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ABSTRACT

The purpose of this study is to establish a sinmlmerical method based on the

Haar wavelet operational matrix of integration $mlving two dimensional elliptic partial
differential equations of the form/J%u(x,y)+ku(x,y)= f(x,y Wwith the Dirichlet
boundary conditions. To achieve the target, ther Hemvelet series were studied, which
came from the expansion for any two dimensionalctions g(x,y) defined on
L*([o1)=[02)), i.e. g(xy) =D c;h(x)h (y) or compactly written asHT(x)CH(y),
whereC is the coefficient matrix anéH (x) or H(y)is a Haar function vector. Wu (2009)

had previously used this expansion to solve firdeppartial differential equations. In this
work, we extend this method to the solution of slcorder partial differential equations.
The main idea behind the Haar operational maiix Solving the second order

partial differential equations is the determinatioh the coefficient matrix,C. If the
function f(x,y) is known, therC can be easily computed & [F [H", whereF is the
discrete form for f (x,y). However, if the functionu(x,y)appears as the dependent
variable in the elliptic equation, the highest @rtlerivatives are first expanded as Haar
wavelet series, i.e.u, =HT(X)CH(y)and u, =H"(x)DH(y), and the coefficient
matricesC and D usually can be solved by using Lyapunov or Sykesgpe equation.
Then, the solutioru(x, y) can easily be obtained through Haar operationatixndthe key

to this is the identification for the form of coefent matrix when the function is separable.
Three types of elliptic equations solved by thevmeethod are demonstrated and

the results are then compared with exact solutreeng For the beginning, the computation



was carried out for lower resolution. As expectbd, more accurate results can be obtained
by increasing the resolution and the convergenedaater at collocation points.
This research is preliminary work on two dimensiospace elliptic equation via

Haar wavelet operational matrix method. We hopesxtend this method for solving

e . du . 0° .
diffusion equatlon,a =kO°u and wave equatlona—lzJ =c’0%u in a plane.

ot



ABSTRAK

Tujuan kajian ini adalah untuk mewujudkan satu khetierangka yang mudah
melalui operasi pengamiran matriks gelombang keéfabr untuk menyelesaikan dua
dimensi persamaan pembezaan separa eligfiki(x,y) +ku(x,y) = f(x,y dehgan
syarat-syarat sempadan Dirichlet. Untuk mencapsarsa itu, siri gelombang kecil Haar
dipelajari daripada pengembangan sebarang duaifdmgensi, g(x, y) ditakrifkan pada
L*([01)=[02)), yakni g(x,y)=> c;h(x)h;(y) atau ditulis sebagaH™(x)CH(y), di
manacC ialah matriks pekali dam (x) atau H(y)adalah vektor fungsi Haar. Sebelum ini,
Wu (2009) telah menggunakan pengembangan ini umgkyelesaikan persamaan
pembezaan separa peringkat pertama. Dalam kajign kemi ingin melanjutkan
penyelesaian masalah bagi persamaan pembezaaa pepagkat kedua.

Idea utama di sebalik operasi matriks Haar dalanmyelesaikan persamaan
pembezaan separa peringkat kedua ialah penentuaiksrgekali,C. Jika fungsif (X, y)
itu diketahui, makeC boleh dikira dengan mudah sebadailF [H, di manaF ialah
bentuk diskret bagif (x,y) . Walau bagaimanapun, sekiranya funggk,y) bertindak
sebagai pembolehubah bersandar dalam persamaadik, etgrbitan tertinggi dalam
persamaan pembezaan terlebih dahulu dikembanghsmagaesatu siri gelombang kecil
Haar, u,=HT(x)CH(y) dan uW=HT(x)DH(y), dan matriks pekaliC dan D
kebiasaannya boleh diselesaikan dengan menggumpaksamaan matriks jenis Lyapunov
atau Sylvester. Kemudian, penyelesai#(x, y) boleh diperolehi dengan mudah melalui

operasi matriks Haar. Kunci kepada ini adalah pealge bagi bentuk matriks pekali

apabila fungsi diasingkan.



Tiga jenis persamaan eliptik yang diselesaikan derigedah baru ditunjukkan dan
kemudian keputusan ini dibandingkan dengan pergieledepat yang diberikan. Sebagai
permulaan, pengiraan dijalankan dengan resolusig yeiih rendah. Seperti yang
dijangkakan, hasil yang lebih tepat boleh diperod¢dngan meningkatkan resolusi dan
penumpuan yang lebih cepat berlaku pada titik liarpi

Penyelidikan ini adalah sebagai permulaan kerjaapdda dimensi persamaan

eliptik melalui kaedah matriks pengoperasian gekmgbkecil Haar. Kami berharap dapat

melanjutkan kaedah ini untuk menyelesaikan persama*fsapan,%:ktlzu dan

2
persamaan gelomba o= c’0%u pada satah.
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND AND LITERATURE REVIEW

The subject of wavelets has taken a place in tteet hef science, engineering,
mathematics and statistics (see Dahmen (2001))e¥ample, wavelet transform is applied
in detection of transient feature in a signal pssogy, image processing and data
compression. In signal processing, signals that kmeombination of smooth and rough
features are usually better represented in wavesis than other basis. In addition, the
availability of fast transform makes it quite atfige as a tool for obtaining numerical
solution of partial differential equations (PDES).

Most of orthogonal wavelet systems are definedmsdeely and generated with two
operations; translations and dilations of a sirfglection, known as the mother wavelet.
Wavelet systems with fast transform algorithm, suadh Daubechies wavelets (see
Daubechies (1988)) do not have explicit expressioth as such, analytical differentiation
or integration is not possible. Therefore, anyrafieto solve PDE with this orthogonal
wavelet usually will be complicated and difficut apply.

There are varieties of wavelet families. Among thee are more interested with
Haar wavelet because it is the simplest possibleelgd with a compact support, which
means that it vanishes outside of a finite interfralnumerical analysis, the discovery of
compactly supported wavelets has proven to be &ulus®l for the approximation of
functions, where a short support makes approximadioalysis local (see Mercedes and

Jose (2004)). However, the technical disadvantdgbeoHaar wavelet is that it contains



piecewise constant functions which means thatiscontinuous and hence at the points
of discontinuity the derivatives does not exists.

Orthogonal basis always have relationship withedéhtial equations, including
partial differential equations. Numerical solutiomiSPDEs have been discussed in many
papers. Most of them basically fall either in thass of spectral method such as Galerkin
and Collocation methods or finite element and déindifference methods (see Trefethen
(2000)). But, in general, they have shortcomings,jristance by using spectral method, the
solutions are oscillating when a sharp transitiooetur and it is not well suited for
handling localized features.

Since Haar wavelet is not continuous, therehaceways to fix this situation. One
way is as proposed by Cattani (2005) where he agigedd the Haar wavelet with
interpolating splines. But this step complicates #olution, thus the simplicity of Haar
wavelet are no longer beneficial. Therefore, wergitlapply this way in our work. Another
way is introduced by Chen and Hsiao (1997) wheeehighest derivatives appearing in the
differential equations are first expanded into Hesaries. The lower order derivatives and
the solutions can then be obtained quite easilyubywg Haar operational matrix of
integration. The derivation for Haar operationaltnmeof integration and other operational
matrix of an orthogonal function can be derivedlgdsom block pulse operational matrix
(see Wuet al. (2001)).

The ideas from Chen and Hsiao (1997) were lated liseGu and Jiang (1996),
Maleknejad and Mirzaee (2005), Razzaghi and Orduk(2001), Lepik (2005), Lepik
(2007) and Shet al. (2007) to solve other differential and integrBheir ideas were also
applied by Chen and Hsiao (1997) and Dai and Coc(809) to solve variational and
optimal control problems. Although the method hader applied successfully for

numerical solution of linear ordinary differentiauations by Chang and Piau (2008),



nonlinear differential equations by Harihargral. (2009), Lepik (2005) and Lepik (2007)
and fractional order differential equations by hidaHu (2010) and Li and Weiwei (2010)
but Haar wavelets or rather piecewise constanttimme in general, are not widely used for
higher order partial differential equations becao$ethe difficulty in determining the
accuracy and stability of the solution (see Ra@8)p

In view of successful application of Haar operatiiomatrix in numerical solution
of first order PDE as proposed by Wu (2009) andinear evolution equations with only
one space dimension by Lepik (2007), we now extdre method to solve the two

dimensions space elliptic equations in the Cantesterdinate system, given by;
O%u+k(x, y)u = f(x,y) (1.1)

where xand y being the independent variables anc u(x,y) being the dependent

variable whose form is to be found by solving tlypiaion depending on the Dirichlet

2 2
boundary conditions. The Laplacian is defined®y = % + %
X y

Elliptic equations have been chosen to test numlenmethods due to their
availability of exact solutions and they often tgtace in many physical applications. For
example, solutions of Laplace equation always appedeat and mass transfer theory,
electrostatics, elasticity, fluid mechanics andeotmechanics and physics field. Poisson
equation also has broad utility such as in eletdtics, mechanical engineering and
theoretical physics. And the Helmholtz equationsometimes called the reduced wave
equation plays a fundamental role in many mathexalathodel of physical phenomena and
engineering applications, including acoustic radra{see Copley (1968)), heat conduction
(see Altenkirchet al. (1982)) and water wave propagation (see KawahadaKashiyama

(1985)).



The idea behind Haar wavelet operational matrixthis conversion of partial
differential equations into matrix equations whintiolve finite variables and it need much
attention because multiple integrations are invlvemethod by Wu (2009). For example,

as proposed by him, the integration of equationl)(1can be written as

DuXxyy =

O ey <

1x1
”juxxw dxdxdydy . However, our proposed method is much simpler @vet
y 0 x

to the method by Wu (2009) since we have introduted separate expansion for

differential operators aglu, (x,y) = H" (x)CH(y)and Ou,,(x,y) = H" (x)DH (y) where

C and D are unknownmxm coefficient matrices. To produce the nice propsrtof
coefficient matrix as given in section 2.2, we hagestudy the previous work by Wu
(2009) on the function expansion for two dimensidaactions.

Numerical results illustrating the behavior of theethod are presented and are

compared to exact solution at collocation poinis aihnon-collocation points.

1.2 OBJECTIVES

In summary, the objective of this research is preghan the following way:

a. To establish a general formula for single and deubtegration of Haar
operational matrix and to obtain some relation imvig Haar operational
matrix related to boundary value problems.

b. To establish Haar wavelet expansion for two din@msi functions,
u(x,y) =HT(X)CH(y) and to identify some properties of coefficient

matrix, C.



C. To expand a two dimensional functiom(x, y) as Haar wavelet series and
use them to develop a numerical technique for sgleiliptic equations.

d. To formulate the Haar operational matrix method simlving the two
dimensional Laplace, Poisson and Helmholtz equstianth Dirichlet
boundary conditions.

e. To verify the effectiveness of the proposed methats numerical

experimentations using Matlab software.

1.3 ORGANIZATION OF THE THESIS

This thesis is organized as follows. The introdocteart is including background
and literature review, the objectives of this reskaand the review of operational matrix
for block pulse functions and Haar wavelets.

In chapter two, Haar wavelets operational matrixirgégration are studied and

applied for solving linear ordinary differential wation. Then, we explain how to expand

function defined onL2([O D x[0 ,1))and the Laplacian operator as Haar wavelet series

including the method to determine the coefficieratnx, C. Next, we show how the
proposed method takes place in solving ellipticagigus by considering a general equation
which has application in mathematical physics.

Chapter three presents a methodology for applyonépur different cases. Their
results are shown and compared to exact solutiengi The discussions of these findings
are also written in chapter three. Finally, chafoer is the conclusion of research findings

and some recommendations for future studies.



1.4 REVIEW OF OPERATIONAL MATRIX FOR BLOCK PULSE FUNCTIONS

The orthogonal set of block pulse functions (BPf®ye been studied and applied
extensively in system analysis and fields of cdntheory. Block pulse functions were
introduced by Harmuth (1969) to electrical engisedmater, Cheret al. (1977) expressed
this orthogonal set of functions in a proper mathatral setting. Block pulse functions
have attracted the attention of researchers whoghgdoand found computational
convenience and simplification in the related althons.

It is well known that an integrable functiar(x) defined in the semi-open interval

[0, 1) can be expanded in amterm BPF series as stated by Sannuti (1977),
u(X) = Coby(X) + ¢y (X) +¢.b, () + .. (1.2)
wherec,,c,,c,,K are thec coefficients which can be determined by,
1
c = mj u(x)b (x)dx 1.3)
0

andb,,b ,b, ,K are the BPFsh(x ,)given as

1 & S x<¢,
b (x) = ).

0 , elsewhere

where & =1 andé¢, :'—+1 , Wherei = 0,,K ,m-1and m is positive integer.
m m

If the function u(x) is approximated as piecewise constant in each t&rbal, so

that it will be terminated at finite terms, henggx) can be written in the form as



TCRYLIEN (15)

It can also be written in a discrete form,

u(x) =cB,,(x) (1.6)

is called the coefficients vector and

where ¢’ =[c, ¢, ¢ .. ¢

bm_l(x)]T is the block pulse function vectdfigures 1.1(a)-

B, (X) =[by(X) By(X)

(d) show the illustrations of block pulse functiomsenm = 4,

by (%)
1
0.75 ¢
05 -
0.25
L L X
0 0.25 0.5 0.75 1
(@)
b, (x)
1y ——
0.75
05
0.25
L X
0 0.25 0.5 0.75 1

(b)



b,(x)

0.75

05

0.25

0 0.25 05 0.75 1
(c)
by(¥)

1 -
0.75}
05+
0.25}

L L I X
0 0.25 05 0.75 1
(d)

Figure 1.1(a)-(d): Block pulse functiornthvim = 4.

The corresponding matrix representation of Figuda)-(d) can be written as follows if

the matrix is taken at collocation points= g n=173,5and7 ,

(1.7)

o O o Bk
o o+~ O
o r O O
- O O O



This set of matrix has led to other operationalrioes, for instance operational matrices
for correlation, convolution and differentiation.

Performing the integration of the block pulse fumes from equation (1.4) or figure

1.1(a)-(d), obtains

:[bo(r)dl' = X, 0< x<% (1.8)
Ebl(r)dux—%, L5X<3 (1.9)
:[bz(r)dr:x—%, Sex<d (1.10)
Ebs(f)drzx—% %sx<1 (1.12)

For illustrations, the integration fds, (x) can be represented as follows;

)I(
d
bg(r)dr

1y
0.75
05

0.25

(@)



| d
Ty (n)dr

1y
0.75
05+
0.25
/ | X
0 0.25 0.5 0.75 1
(b)
X
[by(r)dr
0
1,
0.75+
0.5}
0.25+
L X
0 0.25 0.5 0.75 1
(©)
i
b, (r)dr
0 3
1y
0.75}
0.5}
0.25}
1 1 L X
0 0.25 05 0.75 1
(d)

Figure 1.2 (a)-(d): The integration of block putsaction for m= 4.



The integration of block pulse function whem= 4, can be represented as follows,
[ B.(7)d7 = Qg B,(¥) 1.12)
0

whereQg, is the 4 x4 operational matrix of block pulse functions whizan be noted as

11 1 1 14 1 1

8 4 4 4 2

N N

Q,, = L1 |73 . (1.13)
0o 0 = = 0o 0 = 1
8 4 2
o o o o 0o 0o =
i s | L 2 ]

Equation (1.13) can be extended to higher orden wieé general form below as stated by

Wu et al. (2001),

1 1 N1
2
1
110 - AN M
QBm:E 2 : 1-:(4)
M MO 1
0 0 A 1
L 2

The wide application of block pulse functions opieraal matrix shows that it has
definite advantages for solving problems involvimgegrals and derivatives due to the
clearness in expressions, simplicity in formulasionvith enormous reduction of
computational effort (see Sannuti (1977)) and édsy to use for deriving other operational

matrices because the block pulse mati,(x)is the identity matrix with an appropriate

order.

11



Basically, from equation (1.14) we can evaluaté the operational matrix of block

pulse functions for integratiorQ, has some features such as it is an upper triangtexm

with rank equal ton and it also ham eigenvalues with one distinct valuizLa,. Furthermore,

operational matrix for integration of block pulsen€tionsQy _is invertible. It follows from
formula Q, =®,, [Q, [, Wu et al. (2001) tell us that the operational matrix of
orthogonal functions® (x iy similar to the operational matrix of the blockilge

functions. Then, it can be easily proved tigt is also invertible sinc€);_is invertible.

1.5 REVIEW OF HAAR WAVELETS

Wavelets means ‘small wave’. Wavelet basis thatdwoaspact support allow us to
represent functions with sharp spikes or edges pituperty is more advantageous in many
applications such as in data compression and tigagm.

The Haar wavelets were first introduced by Alfredaldin 1909. After that, many
other wavelet functions were generated and intreducincluding the Shannon,
Daubechies, Legendre wavelets and many others. HWowamong those forms, Haar
wavelets have the simplest orthonormal series widmpact support and consists of
piecewise constant functions.

The basic and simplest form of Haar wavelet is lH@ar scaling function that

appears in the form of a square wave over theualex [ [0,1) as expressed below in

(1.15), and it is illustrated in the first subpfigure 1.3.
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L 1 ,0sx<1
ho(x):ﬁ (1.15)

0 ,elsewhere

The above expression is known as Haar father waweleere the zerotlhevel wavelet has

no displacement and dilation of unit magnitude.r€gpondingly, define

1 ,Osx<£
2
hl(x)=i -1 ,lsx<1 (1.16)
AJm 2
0 ,elsewhere

Equation (1.16) is called a Haar mother waveletretadl the other subsequent functions
are generated fronm, (x) with two operations; translation and dilation. Feample, the
third subplot in Figure 1.3 was drawn by the corapien h (x ) to left half of its original

interval and the fourth subplot is the same agthilvd plot plus translating to the right side

1
by +.
2

Explicitly, we can write out the Haar wavelet fayras (see Wu (2009)),

25 ’L < X< k + 05
o 2(1
1 ° k+05 k+1
h(X)=——=1 -22 , X<
9 Am 2° *
0 elsewherén [0,1) - (1.17)

wherei =1, 2 K , m-1 is the series index number and the resolution2’ is a positive

integer. Ana andk represent the integer decomposition of the indexe. i =27 +k in

whicha=0,1,K ,J-1andk=01,2,3,...,2° - 1.
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(@)
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hy (x)

0.7071
05 -

Il Il Il
0.25 0.5 0.75 1
-0.25 ;

-05 |

-0.7071

(d)

Figure 1.3 (a)-(d): Haar wavelet functions for= 4.

Each Haar wavelet is composed of a couple of cohsteps of opposite sign during its

subinterval and is zero elsewhere. Therefore, ifer2” +k, they have the following

relationship,

RN
N

Jl'hi(x)hj(x)dx = (1.18)

© 3

This relationship shows that Haar wavelets areoghal to each other and therefore
constitute an orthogonal basis. Hence, it will wllas to transform any function square
interval in the time interval [0, 1) into Haar wéeteseries.

Any function u(x) which is square integrable in the intenj8]1) can be expanded

into Haar series with an infinite number of terrssstated by Strang (1993),

U(X) = Ghp(X) + Gh (X) + S hy(X) + ey () + K (1.19)

or it can be decomposed as,

15



u(x) = >6h (9 (1.20)

where the Haar coefficients, can be written as
1
c = mj u(x)h, (x)dx (1.21)
0

Usually, for a general smooth functiaifx) , the series expansion of (1.19) contains
an infinite number of terms. However,u{x) is approximated as piecewise constants, then

the sum in equation (1.20) will be terminated afteierms and it can be compactly written

in the form,
m-1
u(x) = Y ch(x) (1.22)
i=0
or in discrete form
ux)=ciH.(x), x0O[0,1) (1.23)
where ¢, :[c0 c, K cm_l] is called the coefficient vector,
Him () =[M(x) h(x) .. h,(x)]is the Haar function vector arfds the transpose.

At the collocation points, the first four Haar faion vectors can be expressed in a

matrix form as the following,

16



Altogether, we have,

- 1 3 5 7
H,=| H H 2| H, 2| H,| =
= 5] nl5)ndE) ) |
11 1 1]
2 2 2 2
11 1 1
H, = 2 2 2 2
11,
V2o 2
1 1
O 0 — -——
i V2o 2 ]

In general, form= 2, it is an orthogonal matrix,

{ ( “lj ( lllj ( m ﬂ
2 2 2
where (H); =h(X; )

A mxm matrixH is an orthogonal matrix if

(1.24)

(1.25)

(1.26)

where H,, is the transpose dfl , and | ,is an identity matrix. In particular, an orthogonal

matrix is always invertible, therefore

17



HY=HT . (1.27)

This relation makes orthogonal matrices particylaghsy to compute with since the

transpose operation is much simpler than compatmipverse.

To claim that the Haar matrix (1.25) is orthogona, start the proving with matrix

product. It is given as
(AEB)ij = z Ar Brj (8)2
r=1

whereA is al xm matrix andB is a mx nmatrix. So, the number of columns Afhas to
be equal to the number of rows Bf Then, the producC = AIB is al xnmatrix. For

Haar matrix, we claim that
Ty —
(H,H.)= 5” (1.29)

where J is the Kronecker delta,

521 if iz
Yl o if i#

From left hand side of equation (1.29), we canenitiais follows

(Ho HD) = 3 (), (H]),
=Y (Ho) (H,),

=Y h (), (x,) (1.30)
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The following are the properties for the matkl, in equation (1.25):
a) Sum of element wise multiplication for any two difént rows ofH  is zero, i.e.

h (%D, 06) + B (DD, () +K +h (%,)h, (%,) =0, 1 # .

b) Forith row,i =27 +k, the number of nonzero element in that rO\Aé[ngs.

From property (a), Zhi(xr)hj(xr):o if i#j and if i=j, from (1.17),

r=1

Z h (x.)h; () :ZZ— = 202_ =1 (using property (b))ﬂencezm: h (X )h;(x,) =9;.
r=1 r=1 m 2 m r=1

With the definition of equation (1.25), the wavetetefficients in (1.21) and (1.23)

can easily be computed as

Cp=U,H (1.31)

2] (2] - (220]
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CHAPTER 2
METHODOLOGY

21 HAARWAVELET OPERATIONAL MATRIX METHOD

Similar to the block pulse functions, Haar wavéletctions are needed to perform
integrations in order to get the model problem sdIvThis approach has been introduced
by Chen and Hsiao (1997) by using the integratemhnique to Haar wavelet functions.
The integrals of the first four Haar wavelet fupnos discussed in Section 1.5 can be

expressed as following:

Iho(r)dr:%x, 0<x<1 2.1)
0

—X, 05x<1
X 2
[h(r)dr = 2.2)
0 11 1

— ==X, —<x<1

2 2 2

1 1

—X, O<sx<=

V2 4
¢ 1 1 1 1
h(r)dr=—-—X, —<X<= 2.3
[ROor=5 5" a5 @3

0 , elsewhere
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Jx'hs(r) dr =

In general, the integrals of (1.17) for 1,2,K ,m~-1 can be described as below,

a
2

2

.([hi(r)dr ==

For illustrations, the integration fdf,

Xh d
é o(0)dr

1y

0.75

1.1 1_..3
J2© 2d27 277 4
1 1
— - X, —<x<1 2.4
NG (2.4)
0 , elsewhere
k k k+05
X—— , —<Xx<
27 27 27
k+1 k+O.5<X<k+1 95
20 1 2a - 2a ( . )
0, otherwise

can be represented as follows;

0.5

0.25

0.25 05 0.75 1 X

(@)
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X
h,(7)d
(I) W (r)dr

0.75 r

0.5

0.25

(b)

Xh d
(J) 2 (r)dr

0.75
0.5

0.25

0.1768 [ \

(€)

I |3
l4 dZ
( )

1s
0.75
0.5

0.25

0.1768 A
. . )

0 0.25 0.5 0.75 1 X

(d)

Figure 2.1(a)-(d): The integration of Haar wavéletctions form=4.



At the collocation pointx = g n=135and7,

1 3 5 7
1 3 3 1
h 1l 2 2
H,(rdr=—| = ——= 0 0 | . (2.6)
! ' 16| V2 2
2 2
0 0 = =
J2 2.

The expression in (2.6) is the transformation & thtegrals fromh,(r )to h,(7)into

matrix form at the collocation points. The averagedues are taken to represent these

triangular functions. The integral df,(7) is a ramp function and the integral bf(7)is a

triangular function consisting of a rising ramp aadalling ramp. It is noted that the

absolute value of the slopes of these ramps isdhee. The integral df, (7) and h,(7) also

are triangular functions. However, it spans thst fnd the second half intervals.

In wavelet analysis for a dynamical system, allctions need to be transformed
into Haar series. Therefore, the integration of Heavelet functions whem =4, can be

represented as follows,

[Hi(@)dr =Qy Hu(x) . (2.7)
0
Or in general form,

[HA(D)d7=Q, H,(9) . (2.8)
0
And similar to transpose of Haar wavelet,

[HI(dr = HI(Q], (2.9)
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wheremxm matrix Q,, is called the operational matrix for integratidntb There are two
formulas that can be used in obtaini@y . One of them can be obtained by Chen and
Hsiao (1997) given as

ZrnQHm/2 - Hm/2
QH =5 (2-10)
oo 0

where 0 is a null matrix of order2+rD xg. Wu (2009) also showed one useful formula for
calculatingQ,, ,
Qu =H,@Q, H; (2.11)

where Qg is mxmoperational matrix of block pulse functions. Both tbe formula

produce the same result as shown below, for examptet,

11 1 _ 1
2 4 82 8/2
1, 11

S 82 82 (2.12)
o2 sz O °
1 1
a2 a2 0%

Zeros involved in equation (2.10) and equation 4L\&ill greatly simplify the solution

procedures and hence, it will be useful in speedmthe computation.

In this research we would also reqtheedouble integral of Haar wavelets,

X

[ H,00) dx %, =Q, Qu Ha(X) (2.13)

0

O &y X
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The expression for the left hand side of (2.13) fer12,K ,m-1 is obtained from

integrating (2.5),

0 , xO OLJ

20’
1[X_kj2 (ol X k+0.5j
X Xo 20’/2 E ? 1 20 ’7
dx,dx, == — —
Hh(xl) X, =

20’

1 k+1
22(]+2 ! XDl: 20 ’1j

1 _g[k+1_xj2 (o k+05 k+1j
22a+2 2 !

(2.14)

The expression of (2.14) is taken from the integrabf formula (2.5). At the collocation

point, a single integration dfl in (2.8) is accurate but when we did a doublegragon

(2.13), it incurs some error. However, as we inseethe resolution, the error will decrease

In addition, the following formula will be handy rfesolving boundary value

problems laterin which they might be simplifying our calculatiomethod.

QHmHm(1)=%9m

HI Q) :%6;

1
Qy,Qu Hn@ = Im A
and
HI QL QL = ——A]
m Hpn XH, \/E m

(2.15)

(2.16)

(2.17)

(2.18)
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whered! =[1 0 0 K 0 and/\Tm:[1 t 111 1

E’?’W’W'?’K ,WJ.The proving

for equation (2.15) and (2.17) are as follows;

Proof 2.15:
1
Qu,Hu(@) = [H,(7)d7
0
1
:j[ho(r)dr h(r)dr A A h(r)dr]"
0
1 T
1
= j—dr 00 AADO
o vim
1
=——46.
Jm "
Proof 2.17:

Qu,Qu, Ha® = [Qu Hn(D)dr

_ 1

_QHm(\/E ng
1

_ﬁQHmHm

NEI

Jm

Notice thatA is equal to the first column of the Haar operagianatrix, Q, .

Before we go through the application on two dimenal functions, let demonstrate
the Haar wavelet operational matrix method for s@wne dimensional function problem.

Consider a linear ordinary differential equationegi as in the equation (2.19) that has been
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used by Chang and Piau (2008) to demonstrate greposed method by using Haar
wavelet basis. They introduced the designation africes forP function as their key

procedure in solving linear ordinary differentigjuation.
u"(x) + u(x) = sinx+ xcosx (2.19)
in the intervak [0 [0,1) with the initial conditionsu(0) =1 andu’(0) =1.

Firstly, assume the highest derivatives appearirtbe differential equations (2.19) is
expanded into Haar series as below,

u'(x)=c/H_(x) . (2.20)
We integrate equation (2.20) twice with respect émd it yields,
u'(x) = jc,;Hm(x) dx +u'(0)
0

= CrQu Hp(X) +VmEIH, (x) (2.21)

and,

u(x) = fc;QHmHm(x) dx +f\/ﬁen:Hm(x) dx +u(0)
= CrQ4 Hn () +/méQ,, H(X) + VM H , (x) (2.22)

whereu'(0) =u(0) = \/EH;Hm(x) since both of initial conditions are equal to 1.

Then, we substitute equations (2.20) and (2.28) ({2119)
Cn+CrQ%, +M6,Q,, +/mé], =k}

and rearrange them, we solve fdjr,
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T
m

wheresinx + xcosx =k H_(X) .

(I, +Q2 )=kl —Vm&, -Vm,Q,,_

(2.23)

After getting the coefficient matrixg| , then we can obtain the solution ofx)

from equation (2.22). Then, the numerical resutt ba compared with exact result from

u(x):cosx+%sinx+%(xzsinx—xcosx), (See Appendix L and Appendix M). The

following tabulated values in Table 2.1 and FigRr2 are set up for comparison.

Table 2.1: Results for linear ordinary differenggjuation.

Solution Absolute | Absolute

X (/132) Numerical (Chang & Exact error |, | error Il

solution,R Piau 2008)S solution, T R—T| S—T]
1 1.030305 1.030777 1.030767 | 0.000462| 0.000010
3 1.089088 1.089527 1.089496 | 0.000408| 0.000031
5 1.144350 1.144880 1.144700 | 0.000350( 0.000180
7 1.196353 1.196844 1.196643 | 0.000290| 0.000201
9 1.245364 1.247001 1.245594 | 0.000230| 0.001407
11 1.291649 1.293240 1.291819 | 0.000170| 0.001421
13 1.335466 1.337136 1.335577 | 0.000111| 0.001559
15 1.377065 1.378678 1.377118 | 0.000053| 0.001560
17 1.416677 1.427640 1.416676 | 0.000001| 0.010964
19 1.454518 1.465381 1.454467 | 0.000051| 0.010914
21 1.490778 1.501598 1.490681 | 0.000097| 0.010917
23 1.525622 1.536265 1.525485 | 0.000137| 0.010780
25 1.559183 1.570336 1.559012 | 0.000171| 0.011324
27 1.591562 1.602462 1.591364 | 0.000198| 0.011098
29 1.622824 1.633465 1.622605 | 0.000219| 0.010860
31 1.652994 1.663308 1.652763 | 0.000231| 0.010545
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1.8

1.7+ =

1.6

1.5+

1.4¢

solution function

1.3¢

1.2+ Numerical solution

1.1b —— Exact solution

Figure 2.2: Comparison between exact solution amdemical solution of linear
ordinary differential equation whem=16.

The results for numerical solution of our methodi &hang & Piau method are
shown in Table 2.1 form=16, which confirms that with respect to Haar wavelet
operational matrix method our approach producesenaal solutions which are closer to
the exact solutions compared to the values prodbge@hang and Piau (2008). Better

approximation is expected by choosing a largerevalum.

22 FUNCTION APPROXIMATION FOR TWO DIMENSIONAL FUNCTIONS

Similar as one dimensional function, a two dimenalofunction u(xy)in the

interval 0< x<land0< y<1 also can be expanded into Haar series by
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m-1m-1

u(xy) = ZZ c;h (3)h;(y)

i=0 j=

c; is the Haar coefficient for two dimensions, gilenWu (2009) as

6, = [utx, y)h (9 hy () cecly

O ey =

(2.24)

(2.25)

wherei =27 +k , (a20, 0sk<2'-1) andj=2"+q , (820, 0<sq<2”-1).

Figure 2.3: The basis for Haar wavelet functionthwn = 4.

Then, (2.24) can be decomposed as,

u(x, y) = Hp(\)C,H(y)

(2.26)
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where C, is now the coefficientmx m matrix. The main point for solving second order or
higher order PDE is the determination@f . If the functionu(x, y) is known, so thaC,,
can be computed quite easily at the collocationts(x, y,) as,

C,=H U _[H (2.27)

where the matrix functiotl , is given by(Um)ij =u(x,y;)atx,y; = ZLZiK 22—_1
m 2m m

Now let us specify the matrix form fou, (x ,0) u, (0 y), yu,(x,0) and xu, (O, y) in

solving partial differential equation. Notice thadt these functions are separable. First, we

consider a function which is separable, uéx, y) = s(x)g(y). Let,

S0 =3 Hh () (2.28)
and
90 =3 a1, (¥) (229

whereb and a, are the Haar coefficients &{x) and g(y) respectively. Therefore,

m-1m-1

s(x)g(y) = bah (9h;(y) (2.30)

i=0 j=0
Equation (2.30) implies that a new form of coeffiti matrix can be determined for

separable function by multiplication of Haar coeffnts b and a;, hence it yields to
c. =ba,. In matrix form, the coefficient matrixC,, for separable function can be

decomposed as
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[ ba, bha A ba,
ba, N A ba,

M O A M

_aObm—l A bm—lam—l |

by
by
= |l & Koa
bm—l
= Yl (2.31)
by
wherey,, = :l/l anda! =[a, a, K a,,]. a,andy, are known column vectors
bm—l

from (2.28) and (2.29).

For the case of separable function, some usefuat for coefficient matrix,C are listed

below.

a- If the function is independent of, for example u(x,y) =s(x), by using

equation (1.23) and equation (2.31), we can exprégss function as

Uxy)=S(x)(1,  then s()=yIH.(x) and g(y)=1=——hy(y)
Tm

hy ()
:%[1 0 0K (] hl(l\;’) =JmETH_(y). It yields to

hm—l ( y)
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u(x,y) =s(x) 1

= yrHL() B/mEIH . (y)
= H o VM, 6iH . (¥)
Then,
C,, =vmy, 6]
by
=4/m bl\;l [1 0 0 A O]
bm—l
" Jmb, O A O]
[ Jmb 0 A O
M MO M
| JVmb,, O A O

Notice that only the first column ofC  is non-zero. Matrix above and

subsequent can also be computed from equation)(2.25

b- If the function is independent of, for example u(x,y) =g(y), by using

equation (1.23) and equation (2.31), we can exprégss function as
u(x, y) =1lg(y), thens(x) =1=+vmH (x)6,, and g(y) =a'H_(y). It yields
to
u(x,y) =1lg(y)
=mH_ (08, lyH . (¥)

= H] (\)Vm8,anH . (y)
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Then,

_ 0 0 A 0
M M O M
0 0 A 0

Notice that only the first row o€, is non-zero.

c- If the function isu(x,y) = ys(x), we can express the function as separable,

u(x,y) = yls(x). Then, s(x)=yIH (x) and
y y

9(y) =y = [1dy = [Vmg H, (y)dy =VmE,Q, H(¥) - It yields to
0 0

u(x,y) = yIs(x)
= H (VMY 87Qu, Hin(Y)
whereQ, is mxm operational matrix of Haar wavelet a@j, is given as

C:m = \/Eymer-r:QHm
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d- If the function involved isu(x,y) = xg(y), we can express the function as

separable, u(x,y) =xig(y). Then, a(y) = a;Hm(y) and
s(x) = x = [ 1dx = [VmHT ()8, dx = JmH ] ()Q], 6, . It yields to
0

u(x, y) = xg(y)
= H] ()VmQ], 8,anH,.(Y)

whereC,, =VmQ}, 8,a7.

e- If the function involved is any constant numblersuch thatu(x,y) =k, then
s(x) =k =ky/mH ()8, and g(y) =1=vmé& H_(y). It yields to
u(x,y) =kl1
=kymH[ ()8, /M6 H,,(y)
=H ., ()km8, G H ()
where

C,, =kmé,d"

1
0

=km 01{[1 0 0 A O]
M
0

~ O X X
© z o o

Notice that only the first element @ is non-zero.
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From the useful form coefficient matrix above, vam avrite them as follows for later

reference.

Let g(y) = anH,(y) ands(x) = ypH,(x).
i) The coefficient matrix ofi(x, y) = s(x)g(y) is C,, = y,.a,..
ii) The coefficient matrix of1 (0,y )s C,, =vmd,a’.
iii) The coefficient matrix ofku, (O,y Js C_ = \/ﬁngﬁma;.
iv) The coefficient matrix otu (x,0) is C, = \/ﬁym o, .
V) The coefficient matrix ofyu (x 0)s C,, = x/ﬁymH;QHm
vi) The coefficient matrix ofi(x, y) =k, wherekis constant given as,
km if i=0andj=0.

0 ifiz0orj#O0.

23 ANALYSISOFELLIPTIC EQUATIONSBY USING PROPOSED METHOD

A general form of a linear second order PDE cawtigen as,

au,, +bu,, +cu, +du, +eu, +ku=f(xy) (2.32)

whereu = u(x,y)anda, b, ¢, d, e, k andf are functions ok andy only, they do not depend

onu. If f =0, the equation is said to be homogeneous. Tsietfiree terms in equation
(2.32) containing the second derivatives are caledprincipal part of the PDE in which

they determine the nature of the general solutiahé equation.
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In fact, in this research we only consider whn- 4ac < 0, where the PDE is said
to be an elliptic equation. If the coefficientstbé principal part hava=1,b =0 andc = 1,

therefore it constitutes the two dimensional Laplaquation,

0°u  d°u _
+

bl Bl 2.33
x> ay’ (2.:33)

wherek =0 and f =0. The other two dimensional elliptic PDEs are Raiissquation

0°u 0%
—+— = f(x, 2.34
FYPY: (x,y) (2.34)

with k=0 and f # 0, and Helmholtz equation

0°u 0%
—+—+ku=f(x 2.35
o oy (x,y) (2.35)

where k#0 and f #0. For the purpose of analyzing the numerical tep®ji the
Helmholtz equation is chosen due to the generah flmr two dimensional elliptic PDE.

With the understanding that all matrices are sizem dependencegssume that,,, u

u and f (x, y) can be expanded in terms of Haar wavelets as,
Ug (X%, Y) = HT (X)CH(y) (2.36)
u,, (xy) = HT (X)DH(y) (2.37)
u(x,y) = HT (X)VH (y) (2.38)
f(xy) =H"(X)ZH(y) (2.39)

whereC, D andV are unknowmm xm coefficient matrices, whil& is a known matrix.
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By integrating (2.36) and (2.37) from Ox@nd O toy twice respectively, we obtain

U, (% y) =HT(X)QCH(y) +u, (0 y) (2.40)

u(x, y) =H" (X)Q{QICH(y) + xu, (0,y) +u(0,y) (2.41)
and

Uy (%, y) =H" (x)DQ,H(y) +u,(x0) (2.42)

u(x, y) = H" (x)DQ,QuH (y) + yu, (x,0) +u(x0) (2.43)

The properties of (i), (iii), (iv) and (v) in segh 2.2 are then substituted into equation

(2.40), (2.41), (2.42) and (2.43) respectively as,

U, (%, y) = HT()QF CH (y) +VmHT (x)8a"H (y) (2.44)
u(x,y) = HT ()QLQICH (y) +VmHT (X\)Q}; 6a"H (y) +VmHT ()68 H (y) (2.45)
and

u, (% y) = HT(X)DQ,H(y) +~/mHT ()" H (y) (2.46)

u(x,y) = H" (\)DQ,Q, H(y) + VmH T (x))8"Q, H(y) + VmHT (x)A8"H (y) (2.47)

where a, B, y and Aare known column vectors or can be deduced fromgitien

boundary conditions. Remember, there are threeamkrcoefficient matrices that we have
to find out. Firstly, from equation (2.35), we catetermine the matri®, where

C+D+kV =Z, so that
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D=Z-C-kV. (2.48)
In order to findV , we need to substitute (2.38) into (2.45),
V =Q!QlC+VmQ 6a" +/mga" (2.49)

or (2.47), it yields

V =DQ,Q, +Vmyg'Q, +/mid"
\ +kVQHQH = (Z _C)QHQH +\/ﬁ(y9TQH +/]9T)

V(I +kQuQ4) = (Z - C)Q,Q, +VM(y8'Q, +A6"). (2.50)
To reduce the algebraic term, we Rt=1 + kQ,_,Q,,, wherel is the mxm identity matrix.
In order to findC, we then substitute (2.49) into (2.50),
(QLQIC+VmQl8a™ +Vmp")P =(Z -C)Q,Q, +Vm(H'Q, +16").
Rearranging gives in the form of Sylvester typerimdGolub et al. 1979),

(Q})*C+C(Q2)P™=(2Q,Q, +Vm'Q, +/mi1g")P™

2.51
~(VmQ}.6a™ +mgs")I. (2:51)

From equation (2.51), we can solve f0r by using Matlab matrix equation solver
lyap or Hessenberg-Schur method (Golub et al. 197%tly,ave calculatau(x, y) in (2.45)
or (2.47). The unique solution of equation (2.5 guaranteed under the assumption that

the matrixP is non-singular and that matric&, and Q;P™ have no eigenvalues in
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common (Golub et al. 1979). For clarifying the abg@vocedure, we choose some examples

in which suit to our proposed methods.
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CHAPTER 3
NUMERICAL SOLUTION OF ELLIPTIC EQUATIONSBY
USING THE PROPOSED METHOD

31 INTRODUCTION

As mentioned earlier, we will test the proposedhodtto the Laplace equation,
Poisson equation and Helmholtz equation in theeSam coordinate system with Dirichlet
boundary conditions. It consists of two examplaslfaplace equations, one example for
Poisson equation and Helmholtz equation. These pbesnare considered because closed
form solutions are available for them and thiswaiaus to compare the results obtained.
Then, their results are divided into two partsc@itocation points and at non-collocation
points in order to see the comparison of speedo¥ergence between these two types of

result.

3.2 EXAMPLESOF LAPLACE EQUATIONSAND RESULTS

Example 1

Consider the two dimensional Laplace equation & @artesian coordinate system, with

the boundary conditions,

u(0,y) =u(,y) =u(x1) =0 andu(x,0) = x(L - x).
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At first, let

u(x,0) = x(L-x) = H" (x)A (3.1)

where A is a known column vector computed from (1.31).

From equation (2.33), (2.36) and (2.37), we camiobt

D=-C . (3.2)

The value for" can be obtained directly from the boundary condiggven, implies that
u(0,y) =0. While the boundary conditiona(l, y)and u(x,1) can be used to obtain the

value fora™ and y through the calculation below.

Whenx =1,
HT QLQLCH (y) +VmHT MQ8a"H(y) =0
1 1
AN C+Jm—=—6"6a" =0
Jm Jm
1
a =-—N'C
Jm

and whery =1,

HT(x)DQ,QuH @ +VmHT (x)y8"Q,H @) +H" ()4 =0

_ 1

1
CA+JVm—@'A+1=0
Jm m?

1
=—CA-A.
Y= m

Then, equating equation (2.45) and (2.47), andtgutisg (3.2) and the value for

a’,y,A and BT, we obtain,
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Q1 (Q -an" e +clQ, -8R, +VmieT(Q, ~1)=0 (33)

where | is the mxm identity matrix. Equation (3.3) is the Lyapunoé&y/matrix equation
and we can solve fdZ.

Finally, the solution from (2.45) is then given by

u(x,y) = HT()Q (QF - 67" )CH (y) (3.4)

which will be compared with the exact solution (#e8colo (1998)), given as
8w 1 . .
u(xy) =—>. Esm(a)nx)smr(wzr(l— y))cosecliewr)
T w

where cis an odd number.

Some results of computation are presented in Taidable 3.2.

Table 3.1: Results for example 1 at non-collocagioimts.

Numerical Solution

Ill\lon:[_ Exact
collocation | ¢\ tion

Points m=28 m =64 m=1024

u(0.1, 0.1) | 0.061651 | 0.046079| 0.062213| 0.061686
u(0.2,0.2) | 0.081897 | 0.080790| 0.081529| 0.081875
u(0.3,0.3) | 0.080643 | 0.079128| 0.080242| 0.080619
u(0.4,0.4) | 0.068227 | 0.061365| 0.068459| 0.068242
u(0.5, 0.5) | 0.051329 | 0.039623| 0.049946| 0.051243
u(0.6, 0.6) | 0.034285 | 0.039623| 0.034020| 0.034269
u(0.7,0.7) | 0.019675 | 0.020678| 0.020273| 0.019713
u(0.8, 0.8) | 0.008809 | 0.007462| 0.008398| 0.008784
u(0.9, 0.9) | 0.002206 | 0.000812| 0.002274| 0.002210
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Table 3.2: Results for example 1 at some repreteata
collocation points withm = 64.

Collocation Paints | o100 | 'S iion |~ Evror
u(15/128, 15/128) | 0.067296 | 0.067299 | 0.000003
u(31/128, 31/128) | 0.083282 | 0.083279 | 0.000003
u(47/128, 47/128) | 0.073066 | 0.073057 | 0.000009
u(63/128, 63/128) | 0.052698 | 0.052685| 0.000013
u(79/128, 79/128) | 0.031550 | 0.031538 | 0.000012
u(95/128, 95/128) | 0.014592 | 0.014584 | 0.000008
u(111/128, 111/128)| 0.003890 | 0.003888 | 0.000002
u(127/128, 127/128)| 0.000013 | 0.000013 0

0.25
0.2

0.15 SRR

RN
RSSRRR
R

0.1 IR

exact

0.05

Figure 3.1: The surface plot with contour for exsaution of example 1.
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Figure 3.2: The bar graph for numerical solutiomx@mple 1 withm=8.

Example 2

For second example, consider Laplace equation thighfollowing boundary conditions,

which is all boundaries are nonzero terms.
u(x,0=x>,u0y)=-y*>,u(x)=x*-1andu(,y) =1-y>.
From the boundary conditions given, let them bthématrix form,

u(x,0) = x> = H ' ()4, (3.5)

u(@©,y) =-y* =By H(y) (3.6)
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u(x) =x*>=1=H" (x4, (3.7)

uly) =1-y*=BIH(y). (3.8)

The next work is we need to find the value forand y .
Whenx = 1,
HT@QLQICH(y) +VmHT Q] 6a™H(y) + B H(y) = BT H(y)

1 1
—NC+ym—8"6a" + 5" =3
P m ﬁo By

a = - - N'C

Jm
and whery =1,
HT(X)DQ,QuH (1) +~/mHT (x))8"Q,H () + HT (x)A, = HT ()4,
- L en+dm-t oo+, =4
\/E m 0 1
y=A -4 +iC/\.
1 0 m

Similar as example 1, we equate equation (2.45)(a”¥), and substituting (3.2) and the

value fora™, y,A and 8" we obtain,

QL@ - )c+clQ, -AfTR, =Vm(4, - 4)6"Q,

3.9
-JmQL OB - A7) +m(A,8" - 85;). &9

Equation (3.9) is a Lyapunov-type matrix equatibne final equation will be

u(x,y) = H (x)Q} (Q}) = 6\")CH (y) +mHT (x)(QL8(B] - ;) + 8B )H(y).  (3.10)
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and Xue (1999)),u(x,y) = x* — y.

Table 3.3: Results for example 2 at non-collocagioimts.

colll\(l)?:g;ion Exa_ct Numerical Solution

Points Solution m=38 m =64 m=1024
u(0.1, 0.5) | -0.240000| -0.309349 | -0.247518| -0.240469
u(0.2,0.5) | -0.210000| -0.279609 | -0.219702| -0.210606
u(0.3,0.5) | -0.160000| -0.218159 | -0.165029| -0.160313
u(0.4,0.5) | -0.090000| -0.125000 | -0.099118| -0.090567
u(0.5, 0.5) 0 0.000000 | -0.000000| -0.000000
u(0.6,0.5) | 0.110000| 0.000000 | 0.104007 | 0.109629
u(0.7,0.5) | 0.240000| 0.156841 | 0.225596 | 0.239101
u(0.8,0.5) | 0.390000| 0.345391 | 0.389673| 0.389980
u(0.9,0.5) | 0.560000| 0.565651 | 0.549357 | 0.559336

Table 3.4: Results for example 2 at some repreteata
collocation points withm = 64.

Collocation Paints | < B | "Selition | Enor
u(15/128, 63/128) | -0.228516| -0.228478 | 0.000038
u(31/128, 63/128) | -0.183594| -0.183576 | 0.000018
u(47/128, 63/128) | -0.107422| -0.107417 | 0.000005
u(63/128, 63/128) 0 -0.000000 | 0.000000
u(79/128, 63/128) 0.138672| 0.138676 | 0.000004
u(95/128, 63/128) 0.308594 | 0.308609 | 0.000015
u(111/128, 63/128) | 0.509766 | 0.509801 | 0.000035
u(127/128, 63/128) | 0.742188| 0.742247 | 0.000059

Then, the solution of (3.10) is compared with thaat solution (see Will (2010) and Shu
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Figure 3.3: The surface plot with contour for exsaution of example 2.
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Figure 3.4: The bar graph for numerical solutioexémple 2 withm
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3.3 EXAMPLE OF POISSON EQUATION AND RESULTS
Example 3

Consider the Poisson equation
u, +u, =6xyd-y)-2x° (3.11)
subject to boundary conditions,
u(y) =u(x,0) =u(x) =0 andu(,y) = yd-vy).
Let
ya-y) = BH(y) (3.12)
and
Bxy@-y)—2x> =HT(X)ZH(y) (3.13)

where B, and Z are coefficient vector and matrix respectively. rerequation (2.36),

(2.37), (2.39) and (3.11), we can obtain,
D=z-C. (3.14)

The next work is we need to find the value éorand .

Whenx = 1,
HT MQLQLCH(y) +VmHT (Q]6a"H(y) = BTH(y)

1 1
= ANC+Jm—=—6"6a" = 3"
Jm Jm Fo

49



a" =g - ANC

and wherny =1,

HT(x)DQ,QuH @) +VmH T (x))8"Q H (1) =0

(Z-C)Q,QH® +Vme'Q,H (1) =0

(Z_C)i/\+1/myg1—i5:0
_ 1 1
Y= —\/_Z/\+—\/_C/\.

Then, equating equation (2.45) and (2.47) and gubsg equation (3.14) and the value for

a’,y,A and BT, we obtain,

Qi (@r -av)c+clQ, -AFT R, =2QuQ —ZAE'Q, -VMQLEE  (3.15)

which can be solved fd via Lyapunov-type matrix.

The final equation will be
u(x, y) = H' (x)Q} (QIC ++méB] ~aN'C)H(y). (3.16)

After all, the final equation will be compared wilkact solution (see Richard (2006)),

given by

u(x,y) = y@-y)x®.
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Table 3.5: Results for example 3 at non-collocagioimts.

Non- Exact Numerical Solution
colloqation Solution m=8 m=64 m=1024

Points
u(0.1, 0.1) 0.000090 | 0.000008 | 0.000095| 0.000090
u(0.2, 0.2) 0.001280| 0.000953| 0.001171| 0.001273
u(0.3, 0.3) 0.005670| 0.006528 | 0.005992 | 0.005690
u(0.4, 0.4) 0.015360 | 0.020711| 0.015162| 0.015348
u(0.5, 0.5) 0.031250| 0.044110| 0.032734| 0.031342
u(0.6, 0.6) 0.051840| 0.044110| 0.052183| 0.051861
u(0.7, 0.7) 0.072030| 0.070228 | 0.071222| 0.072313
u(0.8, 0.8) 0.081920| 0.081880 | 0.081894 | 0.081920
u(0.9, 0.9) 0.065610 | 0.047448 | 0.066167 | 0.065646

Table 3.6: Results for example 3 at some repreteata

collocation points withm = 64.

Collocation Paints | 00| S lion | Eror
u(15/128, 15/128) 0.000166 | 0.000166 0
u(31/128, 31/128) 0.002607 0.002607 0
u(47/128, 47/128) 0.011503 | 0.011504 | 0.000001
u(63/128, 63/128) 0.029801 0.029804 | 0.000003
u(79/128, 79/128) 0.055546 | 0.055552 | 0.000006
u(95/128, 95/128) 0.078227 0.078233 | 0.000006
u(111/128, 111/128)| 0.075109 | 0.075106 | 0.000003
u(127/128, 127/128)| 0.007571 0.007543 | 0.000028
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Figure 3.5: The surface plot with contour for exsaution of example 3.
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Figure 3.6: The bar graph for numerical solutioex@mple 3 withm
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34 EXAMPLE OF HELMHOLTZ EQUATION AND RESULTS

Example 4

Consider the two dimensional Helmholtz equatiothanform
U, +u, +ku=(k-27°)sin(rx)sin(ry)
subject to the boundary conditions given as follows
u@,y) =u(x,0) =u@y) =u(x)) =0 andk = 05.
Let
(k — 27 sin(rrx) sin(zry) = H' (X)ZH (y)
andu(x,y) =HT (X)VH (y). From (2.48),

D=Z-C-05V.

(3.17)

(3.18)

(3.19)

From boundary conditions given, we can determirteraatically the value fof3™ and A,

in which both of them are zeros. Then, the valueafband y are as follows;

Whenx =1,
HT QLQLCH (y) +VmHT QL fa"H(y) =0

L ac+dmLtgasr =0

Jm m

1
Jm

N'C
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and whery =1,

HT(x)DQ,QuH @ +VmH (x)y8"Q,H(®) =0

_ L

1 i
mD/\Nﬁﬁya/\_o

y=—iD/\.

Jm
In order to findV , we need to substitute (2.38) into (2.45) andqR.4
V =Q/Q/C+VmQ}da”
=QIQ!C +VmQL8(-—— ATC)
Jm
=QIQIC-Ql6N'C (3.20)
and
V =DQ,Q, +Vmyd'Q,
=(Z-C-05V)Q,Q, + \/ﬁ(—i DA)8'Q, H
Jm

V(I +05Q,Q, - 05A07Q,,) =2Q,Q, -CQ,Q, -ZAF'Q, +CAF'Q,.  (3.21)

At this stage, we leP =1 + 05Q,,Q, — 05A8'Q,,, wherel is the mxm identity matrix.

Then, we substitute (3.20) into (3.21),

(QiQLC-QINC)P =ZQ,Q, —-CQ,Q, ~ZAE'Q, +CNE'Q,,.

Rearranging,
(QLQ, —Q AN )C+C(Q,Q, ~NF'Q,, )P +(-2Q,Q, +ZANE'Q, )P =0. (3.22)
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Equation (3.22) is the Sylvester-type equation.

Lastly, the numerical solution
u(x,y) = H'Q[(Q] —6\")CH (3.23)
is compared to exact solution (see Natshal. (2007)),

u(x, y) =sin(nx)sin(ny).

The plot of exact solution analx, y) are shown in Figure 3.7 and Figure 3.8 respegtivel

Table 3.7: Results for example 4 at non-collocagioimts.

COI{\(I)(():r;:[ion Exapt Numerical Solution

points | “oMiON | m=g m=64 | m=1024
u(0.1,0.1) | 0.095491 | 0.037061 | 0.098356 | 0.095672
u(0.2,0.2) | 0.345491 | 0.300556 | 0.331418 | 0.344616
u(0.3,0.3) | 0.654508 | 0.673194 | 0.668170 | 0.655383
u(0.4,0.4) | 0.904508 | 0.936689 | 0.901232 | 0.904327
u(0.5,0.5) | 1.000000 | 0.936689 | 0.998986 | 0.999996
u(0.6,0.6) | 0.904508 | 0.936689 | 0.901232 | 0.904327
u(0.7,0.7) | 0.654508 | 0.673194 | 0.668170 | 0.655383
u(0.8,0.8) | 0.345491 | 0.300556 | 0.331418 | 0.344616
u(0.9,0.9) | 0.095491 | 0.037061 | 0.098356 | 0.095672

55



exact

Table 3.8: Results for example 4 at some repreteata
collocation points withm = 64.

Exact Numerical Absolute

Il tion Point ) .
Collocation Points Solution Solution Error

u(15/128, 15/128) 0.129524 | 0.129471 | 0.000053
u(31/128, 31/128) 0.475466 | 0.475270 | 0.000196
u(47/128, 47/128) 0.835779 | 0.835435 | 0.000344
u(63/128, 63/128) 0.999398 | 0.998986 | 0.000412
u(79/128, 79/128) 0.870476 | 0.870117 | 0.000359
u(95/128, 95/128) 0.524534 | 0.524318 | 0.000216
u(111/128, 111/128)| 0.164221 | 0.164153 | 0.000068
u(127/128, 127/128)| 0.000602 | 0.000602 0
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0.4

0.2

= O

Figure 3.7: The surface plot with contour for exsmution of example 4.
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Figure 3.8: The bar graph for numerical solutiomxémple 4 withm=8.

Computer simulation is carried out for problemswhich the exact solution is
known. This allows us to estimate the precisiothefobtained numerical results. Since our
basis are piecewise constant functions, convergaiites collocation points is of order one
(see Saeedtt al. (2011)). At the non-collocation points, computenwgation with the help
of Matlab toolbox was carried out in the case=8, m=64and m=1064 in order to see
how far the value approach to the exact solution is

From the tables, it shows that Haar wavelet operal matrix approach for solving
two dimensional partial differential equations nuically get good agreements as we
increasedm. Moreover, the Haar approach provides excellentltesu certain points in

numerical evaluation, even if a small numbes used.
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A shortcoming in this method is we need to know tha matrixP in (2.51) is non-
singular and those matric€)’ andQ:P™ have no eigenvalues in common (Golub et al.

1979).
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CHAPTER 4
CONCLUSION AND FURTHER STUDIES

In this thesis, a new numerical method based onotfexational matrix of Haar
wavelets is introduced for solving two dimensioebiptic partial differential equations. Its
simplicity is checked on four test problems inchglone example for Helmholtz equation
and Poisson equation and two examples for Laplgoat®ns in the Cartesian coordinate
system with Dirichlet boundary conditions. The ael@d results are compared with the
given exact solution. As can be seen from Exampte Example 4, at the collocation
points, the results are very close to the exactisois even for small resolutiom,

The computations associated with the examplesistitiesis were performed using
Matlab toolbox. The main advantages of this methoel its simplicity, fast and small
computation cost due to the sparcity of the tramséml matrices. It has been well
demonstrated that in applying the useful form ef tbefficient matrixC the elliptic PDEs
can be solved conveniently and systematically. Smost elements of the matriddsand

Q, are zeros, it were contributed to the speedingfufne computation. Moreover, the

selection of using non-normalized Haar wavelet ase. the multiplication of Haar

wavelet family withi as shown in the formula (1.17) make Haar matiixorthogonal at

Jm

collocation points,H™ =H" and hence this also contributed to the simplicifythe
formulation and very useful in practice.

As discussed at the end of Chapter 3, a situatightnarise that equation (2.51) is
not solvable. Hence, this limits the applicatioroaf method for solving elliptic PDEs with
Dirichlet boundary conditions. In order to solvee tthyapunov-type matrix equation

uniquely forC, we need to impose an extra boundary condition.
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We think that this method can also be successfyplied to other two dimensional
partial differential equations by combining thisearch method and finite difference for

time derivative. Therefore, the method can be addnfurther to solve evolution
equations. For example, a diffusion equati%lg;r,: kO?u, can be numerically solved by

discretizing the time derivative with finite difeence and the Laplacian operator with Haar

basis. If we letU' be the matrix that approximategx, y,iAt), then it can be shown that

Ui+l__u_i

U' satisfies the implicit equatioty!** +U ETIRETTS This equation is similar to

the Helmholtz equation (2.35) which can be soltedhtively.

Moreover, in the future work we are also interesitedalculating the error bound in
order to analyze the convergence of our resultsti@nother hand, in real problems we
often tend to solve equations with unknown exatitsms. These unknown exact solutions
may be singular, smooth or not. Hence, when weyappt method to these problems, we
cannot claim that this approximation solution isogoor bad unless we are able to
determine the error bound. Therefore, it is neggstar us to introduce a process of
estimating the error function when the exact sotuis unknown. Another possibility for
our further work would be to solve elliptic PDEsthvivariable coefficients or nonlinear

PDEs and different type of boundary conditions sasiiNeumann boundary conditions.
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APPENDIX A

(MATLAB CODING FOR HAAR WAVELET, H)

m=8;
J=log2(m)-1,;
H=ones(m);
for j=0:J
ii=2%;
for k=1:jj
i=jj+k-1;
fun=@(t) 27(j/2)*(((k-1)/jj<=t) &(t<(k-0.5)/jj))
-27(112)*(((k- 0.5)/jj<=t)&(t<(K/i})));
t=(0:m-1)/m;
end
end
H=H/sqrt(m)
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APPENDIX B
(MATLAB CODING FOR OPERATIONAL MATRIX OF BLOCK
PULSE, Q,)

m=8;

Q=2*triu(ones(m,m));

for i=1:m
Q(i,)=Q(i,i)-1;

end

QB=Q/(2*m);
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APPENDIX C
(MATLAB CODING FOR OPERATIONAL MATRIX OF HAAR
WAVELET, Q,)

m=38;
H=ones(m);
J=log2(m);
x=1:2:(2*m-1); x=x/(2*m);
for alpha=0:(J-1)
for k=1:pow2(alpha)
fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha)))- (( x < k/pow2(alpha)) && ( x >= (k-
0.5)/pow2(alpha)));
i=pow2(alpha)+k;
for j=1:m
H(i,j)=pow2(alpha/2)*fun(x(j));
end
end
end
H=H/sqrt(m);



APPENDIX D
(MATLAB CODING FOR EXACT SOLUTION EXAMPLE 1,
LAPLACE EQUATION)

m=8;

exact=zeros(m);

f=@(x,y,n) sin(n*pi*x).*sinh(n*pi*(1-y))*csch(n*pi) /n"3;
x=(1:2:(2*m-1))/(2*m);

y=(1:2:(2*m-1))/(2*m);

for i=1:m
for j=1:m
a=x(i); b=y(j);
sum=0;
for n=1:2:21

sum=sum-+f(a,b,n);
end
sum=sum*8/pi*3;
exact(i,j)=sum;
end
end

exact
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APPENDIX E

(MATLAB CODING FOR NUMERICAL SOLUTION EXAMPLE 1,

LAPLACE EQUATION)

m=38;

% Generate block pulse operational matrix
Q=2*triu(ones(m,m));
for i=1:m
Q(i,)=Q(i.i)-1;
end

QB=Q/(2*m);

% Generate Haar matrix
H=ones(m);
J=log2(m);
x=1:2:(2*m-1); x=x/(2*m);
for alpha=0:(J-1)

for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x
0.5)/pow2(alpha))) .

- ((x < k/pow2(alpha)) && (x >= (k-

0.5)/pow2(alpha)));

i=pow2(alpha)+k;
for j=1:m
H(i,j)=pow2(alpha/2)*fun(x(j));
end
end
end
H=H/sqrt(m);

% Haar operational matrix via Wu formula
QH=H*QB*H";

% USER INPUT

% Example 1: Boundary conditions

% u(0,y)=u(x,1)=u(1,y)=0, u(x,0)=x(1-x)

F=x.*(1-x); lambda=H*F';

theta=zeros(m,1); theta(1,1)=1;

QHdelete=QH; QHdelete(:,1)=[]; QHdelete=[zeros(m,1)

% USER INPUT

first=(QHdelete*QH)';
second=-sgrt(m)*lambda*theta*(QH-eye(m));

% C=lyap(first,-second);

% Ref: IEEE transaction on automatic control 24(197
% SOLVE: AX+ XA'=C

% STEP 1: transform A via similarity equation

< (k-

QHdelete];

9) pp909
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A=first;

% assumption: all eigenvalue of A are negative exce pt one which is
zero.

[max_i Ni]=max(eig(A)); % locate that zero eigenvalue

[max_j Njl=max(eig(A));

[U DU]=eig(A); % U eigenvector, DU diagonal eigenvalue

[V DV]=eig(A’);

Al=(U\A)*U;

B1=(V\A)*V;

% STEP 2: solve UF =CV for F
F=(U\second)*V,

if (abs(F(Ni,Nj)) > 1E-10) % accuracy to 10 dp
error( ‘Equation not consistent. Check the 2nd value II' )

end
% STEP 3: Solve the transformed system A1*Y + Y*Al= FforY
Y=zeros(m);
for i=1:m

for j=1:m

if ((i==Ni) && (j==N}))
Y (Ni,Nj)= nan;
else
Y(i,)=F(i.)/(DU(i,)+DV(.j));
end

end
end
% Y(Ni,:)
% USER INPUT additional equation.
% In this example, use % u_xx(x,0)=H'(xX)CH(0) @ u_x x=H'(X)CH(y)
% for u_xx(x,0)=x(1-x) , CH(0)=[-2sqrt(m) 0 O .. =K
% transform to C-->Y , H(0)-->inv(V)*H(0), K-->inv (U*K
% Y *(inv(V)*H(0))= inv(U)*K compare to A1*Y + Y*Al =F
HN=W\H(:,1); % H(0)
K=zeros(m,1); K(1,1)=-2*sqrt(m);
KN=U\K;
% Solve for Y(Ni,Nj) in
% h1*y(i,1)+..+hj*y(i,j)+...+hm*y(i,m)=Ki ,ithr ow

yy=Y(Ni,); yy(Nj=[l;
hh=HN; hh(Ni)=[];

s=yy*hh;

Y(Ni,Nj)= (KN(Ni)-s)/HN(Nj);

% STEP 4: solve XV=UY for X
C=U*(YIV);

% final solution at collocation points
UU=H"*(QHdelete*QH)"*C*H;
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(MATLAB CODING FOR EXACT SOLUTION EXAMPLE 2,

m=8;

f=@(x,y) (x."2)-(y."2);
x=(1:2:(2*m-1))/(2*m);
y=(1:2:(2*m-1))/(2*m);

for i=1:m
for j=1:m
a=x(i); b=y(j);
myf=f(a,b);
exact(i,j)=myf;
end
end

exact

APPENDIX F

LAPLACE EQUATION)
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APPENDIX G
(MATLAB CODING FOR NUMERICAL SOLUTION EXAMPLE 2,
LAPLACE EQUATION)

m=38;

% Generate block pulse operational matrix
Q=2*triu(ones(m,m));
for i=1:m
Q(i,)=Q(i.i)-1;
end

QB=Q/(2*m);

% Generate Haar matrix
H=ones(m);
J=log2(m);
x=1:2:(2*m-1); x=x/(2*m);
for alpha=0:(J-1)

for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha))) .

- ((x < k/pow2(alpha)) && (x >= (k-

0.5)/pow2(alpha)));

i=pow2(alpha)+k;
for j=1:m
H(i,j)=pow2(alpha/2)*fun(x(j));
end
end
end
H=H/sqrt(m);

% Haar operational matrix via Wu formula
QH=H*QB*H";

% USER INPUT

y=(1:2:(2*m-1))/(2*m);

% Example 2: Boundary conditions

% u(x,0)=x"2, u(0,y)=-y"2, u(x,1)=x"2-1, u(1,y)=1-y n2
B=x.*x; lambdal=H*B";

G=-(y.*y); betal=H*G’;

D=(x.*x)-1; lambda2=H*D";

E=1-(y.*y); beta2=H*E";

theta=zeros(m,1); theta(1,1)=1;
QHdelete=QH; QHdelete(;,1)=zeros(m,1);
omega=QH(:,1); %calculate omega which is equal to 1st column of

QH.
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% USER INPUT

first=(QHdelete*QH)";
%second=(sqrt(m)*lambda2*theta*QH)-
(sgrt(m)*lambdal*theta’)*(QH+eye(m))-
(sgrt(m)*QH"*theta*beta2")+(QH'-eye(m))*(sqrt(m)*th

second=(sgrt(m)*lambda2*theta*QH)-(sgrt(m)*lambdal

eye(m)) ..
-(sqrt(m)*QH"*theta*beta2")+(QH'-eye(m))*(sqrt(m)*t

% Ref: IEEE transaction on automatic control 24(197
% SOLVE: AX+ XA'=C

% STEP 1: transform A via similarity equation
A=first;

% assumption: all eigenvalue of A are negative exce
zero.

[max_i Ni]=max(eig(A)); % locate that zero eigenvalue

[max_j Nj]l=max(eig(A"));

[U DU]=eig(A); % U eigenvector, DU diagonal eigenvalue

[V DV]=eig(A),
Al=(U\A)*U;
B1=(V\A")*V;

% STEP 2: solve UF=CV for F
F=(U\second)*V,

if (abs(F(Ni,Nj)) > 1E-10) % accuracy to 10 dp
error( ‘Equation not consistent. Check the 2nd value II'
end

% STEP 3: Solve the transformed system AL1*Y + Y*Al=

Y=zeros(m);
for i=1:m
for j=1:m
if  ((i==Ni) && (j==Nj))
Y (Ni,Nj)= nan;
else
Y(i,)=F(i,j)/(DU(i,)+DV(.));
end
end
end
% Y(Ni,:)

% USER INPUT additional equation.

% In this example, use % u_xx(x,1)=H'(X)K @
u_xx=H'(X)C*inv(Q)*QH(y)

% But QH(1)=theta/sqgrt(m)

% for u(x,1)=x"2-1, K=

%fk=2; K=H*fk';

K=zeros(m,1); K(1,1)=2*sqrt(m);

% transform K-->inv(U)*K

% Y *(inv(V)*inv(Q)*theta/sqrt(m)= inv(U)*K

HN=V\(QH\theta/sqgrt(m)); % inv(Q)*theta/sqrt(m)

% K=zeros(m,1); K(1,1)=2*sqrt(m);

eta*betal’);
*theta')*(QH-
heta*betal’);

9) pp909

pt one which is

F forY
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KN=U\K;

% Solve for Y(Ni,Nj) in

% h1*y(i,1)+..+hj*y(i,j)+...+hm*y(i,m)=Ki ,ithr
yy=Y(Ni,:); yy(Nj)=[l;

hh=HN; hh(Ni)=[];

s=yy*hh; %sum vector dot product

Y (Ni,Nj)= (KN(Ni)-s)/HN(Nj);

% STEP 4: solve XV=UY for X

C=U*(YIV);

% final solution at collocation points
UU=H"*(QHdelete*QH)"*C*H+sqrt(m)*H"*(QH"*theta*(bet
betal’)+(theta*betal’))*H;

ow
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APPENDIX H
(MATLAB CODING FOR EXACT SOLUTION EXAMPLE 3,
POISSON EQUATION)

m=38;
f=@(xy) y.*(1-y).*x."3;
x=(1:2:(2*m-1))/(2*m);
y=(1:2:(2*m-1))/(2*m);
for i=1:m

for j=1:m

a=x(i); b=y(j);

myf=f(a,b);
exact(i,j)=myf;

end
end

exact
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APPENDIX |

(MATLAB CODING FOR NUMERICAL SOLUTION EXAMPLE 3,

POISSON EQUATION)

m=38;

% Generate block pulse operational matrix
Q=2*triu(ones(m,m));
for i=1:m
Q(i,)=Q(i.i)-1;
end

QB=Q/(2*m);

% Generate Haar matrix
H=ones(m);
J=log2(m);
x=1:2:(2*m-1); x=x/(2*m);
for alpha=0:(J-1)

for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x
0.5)/pow2(alpha))) .

- ((x < k/pow2(alpha)) && (x >= (k-

0.5)/pow2(alpha)));

i=pow2(alpha)+k;
for j=1:m
H(i,j)=pow2(alpha/2)*fun(x(j));
end
end
end
H=H/sqrt(m);

% Haar operational matrix via Wu formula
QH=H*QB*H";

% USER INPUT

% Example 3: solving poisson equation with boundary
% u(0,y)=u(x,0)=u(x,1)=0, u(1,y)=y(1-y) and LHS=6xy
y=(1:2:(2*m-1))/(2*m);

B=y.*(1-y); beta=H*B';

[X,Y]=meshgrid(x,y);

Z=6*X.*Y . *(1-Y)-(2*X."3);

G=H*Z*H",

theta=zeros(m,1); theta(1,1)=1;
QHdelete=QH; QHdelete(;,1)=zeros(m,1);

omega=QH(:,1); % omega is equal to 1st column of QH.

% USER INPUT
first=(QHdelete*QH)";

< (k-

conditions
(1-y)-2x"3
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second=(G*QH*QH)-(G*omega*theta*QH)-(sqrt(m)*QH"*t heta*beta');
% C=lyap(first,-second

% Ref: IEEE transaction on automatic control 24(197 9) pp909
% SOLVE: AX+ XA'=C

% STEP 1: transform A via similarity equation

A=first;

% assumption: all eigenvalue of A are negative exce pt one which is
zero.

[max_i Nil=max(eig(A)); % locate that zero eigenvalue

[max_j NjJ=max(eig(A’));

[U DU]=eig(A); % U eigenvector, DU diagonal eigenvalue

[V DV]=eig(A);

Al=(U\A)*U;

B1=(V\A")*V;

% STEP 2: solve UF =CV forF
F=(U\second)*V,
if (abs(F(Ni,Nj)) > 1E-10) % accuracy to 10 dp
error( ‘Equation not consistent. Check the 2nd value !I' )
end

% STEP 3: Solve the transformed system A1*Y + Y*Al= F forY
Y=zeros(m);
for i=1:m
for j=1:m
if ((i==Ni) && (j==N}))
Y (Ni,Nj)= nan;
else
Y(i.)=F(i,j)/(DU(i,)+DV(.);
end
end
end

% Y(Ni,:)

% USER INPUT additional equation.

% In this example, use % u_xx(x,0)=H'(xX)CH(0) @ u_x x=H'(X)CH(y)
% for u(x,0)=0, CH(0)=0=K

% transform to C-->Y , H(0)-->inv(V)*H(0), K-->inv (U*K
% Y *(inv(V)*H(0))= inv(U)*K compare to A1*Y + Y*Al =F
HN=W\H(:,1); % H(1)

K=zeros(m,1); K(1,1)=0;

KN=U\K;

% Solve for Y(Ni,Nj) in

% h1*y(i,1)+..+hj*y(i,j)+...+hm*y(i,m)=Ki ,ithr ow
yy=Y(Ni,:); yy(Nj)=[l;

hh=HN; hh(Ni)=[];

s=yy*hh;

Y (Ni,Nj)= (KN(Ni)-s)/HN(Nj);

% STEP 4: solve XV=UY for X

C=U*(YIV);

% final solution at collocation points
UU=H"*(QHdelete*QH)*C*H+sqrt(m)*H"*QH"theta*beta’ *H;
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APPENDIX J
(MATLAB CODING FOR EXACT SOLUTION EXAMPLE 4,
HELMHOLTZ EQUATION)

m=38;
f=@(x,y) sin(pi.*x).*sin(pi.*y);
x=(1:2:(2*m-1))/(2*m);
y=(1:2:(2*m-1))/(2*m);
for i=1:m
for j=1:m
a=x(i); b=y();
myf=f(a,b);
exact(i,j)=myf;
end
end

exact
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APPENDIX K
(MATLAB CODING FOR NUMERICAL SOLUTION EXAMPLE 4,
HELMHOLTZ EQUATION)

m=38;

% Generate block pulse operational matrix
Q=2*triu(ones(m,m));
for i=1:m
Q(i,)=Q(i.i)-1;
end

QB=Q/(2*m);

% Generate Haar matrix
H=ones(m);
J=log2(m);
x=1:2:(2*m-1); x=x/(2*m);
for alpha=0:(J-1)

for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha))) .

- ((x < k/pow2(alpha)) && (x >= (k-

0.5)/pow2(alpha)));

i=pow2(alpha)+k;
for j=1:m
H(i,j)=pow2(alpha/2)*fun(x(j));
end
end
end
H=H/sqrt(m);

% Haar operational matrix via Wu formula
QH=H*QB*H";

% USER INPUT

% Example 4: solving helmholtz equation with bounda ry conditions
% u(0,y)=u(x,0)=u(x,1)=0, u(1,y)=0 and f(x,y)=(k-
2pir2)sin(pi*x)sin(pi*y)

k=0.5;

y=(1:2:(2*m-1))/(2*m);

[X,Y]=meshgrid(x,y);

a=(k-2*pi.*pi).*sin(pi.*X).*sin(pi.*Y);

Z=H*a*H",

theta=zeros(m,1); theta(1,1)=1;

QHdelete=QH; QHdelete(;,1)=zeros(m,1);

omega=QH(:,1); % omega is equal to 1st column of QH.

% USER INPUT
P=eye(m)+k*QH*QH-k*omega*theta™*QH;
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first=(QHdelete*QH)";

second=(Z*QH*QH-Z*omega*theta*QH)/P;

% C=lyap(first,-second);

% Ref: IEEE transaction on automatic control 24(197 9) pp909
% SOLVE: AX+ XA'=C

% STEP 1: transform A via similarity equation
A=first;

% assumption: all eigenvalue of A are negative exce pt one which is

zero.

[max_i Ni]=max(eig(A)); % locate that zero eigenvalue
[max_j Nj]l=max(eig(A'/P));

[U DU]=eig(A); % U eigenvector, DU diagonal eigenvalue
[V DV]=eig(A'/P);

Al=(U\A)*U;

B1=(V\(A'/P))*V,

% STEP 2: solve UF =CV for F
F=(U\second)*V,
if (abs(F(Ni,Nj)) > 1E-10) % accuracy to 10 dp
error( ‘Equation not consistent. Check the 2nd value II' )
end

% STEP 3: Solve the transformed system A1*Y + Y*Al= FforY
Y=zeros(m);
for i=1:m
for j=1:m
if ((i==Ni) && (j==N}))
Y (Ni,Nj)= nan;
else
Y(i,)=F(i,j)/(DU(i,)+DV(.));
end
end
end

% Y(Ni,:)

% USER INPUT additional equation.

% In this example, use % u_xx(x,0)=H'(xX)CH(0) @ u_x x=H'(X)CH(y)
% for u(x,0)=0, CH(0)=0=K

% transform to C-->Y , H(0)-->inv(V)*H(0), K-->inv (U)*K
% Y *(inv(V)*H(0))= inv(U)*K compare to A1*Y + Y*Al =F
HN=V\H(;,1); % H(1)

K=zeros(m,1); K(1,1)=0;

KN=U\K;

% Solve for Y(Ni,Nj) in

% h1*y(i,1)+..+hj*y(i,j)+...+hm*y(i,m)=Ki ,ithr ow
yy=Y(Ni,:); yy(Nj)=[l;

hh=HN; hh(Ni)=[];

s=yy*hh;

Y (Ni,Nj)= (KN(Ni)-s)/HN(Nj);

% STEP 4: solve XV=UY for X

C=U*(YIV);

% final solution at collocation points

UU=H"*(QHdelete*QH)*C*H;
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APPENDIX L
(MATLAB CODING FOR EXACT SOLUTION OF LINEAR

ORDINARY DIFFERENTIAL EQUATION)

m=16;
f=@(x,y) cos(x)+(5/4)*sin(x)+(1/4)*(x.*x.*sin(X)-X. *cos(x));
x=(1:2:(2*m-1))/(2*m);
y=(1:2:(2*m-1))/(2*m);
for i=1:m

for j=1:m

a=x(i); b=y());

myf=f(a,b);
exact(i,j)=myf;

end
end
exact
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APPENDIX M
(MATLAB CODING FOR NUMERICAL SOLUTION OF LINEAR

ORDINARY DIFFERENTIAL EQUATION)

m=16;

Q=2*triu(ones(m,m));

for i=1:m
Q(i,)=Q(ii)-1;

end

QB=Q/(2*m);

% Generate Haar matrix
H=ones(m);
J=log2(m);
x=1:2:(2*m-1); x=x/(2*m);
for alpha=0:(J-1)

for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) && ( x < (k-
0.5)/pow2(alpha))) .

- ((x < k/pow2(alpha)) && ( x >= (k-

0.5)/pow2(alpha)));

i=pow2(alpha)+k;
for j=1:m
H(i,j)=pow2(alpha/2)*fun(x(j));
end
end
end
H=H/sqrt(m);

% Haar operational matrix via Wu formula
QH=H*QB*H’;

% USER INPUT
theta=zeros(m,1); theta(1,1)=1;

u=sin(x)+(x.*cos(x));
k=u*H",

lambda=1;
gamma=1,

left=eye(m)+(QH*QH);

right=k-sqgrt(m)*(gamma*theta*QH-+lambda*theta’);

c=right/left;

U=c*QH*QH*H+sgrt(m)*gamma*theta*QH*H+sqrt(m)*lambd a*theta™H;
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