by Snitzer and co-workers [9-10] and revisited by Stone and 

Burrus [11] in the 1970s using the nonlinear effect of transmission fiber as gain medium 

[12], semiconductor amplifiers [13], rare-earth doped optical waveguides [10] and 

erbium-doped-fiber amplifiers [14]. The properties of the various optical amplifiers are 

compared base on 1550 nm wavelength band in Table 1.1. 

Table 1.1 Comparison of various optical amplifier technologies around 1550 nm 
operating wavelength (table from [8]). 

Property Raman 
Amplifier 

Brillouin 
Amplifier SOA EDFA RE-DWA 

Small-signal 
gain >40 dB >40 dB >30 dB >50 dB 20 dB 

Efficiency 0.08 
dB/mW 5.5 dB/mW 28 dB/mA 11 dB/mA 0.1 dB/mW 

Output power 1 W 1 mW >0.1 W >0.5 W 2 mW 

Distortion/ 
Crosstalk Negligible Negligible Significant Negligible Negligible 

Dynamic 
performance >20 Gb/s <100 MHz >25 Gb/s >100 Gb/s >100 Gb/s 

Gain 
bandwidth 

A few tens 
of nm <100 MHz 60-70 nm 30 nm A few tens 

of nm 

Noise figure 3 dB >15 dB 5-7 dB 3 dB >3 dB 

Polarization 
sensitivity Significant None <A few 

dB 
Insignificant 

(<0.1 dB) <1 dB 

Coupling loss 
(to fiber) <1 dB <1 dB A few dB <1 dB  

 

Rare-earth doped optical fiber not only provides excellent influences in the field 

of optical communication [15] but its long lengths interaction which allows low doping 

level of rare earth ions leads to good doping uniformity and heat dissipation [16]. 

Erbium doped fiber amplifier (EDFA) has been the most concerned device as it is 

capable in amplifying input signals with different bit rates or formats, and can be used 

to amplify multiple wavelengths [5] optical signals with a wide spectral region [8]. 
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Besides, EDFAs offer a list of outstanding properties and it includes high gain, low 

threshold powers, large gain bandwidths (≈30nm) [16], efficient in high-power 

conversion, low noise and crosstalk, high saturation power, not sensitive in polarization 

[5], contain broad spectral bandwidth, essentially low-coupling losses, and low cost.  

Even so, there is a strong incentive on reducing the size and cost of EDFAs by 

miniaturization and improved packaging for applications in metro network. In this case, 

erbium-doped waveguide amplifiers (EDWAs) are the suitable choice as it can be 

constructed in arrays and combined with pump lasers and filters [17].  Analogous to the 

EDFA, EDWA is also used as a medium to boost up an optical signal. EDWA is a 

Planar Lightwave Circuit (PLC) type optical amplifier. Due to its compact physical size, 

integrabilitiy into monolithic multi-functional optical devices and easy mass-production, 

many have switched the attention to the planar type device.  

 

1.3 RARE-EARTH DOPED WAVEGUIDE AMPLIFIERS 

A great deal of research has been focused on the development of planar 

waveguide since the laser action from a rare-earth thin film was first demonstrated in 

the early seventies [18]. Although planar waveguide device have not reach similar 

maturity as the fiber, it is potentially more versatile than optical fiber. Planar geometry 

sustains the benefits from the guided-wave resonator with a more compact monolithic 

format which is compatible with the concepts and techniques of an integrated optics 

[19-21]. Furthermore, planar waveguides are not just perform as the low-power 

integrated optics, but such slab geometry is capable to improve the thermal limitations 

over cylindrical geometries [22-23].   
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The obvious aspect that differentiates rare-earth-doped waveguide from fiber 

amplifiers is that the rare-earth material is imbedded in a planar optical waveguide 

instead of a fiber [8]. Miniaturization of rare-earth-doped waveguide in monolithic 

integration form is attractive as it provides long term stability, immunity to the 

environmental influences of pressure and thermal, possibility in hybrid integration to 

form a multi-function module, and eliminate the issues of alignment inherent in fiber or 

bulk based optics [24]. Monolithic integration which simply means integration of 

multifunctional circuits on the same chip has been the ultimate solution for integration 

of silica waveguide devices. However, this monolithic approach is immature and still at 

the research stage; several issues has to be overcome such as production cost, chip yield 

rate, packaging matter (eg. thermal management, stress management, and electrical 

wiring stability) base on the current technology status [25]. 

  The EDWAs planar design brought up two significant factors to be considered. 

Firstly, rare-earth-doped waveguide’s dimension itself attributes to a larger background 

loss which is in several orders of magnitude (~0.1 dB/cm) greater than in fiber [8]. 

Shorter path lengths and higher propagation loss make it necessary to impregnated 

higher rare-earth-dopant concentration [8, 16] in a relatively short planar waveguides 

for a reasonable amplification gain [26]. Due to the high rare-earth concentration, the 

interaction between ion increased [16] causing the issues of energy transfer among rare-

earth ions occurred and this will lead to degradation in amplifier efficiency [27] by 

scattering loss, non-radiative emission, etc [26].  

Nevertheless, EDWAs with a maximum gain of 13.5 dB and 20 dB has been 

successfully demonstrated. Besides erbium, other rare-earths (eg. Nd, Yb, Pr) are also 

used to form waveguide amplifier. More work has been attended on the EDWA due to 

its emission wavelength at 1550 nm which is compatible to the operating wavelength 

used in the fiber technology. Based on the result, RE-DWAs are seen to have huge 
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potential to provide realistic and attractive application possibilities in integrated optical 

devices.  

Planar waveguides with shorter waveguide length have the advantages of being 

smaller than the EDFA [28]. The rare-earth-doped waveguides contain various 

functions where its potential can not be found in the fibers type optical devices. These 

rare-earth doped silica optical waveguides can be used in integrating multiple optical 

devices (eg. optical source, circuit and amplifier) [29]. Both type of amplifier (fiber and 

planar) provide the same function but applicable under different condition; EDFA for 

long-haul transmission while EDWA for short distance transmission and integrated 

device. Therefore, it is unrealistic to establish any expectation that EDWA will 

completely replace EDFAs for high performance amplification in optical 

communication systems [8]. 

Studies on various kinds of Er-doped planar waveguides fabricated with 

different kind of host materials have been pursued in order to use them as amplifiers in 

the future optical communication systems. Silica-on-silicon EDWA has been the 

desirable goal since silica waveguides consist of similar composition as the optical 

fibers [29]. In addition, the use of silicon substrate also manage to simplify fiber 

connection [17].  
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1.4 EXISTING EDWAs FABRICATION TECHNOLOGIES 

A variety of EDWAs fabrication techniques are available, as indicated in Table 1.2. 

FHD and PECVD are generally used in fabrication of EDWAs due to its high 

production rate. In this dissertation, erbium doped silica layer has been fabricated by 

FHD in conjunction with solution doping technique. 

 
Table 1.2  Fabrication methods for EDWAs 

Fabrication Methods Type of EDWAs 

Ion exchange Silicate glass [30-33], Phosphate glass [34-41] 

Ion implantation SiO2 [42-43], SiON [44], Al2O3 [45-46] 

Electron beam evaporation Silicate glass [47] 

Sputtering Silicate glass [48-51], Phosphate glass [52] 

Solution/aerosol doping of FHD Silica-on-silicon [16, 53-58] 

Sol gel Silica-on-silicon [17, 59-60] 

PECVD Phosphosilicate glass [61], Silica-on-silicon [62], 
Germanosilicate glass [63], Al2O3 [64] 

 

1.5 PROPOSAL OF THE STUDY 

It has been a fortunate coincidence that erbium has the emission wavelength at 

1550 nm which is compatible to the operating wavelength used in the fiber technology. 

This is why Er doped device become essentially important in the optical communication 

[14, 54]. In this dissertation, erbium is used as the primary dopant in sample preparation 

via solution doping. Because of rare-earth solubility limitation in silica matrix and 

clustering issue due to high doping concentration, co-dopants such as aluminium and 

ytterbium are suggested to be used.  
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The performance of the waveguide amplifier for a specific application is greatly 

dependent on the doping level. RE concentration in the waveguide can be controlled by 

suitable choice of soot composition, pre-sintered temperature (to control porosity) or 

increasing the RE solution concentration. In the present work, studies on the effect of 

solution concentration are placed as the priority and, soot composition and pre-sintered 

temperature has been judiciously selected. Experiment was designed to study RE 

incorporation with variation in co-dopant/RE ratio for either fixed RE concentration or 

co-dopant concentration in soaking solution. Apart from that, doping parameters such as 

doping period and doping cycle have also been varied and implemented in the 

experiment.  

The objectives of this dissertation are as follow: 

1. To determine the incorporation of RE into silica (glass) 

2. To investigate the effects of different co-dopant 

3. To investigate the effects of different solution’s strength and method 

 

1.6 THESIS OUTLINE 

The beginning of Chapter 2 generally emphasized on the typical silicate glass 

structure and the bonding involved in the vitreous silica. B2O3, GeO2 and P2O5 are 

usually incorporated into silicate glass to improve the properties. Hence, the effect of 

these foreign atoms in altering the structure of silica matrices was discussed. Rare-earth 

plays the role as network-modifier in glass matrix and initially resulting in few common 

issues (low solubility, clustering, host selection) when impregnated into silica substrate. 

The solutions of the problems arose were briefly explained. Finally, the theory of the 

basic two or three level optical amplification was explained. Ytterbium co-doping 

compensate the ineffectiveness of amplification caused by cooperative up-conversion 

occurred in highly erbium doped samples.    
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In Chapter 3 an overview on the fabrication methods and principles are 

presented. The topic discussed here was basically on principles, methodology and 

mechanism involved in a flame hydrolysis deposition (FHD) system. After the 

preparation of FHD layer, sintering process took place. A porous medium was prepared 

at an adjustable pre-sinter temperature for solution doping. The solvent or solute used 

for solution doping determined the retention of rare-earth in silica glass. From the 

discussion, water (as solvent) and chloride salt (as solute) were used for solution doping. 

The methodology of solution doping was described precisely. 

Chapter 4 elaborates on the result observed from the characterization using 

energy dispersive spectrometry (EDS), scanning electron microscopy (SEM) and prism 

coupler. In the first part, the morphology and microstructure of the samples prepared at 

various pre-sinter temperatures was discussed. Next, the relation between the full and 

half sintered erbium doped silica film was inspected. Then, the effect of erbium solution 

concentration on the erbium concentration in silica films was discussed. Under few 

circumstances, the effects of two different co-dopants (aluminium and ytterbium) on 

erbium doped silica films were analyzed. Multiple solution doping effects on the 

dopants concentration was discussed and the result was compared with the refractive 

index.    

The overall result and future works was summarized in Chapter 5. 
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 CHAPTER 2  

INTRODUCTION TO GLASS 

Glass is an amorphous material which is formed through rapid cooling of its 

liquid phase material such that crystallization is prohibited. The main component found 

in many glasses is the most abundant mineral in the earth’s crust - silica (silicon 

dioxide). Silica is one of the most versatile substances on earth that is very much 

applicable in a variety of forms due to its excellent properties; chemical interactions 

resistance, extremes heat and cold sustainability, and recyclable. Therefore, glass is 

suitably applicable in variety of field: from the ordinary flat glass, container glass, 

laboratory equipment, thermal insulator, reinforcement fiber to the optics and 

optoelectronics material.  

Ordinary silica glass normally contains impurities (eg. metallic ions) which 

contribute to loss greater than 100dB km-1 due to absorption. However, the requirement 

for a low transmission loss glass in an optical device is essential. Pure glass has 

withstood such requirement; its loss is remarkably low that is below 1dB km-1 at 

infrared wavelengths between 1.0 and 1.8 microns [1]. Over the decades, pure glass has 

been well recognized in the optical devices fabrication due to its very low loss 

transmission characteristic at the transmission window.   

Glass substrates for integrated optics are used in certain application such as 

telecommunications because they have high availability, relatively low cost and contain 

a refractive index that is naturally matched to silica optical fibers [2].  
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2.1 GLASS STRUCTURE 

Contrary to the crystalline materials, glass shows lack of uniformity and 

symmetry, and had no regular atomic arrangement and long-range-periodicity [3]. In 

fact, glass consist of short-range order with a three-dimensional polyhedron structure 

(Figure 2.1), commonly a tetrahedron [4]. Excluding silica, non-metal elements in 

groups 13, 14 and 15 (Refer Figure 2.2) are among the important glass-forming 

elements. These elements can combine with oxygen to form oxide glass. More precisely, 

the oxide glass is the result of three-dimensional network formation along with oxygen 

[5], which is covalently bonded with strong and directional bonds [4].  

 
Figure 2.1 Chemical structure of silica matrix [6]. 
 

The simplest oxide glass comprises of two elements; glass-forming atom and 

oxygen. Oxides like SiO2 , B2O3, GeO2 and P2O5 are the basic glass-former that satisfy 

the condition stated by Zachariasen’s rules for glass formation [3]. Besides, combining 

different oxides for multi component structure is possible by modifying the basic 

composition. This can be done either by introducing a modifier atom for basic structure 

alteration or adding an element for glass-former atom replacement. These oxides 

structure formed is well considered by Zachariasen; who have not only suggested about 

empirical observations for oxides but also predicted those oxides that tend to form glass. 
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According to the rules of Zachariasen for glass formation, no oxygen atom can be 

linked to more than two glass-forming atoms. The glass-forming ions coordination 

number must be small: 3 or 4 and oxygen polyhedral must only share corners and not 

edges or faces. Apart from that, polyhedral must form a three-dimentional network.  

The implication brought from the above rules show that glass formation is more 

likely with open and low density polyhedral structures; hence not all oxides (eg. MgO, 

Al2O3 and CaO) are suitable in glass formation.  
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Figure 2.3(a) shows the vitreous silica (SiO2) is the common glass structures. 

Silicon atom in the centre is covalently bonded with four oxygen atoms which arranged 

in tetrahedral form. Obeying the Zachariasen’s third rule, each of this tetrahedron is 

silicon-oxygen bonded to another four tetrahedrons by only sharing corners. The 

structure formed almost resembles the crystalline structure of silica or known as 

crystobalite (Figure 2.3(b)), though it is in random form which results in lack of long-

range periodicity, uniformity and symmetry.  

Si

Oxygen

Silicon

 
Figure 2.3 (a) Schematic of three-dimensional tetrahedral arrangement in fused silica 
glass; (b) Two-dimensional arrangement of silicon and oxygen atoms in crystobalite [5]. 
 

It is essential to know that even in pure glass, not all oxygen atoms are found to 

link to other tetrahedron. Some oxygen atoms might escape from the linkage - termed as 

non-bridging atoms. Normally, the existence of non-bridging oxygen atoms in pure 

silica might be very few [7]. These non-bridging oxygen atoms tend to bond with other 

species (eg. network-modifying elements) via ionic bonding. 
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Network-modifying elements are capable of adjusting the connectivity and 

dimensionality of the glass network by forming ionic and non-directional bonds which 

is considered as weak bonding [8-9]. These network-modifying elements tend to be 

from group 1, 2 or the lanthanides of the periodic table (refer Figure 2.2); the 

introduction of network-modifying elements will lead to the disruption of glass 

structure where silicon-oxygen structure is opened up (refer Figure 2.4). Hence, the 

properties of the glass would have changed: density of the glass is lowered, bond 

strength is weakened and both the fusion temperature and viscosity of the glass is 

lowered. 

Modifier ion

Oxygen

Silicon

Modifier ion

Oxygen

Silicon

 
Figure 2.4 Schematic of a disrupted silica glass structure by addition of modifier ions 
[5]. 
 

Some of the oxygen bridging atoms might encounter breakage, thus increasing 

the number of non-bridging oxygen atoms. These oxygen ions are negatively charged 

and therefore can be used to compensate the positively charged of the network-

modifying elements. However, according to the ‘continuous-random-network’ (CRN) 

theory [3, 10], the modifiers encounter difficulty in spreading uniformly throughout the 

glass; it is instead distributed non-randomly and inhomogeneously in glass. This lead to 

clustering among modifier-rich regions or glass-former-rich region separation [11].  
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Network modifiers are also known as the active element doped in the glass and 

this will be further elaborated in Section 2.2. In the typical oxide glass fabrication for 

optical devices, network-forming elements other than Si such as Ge, P and B are also 

included. Each of these elements reacts and contributes differently in altering the 

structure of silicon oxide glass.  

 

2.1.1 GERMANOSILICATE GLASS 

Germanium itself forms a fully bridging tetrahedral structure like silicon. The 

addition of germanium in silica matrix results in a simple substitution of Ge atom over 

silicon atom (refer Figure 2.5). The properties remain nearly the same as the fused silica 

glass only if the tetrahedral structure is retained [12]. However, such substitution might 

cause stress to the matrix due to the difference in bond length and bond angle: the Ge-O 

bond length is ~8% longer than the Si-O bond and Ge-O-Ge bond angle is 133̊  while 

the Si-O-Si bond angle is 144̊. The stress applied within the matrix tends to affect the 

physical properties of the glass and hence, increases the chance of defects occuring 

within the structure [13].  

 
Figure 2.5 Inclusion of Ge atom within silica matrix [6]. 
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Germanosilicate glasses encounter disordering effect and are weaker matrix 

compared to pure silica; this is why the melting point and glass transition temperature 

are decreased. Meanwhile, the refractive index of silicate glass increases if germanium 

doping level increases. This is closely related to the “tighter” bonds formed under a 

relatively higher stress, resulting in an increment in deep UV adsorption. Germanium 

doping is found widespread both in the fields of fiber and planar optics. Its application 

not only includes in reducing melting point and increasing refractive index but also play 

a part in photosensitivity for optical purposes [13].  

 

2.1.2 PHOSPHOSILICATE GLASS 

In phosphate glass system, each phosphorus atom is bonded covalently to four 

oxygen atoms [12]. One of the oxygen atoms from the tetrahedron remains non-

bridging due to the pentavalent nature of the P ion (refer Figure 2.8) [13]. In other word, 

one of the oxygen is double bonded to the phosphorus as phosphorus contains a valency 

of 5. Therefore, there are only three oxygen left that can bond with other species. This 

eventually makes the phosphate glass less dense than the silica glass. 

P

 
Figure 2.6 Schematic of three-dimensional tetrahedral arrangement for phosphate glass; 
showing double bond between one oxygen and the phosphorus [5]. 
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Normally, phosphorus is incorporated as co-dopant in silica to produce 

phosphosilicate glasses SiO2: P2O5. The PO4 tetrahedron will be substituted into the 

silica matrix (refer Figure 2.7). The existence of non-bridging oxygen atoms within the 

silica matrix might cause termination of chain structures. Hence, formation of isolated 

chains is possible through P doping and this normally does not occur in clear pure silica. 

Phosphosilicate glasses are considered significantly less rigid structurally and this 

resulted in the decreasing of both melting points and glass transition temperatures as 

compared to pure silica [13]. Phosphorus can be used with fluorine to be incorporated 

into silica glass such that sintering temperature is lowered while the refractive index 

remain the same [14]. The sintering temperature is affected by the viscosity of the silica 

and it can be lowered with just adding in a small amount of phosphorus to the silica 

network. 

 
Figure 2.7 Inclusion of P atom within a silica matrix [6]. 
 

The effect of P2O5 in SiO2 can be elaborated based on the P2O5:SiO2 phase 

diagram shown in (refer Figure 2.8). The liquidus line is being affected as phosphorus 

concentration varies and the eutectic point falls on ~20 mole% P2O5. Though, a doping 

level of ~10 mole% P2O5 is sufficient to approach the target for a lower melting point of 

~1200 ˚C [13].  
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Figure 2.8 Phase diagram representing Phosphorus doping of silica [15] 
 

According to the Kramers-Kronig relationship [16], an increased absorption in 

the ultraviolet leads to a higher refractive index. The refractive index of a medium is 

eventually related to the absorption in the deep UV when considering the spectral 

absorption from zero to infinite frequencies [13]. Therefore, the refractive index of the 

doped silica glass increases as phosphorus doping level increases (refer Figure 2.9). 

Phosphosilicate glasses are well recognized in the field of fiber and planar optics as 

such glasses are easily produced and chemically stable. 
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Figure 2.9 Effect of dopants upon refractive index at 598 nm [17]. 
 

2.1.3 BOROSILICATE GLASS 

The basic building block of borate glass is B2O3 where boron forms three bonds 

with oxygen atoms. In a two-dimensional planar ring for borate glass (refer Figure 2.10), 

boron and oxygen atoms are found linking together via bridging oxygen atoms [12, 18].  

 
Figure 2.10 Two-dimensional arrangement of boron and oxygen atoms in borate glass 
[5]. 
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Incorporation of boric oxide, B2O3 into silica matrix will form borosilicate 

glasses (refer Figure 2.11). Since three oxygen atoms coordinate with one boron atom, 

this results in a triangular structural unit consisting of BO3. The B atom is believed to 

posit slightly above the plane of three bridging oxygen atoms [6]. 

 
Figure 2.11 Inclusion of B atom within silica matrix [6]. 
 

The structure formed displays similar effects as the addition of phosphorus into 

silica; both provide three bridging oxygen atoms. The interconnected structure becomes 

noticeably less as BO3 acts as terminators in silica matrix. As a result, the borosilicate 

glass formed is less rigid and display a lower melting point and glass transition 

temperature as compared to pure silica. Apart from that, boron doping has shown a 

different effect even though it is relatively slight compared to other dopants; the 

refractive index decreases as the doping level increases [13].  

Boron is not suitable in long wavelength telecoms application as it contains very 

short phonon edge (~7 μm) [19-20]. Due to this matter, boron is rarely used in large 

amount in the modern low loss fiber as its relatively low wavelength of fundamental 

absorption (7.2 μm) can affect attenuation within 1300-1550 nm wavelength range used 

in telecommunications systems. Furthermore, the high amount of boron addition also 

increase the effect of overtones present within the telecoms window [13]. In spite of this, 

boron doping of silicate glasses has found to be widespread in planar optics. 
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2.2 ACTIVE ELEMENT DOPED GLASS 

Rare-earth ions have a long history in optical applications particularly in 

luminescent devices using single crystals, powders and glasses. Rare-earths consist of 

few important characteristics that make them distinguishable from other optically active 

ions. Firstly, rare-earths emit and absorb over narrow ranges of wavelength. Secondly, 

the intensities of the emission and absorption transitions are weak and its wavelengths 

are relatively insensitive to host material. The preceding characteristics are due to the 

fact that the electron of rare-earth is more favorable to fill the outer lying 5s and 5p 

electron shells than the inner 4f electron shells [21].  The outer layer acts as a shield for 

the 4f electrons such that absorption and emission characteristic of the ion is not 

affected when doped in different host [22]. In addition, the lifetimes of rare-earth’s 

metastable states are long and its quantum efficiencies tend to be high. All of these 

properties brought to the excellent performance of rare-earth ions in vulnerable optical 

applications [23] especially in amplification [24].  

As discussed earlier, rare-earth plays the role as network modifier when 

incorporated into glass matrix where the covalently bonded glass structure is being 

broken up [5, 25]. Hence, non-bridging oxygen atoms are formed and required charge 

compensation. There are two conditions to be considered: under a low rare-earth 

concentration, the ions will be in an isolated site; do not receive much influence from 

other rare-earth ions. Meanwhile, if rare-earth is doped above a critical concentration, 

the rare-earth ions become closer and might bring to concentration quenching for 

certain rare-earth ions. Moreover, the host glass selection is also crucial as it could give 

a great impact on the stability of rare-earth ions in glasses [5, 26]. This is because 

different network modifiers show different solubility in certain type of glass.  
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2.2.1 LOW SOLUBILITY 

Low solubility of rare-earth dopant might affect the fluorescence lifetime, 

absorption, emission and excited state absorption cross sections of the dopant transitions. 

Such low solubility of rare-earth ions in glass is caused by the tetrahedron structure of 

the silica and its low number of non-bridging oxygen atom. This is due to lack amount 

of the rare-earth’s matching charge for the coordination to the silica matrix [7]. To 

overcome such implication, the solubility of the rare-earth in silica has to be improved 

and this simply means to increase the number of non-bridging oxygen atom in silica. 

This can be approached by inclusion of alkali-metals or aluminium as co-dopant to 

silica [7, 27].  

Aluminium oxide is an intermediate type of element so it could not easily form a 

glass independently [28]. Though, aluminium ions can be impregnated in the silica 

matrix either as ‘network formers’ via tetrahedral coordination or as ‘network 

modifiers’ via hexahedral coordination, depending on the aluminium concentration [29-

30]. However, the incorporation of aluminium into silica glass by substituting some 

silica ions led to charge imbalance. This is because aluminium oxide as trivalent ion 

required charge compensation to approach charge equity. The charge deficiency of 

aluminium tends to be balanced up by positively charged rare-earth ions. It is believed 

that rare-earths are preferable to congregate on the aluminium sites forming Al-O-RE 

when being introduced in an Al2O3-SiO2 glass [9, 31].  

Not only improving the solubility, aluminium has also been used as a new 

alternative to germanium for increasing the refractive index of the core layer in the fiber 

for telecommunication [32]. Investigation based on power amplifier [33-34] and small-

signal amplifier [35] for Ge-doped silica have indicated that quenching did appear. 



 32 

Therefore, expectation is made such that Ge does not contribute sufficiently in the 

tetrahedral silica network alteration for improving the rare-earth ions solubility [9].  

In standard telecommunications fiber, germanium (5.0 mol% GeO2) and 

phosphorus (0.5mol% P2O5) as the index raising dopants are used to modify the silica 

structure; the incorporation of Nd is limited to about 1000 ppm right before 

fluorescence quenching occurs [36]. To improve the solubility of rare-earth ions in 

silica, aluminium oxide is impregnated as the network modifier [36-41]. Fiber host 

compositions with 8.5 mol% Al2O3 have been claimed to successfully doped with 2% of 

rare-earth concentration [40].  

Regarding to the incorporation of aluminium oxide (Al2O3) for increase 

solubility, using neodymium oxide (Nd2O3) as an example; Arai et al. has stated that 

Nd2O3 dissolves in Al2O3 and not in SiO2 whereas Al2O3 dissolves in SiO2. This 

somehow shows the role of Al2O3 to form a solvation shell around the rare-earth ion, 

and initially prepare the rare-earth ion for incorporation in silica network. In this case, 

the ratio of Al and Nd have to be small (~10) to prevent clustering [39].   

 

2.2.2 CLUSTERING 

Rare-earth clustering or aggregation is a critical issue found during rare-earth 

impregnation in silica substrate and it is believed that several factors have contributed to 

such manner. The forces (eg. ionic forces) that make the particle cluster together, the 

time the particles are free to move, the concentration and also the speed of the particles 

[7]. Hence, the forming condition of the particles has to be well adjusted in order to 

achieve homogeneous rare-earth incorporation in silica.   
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Pure silica can incorporate only very small amounts of rare-earths before 

microscopic clustering occurs and interactions of ion-ion appear. Crystalline phases 

may form beyond certain concentration if it is high enough [36]. In the rigid silica 

network, the number of non-bridging oxygen atoms is found to be insufficient to 

coordinate isolated rare-earth since rare-earth ions require large coordination numbers. 

This eventually causes clustering as the rare-earth ions gather to share the non-bridging 

oxygen [39].  

Clustering issue is considered closely related to the solubility of rare-earth itself 

in silica matrix. Again, aluminium was used to alleviate in the solubility problem. Rare-

earth ions are preferably to aggregate near Al3+ and form Al-O-RE rather than 

agglomerate to form RE-O-RE [9]. This phenomenon subsequently causes a larger 

spacing among rare-earth elements. Hence, it is believed that the presence of aluminium 

is also helpful in suppressing the clustering of the rare-earth ions in silica host [27, 42]. 

Clustering is often found when doped above a critical concentration leading to 

degradation in device performances due to unwanted scattering loss, rapid fluorescent 

decay and quenching of laser emission [39]. Based on the luminescence decay data, the 

Nd concentration that led to clustering in pure silica was estimated to be about 1019 cm-3 

[43]. Meanwhile, Er ion-ion interactions have been significantly revealed at the levels 

which is approximately 1018 cm-3 [44].  
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2.2.3 HOST MATERIAL 

Host selection is critical in affecting the excited–state absorption for a given 

rare-earth ion transition. It has been demonstrated that there is decrement in the excited-

state absorption in erbium-doped fibers for a germanosilicate host compared to an 

aluminosilicate host [39]. Rare-earth stands the chance in contributing to the 

background losses due to impurity absorption and scattering mechanisms and this might 

decrease the efficiency of the fiber device. During the process of distributing gain along 

the amplifiers, pump light ought to travel long distances and internal loss tend to occur. 

The magnitude of the internal loss has been calculated for a 50 km distributed amplifier 

with a near-optimum Er dopant level for transparency. Results show an increment in the 

background loss from 0.2 to 0.3 dB km-1 and point to a fivefold increment in the 

required pump power [45]. Therefore, the background loss for a distributed amplifier 

must be low enough to be kept near the fusion splice losses such that the reduction in 

performance is minimized.  

The main challenge in the fabrication of rare-earth silica waveguide is 

approaching the efficiency in incorporating the dopants into glass. All of the issues 

mentioned above can affect the doping efficiency and bring significant influence on the 

optical device. 

High rare-earth concentration is a must in order to achieve sufficient absorption 

for the required high output powers [5].  The capability for host glass in sustaining a 

relatively high concentration of rare-earth without clustering require the open, chain-

like structure of phosphate glass or by addition of modifier ions (Ca, Na, K, Li etc.) to 

open silicate structure and thus increase solubility [46-48]. 
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2.3 OPTICAL AMPLIFICATION 

Generally, pumping is done by radiation of laser diode that supplies a powerful 

light at a wavelength other than the wavelength of the information signal. Together with 

the optical information, optical pumping beams are put in the same active medium using 

a coupler. Both of those two beams propagate along the rare-earth doped medium such 

that the information signal is amplified while the pumping signal encounter power loses 

[49].    

 

2.3.1 THEORY OF OPTICAL AMPLIFICATION 

Amplification in an optical amplifier is based on the stimulated emission 

mechanism. First of all, pumping signal provides energy that is adequate for rare-earth 

ions excitation at the upper energy band. Such excitation is done when rare-earth ions 

absorb photon produced by the pump laser. Then, stimulated by the information signal, 

these excited ions tend to encounter a lower energy band transition. Such transitions 

result in the radiation of photons with the same energy consist the same wavelength, 

direction, and phase as the input signal has [49].   

Free ions of rare-earth exhibit discrete energy levels. The energy levels of rare-

earth ions in silica medium are split into a number of closely related levels namely 

energy band. These energy bands not only provide the amplifier the ability to amplify 

more than one wavelength but also eliminate the need to fine-tune a pumping 

wavelength [49].  

The purpose of pumping is to achieve population inversion; meaning having 

more ions of dopant at the intermediate level (level 2) than at the lower level (level 1). 

Therefore, dopant ions are pumped to the intermediate level in order to attain population 
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inversion. In a typical Er-doped amplifier, pumping can be achieved either by a direct 

pumping at 1480 nm wavelength or indirect pumping at 980 nm wavelength [49]. 

 

2.3.2 AMPLIFICATION IN 2-LEVEL AND 3-LEVEL SYSTEMS 

Two energy levels system are established when pumping is done directly by 

using a 1480 nm wavelength source. Such pumping, normally by external optical 

energy (at 1480 nm) will take the Er ions from the lower level (level 1) to the 

intermediate level (level 2). The lifetime of Er ions at this intermediate level is long 

enough for accumulation of ions to occur, and hence, creating population inversion. 

These Er ions will eventually fall to the lower level (level 1), radiating the desired 

wavelength [49]. 
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Figure 2.12 Two-level amplification system. (a) RE at rest, (b) lower case pumping by 
external optical energy, (c) emission by stimulation.   
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In a 3 level system, indirect pumping method are applied where 980 nm 

pumping source is used to move the rare-earth ions from the lower state to the upper 

level (level 3) in a continuous manner. There, these ions will decay non-radiatively to 

the intermediate energy level (level 2); then, follow by falling to the lower level (level 1) 

where the desired wavelength of 1550 to 1600 nm is being radiated. The lifetime of Er 

ions at the upper level (level 3) is about 1 μs. Meanwhile, the Er ions at the intermediate 

level (level 2 or also known as metastable level) has longer lifetime and it is 

approximately greater than 10 ms. This means that Er ions pumped at the upper level 

encounter rapid non-radiative relaxation that descend to the intermediate level (level 2), 

and stay at that level for relatively long time. Therefore, population inversion has been 

created due to Er ions accumulation at the intermediate level [49].  

 

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

        
Level 1

Level 2

Level 3

980 nm

Level 1

Level 2

Level 3

980 nm

  

 
(a) (b) 



 38 

Non-
radiative
relaxation

Metastable
level

Level 1

Level 2

Level 3
Non-
radiative
relaxation

Metastable
level

Level 1

Level 2

Level 3

Metastable
level

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

signal

Metastable
level

signal

signal

Level 1

Level 2

Level 3

signal

Metastable
level

signal

signal

 

 
Figure 2.13 Three-level amplification system. (a) RE at rest, (b) pumping by 980nm 
light source, (c) non-radiative relaxation to metastable level, (d) stimulated emission. 
 

Both systems resulted in more Er ions populated at the intermediate level. These 

ions tend to encountered transition from level 2 to level 1 by stimulation when an 

optical information signal appears near the inversely populated Er ions. The 

combination of stimulated transition with the stimulated emission of photons will 

resulted in input signal amplification [49]. 

 

2.3.3 THEORY OF ERBIUM AMPLIFICATION 

The transition of two important energy levels (between 4I13/2 level and 4I15/2 level) 

of erbium incorporated into silica substrate naturally occur at a set of wavelengths 

around 1550 nm, where silica substrate exhibits minimum attenuation [50-54]. Such 

great coincidence has been the reason for the manifestation of Er-doped amplifier [49].  

 

 

(c) (d) 
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Er3+Er3+ energy transfer is an important dissipative mechanism in fiber 

amplification at 1500 nm [55]. Radiative energy transfer involves a photon emission by 

one ion and reabsorbed by another ion. Such process might cause emission spectrum 

distortion and radiative trapping that eventually leads to apparent artificial long excited-

state lifetimes. This happens especially in highly concentrated or large volume samples 

which the ions are closely spaced.  

The main process involved in between closely spaced ions is the excitation 

transfer without real photon exchange. In most situations, there is no significant amount 

of energy being transferred. However, the latter are rather similar to mechanisms 

encountered in the absorption and emission of real photons. The phonon-assisted 

process (absorption or emission of phonons) is dominated for crystals [56] and it is 

needed for energy conservation when the transition energies of ions are not equal or 

resonant. 

The inefficiency for Er3+ devices at 1500 nm is believed to have cause by the 

energy transfer in between ions or more precisely cooperative up-conversion process 

(See Figure 2.14). In the up-conversion process, two excited ions are interacted and 

both are excited to the metastable 4I13/2 level. Instead of emitting photon by stimulation, 

one of the ions (donor) can transfer all its energy to the other (acceptor) such that 

acceptor will be up-converted to 4I9/2 state while leaving itself in ground state. The 4I9/2 

level will relax through multiphonon emission back to 4I13/2 level. Thus, part of the 

energy absorbed by Er3+ will eventually encounter loss due to non-radiative relaxation 

in up-conversion process.  
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Figure 2.14 The up-conversion process illustrated for Er3+. (a) both interacting ions are 
excited to the metastable 4I13/2 level, (b) the donor ion transfers all its energy to the 
acceptor, leaving itself in the ground sate and the acceptor in the 4I13/2 state. For oxide 
glasses, the acceptor ion quickly decays nonradiatively back to the 4I13/2 level [23]. 

 

The performance of silica-based amplifier can be optimized by a suggested 

erbium concentration that is below 100 ppm [44]. However, indication shows Er 

concentration as high as 900 ppm with 14.4 dB gain has been reported [57].   

High Er3+ concentration is necessary in short fiber or waveguide amplifiers [58-

59]. Though, as stated, high concentration dopants in glass will result in few drawbacks 

such as signal quenching due to clustering. The incorporation of Yb3+ is an alternate 

solution as it allows impregnation of higher Er3+ concentrations and at the same time 

minimizes its quenching effect.  

(a) 

(b) 
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2.3.4 THEORY OF CO-DOPED AMPLIFICATION 

In a typical energy transfer with two different species of ions, the ion that is 

optically excited is referred as the donor while the one that receives the excitation is 

known as the acceptor. The donor ion tends to absorb the photon and transfers its 

energy to a nearby acceptor. Another mechanism might occur if the donor concentration 

is high enough; the excitation might migrate among the strongly coupled donor ions. 

This is simplified as donor-donor transfer and it will proceed until an acceptor is found 

close enough to the excited donor and complete the donor-acceptor transfer process [23]. 

Yb offers a wide variety of pump wavelengths that allow full utilization of 

different high power sources in the range from 800 to 1100 nm [60-64]. When Yb3+ 

ions are introduced in the Er3+ system, Yb3+ ions tend to absorb most of the pump power 

and transfer the energy to the adjacent Er3+ ion [65-66]. Er3+ is excited by energy 

transfer from Yb3+ in order to increase the absorption cross section in a commonly 980 

nm pumped glass system [67-68]. 

The multiple stage energy transfer process for the Yb3+/Er3+ co-doped system is 

illustrated in Figure 2.15. Initially, Yb3+ is excited to the 2F5/2 level from the 2F7/2 

ground state. From there, standard radiative decay of Yb3+ back to the ground state 

tends to occur. Hence, the energy release will be absorbed by the adjacent Er3+. The 

4I11/2 energy level for Er3+ might also encounter energy back transfer to Yb3+ ion (2F5/2), 

but this possibility is relatively small. Therefore, most Er3+ ion is excited to the 4I11/2 

state. Then, this ion tends to decay nonradiatively to the metastable level (4I13/2) where 

population inversion occurs. Er3+ ion will fall to the ground state and emit new signal 

after stimulated with a pass-by signal.    
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Figure 2.15 Energy transfer process for the Yb3+/Er3+ co-doped system. (a) excitation of 
Yb3+ ion, (b) standard radiative decay of Yb3+, (c) energy transfer (Yb3+Er3+), (d) 
energy back transfers (Er3+Yb3+), (e) Er3+ decay nonradiatively to metastable state, (f) 
emission by stimulation.  

 

The effective silica-based Yb3+ sensitized Er3+ fiber was first fabricated in 1991 

[69]. Yet, Yb3+  Er3+ energy transfer have been used to improve the pumping 

efficiency of devices since the earliest days of solid-state lasers [23, 66] by reducing the 

energy transfer up-conversion between excited erbium ions [70]. In amplification, Yb-

sensitized EDFAs have been demonstrated to provide higher and broader gain for a 

given pump level if compared to the conventional EDFAs [71].  
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CHAPTER 3  

PRINCIPLES AND METHODS OF FABRICATION 

Different methods have been implemented for fabrication of rare-earth doped 

waveguide amplifiers. These include thermal and field-assisted ion exchange in bulk-

doped phosphate and silicate glasses [1-5]. For several rare-earth doped dielectric films 

for optical channel waveguides, film deposition such as radio frequency sputtering [6-7], 

plasma-enhanced chemical vapor deposition [8], flame hydrolysis [9], ion implantation 

[10], laser ablation [11] and sol-gel deposition [12-13] has been commonly used. In this 

dissertation, glass films deposition is restricted to the flame hydrolysis method.  

There are two main techniques for doping flame hydrolysis deposition (FHD) 

glass layer with rare-earth. These are solution doping and aerosol doping. Basically, 

solution doping technique has been developed for fiber manufacture and it was first 

used for rare-earth doping in 1973 by Stone and Burrus [14]. This technique apply the 

similar concept for the deposited FHD layer that involves doping a robust soot layer that 

is partially sintered [15]. This is done by immersing the soot layer in a solution with the 

RE solutes [16-18]. Then, the sample is dried and consolidated into a solid glass layer. 

The concentration that retained in the soot layer greatly relies on the solution 

concentration, immersion period and the pre-sintering temperature of the soot layer [19].  

The experimental investigations described in this dissertation were conducted 

exclusively in rare-earth doped into partially sintered soot layer and then followed by 

consolidation of glass layer. Each of the samples from either group was characterized 

using EDX, and prism coupler machine was used for full sintered glass. This chapter 

presents details of the procedures used to fabricate the rare-earth doped samples and the 

principles involved beneath the fabrication process. 
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3.1 PLANAR GLASS SAMPLES 

The scope of this dissertation is limited to silica-on-silicon substrate. Silicon 

wafers are good substrate for fabricating a high quality film layers because they are very 

flat, smooth and available in large sizes. Meanwhile, silica is the common material 

found in the existing silica optical fibers network. Its refractive index is identical to the 

fibers and this ensures a low optical loss when planar and fiber systems are connected. 

This is the reason that make silica-on-silicon a favored technology. Glass layer can be 

fabricated layer by layer via flame hydrolysis deposition technique.  

  

3.1.1 FLAME HYDROLYSIS DEPOSITION (FHD) 

Planar films made by Flame Hydrolysis Deposition was first reported in 1983 

[20]. FHD is reliable silica-based optical waveguide technology as it fabricates a fiber 

compatible low-loss integrated optical devices [21]. FHD also deposit optical quality 

and thick cladding layers such that the channel waveguides are completely embedded. 

Besides, this technology is capable of synthesize core glasses having the same refractive 

index but different minimum sintering temperatures by varying the concentration levels 

of the silica dopants [22]. Low loss films as low as 0.01dB/cm has been produced by 

FHD [21].  

Compared to PECVD processes, the layers produced by FHD can be uniform, 

easier to prevent foreign particles contamination and contained lack of large cluster 

complexes formation [23]. Most importantly, FHD is well adaptable to solution doping 

process. Rare-earth doped FHD produced layers have been successfully demonstrated 

[9, 24-26]. The typical fabrication stages of RE-doped silica-based waveguide are 

shown in Figure 3.1. 
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Figure 3.1 Fabrication stages of RE-doped silica-based waveguide [18]. 

 

Generally, silica films are synthesized by flame hydrolysis reaction in the oxy-

hydrogen torch. This technique implements an oxy-hydrogen combustion method where 

reagents are flowed in the flame and being oxidized. The reagents used are liquid halide 

materials such as silicon tetrachloride (SiCl4), phosphorous oxytrichloride (POCl3) and 

germanium tetrachloride (GeCl4), which are all vaporized in a halide container 

(bubblers) (Figure 3.2). Helium is used as the carrier gas to transport the vapour into 

flame. The quantity of halide transported to the burner is controlled by adjusting the 

temperature of the bubbler and flow rate of the gas through the bubbler. Three mass 

flow controllers (MFC) are responsible in monitoring the flow rate of each individual 

gas supply.  
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Figure 3.2 Gas supply system for FHD [23]. 

 

Meanwhile, BCl3 at ambient temperature is in a high vapour pressure and this 

allows it to be treated as gas. Unlike other halides, BCl3 is independent to carrier gas 

and it is flow from a cylinder into the pipe work through a series of valves. The flow 

rate of BCl3 is regulated via an MFC before entering the burner. Once all the gases are 

mixed together in the flame, fine oxide particles (soot particle) are formed and 

deposited on the substrate. 

During the deposition process, the flame is translated across the substrate to 

deposit uniform layers of soot (Figure 3.3). Different thickness of silica layer can be 

obtained by controlling the quantity of soot deposited. This is done by varying the speed 

of the translation stage (turntable), the gas flow rate and number of process passes. Next, 

the low-density soot layer is then consolidated through exposure to high temperatures 
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(~1350 ˚C)  in a furnace to form a transparent fully dense glass layer. A partially 

consolidated porous soot layer is required for RE incorporation. Therefore, the soot 

layer is half sintered at 850 ̊ C. This will be elaborated in the next section. 

FHD burner 
translated radially

Turntable 
rotated

FHD burner 
translated radially

Turntable 
rotated

 

Figure 3.3 Schematic of typical Flame Hydrolysis Deposition process. 

 

The overall system is computerized with a program to control the MFC, control 

valves and temperature controller devices, and record the data for each deposition. 

Besides, the information for real time monitoring of the deposition is displayed. With 

this program, user is allowed to select the required layer recipe, monitor the deposition 

process and do purging when the deposition is done.  The purpose of purging is to clean 

and clear the entire chemical residue trap within the chemical pipe line and it is usually 

applies using nitrogen. It is recommended to pursue purging at least for 2 hours 

whenever FHD process is being carried out. In this dissertation, recipe “core 26” with 

five deposition passes has been used to prepare the core layer for doping. 

Table 3.1 Recipe “Core 26”.  
Reagents Composition (sccm) 

SiCl4 50 

GeCl4 40 

POCl3 35 

BCl3 30 
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The reagents used are silicon, germanium, phosphorus and boron liquid halides. 

As mentioned earlier, these reagents are injected into the highly reactive environment of 

oxy-hydrogen flame. Below are the endothermic reactions for an oxygen-hydrogen 

flame which lead to chain branching: 

O + H2 ↔ OH + H------------------------------------(3.1) 

H + O2 ↔ OH + O------------------------------------(3.2) 

As a result, an excess population of free atoms and radicals are build up in the 

reaction zone [23, 27]. The following are the propagation step: 

OH + H2 ↔ H2O + H----------------------------------(3.3) 

Oxidation occurs at the centre of the flame (approximately 2000 ˚C) where silica 

particles are formed by direct oxidation. The oxidation can be described by the reaction 

below: 

SiCl4 + O2 ↔ SiO2 + 2Cl2-------------------------------(3.4) 

Meanwhile, hydrolysis occurred at the temperatures under 1200 ˚C. HCl are 

formed as Cl2 reacts with water. 

SiCl4 + 2H2O ↔ SiO2 + 4HCl-----------------------------(3.5) 

2POCl3 + 3H2O ↔ P2O5 + 6HCl----------------------------(3.6) 

4BCl3 + 6H2O ↔ 2B2O3 + 12HCl---------------------------(3.7) 

SiO2, B2O3 and P2O5 particles are all formed within the flame, while GeO2 can 

be formed within the flame and also condense on the substrate [28].  

Generally, FHD process is a reliable and flexible method for producing the 

structure of planar waveguide. By adjusting the composition of the dopants, 
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germanium-boron-phosphorus doped silica layers allowed us to reduce the sintering 

temperature from 1400 ̊C to a lower one ranged between 1000 to 1400 ˚C. This is 

important as silicon wafers tend to melt at 1410 ˚C [23].  

FHD system (FRS 300 from Semitel) consists of its own dedicated scrubbing 

system posited near to the FHD rig. Scrubber unit operates at below atmospheric 

pressure in order to increase the extraction rate happened within the FHD rig. The 

scrubbing performed using liquid of sodium hydroxide with water to remove hazardous 

HCl.  

 

3.1.2 SINTERING 

Sintering occurs when silica soot deposited by FHD is heated to near its melting 

point and fully densified into glass. This involved in heat treatment of powder compact 

at an elevated temperature and normally diffusional mass transport occurs. Heating 

encourages sufficient degree of particle softening and resulting surface tension pulling 

particle together. Surface area tends to decrease and brought to a decrease in free energy 

as well. Such process is irreversible [29]. The mechanism involves for such sintering of 

soot is known as viscous sintering [30]. During the sintering process, the centre-to-

centre separation between adjacent particles will be reduced [23, 31]. This will 

eventually leads to necking of particles until the silica particles joined together and 

pores are closed to form network with a random connected bridges [32].  In this 

experiment, full sinter process is performed after RE impregnation via solution doping. 
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Figure 3.4 Diagram showing the temperature and time parameters for full-sintering of 
underclad/core. 
 

To form a porous silica film, silica soot has to be heated below its melting point 

such that it is partially sintered where pores are still available. Sintering temperature is a 

key parameter in controlling the pore size for incorporation of dopant via solution 

doping. More precisely, pre-sintering temperature process takes control over the 

porosity and density as well as the pore size distribution. All of these criteria can either 

facilitate or hamper the rare-earth impregnation into glass matrix [33] . Various pre-

sintering temperature (500 to 900 ˚C) has been prepared to investigate the optimum pre-

sintering temperature for proper solution doping.  

The soot layer deposited from the FHD system is moved into the furnace (HVH 

410 from Hanvac) for pre-sintering such that a partially sintered medium is prepared for 

incorporation of additional RE dopant via solution doping. The pre-sintered temperature 

is 850 ˚C ramping up from 200 ˚C with a heating ramp rate of 5 ˚C/min. The pre-

sintered temperature is held for approximately 45 minutes before it was ramping down 

to 200 ˚C with a heating ramp rate of 15 ˚C/min. The overall pre-sintering process is 

carried out under oxygen (2 sccm) and helium (2 sccm) flow conditions. 
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Figure 3.5 Diagram showing temperature and time control for half-sintering of soot 
layer.  

 

3.2 SOLUTION DOPING 

3.2.1 PRINCIPLES OF SOLUTION DOPING  

The principle of solution doping involves immersing any porous silica based 

material into a rare-earth salt liquid solution [34]. According to a few publications, the 

porous silica acts as a sponge, taking up the solution. Precisely, the mechanism of rare-

earth incorporation in porous silica involved capillary action and chemical absorption 

[23, 35-36].  Therefore, the porosity of the silica layer which is controlled by the pre-

sintered temperature takes an important role to ensure a sufficient concentration of rare-

earth impregnation [33, 37-38]. Besides, solution concentration and immersion period 

are also important in facilitate rare-earth impregnation into the porous silica [19]. The 

above matter is crucial in order to achieve efficient rare-earth retention in silica layer. 

 

3.2.2 SOLVENT 

The selectivity of solvent for solution doping must fulfil few conditions. Firstly, 

the solvent must be a material in which the half-sintered soot insoluble. Then, the 

dopant must be highly and completely soluble in the selected solvent. Finally, it has to 

be ensured that no residue is left after soaking and dehydration. For the typical soot 
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which contained germania or phosphoria, liquids such as water, HCl and other organics 

are appropriate solvents [39], but the two main contenders are water and simple 

alcohols (eg.ethanol). Some of the reasons that bring to such selection are because both 

solvents are readily available in high purity form and are safe to handle.  

 

3.2.2.1 WATER 

The combination of solution-doping technique with MCVD has been reported 

[19] where an unsintered (porous) silica layer is deposited inside the silica tube by 

MCVD process before the tube is soaked in an aqueous rare-earth chloride solution for 

about 1 hour. Then the solution is drained follow by drying the impregnated layer at 

high temperature in a chlorine/oxygen gas flow environment. Al have been incorporated 

such method as well [40] and doped fibers with background losses of 0.3 dB km-1 has 

been produced [41-42].  

However, the existence of OH- ions tend to bring out a major absorption band 

about 1390 nm which will eventually increase the fiber losses. The magnitude of the 

OH- impact is estimated to have contributed to an excess loss of 48 dB/km at 1385 nm 

by one part in 106. Hence, it is no doubt that the presence of OH- ions with just few 

hundred ppm will place a significant affection on the performance of laser ions. This 

happens because OH- ions tend to form phonon interaction with rare-earth ions and 

result in multiphonon non-radiative relaxation (quenching) [43-44]. However, this 

quenching effect can be brought to minimum level as long as the OH- ions are 

effectively and rapidly removed. Fibers containing less than 40 ppb have been 

successfully prepared by VAD technique by a simple drying technique [45-46].  

 



 61 

3.2.2.2 ALCOHOL 

In an attempt to avoid OH- ion contamination, alcohol solution such as ethanol is 

another solvent that has been used with rare-earth salts for solution doping process [14, 

47-50]. Alcohol is less polarized, so, it is less likely to form bonding with the glass 

network. On the other hand, alcohol liquid is more volatile than water; this means that it 

can be easily evaporated. Besides, the complexes that form in alcohol solution are much 

larger than the hydrated ions in aqueous solution [51]. Therefore, steric hinderance 

occurred and become significant. This is because of the physically large complex tends 

to prevent other ions from being absorbed into the porous soot. For worse, diffusion of 

ion through the soot surface might be prohibited. Such poor diffusion will eventually 

leads to a greater possibility of clustering [52] since the dopant ions tend to agglomerate 

in a limited accessible sites.  

Besides that, there is another drawback to the use of alcohols; the solubility of 

some high purity materials (eg. AlCl3.6H2O) in ethanol are relatively low. Plus, such 

highly concentrated alcoholic solutions have a much higher viscosity if compare to the 

aqueous solution. Again, these two drawbacks will cause slow reagent diffusion through 

the soot and the penetration is only limited to low porosity soot. Therefore, the selection 

of appropriate solution’s viscosity for different porous soot layer morphology is an 

important criteria [53]. 

It has been reported that in order to produce a glass with a given refractive index, 

higher concentration is needed in alcoholic solution compare to aqueous solutions [54]. 

Alcoholic solutions are preferred as an alternative for the OH- effect since removal of 

dehydration can be achieved more easily. However, the combination of low solubility of 

the precursors, high viscosity solutions and more complicated solution chemistry will 

potentially limit the effectiveness of ions incorporation. Further more, the absolute 
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concentration of dopant, control of ion concentration and distribution of dopant over the 

glass could be reduced.  

A pure silica soot boule with a porosity of 60-90 % (pore diameter of 0.001-10 

µm) fabricated by flame hydrolysis was immersed in a dopant-salt methanol solution 

for 1 hour and dried for 24 hours followed by sintering in a He/O2/Cl2 atmosphere for 

bubble-free glass rod formation. The dopant concentration can be controlled by varying 

the ion concentration in the solution.  This technique is applied in the incorporation of 

Nd and Ca in silica which is more referred as molecular stuffing [55-56].  

All sorts of alcohol such as ethyl alcohol, ethyl ether and acetone have been 

used for Al and rare-earth halides. The replacement of non-aqueous solvents has 

produced doped fiber with a relatively low OH impurity level; contained less than 10 

dB m-1 absorption at 1.38 µm [57]. Though, it is also possible to produce low OH fibers 

via aqueous solution doping as long as dehydration technique is done properly. Hence, 

water has been used as the solvent throughout the whole experiment. 

 

3.2.3 SOLUTE  

Rare-earth ion halide precursors are readily available in high purity form, solid 

at room temperature, quite safe to be handled and most importantly soluble in water; 

this makes it a suitable solute to be used in solution doping process [39]. The chemistry 

of the rare-earth ion chlorides in aqueous solution is simple [51]; cations are hydrated 

and formed RCl3-x(H2O)n
x+, where R is a rare-earth ion and n and x are integers (0<x<3, 

typically n=6). Though, water is normally found complexed at high purity of rare–earth 

compounds. There are two impurities involved; water, which is present with rare-earth 

salts and chlorides. Water is an ultimate solvent and has been used through this 
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dissertation. Although it has limitations, but the issues occurred are well known and can 

be easily overcome.   

According to Townsend, charge distribution is likely to have altered the 

effectiveness of dopant adsorption where cationic rare-earth ions tend to accumulate 

and bond at the more negative charged point in an oxygen rich system. Rare-earth ions 

are predicted and proven to be more soluble in P2O5 or Al2O3 doped glass matrix than in 

silica or germanosilicate structure and hence, a higher incorporation for unit solution 

strength has been approached.  

 

3.2.4 METHODOLOGY 

Two groups of co-dopant are used: Er/Al and Er/Yb. Two type of aqueous-based 

solutions were prepared using high purity ErCl3 · 6H2O (99.9% purity, Aldrich), 

AlCl3 · 6H2O (99.9% purity, Fluka) and YbCl3 · 6H2O (99.9%, Aldrich). The first 

contained erbium and aluminium with either keeping erbium at a fixed concentration 

(0.02 and 0.04 M) and varying aluminium concentration or vice versa, keeping 

aluminium at a fixed concentration (0.4 M) and varying erbium concentration. The 

second contained erbium and ytterbium with a fixed erbium concentration of 0.02 M 

and varying ytterbium concentration; ytterbium was also fixed at 0.02 M while varying 

erbium concentration. The solution strength used for both type of co-doping is shown in 

Table 3.2. 
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Table 3.2 Solution strength for co-doping 

Experiment Al concentration 
(M) 

Er concentration 
(M) 

Yb concentration 
(M) 

1 0.05, 0.1, 0.2, 0.3, 0.4 0.02 (fixed)  

2 0.1, 0.2, 0.4, 0.6, 0.8 0.04 (fixed)  

3 0.4 (fixed) 0.01, 0.02, 0.04, 0.05, 
0.06 

 

4  0.02 (fixed) 0.02, 0.03, 0.04, 0.05, 
0.06 

5  0.02, 0.03, 0.04, 0.05, 
0.06 

 

 

0.02 (fixed) 

  

The solution for solution doping was prepared in different concentrations (as 

indicated in Table 3.2) by dissolving ErCl3 · 6H2O with AlCl3 · 6H2O or YbCl3 · 6H2O 

powder in 100 ml deionised (DI) water. The porous soot layer which has been prepared 

earlier was soaked in aqueous-based solution for one hour (refer Figure 3.6). Then, the 

soaked layer was taken out and dried in the room temperature for ~16 hours followed 

by heating in the oven at ~100 ̊C for 1 0 minutes to 3 hours. Silica gel as moisture-

absorbent was placed in the oven to ensure the inner atmosphere of oven was free from 

excessive moisture. The samples of the soaked/dried soot layers were carefully diced 

into two; one of them was full sintered into a dense silica glass film by heat treatment at 

1320~1350 ˚C. 
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soot layer

Hydrated chloride 
salt solution

Teflon 
container

Porous 
soot layer

Hydrated chloride 
salt solution

Teflon 
container

 

Figure 3.6 Schematic showing the solution doping process of a quarter wafer. 
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Besides varying the solution concentration, few immersion periods were used 

for solution doping of Er/Yb at a concentration of 0.02 M, ratio 1:1. The porous soot 

layers were soaked in the solution with the immersion period of 10 seconds, 15 minutes, 

1 hour and ~16 hours. Drying process was pursued as previous procedure. Each sample 

was divided into half such that half of it was fully sintered. 

Above were the typical method for solution doping. Apart from that, multiple 

cycles of solution doping has been implemented. After solution soaking and drying, the 

doped soot layer was heated in the furnace at 800 ˚C for 15 min. Using the identical 

deposited soot layer, the doped soot layers were prepared with one, two and three cycles 

of soaking in the Er/Yb (0.02/0.02 M) solution followed by drying at room temperature 

for ~16 hours and heating up in the oven (~100 ˚C) for about 10 minutes to 3 hours.  

Before the next cycle was applied, the soaked soot layer has to be heated in the 

furnace at 800 ˚C. This step is crucial as this converts the soluble hydrated chloride salts 

within the porous soot layer into insoluble oxides. It is believed that by such heating 

step, the precursor used tends to be trapped within the soot and preventing it from loss 

due to dissolution during subsequent cycles [35, 58].  After the whole cycle was 

completed, again, half part of each of the sample was full sintered into dense glass. 

Characteristic of both the porous and fully dense doped glass layer were 

investigated. The microstructure and morphology of the porous doped soot layers were 

examined through scanning electron microscope (SEM, LEICA S440). The dopants 

retention within soot layer was determined by energy dispersive spectrometry (EDX, 

HP Vectra XM Series 3 5/120 from Hewlett Packard). The thickness and refractive 

index of the co-doped silica films were measured by prism coupler (SAERON SPA 

4000) at a wavelength of 1550 nm.    
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CHAPTER 4  

RESULTS AND DISCUSSIONS 

4.1 PRE-SINTER TEMPERATURE 

As mentioned in the previous chapter, the porosity distribution and pore size of 

the soot layer is important for solution doping process [1-2]. Soot layer produced by 

FHD process satisfied the requirement of such porous condition [3]. The FHD layer 

consists of weakly bonded particles. These bonds are so weak that it can be easily 

damaged by external force during solution doping. Hence, pre-sinter process was used 

to increase the bonding strength between the soot particles such that it was partially 

densified via heat treatment. An optimum pre-sinter temperature would produce a layer 

with good surface morphology and adhesion to the silicon based substrate. SEM 

imaging of these pre-sintered samples show a porous layer (refer Figure 4.1). The 

magnification used is 5000x.  

 
                        (a)                                         (b)                                            (c) 
Figure 4.1 SEM images of porous pre-sintered FHD layers at various pre-sintering 
temperatures; (a) 500°C, (b) 750°C, and (c) 800°C. 
 

Based on the SEM images, no significant differences could be detected in terms 

of pore size and porosity. All of these pre-sintered samples were found highly aqueous-

absorbing. However, layers that were pre-sintered below 750̊ C would be diluted upon 

immersion in solution. The layer integrity could not be retained well which eventually 
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leads to disengagement of soot layer from the substrate. On the other hand, those pre-

sintered around 750̊C adhered to the silicon substrate upon immersion but develop 

cracks when subjected to drying. This phenomenon is most probably related to the 

differences of thermal expansion characteristic for the soot layer and the silicon 

substrate. 

During the dehydration of rare-earth doped soot in oven, liquid evaporation 

contraction might cause shrinkage within the soot layer while silicon substrate 

encountered expansion. Hence, there would be a great possibility that cracks will occur 

in the soot layer as the bonding between the soot particles is not strong enough. This 

issue was easily solved by increasing the pre-sinter temperature. Layers pre-sintered 

above 800˚C showed the best results in terms of surface integrity and absence of 

cracking. This was indicated as in figure 4.2(c) 

 
                                    (a)                            (b)                                   (c) 
Figure 4.2 Defects induced by solution doping (a) 500˚C (b) 750˚C (c) 800˚C 

 

 

 

 

 

 

 

 



 75 

4.2 FULLY-SINTERED AND HALF-SINTERED DOPED SILICA FILMS 

In most of the previously reported work on solution doping, the dopants 

concentration in the porous half sintered soot layer was not showed. The changes of the 

dopants concentration in the partially sintered soot layer to fully densed glass layer were 

not well known. Few set of samples have been solution doped and characterization was 

done on both the half-sintered (at ~850 ˚C) and fully sintered (at ~1350 ˚C) silica layer.  
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Figure 4.3 Variation of Al and Er concentration in planar film with change in Al 
solution concentration for a fixed 0.02M Er solution. 
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Figure 4.4 Variation of Al and Er concentration in planar film with change in Al 
solution concentration for a fixed 0.04M Er solution. 
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Figure 4.5 Variation of Al and Er concentration in planar film with change in Er 
solution concentration for a fixed 0.4M Al solution. 
 

 

 



 77 

The dopants concentration observed in both full-sintered glass film and half-

sintered soot layer was illustrated as in Figures 4.3-4.5. Both Figure 4.3 and 4.4 show 

the variation of dopants concentration as a function Al solution concentration but with 

two individual Er solution strength (0.02M and 0.04M). The Al concentration shows a 

linear increment as the Al solution concentration increases.  

Er concentration did not show significant changes since its absolute value was 

relatively small compared to Al. In fact, the Er concentration contained a slight 

increment as Al solution strength become stronger. This will be further elaborated in 

section 4.4 (refer figure 4.8).  

As indicated in the figure, the trend of the line for full-sintered glass film was 

found analogous to the half-sintered soot layer. The dopants concentration did not 

seems to be affected much by the high heating process for full sintering to form a glass 

film. 

In addition, the proportionality between the Er concentration and Er solution 

concentration increased with the Al solution concentration fixed at 0.4M. Meanwhile, 

the Al concentration encountered a slight decrement as the Er solution strength 

increases. Overall, both the full-sintered glass film and half-sintered soot layer shared 

the same trend.  
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4.3 EFFECT OF ERBIUM CONCENTRATION 
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Figure 4.6 The variation of Er concentration in the silica films as a function of Er 
solution concentration. 
 

Figure 4.6 show the variation of Er concentration as a function of the Er solution 

concentration used during the solution doping process. The results show that the Er 

concentration in the fully sintered silica films increased linearly with the concentration 

of Er in solution. Hence, it has been shown that the concentration of Er doped into the 

sintered film could be controlled by changing the concentration of Er solution. The 

maximum concentration of Er doped into the glass film was measured to be 0.306 at% 

for 0.06M Er solution. 

The variation of Er concentration for Yb and Al as co-dopant behaved the same 

as well. From Figure 4.6, we noticed that the gradient of both lines with co-dopants is 

larger compared to the line without co-dopant. This means that the existence of Al and 

Yb as co-dopant tend to increase the solubility of Er in silica matrix. The effect of Al as 

a network modifier (mentioned in Chapter 2) in this case is more significant compare to 

the Yb. The Er concentration after co-doping was lower than the single Er doped. This 
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does not reveal the actual doping concentration in the co-doped film. The absolute 

quantity of Er was actually reduced due to the additional elements such as Al and Yb.  

 

4.4 EFFECTS OF ALUMINIUM IN ERBIUM DOPED SILICA FILMS 
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Figure 4.7 The variation of Al concentration in silica film as a function of Al solution 
concentration. 
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Figure 4.8 The variation of Er concentration in silica film as a function of Al solution 
concentration. 
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Figure 4.7 and Figure 4.8 show the variation of dopants concentration as a 

function of Al solution concentration. Two different Er solution concentrations (fixed at 

0.02M and 0.04M) were used. As expected, the Al concentration in the sintered silica 

film increased linearly with the Al solution concentration. Similar behaviour occurred to 

the Er concentration doped in the glass film. The variation in Al solution concentration 

corresponding to a fixed 0.02M (or 0.04M) Er solution concentration leads to changes 

in the amount of Er doped in silica film. Er concentration doped in the silica film was 

slightly increased as the Al solution concentration increases [4]. This proved that the 

addition of Al has facilitated the impregnation of Er into soot layer [5]. It has been 

proposed that Al3+ ions tend to form a ‘solvation shell’ around the rare-earth and 

prepare the rare-earth ion for incorporation in silica network [6].  

Higher Er concentration (~0.31 at%) can be achieved by co-doping with 0.8M 

Al, but this usually result in devitrification [7]. Figure 4.8 also exhibit that the Er 

concentration in the silica film increased as the Er solution used varied from 0.02M to 

0.04M. Again, Er concentration was dependent on the solution strength.  
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4.5 EFFECTS OF YTTERBIUM IN ERBIUM DOPED SILICA FILMS  
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Figure 4.9 Variation of Er and Yb ions concentration in silica film as a function of Yb 
solution concentration (Er solution concentration fixed at 0.02M).  
 

Study on the effect of solution doping in different Yb solution concentration 

with an Er solution concentration fixed at 0.02M has been carried out. The variation of 

Er and Yb concentration in silica films as a function of Yb solution concentration is 

illustrated in Figure 4.9. As expected, the Yb concentration increased as the Yb solution 

concentration increases. Er concentrations were remained almost constant at ~0.1 at% 

which was unaffected by the increasing concentration of Yb solution.   
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Figure 4.10 Refractive index of Er/Yb doped silica films as a function of Yb solution 
concentration. 
 

There are reports that the addition of ions with a large radius such as Er and Yb 

tend to increase the dipole strength of the non-bridging oxygen and hence increase the 

refractive index [8-10]. Figure 4.10 shows the variation of refractive index 

corresponding to the Yb solution concentration for a fixed solution concentration of Er 

at 0.02M. The results indicated that the refractive index observed from both 632nm and 

1550nm wavelengths were increased linearly as the Yb solution concentration increases. 

This behaviour was completely compatible to the Yb concentration shown in the Figure 

4.9 which was increased linearly as well. 
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Figure 4.11 Variation of Er and Yb ions concentration in silica film as a function of Er 
solution concentration (Yb solution concentration fixed at 0.02M).  
 

The incorporation of Er ion in the silica film depending on solution 

concentration for a fixed 0.02M Yb solution concentration is shown in Figure 4.11. Er 

concentration was found to increase linearly when the Er solution concentration was 

increased from 0.02M to 0.06M. As the Yb solution was kept at the concentration of 

0.02M, the Yb ion concentration was observed to be remained almost constant.  
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Figure 4.12 Refractive index of Er/Yb doped silica films as a function of Er solution 
concentration. 
 

Since the Er concentration in the silica film was increased, the trend of its 

refractive index was expected to be similar. Two wavelengths were used to obtain the 

refractive index of the related Er/Yb doped silica glass layer. The results indicate that 

the refractive index increased linearly as the Er solution concentration increases.  
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4.6 ALUMINIUM AND YTTERBIUM IN CO-DOPING 
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Figure 4.13 The variation of Al and Yb dopants concentration as a function of Al and 
Yb co-dopants solution concentration. 
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Figure 4.14 The variation of Er concentration in silica film as a function of Al and Yb 
co-dopants solution concentration. 
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The Al concentration in silica film increased as Al solution concentration 

increases. This behaviour was observed the same for the Yb doped silica film; Yb 

concentration in silica film increased linearly as the concentration of Yb solution 

increases. In this section, the effect of these two co-dopants on the Er concentration in 

silica film was investigated. In order to simplify this investigation, a 0.02M Er solution 

was used. Co-dopants were added in individually in two different solutions for solution 

doping. The Er/Al doped silica films obtained consist of an elevated Er concentration. 

This explained that the Al did facilitate in altering the silica matrix to enhance the 

solubility of Er. Meanwhile, the Er concentration did not change much in terms of 

solubility when higher Yb solution concentrations were being used.        
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4.7 IMMERSION PERIOD 

The typical immersion period used in solution doping was maintained around 

60-90 minutes. Though, there was no significant explanation to such selection but it was 

considered to be sufficient for a complete solution doping. The optimum immersion 

period is simply dependent on a few criteria: soot layer thickness, porosity, composition, 

solvent characteristic and solution strength [4].  
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Figure 4.15 The variation of Er and Yb ions concentration as a function of immersion 
period. 
 

 Few identical samples were solution doped in a 0.02M Er/Yb (with ratio 1) 

solution for four different doping period. The results indicated that the Yb concentration 

increased as much as 60% when immersion period was elongated from 10 seconds to 15 

minutes. As the immersion period increased to 1 hour, the increment rate has become 

flatter where Yb concentration was raised up to 9.4%. The Yb concentration was then 

fall to 0.09 at% at 24 hours which is 47% lower than the concentration observed for 1 

hour. Meanwhile, not much change in Er concentration doped for the first three doping 

period but the concentration drops to a minimum value at 24 hours doping period. One 
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interpretation of this phenomenon is that dopants concentration tends to deteriorate if 

the doping period was dragged too long. However, the reason for this behaviour is still 

unknown and will be investigated in future.   
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Figure 4.16 Variation of refractive index of Er/Yb doped silica films as a function of 
immersion period. 
 

The refractive index was significantly influenced by the dopants concentration 

in the silica films [11]. From Figure 4.16, it was observed that the refractive index 

increased gradually from doping period of 10 second to 15 minutes and reached a 

maximum value at 1 hour. However, the refractive index obtained at 24 hours 

immersion period was found to reach the lowest value. The trend was similar as the 

Figure 4.15.  
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4.8 MULTIPLE SOLUTION DOPING 

The discussion earlier shows that wide variation in the dopants concentration 

could be achieved by altering either the solution strength or immersion period. In this 

section, a new method of solution doping was implemented – multiple soaking of a 

porous soot layer with intermediate heat-treatment stages (at ~800 ˚C) between 

soakings. As mentioned in Chapter 3, this stage is critical as it converts the soluble 

hydrated chloride salts into insoluble oxides and hence prevents dissolution during 

multiple soaking. Therefore, enable the retention of dopants in silica layers. Figure 4.17 

shows the variation of Er/Yb ion concentration as a function of number of doping cycles.     
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Figure 4.17 Er and Yb ions incorporation in silica film as a function of the number of 
doping cycles. 
 
 

The concentration of solution used during multiple solution doping was a 

mixture of 0.02M Er and 0.02M Yb. Both of the Yb and Er concentration doped in the 

silica films were increased linearly as the number of doping cycle increased. The Er 

concentration observed from single doping was 0.085 at % and eventually increased to 

0.21 at% when solution doped twice. This increment can still be observed in the three 
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cycles of solution doping, which is 251.26 % higher than the single doping. Similar 

behaviour occurred for the Yb concentration. For the single doping, 0.13 at% of Yb was 

successfully doped in the silica film followed by 0.18 at% for doping twice and finally 

0.28 at% for three doping cycles.  

The results indicated that it is possible to approach a higher dopant 

concentration in silica films by multiple solution doping. This method can be applied by 

using just one solution concentration without the need of varying the concentration of 

dopant solution. Multiple solution doping has been demonstrated by Tang et al. for 

single doping and two elements doping [12-13]. It was noted that the silica film in the 

single doping cycle was transparent while the silica film in two and three doping cycle 

case were partially opalescent (refer Figure 4.18).  

 

 
 
Figure 4.18 Silica wafer indicating opalescence due to multiple solution doping (a) two 
doping cycles (b) three doping cycles. 
 
 

(a) (b) 
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Figure 4.19 Variation of refractive index of Er/Yb doped silica films as a function of 
number of doping cycle. 
 

Figure 4.19 shows the changes of refractive index as a function of number of 

doping cycles using 632nm and 1550nm wavelength. The refractive index at both 

wavelength of 632nm and 1550nm increased linearly as the doping cycle increases. 

This has confirmed the result from the previous discussion indicating that the dopants 

concentration increased as the number of doping cycles increase.  
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION 

In this research, the solution doping method was successfully applied to form 

Er/Al and Er/Yb co-doped silica waveguide films deposited by FHD. The morphology 

inspection indicated that the integrity of the deposited porous soot layer depends heavily 

on the pre-sinter temperature. The ultimate choice of the pre-sinter temperature must at 

least provide a good soot adherence to substrate and free from crack upon solution 

doping. Based on the results, the soot layer pre-sintered at around 800 ̊C fulfills  the 

required quality. 

The investigation also revealed that the dopants concentration in silica films was 

dependent on a few dipping parameters which includes the solution strength and 

immersion period. The influence of the solution strength was more significant since the 

concentration observed exhibited a linear relationship with the solution concentration. 

However, increasing the solution concentration for achieving a desired doping 

concentration is not a viable option. This is because by increasing the solution 

concentration, the solution becomes more viscous and this might cause a reduction in 

the extension of the solution during penetration into soot film. The increment in the 

refractive index of the doped silica films was believed to have been caused by the 

existence of the rare-earth ions. The higher the rare-earth concentration, the higher the 

refractive index would be.  
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Meanwhile, the interdependence of immersion period with dopants 

concentration was obvious as the impregnation of dopants became higher when the 

doping period increases. However, the concentration deteriorated when the solution 

doping process was elongated till 24 hours. Therefore, proper selection of immersion 

period can be adjusted to ensure the completeness of solution doping process.  

The effect of two different co-dopants in Er concentration was elaborated in 

Sections 4.3 and 4.6. The use of Al was prove to increase the solubility of Er in silica 

matrix and hence increased the Er concentration obtained in silica film. The 

proportionality between the Er concentration in silica films and Al solution 

concentration increased without the need of increasing the Er solution strength. On the 

other hand, the solubility of Er increased with the addition of Yb as well although not as 

significant as in the Al case. Even so, the concentration of Er was not affected much 

when the solution concentration of Yb was increased. 

The effect of sintering temperature on the dopants concentration was briefly 

examined by comparing the dopants concentration obtained from both the partially 

porous doped silica films and fully densified doped silica films. Both types of samples 

shared a similar concentration reading with no significant changes in terms of dopants 

concentration. Therefore, it was assumed that the dopants concentration observed in the 

sintered film (sintered at ~1350 ̊ C ) actually identified the dopants concentration in the 

porous film.  

New method of solution doping was applied in preparing the Er/Yb silica film – 

multiple solution doping. This method was used to study the influence of soaking cycle 

to the dopants concentration in silica film using a low solution concentration with a 

fixed immersion period. It is a technique that was modified from the original work by  

F.Z. Tang and colleges. Heat-treatment at 800 ̊C must be used between solution 
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soaking as it was crucial to convert the soluble hydrated chloride salts in porous film 

into insoluble oxide for dopants retention. The results indicated that the multiple 

solution doping can be used to increase the amount of Er/Yb to be incorporated in silica 

films.   
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5.2 FUTURE WORK 

In general, short path length of planar optical amplifiers required a higher 

doping concentration as the basic need to observe higher gain. Therefore, high solution 

concentration was used in this experiment. However, the edge part of the sample was 

observed to be partially opalescent compared to the transparent middle part at high 

concentration doping. It was believed to have been caused by devitrification due to high 

concentration doping. However, there is no significant proof for such phenomenon. In 

this case, X-ray Diffraction is suggested to be used for verifying crystallization.  

For a typical EDX technique, the X-rays are generated in a region about 2 

microns in depth. Thus, the concentration profile beyond 2 microns in the silica film 

was not known. Auger Electron Spectroscopy (AES) is capable of probing the first few 

monolayers of a surface. This can be applied to study the depth profile of the doped 

silica layer when used with Refractive Ion Etching (RIE). Hence, it allows us to reveal 

the concentration gradient occurring within the silica layer.  

The solution doping method was successfully applied to form Er/Al and Er/Yb 

co-doped silica waveguide films deposited by FHD. Hence, this solution doping 

technique can be used to fabricate a complete optical amplifier. The FHD layer shall 

include three layers: with undercladding, core and overcladding. Optical test such as 

spontaneous emission and gain measurements can be implemented. 

 

 

 

 
 




