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ABSTRACT

In this research, we consider the interaction between an atomic or molecular quan-

tum system (QS) and a metallic nanoparticle (MP). We modelled QS by a three-level

lambda system. Under the probe field and control field, the QS become transparent to

incident light within a narrow spectrum of frequency, a phenomena known as electro-

magnetically induced transparency (EIT). The quantum coherence of the QS under EIT

and the strong exciton-plasmon coupling between the QS and MP are dependant on each

other. The analytical expressions for the interaction of QS and MP are derived using two

methods. First, the QS-MP system is considered as a one-dimensional problem. The ex-

pressions derived using this method is not general, however, they provide a simple and

more intuitive understanding of the interaction. The second method employed to derive

the analytical expressions is by using a vectorial description. Using this model, the exact

and general expressions describing the QS-MP system are derived. The density matrix

of the QS-MP system was used to obtain numerical results for the dielectric function of

QS and MP. The effect of field detuning, distance between the QS and MP, laser field

direction and polarization on the dielectric functions are investigated.
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ABSTRAK

Penyelidikan ini mengkaji interaksi sistem kuantum atomik atau molekular (QS)

dengan zarah nano (MP). Dalam penyelidikan ini QS dimodelkan oleh system lambda

dengan tiga aras tenaga. Dengan mengunnakan dua laser secara berasingan pada QS, QS

akan menjadi lutsinar dalam dalam satu spektrum frekuensi yang sempit. Fenomena ini

dikenali sebagai "electromagnetically induced transparency" (EIT). Koheren kuantum QS

dengan kesan EIT dipengaruhi oleh gandingan exciton-plasmon QS dan MP. Persamaan

analitikal untuk interaksi QS dan MP diperolehi melalui dua kaedah. Kaedah pertama

mengkaji sistem QS-MP dalam satu dimensi. Persamaan-persamaan yang diperolehi

melalui kaedah ini adalah tidak umum tetapi persamaan-persamaan ini dapat memberikan

gambaran yang mudah dan senang difahami mengenai interaksi QS-MP. Dalam kaedah

kedua, sistem QS-MP dikaji dalam model vektor. Kaedah ini memberikan persamaan

yang tepat untuk sistem yang dikaji. Keputusan numerikal diperolehi untuk fungsi dielek-

trik QS melalui "density matrix" QS-MP. Kesan parameter seperti arah laser serta jarak

QS dan MP terhadap fungsi dielektrik dikaji dalam penyelidikan ini.
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

1.1.1 Review of Quantum Coherence and Electromagnetically Induced Transparency

Since the advent of quatum mechanics in the early twentieth century, the concept of

quantum coherence has been an active area of study and research. Laser provides means

of preparing and manipulating quantum coherence in atomic and molecular media. These

media exhibit quantum coherence through the interference of the different excitation paths

of the system. The field of quantum coherence started with Hanle effect (Hanle, 1924;

Alnis et al., 2003). Another early work of quantum coherence is coherent population

trapping (CPT) (Whitley & Stroud, 1976). One way to achieve CPT is through quantum

interference in a three-level system in which the system is in a coherent superposition of

two states, both of which are coupled by lasers to a third state. This superposition state

is called a dark state. Atoms that are pumped to the dark state are "trapped" in the state

as the probability of absorbing a photon at this state is 0. Thus, the dark state does not

interact with light and no fluorescence is observed.

The concept of CPT is closely related to the phenomenon of electromagnetically in-

duced transparency (EIT). In EIT, two states in a three-level system is coupled to a third

state through a weak probe field and a strong control field. Since in CPT, no photon will

be absorbed in the dark state, thus there exists a narrow spectral region where the system

is transparent. This effect is known as EIT. In the EIT regime, the optical properties of the

medium is highly modified and lead to many interesting and counterintuitive phenomena.

Many theoretical and experimental work has been devoted to the study of EIT. For exam-

ple, professor Lene Hau demonstrated experimentally that through EIT in an ultracold gas

of sodium atoms, optical pulses could be slowed to 17 metres per second (cycling speed)

(Hau, Harris, Dutton, & Behroozi, 1999). On the other hand, professor Fleischauer and

Lukin have identified theoretically the coupled excitations in EIT known as "dark-state
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polaritons" and that the mixing angle between light and matter can be controlled by an

external field to manipulate properties of the medium such as the group velocity of the

propagating pulse (Fleischhauer & Lukin, 2000).

1.1.2 Review of Hybrid System of Plasmonic Nanoparticle and Quantum System

Recent work on studying the interactions of plasmonic effect on the quantum coher-

ence and interference of quantum dots have shown interesting results. Here we highlight

several important results and progress made in this field of research.

In a strongly coupled plasmon-quantum dot system, gain with inversion can be

achieved through a change in plasma frequency (Hatef & Singh, 2010). The dissipation of

metallic nanoparticle can be controlled through infrared laser in a metallic nanoparticle-

semiconductor quantum dot system (Sadeghi, Deng, Li, & Huang, 2009). QED effects

like vacuum Rabi-splitting was found by placing a semiconductor quantum dot in between

two metallic nanoparticles (Savasta et al., 2010). The presence of a metallic film can also

dramatically affects the fluorescence behavior of a nanocrystal quantum dot (Shimizu,

Woo, Fisher, Eisler, & Bawendi, 2002).

1.2 Motivation

The study of the hybrid system of nanoparticle and quantum-dot has provided many

interesting results and open up many possibilities. In this research, we would like to focus

on yet another aspect of the hybrid system and try to gain new physics and insights to the

hybrid system.

In this research we study the interaction between a quantum system (QS) and metallic-

nanoparticle (MP). In particular, we are interested in the interdependence of the quantum

coherence under electromagnetically-induced transparency of a quantum system (QS)

modelled by a three-level lambda system and the strong exciton-plasmon coupling be-

tween QS and MP. Due to the long-range Coulomb interaction between QS and MP, there

is a dipole-dipole interaction that couple the two systems and allow for excitation transfer

between the systems.
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Using a 1-dimensional linear model, we study the QS-MP system and gain insights

on the near field behavior of the QS. For a more general description, we employ a vec-

torial model with arbitrary laser direction and look at how the optical properties of the

QS is affected by the presence of MP. Finally we plot the results and study how the dis-

persion and absorption spectra of the QS is affected by different parameters such as laser

direction, polarization and the interparticle distance.

3



CHAPTER 2

THEORETICAL BACKGROUND

2.1 Density Matrix Formalism

As we’ll be employing density matrix formalism to describe our QS system and also

eventually using it to solve for the equations of motion for the density matrix, it is useful

to introduce briefly the density matrix concept.

The density operator for mixed state is defined as:

ρ̂(t) = ∑
i

pi |ψ i(t)⟩⟨ψ i(t)| (2.1)

where pi is the probability of that the system is in the state |ψ i(t)⟩. The density matrix is

hermitian since pi is real and (|ψ i(t)⟩⟨ψ i(t)|)
† = |ψ i(t)⟩⟨ψ i(t)|. In the special case that

all pi vanish except for i = j, i.e pi = δ i j, then p j = 1 and the density matrix becomes:

ρ̂ =
∣∣∣ψ j(t)

⟩⟨
ψ j(t)

∣∣∣ (2.2)

This is the density operator for a pure state.

Note that each |ψ i⟩ can be expanded in an orthonormal basis, e.g energy eigenstates.

Thus, expanding |ψ i⟩ in energy basis |n⟩:

|ψ i(t)⟩ = ∑
n
|n⟩⟨n|ψ i(t)⟩

= ∑
n

ci
n |n⟩ (2.3)

Taking the expectation of the density matrix in the energy states:

4



⟨n| ρ̂(t) |m⟩ = ∑
i
⟨n |Ψi(t)⟩ pi ⟨Ψi(t)|m⟩

= ∑
i

∑
q,q′

⟨n|ci
q(t) |q⟩ pi

⟨
q′
∣∣c(i)∗q′ (t) |m⟩

= ∑
i

∑
q,q′

pici
q(t)c

(i)∗
q′ (t)⟨n|q⟩

⟨
q′
∣∣m⟩

= ∑
i

∑
q,q′

pici
q(t)c

(i)∗
q′ (t)δ n,qδ q′,m

= ∑
i

pici
n(t)c

(i)∗
m (t) (2.4)

and in pure case:

⟨n| ρ̂(t) |m⟩= cn(t)c∗m(t) (2.5)

Taking the trace of the matrix operator:

Tr(ρ̂) = ∑
n
⟨n |ρ̂|n⟩

= ∑
n

∑
i

pi⟨n |ψ i(t)⟩⟨ψ i(t)|n⟩

= ∑
n

∑
i

pici
nc(i)∗n

= ∑
i

pi ∑
n

∣∣ci
n
∣∣2

= ∑
i

pi

= 1 (2.6)

where each of the state vector is assumed to be normalized, i.e ⟨ψ i(t)|ψ i(t)⟩= 1, thus for

each i, ∑n
∣∣ci

n
∣∣2 = 1. Since pi is the probability of the system to be in state |ψ i(t)⟩, thus

the sum of probabilty, ∑i pi has to be equal to 1. Also, since ρ̂ is Hermitian, the diagonal

elements ⟨n |ρ̂ |n⟩ must be real. For a particular n, 0 ≼
∣∣ci

n
∣∣2 ≼ 1, thus, 0 ≼ ⟨n |ρ̂ |n⟩ ≼ 1.

Now consider Tr(ρ̂2). For a pure state, ρ̂2 = |ψ(t)⟩⟨ψ(t)| |ψ(t)⟩⟨ψ(t)|= |ψ(t)⟩⟨ψ(t)|=

ρ̂ , thus Tr(ρ̂2) = Tr(ρ̂) = 1. For mixed states:

5



Tr(ρ̂2) = ∑
n
⟨n
∣∣∣ρ̂2
∣∣∣n⟩

= ∑
n

∑
i

∑
j

pi p j⟨n |ψ i(t)⟩⟨ψ i(t)|ψ j(t)⟩
⟨

ψ j(t)
∣∣∣n⟩

= ∑
i

∑
j

pi p j ∑
n

⟨
ψ j(t)

∣∣∣n⟩⟨n |ψ i(t)⟩⟨ψ i(t)|ψ j(t)⟩

= ∑
i

∑
j

pi p j

∣∣∣⟨ψ i(t)|ψ j(t)⟩
∣∣∣2

≤

[
∑

i
pi

]2

= 1 (2.7)

where the closure relation was used, i.e ∑n |n⟩⟨n| = I. Also, 0 ≼
∣∣∣⟨ψ i(t)|ψ j(t)⟩

∣∣∣2 ≼ 1

where the equality
∣∣∣⟨ψ i(t)|ψ j(t)⟩

∣∣∣2 = 1 holds only if all the |ψ i(t)⟩ are collinear in Hilbert

space, i.e all the |ψ i(t)⟩ are equivalent up to an overall phase factor. In this case, ρ̂ is a

sum of same state vectors differing only by an overall phase factor. The superposition of

pure state vectors is another pure state vector. Thus, the following criteria is true for pure

and mixed states:

Tr(ρ̂2) = 1 for pure states (2.8)

Tr(ρ̂2) < 1 for mixed states (2.9)

For a particular state |ψ i(t)⟩, the state is a pure state. The expectation value is given

by:

⟨
Ô
⟩

i
= ∑

n,m
⟨n|c(i)∗n (t)Ôci

m(t) |m⟩

= ∑
n,m

ci
mc(i)∗n Onm

= ∑
n,m

ρ i
mnOnm (2.10)

where eq. (2.32) was used to get eq. (2.10). For the statistical mixture of |ψ i(t)⟩, the

ensemble expectation value is given by:

6



⟨
Ô
⟩

= ∑
i

∑
n,m

pi ⟨n|c(i)∗n (t)Ôci
m(t) |m⟩

= ∑
i

∑
n,m

pici
mc(i)∗n Onm

= ∑
i

∑
n,m

piρ i
mnOnm (2.11)

which is just a weighted sum of eq. (2.10) where the weight of each |ψ i(t)⟩ is pi. It can

also be shown that
⟨

Ô
⟩

is equals to Tr(ρ̂Ô):

Tr(ρ̂Ô) = ∑
n
⟨n| ρ̂Ô |n⟩

= ∑
n

∑
i

pi ⟨n|ψ i(t)⟩⟨ψ i(t)| Ô |n⟩

= ∑
i

pi ⟨ψ i(t)| Ô∑
n
|n⟩⟨n|ψ i(t)⟩

= ∑
i

pi ⟨ψ i(t)| Ô |ψ i(t)⟩

= ∑
i

∑
n,m

pi ⟨n|c(i)∗n Ôc(i)m |m⟩

= ∑
i

∑
n,m

pic
(i)∗
n c(i)m Omn

= ∑
i

∑
n,m

piρ i
mnOnm

=
⟨

Ô
⟩

(2.12)

Again, the closure relation ∑n |n⟩⟨n| = I is used in the third line. Tr(ρ̂Ô) =
⟨

Ô
⟩

means that if the density matrix of the system is known, then the expectation value of

any operator can be calculated by taking the trace of the product of the operator in matrix

representation with the density matrix in any order.

2.2 Two level atom

In our research we will be modelling the QS as three-level atoms. Here, we give a

brief introduction to two-level system atom. The three-level system atom can be general-

ized from the two-level atom system.

7



Consider a two level system atom. An example of such a system is a spin-1 atom

with two energy level interacting with a z-polarized field. The ground state of the sys-

tem has total angular momentum number J = 0, while the excited state has total angular

momentum number J =−2,0,2. In general all 3 of these sublevels can contribute to the

resonant transition of the atom, however, if a z-polarized field is used, then the system

is effectively two level as only the transition between the ground state and the mJ = 0

sublevel of the excited state contributes. For atoms that has non-integer spin, in general

there can be a few sub-levels that can contribute to a resonant transition, however, the

atom can still be restricted to two level using optical pumping techniques. Upon optical

pumping, the atom is said to be oriented to a particular sublevel, this orientation depends

on the frequency and polarization of the pump laser. (Paul R. Berman, 2011)

In the dipole approximation (refer to Appendix A for a detailed description of dipole

approximation), the interaction Hamiltonian is given by:

V̂ (R, t)≈−µ̂ ·E(R, t) = er̂ ·E(R, t) (2.13)

where µ̂ is the dipole moment operator, −e is the charge of the electron and R is the

nuclear position. If atomic motion is neglected then R = 0.

The applied electric field is assumed to take the form:

E(t) = ẑ |E0(t)|cos[ωt −ϕ(t)] =
1
2

ẑ |E0(t)| [eiϕ(t)e−iωt + e−iϕ(t)eiωt ] (2.14)

where 1
2E0(t) = 1

2 |E0(t)|eiϕ(t) is the positive frequency component of the field. E0(t) =

|E0(t)|eiϕ(t) is the complex amplitude of the field, ω is the carrier frequency of the field

and ϕ(t) is the phase of the field. The time-varying field amplitude forms the pulse

envelope while the time varying phase factor gives a time-varying frequency to the field

(chirp). Using this form of electric field, the interaction Hamiltionian becomes:

V̂ (R, t) = eẑ |E0(t)|cos[ωt −ϕ(t)] (2.15)

8



Denoting the ground state and excited state by |1⟩ and |2⟩, the probability amplitude

of these two states can be written as column vector:

c =
(

c1

c2

)
(2.16)

and the interaction Hamiltionian can be written in its matrix elements:

V12 = ez12 |E0(t)|cos[ωt −ϕ(t)]

V21 = ez21 |E0(t)|cos[ωt −ϕ(t)]

V11 = 0

V22 = 0 (2.17)

where z12 = ⟨1| ẑ |2⟩= ⟨2| ẑ |1⟩∗ = z∗21. The diagonal element vanishes because operator ẑ

has odd parity thus ⟨1| ẑ |1⟩ and ⟨2| ẑ |2⟩ each has an overall odd parity.

In general, the matrix elements are complex, but for any single transition element it

can be taken as real with an appropriate choice of the phase factor in the wavefunction.

Thus, by choosing the matrix elements to be real, the z-component dipole moment can be

defined as:

ez12 =−(µz)12 = ez∗21 (2.18)

For the free atom Hamiltionian, it can also be written in terms of matrix elements:

Ĥ0 =
h̄
2

 −ω0 0

0 ω0

 (2.19)

where ω0 is the transition frequency between |1⟩ and |2⟩. Then, the total Hamiltonian of

the system is:

Ĥ(t) = Ĥ0 +V̂ (t) =
h̄
2

 −ω0 0

0 ω0


+h̄

 0 |Ω0(t)|cos[ωt −ϕ(t)]∣∣Ω∗
0(t)
∣∣cos[ωt −ϕ(t)] 0

 (2.20)

9



where Ω0(t) = |Ω0(t)|eiφ(t) =−(µz)12
E0(t)

h̄ is defined as the Rabi frequency and φ(t) is

the phase factor of the Rabi frequency. From the equation, it can be seen that the Rabi

frequency is a measure of the atom-field coupling strength in frequency units. The Rabi

frequency is defined such that E0(t), z12 and z21 are positive quantities.

Substituting in eq. (2.20) into eq. (B.11) derived in the appendix B:

ih̄
·
c(t) =

h̄
2

 −ω0 2 |Ω0(t)|cos[ωt −ϕ(t)]

2
∣∣Ω∗

0(t)
∣∣cos[ωt −ϕ(t)] ω0

c(t) (2.21)

where

c(t) =
(

c1(t)
c2(t)

)
(2.22)

Recall the Pauli spin matrices:

σ̂ x =

 0 1

1 0

 σ̂ y =

 0 −i

i 0

 σ̂ z =

 1 0

0 −1

 (2.23)

Then the Hamiltonian eq. (2.20) can be written in terms of Pauli spin matrices:

Ĥ(t) =− h̄ω0

2
σ z + h̄ |Ω0(t)|cos[ωt −ϕ(t)]σ x (2.24)

The Rabi frequency can be compared to the electronic transitions frequencies to get

a sense of the coupling strength of the field and atom. Electronic transitions are usually of

the order of 1014-1016Hz (microwave to x-ray range), while for a field created by a typical

cw wave laser having power on the order of a few mW , the Rabi frequency is on the order

of MHz to GHz (about 8 order of magnitude less than the electronic transitions). The Rabi

frequency will only be on the same order of magnitude with the electronic transitions at

very intense pulses with power more than 1017W/cm2.

Since ω0 >> |Ω0(t)| typically, the resonance approximation or better known as the

rotating wave approximation (RWA) is usually a good approximation for an atom.
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2.2.1 Rotating Wave Approximation

Rotating wave approximation (RWA) is an approximation that eliminates terms in

the Hamiltonian that are rapidly oscillating. RWA is closely related to the two-level ap-

proximation, it is assumed that the field frequency is near resonance with the atomic

transition. RWA also has the additional condition that the field has low intensity so that

the coupling strength is small, i.e ω0 >> |Ω0(t)|. Assume that the amplitude |Ω0(t)| and

phase ϕ(t) are slowly varing in time on a time scale in order of ω−1 or larger. |Ω0(t)| is

the term that modulates the pulse. Thus, a slowly varying |Ω0(t)| means that the pulse is

broad in the temporal domain (a small modulation of the plane wave). This means that

the pulse is approximately a continuous wave (quasi-monochromatic). This makes sense

since if the pulse has a large spread of frequencies, then there will be a significant amount

of frequencies that are far off resonance making the RWA a poor approximation.

Furthermore, assume that:

∣∣∣∣ω0 −ω
ω0 +ω

∣∣∣∣ ≪ 1 (2.25)∣∣∣∣ Ω0(t)
ω0 +ω

∣∣∣∣ ≪ 1 (2.26)

Eq. (2.25) assumes that the amplitude of the detuning of the field, |δ | = |ω0 −ω|

is much smaller than the transition frequency, while eq. (2.26) assumes that the Rabi

frequency is much smaller than the transition frequency. Using trigonometric relation:

cos(θ) =
eiθ + e−iθ

2
(2.27)

and noting that Ω0(t) = |Ω0(t)|eiϕ(t), then eq. (2.21) becomes:

11



ih̄
·
c(t) =

h̄
2

 −ω0 Ω0(t)e−iϕ(t)[ei(ωt−ϕ(t))+ c.c]

Ω∗
0(t)e

−iϕ(t)[ei(ωt−ϕ(t))+ c.c] ω0

c(t)

=
h̄
2

 −ω0 Ω0(t)e−2iϕ(t)eiωt +Ω0(t)e−iωt

Ω0(t)e−2iϕ(t)eiωt +Ω0(t)e−iωt ω0

c(t)

=
h̄
2

 −ω0 Ω∗
0(t)e

iωt +Ω0(t)e−iωt

Ω∗
0(t)e

iωt +Ω0(t)e−iωt ω0

c(t) (2.28)

Using eq. (B.13), the equivalent of eq. (2.28) in the interaction picture is:

ih̄
·

Cm(t) =
h̄
2

 0 [Ω∗
0(t)e

iωt +Ω0(t)e−iωt ]eiωmnt

[Ω∗
0(t)e

iωt +Ω0(t)e−iωt ]eiωmnt 0

C(t)

=
h̄
2

 0
[
Ω∗

0(t)e
iωt + c.c

]
ei(ωm−ωn)t[

Ω∗
0(t)e

iωt + c.c
]

ei(ωm−ωn)t 0

C(t)

=
h̄
2

 0 Ω0(t)ei(ω0+ω)t +Ω∗
0(t)e

iδ t

Ω∗
0(t)e

i(ω0+ω)t +Ω0(t)eiδ t 0

C(t) (2.29)

where ω0 = ωm −ωn and δ = ω0 −ω . It is assumed that ω2 −ω1 > 0 such that in

eq. (2.29), ωmn = ω21 > 0 and ωmn = ω12 < 0.Recall that in RWA, it was assumed

that |ω0 +ω| is much larger than the detuning of the field |δ | and the Rabi frequency

|Ω0(t)|. Physically this means that the exponential term with ω0 +ω is oscillating much

faster than the detuning and Rabi frequency exponential terms. At a time scale much

larger than 1
ω0+ω , the ω0+ω will average to zero and thus, contribute much less than the

slowly varing detuning and Rabi frequency exponential terms. In RWA approximation,

then eq. (2.29) becomes:

ih̄
·

Cm(t) =
h̄
2

 0 Ω∗
0(t)e

iδ t

Ω0(t)eiδ t 0

C(t) (2.30)

Another way to describe a two-level system is using density matrix formalism. Using

density matrix formalism, consider now a two-level atom using density matrix with state

12



vector defined as:

|Ψ(t)⟩= c1(t) |1⟩+ c2(t) |2⟩ (2.31)

2.2.2 Two Level Atom in Density Matrix Formalism

Recall that:

⟨n| ρ̂(t) |m⟩= cn(t)c∗m(t) (2.32)

Then the density matrix projected on this state vector has matrix elements:

ρ11 = c1c∗1 (probability of being in the lower level) (2.33)

ρ12 = c1c∗2 (coherence) (2.34)

ρ21 = c2c∗1 = ρ∗
12 (coherence) (2.35)

ρ22 = c2c∗2 (probability of being in the upper level) (2.36)

The off-diagonal elements ρ12 and ρ21 are called coherences as they are related to

the relative phase of state |1⟩ and |2⟩. To see why, write c1 = a1eiϕ 1 and c2 = a2eiϕ 2 , then

c1c∗2 = a1a∗2ei(ϕ 1−ϕ 2) and c2c∗1 = a2a∗1ei(ϕ 2−ϕ 1), where ϕ 1−ϕ 2 and ϕ 2−ϕ 1 are the relative

phases of the two states.

In matrix notation, the density matrix is:

ρ̂ =

 ρ11 ρ12

ρ21 ρ22

=

 |c1|2 c1c∗2

c2c∗1 |c2|2

 (2.37)

Notice that the density matrix is the outer product of the state amplitudes:

ρ̂ =

 c1

c2

( c∗1 c∗2

)
(2.38)
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Consider now the time evolution of the density operator:

·
ρ̂ = ∑

i
pi

(∣∣∣ ·ψ(t)
⟩
⟨ψ i(t)|+ |ψ i(t)⟩

⟨ ·
ψ(t)

∣∣∣) (2.39)

From Schrodinger’s equation:

ih̄
∣∣∣ ·
ψ i(t)

⟩
= Ĥ |ψ i(t)⟩∣∣∣ ·

ψ i(t)
⟩

= − i
h̄

Ĥ |ψ i(t)⟩ (2.40)

Substituting in eq. (2.40) to eq. (2.39):

·
ρ̂(t) = ∑

i
pi

(
− i

h̄
H |ψ i(t)⟩⟨ψ i(t)|+ |ψ i(t)⟩

i
h̄
⟨ψ i(t)|H

)
= − i

h̄

(
H ∑

i
pi |ψ i(t)⟩⟨ψ i(t)|−∑

i
pi |ψ i(t)⟩⟨ψ i(t)|H

)
= − i

h̄
(Hρ −ρH)

= − i
h̄
[H,ρ ] (2.41)

This equation is known as the von Neumann equation.The Hamiltonian of a two-

level atom interacting with a field is given by:

Ĥ(t) = Ĥ0 +V̂ (t)

=
h̄
2

 −ω0 0

0 ω0


+h̄

 0 |Ω0(t)|cos[ωt −ϕ(t)]

|Ω0(t)|cos[ωt −ϕ(t)] 0


=

h̄
2

 −ω0 2 |Ω0(t)|cos[ωt −ϕ(t)]

2 |Ω0(t)|cos[ωt −ϕ(t)] ω0

 (2.42)
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In RWA, the Hamiltonian becomes:

Ĥ(t) =
h̄
2

 −ω0 Ω∗
0(t)e

iωt

Ω0(t)e−iωt ω0

 (2.43)

Substituting eq. (2.43) into eq. (2.41):

 ·
ρ11

·
ρ12

·
ρ21

·
ρ22

 = − i
2

 −ω0 Ω∗
0(t)e

iωt

Ω0(t)e−iωt ω0


 ρ11(t) ρ12(t)

ρ21(t) ρ22(t)


+

i
2

 ρ11(t) ρ12(t)

ρ21(t) ρ22(t)


 −ω0 Ω∗

0(t)e
iωt

Ω0(t)e−iωt ω0

 (2.44)

Defining χ(t) = Ω0(t)
2 , then in terms of each of the element:

·
ρ11(t) = −iχ∗(t)eiωtρ21(t)+ iχ(t)e−iωtρ12(t)

·
ρ22(t) = iχ∗(t)eiωtρ21(t)− iχ(t)e−iωtρ12(t)

·
ρ12(t) = iω0ρ12(t)− iχ∗(t)eiωt [ρ22(t)−ρ11(t)]

·
ρ21(t) = −iω0ρ21(t)+ iχ(t)e−iωt [ρ22(t)−ρ11(t)] (2.45)

For a given χ(t), these equations can be solved. These equations can also be solved

by finding the amplitudes and substituting it into the equations, e.g ρ11 = |c1|2, ρ21 = c2c∗1

etc.

2.3 Electromagnetically-induced Transparency

Finally, we are ready to look at the three-level systeam atom. Consider the semi-

classical case of a three-level atom with state |a⟩, |b⟩ and |c⟩ interacting with a single-

mode field. The atom is treated quantum mechanically while the field is treated classi-

cally. From closure relation:

|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|= 1 (2.46)
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Multiplying eq. (2.46) to the unperturbed Hamiltonian:

Ĥ0 = Ĥ0(|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)

= h̄ωa |a⟩⟨a|+ h̄ωb |b⟩⟨b|+ h̄ωc |c⟩⟨c|

= ∑
n=a,b,c

h̄ωn |n⟩⟨n| (2.47)

where h̄ωn (n = a,b,c) are the eigen-energies of the unperturbed Hamiltonian. Using

electric dipole approximation, we assume that the wavelength of the electromagnetic ra-

diation which induces, or is emitted during, transitions between different atomic energy

levels is much larger than the typical size of a light atom. For a detailed description of the

electric dipole approximation, refer to Appendix A. The interaction Hamiltonian written

using dipole approximation is given by:

V̂(R, t)≈−µ ·E(R, t) = er ·E(R, t) (2.48)

where µ̂ is the dipole moment operator, −e is the charge of the electron and R is the

nuclear position. If atomic motion is neglected then R = 0. Again using closure relation,

eq. (2.48) becomes

V̂(R, t) = e((|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)r(|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)) ·E(R, t)

= e[|a⟩⟨a|r |b⟩⟨b|+ |a⟩⟨a|r |c⟩⟨c|+ |b⟩⟨b|r |a⟩⟨a|+

+ |b⟩⟨b|r |c⟩⟨c|+ |c⟩⟨c|r |a⟩⟨a|+ |c⟩⟨c|r |b⟩⟨b|] ·E(R, t)

= − [µab |a⟩⟨b|+µac |a⟩⟨c|+µbc |b⟩⟨c|+ c.c] ·E(R, t)

= − [µab |a⟩⟨b|+µac |a⟩⟨c|+µbc |b⟩⟨c|+ c.c] ·E(R, t)

= − [µab |a⟩⟨b|+µac |a⟩⟨c|+ c.c] ·E(R, t) (2.49a)

where ⟨i|r | j⟩= ri j = ⟨ j|r |i⟩∗ = r∗ji (i, j = a,b,c) and eri j =−µ i j = er∗ji; µ i j is the dipole

moment between state i and j. The diagonal elements, rii vanishes since r has an odd

parity and thus, the overall parity for rii is odd. Using selection rules, we find that the

transition of |b⟩ and |c⟩ is dipole forbidden thus we set µbc = 0.
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Figure 2.1: Electromagnetically induced transparency in three-level atom

Now consider having two fields, the probe field and control field (Ωp,Ωc) interacting

with the three-level atom as shown in Fig. 2.1. We can tune the polarization of the field

so that the probe field is coupled to |b⟩ and |a⟩ while the control field is coupled to |a⟩

and |c⟩. Then, eq. (2.49a) can be written separately for these 2 fields (Marlan O. Scully,

1997) :

V(R, t) = − [µab |a⟩⟨b|+µac |a⟩⟨c|+ad j] ·E(R, t)

= −(µab |a⟩⟨b|+ad j) ·Ep(R, t)+(µac |a⟩⟨c|+ad j) ·Ec(R, t) (2.50)

with E(R, t)=Ep(R, t)+Ec(R, t) and Ep(R, t)=Ep0ei(kpz−wpt)+E∗
p0e−i(kpz−wpt), Ec0(R, t)=

Ec0ei(kcz−wct)+E∗
c0e−i(kcz−wct). Using the interaction picture represantation we have:
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V̂(R, t) = −
[
µab |a⟩⟨b|eiωabt +µac |a⟩⟨c|

]
·E(R, t)

= −
(
µab |a⟩⟨b|eiωabt +ad j

)
·
(

Ep0ei(kpz−ω pt)+E∗
p0e−i(kpz−ω pt)

)
−
(
µac |a⟩⟨c|eiωact +ad j

)
·
(

Ec0ei(kcz−ωct)+E∗
c0e−i(kcz−ωct)

)
= −

(
µab |a⟩⟨b|eiωabt +ad j

)
Ep0ei(kpz−ω pt)

+
(
µab |a⟩⟨b|eiωabt +ad j

)
E∗

p0e−i(kpz−ω pt)

−
(
µac |a⟩⟨c|eiωact +ad j

)
Ec0ei(kcz−ωct)

+
(
µac |a⟩⟨c|eiωact +ad j

)
E∗

c0e−i(kcz−ωct)

≃ −
(

µab |a⟩⟨b|ei∆abt +ad j
)

Ep0eikpz

−
(

µac |a⟩⟨c|ei∆act +ad j
)

Ec0eikcz (2.51)

where ∆ab = ωab −ω p and ∆ac = ωac −ωc. In the last step we have used RWA and

eliminated the rapid oscillating terms.

Recall eq. (2.41), if we include the decay of the atomic state in to the quantum

system, then the equation is modified:

·
ρ̂(t) =− i

h̄

[
Ĥ, ρ̂

]
−Γρ̂ (2.52)

where Γ is the decay operator. In terms of matrix elements, the decay operator can be

written as:

Γi j =
1
2

(
γ i + γ j

)
+ γ i j (2.53)

where γ i and γ j are the population decay rate of state |i⟩ and | j⟩ while γ i j is due to phase

relaxation. γ i, γ j and γ i j are related to the longitudanal (T1) and transverse (T2) relaxation

time through:

γ i =
1
T1

γ i j =
1
T2

(2.54)
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and γ i j ̸= 0 only when i ̸= j.

Define the three-level density matrix in slowly-varying amplitudes (Mikhailov, 2003):

ρ̃aa (t) = ρaa

ρ̃bb (t) = ρbb

ρ̃cc (t) = ρcc

ρ̃ab (t) = ρabe−iω pt

ρ̃ac (t) = ρace−iωct

ρ̃bc (t) = ρbce−i(ω p−ωc)t (2.55)

Under rotating wave approximation, the equations of motion for the density matrix

elements are given by:

·
ρaa = −iΩ∗

pρab + iΩpρba − iΩ∗
dρac + iΩcρca −2γρaa

·
ρbb = iΩ∗

pρab − iΩpρba + γρaa − γbcρbb + γbcρcc

·
ρbb = iΩ∗

pρab − iΩpρba + γρaa − γbcρbb + γbcρcc

·
ρab = −Γabρab + iΩp (ρbb −ρaa)+ iΩcρcb

·
ρca = −Γcaρca + iΩ∗

c (ρaa −ρcc)− iΩ∗
pρcb

·
ρcb = −Γcbρab − iΩpρca + iΩ∗

cρab (2.56)

where γ is the off-diagonal decay rate of ρab and ρca, γbc is the off-diagonal decay rates

of ρbc and

Γab = Γ∗
ba = γ + i∆bc

Γca = Γ∗
ac = γ − i∆ab

Γcb = Γ∗
bc = γbc + i(∆bc −∆ac) (2.57)

In the steady state regime (
·
ρ i j = 0), the solution to these equations are given by:
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ρab = iΩp

(ρbb −ρaa)
(

Γ∗
acΓcb +

∣∣Ωp
∣∣2)+ |Ωc|2 (ρaa −ρcc)

ΓabΓ∗
acΓcb +Γ∗

ac |Ωc|2 +Γab
∣∣Ωp
∣∣2 (2.58)

ρca = iΩ∗
c

(ρaa −ρcc)
(

ΓabΓcb + |Ωc|2
)
+
∣∣Ωp
∣∣2 (ρbb −ρaa)

ΓabΓ∗
acΓcb +Γ∗

ac |Ωc|2 +Γab
∣∣Ωp
∣∣2 (2.59)

ρcb = iΩpΩ∗
c
(ρaa −ρcc)Γab − (ρbb −ρaa)Γ∗

ac

ΓabΓ∗
acΓcb +Γ∗

ac |Ωc|2 +Γab
∣∣Ωp
∣∣2 (2.60)

Using eq. (2.58)- eq. (2.60), we can find the steady state solution of density matrix

for the system of interest.
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CHAPTER 3

LINEAR MODEL FOR LOCAL FIELDS

3.1 Local Field Equations For Quantum System and Metallic Nanoparticle

For our research, we will be studying the interaction of quantum system (QS) and

metallic nanoparticle (MP). In this chapter, we will derive the analytical expressions de-

scribing the local field of QS and MP in the near field limit. Then we will proceed to

discuss how the local field depends on the various parameters. The expressions in near

field limit will provide a simple and intuitive understanding of the interaction. In the next

chapter, we will derive the exact and general expression for the local field of QS and MP.

The Hamiltonian of the QS is given by:

Ĥ = Ĥ0 + h̄
(
Ωbe−iνt |a⟩⟨b|+Ωce−iνct |a⟩⟨c|+h.c

)
(3.1)

Figure 3.1: Configuration of a quantum system (QS) and a MP probed by a laser with field
E. The internal states of the QS described by a three-level system with a− c transition
driven by a strong external control laser.

The local electric field EQS is due to the probe field, control field and the polariza-

tion field from MP. The QS-MP scheme is shown in Fig 3.1. In the following we write

separately the local field in terms of the contribution from probe field and control field.
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EQS,p = Epeiν pt +
1

4πε0

pMP,p

εe f f M,pR3 (3.2)

= E0eiν pt ê+
1

4πε0

pMP,pŝ
εe f f M,pR3

EQS,c = Eceiνct +
1

4πε0

pMP,c

εe f f M,cR3 (3.3)

= E ′
0eiνct ê+

1
4πε0

pMP,cŝ
εe f f M,cR3

εe f f M,p =
2εb + εMP,p (ω)

3εb
(3.4)

εe f f M,c =
2εb + εMP,c (ω)

3εb
(3.5)

where the unit vector is ê = (sinθ ,eiϕ cosθ); θ and ϕ determine the direction and the

polarization of the probe field, respectively, ŝ is the direction of the field due to the polar-

ization of MP and is given by ŝ = 3n̂(ûm · n̂)− ûm where ûm is the unit vector of the MP

dipole. εb and εMP are the background dielectric constant and the metallic nanoparticle

dielectric constant respectively; εb depends on the system environment. Eq. (3.2) is the

probe field contribution part for the local field; the first term on the RHS is the probe field

and the 2nd term on the RHS is the polarization field of MP due to probe field. Similarly,

eq. (3.3) is the control field contribution part for the local field; the first term on the RHS

is the control field and the 2nd term on the RHS is the polarization field of MP due to

control field.

The polarization of the MP is given by:

pMP,p = αMPEMP,p (3.6)

pMP,c = αMPEMP,c (3.7)

αMP is the polarizability of the MP given by:

αMP =
1
K

γa3 (3.8)
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where γ is the plasmonic enhancement factor and we can find the expression for γ using

Clausius-Mossotti relation:

γ =
εm (ω)− εb

εm (ω)+2εb
(3.9)

The linear response of the metal, εm may be described by:

εm (ω) = ε∞ −
ω2

p

ω (ω + iΓ)
(3.10)

If we take the ensemble average of the polarization, then we find:

pQS,p ≃ µ (ρab +ρba) (3.11)

pQS,c ≃ µ (ρbc +ρcb) (3.12)

Similarly, the local field of the MP is also written in terms of the contribution from

probe field and control field.

EMP,p = Ep +
1

4πε0

pQS,p

εe f f Q,pR3 (3.13)

= E0eiν pt ê+
1

4πε0

pQS,pŝ′

εe f f Q,pR3

EMP,c = Ec +
1

4πε0

pQS,c

εe f f Q,cR3 (3.14)

= E ′
0eiνct ê+

1
4πε0

pQS,cŝ′

εe f f Q,cR3

εe f f Q,p =
2εb + εQS,p

3εb
(3.15)

εe f f Q,c =
2εb + εQS,c

3εb
(3.16)

where ŝ′ is the direction of the field due to QS and is given by ŝ′ = 3n̂
(
ûq · n̂

)
− ûq. ûq and

ûq is the unit vector of the dipole moment in QS.

In the specific case that the probe field is parallel with x̂, then eq. (3.2) and eq. (3.13)

can be rewritten as:
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EQS,p = E0eiν pt ê+K
pMP,pŝ

εe f f M,pR3

EQS,px̂ = E0eiν pt x̂+K
pMP,p (2x̂)
εe f f M,pR3 (3.17)

where

ŝ = 3n̂(ûm · n̂)− ûm

= 3(−x̂)(x̂ ·−x̂)− x̂

= 2x̂ (3.18)

EQS,p is in the x̂ direction since both the probe field and MP dipole field are in the x̂

direction.

EMPp = E0eiν pt ê+K
pQS,pŝ′

εe f f Q,pR3

EMP,px̂ = E0eiν pt x̂+K
pQS,p (2x̂)
εe f f Q,pR3 (3.19)

where

ŝ′ = 3n̂′
(
ûq · n̂′

)
− ûq

= 3x̂(x̂ · x̂)− x̂

= 2x̂ (3.20)

3.1.1 Local Field in 1 Dimension

Recall that pMPp = αMPEMPp, αMP = 1
K γa3 and pQS,p = ℘baρab. Equating eq.

(3.17) and eq. (3.19):
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EQS,px̂−2K
pMP,px̂

εe f f M,pR3 = EMP,px̂−2K
pQS,px̂

εe f f Q,pR3

EQS,p = EMP,p −2K
pQS,p

εe f f Q,pR3 +2K
pMP,p

εe f f M,pR3

= EMP,p −2K
℘baρab

εe f f Q,pR3 +2
γa3

εe f f M,pR3 EMP,p

=

(
1+2

γa3

εe f f M,pR3

)
EMP,p −2K

℘baρab
εe f f Q,pR3

=

(
1+2

γa3

εe f f M,pR3

)(
E0eiν pt +2K

pQS,p

εe f f Q,pR3

)
−2K

℘baρab
εe f f Q,pR3

=

(
1+2

γa3

εe f f M,pR3

)
E0eiν pt +2K

℘baρab
εe f f Q,pR3

+4K
℘baρabγa3x̂

εe f f M,pεe f f Q,pR6 −2K
℘baρab

εe f f Q,pR3

=

(
1+2

γa3

εe f f M,pR3

)
E0eiν pt +4K

℘baρabγa3x̂
εe f f M,pεe f f Q,pR6

= Ep,e f f +4K
℘baρabγa3x̂

εe f f M,pεe f f Q,pR6 (3.21)

where Ep,e f f =
(

1+2 γa3

εe f f M,pR3

)
E0eiν pt is the effective probe field. Similarly, we can

rewrite and combine the control field part:

EQS,cx̂−2K
pMP,cx̂

εe f f M,cR3 = 2K
pMP,cx̂

εe f f M,cR3 = EMPcx̂−2K
pQS,cx̂

εe f f Q,cR3

= EMP,c −2K
℘caρac

εe f f Q,cR3 +2
γa3

εe f f M,cR3 EMP,c

=

(
1+2

γa3

εe f f M,cR3

)(
E ′

0eiνct +2K
℘caρac

εe f f Q,cR3

)
−2K

℘caρac
εe f f Q,cR3

=

(
1+2

γa3

εe f f M,cR3

)
E ′

0eiνct +4K
℘caρacγa3

εe f f Q,cεe f f M,cR6

= Ec,e f f +4K
℘caρacγa3

εe f f Q,cεe f f M,cR6 (3.22)

where Ec,e f f is the effective control field.

From the first term of eq. (3.21) and eq. (3.22) we see that in the presence of MP,

the probe field and control field are modified giving the effective probe field Ep,e f f and
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effective control field Ec,e f f . For EQS,p it is modified the factor 1+2 γa3

εe f f M,pR3 and for EQS,c

it is modified by a factor of 1+ 2 γa3

εe f f M,cR3 . Thus, the strength of probe field depends on

2 factors, plasmonic enhancement, γ and also the QS-MP distance, R. Since the effective

probe field and effective control field strength is proportional to the inverse cube root of

the QS-MP distance, ˜ 1
R3 , thus, the field strength is very sensitive to the QS-MP distance.

Besides, the effective field also depends on the plasmonic enhancement, γ . Recall that

γ = εm(ω)−εb
εm(ω)+2εb

, thus the effective field strength can also be enhanced through εm (ω).

εm (ω) depends on the laser frequency and also on the type of MP used.

Furthermore, the local field also depends on another term. For EQS,p, this term

is 4K ℘baρabγa3x̂
εe f f M,pεe f f Q,pR6 and for EQS,c, this term is 4K ℘caρacγa3

εe f f Q,cεe f f M,cR6 . Thus, the local field

strength depends on the plasmonic enhancement γ and the QS-MP distance R and the co-

herence terms ρab and ρac. The field strength is also proportional to 1
R6 , again indicating

that the local field is very sensitive to QS-MP distance. There is also a linear dependance

on γ and the coherence terms. The coherence terms can be found through solving the

equations of motion for the QS density matrix.

To gain further insight, we can substitute eq. (3.6), eq. (3.7), eq. (3.11) and eq.

(3.12) into eq. (3.2) and eq. (3.3) and rewrite:

EQS,p = E0eiν pt ê+
1

4πε0

4πε0γa3
(

E0eiν pt ê+ 1
4πε0

µ(ρ12+ρ21)ŝ
εe f f Q,pR3

)
ŝ

εe f f M,pR3

= E0eiν pt ê+
γa3E0eiν pt ŝê+ γa3ŝ2

4πε0εe f f Q,pR3 µ (ρab +ρba)

εe f f M,pR3

= E0eiν pt ê
(

1+
γa3ŝ

εe f f M,pR3

)
+

γa3ŝ2µ2

4πε0εe f f Q,pεe f f M,pR6
1
µ
(ρab +ρba)

=
2h̄

µE0
ΩpE0eiν pt ê+

Gp

µ
(ρab +ρba) (3.23)
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EQS,c = E ′
0eiνct ê+

1
4πε0

4πε0γa3
(

E ′
0eiνct ê+ 1

4πε0

pQS,csα
εe f f Q,cR3

)
ŝ

εe f f M,cR3

= E ′
0eiνct ê+

γa3E ′
0eiνct ŝê+ γa3ŝ2

4πε0εe f f Q,cR3 µ (ρac +ρca)

εe f f M,cR3

= E ′
0eiνct ê

(
1+

γa3ŝ
εe f f M,cR3

)
+

γa3ŝ2µ2

4πε0εe f f Q,cεe f f M,cR6
1
µ
(ρac +ρca)

=
2h̄

µE0
ΩcE ′

0eiνct ê+
Gc

µ
(ρac +ρca) (3.24)

where Gp = γa3ŝ2µ2

4πε0εe f f Q,pεe f f M,pR6 , Ωp = µE0
2h̄

(
1+ γa3ŝ

εe f f M,pR3

)
, Gc =

γa3ŝ2µ2

4πε0εe f f Q,cεe f f M,cR6 and

Ωc =
µE0
2h̄

(
1+ γa3ŝ

εe f f M,cR3

)
. The term Gp arises when the applied field polarizes the QS

which in turn polarizes the MP, which then polarizes QS again and so on. Thus, the term

Gp can be thought of as the self interaction of QS. As for the Ωp term, the first term is the

direct coupling of QS to the field, while the second term is the field from the MP that is

induced by the applied field. Gc and Ωc have similar interpretation.
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CHAPTER 4

VECTORIAL LOCAL FIELD

4.1 Vectorial Local Field Equations For QS and MP

In the previous section, we consider the near field
(
R ≪ 1

k

)
for one dimension. Here

we consider the exact local field for any arbitrary R. The local field of the MP has three

components; the field that is due to the probe field, control field and the dipole of QS.

The field produced by a dipole is given in (Jackson, 1998):

Edip =
1

4πε0εe f f
f(R)

=
K

εe f f
f(R) (4.1)

where K = 1
4πε0

and

f(R) =
k2

R
(n̂×p)× n̂+[3n̂(n̂ ·p)−p]

(
1

R3 −
ik
R2

)
(4.2)

Using vector triple product identity (a×b)× c = (c ·a)b− (c ·b)a, then:

f(R) =
k2

R
[(n̂ · n̂)p−(n̂ ·p) n̂]+ [3n̂(n̂ ·p)−p]

(
1

R3 −
ik
R2

)
=

k2

R
[p−(n̂ ·p) n̂]+ [3n̂(n̂ ·p)−p]

(
1

R3 −
ik
R2

)
= p

(
k2

R
+

ik
R2 −

1
R3

)
+(p·n̂) n̂

(
−k2

R
+

3
R3 −

3ik
R2

)
= A(k,R)

(
px

py

)
+B(k,R)

(
nx

ny

)
p·n̂ (4.3)

where n̂ is the direction of the field due to polarization and
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A(k,R) =
k2

R
+

ik
R2 −

1
R3 (4.4)

B(k,R) = −k2

R
+

3
R3 −

3ik
R2 (4.5)

p·n̂ = pxnx + pyny (4.6)

In the QS dipole field, p is replaced by the transition dipole moment operator℘baρ̃ab

for the probe field and ℘caρ̃ac for the control field:

fp(R) = ρ̃ab

[
A(k,R)

(
℘ba,x

℘ba,y

)
+B(k,R)

(
nx

ny

)
℘ba·n̂

]
(4.7)

fc(R) = ρ̃ac

[
A(k,R)

(
℘ca,x

℘ca,y

)
+B(k,R)

(
nx

ny

)
℘ca·n̂

]
(4.8)

where ℘∗·n̂′ =℘∗
x n̂′x +℘∗

y n̂′y.

The dipole field as derived is given by:

EQS
dip =

1
4πε0εe f f M

f(R)

=
K

εe f f M
f(R) (4.9)

We can separate the contribution from the probe field and control field part:

EQS
dip,p =

K
εe f f M,p

fp(R) (4.10)

EQS
dip,c =

K
εe f f M,c

fc(R) (4.11)

As in the previous chapter, we write the local field separately for the contribution of

probe and control field:
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EMPp = Ep +EQS
dip,p

=

(
Ex

Ey

)
eiν pt +

K
εe f f Q,p

ρ̃ab

[
A
(

℘ba,x

℘ba,y

)
+B
(

n′x
n′y

)
℘ba·n̂′

]
(4.12)

EMPc = Ec +EQS
dip,c

=

(
E ′

x
E ′

y

)
eiνct +

K
εe f f Q,c

ρ̃ac

[
A
(

℘ca,x

℘ca,y

)
+B
(

n′x
n′y

)
℘ca·n̂′

]
(4.13)

Recall that pMP,p =℘baρab and pMP,c =℘caρac. Similarly, we write separately the

local field of QS in terms of the contribution from probe field and control field:

EQSp = Ep +EMP
dip,p

=

(
Ex

Ey

)
eiν pt +

K
εe f f M,p

[
A
(

pMP
x

pMP
y

)
+B
(

nx

ny

)
pMP·n̂

]

=

(
Ex

Ey

)
eiν pt +

K
εe f f M,p

[
A
(

αMPEMPp,x

αMPEMPp,y

)
+B
(

nx

ny

)
(αMPEMPp,xnx +αMPEMPp,yny)

]
=

(
Ex

Ey

)
eiν pt +

K
εe f f M,p

αMP

(
AEMPp,x +BEMPp,xn2

x +BEMPp,ynxny

AEMPp,y +BEMPp,xnxny +BEMPp,yn2
y

)
=

(
Ex

Ey

)
eiν pt +

K
εe f f M,p

αMPM
(

EMPp,x

EMPp,y

)
(4.14)

EQSc = Ec +EMP
dip,c

=

(
E ′

x
E ′

y

)
eiνct +

K
εe f f M,c

αMPM
(

EMPc,x

EMPc,y

)
(4.15)

where M =

 A+Bn2
x Bnxny

Bnxny A+Bn2
y

. Substituting eq. (4.12) to eq. (4.14):
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EQSp =

(
Ex

Ey

)
eiν pt +

K
εe f f M,p

αMPM
(

EMPp,x

EMPp,y

)
=

(
Ex

Ey

)
eiν pt +

K
εe f f M,p

αMPM

{(
Ex

Ey

)
eiν pt +

K
εe f f Q,p

ρ̃ab

[
A
(

℘ba,x

℘ba,y

)
+B
(

n′x
n′y

)
℘ba·n̂′

]}

=

(
Ex

Ey

)
eiν pt +

K
εe f f M,p

αMPM
(

Ex

Ey

)
eiν pt

+
K2

εe f f Q,pεe f f M,p
αMPMρ̃ab

[
A
(

℘ba,x

℘ba,y

)
+B
(

n′x
n′y

)
℘ba·n̂′

]

=

(
1+

K
εe f f M,p

αMPM
)(

Ex

Ey

)
eiν pt

+
K2

εe f f Q,pεe f f M,p
αMPMρ̃ab

[
A
(

℘ba,x

℘ba,y

)
+B
(

n′x
n′y

)
℘ba·n̂′

]
(4.16)

EQSc =

(
E ′

x
E ′

y

)
eiνct +

K
εe f f M,c

αMPM

{(
E ′

x
E ′

y

)
eiνct +

K
εe f f Q,c

ρ̃ac

[
A
(

℘ca,x

℘ca,y

)
+B
(

n′x
n′y

)
℘ca·n̂′

]}

=

(
E ′

x
E ′

y

)
eiνct +

K
εe f f M,c

αMPM
(

E ′
x

E ′
y

)
eiνct

+
K2

εe f f M,cεe f f Q,c
αMPMρ̃ac

[
A
(

℘ca,x

℘ca,y

)
+B
(

n′x
n′y

)
℘ca·n̂′

]

=

(
1+

K
εe f f M,c

αMPM
)(

E ′
x

E ′
y

)
eiνct

+
K2

εe f f M,cεe f f Q,c
αMPMρ̃ac

[
A
(

℘ca,x

℘ca,y

)
+B
(

n′x
n′y

)
℘ca·n̂′

]
(4.17)

where εe f f Q,c =
2εb+εQS,c

3εb
and εQS = 1+ η

Ω ρ̃ab, and ℘ba·n̂′ =℘ba,xn′x +℘ba,yn′y, ℘ca·n̂′ =

℘ca,xn′x +℘ca,yn′y.

4.1.1 Vectorial Local Fields in 2-dimension

Recall that M =

 A+Bn2
x Bnxny

Bnxny A+Bn2
y

 and assume that MP and QS are aligned

on the x-axis as shown in Fig. 2.1, then nx = −1, n′x = 1, ny = n′y = 0, then M = A+B 0

0 A

, ℘ba·n̂′ =℘ba,x, ℘ca·n̂′ =℘ca,x. Thus in this case, eq. (4.16) and eq.

(4.17) can be written as:
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EQSp =

(
Ex

Ey

)
eiν pt +

K
εe f f M,p

αMP

(
(A+B)Ex

AEy

)
eiν pt

+
K2

εe f f Q,pεe f f M,p
αMPρ̃ab

[
A
(
(A+B)℘ba,x

A℘ba,y

)
+B
(

A+B
0

)
℘ba,x

]
(4.18)

EQSc =

(
E ′

x
E ′

y

)
eiνct +

K
εe f f M,c

αMP

(
(A+B)E ′

x
AE ′

y

)
eiνct

+
K2

εe f f M,cεe f f Q,c
αMPρ̃ac

[
A
(
(A+B)℘ca,x

A℘ca,y

)
+B
(

A+B
0

)
℘ca,x

]
(4.19)

Recall that A = k2

R + ik
R2 − 1

R3 , B =−k2

R + 3
R3 − 3ik

R2 , A+B = 2
R3 −2ik

R2 and αMP = 1
K γa3,

then eq. (4.16) and eq. (4.17) can be written in terms of its x and y components:

EQS,p,x = Exeiν pt +
K

εe f f M,p
αMP (A+B)Exeiν pt

+
K2

εe f f Q,pεe f f M,p
αMPρ̃ab

[
A(A+B)℘ba,x +B(A+B)℘ba,x

]
= Exeiν pt

[
1+

2
εe f f M,p

γa3
(

1
R3 −

ik
R2

)]
+

K
εe f f Q,pεe f f M,p

γa3ρ̃ab

(
2

R3 −
2ik
R2

)2

℘ba,x

= Ee f f ,x +
K

εe f f Q,pεe f f M,p
γa3ρ̃ab

(
2

R3 −
2ik
R2

)2

℘ba,x (4.20)

EQSp,y = Eyeiν pt +
K

εe f f M,p
αMPAEyeiν pt +

K2

εe f f Q,pεe f f M,p
αMPρ̃abA2℘ba,y

= Eyeiν pt
[

1+
1

εe f f M,p
γa3
(

k2

R
+

ik
R2 −

1
R3

)]
+

K
εe f f Q,pεe f f M,p

γa3ρ̃ab

(
k2

R
+

ik
R2 −

1
R3

)2

℘ba,y

= Ee f f ,y +
K

εe f f Q,pεe f f M,p
γa3ρ̃ab

(
k2

R
+

ik
R2 −

1
R3

)2

℘ba,y (4.21)
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EQSc,x = E ′
xeiνct +

K
εe f f M,c

αMP (A+B)E ′
xeiνct

+
K2

εe f f M,cεe f f Q,c
αMPρ̃ac [A(A+B)℘ca,x +B(A+B)℘ca,x]

= E ′
xeiνct

[
1+

1
εe f f M,c

γa3
(

2
R3 −

2ik
R2

)]
+

K
εe f f M,cεe f f Q,c

γa3ρ̃ac

(
2

R3 −
2ik
R2

)2

℘ca,x

= E ′
e f f ,x +

K
εe f f M,cεe f f Q,c

γa3ρ̃ac

(
2

R3 −
2ik
R2

)2

℘ca,x (4.22)

EQSc,y = E ′
yeiνct +

K
εe f f M,c

αMPAE ′
yeiνct +

K2

εe f f M,cεe f f Q,c
αMPρ̃acA2℘ca,y

= E ′
yeiνct

[
1+

1
εe f f M,c

γa3
(

k2

R
+

ik
R2 −

1
R3

)]
+

K
εe f f M,cεe f f Q,c

γa3ρ̃ac

(
k2

R
+

ik
R2 −

1
R3

)2

℘ca,y

= E ′
e f f ,y +

K
εe f f M,cεe f f Q,c

γa3ρ̃ac

(
k2

R
+

ik
R2 −

1
R3

)2

℘ca,y (4.23)

where Ee f f ,x = Exeiν pt
[
1+ 2

εe f f M,p
γa3
(

1
R3 − ik

R2

)]
,

Ee f f ,y = Eyeiν pt
[
1+ 1

εe f f M,p
γa3
(

k2

R + ik
R2 − 1

R3

)]
,

E ′
e f f ,x = E ′

xeiνct
[
1+ 1

εe f f M,c
γa3
(

2
R3 − 2ik

R2

)]
and

E ′
e f f ,y = E ′

yeiνct
[
1+ 1

εe f f M,c
γa3
(

k2

R + ik
R2 − 1

R3

)]
are the effective probe field in x and

y-component and the effective control field in the x and y-component. y-component.

Instead of looking at the QS-MP system as a one-dimensional problem as we did in

the previous section, here we derive a general vectorial description for the QS-MP system

in two-dimensional in which we do not specify the probe and control laser direction. As in

the linear case, we see the probe and control field are modified in the presence of MP. The

probe and control field also have a linear dependence on the plasmonic enhancement, γ ,

similar as in the linear model. However, the effective probe and control field dependence

on the QS-MP distance is now diferent. In the x-component for both effective probe and

control field, there is still an inverse cube root dependence on the QS-MP distance, ~ 1
R3 ,
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however, there is also an additional competing effect from the negative inverse square root

dependence on QS-MP distance ~− 1
R2 . On the other hand, in the y-component for both

effective probe and control field, the leading term in the dependence on QS-MP distance

is ~− 1
R3 , thus, decreasing QS-MP distance actually diminishes the effective probe and

control field strength.

The local field of QS also depends on another term. The local field strength de-

pends linearly on the plasmonic enhancement γ and coherence terms ρ̃ab and ρ̃ac and

nonlinearly on the QS-MP distance with the leading term of 1
R6 .

Since h̄Ωb =℘ab ·EQSp and h̄Ωb =℘ac ·EQSc then:

h̄Ωab = ℘ab

(
EQSp,x

EQSp,y

)
= ℘ab

[(
Ex

Ey

)
eiν pt +

1
εe f f Q,p

(
Peiν pt +

ρ̃ab
εe f f M,p

R
)]

= h̄Ωbeiν pt +
1

εe f f Q,p

(
℘ab ·Peiν pt +

ρ̃ab
εe f f M,p

℘ab ·R
)

= h̄Ωbeiν pt +
1

εe f f Q,p
℘ab ·Peiν pt +

1
εe f f M,p

3εbρ̃ab

2εb +1+
η p
Ωab

ρ̃ab

℘ab ·R(4.24)

h̄Ωac = ℘ac

(
EQSc,x

EQSc,y

)
= ℘ac

[(
E ′

x
E ′

y

)
eiνct +

1
εe f f Q,c

(
Qeiνct +

ρ̃ac
εe f f M,c

S
)]

= h̄Ωceiνct +
1

εe f f Q,c

(
℘ac ·Qeiνct +

ρ̃ac
εe f f M,c

℘ac ·S
)

= h̄Ωceiνct +
1

εe f f Q,c
℘ac ·Qeiνct +

1
εe f f M,c

3εbρ̃ac

2εb +1+ ηc
Ωac

ρ̃ac
℘ac ·S (4.25)

where ηc =
N|℘ac|2

h̄ε0
and η p = N|℘ab|2

h̄ε0
. Ωab and Ωac are the effective Rabi frequencies

of the QS when the QS is coupled to the metallic nanoparticle. We see that the Rabi

frequencies are modified by the 2nd and 3rd term in eq. (4.24) and eq. (4.25). If we let R

tends to inifinity, then we see that we recover the Rabi frequencies of the EIT system.
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The three-level EIT scheme equations are given by:

∂ρaa
∂ t

= −2(γab + γac)ρaa + iΩdρba − iΩ∗
dρab + iΩpρca − iΩ∗

pρac

∂ρab
∂ t

= −(γab + γac)ρab − iΩd (ρaa −ρbb)+ iΩpρcb

∂ρac
∂ t

= −(γab + γac + i∆)ρac + iΩdρbc − iΩp (ρaa −ρcc)

∂ρbb
∂ t

= 2γabρaa − iΩdρba + iΩ∗
dρab

∂ρbc
∂ t

= −(Γbc + i∆)ρbc + iΩ∗
dρac − iΩpρba

∂ρcc
∂ t

= 2γacρaa − iΩpρca + iΩ∗
pρac (4.26)

where 2γ i j are the decay rates from |i⟩ to | j⟩ and Γbc is the dephasing rate of the Raman

coherence, Ωd =
℘abξ p

h̄ and Ωp =
℘acξ c

h̄ .

For the three-level Raman scheme, the steady-state density matrix elements are given

by:

ρ̃ac =
1

ϒac
{−iΩacwac + iΩbρ̃bc} (4.27)

ρ̃ba =
1

ϒ∗
ab(ω)

{iΩ∗
bwab − iΩ∗

acρ̃bc} (4.28)

ρ̃bc =
1

ϒbc(ω)
{iΩ∗

bρ̃ac − iΩacρ̃ba} (4.29)

with Ωb = Ωη +Gρac, ϒac = γac − i∆c,ϒab(ω) = γab − i∆(ω),ϒbc(ω) = γbc − i(∆c −

∆(ω)) and wab = ρ(0)
aa − ρ(0)

bb , wac = ρ(0)
aa − ρ(0)

cc . The effective decoherences are γac =

Γc+Γb
2 + γd

ac, γab =
Γc+Γb

2 + γd
ab with Γb, Γc as the spontaneous emission rates, γd

ac, γd
ab are

dephasing rates, ∆(ω) = ω −ωab and ∆c = νc−ωac are the detunings. The radiative rate

of the QS can be modified by the MP as Γb,c = | f |2γ0 where f = 1+gαMP/ε ′e f f d3.

Solving eq. (4.27), (4.28) and (4.29):

ρ̃ac = −i
wacΩ2

acΩ∗
ac +wacϒ∗

abϒbcΩac −|Ωb|2 wabΩac

|Ωb|2 ϒ∗
ab +ϒacϒ∗

abϒbc +ϒac |Ωac|2

ρ̃ba = i
|Ωb|2 Ω∗

bwab +Ω∗
bwabϒacϒbc −Ω∗

bwac |Ωac|2

|Ωb|2 ϒ∗
ab +ϒacϒ∗

abϒbc +ϒac |Ωac|2

ρ̃bc =
Ω∗

bwabϒacΩac +Ω∗
bwacϒ∗

abΩac

|Ωb|2 ϒ∗
ab +ϒacϒ∗

abϒbc +ϒac |Ωac|2
(4.30)
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Furthermore, if we assume that all atoms are initially in ground state |b⟩, then wac = 0

and wab =−1 and the equations become:

ρ̃ac = −i
|Ωb|2 Ωac

|Ωb|2 ϒ∗
ab +ϒacϒ∗

abϒbc +ϒac |Ωac|2

ρ̃ba = −i
|Ωb|2 Ω∗

b +Ω∗
bϒacϒbc

|Ωb|2 ϒ∗
ab +ϒacϒ∗

abϒbc +ϒac |Ωac|2

ρ̃bc = −
Ω∗

bϒacΩac

|Ωb|2 ϒ∗
ab +ϒacϒ∗

abϒbc +ϒac |Ωac|2
(4.31)

and ρ̃ab = ρ̃∗
ba:

ρ̃ab = iΩb
|Ωb|2 +ϒ∗

acϒ∗
bc

|Ωb|2 ϒab +ϒ∗
acϒabϒ∗

bc +ϒ∗
ac |Ωac|2

(4.32)

Since |Ωb| ≪ |ϒ| we may neglect |Ωb|2, then

ρ̃ab = i
Ωbϒ∗

bc
ϒabϒ∗

bc + Ic
(4.33)

ρ̃ac =−i
|Ωb|2 Ωac

ϒac
(
ϒ∗

abϒbc + Ic
) (4.34)

where Ic = |Ωac|2

Thus, we have derived the steady state coherences given by eq. (4.33) and eq. (4.34).

However, the complex decoherences are also modified by the MP, thus we rewrite eq.

(4.33) and eq. (4.34) as:

ρ̃ab = i
Ωbϒ∗

bc
ϒ′

abϒ∗
bc + Ic

(4.35)

where ϒ′
ab(ω) = ϒab(ω)− iG where G = K 4|℘|2γa3

h̄εe f f ε ′e f f R6 . Furthermore, if we include the

effect of MP on ρ̃ab through εe f f Q,p =
2εb+εQS

3εb
where εQS = 1+ η

Ω ρ̃ab. Then we rewrite

eq. (4.35) as:
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ρ̃ab = i
Ωbϒ∗

bc
(ϒab − iG)ϒ∗

bc + Ic

= i
Ωbϒ∗

bc(
ϒab − iK 4|℘|2γa3

h̄εe f f ε ′e f f R6

)
ϒ∗

bc + Ic

= i
Ωbϒ∗

bc(
ϒab − iK 4|℘|2γa3

h̄εe f f R6

3εb
Ω
η

Ω
η (2εb+1)+ρ̃ab

)
ϒ∗

bc + Ic

(4.36)

Substituting Ωb into these expressions:

ρ̃ab = i(Ωabeiν pt +
1

h̄εe f f ,p
℘ab ·Peiν pt

+
1

h̄εe f f ,p

3εbρ̃ab

2εb +1+
η p
Ωab

ρ̃ab

℘ab ·R)
ϒ∗

bc (ω)

ϒab (ω)ϒ∗
bc (ω)+ Ic

= iΩab
ϒ∗

bc (ω)

ϒab (ω)ϒ∗
bc (ω)+ Ic

eiν pt + i
1

h̄εe f f ,p
℘ab ·P

ϒ∗
bc (ω)

ϒab (ω)ϒ∗
bc (ω)+ Ic

eiν pt

+i
1

h̄εe f f ,p

3εbρ̃ab

2εb +1+
η p
Ωab

ρ̃ab

℘ab ·R
ϒ∗

bc (ω)

ϒab (ω)ϒ∗
bc (ω)+ Ic

(4.37)

ρ̃ab = ρ̃∞
ab

[
1+

1
Ω

(
X +

Y ρ̃ab
κ + ρ̃ab

)]
(4.38)

where X = 1
εe f f

g ·P, Y = 1
εe f f

g ·Q3εbΩ
η
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CHAPTER 5

RESULTS AND DISCUSSION

Figure 5.1: (The spectra for the real and imaginary parts of the dielectric function εQS
versus R the spacing between the QS and MP for : a) εm = 0.453+ 3.35i with a small
enhancement of γ ≃ 3. b) εm = −4.9+ 0.05i with γ = 3.34+ 0.06i for Ag using ω p =
9.1eV= 2.2×1015s−1, Γm = 18meV= 2.73×1013s−1, ε∞ = 3.7 corresponding to ωSP =
5.34×1015s−1, ωab = 2πc/(400nm) = 4.71×1015s−1. Other parameters are: εb = 1.5,
Ωc = 5Γ, the probe field amplitude E0 = 0.1h̄Γ/℘, ℘= 2×10−29 Cm−1, where Γ = 109

s−1 (Folk et al., 2001) for the decay rate.

We have discussed the linear and vectorial model of the QS-MP local field. In the

derivation in previous sections, we have taken into account the effect of both control and

probe field. In this section, we focus on the vectorial model and the effect from probe

field.

Recall that from previous chapter, we have derived the equations:
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EQS,p,x = Exeiν pt
[

1+
2

εe f f M,p
γa3
(

1
R3 −

ik
R2

)]
+

K
εe f f Q,pεe f f M,p

γa3ρ̃ab

(
2

R3 −
2ik
R2

)2

℘ba,x

EQSp,y = Eyeiν pt
[

1+
1

εe f f M,p
γa3
(

k2

R
+

ik
R2 −

1
R3

)]
+

K
εe f f Q,pεe f f M,p

γa3ρ̃ab

(
k2

R
+

ik
R2 −

1
R3

)2

℘ba,y

The main results are obtained when the local probe field is large due to the near field

or plasmonic enhancement by the MP, i.e. Ωb is comparable to or larger than Ωc. The Ωb

from Eq. (4.24) is substituted into the density matrix equation for the three-level system

and the coherences to are numerically computed at any time. Quasi steady state solution

for ρ̃ab is obtained for large times (250Γ−1) to compute the susceptibility χ = N|℘ab|2
h̄ε0

ρ̃ab
Ω

and the dielectric function εQS = 1+χ (Ooi & Tan, 2013).

Fig. 5.1a) shows the computed dispersion spectra (ReεQS) and absorption spectra

(ImεQS) for metal dielectric constant, εm = 0.453+3.35i, which corresponds to a small

plasmonic enhancement of γ ≃ 3. From the figure we see that for R larger than 2a, we see

the usual EIT peak. However at small separation, the EIT peaks diminish and broaden.

This is due to the enhanced probe field at small separation R, which competes with the

EIT effect.

The spectra in Fig. 5.1b) is computed using parameters of actual silver (Ag) nanopar-

ticle with dispersion (Folk et al., 2001). The metal dielectric constant computed using eq.

(3.10) gives the value εm = −4.9+0.05i. Interesting feature is found for the absorption

spectra. Again, we found that the EIT peaks reduces as the separation R decreases. At

R˜4a, the EIT peaks are completely quenched as the enhanced probe field matches the

control field, here the ImεQS vanishes while ReεQS is constant for all frequencies. At
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R ≺ 4a, we see the interesting feature in which the absorption spectra goes into the nega-

tive values, indicating that there is a gain region. In this region, Ωb is enhanced exceeding

Ωc such that the field inside QS becomes sufficiently high to excite some population to

level |a⟩ creating a high gain (negative absorption).

Figure 5.2: (The spectra of εQS versus R for different ϕ ,θ with surface plasmon resonance
(SPR) condition with ωab = ωSP = 5.34× 1015s−1, which gives a large enhancement,
γ = 0.88+131i at ω = ωSP. All other parameters are the same as in Fig. 5.1b.

Besides the metal dielectric function, the QS spectra is also affected by the probe

field direction θ and polarization or relative phase ϕ . For the case without SPR, or ωab

̸= ωSP the spectra hardly depend on θ . For ωab = ωSP, the spectra are more sensitive to

θ or the polarization and the relative phase ϕ of the probe laser. Thus, the spectra with

SPR for different field direction and polarization is plotted in Fig. 5.2 and Fig. 5.3.

When the surface plasmon resonance (SPR) condition εm(ωSP)+2εb ≃ 0 is satisfied,

plasmonic enhancement effect occurs giving a large plasmonic enhancement, Im γ ≃ 130
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(Re γ ≃ 0) at ω =ωSP. To see the plasmonic effects on the EIT profile, we set ωab =ωSP.

As shown in Fig. 5.2, the EIT peaks start to be affected by MP even at very large R. In

Fig. 5.2, the spectra for different probe field direction, θ is plotted. The spectra undergoes

a transition for separation smaller than R = 50a and the transition is dependent on the

direction and phase angles. For ϕ = 0 with θ = π/4 and π/2, one of the EIT peaks shifts

toward higher frequencies as the separation decreases, in addition to the existence of gain

region with negative Im εQS. This frequency shift and the SPR–mediated long range

Forster interaction are the unique features not found in cases without SPR enhancement.

Figure 5.3: (The spectra of Re εQS and Im εQS versus θ the incident angle of the probe
laser with SPR for various phase angles ϕ = 0,π/4,π/2,3π/4 at R = 15a. Other param-
eters are the same as in Fig. 5.2.
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Fig. 5.3 shows the variations of the dispersion and absorption spectra with the in-

cident angle θ and the quadrature phase ϕ at separation R = 15a. The εQS has positive

and negative values that depend on the frequency and it shows small variation with θ for

ϕ = 0 and π/4. However, for ϕ = π/2 and 3π/4, the positions of the positive and negative

peaks are shifted significantly at around θ = π/4, i.e. when the x and y components have

equal strength. This feature gives rise to directional dependence gain/absorption. These

results show that the laser phase and polarization have important effects on the optical

properties of the QS with nearby MP, especially in the presence of SPR.
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CHAPTER 6

CONCLUSION

We have studied in details the effects of MP on a QS driven by a control laser. Analytical

expressions were derived for the QS-MP system in the near field picture as well as in the

vectorial picture. In the near field limit, the local field of QS is enhanced through plas-

monic enhancement and the interparticle distance. The local field was found to depend

on the inverse cube root of the interparticle distance and depend linearly on plasmonic

enhancement. The vectorial description gives a more general picture of the problem by

allowing the freedom to vary the probe field direction and polarization. In vectorial pic-

ture, similar results was found as in the near field limit. The local field depends linearly

on the plasmonic enhancement in both x and y-direction and also depends on the inverse

cube root of the interparticle distance in the x-direction. However in the vectorial case, it

was found that there is also a competing effect coming from a negative inverse square root

dependence of the local field on the interparticle distance in the x-direction. Moreover, in

the y-direction, the leading term dependence of the local field on interparticle distance is

negative inverse cube root.

Numerically, we focus on the result where the local field is large due to near field

or plasmonic enhancement or both. The absorption and dispersion spectra are plotted

for different direction, polarization and phase of the probe laser. With small plasmonic

enhancement, it was found that at sufficiently small spacing between QS and MP, the elec-

tromagnetic induced transparency of the QS is quenched while the optical properties and

the underlying quantum mechanisms (inferred from the spectra) of the QS are drastically

altered. This is due to the near field enhancement in which the probe field is enhanced

as the interparticle spacing decreases until subsequently the EIT peaks completely disap-

pears. In the case where there is dispersion, it was found that not only that the EIT effects

were quenched but there is also a negative region in the absorption spectra indicating that

there is a gain region at sufficiently small spacing.
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Besides the interparticle spacing, the presence of surface plasmon resonance also

significantly enhances the local field of QS. With the effect of surface plasmon resonance,

the QS spectra was found to be affected at an interparticle distance that is about an order

magnitude larger than in the case without surface plasmon resonance. Furthermore, the

absorption and dispersion spectra are plotted for different laser direction and polarization.

It was found that the spectra indeed does have directional dependence and the features of

the profile are more marked in the presence of surface plasmon resonance. These results

show that the laser direction and phase have important effects on the optical properties of

the QS with nearby MP.

By manipulating the different parameters, the features found in the dispersion/absorption

spectra show that the QS-MP system could be switched between electromagnetic induced

transparency, absorptive and gain/lasing regimes, providing coherent control of optical

properties of nanomaterials for quantum nanophotonics devices.
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APPENDIX A

MULTIPOLE EXPANSION

It is usually difficult to evaluate exactly the potential of an arbitrary charge configuration.

If the charge configuration does not exhibit considerable symmetry or if the potential is

evaluated at somewhere outside of the symmetry axis, then evaluation of Coulomb’s law

and Biot-Savart’s law become difficult. Thus, it is useful to have an approximation tech-

nique to evaluate the potential of an arbitrary charge configuration. The approximation

employs the power series expansions of the potential and keeping terms up to the order

of the precision desired (Griffiths, 1999).

Imagine a charge distribution with charge Q, then at a point far away from the dis-

tribution, this charge distribution is approximately a point charge, thus the potential of a

point charge with the charge replaced by the total charge of the distribution will give a

good approximation to the potential, V ≃ 1
4πε0

Q
r , where r is the average distance of the

center of the charge distribution to the point where the potential is evaluated. In fact, as

will be seen later this term is the first order approximation to an arbitrary charge distribu-

tion.

But what if the charge distribution has a net charge Q = 0, what is the potential

of this charge distribution at point far away from the distribution? If the ’point charge’

approximation above is used, then the potential is zero. But this is incorrect, the potential

at a point far away is very small but not zero.

As an example, solve the potential for a pair of closely spaced charges of opposite

sign (an electric dipole) at a point far away from the dipole. In this case the net charge of

the distribution is zero. Let the positive charge q be at 1
2d from the origin and the negative

charge −q to be at −1
2d from the origin. The potential at r due to the two charges are

given by:
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V (r) =
1

4πε0

(
q∣∣r− 1

2d
∣∣ + −q∣∣r+ 1

2d
∣∣
)

=
q

4πε0

(
1∣∣r− 1

2d
∣∣ − 1∣∣r+ 1

2d
∣∣
)

(A.1)

Recall the law of cosines: c2 = a2+b2−2a ·b = a2+b2−2abcosθ , where θ is the

angle subtended by a and b. Then the denominators in the parantheses of eq. (A.1) can

be rewritten using law of cosines:

V (r) =
q

4πε0

 1√
r2 +

(d
2

)2 − rd cosθ
− 1√

r2 +
(d

2

)2
+ rd cosθ


=

q
4πε0r

 1√
1+
( d

2r

)2 − d
r cosθ

− 1√
1+
( d

2r

)2
+ d

r cosθ

 (A.2)

At point far away from the charge r ≫ d, only first order terms in d
r are retained:

V (r) =
q

4πε0r

 1√
1− d

r cosθ
− 1√

1+ d
r cosθ

 (A.3)

Recall the binomial series formula:

(1+ x)α =
∞

∑
k=0

(
α
k

)
xk

= 1+αx+
α (α −1)

2!
x2 +

α (α −1)(α −2)
3!

x3 + ... (A.4)

Rewriting the denominator of eq. (A.2):

(
1∓ d

r
cosθ

)− 1
2

= 1± d
2r

cosθ ± 3
8

(
d
r

)2

cos2 θ ± ... (A.5)

Again keeping only first order terms in d
r then eq. (A.3) can be written as:

V (r) =
q

4πε0r

(
1+

d
2r

cosθ −1+
d
2r

cosθ
)

=
qd

4πε0r2 cosθ (A.6)
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Mutiply the numerator and denominator of eq. (A.6) by r and notice that r · d =

rd cosθ , then:

V (r) =
r · (qd)
4πε0r3

=
r · (p)

4πε0r3 (A.7)

where p ≡ qd is the dipole moment of the charge pair. This expression however is not

exact as we have neglected the higher order terms and only kept the leading dipole term.

We can imagine another configuration where two physical dipoles are aligned antiparallel

to each other with the four charges places at the corner of a square (quadrupole configu-

ration). From eq. (A.7) then we can see that for large r, the dipole term is approximately

zero, thus its potential is dominated by the next term in the expansion, the quadrupole

term.

Now, we would like to find a general power series expansion for an arbitrary charge

distribution. Let r be the point that the potential is evaluated and r′ to be the point of the

distribution. The potential at r due to an arbitrary charge distribution is given by:

V (r) =
1

4πε0

∫ 1
|r− r′|

ρ
(
r′
)

dτ ′ (A.8)

where ρ is the charge density and dτ ′ is the volume element of the charge distribution.

Using law of cosines:

∣∣r− r′
∣∣2 = r2 + r′2 −2rr′ cosθ ′

= r2

(
1+
(

r′

r

)2

−2
(

r′

r

)
cosθ ′

)
∣∣r− r′

∣∣ = r
√

1+ ε (A.9)

where ε =
(

r′
r

)2
−2
(

r′
r

)
cosθ =

(
r′
r

)(
r′
r −2cosθ ′

)
. Then using binomial expansion:
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1
|r− r′|

=
1
r
(1+ ε)−

1
2 =

1
r

(
1− 1

2
ε +

3
8

ε2 − 5
16

ε3 + ...

)
=

1
r
[1− 1

2

(
r′

r

)(
r′

r
−2cosθ ′

)
+

3
8

(
r′

r

)2(r′

r
−2cosθ ′

)2

− 5
16

(
r′

r

)3(r′

r
−2cosθ ′

)3

+ ...]

=
1
r
[1− 1

2

(
r′

r

)2

+

(
r′

r

)
cosθ ′+

3
8

(
r′

r

)2
((

r′

r

)2

−4
(

r′

r

)
cosθ ′+4cos2 θ ′

)

− 5
16

(
r′

r

)3(r′

r
−2cosθ ′

)((
r′

r

)2

−4
(

r′

r

)
cosθ ′+4cos2 θ ′

)
+ ...]

=
1
r
[1− 1

2

(
r′

r

)2

+

(
r′

r

)
cosθ ′+

3
8

(
r′

r

)4

− 3
2

(
r′

r

)3

cosθ ′+
3
2

(
r′

r

)2

cos2 θ ′

− 5
16

(
r′

r

)3

{
(

r′

r

)3

−4
(

r′

r

)2

cosθ ′+4
(

r′

r

)
cos2 θ ′−2

(
r′

r

)2

cosθ ′

+8
(

r′

r

)
cos2 θ ′−8cos3 θ ′}+ ...]

=
1
r
[1− 1

2

(
r′

r

)2

+

(
r′

r

)
cosθ ′+

3
8

(
r′

r

)4

− 3
2

(
r′

r

)3

cosθ ′+
3
2

(
r′

r

)2

cos2 θ ′

− 5
16

(
r′

r

)6

+
5
4

(
r′

r

)5

cosθ ′− 5
4

(
r′

r

)4

cos2 θ ′+
5
8

(
r′

r

)5

cosθ ′

−5
2

(
r′

r

)4

cos2 θ ′+
5
2

(
r′

r

)3

cos3 θ ′+ ...]

=
1
r
[1+

(
r′

r

)(
cosθ ′)+(r′

r

)2(
−1

2
+

3
2

cos2 θ ′
)

+

(
r′

r

)3(
−3

2
cosθ ′+

5
2

cos3 θ ′
)
+ ...]

=
1
r
[1+

(
r′

r

)(
cosθ ′)+(r′

r

)2(3cos2 θ ′−1
2

)
+

(
r′

r

)3(5cos3 θ ′−3cosθ ′

2

)
+ ...] (A.10)

In the last step of eq. (A.10), terms of
(

r′
r

)
with like powers are collected and

surprisingly, the coefficients are given by the Legendre polynomials. Rewriting eq. (A.10)

in terms of Legendre polynomials:

1
|r− r′|

=
1
r

∞

∑
n=0

(
r′

r

)n

Pn
(
cosθ ′) (A.11)
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Substituting this back to eq. (A.8):

V (r) =
1

4πε0

∞

∑
n=0

1
rn+1

∫ (
r′
)n Pn

(
cosθ ′)ρ

(
r′
)

dτ ′ (A.12)

The expression is exact in eq. (A.12), but this expansion is mainly used as an approx-

imation techniques as the lowest non-zero terms in the expansion provide the approximate

potential at large r and as greater precision is required, more terms from the expansion

are included. The first term in the expansion is the monopole contribution (goes like 1
r ),

second term is the dipole term (goes like 1
r2 ), the third term is the quadrupole term (goes

like 1
r4 ) and so on. Thus, we see that the higher order terms contribute less to the potential

at a given r.

The monopole and dipole terms

Expanding out eq. (A.12) for the first few terms:

V (r) =
1

4πε0
[
1
r

∫
ρ
(
r′
)

dτ ′+
1
r2

∫
r′ cosθ ′ρ

(
r′
)

dτ ′

+
1
r3

∫ (
r′
)2
(

3
2

cos2 θ − 1
2

)
ρ
(
r′
)

dτ ′+ ...] (A.13)

Let’s examine the first two leading terms. The monopole term is given by:

Vmon(r) =
1

4πε0

1
r

∫
ρ
(
r′
)

dτ

=
1

4πε0

Q
r

(A.14)

where Q is the total charge of the configuration. The next term, dipole term is given by:

Vdip(r) =
1

4πε0

1
r2

∫
r′ cosθ ′ρ

(
r′
)

dτ ′ (A.15)

Notice that r′ cosθ ′ = r̂ · r′, then:

Vdip(r) =
1

4πε0

1
r2 r̂ ·

∫
r′ρ
(
r′
)

dτ ′

=
1

4πε0

p·̂r
r2 (A.16)
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where p ≡
∫

r′ρ (r′)dτ ′ is called the dipole moment of the distribution. For a collection

of charges then the dipole moment is:

p =
N

∑
i=1

qir′i (A.17)

Recall the physical dipole example, the dipole moment using this formula is given

by:

p = qr′+−qr′−

= q
(
r′+− r′−

)
= qd (A.18)

Substituting this into eq. (A.16) then we recover eq. (A.7) as before.

In the case of a neutral atom, the total charge distribution is approximately zero,

thus the monopole term will be approximately zero and the leading term in the multipole

expansion is the dipole term. For example, when the wavelength of the electromagnetic

radiation which induces, or is emitted during, transitions between different atomic energy

levels is much larger than the typical size of a light atom, then keeping only the dipole

term from the expansion is usually a good approximation to the solution. This approxi-

mation is known as the electric dipole approximation.

51



APPENDIX B

DERIVING THE EQUATIONS OF MOTION FOR THE WAVE FUNCTION

There are two ways to expand the wave function:

Ψ(r, t) = ∑
n

Cn(t)un(r)e−iωnt (B.1)

Ψ(r, t) = ∑
n

cn(t)un(r) (B.2)

Consider a Hamiltonian:

H = H0 +V (B.3)

where H0 is the unperturbed Hamiltonian and V is the perturbation term that could be for

example the interaction of a system with electromagnetic field.

The Schrodinger’s equation is given by:

ih̄
∂
∂ t

ψ(r, t) = Hψ(r, t) (B.4)

Consider first the wave function expanded through eq. (B.1). Substituting eq. (B.1)

and eq. (B.3) into eq. (B.4),

ih̄
∂
∂ t

[∑
n

Cn(t)un(r)e−iωnt ] = [H0 +V ]∑
n

Cn(t)un(r)e−iωnt

ih̄∑[
n
−Cn(t)un(r)iωne−iωnt +

·
Cn(t)un(r)e−iωnt ] = ∑

n
[h̄ωn +V ]Cn(t)un(r)e−iωnt

∑
n

·
ih̄Cn(t)un(r)e−iωnt = V∑

n
Cn(t)un(r)e−iωnt (B.5)

Recall orthonormality condition:

∫
u∗n(r)um(r)d3r = δ n,m (B.6)
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where δ n,m = 1 if n = m and δ n,m = 0 if n ̸= m.

Now, multiply both sides of eq. (B.5) from the left by u∗m and integrate both sides

over all space:

∫
ih̄∑

n

·
Cn(t)u∗m(r)∗un(r)e−iωntd3r =

∫
u∗m(r)V∑

n
Cn(t)un(r)e−iωntd3r

ih̄∑
n

·
Cn(t)e−iωntδ n,m = ∑

n

∫
d3ru∗m(r)Vun(r)e−iωntCn(t)

ih̄
·

Cm(t)e−iωmt = ∑
n
⟨m|V |n⟩e−iωntCn(t) (B.7)

where ⟨m|V |n⟩=
∫

d3ru∗m(r)Vun(r). Finally multiply both sides of eq. (B.7) by eiωnt and

rearranging:

·
Cm(t) =− i

h̄∑
n
⟨m|V |n⟩eiωmntCn(t) (B.8)

where ωmn = ωm −ωn.

Applying exactly the same procedure to eq. (B.2):

ih̄
∂
∂ t

[∑
n

cn(t)un(r)] = [H0 +V ]∑
n

cn(t)un(r)

ih̄∑
n
[

·
cn(t)un(r)] = ∑

n
(h̄ωn +V )cn(t)un(r)

u∗m

∫
ih̄∑

n

·
cn(t)un(r)d3r = u∗m∑

n

∫
(h̄ωn +V )cn(t)un(r)d3r

ih̄
·

cm(t) = ∑ h̄ωn
n

∫
d3ru∗mun(r)cn(t)+∑

n

∫
d3ru∗mVun(r)cn(t)

·
cm(t) = − i

h̄
[h̄ωmcm(t)+∑

n
⟨m|V |n⟩cn(t)]

·
cm(t) = −iωmcm(t)−

i
h̄∑

n
⟨m|V |n⟩cn(t) (B.9)

Eq. (B.8) and eq. (B.9) derived from eq. (B.1) and eq. (B.2) are equivalent to the

original Schrodinger’s equation. In deriving eq. (B.8) the time dependent part of the

unperturbed Hamiltonian cancels out, thus, eq. (B.8) only depends on the perturbed part

of the Hamiltonian (interaction term). Thus, eq. (B.8) is typically called the interaction
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representation. On the other hand, eq. (B.9) depends on the total Hamiltonian (the un-

perturbed Hamiltonian does not cancel out in the derivation). Eq. (B.8) and eq. (B.9) are

no longer concerned with the position of the eigenfunctions, but rather they describe the

time evolution of the probability amplitudes of the total energy eigenfunctions. They are

useful for example in describing a system of an atom absorbing energy from light field.

Eq. (B.8) and eq. (B.9) gives a complete description of the development of such a system.

These two equations can be written in matrix notation. This description is especially

useful for example in a multi-level atom system, the individual states and their interfer-

ence terms are all described by their respective matrix elements.

Using eq. (B.9) and rewriting:

·
cm(t) = −iωmcm(t)−

i
h̄∑

n
⟨m|V |n⟩cn(t)

ih̄
·

cm(t) = h̄ωmcm(t)+∑
n
⟨m|V |n⟩cn(t)

ih̄
·

cm(t) = Emcm(t)+V(t)cn(t) (B.10)

The V on the 2nd term on the RHS of eq. (B.10) has matrix elements Vmn and

dimension m×m (since the dimension of the RHS has to be the same as the LHS). The

first term in eq. (B.10) is a m×m matrix that has only diagonal terms that are non-zero

since in deriving eq. (B.9), the orthogonality condition was applied and only terms of

n = m are picked out by the orthogonality condition. Thus, eq. (B.10) in matrix form:

ih̄
·

cm(t) =



E1 V12 V13 ... V1M

V21 E2 ...

V31 ...

...

VM1 EM





c1

c2

...

cM


(B.11)

Notice that there is no summation term in eq. (B.11). This is because the summation

is implied in the multiplication of the matrix and the row vector.
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Similarly, using the equation of motion in the interaction picture, eq. (B.8) and

rewriting:

·
Cm(t) = − i

h̄∑
n
⟨m|V |n⟩eiωmntCn(t)

ih̄
·

Cm(t) = ∑
n
⟨m|V |n⟩eiωmntCn(t) (B.12)

In matrix form, eq. (B.12) becomes:

ih̄
·

Cm(t) =



0 V12eiω12t V13eiω13t ... V /1Meiω1Mt

V21eiω21t 0 ...

V31eiω31t ...

...

VM1eiωM1t 0





c1

c2

...

cM


(B.13)

Notice that the diagonal terms are all zero. This is because the unperturbed Hamil-

tonian part was canceled out in the derivation of eq. (B.8).
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