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ABSTRACT 

 

The purpose of this study is to establish a simple numerical method based on the 

Haar wavelet operational matrix of integration for solving two dimensional elliptic partial 

differential equations of the form, ),(),(),(2 yxfyxkuyxu =+∇  with the Dirichlet 

boundary conditions. To achieve the target, the Haar wavelet series were studied, which 

came from the expansion for any two dimensional functions ),( yxg  defined on 

[ ) [ )( )1,01,02 ×L , i.e. ∑= )()(),( yhxhcyxg jiij  or compactly written as )()( yCHxH T , 

where C is the coefficient matrix and )(xH or )( yH is a Haar function vector. Wu (2009) 

had previously used this expansion to solve first order partial differential equations. In this 

work, we extend this method to the solution of second order partial differential equations.   

 The main idea behind the Haar operational matrix for solving the second order 

partial differential equations is the determination of the coefficient matrix, C. If the 

function ),( yxf  is known, then C can be easily computed as THFH ⋅⋅ , where F is the 

discrete form for ),( yxf . However, if the  function ),( yxu appears as the dependent 

variable in the elliptic equation, the highest partial derivatives are first expanded as Haar 

wavelet series, i.e. )()( yCHxHu T
xx = and )()( yDHxHu T

yy = , and the coefficient 

matrices C and D usually can be solved by using Lyapunov or Sylvester type equation. 

Then, the solution ),( yxu can easily be obtained through Haar operational matrix. The key 

to this is the identification for the form of coefficient matrix when the function is separable. 

 Three types of elliptic equations solved by the new method are demonstrated and 

the results are then compared with exact solution given. For the beginning, the computation 
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was carried out for lower resolution. As expected, the more accurate results can be obtained 

by increasing the resolution and the convergence are faster at collocation points.  

 This research is preliminary work on two dimensional space elliptic equation via 

Haar wavelet operational matrix method. We hope to extend this method for solving 

diffusion equation, uk
t

u 2∇=
∂
∂

 and wave equation, uc
t

u 22
2

2

∇=
∂
∂

 in a plane.  
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ABSTRAK 

 

Tujuan kajian ini adalah untuk mewujudkan satu kaedah berangka yang mudah 

melalui operasi pengamiran matriks gelombang kecil Haar untuk menyelesaikan dua 

dimensi persamaan pembezaan separa eliptik, ),(),(),(2 yxfyxkuyxu =+∇  dengan 

syarat-syarat sempadan Dirichlet. Untuk mencapai sasaran itu, siri gelombang kecil Haar 

dipelajari daripada pengembangan sebarang dua fungsi dimensi, ),( yxg  ditakrifkan pada 

[ ) [ )( )1,01,02 ×L , yakni ∑= )()(),( yhxhcyxg jiij  atau ditulis sebagai )()( yCHxH T , di 

mana C ialah matriks pekali dan )(xH atau )( yH adalah vektor fungsi Haar. Sebelum ini, 

Wu (2009) telah menggunakan pengembangan ini untuk menyelesaikan persamaan 

pembezaan separa peringkat pertama. Dalam kajian ini, kami ingin melanjutkan 

penyelesaian masalah bagi persamaan pembezaan separa peringkat kedua. 

Idea utama di sebalik operasi matriks Haar dalam menyelesaikan persamaan 

pembezaan separa peringkat kedua ialah penentuan matriks pekali, C. Jika fungsi ),( yxf  

itu diketahui, maka C boleh dikira dengan mudah sebagai THFH ⋅⋅ , di mana F ialah 

bentuk diskret bagi ),( yxf  . Walau bagaimanapun, sekiranya fungsi ),( yxu  bertindak 

sebagai pembolehubah bersandar dalam persamaan eliptik, terbitan tertinggi dalam 

persamaan pembezaan terlebih dahulu dikembangkan sebagai satu siri gelombang kecil 

Haar, )()( yCHxHu T
xx =  dan )()( yDHxHu T

yy = , dan matriks pekali C dan D 

kebiasaannya boleh diselesaikan dengan menggunakan persamaan matriks jenis Lyapunov 

atau Sylvester. Kemudian, penyelesaian ),( yxu  boleh diperolehi dengan mudah melalui 

operasi matriks Haar. Kunci kepada ini adalah pengenalan bagi bentuk matriks pekali 

apabila fungsi diasingkan. 
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Tiga jenis persamaan eliptik yang diselesaikan dengan kaedah baru ditunjukkan dan 

kemudian keputusan ini dibandingkan dengan penyelesaian tepat yang diberikan. Sebagai  

permulaan, pengiraan dijalankan dengan resolusi yang lebih rendah. Seperti yang 

dijangkakan, hasil yang lebih tepat boleh diperolehi dengan meningkatkan resolusi dan 

penumpuan yang lebih cepat berlaku pada titik terpilih. 

Penyelidikan ini adalah sebagai permulaan kerja pada dua dimensi persamaan 

eliptik melalui kaedah matriks pengoperasian gelombang kecil Haar. Kami berharap dapat 

melanjutkan kaedah ini untuk menyelesaikan persamaan resapan,
 

uk
t

u 2∇=
∂
∂

 dan 

persamaan gelombang,
 

uc
t

u 22
2

2

∇=
∂
∂

 pada satah. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND AND LITERATURE REVIEW 

 

The subject of wavelets has taken a place in the heart of science, engineering, 

mathematics and statistics (see Dahmen (2001)). For example, wavelet transform is applied 

in detection of transient feature in a signal processing, image processing and data 

compression. In signal processing, signals that have a combination of smooth and rough 

features are usually better represented in wavelet basis than other basis. In addition, the 

availability of fast transform makes it quite attractive as a tool for obtaining numerical 

solution of partial differential equations (PDEs). 

Most of orthogonal wavelet systems are defined recursively and generated with two 

operations; translations and dilations of a single function, known as the mother wavelet. 

Wavelet systems with fast transform algorithm, such as Daubechies wavelets (see 

Daubechies (1988)) do not have explicit expression and as such, analytical differentiation 

or integration is not possible. Therefore, any attempt to solve PDE with this orthogonal 

wavelet usually will be complicated and difficult to apply.  

There are varieties of wavelet families. Among them, we are more interested with 

Haar wavelet because it is the simplest possible wavelet with a compact support, which 

means that it vanishes outside of a finite interval. In numerical analysis, the discovery of 

compactly supported wavelets has proven to be a useful tool for the approximation of 

functions, where a short support makes approximation analysis local (see Mercedes and 

Jose (2004)). However, the technical disadvantage of the Haar wavelet is that it contains 
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piecewise constant functions which means that it is not continuous and hence at the points 

of discontinuity the derivatives does not exists.  

Orthogonal basis always have relationship with differential equations, including 

partial differential equations. Numerical solutions of PDEs have been discussed in many 

papers. Most of them basically fall either in the class of spectral method such as Galerkin 

and Collocation methods or finite element and finite difference methods (see Trefethen 

(2000)). But, in general, they have shortcomings, for instance by using spectral method, the 

solutions are oscillating when a sharp transitional occur and it is not well suited for 

handling localized features.  

   Since Haar wavelet is not continuous, there are two ways to fix this situation. One 

way is as proposed by Cattani (2005) where he regularized the Haar wavelet with 

interpolating splines. But this step complicates the solution, thus the simplicity of Haar 

wavelet are no longer beneficial. Therefore, we did not apply this way in our work. Another 

way is introduced by Chen and Hsiao (1997) where the highest derivatives appearing in the 

differential equations are first expanded into Haar series. The lower order derivatives and 

the solutions can then be obtained quite easily by using Haar operational matrix of 

integration. The derivation for Haar operational matrix of integration and other operational 

matrix of an orthogonal function can be derived easily from block pulse operational matrix 

(see Wu et al. (2001)).  

The ideas from Chen and Hsiao (1997) were later used by Gu and Jiang (1996),  

Maleknejad and Mirzaee (2005), Razzaghi and Ordokhani (2001), Lepik (2005), Lepik 

(2007) and Shi et al. (2007) to solve other differential and integral. Their ideas were also 

applied by Chen and Hsiao (1997) and Dai and Cochran (2009) to solve variational and 

optimal control problems. Although the method had been applied successfully for 

numerical solution of linear ordinary differential equations by Chang and Piau (2008), 
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nonlinear differential equations by Hariharan et al. (2009), Lepik (2005) and Lepik (2007) 

and fractional order differential equations by Li and Hu (2010) and Li and Weiwei (2010) 

but Haar wavelets or rather piecewise constant functions in general, are not widely used for 

higher order partial differential equations because of the difficulty in determining the 

accuracy and stability of the solution (see Rao (1983)).  

In view of successful application of Haar operational matrix in numerical solution 

of first order PDE as proposed by Wu (2009) and nonlinear evolution equations with only 

one space dimension by Lepik (2007), we now extend the method to solve the two 

dimensions space elliptic equations in the Cartesian coordinate system, given by; 

),(),(2 yxfuyxku =+∇                   (1.1) 

where x and y  being the independent variables and ),( yxuu ≡  being the dependent 

variable whose form is to be found by solving the equation depending on the Dirichlet 

boundary conditions. The Laplacian is defined by 
2

2

2

2
2

y

u

x

u
u

∂
∂+

∂
∂=∇ .  

Elliptic equations have been chosen to test numerical methods due to their 

availability of exact solutions and they often take place in many physical applications. For 

example, solutions of Laplace equation always appear in heat and mass transfer theory, 

electrostatics, elasticity, fluid mechanics and other mechanics and physics field. Poisson 

equation also has broad utility such as in electrostatics, mechanical engineering and 

theoretical physics. And the Helmholtz equation or sometimes called the reduced wave 

equation plays a fundamental role in many mathematical model of physical phenomena and 

engineering applications, including acoustic radiation (see Copley (1968)), heat conduction 

(see Altenkirch et al. (1982)) and water wave propagation (see Kawahara and Kashiyama 

(1985)).  
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The idea behind Haar wavelet operational matrix is the conversion of partial 

differential equations into matrix equations which involve finite variables and it need much 

attention because multiple integrations are involved in method by Wu (2009). For example, 

as proposed by him, the integration of equation (1.1) can be written as 

∫ ∫ ∫ ∫=∇
y

y

x

x

xxyyxxyy dxdxdydyuu
0

1

0

1

. However, our proposed method is much simpler compared 

to the method by Wu (2009) since we have introduced two separate expansion for 

differential operators as )()(),( yCHxHyxu T
xx =∇ and )()(),( yDHxHyxu T

yy =∇ where 

C and D are unknown mm ×  coefficient matrices. To produce the nice properties of 

coefficient matrix as given in section 2.2, we have to study the previous work by Wu 

(2009) on the function expansion for two dimensional functions. 

Numerical results illustrating the behavior of the method are presented and are 

compared to exact solution at collocation points and at non-collocation points.  

 

1.2 OBJECTIVES 

In summary, the objective of this research is prepared in the following way: 

a. To establish a general formula for single and double integration of Haar 

operational matrix and to obtain some relation involving Haar operational 

matrix related to boundary value problems.  

b. To establish Haar wavelet expansion for two dimensional functions, 

)()(),( yCHxHyxu T=  and to identify some properties of coefficient 

matrix, C. 
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c. To expand a two dimensional function, ),( yxu as Haar wavelet series and 

use them to develop a numerical technique for solving elliptic equations. 

d. To formulate the Haar operational matrix method in solving the two 

dimensional Laplace, Poisson and Helmholtz equations with Dirichlet 

boundary conditions.  

e. To verify the effectiveness of the proposed methods via numerical 

experimentations using Matlab software.  

 

1.3 ORGANIZATION OF THE THESIS  

This thesis is organized as follows. The introductory part is including background 

and literature review, the objectives of this research and the review of operational matrix 

for block pulse functions and Haar wavelets.  

In chapter two, Haar wavelets operational matrix of integration are studied and 

applied for solving linear ordinary differential equation. Then, we explain how to expand 

function defined on ( ))1,0[)1,0[2 ×L and the Laplacian operator as Haar wavelet series 

including the method to determine the coefficient matrix, C. Next, we show how the 

proposed method takes place in solving elliptic equations by considering a general equation 

which has application in mathematical physics.   

 Chapter three presents a methodology for applying to four different cases. Their 

results are shown and compared to exact solution given.  The discussions of these findings 

are also written in chapter three. Finally, chapter four is the conclusion of research findings 

and some recommendations for future studies. 
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1.4     REVIEW OF OPERATIONAL MATRIX FOR BLOCK PULSE FUNCTIONS 

 

The orthogonal set of block pulse functions (BPFs) have been studied and applied 

extensively in system analysis and fields of control theory. Block pulse functions were 

introduced by Harmuth (1969) to electrical engineers. Later, Chen et al. (1977) expressed 

this orthogonal set of functions in a proper mathematical setting. Block pulse functions 

have attracted the attention of researchers who sought and found computational 

convenience and simplification in the related algorithms.  

It is well known that an integrable function )(xu  defined in the semi-open interval 

[0, 1) can be expanded in an m-term BPF series as stated by Sannuti (1977), 

  ...)()()()( 221100 +++= xbcxbcxbcxu                (1.2) 

where Κ,,, 210 ccc  are the ic  coefficients which can be determined by, 

                                                        ∫=
1

0

)()( dxxbxumc ii                                                   (1.3) 

and Κ,,, 210 bbb  are the BPFs, )(xbi , given as  

                                               






 <≤
=

elsewhere,0

,1

)(
21 ξξ x

xbi                                                 (1.4) 

where 
m

i=1ξ  and 
m

i 1
2

+=ξ  , where 1,,1,0 −= mi Κ and m  is positive integer.  

If the function )(xu is approximated as piecewise constant in each subinterval, so 

that it will be terminated at finite terms, hence )(xu can be written in the form as 
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                                                           ∑
−

=

≈
1

0

)()(
m

i
ii xbcxu  .                                                   (1.5) 

It can also be written in a discrete form, 

                                                          )()( xBxu mm
Tc=                                                        (1.6) 

where [ ]1210 ... −= m
T
m ccccc  is called the coefficients vector and 

[ ] T
mm xbxbxbxB )(...)()()( 110 −= is the block pulse function vector. Figures 1.1(a)-

(d) show the illustrations of block pulse functions when 4=m , 

 

                                                  

           (a) 

 

                                  

(b) 

0 0.25 0.5 0.75 1

0.25 

0.5 

0.75 

1

x

)(1 xb  

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

x 

)(0 xb  
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(c) 

 

                                        

        (d)  

         Figure 1.1(a)-(d): Block pulse function with .4=m  

 

The corresponding matrix representation of Figure 1.1(a)-(d) can be written as follows if 

the matrix is taken at collocation points, 
8

n
x = , 7and5,3,1=n  ,  

                               



















=

1000

0100

0010

0001

4B  .          (1.7) 
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0.25

0.5
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)(3 xb  
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0.25 
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0.75 

1 

x 

)(2 xb  
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This set of matrix has led to other operational matrices, for instance operational matrices 

for correlation, convolution and differentiation.  

Performing the integration of the block pulse functions from equation (1.4) or figure 

1.1(a)-(d), obtains 

                                               ∫ <≤=
x

xxdb
0

0 4

1
0,)( ττ              (1.8) 

                                              ∫ <≤−=
x

xxdb
0

1 2

1

4

1
,

4

1
)( ττ                                      (1.9) 

                                              ∫ <≤−=
x

xxdb
0

2 4

3

2

1
,

2

1
)( ττ                                    (1.10) 

                                            ∫ <≤−=
x

xxdb
0

3 1
4

3
,

4

3
)( ττ                                     (1.11) 

 

For illustrations, the integration for )(4 xB can be represented as follows;    

 

                         

 

  (a) 

 

 

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

x 

∫
x

db
0

0 )( ττ  
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     (b) 

 

  

(c) 

 

 

(d) 

Figure 1.2 (a)-(d): The integration of block pulse function for .4=m  
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The integration of block pulse function when 4=m , can be represented as follows, 

                                                   ∫ ≈
x

B xBQdB
0

44 )()(
4

ττ                                                   (1.12) 

where 
4BQ is the 44×  operational matrix of block pulse functions which can be noted as 





























=





























=

2

1
000

1
2

1
00

11
2

1
0

111
2

1

4

1

8

1
000

4

1

8

1
00

4

1

4

1

8

1
0

4

1

4

1

4

1

8

1

4BQ .      (1.13) 

Equation (1.13) can be extended to higher order with the general form below as stated by 

Wu et al. (2001), 

                                          



























=

2

1
00

1
2

1
0

11
2

1

1

Λ

ΟΜΜ

ΜΛ

Λ

m
Q

mB .                                                 (1.14) 

 

The wide application of block pulse functions operational matrix shows that it has 

definite advantages for solving problems involving integrals and derivatives due to the 

clearness in expressions, simplicity in formulations with enormous reduction of 

computational effort (see Sannuti (1977)) and it is easy to use for deriving other operational 

matrices because the block pulse matrix, )(xBm is the identity matrix with an appropriate 

order.  
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Basically, from equation (1.14) we can evaluate that the operational matrix of block 

pulse functions for integration, 
mBQ has some features such as it is an upper triangle matrix 

with rank equal to m and it also has m eigenvalues with one distinct value, 
2
1

. Furthermore, 

operational matrix for integration of block pulse functions 
mBQ is invertible. It follows from 

formula 1−
Φ Φ⋅⋅Φ= mBm mm

QQ , Wu et al. (2001) tell us that the operational matrix of 

orthogonal functions )(xmΦ is similar to the operational matrix of the block pulse 

functions. Then, it can be easily proved that 
m

QΦ is also invertible since 
mBQ is invertible.  

 

 

1.5      REVIEW OF HAAR WAVELETS  

 

Wavelets means ‘small wave’. Wavelet basis that has compact support allow us to 

represent functions with sharp spikes or edges. This property is more advantageous in many 

applications such as in data compression and transmission.  

The Haar wavelets were first introduced by Alfred Haar in 1909. After that, many 

other wavelet functions were generated and introduced, including the Shannon, 

Daubechies, Legendre wavelets and many others. However, among those forms, Haar 

wavelets have the simplest orthonormal series with compact support and consists of 

piecewise constant functions.  

The basic and simplest form of Haar wavelet is the Haar scaling function that 

appears in the form of a square wave over the interval )1,0[∈x as expressed below in 

(1.15), and it is illustrated in the first subplot figure 1.3. 
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





 <≤
=

.elsewhere,0

10,1
1

)(0

x

m
xh                                         (1.15) 

 

The above expression is known as Haar father wavelet, where the zeroth  level wavelet has 

no displacement and dilation of unit magnitude. Correspondingly, define 















<≤−

<≤

=

.elsewhere,0

1
2

1
,1

2

1
0,1

1
)(1 x

x

m
xh         (1.16) 

Equation (1.16) is called a Haar mother wavelet where all the other subsequent functions 

are generated from )(1 xh with two operations; translation and dilation. For example, the 

third subplot in Figure 1.3 was drawn by the compression )(1 xh  to left half of its original 

interval and the fourth subplot is the same as the third plot plus translating to the right side 

by 
2

1
.  

 Explicitly, we can write out the Haar wavelet family as (see Wu (2009)), 

                                     













+<≤+−

+<≤

=

[0,1)inelsewhere0

2

1

2

50
2

2

50

2
2

1
)( 2

2

,

k
x

.k
,

.k
x

k
,

m
xh

αα

α

αα

α

i

 .                  (1.17) 

where 1,,2,1 −= mi Κ  is the series index number and the resolution Jm 2=  is a positive 

integer. An α and k represent the integer decomposition of the index i, i.e. ki += α2  in 

which 1,,1,0 −= JΚα  and .12,...3,2,1,,0 −= αk  
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          (d) 

Figure 1.3 (a)-(d): Haar wavelet functions for .4=m  

Each Haar wavelet is composed of a couple of constant steps of opposite sign during its 

subinterval and is zero elsewhere. Therefore, for ki += α2 , they have the following 

relationship, 

                            ∫







≠

=
=

1

0 .,0

,
1

)()(
ji

ji
mdxxhxh ji                                 (1.18) 

This relationship shows that Haar wavelets are orthogonal to each other and therefore 

constitute an orthogonal basis. Hence, it will allow us to transform any function square 

interval in the time interval [0, 1) into Haar wavelet series.  

Any function )(xu which is square integrable in the interval )1,0[ can be expanded  

into Haar series with an infinite number of terms as stated by Strang (1993), 

Κ++++= )()()()()( 33221100 xhcxhcxhcxhcxu               (1.19) 

or it can be decomposed as, 

-1 

 -0.5 

  -0.25 

-0.7071
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0.25 

  0.5 
0.7071

1

x 
0.25 0.5 0.75 1 

)(3 xh  
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  ∑
∞

=

=
0

)()(
i

ii xhcxu              (1.20) 

where the Haar coefficients, ci  can be written as 

     ∫=
1

0

)()( dxxhxumc ii          (1.21) 

 Usually, for a general smooth function )(xu , the series expansion of (1.19) contains 

an infinite number of terms. However, if )(xu is approximated as piecewise constants, then 

the sum in equation (1.20) will be terminated after m terms and it can be compactly written 

in the form,  

                                                               ∑
−

=

≈
1

0

)()(
m

i
ii xhcxu          (1.22) 

or in discrete form 

       )()( xHcxu m
T
m=  ,  )1,0[∈x        (1.23)

      

where [ ]110 −= m
T
m cccc Κ

 
is called the coefficient vector,  

[ ] T
mm xh...xhxhxH )()()()( 110)( −= is the Haar function vector and T is the transpose.  

At the collocation points, the first four Haar function vectors can be expressed in a 

matrix form as the following, 

T

H 






=
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



 0
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1
4  

T

H 






 −=






 0
2

1

2

1

2

1

8

3
4  
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T

H 
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7
4  

Altogether, we have, 
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4H  .                                        (1.24) 

In general, for ,2Jm = it is an orthogonal matrix,  

                            















 −















=
m

m
H...

m
H

m
HH mmmm 2

12

2

3

2

1
                  (1.25) 

where )()( jiijm xhH = .  

A mm ×  matrix H is an orthogonal matrix if 

m
T
mm IHH =⋅                                                       (1.26) 

where T
mH  is the transpose of mH  and mI is an identity matrix. In particular, an orthogonal 

matrix is always invertible, therefore 



18 

 

  T
mm HH =−1  .         (1.27) 

This relation makes orthogonal matrices particularly easy to compute with since the 

transpose operation is much simpler than computing an inverse.  

To claim that the Haar matrix (1.25) is orthogonal, we start the proving with matrix 

product. It is given as 

                                                          ∑
=

=⋅
m

r
rjirij BABA

1

)(                                                (1.28) 

where A is a ml ×  matrix and B is a nm × matrix. So, the number of columns of A has to 

be equal to the number of rows of B. Then, the product BAC ⋅=  is a nl × matrix. For 

Haar matrix, we claim that 

                                                           ij
T
mm HH δ=⋅ )(                                                     (1.29) 

where δ is the Kronecker delta,   





≠
=

=
ji

ji
ij if0

if1
δ   . 

From left hand side of equation (1.29), we can write it as follows 

∑
=

=⋅
m

r
rj

T
mirm

T
mm HHHH

1

)()()(  

      ∑
=

=
m

r
jrmirm HH

1

)()(  

                                                                  ∑
=

=
m

r
rjri xhxh

1

)()(  .        (1.30) 
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The following are the properties for the matrix mH  in equation (1.25): 

a) Sum of element wise multiplication for any two different rows of mH  is zero, i.e.  

0)()()()()()( 2211 =+++ mjmijiji xhxhxhxhxhxh Κ ,  ji ≠ . 

b) For ith row, ki += α2 , the number of nonzero element in that row is α2

m
. 

From property (a), ∑
=

m

r
rjri xhxh

1

)()( =0 if ji ≠  and if ji = , from (1.17), 

∑
=

m

r
rjri xhxh

1

)()( = 1
2

2

2

1

==∑
= m

m

m

m

r

α

α

α

 (using property (b)). Hence ij

m

r
rjri xhxh δ=∑

=1

)()( .  

With the definition of equation (1.25), the wavelet coefficients in (1.21) and (1.23) 

can easily be computed as 

      T
mm

T
m Huc ⋅=           (1.31) 

where .
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CHAPTER 2 

METHODOLOGY 

 

2.1 HAAR WAVELET OPERATIONAL MATRIX METHOD 

 

Similar to the block pulse functions, Haar wavelet functions are needed to perform 

integrations in order to get the model problem solved. This approach has been introduced 

by Chen and Hsiao (1997) by using the integration technique to Haar wavelet functions. 

The integrals of the first four Haar wavelet functions discussed in Section 1.5 can be 

expressed as following: 

                                      10,
2

1
)(

0

0 <≤=∫ xxdh
x

ττ                                       (2.1) 

                                ∫
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
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)( ττ                                (2.2) 

                              ∫
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                            ∫
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)( ττ                              (2.4) 

In general, the integrals of (1.17) for 1,,2,1 −= mi Κ  can be described as below, 

                     


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x
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x
k

k
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kk
x

m
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x

i                         (2.5)             

For illustrations, the integration for 4H  can be represented as follows; 

                      

 (a) 

0 0.25 0.5 0.75 1

0.25 

0.5 

0.75 

1 

x 

∫
x

dh
0

0 )( ττ



22 

 

                        

(b) 

                                   

(c) 

                                  

                 (d) 

Figure 2.1(a)-(d): The integration of Haar wavelet functions for 4=m . 
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At the collocation points 7and5,3,1,
8

== n
n

x , 
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7531

16

1
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0

4

x

dH ττ  .             (2.6) 

The expression in (2.6) is the transformation of the integrals from )(0 τh  to )(3 τh into 

matrix form at the collocation points. The averaged values are taken to represent these 

triangular functions. The integral of )(0 τh is a ramp function and the integral of )(1 τh is a 

triangular function consisting of a rising ramp and a falling ramp. It is noted that the 

absolute value of the slopes of these ramps is the same. The integral of )(2 τh and )(3 τh also 

are triangular functions. However, it spans the first and the second half intervals.  

In wavelet analysis for a dynamical system, all functions need to be transformed 

into Haar series. Therefore, the integration of Haar wavelet functions when 4=m , can be 

represented as follows, 

                                                            ∫ =
x

H xHQdH
0

44 )()(
4

ττ  .                                      (2.7) 

Or in general form,  

∫ =
x

mHm xHQdH
m

0

)()( ττ  .          (2.8) 

And similar to transpose of Haar wavelet, 

∫ =
x

T
H

T
m

T
m m

QxHdxH
0

)()( τ           (2.9) 
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where mm ×  matrix HQ  is called the operational matrix for integration of H. There are two 

formulas that can be used in obtaining HQ . One of them can be obtained by Chen and 

Hsiao (1997) given as 

                   


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        (2.10) 

where 0 is a null matrix of order 
22

mm × . Wu (2009) also showed one useful formula for 

calculating HQ , 

 T
mBmH HQHQ

mm
⋅⋅=                                            (2.11) 

where 
mBQ  is mm × operational matrix of block pulse functions. Both of the formula 

produce the same result as shown below, for example 4=m , 
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Zeros involved in equation (2.10) and equation (1.24) will greatly simplify the solution 

procedures and hence, it will be useful in speeding up the computation. 

             In this research we would also require the double integral of Haar wavelets,  

             
.)()( 21
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(2.13) 
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The expression for the left hand side of (2.13) for 1,,2,1 −= mi Κ  is obtained from 

integrating (2.5), 
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i       (2.14) 

The expression of (2.14) is taken from the integration of formula (2.5). At the collocation 

point, a single integration of H in (2.8) is accurate but when we did a double integration 

(2.13), it incurs some error. However, as we increase the resolution, the error will decrease.  

In addition, the following formula will be handy for solving boundary value 

problems later, in which they might be simplifying our calculation method. 

mmH
m

HQ
m

θ1
)1( =            (2.15) 

T
m

T
H

T
m

m
QH

m
θ1

)1( =          (2.16) 

mmHH
m

HQQ
mm

Λ= 1
)1(         (2.17) 
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T
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T
H

T
H

T
m

m
QQH

mm
Λ= 1

)1(         (2.18) 
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where [ ]0001 Κ=T
mθ  and 




=Λ + 2/)13(52/72/72 2

1
,,
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1
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1
,

2

1
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1
,

2

1
Jm

T Κ . The proving 

for equation (2.15) and (2.17) are as follows; 

Proof 2.15: 
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Proof 2.17:    

       ∫=
1

0

)()1( ττ dHQHQQ mHmHH mmm
           

      






= mH
m

Q
m

θ1
               

                                         mHm
Q

m
θ1=  

                                         m
m

Λ= 1
. 

Notice that mΛ  is equal to the first column of the Haar operational matrix, 
mHQ .  

Before we go through the application on two dimensional functions, let demonstrate 

the Haar wavelet operational matrix method for solving one dimensional function problem. 

Consider a linear ordinary differential equation given as in the equation (2.19) that has been 
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used by Chang and Piau (2008) to demonstrate their proposed method by using Haar 

wavelet basis. They introduced the designation of matrices for P function as their key 

procedure in solving linear ordinary differential equation.  

          xxxxuxu cossin)()( +=+′′          (2.19) 

in the interval )1,0[∈x  with the initial conditions 1)0( =u  and .1)0( =′u  

Firstly, assume the highest derivatives appearing in the differential equations (2.19) is  

expanded into Haar series as below, 

)()( xHcxu m
T
m=′′    .                            (2.20) 

We integrate equation (2.20) twice with respect to x and it yields, 

∫ ′+=′
x

m
T
m udxxHcxu

0

)0()()(  

           )()( xHmxHQc m
T
mmH

T
m m

θ+=                   (2.21) 

and, 

∫ ∫ ++=
x x

m
T
mmH

T
m udxxHmdxxHQcxu

m

0 0

)0()()()( θ  

                          )()()(2 xHmxHQmxHQc m
T
mmH

T
mmH

T
m mm

θθ ++=                 (2.22) 

where )()0()0( xHmuu m
T
mθ==′ since both of initial conditions are equal to 1.  

Then, we substitute equations (2.20) and (2.22) into (2.19)  

T
m

T
mH

T
mH

T
m

T
m kmQmQcc

mm
=+++ θθ2  

and rearrange them, we solve for T
mc , 
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mm H

T
m

T
m

T
mHm

T
m QmmkQIc θθ −−=+ )( 2             (2.23) 

where )(cossin xHkxxx m
T
m=+  . 

After getting the coefficient matrix, Tmc , then we can obtain the solution of )(xu  

from equation (2.22). Then, the numerical result can be compared with exact result from 

)cossin(
4

1
sin

4

5
cos)( 2 xxxxxxxu −++= , (See Appendix L and Appendix M). The 

following tabulated values in Table 2.1 and Figure 2.2 are set up for comparison. 

Table 2.1: Results for linear ordinary differential equation. 

x ( /32) Numerical 

solution, R 

Solution 

(Chang & 

Piau 2008), S 

Exact 

solution, T 

Absolute 

error I, 

|R – T| 

Absolute 

error II,  

|S – T| 

1 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

1.030305 

1.089088 

1.144350 

1.196353 

1.245364 

1.291649 

1.335466 

1.377065 

1.416677 

1.454518 

1.490778 

1.525622 

1.559183 

1.591562 

1.622824 

1.652994 

1.030777 

1.089527 

1.144880 

1.196844 

1.247001 

1.293240 

1.337136 

1.378678 

1.427640 

1.465381 

1.501598 

1.536265 

1.570336 

1.602462 

1.633465 

1.663308 

1.030767 

1.089496 

1.144700 

1.196643 

1.245594 

1.291819 

1.335577 

1.377118 

1.416676 

1.454467 

1.490681 

1.525485 

1.559012 

1.591364 

1.622605 

1.652763 

0.000462 

0.000408 

0.000350 

0.000290 

0.000230 

0.000170 

0.000111 

0.000053 

0.000001 

0.000051 

0.000097 

0.000137 

0.000171 

0.000198 

0.000219 

0.000231 

0.000010 

0.000031 

0.000180 

0.000201 

0.001407 

0.001421 

0.001559 

0.001560 

0.010964 

0.010914 

0.010917 

0.010780 

0.011324 

0.011098 

0.010860 

0.010545 
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Figure 2.2: Comparison between exact solution and numerical solution of linear 
ordinary differential equation when 16=m . 

 
 

The results for numerical solution of our method and Chang & Piau method are 

shown in Table 2.1 for 16=m , which confirms that with respect to Haar wavelet 

operational matrix method our approach produces numerical solutions which are closer to 

the exact solutions compared to the values produced by Chang and Piau (2008). Better 

approximation is expected by choosing a larger value of m. 

 

 

2.2 FUNCTION APPROXIMATION FOR TWO DIMENSIONAL FUNCTIONS  

Similar as one dimensional function, a two dimensional function )(x,yu in the 

interval 10 <≤ x and 10 <≤ y  also can be expanded into Haar series by 

            Numerical solution 
 
             Exact solution 
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∑∑

−

=

−

=

=
1

0

1

0

)()()(
m

i

m

j
jiij yhxhcx,yu          (2.24) 

ijc  is the Haar coefficient for two dimensions, given by Wu (2009) as  

     dydxyhxhyxumc jiij ∫ ∫=
1

0

1

0

2 )()(),(         (2.25) 

where ( )120,0,2 −<≤≥+= αα α kki   and ( )120,0,2 −<≤≥+= ββ β qqj .                                
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Figure 2.3: The basis for Haar wavelet functions with .4=m  

 

Then, (2.24) can be decomposed as,  

)()(),( yHCxHyxu mm
T
m=         (2.26) 
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where mC  is now the coefficient mm ×  matrix. The main point for solving second order or 

higher order PDE is the determination of mC . If the function ),( yxu is known, so that mC  

can be computed quite easily at the collocation points ),( ji yx  as,  

T
mmmm HUHC ⋅⋅=          (2.27) 

where the matrix function mU  is given by ( ) ),( jiijm yxuU = at 
m

m

mm
yx ji 2

12
,,

2

3
,

2

1
,

−= Κ .  

Now let us specify the matrix form for )0,(xuy , ),0( yux , )0,(xyu y  and ),0( yxux  in 

solving partial differential equation. Notice that all these functions are separable. First, we 

consider a function which is separable, i.e. )()(),( ygxsyxu = . Let,                           

∑
−

=

=
1

0

)()(
m

i
ii xhbxs          (2.28) 

and 

                                                          ∑
−

=

=
1

0

)()(
m

j
jj yhayg            (2.29)                                                      

where ib  and ja are the Haar coefficients of )(xs and )( yg respectively. Therefore,  

∑∑
−

=

−

=

=
1

0

1

0

)()()()(
m

i

m

j
jiji yhxhabygxs          (2.30)                                     

Equation (2.30) implies that a new form of coefficient matrix can be determined for 

separable function by multiplication of Haar coefficients ib  and ja , hence it yields to 

jiij abc = . In matrix form, the coefficient matrix, mC  for separable function can be 

decomposed as  
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



























=

−−−

−

−

1110

1101

101000

mmm

m

m

m

abba

abab

ababab

C

Λ

ΜΛΟΜ

ΛΛ

Λ

                                                

                                                     [ ]110

1

1

0

−

−


















= m

m

aaa

b

b

b

Κ
Μ

  

     T
mmαγ=                             (2.31)      

where 



















=

−1

1

0

m

m

b

b

b

Μ
γ  and [ ]110 −= m

T
m aaa Κα . mm γα and are known column vectors 

from (2.28) and (2.29).  

For the case of separable function, some useful form for coefficient matrix, mC  are listed 

below.  

a- If the function is independent of y, for example )(),( xsyxu = , by using 

equation (1.23) and equation (2.31), we can express the function as 

1)(),( ⋅= xsyxu , then )()( xHxs m
T
mγ=  and 1)( =yg )(

1
0 yh

m
=  

[ ]


















=

− )(

)(

)(

0001
1

1

1

0

yh

yh

yh

m

m

Μ
Κ  )( yHm m

T
mθ= . It yields to 
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1)(),( ⋅= xsyxu  

                                      )()( yHmxH m
T
mm

T
m θγ ⋅=  

                                                     )()( yHmxH m
T
mm

T
m θγ=  

Then, 

T
mmm mC θγ=  

                               [ ]0001

1

1

0

Λ
Μ


















=

−mb

b

b

m  

                                                 





















=

− 00

00

00

1

1

0

Λ

ΜΟΜΜ
Λ

Λ

mbm

bm

bm

 

 

Notice that only the first column of mC  is non-zero. Matrix above and 

subsequent can also be computed from equation (2.25). 

 

b- If the function is independent of x, for example )(),( ygyxu = , by using 

equation (1.23) and equation (2.31), we can express the function as 

)(1),( ygyxu ⋅= , then m
T
m xHmxs θ)(1)( ==  and )()( yHyg m

T
mα= . It yields 

to 

)(1),( ygyxu ⋅=  

                                       )()( yHxHm m
T
mm

T
m αθ ⋅=  

                                     )()( yHmxH m
T
mm

T
m αθ=  
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       Then, 

T
mmm mC αθ=  

                                  [ ]110

0

0

0

1

−























= maaam Κ
Μ

 

                               





















=

−

000

000
110

Λ
ΜΟΜΜ

Λ
Λ mamamam

. 

Notice that only the first row of mC is non-zero. 

 

c- If the function is )(),( xysyxu = , we can express the function as separable, 

)(),( xsyyxu ⋅= . Then, )()( xHxs m
T
mγ=  and 

)()(1)(
00

yHQmdyyHmdyyyg mH
T
m

y

m
T
m

y

m
θθ ==== ∫∫ . It yields to 

)(),( xsyyxu ⋅=  

                                                     )()( yHQmxH mH
T
mm

T
m m

θγ=  

where 
mHQ  is mm ×  operational matrix of Haar wavelet and mC  is given as 

      
mH

T
mmm QmC θγ= .       
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d- If the function involved is )(),( yxgyxu = , we can express the function as 

separable, )(),( ygxyxu ⋅= . Then, )()( yHyg m
T
mα=  and 

∫∫ ====
x

m
T
H

T
mm

T
m

x

m
QxHmdxxHmdxxxs

0
0

)()(1)( θθ . It yields to 

)(),( ygxyxu ⋅=  

                       )()( yHQmxH m
T
mm

T
H

T
m m

αθ=  

where T
mm

T
Hm m

QmC αθ= . 

 

e- If the function involved is any constant number, k such that kyxu =),( , then 

m
T
m xHmkkxs θ)()( ==  and )(1)( yHmyg m

T
mθ== . It yields to 

1),( ⋅= kyxu  

)()( yHmxHmk m
T
mm

T
m θθ ⋅=  

)()( yHkmxH m
T
mm

T
m θθ=  

where 

        T
mmm kmC θθ=  

                        [ ]0001

0

0

0

1

Λ
Μ






















= km  

                        



















=

000

000

001

Κ
ΜΟΜΜ

Κ
Κ

km   . 

 Notice that only the first element of mC is non-zero. 
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From the useful form coefficient matrix above, we can write them as follows for later 

reference. 

Let )()( yHyg m
T
mα=  and )()( xHxs m

T
mγ= .  

i) The coefficient matrix of )()(),( ygxsyxu =  is T
mmmC αγ= . 

ii)  The coefficient matrix of ),0( yux  is T
mmm mC αθ= . 

iii)  The coefficient matrix of ),0( yxux  is T
mm

T
Hm m

QmC αθ= . 

iv) The coefficient matrix of )0,(xu y  is T
mmm mC θγ= . 

v) The coefficient matrix of )0,(xyu y  is 
mH

T
mmm QmC θγ= . 

vi) The coefficient matrix of kyxu =),( , where k is constant given as,  









≠≠

==
=

.0or00

.0and0

jiif

jiifkm

cij  

 

2.3     ANALYSIS OF ELLIPTIC EQUATIONS BY USING PROPOSED METHOD 

 A general form of a linear second order PDE can be written as, 

   ),( yxfkueuducubuau yxyyxyxx =+++++         (2.32) 

where ),( yxuu = and a, b, c, d, e, k and f are functions of x and y only, they do not depend 

on u. If f = 0, the equation is said to be homogeneous. The first three terms in equation 

(2.32) containing the second derivatives are called the principal part of the PDE in which 

they determine the nature of the general solution to the equation. 
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  In fact, in this research we only consider when 042 <− acb , where the PDE is said 

to be an elliptic equation. If the coefficients of the principal part have a =1, b = 0 and c = 1, 

therefore it constitutes the two dimensional Laplace equation, 

       0
2

2

2

2

=
∂
∂+

∂
∂

y

u

x

u
                (2.33) 

where 0=k  and 0=f . The other two dimensional elliptic PDEs are Poisson equation  

             ),(
2

2

2

2

yxf
y

u

x

u =
∂
∂+

∂
∂

          (2.34) 

with 0=k  and 0≠f , and Helmholtz equation 

         ),(
2

2

2

2

yxfku
y

u

x

u =+
∂
∂+

∂
∂

                                     (2.35) 

where 0≠k  and 0≠f . For the purpose of analyzing the numerical technique, the 

Helmholtz equation is chosen due to the general form for two dimensional elliptic PDE.      

With the understanding that all matrices are size mm×  dependence, assume that xxu , yyu , 

u  and ),( yxf can be expanded in terms of Haar wavelets as,  

)()(),( yCHxHyxu T
xx =          (2.36) 

)()()( yDHxHx,yu T
yy =          (2.37) 

)()(),( yVHxHyxu T=          (2.38) 

)()(),( yZHxHyxf T=             (2.39) 

where C, D and V  are unknown mm ×  coefficient matrices, while Z is a known matrix.  
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By integrating (2.36) and (2.37) from 0 to x and 0 to y twice respectively, we obtain 

),0()()(),( yuyCHQxHyxu x
T
H

T
x +=         (2.40) 

),0(),0()()(),( yuyxuyCHQQxHyxu x
T
H

T
H

T ++=        (2.41) 

and   

)0,()()(),( xuyHDQxHyxu yH
T

y +=         (2.42) 

)0,()0,()()(),( xuxyuyHQDQxHyxu yHH
T ++=        (2.43) 

The properties of (ii), (iii), (iv) and (v) in section 2.2 are then substituted into equation 

(2.40), (2.41), (2.42) and (2.43) respectively as, 

)()()()(),( yHxHmyCHQxHyxu TTT
H

T
x θα+=                     (2.44) 

)()()()()()(),( yHxHmyHQxHmyCHQQxHyxu TTTT
H

TT
H

T
H

T θβθα ++=            (2.45) 

and 

)()()()(),( yHxHmyHDQxHyxu TT
H

T
y γθ+=                    (2.46) 

)()()()()()(),( yHxHmyHQxHmyHQDQxHyxu TT
H

TT
HH

T λθγθ ++=  (2.47) 

where α , β , γ  and λ are known column vectors or can be deduced from the given 

boundary conditions. Remember, there are three unknown coefficient matrices that we have 

to find out. Firstly, from equation (2.35), we can determine the matrixD , where 

ZkVDC =++ , so that  
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                                              .kVCZD −−=                                                    (2.48) 

 In order to find V , we need to substitute (2.38) into (2.45), 

       TTT
H

T
H

T
H mQmCQQV θβθα ++=                                     (2.49) 

or (2.47), it yields 

T
H

T
HH mQmQDQV λθγθ ++=  

           )()( T
H

T
HHHH QmQQCZQkVQV λθγθ ++−=+     

        )()()( T
H

T
HHHH QmQQCZQkQIV λθγθ ++−=+ .           (2.50)                                       

To reduce the algebraic term, we let HHQkQIP += , where I is the mxm  identity matrix.  

In order to find C, we then substitute (2.49) into (2.50), 

)()()( T
H

T
HH

TTT
H

T
H

T
H QmQQCZPmQmCQQ λθγθθβθα ++−=++ . 

Rearranging gives in the form of Sylvester type matrix (Golub et al. 1979), 

                 
.)(

)()()( 1122

ImQm

PmQmQZQPQCCQ
TTT

H

T
H

T
HHH

T
H

θβθα

λθγθ

+−

++=+ −−

                      (2.51) 

 From equation (2.51), we can solve for C  by using Matlab matrix equation solver 

lyap or Hessenberg-Schur method (Golub et al. 1979). Lastly, we calculate ),( yxu in (2.45) 

or (2.47). The unique solution of equation (2.51) is guaranteed under the assumption that 

the matrix P is non-singular and that matrices 2HQ  and 12 −PQH   have no eigenvalues in 
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common (Golub et al. 1979). For clarifying the above procedure, we choose some examples 

in which suit to our proposed methods.  
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CHAPTER 3 

NUMERICAL SOLUTION OF ELLIPTIC EQUATIONS BY 

USING THE PROPOSED METHOD 

 

 

3.1 INTRODUCTION 

 

As mentioned earlier, we will test the proposed method to the Laplace equation, 

Poisson equation and Helmholtz equation in the Cartesian coordinate system with Dirichlet 

boundary conditions. It consists of two examples for Laplace equations, one example for 

Poisson equation and Helmholtz equation. These examples are considered because closed 

form solutions are available for them and this allows us to compare the results obtained. 

Then, their results are divided into two parts, at collocation points and at non-collocation 

points in order to see the comparison of speed of convergence between these two types of 

result.   

 

 

3.2          EXAMPLES OF LAPLACE EQUATIONS AND RESULTS 

Example 1 

Consider the two dimensional Laplace equation in the Cartesian coordinate system, with 

the boundary conditions, 

0)1()1()0( === x,uy,uy,u  and ).1()0( xxx,u −=  
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At first, let 

λ)()1()0,( xHxxxu T=−=                   (3.1) 

where λ is a known column vector computed from (1.31).  

From equation (2.33), (2.36) and (2.37), we can obtain 

CD −=   .                                                    (3.2) 

The value for Tβ can be obtained directly from the boundary condition given, implies that 

0),0( =yu . While the boundary conditions ),1( yu and )1,(xu can be used to obtain the 

value for Tα  and γ  through the calculation below. 

When x = 1,  

0)()1()()1( =+ yHQHmyCHQQH TT
H

TT
H

T
H

T αθ  

    0
11 =+Λ TTT

m
mC

m
θαθ  

                 C
m

TT Λ−= 1α  

and when y = 1, 

0)()1()()1()( =++ λγθ xHHQxHmHQDQxH T
H

TT
HH

T  

         0
11 =+Λ+Λ− λγθ T

m
mC

m
 

       λγ −Λ= C
m

1
. 

Then, equating equation (2.45) and (2.47), and substituting (3.2) and the value for 

,and,, TT βλγα we obtain, 
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                             ( ) ( ) ( ) 0=−+Λ−+Λ− IQmQQCCQQ H
T

H
T

H
TT

H
T
H λθθθ                           (3.3) 

where I  is the mxm  identity matrix. Equation (3.3) is the Lyapunov-type matrix equation 

and we can solve for C.  

Finally, the solution from (2.45) is then given by 

( ) )()(),( yCHQQxHyxu TT
H

T
H

T Λ−= θ           (3.4) 

which will be compared with the exact solution (see Articolo (1998)), given as 

( ) ( )( ) ( )πyπx
π

x,yu ωωωπ
ωω

cosech1sinhsin
18

)(
33 ∑

∞

−=  

where ω is an odd number.  

Some results of computation are presented in Table 3.1-Table 3.2.  

 

Table 3.1: Results for example 1 at non-collocation points. 

Non-
collocation 

Points 

Exact 
Solution 

Numerical Solution 

8=m  64=m  1024=m  

u(0.1, 0.1) 

u(0.2, 0.2) 

u(0.3, 0.3) 

u(0.4, 0.4) 

u(0.5, 0.5) 

u(0.6, 0.6) 

u(0.7, 0.7) 

u(0.8, 0.8) 

u(0.9, 0.9) 

0.061651  

0.081897  

0.080643  

0.068227  

0.051329  

0.034285  

0.019675  

0.008809  

0.002206 

0.046079 

0.080790 

0.079128 

0.061365 

0.039623 

0.039623 

0.020678 

0.007462 

0.000812 

0.062213   

0.081529   

0.080242  

0.068459   

0.049946   

0.034020   

0.020273   

0.008398   

0.002274   

0.061686    

0.081875    

0.080619    

0.068242    

0.051243    

0.034269    

0.019713    

0.008784    

0.002210  
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Table 3.2: Results for example 1 at some representative  
collocation points with .64=m  

 

Collocation Points Exact 
Solution 

Numerical 
Solution  

Absolute 
Error 

u(15/128, 15/128) 

u(31/128, 31/128) 

u(47/128, 47/128) 

u(63/128, 63/128) 

u(79/128, 79/128) 

u(95/128, 95/128) 

u(111/128, 111/128) 

u(127/128, 127/128) 

0.067296 

0.083282 

0.073066 

0.052698 

0.031550 

0.014592 

0.003890 

0.000013 

0.067299 

0.083279 

0.073057 

0.052685 

0.031538 

0.014584 

0.003888 

0.000013 

0.000003 

0.000003 

0.000009 

0.000013 

0.000012 

0.000008 

0.000002 

0 
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Figure 3.1: The surface plot with contour for exact solution of example 1.  
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Figure 3.2: The bar graph for numerical solution of example 1 with 8=m . 

 

Example 2 

For second example, consider Laplace equation with the following boundary conditions, 

which is all boundaries are nonzero terms.   

2)0,( xxu =  , 2),0( yyu −=  , 1)1,( 2 −= xxu  and 21),1( yyu −= . 

From the boundary conditions given, let them be in the matrix form, 

0
2 )()0,( λxHxxu T==            (3.5) 

)(),0( 0
2 yHyyu Tβ=−=            (3.6) 
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1
2 )(1)1,( λxHxxu T=−=            (3.7) 

)(1),1( 1
2 yHyyu Tβ=−= .           (3.8) 

The next work is we need to find the value for Tα and γ . 

When x = 1, 

)()()()1()()1( 10 yHyHyHQHmyCHQQH TTTT
H

TT
H

T
H

T ββθα =++  

   TTTTT

m
mC

m
00

11 ββθαθ =++Λ  

       C
m

TTTT Λ−−= 1
01 ββα  

and when y = 1, 

10 )()()1()()1()( λλγθ xHxHHQxHmHQDQxH TT
H

TT
HH

T =++  

     10

11 λλθγθ =++Λ− T

m
mC

m
 

                                                                              Λ+−= C
m

1
01 λλγ . 

 

Similar as example 1, we equate equation (2.45) and (2.47), and substituting (3.2) and the 

value for ,and,, TT βλγα we obtain, 

( ) ( )
).()(

)(

0001

01

TTTTT
H

H
T

H
T

H
TT

H
T
H

mQm

QmQQCCQQ

θβθλββθ

θλλθθ

−+−−

−=Λ−+Λ−
      (3.9) 

Equation (3.9) is a Lyapunov-type matrix equation. The final equation will be 

  )())()(()()()(),( 001 yHQxHmyCHQQxHyxu TTTT
H

TTT
H

T
H

T θβββθθ +−+Λ−= .     (3.10) 
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Then, the solution of (3.10) is compared with the exact solution (see Will (2010) and Shu 

and Xue (1999)),  22)( yxx,yu −= . 

 

Table 3.3: Results for example 2 at non-collocation points. 

Non-
collocation 

Points 

Exact 
Solution 

Numerical Solution 

8=m  64=m  1024=m  

u(0.1, 0.5) 

u(0.2, 0.5) 

u(0.3, 0.5) 

u(0.4, 0.5) 

u(0.5, 0.5) 

u(0.6, 0.5) 

u(0.7, 0.5) 

u(0.8, 0.5) 

u(0.9, 0.5) 

-0.240000 

-0.210000 

-0.160000 

-0.090000 

0 

0.110000 

0.240000 

0.390000 

0.560000 

-0.309349    

-0.279609    

-0.218159    

-0.125000    

0.000000    

0.000000    

0.156841    

0.345391    

0.565651 

-0.247518   

-0.219702   

-0.165029   

-0.099118   

-0.000000   

0.104007    

0.225596    

0.389673    

0.549357    

-0.240469   

-0.210606   

-0.160313   

-0.090567   

-0.000000   

0.109629   

0.239101   

0.389980   

0.559336   

 
 
 
 

Table 3.4: Results for example 2 at some representative 
collocation points with .64=m  

 

Collocation Points Exact 
Solution 

Numerical 
Solution 

Absolute 
Error 

u(15/128, 63/128) 

u(31/128, 63/128) 

u(47/128, 63/128) 

u(63/128, 63/128) 

u(79/128, 63/128) 

u(95/128, 63/128) 

u(111/128, 63/128) 

u(127/128, 63/128) 

-0.228516 

-0.183594 

-0.107422 

0 

0.138672 

0.308594 

0.509766 

0.742188 

-0.228478 

-0.183576 

-0.107417 

-0.000000 

0.138676 

0.308609 

0.509801 

0.742247 

0.000038 

0.000018 

0.000005 

0.000000 

0.000004 

0.000015 

0.000035 

0.000059 
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Figure 3.3: The surface plot with contour for exact solution of example 2.  
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Figure 3.4: The bar graph for numerical solution of example 2 with 8=m . 
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3.3 EXAMPLE OF POISSON EQUATION AND RESULTS 

Example 3 

Consider the Poisson equation  

    32)1(6 xyxyuu yyxx −−=+                     (3.11) 

subject to boundary conditions, 

0)1,()0,(),0( === xuxuyu  and )1(),1( yyyu −= . 

Let  

)()1( 1 yHyy Tβ=−           (3.12) 

and  

)()(2)1(6 3 yZHxHxyxy T=−−             (3.13) 

where 1β  and Z are coefficient vector and matrix respectively. From equation (2.36), 

(2.37), (2.39) and (3.11), we can obtain, 

CZD −=  .          (3.14) 

The next work is we need to find the value for Tα and γ . 

When x = 1, 

)()()1()()1( 1 yHyHQHmyCHQQH TTT
H

TT
H

T
H

T βθα =+  

      TTTT

m
mC

m
0

11 βθαθ =+Λ  
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   C
m

TTT Λ−= 1
1βα  

and when y = 1, 

0)1()()1()( =+ HQxHmHQDQxH H
TT

HH
T γθ                     

            0)1()1()( =+− HQmHQQCZ H
T

HH γθ              

                      0
11

)( =+Λ− θγθ
m

m
m

CZ T     

                                                                                                  Λ+Λ−= C
m

Z
m

11γ . 

Then, equating equation (2.45) and (2.47) and substituting equation (3.14) and the value for 

,and,, TT βλγα we obtain, 

( ) ( ) TT
HH

T
HHH

T
H

TT
H

T
H QmQZQZQQQCCQQ 1θβθθθ −Λ−=Λ−+Λ−       (3.15) 

which can be solved for C via Lyapunov-type matrix. 

The final equation will be  

     )()()(),( 1 yHCmCQQxHyxu TTT
H

T
H

T Λ−+= θθβ .                          (3.16) 

After all, the final equation will be compared with exact solution (see Richard (2006)), 

given by 

3)1(),( xyyyxu −= . 
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Table 3.5: Results for example 3 at non-collocation points. 

Non-
collocation 

Points 

Exact 
Solution 

Numerical Solution 

8=m  64=m  1024=m  

u(0.1, 0.1) 

u(0.2, 0.2) 

u(0.3, 0.3) 

u(0.4, 0.4) 

u(0.5, 0.5) 

u(0.6, 0.6) 

u(0.7, 0.7) 

u(0.8, 0.8) 

u(0.9, 0.9) 

0.000090 

0.001280 

0.005670 

0.015360 

0.031250 

0.051840 

0.072030 

0.081920 

0.065610 

0.000008   

0.000953   

0.006528   

0.020711   

0.044110   

0.044110   

0.070228   

0.081880   

0.047448   

0.000095   

0.001171   

0.005992   

0.015162   

0.032734   

0.052183   

0.071222   

0.081894   

0.066167   

0.000090   

0.001273   

0.005690   

0.015348   

0.031342   

0.051861   

0.072313   

0.081920   

0.065646   

 
 
 
 

Table 3.6: Results for example 3 at some representative 
collocation points with .64=m  

 

Collocation Points Exact 
Solution 

Numerical 
Solution  

Absolute 
Error 

u(15/128, 15/128) 

u(31/128, 31/128) 

u(47/128, 47/128) 

u(63/128, 63/128) 

u(79/128, 79/128) 

u(95/128, 95/128) 

u(111/128, 111/128) 

u(127/128, 127/128) 

0.000166 

0.002607 

0.011503 

0.029801 

0.055546 

0.078227 

0.075109 

0.007571 

0.000166 

0.002607 

0.011504 

0.029804 

0.055552 

0.078233 

0.075106 

0.007543 

0 

0 

0.000001 

0.000003 

0.000006 

0.000006 

0.000003 

0.000028 
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Figure 3.5: The surface plot with contour for exact solution of example 3. 
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Figure 3.6: The bar graph for numerical solution of example 3 with 8=m .              
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3.4 EXAMPLE OF HELMHOLTZ EQUATION AND RESULTS 

Example 4 

Consider the two dimensional Helmholtz equation in the form 

)sin()sin()2( 2 yxkkuuu yyxx πππ−=++           (3.17) 

subject to the boundary conditions given as follows; 

      0)1,(),1()0,(),0( ==== xuyuxuyu  and 5.0=k . 

Let 

)()()sin()sin()2( 2 yZHxHyxk T=− πππ          (3.18) 

and )()(),( yVHxHyxu T= . From (2.48), 

                                                      VCZD 5.0−−= .                                                   (3.19) 

From boundary conditions given, we can determine automatically the value for Tβ and λ , 

in which both of them are zeros. Then, the value for Tα and γ are as follows; 

When x = 1,  

0)()1()()1( =+ yHQHmyCHQQH TT
H

TT
H

T
H

T θα  

   0
11 =+Λ TTT

m
mC

m
θαθ  

                                                                                 C
m

TT Λ−= 1α  
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and when y = 1, 

0)1()()1()( =+ HQxHmHQDQxH H
T

HH
T Tγθ  

                             0
11 =Λ+Λ− T

m
mD

m
γθ  

                                                                                    Λ−= D
m

1γ . 

In order to find V , we need to substitute (2.38) into (2.45) and (2.47).  

TT
H

T
H

T
H QmCQQV θα+=  

                )
1

( C
m

QmCQQ TT
H

T
H

T
H Λ−+= θ  

                CQCQQ TT
H

T
H

T
H Λ−= θ                                  (3.20) 

and 

                 H
T

HH QmQDQV γθ+=   

                 HQD
m

mQQVCZ H
T

HH θ)1
()5.0( Λ−+−−=         

       H
T

H
T

HHHHH
T

HH QCQZQCQQZQQQQIV θθθ Λ+Λ−−=Λ−+ )5.05.0( .      (3.21) 

At this stage, we let H
T

HH QQQIP θΛ−+= 5.05.0 , where I is the mxm  identity matrix.  

Then, we substitute (3.20) into (3.21), 

H
T

H
T

HHHH
TT

H
T
H

T
H QCQZQCQQZQPCQCQQ θθθ Λ+Λ−−=Λ− )( . 

Rearranging, 

0)()()( 11 =Λ+−+Λ−+Λ− −− PQZQZQPQQQCCQQQ H
T

HHH
T

HH
TT

H
T
H

T
H θθθ .         (3.22) 
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Equation (3.22) is the Sylvester-type equation.  

Lastly, the numerical solution  

                                                  CHQQHyxu TT
H

T
H

T )(),( Λ−= θ                                    (3.23) 

is compared to exact solution (see Nabavi et al. (2007)),  

)sin()sin(),( yxyxu ππ= .    

The plot of exact solution and ),( yxu  are shown in Figure 3.7 and Figure 3.8 respectively.  

 

 

Table 3.7: Results for example 4 at non-collocation points. 

Non-
collocation 

Points 

Exact 
Solution 

Numerical Solution 

8=m  64=m  1024=m  

u(0.1, 0.1) 

u(0.2, 0.2) 

u(0.3, 0.3) 

u(0.4, 0.4) 

u(0.5, 0.5) 

u(0.6, 0.6) 

u(0.7, 0.7) 

u(0.8, 0.8) 

u(0.9, 0.9) 

0.095491 

0.345491 

0.654508 

0.904508 

1.000000 

0.904508 

0.654508 

0.345491 

0.095491 

0.037061   

0.300556   

0.673194   

0.936689   

0.936689   

0.936689   

0.673194   

0.300556   

0.037061   

0.098356   

0.331418   

0.668170   

0.901232   

0.998986   

0.901232   

0.668170   

0.331418   

0.098356   

0.095672   

0.344616   

0.655383   

0.904327   

0.999996   

0.904327   

0.655383   

0.344616   

0.095672   
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Table 3.8: Results for example 4 at some representative 
collocation points with .64=m  

 

Collocation Points Exact 
Solution 

Numerical 
Solution  

Absolute 
Error 

u(15/128, 15/128) 

u(31/128, 31/128) 

u(47/128, 47/128) 

u(63/128, 63/128) 

u(79/128, 79/128) 

u(95/128, 95/128) 

u(111/128, 111/128) 

u(127/128, 127/128) 

0.129524 

0.475466 

0.835779 

0.999398 

0.870476 

0.524534 

0.164221 

0.000602 

0.129471 

0.475270 

0.835435 

0.998986 

0.870117 

0.524318 

0.164153 

0.000602 

0.000053 

0.000196 

0.000344 

0.000412 

0.000359 

0.000216 

0.000068 

0 
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Figure 3.7: The surface plot with contour for exact solution of example 4. 
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Figure 3.8: The bar graph for numerical solution of example 4 with 8=m . 

  

Computer simulation is carried out for problems in which the exact solution is 

known. This allows us to estimate the precision of the obtained numerical results. Since our 

basis are piecewise constant functions, convergence at the collocation points is of order one 

(see Saeedi et al. (2011)). At the non-collocation points, computer simulation with the help 

of Matlab toolbox was carried out in the case 8=m , 64=m and 1064=m  in order to see 

how far the value approach to the exact solution is.  

 From the tables, it shows that Haar wavelet operational matrix approach for solving 

two dimensional partial differential equations numerically get good agreements as we 

increased m. Moreover, the Haar approach provides excellent results at certain points in 

numerical evaluation, even if a small number m is used.  
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A shortcoming in this method is we need to know that the matrix P in (2.51) is non-

singular and those matrices 2HQ  and 12 −PQH   have no eigenvalues in common (Golub et al. 

1979). 
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CHAPTER 4 

CONCLUSION AND FURTHER STUDIES 

 

In this thesis, a new numerical method based on the operational matrix of Haar 

wavelets is introduced for solving two dimensional elliptic partial differential equations. Its 

simplicity is checked on four test problems including one example for Helmholtz equation 

and Poisson equation and two examples for Laplace equations in the Cartesian coordinate 

system with Dirichlet boundary conditions. The achieved results are compared with the 

given exact solution. As can be seen from Example 1 to Example 4, at the collocation 

points, the results are very close to the exact solutions even for small resolution, m.  

The computations associated with the examples in this thesis were performed using 

Matlab toolbox. The main advantages of this method are its simplicity, fast and small 

computation cost due to the sparcity of the transformed matrices. It has been well 

demonstrated that in applying the useful form of the coefficient matrix, C the elliptic PDEs 

can be solved conveniently and systematically. Since most elements of the matrices H and 

HQ  are zeros, it were contributed to the speeding up of the computation.  Moreover, the 

selection of using non-normalized Haar wavelet basis, i.e. the multiplication of Haar 

wavelet family with 
m

1
as shown in the formula (1.17) make Haar matrix, H orthogonal at 

collocation points, THH =−1  and hence this also contributed to the simplicity of the 

formulation and very useful in practice.   

As discussed at the end of Chapter 3, a situation might arise that equation (2.51) is 

not solvable. Hence, this limits the application of our method for solving elliptic PDEs with 

Dirichlet boundary conditions. In order to solve the Lyapunov-type matrix equation 

uniquely for C, we need to impose an extra boundary condition.  
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 We think that this method can also be successfully applied to other two dimensional 

partial differential equations by combining this research method and finite difference for 

time derivative. Therefore, the method can be extended further to solve evolution 

equations. For example, a diffusion equation, uk
t

u 2∇=
∂
∂

, can be numerically solved by 

discretizing the time derivative with finite difference and the Laplacian operator with Haar 

basis. If we let iU  be the matrix that approximates ),,( tiyxu ∆ , then it can be shown that 

iU  satisfies the  implicit equation 
tk

U

tk

U
UU

ii
i
yy

i
xx ∆

−=
∆

−+
+

++
1

11 . This equation is similar to 

the Helmholtz equation (2.35) which can be solved iteratively. 

Moreover, in the future work we are also interested in calculating the error bound in 

order to analyze the convergence of our results. On the other hand, in real problems we 

often tend to solve equations with unknown exact solutions. These unknown exact solutions 

may be singular, smooth or not. Hence, when we apply our method to these problems, we 

cannot claim that this approximation solution is good or bad unless we are able to 

determine the error bound. Therefore, it is necessary for us to introduce a process of 

estimating the error function when the exact solution is unknown. Another possibility for 

our further work would be to solve elliptic PDEs with variable coefficients or nonlinear 

PDEs and different type of boundary conditions such as Neumann boundary conditions. 
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APPENDIX A 

(MATLAB CODING FOR HAAR WAVELET, H) 

 

 

m=8; 

J=log2(m)-1;  

H=ones(m);  

for  j=0:J 

    jj=2^j; 

    for  k=1:jj 

        i=jj+k-1; 

  fun=@(t) 2^(j/2)*(((k-1)/jj<=t) &(t<(k-0.5)/jj))  

  -2^(j/2)*(((k-  0.5)/jj<=t)&(t<(k/jj))); 

t=(0:m-1)/m; 

    end  

end  

H=H/sqrt(m) 
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APPENDIX B 

(MATLAB CODING FOR OPERATIONAL MATRIX OF BLOCK 

PULSE, QB) 

 

 

m=8;  

Q=2*triu(ones(m,m)); 

for  i=1:m 

    Q(i,i)=Q(i,i)-1; 

end  

QB=Q/(2*m); 
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APPENDIX C 

(MATLAB CODING FOR OPERATIONAL MATRIX OF HAAR 

WAVELET, QH) 

 

 

m=8; 

H=ones(m); 

J=log2(m); 

x=1:2:(2*m-1); x=x/(2*m); 

for  alpha=0:(J-1) 

    for  k=1:pow2(alpha) 

        fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-

0.5)/pow2(alpha)))- (( x < k/pow2(alpha)) && ( x >=  (k-

0.5)/pow2(alpha))); 

i=pow2(alpha)+k; 

     for  j=1:m 

         H(i,j)=pow2(alpha/2)*fun(x(j)); 

     end  

    end  

end  

H=H/sqrt(m); 
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APPENDIX D 

(MATLAB CODING FOR EXACT SOLUTION EXAMPLE 1, 

LAPLACE EQUATION) 

 

 

m=8; 

exact=zeros(m); 

f=@(x,y,n) sin(n*pi*x).*sinh(n*pi*(1-y))*csch(n*pi) /n^3; 

x=(1:2:(2*m-1))/(2*m); 

y=(1:2:(2*m-1))/(2*m); 

for  i=1:m 

for  j=1:m 

     a=x(i); b=y(j); 

sum=0; 

for  n=1:2:21 

     sum=sum+f(a,b,n); 

end  

sum=sum*8/pi^3; 

exact(i,j)=sum; 

end  

end  

exact 
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APPENDIX E 

(MATLAB CODING FOR NUMERICAL SOLUTION EXAMPLE 1, 

LAPLACE EQUATION) 

 

m=8; 
  
% Generate block pulse operational matrix  
Q=2*triu(ones(m,m)); 
for  i=1:m 
    Q(i,i)=Q(i,i)-1; 
end  
QB=Q/(2*m); 
  
% Generate Haar matrix  
H=ones(m); 
J=log2(m); 
x=1:2:(2*m-1); x=x/(2*m); 
for  alpha=0:(J-1) 
    for  k=1:pow2(alpha) 
        fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha))) ...  
            - (( x < k/pow2(alpha)) && ( x >= (k-
0.5)/pow2(alpha))); 
         
        i=pow2(alpha)+k; 
        for  j=1:m 
            H(i,j)=pow2(alpha/2)*fun(x(j)); 
        end  
    end  
end  
H=H/sqrt(m); 
  
% Haar operational matrix via Wu formula  
QH=H*QB*H'; 
  
% USER INPUT 
% Example 1: Boundary conditions  
% u(0,y)=u(x,1)=u(1,y)=0, u(x,0)=x(1-x)  
F=x.*(1-x);  lambda=H*F'; 
theta=zeros(m,1); theta(1,1)=1; 
QHdelete=QH; QHdelete(:,1)=[]; QHdelete=[zeros(m,1)  QHdelete]; 
  
 
% USER INPUT 
first=(QHdelete*QH)';  
second=-sqrt(m)*lambda*theta'*(QH-eye(m)); 
% C=lyap(first,-second);   
% Ref: IEEE transaction on automatic control 24(197 9) pp909  
% SOLVE:  AX + XA' = C  
% STEP 1: transform A via similarity equation  
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A=first; 
% assumption: all eigenvalue of A are negative exce pt one which is 
zero.  
[max_i Ni]=max(eig(A));  % locate that zero eigenvalue  
[max_j Nj]=max(eig(A'));   
[U DU]=eig(A);     % U eigenvector, DU diagonal eigenvalue  
[V DV]=eig(A');  
A1=(U\A)*U; 
B1=(V\A')*V; 
  
% STEP 2: solve  UF = CV for F  
F=(U\second)*V; 
if  (abs(F(Ni,Nj)) > 1E-10 )  % accuracy to 10 dp  
    error( 'Equation not consistent. Check the 2nd value !!' ) 
end  
  
% STEP 3: Solve the transformed system A1*Y + Y*A1= F for Y  
Y=zeros(m); 
for  i=1:m 
    for  j=1:m 
        if  ((i==Ni) && (j==Nj)) 
                Y(Ni,Nj)= nan; 
        else  
            Y(i,j)=F(i,j)/(DU(i,i)+DV(j,j)); 
        end  
    end  
end  
  
% Y(Ni,:)  
% USER INPUT additional equation.  
% In this example, use % u_xx(x,0)=H'(x)CH(0) @ u_x x=H'(x)CH(y)  
% for u_xx(x,0)=x(1-x) ,   CH(0)=[-2sqrt(m) 0 0 .. ]=K  
% transform to C-->Y , H(0)-->inv(V)*H(0),  K-->inv (U)*K  
% Y *(inv(V)*H(0))= inv(U)*K compare to A1*Y + Y*A1 =F 
HN=V\H(:,1);   % H(0)  
K=zeros(m,1); K(1,1)=-2*sqrt(m); 
KN=U\K;  
% Solve for Y(Ni,Nj) in  
% h1*y(i,1)+..+hj*y(i,j)+...+hm*y(i,m)=Ki   , ith r ow 
yy=Y(Ni,:); yy(Nj)=[]; 
hh=HN; hh(Ni)=[]; 
s=yy*hh; 
Y(Ni,Nj)= (KN(Ni)-s)/HN(Nj);   
 
% STEP 4: solve XV=UY for X  
C=U*(Y/V); 
% final solution at collocation points  
UU=H'*(QHdelete*QH)'*C*H; 
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APPENDIX F 

(MATLAB CODING FOR EXACT SOLUTION EXAMPLE 2, 

LAPLACE EQUATION) 

 

 

m=8;  

f=@(x,y) (x.^2)-(y.^2); 

x=(1:2:(2*m-1))/(2*m); 

y=(1:2:(2*m-1))/(2*m); 

for  i=1:m 

for  j=1:m 

     a=x(i); b=y(j); 

myf=f(a,b);  

exact(i,j)=myf; 

end  

end  

exact 
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APPENDIX G 

(MATLAB CODING FOR NUMERICAL SOLUTION EXAMPLE 2, 

LAPLACE EQUATION) 

 

m=8; 
  
% Generate block pulse operational matrix  
Q=2*triu(ones(m,m)); 
for  i=1:m 
    Q(i,i)=Q(i,i)-1; 
end  
QB=Q/(2*m); 
  
% Generate Haar matrix  
H=ones(m); 
J=log2(m); 
x=1:2:(2*m-1); x=x/(2*m); 
for  alpha=0:(J-1) 
    for  k=1:pow2(alpha) 
        fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha))) ...  
            - (( x < k/pow2(alpha)) && ( x >= (k-
0.5)/pow2(alpha))); 
         
        i=pow2(alpha)+k; 
        for  j=1:m 
            H(i,j)=pow2(alpha/2)*fun(x(j)); 
        end  
    end  
end  
H=H/sqrt(m); 
  
% Haar operational matrix via Wu formula  
QH=H*QB*H'; 
  
% USER INPUT 
y=(1:2:(2*m-1))/(2*m); 
% Example 2: Boundary conditions  
% u(x,0)=x^2, u(0,y)=-y^2, u(x,1)=x^2-1, u(1,y)=1-y ^2  
B=x.*x; lambda1=H*B'; 
G=-(y.*y); beta1=H*G'; 
D=(x.*x)-1; lambda2=H*D'; 
E=1-(y.*y); beta2=H*E'; 
  
theta=zeros(m,1); theta(1,1)=1; 
QHdelete=QH; QHdelete(:,1)=zeros(m,1); 
omega=QH(:,1); %calculate omega which is equal to 1st column of 
QH. 
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% USER INPUT 
first=(QHdelete*QH)';  
%second=(sqrt(m)*lambda2*theta'*QH)-
(sqrt(m)*lambda1*theta')*(QH+eye(m))-
(sqrt(m)*QH'*theta*beta2')+(QH'-eye(m))*(sqrt(m)*th eta*beta1');  
  
second=(sqrt(m)*lambda2*theta'*QH)-(sqrt(m)*lambda1 *theta')*(QH-
eye(m)) ...  
-(sqrt(m)*QH'*theta*beta2')+(QH'-eye(m))*(sqrt(m)*t heta*beta1'); 
  
% Ref: IEEE transaction on automatic control 24(197 9) pp909  
% SOLVE:  AX + XA' = C  
% STEP 1: transform A via similarity equation  
A=first; 
% assumption: all eigenvalue of A are negative exce pt one which is 
zero.  
[max_i Ni]=max(eig(A));  % locate that zero eigenvalue  
[max_j Nj]=max(eig(A'));   
[U DU]=eig(A);     % U eigenvector, DU diagonal eigenvalue  
[V DV]=eig(A');  
A1=(U\A)*U; 
B1=(V\A')*V; 
  
% STEP 2: solve  UF = CV for F  
F=(U\second)*V; 
if  (abs(F(Ni,Nj)) > 1E-10 )  % accuracy to 10 dp  
    error( 'Equation not consistent. Check the 2nd value !!' ) 
end  
  
% STEP 3: Solve the transformed system A1*Y + Y*A1= F for Y  
Y=zeros(m); 
for  i=1:m 
    for  j=1:m 
        if  ((i==Ni) && (j==Nj)) 
                Y(Ni,Nj)= nan; 
        else  
            Y(i,j)=F(i,j)/(DU(i,i)+DV(j,j)); 
        end  
    end  
end  
  
% Y(Ni,:)  
% USER INPUT additional equation.  
% In this example, use % u_xx(x,1)=H'(x)K @ 
u_xx=H'(x)C*inv(Q)*QH(y)  
% But QH(1)=theta/sqrt(m)  
% for u(x,1)=x^2-1 ,   K=  
%fk=2; K=H*fk';  
K=zeros(m,1); K(1,1)=2*sqrt(m); 
% transform   K-->inv(U)*K  
% Y *(inv(V)*inv(Q)*theta/sqrt(m)= inv(U)*K  
HN=V\(QH\theta/sqrt(m));    % inv(Q)*theta/sqrt(m)  
% K=zeros(m,1); K(1,1)=2*sqrt(m);  
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KN=U\K;  
% Solve for Y(Ni,Nj) in  
% h1*y(i,1)+..+hj*y(i,j)+...+hm*y(i,m)=Ki   , ith r ow 
yy=Y(Ni,:); yy(Nj)=[]; 
hh=HN; hh(Ni)=[]; 
s=yy*hh;    %sum vector dot product  
Y(Ni,Nj)= (KN(Ni)-s)/HN(Nj);   
 
  
% STEP 4: solve XV=UY for X  
C=U*(Y/V); 
% final solution at collocation points  
UU=H'*(QHdelete*QH)'*C*H+sqrt(m)*H'*(QH'*theta*(bet a2'-
beta1')+(theta*beta1'))*H;  
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APPENDIX H 

(MATLAB CODING FOR EXACT SOLUTION EXAMPLE 3, 

POISSON EQUATION) 

 

 

 

m=8; 

f=@(x,y) y.*(1-y).*x.^3; 

x=(1:2:(2*m-1))/(2*m); 

y=(1:2:(2*m-1))/(2*m); 

for  i=1:m 

for  j=1:m 

     a=x(i); b=y(j); 

myf=f(a,b); 

exact(i,j)=myf; 

end  

end  

exact 
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APPENDIX I 

(MATLAB CODING FOR NUMERICAL SOLUTION EXAMPLE 3, 

POISSON EQUATION) 

 

m=8; 
  
% Generate block pulse operational matrix  
Q=2*triu(ones(m,m)); 
for  i=1:m 
    Q(i,i)=Q(i,i)-1; 
end  
QB=Q/(2*m); 
  
% Generate Haar matrix  
H=ones(m); 
J=log2(m); 
x=1:2:(2*m-1); x=x/(2*m); 
for  alpha=0:(J-1) 
    for  k=1:pow2(alpha) 
        fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha))) ...  
            - (( x < k/pow2(alpha)) && ( x >= (k-
0.5)/pow2(alpha))); 
         
        i=pow2(alpha)+k; 
        for  j=1:m 
            H(i,j)=pow2(alpha/2)*fun(x(j)); 
        end  
    end  
end  
H=H/sqrt(m); 
  
% Haar operational matrix via Wu formula  
QH=H*QB*H'; 
  
% USER INPUT 
% Example 3: solving poisson equation with boundary  conditions  
% u(0,y)=u(x,0)=u(x,1)=0, u(1,y)=y(1-y) and LHS=6xy (1-y)-2x^3  
y=(1:2:(2*m-1))/(2*m); 
B=y.*(1-y);  beta=H*B'; 
[X,Y]=meshgrid(x,y); 
Z=6*X.*Y.*(1-Y)-(2*X.^3); 
G=H*Z*H'; 
  
theta=zeros(m,1); theta(1,1)=1; 
QHdelete=QH; QHdelete(:,1)=zeros(m,1); 
omega=QH(:,1); % omega is equal to 1st column of QH.  
  
% USER INPUT 
first=(QHdelete*QH)';  
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second=(G*QH*QH)-(G*omega*theta'*QH)-(sqrt(m)*QH'*t heta*beta'); 
% C=lyap(first,-second 
% Ref: IEEE transaction on automatic control 24(197 9) pp909  
% SOLVE:  AX + XA' = C  
% STEP 1: transform A via similarity equation  
A=first; 
% assumption: all eigenvalue of A are negative exce pt one which is 
zero.  
[max_i Ni]=max(eig(A));  % locate that zero eigenvalue  
[max_j Nj]=max(eig(A'));   
[U DU]=eig(A);     % U eigenvector, DU diagonal eigenvalue  
[V DV]=eig(A');  
A1=(U\A)*U; 
B1=(V\A')*V; 
  
% STEP 2: solve  UF = CV for F  
F=(U\second)*V; 
if  (abs(F(Ni,Nj)) > 1E-10 )  % accuracy to 10 dp  
    error( 'Equation not consistent. Check the 2nd value !!' ) 
end  
  
% STEP 3: Solve the transformed system A1*Y + Y*A1= F for Y  
Y=zeros(m); 
for  i=1:m 
    for  j=1:m 
        if  ((i==Ni) && (j==Nj)) 
                Y(Ni,Nj)= nan; 
        else  
            Y(i,j)=F(i,j)/(DU(i,i)+DV(j,j)); 
        end  
    end  
end  
  
% Y(Ni,:)  
% USER INPUT additional equation.  
% In this example, use % u_xx(x,0)=H'(x)CH(0) @ u_x x=H'(x)CH(y)  
% for u(x,0)=0 ,   CH(0)=0=K  
% transform to C-->Y , H(0)-->inv(V)*H(0),  K-->inv (U)*K  
% Y *(inv(V)*H(0))= inv(U)*K compare to A1*Y + Y*A1 =F 
HN=V\H(:,1);   % H(1)  
K=zeros(m,1); K(1,1)=0; 
KN=U\K;  
% Solve for Y(Ni,Nj) in  
% h1*y(i,1)+..+hj*y(i,j)+...+hm*y(i,m)=Ki   , ith r ow 
yy=Y(Ni,:); yy(Nj)=[]; 
hh=HN; hh(Ni)=[]; 
s=yy*hh; 
Y(Ni,Nj)= (KN(Ni)-s)/HN(Nj);   
 
% STEP 4: solve XV=UY for X  
C=U*(Y/V); 
% final solution at collocation points  
UU=H'*(QHdelete*QH)'*C*H+sqrt(m)*H'*QH'*theta*beta' *H; 
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APPENDIX J 

(MATLAB CODING FOR EXACT SOLUTION EXAMPLE 4, 

HELMHOLTZ EQUATION) 

 

 

 

m=8; 

f=@(x,y) sin(pi.*x).*sin(pi.*y); 

x=(1:2:(2*m-1))/(2*m); 

y=(1:2:(2*m-1))/(2*m); 

for  i=1:m 

    for  j=1:m 

        a=x(i); b=y(j); 

myf=f(a,b); 

exact(i,j)=myf; 

    end  

end  

exact 
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APPENDIX K 

(MATLAB CODING FOR NUMERICAL SOLUTION EXAMPLE 4, 

HELMHOLTZ EQUATION) 

 

m=8; 
  
% Generate block pulse operational matrix  
Q=2*triu(ones(m,m)); 
for  i=1:m 
    Q(i,i)=Q(i,i)-1; 
end  
QB=Q/(2*m); 
  
% Generate Haar matrix  
H=ones(m); 
J=log2(m); 
x=1:2:(2*m-1); x=x/(2*m); 
for  alpha=0:(J-1) 
    for  k=1:pow2(alpha) 
        fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha))) ...  
            - (( x < k/pow2(alpha)) && ( x >= (k-
0.5)/pow2(alpha))); 
         
        i=pow2(alpha)+k; 
        for  j=1:m 
            H(i,j)=pow2(alpha/2)*fun(x(j)); 
        end  
    end  
end  
H=H/sqrt(m); 
  
% Haar operational matrix via Wu formula  
QH=H*QB*H'; 
  
% USER INPUT 
% Example 4: solving helmholtz equation with bounda ry conditions  
% u(0,y)=u(x,0)=u(x,1)=0, u(1,y)=0 and f(x,y)=(k-
2pi^2)sin(pi*x)sin(pi*y)  
k=0.5; 
y=(1:2:(2*m-1))/(2*m); 
[X,Y]=meshgrid(x,y); 
a=(k-2*pi.*pi).*sin(pi.*X).*sin(pi.*Y); 
Z=H*a*H';  
theta=zeros(m,1); theta(1,1)=1; 
QHdelete=QH; QHdelete(:,1)=zeros(m,1); 
omega=QH(:,1); % omega is equal to 1st column of QH.  
  
% USER INPUT 
P=eye(m)+k*QH*QH-k*omega*theta'*QH; 
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first=(QHdelete*QH)';  
second=(Z*QH*QH-Z*omega*theta'*QH)/P; 
% C=lyap(first,-second);   
% Ref: IEEE transaction on automatic control 24(197 9) pp909  
% SOLVE:  AX + XA' = C 
 
% STEP 1: transform A via similarity equation  
A=first; 
% assumption: all eigenvalue of A are negative exce pt one which is 
zero.  
[max_i Ni]=max(eig(A));  % locate that zero eigenvalue  
[max_j Nj]=max(eig(A'/P));   
[U DU]=eig(A);     % U eigenvector, DU diagonal eigenvalue  
[V DV]=eig(A'/P);  
A1=(U\A)*U; 
B1=(V\(A'/P))*V; 
  
% STEP 2: solve  UF = CV for F  
F=(U\second)*V; 
if  (abs(F(Ni,Nj)) > 1E-10 )  % accuracy to 10 dp  
    error( 'Equation not consistent. Check the 2nd value !!' ) 
end  
  
% STEP 3: Solve the transformed system A1*Y + Y*A1= F for Y  
Y=zeros(m); 
for  i=1:m 
    for  j=1:m 
        if  ((i==Ni) && (j==Nj)) 
                Y(Ni,Nj)= nan; 
        else  
            Y(i,j)=F(i,j)/(DU(i,i)+DV(j,j)); 
        end  
    end  
end  
  
% Y(Ni,:)  
% USER INPUT additional equation.  
% In this example, use % u_xx(x,0)=H'(x)CH(0) @ u_x x=H'(x)CH(y)  
% for u(x,0)=0 ,   CH(0)=0=K  
% transform to C-->Y , H(0)-->inv(V)*H(0),  K-->inv (U)*K  
% Y *(inv(V)*H(0))= inv(U)*K compare to A1*Y + Y*A1 =F 
HN=V\H(:,1);   % H(1)  
K=zeros(m,1); K(1,1)=0; 
KN=U\K;  
% Solve for Y(Ni,Nj) in  
% h1*y(i,1)+..+hj*y(i,j)+...+hm*y(i,m)=Ki   , ith r ow 
yy=Y(Ni,:); yy(Nj)=[]; 
hh=HN; hh(Ni)=[]; 
s=yy*hh; 
Y(Ni,Nj)= (KN(Ni)-s)/HN(Nj);    
% STEP 4: solve XV=UY for X  
C=U*(Y/V); 
% final solution at collocation points  
UU=H'*(QHdelete*QH)'*C*H;  
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APPENDIX L 

(MATLAB CODING FOR EXACT SOLUTION OF LINEAR 

ORDINARY DIFFERENTIAL EQUATION) 

 

m=16; 
f=@(x,y) cos(x)+(5/4)*sin(x)+(1/4)*(x.*x.*sin(x)-x. *cos(x)); 
x=(1:2:(2*m-1))/(2*m); 
y=(1:2:(2*m-1))/(2*m); 
for  i=1:m 

for  j=1:m 
      a=x(i); b=y(j); 
myf=f(a,b); 
exact(i,j)=myf; 

end  
end  
exact 
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APPENDIX M 

(MATLAB CODING FOR NUMERICAL SOLUTION OF LINEAR 

ORDINARY DIFFERENTIAL EQUATION) 

 
 
m=16; 
Q=2*triu(ones(m,m)); 
for  i=1:m 
    Q(i,i)=Q(i,i)-1; 
end  
QB=Q/(2*m); 
  
% Generate Haar matrix  
H=ones(m); 
J=log2(m); 
x=1:2:(2*m-1); x=x/(2*m); 
for  alpha=0:(J-1) 
    for  k=1:pow2(alpha) 
        fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha))) ...  
            - (( x < k/pow2(alpha)) && ( x >= (k-
0.5)/pow2(alpha))); 
         
        i=pow2(alpha)+k; 
        for  j=1:m 
            H(i,j)=pow2(alpha/2)*fun(x(j)); 
        end  
    end  
end  
H=H/sqrt(m); 
  
% Haar operational matrix via Wu formula  
QH=H*QB*H'; 
  
% USER INPUT 
theta=zeros(m,1); theta(1,1)=1; 
  
u=sin(x)+(x.*cos(x)); 
k=u*H'; 
lambda=1; 
gamma=1; 
  
left=eye(m)+(QH*QH); 
right=k-sqrt(m)*(gamma*theta'*QH+lambda*theta'); 
c=right/left; 
U=c*QH*QH*H+sqrt(m)*gamma*theta'*QH*H+sqrt(m)*lambd a*theta'*H; 
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