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ABSTRACT 

 

Sediment and water monitoring was performed from Nov. 2009 to Oct. 2010 to 

assess and evaluate the spatial and temporal distribution of physical and chemical 

parameters and biological variables such as PAHs, trace metals (Hg, Cd, Pb, Cu, Mn, 

Zn, Cr, Ni, V, and Fe), the structure of the benthic community in the sediment, nutrients 

and chlorophyll a in the water. Sediment and water samples were collected from 22 

stations, which covered three coastal ports (North Port, West Port and South Port) and a 

control point. The primary objectives of this study were to evaluate the sources of 

pollutants and each pollutant’s distribution, concentration and contamination degree, as 

well as to assess the biological response to these stressors based on the ecological risk. 

Significant variations were found in the distribution and concentrations of all 

heavy metals and PAHs. The spatial and temporal scales of these variations were related 

to the several sources contributing to the contamination load in the Klang Strait and to 

seasonal fluctuations, respectively. The highest concentrations of all metals (except for 

Mn) were recorded at South Port at stations 16 and 17 parallel to the mouth of the Klang 

River and at station 13 around the container terminal in the West Port, whereas the 

lowest concentrations were recorded at the control point. Enrichment factor (EF) index 

also indicated that all metal concentrations except for Fe were influenced by 

anthropogenic effects. Similarly, the total organic carbon and fine particle size had 

significant correlations with most metals (Al, Cd, Cu, Fe, Ni, V and Zn). Thus, both 

natural processes and human activities contributed to the load of these pollutions in the 

Klang Strait. The PCA analysis is concordant with the pair isomer ratio of PAHs, which 

revealed that the anthropogenic sources of PAHs were a mixture of pyrogenic and 

petrogenic sources at all stations except for stations 4, 14 and 21, where combustion 

was the more frequent cause. Source analysis revealed that PAHs are primarily derived 
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from liquid fossil fuels related to the use of vehicles, crude oil and coal (petroleum 

combustion sources), and a minor amount of PAHs may be related to the direct 

discharge of petroleum and land-based runoff. Results revealed that most of the 

sediment samples are in a pristine state with respect to PAHs and metal contamination 

except for Cd, As, Hg and Pb. Surface sediment in the Klang Strait are moderately 

polluted by Hg, Pb and As, and only Cd was estimated to have a high level of 

contamination. Furthermore, risk analysis showed that living organisms in the strait 

have a high risk of Cd and Hg exposure and only a low risk of overexposure to the rest 

of the investigated metals and PAHs at all stations. Regarding the risk index 

classification, only sediments from stations 16 and 17 (mouth of the Klang River) can 

be considered to represent a high ecological risk. Other stations were categorized as 

representing slight to moderate risk, and adverse effects were rarely recorded at the 

control station, which usually showed normal responses. In addition, the level of 

response of benthic communities to pollutants in the sediment was completely 

homogeneous with the risk level in most of the stations. In the case of water-quality 

assessment, multi-metric indices and operational indicator have been proposed to 

classify trophic level at different sites. The trophic level of Klang Strait coastal water 

ranges from eutrophic to hypertrophic. Chl-a concentration was used to estimate the 

biological response of phytoplankton biomass and indicated eutrophic conditions in the 

Klang Strait and mesotrophic conditions at the control site. During the study period, no 

harmful algal bloom (secondary symptom) occurred, which may be related to 

hydrodynamic turbulence and water exchange, which prevent the development of 

eutrophic conditions in the Klang Strait. 

Keywords: Ecological risk, Heavy metal, Polyaromatic hydrocarbons (PAHs), 

Nutrients, Benthic organisms, Chlorophill a, Klang Strait, Malaysia 
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ABSTRAK 

 

Dalam kajian ini, pemantauan mendapan dan air dilakukan dari Nov. 2009 ke 

Okt. 2010 bagi  mengukur kualiti air dan kualiti mendapan dan meniliai taburan ruang 

dan masa bagi pemboleh ubah fisikokimia dan biologikal seperti PAH, logam berat (Hg, 

Cd, Pb, Cu, Mn, Zn, Cr, Ni, V, dan Fe), struktur komuniti bentik dalam mendapan, 

nutrien dan chlorophyll a dalam air. Sampel air dan mendapan dikumpul daripada 22 

stesen, yang merangkumi tiga pelabuhan (Pelabuhan Selatan, Pelabuhan Utara dan 

Pelabuhan Barat) dan satu tapak kawalan.Tijuana utama penyelidikan ini adalah untuk 

menilai punca pelbagai jenis pencemaran dan taburan setiap pencemar, kepekatannya 

dan tahap pencemarannya dan juga untuk mengukur respons biological kepada tekanan-

tekanan ini.Terdapat variasi signifikan dalam taburan dan kepekatan semua logam berat 

dan PAH.Skala spatial dan temporal variasi tersebut berkaitan dengan kepelbagaian 

punca yang menyumbang kepada beban pencemaran dalam Selat Kelang dan turun-naik 

bermusim, masing-masing. 

Kepekatan tertinggi semua logam (melainkan Mn) dirakamkan di Pelabuhan 

Selatan di Stesen 16 dan 17 selari dengan muara Sungai Klang dan di stesen 13 di 

sekitar terminal kontena di Pelabuhan Barat, manakala kepekatan paling rendah 

dirakamkan di kawasan kawalan. Anggaran factor pengkayaan (EF) juga menunjukkan 

bahawa kepekatan semua logam melainkan Fe dipengaruhioleh kesan 

antropogenik.Begitu juga, jumlah karbon organik dan saiz partikel halus mempunyai 

korelasi signifikan dengan kebanyakan logam (Al, Cd, Cu, Fe, Ni, V dan Zn). Oleh itu 

kedua-dua proses semula jadi atau mineralogi dan aktiviti manusia (kesan antropogenik) 

menyumbang kepada beban pencemar tersebut dalam Selat Kelang. Analisis PCA 

menyamai pair isomer ratio PAH, yang menunjukkan punca antropogenetik PAH adalah 

gabungan punca pyrogenik dan petrogenik di semua stesen kecuali stesen 4, 14 dan 21, 
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di mana pembakaran menjadi punca yang paling kerap. Analisis punca menunjukkan 

bahawa PAH kebanyakannya berasal dari bahan api fosil cecair dan berkaitan dengan 

penggunaan kenderaaan, minyak mentah dan batu arang (berpunca dari pembakaran 

petroliam); ada sedikit amaun PAH yang mungkin berkaitan dengan pelepasan langsung 

petroliam dan land-based runoff. 

Dapatan kajian menunjukkan bahawa kebanyakan sampel mendapan adalah 

dalam keadaan asal dari segi PAH dan pencemaran logam melainkan Cd, As, Hg dan 

Pb. Mendapan permukaan dalam Selat Kelang dicemar secara sederhana oleh Hg, Pb 

dan As, dan hanya Cd dijangka menunjukkan pencemaran yang tinggi. 

Tambahan pula, analisis risiko menunjukkan bahawa organisme hidup dalam 

selat itu mempunyai risiko tinggi untuk pendedahan kepada Cd and Hg dan hanya risiko 

rendah pendedahan lebihan kepada logam lain yang dikaji dan PAH di semua 

stesen.Merujuk kepada klasifikasi indeks risiko, hanya mendapan dari stesen 16 dan 17 

(muara Sungai Kelang) boleh dikira sebagai menghadapi risiko ekologikal yang tinggi. 

Stesen yang terancam dan stesen lain dikategorikan sebagai berisiko rendah sehingga 

sederhana, dan kesan buruk amat jarang dirakamkan di stesen kawalan, yang mana 

kebiasaannya menunjukkan respons normal. Selain itu, tahap respons komuniti bentik 

kepada pencemar dalam mendapan adalah bersinkronisasi dengan tahap risiko di 

kebanyakan stesen. 

Dalam penilaian kualiti air, indeks multi-metric dan operasional telah 

dicadangkan untuk mengklasifikasi status trophic di kawasan berlainan.Tahap trophic 

air Selat Kelang (Pelabuhan Selatan, Pelabuhan Utara dan Pelabuhan Barat) 

merangkumi keadaan eutrophic sehingga hypertrophic.Kepadatan Chl-a digunakan 

untuk menganggar respons biological biomass phytoplankton dan menunjukkan kondisi 

eutrophic dalam Selat Kelang dan kondisi mesotrophic di tapak kawalan. 
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Sewaktu kajian tiada kejadian eutrophication atau simptom sekunder kelihatan, 

dan ini mungkin berkaitan dengan gangguan hydrodinamik dan pergolakan air, yang 

menghindari perkembangan kondisi eutrophic dalam Selat Kelang. 

 

Keywords:Risiko ekologi, logam berat, hidrokarbon poliaromatik (PAHs), 

nutrien, organisme bentik, klorofil a, Selat Klang, Malaysia 
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1 CHAPTER I: STATEMENT OF PROBLEM 

 

1.1 General Introduction 

In the past century, estuary and coastal water pollution has become a worldwide 

crisis in the natural environment because anthropogenic and lithogenic sources 

discharge extensive amounts of pollutants. Most of these pollutants cause serious threats 

for marine organisms and human being’s health and become environment crises in 

marine ecosystems including oil spills, red tides, contamination of fish and shellfish, 

mortalities of marine mammals and fish, eutrophication and hypoxia (Carl, 2006). 

Ecological risk assessment is a process used and developed in environmental 

sciences to evaluate health status or ecological quality of an environment (Chapman, 

2002; Wells, 2003; Xiao, Ouyang, Cheng, & Zhang, 2004). In fact, Ecological risk 

assessment evaluates the relationship between physical, chemical and biological 

stressors to their ecological effects and systematically quantifies and qualifies stressors 

and their adverse effects on environment (EPA, 1998). Therefore, assessing the 

ecological risk in a marine environment includes a combination of information to know 

the sources and different types of pollutants (as stressors) and their effects. 

The marine environment is greatly influenced by industrialization and 

motorization.  Thus in orders to assess the ecological risk, many researchers have 

focused on determining concentration and distribution of organic and inorganic 

contaminations (as stressors) such as: hydrocarbons, heavy metals and nutrients in 

sediment and water. These pollutants are discharged by several sources coming from 

land-based oil input, industrial and agricultural waste, and marine shipping oil spills. 
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In the marine environment (water and sediment), these organic and inorganic 

compounds may cause serious problems because excess concentrations can alter the 

characteristics of marine ecosystems resulting from several kinds of hazardous and toxic 

contents which can accumulate in a biological community (Loska & Wiechuła, 2003; 

Neff, 2002).  Also, studies show that heavy metals and hydrocarbon compounds have 

high carcinogenic and mutagenic activities (Neff, 2002). Thus, determining 

concentration of hydrocarbons and heavy metals concentration and their distribution in 

water and sediment is a key part of the evaluation and assessment programs in coastal 

areas because they help to indicate the contamination degree, potential threat of 

pollutants and pollution sources (Morillo, Usero, & Rojas, 2008).  

Bio-assessing and surveillance are practical methods of monitoring the health 

status of ecological receptors in a marine environment (Burger & Gochfeld, 2001). In 

recent decades, biological indicator organisms have been widely used to assess the 

effects of pollutants. Bio-indicators can obviously show the ability of stressors to cause 

adverse effects in a marine environment. As a matter of fact, they act as receptors which 

respond to stressors by their alternation in population or histological structures. 

According to the National Academy of Science, use of bio-indicators are practical in 

promoting the knowledge of environmental issues, supporting environmental 

characteristics, standard enforcement and improving existing methods to assess 

ecological risk to the environment (Frontalini & Coccioni, 2011; Tullos, Penrose, & 

Jennings, 2006).Phytoplankton structure is one of the important bio indicators, which is 

widely used in studies of aquatic ecosystem function. It is used for monitoring response 

to environmental stressors, due to their fast population changes in the aquatic ecosystem 

(Bianchi et al., 2003; Lu, Xu, & Yang, 2010; OSPAR, 1998). 

Alternation of abundance and diversity of phytoplankton reflects the nutrient 

potential and disturbance into the aquatic ecosystems and has direct relationship with 
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the nutrient concentration. Nutrient enrichment causes increase phytoplankton growth as 

primary producers create extra biomass accumulation which can develop harmful algae 

bloom. Bloom makes negative effects on aquatic ecosystem such as hypoxia condition, 

oxygen depletion and elevated turbidity and ultimately causes high mortality of the 

aquatic organism due to oxygen defect or the attendance of the toxic phytoplankton 

species (USEPA, 2008; Wan, Zhu, & Zhao, 2007). 

In sediment, macro benthic organisms are important bi-indicators for assessing 

environmental change and chemical contaminate effects due to their close relation to 

sediment, high sensibility to chemicals contaminates and their ability to take up and 

accumulate  different kinds of compounds specially heavy metals (Caçador et al., 2011; 

Coccioni, 2000; Foster, Armynot, & Rogerson, 2012; USEPA, 2008). Factors which 

influence on accumulation by benthic organisms are: concentration of chemicals 

contaminates, season, size, hydrodynamics activities of the aquatic environment 

(Beltman, Clements, Lipton, & Cacela, 1999; Boyden & Phillips, 1981; Stevenson, 

1984). Benthic organisms are considered the main connection in transferring of 

compounds to higher trophic levels (Mucha, Vasconcelos, & Bordalo, 2005). 

Klang Strait is a main gateway with the busiest shipping route on the west coast 

of Peninsular Malaysia and it is extremely affected by port activities. Important 

activities of this area are: fishing, ecological habitats, international commerce and 

industrial sites. Klang Strait coastal waters have been much degraded in recent decades 

(Yap & Kahoru, 2001). 

Land runoff, industrial waste, navigation and transportation release chemical 

pollutants into the strait such as petrogenics like poly aromatic hydrocarbons (PAH), 

persistent toxicants like heavy metals, nutrient and total suspended solid (TOS). 

Ecological and biological conditions are influenced by these pollutants (Yap, 2005). 

Although many efforts have been made to improve aquatic ecosystems in this area, the 
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increase in the chemical discharges has caused great concern among environmental 

managers. Thus, the constant release of pollutants requires comprehensive assessment 

of organic and inorganic pollutants and their ecological effects in order to establish 

management policies for protecting ecological condition and biological communities in 

Klang Strait coastal waters. 

 

1.1.1 Problem statement 

The essential issues are to understand the fundamental characteristics of a 

natural ecosystem in terms of ecological and biological condition, main habitat types 

and the pollutants that influence the ecosystem stability and to be familiar with the main 

concepts of ecological risk assessment. 

The problems addressed in this research are as follows: 

Which sources (anthropogenic or lithogenic) are discharging heavy metals, 

petroleum hydrocarbons and nutrients as stressors into Klang Strait? 

What are the main stressors and their effects on biological community structure 

(due to exposure)? 

Which methods and indexes must be used to analyse the effects and 

characteristics of exposure? 

How do biological systems respond to the stressors? 

 

1.1.2 Scope and objectives 

This research was started in March 2009 and continued until March 2012 (see 

‘milestones’, appendix1) and was sponsored by University Malaya grants (IPPP and 

UMRG). The main purpose of this study is to provide comprehensive and practical data 
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for the environmental management of Klang coastal waters in the context of the rapid 

industrial and economical development in this area. 

Selected physical, chemical and biological parameters were determined to assess 

water and sediment quality including  the polyaromatic hydrocarbons (PAHs) and heavy 

metals (Al, As, Hg, Cd, Pb, Cu, Mn, Zn, Cr, Ni, V, and Fe) in sediments, nutrients 

( NO�

, NO�


, DIN, PO�
�
, NH�

�, NH�,  SiO�
�
and Chl-a) in water and benthic community  

and Chl-a as biological indicators. 

An ecological risk assessment was conducted based on the major components of 

ecological risk, including problem formulation, selection of endpoints, characterisation 

of risks and risk quantification using an aquatic ecological risk-assessment model 

(Suter, 1993; Xiao et al., 2004). 

Assessment of pollution in the Klang Strait coastal water is a difficult task due 

to the great variability in environment conditions. This area is affected extensively by 

nonpoint sources, different depth, tidal condition and strong marine current, due to the 

northeast monsoon. These limitations have an effect on pollutants concentration, 

although the sediment situation in this area is independent of tidal influence. Several 

concepts have been used to reduce the impacts of these limitations, such as increasing 

number of stations, temporal assessment, and multiple sediment samplings during the 

north and south monsoon.  

This dissertation is divided into five chapters. Chapter 1 includes a description 

of the general introduction, background study, problem statement, scope and objectives, 

and the organisation of thesis. Chapter 2 contains a theoretical review of the related 

literature that provides information about the characteristics of water and sediment 

composition and PAHs, heavy metals, nutrient, bio-indices and bio-indicators. Also, this 

section is widely focused on the essential issues of ecological risk frameworks in the 

marine environment.  
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Chapter 3 covers the methodology for laboratory experiments with their 

procedures for assessing ecologic risks, bio-indices and data analysis. Chapter 4 

contains the results of the analysis with discussion of the graphs and tables.  

Chapter 5 discusses the conclusion of this thesis with a description of a new 

ecological approach based on the obtained results. Additionally, this chapter contains 

recommendations for future studies.  

There are two main purposes for this PhD study. The first aim is to 

comprehensively determine the sediment and water quality as well as benthic infaunal 

biodiversity in coastal environment of Klang Strait November 2009 and 2010. Using 

these newly collected data, the second aim of this study is to assess and evaluate the 

ecological risks of various common environmental stressors in the area. The results will 

be highly essential to the environment management of Klang coastal waters since these 

areas are undergone a rapid industrialisation and economic growths.   

1.1.3 Hypothesis 

Many researchers from 1980 to 1997, mentioned in the literature review, 

high concentrations of chemicals and petrogenic pollutants in Klang Strait that are 

due to anthropogenic sources, such as navigation and transportation, industrial 

activities and sewage pollution (Yap & Kahoru, 2001). These pollutants can directly 

or indirectly cause many serious problems and inflict damage upon the ecological 

and biological condition of Klang Strait coastal water. In this research, I aim to 

determine whether these types of pollutants (heavy metals, nutrients and PAHs), 

which are from different anthropogenic sources, influence the health status and 

biological communities of Klang Strait. Thus, the first hypothesis is that these 

pollutants can influence the ecological health status of Klang Strait (H1), and the 

second hypothesis is that they do not influence the health status of Klang Strait 

(H0). 
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1.2 Background of this study 

There are many studies which describe general observation about ecological and 

biological conditions in the marine environment (Speers & Whitehead, 1969; Suter, 

1993). Most of these studies focused on identifying pollution sources and determining 

marine pollutants concentration and their ecological critical level for biological 

communities in enclosed or semi enclosed seas (Black Sea, Mediterranean Sea, Aral 

Sea, Baltic Sea, and others), estuaries and coastal waters. The results of these 

observations are considered as standard guidelines to assess the marine environment in 

the 21thcentury described in several publications such as: The Black Sea (Mee, 1992), 

the Baltic Sea (Hansson & Rudstam, 1990; Wulff & Niemi., 1992), The Mediterranean 

Sea (Pearce, 1995), a Summary article on Seven Enclosed and Coastal Seas (Platt, 

1995) and the coastal waters and estuary (Boesch & Rosenberg, 1981; Hakanson, 

Kvarnas, & Karlsson, 1986). 

In the 20th century, many researchers emphasized Best Management Practices 

(BMPs) in aquatic areas to control and manage different types of water pollution due to 

municipal and industrial wastewater (Neary, 2008). The following publications 

described how anthropogenic activities affect the marine environment such as: 

McClelland (1992), Lucas (1991), California Department of Toxic Substances Control, 

and Puget Sound keeper Alliance (1993)., Buller et al (1995) and American Boat and 

Yacht Council (1995), Amaral et al (1996). Terms of BMPs issues have been specified 

for petroleum hydrocarbon, hazardous materials and vessel discharge concentrations. In 

fact, the issues of BMPs were applied by the industrial designers to provide the 

engineering systems (different types of filter, reactors and clarifiers) which can prepare 

principal components to control pollution systems (Neary, 2008). 
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Most of the research in the 21th century determine degradation degree and their 

effects in estuary and coastal water by evaluating the density of human population, the 

degree of industrial development and drainage area in coastal and estuary waters. Most 

of the evaluation research have been specified to describe health status of the marine 

environment such as: Harteet al.,(2007); Xiao (2004); Pedersen et al.,(2005); 

Hill(2006); Freestone (2007); Smith (2006). 

In recent decades, the scientific knowledge has been developed into models, 

indexes and assessment to generate information practical for a specific purpose in 

marine environment like Ecological Risk Assessment (ERA) and Ecosystem Health 

Assessment (EHA). In 1998, The U.S. Environmental Protection Agency (EPA) 

published guidelines for Ecological Risk Assessment which described specific 

structures as a framework for ecological risk assessment. The guideline was replaced 

with the previous edition of EPA report (EPA/630/R-92/001, February 1992) which 

involved principles and terminology to assess the ecologic risk process (EPA, 1998). In 

this guideline, there was confusion due to distinctions, because it focused on risks of 

past actions without considering predictive methods or formula to assess the future 

consequences of past events. 

Glenn and Sutell (2006) prepared a new handbook on ecological risk 

assessments which eliminated distinctions instead of the decision-practical function of 

ecological risk. They performed ecologic risk assessment combined with future 

consequences of past events. They assessed effects of continuous toxic, distribution of 

toxicity degree of contaminants to other areas and destruction of habitats due to wrong 

restoration and the analysis of such information can be used as a method or formula for 

assessment problem, clarifying effects that may have influence in the future, explaining 

the casual relationship between stressors and exposures and creating a scientific rule for 

restoration and remediation (Suter & Glenn, 2008). 
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The issues to apply for Ecosystem Health Assessment (EHA) in the marine 

environment emerged in the late 1980s and their characteristics were very obvious 

(ecological indicator book). The EHA study has been applied to assess health status in 

water and sediment because it was able to quantify the environmental problems 

according to observation and environment indexes and indicators. 

The first international conference on the use of indicators for assessment of 

health status was held at In Fort Lauderdale Florida in October 1900. Since then several 

national and international conferences have been held on EHA. In 1992, Ecosystem 

Health was the first book that was published by Island Press. In mid-1990, a second 

book with the same title was published by Blackwell and also started publication of 

Ecosystem Health journal with Rapport as editor in chief.  In the 21th century,the 

following comprehensive handbooks were published on EAH issues which are used as a 

general reference for ecosystem health and environmental indicators: Integrated 

Assessment of Ecosystem Health by Kate et al (2000); a handbook  entitled,  Ecological 

Indicators for Assessment of Ecosystem Health published by Taylor and Francis groups 

in 2005 and 2010;Water Quality for Ecosystem and Human Health  by (GEMS)/Water 

Programme in 2009 and (Raffaelli & Frid, 2010; Suter & Glenn, 2008). 

During the last three decades, many books were published on water quality 

assessment since water quality assessment is a method to monitor ecosystem health. 

Ecological indexes and indicators are two main tools to assess hazards, eutrophication 

formation, trophic status and to define frameworks in marine water (Neary, 2008; Neff, 

2002). 

The marine water index was first recommended to assess the status of 

consequential variables by Brown et al (1970) and was later extended by the National 

Sanitation Foundation (1974).  
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This index entitled the National Sanitation Foundation Water Quality Index 

(NSFWQI) to evaluate water quality in different aquatic areas. Vollenweider et al 

(1998) applied oxygen saturation, nitrogen, phosphorus and chlorophyll concentration 

to determine trophic index (TRIX). Recently, a new TRIX version was developed by 

using the dominated phytoplankton in order to complete the European Water 

Framework Directive (WFD) (Ferreira et al., 2011). 

In 1989, Magurran divided diversity indexes into three categories based on 

abundance and enrichment such as Margalof, Simposon, Pielou Evenness and Shanon-

wiener indices which are used in some studies to assess biodiversity in marine 

ecosystems. 

In marine waters, defining indicators to assess water quality is difficult because 

these areas are extremely dynamic and heterogeneous with different conditions in 

different types of ecosystems (Ferreira et al., 2011). Thus, the existing specific indexes 

and indicators for coastal waters are under new developments or their use is limited to 

specific ecosystems where they have been developed. Much research regarding EHA 

and selection of indicators showed that it is impossible to arrange a set of ecologic 

indicators to be applied for specific problem or specific ecosystem (Jørgensen, 

Constanza, & Xu, 2005; McLusky & Elliott, 2007). Many different types of Water 

Quality Indexes (WQI) have been defined but it is still argued to develop new WQIs 

according to many general indicators which can be used to compare same problems in 

the same types of aquatic ecosystems. Thus different frameworks are defined for 

different types of marine ecosystem in different areas. 

Sediment quality is widely assessed in the world because apart from water, 

sediment also acts as possible media of contaminate transportation. The best approach 

in assessing sediment quality is based on determining concentration of chemicals 
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contamination and individual bioassay (bioaccumulation and toxicity) (Chapman, 2002; 

Donahue, 2010; Förstner, Ahlf, & Calmano, 1993). 

Since the beginning of  the 20th century, heavy metals and petroleum compounds 

have been recognized as potential contaminates the marine environment that are 

increased due to the growth of the petroleum industry and the marketing of petroleum 

products (Patin, 1999). In the first decades of the 20th century, many reports appeared in 

scientific news about changes of marine biological communities due to fuel oil and 

crude oil released from ship wrecks (Elias et al., 2009). 

After World War II, the scientific literature about the effects of oil pollution 

greatly increased and in 1967 the wreck of the Torrey Canyon in coast of England was 

used as the first comprehensive study based on assessing effects of oil and metal 

pollution and their cleanup methods on environmental resources. From 1970s until early 

1980s, researchers focused on the harmful effects of petroleum hydrocarbon and metals 

in marine ecosystem and human health; thus these researches increased (NOAA, 1991). 

After 1980, there is abundant literature on these contaminants which cover vast 

topics such as contamination of marine organism, bioaccumulation and chemical fate, 

sediment toxicity, remediation and clean up, and biological effects on all types of 

animals and plant life in environments. In recent studies, the potential threat of heavy 

metals and petroleum hydrocarbon to aquatic organisms has been widely assessed by 

using various methods (McClelland, 1992; NOAA, 1991). 

In 1993, the Land-Ocean Interactions in the Coastal Zone (LOICZ) was initiated 

with biogeochemical programs to evaluate biogeochemical processes and accumulation 

and fate of contaminates in coastal and estuaries zones. The United States National 

Oceanic and Atmospheric Administration (NOAA) and United States Environmental 

Protection Agency (USEPA) published comprehensive reports and guidelines on the 

concentration of metals and PAHs in aquatic sediment (Mcclelland, 1992; NOAA, 
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1991). NOAA and EPA programs have been developed to classify toxicity level in 

aquatic sediment by evaluating concentrations of contaminants and distribution of 

benthic fauna as indicators. Also, many organizations and sites started to assess and 

classify marine sediment information such as the Canada Ministry of Environment 

Ontario Provincial SQGs, Interim Sediment Quality Values (ISQVs) and Department of 

Environment Research of New York Sediment Screening Criteria (O'Connor, 1994; 

O’Connor, 1992). 

 

1.2.1 Research background in the Klang Strait 

Klang Strait is widely influenced by chemicals and petrogenic pollutants, silt 

and sedimentation and sewage pollution which cause many problems and inflict damage 

on coastal areas. From 1981 until 1997, some studies began to assess environmental 

conditions in different coastal zones of the strait in association with many research 

institutions such as DOE–Selangor (Department of Environment), ASEAN (Association 

of Southeast Asian Nations) and GEF/UNDP/IMO (Regional Programmers on Building 

Partnerships in Environmental Management for the Seas of East Asia) (Yap, 2005). 

From 1989 until 1993, DOE recorded high concentrations of oil and grease in 

marine water from 1.3 to 2.8 mg/L. In 1995, its concentration decreased significantly 

(0.3 to 0.6 mg/L). Concentration of petroleum hydrocarbon (crude oil) was determined 

from 0.0063 mg/l to 0.063 mg/l in marine water and ranged in sediment from 83.3 

mg/kg to 703.9 mg/kg (Yap, 2005).  According to the standard classification of the FAO 

(the Food and Agriculture Organization) and Marched in 1982, the Klang Strait coastal 

area was categorized as moderately polluted with petroleum hydrocarbons. Studies 

show that the petrogenic pollutants in Klang Strait originate from oil spill events and 

ship ballasting or pumping bilges due to tanker and non-tanker operations. 
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 In 1997, 25.000 tons of heavy fuels oil were released into the Straits of 

Singapore because of a collision between two tankers; thus, 700 tons of oil poured into 

Malacca Strait and roughly affected the coastal area of Klang Strait (Yap & Kahoru, 

2001). 

The studies of Law and Singh, (1986-1988); Ho et al, 1993; Yap 1998; Everaarts 

& Swennen,1987, have recorded high concentrations of common chemical pollutant 

such as heavy metals in marine water, sediment and biota in Klang Strait (Yap, 2005).  

The level of iron and lead was higher than the standard of coastal water as a 

result of navigation and transportation, land-based pollutants and industrial activities. In 

1997, the Malaysia government have decreased the impact of chemicals, petrogenic and 

others stressor by applying regulations, guidelines and international agreement and 

law(Yap, 2005). Also, Malaysia ratified two international conventions (MARPOL 73/78 

and OPRC, 1990) in 1997, to prevent and control tanker and non-tanker based 

discharges and oil spill incidents; moreover, a national offshore limit was considered for 

pollutant discharges such as platform draining and industrial outlets (Selangor Waters 

Management Authority, 2005). 

During 1991 until 1998,the Association of Southeast Asian Nation (ASEAN) 

and the ASEAN–Canada Cooperative Program on Marine Science-Phase II (CPMS-II) 

assessed regional marine ecosystems and water quality based on the concentration of 10 

specific parameters (oil and grease, bacteria, phenol, total suspended solid, Cd, Hg, As, 

Pb, Cu, Cr, , NO3, NO�

, DO and temperature). 

Klang and Malacca Strait were considered as focal areas to optimize marine 

ecosystems based on advantages of environmental collaborative programs. All of these 

programs were performed based on these approaches:  to improve the quality standard 

of the tropical marine environment and their framework, monitoring the basic studies of 

pollution range and toxic red tides (Selangor Waters Management Authority, 2005). 
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Although the marine standards or guidelines have been developed for the Malaysia 

marine environment, their ability to protect living resources has not been thoroughly 

evaluated. It requires ecological risk assessment to estimate quantities, impact of 

anthropogenic pollutants and tolerance levels of biota. The main goals of ecological risk 

assessment remain the early stage of detection and appropriate action to protect 

vulnerable environment in Klang Strait (Selangor Waters Management Authority, 

2005). 

The first study on phytoplankton structure was by Anton in 1991 which reported 

76 species of diatoms and noted a high patchy distribution of phytoplankton in this 

strait. Also she determined the biomass level that ranged from 0.045 to11.3 µg/L. In 

2005, the diversity and abundance of phytoplankton structures were reported in  

Ecology of  Klang Strait; classified into three divisions (Bacillariophyta, pyrrophyta and 

cyanophyta) with 52 taxa and Bacillariophyta shows high density (853 cell per 

milliliter, or 98.7%) (Ibrahim, 1988). 

From 1974  until 1994, there were  many  studies on benthic community in 

mangrove forests  in the vicinity of Klang Strait by Chang, Sarpedonti, Sasekumar and 

Alongi which divided  macro fauna into few invertebrate groups including a few species 

of polycheat, 30 species of gastropods and 45 species of crustaceans also bivalves and  

sipuncula were dominated (Yap & Kahoru, 2001). 

The first technical report of Port Klang was published in 2005. That report was 

initially prepared during the Regional Training Course on Environmental Risk 

Assessment held between 23 to 28 July 2001 .The training course was organized in 

collaboration with Regional Programmer on Building Partnerships in Environmental 

Management for the Seas of East Asia (PEMSEA). Also a book ‘Ecology of Klang 

Strait’ was published in 2005 describes its physical environment, intertidal habitats, 

open water and estuaries in Klang Strait. 
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2 CHAPTER II: LITERATUREREVIEW 

 

The literature contains assessment theories of the marine environment which 

explains the following scientific topics of this research: 1) strategies to monitor marine 

environment quality 2) strategies for monitoring water quality 3) strategies for 

monitoring sediment quality, and 4) ecological risk assessment. 

 

2.1 Strategic of marine environment assessment 

The quality of the marine and coastal environments is mainly influenced by 

lithogenic and anthropogenic sources. Lithogenic sources are natural and result from the 

weathering of bedrock, volcanic processes, atmospheric circulation, runoff via 

hydrological processes, and biological activities that lead to changes in the physical and 

chemical balance of the aquatic area. Anthropogenic effects on the marine environment 

are due to human activities such as agriculture, industry, consumption and energy 

harvesting, and mining, all of which can load an extensive amounts of pollutants into 

marine and coastal waters by rivers and industrial outlets (Mohsen, Majid, & Maryam, 

2010). When pollutants exceed from the standard range, they have harmful and toxic 

effects on survival and growth rate of marine organisms and species diversity in the 

marine environment also suffer (Jørgensen et al., 2005). Thus, since 1980, many studies, 

including those from Buckley (1995); NOAA’s (1998); IOC (1996); Percy and Wells 

(1997); Cobb and Vandermeulen (2001) and Westhead and Reynoldson (2004), have 

focused on assessing and managing the Marine Environment Quality (MEQ) and 

Marine Ecosystem Health (MEH). 

According to the definition put forth by the Canadian Environmental Group 

from 1988 to 1996, MEQ is “the condition of a particular marine environment measured 

in relation to each of its intended uses and functions”(Suter & Glenn, 2008).  
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As matter of fact, MEQ is a quantitative assessment of the biological, physical, 

and chemical nature of marine water and sediment in relation to lithogenic and 

anthropogenic effects, and intended uses on spatial and temporal patterns. Although 

MEQ and MEH are sometimes used synonymy in the literature, they do have different 

meanings. 

MEQ refers to original and natural trends without any undisturbed conditions in 

the long-term, whereas MEH is a description of present status or conditions in the short-

term. The Canadian Environmental Group described a framework to assess MEQ and 

MEH that includes four concepts: characteristics and uses, stressor factors, ecosystem 

responses (using indicators), and health or status of the environment. Harding (1992) 

incorporated parts of ecological risk assessments (sources, effects and exposure) with 

the MEQ concept from 1999 until 2000, developed a useful framework of MEQ by 

describing the connection between research, monitoring of chemical and biological 

variables (indicator), assessment, objectives, and guidelines. As described above, the 

assessment of MEH and MEQ require monitoring, research approaches, objectives, 

guidelines and indicators (Jørgensen et al., 2005; Suter & Glenn, 2008). 

 

2.1.1 Monitoring and research approach 

An important aspect of marine assessment is the monitoring process, which 

includes research and data collection of physical, chemical, and biological variables in 

the short-and long term, in order to compare with standard measurements and the 

natural background which may describe the current condition of the marine 

environment (Neary, 2008). The monitoring process is essential for any environmental 

quality and ecosystem health assessment; the data collected through sampling work 

designed for monitoring process should clarify the following objectives: (a) to assess the 

status and trends of marine environmental health; (b) to clarify how marine 
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environmental quality is influenced by pollutants; (c) to define the interrelationship 

between different variables; (d) to discriminate between lithogenic and anthropogenic 

sources; (e) to condense information in large-volume data; (f) to apply both historical 

data and current data as valuable scales for assessing temporal trends; (g) to provide 

comprehensive monitoring results to make recommendations for management decisions 

and policies in the future (Jørgensen et al., 2005). 

 

2.1.2 Objective of marine quality assessment 

The monitoring programme depends on assessment objectives that have been 

described in a comprehensive survey. The objective may set up key information about 

the ecosystem that can describe the needs of various programme assessments (Neary, 

2008). The main objectives of monitoring assessments have been focused on:  

• Estimation of the spatial and temporal distribution of marine environmental 

quality in order to choose sampling stations and sampling frequencies. 

• Estimation of the concentration of specific descriptors in order to evaluate 

pollution. 

• Estimation of the feasibility and costs of monitoring operations. 

Thus, the process of implementing objectives must focus on many ecological 

and biological factors and activities that affect the quality of the marine environment, 

such as geographical conditions, water uses, and pollution sources. 

 

2.1.3 Guidelines and standards 

Guidelines and standards are vital tools that can help establish quality standards 

that protect aquatic environmental health. Guidelines are able to interpret trends of 

physical and chemical variables which are based on experimental and scientific 
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assessments, and have high abilities to define the acceptable range of toxicity and their 

adverse effects on human life and marine organisms (Table  2.1 and Table  2.2).These 

guidelines arrange limits for the biological, physical, and chemical variables in marine 

water and sediment, which are essential for the safe undertaking of different activities 

such as agriculture, industrial, and recreational activities (EPA, October 2001). 

 

Table  2.1, List of Sediment Quality Guidelines (SQGs) 

Institution Sediment quality 
Guideline  (SQGs) 

Effects ranges Application 

National Ocean and atmospheric 
Administration (NOAA). 

(Buchman, 2008) 

<ER-L: Adverse effects are rarely 
observed. 

≥ ER-L and < ER-M: Adverse effects 
are occasionally observed. 

≥ ER-M: Adverse effects are 
frequently observed. 

Suitable both 
from fresh and 

salt water 
 

Canada Ministry of Environmental   
Ontario Provincial SQGs for Metals  

and Nutrient . 
(Persaud, Jaagumagi, & Hayton, 

1992) 
New York Sediment Screening 

Criteria. 
( Long & Morgan, 1990) 

< LEL (Lowest Effect level):  the 
effect in the sediment is Considered to 

be acceptable. 
≥LEL and <SEL (Sever Effect Level): 

contaminated, moderate impact To 
benthic life. 

≥ SEL: contaminated and significant 
harm to benthic aquatic life. 

Suitable 
freshwater 
 sediment 

metal  
guidelines 

Hong Kong Special Administrative  
Region Interim Sediment Quality 

Values (ISQVs) 
(Chapman, Allard, & Vigers, 1999). 

 

ISQVs-Low: adverse biological 
effects are unlikely. 

ISQVs-high: sever adverse biological 
effects are very likely. 

Seabed 
dredged  
sediment 

Development and evaluation of 
sediment quality guidelines for 

Florida coastal waters. 
(Macdonald, Carr, Calder, Long, & 

Ingersoll, 1996) 

TEL (Threshold effect levels): 
Adverse effects are rarely observed. 

≥ TEL and < PEL: Adverse effects are 
occasionally observed. 

≥ PEL(probable effects level): 
Adverse effects are frequently 

Observed. 
 

Coastal and 
marine water 

 

Sediment Quality Criterion (SQC). 
(Lyman, Glazer, Ong, & Coons, 1987; 

Pavlou, 1987) 

SQC-chronic: Adverse effects are 
rarely observed. 

SQC- acute: Adverse effects are 
frequently observed. 

Coastal and 
marine water 
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Table  2.2, Summary of four set of SQGs for selected chemicals in sediment of coastal and                
marine area (Macdonald et al., 1996; Macdonald et al., 1992) 

 

 

Sediment Quality Guidelines (SQGs) MacDonald NOAA090 NOAA08 SQC (USEPA) 

Substance TEL PEL ER-L ER-M ER-L ER-M Chronic Acute 

Metal, (mg/kg)         

Arsenic 7.24 41.6 33 85 8.2 70 8.2 16 

Cadmium 0.68 4.21 5 9 1.2 9.6 7.7 24 

Chromium 52.3 160 80 145 81 370 NG NG 
Copper 18.7 108 70 380 34 270 14 54 
Lead 30.2 112 35 110 46.2 218 33 840 

Mercury 0.13 0.7 0.15 1.3 0.15 0.71 0.01 0.15 

Nickel 15.9 l 42.8 30 50 20.9 51.6 NG NG 
Silver 0.73 1.77 1 2.2 1 3.7 NG NG 

Zinc 124 271 120 270 156 410 190 560 

Total PCBs (µg/kg) 21.6 189 50 400 22.7 180 NG NG 

Pesticides (μg/kg)         

Chlordane 2.26 4.79   0.5 6 0.3 NG 

Dieldrin 0.72 4.3 0.5 6 0.02 8 200 NG 

p,p'-DDD 1.22 7.81 0.02 8 2 20 NG NG 

p,p'-DDE 2.07 374 2 20 2.2 27 NG NG 

p,p'-DDT 1.19 4.77 2 15 1 7 1.6 NG 

Total DDT 3.89 51.7 1 7 1.58 46.1 1.6 210 

Lindane (gamma-BHC) 0.32 0.99 3 350 NG NG 3.1 NG 

PAHs  (μg/kg)         

Acenaphthene 6.71 88.9 150 650 16 500 2400 NG 

Acenaphthylene 5.87 128 NG NG 44 640 NG NG 

Anthracene 46.9 245 85 260 85.3 1100 190 NG 

Fluorene 21.2 144 35 640 19 540 59 NG 

Naphthalene 34.6 391 340 2100 160 2100 500 10500 

2-Methylnaphthalene 20.2 201 65 670 70 670 NG NG 

Phenanthrene 86.7 544 225 1360 240 1500 2400 14000 

Total low molecular weight PAHs 312 1442 NG NG 552 3160 NG NG 

Benz(a)anthracene 74.5 693 230 1600 261 1600 1600 55000 

Benzo(a)pyrene 88.8 763 400 2500 430 1600 18000 450000 

Chtysene 108 846 400 2600 384 2800 1200 115000 

Dibenz(a,h)anthracene 6.22 135 50 260 63.4 260 12000 NG 

Fluoranthene 113 1494 500 3600 600 5100 1600 9000 

Pyrene, 153 1398 350 2200 665 2600 850 49500 

Total high molecular weight PAHs 655 6676 NG NG 1700 9600 NG NG 

Total PAH 1684 16770 4000 35000 4022 44792 NG NG 
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2.1.4 Indicators, methods, and statistical measures 

Indicators are often applied to define health status, to assess sediment and water 

quality, and to prepare useful information for managing and protecting the marine 

environment. According to the definition by Ferris and Humphery (1999) “an indicator 

may be defined as a characteristics which, when measured repeatedly, demonstrates 

ecological trends and a measure of current state or quality of an area”. Walls (2000) 

gives a more simple definition, “an indicator is a variable that describes the state of the 

system”. Burger (2006a) proposed a comprehensive definition of indicator: “Indicator: 

Index or measurement end point to evaluate health of a system; physical, biological, 

economic and human” (Kitsiou & Karydis, 2011). 

Indicators are the main tools that have been used to monitor ecosystems, because 

indicators act as signals or signs that can reflect physical, chemical, and biological 

disturbances; they have the ability to identify significant stressors and their effects on 

the marine environment. Over the past few years, much research has been done to select 

practical indices that can be implemented in the monitoring process, and are able to 

provide practical information related to the specific question of environmental 

assessment, which are applied to making strategic decisions of management (Hakanson 

& Blenckner, 2008). Generally, practical indicators should have the following 

characteristics: 1) easy to handle and inexpensive to measure; 2) sensitive to small 

variations in stressors and relevant to environmental threat; 3) independent of reference 

point; 4) have high international applicability in vast geographical regions with a great 

abundance of communities; 5) clearly predictable by logical quantitative and qualitative 

models (Hakanson & Blenckner, 2008; Jørgensen et al., 2005). Table  2.3 describes 

specific Indicators and indices in the marine environment based on physicochemical 

parameters, quantities of plankton and benthic communities, species identification and 

density of species. 
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Although, there is extensive information about ecological and biological 

indicators in the literature, it has been difficult to fulfill all five of these characteristics 

because most indicators are more or less specific for certain kinds of stressors, and 

applicable to only specific types of ecosystems. 

 
Table  2.3, Conventional index for assessment of marine environment base on water and  
                  sediment quality and example of physic-chemical and biological indicators  

(Ferreira et al., 2011; Pinto et al., 2009) 
 

Type of 
method 

Index Name Biological indicators 
Physicochemical 

indicator 
Sample 

timeframe 

*Integrate 
multi-

parameter 

EPA NCA Chl a 
Water clarity, DO, DIP, 

DIN 
June- Oct 

TRIX Chl a DO, DIN, TP or PO4 

Annual TWQL/LWQI 
CHL a, macroalgae, 

Seagrass 
DO, DIN, DIP 

ASSETS 
CHL a, macroalgae, 

seagrass, HAB 
DO 

WFD 

CHL a, 
microphytoplankton,  
macroalgae, seagrass, 

HAB 

DO, DIP, DIN,TP,TN, 
Water clarity 

Summer 

WFD 
CHL a, macroalgae, 

seagrass, macrobenthos 
At least 5 year data available with 
monthly sampling in surface layer 

HEAT 

CHL a, Primary 
production macroalgae, 

seagrass,HAB, 
macrobenthos 

DO, DIP, DIN,TP,TN, 
Water clarity 

Annual 

IFREME 
CHL a, HAB, seagrass, 

macro benthos 

DO, DIP, 
DIN,TP,TN,SRP Water 
clarity, sediment organic 

matter, sediment 
TN,TP,DIN,DIP 

EI Chl a PO4, DIN 

Benthic index of 
Environment 

Benthic community 

------ 

Present/absent 
of species 

Benthic Quality 
Index 

Benthic community 

AMBI Benthic community 
Multivariate 

AMBI 
(M-AMBI) 

Benthic community 

APBI Benthic community 
Benthic 

opportunistic 
amphipoda 

index (BOPA) 

Benthic community 

Diversity 

Shannon-
wienner 

Benthic and plankton  
community 

Margalaf 
Benthic and plankton  

community 

K-dominance 
Benthic and plankton  

community 
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Currently, the ecological and biological indicators applied in different 

circumstances, for different stressors and different aquatic areas are classified on seven 

levels: (1) The presence or absence of a particular species is applied to assess the degree 

of pollution, which is classified as: unpolluted, slightly polluted, polluted, or very 

polluted; (2) The ratio between classes of specific species such as the Nyggrad algae 

index; (3) concentrations of particular chemical compounds; (4) trophic levels; (5) rate 

process; (6) composite indicators, and (7) holistic indicators (Jørgensen et al., 2005). 

Ecological indicators usually provide information about the structure of an 

ecosystem and the accounting function of specific components; for example, the 

concentration of nutrients and chlorophyll a, water flow and diversity, and abundance of 

vertebrates, invertebrates, and plants. This synoptic information is not more effective in 

assessing the health status of an ecosystem, so the effective attribute of an indicator is to 

mix several ecological factors in a single formation as indices that can be practical for 

providing general ecological issues and environmental assessments. 

The absence or presence of a specific species is one of the common indicators 

for determining degree of pollution; for example, the Bellan indices, based on 

characterizing the dominant species, is known as a sign of pollution in environments 

with species such as polychaetes and amphipods (Bellan, 1967, 1980). Most authors do 

not recommend these indicators because the density of some indicator species may 

change naturally, and there is no credible method to determine if the significant change 

in the indicator species of a population was due to pollutants or occurred naturally 

(Warwick & Clarke, 1998). In spite of these criticisms, AMBI index (Borja, Franco, & 

Pérez, 2000; Borja, Muxika, & Franco, 2003), Benthic index (Simboura & Zenetos, 

2002), ISD index (Reizopoulou & Nikolaidou, 2006) and Ecological Evaluation Index 

(EEI) (Orfanidis, Panayotidis, & Stamatis, 2003) were updated based on the account 
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between the presence of a species stating a kind of pollution, and of species stating a 

non-polluted condition in aquatic area. In fact, in these indices, benthic organisms are 

classified into several ecological groups based on their responses to types of pollutants, 

particularly organic materials. 

It has been successfully applied as a practical tool for detecting the type of 

anthropogenic pollutant (especially organic matter and heavy metals inputs) in the 

framework of European Water for estuary and marine coastal water (Kitsiou & Karydis, 

2011; Zaldívar et al., 2008). 

Biodiversity indices, such as Shannon-Wienner index, Margalef, Simpson, and 

K-dominance, have been frequently applied to describe the biological variety in marine 

environments.  Statistical multivariate methods have been used to calculate these indices 

based on simple formulas, so these indices provide a widely logical concept base of 

diversity measure which can quantify and clarify the relationship between diversity of 

biological organisms and disturbances which may act as stressors (Kitsiou & Karydis, 

2011). 

Recent studies have been done by testing the monotonicity and linearity of 22 

indices based upon phytoplankton richness and diversity. The results showed that 

monotonic increased only in Menhinick, Margalef, and Evenness indices. The indices of 

Simpson, Shannon-Wienner, Hill N1 and N2, McIntosh and Hulbert, showed a curve 

with a hump-shape instead of one characteristic of monotonicity. These indices have 

inverse relationships to abundance value of species. In addition, this research shows that 

Menhinick and Evenness indices can be  applied for both issues: monotonicity and 

linearity (Kitsiou & Karydis, 2011; Spatharis, Roelke, Dimitrakopoulos, & Kokkoris, 

2010). 

In 1998, Wollenweider suggested the use of the Multi-metric trophic index 

(TRIX) to monitor the trophic status and eutrophication trend in coastal water. It 
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integrates Dissolved Inorganic Nitrogen (DIN), total phosphorus (TP) or inorganic 

phosphorus (p-po4µmol/l) (as a biotic component or measure of the potential of 

biomass), Chl-a (as a proxy for biomass of phytoplankton), and Oxygen saturation 

percentage as a biotic component to determine productivity. TRIX has been widely 

applied to assess trophic status in different marine areas such as the Black sea, Caspian 

sea, Persian sea, Montego Estuary, southeast Mexico, and Helsinki sea (Kitsiou & 

Karydis, 2011; Vollenweider, Giovanardi, Montanari, & Rinaldi, 1998). Although, 

some reports have shown that there are drawbacks to the suitability of TRIX because 

this index cannot provide some requirements of the European water framework (WFD, 

2000/60/EC) also TRIX does not conform to the natural reference condition to 

normalize the scale. Many researchers are attempting to rescale TRIX base on reference 

condition of oligotrophic water. 

Thus, recent research studies do not recommend this index for shallow aquatic 

areas that are dominated by macroalgal and seagrass, and instead apply benthic indices 

which is more effective because the biomass of phytoplankton is not appropriate for 

defining the nutrient effect (Giordani, Zaldivar, & Viaroli, 2009; Primpas & Karydis, 

2010). 

In 2010, Primpas proposed another multimetric index to assess trophic status on 

a five-point scale; namely, the Euthrophic Index (EI). This index tests three standard 

sets of water types (oligotrophic, mesothrophic, eutrophic) and historical data of Rhodes 

costal water. Results  showed that EI is effective and valid (Primpas & Karydis, 2010). 

There are some indices that try to assess the effect of environmental stressors, based on 

ecological strategies of different organisms, variation in abundance, biomass of marine 

organisms, and environmental information such as: infaunal index, polychaetes feeding 

guilds, r/K strategies, and ABC Curves of Pearson and Rosenberg.  
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The use of these indices is usually not recommended because the variation 

pattern of most marine organisms is unpredictable and dependent upon many 

physicochemical parameters. 

Statistical analysis methods are practical for the quantitative monitoring of the 

marine environment and can be divided into two main groups: one-dimensional 

statistical analysis and multi-dimensional analysis (Table  2.4). The results of these 

statistical methods can provide the following outcomes: 1) condense large data of 

individual variables; 2) provide information about health status and trends if the scales 

of the health of the environment are available; 3) classify the sampling point base on 

quality levels; and 4) clarify the interrelation between variables. These outcomes can be 

used not only as final results or “end products”, but also can contribute to multiple 

criteria methods such as remote sensing, spatial analysis, mapping, and modeling. The 

advantages and shortcomings of statistical methods are explained in Table 3. Multiple 

criteria analysis methods are complex assessment methods that are used to optimize data 

of sampling programs. 

These methods are able to use various criteria to classify sampling points based 

on spatial structure (health statues and trend), degree of homogeneity, and anisotropies. 

These methods are also able to predict health status and trends in the future based on the 

estimated relationship between cause and effect of pollution by dynamic and empirical 

analyses. Although statistical methods and indicators are easily applied to assessing 

marine and coastal water quality, to some extent, the researchers face problems in 

processing laboratory data, especially in regards to the concentration of 

physicochemical variables and the phytoplankton community. These problems include: 

1) extremely inter-correlated variables; thus, the total effects due to these variables are 

not additive because it is essential to obtain uncorrelated variables in some cases; 2) in 

most cases, the distribution of variables does not conform to normality.  
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Thus if the parametric method is applied to these variables, data transformation 

will occur and a great deal of raw data will be lost. So non-parametric methods are 

useful for these distributions; 3) seasonal changes in variables cause high variations in 

mean values, which lead to overlapping groups of data characterizing the type of trophic 

states; 4) it is difficult to discriminate between lithogenic and anthropogenic causes of 

nutrients and select control sites, as unpolluted references are not always practical for 

this problem. Thus, the concentration of nutrients must compare with the reference or 

background values of specific marine areas (Kitsiou & Karydis, 2011). 

 

Table  2.4, Statistical analysis methods applied to quantitative assessment for marine  
                  environment quality (Kitsiou & Karydis, 2011) 

 

 

Type of the 
method 

Name of 
method 

Advantage Disadvantage 

One-
dimensional 

statistical 
analysis 

Descriptive 
statistic 

Provide a statistic summary of 
central tendency and variability. 
It can be used to any type of data 

which define the quality of 
environment. 

a statistic summary cannot provide 
any final evidence about health 

status. 

Frequency 
Distribution 

(FD) 

FD describes the profile of 
physic-chemical values and forms 
the basic scale for health status of 

environment. 

Normality pre-requisite for 
probabilistic application is not 

usually fulfilled. 

Outliers 

Outlying values describe the 
extreme condition of environment,  
(pollution problem and eutrophic 

trend) 

Limitation of methodology due to the 
non-normally distributed variables: 
limited use does not allow method 
validation in environmental study. 

ANOVA 

It statistically detects the 
differences between significant 

level and compare means of more 
than two groups/level 

ANOVA assumes normality not 
commonly met in different variables: 

fairly often the data are pseudo-
replicates.it is suitable just for 

parametric data. 
Correlation 

and 
regression 

It  is easily applied to understand 
the interaction among variables  

It required normality; the natural 
information are distorted by data 

transformation. 

Multi-
dimensional 

statistical 
analysis 

Principal 
Component 

Analysis 
(PCA) 

It detects the main variables 
which influence on health status/ 

trends. 
It is easy to apply and understand 

outcome. 

 PCA in most of case is preliminary 
method to assess marine environment 

quality 

Cluster 
Analysis 
(CA) 

It is easily applied to Classify of 
sampling points based on different 

variable. 
Non-parametric 

Limited access to significant test. 
There is different outcome 

(dendrogram) because of several 
similarity estimate and clustering 

algorithms. 
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2.2 Strategies for monitoring water quality 

In the marine environment, a comprehensive assessment of water quality should 

include the monitoring of hydrological, physicochemical, and biological variables. 

2.2.1 Hydrology and hydrodynamic features 

All coastal water bodies are influenced by other water sources, from atmosphere 

to marine, via the hydrological cycle, hydrodynamic activities, river discharge, and 

underground; these are directly and mutually connected to each other. Thus complete 

interpretations of water quality assessment are generously dependent upon the 

knowledge of hydrology and hydrodynamic properties such as variation of rainfall and 

river discharge (stream flow), suspended load, climatic condition, size of water bodies, 

tidal flow, and circulation. This information about these properties can provide 

meaningful and practical conclusions to monitoring water quality because of their direct 

effect on chemical components and biological communities (EPA, October 2001). A 

common example of their effect is to control resident time in estuarine and coastal 

waters. Residence time directly effects the growth rate of phytoplankton and the 

composition of communities via controlling the cycle of nutrients and their reactions 

(Noble, Tymowski, Fletcher, Morris, & Lewitus, 2003; Richardson, Pinckney, & Paerl, 

2001). Nutrient cycling is the practical linkage to converting the inorganic form of 

nutrients to their organic forms. In addition, the spiraling of nutrients can provide 

downstream net nutrients in each successive cycle of nutrients. In general, there is a 

connection between resident time, nutrient supply, and biomass of phytoplankton.  

A long resident time is a cause to decrease the transport of downstream nutrients 

so the regeneration cycles of sediments are increased; therefore nitrogen compounds can 

stay in the system for a long time and serve as a nutrient supply to increase 

phytoplankton growth.  
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In this case, the tidal system, freshwater flow, and different circulation makes 

for a short resident time that commonly increases the sensitivity of the system to 

nitrogen discharge (Gallo, 2007). 

2.2.2 Physical and chemical variables 

Most physical and chemical characteristics in coastal area depend on 

geomorphology, climatic, and geochemical conditions in the study area. It is necessary 

to determine these characteristics during specific period to understand the health status 

of the coastal environment, especially in regards to general characteristics such as 

salinity, total dissolved solid, conductivity, redox potential, temperature, and nutrient 

concentration which can make general classifications of marine water with different 

natures (Table 2.5). 

2.2.2.1 Temperature 

Temperature is a main variable that is influenced by marine currents, climatic 

and geographic conditions. The temperature of surface waters is usually within the 

range of 0 °C to 30 °C (EPA, October 2001; Neary, 2008), although in the dry season, it 

may reach more than 30 °C. Many studies have shown that temperature has a direct 

impact on most of the physical, chemical, and biological processes in water bodies; for 

example, increasing the water temperature can lead to an increased rate of chemical 

reactions and metabolic decomposition, and low temperatures can cause decreased rates 

of dissolved gases. One of the fundamental impacts of temperature in aquatic areas is 

that temperature directly correlates with growth rate; the growth rate of bacteria and 

phytoplankton are greatly doubled by increasing temperature in a very short period, 

causing increased turbidity, so if nutrient concentrations are suitable, it can lead to algal 

blooms and cause eutrophic conditions in water bodies (EPA, October 2001; Neary, 

2008). 
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Table  2.5, General classification from different countries based on the quality standard of  
                  estuary and coastal water (Selangor Water Management Authority, 2005; USEPA,      
                  1991) 

Class 
I 

Excellent 
II 

Good 
III 

Satisfactory 
IV 

Passable 
V 

Poor 
 

 

Malaysia 
DO (mg/l) 

NH3-N 
NO2 
NO3 
TP 

TSS 
TDS 
PH 

EC(umhos/cm) 
 

 
7 

0.1 
----- 
------ 
---- 
25 
25 
5-7 

1000 

 
5-7 
0.3 
0.4 
7 

0.2 
50 
50 
3-5 

1000 

 
3-5 
0.9 

0.03 
---- 
0.1 
150 
150 
3 

----- 

 
3 

2.7 
5 

---- 
---- 
300 
300 
1 

6000 

 
1 

2.7<-- 
----- 
---- 
---- 

300< 
300< 
------ 
----- 

  

 

Finland 
Chl-a(µg/l) 
Secchi(m) 
TP (µg/l) 

 

 
<4 

>2.5 
<12 

 
<10 

1-2.5 
12-20 

 
<20 
<1 

20-40 

 
20-50 
----- 

40-80 

 
>50 
----- 
>80 

Sweden 
Chl(µg/l) 

Secchi (m) 
TN(mg/l) 
TP(mg/l) 

 
<1.5 
>5.4 
<266 
<22.6 

 
1.5-2.2 
4-5.4 

266-350 
22.6-28 

 
2.2-3.2 
3.4-4 

350-490 
28-34 

 
3.2-5 
2.5-3 

490-756 
34-40 

 
>5 

>2.6 
>756 
>40 

 

Class Thailand 

I 
Natural 
resource 

preservation 

II 
Coral reef 

conservation 

III 
Aquaculture 

IV 
Recreation 

V 
Industrial, 
ports and 

Residential 
districts area 

 

DO (mg/l) 
 

not exceed 
than 4 

not exceed 
than 6 

not exceed than 4 

NO3 (µg /l) 
not exceed 

than 20 
not exceed than 60 

 

PO4 (µg- /l) 
 

not exceed than15 
not exceed 

than45 
not exceed 

than15 
not exceed 

than45 

Unionized 
Ammonia 

(µg /l) 
 

not exceed than 70 
not exceed 

than100 
not exceed than70 

Salinity any change shall not exceed 10% of the minimum salinity 

Suspended 
solid 

 

an increase shall not exceed the average value within 1 day, 1 month or 1 
year [4] added by its corresponding deviation value 

PH 

 
7-8.5 
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2.2.2.2 Dissolved Oxygen 

Dissolved Oxygen (DO) content and oxygen saturation percentage are other 

fundamental characteristics of coastal water, and its concentration is used as operational 

indicators of pollution in aquatic areas. The percentage of oxygen saturation is typically 

measured in the surface and bottom of water as an index representing the ratio of 

production and respiration. It largely affects all chemical and biological reactions, and is 

vital for all types of aquatic life. For example, in bottom water, a shortage of oxygen 

causes dissolved nutrients, such as ammonia, orthophosphorus, and hydrogen sulfide, to 

increase. In unpolluted water, the oxygen concentration is usually less than 10 mg/L at 

25 °C, and can vary with salinity, temperature, turbulence, and atmospheric deposition. 

In addition, biological processes such as photosynthesis of algae and rates of 

respiration can alter the DO concentration even less over 24 hour periods. Nutrients and 

waste discharge with high concentrations of organic compounds can lead to anaerobic 

conditions as a result of the decreased DO concentration, because the degrading  organic 

compound causes increased microbial activity (Neary, 2008). The concentration of 

oxygen saturation in deep water has been extensively applied as an operation bio-

indicator for water quality index, because its concentration directly reflects the 

condition of benthic organisms and organic matter. 

For example, several studies have shown that key species of benthic organisms 

will die if the percentage of oxygen saturation decreases to 20%, or the concentration of 

dissolved oxygen is lower than 2 mg/L (Hakanson & Blenckner, 2008). 
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2.2.2.3 pH 

pH is the main variable for assessment of water quality; it shows the acid 

balance in marine water and how it affects all chemical and biological processes. The 

pH in most unpolluted water is recorded to be between 6.0 and 8.5.  

Some natural substances, such as fulvic and humic acids, as well as the balance 

between carbonate, bicarbonate, and carbon dioxide ions, control the natural value of 

pH. The balance in pH values can be changed by industrial discharge, which are acid-

forming compounds caused by atmospheric deposition, and the photosynthesis and 

respiration process of algae in eutrophic conditions. For example, most research shows 

that organic content due to effluents can decrease pH values, and higher values of pH 

occur under eutrophic conditions, and salt lake and groundwater discharge. 

 

2.2.2.4 Turbidity and suspended solid 

Turbidity and suspended solid are main factors that reflect the clarity and 

transparency of water quality. The main sources of turbidity in marine and coastal water 

include high phytoplankton growth, organic detritus, soil erosion due to runoff, 

industrial waste, agriculture, forestry, and reconstruction. The Secchi disk is direct 

reflection of water clarity and turbidity because it reflects depth of light penetration and 

amount of light scattered by suspended matter, so it is commonly applied as an 

operational bio-indicator for assessing the water quality index in aquatic areas. Many 

studies have focused on variations in Secchi depth and its relationship to other variables 

in aquatic areas, using multiple regressions. Their results showed a significant 

relationship between Secchi depth and concentration of chlorophyll a (chl a), Total 

Nitrogen (TN), Suspended Particulate Matter (SPM), and salinity. Therefore, empirical 

models were defined based on these significant relationships, which are important in 
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understanding and predicting variable concentration changes in estuary and coastal 

water (Hakanson & Blenckner, 2008). 

 

2.2.2.5 Salinity 

Salinity describes the concentration of dissolved salts and ions in aquatic areas. 

The range of salinity is very important for growth rate and reproduction of aquatic 

species and plants (EPA, October 2001). It also effects the flocculate of suspended 

particles, which is known as the operational bio-indicator for understanding variations 

in water clarity in estuary and coastal waters (Hakanson & Blenckner, 2008). 

Conductivity shows the water property that conducts electrical currents; this property is 

relative to the ion concentration in aquatic areas. Salinity and conductivity are often 

applied as a surrogate of measurement for each other (EPA, October 2001). 

 

2.2.2.6 Nutrients 

Nutrients are vital elements for biological characteristics because macronutrients 

have direct effects on metabolism, organism growth, and biomass of primary producers 

(phytoplankton and marine plants), including carbon, oxygen, hydrogen, phosphorus, 

nitrogen, sulphur, and calcium. Many micronutrients, such as iron, silica, manganese, 

and molybdenum, are essential in low concentrations for metabolism, growth rate of 

organisms, and cellular tissue, which most often act as cofactors in enzymes. Nitrogen 

(N) and phosphorus (P) are the major macronutrients that are required to control the 

growth of phytoplankton, and the productivity of the marine system is directly or 

indirectly influenced by N and P inputs, which can either increase or reduce primary 

production. Successful strategies of management in the atrophic estuary and coastal 

water depend on the precise understanding of limiting nutrients. Early studies indicated 

that N is limiting in marine water, while in freshwater, P was detected as the limiting 
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nutrient in the Chesapeake Bay (Fisher, Peele, Ammerman, & Harding, 1992), the 

Black Sea (Cociasu, Petranu, & Mihnea, 1999) and the Delaware Bay (Pennock & 

Sharp, 1994), but in recent decades many researchers have stated that, P can be limiting 

as well as N in marine water. This is commonly true along the estuarine and coastal 

water because these regions are frequently influenced by freshwater input such as rivers 

and farmland runoff, which are rich in nitrogen as a result of anthropogenic activities 

and fertilizer. Thus, it is so common which P to be limiting during the high discharges 

period of the freshwater and N act as limiting factor in low discharges of freshwater 

(Sylvan, 2008). 

For example phosphorus was limited in Eastern Mediterranean System (EMS) 

specially in winter phytoplankton bloom and ratio of N:P was unusually high (28:1) 

(Kitsiou & Karydis, 2011; Krom, Emeis, & Van Cappellen, 2010). 

The bio-available forms of nitrogen that are measured include nitrate ( NO�

), 

nitrite (NO�

), ammonia(NH�) and ammonium (NH�

�).The high concentrations of 

nitrogen can significantly increase the growth rate of algae, especially if total nitrogen is 

above 1000 µg/l.  

Nitrogen compounds, including the organic and inorganic forms, are known as 

indicators for monitoring water quality. Although many studies have shown that 

inorganic nitrogen has a major role in stimulating the biomass of algae, dissolved 

organic nitrogen, which is more than 70% of dissolved nitrogen, is discharged by the 

river into the estuary and coastal water (Stepanauskas, Leonardson, & Tranvik, 1999). 

Some experimental research has shown that due to the re-mineralizing process, 

Dissolved Organic Nitrogen (DON) may increase the growth of algae, as DON in 

rainwater can incite the growth of phytoplankton and bactero-plankton. However, 

further experiments must be done in order to know if these results are applicable 

(Hakanson & Blenckner, 2008). 
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In the environment, Dissolved Inorganic Nitrogen (DIN) consists of nitrate, 

nitrite, and the ammonium ion. Ammonia naturally originates from decomposition of 

organic and inorganic matter, nitrogen reduction by micro-organisms, and biota 

excretion. It is also loaded into aquatic areas by industrial outlets, fertilizer runoff, and 

urban waste. Thus, it is good indicator of organic material. In water solution, total 

ammonia includes the sum of un-ionized ammonia and ionized ammonium/ammonia, 

and there is equilibrium between these two forms. Approximately 97% of total 

ammonia is composed of ionized ammonia, and this substantial equilibrium is 

controlled by pH, temperature, salinity, and concentration of total ammonia (Hakanson 

& Blenckner, 2008; Neary, 2008). The increase in pH and temperature causes an 

increase in the concentration of unionized ammonia, which in the range of 1.0 µM, has 

toxic effects on marine organisms, especially larva, incites algal growth, and damages 

the ecological balance (Cociasu et al., 1999). 

Ammonia also has the ability to form complexes with heavy metals, and can be 

adsorbed onto suspended solids, bed sediments, and particles of colloidal size (Neary, 

2008). In estuary systems, the concentration of ionized ammonia commonly increases 

with the mixing of fresh and marine water. In general, the interface between marine and 

fresh water increases the electrolytes of salt solutions, which has significant effects on 

primary production and nitrification, so high amounts of ionized ammonia are released 

into the water (Risgaard-Petersen et al., 2004). 

Nitrate is an essential form of nitrogen for aquatic plans. It may be decreased to 

nitrite (NO�

) by biochemical reactions such as the de-nitrification, and the nitrite is 

rapidly converted to nitrate by oxidation. In unpolluted water, the concentration of 

nitrate rarely exceeds 0.1 mg/l, but when it is influenced by anthropogenic activities 
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(especially waste and fertilizer run-off), its concentration increases up to 5 mg/l which 

indicates pollution.  

The concentration of nitrate and nitrite are general indicators which can clarify 

the state of nutrients and organic pollution in water bodies (Hakanson & Blenckner, 

2008). Silica ( SiO�
�
) is another limiting nutrient for diatom production, and commonly 

originates from natural sources (lithogenic) such as weathering, so the ratio of N:Si or 

P:Siis is a practical benchmark for estimating the relationship between anthropogenic 

and lithogenic nutrients (Suthers & Rissik, 2009). In 1999, Eyre and Balls indicated that 

the concentration of Si has the tendency to be much higher in tropical estuaries and 

coastal water (Hakanson & Blenckner, 2008). 

Since the 19th century, the results of many studies have shown that plants require 

a specific ratio of nutrients for efficient and maximum growth. In 1855, Liebig 

presented the Law of Minimum, which indicates that limiting concentrations of 

nutrients can lead to extra growth of phytoplankton and plants. In 1958, Alfred Redfield 

described the relationship between the biomass of phytoplankton and the specific 

elemental stoichiometry for C, N, and P at a ratio of 106:16:1. The optimal ratio for N, 

Sio2, and P is 16:16:1, which is called the Redfield ratio. This ratio implies that primary 

production is limited if the concentration of N or P (C is ignored because carbon is fixed 

by phytoplankton, and CO2 has high saturation in surface marine water) are lower than 

the elemental ratio (16:1) (17 and 24). Many studies have demonstrated that the risk of 

harmful algal bloom is increased when the ratio of TN/TP is below 15 (Hakanson & 

Blenckner, 2008). 

In 1992, oceanographers described the effects of the variation of nutrient supply 

in marine environment. Biomass limitation (Liebig, also known as biomass limitation), 

which indicates that the nutrient supply can limit the biomass of phytoplankton. In 

addition, limiting nutrients are able to stimulate increases in the concentration of 
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phytoplankton biomass. For instance, if the ratio of N: P is 10, then the addition of 

nitrogen can lead to an increase phytoplankton biomass. 

Measuring the nutrient concentrations is a simple and rapid method to describe 

limitations, as nutrient concentrations are practical indicators of ecosystem status when 

nutrient data is mixed with biological data or nutrient ratios (Sylvan, 2008). 

 

2.2.2.7 Other components 

Heavy metals and petrogenic compounds are other parameters that are analyzed 

to assess water quality; however, many researchers have indicated that these parameters 

cannot logically assess water quality since water bodies, especially estuary and coastal 

waters, are extremely dynamic and heterogeneous. In addition, some of these chemical 

analyses and their quality control can be too costly, and must be performed over long 

periods of time with a high degree of replication. Thus researchers need to focus on 

monitoring these parameters in sediment instead of water. 

 

2.2.3 Biological characteristics 

Biological communities are composed of different organisms with individual 

species. Biological communities are widely affected by biogeochemical reactions that 

also play vital roles in regulating the biogeochemical balance in the environment, 

because they have the ability to clean and detoxify water. As a matter of fact, biological 

communities not only respond to physicochemical variations in their environment, but 

they are also able to drive such variations (Ostroumov, 2005).  

They respond to physicochemical variations in different ways, with a common 

example being the biological response to changes in the abundance and diversity of 
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specific species, such as decreases of sensitive species or duplications of tolerant 

species. 

Bio-monitoring is a useful tool for assessing the quality of the aquatic 

environment, because biological communities are able to integrate the effects of certain 

types of stressor over time in order to provide extensive measurements of the variation 

in environmental conditions. Bio-monitoring can be performed at different trophic 

levels include the single cell (bacteria, fungi, protists and viruses), primary producers 

(algae, phytoplankton and vascular plants), primary and secondary consumers, such as 

invertebrates and fishes. 

 

2.2.3.1 Phytoplankton 

Phytoplanktons (tiny drifting plants) are major biological communities which 

have vital roles in the aquatic food chain and are known as indicators of coastal and 

estuary conditions. Thus, it is necessary to be knowledgeable about changes in 

phytoplankton communities and their interactions with aquatic areas. This can reflect 

the physicochemical quality of the aquatic area because phytoplanktons are able to 

significantly respond to variations in nutrient concentration, light, sediment load, and 

zooplankton grazing. 

The response time of phytoplankton to these variations is known as a practical 

scale for comparing the quality of the aquatic area on temporal and spatial scales. The 

abundance and diversity of phytoplankton species can clarify the health status and 

trophic condition in aquatic systems. In addition, some types of phytoplankton and their 

photopigment concentration (chlorophyll a, carotenoid) are known as specific bio-

indicators for environmental assessments (Suthers & Rissik, 2009). 

 

 



38 

2.2.3.2 Types of phytoplankton 

The major group of phytoplankton that are found in temperate and tropical 

coastal water include bacillariophyceae (diatoms), Dinophyceae (dinoflagellates), 

Cyanophyceae (blue–green algae) Euglenophyceae, Chlorophyceae, chrysophyceae, 

Prymnesiophyceae, and Chryptophyceae. Most of these groups are classified into three 

groups based on size, such as the picoplankton (0.2–2 µm), nanoplankton (2–20 µm), 

and microplankton (20–200 µm). In temperate areas, more than 80% of phytoplankton 

biomass is attributed to nanoplanktons, while in tropical coastal waters, the 

picoplankton composes 80% of total phytoplankton (Suthers & Rissik, 2009). 

 

2.2.3.3 Chlorophyll a 

Chlorophyll a is the green pigment in most photosynthetic plants. Measuring 

chlorophyll a levels are a good reflection of the biomass of phytoplankton and trophic 

status in aquatic areas. Photo-adaptation is the main factor that widely changes the 

amount of chlorophyll per cell. Chlorophyll a concentrations are commonly influenced 

by nutrient supply, stability of water column, depth of eutrophotic zone, zooplankton 

grazing, sinking and mixing, although several studies have shown that chlorophyll a 

concentration range from 20 to 40 µg/l in enriched estuary during the summer. 

However, under optimal conditions, chlorophyll a concentrations may increase from 50 

to 80 µg/l, in presence of high nutrient concentration. During the winter, the chlorophyll 

concentration decreases to between 1 and 5 µg/l near the coastal areas due to low 

loading of nutrients (Hakanson & Blenckner, 2008). 
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2.2.3.4 Eutrophication 

Eutrophication has been known as a problem underlying the disturbance of 

coastal water bodies for the past 50 years (Kitsiou & Karydis, 2011). Many researchers 

have found several definitions for eutrophication, and have tried to make operational 

methods, models, and indicators to assess eutrophication. The main point is that 

assessment of eutrophication in marine coastal water is difficult because of the 

complexity of the process, and effect and cause which influences eutrophication 

formation. According to the first definition by Naumannin (1919), Hutchinson (1967), 

Halser and  Steelein (1947): “eutrophication is the high growth rate of algae which 

follow rate of nutrient in aquatic area”. Vollenweider (1992) defined the eutrophication 

issue in comprehensive detail by stating, “eutrophication-in its more generic definition 

that implies to both fresh and marine waters, is the process of enrichment of waters with 

plant nutrients, primarily nitrogen and phosphorus that stimulates aquatic primary 

production and its more serious manifestations lead to visible algal blooms, enhanced 

benthic algal growth of submerged and floating macrophytes”. A simple definition was 

also given by Nixon (1995) “Eutrophication is an increase in the rate of supply of 

organic matter to an ecosystem”. 

This definition was accepted by research and scientific organizations such as the 

Europe Environmental Agency (EEA), United Nations environment programme 

(UNEP), and European Commission Directive (Kitsiou & Karydis, 2011). UNEP 

considered eutrophication as a disturbance in the marine environment; it also 

emphasizes excessive levels of organic matter as the cause of eutrophication. In the 21th 

century, the logical and scientific definition of eutrophication was given based on the 

European Water Framework Directives (WFD-2000/60/EC and MSFD-2008/60/EC), 

decision of Justice European Court in 2004 and definition of OSPAR (1998): 

“Eutrophication is a process driven by enrichment of water by nutrients, especially 
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compounds of nitrogen and/or phosphorus, leading to: increased growth, primary 

production and biomass of algae; changes in the balance of organisms; and water 

quality degradation”. The consequences of eutrophication are undesirable if they 

appreciably degrade ecosystem health and/or the sustainable provision of goods and 

services (Ferreira et al., 2011). Although all definitions emphasized nutrient enrichment 

as causes of eutrophication, some effects are not always due to nutrient enrichment. 

Rather, some effects can originate from other factors such as changes in climate 

condition, and changes in the population of common predators due to overfishing and 

disease. It is essential in eutrophication assessment, to consider on one hand, the 

variation of relevant symptoms, and on other hand, that specific eutrophication 

symptoms may be irrelevant. For example, a decrease of seagrass is aeutrophication 

symptom in only shallow marine coastal water such as the Strait of Danish and some 

parts of the German and Mediterranean coast, and is not relevant to eutrophication in 

deep marine environments.  

Harmful Algal Bloom (HAB) is the main symptom of eutrophication, so it is 

important to distinguish between shifts (regime shift is a sudden change in the state or 

condition of marine by altering the balance and persistence, which can be due to 

external perturbations and internal dynamics) due to land discharge (fertilizer) which is 

practical in making management decisions, and those that originated from natural events 

such as upwelling (Ferreira et al., 2011; Kitsiou & Karydis, 2011; Siokou-Frangou, 

Christaki, Mazzocchi, Montresor, & Ribera, 2010). The last definition of eutrophication 

referred to water quality degradation including decreases in biodiversity, transparency, 

oxygen compounds, and harmful algal bloom (HAB). HAB is known as a marine 

phenomenon which is important for knowing what species increase blooming, and what 

conditions make blooming occur.  
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There are several factors (nutrient, temperature, marine current, resident time, 

and grazing) that can individually effect algal bloom formation, but often there are 

combination effects that cause blooming to occur. 

Moreover, various species of algae communities are different in several aspects 

such as their tolerance and requirements, so one compound of water quality parameters 

may be effective for the growth rate of one species, while a different compound may be 

effective for another species. For example, high concentrations of nutrient and 

temperature with low alkalinity may enhance cyanobacteria bloom, while chrysophytes 

may increase in soft, cold, and oligotrophic conditions with slight acidity. The effect of 

bloom is directly dependent on phytoplankton species that causes bloom so there are 

two types of harmful bloom: 1) high-biomass (Noctiluca, Phaeocystis, Lepidodinium) 

that are harmless because they are non-toxic, and just cause discoloration. This may be 

harmful to aquatic organisms by reducing dissolved oxygen and shading(Ferreira et al., 

2011); 2) toxic or potentially toxic algae. 

These species have powerful toxins that are dangerous to aquatic fish, mammals, 

and humans because their toxins are able to accumulate in shellfish and transfer high 

levels along the food chain; it is known as Harmful Algal Blooms (HABs) and include 

dinoflagellate (Alexandrium spp., Gymnodinium spp., Karenia spp., Dinophysis spp., 

Pseudonitzschia spp, Gamberdiscus, and Gonyaulax) and some diatoms (Ferreira et al., 

2011; Suthers & Rissik, 2009). Therefore managing and controlling bloom requires 

enough information about the causes of bloom, and sources of nutrient discharge and 

toxicity. There are several options to prevent bloom conditions and control biomass of 

phytoplanktons in estuary and coastal water. For example, although zooplankton grazes, 

during warm seasons with high temperatures and intense light, grazing is unable to 

consistently control the biomass of phytoplankton.  
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Researchers have shown that the grazing of zooplankton is likely to be effective 

in decreasing biomass if the production rate of phytoplanktons is low. The practical 

option for decreasing bloom is to reduce the concentration of nutrient discharge by 

treating sewage and applying a nutrient reduction device. 

Several assessment methods have been integrated with indicators that evaluate 

and classify marine system based on eutrophication conditions or trophic status, which 

is commonly described  according to productivity such as a state of low productivity 

(oligotrophic), intermediate productivity (mesotrophic), and high productivity 

(eutrophic) (Suthers & Rissik, 2009). These methods use water column variables such 

as DO, chlorophyll, nutrients (TRIX and EI) macroalgal, SAV, HAB and macrobenthos 

indicators (AMBI, BI, and ISD) to assess trophic status (Borja et al., 2012; Devlin, 

Bricker, & Painting, 2011; Ferreira et al., 2011). 

 

2.3 Strategies for monitoring sediment quality 

Water quality assessment alone is not enough to protect marine environments; 

assessment of sediment quality is essential for this purpose because sediment acts as 

repositories for inorganic and organic contaminants in the marine ecosystem. Biological 

communities are directly or indirectly affected by sediment contaminates, especially 

through leaching and re-suspension processes, which lead to bioavailability of 

contaminants in aquatic areas (Nascimento, 2007). These contaminants are able to form 

chemical complexes, and adsorb into particular substances or dissolve into the pore 

water of sediment. Thus, despite sediment contaminates, dynamics extensively vary by 

the consecutive fluxes of physicochemical and biological variables in or out of the 

sediment, although these contaminates can be stable in sediment over the long term. 

This dynamic may change the quality of pore water and the distribution of biological 

communities (Nascimento, 2007; Prosperi, 2002). 
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In general, for the comprehensive assessment of sediment quality, the following 

tenets should be followed: 

The concentration and effect of contaminants depend on the condition of water bodies, 

specific chemical compounds (PAH, Metals), the natural properties of the sediment, and 

the indigenous biological communities (flora and fauna). It is clear that these 

combinations are different in different areas. Thus, it is essential to consider the 

combination of biological, physical, and chemical variables to monitor the sediment 

quality. The reliable assessment of sediment quality includes hazard identification, 

exposure evaluation, determination of the biological effects of pollutants, and risk 

estimation; these information can address associated uncertainties (GIPME, 2003; Lehr 

& Keeley, 2005). 

The assessment of sediment quality should be able to discriminate between a 

portion of naturally-occurring contaminants (metal and hydrocarbons) and 

anthropogenic sources. The natural concentration of chemical compounds is 

characterized as a base and background for identifying the source of anthropogenic 

additions (GIPME, 2003; Lehr & Keeley, 2005). In general, sediment quality 

assessments have included the use of sampling strategies in different spatial and 

temporal scales, analysis of the physico-chemical and biological variables by laboratory 

testing (for estimation of toxicity and bioaccumulation), and evaluation of ecological 

indicators such as the structure of benthic communities (GIPME, 2003; U.S.EPA, 

2004). 

 

2.3.1 Physical assessment 

The analysis of physical characteristics is the first step in assessing sediment 

quality, and this information is essential for understanding the effect of contaminates on 

benthic communities, fate, bioavailability, and transportation of contaminates in 
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sediment.  Physical characteristics are analyzed based on measurement of parameters 

such as total solid, distribution of particular size, specific gravity, and acidity (pH) by 

analytical techniques which were originally devoted to soil (U.S.EPA, 2004). 

The analysis of particle size estimates the frequency of size fraction of mineral 

particles in sediment, and defined in percentage of sand, silt and clay. Particle size 

widely influences the concentration of chemical and organic compounds and the 

structure of biological communities. It has also been applied to account for some 

variation in biological communities, and to test toxicity in environmental research 

(U.S.EPA, 2004). 

Fine- particles of sediments adsorb organic and inorganic matter more than 

coarse-particles; thus, there is a concern about particles with dimensions greater than 2 

mm, because these particles cannot retain high quantities of contaminants. 

The retention of sand (2mm > particles > 63µm) is low because of the minimal 

surface area for absorbing contaminates. In comparison, silt and clay (particles < 63 

µm) are extremely prone to retention of high contaminates (especially anthropogenic 

sources) because when the dimensions of particles decrease, the ratio between particle 

surface area and mass increases, leading to enhanced surface exchange of sediments to 

accumulate hydrophobic and ionic compounds. Thus, in environmental research, the 

finer particles (silt and clay) are more evaluated for comparison with other grains of 

other sizes (GIPME, 2003; Horowitz, 1991). 

In previous research, particle size was frequently used as normalization for 

standardizing concentrations of chemical compounds in sediment (Covelli & Fontolan, 

1997; Frenz et al., 2003; Horowitz, 1991; Kersten & Smedes, 2002), but recent research 

does not consider this method (Granulometric normalization method) for normalizing 

chemical compounds.  
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This method alone is not able to estimate the precise concentration of 

contaminates because of the extensive grain size separation (Ling, 2007; Ravichandran, 

Baskaran, Santschi, & Bianchi, 1995). 

Total solids are a type of gravimetric method based on the concentration of 

organic and inorganic materials that remains in a sample after the drying process. The 

values of total solid are able to convert the wet weight of contaminate concentration to 

dry weight; thus, it provides useful and practical information for assessing sediment 

quality. Specific gravity is a ratio between the mass of a given chemical compound 

concentration and an equal concentration of distilled water.  

This method can be applied to predict variations in sediment (U.S.EPA, 2004). 

Acidity is a main physical parameter that directly effects the chemical reaction of 

contaminates. For example, in low acidity (pH <5), the majority of contaminates, 

especially heavy metals (Al, Fe, Mn), can be converted to soluble forms, although some 

elements like Pb, may stay in an insoluble form in redox or low pH conditions. Thus in 

acidic conditions, contaminates become more available to marine organisms and cause 

an increase in the rate of bioaccumulation (Ling, 2007). 

 

2.3.2 Chemical assessment 

Chemical assessments can be applied to estimate the particular level of 

contaminates in sediment relative to natural conditions. In natural conditions, the 

sediment does not completely contain synthetic oregano-metallic materials, and also 

contains elements that constitute natural mineral components.  

These constituents are evaluated based on geochemical normalization methods 

(GIPME, 2003). Chemical analyses may provide information about specific levels of 

contaminants that, if bio-available, can lead to toxicity and bioaccumulation (U.S.EPA, 
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2004). PAH and PCB compounds, metals, and pesticides are usually considered for 

chemistry assessment. 

 

2.3.2.1 Heavy metals 

In recent decades, many researchers have focused on the potential threat of 

heavy metals in the environment (BOGP, 2009; Fang et al., 2004; Liu et al., 2010; 

Shulkin & Presley, 2003; Tarique, 2008; WorldBank, 2007) because of their toxicity 

and ability to accumulate into the food chain (Pan & Wang, 2011; Wang, Yan, Fan, & 

Xu, 2002). 

Despite attempts to control anthropogenic sources, metal concentrations are 

increasing in the marine environment and are a serious threat for living organisms and 

human health (Bellos & Sawidis, 2005; Islam & Tanaka, 2004; Tarique, 2008; Wang, 

2009). In order to archive the significant assessment of heavy metals, the following 

variables should be noted: metal concentration (in water, sediment and organism), 

sources, pathways, transport mechanism, and effect on organisms. In monitoring the 

marine environment, the estimation of heavy metal concentration is important for 

understanding the criteria of expected concentrations which occur naturally in different 

media (sediment, water and organisms) (Lehr & Keeley, 2005; Tarique, 2008).The 

majority of trace elements originate from igneous rock. Table 2.6 shows the natural 

concentration of selected metals in different media. These concentrations can be used as 

background concentrations or concentrations that are unaffected by anthropogenic 

sources. This information can help to discriminate between the portion of metals due to 

anthropogenic sources or natural sources in environmental studies. 
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Table 2.6, Natural concentrations of heavy metals in different media, values in µg/g dry weight  
                  (Hakanson, 1979) 

 

 

The natural concentration of heavy metals in soil and sediment are greatly 

influenced by igneous rock origin. For example, some fraction of trace metals in 

igneous rock originate from dissolved processes in lakes, rivers, and oceans. However, 

the majority of trace metals show large fractions in soil, which originate from 

weathering processes.  Most trace metals have similar interactions during weathering, 

deposition, and erosion. For example, the fine particle sizes of clay minerals have the 

high capacity to retain trace elements, unlike sand and quartz minerals. Therefore, to 

evaluate heavy metals value, it is essential to have information about particle size and 

soil/sediment mineralogy.  

 

 Sedimentary 
rocks 

Igneous 
rocks 

Soil 
Land 
plants 

Land 
animals 

Mean 
values 

From 10 
lakes 

Seawater 
(bowen 
1966) 

Fresh 
water 

Ag 0.05 0.07 0 .1 0.06 0.006 ≤ 1  0.00013 

Al 4000-80.000 82000 71.000 500 4-100 26.000  0.24 

As 1-13 1.8 6.0 0.2 ≤ 0.2 8.6 0.0026 0.0004 

Cd 0.035-0.3 0.2 0.06 0.6 ≤ 0.5 0.58 0.0001 <0.08 

Co 0.1-20 25 8.0 0.5 0.03 18.5  0.0009 

Cr 10-100 100 100 0.23 0.075 48.7 0.00005 0.00018 

Cu 4-50 55 20 14 2.4 28.7 0.003 0.01 

Fe 4000-50.000 56300 38000 140 160 26.7  0.67 

Hg 0.03-0.4 0.08 0.03-0.8 0.015 0.046 0.12 0.00003 0.00008 

Mn 50-1000 950 850 630 0.2 860  0.012 

Mo 0.2-2.5 1.5 2 0.9 <0.2 ≤ 10  0.00035 

Ni 2-70 75 40 3 0.8 49.7 0.0054 0.01 

Pb 7-20 12.5 10 2.7 2 34.9 0.00003 0.005 

Sn 0.5-6 2 10 0.3 < 0.15 < 10  0.00004 

V 20-130 135 100 1.6 0.15 ≤ 150 0.0019 0.001 

Zn 15-100 70 50 100 160 110.6  0.01 
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Providing reliable data for dissolved metals in aquatic areas is more difficult 

than comparing metals in organisms and sediments because of the low concentration of 

elements in water (around thousand or more times). 

The matrix effect of seawater interferences, the high potential of contamination 

of sampling and laboratory activities in seawater, and the accurate estimation of 

dissolved metals is essential to providing ultrapure chemical standards, expensive per-

concentration measurements, and clean laborious methods based on quality assurance 

program (Lehr & Keeley, 2005; Pan & Wang, 2011; Tarique, 2008). Furthermore, 

sediment assessment gives the historical view of contaminate input in different sediment 

layers, which reflects specific values in specific times. For example, the value in 

sediment layers from preindustrial times is considered a background value, which is 

comparable to values in near-surface layers in estimating anthropogenic enrichment 

factors (Lehr & Keeley, 2005; Pan & Wang, 2011; Trefry & Presley, 1976). 

In general, the concentrations of heavy metals in marine organisms act as 

intermediates among those in water and those in sediment. The measurement of reliable 

data for metal concentration in organisms is difficult because metal concentrations 

widely depend on organisms, specific organs and tissues, seasons, food supply, and life 

stage. Moreover, there is no clear data for the background levels of heavy metals in 

marine organisms. The concentrations of metals are influenced by two major sources, 

lithogenic and anthropogenic, which introduce metals to the marine environment by 

several routes such as river discharge, deposition in the atmosphere, and industrial waste 

input. It is not easy to determine which source is most effective for specific metals at 

specific locations, but the heavy metal effect in the environment depends on sources, 

concentration, and their potential reactivity. 
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These potentials include mobility, biological uptake, and toxicity of heavy 

metals, which are closely related to the chemical form of heavy metals that usually react 

with other components of the sediment. For example, in sediment media, desorption and 

bioavailability of metals, which associate with the exchangeable phase, are easier to 

compare with metals that associate in the reducible phase (Lehr & Keeley, 2005; Pan & 

Wang, 2011). 

The different forms of heavy metals have different physicochemical and 

biological interactions, which lead to various responses to the marine environmental 

condition. Most trace elements act as ‘‘particle-reactive’’ and are quickly able to 

associate with other particles; thus, the concentration of trace elements are higher in 

particles than in the dissolved form. The biological interaction of metals and 

accumulation directly relates to its form that influences biological uptakes, transfer, and 

the resulting effects. In several cases, the soluble form of metals is able to transfer 

beyond cell membranes and some organs in organism. The physical condition of the 

environment (pH and temperature), type of organism, and situation, also have an effect 

on controlling these transfers (Lehr & Keeley, 2005). 

There is much research on the toxic effects of essential and nonessential (toxin) 

heavy metals, which are successful in the case of human toxicity. As and Pb have toxic 

effects, but other metals are not well recognized. In general, the optimal concentration 

of heavy metals in the environment causes optimal function (reproduction, growth, etc) 

of organisms and humans, and the variation of optimal concentration leads to a decrease 

in optimal function and maybe even death. 

At least twenty heavy metals have been introduced as essential elements to the 

health of both humans and organisms at low quantities, and are toxic at slightly higher 

quantities. 
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These include iron, chromium, nickel, manganese, copper and zinc. Lead, 

cadmium, mercury, and arsenic are known as toxic metals and are considered the top 

twenty hazardous substances in the priority list which was prepared by the ATSDR and 

U.S.EPA in 2001 (USEPA). There are controversial discussions about the classification 

of aluminum as a toxic metal because aluminum has no biological role. Its accumulation 

and toxic effects have been reported in renal patients. Therefore, the normal capacity of 

aluminum elimination is not toxic to organisms and humans. There has been much 

research on the toxic effects of essential and nonessential (toxin) heavy metals, which 

has been successful in the case of human toxicity in regards to As and Pb; however, the 

toxic effects of other metals are not well recognized. In general, the optimal 

concentration of heavy metals in the environment causes optimal function 

(reproduction, growth, etc) of organisms and humans, and the variation of optimal 

concentrations leads to a decrease in optimal functioning and maybe even death (Lehr & 

Keeley, 2005; Ling, 2007; Tarique, 2008). 

 

2.3.2.2 Petroleum hydrocarbons 

Petroleum contamination is a major hazardous compound that causes the 

greatest concern for aquatic life in marine sediments, particularly in areas close to 

anthropogenic sources (Baumard, Budzinski, & Garrigues, 1998; Beyera et al., 2010; 

Khairy, Kolb, Mostafa, EL-Fiky, & Bahadir, 2009; Nahla, 2009; Neff, 2002). In recent 

years, many research organizations and scientists such as the Massachusetts Department 

of Environmental Protection (MADEP), Total Petroleum Hydrocarbon Criteria Working 

Group (TPHCWG), Hansen et al. (2003), and Ditoro et al. (1991), have tried to 

formulate an accurate benchmark for determining total petroleum hydrocarbon (TPH) 

concentrations in marine sediment.  
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According to these researchers, TPH is generally defined as “a term used to 

define the sum of hydrocarbon concentrations occurring in crude and refined petroleum 

that yield a positive hydrocarbon signal when analyzed by a specific analytical method” 

(MADEP, 2007). Petroleum hydrocarbons are very dangerous for aquatic life and 

humans because of their toxicity and accumulation abilities which are dependent upon 

hydrocarbon composition, fraction properties, sources, and natural processes (Nahla, 

2009; Neff, 2002). 

 

2.3.2.2.1 Composition of petroleum hydrocarbons 

Petroleum hydrocarbons contain various mixtures of thousands of organic, and 

few inorganic compounds, which solely contain hydrogen and carbon with variable 

concentrations of chemical materials such as nitrogen, sulfur, and oxygen. They are 

composed of light volatile hydrocarbons with short chains to heavy long chains and 

branched compositions (MADEP, 2007; Speers & Whitehead, 1969). Hydrocarbons are 

divided into two major groups: aliphatic and aromatic; there is also a smaller compound 

of both. The solubility and toxicity of aromatic hydrocarbons are more than aliphatic 

hydrocarbons, and equal to carbon. Aliphatic compounds are saturated and are known as 

alkenes or paraffin materials. They contain carbon chains with single chemical bonds 

that are occupied with hydrogen (covalent), and their composition may include linear 

(normal composition), cyclic, and branched chains.  

Aromatic petroleum hydrocarbons are unsaturated and contain benzene rings 

which can be bonded with alkyl groups. Their composition includes alkyl benzenes. 

Benzene is a major part of aromatic hydrocarbon in refined and crude oil.  
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Benzene rings are able to frequently bond to one or more benzenes by fuse 

connection to form polyaromatic hydrocarbon (PAHs) (MADEP, 2007).  

The smallest PAH is Naphthalene, which has two benzene rings and a low 

molecular weight (128.2 g/mol). Coronene is the heaviest PAH (300.3 g/mol) with six 

condensed benzene rings, and is potentially toxic because of its mobility in sediment. 

In lower toxic levels, some PAHs composed of anthracene and pyrene, are able 

to be easily oxidized and associate with other toxic compounds, because these PAHs are 

only active in the liquid phase; thus, they can always stay in water columns (MADEP, 

2007; Patin, 1999). Their hydrocarbon composition widely depends on the refining 

process of crude oil, which is applied to manufacture products such as gasoline and 

middle distillate fuels (kerosene, jet fuel, diesel fuel and heating oil of home). Refining 

includes the distillation process to separate fractions of petroleum hydrocarbon  based 

on different boiling points, and stimulating chemical interactions to convert fraction 

forms of hydrocarbon to specific forms (MADEP, 2007). 

 

2.3.2.2.2 Fraction of petroleum hydrocarbon 

Petroleum pollutants contain complexes of hydrocarbon and organic materials, 

which change extensively in composition after being released into the marine 

environment. Thus, ecological risk assessments of petroleum pollutants solely based on 

TPH concentration, are not accurate and have large errors for several reasons including 

the fact that estimation of risk according to the concentration of hundreds and thousands 

of particular hydrocarbons in oil pollutants is very complex and ultra-expensive, and 

lacks enough information beyond the mobility and toxicity of hydrocarbon compounds 

in sediment (MADEP, 2007).  
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The sediment clean-up approach defines the specific method used to classify 

hydrocarbon compounds into different classes and groups based on the limited criteria 

of the number of carbons with the same properties in physicochemical and toxicities. 

This classification is called fraction, and provides an accurate and reliable assessment of 

petroleum hydrocarbon in comparison to previous methods.  

There is a common rule that increasing the number of carbons (molecular 

weight), decreases the solubility of hydrocarbons, and increases their toxicity in aquatic 

areas Table  2.6. 

 

Table  2.6, Comparison of different hydrocarbon fractions to characterize risk (MADEP, 2007) 
                    

 

 

The present four fractions for aromatic and aliphatic hydrocarbons were applied 

to develop a sediment benchmark for protecting aquatic organisms using the current 

MADEF method for human risk assessment. In the aromatic fraction, the classification 

C6-C8 contain BETEX compound (Benzene, Toluene, Ethylbenzene, Xylene) are 

entirely mobile with high volatility, and cannot contribute to accumulation and toxicity 

in aquatic areas. Thus their concentrations are not practical for assessing ecological risk 

of sediment and are sometimes just recommended for pollutant characterization.  

 

Aliphatic Hydrocarbons Aromatic Hydrocarbon 
Recommended 

Fractions 
Current MADEP 

Fractions 
Recommended 

Fractions 
Current MADEP 

Fractions 

C5-C8 C5-C8 

C6-C8 (Benzene, 
Toluene, 

Ethylbenzene, 
Xylene)a 

 

C9-C12 
C9-C18 

C9-C12 C9-C10 
C13-C18 C13-C15 C11-C22 
C19-C36  C16-C24  
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Based on several observations, the C9-C12 and C13-C15 fractions are 

sufficiently solubility in aquatic solutions to be toxic and to accumulate in marine 

organisms. 

 The fraction of C16-C24 is composed of four or five fused rings of PAH, and 

their molecular weight is very high (Di Toro, McGrath, & Stubblefield, 2007; MADEP, 

2007). Thus this fraction has low mobility and solubility in aquatic areas. Despite the 

fact that all PAHs are not acutely toxin/carcinogenic but commonly PAHs with four to 

six rings have carcinogenic effect for example 7,12-Dimethylbenzene [a] anthracene, 

Benzo[a]pyrene and 3-Methylcholanthrene are strongly toxin (Neff, 2002); because they 

have enough mobility in sediment to be toxin. The light aliphatic fractions C5-C8 and 

C9-C12 are adequately soluble which likely cause toxicity in contaminated sediment. 

Although, they are depleted by natural environmental processes, such as bio-

degradation, which greatly decrease their presence in sediment. These fractions mostly 

originate from middle distillate and light fuels, that almost all include very high 

amounts of aliphatic in comparison to aromatics. The fractions, C13-C18 and C19-C36, 

have high weight in aliphatic hydrocarbons with low solubility, and their tendency is 

very high to associate with organic carbons and oil compounds in sediment, and they 

have little bound into water phase where they can be bio-concentrated by benthic 

organisms. Therefore, these fractions of aliphatic hydrocarbons cannot cause significant 

toxic effects in sediment which is contaminated by petroleum pollutants (Neff, 

Ostazeski, Gardiner, & Stejskal, 2000). 

 

2.3.2.2.3 Natural process of environment 

Unlike heavy metals, petroleum hydrocarbons are not persistent in the marine 

environment. Different natural processes degrade TPH to polar organic compounds, 

which are eventually converted to carbon dioxide and water.  
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Following discharge of hydrocarbons into the marine environment, petroleum 

hydrocarbons are influenced by natural processes such as dispersion, evaporation, 

dissolution, and biodegradation. These natural processes directly and indirectly affect 

petroleum hydrocarbon composition, accumulation, and toxicity in sediment (Nahla, 

2009). After being released into the marine environment, petroleum hydrocarbon 

products have a high tendency to be retained in separate oil phases. Thus, dispersion 

into the sediment occurs and depends upon hydrocarbon density, viscosity, porosity, 

and permeability of intermediate (Sale, McWhorter, & Piontek, 1992). Volatile fractions 

of aromatic and aliphatic hydrocarbons (lowest molecular weight) have a high 

evaporation rate, and are thus removed rapidly from surface sediment and water bodies.  

Their evaporation rate is slow in deep layers of sediment, especially if the 

sediment contains silt and clay (fine particle size). Dissolution and dispersion are the 

two main processes that cause depletion of hydrocarbons in marine sediment by water, 

which is percolated into oily sediment and biological degradation. Dissolution of 

hydrocarbon occurs between the oil and water phases, and when the sub-surface oil 

contacts the infiltrating water and surface water. In fact, the dissolution process directly 

depends upon the rate of solubility in the two phases (MADEP, 2007). 

Generally speaking, the solubility of petroleum hydrocarbon in the environment 

is widely varied and based on several parameters such as salinity, temperature, pressure, 

TPH molecular weight, and distribution. In marine aquatic areas, petroleum 

hydrocarbon solubility and bioavailability (especially PAHs) are directly controlled by 

salinity (Schlautman, Yim, Carraway, Lee, & Herbert, 2004) and research shows that 

there is an inverse relationship between solubility and salinity; the solubility of TPH in 

fresh water can be two times more than marine water (Neff, 2002), and the potential 

risks of TPH toxicity for marine organisms is increased in areas with low salinity, such 

as such as estuaries and coastal zones (Shukla, Gopalani, Ramteke, & Wate, 2007).  
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In other cases, research has showed no significant differences in solubility (in 

two ranges of salinity zero to 4% and 33% to 36%)-unclear (Viamajala, Peyton, 

Richards, & Petersen, 2007; Whitehouse, 1983).  

Temperature increases petroleum hydrocarbon solubility, bioavailability, and 

biodegradation, which causes an increase in the accumulation rate of petroleum 

hydrocarbon in aquatic areas (Feitkenhauer & Märkl, 2003; May, Wasik, & Freeman, 

1978; Viamajala et al., 2007). 

There is an inverse relationship between solubility and the molecular weight of 

petroleum hydrocarbons (Neff et al., 2000). Aromatics are more soluble than aliphatic 

hydrocarbons of the same molecular weight.  

Several research studies have shown that solubility decreases when molecular 

weight and aromatic rings increase; thus, PAHs with high molecular weights have a 

greater tendency to leave the water phase and connect with the solid phase (Neff, Stout, 

& Gunster, 2005a; Varanasia, 1989).  In addition, solubility is higher in PAH isomers 

with angular structures to compression with the linear isomers and PAH Solubility 

invert relation with the length of molecule. For example the solubility of phenanthrene 

with an angular shape is 25 times more that of anthracene with a straight line shape 

(Whitehouse, 1983). The solubility of Alky PAHs is lower than the others, (Neff, 1979) 

although there are some exceptions such as the fact that the solubility of 

benza[a]anthracene is lower than that of methyl or ethylbenz[a]anthracene, and the 

solubility of chrysene is lower in comparison with dimethylchrysene. The solubility of 

the angular isomer of hydrocarbons is more than linear isomers.  

For example, the number of carbons and aromatic rings are the same in the 

composition of phenanthrene and anthracene, but the solubility of phenanthrene with an 

angular shape is 25 times more than that of anthracenes with linear shapes. Also, the 
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solubility is directly increased when the length of hydrocarbons is decreased (MADEP, 

2004). 

Petroleum hydrocarbons may be degraded by bacteria and fungi in sediment. 

Linear alkanes with low weights have a greater degradation rate in comparison to 

branched alkanes and other petroleum hydrocarbons with higher molecular weights. 

Cyclic alkanes and PAHs have a low microbial degradation rate which is why they are 

so persistent in the environment. In general, natural environmental processes change the 

composition of petroleum hydrocarbon, and reduce their molecular weight and decrease 

the toxic effects of TPH fractions in contaminated sediments (MADEP, 2007). 

Hydrocarbons with low solubility are largely adsorbed by dissolved and suspended 

organic compounds in sediment, internal and external issues, or organs of organisms 

(gill membranes and gut epithelium) in water columns, and  benthic organisms which 

are able to accumulate hydrocarbons by lipid tissues (Neff, 2002). Hydrocarbons in 

sediment pore water are more bio-available and toxic (solution phase) compared to lipid 

tissues of benthic organisms (e.g., petroleum, creosote, or tar) (Neff et al., 2005; 

Thorsen, Cope, & Shea, 2004). 

 

2.3.2.2.4 Sources of petroleum hydrocarbon 

Similar to other pollutants, the sources of TPH are divided into major groups, 

anthropogenic and lithogenic. Anthropogenic sources of TPH originate from pyrogenic 

and petrogenic sources. Pyrogentic TPH mainly includes more than three aromatic 

rings, and their original source is incomplete combustion of organic compounds, which 

form very rapidly at high temperatures (around 700°C)(MADEP, 2007).  

Smoke fallouts significantly increase pyrogenic contamination; these 

contaminates originate from combustion of fossil fuels (heating oil, cooking, coal 

burning, vehicle emissions), biomass burning (fireplace, controlled burning) and  
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industrial centers which are located close to coastal water (Beyer, Jonsson, Porte, 

Krahn, & Ariese, 2010; Pies et al., 2008).  

Petrogenic TPH involves unburned fossil fuels which include oil spills, and 

incineration of petroleum products that have originated from coal and crude oil sources 

(MADEP, 2004).  

These sources formed very slowly, more than millions of years ago, at moderate 

temperatures (between 100°C - 300°C) (Beyer et al., 2010; Neff, 2002; Robertson, 

1998). Pyrogenic sources are more toxic than petrogenic sources because of their high 

concentration of non-alkylated PAHs, which have more than three aromatic rings. Thus, 

the identification of petroleum hydrocarbon sources (TPH and PAHs) is essential. In 

recent years, the ratio of non-alkylated PAH and alkylated PAH as been applied to 

distinguish between different types of sources (Yunker et al., 2002; Zhang et al., 2004).  

For example, if the alkylation concentration is more than that of non-alkylation, 

this means that petrogenic sources are predominant. lithogenic sources of TPH seep of 

natural oil, coal erosion, forest and grass fires, biogenic and diagenic types (Beyer et al., 

2010). Diagenic types originate from organic material in sediments with rapid formation 

during days or years. 

Biogenic types form during the biosynthesis process by different organisms such 

as fungi and bacteria. Biogenic sources are not commonly considered to be true PAHs 

and main sources in marine environmental research, because they include just oxygen 

and nitrogen. Diagenic and biogenic processes are major sources for perylene, 

pimanthrene, phenanthracenes, tetra- and pentacyclic PAH (Beyer et al., 2010; Nahla, 

2009; Neff, 1979, 2002; Whitehouse, 1983). 
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2.3.2.2.5 Enzymatic biotransformation 

The toxicity and bioaccumulation of petroleum hydrocarbons, especially PAHs, 

are also closely dependent upon enzymatic biotransformation of marine organisms. 

Research has shown that organisms are less damaged by PAH toxins if their 

biotransformation capacity is poor, such as the blue mussel (Mytilus sp) (Anderson, 

Hunt, Hester, & Phillips, 1996). 

In addition, these species are highly able to accumulate PAH and TPH in the 

environment because the bioaccumulation is related to low capacity of 

biotransformation (Porte & Albaiges, 1994). Therefore to assess exposure, estimation of 

petroleum hydrocarbon concentration in tissue and organs of mussels is more reliable to 

compare with fish and other vertebrates. Fish have the high capacity of 

biotransformation, and during metabolism, fish can convert PAHs to metabolites that 

are subsequently able to bind to other macromolecules (proteins, DAN, and RNA). This 

may cause adverse effects, such as teratogenesis, mutagenesis, and carcinogenesis, in 

organism tissues, and can also reduce growth and survival (Colavecchia, Hodson, & 

Parrott, 2007; Tuvikene, 1995). In fact, the levels of hydrocarbons that are estimated in 

the tissue and organs of fish are low, and poorly correlate with exposure because of the 

rapid biotransformation. This organism exposure in aquatic areas is influenced by 

sediment concentration, solubility of PAH, ingestion of suspended matter, types of 

habitats, and food source (Beyer et al., 2010; Budzinski et al., 2004). 

 

2.3.3 Biological assessment 

Benthic communities are useful biological indicators for monitoring the quality 

of marine environments, especially sediment, because of several aspects: (1) Benthos 

live in sediment where several types of contaminate accumulate, and hypoxia reactions 

occur. Thus, they directly or indirectly reflect the effect of environmental stressors 
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because they have low mobility and cannot easily relocate when influenced by 

contaminates; (2) to some extent, the variation in benthic species is predictable because 

their presence and absence are not influenced by diurnal cycles or tidal flux; (3) the 

benthic community is classified based on their sensitivity and resistance to contaminate 

and hypoxia conditions; (4) there are defined predictable patterns of response of benthic 

species to variations in marine quality (Borja, Franco, & Muxika, 2003; Malloy et al., 

2007; Pearson & Rosenberg, 1978; Roesijadi & Robinson, 1994; Tarique, 2008); (5) 

Some species of benthic organisms (bivalves) are able to bioaccumulate contaminates in 

their soft tissues, and this sometimes causes an easier estimation of contaminate in their 

tissues compared to in marine water (Tarique, 2008). Several factors influence their 

bioaccumulation rate such as season, sex, size, reproductive cycle, and the 

hydrodynamic process (Bryan et al., 1977); (6) they have important ecological roles in 

recycling nutrients between sediment and water and their main food source of 

commercial fish (Cesar et al., 2006; Malloy et al., 2007). 

Several monitoring programs have studied the accumulation, toxicity, 

distribution, and succession, to provide large-scale information about the exposure, 

trend, and status of species, populations and ecosystem effect over the long-term. This 

information has caused the development of several indexes and indicators based on the 

benthic community (Borja et al., 2000; Borja, Muxika et al., 2003; Burger, 2006; 

Cantillo & connor, 1992; Jensen, Randlov, & Riisgard, 1981; Malloy et al., 2007; 

Shannon & Wiener, 1963). Bivalve (mollusks) have been successfully applied as 

biological indicators to assess heavy metals accumulation and toxicity in marine 

sediments, because of their effective bioaccumulation, high tolerance to variation in 

physicochemical parameters, low enzyme transformation, in addition to their 

dominancein wide geographical areas (Brown & Luoma, 1995; Gunther et al., 1999; 

O’Connor, 1992; Otchere, 2003).  
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Mussels, clams, fish (Denton & Burdon-Jones, 1986; O’Connor, 1992), colonial 

sea birds (Burger & Gochfeld, 2004), and barnacles (Fialkowski & Newman, 1998) are 

used as reliable bio-indicators.  

In 1978, Pearson, Rosenberg, and Rhoads presented succession models of 

benthic communities in temporal and spatial scales, which showed that the biomass, 

abundance, and diversity of benthic communities vary in predictable patterns in 

response to organic compounds (Figure 2.1).  

They indicated that the abundance of benthic communities increases along 

decreased gradients of organic materials (Pearson & Rosenberg, 1978; Rhoads, McCall, 

& Yingst, 1978). Several researchers have repeatedly tested this model that is now 

considered a universal applicable model for most disturbances (physicochemical and 

biological) in different sub-tidal and soft-bottom marine ecosystems (Christopher, 

Calabretta, & Oviatt, 2008; Heip, 1995; Rosenberg & Blomqvist, 2004; Rosenberg, 

Magnusson, & Nilsson, 2009). 

 

 

Figure  2.1, General distribution model of benthic faunal succession stage a gradient of 
                       increased environment disturbance from left to right (Pearson & Rosenberg,1978) 

 

 

In general, three main succession stages were described: the peak of 

opportunistic species: in early stages of succession there is degradation in size and 

number of first species, which are close to pollution sources (largely polluted) (Rhoads 
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& Boyer, 1982). When distance from a pollution sources increases (100 m), a peak is 

formed by opportunistic species with little diversity and high abundance. These species 

are usually polychaetes with small tubes that are tolerant to types of contaminants. 

These groups usually have some advantage in the environment such as changes in the 

physicochemical characteristics in surface sediment (a narrow oxidized and to restrict 

the interstitial area), improved food sources, and decreases in the biological interaction 

(Pearson & Rosenberg, 1978; Rhoads & Boyer, 1982).  

Their high yield reproduction, rapid maturity, and non-selective deposit-feeder, 

are important characteristics for increasing great colonization, rapid changes in micro-

structure by pelletizing compounds and extending the available surface area for the 

microbial community (Christopher et al., 2008; Dauer, 1993; Hargrave & Theil, 1983). 

The ecotone point: this stage along poorly polluted areas with low abundance and high 

diversity; because with further distance from pollution sources, the abundance of 

opportunistic species decreases to steady-state abundance of normal condition. At the 

same time, there is an increase both in the abundance of species in the community and 

the relative frequency of individuals between species (Christopher et al., 2008; Rhoads 

& Boyer, 1982). The transition zone: in this stage, there is an initial fluctuation of 

species developing towards the stability to provide the normal condition. Therefore, the 

benthic community is dominated by mature large-equilibrium species, which are deep-

dwelling, and feed at depth layer of sediment; their fecundity is low and has a long life-

span (Christopher et al., 2008; Rhoads & Boyer, 1982). 

There are other variable effects on benthic distribution in the marine 

environment such as salinity, sediment types, and oxygen levels, via larva supply and 

specific flux. The effect of salinity is more than sediment types.  

For example, along an estuary gradient, the diversity of species is high because 

of higher salinity and a high percent of silt and clay. 
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In the part of the estuary close to the river mouth, diversity is low due to the low 

salinity and high percentage of silt and clay. Dissolved oxygen reflects the quality of 

water and well-oxygenated sediment is essential for protecting the benthic population. 

The hypoxia condition is influenced by natural and anthropogenic sources (heavy 

metals, pesticides, and hydrocarbons) (Christopher et al., 2008; Malloy et al., 2007). 

Several attempts have been performed to describe an applicable set of indicator species 

for the extensive range of situations in the marine environment.  

Therefore, several research studies have frequently reported that some benthic 

species can tolerate heavily polluted areas such as polychaetes, especially Capitella 

capitata, Mediomastus ambiseta, Nereis caudate, Staurocephalus rudolphl, Audounia 

tentaculata and in gastropod, Polydora ciliate and Hydrobia ulyae (Malloy et al., 2007; 

Pearson & Rosenberg, 1978; Reish, 1957; Reish, 1960; Swartz, 1972). 

Moreover, on harbors with heavy polluted marine sediments, nematodes are 

introduced as some species and genus of nematodes such as Deptonema, sabatieria, and 

Terschellingia  react sensitively to any pollutants, especially PAHs, heavy metals and 

organic compounds (Montagna & Harper, 1996; Moreno, Albertelli, & Fabiano, 2009; 

Schratzberger, Warr, & Rogers, 2006; Somerfield, Fonsêca-Genevois, Rodrigues, 

Castro, & Santos, 2003; Steyaert, Garner, van Gansbeke, & Vincx, 1999). 

 In general, Borja provided the comprehensive list of the benthic community 

based on their tolerance and sensitivity, that is so practical to estimate different indexes 

such as AMBI and BI (Borja et al., 2000) . 

 

2.3.3.1 Assessment adverse biological effect 

Since 1990, many scientists have focused on methods to define the direct 

correlation between the concentration of sediment contaminates (cause) and adverse 

biological effects.  
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Also, they have tried to find new methods to predict contaminate distribution, 

abundance, potential effects and an accumulation in the marine sediment (Nascimento, 

2007). Thus, research studies have been done (Macdonald et al., 1996; U.S.EPA, 2000) 

to establish standard methods to conduct toxicity tests on sediment, sample collection, 

storage, and estimation of physicochemical and biological characteristics.  

In recent years, sediment quality has been assessed based on several 

measurements, such as toxicity tests on specific biological communities, level of 

contamination in sediment, evaluating benthic communities, and biomarker assessment 

(Nascimento, 2007; U.S.EPA & NCA, 2005). Toxicity tests of sediments are commonly 

test based on bioassays that determine toxicity effect of contaminates on the organisms 

survival in different concentration of contaminates. In this method, specific organisms 

such as amphipods, sea urchins, tanaidacea, and penaeidae post-larva are selected 

according to their sensitivity, year round fertility, abundance, adaptability to salinity, 

and granulometric variation (Cesar et al., 2006; Evangelista et al., 2005; Green, 

Chandler, & Piegorsch, 1996; Nipper, Greenstein, & Bay, 1989). These organisms are 

exposed to different pollutants to describe levels of toxicities and biological responses, 

which are used to classify the potential of toxicity in marine sediment (Pearson & 

Rosenberg, 1978). 

According to these studies, sediment quality standards are established in 

different chemical criteria to protect the health status in aquatic areas. These standards 

were modified to sediment quality guidelines (SQGs) such as Australian/New Zealand, 

Hong Kong, Canada, Netherland, Norway, Washington /Puget Sound, New York and 

Florida. Most SQGs are useful predictors according to the weight of evidence sources 

(Ralf Hubner, Astin, & Herbert, 2009). These practical methods are used to estimate the 

effects of contaminates in the environment, particularly at the population level, in light 

of the difficulty of analyses due to the effect of complex interferences on the abundance 
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and health status of organisms in temporal and spatial scales (Rosenberg, Blomqvist, 

Cnilsson, Cederwall, & Dimming, 2004). Many researchers have focused only on 

measuring the concentrations of chemical contaminants because toxicity tests are not 

easy, and are costly and time-consuming, sometimes leading to ambiguous results (Lehr 

& Keeley, 2005). 

It is practical method to provide data about natural conditions and the extent of 

the contamination is also a useful tool to screen toxicity. Caeiro et al (2005) defined 

three methods for evaluating chemical contamination according to contamination 

indices (ratio of polluted /clean sites), background enrichment factors (ratio of sediment 

sample and background levels); and ecological risk indices(comparison to sediment 

quality guidelines). In general, if the ratio is lower than two mean, this indicates 

insignificant pollutants, causing little concern about the adverse effects of chemical 

pollutants (GIPME, 2003; Ralf Hubner et al., 2009). 

The distribution and abundance of benthic communities are vital bio-indicators 

for evaluating the effects of contaminates, supporting quality standard criteria, and 

advancing the use of existing methods.  

Several indices are frequently applied to study benthic communities which are 

described in Table  2.3 (Pinto et al., 2009; Tarique, 2008). The biomarker approach is a 

typical method for assessing biological responses to the effects of contaminates on 

different organizational levels such as cellular, histological, and physiological. It is also 

a useful method for detecting contaminate problems (specially related to PAH), and it 

reveals the early adverse effects of contaminates on living organisms (Martins et al., 

2005; Nascimento, 2007). 

Despite of all of this research, there are no measurements that are able to reliably 

predict contaminate concentrations and their effect on marine sediment, leaving the 

researcher to face to much uncertainty.  
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Thus, much research has focused on integration methods, which link chemical 

analysis with biological effects to understand how benthic organisms respond to 

degradation of sediments (Anderson et al., 1996; Anderson et al., 2001; Carr et al., 

1996). 

 Integration methods are so useful and practical because chemical analysis and 

biological approaches alone are not accurate to estimate and predict the adverse effects 

of chemical contaminates on biological communities.  

Chemical analysis is not able to predict biological effects because of the 

complexity of physical and biological interactions that alter the bioavailability and 

concentration of contaminates. On the other hand, biological surveys cannot establish 

the relationship between cause and effect factors because it can perform toxicity 

bioassays in sediments and biological structures (Burton & Scott, 1992; Nascimento, 

2007). 

 

2.4 Ecological risk assessment 

In recent decades, ecological risk assessments have been known as “technical 

support to make decisions for uncertainty” in environmental research. In 1992, the EPA 

stated that, “ecological risk assessment is a process that evaluates the likelihood that 

adverse ecological effects may occur or are occurring as a result of exposure to one or 

more stressors” (EPA, 1998; Suter, 2007). 

The process is developed to organize information and uncertainties, in order to 

better evaluate and predict the relationship between stressors and their adverse 

ecological effects, which is practical way to make environmental decisions. An 

assessment can probably include physicochemical and biological stressors as an 

assessment of adverse effects dependent upon several parameters such as type and 

intensity of effects, scale of the effect, and the potential for recovery (Suter, 2007).  
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The general objectives of risk assessment have focused on managing 

environmental problem which mainly include chemical regulation, remediation of 

contamination areas, population control of exotic organisms, and management and 

protection of the environment (Jones et al., 1999; Suter, 2007).  

The term,”environment risk” is usually used in Europe instead of the term, 

“ecological risk” which is used in the United States because of the similarity of their 

divinations. 

In Europe, the term “ecological risk” describes the risks for nonhuman 

organisms, the ecosystem, and population (Barnt-house and Suter1986). Ecologists 

frequently use the term, “environment risk” to explain human risks which are influenced 

by pollution in the environment (Suter, 2007). 

In the last two decades, numerous studies have been done to assess ecological 

risks such as ecological risk assessment of polyaromatic hydrocarbons (Brendehaug, 

Jhonsen, Bryne, & Gjose, 1992; Chen, Zhao, Lee, & Hannath, 2007; Fernández et al., 

2005; Neff, 1979; Neff & Sauer, 1995; Neff, Stout, & Gunster, 2005; Stagg et al., 1996; 

Wang, Wang, He, Du, & Sun, 2011), and ecological risk assessment based on heavy 

metals (Bai et al., 2010; Chow, Gaines, Hodgson, & Wilson, 2005; Hakanson, 1980; 

He, Song, Zhang, Zhang, & Xu, 2009; Hope, 2006; Jones et al., 1999). 

 

In general, most research indicates a quantity model to evaluate ecological risk. 

According to this model, ecological risk assessment is estimated by obtaining the ratio 

between predicted environmental concentrations (PEC) and predicted no-effect 

concentrations (PNEC) (Mahmoud, 2009).  

PNEC are calculated based on sediment or water quality guidelines that are 

widely applied to signify threshold concentration of chemical compounds and their 

biological effects on the population (Hübner, Astin, & Herbert, 2009; MacDonald, 
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Ingersoll, & Berger, 2000; Pekey, Karakas, Ayberk, Tolun, & Bakoglu, 2004; 

Thompson, Kurias, & Mihok, 2005). 

 

2.4.1 Framework of ecological risk assessment 

The process of ecological risk assessment is based on a routine framework, 

which was developed by the National Research Council framework for assessing human 

health risk. This framework acts as a guide for performing risk assessment, showing the 

general structure of risk assessment, and preparing quality assurance based on main 

components. The framework of health risk assessment was modified to ecological risk 

assessment (Barnthouse & Suter, 1986), and the ecological risk framework has been 

described for several nations in the world, including Australia and New Zealand (ANZ 

1995; NEPC 1999), the United Kingdom (UK Department of the Environment, Food 

and Rural Affairs 2000), Canada (CCME 1996), Africa (Claassen et al. 2001), and the 

Netherlands (Menzie and Freshman 1997; Power and McCarty 1998, 2002) (Mahmoud, 

2009). Most eco-risk frameworks consist of several processes including problem 

formulation, analysis, risk characterization, and risk management (Suter, 2007). 
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Figure  2.2,The framework for ecological risk assessment (EPA, 1998) 
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2.4.1.1 Problem formulation 

Problem formulation, in which several inputs are provided to develop a plan for 

assessment by risk managers and risk assessors, is the first step in performing 

assessment. Those inputs include: 

• Collecting and summarizing available information about stressors and their 

sources, effects, the physiochemical environmental condition, and receptor 

characteristics (receptor is “The ecological entity exposed to the stressor”). This 

information has helped to assess endpoints and conceptual models. ‘Endpoint’ is an 

explicit term of the environment which is attributed to valued ecological entities, and 

thus, must be protected (Suter, 1993). Therefore, this important characteristic should be 

considered in defining the endpoint, which includes biological and social relevance, and 

proven susceptibility, and a comprehensive operational definition must be easily 

measurable. However, these are not the same measurements to assess endpoints, but are 

generally estimated based on toxicity values or function as a dose response (for example 

96-h LC50) and characteristic of the environment defined during temporal and spatial 

scales (e.g benthic population in sediment). In 1993, Suter defined two methods to 

estimate endpoints: those that estimate the level of effects to estimate exposure (dose-

response), and only specific levels are applied such as LC01 (lethal threshold 

concentration), LC50, LD50 (median lethal dose), and EC50 (median effective 

concentration). The second method is related to hypothesis testing in which responses at 

unexposed concentrations (null concentration) or control responses are compared with 

responses at exposure concentrations such as no observed effect concentration (NOEC), 

and lowest observed effect concentration (Suter,1993). The conceptual model is a visual 

description to predict relationships between endpoints receptor and stressor. 

• Defining the purpose, limitations, and scope of assessment. 

• Analyzing a plan to collect information, and performing risk characterization.  
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2.4.1.2 Analysis 

Analysis is the stage that is controlled based on the technical evaluation of data 

about characterization of exposure and effects. Characterization of exposure is a part of 

the analysis stage that evaluates the reaction between ecological entities and stressors. 

Exposure defined as “co-occurrence or contact, depending on the stressor and ecological 

component involved”. The exposure analysis is a process to describe the sources of 

contaminants (stressors), their spatial and temporal distribution in the environment, and 

contact with the ecological entities. Characterization of ecological effects is another part 

of the analysis stage that estimates the ability of stressors to make adverse effects under 

a specific set of situations. It indicates the relationship between endpoint responses and 

exposure variation, and quantifies the potential and type of endpoint effects that can be 

expected. 

 

2.4.1.3 Risk characterization 

Risk characterization includes the integration of results of the stressor-response 

and exposure to parameterize and perform the response of exposure model and estimate 

risk process, and analyze the scientific uncertainties and limitation. Risk 

characterization also includes the descriptive process used to interpret the results of 

uncertainty analysis, ecological adversity, and lines of evidence. 

 

2.4.1.4 Risk management 

Risk management is the process in which the results at all stages of eco-risk 

assessment are transferred to the risk manager to make decisions about remediation, and 

ratify the new regulation to improve environmental conditions (Mahmoud, 2009; Suter, 

2007).  
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3 CHAPTER III: MATERIALS AND METHODS 

3.1 Location and General Overview 

3.1.1 Geographical Features 

The Klang Strait is located on the western tropical coastal region (03°00 N to 

101°24’E) of the Malaysia peninsula at the north end of the Malacca Strait (Figure 3.1) 

and over.573 km2. This strait is divided into three main gateways that are also its busiest 

ports which include North, South, and West Port (Figure  3.2). There are 18 berths in 

the North Port, 8 in the South Port, and 22 in the West Port (berth information is 

described in Attachment I). These ports are situated about 70 km away from the Kuala 

Lumpur International Airport. A network of highways and  railroads link these ports to 

other parts of Malaysia (Authority, 2008; Selangor Waters Management Authority, 

2005). 

Admiralty Chart No. 3453 in London describes the Klang Strait as “the narrow 

corridor between Klang Island and Che Mat Zin Island on west and Indah Island and the 

mainland on the east.” In 1970, hydrographic and topographic researchers showed that 

the Klang Strait is a channel that extends an additional distance of 45 km along the 

northwest (Coleman, Galiano, & Smith, 1970; Sasekumar & Chong, 2005). The 

northern part of the Klang Strait has been known as Pulau Angsa; it is located between 

the mainland on the east and a vast region of sand banks and mud flats (Angasa Bank) 

on the west. This is considered to be the northern entrance into Port Klang for shipping. 

The boundaries of Pulau Angsa are marked by two lighthouses and marine buoys 

(Authority, 2008). 
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The southern part of the Klang Strait lies between several mangrove islands 

(such as Pulau Klang, Pulau Che Mat Zin, and Pulau Pintu Gedong) on the west and 

Pulau Indah on the east. The border of the southern part of Klang Strait lies just off from 

the adjacent north lane of the Malacca Straits Traffic Separation Scheme.  

This area is well marked by the lighthouse and South Fairway Buoy. The end of 

southern part is comprised of complex currents with tidal influence, which affect the 

Klang Delta. Thus, this is considered to be an open-ended estuary (Authority, 2008; 

Sasekumar & Chong, 2005). Klang River and Langat River are the two main rivers that 

drain into the Malacca Strait to form the Klang Strait and Klang Delta. These rivers 

cover 1,300 km�and 2,400  km�of the catchment area, respectively. This area is 

characterized by several interconnecting tidal channels that are completely surrounded 

by the mangrove islands and the mud flats (Figure.3.2). 

As matter of fact, marine process, riverine, and climate were factors in the 

colonization of the Klang Strait coastal area including the mangrove islands with their 

high diversity of plants and marine organisms. In addition, there is scientific evidence 

that indicates that cross-shelf currents cause to transport material and living particles 

(e.g., fish and prawn larvae) toward the shore, and most of this marine life is trappedand 

retained by the mangrove system. However, these islands have lost most of their 

mangrove trees in recent decades because of the development of industrial centers and 

West Port (Sasekumar & Chong, 2005; Selangor Waters Management Authority, 2005). 
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Figure  3.1, Location of Klang Strait at the west coast of Peninsular Malaysia 
                   (Port Klang Authority, 2008) 
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Figure  3.2, Location of Port Klang (Port Klang Authority, 2008). 
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3.1.2 Meteorology 

The seasonal alternation between the northeast monsoon (November to March) 

and southern monsoon (May to September) causes the main rainfall pattern along the 

Klang Strait(Chong, 1993a). In general, the beginning of the northeast monsoon occurs 

between the 11th and 20th of November (Chong, 1993a). In the early part of the 

monsoon season, heavy rainfall usually occurs; dry spells happen later on, and at least 

eight cycles of dry and wet spells occur during the north monsoon (Cheang, 1988). The 

southwest monsoon occurs in May and causes a decrease in rainfall. During the 

monsoon break, which is often between July and September, heavy rainfall occurs 

because of converging low-level winds from the east or southeast, with the 

southwesterly winds coming from the Bay of Bengal and Sumatra Strait (DID, 2000). In 

general, three to four cycles of dry and wet spells take place during this monsoon. In the 

Klang Strait, two peak rainfall periods are reported each year; these peaks normally 

correspond to the inter-monsoon period (Chong, 1993b). Figure  3.3 shows the average 

monthly rainfall based on reports of the Malaysian Metrological Service (MMS) 

between 1985 and 1987(Cheang, 1988). The monthly average rainfall ranged between 

15.5 and 370 mm, the average was 143.23 mm, and the annual rainfall was 1,719 mm. 

In addition, MMS recorded that the river discharge at Klang Strait correlates with 

rainfall pattern, and, as expected, the maximum river discharges would occur at the two 

peak rainfall periods in November, December, and April (Sasekumar & Chong, 2005). 

 

 

 

 



Figure  3.3, Monthly mean rainfall
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 In the 1970s, the British admiralty and the hydrographic directorate of the royal 

Malaysian navy reported tidal heights at mean high water spring, mean high water neap, 

mean low water neap, and mean low water spring were follows: 5.2 m, 3.9 m, 2.5 m, 

and 1.0 m, respectively(Authority, 2008; Sasekumar & Chong, 2005). 

 

3.1.4 Water Parameters 

The average of water parameters was measured for a period of 14 months in the 

Klang Strait by Chong (1993) and Zogozi (2000). Mean surface water salinity was 

recorded at 30.25‰ (± 1.36) and ranged between 26.0 to 33.0‰, whereas surface water 

temperature ranged from 28.2 to 31.9 ºC and its mean was 30.04 ºC (±0.62). Bottom 

salinity (at a water depth from 2 to 17 m) ranged from 30.4 to 32.5‰, whereas the 

monthly average bottom temperature varied from 29.4 to 30.2ºC. Thus, there was only 

showed small seasonal fluctuations of salinity and temperature.  

The differences between salinity and temperature in surface and bottom waters 

did not exceed 0.5ºC and 2.5‰ salinity respectively even at a depth of 20 m because the 

strong current, prevailing northern monsoon winds, ebb and flood tides, and high river 

discharge caused the marine water to be vertically well mixed in the Klang Strait 

(Chong, 1993; Zgozi, 2000). 

The average concentration of surface dissolved oxygen (DO) was 5.38 mg/l 

(±0.85). Chong (1993) reported that the range of DO concentrations in the surface and 

bottom waters in the Klang Strait varied from 4.2 to 6.4 mg/l and 3.7 to 6.2 mg/l, 

respectively.  

Zgozi (2000) indicated that the range of mean concentrations of DO was 

between 4.84 mg/l and 6.76 mg/l (Zgozi, 2000). The monthly average pH value was 

8.06 (±0.17) and ranged from 7.85 to 8.25. However, Zgozi (2000) reported that the 

average pH value ranged between 8.20 and 8.44. 
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 The lower value of pH was measured during a higher river discharge from 

October to January (Zgozi, 2000). The monthly mean turbidity values varied between 

3.75 to 270 NTU, and the highest values were measured around the Klang River mouth 

and Angsa Island (Chong, 1993; Sasekumar & Chang, 2005; Zgozi, 2000). 

 

3.1.5 Depositional Features 

Lee (2005) indicated that the Klang Strait was submerged in late quaternary 

marine transgression and that the sea subsequently receded in the Holocene 

epoch(Ibrahim, 1988). During this period, vast alterations occurred in this area because 

the strong current in the rivers washed a huge amount of sediment downstream and 

dispersed it uniformly. Wide intertidal mud flats and offshore shoals deltaic island were 

formed as a result of the active fluvial deposition and marine process. The analysis of 

surface sediment (up to 4 cm deep) performed around the Angsa Bank (north of the 

Klang Island) determined that more than 70% of the sediment was very fine sand and 

that the fine sand/silt composition was 15 to 25% and the clay composition was less 

than 5%(Ibrahim, 1988). In the mud flats’ sediment, the clay and silt composition was 

about 7 to 27% and 45 to 75%, respectively. Also, a high amount of coarse and finely 

broken shells were reported in the sediment of the Klang Strait (Sasekumar & Chong, 

2005). 
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3.2 Sampling and Field Work 

In this project, the study area was defined based on the definition of Admiralty 

Chart No. 3453 in London. A total of 21 sampling stations were selected at 3 sites 

including 6 stations in North Port, 6 stations in South Port, and 9 stations in West Port 

(Figure 3.4 and Table 3.1).  One station was selected 30 kilometers far from north of 

the Klang Strait as a control point. According to the location and bathymetry of each 

site, stations located inside the Klang Strait were arranged into three parallel transects at 

three different distances. The first transect was parallel to the berth line and industrial 

outlets, the second was the middle line of the strait, and the third was parallel to the 

mangrove line in the West Port and North Port. Water samples were collected at the 22 

stations in the first week of every month from November 2009 to October 2010. 
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Figure  3.4, Map showing the sampling sites and stations 
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Table  3.1, Location, depth and description of stations along Klang Strait 

  

Sites 
Station 

code 
latitude longitude 

Depth 

(m) 
Description of stations 

North 

Port 

1-NL100 3° 3'1.49"N 101°21'18.70"E 14.3 liquid berth line 

2-NL700 3° 3'1.33"N 101°20'56.04"E 20.5 Remote 

3-NL1500 3° 3'1.47"N 101°20'33.11"E 10.3 Mangrove 

4-NC100 3° 0'53.11"N 101°21'20.25"E 13.5 Container berths 

5-NC700 3° 0'52.64"N 101°20'58.04"E 21.6 Remote 

6-NC1500 3° 0'52.49"N 101°20'34.54"E 11.2 Mangrove 

West 

Port 

7-WC100 2°58'44.00"N 101°19'21.02"E 12.5 cement berth 

8-WC500 2°58'54.12"N 101°19'9.06"E 19.5 Remote 

9-WC1000 2°59'3.12"N 101°18'58.38"E 7.8 Mangrove 

10-WL100 2°58'6.34"N 101°18'48.14"E 13.3 liquid berth 

11-WL500 2°58'14.90"N 101°18'34.56"E 20.3 Remote 

12-WL1000 2°58'23.07"N 101°18'20.99"E 8.8 Mangrove 

13-WT100 2°55'34.43"N 101°17'18.76"E 15.5 Container berths 

14-WT500 2°55'39.38"N 101°17'7.57"E 21.1 Remote 

15-WT1000 2°55'45.02"N 101°16'55.55"E 6.8 Mangrove 

South 

Port 

16-SK100 2°59'59.08"N 101°23'18.88"E 7.5 Dry berths, Klang River 

17-SK1000 2°59'58.17"N 101°22'45.35"E 10.5 Klang River 

18-SK2000 2°59'57.66"N 101°22'12.45"E 12.4 Semi-urban 

19-SL100 2°59'38.25"N 101°23'32.32"E 10.3 Liquid berth 

20-SL1000 2°59'37.70"N 101°22'57.93"E 11.3 industrial 

21-SL2000 2°59'37.23"N 101°22'23.78"E 10.4 Mangrove 

Control 

Point 
22-CP 3° 6'55.95"N 101°12'44.70"E 17.5 Remote 
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Water quality was evaluated based on the physical and chemical parameters, and 

the Rutner sampler was used to collect water samples. A multi-parameter probe (YSI 

556 MPS) was applied to measured physical parameters such as temperature, salinity, 

dissolved oxygen, oxygen saturation, pH and  total dissolved solids, from the surface 

water layer (50 cm deep). The multi-parameter probe was calibrated the day before the 

sampling using methods outlined in the YSI 556 MPS maintenance manual. The 

dissolved oxygen probe was re-calibrated in the field on the day of sampling. Water 

transparency was measured using a Secchi disc, and a fish finder was used to measure 

the water depth at each station. The current meter (RDI Ocean Surveyor ADCPs™) was 

used to measure current speed in this research. This equipment was installed on vessels 

to provide detailed maps of the distribution of water currents and suspended materials 

through the water column and along the ship's path. The system is completed with the 

new VMDAS Software. 

Water samples of about 1 liter were taken from the same depth (one meter) to 

measure the total suspended solid and dissolved nutrients (nitrite, NO�

; nitrate, 

NO�

; ammonium, NH�

�; ammonia, NH�

), soluble reactive phosphate (orthophosphates), 

and soluble reactive silicate (SRSi). These water samples were transferred into dark 

polyethylene bottle, which were filled about three-quarters full. 

These samples were immediately filtered through a Millipore membrane filter 

(0.45 micrometer), using a vacuum pressure of < 400 mm Hg and analyzed as soon as 

possible after filtering within 48 hours. Additional water (1 liter) was collected to 

estimate suspended solids by Hach DR/2400 Spectophotometry based on the 

photometric method (EPA, 2001; Parsons, Maita, & Lalli, 1984). 
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For measuring the chlorophyll a, a 1-liter water sample was poured into the 

opaque bottles and held on ice or at 4°C. These samples were immediately filtered after 

being transferred to the laboratory at the same day (Clesceri, Greenberg, & Eaton, 

1998).  

From November 2009 to October 2010, sediment samples were collected one 

every 3 months (two sampling per season) at low tide. The sediment samples were 

collected in triplicate from sediment by the Petersen grab sampler (0.07m�). Each 

replicate was rinsed through a sieve with a 0.5-mm mesh screen to sort benthic 

organisms including macro-infauna (greater than 0.5 mm)(GIPME, 2003). The 

organisms were then transferred into a plastic container, preserved in a 99.9% ethanol 

alcohol with Rose Bengal, and stored to identify their lowest practical taxonomic level 

(i.e., organisms were identified as species where possible and damaged organisms or 

juveniles were identified to genus and family) by a dissecting microscope. Then, the 

upper 2 to 3 cm of sediment were collected from additional grabs for chemical 

mechanisms because this layer controls the exchange of chemicals compounds between 

sediment and water (Praveena, Ahmed, Radojevic, Abdullah, & Aris, 2008).The 

samples were stored in clean aluminum foil and kept in an icebox at 4°C to decrease 

chemical and biological reactions. For extra analysis, samples were air dried and passed 

though sieve with a 2-mm mesh size and stored at -20°C until further analysis for 

measuring heavy metals, organic contaminants (PAHs), total organic carbon (TOC), and 

grain size (Clesceri et al., 1998; Paul, Scott, Holland, Weisberg, & Summers, 1992). 
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3.3 Experimental Methods 

3.3.1 Water Quality Analysis 

3.3.1.1 Nutrient: 

A Hach DR/2400 spectrophotometer was used to measure the nutrients and 

suspended solids based on the methods which is published in Hach procedures manual 

June 2007 edition 2. These methods were denoted by USEPA as standard method for 

water and wastewater analysis ("Procedures manual of DR 2400 Spectrophotometer," 

2007).Dissolved inorganic nitrogen (DIN) was estimated as the sum of nitrites, nitrates, 

and ammonium. The Redfield ratio (N:P,16:1) was estimated based on the DIN: PO�
�
 

to clarify potential N and P limitation for phytoplankton growth(USEPA, 1991). 

Accuracy and precision was checked by using standard solutions and standard 

additions(USEPA, 1991). Some of these standards were made in the laboratory, and 

some of them were ordered as a chemical reagent. The standard solution was used 

instead of the sample water in the analysis process, and their percent recovery was 

estimated by the specific formula published by the USEPA SW-846. The reasonable 

percent recovery values ranged between 80 and 120%. Also, laboratory reagent blanks, 

laboratory duplicate analysis and calibrate tests were used to check performance 

(Clesceri et al., 1998; EPA, 2001). 
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Table  3.2, Standard analysis methods for nutrient  based on the Hach procedures manual 
                        ("Procedures manual of DR 2400 Spectrophotometer," 2007). 

 

3.3.1.2 Chlorophyll a: 

In this research method, 446.0 USEPA (1997) was used to measure the 

concentration of chlorophyll a. One-liter water samples were concentrated by filtration 

through Whatman GF/C glass fiber filters at low vacuum (not exceeding 6 in. Hg [20 

kPa]). The pigment extraction was performedin90% acetone by aid of the Homogenizer  

HG-150  (macerate at 500 rpm for 1 minute), with an adjusted total volume of 10 ml by 

90% acetone, and let to steep for at least 2 hours at 4°C in the dark. To clarify the 

solution, the extraction sample was centrifuged for15 minutes at 675 g (or at 1,000 g for 

5 minute), the clarified extraction was transferred into glass cell of UV, and UV-2100 

spectrophotometer was used to measure the absorbance at the four wavelengths (750, 

664, 647, and 630 nm) to estimate turbidity, chlorophylls a, b, and c, respectively 

(USEPA, 1991). 

Parameters 
Name and number 

of Method 
Concentration 
range (mg/l) 

Accuracy Check 

Preservation 
and 

Maximum 
holding time 

Nitrate 
Cadmium 

Reduction (8117) 
0.1 to 10.0 

10mg/l Nitrate Nitrogen 

standard solution 

filter 

immediately 

cool 4° C for 

48 hours 

Nitrite 
Diazotization 

method(8517) 
0.002 to 0.300 

0.30mg/l nitrite standard based 

on the method 4500-NO2 in 

standard method 

Ammonia Salicylate (8155) 0.01-0.5 
0.4 mg/l ammonia nitrogen 

standard solution 

Ammonium 
380N,Ammonia, 

Ness 
0.02-2.5 

Nitrogen Ammonia Voluette 

Ampule, 50mg/l NH3-N 

Orthophosphate 
Ascorbic Acid 

(8048) 
0.02 to 2.5 

2.0 mg/l phosphate standard 

solution 

Silica 
Silicomolybdate 

(8185) 
1.0-100 50.0 silica standard solution 

Suspended 

Solid 

Photometric  

(8006) 
0-750 mg/l ------------------------ 

cool  4° C 

for 7 days 
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A specific equation was used based on the absorbance value to calculate the 

concentration of chlorophyll a based on the mg/l (pmm). Before calculation of the 

concentration of chlorophyll a, the absorbance value of 750 nm was subtracted from the 

other absorbance values because of the high sensitively of this observed value at 750 nm 

to change in the water –to- acetone proportion. The concentrations of chlorophyll a, b, 

and c were estimated in the following equation. 

 

a) ( ) ( ) ( )11.85  664 1.54  647 0.08  630Ca Abs Abs Abs= − −    (3.1) 

b) ( ) ( ) ( )21.03  647 5.43  664 2.66  630Cb Abs Abs Abs= − −    (3.2) 

c) ( ) ( ) ( )24.52  630 7.60  647 1.67  664Cc Abs Abs Abs= − −    (3.3) 

Where: 

Ca, Cb, and Cc = concentrations of chlorophyll a, b, and c, respectively, mg/l, in 

the extract solution analyzed). After determining the concentration of pigment in the 

extract, the amount of pigment per unit volume was calculated as follows (Chapman, 

1996): 

( )
( ) ( )
 

  

Ca extract volume L DF
C

sample volume L cell length cm

× ×
=

×
     (3.4)

 

 
C = Concentration of chlorophyll a in the whole water sample (µg/l) 

Ca = Concentration of chlorophyll a in the extraction solution analyzed (mg/l) 

Extract volume = volume (l) of extract before any dilution 

DF= any dilution factor 

Sample volume = volume (l) of whole water sample that was filtered 

Cell length = optical path length (cm) of cuvette used (typically 1 cm) 
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3.3.2 Sediment Quality Analysis 

3.3.2.1 Sediment grain size: 

Sediment grain size was determined using a multi-wavelength particle size 

analyzer (model LS 13 320), and the results were divided into sand ( >64 µm), silt (2 

µm <size < 64 µm) and clay (<2 µm) fractions for the determination of heavy metals 

and PAHs in the contaminated soil (Rauret, 1998; Tessier, Campbell, & Bisson, 1979). 

For extra analysis, samples were dried to decant water and humidity from sediment 

samples by a freeze dryer(Magnum™ Series Freeze Dryers) and each sample was hold 

in a glass bottle for further analysis (Clesceri et al., 1998). 

 

3.3.2.2 Heavy metals 

Double distilled water was first used to wash sediment samples and remove 

halides from sediment. All Teflon bottles and crystal materials were washed with water 

and soap and rinsed with Milliq and Ellix quality water prior to analysis (Clesceri et al., 

1998). 

The samples were dried in an oven at 60 °C for overnight, and 0.5 g of the dried 

sediment sample was transferred to vessels for acid extraction analysis. The samples 

were digested in 3 ml of hydrofluoric acid (HF), 6ml Perchloric acid and 9 ml of nitric 

acid for 15 minutes using microwave heating (MASTER 40-vessel) , while covering the 

sediment samples continuously for three hours. 18 ml of boric acid 99.99% was added 

to the cooled solution followed by centrifugation. 

The solution from the centrifugal operation was filtered using filter-paper 

(Whatman No 0.45 µm), and the volume was brought to 50 ml with deionized water for 

the measurement of heavy metals concentrations. The preparation procedure described 

above for metal analyses was based on EPA method 3052 (EPA, 1996; Ilander & 

Väisänen, 2007). 
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After extraction process, heavy metals (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb,V, 

and Zn) were measured by the plasma mass spectrometry (Agilent technologies 7500 

series ICP-MS) at Department of Chemistry  and Geology  in the University Malaya. 

Metals measured had all levels above detectable limits. ICP-MS was calibrated by the 

external standard solutions (Multielement standard ICP-68A-A 10 mg/l, Merk. 

Malaysia) to measure metals and the calibration was improved by using the rhenium 

and indium as internal standards. Standard reference materials (SRM) 2702 is a natural 

matrix of inorganic compounds collected from marine sediment with certified 

concentration values. The National Institute of Standards and Technology (NIST) and 

collaborating laboratories obtained certified values for the concentrations of 25 elements 

based on chemically independent analytical methods with the highest accuracy (Willie 

& May, 2002). In this study, data quality control and heavy metal concentrations were 

evaluated with the certified concentration of SRMs 2702 (Frankfurter, Germany) and 

matrix spike recoveries. The recovery was between 91.54 and 104.66. The standard 

methods suggest warning limits for matrix spike recoveries from 87 to113%; therefore, 

the range of recovery was reasonable in this study (IDEM, 2002; Willie & May, 2002). 

Mercury was estimated by both ICP/MS and with a milestone mercury analyzer (DMA-

80 model) to produce accurate result. The specific equation was applied to calculate the 

final results of heavy metal concentration. 

V
C A

D
= ×

         (3.5)
 

C: Meta dry weight (mg/kg) 

A: The concentration of the sample measured 

V: Final volume of the collected sample. 

D: Dry weight of the sample 
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3.3.2.3 Total organic carbon 

TOC and nitrogen was measured in surface sediment by using a Perkin-Elmer 

2400 carbon–hydrogen–nitrogen–sulfur (CHNS) elemental analyzer at 950°C 

combustion temperature. Two g of freeze-dried sediment sample was treated with an 

HCL (10%) solution in a specific container to remove the inorganic carbon and was 

dried overnight at 60°C. A 5- to 15-mg sample was put into a tarred 5.8-mm silver 

capsule, which was compressed with tweezers for CHNS analysis. The percent of 

organic carbon was measured in duplicate. 

 

3.3.2.4 Polycyclic aromatic hydrocarbons (PAHs) 

Authentic standard of 16 USEPA priority PAHs were applied which include 

naphthalene (Naph), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Fluo), 

phenanthrene (Phen), anthracene (Ant), fluoranthene (Flt), pyrene (Pyr), 

benzo[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF), 

benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd] pyrene (IcdP), 

dibenzo[a,h]anthracene (DahA) and benzo[ghi] perylene (BghiP).  

The EPA PAHs mixed standards were prepared into different concentrations 

(Table  3.3) in acetonitrile: methanol (9:1) which purchased from Sigma-Aldrich 

(Bellefonte, PA, USA) and these standard solutions diluted by n-hexane to prepare 

working standards with appropriate concentrations. The concentrations of working 

solutions were varied from 5 –1000 ng ml-1 based on the analyte. Organic solvents such 

as hexane and dichloromethane (SupraSoly) were provided from the Merck Company 

(Frankfurter, Germany) and the specific cartridges for the solid phase extraction (SPE) 

C18 (1 g, 3 ml) were purchased from International Sorbent Technology (Stevenage, 

Hertfordshire). For drying, nitrogen of 99.995% purity was purchased from Roham Co 

(Tehran, Iran). 
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Table  3.3, Concentrations of 16 EPA PAHs in the mixed standards solution 

 
 

Before use, the organic solvents were distilled in glass; the glassware was rinsed 

sequentially with methanol, acetone and distilled hexane to remove pollutants, 

especially organic compounds, and held in an oven at 60 °C. 

Freeze-dried samples were homogenized and sorted with an 80-mesh (mesh size: 

0.18 mm) stainless steel sieve. A weighed aliquot (10 g) of each sample was wrapped in 

a piece of pre-cleaned filter paper. After addition of activated copper strips for removal 

of elemental sulfur, samples were Soxhlet-extracted (Method SW-846 of EPA) with 200 

ml of a mixture of hexane: acetone (1:1 in volume) for 48 h. Since the quantitative 

results were reproducible (RSD < 10%), the internal standard was not used in the 

analyses.  

 

Concentration (µg mL-1) PAH Name Retention time 

500 naphtalene 6.02 

500 acenaphtylene 8.96 

1000 acenaphthene 9.46 

100 flurene 11.03 

40 phenantrene 14.75 

20 anthracene 14.95 

50 fluoranthene 20.61 

100 pyrene 21.71 

50 Benzo(a)anthracene 28.5 

50 chrycene 28.7 

20 Benzo(b)Fluoranthene 34.32 

20 Benzo(K)Fluoranthene 34.44 

50 Benzo(a)pyrene 35.85 

200 (a,h)Anthracene 40.95 

80 Benzo(g,h,i)Perylene 41.13 

50 indeno(1,2,3)pyrene 41.95 
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The extract was concentrated to 0.5 ml and the remaining solvent was set in 

hexane. The SPE columns (ISOLUTE® SPE column-NH2) were conditioned with 

hexane (8 ml). The hexane extract (0.5 ml) was applied to the column. Interferences 

were eluted with pentane (2 × 1.5 ml). PAHs trapped on SPE cartridges were eluted 

with 6 ml of n-hexane containing 3.4% (v/v) isopropanol at a flow rate of 1–2 ml min l–1 

using a solid-phase extraction (SPE) system under a vacuum pump. Then extracts were 

concentrated to nearly dry by rotary evaporation, and the solvent was exchanged into n-

hexane. Samples were concentrated to about 100 µl under a stream of pure nitrogen and 

stored at –4 ºC prior to instrumental analysis. 

Some sediment samples were polluted with sulfur; thus copper powder was used 

for desulfurization. Hydrochloric acid (HCl, 1N) was used to activate the copper 

powder, which was then washed with acetone, hexane and water.  

For all samples, a standard solution and a procedural blank consisting of all the 

reagents was run to test interferences and cross-contamination. The equipment was 

calibrated with the standard mixture at seven different concentrations to make a 

standard curve for external calibration. 

The applied method of extraction and clean-up was checked, based on the 

sediment reference material (IAEA-417). Results of recovery were summarized in 

Table  3.4. The results of recovery ranged between 78% and 94%. Sediments have 

certified concentrations of PAHs. Since the certified reference material (CRM) was 

used, spiking of the working standard solution had not been used for the assessment of 

recovery. Concentration of the target compounds consistently showed the 95% 

confidence interval of the allocated reference value for concentrations of known 

hydrocarbons.  
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The accuracy of the estimation achieved through replicates of the reference 

materials was better than 10% for all target compounds. The method of detection limit 

(MDL) was measured according to the USEPA and ranged from 0.095 to 1.018 for 

sediment (Table  3.5). The RSD percentage of all PAHs was lower than 10% in the 

fortification analyses, and the replicate was used to estimate the MDL. 

 

Table  3.4, Average concentration, standard deviation and percent recovery (RSD) of certified          
references IAEA–417 

PAH Name 
Assign Value 

Con:ng/g 

Reported 
Standard 
Deviation 

Recovery (±RSD)% 

naphtalene 150 110 
78(±7) 

acenaphtylene 42 35 
83(±5) 

acenaphthene 180 62 
79(±7) 

flurene 230 110 
81(±3) 

phenantrene 3900 1500 
95(±3) 

anthracene 630 240 
91(±6) 

fluoranthene 7700 3000 
84(±6) 

pyrene 6000 2200 
87(±5) 

Benzo(a)anthracene 3200 1200 
94(±2) 

chrycene 3600 1700 
93(±4) 

Benzo(b)Fluoranthene 4100 2000 
80(±5) 

Benzo(K)Fluoranthene 2000 300 
95(±3) 

Benzo(a)pyrene 2800 1200 
89(±2) 

(a,h)Anthracene 1100 1100 
92(±4) 

Benzo(g,h,i)Perylene 2300 1300 
78(±5) 

indeno(1,2,3)pyrene 2700 370 
88(±3) 
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Table  3.5, Detection limit of 16 USEPA priority PAHs 

Name MDL 

naphtalene 0.09551 

acenaphtylene 1.018327 

acenaphthene 0.064122 

flurene 0.28086 

phenantrene 0.089409 

anthracene 0.174339 

fluoranthene 0.064886 

pyrene 0.229757 

Benzo(a)anthracene 0.114942 

chrycene 0.203589 

Benzo(b)Fluoranthene 0.292616 

Benzo(K)Fluoranthene 0.145181 

Benzo(a)pyrene 0.169257 

(a,h)Anthracene 0.186419 

Benzo(g,h,i)Perylene 0.247436 

indeno(1,2,3)pyrene 0.241637 

 

 

Quantification and qualification of 16 USEPA priority PAHs were performed, 

based on the modified method of USEPA 8270 by a capillary gas chromatograph (GC; 

Agilent 6890) equipped with a mass spectrometer (Agilent 5973 MS; Quadrupole mass 

analyser) using electron ionization and operating in a selected ion-monitoring mode. 

The Gas chromatography (GC) was equipped with a column coated with HP-

5MS (30 m by 0.25 mm; 0.25-mm film thickness). The oven temperature programme 

was as follows: isothermal at 70 °C for 2 min, 30 °C per min to 150 °C, and 4 °C per 

min to 300 °C. It then remained at 300 °C for 10 min. 

Helium was used as the carrier gas at 1.0 ml per minute at a constant flow, and a 

Split/Splitless injector was used for the injection of samples. The injection port 

temperature was 300 °C and the mode of injection was split-less. 
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The GC–MS condition was at 70 eV ionization potential with electron multiplier 

voltage at 2000 V. The ion source temperature was 150 °C, and the transfer line 

temperature was 250 °C. Solvent delay time was 4 min. Selective ion monitoring was 

used to increase sensitively. PAHs were monitored using ions 152, 153, 166, 178, 202, 

228, 252, 276 and 278.  Identification of PAHs was done on the basis of the relation 

between the retention time of PAH and the retention time of mixed standard and the m/z 

ratio of an authentic PAH mixed standard (Sigma). The integrated peak area was used to 

quantify the PAH compound based on the comparison between the peak area of the 

selected ion and the peak area of the IISTD (a known standard), and the concentration 

of PAHs was calibrated according to the standard calibration curve. 

3.3.3 Biodiversity and species richness 

Biodiversity study is an essential part of the environmental assessment because 

the diversity values act as an indicator of the health of ecological systems (Vollenweider 

et al., 1998). There are several indices and models to measure diversity; it is difficult to 

select which method is best for estimating diversity. A scientific method to use when 

selecting a diversity index is to make the decision on the basis of whether it has the 

ability to fulfill certain function criteria to distinguish between study sites, dependence 

on sample size, what component of diversity is being measured, and whether the index 

is widely used and understood (Vollenweider et al., 1992). 

In present study, Shannon–Wiener Index  was  used (Shannon & Wiener, 1963) 

to assess diversity of benthic organisms. Shannon diversity is frequently used to 

compare diversity between various ecological systems (Clarke & Warwick, 2001). 

This index is based on the theory that individual species are randomly sampled 

from indefinitely large populations, and it also assumes that all the species are 

represented in the sample (Jørgensen et al., 2005). 
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The index takes the form of: 

 

log2
i i

H p p′ = −∑         (3.6)
 

i
i

N
p

N
=

         (3.7)
 

iPis the proportion of individuals found in the species i, Ni is the number of 

individuals of the species I, and N is the total number of individuals. The value of index 

can take between 0 and 5. According to the literature (Vollenweider et al., 1998)., low 

index values are considered to be indications of contamination. 

High status: Greater than 4 bits/individual 
Good status: 4 to 3 bits/individual 
Moderate status: 3 to 2 bits/individual 
Poor status: 2 to 1 bits/individual 
Bad status: 1 to 0 bits/individual 
 

Several researches have indicated valuable information on water quality based 

on the invertebrate communities, because at same time, diversity and abundance of 

benthic communities are affected by the changing condition of water and the sediment 

column. Also, invertebrate organisms have long lives with different life cycles, and their 

structures vary by anthropogenic stress (Kitsiou & Karydis, 2011).In recent decade 

suitable benthic index and models have been proposed to assess coastal and marine 

water based on benthic communities such as the AZTI Marine Biotic Index (AMBI), BI 

and M-AMBI. 

3.3.4 AZTI Marine Biotic Index (AMBI) 

This index was designed to classify the ecological quality of the estuary and 

coastal water according to the response of soft-bottom macro benthic population to 

changes in water quality (Borja et al., 2012). 
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The benthic organisms were divided into 5 ecological groups GI, GII, GIII, GIV 

and GV based on their sensibility and respond to anthropogenic stress (Borja et al., 

2000). The AMBI scale ranges between the 0-7 which is described in Table 3.6. 

The formula that expresses this index is given by, 

( ) ( ) ( ) ( ) ( )( )0 % 1.5 % 3 % 4.5 % 6 % /10AMBI x GI x GII x GIII x GIV x GV= + + + +
           (3.8)

 

GI: Species very sensitive to organic enrichment and present under unpolluted 

conditions (initial state).  

GII: Species tolerant to enrichment, always present in low densities with non-significant 

variations with time (from initial state, to slight unbalance).  

GIII: Species tolerant to excess organic matter enrichment. These species may occur 

under normal conditions, but their populations are stimulated by organic enrichment.  

GIV: Second-order opportunistic species (slight to pronounced unbalanced situations).  

GV: First-order opportunistic species (pro-nounced unbalanced situations).  

 

3.3.5 Multivariate- AMBI, M-AMBI 

This index designed to define better the water bodies’ ecological quality status 

(EcoQS) based on the benthic community integrity (abundance, biomass or diversity 

measures)(Pinto et al., 2009). Zettler et al., (2007) indicated that this index “is 

combination of the proportion of disturbance- sensitive taxa through the use of the 

Shannon-wiener index, which overcome the need to use more than one index to evaluate 

the overall state and quality of continental shelf and oceanic water bodies”(Zettler, 

Schiedek, & Bobertz, 2007). 
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These factors integrated through the use of Discriminative Analysis (DA) and 

Factorial Analysis (FA) techniques. This method compares monitoring results with 

reference condition by salinity stretch, for estuarine system, in order to derive an 

ecological quality ratio.  

The final values describe the relationship between the observed values and 

reference condition value. This values ranged between 0 and 1 which imply the five 

ecological states (Muxika, Borja, & Bald, 2007; Pinto et al., 2009). 

A main advantage of these indices is that, it is possible to detect the impact of 

anthropogenic pressures in marine environment because these indices can be applied to 

estimate the evaluation of ecological status of different geographical sites because these 

indices have been tested in different geographical sites and provided strong agreement 

percentage with local indices (Borja et al., 2000; Muniz, Venturini, Pires-Vanin, 

Tommasi, & Borja, 2005; Muxika, Borja, & Bonne, 2005). 

As so, these indices can be practical as sound tool for environment management 

due to its capacity to evaluate ecosystem health. Other advantage of both index is that 

these are easily estimated by the software can be freely download at http://www.azti.es 

(Pinto et al., 2009). 

 

Table 3.6, AMBI scales and classifications 

 

 

 

AMBI M-AMBI Disturbance Classification EcoQS ( WFD) 

0.0<AMBI≤1.2 > 0.82 Unpolluted High Status 

1.2<AMBI≤3.3 0.62-0.82 Slightly polluted Good Status 

3.3<AMBI≤5 0.41-0.61 Moderately polluted Moderate Status 

5.0<AMBI≤6 0.21-0.4 Heavily polluted Poor Status 

6.0<AMBI≤7.0 <0.2 Extremely polluted Bad Status 
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3.3.6 Tropic Level of Water 

There are several indices proposed to assess water quality and trophic status 

based on the single and multiple parameters such as annual phosphate, DIN, DO, and 

chlorophyll a as indicators. Table 2-5 and 2-6 show the trophic classification in estuary 

and coastal water based on the single parameters. Multimetric eutrophication indices 

have also been suggested (Primpas & Karydis, 2010). 

 

3.3.6.1 TRIX Trophic Index: 

Vollenweider et al (1998) suggested the use of the trophic index (TRIX) for the 

monitoring of trophic status. This index uses a linear combination of four parameters 

related to primary production and nutritional condition; namely, dissolved inorganic 

nitrogen, total phosphorus or inorganic phosphorus (as a nutritional compound), 

chlorophyll a (as a proxy for phytoplankton biomass), and oxygen saturation (as a biotic 

component or measure of productivity). 

This index was classified to 5 trophic scales from 2 to 8, which are shown in 

Table  3.6. The estimation of the TRIX index from the water bodies image can be 

computed by, 

( )log % 1.5 /1.2TRIX chla DO DIN P= × × × ×       (3.9) 

Table  3.6, Assessment of trophic status using TRIX 

TRIX value Tropic status Condition 
Reorganization 

for study 

<2 
ultra-oligotrophic 

 
Very poorly productive Excellent 

2-4 
Oligotrophic 
 

Poorly productive High 

4-5 
Mesotrophic 
 

Moderately productive Good 

5-6 Mesotrophic to eutrophic 
Moderate to highly 

productive 
Moderate 

6-8 
Eutrophic 

 
Highly productive Poor 
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3.3.6.2 Eutrophication Index (EI) 

In 2010, Primpas proposed another multimetric index to assess trophic status on 

a five-point scale; namely, the Euthrophic Index (EI). This index was tested in three 

standard sets of water types (oligotrophic, mesothrophic, eutrophice) and it was 

effective and valid (Primpas & Karydis, 2010). 

The formula that expresses that this (EI) index is given by, 

4 3 2 3
. 0.297 0.261 0.296 0.275 0.214PO NO NO HN ChlaE I C C C C C= + + + +   (3.10)

 

Where, 

C is a concentration for nutrient and chlorophyll a. This index was also divided 

into five levels, which are described below: 

Less than0.04 is high quality  

0.04 to 0.38 is good quality  

0.38 to 0.85 is moderate quality 

0.85 to 1.51 is poor quality 

Greater than 1.51 is bad quality 

3.3.6.3 Operational indicators 

Table  3.7 shows operational indicators were introduced in the several scientific 

literature to assess trophic level of marine and coastal water (Hakanson & Blenckner, 

2008; Håkanson, Bryhn, & Hytteborn, 2007). 

Table  3.7, Operational indicators to assess trophic status of marine and coastal water 

Operational indicator and indices 
Secchi 

depth(cm) 
Chl-a 
(µg/l) 

Total-N 
(mg/l) 

Total-P 
(mg/l) 

Tropic status and 
Oligotrophic (high quality) 

 
>1100 

 
<2 

 
<0.110 

 
<0.015 

Mesotrophic (good quality) 600-1100 2-6 .011-0.29 0.015-0.04 
Eutrophic (Bad quality) 200-600 6-20 0.29-0.94 0.04-0.130 

Hypertrophic (Poor quality) <200 >20 >0.94 >0.13 
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3.3.7 Sediment Quality Assessment 

Enrichment factor (EF) and geo–accumulation are specific indices that are used 

to estimate the anthropogenic source and contamination degree of heavy metals on 

estuarine and coastal waters. These indicators provide simple ways to assess the 

contamination status of surface sediments (Sinex & Helz, 1981). 

EF is estimated based on total resistant elements, such as Al, Li, Fe, Rb, Sc and 

Cs (Balls, Hull, Miller, Pirie, & Proctor, 1997; Qin, Zhao, & Chen, 1989; Rubio, 

Nombela, & Vilas, 2000).In recent decades, Al and Fe were widely used as normalising 

element to estimate the enrichment factor (Ackermann, Bergmann, & Schleichert, 1983; 

Loring, Naes, Dahle, Matishov, & Illin, 1995; Rubio et al., 2000). 

Several comparative arguments exist on the use of Al or Fe as normalising 

elements. Some studies have selected Fe as the normalising element because Fe has the 

same geochemical reaction under oxic and anoxic conditions with other heavy metals 

insediment and also because the natural concentration is more uniform compared with 

Al (Goldberg, GRIN, Hodge, Koide, & Windom, 1979; Siddique et al., 2009). 

The stability of Fe in sediment is lower than Al due to the mobility and ability of 

this element to accumulate in the food chain (Daskalakis & O'connor, 1995; Din, 1992; 

Rubio et al., 2000; Zwolsman, van Eck, & Burger, 1996), which indicates that Fe is 

affected by anthropogenic contaminants. Aluminium was selected as a normalising 

element in this study because this metal is commonly inactive in marine sediment with 

little or no chemical reaction and, therefore, is not easily affected by anthropogenic 

contamination and digenetic changes (Rubio et al., 2000). 
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Zubir indicated that Al has a strong liner correlation with other trace metals (with: 0.89-

0.93) in the Melaka Strait coastal water (Din, 1992). EF is the concentration ratio of 

measured heavy metals to normalising elements (Al, Fe, Cs,Rb, Li, Si) in sediment 

samples that is divided by the ratio of metal background to the normalising elements 

(Rule, 1986). 

Enrichment factor can be written as: 

 

[ ] [ ]   
/ / /metal normaliser metal normalisersoil back ground values

EF C C C C=
   (3.11)

 

 

Where[ ]/metal normaliser soil
C C  

are the metal concentrations in the sediment sample 

and[ ]   
/metal normaliser back ground values

C C is the natural background of the heavy metals and 

normalising elements. According to the enrichment factor, sediment is classified into 

groups by river, estuary and coastal environments. EF values of 0.5 ≤EF≤ 1.5 indicate 

that the metals may be completely derived from natural or lithogenic processes.  

EF values of more than1.5 indicate that a large portion of trace metal is derived 

from non-natural processes or anthropogenic sources (Feng, Han, Zhang, & Yu, 2004; 

Siddique et al., 2009; J. Zhang & Liu, 2002; W. Zhang et al., 2009). 

Han et al in 2006 defined the new ER value classification as follows: EF≤2 

indicates that metal contamination might be entirely from natural sources ,an EF value 

of 2–5 indicates that a moderate portion of heavy metals originated from an 

anthropogenic source or non-natural process, an EF of 5–20 indicates that a significant 

portion are from anthropogenic sources, an EF of 20 to 40 indicates that a high portion 

of contamination is derived from anthropogenic sources, and an EF > 40 indicates an 

extremely high portion of contamination. In this research, the average concentration of 

heavy metals from 1996 to 2007 is used to estimate the background value from 

(Hakanson, 1979). 
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The PAH isomer ratio was used to infer the possible anthropogenic sources of 

PAH from the natural source. These ratio and their classification was defined in Table 

3.9 based on several studies such as: Budzinski (1997), Yunker (2002),  Zhang (2004), 

wang (2011) and  khairy (2009). 

  

Table 3.9, PAH isomer pair ratio measurement 

 

3.4 Ecological Risk Assessment 

Ecological risk assessment was performed to assess adverse biological effects or 

the degree of toxicity of PAHs and heavy metals in the sediment. In this research, two 

methods were applied to estimate ecologic risk, which is described in the following 

paragraph. 

3.5 Ecological risk assessment based on the sediment quality guidelines 

The sediment quality guidelines (SQGs) that are applied to assess adverse 

biological effect (Khairy et al., 2009; Hubner et al., 2009). This method indicates that 

the relationship between the concentrations of contaminants in sediment samples and 

adverse biological effects is based on the specific values of effect range low or threshold 

effect level (TEL) and effect range medium or probable effects level (PEL).  

PAH isomer ratio Source 

Anthracene/anthracene+ phenanthrene 
<1.0 
>1.0 

Petroleum 
Dominance of Combustion of coal 

Benzo(a)anthracenen/ 
Benzo(a)anthracenen+chrysene 

<0.10 
>0.1 

Petroleum input or diagenetic sources 
Characteristic of combustion processes 

Fluoranthene/ Fluoranthene + pyrene 
< 0.4 

0.4-0.5 
>0.5 

Petroleum 
Petroleum and combustion 

Combustion 

Methylphenanthrene/phenanthrene >1 Petroleum 

Phenanthrene/ Anthracene 
 

Fla/Pyr 

>10 
<10 
<1.0 
>1.0 

Petrogenic 
Pyrolytic 

Petrogenic 
pyrolytic 



104 

The TEL value has been estimated as the concentration of contaminants with a 

relatively low effect on biological communities, and PEL is a concentration of 

contaminants with high toxic effects. Occasional toxic effects are expected to occur 

from contaminates Concentrations between TEL and PEL occasional toxic effect are 

expected (Hübner et al., 2009; Long, MacDonald, Smith, & Calder, 1995; Long & 

Morgan, 1990). 

The overall toxicity of heavy metals and PAHs was estimated by PEL quotients 

(PELq’s). The PELq factor is the average of the ratios between the heavy metal 

concentration in the sediment sample and the related PEL value (Alvarez‐Guerra, 

Viguri, Casado‐Martínez, & DelValls, 2007; Fdez-Ortiz de Vallejuelo, Arana, De 

Diego, & Madariaga, 2010; Khairy et al., 2009; Leorri, Cearreta, Irabien, & Yusta, 

2008). This factor describes contamination effect on biological organisms in sediment 

which range as non-adverse effect (PELq < 0.1), slightly adverse effect (0.1< PELq > 

0.5), moderately effect  (0.5< PELq > 1.5) and heavily effect(PELq > 1.5) (Vallejuelo, 

Arana, Diege, & Madariaga, 2010). 

 

3.5.1 Ecological risk assessment based on the Hakanson method 

This method is based on the issue that a sediment-logical risk index for a toxic 

compound in estuary and coastal systems should account for the following requirements 

in several literature (El-Said & Youssef, 2012; Fu, Guo, Pan, Qi, & Zhou, 2009; 

Hakanson, 1979; Luo et al., 2010). 
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3.5.1.1 Contamination factor 

To describe the contamination of toxic compound, a contamination factor (C�
�) 

was defined accordingly: 

0 1

1 1

in n
i

d f i
i i n

C
C C

C

−

= =

= =∑ ∑
        (3.12)

 

Where, 

dC = the contamination degree  

i

fC = the contamination factor 

0 1
iC − = the average content of the compound in question (i) from surface 

sediment (0 to 1 cm) at the accumulation area. The value should be estimated in µg g-1 

ds (ppm). 

i

nC = the background value of the compound  

There are several discussions to estimate an accurate natural background level in 

all projects. This discussion can be treated by in two different ways. One is to use a 

general geological reference value such as an element’s concentration in the earth crust, 

which was introduced by Turekian and Wedephol in 1961. The other way is to use per-

industrial value or old previous studies (at least 10 years). In the first way, all local 

variations are ignored, and in the second way, all local differences are emphasized .In 

1980, Hakanson proposed a method to estimate a natural background value based on the 

second approach. 

i

n xC x S= +          (3.13) 

Where, i

nC  is the natural background value, x is the mean of per-industrial data or 

old previous studies, and xS is one (1) standard division. This contamination factor was 

ranged as low ( )1i

fC < , moderate ( )1 3i

fC≤ < , considerable ( )3 6i

fC≤ < , and very high

( )6i

fC ≥ (Hakanson, 1979). 
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The contamination degree ( )dC was estimated based on the sum of all 

contamination factors. The specific terminology is used to describe the contamination 

degree of sediment—low contamination degree ( )8dC < , moderate contamination 

degree ( )8 16dC≤ < , considerable contamination degree ( )16 32dC≤ < , and a very high 

contamination degree ( )32i

fC ≥ (Hakanson, 1979). 

 

3.5.1.2 The toxic respond factor and sensitively requirement 

The formula that expresses this model is given by, 

 

1 1

.
n n

i i i

f

i i

RI Er Tr C
= =

= =∑ ∑
       (3.14)

 

Where, 

RI = Potential ecological risk index for the aquatic area ranges based on the 

following terminology: Low ecological risk ( )150RI < , Moderate ecological risk

( )150 300RI≤ < ,high ecological risk ( )300 600RI≤ < , and very high ecological risk

( )600RI > (Hakanson, 1979). 

iEr = the Potential ecological risk index for the given compound 

iTr = the toxic-response factor for the given compound  

To evaluate the toxic-response factor, the sediment-logical toxic factor (St -

value) and bioproduction (BPI) should be estimated. 

3.5.1.2.1 Sediment-logical toxic factor ( iSt value− ) 

iSt value−  provides information about the potential transport roads of the toxic 

compound to man and their complex threat toward the aquatic ecological system and 

man.  



107 

As a matter of fact, the “main road” in this method goes from contamination of 

water to sediment to biota to fish mail. Hakanson purposes a new concept about the 

toxic factor based on the “abundance principle.” He indicates that the potential 

toxicological effect of an element is proportional to the abundance of this element in 

nature. To measure the “abundance numbers,” this methodology should be used: 

The abundance of various elements are provided at least in four different types 

of biological and geological media such as igneous rocks, soils, fresh or marine water, 

land animals, and land plants.  

This information causes beneficial revision of the results given in this 

background media. The relative abundance of various elements is measured by 

following equations: 

 

 
 

   

    

element withhighmeanconcentrmation

meanconcentrationo
relative abundance

f other element
=

  (3.15)
 

 

Once the abundance number has been obtained, the largest value of relative 

abundance should be omitted for every element in the different media, and the sum of 

these relative numbers should be estimated and divided into the lowest mean value of 

relative abundance. The abundance number is not equivalent to the iSt value−  and 

sink-effect factor, and the problem of dimension should be measured. 

The “sink-effect factor” means that the various elements make different 

“fingerprints” in sediment with different tendencies to be deposited in the sediment. 

This factor may depend on several reasons such as the chemical form of an element, the 

biogeochemical system of an aquatic area, and the presence of other elements. 

The sink-effect factor has been obtained by comparing the “natural background 

values” for water with the natural background value for sediments.  
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The lowest “sink-factor” means that this element has “heaviest fingerprint” in 

the sediments and that its concentration is high in sediment when compared to the 

water. 

Sedimentological toxic factors are obtained by multiplying the sink-factors with 

the abundance numbers. Hakanson indicated the following: “The problem of dimension 

which means that we must give the corrected abundance numbers an adequate 

dimension, order of magnitude, so that these numbers may be used subsequently as 

sedimentological toxic factors and be compared with the contamination factors. One 

possible to reduce dimension between St -value and the contamination factor is that, all 

corrected abundance should be divided to the lowest corrected abundance for making 

normation between elements. 

Then to get reliable dimensions, the square-root should be taken from these 

figures and the values also rounded to emphasize the accuracy of the method. These 

values seem to be reliable sedimentological toxic factors for all elements. 

 

3.5.1.2.2 Bio- production (BPI) 

Several methods and equations have been proposed to measure the 

bioproduction value based on nutrients, bottom fauna, plankton, and morphometry (see 

Ahl and Wiederholm, 1977). Hakanson in 1975 and 1980 defined a specific method to 

measure the BPI value for aquatic systems.  

He determined the BPI value by measuring the ignition loss (the IG value) and 

the nitrogen content (the N-value) of sediment. The BPI value was then described as 

“the N-content on the regression line for IG=10%.” 
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The N-content should be given in mg/g (ds)and the IG content should be given 

in%ds (dry substance).Most of the research showed a high correlation between the N 

and IG and the relationship between total P and BPI, which was applied to measure 

trophic levels (see Wetzel, 1975). 

The sensitively of organisms to toxic material is extremely controlled by 

bioproduction value. All heavy metals except arsenic showed a specific relation with the 

degree of bio-production in the aquatic area. The negative effect and toxicity degree of 

metals tend to increase with reducing bio-production. Also, there is negative effect of 

PCB, and PAH are increased with increasing the degree of bio-production. Thus, 

Hakanson defined a factor named the toxic response factor (Tr value− ) according to 

the sedimentological toxic factors and the sensitivity requirement (given by the 

BPlvalue). iTr value− is determined by multiplying the St- value with the BPl value 

(Table 3.8). The iTr value− is analogues to the contamination factor. Most of the 

research showed the high correlation between the N and IG and the relationship 

between total-P and BPI, which is applied to measure trophic level (see Wetzel, 

1975).The sensitively of organisms to toxic material is extremely controlled by bio-

production value. All heavy metals, except arsenic showed specific relation with bio-

production degree in aquatic area. The negative effect and toxicity degree of metals tend 

to increase with reducing bio-production.  Also there is negative effect of PCB and PAH 

are increased with increasing bio-production degree. Thus Hakanson defined a factor 

named the toxic response factor (Tr value− ) according to the sedimentological toxic 

factors and the sensitivity requirement (given by the BPl-value) iTr value−  is 

determined by multiplying the St value−  with BPl-value (Table 3.10). iTr value− is 

analogues to the contamination factor. 
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Table 3.8, The toxic-respond factor(�� ) have been established for the nine substances  
                     based on the Hakkanson1980 

 

 

 

 

 

 

 

 

 

3.6 Statistical Methods 

Statistical analyses were performed using Microsoft Excel and SPSS 17 software 

(SPSS, Chicago, IL) to estimate statistical tests on monitoring and bioassays data. 

For the data assessment, significant difference from control was evaluated with 

via Kruskal-Wallis one-way nonparametric ANOVA (level of significant is 0.05). The 

methods were selected based on the results of the Shapiro-Wilk Normality Test, the test 

for homogeneity of variances, and bartlett's test of equal variances. Normally distributed 

data were evaluated via one-way ANOVA, with an alpha level of 0.05. 

Data that did not pass tests of normality and homogeneity evaluated with the 

Kruskal-Wallis one-way nonparametric ANOVA. Differences were determined to be 

significant where p < 0.05. Nonparametric correlation method (Kendall’s tau-b) was 

used to obtain the correlation coefficient and the significance of the correlation among 

physicochemical parameters in water and sediment. 

Variation of spatial and temporal data were analyzed by multivariate techniques 

such as cluster analysis (CA) and principal components analysis (PCA).  

Substance iSt value−  iTr value−  

Hg 40 40× 5/BPI 

Cd 30 30×√5/√#$% 

As 10 10×√5/√#$% 

Pb 5 5×√5/√#$% 

Cu 5 5×√5/√#$% 

Cr 2 2×√5/√#$% 

Zn 1 1×√5/√#$% 

PBC 40 40×BP1/5 

PAH 40 40×BP1/5 
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These methods are practical to estimate structure and relationships in 

multivariate data (Bierman, Lewis, Ostendorf, & Tanner, 2011). PCA is known as 

dimensional reduction because this method is able to decrease the dimensionally of the 

primary set of data and compress data into a lower dimensional matrix (Kitsiou & 

Karydis, 2011). PCA is frequently used to assess water quality of rivers and estuaries 

and to quantify anthropogenic stresses. Primpas recently published the new application 

of PCA to evaluate eutrophication in the marine and coastal areas (Primpas & Karydis, 

2010). CA analysis was used to classify a set of data into different groups based on 

similarity.  

This method has been widely applied to environmental assessment to classify 

the data into temporal and spatial scales (Kitsiou & Karydis, 2011). Geo-statistical 

analysis was performed using Surfer 8 software (GPS value of stations) based on the 

geospatial methods to better understand contaminant pathways and to provide a 

comprehensive contour map of the spatial distribution of contaminants over a large area 

(Cressie, 1990; Sparks, 2000). 
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4 CHAPTER IV: RESULTS AND INTERPRETATIONS 

4.1 Sediment quality assessment 

4.1.1 Analysis of surface sediment components 

Some characteristics of the surface sediment of the Klang Strait are shown in 

Table 4.1. Analysis of the sediment grain size demonstrated that fine-grained sediment 

predominated at almost all stations (41.1%- 95.39%). The highest proportions of fine 

fractions were estimated for the stations close to the mangrove edge and the mouth of 

the Klang River, whereas stations 8 and 11 exhibited the highest proportions of the sand 

fraction. The TOC of the sediment samples was estimated at 22 stations, and these 

results are summarized in Table 4.1. 

The TOC varied between 5.35%- 24.88% and was synchronous with fine-grain-

sized sediment in most parts of the study areas, with the highest value in the South Port 

around the mouth of the Klang River and lower concentrations at stations 8 and 11. 

 

Table 4.1, Characterization of surface sediment in Klang Strait 

Site Station 
Silt and clay 
( <64µm)% 

Sand 
% 

TOC 
% 

Depth 
meter 

North Port 

1. NL100 58.20 41.79 12.49 14.30 
2.NL700 49.63 50.36 10.13 20.5 

3.NL1500 73.77 26.22 17.04 10.3 
4.NC100 59.78 40.21 11.41 13.5 
5.NC700 50.89 49.10 10.08 21.6 

6.NC1500 65.19    34.80  14.71 11.2 

West Port 

7.WC100 53.57 46.42 10.24 12.5 
8.WC500 45.96 54.03 7.74 19.5 
9.WC1000 63.42 36.57 11.98 7.8 
10.WL100 56.33 43.66 9.14 13.3 
11.WL500 41.10 58.89 7.55 20.3 

12.WL1000 70.81 29.18 12.76 8.8 
13.WT100 52.31 47.68 10.63 15.5 
14.WT500 50.69 49.30 10.15 21.11 

15.WT1000 70.36 29.63 15.49 6.8 

South Port 

16.SK100 95.39 4.60 22.65 7.5 
17.SK1000 93.16 6.83 21.55 10.5 
18.SK2000 64.69 35.30 15.59 12.4 
19.SM100 69.50 30.49 13.79 10.3 
20.SM1000 69.72 30.27 14.91 11.3 
21.SM2000 57.73 42.26 11.89 10.4 

Control Point 22.CP 51.60 48.39 10.46 17.5 



113 

 

According to the Kruskal-Wallis test, there were significant differences (p< 0.05, 

df=21, sig=0.00) in TOC among different stations, whereas the concentration of fine-

grained sediment shows significant differences both among stations (p< 0.05, df= 21, 

sig=0.00) and among seasons (p< 0.05, df= 3, f=3.62, sig= 0.00). 

Figure 4.1 illustrates a cluster analysis that clearly classified the stations into three 

clusters based on TOC concentration. The first plot cluster (C) includes 14 stations with 

low percentages of TOC (7.55% -12.76%). The second plot cluster (B) includes 6 

stations with intermediate percentages between 13.79 to 17.04 %, and the third cluster 

includes the stations with the highest percentages of TOC, which includes stations 16 

and 17. 

The dendrogram in Figure  4.2 classified the stations into three clusters based on the 

percentage of fine-grained sediment. The first cluster (A) represents the low range of 

fine-grained sediment (41.10-53.57%) and includes 12 stations.  

The second cluster (B) includes 8 stations that range between 63.42% and 73.77%, and 

the third cluster (C) includes two stations with high values of percentage of fine-grained 

sediment (93.16 and 95.39). 

 

 

 

 

 

 

 

 

 



 

 

Figure  4.1, Cluster analysis to classify the different stations based on the total organic carbon                   
percentage 

 

 

Figure  4.2, Cluster analyses to classify the different stations based on percentage of the fine      
                   grained sediment 
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In the present study, some metals and TOC exhibited a significant positive 

correlation (0.4 <r, P<0.01), with the following percentage of fine particles: Al 

(r=0.541), Cd (0.406), Cu (0.447), Fe (0.418), Ni (0.432), V (0.411), Zn (0.493) and 

TOC(0.716) (Table 3). Moreover, TOC showed significant positive correlations with 

heavy metals such as Al (r= 0.582), Cd (0.504), Cu (0.557), Fe (0.438), Ni (0.404), V 

(0.462) and Zn (0.406) (Table  4.1). 

Table  4.1, Correlation coefficient between heavy metals, TOC and fine particular size fraction 

 Al As Cd Cr Cu Fe Hg Mn Ni Pb V Zn Fine 

fraction 

TOC   PAHs 

Al 1.00               

As 0.26 1.00              

Cd 0.38 0.32 1.00             

Cr 0.37 0.27 0.26 1.00            

Cu 0.33 0.15 0.29 0.32 1.00           

Fe 0.63 0.35 0.39 0.52 0.29 1.00          

Hg 0.20 0.37 0.21 0.29 0.21 0.29 1.00         

Mn 0.13 0.23 0.19 0.11 0.03 0.10 0.10 1.00        

Ni 0.29 0.32 0.30 0.29 0.34 0.34 0.52 0.18 1.00       

Pb 0.31 0.58 0.36 0.22 0.21 0.39 0.37 0.16 0.27 1.00      

V 0.30 0.29 0.51 0.36 0.22 0.34 0.18 0.31 0.24 0.28 1.00     

Zn 0.68 0.26 0.55 0.32 0.38 0.58 0.28 0.08 0.38 0.27 0.27 1.00    

Fine 

fraction 

0.54 0.37 0.40 0.28 0.44 0.41 0.25 0.10 0.43 0.20 0.41 0.49 1.00   

TOC 0.58 0.36 0.50 0.25 0.55 0.43 0.23 0.11 0.40 0.23 0.46 0.40 0.71 1.00  

PAHs 0.16 0.06 0.13 0.18 0.06 0.22 0.30 0.09 0.29 0.28 0.06 0.09 0.15 0.11 1.00 

 

4.1.2 Heavy metals analysis 

In this study, the data quality for heavy metals was controlled with the certified 

concentration of SRMs 2702 and matrix spike recoveries. The percentage recovery was 

between 91.54 and 104.66 (Table  4.2). The standard methods suggest warning limits 

for matrix spike recoveries from 87 to113%; therefore, the range of recovery in this 

study was reasonable (IDEM, 2002; Willie and May, 2002). 
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Table  4.2, Average concentration (mg/kg dry weight, except AL and Fe as %wt)   
                           Standard deviation and percent recovery (%REC) of certified references 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2.1 Spatial variation of heavy metals 

The mean concentration and range of heavy metals measured at different 

stations are provided in Table 4.4. These results showed that the concentrations of all 

metals (except for Cu, Ni, Hg and Fe) vary widely among stations, and the ranges are as 

follows: Al, 6148.98-42586.5 µg/g; Fe, 2380.00-17569 µg/g; Mn, 66.15-468 µg/g; As, 

17.34 -142.3 µg/g; Cu, 5.60–57.01 µg/g; Cr, 15.29-83.20 µg/g; Cd, 0.00 -2.1 µg/g; Pb, 

20.76-104.87 µg/g; Ni, 3.93-23.5 µg/g; Hg, 0.10-0.45 µg/g; V, 15.23-130 µg/g and Zn, 

17-192.9 µg/g. 

In this research, the Klang Strait was divided into three specific geochemical 

partition sites (the North, West and South Ports) to describe the distribution of metals.  

 

Metals Certified     Measured± S.D % Recovery  

Cu       117.7    118.34 ± 2.56 100.54 

Cd       0.817    0.810 ± 0.09 99.14 

zn       485.3    492.39 ± 35.56 101.46 

Pb       132.8    128.98 ± 6.56 97.12 

Mn       1757.0    1838.93 ± 102.34 104.66 

Ni       75.4    74.56 ± 2.34 98.88 

Co       27.76    25.21 ± 1.3  90.81 

Cr       352.0    388.84 ± 48.21 110.46 

V       357.6    371.13 ± 31.23  103.76 

Hg       0.438   0.424 ± 0.26 96.8 

As       453.0   475.26 ± 47.32 104.91 

Al 

Fe 

      8.4% 

     7.91% 

  7.69 ± 0.39 

   8.14 ± 0.22 

91.54 

102.90 
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In the North Port, the mean values of the metal concentrations (Al, Fe, Mn, As, 

Cu, Cr, Cd, Pb, Ni, Hg, V, and Znµg/g) were 13357.75, 5417.1, 241.57, 55.49, 1643, 

39.01, 0.82, 54.03, 9.87, 0.19, 46.45 and 47.13µg/g, respectively.  

In the West Port, these values were 12381.18, 5985.98, 254.21, 61.4, 14.59, 

47.14, 0.72, 58.43, 12.14, 0.25, 53.29 and 39.03, respectively. In the South Port, these 

values were 20906.66, 8988.88, 186.23, 69.91, 24.28, 54.54, 1.03, 68.57, 12.61, 0.24, 

60.52and 76.68, respectively. 

The Kruskal-Wallis test revealed significant differences in the concentrations of 

heavy metals among stations. According to Figure  4.3 the highest concentrations of all 

metals except for Mn were recorded in the South Port (at stations 16 and 17), and the 

lowest concentrations of all metals were recorded at the control point (Station 22). The 

spatial distribution maps confirm these results; these maps are attached in appendix two. 
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Table  4.3, Average, minimum and maximums of the metal concentrations (µg/g dry weight) in          
                  surface sediment at different stations 

 

 

  

Stations Al Fe Mn As Cu Cr Cd Pb Ni Hg V Zn 

1 

Mean 12021.77 5215.73 224.41 75.64 17.43 44.41 .79 58.59 11.14 .24 48.63 52.34 

Minimum 8546.83 4183.00 195.80 43.30 12.40 39.50 .42 41.20 4.50 .11 30.23 29.00 

Maximum 18983.40 6480.00 286.00 109.23 23.80 53.87 1.10 92.67 17.60 .37 70.30 77.00 

2 

Mean 8765.43 3711.07 171.90 60.35 13.60 37.22 .67 47.58 7.14 .17 31.56 35.27 

Minimum 6740.43 2380.00 137.00 36.40 10.34 27.00 .22 31.30 4.16 .11 22.34 26.60 

Maximum 12983.43 4700.00 210.00 91.00 16.93 50.98 1.00 73.40 9.60 .23 47.00 47.00 

3 

Mean 17217.90 6787.07 276.20 76.22 20.97 44.55 .89 68.52 10.51 .20 54.56 56.57 

Minimum 12597.98 4672.00 245.00 42.00 14.20 37.90 .50 47.60 6.23 .10 40.40 30.50 

Maximum 24804.56 8278.00 289.10 121.20 30.40 49.11 1.30 98.90 13.89 .29 71.25 83.00 

4 

Mean 14120.80 6213.00 244.34 38.05 16.57 39.97 .93 53.24 12.42 .19 46.59 46.18 

Minimum 11303.59 4000.00 230.00 22.30 12.80 28.90 .51 42.57 8.45 .10 30.09 23.45 

Maximum 16784.50 9247.00 289.00 46.00 20.80 52.67 1.32 62.60 17.90 .29 67.50 72.00 

5 

Mean 13604.83 4806.49 201.66 34.17 12.41 30.27 .80 47.37 6.24 .17 38.13 42.28 

Minimum 10024.45 2760.00 177.14 21.00 10.34 20.34 .35 31.85 4.43 .10 27.12 26.00 

Maximum 20875.30 6890.00 216.60 41.00 14.70 46.70 1.40 60.25 10.00 .24 62.50 62.90 

6 

Mean 14415.78 5769.29 330.91 48.55 17.62 37.69 .89 48.90 11.81 .19 59.29 50.17 

Minimum 10768.54 4095.59 299.00 25.52 12.34 31.45 .58 32.70 9.34 .11 42.67 28.45 

Maximum 23923.30 8081.00 352.09 76.70 24.89 45.87 1.32 68.93 14.90 .27 73.90 73.80 

7 

Mean 9520.56 4368.03 207.99 35.82 16.11 58.64 .68 54.97 11.64 .25 43.46 49.51 

Minimum 7845.87 2855.98 162.87 27.20 11.50 50.35 .32 45.67 6.20 .13 29.45 30.40 

Maximum 12584.45 6298.00 289.70 47.60 24.26 66.98 1.20 64.90 14.30 .36 69.34 70.50 

8 

Mean 9337.92 7464.68 175.35 51.62 11.35 47.06 .81 52.55 8.83 .20 65.18 36.47 

Minimum 7401.68 5135.00 96.80 24.50 8.60 31.60 .40 35.70 6.45 .14 49.10 20.40 

Maximum 10123.45 10560.00 234.00 95.60 13.93 66.90 1.18 75.30 10.93 .34 77.90 60.90 

9 

Mean 11132.26 4529.76 310.41 68.13 14.72 48.91 .89 51.31 10.49 .20 53.66 37.19 

Minimum 9684.34 3400.00 244.78 40.27 10.21 33.46 .42 43.03 7.20 .14 33.40 22.34 

Maximum 13608.34 6298.00 390.56 124.71 17.54 58.50 1.30 58.90 14.50 .29 73.34 57.70 

10 

Mean 10617.89 4647.12 250.15 67.49 13.96 37.20 .28 57.71 13.03 .25 38.54 37.32 

Minimum 8783.50 3000.00 179.19 43.90 12.34 28.50 .20 44.95 7.89 .12 21.30 20.70 

Maximum 12808.42 6382.12 325.67 125.00 16.78 48.90 .40 67.20 17.80 .37 62.00 51.40 

11 

Mean 8702.30 4487.59 185.06 47.64 13.00 36.08 .28 54.07 12.44 .30 29.81 32.82 

Minimum 7103.68 3150.00 128.62 29.30 10.20 22.00 .16 41.56 8.70 .21 16.30 18.90 

Maximum 10474.97 6652.00 220.71 63.90 16.98 51.90 .52 64.30 18.20 .45 50.30 49.00 

12 

Mean 12983.55 5491.64 263.68 50.31 15.69 47.05 .62 58.23 16.02 .31 53.31 35.11 

Minimum 10804.67 4016.00 142.00 38.63 11.40 38.80 .14 46.80 10.30 .21 30.67 21.98 

Maximum 16032.82 6730.80 365.50 57.45 20.99 61.50 1.10 66.10 20.80 .42 72.70 52.87 
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Table 4.4 (continued) 

 
Other  stations Al Fe Mn As Cu Cr Cd Pb Ni Hg V Zn 

13 

Mean 18685 8529.6 280.38 94.24 16.81 60.56 0.95 72.11 13.84 0.30 82.4 49.8 

Minimum 15318.6 6626.5 201.60 43.40 14.03 54.80 0.40 50.90 10.34 0.19 64.3 28.7 

Maximum 23830.4 10660 342.76 134.20 21.80 66.17 1.60 104.87 19.40 0.44 130 73.6 

14 

Mean 12805.4 6820 260.10 59.07 12.13 42.79 0.73 53.46 9.64 0.21 45.4 33 

Minimum 8087.3 4001 174.00 43.78 10.34 33.56 0.21 36.60 6.12 0.20 26.5 17 

Maximum 20999.4 10156 321.00 87.20 14.90 50.30 1.80 62.13 12.70 0.25 73.2 46.8 

15 

Mean 17645 7535.3 354.77 78.31 17.60 45.98 1.26 71.55 13.38 0.28 67.8 40 

Minimum 12102.6 4000 280.20 54.23 11.50 40.90 0.50 62.23 10.34 0.20 31.3 21.4 

Maximum 24930.4 10370 468.00 137.53 28.90 52.90 1.90 89.98 14.87 0.34 127 70.6 

16 

Mean 31182 13206 217.88 112.81 40.67 74.87 1.55 85.92 17.83 0.35 96.9 126.7 

Minimum 20578.2 10020 193.34 84.34 29.20 63.00 1.14 78.23 8.67 0.26 65.4 76.4 

Maximum 42586.5 17569 282.00 142.38 57.01 83.20 1.94 97.80 23.50 0.42 127 192.9 

17 

Mean 30588.5 13035 201.10 106.01 38.54 68.29 1.45 79.39 16.08 0.32 95.2 126.9 

Minimum 20478.4 10002 181.00 78.45 25.03 57.34 0.96 60.34 8.74 0.25 63.2 74.3 

Maximum 40849.4 15908 248.50 138.00 51.92 73.10 2.10 98.56 21.40 0.40 121 189.4 

18 

Mean 18122.9 8626.2 196.17 42.38 16.30 45.07 0.91 74.72 9.80 0.22 41.9 52.7 

Minimum 15287 6023 167.00 30.30 14.40 40.50 0.83 60.20 6.56 0.21 28.4 38.6 

Maximum 22287.3 11023 238.00 54.60 19.45 53.70 1.10 91.30 12.40 0.23 52.4 69.6 

19 

Mean 15571.2 6870 177.98 67.81 14.92 50.00 0.84 50.81 12.23 0.20 46.1 52.1 

Minimum 10484.5 3567.3 118.31 37.98 12.20 39.50 0.40 36.23 6.50 0.13 35.4 22.6 

Maximum 20776.4 9292 208.02 112.26 18.45 78.81 1.45 66.09 17.50 0.27 72.1 70.8 

20 

Mean 15095.4 7194.2 159.36 50.27 19.03 47.68 0.89 68.21 12.18 0.21 47.3 53.9 

Minimum 11103.4 4604.3 128.40 40.31 14.50 41.59 0.54 54.56 8.50 0.13 35.7 28.8 

Maximum 19439.3 8802 219.10 63.20 24.89 60.19 1.46 96.02 15.09 0.30 74.1 72.2 

21 

Mean 14879.8 5000.4 164.93 40.20 16.27 41.34 0.57 52.40 7.58 0.19 35.6 47.5 

Minimum 10104.8 3103.7 118.00 30.00 11.23 34.00 0.52 37.89 3.96 0.19 24.5 31.7 

Maximum 21056.4 6241 209.00 57.60 19.30 48.00 0.73 68.30 10.30 0.19 46.3 61.8 

22 

Mean 9745.8 4009.4 84.39 27.57 8.87 18.70 0.05 31.18 5.77 0.15 21.1 29.5 

Minimum 6148.9 2870 66.15 17.34 5.60 15.29 <ND 20.76 3.93 0.14 15.2 21.4 

Maximum 15873.6 4982 98.34 38.40 14.23 26.67 0.13 39.45 8.89 0.16 30.1 39.5 

 

 

 

  



 

Figure  4.3(A), Spatial variation of mean concentration of aluminum in surface sediment  
                            (µg/g dry weight) 

 

 

Figure 4.3(B), Spatial variation of mean concentration of iron in surface sediment of  
                            (µg/g dry weight) 
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Figure 4.3 (C), Spatial variation of mean concentration of manganese in surface sediment  
                         (µg/g dry weight) 

 

 

Figure 4.3(D), Spatial variation of mean concentration of arsenic in surface sediment 
                             (µg/g dry weight) 
  

M
n

 (
µ

g
/g

) 
A

s 
(µ

g
/g

) 



 

Figure 4.3(E), Spatial variation of mean concentration of cupper in surface sediment  
                            (µg/g dry weight) 

 

 

 

Figure 4.3(F), Spatial variation of mean concentration of chrome in surface sediment  
                           (µg/g dry weight) 
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Figure 4.3(G), Spatial variation of mean concentration of cadmium in surface sediment  
                           (µg/g dry weight) 

 

 

Figure 4.3(H), Spatial variation of mean concentration of lead in surface sediment  
                              (µg/g dry weight) 
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Figure 4.3(I), Spatial variation of mean concentration of nickel in surface sediment  
                            (µg/g dry weight) 

 

 

 

Figure 4.3(J), Spatial variation of mean concentration of mercury in surface sediment  
                           (µg/g dry weight) 
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Figure 4.3(K), Spatial variation of mean concentration of vanadium in surface sediment  
                         (µg/g dry weight) 

 

 

 

Figure 4.3(L), Spatial variation of mean concentration of zinc in surface sediment  
                              (µg/g dry weight) 
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4.1.2.2 Temporal variation of heavy metals 

 

Figure  4.4 illustrate the temporal variation in the concentrations of heavy metals 

over one year. According to the Kruskal-Wallis test, the concentrations of all of the 

heavy metals (except Cr and Mn) changed significantly over the year. Most of metals 

such as Al, Fe, Mn, Cd, Ni, Cr and Hg had same temporal pattern in surface sediment 

with significant reductions in their concentrations in November 2009 and May 2010 and 

high concentration in February 2010 and August 2010. Some metals include Pb, V and 

As had an increased trend toward high concentration from November 2009 to August 

2010 and others metals (Cu and Zn) showed a different pattern in temporal scale.  

  



 

 

 

 

 

 

 

 

Figure  4.4(A), Temporal variation of heavy metals in surface sediment (µg/g dry weight) 
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                 Figure 4.4(A), Temporal variation of heavy metals in surface sediment  
                                              (µg/g dry weight) 
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4.1.2.3 Heavy metal contamination factor (CF) and contamination degree (Cd) 

Figure  4.5 shows the variation in the contamination factor for each metal; the 

C�-values for all metals based one the following sequence: 

Cu Fe Al Ni Zn Mn V Cr Pb Hg As Cd< < < < < < < < < < <  

The highest values of contamination degree and contamination factor for all 

metals except Mn were estimated at stations 13, 15, 16 and 17, whereas the lowest 

values were estimated for the control point (Figure 4.6). 

 Table 4.5 provides a better view of the sediment contamination status of all 

stations by describing the ranking order based on the contamination factor and 

contamination degree. The 
f

C values−  
for Al, Fe, Mn, Cu, Cr, Ni and Zn were less than 

1 and were categorized as unpolluted levels at all stations. The contamination factor for 

Pb was estimated to be moderate at all stations except the control station, and the 

dC values−  for V was on the borderline between unpolluted and moderately polluted. 

The contamination factor for Cd at all stations except stations 10, 11 and 22 (CP) was 

categorised as highly to very highly pollute. Hg and As were between moderately 

polluted and highly polluted. A cluster analysis classified all of the stations into three 

groups based on the degree of sediment contamination (Figure 4.7). 

 According to this classification, stations 13, 15, 16 and 17 were arranged in a 

separate cluster (cluster C), and station 22 (the control point) was completely separated 

from the other stations. 

 

  



 

Figure  4.5,   Whisker plots of the contamination factor of metal in surface sediments (The         
                      whisker shows the minimum and maximum concentration and the line of each plot   
                      is the mean value) 

 

 

Figure  4.6, Box-Whisker plots of the contamination degree of metals for   
                    sediments in 22 stations 
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Figure  4.7, Cluster analysis to classify stations based on the contamination degree of heavy   
                    metals in surface sediment 
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Table  4.4, Illustrating the values of contamination factor (Cf) and contamination degree (Cd) at             
                   all stations in Klang Strait 

 

 

Station 
Al, Fe, Mn, 
Cu, Cr, Ni 

and Zn 
Pb As Cd Hg V 

1

n
i

d f

i

C C
=

=∑  

1 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

2 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

3 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

16 32
d

C≤ <  

Moderate  

4 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

5 
1i

f
C <

unpolluted 
1 3i

f
C≤ <

 

 moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

6 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

7 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

 moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

8 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16
d

C≤ <  

Moderate 

9 
1i

f
C <

unpolluted 
1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

moderate 
1i

f
C <

 

unpolluted 

8 16
d

C≤ <  
Moderate 

10 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

11 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1 3i

f
C≤ <

 

moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

 high 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

12 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1 3i

f
C≤ <

moderate 
3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <  

high 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

13 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

16 32dC≤ <  

High 

14 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

15 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 
( )6i

f
C ≥  

very high 

3 6i

f
C≤ <

 

high 

1i

f
C <

 

unpolluted 

16 32
d

C≤ <  

High 

16 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 
3 6i

f
C≤ <

3 

high 

( )6i

f
C ≥  

very high 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

16 32dC≤ <  

High 

17 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 
( )6i

f
C ≥  

very high 

3 6i

f
C≤ <

high 
1 3i

f
C≤ <

moderate 
16 32

d
C≤ <  

High 

18 
1i

f
C <

unpolluted 
1 3i

f
C≤ <

 

 moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

19 
1i

f
C <

unpolluted 
1 3i

f
C≤ <

 

 moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 

20 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16
d

C≤ <  

Moderate 

21 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

 moderate 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <

Moderate 

22 
1i

f
C <

 

unpolluted 

1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8dC <  

unpolluted 

Total 
1i

f
C <

 

unpolluted 

1 3i

f
C≤ <

 

moderate 

3 6i

f
C≤ <

 

high 

3 6i

f
C≤ <

 

high 

1 3i

f
C≤ <

 

moderate 

1i

f
C <

 

unpolluted 

8 16dC≤ <  

Moderate 
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4.1.2.3.1 Enrichment factor 

The metal enrichment factor (EF) was also used to assess the anthropogenic 

proportion of the heavy metal load in surface sediments. In this study, the variations in 

the enrichment factor were significantly different for different heavy metals (Figure 

4.8). 

The EF value of Fe was lower than 2 at all stations, indicating that Fe may 

originate entirely from natural processes or crustal materials; the EF-value for Zn 

indicated natural process origins at most stations, but some stations showed a moderate 

proportion of anthropogenic pollutants. The enrichment values of Cu, Mn, Ni, V and Zn 

were between 2<EF<5, indicating that the sediment at all stations had moderate 

anthropogenic inputs of these heavy metals. The EF value for Cr indicated a moderate 

to significant proportion of anthropogenic pollutants. There was significant enrichment 

of Pb and As in the sediments, which suggests that a high proportion of these metals 

were from anthropogenic sources. The EF values for Hg and Cd were determined to 

range between significant and high proportions of anthropogenic sources. In general, the 

EF-values for all metals obeyed the following sequence: 

Fe Zn Ni Mn V Cu Cr Pb As Hg Cd< < < < < < < < < <  

Figure 4.9 illustrates the variation in anthropogenic inputs of heavy metals at 

the different stations. Generally, the sediments of all stations had moderate (5< Enrich 

factor <20) anthropogenic inputs of all metals. A cluster analysis classified the heavy 

metals into two major groups based on the proportions derived from anthropogenic 

sources (Figure 4.10).  

The first cluster (A) represents high enrichment factor values (9-11) and 

includes 10 stations. The second cluster (B) includes 12 stations that range between 6.5 

to 8.87. Additionally, station 22 (the control point) had the lowest value (5.2) of 

enrichment factor and was completely separated from cluster B. 



 

Figure  4.8, Box-Whisker plots of the enrichment factor (EF) of heavy metals in sediment (The     
                   whisker shows the minimum and maximum concentration and the line of each plot                      
                   is the mean value) 

 

 

 

Figure  4.9, Box-Whisker plots of the enrichment factor (EF) of heavy metals in surface   
                    sediment of different stations (The whisker shows the minimum and maximum  
                    concentration and the line of each plot is the mean value) 
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Figure  4.10, Cluster analysis to classify stations based on the enrichment factor of heavy metals  
                       in surface sediment 

 

4.1.3 Poly Aromatic Hydrocarbons (PAHs) 

4.1.3.1 Spatial variation of poly aromatic hydrocarbons (PAHs) 

In the Klang Strait, the concentration of PAHs ranged from 98.2 to 3630.2 µg/kg 

dw with an average concentration of 1030.3 µg/kg dw . The maximum concentration of 

PAHs was estimated at station 13, and the lowest concentration was observed at the 

control point. The PAH contamination was estimated for surface sediments all over the 

Strait, with higher concentrations observed at the stations close to the berth line (except 

station 12), especially in front of the container terminal in the West Port (station 13: 

3545.9 µg/kg dw ), in front of the dry and liquid terminal in the North Port (station 1: 

2829.0 µg/kg dw and station 4: 2851 µg/kg dw) and in stations located close to the 
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mouth of the Klang River in the South Port (16: 2497.1 µg/kg dw and17: 3202.1 µg/kg 

dw). 

PAH concentrations were generally lower in more remote stations except for 

station 12, which had an elevated concentration of PAHs (1448.8 µg/kg dw). The PAH 

concentration showed an insignificant correlation with percentage of TOC and fine-

grained sediment (p< 0.05, r = 0.15 and r = 0.11) in the surface sediment of the Klang 

Strait (Table  4.1). A Kruskal-Wallis test showed that there are significant differences 

(p< 0.05, df= 21, sig=0.003) among the concentrations of PAHs at all of the stations. In 

the present study, there was a significant positive correlation (0.4 <r, P<0.01) among 

some individual PAHs, which was highlighted in Table 4.6. 

 

Table  4.6, Correlation coefficient between individual PAHs compounds 

  

 Nap Acy Ace Flr Phn Ant Fla Pyr BaA Chy BbF BkF BaP DibA BghiP InP PAH 

Nap 1.00                 

Acy 0.28 1.00                

Ace 0.40 0.44 1.00               

Flr 0.55 0.40 0.76 1.00              

Phn 0.28 0.40 0.57 0.54 1.00             

Ant 0.24 0.27 0.64 0.58 0.75 1.00            

Fla 0.40 0.42 0.54 0.71 0.53 0.61 1.00           

Pyr 0.07 0.24 0.44 0.50 0.16 0.20 0.12 1.00          

BaA 0.23 0.19 0.15 0.27 0.28 0.42 0.08 0.28 1.00         

Chy 0.08 0.10 0.07 0.00 0.03 0.16 0.10 0.04 0.25 1.00        

BbF 0.01 0.19 -0.26 -0.31 -0.17 -0.24 -0.10 -0.36 -0.15 -0.11 1.00       

BkF -0.06 0.52 0.20 0.27 0.27 0.46 0.42 0.12 0.09 -0.21 -0.18 1.00      

BaP 0.47 0.45 0.16 0.21 0.20 0.44 0.53 0.04 0.20 0.16 0.18 0.07 1.00     

DibA -0.11 -0.11 -0.20 -0.33 -0.26 -0.18 -0.10 -0.27 -0.03 0.27 0.29 -0.06 0.04 1.00    

BghiP 0.44 0.75 0.44 0.28 0.05 0.26 0.23 0.07 -0.01 -0.14 0.00 0.21 0.54 -0.16 1.00   

InP 0.09 -0.14 -0.16 -0.18 -0.28 -0.14 -0.09 -0.36 -0.16 -0.05 0.21 -0.28 0.12 0.50 0.15 1.00  

PAHs 0.05 0.50 0.25 0.14 0.49 0.50 0.05 0.18 0.52 0.44 0.04 0.25 0.58 0.14 0.09 0.00 1.00 
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Table  4.7, Concentration of the PAHs (µg/kg dw) in surface sediments of Klang Strait 

Station Nap Acy Ace Flr Phn Ant Fla Pyr BeA Chy BbF BkF BaP DibA Bghip Inp ∑PAHs 

1 ND ND 2.1 34.2 47.5 100.4 ND 482.8 613.0 ND ND ND ND ND ND ND 1280.4 

2 1.3 ND ND 9.7 13.3 12.7 ND 131.3 31.5 ND ND ND ND ND ND ND 199 

3 1.7 ND 8.1 118.5 89.0 58.8 42.7 62.9 ND ND ND ND ND ND ND ND 381.7 

4 0.4 ND ND 1.1 10 59.8 12.5 12 66.7 50.0 852.8 ND 1495.8 190.2 ND 99.8 2851.0 

5 0.8 ND 0.3 16.8 12.6 12 10 195.6 ND ND 11.0 ND ND ND ND ND 259.1 

6 4.0 ND 0.4 57.3 36.2 37.9 26.0 31.8 179.4 ND ND ND ND ND ND 42.3 415.2 

7 1.3 ND ND 27.6 127.6 267.8 10.3 12.7 204.0 ND ND 47.6 ND ND ND ND 698.9 

8 5.7 ND 1.0 39.0 6.8 71.4 13.5 15.8 50.5 ND ND ND 122.1 ND 64.2 77.4 467.4 

9 1.2 ND ND 7.7 5.1 8.2 ND 28.1 191.3 198.0 ND ND ND 67.8 ND ND 507.4 

10 0.8 ND ND 23.7 5.0 10.1 ND 236.5 278.8 ND ND ND ND ND ND 68.7 623.7 

11 0.7 ND 0.7 48.8 15.6 37.8 17.6 25.1 29.5 ND ND 367.6 ND ND ND ND 543.4 

12 2.0 ND 1.0 39.8 24.8 233.9 21.5 341.5 774.7 ND ND 1.3 1.0 7.3 ND ND 1448.8 

13 16.1 645.3 14.8 520.8 225.0 308.0 166.5 243.8 390.9 ND 11.6 28.6 825.2 ND 49.4 ND 3446.9 

14 3.0 ND 0.5 33.8 75.8 181.3 15.8 14.0 146.3 ND 11.3 ND 59.9 ND ND 31.8 573.5 

15 2.2 ND ND 8.7 9.6 3.8 ND ND 78.3 ND 12.8 ND ND 130.2 ND 348.4 594.0 

16 109.0 ND 1.2 120.6 66.3 100.5 92.2 99.7 974.8 116.0 ND ND 716.8 ND ND ND 2397.1 

17 9.6 ND 4.0 225.6 94.3 501.2 ND 226.2 1292.0 549.2 ND ND ND ND ND ND 2902.1 

18 1.3 ND ND 20.8 8.5 11.6 ND 119.3 191.8 ND 378.6 ND ND ND ND ND 731.9 

19 2.2 ND ND 35.6 39.7 33.3 16.5 17.1 267.3 ND 10.2 ND 103.9 ND ND ND 525.8 

20 2.1 ND ND 37.1 38.6 30.2 16.3 17.0 226.8 ND 9.3 ND 89.9 ND ND ND 467.5 

21 2.4 ND ND 37.2 16.7 16.5 16.0 11.2 194.6 ND 22.0 ND ND 129.6 ND 36.6 483.5 

22 1.8 ND ND 12.5 1.7 4.1 ND ND 56.8 ND 23.4 ND ND ND ND ND 100.3 

Mean 7.7 29.3 1.6 67.13 43.6 95.5 21.2 105.7 282.7 41.5 61.0 20.2 155.8 23.9 5.2 32.0 994.02 

SD 22.6 135.9 3.453 131.0 53.01 142.3 38.0 144.0 363.8 121.7 191.9 77.5 377.7 53.7 16.7 76.1 918.1 

Min ND ND ND 1.04 ND ND ND ND ND ND ND ND ND ND ND ND 100.3 

Max 110 650.4 15 621.6 225.6 601.2 169 599 1516.5 549.2 889.6 367.56 1524 199.2 72 360.8 3446.9 

ND= below the method detection limit; Nap = naphthalene; Acy = acenaphthylene; Ace = acenaphthene; Flr = fluorene;Phn = 
phenanthrene; Ant = anthracene; Fla = fluoranthene; Pyr = pyrene; BaA = benzo(a)anthracene; Chy = chrysene;BbF = 
benzo(b)fluoranthene; BkF = benzo(k)fluoranthene;BaP = benzo(a)pyrene; InP = indeno[1,2,3,(c,d)]pyrene; DibA = 
dibenzo(a,h)anthracene; BghiP = benzo(g,h,i)perylene. 
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4.1.3.2 Source of PAHs 

High-temperature combustion processes are the primary sources of high-

molecular-weight PAHs (HMWPAH) with 4 or more rings. Thus, the concentrations of 

high-molecular-weight PAHs (Fla, Pyr , BaA, Chy, BbF, BkF , BaP, InP, DibA , BghiP) 

are typically estimated to assess the combustion value (Khairy et al., 2009). In our 

study, combustion values ranged from 80 µg/kg dw to 2767.8 µg/kg dw with an average 

concentration of 767.2 µg/kg dw (Table  4.5).  

High-molecular-weight PAHs represented between 26.4% and 95.9% of the total 

concentration of PAHs, with a mean value of 74.46%.  

Moreover, the combustible PAHs constituted a significant portion of the total 

PAHs at stations 13 and 15 (in front of container terminal) in the West Port, stations 1 

and 4 in the North Port and stations 16 and 17in the South Port, which reflect a recent 

input of PAHs at these stations. 

Some high-molecular-weight PAHs such as BaA, Chy, BbF, BkF , BaP, InP and 

DibA are known as toxic PAHs because of their mutagenic and carcinogenic effects on 

humans and other organisms (Hale et al., 2012; Khairy et al., 2009; Pahila et al., 2010). 

The concentrations of these PAHs ranged from 11µg/kg dw to 2755.3 µg/kg dw, with a 

mean concentration of 631.1 µg/kg dw (Table  4.5). Their concentration made up an 

average of 61.25% of the total concentration of PAHs, ranging from 0 to 97.3%. These 

concentrations were highest in stations 1, 4, 13, 15, 16 and 17, whereas at some remote 

stations (2, 3, 5 and 22), toxic PAH concentrations were significantly lower. 

Pyrogenic and petrogenic sources are typically distinguished based on the ratios 

of individual PAHs, which are identified based on molecular mass, such as Phn/Ant (m= 

178) and Fla/Pyr (m= 202). The results related to the source identification of PAHs are 

summarized in Table  4.5. 
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According to the ratio of Phn/Ant, all of the stations are mostly exposed to 

pyrogenic sources of contamination because the Phn/Ant ratio was below 10 at all 

stations, whereas the ratio of Fla/Pyr revealed only stations 4, 14 and 21 to be mainly 

exposed to pyrogenic sources (Fla/Pyr >1) and others stations with ratios below 1. 

Table  4.5, Molecular indices of PAHs, content in surface sediments of Klang Strait 

Station combustPAH∑
 

toxicPAH∑  Phn/Ant Fla/Pyr Ant/Ant+Phn Fla/Fla+Pyr 
L/H-

PAH 

1 1195.8 613.0 0.47 0.00 0.68 0.00 0.15 

2 162.8 31.5 1.05 0.00 0.49 0.00 0.23 

3 105.6 0.0 1.51 0.68 0.40 0.40 2.61 

4 2767.8 2755.3 1.5 1.03 0.86 0.51 0.03 

5 206.6 11.0 1.1 0.11 0.49 0.05 0.20 

6 279.4 221.7 0.95 0.82 0.51 0.45 0.49 

7 274.6 251.6 0.48 0.81 0.68 0.45 1.55 

8 343.5 250.0 0.09 0.86 0.91 0.46 0.36 

9 485.2 457.1 0.63 0.00 0.61 0.00 0.05 

10 584.1 347.6 0.50 0.00 0.67 0.00 0.07 

11 439.8 397.1 0.41 0.70 0.71 0.41 0.24 

12 1046.8 784.3 0.11 0.09 0.90 0.08 0.29 

13 1715.9 1256.3 0.73 0.68 0.58 0.41 1.07 

14 279.2 249.3 0.42 1.13 0.71 0.53 1.05 

15 569.7 569.7 2.54 0.00 0.28 0.00 0.04 

16 2099.5 1907.6 0.66 0.93 0.60 0.48 0.19 

17 2267.4 2041.3 0.16 0.00 0.86 0.00 0.41 

18 689.7 570.4 0.74 0.00 0.58 0.00 0.06 

19 415.0 381.5 1.19 0.97 0.46 0.49 0.27 

20 359.4 326.1 1.28 0.96 0.44 0.49 0.30 

21 410.1 382.8 1.01 1.42 0.50 0.59 0.18 

22 80.3 80.3 0.41 0.00 0.71 0.00 0.25 

Mean 767.2 631.1 0.44 0.19 0.70 0.16 0.33 

SD 233.2 213.8 0.58 0.48 0.22 0.28 0.32 

Min 80 11 0.16 0.19 0.28 0.4 0.04 

Max 2767.8 2755.3 2.54 1.42 1 1 2.61 
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Figure  4.11 revealed a clear pattern in the sources of PAHs. Most of the 

investigated sediment samples presented a mixed pattern of contamination from 

pyrogenic and petrogenic origins. At the same time, just three sediment samples (4, 14 

and 21) had pyrogenic-origin PAHs. Moreover, ratios of PAHs such as Ant/Ant+ Phn 

and Fla/(Fla+ Pyr) had been applied to provide an accurate estimation of PAH sources. 

The ratio of Ant/Ant+ Phn was greater than 0.1 for all stations, implying that the origin 

of the PAHs in the sediments of the Klang Strait is primarily combustion; either wood, 

coal or grass combustion or petroleum combustion. The PAH ratio Ant/(Ant+ Phn) was 

plotted against Fla/(Fla+ Pyr) to distinguish the possible source of PAHs. 

Figure  4.12 showed a mixed pattern of combustion and petroleum sources 

(vehicle and crude oil) at some of the stations (3, 6, 7, 8, 11, 13, 16, 19 and 20). At the 

same time, combustion fingerprints (more frequent PAHs representing wood, coal and 

grass combustion) were strongly present in stations 4, 14 and 21. Other stations (1, 2, 5, 

9, 10, 12, 15, 17, 18 and 22) have primarily originated from combustion, although 

petroleum-derived contamination cannot be ignored. The ratio between low-molecular-

weight and high-molecular-weight PAHs (L/H-PAHs) was lower than 1 at all stations 

except stations 3,7,13 and 14. 
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Figure  4.11, Plots of PAH isomer pair ratios for source identification Phn /Ant versus Fla/Pyr 

 

 

Figure  4.12, Plots of PAH isomer pair ratios for source identification Ant/(Ant+Phy) versus  
                       Flu/(Flu+Pyr).  
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Principal component analysis (PCA) was used to identify the occurrence sources 

of PAHs and quantify the percentage of contribution of individual PAH sources. As 

shown in Table  4.6, PCA analysis classified the dataset of PAHs into 5 principal 

components (PCs) that control 80.6% of changes in PAH contamination in the surface 

sediments of the Klang Strait.  

PC1 described 30.81% of the variance in the data. This factor was strongly 

related to Acy, Ace, Flr, Phn, Flr and Bghip, of which Flr, Phy, Flu and Bghip are 

known to derive from the incomplete combustion and pyrolysis of fuel whereas Acy and 

Ace are used as tracers for contamination from oil spills. This could possibly be due to 

oil tanker operation in the Malacca Strait (Sakari et al., 2008; Sakaria et al., 2010). 

PC2 explained 16.8% of the total variance and showed a strong relationship with 

Ant, BeA and Chy, which are used in an index to assess contamination by combustion 

sources.  

The third factor (PC3), responsible for 16.037% of the total variance, was 

strongly related to BbF, BaP, DibA and InP, which are understood to be toxic PAHs. 

PC4 explained 10.27% of the total variance, with a high correlation with Nap. Nap is 

used as a tracer of oil spills, such as Acy and Ace. It can also originate from termite 

activities on vascular land plants and woody material in tropical areas and the Amazon 

region(Ekpo, Oyo-Ita, Oros, & Simoneit, 2011; Okere & Semple, 2012).  

However, the total variance explained by PC5 was equal to 9.15% and was not 

strongly related to any PAH, indicating unknown sources. The PCA analysis is 

concordant with the pair isomer ratio of PAHs, which revealed a mixture of pyrogenic- 

and petrogenic-derived PAHs in the Klang Strait. 
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Table  4.6, Rotated component loadings of three principal components (PCs) for PAH  
                  compositions in the sediments of Klang Strait 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Note: Only loading values with moduli large than 0.01 are presented and those higher than 0.7 are in bold. 

4.1.4 Biological assessment 

4.1.4.1 Spatial and temporal distribution of benthic communities 

The results of the analysis of the spatial and temporal distributions of benthic 

composition are summarized in 

Table  4.7 and Table  4.8. Overall, 23 species of Mollusca, 4 species of 

Arthropods, 3 species of Echinodermata and 3 species of Annelida (2 polychaetes and 

one oligochaete) were identified at the 22 sampling stations across four sampling 

periods. Individual species of Mollusca constituted 48.6% of the total abundance, 

followed by Arthropods (26.01%), Annelida (22.35%) and Echinodermata (3.03%). 

Large standard deviations in the total number of individuals indicated that temporal 

changes or inter-replicate differences varied strongly (Figure 4.13 and Figure 4.14). 

PAHs PC1 PC2 PC3 PC4 PC5 

Nap .105 .165 .025 .964 0.532 

Acy .955 - .089 - - 

Ace .917 .147 .002 .137 - 

Flr .936 .270 .010 .104 .084 

Phn .828 .298 - - .082 

Ant .390 .851 - - .081 

Fla .866 - - - .448 

Pyr .154 .241 - - .177 

BaA .064 .849 0.10 - .303 

Chy - .929 .016 .052 .057 

BbF - - .944 .043 - 

BkF .02 - - - - 

BaP .355 .009 .823 .051 .383 

DibA - - .778 .593 .109 

BghiP .788 - - .196 - 

InP - - .853 - - 

Variance(%) 30.18 16.81 16.37 10.27 9.15 



144 

The results of Kruskal-Wallis analysis of phylum-level abundance indicated that 

replicate sediment samples taken in the Klang Strait exhibited a significant (p <0.05) 

difference in the composition of the macro-benthic community between stations during 

the year. Duncan analysis indicated that the greatest separation of benthic composition 

occurred between stations 12, 16, 17, 22 and other remaining stations. Between-season 

differences in average abundance were not statistically significant (p <0.05) over the 4 

sampling periods (Table 4.12). 

The spatial distribution data on species-level abundance showed different 

patterns of benthic species. Stations 1-5, 9,12, and 18- 22 were numerically dominated 

by Mollusca species, which constituted more than 50% of the total abundance at these 

stations; this dominance was very stable over the four sampling periods (Figure  4.15). 

With respect to average abundance, the Mollusca includes Anadara nodifera, Nassarius 

jacksonianus and Cerithium sp were also conspicuous members of the benthic 

community at these stations.  

Crustacean species dominated at stations 6, 10and 11,especially Xenophthalmus 

pinnotheroides and Excirolana sp, whereas Annelida species (Lumbrineridae) were 

numerically dominant at stations 7,13,14 and 15 over the different seasons surveyed 

(Figure  4.15). In temporal scale, Mollusca were dominant while Echinodermata showed 

the lowest concentration in all sampling periods (Figure  4.16). 
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Table  4.7, Total abundance (individuals (
�) of macrofaunal taxa in different stations over   
                  different time intervals 
 

Taxa and ecological groups 1 2 3 4 5 6 7 8 9 10 11 12 

Mollusca 

Mactra sp (I) 

31.25 38.75 51.75 32.75 7.5 49 0 13.7 17.5 23.7 15 45 

Mactra luzonica(I) 
 

23.25 9.75 41.25 28.75 23.75 45 11.2 8.75 25 5 5 31.2 

Mactra Pellucida(I) 10 12 17.5 0 0 21.25 0 0 12.5 0 15 0 

Spisula ravenal(I) 12.5 13.7 6.25 1.25 0 12.5 0 0 0 1.25 0 11.2 

Merona cornucopiae(I) 22.5 15 31.25 32.5 25 41.25 0 0 0 11.2 0 11.2 

Codakia tigerina(I) 
 

33.75 23.7 42.5 13.75 1.25 56.25 11.2 0 15 27.5 11.2 62.5 

Arcuatula arcuatula(I) 14.25 7.25 29 6.25 25 18.75 0 0 0 5 6.25 6.25 

Tellina foliacea(I) 23.25 12.5 31.25 8.75 0 13.75 0 0 15 6.25 15 25 

Barantolla sp(I) 25 20 28.75 26.25 0 20 0 0 8.75 0 0 18.7 

Barbatia fusca(I) 7.5 7.5 20 6.25 6.25 13.75 20 15 25 0 0 32.5 

Tellina sp(I) 18.75 22.5 25 6.25 0 12.5 0 0 0 12.5 6.25 18.7 

Tellina tenuis (I) 33.75 15 27.5 11.25 22.5 31.25 0 0 0 10.2 0 20 

Tellina albenia(I) 0 7.5 11.25 16.25 35.25 13.75 0 0 0 0 0 12.5 

Tellina staurella(I) 13.75 0 20 20 13.75 26.25 0 0 16.2 0 0 0 

Donax sp(I) 0 0 0 0 0 0 0 0 6.25 0 0 1.25 

Crassostrea sp (ns) 0 6.25 18.75 20 12.5 25 0 0 33.7 0 0 30 

Anadar nodifera (IV) 140 72.5 137.5 116.2 108.7 120 23.7 75 125 51.2 15 61.2 

Chlamys sp(I) 7.5 6.25 30 0 0 20 0 0 47.5 0 0 0 

Litorina coccinea(I) 3.75 6 22 42 13.75 70 0 106 161 0 0 107. 

Cerithium sp(II) 0 0 0 0 20 17.5 31.25 45 116 121 60 137 

Nassarius jacksoniasus(II) 30 15 55 0 0 0 0 0 0 40 25 260 

Natica sp(II) 0 0 0 0 0 0 0 0 0 30 13 42.5 

Scaphander lignarius(I) 0 0 0 0 0 0 7.5 11.2 0 10 0 21.2 

Echinodermata 

Amphipholis gracillima(I) 

18.62 28.7 70 50 70 0 0 0 0 65 37.5 35 

Salmacis sp (ns) 0 0 0 0 0 0 0 0 0 0 1.25 16.2 

Balanus sp (ns) 0 0 0 6.25 3.5 14.25 16.5 38.7 61.2 16.7 0 67.5 

Arthropoda 

Alpheus sp (II) 

36.25 18.7 30 16.75 12.5 30 0 0 12.5 30 15 19.7 

Uca sp (I) 0 0 0 0 0 0 0 0 0 51.2 3.75 42.5 

Xenophthalmodes.pinnothe

roides 

37.5 25 370.5 43.75 215 422.5 144 156 307 72.5 181 246 

Excirolana hirsuticauda (II) 60 0 90 207.5 0 295 26.2 46.2 15 277. 0 122 

Annelida 

Lipiniella sp. (II) 

16.25 12 12.5 15 13.75 11.25 0 0 0 75 0 50 

Lumbricillus sp (V) 12.5 11.2 11.25 15 25 30 210 210 170 297 140 145 

Glycerna alba (IV) 55 46.2 46.5 52.5 45 53.7 40 60 40 0 0 35 
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Table.4.10 (Continued) 

Taxa and ecological groups 13 14 15 16 17 18 19 20 21 22 Mea

n 

SD 

MolluscaMactra sp (I) 0 0 11.25 0 0 15 11.25 15 37.5 142.5 25.3 35.2 

Mactra luzonica(I) 
 

0 10 20 0 0 41.25 0 0 30 138.75 22.6 31.8 

Mactra Pellucida(I) 0 0 0 0 0 0 0 0 0 98.75 8.5 26.7 

Spisula ravenal(I) 0 7.5 17.5 0 0 1.25 0 0 1.25 62.5 6.7 21.5 

Merona cornucopiae(I) 0 0 0 0 0 11.25 11.25 11.25 23.75 118.75 16.0 31.6 

Codakia tigerina(I) 
 

0 0 0 0 0 28.75 0 0 33.75 138.75 22.7 36.2 

Arcuatula arcuatula(I) 0 0 0 0 0 0 0 0 0 131.25 11.3 30.1 

Tellina foliacea(I) 0 0 12.5 0 0 8.75 0 0 21.25 138.75 15.1 32.0 

Barantolla sp(I) 0 0 20 0 0 6.25 8.75 7.5 7.5 103.75 13.7 32.3 

Barbatia fusca(I) 0 0 0 0 0 7.5 13.75 13.75 12.5 115 14.4 30.6 

Tellina sp(I) 0 0 0 0 0 0 0 0 0 105 10.3 27.0 

Tellina tenuis (I) 0 0 0 0 0 31.25 11.25 6.25 26.25 97.5 15.6 27.8 

Tellina albenia(I) 0 0 0 0 0 0 0 0 0 60 7.1 21.1 

Tellina staurella(I) 0 0 0 0 0 1.75 0 0 0 115 10.3 27.4 

Donax sp(I) 0 0 0 0 0 0 0 0 0 68.75 3.4 18.1 

Crossostra sp (ns) 0 0 0 0 0 0 12.5 17.5 37.5 28.3 10.9 22.2 

Anadar nodifera (IV) 197.5 105 92.5 0 0 50 137.5 77.5 12.5 0 78.1 70.2 

Chlamys sp(I) 0 0 0 0 0 0 0 0 0 31.25 6.4 19.1 

Litorina coccinea(I) 0 0 0 0 0 20 45 0 10 15 28.2 121.3 

Cerithium sp(II) 0 0 42.5 0 0 0 90 72.5 105 120 43.4 77.5 

Nassarius jacksoniasus(II) 80 60 42.5 0 0 0 156.25 85 0 30 39.9 138.7 

Natica sp(II) 0 0 17.5 0 0 2.5 0 0 91.25 50 11.2 49.9 

Scaphander lignarius(I) 0 0 0 0 0 0 0 0 0 0 2.3 22.6 

Echinodarmata 

Amphipholis gracillima(I) 

0 0 60 0 0 0 0 0 0 0 19.7 79.9 

Salmacis sp (ns) 0 0 0 0 0 23.75 23.75 16.25 20 46.25 6.7 15.2 

Balanus sp (ns) 0 0 0 0 0 0 0 0 0 20 11.1 33.4 

ArthropodaAlpheus sp (II) 12.5 11.25 10 0 0 0 0 0 0 1.5 11.7 44.8 

Uca sp (I) 0 0 20 0 0 0 0 0 0 73.75 7.9 52.1 

Xenophthalmodes.pinnother

oides 

41.25 42.5 101.75 0 0 0 11.25 0 27.5 90.5 115.3 191.7 

Excirolana hirsuticauda (II) 117.5 105 320 0 0 0 26.25 15 0 40 81.1 183.5 

AnnelidaLipiniella sp. (II) 151.2

5 

126.25 225 0 0 0 0 0 0 0 32.5 133.8 

Lumbriculus sp (V) 331.2 285 295 0 0 20 191.2 97.5 45 0 115.6 148.0 

Glycera alba (IV) 143.7

5 

132.5 78.75 0 0 12.5 127.5 60 11.25 0 47.3 59.4 
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Table  4.8, Temporal distribution of macrofaunal taxa (individual (
�) over different time  
                    interval. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxa and ecological groups November2009 February2010 May2010 
August 

2010 

Mollusca 

Mactra sp (I) 
21.1 22.8 26.6 31.0 

Mactra luzo ica(I) 
 

20.1 27.3 20.2 23.0 

Mactra Pellucida(I) 2.7 8.6 6.6 16.0 

Spisula ravenal(I) 0.0 11.8 5.7 9.5 

Merona cornucopiae(I) 16.8 12.0 4.5 33.2 

Codakia tigerina(I) 
 

18.2 16.8 28.4 27.5 

Arcuatula arcuatula(I) 5.7 16.4 13.0 10.2 

Tellina foliacea(I) 14.8 15.2 13.9 16.5 

Barantolla sp(I) 0.0 15.9 13.6 25.2 

Barbatia fusca(I) 9.1 13.6 14.5 20.2 

Tellina sp(I) 8.0 13.0 6.8 13.6 

Tellina tenuis (I) 9.5 15.0 6.4 31.6 

Tellina albenia(I) 0.0 7.0 8.7 12.7 

Tellina staurella(I) 12.3 6.8 12.4 9.8 

Donax sp(I) 0.0 2.3 5.9 5.7 

Crossostra sp (ns) 1.4 18.0 9.5 14.8 

Anadara nodifera (IV) 47.3 74.1 85.9 105.2 

Chlamys sp(I) 0.0 2.3 10.2 13.4 

Litorina coccinea(I) 33.6 13.1 12.0 54.5 

Cerithim sp(II) 27.6 43.2 34.5 68.5 

Nassarius jacksoniasus(II) 48.2 0.0 65.5 46.1 

Natica sp(II) 3.4 9.6 11.4 20.5 

Scaphander lignarius(I) 1.8 3.4 1.1 2.7 

Echinodarmata 

Amphipholis gracillima(I) 
26.4 12.7 11.8 28.2 

Salmacis sp (ns) 5.2 5.2 8.2 8.2 

Balanus sp (ns) 0.0 5.4 9.6 29.5 

Arthropoda 

Alpheus sp (II) 
0.0 44.4 0.7 1.5 

Uca sp (I) 0.0 5.9 10.7 18.2 

Xenophthalmodes.pinnotheroides 155.3 104.7 70.3 141.0 

Excirolana hirsuticauda (II) 103.2 90.0 36.4 81.8 

Annelida 

Lipiniella sp. (II) 
0.0 36.3 31.9 62.0 

Lumbriculus sp (V) 126.4 92.3 101.8 141.8 

Glycera alba (IV) 25.7 81.4 40.0 42.0 



 

Figure  4.13, Box-Whisker plots of the spatial variation of benthic abundance (individual (
�)  
                      at different stations (The whisker shows the minimum and maximum                  
                      concentration and the line of each plot is the mean value). 
 

 

Figure  4.14, Box-Whisker plots of the temporal variation of benthic abundance 
                                   (individual (
�) during four times sampling 

 

Table  4.9, Results of Kruskal wallis analysis of differences in composition of macro-benthic    
                    community assemblages between stations and Seasons 

 

Phylum Mollusca Echinodermata Arthropoda Annelida Benthos 

a.Chi-Square 58.025 35.247 51.424 55.995 57.311 

df 21 21 21 21 21 

Asymp. Sig. 0.000 0.027 0.000 0.000 0.000 

b. Chi-Square 7.807 0.566 3.072 3.549 7.032 

df 3 3 3 3 3 

Asymp. Sig. 0.050 0.904 0.381 0.314 0.071 
Grouping Variable: Stations, Grouping Variable: Seasons 
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Figure  4.15, Total abundance (Individual  (
�) of different macro-benthic fauna present at 22  
                       stations and the average number of species across one year 

 

 

Figure  4.16, Total abundance (individual (
�) of different macro-benthic fauna present at four 

sampling time and the average number of species across one year. 
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4.1.4.2 Disturbance analysis 

Several ecological indices were applied to assess sediment quality based on the 

response of the soft-bottom macro benthic structure to changes in the environment. 

Average abundance, richness and diversity were significantly higher at stations 22 

(2144.5± 543, +,:4.41, J:25) and 12 (1736± 313.39, +,:4, J:28), whereas the lowest 

abundance, richness and diversity were observed at stations 16 and 17. Some stations 

were significantly higher in terms of the average value of the total number of 

individuals, diversity or richness, such as stations 3, 6, 9, 12, 15 (along the mangrove 

edge in the North and West Ports), 10 (close to the liquid berth in the West Port) and 22 

(control point). Other stations that were close to the berth line (1, 2, 4, 5, 7, 8, 11, 13, 14 

and 20) showed relatively lower abundance, richness and diversity (Table  4.10). 

There was significant variation of the pollution level according to the AMBI in 

different stations. In general, Klang Strait is classified as slightly polluted (BI:2, 

AMBI:2.1, M-AMBI:0.85) because the pollution level of most of the stations (1-6, 9-

12,15,18, 21 and 22) varied between undisturbed and slightly polluted. At these stations, 

the benthic community was dominated by ecological group I and II (sensitive species), 

while there was low abundance (0-20%) in the area of group V (opportunistic species). 

Some stations, such as 7,8,13, 14, 19 and 20, are classified as moderately polluted, and 

the community was dominated (48.9-62.5%) by group IV and V. These ecological 

groups were also abundant in stations near the discharge point. Stations 16 and 17 were 

only classified as extremely polluted (BI:7, AMBI:7, M-AMBI: -0.05) because there is 

no benthic community present at these stations (Figure 4.17). 

 Ecological group III (tolerant to pollution) was not found in Klang Strait, which 

had an unbalanced benthic composition. 

  



151 

 

Table  4.10, Summary results of ecological indices to assess pollution level based on the benthic  
                    responds to disturbance in different stations. 

*BI= Biotic index, **AMBI= AZTI marine biotic index, ***M-AMBI=Multivariate-AMBI  

 

 

Stations Abundance 

individual 

m−2 
(+′) 

Diversity Species 

Richness

( J) 

*

BI 

** 

AMBI 

Disturbance 

Classification 

 

***M-

AMBI 

Status 

1 686.8 4 22 2 1.86 Slightly disturbed 0.83 Good 

2 453.25 4 22.00 2 1.72 Slightly disturbed 0.84 Good 

3 1277.25 3.85 24.00 2 1.49 Slightly disturbed 0.85 Good 

4 795.25 3.67 22.00 2 1.74 Slightly disturbed 0.79 Good 

5 700 3.43 19.00 2 1.94 Slightly disturbed 0.73 Good 

6 1484.50 3.43 19.00 2 1.94 Slightly disturbed 0.73 Good 

7 541.75 2.49 10.00 3 3.95 Moderately disturbed 0.43 Moderate 

8 786.25 2.89 11.00 3 3.88 Moderately disturbed 0.48 Moderate 

9 1231.25 3.33 18.00 2 2.48 Slightly disturbed 0.68 Good 

10 1241 3.42 21.00 2 2.46 Slightly disturbed 0.72 Good 

11 566 3.03 17.00 2 1.81 Slightly disturbed 0.68 Good 

12 1736 4 28.00 2 1.76 Slightly disturbed 0.85 Good 

13 1075 2.64 8.00 3 4.01 Moderately disturbed 0.42 Moderate 

14 885 2.75 10.00 3 3.80 Moderately disturbed 0.46 Moderate 

15 1386.76 3.13 16.00 3 4.05 Slightly disturbed 0.55 Good 

16 0 0.00 0.00 7 7.00 Extremely disturbed -0.05 Bad 

17 0 0.00 0.00 7 7.00 Extremely disturbed -0.05 Bad 

18 281.7 3.47 15.00 2 1.55 Slightly disturbed 0.70 Good 

19 877.5 3 14.00 3 3.76 Moderately disturbed 0.54 Moderate 

20 495. 3 12.00 3 3.60 Moderately disturbed 0.52 Moderate 

21 553.7 3.67 17.00 2 1.43 Slightly disturbed 0.75 Good 

22 2144.5 4.41 25.00 1 0.36 Undisturbed 0.96 High 

Avg 872.66 4 33 2 2.1 Slightly disturbed 0.85 Good 



 

 

Figure  4.17, Range of ecological group percentage for different stations and average percentage   
                     of ecological groups across one year 

 

 
Table  4.11 and Figure  4.18 summarise the temporal variations of the ecological 

groups over a year. The results show that the area is generally slightly polluted, and the 

variations of the ecological groups are insignificant in a temporal scale. The abundance, 

diversity and richness changed in a small seasonal pattern, with an upward trend from 

November 2009 until August 2010 (Figure 4.18), but there was no significant temporal 

change in the ecological indices, and the macrobenthic species varied without an 

obvious temporal pattern. Xenophthalmodes pinnotheroides and Lumbriculus sp were 

the dominant species in all of the sampled months. Some species were occasionally 

dominant, such as Anadara nodifiera and Glycera alba. 
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Table  4.11, Summary results of ecological indices to assess pollution level based on the benthic           
                      responds to disturbance in different sampling times 

 

 

 

 

Figure  4.18, Range of ecological group percentage for different sampling times 

  

Seasons Diversity Richness BI AMBI 
Disturbance 

Classification 
M-

AMBI 
Status 

November 2009 3.9 24 2 2.18 
Slightly 

disturbed 
0.74 Good 

February 2010 4.3 32 2 2.21 
Slightly 

disturbed 
0.85 Good 

May 2010 4.38 33 2 2.30 
Slightly 

disturbed 
0.85 Good 

August 2010 4.42 33 2 2.03 
Slightly 

disturbed 
0.84 Good 
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The correlation analysis is good agreement to assess benthic faunal response to 

type variation in contaminant. It is individually estimated for each Site because of the 

differences in the physicochemical characteristic and contaminants sources. In South 

Port, there is strong negative correlation (r > -0.5) between benthic composition 

(abundance, diversity and richness) and other parameters except for PAHs, Mn and Ni.  

In North and West Ports the significant negative correlations (-0.4<r <-0.5) were 

found between benthic abundance and some parameters such as As, Cd and Cu. PAHs 

component had a significant negative correlation with diversity and richness of benthic 

structure. Fe, Mn, fine sediment fraction and TOC showed the significant positive 

correlation with benthic community (Table 4.13). 

 

Table  4.12, Correlation coefficient between benthic community and physicochemical  
                     parameters of sediment at different sites 

 

  

Physicochemical 
Parameters 

 South Port     North and West Port 

 Abundance  Diversity richness Abundance  richness Diversity  
Al -0.76 -0.81 -0.69 0.24 -0.029 -0.01 
As -0.50 -0.74 -0.61 -0.45 -0.09 -0.01 
Cd -0.76 -0.74 -0.69 -0.48 -0.09 -0.14 
Cr -0.47 -0.81 -0.69 0.14 -0.24 -0.21 
Cu -0.76 -0.59 -0.54 -0.40 0.20 0.21 
Fe -0.76 -0.74 -0.69 0.42 -0.1 0.11 
Hg -0.69 -0.51 -0.47 0.28 0.24 0.17 
Mn -0.43 -0.29 -0.18 0.65 -0.067 -0.039 
Ni -0.47 -0.81 -0.69 0.35 -0.06 -0.019 
Pb -0.91 -0.59 -0.54 0.23 -0.12 -0.07 
V -0.54 -0.66 -0.61 0.32 -.14 -0.13 
Zn -0.69 -0.81 -0.76 0.12 0.16 0.11 

Fine fraction -0.61 -0.88 -0.83 0.58 0.53 0.55 
TOC -0.76 -0.74 -0.69 0.52 0.54 0.53 
PAHs -0.28 -0.29 -0.40 -0.08 -0.57 -0.46 
Depth -0.14 0.26 0.28 -0.51 -0.52 -0.54 
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4.2 Ecological risk-assessment 

4.2.1 Ecological risk assessment based on the sediment quality guidelines 

Heavy metal 

In this study, the concentrations of heavy metals were compared with TEL and 

PEL values, and the PELq factor was used to estimate the toxic biological effects of 

heavy metals at different stations. PELq values were not estimated for Al, Fe, Mn, V 

and Co because these metals generally do not have toxic effects on biological 

communities in the environment (Hübner, et al., 2009; Vallejuelo, et al., 2010). Table 

 4.13 shows a comparison between the heavy metal concentrations in the present study 

with background values in Klang Strait, igneous rock and guideline values (TEL and 

PEL). The mean concentrations for Zn, Ni, Cr and Cu were below the TEL value, and 

these compounds most likely have minimal toxic effects on biological communities in 

the studied region. Cd, Pb and Hg were found in the TEL and PEL range at which 

occasional toxic effects are expected. Only the As levels exceeded the PEL value, 

indicating highly toxic effects for biological organisms. In the present study, only the 

estimated Cd, Pb, Hg and As concentrations are significantly greater than the 

background and igneous rock values, while the concentrations of other metals were 

lower than these values. 
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Table  4.13, Comparison of heavy metal concentration in Klang strait with background, igneous       
                     rock and SQG (µg/g dry weight) values 

 

Concentration of 

heavy metals 
Al Fe Mn As Cu Cr Cd Pb Ni Hg* V Zn 

Present study 14724. 6547.17 231.43 60.36 17.43 46.4 0.826 59.45 11.44 0.23 52. 51.05 

Back ground 

value ** 
85100 41922 349.18 18.79 23.21 53.71 0.186 39.8 32.77 0.08 71.59 141.22 

Igneous rock 

(Bowen, 1966) 
82000 56300 950 1.8 55 100 0.2 12.5 75 0.08 135 70 

SQG-based 

(Macdonald et 

al., 1996) 

TEL 

PEL 

 

 

 

 

 
 

 

 

7.24 

41.6 

 

 

18.7 

108 

 

 

52 

160 

 

 

0.68 

4.2 

 

 

30.2 

112 

 

 

15.9 

42.8 

 

 

0.13 

0.7 

 

 

 

124 

271 

*Mercury back ground value was estimated base on the concentration of igneous rock because there were no suffusion data in 
previous studies.   
**Back ground value was estimated based on the previous studies from 1196 until 2007 

 

The variation in estimated PELq values is shown in Figure 4.19. Three stations 

were considered to exhibit moderately toxic effects, including 16 and 17 (South Port) 

and 13 (West Port). The rest of the stations were considered to be slightly toxic. The 

dendrogram  results allow for a better understanding of the patterns among the stations 

from the metal analyses Figure 4.20.  

The dendrograms clearly classified the sampling stations into three clusters 

based on toxicity effects. All of the stations in first and second plot clusters are in the 

same range of slightly toxic effects (0.1<PELq<0.5). However, the average toxicity 

effects of heavy metals in the second cluster (stations 1, 3, and 15) were greater than 

those of the first cluster; the PELq values in second cluster were closer to 0.5 than the 

PELq values in the first cluster. The third cluster of the plot (cluster C), which includes 

stations 13, 16 and 17, exhibited a similar toxicity effect (moderately toxic). The 

average PELq of the third cluster was significantly different from those of the other 

stations. 

 



 

 

 

 

Figure  4.19, Box-Whisker Plots of PELqs values of Heavy metals at 22 stations (the whisker show  
                        the minimum and maximum concentration and the line of each plot is the medianvalue).          
                        PELq<0.1, non-toxic; 0.1<PELq<0.5, slightly toxic; 0.5<PELq<1.5, moderately   
                      toxic; PELq>1.5, highly toxic 

 

 

 

Figure  4.20, Cluster analysis to classify stations based on adverse biological effect of heavy  
                       metals in surface sediment  
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Polyaromatic hydrocarbons (PAHs) 

In this study, two sets of sediment quality guidelines, including (a) the 

ERL/ERM and (b) the TEL/PEL values, were used for an ecological risk assessment of 

individual PAHs in surface sediments using three classifications of PAH concentrations: 

adverse biological effects are expected rarely (<ERL/TEL), occasionally (PERL/TEL 

and <ERM/PEL), or frequently (PERM/PEL) (Long et al., 1995; Liu et al., 2009a). 

The comparison of contamination levels with sediment-quality guidelines 

revealed that the concentrations of naphthalene, acenaphthene, and benzo(g.h,i)perylene 

were below their respective values (ERL/TEL) of SQGs at all of the stations, indicating 

that adverse biological effects are likely to occur rarely due to these compounds at all of 

the stations. Additionally, acenaphthylene and fluoranthene concentrations were below 

the ERL/TEL values at all of the stations except station 13. 

The fluorene concentration at 87% of the stations (except stations 2, 6, 9, 15 and 

22) suggested occasional adverse biological effects (≥ERL/TEL and <ERM/PEL). The 

fluorene concentration was above the ERM/PEL level only at stations 13 and 17, 

indicating that adverse biological effects are frequently likely to occur due to fluorene at 

these stations. The fluorene concentrations were below the ERL/TEL levels at the other 

stations. 

For phenanthrene, the levels at stations 1, 7, 13 and 16 were higher than the TEL 

value, while at the other stations, the levels were below the ERL/TEL levels. These 

results suggest that adverse biological effects might occasionally occur at these stations. 

For anthracene, the concentrations at most of the stations were lower than the 

PEL and ERM values, while the levels at 48% of the stations (2, 5, 6, 9, 10, 11, 12,14 

and 18) exceeded the TEL value, implying that these stations most likely have an 

intermediate level of contamination.  
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Moreover, the PEL level was exceeded at stations 7, 13 and 17, indicating that 

adverse biological effects may occur frequently at these stations. For pyrene, the levels 

at 73% of the stations were lower than the ERL/TEL values, while intermediate levels 

(≥TEL) were found at the remaining stations (1, 5, 10, 12, 13 and 17). 

Benzo(a)anthracene concentrations exceeded the ERM and PEL values only at 

stations 12,16 and 17, whereas the benzo(a)anthracene levels at 59% of the stations 

(1,4,7,9,10,11,13,15,16,20 and 21) were in the intermediate level (≥TEL or ≥ERM), 

suggesting that these stations were occasionally associated with adverse biological 

effects in Klang Strait. The chrysene concentration was below the ERL/TEL values at 

all of the stations except for stations 16, 17 and 7, which contained levels higher than 

the TEL values. The concentrations of benzo(b)fluoranthene and benzo(k)fluoranthene 

at all of the stations were below the ERL values except for three stations with levels 

greater than the ERL values (stations 4 and 16 for benzo(b)fluoranthene and station 11 

for benzo(k)fluoranthene). The concentration of benzo(a)pyrene at 64% of the stations 

was lower than the ERL/TEL levels, but its concentration at stations 8,19 and 20 

exceeded the TEL values with occasional adverse biological effects. Additionally, the 

BaP level at stations 4, 13, 8 and 16 exceeded the PEL value, implying that BaP was 

likely to cause frequent adverse biological effects at these stations. 

The dibenzo(a,h)anthracene concentration at all of the stations was below the 

ERL and TEL levels, except for at stations 4,9,12,15 and 21,where levels exceeded the 

ERL or TEL values, and station 4, where the concentration of dibenzo(a,h)anthracene 

exceeded PEL values and might cause frequent adverse effects on the biological 

communities at this station. 

Therefore, most of the individual PAHs were likely to cause occasional or 

frequent adverse biological effects in the surface sediment of some of the stations, 

especially stations 13, 16, 17 and 7. 
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Apart from these compounds  the lowest safe values were not defined for some 

PAHs with high molecular weights, such as indeno benzo[k]fluoranthene, [1,2,3-

c,d]pyrene, benzo[b]fluoranthene and benzo[g,h,i]perylene. These PAHs are likely to 

cause toxic effects in marine environments(Feng et al.2007).In Klang Strait, 

benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[g,h,i]perylene and indeno[1,2,3-

c,d]pyrene were estimated at some stations at levels that can cause mild toxic effects but 

will not cause serious biological effects in the sedimentary environment in Klang Strait. 

The results obtained from the ecological risk assessment of PAHs in the surface 

sediments of Klang Strait are summarised in Table  4.14. These results were arranged 

based on the concentration of PAHs measured at 22 stations. Most of the PAHs, such as 

Nap, Ace, Phn, Fla, Pyr, Chy, BbF, BkF and BghiP, had HQ <1 at all of the stations, 

and other PAHs (Acy,Flr, Ant, BaA, BaP, and DibA) had significantly HQ>1 in some 

stations, such as 4, 7, 12, 13, 16 and 17, which are highlighted in Table  4.15. 

In general, the risk assessment revealed that total PAHs are likely to cause slight 

adverse effects on the biological communities at stations 4, 7, 12, 16 and 17 because 

these stations showed 0.1<PELq<0.5. Additionally, moderately adverse biological 

effectswere shown for station 13 (0.5<PELq<1.5), but the rest of the stations showed 

rare adverse ecological effects due to the PAH exposure in surface sediments (HQ<0.1). 

A cluster analysis showed a better view of PAH contaminations and classified 

the stations into three groups, with station 13 completely separate from the other 

stations and stations 4, 16 and 17 arranged in the same group(cluster B) with the same 

range of toxic effects (0.1<PELq<0.5). The other stations are arranged in cluster A 

(Figure  4.21). 
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Table  4.14, Toxicity guidelines of PAH compounds for sediment matrices (ng/g dry weight%)  
                     and average concentrations in the surface sediments of Klang Strait  
                     (E.R Long, Ingersoll, & MacDonald, 2006; E.R. Long et al., 1995) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ERL: effects range-low; ERM: effects range-median; 
 TELs: threshold effects level; PELs: probable effects level 

 
  

PAHs ER-L ER-M TEL PEL 

Nap 160 2100 34.6 391 

Ace 44 640 5.87 128 

Acy 16 500 6.71 88.9 

Flu 19 540 21.2 144 

Phe 240 1500 86.7 544 

Ant 853 1100 46.9 245 

Fla 600 5100 113 1494 

Pyr 665 26000 153 1398 

BaA 261 16000 74.8 693 

Chr 384 2800 108 846 

BbF 320 1880 - - 

BkF 280 1620 - - 

BaP 430 1600 88.8 763 

InP - - - - 

DibA 63.4 260 6.22 135 

BghiP 430 1600 - - 

Total 

PAHs 
4022 44792 1684 16770 



Table  4.15, Ecological risk calculated for individual PAHs in surface sediment of different   
                    stations 

 

 

Figure  4.21, Cluster analysis to classify stations based on adverse biological effect of PAHs in  
                       surface sediment 

 

Stations Nap Acy Ace Flr Phn Ant Fla Pyr BeA Chy BbF BkF BaP DibA BghiP PELq 

1 ND ND 0.02 0.23 0.08 0.36 ND 0.41 0.8 ND ND ND ND 0.00 ND 0.11 

2 ND ND 0.00 0.07 0.02 0.05 ND 0.09 0.05 ND ND ND ND 0.00 ND 0.02 

3 ND ND 0.06 0.82 0.16 0.24 0.03 0.04 0.00 ND ND ND ND 0.00 ND 0.09 

4 ND ND ND 0.01 0.02 0.24 0.01 0.01 0.10 0.06 0.45 ND 1.96 1.41 ND 0.28 

5 ND ND ND 0.12 0.02 0.05 0.01 0.14 ND ND 0.01 ND ND ND ND 0.02 

6 0.01 ND ND 0.40 0.07 0.15 0.02 0.02 0.26 ND ND ND ND ND ND 0.06 

7 0.00 ND ND 0.19 0.23 1.09 0.01 0.01 0.29 ND ND 0.03 ND ND ND 0.12 

8 0.01 ND 0.01 0.27 0.01 0.29 0.01 0.01 0.07 ND ND ND 0.16 ND 0.04 0.06 

9 ND ND ND 0.05 0.01 0.03 ND 0.02 0.28 0.23 ND ND ND 0.50 ND 0.08 

10 ND ND ND 0.16 0.01 0.04 ND 0.17 0.40 ND ND ND ND ND ND 0.05 

11 ND ND 0.01 0.34 0.03 0.15 0.01 0.02 0.04 ND ND 0.23 ND ND ND 0.06 

12 ND ND 0.01 0.28 0.05 0.95 0.01 0.24 1.12 ND ND ND ND 0.05 ND 0.18 

13 0.04 7.26 0.12 4.31 0.41 1.26 0.11 0.17 0.56 ND 0.01 0.02 1.08 ND 0.03 1.03 

14 0.01 ND ND 0.23 0.14 0.74 0.01 0.01 0.21 ND 0.01 ND 0.08 ND ND 0.10 

15 0.01 ND ND 0.06 0.02 0.02 0.00 0.00 0.11 ND 0.01 ND 0.00 0.96 ND 0.08 

16 0.28 ND 0.01 0.84 0.12 0.41 0.06 0.07 1.41 0.14 ND ND 1.07 ND ND 0.30 

17 0.02 ND 0.03 1.57 0.17 2.45 0.00 0.16 2.15 0.65 ND ND 0.00 ND ND 0.48 

18 ND ND ND 0.14 0.02 0.05 0.00 0.09 0.28 ND 0.20 ND 0.00 ND ND 0.05 

19 0.01 ND ND 0.25 0.07 0.14 0.01 0.01 0.39 ND 0.01 ND 0.14 ND ND 0.07 

20 0.01 ND ND 0.26 0.07 0.12 0.01 0.01 0.33 ND 0.00 ND 0.12 ND ND 0.06 

21 0.01 ND ND 0.25 0.03 0.07 0.01 0.01 0.26 ND 0.01 ND 0.00 0.96 ND 0.1 

22 ND ND ND 0.09 0.00 0.02 0.00 ND 0.08 ND 0.01 ND 0.00 ND ND 0.01 

Mean 0.02 0.33 0.01 0.50 0.08 0.41 0.01 0.08 0.42 0.05 0.03 0.01 0.21 0.18 ND 0.16 

S
ta

ti
o

n
s 



163 

4.2.2 Ecological risk assessment based on method of Lars Hakanson 

In this section, the sedimentological toxic factor (St�-value) and the potential 

ecological risk index Er� for different heavy metals were determined using several 

estimations. According to the method in chapter 3, the St�-value was determined based 

on the relative-abundance and sink-effect factors, which are the primary effective 

factors that control the degree of toxicity in sediments. The natural concentrations of 

metals in several ecological and biological media are given in Table  4.16, to review the 

results provided in this context. The value 1.0 was given to the metal with the highest 

average concentration, and the results were ranked in Table 4.18. 

Table  4.17 is useful to compare the concentrations of these seven metals; for 

example, the average concentration of Cd is 500 times lower than the corresponding 

value for Cr in igneous rocks. The highest value (marked with **) in Table 4.18 had 

been omitted for all of the metals to balance the effect of extreme abundance numbers. 

The abundance number was determined by dividing 4.4 (for Zn) by the sum the 

remaining abundance numbers. 

 

Table  4.16, Concentration of heavy metals (mg/kg dry weight%) in different medias (Bowen,  
                    1966; Pawlisz, Kent, Schneider, & Jefferson, 1997) 

 
Metals Igneous rocks Soil Sea water Marine sediment Mussel 

Cd 0.2 0.06 0.00011 1.1 1 

Cr 100 100 0.00005 31 1 

Cu 55 20 0.003 25 20 

Hg 0.08 0.03-0.8 0.00003 0.1 0.5 

As 1.8 6 0.003 4.2 1.4 

Pb 12.5 10 0.0003 23 2 

Zn 70 50 0.01 65 70 
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Table  4.17, Abundance of heavy metals in different media 

Metals 
Igneous 

rocks 
Soil 

Sea 

water 
Mussel 

Marine 

Sediment 

4

1
*∑  

Abundance 

number 

Cd 500 1667** 90.90 70 59 719.90 163.61 

Cr 1 1 200* 70 2 74 16.8 

Cu 1.8 5* 3.33 3.5 3 11.8 2.68 

Hg 1250** 240 333 140 650 1363 309.7 

As 56** 17 3.33 50 15 85.33 19.39 

Pb 8 10 33 35* 3 54 12.27 

Zn 1.4 2* 1 1 1 4.4 1 

• Highest value- not determined in column marked ∑ ∗�
5 . 

** highest value for each metal 

 
 

 

 

It is necessary, determining the sink factor to assess ecologic risk because this 

factor can help to evaluate the “fingerprint” of substance in the sediment. For example, 

according to the Table  4.18, Cr and Pb showed the lowest sink factor, which indicates 

that these elements cause the highest fingerprint in the sediment with high tendency to 

be deposited in the sediment. Cd shows the highest sink factor which means that Cd 

gives the lowest fingerprint in sediment and may be it has high concentration in the 

water compared to the sediment (Table  4.18).  
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Table  4.18, Determination of the sink-factor, sediment-logical toxic factors (S� ) and toxic-  
                     respond factor (T� ) for metals in the Klang Strait 
 

*it is calculated by dividing natural background value for marine water into background value for marine sediment in this study  

and multiplied in 1000. 
** It is calculated by dividing correct abundance number into element with low correct abundance (Zn=0.07) and the square- root  
was taken from these figures and the values also rounded. 
**** S� - Value for PAHs was calculated according to the Hakanson method which was calculated for organic compounds (PCB 
and PAHs) because there was not any back ground data of PAHs in study area. 

 

 

In the fourth column in Table  4.18, the sink factor was multiplied by the abundance 

number to correct the abundance number values with a high sink factor and weak 

fingerprint. Additionally, Cd and Hg had S� -values that were too high compared to 

those of the other metals. The BPI value should be determined to evaluate the potential 

ecological risk factor (Er) for these substances. According to the methodology, BPI is 

defined as “the N-content on the regression line for IG=10%.” The N-content was given 

as %ds (dry substance), and the IG content was given in mg/g (ds) ( Figure 4.22). In 

this research, the value of BPI was equal to 3.8 based on the linear regression equation. 

  

Metals 
Back ground 

water (mg/l) 

Back ground 

sediment in this 

study(mg/kg) 

*Sink 

factor 

Sink factor × 

abundance 

number 

**S� -Value 

Klang Strait 

S� -Value  

Hakanson 
T� -Value 

Cd 0.00 0.19 0.59 163.60 37.00 30.00 37 5 / BPI×  

Cr 0.00 5.71 0.01 0.36 2.00 2.00 2 5 / BPI×  

Cu 0.00 23.21 0.13 0.37 2.00 5.00 2 5 / BPI×  

Hg 0.00 0.08 0.38 112.70 40.00 40.00 40 5/ BPI×  

As 0.00 18.79 0.16 2.82 7.00 10.00 7 5 / BPI×  

Pb 0.00 39.80 0.01 0.07 1.00 5.00 1 5 / BPI×  

Zn 0.01 141.22 0.07 0.07 1.00 1.00 1 5 / BPI×  

PAHs*** - - - - - 40 40 / 5BPI×  



 

 

Figure  4.22, Relationship between the organic content and N-content in the Klang Strait 

 

The results of the ecological risk assessment are summarised in Table  4.19. The 

potential ecological risk values for all of the metals except Hg and Cd were estimated as 

low (Er�< 40) at all of the stations (Figure 4.22).  

The Er�-values for Hg and Cd were significantly greater than those of the other 

metals and varied between moderate levels and high levels of potential ecological risk at 

all of the stations except the control point. In this study, the potential risk value for all of 

the contaminants ranked in the following sequence: Cd > Hg>As >Cr> Pb >Cu >Zn 

(Figure  4.23). The values of the risk index (RI) revealed that most of the stations (1-4, 

5,6, 9-12, 18 and 21) are at moderate ecological risk, and stations 7, 8, 13, 14, 15, 19 

and 20 were at considerable ecological risk. Stations 16 and 17 were in very high risk 

and only station 22 (the control point) was at low risk. Moreover, the statistical tests 

showed that there was a significant difference (p<0.05, df = 21) in the Er�-values and RI 

among the different stations.The cluster analysis was used to categorise stations into 4 

different ranges of ecological risk value (Figure 4.24). The stations arranged in cluster 

A is in the same range of ecological risk (300< IR <600) while cluster B includes 

stations are in moderate risk (150< IR <300). 
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According to the statistical tests, the risk values of stations 22 (cluster C) and 

16and 17 (cluster D) are significantly separated from other stations. Stations 16 and 17 

are in very high level of risk (RI> 600) and only station 22 (the control point) is in the 

low range (IR<150) of ecological risk. 

 

Table  4.19, Risk factor ( iEr value− ) and risk indices (RI-value) for investigated 22 stations in    
                    the Klang Strait 

 

Statio

ns 

As 

6iSt =
 

Cu 

2iSt =
 

Cr 

2iSt =  

Cd 

48iSt =
 

Pb 

1iSt =
 

Hg 

40iSt =
 

Zn 

1iSt =
 

PAHs 

1iSt =  

8

1i

IR Er
=

=∑
 

1 28.18 0.43 1.67 158.17 1.47 91.20 0.37 27.99 294.11 

2 22.48 0.42 1.40 113.21 1.2 66.55 0.25 3.62 225.11 

3 28.40 0.42 1.68 133.25 1.72 83.23 0.40 7.11 293.82 

4 14.17 0.34 1.51 114.51 1.34 68.35 0.33 45.24 299.94 

5 12.73 0.31 1.14 112.13 1.19 70.75 0.30 4.23 245.21 

6 18.09 0.44 1.42 126.21 1.23 84.53 0.36 7.42 285.6 

7 13.34 0.51 2.21 165.75 1.38 272.07 0.35 12.46 448.47 

8 19.23 0.40 1.77 131.08 1.32 121.40 0.26 8.33 323.03 

9 25.38 0.41 1.84 130.54 1.29 87.55 0.26 9.03 287.8 

10 25.14 0.42 1.40 162.50 1.45 107.95 0.27 11.14 201.53 

11 17.75 0.47 1.36 197.71 1.36 139.37 0.23 9.64 224.64 

12 18.74 0.38 1.77 204.21 1.46 133.15 0.25 25.83 298.59 

13 35.11 0.30 2.28 193.38 1.81 150.00 0.35 63.19 446.66 

14 22.01 0.34 1.61 138.13 1.34 115.02 0.24 10.22 309.74 

15 29.18 0.33 1.73 182.00 1.8 140.83 0.28 10.58 434.50 

16 42.03 0.41 2.82 225.33 2.16 213.17 0.90 44.51 631.93 

17 39.49 0.40 2.57 206.92 2 189.77 0.90 57.04 611.11 

18 15.79 0.29 1.69 140.83 1.88 84.72 0.37 13.02 287.88 

19 25.26 0.33 1.88 131.08 1.28 100.83 0.37 9.37 313.90 

20 18.73 0.42 1.79 138.67 1.71 108.75 0.38 8.29 324.15 

21 14.98 0.36 1.56 123.50 1.32 80.00 0.34 8.61 208.45 

22 10.27 0.33 0.70 94.79 0.78 50.70 0.21 1.81 75.40 

Mean 22.56 0.38 1.71 151.54 1.48 117.41 0.36 18.35 323.53 

SD 11.3 0.12 0.52 50.57 0.48 40.2 0.22 18.2 120.6 

Min 10.27 0.31 0.70 94.79 0.78 50.7 0.21 1.81 75.4 

Max 42.03 0.51 2.82 206.92 2.16 231.17 0.9 63.19 631.93 



 

Figure  4.23, Box-Whisker plots of the potential ecological risk (Er�) variation for metals and  
                      PAHs in Klang Strait (The whisker shows the minimum and maximum        
                      concentration and the line of each plot is the mean value) 
 

Figure  4.24, Cluster analysis to classify stations based on ecological risk values in Klang Strait 
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4.3 Water-quality assessment 

In the marine environment, a comprehensive assessment of water quality should 

include the monitoring of hydrological, physicochemical, and biological variables. 

Information about these properties can provide meaningful and practical conclusions to 

water-quality monitoring because of the direct effect of the properties on chemical 

components and biological communities (EPA, October 2001). 

 

4.3.1 Hydrological parameters 

All coastal water bodies are influenced by other sources, from atmospheric to 

marine, via the hydrological cycle, hydrodynamic activities, river discharge, and 

underground transport; these systems are directly inter-connected. Thus, complete 

interpretations of water quality assessments are strongly dependent upon knowledge of 

hydrology and hydrodynamic properties, such as variations of rainfall and river 

discharge (stream flow), suspended loads, climatic conditions, size of water bodies, and 

tidal flow (Brooks et al., 2011; Ficklin, Luo, Stewart, & Maurer, 2012; Yahya, Rahman, 

& Abbasi, 2012). 
Tidal circulation is semidiurnal in the Klang Strait; the level of the surface water 

rises and falls with an average range of 1.4 m to 4.2 m within approximately 12.5 hours, 

depending on the position of the sun and moon( Yap, 2005). The seasonal alternation 

between the northeast monsoon (November to March) and southeast monsoon (May to 

September) causes the main rainfall pattern along the Klang Strait.  
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In general, the beginning of the northeast monsoon occurs between the 11th and 

20th of November, and heavy rainfall usually occurs in the early part of the monsoon 

season (Cheang, 1988). 

The southwest monsoon occurs from May until August and causes a decrease in 

rainfall. During the monsoon break, which is often between July and September, heavy 

rainfall occurs because of converging low-level winds from the east or southeast with 

the south westerly winds from the Bay of Bengal and Sumatra( Yap, 2005). The details 

of the annual rainfall and river discharges in Klang Strait were described in section 

3.1.2. 

In the present study, the northeast monsoon (rainy season) started in November 

2009 and lasted until March 2010. The southwest monsoon (dry season) started from 

June 2010 until October 2010, and the monsoon break was observed at the end of the 

September, with an increase of daily rainfall (280 mm). April and May were considered 

as the inter-monsoon period with a high amount of daily rainfall.  

During the present study, the monthly average rainfall ranged from a minimum 

of 190 mm in August to a maximum of 410 mm in April and May; the average was 

266.91 mm, while the annual rainfall was 236.25 mm. November, April and May were 

the months with the greatest number of rainy days (Figure  4.25). 

Other researchers have reported that the river discharge at Klang Strait is highly 

correlated with rainfall patterns, and as expected, the maximum river discharges were 

measured in November 2009 and April and May 2010. 
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Figure  4.25, Monthly and annual mean rainfalls (mm) from November 2009 until November  
                      2010 in Klang Strait 
 

4.3.2 Physical and chemical parameters 

Water quality data from 22 stations during 12 months of sampling are 

summarised in Table  4.20 and Table  4.21. All of the physicochemical parameters 

showed significant differences (P < 0.05) in the observed spatial and temporal scales 

based on the Kruskal-Wallis test (Table  4.22), and only temperature presented 

insignificant differences on a spatial scale. 

To better understand the temporal and spatial variation, the water quality was 

described according to the different sites. The coast of Klang Strait was divided into 

four discrete hydrochemical sites (i.e., North Port, South Port, West Port and the control 

point), which exhibited specific characteristics of water quality that depended on the 

relative significance of local/regional marine/land controls as well as the type and 

intensity of anthropogenic activities conducted at each of the sites. 

Generally, on the spatial scale, the water quality parameters significantly 

different among the different sites, and a Duncan test showed that water quality 

Parameters (except temperature) at South Port and control point were not homogenous 
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with those of the other sites (North Port and West Port). There were no clear significant 

differences of water quality between West Port and North Port, and only nitrite (NO�

) 

and silicate (SiO�
�
) had varied significantly (Table  4.23). 

The control area was characterised by the lowest concentrations of nutrients, 

total solids and chlorophyll a (chl-a) in comparison with other sites, and the range in 

values of salinity, dissolved oxygen (DO), oxygen saturation (O�sat) and water 

transparency (Secchi depth) was higher in other areas. South Port was characterised by 

the highest concentration of nutrients (except for silicate) and total solids, while the 

lowest levels of salinity, dissolved oxygen, oxygen saturation and water transparency 

were found at this site. 
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Table  4.20, Statistical description of physical parameters 

 
T 

(ºC) 
pH 

Salinity 
(%) 

Shecchi 
depths 

(m) 

TS 
(mg/l) 

DO 
(mg/l) 

O2sat 
(%) 

Current 
(Knot) 

1.Mean 30.27 8.05 30.15 64.50 69.26 6.31 97.58 13.59 

SD 0.95 0.13 1.51 24.05 13.12 0.56 11.47 0.29 

Min 29.01 7.82 27.29 34.00 49.47 4.98 72.00 13.09 

Max 31.67 8.39 32.29 114.00 89.08 7.07 114.00 14.14 

2.Mean 30.25 8.00 30.81 74.53 68.78 6.26 99.14 13.50 

SD 0.95 0.08 1.52 24.88 13.17 0.56 11.68 0.26 

Min 28.99 7.82 27.90 35.00 47.45 5.04 73.00 13.06 

Max 31.64 8.15 33.09 118.00 88.51 7.09 115.00 13.94 

3.Mean 30.29 8.09 31.24 48.06 72.26 6.14 93.97 13.02 

SD 0.98 0.11 1.71 13.71 11.84 0.58 11.38 0.33 

Min 28.78 7.91 27.89 30.00 53.56 4.93 71.00 12.53 

Max 31.76 8.29 33.79 78.00 89.19 6.98 113.00 13.64 

4.Mean 30.09 8.08 30.81 62.08 65.32 6.21 95.86 13.13 

SD 0.94 0.17 1.82 25.48 18.19 0.57 12.69 0.41 

Min 28.43 7.82 27.10 30.00 39.36 4.99 68.00 12.53 

Max 31.51 8.46 33.33 111.00 89.96 7.05 115.00 13.94 

5.Mean 30.19 8.02 31.02 72.06 64.23 6.28 98.83 13.26 

SD 1.00 0.08 1.61 27.42 19.01 0.57 12.89 0.37 

Min 28.64 7.82 27.90 30.00 39.43 5.09 70.00 12.74 

Max 31.70 8.16 33.39 123.00 88.65 7.12 117.00 13.94 

6.Mean 30.25 8.11 31.36 46.67 71.11 6.03 93.25 13.40 

SD 1.01 0.13 1.73 16.54 15.44 0.58 12.73 0.27 

Min 28.72 7.96 27.90 29.00 46.87 4.9 66.00 12.88 

Max 31.75 8.42 33.83 81.00 92.12 6.92 113.00 13.94 

7.Mean 30.08 8.09 30.86 61.81 65.86 6.09 96.08 13.47 

SD 0.96 0.10 1.70 28.30 22.18 0.58 14.54 0.25 

Min 28.45 7.96 27.79 22.00 37.36 4.69 61.00 13.05 

Max 31.53 8.33 33.33 118.00 93.79 6.93 112.00 13.84 

8.Mean 30.17 8.01 30.98 71.97 63.73 6.33 98.86 13.47 

SD 0.98 0.05 1.64 23.99 20.25 0.53 14.47 0.32 

Min 28.57 7.93 27.90 37.00 37.43 5.2 64.00 12.85 

Max 31.63 8.09 33.39 119.00 89.57 7.1 115.00 14.04 

9.Mean 30.16 8.07 30.86 46.89 71.31 5.8 88.64 13.17 

SD 1.03 0.10 1.44 16.55 19.44 0.55 12.94 0.26 

Min 28.62 7.95 28.10 23.00 45.87 4.6 59.00 12.77 

Max 31.60 8.25 32.83 85.00 93.01 6.7 110.00 13.64 

10.Mean 30.06 8.04 30.44 66.78 63.63 6.195 99.25 13.60 

SD 0.98 0.10 1.45 20.19 20.86 0.56 13.70 0.29 

Min 28.45 7.89 27.68 26.00 36.60 4.96 72.00 13.16 

Max 31.53 8.33 32.53 100.00 91.34 7.09 115.00 14.14 

11.Mean 30.14 8.00 30.58 68.69 63.93 6.26 100.36 13.54 

SD 1.02 0.08 1.47 22.96 20.97 0.65 14.43 0.27 

Min 28.58 7.82 27.88 23.00 36.60 5.030 72.00 13.09 

Max 31.64 8.14 32.60 106.00 94.37 7.18 116.00 14.04 
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Table 4.22 (Continued) 

 
T 

(ºC) 
pH 

Salinity 
(‰) 

Shecchi 
depths 

(m) 

TS 
(mg/l) 

DO 
(mg/l) 

O2sat 
(%) 

Current 
(Knot) 

12.Mean 30.06 8.04 30.75 57.81 70.35 6.072 96.06 13.39 
SD 1.10 0.09 1.48 16.00 16.30 0.621 12.33 0.25 
Min 28.18 7.95 27.90 26.00 48.70 4.82 71.00 13.08 
Max 31.68 8.26 32.80 82.00 94.87 7.050 114.00 13.84 

13.Mean 29.94 7.97 30.51 63.33 75.88 6.28 100.97 13.22 
SD 1.03 0.10 1.48 22.20 9.26 0.59 12.92 0.32 
Min 27.80 7.80 27.77 17.00 60.10 5.05 74.00 12.50 
Max 31.23 8.20 32.53 94.00 95.37 7.08 115.00 13.74 

14.Mean 30.16 7.96 30.63 65.28 74.15 6.37 103.53 13.33 
SD 1.03 0.06 1.44 21.07 10.26 0.60 12.28 0.30 
Min 28.10 7.85 28.00 24.00 56.15 5.13 77.00 12.79 
Max 31.53 8.05 32.63 94.00 88.89 7.17 116.00 13.84 

15.Mean 30.15 8.01 30.77 57.33 95.63 6.25 96.83 12.91 
SD 1.07 0.04 1.46 20.94 28.81 0.60 11.89 0.24 
Min 28.12 7.92 28.10 24.00 66.35 5.03 71.00 12.60 
Max 31.54 8.09 32.80 90.00 145.45 7.050 112.00 13.44 

16.Mean 29.79 8.02 26.10 27.69 134.97 5.510 81.78 13.17 
SD 0.97 0.12 0.77 19.32 11.58 0.47 8.77 0.31 
Min 27.69 7.87 24.46 8.00 109.40 4.32 66.00 12.44 
Max 31.11 8.50 27.18 90.00 154.00 6.00 93.00 13.61 

17.Mean 29.99 8.00 26.12 25.36 117.68 5.49 81.67 13.18 
SD 0.97 0.08 0.80 5.67 20.33 0.478 8.53 0.41 
Min 28.22 7.89 24.04 10.00 84.40 4.32 68.00 12.37 
Max 31.33 8.20 27.34 34.00 144.19 6.00 93.00 14.10 

18.Mean 30.02 8.05 30.11 49.51 108.96 6.46 96.86 13.43 
SD 0.98 0.05 1.29 15.19 29.63 0.56 13.40 0.28 
Min 28.22 7.95 27.40 3.30 50.39 4.80 69.00 12.93 
Max 31.44 8.13 31.98 75.00 155.29 6.86 111.00 13.94 

19.Mean 30.10 8.09 29.45 39.44 117.62 5.82 92.69 13.12 
SD 0.99 0.10 0.63 9.81 19.56 0.45 7.97 0.22 
Min 28.36 8.00 28.00 20.00 71.64 4.78 70.00 12.72 
Max 31.48 8.37 30.33 60.00 138.70 6.26 105.00 13.37 

20.Mean 30.10 8.09 29.54 42.03 118.63 5.834 93.08 13.13 
SD 0.99 0.10 0.67 8.77 19.01 0.470 7.79 0.22 
Min 28.34 7.98 28.17 22.00 71.86 4.80 78.00 12.72 
Max 31.48 8.38 30.53 58.00 136.78 6.35 107.00 13.37 

21.Mean 30.26 8.03 30.50 52.67 66.96 6.18 99.97 13.46 
SD 0.95 0.05 1.07 10.36 12.83 0.51 10.08 0.27 
Min 28.43 7.95 28.04 30.00 53.67 5.17 81.00 13.01 
Max 31.58 8.14 31.98 70.00 99.70 7.02 112.00 13.94 

22.Mean 30.17 8.03 31.30 159.00 46.41 6.68 105.67 13.39 
SD 1.08 0.06 1.62 25.06 4.83 0.42 11.00 0.44 
Min 28.07 7.93 28.08 110.00 40.00 5.84 83.00 12.57 
Max 31.76 8.13 33.92 212.00 57.89 7.22 118.00 14.14 

Average 30.12 8.04 30.22 60.16 80.30 6.10 95.95 13.31 
SD 0.99 0.10 1.97 32.16 29.25 0.64 13.17 0.36 
Min 27.69 7.80 24.04 3.30 36.60 4.32 59.00 12.37 
Max 31.76 8.50 33.92 212.00 155.29 7.22 118.00 14.14 
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Table  4.21, Statistical description of chemical parameters 

 3NO−

(mg/l) 
2NO−

(mg/l) 
3NH

(mg/l) 
4NH +

(mg/l) 
DIN
(mg/l) 

3
4PO −

(mg/l) 

4
4SiO −

(mg/l) 

1Ch a−
(µ/l) 

1.Mean 0.76 0.015 0.055 0.542 1.32 0.108 4.38 8.16 
SD 0.16 0.008 0.030 0.131 0.22 0.035 2.19 5.12 
Min 0.45 0.004 0.020 0.242 0.87 0.052 1.00 3.65 
Max 1.20 0.028 0.140 0.785 1.70 0.157 8.18 19.2 

2.Mean 0.51 0.009 0.045 0.467 0.99 0.096 3.99 6.20 
SD 0.19 0.004 0.023 0.115 0.29 0.038 1.92 2.88 
Min 0.23 0.004 0.019 0.238 0.58 0.037 1.20 3.64 
Max 1.10 0.017 0.120 0.792 1.91 0.157 6.98 14.6 

3.Mean 0.80 0.014 0.065 0.618 1.43 0.117 3.39 7.64 
SD 0.16 0.005 0.034 0.070 0.21 0.041 1.34 3.57 
Min 0.53 0.007 0.021 0.496 1.04 0.060 1.20 3.85 
Max 1.07 0.023 0.156 0.725 1.75 0.201 5.90 15.60 

4.Mean 0.87 0.016 0.061 0.621 1.51 0.142 8.96 7.84 
SD 0.42 0.006 0.036 0.160 0.55 0.057 3.46 4.09 
Min 0.39 0.005 0.022 0.423 0.83 0.053 2.60 3.80 
Max 1.78 0.024 0.166 0.990 2.51 0.280 16.40 14.78 

5.Mean 0.53 0.009 0.046 0.500 1.04 0.103 6.10 6.20 
SD 0.21 0.004 0.020 0.110 0.32 0.045 2.74 2.86 
Min 0.30 0.004 0.019 0.376 0.69 0.037 2.10 3.40 
Max 0.98 0.017 0.086 0.730 1.73 0.206 12.00 12.60 

6.Mean 0.85 0.016 0.065 0.644 1.51 0.120 5.32 8.81 
SD 0.20 0.005 0.034 0.100 0.29 0.046 2.65 4.80 
Min 0.56 0.009 0.024 0.511 1.08 0.066 1.90 3.76 
Max 1.32 0.023 0.156 0.906 2.24 0.223 12.30 17.20 

7.Mean 0.70 0.009 0.068 0.578 1.29 0.110 8.72 7.42 
SD 0.16 0.007 0.033 0.089 0.24 0.036 4.02 3.64 
Min 0.29 0.001 0.033 0.371 0.68 0.041 1.90 3.36 
Max 1.04 0.024 0.176 0.715 1.72 0.168 17.00 14.50 

8.Mean 0.45 0.011 0.045 0.448 0.91 0.090 8.36 6.49 
SD 0.17 0.006 0.017 0.077 0.23 0.026 3.83 3.17 
Min 0.18 0.001 0.021 0.314 0.51 0.037 3.10 2.00 
Max 0.82 0.026 0.090 0.544 1.31 0.161 14.50 11.50 

9.Mean 0.73 0.012 0.062 0.585 1.32 0.125 7.01 9.92 
SD 0.17 0.007 0.031 0.079 0.24 0.066 3.26 5.66 
Min 0.40 0.003 0.032 0.428 0.85 0.066 2.20 3.74 
Max 1.20 0.025 0.140 0.715 1.87 0.283 12.80 18.90 

10.Mean 0.94 0.012 0.061 0.659 1.61 0.114 9.64 4.94 
SD 0.44 0.007 0.033 0.116 0.50 0.042 2.65 1.48 
Min 0.29 0.002 0.021 0.371 0.69 0.052 4.10 2.10 
Max 2.24 0.030 0.160 0.854 2.92 0.213 15.20 8.20 

11.Mean 0.57 0.012 0.045 0.475 1.05 0.084 7.22 5.55 
SD 0.34 0.006 0.023 0.107 0.39 0.036 2.60 2.75 
Min 0.18 0.006 0.011 0.314 0.51 0.041 2.40 3.14 
Max 1.54 0.026 0.090 0.683 1.95 0.173 12.30 13.50 
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Table 4.23 (Continued) 

 
3NO−

(mg/l) 
2NO−  

(mg/l) 
3NH  

(mg/l) 
4NH +  

(mg/l) 
DIN  
(mg/l) 

3
4PO −  

(mg/l) 

4
4SiO −  

(mg/l) 

1Ch a−  

(µ/l) 

12.Mean 0.94 0.012 0.060 0.689 1.64 0.121 8.63 9.22 
SD 0.24 0.006 0.036 0.127 0.36 0.037 3.59 4.45 
Min 0.40 0.003 0.032 0.428 0.85 0.060 3.80 4.10 
Max 1.39 0.024 0.140 0.943 2.35 0.185 16.00 16.97 

13.Mean 0.99 0.014 0.034 0.765 1.77 0.118 12.71 7.15 
SD 0.36 0.007 0.016 0.234 0.55 0.030 4.75 3.46 
Min 0.08 0.007 0.010 0.305 0.43 0.056 5.40 2.20 
Max 1.71 0.028 0.069 1.070 2.50 0.200 22.90 14.80 

14.Mean 0.62 0.011 0.038 0.537 1.17 0.085 9.22 5.96 
SD 0.25 0.005 0.017 0.124 0.35 0.038 2.98 2.42 
Min 0.05 0.005 0.019 0.211 0.47 0.037 4.30 1.80 
Max 1.04 0.021 0.072 0.761 1.81 0.175 17.00 12.30 

15.Mean 1.09 0.015 0.047 0.759 1.86 0.113 9.68 7.70 
SD 0.47 0.008 0.015 0.217 0.54 0.035 4.07 3.84 
Min 0.54 0.005 0.028 0.400 1.08 0.060 2.70 1.32 
Max 2.50 0.031 0.078 1.122 3.24 0.196 14.60 16.50 

16.Mean 1.35 0.017 0.122 0.883 2.25 0.171 3.59 11.39 
SD 0.55 0.006 0.044 0.247 0.78 0.037 2.18 3.50 
Min 0.67 0.010 0.071 0.568 1.25 0.119 1.20 6.17 
Max 2.80 0.029 0.230 1.676 4.49 0.267 9.40 17.90 

17.Mean 1.07 0.016 0.115 0.835 1.92 0.152 3.87 10.65 
SD 0.21 0.006 0.047 0.168 0.33 0.026 2.21 3.83 
Min 0.67 0.008 0.061 0.568 1.25 0.106 1.10 4.90 
Max 1.60 0.028 0.230 1.224 2.66 0.209 8.50 16.90 

18.Mean 0.72 0.015 0.057 0.612 1.34 0.107 7.69 7.91 
SD 0.20 0.005 0.015 0.125 0.31 0.035 3.82 3.74 
Min 0.41 0.006 0.026 0.433 0.86 0.053 1.90 3.77 
Max 1.00 0.024 0.089 0.900 1.76 0.189 18.50 15.60 

19.Mean 0.95 0.015 0.091 0.719 1.68 0.148 4.46 8.43 
SD 0.37 0.006 0.042 0.211 0.51 0.039 2.47 3.42 
Min 0.40 0.007 0.041 0.428 0.84 0.082 0.90 5.18 
Max 1.78 0.024 0.200 1.146 2.93 0.226 8.20 16.30 

20.Mean 0.91 0.013 0.084 0.704 1.62 0.128 4.16 7.64 
SD 0.37 0.005 0.045 0.197 0.51 0.036 2.21 3.17 
Min 0.38 0.006 0.034 0.418 0.81 0.074 1.20 4.10 
Max 1.73 0.022 0.210 1.120 2.86 0.226 8.00 14.20 

21.Mean 0.65 0.013 0.055 0.553 1.21 0.114 7.71 7.40 
SD 0.31 0.006 0.020 0.171 0.48 0.031 3.17 4.60 
Min 0.35 0.005 0.011 0.355 0.79 0.070 3.50 2.80 
Max 1.50 0.024 0.093 1.000 2.52 0.176 15.40 16.00 

22.Mean 0.41 0.007 0.029 0.342 0.76 0.073 1.29 4.22 
SD 0.09 0.002 0.011 0.076 0.14 0.022 0.48 1.29 
Min 0.20 0.004 0.011 0.224 0.43 0.034 0.20 2.67 
Max 0.60 0.012 0.063 0.516 1.03 0.126 2.00 7.80 

Average 0.79 0.013 0.061 0.615 1.42 0.115 6.64 7.58 
SD 0.37 0.006 0.038 0.195 0.54 0.045 4.02 4.02 
Min 0.05 0.001 0.010 0.211 0.43 0.034 0.20 1.32 
Max 2.80 0.031 0.230 1.676 4.49 0.283 22.90 19.20 
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Table  4.22, Values of main effects Kurskal Wallis in temporal and spatial scales (p< 0.05) 

Station 

(Spatial) T Ph Salinity *SD TS DO O2sat Current 
3NO −  

2NO −  
3NH  

4NH +  DIN  
3
4PO −  4

4SiO −  1Ch a−  

Chi-Square 19 131 272.8 346 390 162 161 227 337 140 297 357 367 217 382 161 

df 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 

P-value 0.54 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Season 

(Temporal) 

Chi-Square 

716 253 426 174 227 547 522 384 178 281 241 110 146 289 108 352 

df 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

P-value <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

*Secchi Depth 

Table  4.23, Values of main effects Kurskal Wallis between the North Port and West Port (p< 0.05) 

Site 1 and 2 T Ph Salinity *SD TS DO O2sat Current 
3NO −  

2NO −  
3NH  

4NH +  DIN  
3
4PO −  4

4SiO −  1Ch a−  

Chi-Square 2.25 2.87 1.01 1.31 1.72 0.55 2.65 0.60 3.12 10.71 3.38 7.94 3.43 3.12 118.44 0.29 

df 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

P-value 0.13 0.11 0.31 0.25 0.19 0.46 0.10 0.44 0.05 <.001 0.07 0.00 0.07 0.05 <.001 0.59 
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The mean water temperature oscillated between 27.69ºC in October 2010 and 

31.76ºC from May 2010 until August 2010 (the dry season). Temperature was correlated 

with salinity (r= 0.544; p<0.001) (Figure  4.26). The minimum pH (7.80) was at station 13, 

the pH reached 8.50 at station 4, and there were no spatial and temporal trends throughout 

the year (Figure  4.27). 

The mean current speed varied from a minimum of 12.37 knots (0.54 m/s) in 

August 2010 to a maximum of 14.14 knots in November 2009 and February 2010, and this 

temporal pattern was similar in all of the sampling sites. The maximum current speed was 

in the North Monsoon period due to the increased movement of surface water, strong winds 

and wave action. The spatial pattern of the currents was the same from November 2009 

until April 2010 with fast currents in the control area and slow currents in South Port, while 

there was no clear pattern from May 2010 until October 2010 (Figure  4.28). Likewise, the 

current speed was significantly correlated with the total solid NO�

, DIN, PO�

�
 and chl-a 

levels (Table  4.24).  

The mean dissolved oxygen and oxygen saturation levels varied between 4.32 mg/l 

with 59% saturation at station 16 (August 2010) and 7.22 mg/l with 118% saturation at the 

control point. High values occurred from November 2009 until May 2010 (the North 

Monsoon and Inter-Monsoon periods), but after this time, there was a decrease until August 

for all of the sites, and the surface water showed spatial variability with both oversaturation 

and under-saturation from November 2009 until May 2010 (Figure  4.29 and Figure  4.30). 

All of the sites except for South Port were oversaturated with oxygen during this period, 

but after May 2010, all of the sites were on average under-saturated, most likely due to the 

strong winds and high action of waves during the North monsoon, which caused an 

increased dissolution of oxygen in the water.  
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A high correlation was observed between oxygen saturation, and dissolved oxygen 

moreover had significant negative correlation with NO�

, DIN, PO�

�
, chl-a and total solids. 

Salinity ranged between a minimum of 24.04 ‰ (ppt) at stations 16 and 17 (South 

Port) to a maximum of 33.92 ‰ at the control station (Figure  4.31). Likewise, the salinity 

showed a seasonal trend, with a high concentration of salinity from June to September 2010 

(dry season) at all of the stations when the daily rainfall decreased and a low concentration 

during the northeast monsoon, especially in November 2009 and December 2010. This 

seasonal pattern was similar for all of the sites. The spatial variation of salinity was usually 

the same among the sampling sites. The South Port site had lower salinity, and the 

difference among the three other sites was more significant. The salinity variation among 

the other sampling sites was always insignificant. A significant negative correlation was 

found between salinity and nutrients except for silicate and ammonia. 

The levels of mean total solids (TS) and water transparency were strongly seasonal. 

The total solid levels varied between 36.60 mg/l at the control stations and 146.38 mg/l at 

station 16 (Figure  4.33). The levels of total solids increased for all of the sites from 

November 2009 to March 2010 (Northeast Monsoon) when rainfall and river discharges 

were high and the effect of strong winds and waves was greater. Total solids decreased 

after March 2010, and the lowest value occurred in June 2010, perhaps caused by 

decreasing marine current speeds, rainfall and river discharges. The levels of total solids 

were significantly correlated with other parameters, including O�sat,  DO, NO�

, DIN, 

PO�
�
,chl-a and trophic indices. The mean water transparency varied between 30.3 cm at 

station 16 and 224 cm at the control point, and at all of the sites, the lowest values were 

observed between November 2009 and May 2010 (Northeast Monsoon and Inter 

Monsoon), and high values occurred during the dry season (Figure  4.32). The water 

transparency was strongly correlated with DO and O�sat. 
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The mean values of chlorophyll a and some of the nutrients usually showed the 

same spatial pattern, such as  NO�

, NH�

�,NH�, PO�
�
 and DIN: their high values occurred at 

stations 16 and 17 at South Port, while the lowest levels were observed at the control point 

and intermediate stations located in the middle part of Klang Strait, such as stations 

2,5,8,11, 13 and 21. 

Throughout the year, the dissolved inorganic nitrogen (DIN) concentration ranged 

between 0.43 at the control station and 4.49 at station 22. There was a seasonal trend over 

this period, and the highest values occurred during the period of more intense rainfall 

(northeast monsoon and inter-monsoon) (Figure  4.36). 

The mean concentration of nitrate ranged from 0.05 at station 14 to 2.8 at station 16. 

Nitrate was the most abundant nitrogen compound, and its seasonal pattern was similar to 

DIN variation (Figure  4.34). Nitrate exhibited a strong seasonal trend at all of the sites, 

with decreasing mean concentration from the northeast monsoon to southwest monsoon 

period. For all of the sites, the highest concentrations were observed between November 

2009 and May 2010 except for March 2010, and the lowest levels occurred from July 2010 

to October 2010. Nitrate levels significantly correlated with the DIN, PO�
�
, chlorophyll a 

and trophic indices. Ammonium ranged from 0.211 to 1.676 and showed the same pattern 

as nitrate during the one year of sampling (Figure  4.38). 

The nitrite contribution to DIN was negligible and varied between 0.001 and 0.031, 

but its mean concentrations were lower than 0.03 at all of the stations. The highest mean 

concentration of NO�

was in December 2010, and the lowest values were found in 

November 2009 and January 2010 (Figure  4.35). There was no clear spatial pattern 

throughout the year, but in general, the highest values occurred from May 2010 to October 

2010 (during the dry season). 
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Ammonia concentration varied from 0.21 to 1.67, with the highest concentration 

observed in July 2010 and the lowest concentration observed in February 2010. The 

concentration of ammonium was significantly higher at South Port from July 2010 to 

October 2010 and decreased from November 2009 to Jun 2010 (Figure  4.38). 

The concentration of orthophosphates was highest in November 2009 and 

December 2010 and lowest in March 2010 (Figure  4.40). Differences among the sites were 

clearer in this period and were correlated with chlorophyll a levels. Throughout the year, 

the chlorophyll a concentration in Klang Strait was under 20 mg/L at all of the sites, 

ranging from 1.32 mg/l at station 15 to 19.20 mg/l at station 1(Figure  4.39). For all of the 

sites, the highest values of chlorophyll a were observed between January 2010 and June 

2010. In present study, the ratio between high dissolved inorganic nitrogen (DIN) and 

soluble reactive phosphorus was considered to assess the N: P ratio. 

The N: P ratio varied between 4.14 and 53.90, and its average value was lower than 

the normal Redfield ratio (16:1) in all of the months except June, February and March 

2010, during which it exceeded the Redfield ratio (Figure  4.42). The mean concentration of 

 SiO�
�
 ranged from 0.24 mg/l at the control station to 22.90 mg/l at station 13 (close to the 

container terminal), and there were no significant seasonal trends for any of the sites. The 

concentration of  SiO�
�
 was significantly higherat West Port than at the other sites, while 

the lowest value of  SiO�
�
 occurred at the control station (Figure  4.41). In general, all of 

the nutrients except for silicate were highly positively correlated with each other and 

chlorophyll a. 
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Figure  4.26, Spatial variation of temperature (ºC) in water during twelve months of sampling 

 

 

Figure  4.27, Spatial variation of pH in water during twelve months of sampling 
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Figure  4.28, Spatial variation of current in water0.54 m/s during twelve months of sampling 

 

 

Figure  4.29, Spatial variation of dissolved oxygen (mg/l) in water during twelve months  
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Figure  4.30, Spatial variation of oxygen saturation (%) in water during twelve months of sampling 

 

 

Figure  4.31, Spatial variation of salinity (‰) in water during twelve months of sampling 
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Figure  4.32, Spatial variation of secchi depth (m) in water during twelve months of sampling 

 

 

Figure  4.33, Spatial variation of total solid (mg/l) in water during twelve months of sampling 
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Figure  4.34, Spatial variation of nitrate (mg/l) in water during twelve months of sampling 

 

 

Figure  4.35, Spatial variation of nitrite (mg/l) in water during twelve months of sampling 
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Figure  4.36, Spatial variation of DIN (mg/l) in water during twelve months of sampling 

 

 

Figure  4.37, Spatial variation of ammonia (mg/l) in water during twelve months of sampling 

  

D
IN

 (
m

g
/l

) 
A

m
m

o
n

ia
 (

m
g

/l
) 



188 

 

Figure  4.38, Spatial variation of ammonium (mg/l) in water during twelve months sampling 

 

 

Figure  4.39, Spatial variation of chlorophyll a (µ/l) in water during twelve months sampling 
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Figure  4.40, Spatial variation of orthophosphate (mg/l) in water during twelve months sampling 

 

Figure  4.41, Spatial variation of silicate (mg/l) in water during twelve months sampling 
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Figure  4.42, Spatial variation of ratio of nitrogen and phosphorus (mg/l) in water during twelve  
                     months sampling 
 

Table  4.24, Significant correlation between physicochemical parameters in water 

 T Ph Current *SD TS Salinity DO 9*:;<  =9>

 =9*


 =?@
� NH3 DIN A9@

>
  B79@
@
 Chl-a 

T 1.00                

Ph 0.14 1.00               

Current 0.13 -0.15 1.00              

SD 0.25 -0.33 0.17 1.00             

TS -0.26 0.08 0.44 -0.62 1.00            

SALINI 0.45 0.10 0.03 0.45 -0.45 1.00           

DO 0.15 -0.43 0.34 0.66 -0.47 0.37 1.00          

DO 0.26 -0.42 0.23 0.77 -0.52 0.37 0.73 1.00         

NO3 -0.41 0.11 0.46 -0.57 0.50 -0.42 -0.44 -0.49 1.00        

NO2 -0.26 0.19 0.29 -0.59 0.48 -0.42 -0.44 -0.47 0.59 1.00       

NH4 -0.44 0.14 0.41 -0.62 0.57 -0.41 -0.50 -0.54 0.83 0.57 1.00      

NH3 -0.19 0.54 0.23 -0.67 0.41 -0.27 -0.78 -0.80 0.48 0.44 0.55 1.00     

DIN -0.43 0.11 0.46 -0.60 0.55 -0.44 -0.47 -0.52 0.96 0.62 0.95 0.51 1.00    

PO4 -0.29 0.35 0.43 -0.70 0.53 -0.44 -0.73 -0.73 0.66 0.58 0.69 0.52 0.67 1.00   

SIO2 -0.23 -0.17 0.10 0.21 -0.16 -0.04 0.26 0.28 0.08 -0.06 0.08 -0.26 0.07 -0.13 1.00  

Chl-a -0.18 0.25 0.33 -0.63 0.52 -0.25 -0.67 -0.64 0.48 0.58 0.47 0.45 0.49 0.69 -0.17 1.00 

*Secchi Depth 

 

The cluster analysis of the sites produced three clusters based on their hydrological 

similarities: group A as formed by North and West Port, group B was composed of South 

Port stations (except of station 18 and 21), and the third cluster included the control area, 

which was completely separate from the other clusters (Figure  4.43). 
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Figure  4.43, Cluster analyses to classify the different stations based on physicochemical parameters   
                    Of water quality 

 

A principal component analysis (PCA) was used to assess the variability of the 

water quality data and quantify the contributions (percentages) of the individual 

physicochemical parameters. As shown in Table  4.25, the PCA analysis classified data into 

3 major principal components (PCs) at North Port, which accounted for 96.3% of the 

variability in this area. The first component accounted for 63.5% of the variation of the 

data. This component was strongly controlled by pH, chl-a and nutrients (except for 

silicate) with a highly significant correlation with the first component. Silicate and salinity 

were significantly correlated with components two and three, respectively. At West Port, 

the data were classified into 3 principal components (PCs). The first component accounted 

for 40.11% of the total variance, with high loading from pH, NH�, PO�
�
 and chlorophyll a 

levels. The second component accounted for 33.0% of the total variation, with strong 

loading fromNH�
�, NO�


, DIN,  SiO�
�
and chla, which were strongly correlated with 

S
ta

ti
o

n
s 
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component two (PC2), while NO�

 and total solidswere significantly correlated with the 

third component. 

The PCA analysis classified data into two main principal components at South Port. 

The first component accounted for 81.12% of the total variability, with a significant 

correlation with levels of NH�
�, NO�


, PO�
�
, DIN and total solids, while NO�


 and chl-a 

levels were significantly correlated with the second component (PC2) and accounted for 

11.75% of the total variation. At the control area, the water quality data were classified into 

three main groups that explained 70.31% of the variability in this area. The first component 

included oxygen saturation, DO, transparency, total solids, nitrate, Ammonium, DIN and 

current speed, which accounted for 43.09% of the variation. PC2 accounted for 16.21% and 

was strongly correlated to SiO�
�
, while PC3 account for 17.36% with high loading from 

levels of chl-a. 

 

Table  4.25, Rotated component loadings of three principal components (PCs) for physicochemical  
                    parameters in the water of Klang Strait 

 North Port West Port South Port Control area 

 1 2 3 1 2 3 1 2 1 2 3 

T -.021 -.987 -.051 .021 -.898 .147 -.559 -.663 -.429 -.564 .442 

PH .956 -.018 .282 .878 -.013 -.359 .259 -.923 -.678 .450 .358 

Current -.194 -.338 -.806 -.162 -.050 -.970 -.682 .048 .795 .315 .348 

Secchi depths -.840 .322 -.429 -.798 -.055 -.496 -.634 -.646 .713 -.590 .083 

TS .484 -.832 .111 .034 .180 .935 .854 .257 .740 .416 -.299 

Salinity .113 .145 .228 -.434 -.779 .172 -.566 -.811 .637 -.174 .149 

DO -.863 .190 -.464 -.939 .181 -.176 -.682 -.717 .844 -.012 .483 

O2 sat
 

-.766 .437 -.418 -.966 -.004 .033 -.681 -.601 .895 .104 .363 

 NO�

 .982 .150 .059 .217 .816 .472 .790 .569 .716 -.246 .065 

NO�

 .986 .114 -.115 -.178 .428 .762 .423 .789 -.383 -.427 .058 

NH�
� .926 .093 .362 .190 .829 .512 .799 .600 .757 -.227 -.050 

NH� .941 -.071 .315 .846 .002 -.403 .808 .570 -.842 .382 .164 

DIN .977 .133 .154 .207 .823 .490 .798 .584 .722 -.248 .029 

 PO�
�
 .741 .618 .219 .748 .587 .246 .793 .514 .362 .461 -.333 

 SiO�
�
 .184 .960 .035 -.404 .774 .235 -.653 -.212 .245 .772 .388 

chl a .970 -.106 -.142 .781 .075 .448 .721 .850 .262 .011 .569 
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4.3.3 Trophic indexes 

The trophic state index (TRIX) ranged from 5.80 (June 2010 at the control station) 

to 8 (April 2010). Throughout the year, the majority of the water samples (99.36%) varied 

between 6 and 8 and suggested a highly productive system with a high trophic level, 

characteristic of a low-quality system (Figure  4.44). The eutrophication index (EI) varied 

from 0.65 to 5. Throughout the year, most of the samples had a bad (49%) or poor (45.5%) 

water quality, and only 5.3% of the water samples were at mediocre levels, typical of poor 

to bad productive systems with a high trophic level (Figure  4.45). The highest levels of the 

eutrophication index (EI <1.5) were observed between January 2010 and June 2010 for all 

of the sites except the control station. The lowest levels (EI<1.5) were observed in 

November 2009, December 2010 and from July to October 2010 for all of the sites except 

South Port, where EI was greater than 1.5 throughout the sampling period. 

In Table  4.26,the average annual concentration of operational indicators and trophic 

indices are compared with the characteristic trophic categories of coastal and marine areas 

(salinity < 20‰).All of the sites except for the control area were at a eutrophic to 

hypertrophic level according to the value of the Secchi depth, chl-a level, nitrogen 

concentration, and trophic indices. The control point showed different results and was at a 

eutrophic to hypertrophic level according to trophic categories based on Secchi depth, 

nitrogen, phosphorus and trophic indices, while it had a mesotrophic condition based on 

comparison with the chlorophyll a values. 
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Figure  4.44, Spatial variation of TRIX index during twelve months of sampling 

 

 

Figure  4.45, Spatial variation of eutrophic index (EI) during twelve months of sampling 
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Table  4.26, The average annual concentration of operational indicators and trophic indices are    
                     compared with the characteristic trophic categories of coastal and marine areas 

 

 

  

Operational indicator 
and indices 

Secchi 
depth(cm) 

Chl-a 
(µg/l) 

Total-N 
(mg/l) 

Total-P 
(mg/l) 

TRIX EI 

This study 
North Port 

61.315±24.77 7.475±3.054 1.299±0.293 0.114±0.036 7.37±0.41 1.84±0.72 

West Port 62.21±22.5 7.150±2.891 1.403±0.402 0.107±0.032 7.35±0.45 1.77±0.67 

South Port 39.490±16.0 8.867±3.020 1.673±0.517 0.137±0.041 7.58±0.36 2.24±0.73 

Control area 159±25.05 4.22±1.289 0.757±0.144 0.073±0.022 7.03±0.51 1.08±0.16 

Tropic status and 
Oligotrophic  
(high quality) 

>1100 <2 <0.110 <0.015 2-4 <0.38 

Mesotrophic  
(good quality) 

600-1100 2-6 .011-0.29 0.015-0.04 4-5 0.38-085 

Eutrophic  
(Bad quality) 

200-600 6-20 0.29-0.94 0.04-0.130 5-6 0.85-1.51 

Hypertrophic  
(Poor quality) 

<200 >20 >0.94 >0.13 6-8 >1.51 
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5 CHAPTER V: DISCUSSION AND CONCLUSIONS 

5.1 Sediment quality assessment 

Assessment of sediment quality is essential because sediment acts as a reservoir for 

many types of contaminants in marine ecosystems. Thus, despite sediment contamination, 

the dynamics of contaminants vary extensively based on fluxes in physicochemical and 

biological variables that affect the movement of contaminants into or out of the sediment, 

although these contaminants may be stable in the sediment over the long term. These 

dynamics may alter the quality of pore water and the distribution of biological 

communities. In general, in a comprehensive assessment of sediment quality, the following 

tenets should be followed: the use of suitable sampling strategies at different spatial and 

temporal scales, analysis of physicochemical and biological variables through laboratory 

testing, and evaluation of ecological indicators such as the structure of benthic communities 

(GIPME, 2003; U.S.EPA, 2004). In the present study, a combination of biological and 

physicochemical variables was monitored over multiple spatial and temporal scales because 

the distribution and effects of contaminants are influenced by water bodies, specific 

chemical contaminants, the natural properties of the sediment, and the indigenous 

biological communities (flora and fauna). 

 

5.1.1 Variation in the concentration of physicochemical variables 

Some physicochemical parameters of water and surface sediment were estimated to 

evaluate the possible relationship between these parameters and the distribution of 

contaminants. The pH is a primary indicator used to assess water quality and pollution in 

marine and coastal systems. According to the guideline suggested by (WHO, 1993), the 

acceptable range for pH is 6.5–8.5. 
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In this study, the measured pH ranged is 7.80–8.50, which indicates an alkaline 

nature for Klang Strait coastal water. The measured temperature and dissolved oxygen 

values ranged between 27.69–31.76°C and 4.32 -7.22 mg/L, respectively (Figure 4.27 and 

Figure 4.26). There were no significant differences in temperature or dissolved oxygen 

among the stations. Salinity values ranged between 24.04 - 31.92‰, and the lowest salinity 

values were recorded at stations 16 and 17 because these stations are greatly influenced by 

the fresh water from the Klang River. 

All organic and inorganic pollutants exist in aquatic systems in dissolved, 

particulate and colloidal forms, but the proportion of the dissolved form is generally low 

(Connell & Miller, 1984). The physicochemical parameters of an aquatic system control the 

deposition, adsorption and desorption rates of the pollutants in the water and sediment 

(Nduka & Orisakwe, 2011). For example, desorption rate of a specific concentration of a 

metal may be increased by an increasing salinity or a decrease in redox potential or pH 

(Connell & Miller, 1984; Nduka & Orisakwe, 2011). In this study, pH, salinity and 

temperature appeared to have no effect on the distributions of metals and PAHs, because 

the variations in these parameters were not significant between stations and remained 

within the acceptable standard range for marine and coastal water. 

The analysis of particle size and total organic carbon is the first step in assessing 

sediment quality, and this information is practical for describing variation in contaminants 

and the structure of biological communities (C. & Szava-Kovats, 2008; U.S.EPA, 2004).  

In the Klang Strait, fine-grained sediments predominated in almost all stations, with 

the highest amount of fine sediment in the vicinity of stations near the mangrove edge and 

the mouth of the Klang River (Table 4.1 and Figure 4.2).  
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Sediment grain size variation is controlled by several factors in marine 

environments, including sedimentary processes, sediment transportation, distance from 

material sources and dredging (He et al., 2009; Kumar, Solanki, & Kumar, 2012; Qin et al., 

1989).  

The stations with a high percentage of fine sediment along the mangrove edge 

(stations 3, 6, 9, 12 and 15) reflected the effect of mangrove forest on increasing the rates of 

sedimentary processes. The mangrove forest acts as a sediment trap, providing a 

mechanism that sinks suspended solids by decreasing hydrodynamic energy (tidal current 

and baroclinic circulation), which provides time for the sinking and re-deposition of fine 

grain sizes (Cunha-Lignon et al., 2009; Furukawa, Wolanski, & Mueller, 1997; Kathiresan, 

2003; Wolanski, Mazda, & Ridd, 1992; Woodroffe, 1992), otherwise sediment in 

mangrove shores and mudflats in Klang Strait should largely consist of fine sediment like 

clay and silt. Moreover, sediments with fine grain sizes along the mangrove edge were 

likely to be transported by land-based runoff. 

Other stations (16, 17, 18, 19, 20 and 21) with a high percentage of fine grain sizes 

were located close to the Klang River in the South Port, which indicates the effect of river 

transportation (Qin et al., 1989). The Klang River contributed significantly to the 

distribution of sediment particles, and the weak hydrodynamic energy increased the 

sedimentation rate of fine-grain-sized sediment.  

Some stations such as 2, 5, 8, 11, 13 and 22 with high percentage (> 48%) of sand 

sized sediment (Table 4.1) to compare other stations, which indicates the effect of regular 

dredging of shipping channels in vicinity on the sea bottom. The shipping lanes (Figure  

3.8 ) are annually dredged to deepen to at least 15 meters depth to facilitate approach of 

large tanker and ship. Thus, dredging of Klang Strait may be the reason for the occurrence 

of coarse or sand sized sediment recorded in these stations. 
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Sediment grain size plays a significant role in the concentration and distribution of 

heavy metals in coastal and estuarine sediments. The concentration of heavy metals is 

higher in fine particles compared to sand-sized particles because fine-grained sediment 

significantly adsorbs heavy metals from water. In addition, the fine fraction of sediment 

also has a high capacity to retain heavy metals compared to other fractions (Abrahim, 

Parker, & Nichol, 2007; He et al., 2009; Lim, Jung, Choi, Yang, & Ahn, 2006; Nobi, 

Dilipan, Thangaradjou, Sivakumar, & Kannan, 2010; Ye, Li, Zhang, Tong, & Zhang, 

2012). Thus, the fine fraction of sediment is frequently used to assess contaminant variation 

and for toxicity tests in environmental research.  

In the present study, TOC and the concentrations of some metals such as Al, Cd, 

Cu, Fe, Ni, V and Zn exhibited significant correlations with percentage fine particles 

(Table 4.2). 

The distribution of TOC revealed a peak value at the South Port near the mouth of 

the Klang River and lower concentrations at stations 8 (near the cement outlet in West Port) 

and 11(liquid berth in the West Port) (Table 4.1 and Figure 4.1). Its distribution was 

synchronous with that of fine-grain-sized sediment in most parts of the study areas (except 

stations 9 and 12), with high values for both parameters along the mangrove edge and the 

mouth of the Klang River. 

Generally, the fine-grain-sized sediment, specifically the clay colloid, exhibits a 

significant trend towards the adsorbtion of TOC, and TOC increases as the average grain 

size decreases (He et al., 2009). Some heavy metals exhibited significant positive 

correlations with TOC, such as Al, Cd, Cu, Fe, Ni, V and Zn (Table 4.2).  
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TOC and humic material have a high adsorption and complex influence on the re-

deposition of heavy metals (Nduka & Orisakwe, 2011). Furthermore, anthropogenic heavy 

metals are widely absorbed on the surface of the sediment or combined with TOC in 

suspended solids and deposited on bottom sediments (Ghadeer & Macquaker, 2012; 

Ingelmo Sánchez, Molina, Soriano, & Gallardo, 2012; Zhang, she, & Zhang, 1996). 

 

5.1.2 Concentration and distribution of heavy metals and PAHs 

In this study, the Klang Strait was divided into three specific geochemical sites (the 

North, West and South Ports) to describe the distribution and concentration of 

contaminants. 

Considerable variations were observed in the concentrations of all heavy metals 

(except for Cu, Ni, Hg and Fe) and PAHs among different stations and sites, which were 

evidenced by a nonparametric Kruskal-Wallis test. The highest concentrations of all metals 

(except for Mn), PAHs, TOC and fine-grain-sized sediment were observed in the South 

Port relative to the other sites. These results indicate that the concentrations of these 

variables were affected by several sources of contamination in the Klang Strait.  

Studies elsewhere have indicated that several factors such as erosion, sedimentation, 

sediment type, water dynamics, urbanisation, industrialisation, river discharge, and 

geochemical reactions affect the distribution and constitution of heavy metals and PAHs in 

coastal and estuarine waters (Naji, Ismail, & Ismail, 2010; Nobi et al., 2010; Pan & Wang, 

2011; Siddique et al., 2009). 

Distribution maps were used to provide a better visualisation of the distribution of 

contamination at the spatial scales described in Appendix 2; the details of the data are 

described in section 4.2.1. 
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At the South Port, the distributions of all metals and PAH compound ($D+EFGHIJK 

and $D+LKFM N ) sediments exhibited a homogenous pattern of decreasing concentration in 

the north to south direction, and concentrations were high at the 16 and 17 stations, which 

are parallel to the mouth of the Klang River. This pattern supports the view that the Klang 

River may be the primary source of contamination in the Klang Strait and influence the 

concentration and distribution of metals and PAHs because water and suspended solids 

were easily exchanged between the South Port and the polluted Klang River, which 

contains industrial effluents and untreated municipal waste (Balamurugan, 1991; 

Greenwood & Jr., 2007; Naji et al., 2010).  

The water currents in the vicinity of the South Port are weak (Ibrahim, 1988); 

therefore, there is enough time for the deposit of organic components and absorption of 

heavy metals by suspended solids for deposition onto surface sediments. Heavy metals are 

not easily deposited onto bottom sediments where there are strong water currents (He et al., 

2009). According to the correlation analysis, there was no correlation between Mn and 

other metals, and Mn exhibited a different spatial distribution relative to the other metals. 

These results are most likely due to the low concentration of biogenic carbonates in South 

Port sediments. The dissolved concentration of Mn controls absorption and substitution in 

calcite. Most particulate Mn is easily bound to seawater carbonates (Wartel, Skiker, Auger, 

& Boughriet, 1990; Wartel et al., 1991). A study has also reported a strong correlation 

between the concentration of biogenic carbonates and Mn in the coastal sediments of 

Taiwan and the East China Sea (He et al., 2009). 

In the North Port, the distributions of As, Cr, Hg, and Zn generally exhibited a 

bimodal pattern that varied from a high to a low concentration moving from north to south, 

as well as a trend towards high values in the east (along the berth line).  
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High concentrations of Cu and Pb also occurred in the east and the northwest. These 

areas adjoin regions of land-based runoff and industrial outlets, which can directly release 

organic and inorganic pollutants. The distribution of Al, Fe, Mn, V and Cd showed the 

highest trend in the western part of the strait with the mangrove forest, which had the same 

distribution pattern of TOC and fine-grained sediment.  

The highest concentrations of Al, Fe, Mn, V and Cd occurred in the western part of 

the strait and along the fringes of the mangrove forest, which was related to the higher 

concentration of TOC and fine grain size in mangrove sediment.  

In this study, there were significant correlations (0.4<r; P<0.01) between fine 

particle size and the following metals: Al, Cd, Fe, V, Cu and TOC (Table 4.2). 

The results indicate that these metals were more highly concentrated in finer 

particles compared to sand-sized particles; therefore, high concentrations were estimated 

near the mangrove edge. The distribution of Ni was unique because it was high along the 

mangrove edge. Generally, the lowest concentration of metals (except for Al and As) was 

found close to stations 2 and 5 (along the middle transect) in the North Port. This may be 

due to the strong water currents in this area, which decrease the rates of chemical reactions 

between metals and sediments. Moreover, these stations had substrates with a high 

percentage of sand-grain-sized sediments compared to other stations.  

In the West Port, the spatial distributions of As, Pb, V, Al, Fe, Hg and Ni were 

generally homogenous, with a low to high concentration gradient on moving from the north 

to the south. This distribution may be related to the large container terminal and the inflow 

of land-based runoff in the southern part of the West Port, which may have caused an 

increase in metal concentrations. The concentrations of Hg and Ni peaked at the 11 and 12 

stations and were significantly different from the concentrations at other stations.  
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These stations were probably influenced by both the high-sedimentation area 

(mangrove coast) and the industrial waste from the industrial outlets that are located along 

the coastline. The concentrations of Zn and Cr exhibited a trend towards higher values both 

southeast and northeast of the strait (along the coastline). The concentrations of Cd, Mn and 

Cu decreased from the mangrove edge to the coastline, which was similar to the 

distribution patterns observed at the North Port. 

At both the West Port and North Port, the spatial distribution of PAHs exhibited an 

east-west gradient that decreased from east to west. These stations were located close to the 

near shore area and thus are strongly influenced by port activities, especially stations 

4and13,which are close to the terminal containers (Near-shore area) in the North and West 

Port (Table 4.6). Additionally, land-based runoff directly releases organic compounds in 

the vicinity of these stations. 

More research revealed significant differences in the sources and concentration of 

PAHs in sediment samples of near-shore vs .Offshore areas. PAH concentrations in 

sediment samples collected from near-shore sites (city hinterland) were greater than PAH 

concentrations in offshore areas. This implies that PAH concentrations in near-shore areas 

are influenced by lateral transport such as run-off and the transportation of water due to 

daily rainfall (Sakaria et al., 2010). Ikaneka (2005) indicated that heavy rainfall and flood 

contribute significantly to the pollution of marine sediments. Moreover, the results of their 

research indicate that near-shore areas received both burnt material (pyrogenic) and oil 

products (petrogenic), whereas offshore stations were primarily influenced by burned 

material (Boonyatumanond, Wattayakorn, Togo, & Takada, 2006; Farrington, Goldberg, 

Risebrough, Martin, & Bowen, 1983; Ikenaka, Eun, Watanabe, Kumon, & Miyabara, 2005; 

Kumar et al., 2012; Sakaria et al., 2010). 
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Overall, the distinct pattern in the distributions of measured parameters revealed 

that multiple sources contributed significantly to the heavy metal and PAH loads in the 

Klang Strait. These sources include the large-scale inflow from industries such as the palm 

oil, cement and food manufacturers that are located along the coastline of the North and 

West Ports, vessel-based discharges, Klang River outflow, land-based runoff, 

sedimentation, and siltation. 

The concentration of metals in the sediment showed wide variations over time 

(Figure 4.3). This may be due to differential loading of these contaminants from lithogenic 

sources and untreated effluent discharges (anthropogenic sources), and can resulting of 

seasonal fluctuations. 

The results also indicated that the concentrations of metals (except of Cr and Mn) in 

surface sediments changed significantly over the studied temporal scale, which was 

evidenced by statistical testing (Figure 4.4).  

The significant temporal variation of heavy metal concentrations is most likely due 

to seasonal fluctuations. This significant difference in metal concentration is unusual, 

considering the short duration of the sampling period. However, several studies have 

indicated that changes in the chemical properties of metal, water, and sediment, which are 

associated with other environmental factors such as atmospheric deposition, the dynamics 

of marine water, tidal and seasonal currents, and changes in anthropogenic pollution loads, 

can cause this temporal variation in the mobility and bioavailability of heavy metals over a 

short time. For example, several studies have reported that in the rainy season, the 

concentrations of heavy metals in sediment are lower than in the dry season because 

rainwater causes increased mobility and dilution, which decrease the heavy metal 

concentrations in the sediment (Olubunmi & Olorunsola, 2010; Aydin Onen, Kucuksezgin, 

& Kocak, 2011; Zhang, Cui, Xiao, & Zhao, 2010).  
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According to, Figure 4.4, some metals (Al, Fe, Ni, Cd, Ni, and Hg) showed 

significant reductions in their concentrations in the sediment with the increasing rainfall 

that occurred in November 2009 and May 2010.This pattern implies that these metals are 

bound to the exchangeable phase of the minerals in the sediment and are likely to be more 

easily influenced by dilution due to heavy rainfall and strong marine currents, which occur 

in the North Monsoon and Inter Monsoon periods. 

 

5.1.3 Sources of contaminants in sediment 

The concentrations of metals and PAHs are influenced by two major sources: 

lithogenic (natural) and anthropogenic. It is not easy to determine which source is most 

significant for specific pollutants at specific locations. Thus, an assessment of sediment 

quality should be able to discriminate between the contributions of naturally-occurring 

contaminants (heavy metals and hydrocarbons) and anthropogenic sources. The natural 

concentration of chemical compounds is characterized with base and background levels for 

identifying the sources of anthropogenic additions (GIPME, 2003; Lehr & Keeley, 2005). 

 

5.1.3.1 Heavy metals 

The metal enrichment factor (EF) was also applied to evaluate the anthropogenic 

contribution of heavy metals in surface sediments. The results indicated that variations in 

the enrichment factor were significantly different for heavy metals. The Fe in the sediment 

may have originated entirely from natural processes or crustal materials. The enrichment 

values of Cu, Cr, Mn, Ni, V and Zn were between 2 and 5, indicating that the sediments of 

the Klang Strait were subject to moderate anthropogenic inputs of these heavy metals.  
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Significant enrichment of Pb, As and Hg was observed in the sediments, and only 

Cd originated from a high proportion of anthropogenic sources (Figure 4.8). In general, the 

sediments of all stations are in the same class of enrichment factor (5< EF <20) or have 

moderate anthropogenic inputs of metals (Figure 4.9), but cluster analysis revealed a better 

view of the enrichment factor at different stations. 

According to the cluster analysis, stations 1, 2, 4 (close to the berth line in the North 

Port), 7, 8, 9 (vicinity of a cement outlet), 10,11, 12 (vicinity of a liquid berth and food and 

oil factories in the West Port), 13,14 and 15 (near a container terminal in the West Port) are 

included in the same group because the enrichment factor (9-11) was higher in these 

stations in comparison with other stations (5.2-8.87) (Figure 4.10).  

Based on the enrichment factor, the heavy metal contamination of marine sediments 

in the Klang Strait was attributable to both natural processes and mineralogy and human 

(anthropogenic) activities. Furthermore, the marine sediments of Klang Strait had high 

anthropogenic inputs of Cd, Pb, Hg and As, especially in stations close to the berth line. 

These metals (Cd, Pb, Hg and As) originate primarily from industrial processes 

including mining, the burning of fossil fuels, waste recycling and cement manufacturing, as 

well as paper and glass production (Cossa et al., 2010; Davis, Marjorie Aelion, McDermott, 

& Lawson, 2009; Jennings & Rainbow, 1979; Pan & Wang, 2011; Yasar, Aksu, & Uslu, 

2001). There are several industries in Port Klang involved in cement manufacturing, palm 

oil processing and oil/electrical based power generation. Other sources of these metals 

might include atmospheric deposition, river inflows and terrestrial runoffs, which are the 

primary routes for release of metals into marine environments. Additionally, As, Cd and Hg 

are able to build up in the sediment through plant cycling because these metals are easily 

absorbed by plants, thus entering into the biological cycle (Zhang et al., 2010). 
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In the South Port, the high proportion of anthropogenic origins of these elements 

around the mouth of the Klang River is consistent with observations that the river is a 

primary route for the release of heavy metals.  

Several studies have indicated that organic herbicides, insecticides (Lead-Arsenate), 

pesticides and fertilisers applied in agriculture activities as well as industrial discharges are 

the land-based anthropogenic sources of metals that are transported into rivers, where they 

can pollute coastal and estuarine areas (Kumar et al., 2012; Ye et al., 2012).  

Moreover, the high concentrations of Cd and As could have originated from 

tsunami-related sediment deposition, ship waste, embarkation activities and/or the 

anticorrosive paints used on marine vessels (Pan & Wang, 2011; Liu et al., 2010). 

 

5.1.3.2 Poly aromatic hydrocarbons (PAHs) 

Like to other contaminants, the sources of PAHs are divided into two major groups, 

anthropogenic and lithogenic. Anthropogenic sources of PAHs include pyrogenic and 

petrogenic sources. Pyrogenic PAHs primarily include those with more than three aromatic 

rings (4-6 rings), and their original source is the incomplete combustion of organic 

compounds, which form very rapidly at high temperatures (approximately 700°C). These 

contaminants originate from activities involving the combustion of fossil fuels (heating oil, 

cooking, burning coal, vehicle emissions) and biomass burning (fireplaces, controlled 

burns) (Beyer et al., 2010; Khairy et al., 2009; Pies et al., 2008). Petrogenic compounds are 

normally related to PAHs with lower molecular weights (Naf, Acy, Ace, Flr, Phn and Ant) 

that have undergone various weathering processes (dissolution, evaporation and photo-

oxidation) rather than PAHs with high molecular weights (Fla, Pyr, BaA, Chy, BaP, BkF, 

InP, Bghip and DibA) (Beyer et al., 2010; Zakaria, Okuda, & Takada, 2001; Pies et al., 
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2008). Petrogenic PAHs involve unburned fossil fuels, including oil spills and the in 

concentration of petroleum products that originated from coal, crude oil and refined 

products.  Petrogenic PAHs can enter into a marine environment through land-based runoff, 

discharges from ships and accidental spills (Beyer et al., 2010; Neff, 2002; Robertson, 

1998).  

Lithogenic sources of PAHs originate from biogenic and diagenic sources (Beyer et 

al., 2010). Diagenic PAHs in sediments originate from organic material (natural oil, coal 

erosion, forest and grass) and form rapidly over days or years. Biogenic PAHs are formed 

during the biosynthesis process by organisms such as fungi and bacteria (Beyer et al., 2010; 

Nahla, 2009; Neff, 1979, 2002; Whitehouse, 1983). The concentration and distribution of 

PAHs observed in the sediment reflect the PAHs’ source characteristics, which are 

influenced by the physicochemical properties of individual PAHs. PAHs in a harbour area 

such as Klang Strait could originate from a variety of sources (pyrogenic and petrogenic). 

The results showed that the anthropogenic sources of PAHs consisted of a mix of 

pyrogenic and petrogenic sources in all stations except stations 4, 14 and 21, where most of 

the PAHs were found to have originated from the combustion of materials such as 

kerosene, wood, coal and grass (Figure 4.11 and Figure 4.12). Some stations (3, 6, 7, 8, 

11, 13, 16, 19 and 20) showed a mixed pattern of petroleum combustion sources (liquid 

fossil fuel due to vehicle and crude oil). At other stations (1, 2, 5, 9, 10, 12, 15, 17, 18 and 

22), the PAHs in the sediment originated primarily from combustion, although petroleum-

derived contamination cannot be ignored.  
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In general, source analysis revealed that the PAHs in the sediment in the Klang 

Strait are derived primarily from liquid fossil fuels related to vehicle use, crude oil and coal 

(petroleum combustion sources), which can originate from industry discharges such as 

effluent from cement, food and oil factories. A minor amount of PAHs may be related to 

direct petroleum discharges and land-based runoff. 

The results of the PCA analysis are concordant with the evidence from the pair 

isomer ratio of PAHs, which revealed a mixture of pyrogenic- and petrogenic-derived 

PAHs in the Klang Strait.  

The PCA analysis described 63.65 % of the total variance (PC1, PC2 and PC3) in 

the PAH load, including individual PAHs that are known to originate from incomplete 

combustion, the pyrolysis of fuel and tracers for oil spills. Only 19.42% of the total 

variance (PC4 and PC5) in PAHs with a high load of NaPs was explained, and the variance 

in PAHs was not related to unknown and biogenic sources (Table 4.9). 

Moreover, a correlation analysis revealed a significant correlation between some 

individual PAHs related to pyrogenic and petrogenic compounds, such as Nap, Acy, Ace, 

Flr, Phn, Ant, Fla BaP, and Bghip. This implied that the sediment samples are polluted by 

anthropogenic sources ofPAHs because unpolluted sediment samples do not exhibit an oil 

fingerprint and only some PAH compounds may be found in this sediment (Table 4.7). 

Mahyar et al, (2010) studied the characteristics and possible origins of PAHs in the 

developed and developing areas around the coastal waters of peninsular Malaysia. They 

collected sediment core samples to assess the historical profile of PAHs from 1875 to 2007. 

Their research agrees well with our results because they revealed that older sediment 

samples (1875-1899) did not exhibit an oil fingerprint and that only some PAH compounds 

were found (Sakaria et al., 2010).  
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Sediment samples that are polluted by oil products generally exhibit high 

concentrations of phenantherene and its methylated derivation.  

Thus, there is a high correlation between crude oil and petrogenic and pyrogenic 

compounds, whereas this correlation in old sediment samples with natural inputs (with no 

oil fingerprints) ranges from low to negative values. 

Similarly, they indicated that in near-shore and offshore areas near Klang, high 

levels of PAHs originated from pyrogenic sources such as the combustion of fossil fuel and 

the burning of biomass and wood. The dominance of pyrogenic sources in this area is due 

to the discharge of by products of combusted petroleum from industries and automobiles 

(Krauss et al., 2005; Sakaria et al., 2010). 

In addition, other studies have reported that various sea and land-based sources of 

contamination contribute to increasing petrogenic pollution in the coastal waters of west 

coast Peninsular Malaysia. For example, in 1999, Abdullah revealed that land-based runoff 

and contamination from an offshore oil field near Sumatra Island contribute to petroleum 

contamination in the Malacca Strait, a narrow channel of marine water located between 

Sumatra Island, Indonesia and peninsular Malaysia. This strait is vulnerable to 

contamination caused by tanker operation and oil spills (Mirsadeghi, Zakaria, Yap, & 

Shahbazi, 2011). The Strait of Malacca also plays an important role in transporting 

pollution into Klang Strait. Pauzi Zakaria in 2001 used a biomarker compound to identify 

the source of tar-balls off the coast of Malaysia. They identified several petrogenic sources 

of contamination in the western coastal waters of Peninsula Malaysia, such as accidental oil 

spills and tanker-derived sources in the Strait of Malacca and crude oils originating from 

land-based runoff from human activities. Additionally, they clearly showed that the western 

coastal waters of Malaysia have received approximately 30% of their petroleum pollution 

from Middle East crude oil (MECO) and South-East Asian crude oil (SEACO), which was 
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probably transported to Malaysia via marine currents, tankers, and shipping discharges, 

including ballast water and tank-washing water (Pauzi, Okuda, & Takada, 2001). 

 

5.1.4 Degree of contamination of the sediment and adverse biological effects 

5.1.4.1 Heavy metals 

In the present study, the degree of contamination of the sediments and related 

adverse biological effects were estimated based on the contamination factor (CF) and a 

comparison between the contamination concentration at the study stations and specific 

values (TEL and PEL) given in the sediment quality guidelines described in the 

methodology. The contamination factors for Al, Fe, Mn, Cu, Cr, Ni, V and Zn were lower 

than 1 at all stations (Figure 4.7), implying that the marine sediments of the Klang Strait 

have not yet been polluted with these metals. Most of the stations were considered to be 

moderately polluted with Pb, As and Hg, and Cd exhibited a high degree of pollution in all 

stations except stations 10 and 11, which were moderately polluted (Figure 4.6). 

Additionally, the results indicated that Cu, Cr, Ni and Zn have rare adverse effects 

on the biological community because their concentrations were lower than the TEL, 

background and igneous rock values at all stations. Cd, Pb and Hg were found to have 

occasional adverse effects and As exceeded the PEL value, indicating likely significant 

adverse effects on biological organisms. Moreover, the concentrations of these metals were 

significantly greater than the background and igneous rock values (Table 4.15). 

The variation in the estimated PELq factor and contamination degree (CO ) value 

revealed that the sediments collected from stations 13and 15 (around the container terminal 

in the West Port) and stations 16 and 17 (close to the mouth of the Klang River in the South 
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Port) were highly polluted with heavy metals and were considered to exhibit moderate 

adverse effects. The rest of the stations were considered to be moderately polluted with 

slight adverse biological effects, and the control station was unpolluted (Figure 4.19). 

This study clearly shows that the Cd, Pb, Hg and As concentrations in the Klang 

Strait were influenced by disturbances, which changed the associated geochemical 

concentration ratios, and that the metal concentrations increased from their standard range. 

The relative concentration ratio of the metals exceeds standard variation levels in the 

sediment when geochemical metal concentrations experience disturbances due to 

environmental change. 

These disturbances may be related to differential derivation and can be due to 

lithogenic sources and the multiple anthropogenic sources described in section 5.1.3. 

 

5.1.4.2 PAHs 

In this study, sediment quality guidelines (SQGs) are applied as a practical tool to 

evaluate PAH contamination and adverse biological effects (Long et al., 1995, 2006; Qiao 

et al., 2006; Quiroz et al., 2010). 

Based on a comparison with the sediment quality guidelines, contamination factors 

for individual PAHs such as Nap, Ace, Phn, Fla, Pyr, Chy, BbF, BkF and BghiP were lower 

than 1 at all stations. This implies that these PAHs have rare adverse effects on the 

biological community; only Acy, Flr, Ant, BaA, BaP and DibA were associated with 

adverse biological effects, only at stations 4 (close to the container terminal in the North 

Port),7 (cement outlet), 13 (container terminal in the West Port), 12 (around the mangrove 

forest in the West Port) 16 and 17 (vicinity of the mouth of the Klang River) (Table 4.17). 
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The variation in the estimated PELq factor for total PAHs revealed that the 

sediments collected from stations 4, 7, 12, 16 and 17around the berth line and mouth of the 

Klang River were slightly polluted, and PAHs were likely to have slight adverse effects on 

the biological communities at these stations.  

Only station 13 (close to the container terminal in the West Port) was moderately 

polluted, and the rest of stations were subject to rare adverse ecological effect due to the 

PAHs exposure in the surface sediment. The present study shows that, generally, the 

average concentration of total PAHs is 994.02±918.1 in the Klang Strait and that the 

sediment is slightly polluted with PAHs (PELq = 0.16).  

According to the above discussion, it may be concluded that PAHs are not a 

primary pollution concern in the Klang Strait and that only station 13 can be considered to 

be a vulnerable station. 

In this research, our hypothesis was defined based on the serious threat posed by 

petroleum contamination to the Klang Strait because of its specific strategic importance: 

this strait serves as a major, high-traffic gateway for shipping activities in peninsular 

Malaysia is coastal waters and is also influenced by various environmental stresses from 

land-based sources of contamination such as domestic waste, transportation activities, and 

industrial and agriculture inputs. Moreover, in 1982, the coastal area of the Klang Strait 

was categorized as moderately polluted with petroleum hydrocarbons according to the 

standard classification of the FAO (the Food and Agriculture Organization), which also 

indicated that the petrogenic pollutants in the Klang Strait originated from oil spill events 

and ship ballasting or bilge pumping due to tanker and non-tanker operations (Marchand, 

Bodennec, Caprais, & Pignet, 1982; Yap, 2005). 
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According to the present study, this hypothesis was rejected because at most of the 

stations, the average PAH concentration was significantly lower than the background value 

and rarely reached a level likely to cause adverse biological effects.  

Recently, some studies recorded a significant decline in PAHs discharges around 

the near-shore zone of the Klang Strait between 2000 and 2007. The highest value for 

PAHs contamination was estimated at 1700 ng/g d.w ( Wang et al., 2011).  

In near-shore Klang sediment samples from 1976 to 1999, with a predominant input 

of burnt materials such as oil and petroleum products. The dominance of pyrogenic sources 

was due to combusted petroleum discharges from industries and automobiles. From 1976 to 

1999, several international and national events affected Malaysia’s environmental history 

and caused an increase in the levels of PAHs and other organic hydrocarbons in the near-

shore area of the western coastal waters of peninsular Malaysia. This region underwent 

many development activities related to marine transportation, urbanization, industrialization 

and motorizations along the shore. Additionally, rapid development occurred in the Klang 

Strait, such as the construction of the West Port and maritime-related industries that caused 

greater numbers of ocean-going ships to enter the strait from the South China Sea and the 

Far East to transport goods. Moreover, in1997, a collision between two tankers in the straits 

of Singapore caused 25.000 tons of heavy fuels oil to be released into the marine 

environment, of which 700 tons of oil were released into the Malacca strait, negatively 

affecting the coastal area of the Klang Strait (Yap, 2005).  

There were several reasons for the subsequent decline of the concentrations of 

petroleum hydrocarbons from 2000 until 2007, including the establishment of an integrated 

management programme, meteorological conditions and weathering.  
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An integrated management programme was established in 1996 in which several 

responsible organizations (the weather forecast department, maritime department, DOE, 

Navy, Coastal Guards, emergency response, and NGOs) contributed to solve the 

environment problems in Malaysia’s marine environments. For example, urban 

management defined an integrated approach to prevent oil derivatives from entering marine 

and coastal waters.  

Similarly, the DOE and other organizations should take part in wastewater treatment 

and runoff control. Beside from this collaboration involving various organizations, specific 

regulations relating to marine pollution were ratified in 1990 and 1997 to control petroleum 

and chemical contaminants in the Klang Strait.  

These regulations focused on strategies that were based on international agreements 

to prevent and control pollution from ships, platform draining and industrial inputs such as 

MARPOL 1997, CLC convention, UNCLOS IN 1996 and OPRC 1990 (Zakaria et al., 

2001). 

The weathering processes can greatly deplete PAH concentrations in a marine 

environment. The list of compositional indices of PAHs is presented in Table 4.8. The 

L/H-PAH ratio is accepted as a practical method for assessing weathering based on the 

differences between the low molecular weight and high molecular weight of PAH 

compounds. These results show that the concentration of high-molecular-weight PAHs is 

significantly greater than that of low-molecular-weight PAHs in most stations. Thus, the 

L/H-PAH ratio was below 1 at most of the stations and above 1 only at stations 3, 7, 13 and 

14. 
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 In general, a low ratio of L/H-PAHs is probably due to high resistances of the high-

molecular-weight PAHs to microbial degradation, which is consistent with other studies. 

Such a low ratio could also be due to the high solubility and volatility of the low-

molecular-weight PAHs, which would lead to their depletion (Chandru et al., 2008; Pauzi 

Zakaria et al., 2001; Rocher, Garnaud, Moilleron, & Chebbo, 2004). 

In addition, there is also evidence of a greater depletion of low-molecular-weight 

PAHs by the weathering process, which is clearly indicated by Pauzi Zakaria (2001).  

He compared the ratio of L/H-PAHs in crude oil (Middle East crude oil and South-

East Asian crude oil) with tar-ball samples that were collected from the western and eastern 

coastal waters of Malaysia. Their results revealed that the tar-ball samples from west coast 

Peninsular Malaysia coastal waters had undergone significant weathering because their 

L/H-PAH ratios were much lower (0.23-1.48) than the ratios of crude oil samples (8-44 for 

SEACO and 12.13-20.3 for MECO) (Zakaria et al., 2001). 

 In the present study, this ratio ranged from 0.02-2.61, which was significantly 

lower than that of the crude oil in this region. Several possibilities have been described to 

explain why the PAH compositions  had a lower ratio of L/H in the west coastal waters of 

Peninsular Malaysia, such as wandering due to long-haul transportation, ballast water and 

tank washings. Sea currents distribute petroleum as water-in-oil emulsions and transport 

them many kilometres away from the spill site in eastern coastal platforms. The emulsion 

compounds normally form viscous pancake-like masses with slow degradation and high 

stability in marine water, which will persist for several months at sea. These currents are 

controlled by the southward and northwest ward flows of the South China Sea.  
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The long distance transport from the eastern to the western coastal waters of 

Peninsular Malaysia could increase the weathering process and lead to the formation of 

petroleum samples with low molecular weights in west coastal waters (Neff, 1979; Zakaria 

et al., 2001; Sakari et al., 2008). 

Tank washing and accidental spills from tankers are other mechanisms that could 

also play important roles in increasing low L/H ratios of PAH compounds because tank-

washing discharges are rich in paraffin wax. Waxy crude oil covers the tanks during long-

range transport and is discharged to the sea during delivery and loading port transits.  

This compound includes specific features characterized by a low ratio between 

high-molecular-weight n-alkane and low-molecular-weight alkane (Low L/H-alkane), a low 

concentration of PAHs (Low PAH/n-alkane ratio) and a low ratio of L/H-PAHs (Blumer, 

Erhardt, & Jones, 1973). Pauzi Zakaria indicated that most of the tar-ball samples that were 

collected from the western coastal waters had all of these characteristics and that their ratios 

(L/H-alkane, PAH/n-alkane and PAH L/H) were lower than those of crude oil. Thus, these 

results indicated that PAH compounds are to some extent derived from tank-washing 

discharges (Pauzi et al., 2001; Yap, 2005).  

Additional research has indicated that meteorological conditions play a major role 

in controlling PAH concentrations over spatial and temporal scales, and a significant 

negative linear relationship was found between wind speed, temperature and PAH 

concentration because atmospheric turbulence causes a dilution of contaminant 

concentrations and speeds the weathering process, especially if the wind speed is greater 

than 5.8 Km h-1 and the temperature is greater than 20 ˚C (Guitart, García-Flor, Miquel, 

Fowler, & Albaigés, 2010; Montuori & Triassi, 2012; Rocher et al., 2004). 

Thus, the higher temperature (approximately 30 ˚C) of the Klang Strait as a tropical 

area could increase the depletion of PAHs. 
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5.1.5 Biological response 

More recently, efforts have been made to explore the correlation between sediment 

and the distributions of benthic communities, leading to the belief that a complex 

interaction of multiple parameters can either directly or indirectly control the distribution of 

a benthic community.  

These parameters include concentrations of organic compounds, salinity, oxygen 

levels, sediment type, hydrodynamic environment, food availability and anthropogenic 

stress, which is the primary parameter constraining the structure of a benthic community 

(Leonardsson, Blomqvist, & Rosenberg, 2009; Pacheco, Laudien, Thiel, Oliva, & Arntz, 

2010; Rosenberg, 1976; Rosenberg et al., 2009). The benthic community’s response to 

these multiple parameters is complicated by spatial and temporal changes in community 

composition. In this research, there were no temporal changes in species richness or the 

abundance of dominant species, but a larger effect on the benthic composition of sensitive 

species was found on the spatial scale. 

In this study, every sampling site (the North Port, West Port and South Port) had a 

unique configuration of these parameters. In the North and West Ports, data indicated that 

TOC, particle size and depth controlled the spatial distribution of benthic species because 

the abundance, diversity and richness of the macro-benthic community were strongly 

correlated with TOC, fine particle size and depth (Table 4.16). Over a one year study 

period, stations near the berth line supported relatively lower abundance, diversity and 

richness than stations near the mangrove edge.  

Every sampling location along the mangrove edge had a similar configuration, with 

shallow water (6.8-11.2 m) and high organic content (11.98-17.04%) in a soft and muddy 
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substratum (63.42-73.77) suitable for settlement by diverse species, factors that may cause 

species abundance to increase. Data revealed that the high TOC along the mangrove edge 

could not suppress the colonization of benthic species in this area because this organic 

enrichment is not strong enough to result in serious oxygen depletion and is only sufficient 

to provide a rich food source for the benthic community. Additionally, the locations along 

the mangroves are located far (1500 -2000 m) from point sources of anthropogenic 

discharges, another potential reason for their higher species diversity.  

Other studies have frequently indicated that some metal ions, such as Na, K, Ca, Fe, 

Mn, Co, Cu, Zn and Mo, are essential for biological systems when their concentration 

levels do not exceed those required for correct nutrition (Rékási, Gilkes, & Prakongkep, 

2010; Varol & Şen, 2012). 

Most of the sampling stations along the berth line and in the middle of the strait are 

in deeper water (12.5-21.60 m) with coarser and sandy sediments (40.21-50.3%), to cause 

reduce of species diversity, especially at stations in the vicinity of the cement outlets and 

the container terminal berth. Additionally, Fe and Mn showed significant positive 

correlations with benthic abundance, implying that Fe and Mn are linked to an increase in 

benthic abundance. 

Anthropogenic stress can be another cause of reduced benthic community because 

the stations along the berth line are close to anthropogenic discharges from port activities 

and industrial outlets, which may suppress benthic community development. The results of 

our correlation analysis supported a negative effect of anthropogenic stress (heavy metals 

and PAHs) on benthic composition.  

According to this results, As, Cd and Cu exhibited significant negative correlations 

with the abundance of the benthic community, implying that increases in these metals 

probably cause decreases in the abundance of benthic species but that changes in diversity 
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and richness were independent of the As, Cd, and Cu concentrations. Similarly, the total 

concentration of PAHs exhibited a significant negative correlation with the diversity and 

richness of benthic species. 

The effect of PAHs on the benthic community has been frequently examined in 

several studies, which indicate that opportunistic species (ecological groups V and IV) with 

high abundances are replaced with other ecological groups when the benthic communities 

are exposed to PAH contamination (Rosenberg, 1976; Schafer, Hearn, Kefford, Mueller, & 

Nugegoda, 2010; Veiga, Rubal, & Besteiro, 2009). 

The results of our analysis of spatial distribution indicated that the abundances of 

common opportunistic species (Lumbriculus sp and Glycera alba) increased greatly at 

stations 7, 8, 13 and14, where Lumbriculus sp was a dominant species, and diversity and 

richness were significantly decreased (Table 4.10 and Figure 4.13).  

Similarly, the AMBA analysis revealed that the benthic community is moderately 

exposed to anthropogenic stress at these stations (Table 4.13).A high proportion of the 

sediment samples that were collected in the vicinity of the cement outlet (stations 7 and 8) 

were polluted with cement (more than 50%); this may hinder the development of benthic 

fauna. 

According to the comparison results of the sediment quality assessment, stations 13 

and 14, in the vicinity of the container terminal, were significantly polluted by heavy metals 

and PAHs and were considered to exhibit moderate to high adverse effects, whereas the rest 

of the stations were considered to be moderately polluted with slight/moderate adverse 

biological effects, and the control station was unpolluted. These results are completely 

synchronous with those of the AMBA analysis described above. 

In the South Port, the sampling stations are in shallow water (7.5-12.40 m) with 

high organic content (11.89-22.65%) and muddy sediments (57.73-95.39%) (Table 4.1). 
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Spatial differences in the benthic community showed a strong negative correlation with 

TOC, fine particle size and heavy metals (except Ni and Mn) (Table 4.15). In fact, the 

abundance, diversity and richness of benthic communities decreased along gradients of 

increasing organic materials in the South Port. Sediment samples that were collected in the 

vicinity of the Klang River (stations 16 and 17) were completely devoid of fauna species, 

but moving away from the mouth of the Klang River, species abundance and diversity 

increased slowly at the other stations in the South Port. Lumbriculus sp and Glycera alba 

were the dominant taxa at these stations (Table 4.10 and Figure 4.13). 

Decreased salinity and dissolved oxygen probably caused the reduction in species 

diversity near the Klang River, although no significant correlation was observed between 

these parameters and the benthic community in the Klang Strait. The results of the AMBA 

and the sediment quality assessment revealed that stations 16 and 17 are highly polluted by 

heavy metals and organic content, with strong adverse biological effects. 

Several studies have indicated that sediments near discharge point with high 

concentrations of organic compounds are devoid of benthic species and that the number of 

species will slowly increase further away from a discharge area. 

A high concentration of organic compounds can increase oxygen depletion, and 

well-oxygenated sediments are essential for protecting the benthic population (Rhoads & 

Boyer, 1982; Rosenberg, 1976; Rosenberg et al., 2009; Shin, Lam, Wu, Qian, & Cheung, 

2008). 

In 1978, Pearson, Rosenberg, and Rhoads presented succession models of benthic 

communities over temporal and spatial scales, which showed that the biomass, abundance, 

and diversity of benthic communities vary in predictable patterns in response to organic 

compounds (Figure2.1). They indicated that the abundance of benthic communities 

increases along decreasing gradients of organic materials. Moreover, they indicated that in 
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the part of an estuary closest to the river mouth, the diversity is low due to the low salinity 

and the high percentage of silt and clay (Rhoads & Boyer, 1982; Rosenberg, 1976; 

Rosenberg et al., 2009). 

The present data showed that in the North and West Ports, the variation of the 

macrobenthic community was primarily related to sediment characteristics (TOC and fine 

particles size) and that releases of anthropogenic pollution are secondary disturbances that 

hinder benthic development, especially in the South Port where heavy metal contamination 

plays a major role in hindering the development of benthic communities. 

5.1.5.1 Succession stages 

In 1978, Pearson and Rosenberg exemplified the acceptable model (P–R) to clarify 

the effects of eutrophication on benthic composition, which is applicable for coastal and 

estuary waters worldwide because of its extensive usage in the literature (Calabretta & 

Oviatt, 2008; Kennish, 1997; Montuori & Triassi, 2012; Shin et al., 2008). This model 

shows that variation in the concentration of organic compounds from low- to high-input 

leads to frequent succession stages in the macro-benthos from the normal structure of the 

benthic community, with diverse species, to a transitional community structure with a high 

abundance of opportunistic species, and finally to azoic sediment devoid of fauna. The P-R 

model logically described a recovery pattern for an impacted macro-benthic community. 

First, a few opportunistic species increase in abundance in azoic sediments, which is 

considered as pioneer community’. 

This community undergoes several successions to create an ‘intermediate 

community’ and reaches a stable final point, the ‘climax community’(Rosenberg & 

Blomqvist, 2004). The climax community was recorded at a control point that is free of 

contamination. Several factors affect the succession and recovery process in aquatic areas, 
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such as water circulation, rapid fluctuations of salinity, temperature, releases of toxic 

substances from the sediment, topography, hydrodynamic conditions, water turbidity and 

water exchange patterns (Calabretta & Oviatt, 2008; Pacheco et al., 2010). 

Benthic data collected during this research identified the presence of distinct benthic 

structural assemblages at each of the 22 stations in the Klang Strait, presenting a 

progression in the community of benthic assemblages from early successional stages to the 

azoic stage. 

Most stations in the Klang Strait are in the early stage of succession, including all 

stations in the North Port (1-6), stations 9, 10, 11, 12, 15 in the West Port and stations 18 

and 21 in the South Port. AMBA analysis confirms these results because all of the above 

stations were slightly polluted, with a high abundance and diversity of ecological groups I 

and II (sensitive species) (Table 4.13 and Figure 4.17). Stations 7, 8, 13, 14 in the West 

Port and stations 19 and 20 in the South Port were in the transitional stages of succession, 

with high abundances of ecological groups IV and V (opportunistic species), and were 

moderately polluted. Stations 16 and 17 were in the azoic stage, whereas only station 22 

(control point) exhibited a normal benthic community composition, with high diversity and 

without opportunistic species. In the South Port, changes in the benthic structure along a 

gradient of anthropogenic disturbances clearly followed those expected according to the P-

R model of benthic succession. 

In the West Port, stations near the cement outlet (7, 8 and 9) and container terminal 

(13,14,15) also closely follow this model, which is evidence that anthropogenic discharges 

from the cement factory and container terminal likely affect the benthic community in this 

area. All stations in the North Port were in the early stages of succession, which indicates 

that this port is less influenced by anthropogenic sources to comparison with the West and 

South Ports in the Klang Strait. 
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In this study, evidence is presented that the benthic community in the Klang Straits 

generally in the earlier stages of succession and is less diverse than benthic communities 

observed in a more pristine area (control point). The results indicate that the distribution of 

the benthic community is controlled by several factors between different sites (Appendix 

2). 

In the South Port, there is a north-south gradient of increasing benthic diversity and 

decreasing opportunistic species that closely follows a similar pattern that had previously 

been identified with the P-R model to describe the variation in benthic structure along a 

decreasing gradient of organic compound concentration and sediment pollution by heavy 

metals and organic pollutants. Similarly, correlation analysis clearly indicated an effect of 

anthropogenic stress (total organic compounds, heavy metals and PAHs) on the distribution 

of the benthic community in the South Port.  

In the West and North Ports, the distribution of the benthic community does not 

follow the gradient of organic compounds (1978). In this area, there is an east-west gradient 

(from the coastline to the mangrove edge) of increasing benthic diversity and decreasing 

opportunistic species, implying that this pattern of benthic distribution is influenced more 

by sediment pollution, sediment type and food availability rather than by organic 

compounds because from the east to the west side of the strait, there is a gradient of 

decreasing sediment pollution (heavy metals and PAHs) and increasing fine-grain-sized 

particles, total organic compounds and food availability. The increase in total organic 

compound from east to west did not hinder the increase in benthic diversity.  

The model of benthic faunal succession in the West and North Ports can be 

considered to represent changes in the structure of macro-benthic communities along a 

gradient of natural and anthropogenic impacts because the relationship between the general 

characteristics of these port benthic communities and the mangrove system as a natural 
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habitat is clear. From a management point of view, an understanding of the composition of 

Klang Strait benthic communities is valuable for the development of management policy. 

 

5.2 Ecological risk assessment: 

According to our results, the potential ecological risk values for all metals except 

Hg and Cd were estimated to fall into the low potential risk value category (Er�< 40) at all 

stations. The Er�-values for Hg and Cd were significantly greater than those of the other 

metal and varied between moderate and high levels of potential ecological risk among the 

different stations. In this study, the potential risk value for all metals was ranked in the 

following sequence: Cd > Hg>As >Cr, Pb >Cu >Zn (Figure 4.24). 

Regarding the ecological risk assessment, Er- values and RI- values constitute one 

method for assessing the adverse effects of metal contamination on biological communities 

and human health. Cd and Hg represent high and significant potential risks to biological 

communities, whereas the rest of the investigated metals represent only low risks.  

The sequence of C�
� − values and iEr value−  revealed some differences among 

metals in the contamination profile of the Klang Strait.  

The result of the sediment contamination factor analysis indicated that surface 

sediments are moderately polluted (1 ≤ C�
�< 3), with Hg and Pb, and are highly polluted (3 ≤ 

C�
�< 6) with As and Cd in most of the stations. 

Moreover, the results of a comparison between the contaminant concentrations and 

the specific values (TEL and PEL) from the sediment quality guidelines indicated that the 

concentrations of Cd, Pb and Hg were associated with occasional adverse effects. The value 

for As exceeded the PEL value, indicating a high likelihood of adverse effects for 

biological organisms. Other metals and PAHs were rated as causing rare adverse biological 
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effects in the surface sediment because their concentrations were lower than the TEL 

values. 

In contrast, the risk analysis that evaluated differences among metals based on the 

Er�-value implied that not only Cd but also Hg pose high potential risks for biological 

communities (80 ≤ Er� < 160) whereas other parameters represent low risks (Er� < 40). 

The reason for this difference is related to the low sediment-logical toxic factor  

(St-value = 7) of As in comparison with Cd and Hg (37 and 40). 

In 1980, Hakanson indicated that in a risk index, the toxin factor provides complex 

information about the potential transport roads of toxic factors to man and aquatic 

ecological systems and also provides information about the threat posed by a toxic factor to 

an aquatic ecological system. As matter of fact, the toxic factor acts as the “main road in 

this model that goes from contamination of water-sediment-biota–fish-man.”  

Thus, sometimes the risk factor (RI) provides a different picture of contamination in 

comparison with the contamination factor and contamination degree because in the risk 

model, the toxicity of elements and the sink effect of coastal water sensitivity are 

considered, but the contamination factor and contamination degree is an earlier models that 

are estimated based only on the concentrations of elements.  

According to these results, the highest potential risk is posed not by As, as might 

have been anticipated, but rather by Cd and Hg in the Klang Strait.The results of present 

study implies large contamination factor for As , Cd, Hg and Pb which indicates the source 

of contaminates, but not necessarily the ecological significance of pollution. The potential 

risk factor analysis applied to distinguish which metals should be given more attention in 

West Port.  Hg and Cd should be given high priority while other metals low priority. 
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A risk index (RI) analysis was performed to rank stations based on the ecological 

risk to the biological communities in the Klang Strait. This analysis revealed that stations 

16 and 17 (mouth of the Klang River) are at very high ecological risk and that most of the 

stations along the berth line (except for stations 1 and 10) are at high ecological risk, and 

these stations at moderate risk. The control station was found to be subject to rare adverse 

effects due to contamination.  

There is a disagreement between the results of the RI analysis and PELq, which is 

related to the levels of risk at different stations. The variation in estimated PELq values for 

heavy metals showed that only the sediment samples collected in stations16, 17 and 13were 

considered to exhibit moderate adverse effects, and the rest of the sediment samples were 

considered to represent slight adverse effects. For PAHs, PELq values were moderate only 

at station 13 and were slight or rare at the other stations. This difference is related to the 

toxin factor and sink factor included in the RI analysis because these factors are 

independently estimated for each contaminant (except for PAHs) and are relevant to the 

individual background value and BPI for the Klang Strait. In this method, regional variation 

was also considered to some extent.  

As no sediment quality guidelines were available for the west coast of Peninsular 

Malaysia or even for other areas around this country, the results of a risk analysis based on 

the guidelines alone cannot provide an accurate view of the risk level in this area. 

In addition, the results of the benthic response to exposure in the sediment confirm 

Hakanson’s method in this study because Hakanson’s risk levels were completely 

synchronous with the level of response of the benthic communities to changes in 

contaminants at the stations 16 and 17, Whereas the rest of the stations (except of station 

40) were one level up than the level of response of the benthic communities to changes in 

contaminants. 
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For example, the AMBA analysis revealed that the benthic community is 

moderately exposed to anthropogenic stress at stations 19, 20, 7, 8, 13, 14 (Table 4.13) 

while the high risk level was estimated for these stations.  

Likewise, in other stations (except of 16, 17) benthic community was slightly 

exposed to anthropogenic stress, but the risk level was moderate for these stations. 

The first basic study on the straits was initiated by several research organisations in 

1981, including the ASEAN (Association of Southeast Asian Nations) and DOE–Selangor 

(Department of Environment)(Ho, Tahir, & Tong, 1986-1988). 

Ten specific pollutants (bacteria, phenol, oil and grease contamination and Cd, Hg, 

As, Pb, Cu, Cr and nutrient concentrations) were estimated to assess environmental quality. 

That study recorded high concentrations of chemical pollution in the form of heavy metals 

in the water, sediments and organisms in the Klang Strait. In particular, the levels of iron 

and lead were high compared to the standard levels for coastal water as a result of 

navigation and transportation, land-based pollutants and industrial activities (Law & Singh, 

1986). 

Moreover, the study initiated in 1981 recorded moderate pollution levels of 

polyaromatic hydrocarbons in this area. The Malaysian government has put regulations, 

guidelines and international agreements into place to decrease the concentrations of 

chemical contaminants in harbours and to require treatment of waste water flowing out of 

ships (Yap, 2005). However, previous studies did not provide enough information to 

estimate the degree of contamination or toxicity levels in the sediment. 

There are no existing data on the distribution of heavy metals in Klang Strait, and 

therefore, a thorough ecological risk assessment cannot be performed. The results of this 

research support the idea that the sediment quality of the Klang Strait area has to some 

extent recovered. In the present study, the contamination levels of most metals (except for 
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Hg, As and Cd) and polyaromatic hydrocarbons in the sediment were classified as 

unpolluted or slightly polluted at most stations except for station 13, which is close to the 

container terminal in the West Port, and stations 16 and 17, in the vicinity of the Klang 

River.  

These results were most likely due to the wastewater management regulations that 

were ratified in 1990 and 1997 to control petrogenic and chemical contaminants in the 

Klang Strait. These regulations focused on strategies that were based on international 

agreements to prevent and control pollution from ships, platform draining and industrial 

inputs (MARPOL 73/78 and OPRC 1990) (Sasekumar and Chang, 2005).  

It is clear that these regulations have controlled contamination to some extent but 

have not been adequate for complete recovery from toxic metal contamination, because the 

contamination levels of some very toxic elements such as Hg, As and Cd were categorized 

as moderately to highly polluting in most sediment samples. Thus, sediment from the most 

polluted stations was a significant source of toxic metals. 

 These stations are influenced by the Klang River runoff and the terminal container 

and cement outlet in the West Port, which may not be covered under the protective 

regulations. 

In addition, this research collected comprehensive experimental data over a one year 

period to identify vulnerable and high-risk areas for contaminants based on ecological risk 

and biological response and provided distribution patterns for heavy metals and PAHs.This 

research is an initial step forward from earlier studies which only considered metal 

concentrations in sediments based on experimental analysis, scientific model and indices. 

As a matter of fact contamination factor and degree of contamination means that a first step 

towards a diagnostic tool to assess the level of anthropogenic sources, risk factors and risk 

index were used as a second step to establish ecological adverse effects. Due to lack of 
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consumption rate and body level measurements for metals, human risk assessment was not 

carried out in this study. 

 

5.3 Water quality assessment 

The trophic condition in Klang Strait exhibited a significant spatial and temporal 

variation despite a similar tropical climate throughout this study area. These differences are 

most likely related to variation in nutrient concentrations due to anthropogenic activities 

that change coastal dynamics or nutrient balances as well as river discharges in South Port, 

which affect the variation of inorganic particular material. 

 

5.3.1 Water quality trends 

There several sources in marine systems that affect water quality, such as river 

discharges, upwelling, remineralisation/sediment, re-suspension, industrial waste and 

effluents; thus, it is difficult to quantify the relative contributions of nutrient sources to 

marine and coastal systems (Coelho, Gamito, & Pérez-Ruzafa, 2007; Kitsiou & Karydis, 

2011). 

In the Klang Strait, the water temperature and current speed at the different sites 

were usually related to the climatic condition of the west coast of peninsular Malaysia. The 

temperature gradually increased from the north monsoon to the south monsoon, while the 

current speed decreased during this period. This seasonal variation matches the seasonal 

pattern of water masses in Malacca and the west coastal water of peninsular 

Malaysia(Amiruddin, Ibrahim, & Ismail, 2011). 

In the case of salinity, although the climatic patterns were the same at all of the 

sites, there were significant differences among sites and months. The variation of salinity in 
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coastal and marine systems usually results from the hydrological variation due to 

evaporation water loss and freshwater inputs, such as rainfall and river discharges 

(Amiruddin et al., 2011; Hakanson & Blenckner, 2008; Lars Håkanson & Eklund, 

2010).The spatial variation of salinity was usually the same among the sampling sites 

(Figure 4.31). The lower value observed in South Port. It is unlikely that an area near the 

mouth of Klang River or in South Port would show no water circulation especially with the 

river flow and tidal current. Consequently, the South Port stations had lower salinity, and 

the difference from the three other locations was more significant. Salinity variation among 

the other sampling sites was always insignificant. The seasonal pattern of salinity was 

similar for all of the sites: salinity was low during the northeast monsoon (rainy season) 

because of salinity dilution and high during the southwest monsoon because of evaporation 

water loss. In the present study, salinity was significantly negatively correlated with the 

levels of total solids, DIN and PO�
�
, (Table 4.26) and these correlations have also been 

discussed in other studies. Salinity is the main physical variable that affects the diversity 

and abundance of biologic communities. Salinity also influences the mass transfer of 

suspended particles and water clarity in coastal water because increasing salinity increases 

the flocculation of suspended particles.  

In fact, the higher the salinity, the clearer the water(Coelho et al., 2007; Hakanson 

& Blenckner, 2008). In general, research has shown that in areas with high anthropogenic 

loads of nutrients, there is a negative correlation between salinity and nutrient levels, 

especially in estuaries and coastal waters, where high river discharges and land-based 

runoff occur and mix freshwater and seawater(Campbell, Yarbro, & Fourqurean, 2012; 

Lars Håkanson & Eklund, 2010; Iwata et al., 2005). Likewise, the salinity value can be 

negatively correlated with the ratio of DIN and PO�
�
. This ratio reduces as salinity 

increases, and a sudden shift between phosphorus and nitrogen limitation due to different 
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anthropogenic and lithogenic discharges is generally a result of limiting nutrient 

variation(Håkanson et al., 2007; Lui & Arthur Chen, 2011).  

The spatial and temporal differences in dissolved oxygen concentration and periods 

of saturation, result from turbulence, diffusion and solubility of oxygen, and 

biogeochemical processes (remineralisation, consumption, and production) (Alvarez-

Gongora & Herrera-Silveira, 2006; Kitsiou & Karydis, 2011). The highest values for both 

oxygen concentration and saturation occurred during the northeast monsoon (Figure 4.29 

and Figure 4.30). This season is characterised by strong winds and high action of waves 

that increase turbulence, and thus, the rate of oxygen diffusion was varied between the 

atmosphere and surface water; likewise, the lower temperature in this period caused 

increased oxygen solubility. Lower oxygen levels were found during the southwest 

monsoon (dry season), perhaps due to warmer water temperatures that stimulate respiration 

and decrease the solubility of oxygen (Amiruddin et al., 2011).  

In Klang Strait, significant negative correlations were found between oxygen values 

and nutrients and chl-a. Empirical and dynamic models were created based on this negative 

correlation to predict average oxygen saturations related to nutrient loading rates and the 

morphometry of the coastal area.  

These models showed that higher loads of nutrients (nitrogen and phosphorus) 

reduced oxygen saturation, and the deeper coastal areas have lower oxygen saturations 

(Ferreira et al., 2011; Hakanson & Blenckner, 2008; Kitsiou & Karydis, 2011). 

Secchi depth is a key component in empirical and dynamic models to express water 

clarity and turbidity because it directly reflects the amount of suspended materials that 

scatter light in water bodies(Gallegos, Werdell, & McClain, 2011; Huo et al., 

2011).Recently, researchers have noticed a significant negative relationship between Secchi 
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depths and levels of nutrients, chlorophylla and total suspended solids, and total solids are 

positively correlated with levels of nutrients (except for silicate) and chlorophyll a. 

These results were also frequently found in other studies. Moreover, the levels of 

total solids and transparency at four of the sites were strongly related to rainfall, river 

discharges, hydrodynamic turbulence and water production. These factors lead to high 

quantities of resuspendable materials that increase the internal loading of nutrients and 

increase production and levels of total solids; a high amount of coloured materials in 

estuaries and coastal water creates a lower photic zone and decreased water transparency 

(Banerjee & Choudhury, 2011; Coelho et al., 2007; Hakanson & Blenckner, 2008; 

Intxausti, Villate, Uriarte, Iriarte, & Ameztoy, 2011).  

In Klang Strait, a significant difference was observed on spatial and temporal scales. 

During the northeast monsoon, storms produce strong waves, leading to re-suspension of 

previously deposited particles that contain carbon and major nutrients as well as mineral 

particles and pollutants, which re-enter the aquatic system.  

Additionally, during this period, high daily rainfall increases river discharges and 

land-based runoff, which increase the levels of suspended solids and decrease water 

transparency (Figure 4.32 and Figure 4.31).  

Total solids includes total suspended solids and total dissolved solids, which are 

directly related to several parameters of overall use for coastal water management as 

indicators of water clarity, but in ecological research, the major focus may not be on total 

solids but on indicators influenced by total solids, like the Secchi depth and oxygen 

saturation. In aquatic areas, suspended particles widely influence bacterial decomposition, 

oxygen concentrations in sediment, and primary and secondary production (Crump, Baross, 

& Simenstad, 1998).  
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Suspended particles settle on the bottom sediment, and the organic portion of these 

particles is decomposed by bacteria during the mineralisation process; hence, this process 

leads to the recycling of major nutrients, organic matter and pollutants and reduces the 

concentration of oxygen in a given aquatic ecosystem. 

 Likewise, many pollutants (e.g., heavy metals, nutrients and radio nuclides) can be 

removed from the water column by sinking to the bottom sediments with suspended solids 

and burial in sediments (Kawasaki, Sohrin, Ogawa, Nagata, & Benner, 2011; März, 2010). 

In Klang Strait, there were spatial and temporal differences of nutrient 

concentrations due to mutual interaction between anthropogenically generated wastewater 

at the coast and biogeochemical processes (re-mineralisation and biodegradation process 

around the mangrove line).  

In addition, land-based runoff and Klang River discharges contributed to the 

variation among sites. Importantly, Klang River discharges can act as a point-source at 

South Port, which was extremely polluted by nutrients except for  SiO�
�
. In the North and 

West Port sites, the high concentration of nutrients and chlorophyll a as a consequence of 

human activities (industrial discharges and berth platform washing) and natural processes 

of remineralisation, resuspension, and turbulence led to increase nutrient concentrations in 

the water column and stimulated phytoplankton biomass. 

The inverse relationship between silicate and salinity indicates that the silicate is 

largely derived from anthropogenic sources (Table 4.26). The concentration of silicate in 

West Port was significantly higher than at the other sites. This result was related to 

discharges from a cement factory because silicate is a primary ingredient of cement 

products. Additionally, 87% of the sediment samples of West Port were completely mixed 

with cement, especially in the vicinity of cement-factory outlets.  
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In South Port and North Port, the concentrations of silicate were low at stations that 

were far from the cement factory (1-3, 16, 17, 19 and 20), while the concentrations of 

silicate increased at stations 4,5,18 and 21, which were close to the cement factory. 

Additionally, the concentration of silicate at the control point is good evidence because 

silicate levels were significantly lower at the control point than at the other sites, with low 

standard deviation. 

Natural processes can be another source of silicate. Most geological studies show 

that much of the bedrock in peninsular Malaysia consists of limestone, and the Klang 

Valley is one of the major areas widely covered by limestone rock (Boon-Kong, 2000; 

Ismail, Mansor, Rodsi, & Bujang, 2011; Samy, Shattri, Bujang, Ahmed, & Sharharin, 

2012). Limestone is a type of sedimentary rock that includes the minerals calcite, dolomite, 

microcrystalline and amorphous silica, SiO
2
, clay, organic matter and iron oxides. 

Limestone has a unique property of easy dissolution in slightly acidic waters (Ogle & 

Walsh, 2010). In the Klang valley, major parts of the limestone formations have been 

metamorphosed into marble, which has the same composition as limestone (Samy et al., 

2012). In addition, land-based runoff and river discharges can be considered as other 

sources of silicate in this region because high variation based on  standard division of  

silicate level occurred during the rainy season at all of the sites except the control area, 

while this variation was low in the dry season. 

The chlorophyll a concentration is a major abiotic variable used to estimate 

phytoplankton biomass in aquatic sciences (Ferreira et al., 2011; Hakanson & Blenckner, 

2008; Kitsiou & Karydis, 2011).  
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Several empirical models predicted chlorophyll a concentrations from nutrient 

concentrations, water temperature and light conditions, and these models showed a very 

strong correlation (r = 0.88) between nutrients (TP and TN) and concentrations of 

chlorophyll a ( Håkanson & Eklund, 2010). 

Chlorophyll a levels changed seasonally and spatially in Klang Strait due to the 

different processes that control the abundance of phytoplankton throughout this region. The 

highest concentrations of chl-a occurred during the north monsoon (rainy season) and inter-

monsoon, while the lowest levels occurred during the south monsoon.  

The high concentrations of chl-a are mainly related to gradual nutrient increases 

during the rainy season and to sediment re-suspension due to strong water turbulence 

during the north monsoon (Philippart et al., 2000). In 1984, the mean concentration of chl-a 

in the Klang coastal area was between 5.10 and 21.20 µg/l (Yap, 2005). In this research, 

however, the mean chl-a concentration at the sites inside the strait were higher than in the 

control area, indicting early-stage eutrophication at these sites.  

At North Port and West Port, the chl-a levels were likely due to nutrient discharges 

from the harbour and mangrove re-sustentation caused by benthic or microbial 

communities that occurred along mangrove line or due to strong winds and high wave 

action during the north monsoon.  

Multivariate statistical (classification and ordination) methods were applied to 

describe associations among the environmental parameters or sites and to explore the 

importance of hierarchy among the parameters. These methods facilitate better ecological 

descriptions of field data and the generation of new hypotheses. The cluster-classification 

analysis based on hydrological parameters revealed that North and West Port clustered 

together, which might represent the strong effects on both of the Ports from harbour 

activities and re-sustentation and re-mineralisation processes.  
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The clustering of South Port separate from the other groups was most likely due to 

the high nutrient and total solid levels, low transparency and distinct salinity profiles. The 

control point was completely separated from the other clusters, likely due to its lowest 

concentration of nutrients and highest water transparency (Figure 4.43). 

At south port, a significant relationship was found between NH�
�, NO�


,  PO�
�
, 

NH�, DIN, chl-a and total solids and the first component, which explained 81.12% of the 

variability (Table 4.28). The association with this component suggests the influence of the 

Klang River, which has high total solid and nutrient loads, especiallyPO�
�
 derived from 

urban and industrial effluents and agriculture fertilisers(Rustam, Karim, Ajward, & Jaafar, 

2000; Tan, Goh, Vijayaletchumy, Loong, & Ang, 1990). Many researchers have shown that 

more than 70% of the dissolved inorganic nitrogen, especially  NO�

,in marine systems is 

discharged into estuarine and coastal waters by rivers that might polluted by anthropogenic 

activities (especially waste and fertiliser run-off)with old nutrients, while NH� is indicative 

of new nutrients due to human effluents and is very toxic for phytoplankton in high 

concentrations (Hakanson & Blenckner, 2008; Suthers & Rissik, 2009).  

Additionally, there is scientific evidence to confirm that in aquatic areas, NH�and 

PO�
�
 can naturally originate from the decomposition of organic and inorganic matter, 

nitrogen reduction by microorganisms, and biotic excretion. These compounds are also 

loaded into aquatic areas by industrial outlets, fertiliser runoff, and urban waste(Ferreira et 

al., 2011; Harrison, Bouwman, Mayorga, & Seitzinger, 2010). Likewise, the high inverse 

association between salinity and chlorophyll a, total solids and all nutrients except  SiO�
�
 

suggests discharges from the Klang River, while the direct relationship with the other 

parameters is likely related to natural processes in this Strait. 
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At North Port and West Port, the association of all of the nutrients and chlorophyll a 

suggest the effect of nutrient loads and organic material derived from both industrial 

wastewater and natural interactions of mangrove forests, such as resuspension processes, 

biotic decomposition and nitrogen reduction.  

In West port, the high inverse relationship observed between salinity and the levels 

of all nutrients, total solids and chlorophyll a implies the effect of anthropogenic 

discharges, likely industrial discharges and harbour activities, while in North port, a low 

direct relationship was found between salinity and nutrients, likely a result of natural 

processes, such as re-sustentation and re-mineralisation. 

The results imply that the mean concentration and standard division of nutrients at 

the control point are significantly lower than at other sites inside Klang Strait. This 

difference is good evidence that these sites are influenced by their internal load of nutrients. 

At the control point, Dissolved Oxygen, Oxygen Saturation, transparency, total solids, 

currentspeed, DIN and  SiO�
�
accounted for 55.4% of the water quality variability.  

This result implies that the low effects of nutrient discharges are due to the location 

of this area far from coastline-oceanic interactions and anthropogenic discharges.  

In contrast, nutrients were significantly correlated with salinity in these sites, 

suggesting internal nutrient loading by nutural sources. Based on the multivariate analyses, 

we suggest that the water quality at North Port and West Port are related to the levels of 

nutrients and biomass of phytoplankton (chlorophyll a), which result from industrial 

discharges, harbour activities, natural processes around mangrove forests and coastline-

oceanic interactions. At south Port, the water quality was greatly influenced by Klang River 

discharges, while at the control point, most of the water-quality variation resulted from 

physical parameters and water turbulence. 
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5.3.2 Water-quality zoning 

There are several sources in marine systems that affect water quality, such as river 

discharges, upwelling, remineralisation or sediment resuspension, industrial waste and 

effluents; thus, it is difficult to quantify the relative contributions of nutrient sources to 

marine and coastal systems (Kitsiou & Karydis, 2011).In the present study, the water 

quality parameters at each site and their relationship withanthropogenic activities revealed 

that the coastal waters of South Port are strongly affected by Klang River and Langet River 

discharges, with characteristic low salinity, water transparency and dissolved oxygen levels 

and relatively high levels of nutrients(except silicate), chlorophyll a and total solids. These 

rivers input change physicochemical parameters that are related to coastal water and flow 

rates.  

Several researchers have reported that these river contains high concentrations of 

nutrients resulting from urbanisation and agriculture fertilisers (Boon-Kong, 2000; Tan et 

al., 1990). The discharges of these river containing high amounts of nutrients enter the 

coastal system of south Port and stimulate phytoplankton growth, with characteristically 

high concentrations of chlorophyll a at these sites in comparison to other sites. 

All of the physicochemical parameters (except NO�

and SiO�

�
) showed similar 

spatial and temporal patterns, with insignificant differences between North Port and West 

Port (Table 4.26). The high concentrations of nutrients indicate that the trophic condition at 

these sites is influenced by industrial waste, land-based run-off and re-

mineralisation/sediment re-suspension in mangrove forests. These sites are located between 

the berth line and mangrove line in a region that receives the greatest impact from 

anthropogenic and lithogenic sources, resulting in highly eutrophic conditions in the North 

Port and West Port.  
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The results in Table 4.23 showed that the highest concentrations of nutrients were 

found at stations in the vicinity of the berth line and mangrove line, and the lowest 

concentrations were at intermediate stations. Around the berth line, several anthropogenic 

sources have been reported that increase nutrient concentrations, leading to eutrophic 

conditions. These sources include wastewater from industrial discharges (food and oil 

factories and a cement factory) and port activities, such as discharges from berth-platform 

washing and wastes related to the shipping of goods related to fertilisers, detergents and 

food products. Moreover, the concentration of silicate in West Port was significantly higher 

than at the other sites (Figure 4.41), likely related to the discharges of the cement factory, 

which greatly influenced the water quality. 

The higher levels of nutrient and chlorophyll a in the vicinity of the mangrove 

forests might be related to the impact of mangrove-derived organic matter. Coastal lagoons 

and mangrove forests are natural sources of nutrients to the marine coastal area, and their 

discharges occur seasonally through pulses due to natural climatic events (hurricanes and 

storms) (Coelho et al., 2007). The dissolved inorganic nutrients are effectively re-

suspended in mangrove sediments by the microbial degradation of organic matter, de-

nitrification processes and re-mineralisation. Sediment re-suspension increases nutrient 

availability in water bodies, stimulate phytoplankton biomass and macroalgae, which 

exacerbate eutrophication in coastal systems (Feller, Whigham, O'Neill, & McKee, 1999; 

Smith, Burford, Revill, Haese, & Fortune, 2012; Sweetman et al., 2010). 

At the control area, low concentrations of nutrients and chlorophyll a characterised 

this region because this area was selected in a remote area far from the coastal area of 

Klang Strait; therefore, this area is less affected by anthropogenic activities than the other 

sites. 
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5.3.3 Trophic level: 

Several multimetric indices have been proposed to evaluate and classify coastal and 

marine systems based on eutrophication conditions or trophic status, which are commonly 

described according to the productivity, such as a state of low productivity (oligotrophic), 

intermediate productivity (mesotrophic), or high productivity (eutrophic) (Suthers & Rissik, 

2009). In this research, the eutrophication index (EI) and trophic index (TRIX) were 

applied to assess the trophic level. 

Based on the trophic index described by Vollenweider (1998) and Penna et al. 

(2004), the water quality of Klang Strait can be considered eutrophic at all of the sites 

(Figure 4.44), which corresponds to highly productive waters, and the condition of the 

coastal study area ranged from 6 to 8. The levels of dissolved inorganic nitrogen, 

chlorophyll a, and total phosphorus were the variables responsible for this water 

classification. 

Although TRIX has been used as a water quality index to assess trophic levels in 

different coastal areas, namely in coastal areas of the Black Sea, Caspian Sea, Persian Sea, 

Montego Estuary, southeast Mexico, and Helsinki Sea (Kitsiou & Karydis, 2011; 

Vollenweider et al., 1998), there are drawbacks to TRIX.TRIX cannot meet some of the 

requirements of the European water framework (WFD, 2000/60/EC), and TRIX does not 

conform to natural reference conditions used to normalise the scale (Kitsiou & Karydis, 

2011). The European Environmental Agency (EEA) recommends that the specific scale of 

TRIX should be described for different areas or regions to increase the sensitivity of this 

index.  

It is also important to select which data are applied for the TRIX estimation 

(seasonal averages, seasonal averages over several years or annual averages) to make the 

index less sensitive to natural meteorologically forced variations (Commission, 2000). 
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Despite these drawbacks, the EEA indicates that the general approach using TRIX can be a 

comparable and practicable method to monitor and assess trophic levels, and TRIX can also 

be used to identify eutrophication trends of marine and coastal waters (Kitsiou & Karydis, 

2011). Likewise, researchers in recent studies do not recommend this index for shallow 

aquatic areas that are dominated by macroalgae and seagrasses and instead apply benthic 

indices, which are more effective because the biomass of phytoplankton is not appropriate 

for defining the nutrient effects (Giordani et al., 2009; Primpas & Karydis, 2010).  

In 2010, Primpas proposed another multimetric index to assess trophic status. This 

index tests three standard sets of water types (oligotrophic, mesotrophic, and eutrophic) and 

historical data of Rhodes coastal water. Their results showed that the EI is effective and 

valid index to assess water quality. The results of testing this index correspond to 

previously published data from the Rhodes coastal area and demonstrate the adaptability of 

this index to the requirement of the European water framework (Primpas & Karydis, 

2010).Therefore, in this research, the EI index was used to better characterise the trophic 

level of Klang Strait.  

The values for the eutrophication index (EI) of water quality ranged from 

mesotrophic to hypertrophic in terms of the condition of the coastal system of Klang Strait. 

The water quality at the control area was categorised as eutrophic (0.85-1.51) and was 

moderate (0.38-0.85) only in February, August and July 2010 (Figure 4.45). This finding 

might have been a result of natural nutrients entering from mudflats and runoff of the 

mangrove fringe area. In the other sites, the water quality was generally classified as 

hypertrophic (EI> 1.5), but in November 2009 and December, July, August and September 

2010, the water quality of North Port and West Port was estimated as eutrophic. 
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Generally, the poorest water quality conditions were observed at sites with the 

highest influence from anthropogenic activities, such as West port, North port and South 

port, while good quality water conditions were located at the control area, far from the 

coastal areas. This finding indicates that the water health status is threatened in the Klang 

Strait. 

During this study, seasonal variation affected trophic variation. During the north 

monsoon (rainy season), hurricanes reduced the water quality by increasing land-based 

runoff and river discharges, suggesting an important connection between the coastal area 

and the sea; moreover, reduced transparency and increasing nutrient and sediment 

concentrations occurred in the coastal waters. The impact of hurricanes was short-term for 

salinity and water transparency reduction, while the nutrient values increased due to land-

based runoff, river discharges and remineralisation (Steward et al., 2006). 

Several researchers have shown that integrated indicators are more appropriate to 

assess eutrophication levels. These researchers have developed different criteria of trophic 

trends for the classification of marine and coastal waters based on operational variables, 

such as DO, chlorophyll a, nutrients, macroalgae, SAV, HAB and macrobenthic indicators 

(Borja et al., 2012; Devlin et al., 2011; Ferreira et al., 2011). Recently, researchers have 

begun to consider water transparency, oxygen budget and chlorophyll levels as effective 

parameters, while nutrients in coastal systems must be preferably applied as pressure 

indicators, generally according to nitrogen and phosphorus compounds (Ferreira et al., 

2011; Ferreira et al., 2010). The use of pigment measurements as phytoplankton indicators 

and the coupling of these measurements with other physicochemical variables (e.g., 

transparency and oxygen budget) as well as the use of multimetric indexes has been 

proposed to improve coastal water quality monitoring.  



244 

The different indicators used to assess the eutrophication of coastal aquatic 

ecosystems described above result from a number of reasons: (a) different types of aquatic 

systems require particular field information related to physicochemical, biological and 

geological parameters and likely require specific indices, and (b)several multimetric indices 

have become famous over the last decade because they are practical in coastal 

environmental management research, for which integrated information is required (Borja et 

al., 2012; Campbell et al., 2012; Ferreira et al., 2011; Paerl et al., 2011). 

To introduce an occurrence level of trophic conditions, operational indicators were 

applied. Among the physicochemical variables used to guide values based on the United 

States National Estuarine Eutrophication Assessment, only the dissolved oxygen 

concentration (>5 mg/l) and pH (5 - 9) had levels in the range of the recommended 

intervals.  

The average water transparency in all of the sites showed the hypertrophic level 

category (< 200cm), this might have been caused by high discharges of particulate matter 

from land-based runoff and river discharge into the coastal area. The average DIN 

concentrations at the South Port, North port and West port were in the hypertrophic 

category (DIN ≥ 0.94 mg/l), while the control area was in the eutrophic category (0.94 > 

DIN ≥0.29 mg/l) during the year of sampling (Table 4.23). The average phosphorus 

concentration at all of the sites was at the eutrophic level (0.13 > P ≥0.04 mg) in most of 

the months, and in some of the months, such as November 2009, December, April, May, 

July, September and October 2010, the concentration of phosphorus was in the 

hypertrophic category (P> 0.13 mg/l) (Table 4.23 and Figure 4.40). 

The average concentration of chlorophyll a in the control area showed mesotrophic 

conditions throughout the sampled year. The average chlorophyll a concentrations in North 

port, South Port and West Port were in the eutrophic range (20 > chl a ≥6) from January 
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2010 to July 2010, and in the other months, the mean concentration of chlorophyll a 

showed the mesotrophic (6 >chl a ≥2) level in North Port and West Port. 

In the present study, the overall water quality was described based on the annual 

average of operational indicators and trophic indices. According to these results, the trophic 

level of Klang Strait coastal water(South port, North Port and West Port) can be considered 

eutrophic to hypertrophic based on the dissolved inorganic nitrogen, phosphorus, water 

transparency, chlorophyll a and trophic indices (EI and TRIX).  

The trophic level of the control area ranged from mesotrophic to eutrophic based on 

the phosphorus concentration, DIN, chlorophyll a and eutrophication index (EI). The values 

of water transparency and the TRIX index were not used to classify the trophic level in the 

control area because their range was far from the range of other key indicators, especially 

chlorophyll a. 

The indicators and indices used to classify the trophic level of Klang Strait did not 

always lead to the same trophic classification because of the differences between the 

categories of chlorophyll a and nutrient concentrations (N and P). 

Several methods have been described to assess eutrophication trends to protect 

estuarine and coastal waters from degradation. Most of these eutrophication assessments 

imply that increased chlorophyll a is the primary symptom or direct effect of the first stage 

of eutrophication. Increased chl-a is considered as a biological response to increase primary 

production(Ferreira et al., 2011; HELCOM, 2009). Changes in dissolved oxygen levels, 

toxic blooms and losses of SAV are secondary symptoms and indirect effects that indicate 

the advanced development of eutrophic conditions in an aquatic system (S. Bricker, 

Ferreira, & Simas, 2003; HELCOM, 2009; OSPAR, 1998). 

We concluded that nutrient concentrations, when applied jointly with chlorophyll a 

assessments, are a closer step toward an accurate eutrophication evaluation. However, 
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nutrient concentrations may not be a practical indicator in all coastal waters because 

although P and N generally seem to be important to predict the trophic level and 

chlorophyll a levels in coastal systems, the use of nutrients faces a problem: several bio-

available dissolved forms of nutrients and their seasonal trends have been shown to have 

high coefficients of variation or standard deviation in aquatic systems.  

This means that many water samples should be analysed at different spatial and 

temporal scales to collect reliable empirical data. Likewise, high standard deviations lead to 

overlap among the nutrient datasets used to distinguish among oligotrophic, mesotrophic 

and eutrophic conditions (Hakanson & Blenckner, 2008; Kitsiou & Karydis, 2011). 

Thus, the results of chl-a are more reliable than other parameters because chl-ais 

applied as a proxy for phytoplankton biomass, is typical to all models and methods, and 

there is wide research on its use as a bio-indicator in estuarine and coastal waters (Borja et 

al., 2012; Bricker et al., 2003; Bricker et al., 2008; Bricker et al., 2007; Friedland et al., 

2012; Håkanson & Eklund, 2010; Kitsiou & Karydis, 2011; Peng, Gitelson, Keydan, 

Rundquist, & Moses, 2011; Zaldívar et al., 2008). 

In the present study, the results of chl-a concentration suggest a eutrophic condition 

in sites inside Klang Strait and mesotrophic conditions in the control area, and the results of 

the Redfield ratio support the eutrophic categorisation. 

The Redfield ratios of dissolved nutrients are used to describe primary production in 

water bodies and reflect the limiting variables. Research has shown that in coastal and 

estuarine systems, if this ratio is greater than 16, P limitation of primary production is 

occurring, indicating that a lack of phosphorus is preventing increased primary production. 

Ratios lower than 16 suggest nitrogen limitation of primary production. Phosphorus is 

known as a crucial limiting nutrient for freshwater primary production, but estuarine and 

ocean environments are typically nitrogen limited. However, Guildford and Hecky in 2000 
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indicated that phosphorus is a major nutrient regulating primary production in freshwater as 

well as coastal and marine systems (Hakanson & Blenckner, 2008; Håkanson & Eklund, 

2010). 

Several investigations have shown that the trophic status of estuarine and coastal 

waters based on the Redfield ratio range from oligotrophic (Redfield ratio of N:P close to 

7:1) to eutrophic systems (Redfield ratio close to 14:1)(Guildford & Hecky, 2000; S. M. 

Smith & Lee, 2006; Suthers & Rissik, 2009).  

Moreover, in some coastal environments, such as the equatorial Pacific, primary 

producers (phytoplankton) have access to high values of nitrogen and phosphorus, but their 

biomass is low (generally estimated based on the chlorophyll a concentration) (Guildford & 

Hecky, 2000; Suthers & Rissik, 2009).  

During the research period (Hakanson et al., 1986), the N:P ratio in most of the 

months was close to or greater than the Redfield ratio (16:1, 14:1) inside Klang Strait, 

suggesting a eutrophic condition, and the ratio was significantly lower than the Redfield 

ratio (from 7 to 14) only in November 2009 and December, July and October 2010, 

implying mesotrophic conditions in these months. 

According to the trophic indices, the high concentration of exogenous nutrient 

sources changed the trophic status to eutrophic. Klang Strait is most likely in an early stage 

of eutrophication, and the chlorophyll a concentration seems to reflect this result, but no 

eutrophication events or secondary symptoms, such as phytoplankton blooms or oxygen 

depletion, occurred during the research period. This result might be related to 

hydrodynamic turbulence and water exchange, which prevent the development of eutrophic 

conditions in Klang Strait. 
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Hydrodynamic turbulence is a major characteristic of coastal areas and includes 

Coriolis-driven coastal jet-zone, up-welling, tidal effects and waves. These hydrodynamic 

processes are generally very complex and dynamic in marine coastal waters and cause 

exchanges of coastal water with the outside seawater over only a few days.  

Therefore, it is easy to understand why the retention time of surface water is 

approximately 2-6 days for coastal areas. This result implies that coastal water is in close 

contact with conditions in the outside sea, especially in small, open coastal areas (Hakanson 

& Blenckner, 2008; Hakanson et al., 1986). 

 In these types of coastal areas, the coastal nutrient or contaminant concentrations 

are similar to the concentrations off shore water because the coastal water is exchanged 

several times each month. Hence, the concentrations of nutrients and organic material 

greatly vary during these water exchanges, making it difficult to predict the trophic level 

based on the nutrient concentrations in the coastal water (Fang et al., 2011; Hakanson & 

Blenckner, 2008; Karlsson, Malmaeus, Josefsson, Wiberg, & Håkanson, 2010; Pilesjö, 

Persson, & Håkanson, 1991).  

Klang Strait is typical of the small, open coastal waters of west coast peninsular 

Malaysia that are extremely influenced by hydrodynamic actions, such as shipping 

movements, strong waves and winds during the north monsoon. These actions increase the 

hydrodynamic turbulence and advection of primary producers (phytoplankton). Both of 

these parameters reduce the nutrient assimilation by phytoplankton and likely prevent the 

development of bloom conditions and other secondary symptoms, such as oxygen 

depletion.  

In addition, the frequency of water renewal or exchange through the semidiurnal 

tidal current of the strait could have contributed to the reduction of the effects caused by 

nutrient accumulation. 
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The diagnosis based on water quality and chlorophyll a used in this research has 

helped to describe differences in the values of the measured parameters within each of the 

sites and to characterise the individual response of each metric according to site-specific 

combinations of regional conditions.  

 However, the variation found in the data for the metrics applied at the studied 

spatial and temporal scales (within stations and months) implies that, to improve the quality 

of future analyses for resulting management strategies, this assessment must be conducted 

on a longer temporal scale. The present study is the first attempt to assess the ecological 

condition of a marine coastal system in Klang Strait based on the water quality and 

chlorophyll a.  

The results of this study will be useful and practical as baseline data for future 

monitoring programs to assess whether the condition of the ecological system at each site 

improves or worsens after the recommended actions in marine coastal managment are 

implemented. 
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5.4 Conclusion 

 
There is a need to critically assess the present quality of the marine ecosystem, 

especially the connection between ecosystem changes and ecological risks. The conclusions 

are described in the context of the objective and scope of the present research. Additionally, 

the conclusions for the ecological risk assessment have been drawn. The following are the 

conclusions of this study: 

1. Variations in total organic carbon (TOC) content and sediment grain size are 

generally more important than variations of the physical parameters of water for predicting 

the distribution and variation of heavy metals, polyaromatic hydrocarbons (PAHs) and 

benthic communities in sediments. TOC and sediment grain size were significantly 

correlated with some metals (Al, Cd, Cu, Fe, Ni, V and Zn) and PAHs in sediment. 

2. A significant variation was found in the distribution and concentration of all of 

the heavy metals and PAH compounds on both spatial and temporal scales. The highest 

concentrations of all of the metals (except for Mn) were determined at South Port at 

stations 16 and 17, which are parallel to the mouth of the Klang River, and at station 13 

around the container terminal in West Port. On a temporal scale, the concentrations of 

metals, except for Cr and Mn, in surface sediments significantly varied, most likely due to 

seasonal fluctuations. Likewise, the highest concentration of PAHs was determined at 

stations close to shore (at the berth line), especially at stations 4, 13 and 14, which were 

close to a container terminal in North and West Port, and at stations 16 and 17 in South 

Port. 

3. As a result, the significant distribution patterns and correlation analyses showed 

that multiple sources greatly contributed to the contaminant loads in Klang Strait. These 

sources included industrial inflow, such as the palm oil, cement and food manufacturers 
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that are located along the coastline of North and West Ports, vessel-based discharges, Klang 

River and land-based runoff, and mangrove sedimentation processes. The enrichment factor 

(EF) also indicated that all of the metal concentrations, except for Fein sediment, were 

influenced by anthropogenic inputs, especially very toxic elements, such as As, Cd, Hg and 

Pb, which were enriched at high levels at stations close to the berth line and the mouth of 

the Klang River. In general, all of the stations had the same classification based on the 

enrichment factor, which indicated moderate anthropogenic discharges of heavy metals. 

Thus, both natural processes or local mineralogy and human activities (anthropogenic) 

contributed to heavy metal loads in Klang Strait. The PCA analysis is concordant with 

evidence from paired isomer ratios of PAHs, which revealed that the anthropogenic sources 

of PAHs are influenced by mixed sources of pyrogenic and petrogenic PAH pollution at all 

of the stations except stations 4, 14 and 21, where combustion was a more important 

source. A source analysis revealed that PAHs are primarily derived from liquid fossil fuels 

due to vehicle, crude oil and coal (petroleum combustion) sources, which might originate 

from industrial discharges, such as those from cement, food and oil factories. A minor 

amount of the PAHs may be related to direct petroleum discharge and land-based runoff. 

4. The contamination degree of the sediment contamination was estimated based on 

the contamination factor (CF) and a comparison between the contaminant concentrations 

and the specific value (TEL and PEL) of sediment-quality guidelines. The data revealed 

that the sediment condition is in a pristine state with respect to metal contamination except 

for Cd, As, Hg and Pb. The surface sediment is moderately polluted with Hg, Pb and As, 

and only Cd was estimated at a high level of contamination. 
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Regarding the PELq estimation for total PAHs, only station 13 (close to the 

container terminal in West Port) was moderately polluted, and the rest of the stations were 

at risk of rare or slight adverse biological effects due to PAH exposure in surface 

sediments. 

5. The ecological risk was estimated according to the potential ecological risk and 

toxic factor of heavy metals and PAHs. The potential ecological risks of Cd and Hg were 

high and signified potential risks for biological communities at all of the stations, and the 

rest of the investigated metals and PAHs had low risk factors. 

6. Our hypothesise indicates there is a high threat of petroleum and heavy metal 

contamination on the biological community in Klang Strait; according to the above 

discussion. This hypothesis was rejected and only considered for Cd and Hg as primary 

stressors that cause adverse effects on biological communities in Klang Strait. Several 

factors cause the decline of these contaminants, such as an integrated management 

programme and regulation, meteorological conditions and weathering.  

7. According to the risk index (RI) classification, only the sediment from stations 16 

and 17 (at the mouth of the Klang River) can be considered as causing very high ecological 

risk. The vulnerable stations and all of the stations along the berth line (except stations 1 

and 10) are at high ecological risk, and the rest of the stations are at moderate risk. The 

control station was found to have low adverse effects with normal responses. 

8. In this research, there were no temporal changes in the species richness and 

abundance of benthic communities (based on exposure), but the greatest effects on benthic 

composition were found on the spatial scale. The biological indices (AMBI, M-AMBI and 

BI) and correlation analyses are in good agreement, confirming the response of benthic 

communities to changes of contaminant levels at the different stations. 
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9. According to the P-R model of benthic succession, most of the stations are in an 

early stage of succession in Klang Strait, including all of the stations in North port (1-6), 

stations 9, 10, 11, 12, 15 in West Port and stations 18 and 21 in South Port. The AMBI 

analysis confirmed these results: all of the above-mentioned stations were slightly polluted 

with high abundance and diversity of ecological groups I and II (sensitive species). Stations 

7, 8, 13, and 14 in West Port and stations 19 and 20 in South Port were in transitional 

stages of succession, with high abundances of ecological groups IV and V (opportunistic 

species), and were moderately polluted. Stations 16 and 17 were in azoic stages, while only 

station 22 (the control point) had a normal composition of the benthic community with high 

diversity and without opportunistic species.  

10. The variations of water-quality parameters (except temperature) were 

significantly different on spatial and temporal scales due to seasonal fluctuations, 

anthropogenically generated wastewater at the coast and biogeochemical processes (re-

mineralisation and biodegradation processes around the mangrove line) and Klang River 

discharges. Multivariate statistical methods (cluster, PCA and nonparametric analyses) 

revealed that nutrients (especially DIN and PO�
�
), chlorophyll a and total solids are major 

variables that contributed to the variability in Klang Strait coastal water, while at the 

control point, most of the water quality variation resulted from physical parameters and 

water turbulence. Statistical analyses revealed that there was no significant variation in 

hydrological parameters (exceptNO�

and SiO�

�
) between North and West Port, and these 

sites were in the same cluster. The clustering of South Port separate from the other sites 

was most likely due to its high nutrient and total solid levels, low transparency and salinity 

profile, while the control site was completely separated from the other clusters, likely due 

to its low concentration of nutrients and high water transparency. 
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Moreover, the concentration of silica at West Port was significantly higher than at 

the other sites, and this result was related to discharges from the cement factory, which 

greatly influenced the water quality. 

11. Multimetric indices (EIand TRIX) and operational indicator shave been 

proposed to evaluate and classify coastal and marine systems based on eutrophication 

conditions or trophic status. According to these results, the trophic level of Klang Strait 

coastal water (South Port, North Port and West Port) can be considered to range from 

eutrophic to hypertrophic based on levels of dissolved inorganic nitrogen, phosphorus, 

water transparency, chlorophyll a and trophic indices. The chl-a concentration was used as 

a biological response of phytoplankton biomass and showed a eutrophic condition in Klang 

Strait and mesotrophic condition in the control area. Klang Strait is most likely in an early 

stage of eutrophication, and the chlorophyll a concentration seems to reflect this result, but 

no eutrophication events or secondary symptoms, such as bloom conditions or oxygen 

depletion, occurred during the study period, this may related to hydrodynamic turbulence 

and water exchange, which prevent the development of eutrophic conditions in Klang 

Strait. 

12. Wastewater-management regulations were ratified in 1990 and 1997 to recover 

the sediment from most of the metal and poly-aromatic hydrocarbon pollution, but these 

regulations are not adequate to control Hg, As and Cd, and this area can be considered as a 

hot spot for these elements. 
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5.5 Recommendation 

The present study recommended further investigations, including the following 

tasks: 

1- Study the concentrations of heavy metals and PAHs in the wastewater of the 

factories that are located along the coastline of Westport and the Klang River to 

distinguish the major contribution of each factory to the pollution load. 

2- Conduct toxicity tests and bioaccumulation tests on biological communities on a 

laboratory scale to provide adequate data for human health risk assessments. 

3- Study the spatiotemporal variations of heavy metal and PAH concentrations in 

the sediment of the mangrove Islands that surround Klang Strait. 

4- Modify the trophic assessment by estimating water parameters in small-scale 

temporal variations, such as hourly or daily, to better understand the relationship 

between water-quality variables and hydrodynamic turbulence due to the semi-

diurnal tides and monsoon current. 
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6 APPENDIX 1 

A: Information of layout plan of berth 

South Port 

 

Table 1, Berth Information of the South Port 

Berth 
Max Disp 
(Tones) 

Length 
(m) 

Depth 
(m) 

Ht. of wharf  above 
Chart Datum (m) 

1(Liquid Bulk) 40000 177 10.5 6.53 

2 (Liquid bulk) 40000 177 10.5 6.53 

3 23000 177 10.0 6.53 

4 20000 146 9.0 6.52 

5 6000 107 6.0 6.52 

6 6000 107 6.0 6.51 

7 6000 94 5.0 6.51 

7A 6000 94 5.0 6.51 

P7A  43 2.2 Pontoon 

 

South Port includes the liquid berth and dry berth. Liquid bulk exports handled here 

are coconut oil, palm oil and latex. Berths No. 1 & 2 is the main berths for export loading 

purposes. Its length is 177m with the 10.5 meters depth, and caters to ships of up to 40,000 

displacements. Dry bulk exports wheat, feed, maize and meal that are handled through 

berth No.3 and 4, which can receive ships of up to 23,000 and 20,000 tones displacement 

respectively. 
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Figure1, Berth layout plan- South Port 

 

North Port 

The main goods in Liquid berth are including refined vegetable oils, petroleum and 

chemicals products. These Products are arranged by major oil companies such as 

PETRONAS which are located here are, industrial fuel, diesel and oil and unleaded 

gasoline. 

At berth No. 24 and No. 25 the importing of bulk fertilizer is handled. The terminal 

area were developed on 13.2 hectares of land and is equipped with two bulk handling 

cranes, a conveyor system and warehouses onshore. Also the exporting of palm kernel 

expellers and importing of maize, sugar, feed meal and cement are being also performed. 
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Table 2, Berth Information of the North Port  

 Berth 
Max 

Displacement 
(T) 

Length (m) 
Depth 

(m) 
Ht. of Wharf above Chart 

Datum (m) 

Container 

8 40000 213 11.0 6.53 

9 60000 320 13.2 6.53 
10 120000 320 13.2 6.54 
11 100000 226 13.2 6.55 
12 120000 178 15.0 6.55 
13 120000 178 15.0 6.55 
14 120000 178 15.0 6.55 

Break 
Bulk 

15 60000 244 13.0 6.56 

Container 

16 60000 213 12.5 6.56 

17 80000 213 12.5 6.56 
18 80000 213 13.0 6.57 
19 80000 213 13.0 6.57 
20 80000 213 13.0 6.57 
21 80000 213 12.6 6.57 

Liquid Bulk 
22 60000 213 11.6 6.57 

23 60000 213 11.6 6.57 

Bulk 

24 80000 213 12.0 6.58 

25 80000 213 12.0 6.58 

 

 

Figure 2, Berth layout plan- North Port 
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West Port 

Petroleum and chemical product are main goods in West Port liquid berth. There are 

2 dry bulk terminals at West Ports : 

It is estimated that dry bulk cargo will increase from 5.3 million tones in 1995 to 

over 7.3 million tones by 2010. The major dry bulk imports that pass through Port Klang 

are fertilizer, wheat, sugar, maize, soya bean and feed meal, while the major export bulk 

cargo is palm kernel expeller. 

DB1 

DB1 Terminal is for handling of grains and sugar. There are 2 berths each 

measuring 200m in length and 15 in depth. It is equipped with a conveyor system and 2 

gantry grab unlades capable of discharging 2,000 tones/hour. 

 

DB2 

West ports Slag Terminal - With the berth measuring 250m in length and 13.5m in 

depth, it can accommodate ships of up to 78,000 tones displacement. This terminal is 

capable of handling silica fertilizer, slag and sand. West ports Cement Terminal - Cement 

jetty is measuring 285m supported by 8 loading/discharging pipes between jetty and 

consignee's facilities. It is capable of accommodating vessels up to 35,000 tones 

displacement with max depth of 11m. Its pumping rate of 800 tones / hour is driven by the 

latest pneumatic technology available on board specialized cement carriers. 
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Table 3, Berth Information of the North Port 

Terminal  Berth(T) 
Max 

Displacement 
Length (m) Depth (m) 

Height Above 
Chart Datum 

(m) 

Westports 

Dry/Break 
Bulk 

B1 80000 200 15.0 7.13 
B2 80000 200 15.0 7.13 
B3 80000 200 15.0 7.13 
B4 80000 200 15.0 7.14 
B5 80000 200 15.0 7.14 
B6 80000 200 15.0 7.14 

Container 

B7 80000 300 15.0 7.15 
B8 80000 300 15.0 7.15 
B9 115000 300 15.0 7.15 

B10 115000 300 15.0 7.16 
B11 115000 300 15.0 7.16 
B12 115000 300 15.0 7.16 
B13 160000 300 15.0 7.16 
B14 160000 300 17.5 7.16 
B15 160000 300 16.5 7.16 

Liquid 
Bulk 

LBT1 
(Inner) 

15000 195 10.0 7.0 

LBT1 
(Outer) 

15000 195 10.0 7.0 

LBT2 80000 320 14.0 7.0 
LBT3 80000 305 14.0 7.0 
LBT4 130000 350 16.0 7.0 

Dry Bulk Slag 78000 250 13.5 7.0 

Cement 35000 285 12.0 7.0 
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Figure 3, Berth layout plan- West Port 
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B: Picture of location of stations 

 

 

Control Station 

 

South Port 
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North Port 
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West Port 
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7 APPENDIX 2 

 

Distribution map 
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Figure 1, Spatial distribution of heavy metals, TOC and fine grain sized sedimentin the Klang Strait 

 

Figurer 2, Spatial distribution of benthic organisms in surface sediment of Klang      
                   Strait 



293 

 

                         Combustion PAH                                                     Total PAHs 

 

 

Toxic PAHs 

Figure 3, Spatial distribution of PAHs compounds in Klang Strait 
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8 APPENDIX 3 

 

Part A: chromatography graphs of PAHs analysis 

 

 

Figure 1, Aromatic hydrocarbon profile of a typical sediment sample along berth line in the West    
                 Port (station 13, close to terminal container) 
  



295 

 

Figure 2, Aromatic hydrocarbon profile of a typical sediment sample along middle part of the West  
                Port (station 14, 500 meter far from berth line). 
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Figure 3, Aromatic hydrocarbon profile of a typical sediment sample along mangrove line in the  
                 West Port (stations 9, 1000 meter far from berth line). 
  



297 

 

Figure 4, Aromatic hydrocarbon profile of a typical sediment sample along Berth line in the North   
                Port (station 4, close to container terminal). 
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Figure 5, Aromatic hydrocarbon profile of a typical sediment sample along mangrove line in the  
                   North Port (station 6, 1500 meter after berth line). 
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Figure 6, Aromatic hydrocarbon profiles of a typical sediment sample in the South Port (Close to  
                Klang River). 
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Figure 7, Aromatic hydrocarbon profiles of a typical sediment sample in the Control station. 
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B: Example for benthic community assessment based on the biotic 

indices 

 

Figure 8, Results of ecological indices to assess pollution level based on the benthic responds to   
                 disturbance in station 4 in North Port. 
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Figure 9, Results of ecological indices to assess pollution level based on the benthic responds to  
                  disturbance at station 13 in the West Port.  
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Figure 10, Results of ecological indices to assess pollution level based on the benthic responds to  
                   disturbance at station 17 (close to Klang River)  in the South Port. 
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Figure 11, Results of ecological indices to assess pollution level based on the benthic responds to  
                   disturbance at station 22 (control Station) 
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