UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: **LER HUI YIN**
(I.C/Passport No: **810825-05-5394**)

Registration/Matric No: **VHA080003**

Name of Degree: **Doctor of Philosophy**

Field of Study: **Exercise Physiology**

I do solemnly and sincerely declare that:

1. I am the sole author/writer of this Work;
2. This Work is original;
3. Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
4. I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
5. I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”) and the University of Sydney (“USYD”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM and USYD having been first had and obtained;
6. I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM and USYD.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date
Name:
Designation:
ABSTRACT

This thesis investigated the effect of hypohydration during prolonged exercise in the heat and the adjustments in the thermoregulatory and cardiovascular control. Four inter-related studies were undertaken. Study One was an observational field study designed to determine the hydration status and practices of elite Kenyan runners (n=11) during competitive distance running events in a tropical environment. Our results show that the elite endurance runners completed their races in warm, very humid climatic conditions with ~3% body weight (BW) loss. They completed their races as the fast finishers in this present study but ran slower than they were capable because of the prevailing heat and humidity. Interestingly, they were able to compensate well by increasing the sweating rate regardless of the amount of fluid ingested or percentage of BW loss in warm conditions. Study Two investigated the effects of hypohydration and simulated hyperhydration on running economy. It was demonstrated that (1) hypohydration did not reduce the oxygen cost of running proportionally with the BW deficit incurred (D3 and D4) and (2) simulated hyperhydration did not increase the oxygen cost of running proportionally with the added gross weight of the runners (AW3 and AW4). Thus despite incurring a decrease in BW, none of the runners in the present study gained any beneficial effect in running economy with hypohydration. The additional oxygen cost was minimised during simulated hyperhydration trials with the added weight evenly distributed around the torso which may be offset by an added contribution from the series and parallel elastic component of muscles and tendons at no additional metabolic cost. In Study Three, the effects of hypohydration on prolonged treadmill running performance in the well controlled hot and cool conditions of a climatic chamber were investigated in 8 male runners. A diuretic (Lasix® 1 mg /kg BM) was used to induce ~3% BW deficit. Mild dehydration (~4.5% BW loss) was shown to have a significant effect on endurance performance in hot conditions.
However, this level of dehydration did not adversely affect endurance performance in cool conditions. Study Four addressed the question of whether enhanced heat shock protein (HSP) expression induced via glutamine supplementation is beneficial in offsetting the deleterious effect of hypohydration on exercise performance. The study further investigated whether alanyl glutamine administration offsets the reported prolonged exercise-induced decrease in plasma glutamine concentration. The present study demonstrates alanyl-glutamine ingestion confers protection and enhances plasma HSP 72 expression. Furthermore, ingestion of alanyl-glutamine was associated with an increased time to exhaustion during hot and hypohydrated conditions. In conclusion, this thesis showed that hypohydration (~ 3% BW) placed the circulatory and thermoregulatory systems under considerable physiological strain during prolonged exercise performance in the heat. However, the alanyl-glutamine ingestion conferred protection and enhanced plasma HSP 72 expression which improves thermotolerance in the heat.
ABSTRAK

ACKNOWLEDGEMENTS

First and foremost I would like to express my deepest appreciation to my supervisor Associate Professor Martin Thompson for his supervision, advice, constructive criticism, continuous guidance and encouragement throughout the entire course of my doctoral studies. His high scientific standards and words of wisdom have been enormously appreciated over the years.

Thank you to Dr Ashril Yusof for his supervision and administration support. Thank you to Dr Patricia Ruell, my associate supervisor, for her invaluable expertise and guidance in the biochemistry laboratory.

A special thanks to Ray Patton for his patience and expertise in all equipment technicalities in the laboratory. Also thank you to Dr Roger Adam for his statistical advice and aid in statistical analysis.

I would like to thank Julien Periard and Stuart Best for their help in the lab with teaching new techniques and equipment. I gratefully acknowledge the support and friendship of my colleagues and the occupational trainees that helped with data collection during my candidature: Ooi Cehong Hwa, Carl Cheah Boon Tat, Angelina Tan, Luna Rizzo, Megan Tumminello, Rana Fayazmilani and Neda Khaledi.

Thank you to all the runners who generously volunteered their time as participants in my research study. Without their participation none of these experiments could have been conducted. Thank you to Tunku Abdul Rahman College, Malaysia for the financial support for my PhD studies. Finally, I wish to thank my parents and family members who have given me invaluable support over the course of my doctoral research.
PREFACE

Results culminating from the studies of this thesis which have been presented at scientific conferences:

* Awarded Young Investigator Award (YIA) Travel Grant

* Awarded Young Investigator Award (YIA) Travel Grant

TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION……………………………………..ii
ABSTRACT………………………………………………………………………..iii
ABSTRAK…………………………………………………………………………..v
ACKNOWLEDGEMENTS…………………………………………………………vii
PREFACE…………………………………………………………………………viii
TABLE OF CONTENTS…………………………………………………………...ix
LIST OF FIGURES………………………………………………………………xxii
LIST OF TABLES………………………………………………………………...xxiii
LIST OF SYMBOLS AND ABBREVIATIONS…………………………………xxv

CHAPTER 1: INTRODUCTION……………………………………………………...1
 1.1 INTRODUCTION……………………………………………………………2

CHAPTER 2: LITERATURE REVIEW………………………………………………8
 2.1 THE IMPACT OF WEATHER CONDITIONS ON PROLONGED
 EXERCISE PERFORMANCE………………………………………………….9
 2.2 RUNNING ECONOMY: EFFECTS OF ACUTE CHANGE IN BODY
 WEIGHT………………………………………………………………………..14
 2.3 THERMOREGULATION DURING PROLONGED EXERCISE
 PERFORMANCE IN THE HEAT………………………………………………20
 2.3.1 Core Temperature Measurements…………………………………20
 2.3.2 Evaporative Heat Loss: Sweating…………………………………24
2.4 HYPOHYDRATION DURING PROLONGED EXERCISE PERFORMANCE IN THE HEAT

2.4.1 Hydration

2.4.2 Effects of Hypovolemia and Hyperosmolality on Sweat Rate

2.4.3 Relationship between Hypohydration and Core Temperature

2.4.4 Relationship between Hypohydration and Skin Temperature

2.4.5 Fluid Replacement during Prolonged Exercise in the Heat

2.5 CRITICAL CORE TEMPERATURE AND CIRCULATORY STRAIN HYPOTHESES

2.5.1 Critical Core temperature Hypothesis

2.5.2 Circulatory Strain Hypothesis

2.6 THERMOTOLERANCE, HEAT SHOCK PROTEINS AND GLUTAMINE INGESTION

2.7 SUMMARY

CHAPTER 3: RESEARCH THESIS DESIGN

3.1 RESEARCH THESIS DESIGN

CHAPTER 4: METHODOLOGY

4.1 ANTHROPOMETRIC MEASUREMENTS

4.1.1 Height and Weight: Computed Body Mass Index (BMI) and Body Surface Area (AD)

4.1.2 Skinfold Determination of Thickness: Computed Percentage of Body Fat

4.2 PRELIMINARY MEASUREMENTS

4.3.1 Submaximal Exercise Test
4.2.2 Maximum Oxygen Uptake Test ($\dot{V}O_{2\text{max}}$ Test)..................84

4.3 CARDIORESPIRATORY MEASUREMENTS.................................86

4.3.1 Heart Rate (HR)...86

4.3.2 Mean Arterial Pressure (MAP)...86

4.3.3 Oxygen uptake ($\dot{V}O_2$)..86

4.3.4 Cardiac output (\dot{Q})...87

4.3.5 Respiratory Exchange Ratio (RER)..87

4.4 THERMOREGULATORY MEASUREMENTS.................................89

4.4.1 Skin Temperature (T_{sk}) and Rectal Temperature (T_{re}): Computed Mean Skin Temperature (\bar{T}_{sk})...89

4.4.2 Skin Blood Flow (SkBF)..89

4.5 HYDRATION MEASUREMENTS..91

4.5.1 Urine Specific Gravity..91

4.5.2 Sweat Loss..91

4.6 HAEMATOLOGICAL MEASUREMENTS...92

4.6.1 Haemoglobin & Haematocrit: Computed Plasma Volume Changes...92

4.6.2 Glucose & Lactate...93

4.6.3 Serum Osmolality...95

4.6.4 Serum Electrolytes (Na^+, K^+, Cl^-, Ca^{2+})..........................95

4.6.5 Plasma Total Protein..96

4.6.6 Plasma Viscosity...96

4.6.7 Plasma Heat Shock Protein 72...97

4.6.8 Plasma Renin..97

4.6.9 Plasma Glutamine...98
4.7 PERCEPTUAL MEASUREMENTS

4.7.1 Perceived Thirst Sensation

4.7.2 Ratings of Perceived Exertion (RPE)

4.7.3 Thermal Comfort Scale

CHAPTER 5: STUDY ONE

5.0 HYDRATION STATUS OF ELITE KENYAN DISTANCE RUNNERS COMPETING IN HOT, HUMID CONDITIONS

5.1 ABSTRACT

5.2 INTRODUCTION

5.3 METHODS

5.3.1 Subjects

5.3.2 Experimental Procedures

5.3.3 Statistical Analysis

5.4 RESULTS

5.4.1 Environmental Conditions

5.4.2 Subjects

5.4.3 Hydration Level

5.4.4 Effect of A_D, Heat Production, Running Speed and Race Time on % BW loss

5.4.5 Effect of A_D, Heat Production, Running Speed and Race Time on Sweat Rate Responses

5.5 DISCUSSION

5.6 REFERENCES
CHAPTER 6: STUDY TWO

6.0 THE EFFECTS OF HYPOHYDRATION AND SIMULATED HYPERHYDRATION ON RUNNING ECONOMY

6.1 ABSTRACT

6.2 INTRODUCTION

6.3 METHODS

6.3.1 Subjects

6.3.2 Preliminary Testing

6.3.2.1 Submaximal Exercise Test

6.3.3 Anthropometric Measurements

6.3.4 Experimental Design

6.3.4.1 Experimental Protocol

6.3.5 Statistical Analysis

6.4 RESULTS

6.4.1 Subjects

6.4.2 Hydration Measurements

6.4.3 Running Economy

6.4.5 Cardiorespiratory Responses

6.4.6 Perceptual Response

6.5 DISCUSSION

6.6 REFERENCES

CHAPTER 7: STUDY THREE

7.0 EFFECT OF DIURETIC-INDUCED DEHYDRATION ON PROLONGED RUNNING PERFORMANCE IN HOT AND COOL CLIMATIC CONDITIONS
CHAPTER 8: STUDY FOUR

8.0 EFFECT OF ALANYL-GLUTAMINE INGESTION ON PROLONGED RUNNING PERFORMANCE IN HOT AND HYPOHYDRATED CONDITIONS

8.1 ABSTRACT

8.2 INTRODUCTION

8.3 METHODS

8.3.1 Subjects

8.3.2 Anthropometric Measurements

8.3.3 Preliminary Testing

8.3.4 Experimental Design

8.3.4.1 Experimental Protocol

8.3.4.2 Hydration Measurements

8.3.4.3 Cardiorespiratory Measurements

8.3.4.4 Thermoregulatory Measurements

8.3.4.5 Haematological Measurements

8.3.4.6 Subjective Reporting

8.3.5 Statistical Analysis

8.4 RESULTS

8.4.1 Performance Time and Plasma [Glutamine]

8.4.2 Hydration Status

8.4.3 Cardiorespiratory Responses

8.4.4 Thermoregulatory Responses

8.4.5 Haematological Responses

8.4.6 Subjective Responses

8.5 DISCUSSION
CHAPTER 9: KEY FINDINGS & RECOMMENDATIONS

9.0 KEY FINDINGS

9.0.1 Hypohydration and Prolonged Exercise Performance (Study One)

9.0.2 Running Economy in a Hypohydrated and Simulated Hyperhydrated State (Study Two)

9.0.3 Hypohydration and Hyperthermia: Circulatory and Thermoregulatory responses (Study Three)

9.0.4 Hypohydration and Thermotolerance (Study Four)

9.1 RECOMMENDATIONS

REFERENCES (CHAPTER 1, 2, 4)

APPENDICES (Attached CD)
LIST OF FIGURES

Figure 1.1 Influence of dehydration, as assessed by percent reduction in body weight after 2 hours of exercise, on change in cardiac output, heart rate, stroke volume, forearm blood flow during exercise (Montain & Coyle, 1992b)...3

Figure 2.1 Nomogram showing the potential performance decrement (y-axis) based on projected marathon finishing time (x-axis) with increasing WBGT (Ely *et al*., 2007)..11

Figure 2.2 The 12 annual races of the Twin Cities Marathon from 1997 to 2008 showing unsuccessful runners per 1000 finishers plotted against start WBGT shows increasing risk with WBGT above 13°C. About 100-120 unsuccessful starters per 1000 finishers is borderline for a mass casualty incident (i.e. an event that produces more patients than available resources, such as ambulances and emergency room beds (Roberts, 2010)..11

Figure 2.3 The effect of added weight in improving the \(\dot{V}O_2 \) cost of running in boys (aged 12-13 years). This illustrates that with added vertical load equivalent to 5% and 10% of bodyweight, there is not a proportional increase in \(\dot{V}O_2 \) that might be expected (Davies, 1980).................................17

Figure 2.4 Rectal and esophageal temperature responses to rest and exercise in the heat (Sawka *et al*., 1988)...22

Figure 2.5 Steady-state values of sweat rate plotted against the corresponding mean skin temperature values (Nielsen, 1969)..25

Figure 2.6 Influence of a skin cooling paradigm on heart rate with a constant core temperature during light-intensity treadmill walking exercise (Cheuvront *et al*., 2003b) ..27
Figure 2.7 Schematic diagram showing the idealized effector response, (e.g., sweating rate and SkBF) to increasing T_{ws} using forcing function analysis with linear plots (Gisolfi & Wenger, 1984).

Figure 2.8 The slope of the sweating rate-to-T_{es} relationship was significantly reduced during hypovolemia for one typical subject (Fortney et al., 1981b).

Figure 2.9 Mean skin temperature ($\tilde{T}_{sk}, ^{\circ}C$), rectal temperature ($T_{re}, ^{\circ}C$) and sweat loss (g) of 10 well trained subjects during 4h treadmill exercise (Thompson, 1984).

Figure 2.10 Percentage decrement in submaximal aerobic performance from euhydration as a function of skin temperature when hypohydrated by 3-4% of body mass (Sawka et al., 2012).

Figure 2.11 Esophageal temperature plotted against time. One acclimating subject during ten consecutive days of exercise until exhaustion at 40°C (Nielsen et al., 1993).

Figure 2.12a Esophageal temperature (A), mean skin temperature (B), heart rate (C) and skin blood flow (D) during exercise in heat (40°C, 17% rh) during precooling, control, and preheating trials (González-Alonso et al., 1999b).

Figure 2.12b Heart rate (A), cardiac output (B), stroke volume (C), skin blood flow (D), and forearm blood flow (E) plotted against core temperature during precooling, control, and preheating trials (González-Alonso et al., 1999b).

Figure 2.13 Voluntary activation percent (A) and force production (B) during a 20 s maximal voluntary isometric contraction of the knee extensors with superimposed electrical stimulation at 5, 12 and 19 s prior to and
following self-paced exercise in hot and cool conditions (Périard et al., 2011)...53

Figure 2.14 Individual core temperature response of 18 runners during the half marathon, presented in order of finishing time: (A) 105-111 min, N = 6; (B) 111-117 min, N = 6; (C) 122-146 min, N = 6 (Byrne et al., 2006)........56

Figure 2.15 New perspective regarding mechanisms for cardiovascular drift during prolonged exercise under conditions of maintained cardiac output and how it is exacerbated by dehydration, which acts primarily by causing hyperthermia (i.e., increased body core temperature) and hypovolemia (i.e., decreased blood volume) (Coyle & González-Alonso, 2001)........62

Figure 2.16 A redrawn summary of the effects of dehydration and concomitant hyperthermia from González-Alonso et al. (1995) (Coyle & González-Alonso, 2001)..66

Figure 3.1 Thesis Research Design..79

Figure 5.1 Ambient temperature and relative humidity measurements during the Standard Chartered Kuala Lumpur (SCKL) marathon 2009..................112

Figure 5.2 Relationship between the body surface area (A_D, m2) and the percentage change of body weight loss in elite (n=11) during different competitive distance running events (Full Marathon and Half Marathon)........116

Figure 5.3 Relationship between the race time (min) and the sweat rate (L.hr$^{-1}$) in elite Kenyan runners (n=11) during different competitive distance running events (Full Marathon and Half Marathon)...............117

Figure 5.4 Relationship between the change in performance time and ambient temperature during Boston Marathon (1958-1987) (Trapasso & Cooper, 1989) and the present study (Subject 1, 3, 4, 7, 10, 11).........................121

Figure 6.1 Schematic representation of experimental design for AW trials and D trials...143
Figure 6.2 \(\dot{V}O_2 \) (mL.kg\(^{-1}\).min\(^{-1}\), mL.kg\(^{-0.75}\).min\(^{-1}\)), caloric unit cost, \(C_R \) (kcal.kg\(^{-1}\).km\(^{-1}\)) and gross oxygen cost of running (mL.kg\(^{-1}\).km\(^{-1}\)) at running velocities that elicit 65, 70, 75 and 80\% \(\dot{V}O_{2\text{max}} \) during D trials (n=8)...150

Figure 6.3 \(\dot{V}O_2 \) (mL.kg\(^{-1}\).min\(^{-1}\), mL.kg\(^{-0.75}\).min\(^{-1}\)), caloric unit cost, \(C_R \) (kcal.kg\(^{-1}\).km\(^{-1}\)) and gross oxygen cost of running (mL.kg\(^{-1}\).km\(^{-1}\)) at running velocities that elicit 65, 70, 75 and 80\% \(\dot{V}O_{2\text{max}} \) during AW trials (n=8)..........151

Figure 6.4 Heart rate (beats.min\(^{-1}\)), oxygen pulse (mL.beats\(^{-1}\)) and pulmonary ventilation (L.min\(^{-1}\)) at running velocities that elicit 65, 70, 75 and 80\% \(\dot{V}O_{2\text{max}} \) during D trials (n=8)...152

Figure 6.5 Heart rate (beats.min\(^{-1}\)), oxygen pulse (mL.beats\(^{-1}\)) and pulmonary ventilation (L.min\(^{-1}\)) at running velocities that elicit 65, 70, 75 and 80\% \(\dot{V}O_{2\text{max}} \) during AW trials (n=..)153

Figure 6.6 RPE at running velocities that elicit 65, 70, 75 and 80\% \(\dot{V}O_{2\text{max}} \) during D trials (n=8)...154

Figure 6.7 RPE at running velocities that elicit 65, 70, 75 and 80\% \(\dot{V}O_{2\text{max}} \) during AW trials (n=8)...154

Figure 6.8 Comparison of the running economy data (\(\dot{V}O_2 \), mL.kg\(^{-1}\).min\(^{-1}\)) in our subjects (AW0 and D0 trials) and with previous research (Spurrs et al., 2003; Saunders et al., 2004)...161

Figure 7.1 Schematic representation of the experimental design and protocols for four experimental trials (E20, E35, D35 and D10)..178

Figure 7.2 Time to exhaustion during four experimental trials (E20, euhydrated in 20\(^\circ\)C; D10, dehydrated in 10\(^\circ\)C; E35, euhydrated in 35\(^\circ\)C; D35, dehydrated in 35\(^\circ\)C)...186
Figure 7.3 Heart rate, stroke volume and cardiac output responses during PETs...

Figure 7.4 Mean arterial pressure (MAP) prior to the diuretic administration (baseline), at 0, 30 and the final point of exhaustion during PETs....

Figure 7.5 Mean oxygen uptake ($\bar{V}O_2$) prior to the diuretic administration (baseline), at 0, 10, 30, 60-min and the final point of exhaustion during PETs.....

Figure 7.6 Rectal temperature (A), mean skin temperature (B) and core-to-skin temperature ($T_{re}-T_{sk}$) gradient (C) during PETs..

Figure 7.7 Skin blood flow (SkBF) at 0, 10, 30, 60-min and the final point of exhaustion during PETs...

Figure 7.8 Plasma volume changes prior to the diuretic administration, at 0, 10, 30, 60- min and final point of exhaustion during PETs..........................

Figure 7.9 Rating of perceived exertion and thermal comfort scale prior to the diuretic administration (baseline), at 10 min intervals during PETs.....

Figure 8.1 Schematic representation of the experimental trials protocol........

Figure 8.2 Seven subjects’ individual performance time and plasma [Glutamine] mean ±SD during three experimental trials (CON, euhydrated in 35°C; GLUT, dehydrated in 35°C; PCB, dehydrated in 35°C)............................

Figure 8.3 Rectal temperature (T_{re}) measurements during exercise in CON, GLUT and PCB trials...

Figure 8.4 Plasma volume changes after the exercise-heat exposure protocol and during exercise in CON, GLUT and PCB..

Figure 8.5 Percentage changes of plasma heat shock protein (HSP) 72 in CON, GLUT and PCB trials...
Figure 8.6 Rating of perceived exertion (RPE), thirst sensation and thermal comfort scale during exercise in CON, GLUT and PCB...239

Figure 8.7 Relationship between percentage change of plasma HSP and percentage change of plasma [Glutamine] from 0 min to point of exhaustion during exercise in CON, GLUT and PCB trials...243
LIST OF TABLES

Table 2.1 Summary of González-Alonso et al. s’ studies (1995 and 1997) investigating the effect of dehydration and hyperthermia during prolonged exercise ...64

Table 2.2 Cellular locations and proposed functions of mammalian heat shock protein families (Kregel, 2002)...67

Table 5.1 Environmental conditions during the different competitive distance events...112

Table 5.2 General characteristics of the Kenyan distance runners in Standard Chartered Kuala Lumpur (SCKL) Marathon 2009.................................114

Table 5.3 Descriptive data on running performance and hydration level on each individual elite Kenyan runner (n=11) that completed 42.2 km and 21.1 km in SCKL Marathon 2009...115

Table 5.4 Comparison between current performance time and the previous best performance time in 7 elite Kenyan runners.................................119

Table 6.1 Four relative running intensities (%\dot{V}O$_{2\text{max}}$ – ml. kg$^{-1}$. min$^{-1}$) which performed by the added weight (AW) and the dehydration (D) groups during the running economy tests...142

Table 6.2 Mean ±SD for physical and physiological characteristics of added weight (AW) and dehydration (D) participant groups.................................147

Table 6.3 Mean ±SD for hydration measurements prior to each RE test in both Added Weight (AW) and Dehydration (D) trials.................................148

Table 6.4 Relationship between running economy and running velocity during AW (n=8) and D (n=8) trials...149
Table 7.1 Mean ±SD for physical and physiological characteristics of the subjects..175

Table 7.2 Hydration status determined by percentage change of body mass, urine specific gravity, sweat rate, and fluid intake during PETS..................188

Table 7.3 Haematological Responses during PETS..197

Table 8.1 Hydration status determined by percentage changes of body mass, urine specific gravity (USG), sweat rate, and fluid intake during CON, GLUT and PCB trials..230

Table 8.2 Oxygen uptake and heart rate measurements during CON, GLUT and PCB trials...231

Table 8.3 Haematological Responses during PETS..236
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-vO₂diff</td>
<td>arteriovenous oxygen differences</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>analysis of covariance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>beats.min⁻¹</td>
<td>beats per minute</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BV</td>
<td>blood volume</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>calcium</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>CVC</td>
<td>cutaneous vascular conductance</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Chloride</td>
</tr>
<tr>
<td>DBP</td>
<td>diastolic blood pressure</td>
</tr>
<tr>
<td>G</td>
<td>gram</td>
</tr>
<tr>
<td>GLN</td>
<td>glutamine</td>
</tr>
<tr>
<td>GLU</td>
<td>glutamate</td>
</tr>
<tr>
<td>Hb</td>
<td>haemoglobin</td>
</tr>
<tr>
<td>Hct</td>
<td>haematocrit</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate</td>
</tr>
<tr>
<td>HR_max</td>
<td>maximum heart rate</td>
</tr>
<tr>
<td>HSP</td>
<td>heat shock protein</td>
</tr>
<tr>
<td>K⁺</td>
<td>potassium</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
</tbody>
</table>
km
km.hr\(^{-1}\)
LDH
L.hr\(^{-1}\)
L.min\(^{-1}\)
m
m\(^2\)
MAP
min
mL
mL.beat\(^{-1}\)
mL.kg\(^{-1}\).min\(^{-1}\)
mmHg
mmol
µL
n
Na\(^+\)
NS
nm
O\(_2\)
PET
PV
%
% HR\(_{\text{max}}\)
% rh
% ΔPV
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{Q}</td>
<td>cardiac output</td>
</tr>
<tr>
<td>RER</td>
<td>respiratory exchange ratio</td>
</tr>
<tr>
<td>rh</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RPE</td>
<td>ratings of perceived exertion</td>
</tr>
<tr>
<td>s</td>
<td>seconds</td>
</tr>
<tr>
<td>SBP</td>
<td>systolic blood pressure</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SkBF</td>
<td>skin blood flow</td>
</tr>
<tr>
<td>STD</td>
<td>standard</td>
</tr>
<tr>
<td>SV</td>
<td>stroke volume</td>
</tr>
<tr>
<td>USG</td>
<td>urine specific gravity</td>
</tr>
<tr>
<td>T_{core}</td>
<td>core temperature</td>
</tr>
<tr>
<td>T_{re}</td>
<td>rectal temperature</td>
</tr>
<tr>
<td>\bar{T}_{sk}</td>
<td>mean skin temperature</td>
</tr>
<tr>
<td>VE</td>
<td>ventilation</td>
</tr>
<tr>
<td>$\dot{V}O_2$</td>
<td>oxygen consumption</td>
</tr>
<tr>
<td>$\dot{V}O_{2\text{max}}$</td>
<td>maximal oxygen uptake</td>
</tr>
<tr>
<td>WBGT</td>
<td>wet bulb globe temperature</td>
</tr>
<tr>
<td>yr</td>
<td>year</td>
</tr>
</tbody>
</table>