### PROTEOMIC AND PROBIT ANALYSES OF GLUFOSINATE-AMMONIUM-RESISTANT GOOSEGRASS (Eleusine indica (L.) Gaertn.) BIOTYPES IN MALAYSIA

ADAM BIN JALALUDIN

FACULTY OF SCIENCE UNIVERSITY OF MALAYA MALAYSIA

2011



### PROTEOMIC AND PROBIT ANALYSES OF GLUFOSINATE-AMMONIUM-RESISTANT GOOSEGRASS (Eleusine indica (L.) Gaertn.) BIOTYPES IN MALAYSIA

### ADAM BIN JALALUDIN

### DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

### INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

### UNIVERSITY MALAYA

### **ORIGINAL LITERARY WORK DECLARATION**

Name of Candidate: Adam Jalaludin

(I.C/Passport No.: 860423-10-5067)

Registration/ Matrix No.: SGR 080085

Name of Degree: Master of Science

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

Proteomic and Probit Analyses of Glufosinate-ammonium Resistant Goosegrass (*Eleusine indica* (L.) Gaertn.) in Malaysia.

Field of Study: Biochemistry and Weed Science

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature Date

Name: Designation:

#### ABSTRACT

### PROTEOMIC AND PROBIT ANALYSES OF GLUFOSINATE-AMMONIUM RESISTANT GOOSEGRASS (*Eleusine indica* (L.) Gaertn.) BIOTYPES IN MALAYSIA

Goosegrass (*Eleusine indica* [L.] Gaertn.), regarded as one of the world's worst weeds is highly pernicious to cash crop growers in Malaysia. Following reports in 2009 that glufosinate ammonium failed to adequately control goosegrass populations in Kesang, Malacca and Jerantut, Pahang, Malaysia, on-site field trials were conducted to assess the efficacy of glufosinate-ammonium and glyphosate towards goosegrass from both places. Glufosinate-ammonium at 495 g ai  $ha^{-1}$  managed to provide 82% control of the weed at the vegetable farm while the same rate failed to control goosegrass at the oil palm nursery. Glyphosate failed in controlling goosegrass population at both places where the highest rate (4320 g ae  $ha^{-1}$ ) produced 13% and 3% control, respectively. The efficacy of both herbicides was also tested on the Kesang and Jerantut goosegrass grown from seeds. Glufosinate-ammonium at the recommended rate provided satisfactory control of the Kesang biotype while the same rate failed to control Jerantut biotype. Glyphosate at 540 g as ha<sup>-1</sup> again failed in damaging both biotypes. The highest rate used managed to control the Kesang biotype but still did not effectively damage the Jerantut biotype. Comparison with susceptible goosegrass showed that the 'Kesang' biotype was 1 and 6-fold more resistant to glyphosate and glufosinateammonium respectively while the 'Jerantut' biotype was 3- and 30-fold more resistant to glyphosate and glufosinate-ammonium respectively. The low glyphosate resistance index (R.I) value for both biotypes were believed to be caused by the significant tolerance of the susceptible biotype against glyphosate. Proteomic analysis was

conducted to see any differences in the proteins expressed by the susceptible, the Kesang and the Jerantut biotypes. There were 150 matched spots between the susceptible and the Jerantut biotypes, with 4 spots differentially expressed. Between the susceptible and the Kesang biotypes, a total of 145 spots were matched, but only 3 spots were differentially expressed. Most of the differences in abundance were due to the presence or absence of a protein in either the susceptible or the Jerantut and Kesang biotypes. MALDI-TOF analysis successfully identified the identities of ten spots from the Jerantut biotype proteome. They include peptidyl-prolyl cis-trans isomerase, ferredoxin NADP+ reductase, peroxiredoxin, granule bound starch synthase, WD-repeat protein and a small subunit of RuBisCO. The remaining four proteins were unknown and hypothetical proteins. The functions of these protein ranges from folding of proteins, electron transfer, storage, DNA and RNA related processes, antioxidants and even stress-related functions. The occurrence of glufosinate-ammonium resistance in goosegrass calls for more research to better understand the resistance mechanism of this particular weed and more integrated management of the weed to prevent escalating resistance and further proliferation in the country.

#### ABSTRAK

## ANALISIS PROTEOMIK TERHADAP BIOTIP-BIOTIP RUMPUT SAMBAU(*Eleusine indica* (L.) Gaertn.) RINTANG GLUFOSINATE-AMMONIUM DI MALAYSIA

Rumput sambau (Eleusine indica [L.] Gaertn), salah satu rumpai paling teruk di dunia, merupakan satu ancaman kepada para petani tanaman kontan di Malaysia. Berdasarkan laporan pada tahun 2009 berkenaan racun rumpai glufosinat-ammonium gagal memberi kawalan memuaskan terhadap populasi rumput sambau di Kesang, Melaka, dan di Jerantut, Pahang, beberapa siri ujian lapangan telah dilakukan. Ujian-ujian ini adalah untuk menilai keupayaan glufosinat-ammonium serta glaifosat terhadap rumput sambau di kawasan-kawasan tersebut. Glufosinat-ammonium pada 495 g ai  $ha^{-1}$  berjaya memberikan kawalan ke atas rumput sambau sebanyak 82% di ladang sayur tersebut manakala kadar yang sama gagal mengawal populasi rumput sambau di nurseri kelapa sawit. Glaifosat gagal sama sekali dalam mengawal populasi rumput sambau di keduadua lokasi, dengan kadar tertinggi (4320 g ae ha<sup>-1</sup>) sekadar mencatatkan peratusan kawalan masing-masing sebanyak 13% dan 3%. Keupayaan kedua-dua racun rumpai juga telah dinilai ke atas rumput sambau daripada Kesang dan Jerantut yang ditanam daripada biji bejih. Glufosinat-ammonium pada kadar yang disyorkan berjaya memberikan kawalan memuaskan terhadap biotip Kesang manakala kadar yang sama gagal membunuh biotip Jerantut. Sekali lagi glaifosat pada kadar 540 ae ha<sup>-1</sup> gagal dalam merosakkan kedua-dua biotip. Perbandingan dengan biotip kawalan mendapati biotip Kesang adalah 1- dan 6-kali ganda lebih tahan, masing-masing terhadap glaifosat dan glufosinat-ammonium manakala biotip Jerantut pula 3- dan 30-kali lebih tahan,

masing-masing terhadap glaifosat dan glufosinat-ammonium. Nilai indeks rintangan (R.I) yang rendah yang dicatatkan kedua-dua biotip terhadap glaifosat dipercayai adalah disebabkan oleh toleransi biotip kawalan terhadap glaifosat.

Analisis proteomik telah dilakukan untuk melihat sebarang perbezaan antara proteinprotein yg dihasilkan oleh biotip rentan, biotip Kesang dan biotip Jerantut. Terdapat sebanyak 150 titik padanan diantara proteom biotip rentan dan biotip Jerantut, dengan hanya 4 titik yang mempunyai perbezaan ekspresi. Diantara biotip rentan dan biotip Kesang pula, sebanyak 145 titik padanan diperolehi, dengan hanya tiga titik yang mempunyai perbezaan ekspresi. Kebanyakan perbezaan adalah disebabkan kewujudan dan ketidakhadiran protein-protein samaada dalam biotip kawalan, biotip Jerantut dan biotip Kesang. Analisis MALDI-TOF berjaya mengenal pasti sepuluh protein daripada proteome biotip Jerantut. Antaranya ialah peptidyl-prolyl cis-trans isomerase, ferredoxin NADP+ reductase, peroxiredoxin, granule bound starch synthase, WD-repeat protein dan subunit kecil RuBisCO. Baki empat protein adalah protein-protein yang tidak diketahui dan protein-protein hipotetikal. Fungsi protein-protein ini merangkumi penglipatan protein-protein, perpindahan electron, simpanan, proses-proses berkenaan DNA dan RNA, antioksida serta fungsi melibatkan stress. Kejadian rumput sambau rintang glufosinat-ammonium menampakkan keperluan untuk lebih penyelidikan dalam memahami mekanisma ketahanan racun rumpai serta pengurusan rumpai yang bersepadu untuk mengelakkan peningkatan kes-kes seumpamanya di negara ini.

#### ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, and Most Merciful.

Alhamdulillah (praised be to Allah), on the completion of this thesis. Special thanks are reserved for my two supervisors, **Dr. Zazali Alias** and **Prof. Dr. Baki Hj. Bakar**, both extraordinary men, for their knowledge, guidance and patience. Your persistent encouragements and advices, not only in the field of science, but also life, were essential in my completion of this dissertation.

I would also like to thank **Professor Datuk Dr. Mohd Sofian Azirun**, Dean, Faculty of Science, **Professor Dr. Rosli Hashim**, Head, Institute of Biological Sciences and the University of Malaya for the necessary facilities and funding in carrying out this work.

I am indebted to Mr. Jeremy Ngim, who collected the susceptible goosegrass biotype and Mr. Chung Gait Fee, who have proven essential in my study throughout these 2 years. Not forgetting Pn. Zanariah, Ms. Ng Swee Yee and Mr. Izwan who were ever willing to assist me in times of need.

Thanks to the people of Felda Tekam, Jerantut, Pahang, Mr. Lingam of Malacca and Syngenta Crop Protection Sdn. Bhd. for providing me the goosegrass biotypes, all the help and goodwill that allowed me to carry out my study.

To my lab mates, Naila, Atiqah, Suhana, Amy, Alan, Zati, Ezmalina, Syahirah, and Han Choi, thank you for the great memories. To those whose names are not mentioned, you know who you are. Thank you for the understanding that you have shown.

Last but not least, I would like to acknowledge my deepest appreciation and gratitude to my parents, family and Miss Amalina Syazlin for their love, support, sacrifices and all that they have done for me that enabled me to be where I am today.

#### Adam Jalaludin

| FRONTISPIECE                              | i    |
|-------------------------------------------|------|
| DECLARATION                               | ii   |
| ABSTRACT                                  | iii  |
| ABSTRAK                                   | V    |
| ACKNOWLEDGEMENTS                          | vii  |
| LIST OF FIGURES                           | Х    |
| LIST OF TABLES                            | xiii |
| LIST OF COMMON ABBREVIATIONS              | XV   |
| <b>CHAPTER 1. GENERAL INTRODUCTION</b>    | 1    |
| 1.1 The Advent of Resistance              | 2    |
| 1.2 Herbicide Resistance                  | 5    |
| 1.2.1 Glyphosate                          | 7    |
| 1.2.2 Glufosinate-ammonium                | 11   |
| 1.3 Goosegrass ( <i>Eleusine indica</i> ) | 12   |
| 1.3.1 Resistant goosegrass in Malaysia    | 13   |
| 1.4. Proteomics                           | 14   |
| 1.4.1 Two Dimensional Gel Electrophoresis | 14   |
| 1.4.2 In-Gel Detection of Proteins        | 16   |
| 1.4.3 Peptide Mass Fingerprinting (PMF)   | 18   |
| 1.4.4 MALDI-TOF Mass Spectrometry         | 18   |
| 1.4.5 Protein Identification              | 19   |
| 1.5 Objectives of Study                   | 21   |
| 1.6 Structure of Thesis                   | 22   |
| CHAPTER 2. MATERIALS AND METHODS          | 23   |
| 2.1 Materials                             | 24   |
| 2.1.1 Plant Materials                     | 24   |
| 2.1.2 Chemicals                           | 24   |
| 2.1.3 Instrumentation                     | 26   |

| 2.2 Methods                                                    | 27  |
|----------------------------------------------------------------|-----|
| 2.2.1 On-site Field Trial and Greenhouse Evaluation            | 27  |
| 2.2.2 Statistical Analysis                                     | 29  |
| 2.2.3 Seed Test                                                | 29  |
| 2.2.4 Protein Extraction                                       | 29  |
| 2.2.5 Protein Estimation                                       | 30  |
| 2.2.6 SDS-PAGE                                                 | 31  |
| 2.2.7 Two Dimensional (2D) Gel Electrophoresis                 | 33  |
| 2.2.8 Gel Staining                                             | 34  |
| 2.2.9 Gel Visualisation and Spot Analysis                      | 35  |
| 2.2.10 MALDI-TOF                                               | 36  |
| CHAPTER 3. RESULTS                                             | 38  |
| 3.1 Field Evaluation of Herbicide Resistance Goosegrass        | 39  |
| 3.2 Greenhouse Evaluation on Herbicide Resistant Goosegrass    | 46  |
| 3.3 Seed Test on the Kesang, Jerantut and Susceptible Biotypes | 57  |
| 3.4 Protein Extraction                                         | 66  |
| 3.5 SDS-PAGE                                                   | 66  |
| 3.6 Two-Dimensional (2D) Gel Electrophoresis                   | 67  |
| 3.7 Proteome Analysis                                          | 69  |
| 3.8 MALDI-TOF Peptide Mass Fingerprinting                      | 73  |
| CHAPTER 4. GENERAL DISCUSSION                                  | 78  |
| 4.1 Herbicide Resistance                                       | 79  |
| 4.2 Proteome Map of <i>Eleusine indica</i>                     | 85  |
| CHAPTER 5. CONCLUSION                                          | 93  |
| PUBLICATIONS                                                   | 97  |
| REFERENCES                                                     | 99  |
| APPENDICES                                                     | 119 |

### LIST OF FIGURES

| Fig. 1.1  | Structure of N-(phosphonomethyl)glycine or glyphosate.                                                                                                          | 8  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Fig. 1.2  | Glyphosate inhibits the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) of the shikimate pathway.                                                          | 9  |
| Fig. 1.3  | Structure of glufosinate-ammonium.                                                                                                                              | 11 |
| Fig. 1.4  | Glutamine synthase inhibition by glufosinate-ammonium.                                                                                                          | 12 |
| Fig. 3.1  | Field evaluation on differential responses of the goosegrass biotype from Kesang, Malacca to glufosinate-ammonium at $247.5 - 1980$ g ai ha <sup>-1</sup> .     | 40 |
| Fig. 3.2  | Field evaluation on differential responses of the goosegrass biotype from Jerantut, Pahang to glufosinate-ammonium at 495 - 3960 g ai ha <sup>-1</sup> .        | 41 |
| Fig. 3.3  | Control of goosegrass in Kesang, Malacca by glufosinate-ammonium at $247.5$ g ai ha <sup>-1</sup> .                                                             | 41 |
| Fig. 3.4  | Control of goosegrass in Kesang, Malacca by glufosinate-ammonium at 1980 g ai ha <sup>-1</sup> .                                                                | 42 |
| Fig. 3.5  | Control of goosegrass in Jerantut, Pahang by glufosinate-ammonium at 495 g ai ha <sup>-1</sup> .                                                                | 42 |
| Fig. 3.6  | Control of goosegrass in in Jerantut, Pahang by glufosinate-ammonium at 3960 g ai ha <sup>-1</sup> .                                                            | 43 |
| Fig. 3.7  | Field evaluation on differential responses of the goosegrass biotype from Kesang, Malacca to glufosinate at 1080 - 4320 g ae ha <sup>-1</sup> .                 | 44 |
| Fig. 3.8  | Field evaluation on differential responses of the goosegrass biotype from Jerantut, Pahang to glufosinate at 540 - 4320 g ae ha <sup>-1</sup> .                 | 45 |
| Fig. 3.9  | Control of goosegrass in Kesang, Malacca by glyphosate at 4320 g ae ha <sup>-1</sup> .                                                                          | 45 |
| Fig. 3.10 | Control of goosegrass in Jerantut, Pahang by glyphosate at 4320 g ae ha <sup>-1</sup> .                                                                         | 46 |
| Fig. 3.11 | Greenhouse evaluation on differential responses of the goosegrass biotype from Kesang, Malacca to glufosinate-ammonium at $495 - 3960$ g ai ha <sup>-1</sup> .  | 47 |
| Fig. 3.12 | Greenhouse evaluation of transplanted goosegrass from Kesang, Malacca by different rates of glyphosate.                                                         | 48 |
| Fig. 3.13 | Greenhouse evaluation on differential responses of the goosegrass biotype from Jerantut, Pahang to glufosinate-ammonium at $495 - 1980$ g ai ha <sup>-1</sup> . | 48 |
| Fig. 3.14 | Greenhouse evaluation of transplanted goosegrass from Jerantut, Pahang by different rates of glufosinate-ammonium.                                              | 49 |

х

### LIST OF FIGURES (cont.)

| Fig. 3.15 | Greenhouse evaluation on the differential responses of the Kesang and Jerantut biotypes to glufosinate-ammonium treatments at the recommended rate of 495 g ai $ha^{-1}$ . |    |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Fig. 3.16 | Greenhouse evaluation on differential responses of the goosegrass biotype from Kesang, Malacca to glyphosate at $540 - 4320$ g ae ha <sup>-1</sup> .                       | 51 |  |
| Fig. 3.17 | Greenhouse evaluation of transplanted goosegrass from Kesang, Malacca by different rates of glyphosate.                                                                    | 52 |  |
| Fig. 3.18 | Greenhouse evaluation on differential responses of the goosegrass biotype from Jerantut, Pahang to glyphosate at $540 - 4320$ g ae ha <sup>-1</sup> .                      | 53 |  |
| Fig. 3.19 | Greenhouse evaluation of transplanted goosegrass from Jerantut, Pahang<br>by different rates of glyphosate.                                                                | 53 |  |
| Fig. 3.20 | Greenhouse evaluation on the differential responses of the Kesang and Jerantut biotypes to glyphosate treatments at 4320 g ae $ha^{-1}$ .                                  | 54 |  |
| Fig. 3.21 | Greenhouse evaluation of goosegrass grown from seed (Kesang biotype) by different rates of glufosinate-ammonium.                                                           | 60 |  |
| Fig. 3.22 | Greenhouse evaluation on the differential responses of the Kesang and Jerantut biotypes grown from seeds to glufosinate-ammonium at 495 g ai $ha^{-1}$ .                   | 60 |  |
| Fig. 3.23 | Greenhouse evaluation of goosegrass grown from seed (Jerantut biotype) by different rates of glufosinate-ammonium.                                                         | 61 |  |
| Fig. 3.24 | Greenhouse evaluation on the differential responses of the Kesang biotype grown from seeds to glyphosate at 540 to 4320 g ae ha <sup>-1</sup> .                            | 61 |  |
| Fig. 3.25 | Greenhouse evaluation of goosegrass grown from seed (Kesang biotype) by different rates of glyphosate.                                                                     | 62 |  |
| Fig. 3.26 | .26 Greenhouse evaluation on the differential responses of the Jerantut biotype grown from seeds to glyphosate at 540 to 4320 g ae ha <sup>-1</sup> .                      |    |  |
| Fig. 3.27 | Greenhouse evaluation of goosegrass grown from seed (Jerantut biotype) by different rates of glyphosate.                                                                   | 63 |  |
| Fig. 3.28 | Elution profile of the goosegrass biotypes on Sephadex G-25, equilibrated with 20 mM Tris-HCl, pH 7.5, containing 1mM DTT.                                                 | 67 |  |
| Fig. 3.29 | The SDS-PAGE result of the Jerantut, the susceptible and the Kesang biotypes extracts on 12% polyacrylamide gel following gel chromatography on Sephadex G-25.             | 68 |  |
| Fig. 3.30 | Protein profiles of different biotypes of goosegrass.                                                                                                                      | 70 |  |
|           |                                                                                                                                                                            |    |  |

xi

### LIST OF FIGURES (cont.)

- Fig. 3.31Location of the identified protein from the Jerantut biotype proteome of<br/>Eleusine indica as listed in Table 3.13.77
- **Fig. 4.1** Greenhouse evaluation on differential responses of the susceptible goosegrass biotype in greenhouse evaluation and seed test experiments to glufosinate-ammonium at 495 g ai ha<sup>-1</sup>. 83

### LIST OF TABLES

| Table 1.1  | Mechanism of herbicide resistance, and HRAC grouping with examples                                                                                         |    |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Table 2.1  | Stacking and resolving gel formulations.                                                                                                                   | 31 |  |
| Table 3.1  | Percentage control of goosegrass in the field with different rates of glufosinate-ammonium 14 days after treatment.                                        | 40 |  |
| Table 3.2  | Percentage control of goosegrass in the field with different rates<br>of glyphosate 14 days after treatment.                                               | 44 |  |
| Table 3.3  | Percentage control of goosegrass in greenhouse evaluation with different rates of glufosinate-ammonium 14 days after treatment.                            | 49 |  |
| Table 3.4  | Percentage control of goosegrass with different rates of glyphosate 14 days after treatment.                                                               | 52 |  |
| Table 3.5  | The amount of glufosinate-ammonium and glyphosate required<br>for 50% control of the susceptible, Kesang and Jerantut biotypes<br>of goosegrass.           | 56 |  |
| Table 3.6  | Differences in control of goosegrass by rates (glufosinate-<br>ammonium and glyphosate) and biotypes for transplanted<br>goosegrass                        | 56 |  |
| Table 3.7  | Percentage control of goosegrass from seeds with different rates<br>of glufosinate-ammonium and glyphosate 14 days after<br>treatment.                     | 59 |  |
| Table 3.8  | The amount of glufosinate-ammonium and glyphosate requiredfor 50% control of the susceptible, Kesang and Jerantut biotypesof goosegrass grown from seeds.6 |    |  |
| Table 3.9  | Differences in control of goosegrass by rates (glufosinate-<br>ammonium and glyphosate) and biotypes for goosegrass grown<br>from seeds. 6                 |    |  |
| Table 3.10 | Mean volumes of selected matched spots between the susceptible and the Jerantut biotypes.                                                                  | 71 |  |
| Table 3.11 | Mean volumes of selected matched spots between the susceptible and the Kesang biotypes.                                                                    | 72 |  |

| ication of mass fingerprints using ProFound.              | 74                                                                                                           |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| ied proteins that are present in the Jerantut biotype me. | 76                                                                                                           |
|                                                           | ication of mass fingerprints using ProFound.<br>ied proteins that are present in the Jerantut biotype<br>me. |

### LIST OF COMMON ABBREVIATION

| 2-DE              | Two dimesional electrophoresis                            |
|-------------------|-----------------------------------------------------------|
| ACN               | Acetonitrile                                              |
| ae                | Acid equivalent                                           |
| ai                | Active ingredient                                         |
| APS               | Ammonium persulphate                                      |
| BPB               | Bromophenol blue                                          |
| BSA               | Bovine serum albumin                                      |
| CHAPS             | 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate |
| dH <sub>2</sub> O | Distilled water                                           |
| DTT               | Dithiothreitol                                            |
| EDTA              | Ethylenediaminetetra-acetic acid                          |
| g                 | Gram                                                      |
| h                 | hour                                                      |
| ha                | Hectare                                                   |
| L                 | Liter                                                     |
| IAA               | Iodoacetamide                                             |
| LC                | Liquid chromatography                                     |
| LC <sub>50</sub>  | Lethal concentration that can kill 50% of the population  |

### LIST OF COMMON ABBREVIATION (cont.)

| ml        | Mililiter                                                  |
|-----------|------------------------------------------------------------|
| mm        | Milimeter                                                  |
| NL        | Non-linear                                                 |
| Nm        | Nanometer                                                  |
| kDa       | Kilo Dalton                                                |
| MALDI-TOF | Matrix Assisted Laser Desorption Ionisation-Time of Flight |
| min       | minute                                                     |
| PMF       | Peptide mass fingerprinting                                |
| SDS-PAGE  | Sodium dodecyl sulphate-polyacrylamide gel electrophoresis |
| TFA       | Trifluoroacetic acid                                       |
| V         | Volts                                                      |
| α-CHCA    | α-cyano-4-hydroxycinnamic acid                             |

# **CHAPTER 1**

# **GENERAL INTRODUCTION**

### **1.1 THE ADVENT OF RESISTANCE**

*"Survival of the fittest"* (Spencer 1864). It is the one rule that all living organism that is subjected to on this planet. Living organisms have evolved to be biologically flexible and ecologically adaptable to adverse conditions in order to survive. Not all make the cut. It is a constant battle of balance in nature with survival of the species at its stake.

The use of chemical control has a long association with agriculture industry. The inception of pesticides increases crop yields while remaining economically viable. Due to this, farmers embraced the use of chemical controls with open arms. As technologies improved, more pesticides are created and usage of chemical controls includes fungi and in 1945, weeds, with the introduction of 2,4-D. Before long, chemical control became an integral part of the agricultural environment.

As nature would have it, the heavy usage of chemicals as solvers for agriculture problems, pests, fungi and weeds allow these very own problems to biochemically adapt. Insects were the first to develop resistance towards pesticidal chemicals. The first reported case was the San Jose scale resistance towards lime sulfur in 1908 (Melander 1914). In 1940, plant pathogens resistant to fungicides were cited.

Observing these trends, Harper, in 1956, was the first to predict that weed would one day develop resistance to herbicides. His assumptions, although did not have firm foundations in plant-herbicide studies, were based on current theories and preliminary data available from other biological systems. A year later, a case of 2,4-D resistance was reported (Hilton 1957). However, the first confirmed herbicide-resistance case was for *Senecio vulgaris* against triazine herbicide in 1968 (Ryan 1970). Since then, the number of weed biotypes resistant to herbicides has been on the rise. According to the International Weed Survey of Herbicide Resistant Weeds, there are 335 biotypes from 190 species (113 monocots and 77 dicots) have been reported resistant to various herbicides (Heap 2009) worldwide (Table 1.11). In Malaysia alone, 18 biotypes belonging to 13 species were reported to be resistant against several herbicides (Heap 2009). However, it is believed more biotypes are still to be listed into the survey's database. It is estimated that there are at least 48 biotypes that are resistant to herbicides (Seng, C. T., *unpublished data*).

**Table 1.1.** Mechanism of herbicide resistance, and HRAC grouping with examples (Heap2009).

| Herbicide Group                                     | Mode of Action                                                                               | HRAC<br>Group | Example<br>Herbicide | Total |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|----------------------|-------|
| ALS inhibitors                                      | Inhibition of acetolactate synthase ALS (acetohydroxyacid synthase AHAS)                     | В             | Chlorsulfuron        | 103   |
| Photosystem II inhibitors                           | Inhibition of Photosynthesis at photosystem II                                               | C1            | Atrazine             | 68    |
| ACCase inhibitors                                   | Inhibition of acetyl CoA carboxylase<br>(ACCase)                                             | A             | Diclofop-methyl      | 38    |
| Synthetic Auxins                                    | Syntheic auxins (action like indolacetic acid)                                               | 0             | 2,4-D                | 28    |
| Bipyridiliums                                       | Photosystem I electron diversion                                                             | D             | Paraquat             | 24    |
| Ureas and amides                                    | Inhibition of photosynthesis at photosystem II                                               | C2            | Chlorotoluron        | 21    |
| Glycine                                             | Inhibition of EPSP synthase                                                                  | G             | Glyphosate           | 16    |
| Dinitroanilines and others                          | Microtubule assembly inhibition                                                              | K1            | Trifluralin          | 10    |
| Thiocarbamates and others                           | Inhibition of lipid synthesis – not<br>ACCase inhibition                                     | N             | Triallate            | 8     |
| Triazoles, ureas,<br>isoxazolidiones                | Bleaching: Inhibition of carotenoid biosynthesis (unknown target)                            | F3            | Amitrole             | 4     |
| PPo inhibitors                                      | Inhibition of protoporphyrinigen oxidase                                                     | E             | Oxyfluorfen          | 3     |
| Chloroacetamides and others                         | Inhibition of cell division (inhibition of very long chain fatty acids)                      | K3            | Butachlor            | 3     |
| Carotenoid biosynthesis                             | Bleaching: Inhibition of carotenoid<br>biosynthesis at the phytoene desaturase<br>step (PDS) | F1            | Flurtamone           | 2     |
| Arylaminopropionic acids                            | Unknown                                                                                      | Z             | Flamprop-methyl      | 2     |
| Nitriles and others                                 | Inhibition of photosynthesis at photosystem II                                               | C3            | Bromoxynil           | 1     |
| Mitosis inhibitors                                  | Inhibition of mitosis/ microtubule<br>polymerization inhibitor                               | K2            | Propham              | 1     |
| Cellulose inhibitor                                 | Inhibition of cell wall (cellulose)<br>synthesis                                             | L             | Dichlobenil          | 1     |
| Unknown                                             | Unknown                                                                                      | Z             | (chloro)-flurenol    | 1     |
| Organoarsenicals                                    | Unknown                                                                                      | Z             | MSMA                 | 1     |
| Total Number of Unique Herbicide Resistant Biotypes |                                                                                              |               | 335                  |       |

#### **1.2.1 HERBICIDE RESISTANCE**

Herbicide resistance, as defined by the Weed Science Society of America (WSSA), is the inherited ability of a plant to survive and reproduce following exposure to a dose of herbicide normally lethal to its wild type. In a plant, resistance may be naturally occurring or induced by such techniques as genetic engineering or selection of variants produced by tissue-culture or mutagenesis.

It is clear that herbicide-resistant weeds fall under this definition. At the same time, it must be noted that not all herbicide resistant plants are herbicide resistant weeds. There are plants that have been genetically modified to be resistant to herbicides, such as the case of glyphosate-resistant and glufosinate-resistant crops. These herbicide resistant crops (HRCs) also falls under the same definiton mentioned earlier.

Realizing the ambiguity posed by this definition, Heap and LeBaron (2001) defined herbicide-resistant weeds as "the evolved capacity of a previously herbicide-susceptible weeds population to withstand a herbicide and complete its life cycle when the herbicide is used at its normal rate in an agricultural situation".

Generally resistance towards herbicides is grouped into two, i.e. cross-resistance and multiple resistances. Cross-resistance is defined as the expression of a genetically endowed mechanism conferring the ability to withstand herbicides from different chemical classes. Cross-resistance is further categorized into two; target site cross resistance and non-target site cross-resistance.

Target site cross-resistance occurs when a change at the biochemical site of action of one herbicide also confers resistance to herbicides from a different chemical class that inhibits the same site of action in the plant. Target site cross-resistance does not necessarily result in resistance to all herbicide classes with a similar mode of action or indeed all herbicides within a given herbicide class (Powles and Preston, 2009). For example, chemically dissimilar classes sulfonylurea and imidazolinone are both inhibitors of acetolactate synthase (ALS). Resistance of a biotype of *Lolium rigidum* through selection with sulfonylurea was caused by a change in the target site enzyme ALS (Saari *et. al.*, 1994). This sulfonylurea-resistant biotype exhibits target-site resistance at various levels to other classes that are chemically dissimilar but ALSinhibiting, nevertheless.

Non-target site cross resistance is defined as cross resistance to dissimilar herbicide classes conferred by a mechanism(s) other than resistant enzyme target sites. Non-target site cross-resistance was largely unknown in herbicide-resistant weeds but is well known in the insecticide resistance literature (Brattsten *et al.* 1986; Georghiou 1986). Only recently that non-target site cross-resistance was documented in *L. rigidum* and *A. myosuroides*. Extensive studies of biotype SLR31 of *L. rigidum* showed that resistance of this biotype to diclofop-methyl was not due to resistant ACCase. In the contrary this biotype exhibits a modest increase in the rate of diclofop-methyl metabolism (Holtum and Powles 1991).

Multiple resistance is defined as the expression (within individuals or populations) of more than one resistance mechanism. Plants with multiple resistance often possess from two to many distinct resistance mechanisms and may exhibit resistance to a few or many herbicides. Multiple resistance vary from simple to complicated cases. Simple cases are when an individual plant (or population) possesses two or more different resistance mechanisms which provide resistance to a single herbicide, or class of herbicides. More complicated and difficult to control situations

6

are when a number of resistance mechanisms, involving both target site and non target site resistance mechanisms, are present within the same individual.

#### 1.2.1 Glyphosate

*N*-(phosphonomethyl)glycine, or glyphosate (Fig. 1.1) was first synthesized and tested as herbicide in 1971 by John E. Franz of Monsanto Company. It was then patented soon after discovering its high unit activity as an herbicide. First introduced to the commercial market in 1974 as a post-emergence, non-selective herbicide, glyphosate's popularity grew steadily over the years for several reasons and it has now become the dominant and arguably, the most important herbicide worldwide.

Glyphosate works as a herbicide by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimate pathway (Fig. 1.2). This is possible as glyphosate is a transition state analog of phosphoenylpyruvate. The EPSPS inhibition causes reduced feedback inhibition of the pathway, resulting in enormous amount of carbon flow to shikimate-3-phosphate, which is then transformed into shikimate. How exactly inhibition of the shikimate pathway by glyphosate kills the plant remains vague. To date, many researchers believe that it is due to the insufficient aromatic acid production and/or attributed to the shortage of carbon flow to other essential pathways.

Being a non-selective herbicide, glyphosate works on a wide range of plant species when applied to foliage. Higher plants EPSPS are also inhibited by glyphosate. Few plant species such as conifers and *Cynodon dactylon* exerts remarkable resistance to foliage treatment with glyphosate. However, with no other analogs or alternative chemical classes that targets the EPSPS in the market, glyphosate has found usage in the broadest of all areas, ranging from croplands to plantations and orchards, in industrial and recreational industries and even among home users.



**Fig. 1.1.** Structure of *N*-(phosphonomethyl)glycine or glyphosate (adapted from http://www.alanwood.net/pesticides/glyphosate.html).



**Fig.1.2.** Glyphosate inhibits the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) of the shikimate pathway (Dill 2005).

Glyphosate enters the plant through plant surfaces. It is then translocated rapidly from the foliage to the roots, rhizomes, apical meristems and other metabolic sinks for sucrose via the phloem. This property culminates in the total destruction of hard-to-kill perennial rhizome weeds such as *Sorgum halepense*, *Cyperus* spp., *Imperata cylindrica* and *C. dactylon*. In contrast with other herbicides which only destroys the above ground plant portion, glyphosate destroys both the above and the lower ground portion.

Regardless of its high unit activity as a herbicide, glyphosate shows no preemergence or residual soil activity (when applied post-emergence), making it an environmentally benign herbicide. This is possible since glyphosate binds tightly to soil particles. Only aminophosphonic acid (AMPA), one of glyphosate degradation product, is notably more mobile than glyphosate in soil. Glyphosate has a short environmental half-life, due to the microbial degradation in the soil into plant nutrients phosphoric acids, ammonia and carbon dioxide.

Glyphosate is also one of the least toxic herbicides to humans and animals, with an LD<sub>50</sub> of 5 g/kg and above for rats. Tests carried on a range of species showed that the glyphosate has caused virtually no sub-acute, acute, chronic or neurotoxic effects when applied in the range of concentrations that is normally used or found in treated subjects (http://www.syngenta.com/country/au/SiteCollectionDocuments/Labels/INNOVA%20 GLYPHOSATE%20450%20HERBICIDE%20MSDS.pdf).

Due to its non-selective nature, glyphosate could not be easily used within arable crops, since crop species are also susceptible to it. It all changed in 1996, where transgenic glyphosate-resistant crops were introduced. Transgenic glyphosate-resistant crops such as soybean, maize, canola and cotton now dominate in agriculture fields in countries such as Argentina, Brazil, Canada and the USA. This, coupled with the fact that glyphosate has become much cheaper since the introduction of its generic and the added values of glyphosate, has made glyphosate become the most important and successful herbicide in the world today.

#### 1.2.2 Glufosinate-Ammonium

Glufosinate or glufosinate-ammonium (Fig. 1.3) was first introduced in Malaysia in 1985 under the commercial name of Basta®. It is a phosphinic acid and was listed under group H of the Herbicide Resistance Action Committee (HRAC). It is a broad spectrum, non-selective systemic herbicide.

Glufosinate-ammonium works by inhibiting the activity of glutamine synthase, the enzyme that converts glutamate plus ammonia to glutamine (Fig. 1.4). Accumulation of ammonia in the plant destroys the plant cell. This causes photosynthesis to be severely inhibited. Ammonia reduces the pH gradient across the membrane which can uncouple photophosphorylation. To date there is no known cases of weed resistant to glufosinate. However with the recent development of more than 100 varieties of glufosinate-resistant plants and increasing resistance of weeds to glyphosate and other herbicides, glufosinate ammonium usage is significantly increasing throughout the world including Malaysia.



http://www.chemblink.com/products/77182-82-2.htm).



**Fig. 1.4.** Glutamine synthase inhibition by glufosinate-ammonium (adapted from Ahn 2008).

### **1.3 GOOSEGRASS** (*Eleusine indica*)

*Eleusine indica* (L.) Gaertn is a monocot weed that belongs to the Poaceae family. Common names for it includes goosegrass and/or wiregrass and Malaysians call it 'rumput sambau' or 'rumput kuda' and sometimes 'cakar ayam'. Its culms are erect, prostrate and branching from 5 to 50 cm long. The foliar are linear and smooth, and can reach up to 20 cm long. Inflorescence are digitate, with spikelets subdigitately arranged and contains 3 to 9 fertile flowers. Although *E. indica* have a rather short lifespan, they flower all year round. They prefer low-moistured soils and can also be found in wastelands, roadsides and croplands throughout Malaysia. It grows best in moist, fertile, cultivated soil in full sunlight, and once established is difficult to eradicate (Swarbrick 1997).

A single plant of *E. indica* may produce more than 50,000 small seeds, which move readily by wind, in mud on the feet of animals and in the tread of machinery. The seeds are eaten by wild and domestic animals. It is believed that *E. indica* was an introduced invasive and not an original weed of Malaysia, although the place/country of origin still remains a mystery.

Known as a sun-loving weed, *E. indica* is harmful to crops during the seedling stage. Being a rhizomatous weed, it matures, propagates and spreads very rapidly. As such, they are very competitive to crop seedlings in acquiring nutrients from soil. Due to this, goosegrass is very undesirable to farmers and is often weed out with herbicides, as exemplified by glyphosate or glufosinate.

#### **1.3.1** Resistant Goosegrass in Malaysia

Intensive use of herbicides with the same mode of action and lack of integrated weed management has given rise to goosegrass that are resistant to herbicides. In 1989, the first case of goosegrass resistant to fluazifop-butyl was recorded in Malaysian farm due to repetitive usage (Leach *et al.* 1993). Acquiring resistance to fluazifop-butyl suggested that they may also be cross-resistant to other herbicides in the A/1 Group. It was then discovered a year later that there are goosegrass biotypes resistant to group D/22 herbicides. Group D/22 is the Bipyridillums (Photosystem-I-electron diversion). Research has shown that these particular biotypes are resistant to paraquat and they may be cross-resistant to other Group D/22 herbicides.

Group A/1 herbicides on the other hand are known as ACCase inhibitors (Inhibition of acetyl CoA carboxylase (ACCase). Studies have proved that these particular biotypes are resistant to fluazifop-P-butyl, and propaquizafop and they may also be cross-resistant to other herbicides in the A/1 Group. The multiple resistance of *Eleusine indica* further evolved when in 1997 resistance of this biotype to glyphosate (herbicide group G/9) was reported.

Although it already developed multiple resistances to herbicides from group D/22 and Group A/1, the inclusion of glyphosate in the list is truly worrying. This is because unlike other herbicides, glyphosate's mode of action is non-selective.

### **1.4 PROTEOMICS**

The word proteomics originated from the word proteome, which was introduced by Wilkins *et al.* (1995) to describe the protein complement of the genome. Simply put, proteomics refers to the study of the proteome. A more refined definition of the word would be the high-throughput identification and analysis of proteins. Normally the objectives of proteomic research are to investigate protein expressions, quantification, function under specific biological function and protein identification of resolved proteins (Zazali 2004; Thelen 2007). A normal approach in most proteomic research involves separating the proteins (two dimensional gel electrophoresis), visualising and quantification of the protein spots (staining and scanning) and identification of the proteins (mass spectrometry).

#### 1.4.1 Two Dimensional Gel Electrophoresis

The two dimensional gel electrophoresis (2-DE) were first applied (1975), around the same time at which SDS-PAGE was introduced. It separate proteins on the basis of their isoelectric point (pI) by isoelectric focusing (IEF) and molecular weight (PAGE or SDS-PAGE), hence the two dimensional term. Extremely powerful in its resolving capacity, it suffers major drawbacks from reproducibility issues due to the fragile tube gels used for IEF. Only after the introduction of immobilized pH gradient (IPG) strips (Görg *et al.* 1978, 2000) saw the resurgence of this technique.

In IEF, protein samples were first solubilised in rehydration buffer. A typical solution generally contains urea, non-ionic or zwitterionic detergent such as CHAPS, TRITON X100 or NP-40, DTT, carrier ampholytes and a tracking dye. Urea solubilises and denatures proteins while thiourea further improves protein solubilisation, especially for hydrophobic proteins. The non-ionic/ zwitterionic detergents help solubilise hydrophobic proteins and minimize protein aggregation. Dithithreitol (DTT) acts as a reducing agent. Carrier ampholytes were used to improve protein separation, enhance protein solubility and produce more uniform protein conductivity across the pH gradient.

IPG strips were then rehydrated prior to focusing. The sample is applied along with the rehydration solution or by cup loading onto hydrated IPG strips. Following focusing, IPG strips undergo a two-step equilibration process. The equilibration solution contains urea, glycerol and SDS. Urea together with glycerol reduces the effects of electroendosmosis by increasing the viscosity of the buffer (Görg 2000). SDS denatures proteins and forms negatively charged protein-SDS complexes. In the first step, DTT was added to the equilibration solution to ensure the proteins are fully reduced. Iodoacetamide (IAA) was introduced in the second step to alkylate thiol groups on proteins, preventing their reoxidation during electrophoresis. It also alkylates residual DTT and minimizes unwanted reactions of cysteine residues with acrylamide monomers (Bonaventura *et al.* 1994).

In the second dimension, isoelectrofocused proteins are separated by molecular weight in polyacrylamide gels containing sodium dodecyl sulphate (SDS-PAGE). The

tris-glycine buffer system described by Laemmli (1970) was used. Equilibrated IPG strip(s) is pushed down until it touched the gel surface. Bubbles between the gel surface and the strips are eliminated and the strip(s) is sealed with agarose sealing solution to prevent movement of the strip.

#### **1.4.2 In-Gel Detection of Proteins**

There are various staining procedures for visualisation of proteins. Important considerations include the ease of use, reliability, sensitivity and compatibility with mass spectrometry (MS) analysis. Two of the more preferred staining methods are silver staining and coomassie staining using coomassie brilliant blue (CBB).

Silver staining is often preferred due to its high sensitivity which is up to 1 ng (Ocbs *et al.* 1981; Shevchenko *et al.* 1996). Because silver forms complexes with nucleophilic groups, such as the  $-NH_2$  of lysine (Rabilloud 1990), silver staining intensity correlates with lysine content in the protein (Mortz et *al.* 2001). Originally it was not compatible with MS analysis due to the incorporation of glutaraldehyde in its procedures. The use of aldehyde-based sensitizers, which promotes the binding of silver to proteins, prevents total digestion of peptides and reduced the efficiency of peptide extraction. This is because aldehyde(s) modify and crosslink with lysine residues (Shevchenko *et al.* 1996). Shevchenko *et al.* (1996) described a method where he overcomes this problem by replacing the aldehyde(s) with sodium thiosulfate. However, silver staining still suffers from other problems such as inferior reproducibility, poor linear dynamic range and non-quantitative negative staining of some modified proteins (Wilkins and Gooley 1998; Görg *et al.* 2000; Westermeier and Naven 2002). Silver staining has a linear dynamic range of one order of magnitude (Patton 2000).

Coomassie brilliant blue (CBB) staining is, traditionally preferred, due to its ease of use and compatible with subsequent mass spectra analysis. There are two chemical forms of CBB, the R-250 and the G-250. Both variants have a linear dynamic range up to one order of magnitude, but they differ greatly in their sensitivity, quantitative linear range and destaining properties. Since G-250 is better than R-250 in all of these aspects, it is recommended for proteomic applications. However, the limitation of CBB dye is its sensitivity, which ranges from 200 – 500 ng protein/spot with conventional methods using R-250 (Wilson 1979). However, this limit is overcome when Neuhoff *et al.* (1985, 1988) reduce the detection limit to about 10 - 30 ng protein/spot by using large amount of ammonium sulfate in acidic alcoholic media where the dye molecules are aggregated into colloidal particles. Kang *et al.* (2002) reported improved sensitivity and faster staining time of colloidal CBB staining by adding aluminium sulphate and replacing methanol with ethanol. Another modified colloidal CBB staining by Candiano *et al.* (2004), called 'Blue Silver' reported even higher sensitivity, comparable to that of silver staining.

Fluorescent protein stains, such as SyproRuby<sup>TM</sup>, Deep Purple<sup>TM</sup> and ruthenium II, are also becoming more prominent as the method of choice for protein visualisation. These broad dynamic range fluorescent protein stains have higher sensitivities than CBB (some as sensitive as silver staining), and often have a linear dynamic range of more than one order of magnitude (Rabilloud *et al.* 2000, 2001; Steinberg *et al.* 2000; Chevalier *et al.* 2004). They are also compatible with MS analysis. Cyanine-based fluorescence dyes, which are used in difference gel electrophoresis (DIGE), enables detection of protein differences in two samples/populations (Tonge *et al.* 2001).

#### **1.4.3** Peptide Mass Fingerprinting (PMF)

Peptide mass fingerprinting (PMF) is a technique for protein identification. Proteins are cleaved by protease into smaller peptides, which are measured by mass spectrometry such as MALDI-TOF (Matrix Assisted Laser Desorption/ Ionization-Time of Flight) or ESI-TOF (Electrospray Ionization-Time of Flight). Identification is accomplished by matching the observed peptide masses to the theoretical masses derived from a sequence database (Pappin *et al.* 1993; Henzel *et al.* 1993; Mann *et al.* 1993; James *et al.* 1993; Yates *et al.* 1993; Clauser *et al.* 1993). Because only the mass of the peptides need to be known, PMF is less time consuming compared to the conventional de novo sequencing of peptides/ proteins.

#### 1.4.4 MALDI-TOF Mass Spectrometry

Matrix assisted laser desorption/ ionization is a technique most commonly used to ionize proteins or peptides for MS analysis. MALDI instruments are often coupled together with time-of-flight (TOF) analyzer, which measures the mass of intact peptides. In mass spectrometry (MS), analytes need to be ionized into a gas phase. This creates a problem for large macromolecules, like proteins and peptides. Although transforming them into gas phase is possible, it was always considered an Augean task. The development of MALDI-TOF MS tremendously simplifies analysis of large macromolecules, and enables them to be analyzed in various physical states (flowing, liquid solution or dry, crystalline state) (Fenn *et al.* 1989; Tanaka *et al.* 1988; Karas and Hillenkamp 1988).
In MALDI-TOF, samples are first excised from gels and undergo in-gel digestion by proteolytic enzymes, such as trypsin, endoprotease Glu C (V8 protease), Endoprotease Lys C and endoprotease Asp N. These enzymes are site-specific, meaning they cleave at certain amino acids in the peptide. The most commonly used proteolytic enzyme in proteomic, trypsin, cleave at only 2 of the twenty amino acids, e.g. lysine and arginine at the C-terminal side, except if they are attached to proline in the C-terminal direction. This site-specific property allows the production of a whole list of expected fragments masses for every protein in any sample. Accurate mass determination often requires a minimum of at least four proteolytic peptides.

The digested protein are then mixed with crystalline matrix such as 2,5hydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid) or  $\alpha$ -cyano-4-hydroxycinnnamic acid ( $\alpha$ -CHCA), and spotted onto a plate to co-crystallize. The plate is inserted into the MALDI instrument and bombarded by a laser, volatizing and ionizing the samples to singly charged ions in a gas phase. The TOF analyzer then measures the mass of intact peptides. The mass fingerprint, i.e. the list of peptide mass derived from the mass spectrum for each protein, are identified by matching the experimentally determined peptide masses with those calculated from entries in sequence databases (Hurkman and Tanaka 2007).

#### 1.4.5 Protein Identification

In order to identify proteins from the peptide masses, several search softwares are available. These softwares include open source programs, such as Aldente (Gasteiger et al. 2005) and ProFound (Zhang and Chait 2000), and commercial ones like MASCOT (Perkins et al.) and SEQUEST (Yates 1998). Most of the open source

programs are available online while the commercial ones often come as a package with the instrument. Some of the commercial programs are also available online for free via web interface. These programs use sophisticated algorithms and probability-based statistics in order to define the best match between the experimental data and a sequence in the database. Examples of the databases used by these search softwares include NCBI NR (National Centre for Biotechnology Information; http://www.ncbi.nlm.nih.gov/protein), SWISS-PROT TrEMBL and (http://expasy.org/sprot/). The choice of program is often based by the experience of the programs user. Α list of protein search is available at http://www.peptideresource.com/proteomics.html.

For example, ProFound employs a Bayesian algorithm to identify proteins, taking into account individual properties of the proteins in the database and other relevant informations, such as molecular weight, pI, chemical modification, etc., that are relevant to the experiment. Currently the database that is used by ProFound is the NCBI NR (nonredundant) database (http://www.ncbi.nlm.nih.gov/BLAST/blast\_databases.html). The three most important criteria used in order to distinguish the highest possibility of a protein from the search result being the sample protein are the Z score, the probability and the percentage of the sequence coverage.

An estimated Z score is the distance to the population mean in unit of standard deviation. It also corresponds to the percentile of the search in the random match population. The estimated Z score is generated as an indicator of the quality of the search result. It is generated when the search result is compared against an estimated random match population. For example, an estimated Z score of 1.65 above for a search means that the search is in the 95th percentile. In other words, there are only about 5%

of random matches left that could yield higher Z scores than this search. Other values of Z score are 1.282, 2.326, and 3.090, corresponding to 90.0th, 99.0th, and 99.9th percentile (http://prowl.rockefeller.edu/prowl/profound\_help.html).

The probability provided in the search result is the normalized probability that a protein in a database is the protein being analysed based on data, experimental conditions and other background information, provided prior to the search. This Bayesian probability should be viewed as a measure of the confidence level of the hypothesis that protein searched is the sample protein based on the available information. The higher the probability, the higher the confidence level is. However it should be remembered that there are no absolute certainty for any given identification, only the probability (Zhang and Chait 2000). The percentage coverage on the other hand shows how much of the protein sequence covered by matched peptides to the whole length of protein sequence.

#### **1.5 OBJECTIVES OF STUDY**

The objectives of this research are:

- a) To identify and ascertain new biotypes of goosegrass that is resistant to glufosinate-ammonium in Malaysia.
- b) To evaluate the resistance level of goosegrass biotype(s) that is/are resistant to glufosinate-ammonium and glyphosate.
- c) To obtain 2-D gel analysis of the proteins in herbicide-resistant goosegrass biotype(s).

#### **1.6 STRUCTURE OF THESIS**

The work embodied in this thesis is divided in five chapters. Chapter 1 (General Introduction) discuss briefly on herbicide resistance status in the world while focusing on herbicide resistance status in Malaysia, primarily involving goosegrass, herbicides glyphosate and glufosinate ammonium with some notes on proteomics.

The materials used throughout this research are listed in Chapter 2 (Materials and Methods). This chapter also describes the methodology employed in evaluating the resistance of goosegrass and in obtaining the proteome map of *Eleusine indica*.

Chapter 3 (Results) focuses primarily on the preliminary evaluations of resistance level of goosegrass under both field and greenhouse conditions to glufosinate-ammonium and glyphosate. Further evaluations of goosegrass grown from seeds are also included. The proteome map of proteins in *Eleusine indica* are described. Comparisons of proteome map between susceptible and resistant biotypes of goosegrass are described and discussed.

Chapter 4 collates the findings in the preceding chapter and some discussions are included in this chapter.

Finally, Chapter 5 embodies the conclusion based on the discussions in the previous chapter.

## CHAPTER 2

## **MATERIALS AND METHODS**

## **2.1 MATERIALS**

## **2.1.1 Plant Materials**

Goosegrass (*Eleusine indica*) used in this study was collected from Kesang, Malacca (subsequently called the Kesang biotype) and Tun Razak Centre for Agricultural Research (PPPRT) of Jerantut, Pahang (subsequently known as the Jerantut biotype). Susceptible goosegrass biotype were collected from urban housing areas without any history of herbicide treatments.

## 2.1.2 Chemicals

All chemicals used were of analytical grade unless stated otherwise.

### **BDH Laboratory Supples, Poole, England**

• Bromophenol Blue

#### **Bio-rad Laboratories, Richmond, USA**

- 0.5M Tris-HCl buffer pH 6.8
- 1.5M Tris-HCl buffer, pH 8.8
- 30% Acrylamide/Bis solution, 37.5:1 (2.6% C)
- 10X Tris/ Glycine/ SDS buffer
- Ready Strip<sup>TM</sup> (70 mm, pH 3-10 NL)

#### Invitrogen<sup>™</sup>, California, USA

- BENCHMARK<sup>TM</sup> Protein Ladder
- ZOOM® Carrier Ampholytes 3-10

## Merck KGaA. Darmstadt, Germany

- Dithiothreitol (DTT),
- Iodoacetamide (IAA),
- 2-mercaptoethanol
- N,N,N',N'-Tetramethylethylenediamine (TEMED)
- Sodium hydroxide (NAOH)
- Tris(hydroxymethyl)aminomethane

## R & M Chemicals, Malaysia

- Ammonium persulphate (AP)
- Sodium dodecyl sulphate (SDS)

## Sartorius Stedim Biotech, Germany

• Vivaspin 20 (10 000 MWCO PES)

## Sigma-Aldrich, St. Louis, USA

- Brilliant Blue G (Coomassie Blue G-250)
- Protease Inhibitor Cocktail
- Thiourea

## Syngenta Crop Protection Sdn. Bhd., Selangor, Malaysia

- Glufosinate-ammonium (commercial grade)
- Glyphosate (commercial grade)

## Systerm, Malaysia

- Acetic acid (glacial)
- Acetone
- Ammonium sulphate
- Ethyl alcohol 95%
- Formaldehyde
- Glycerol
- Methanol
- Hydrochloric acid
- Ortho-phosphoric acid
- Sodium phosphate monobasic
- Sodium phosphate dibasic
- Sodium thiosulphate
- Urea

## 2.1.3 Instrumentation

- Centrifuge Heraeus Biofuge® Stratos
- Electrophoresis cell Mini PROTEAN® Tetra Cell, Bio-Rad
- Liquid chromatography ÄKTA Prime Plus, Amersham Biosciences
- Column HiPrep<sup>™</sup> 26/10, Desalting (50 ml), GE Healthcare, USA
- Isoelectric Focusing Ettan IPGphor 3, GE Healthcare
- Mass spectrometry Sciex TOF/TOF 5800 Mass Spectrometer, Applied

### Biosystems

- Power Supply PowerPac<sup>™</sup> Basic, Bio-Rad
- Scanner Image Scanner III, GE Healthcare
- Spectrophotometer JASCO V-630 UV-Vis Spectrophotometer

- Sprayer PB-20 Knapsack Sprayer, Cross Mark® and Hudson Planter Mist 6911.
- Weighing balance Mettler B204-S

## **2.2 METHODS**

#### 2.2.1. On-site Field Trial and Greenhouse Evaluation

A field trial was set up in the farmer's vegetable farm in Kesang, Malacca (GPS coordinate 2N 19' 58.1262", 102E 21' 58.575") and in the oil palm nursery in Jerantut, Pahang (GPS coordinate 3N 51' 25.2, 102E 33' 43.92"). Plots of 2 m × 1 m were laid out with 3 replicates for each plot, and were arranged accordingly in a randomized complete block design. Glufosinate-ammonium was sprayed onto Eleusine indica plants using a flat fan nozzle sprayer calibrated to deliver 450 L/ha (PB-20 Knapsack Sprayer, Cross Mark<sup>®</sup>) at four different rates ranging from 247.5 g a.i. ha<sup>-1</sup> to 1980 g a.i. ha<sup>-1</sup> (Kesang farm), and from 495 g a.i. ha<sup>-1</sup> to 3960 g a.i. ha<sup>-1</sup> (Jerantut palm oil nursery) including untreated control plots. Glyphosate was also tested at both Kesang and Jerantut fields, with rates ranging from 540 g a.e  $ha^{-1}$  to 4320 g as  $ha^{-1}$ . All herbicide spraying were conducted in early morning on a clear weather. Most of the goosegrass were matured and at seed producing stage. The goosegrass were in excess of 90% coverage and interaction with other weed species, if any, would be minimum. Interactions with other weed species were not taken into consideration in this study. Visual estimates of percentage damage due to herbicide treatment based on leaf and stem necrosis at weekly intervals for 4 consecutive weeks, based on a scale of 0 to 100% (0 = no damage, 100 = total control).

In order to rule out environmental factors (e.g. rain, humidity and light) and agronomic factors (e.g. soil type, water stress and soil pH) which may affect the efficacy of herbicides on the goosegrass, cuttings from the field that survived the herbicide treatment were collected and transplanted into pots in a greenhouse ( $30^{\circ}$ C/ $25^{\circ}$ C day/ night temperature, 75% relatuve humidity and an average light intensity of 400 µEm<sup>2</sup> s<sup>-1</sup>) in the Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia (GPS coordinate 3N 7' 52.64", 101E 39' 25.25"). In order to evaluate the resistance level of both the 'Kesang' and 'Jerantut' biotypes, susceptible samples of goosegrass towards glufosinate-ammonium were collected from urban housing areas with no history of herbicide treatments.

Cuttings of goosegrass were transplanted into unsterilized potting soil in 10 cm<sup>2</sup> pots with 0.3 cm of the shoot buried (a maximum period of 7 days was allowed until the cuttings are transplanted). The pots were kept inside the greenhouse and watered twice daily from above using a fine hose. After the leaves have regenerated to about 3 cm long, the pots are moved outside the greenhouse to allow maximum sun exposure. Once the leaves were about 7 to 20 cm long, the goosegrass plants were treated with glufosinate-ammonium at 495, 990, 1980, and 3960 g a.i. ha<sup>-1</sup> with three replicate pots per treatment using similar spray application equipment described earlier at a spray volume of 450 L ha<sup>-1</sup>. The goosegrass were also treated with gluphosate with rates ranging from 540 g ae ha<sup>-1</sup> to 4320 g ae ha<sup>-1</sup>. Sampling and assessment on the herbicide efficacy were based on the Syngenta's Quick Test method (Boutsalis 2001) with slight modifications. Visual estimates of percentage damage of goosegrass following glufosinate-ammonium and glyphosate treatments were carried out in the same manner as those employed in the on-site field trial.

#### 2.2.2. Statistical Analysis

The percentage of control of goosegrass as a result of glufosinate ammonium treatment was subjected to Probit Analysis (Finney 1971) using the statistical software SPSS (SPSS Statistics 17.0) to determine the  $LC_{50}$  values. The resistance indices for each biotype were also calculated.

The data from field and greenhouse experiments were collated and subsequently subjected to ANOVA. Prior to ANOVA, the percentage of control data were transformed to  $\log + 5$ . Treatment means were then subjected to Tukey's tests to determine significant differences between them, if any.

#### 2.2.3 Seed Test

Prior to the on-site field trial, mature goosegrass seeds were collected from respective places. The seeds were air dried and stored in paper envelope to prevent rapid heating (Moss 2009). The seeds were germinated in unsterilized potting soil in 10 cm<sup>2</sup> pots and labelled accordingly. Germinated seedlings were grown outdoors and watered accordingly.

Once the leaves have grown to 7 to 20 cm long, glufosinate-ammonium and glyphosate were sprayed at four different rates for each herbicide as described in 2.2.1, using the same spray application equipment with similar spray volume (450 L ha<sup>-1</sup>) as described earlier. Visual estimate of percentage damage, Probit analysis and statistical analysis were carried out similarly as in Section 2.2.2.

#### 2.2.4 **Protein Extraction**

Goosegrass seeds of Kesang, Jerantut and susceptible biotypes were germinated separately in 30 cm x 65 cm x 5 cm seedling tray. Once the seedlings have reached 3 to

5 tiller stage, they were uprooted. Shooting were removed from the root, frozen (shoots) in liquid nitrogen and pulverized into fine powder with a mortar and pestle. From here on all steps were carried out at 4 °C unless stated otherwise. The procedure was adapted from Cummins et al. (1997), with slight modifications. The powder was suspended in extraction buffer (5 ml of extraction buffer for each gram of powder; Appendix C-1) mixed with protease inhibitor cocktail and filtered through 2 layers of muslin cloth. The homogenate was then centrifuged at 12000 rpm for 40 min at 4 °C. Ammonium sulphate precipitation was carried out, up to 80% saturation. The homogenate was centrifuged again at 12000 rpm for 10 minutes at. Protein pellets was dissolved in buffer A (Appendix C-1) and filtered using syringe filter (0.45µm) before being applied onto prepacked Sephadex G-25 column (HiPrep<sup>TM</sup> 26/10, Desalting, 50 ml). The column was connected to ÄKTA Prime Plus and was equilibrated with buffer A up to 3 times column volume. Sample was then loaded into 5 ml sample loop and injected into the column. During sample application the flow rate was set at 2.5 ml/min and the sample was eluted with buffer A. Flow rate at 5.0 ml/min were also tested to see whether there were any differences in the elution profile. The protein profile was monitored at 280 nm. Fractions of 5 ml were collected and fractions containing peaks were pooled. Pooled fractions were then concentrated with 20 ml concentrator (Vivaspin 20, MWCO 10kD) and saved for further analysis. Several flow rates were tested to determine whether there were any differences in the elution profile.

#### 2.2.5 **Protein Estimation (Bradford assay)**

The protein content determination was conducted as described by Bradford (1976) and the Bradford reagent was prepared as in Appendix C-2. Each time protein estimation was carried out, a standard curve was constructed. Protein standards were

prepared in duplicates. Increasing volumes (10 to 50 µl) of stock BSA solution (2 mg/ml) were added into different test tubes and volume in each test tube was made to 100 µl with buffer A. The blank was prepared by pipetting 100 µl of buffer A into a test tube. Unknown samples were prepared in dilution of 2.5 or 5 fold. To each standard and sample, 5 ml of Bradford reagent was added and shaken well. After 5 minutes and before 1 h of incubation, absorbance reading was taken at 595 nm on JASCO V-630 UV-Vis Spectrophotometer. Data obtained were plotted as average absorbance at 595 nm against amount of BSA. The protein content of the sample(s) was estimated from the standard curve as shown in Appendix C-2. For diluted sample(s), the amount generated was multiplied with the dilution factor.

#### 2.2.6 Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE was performed using Mini PROTEAN® Tetra Cell electrophoresis units with a Bio-Rad PowerPac<sup>™</sup> Basic power supply. Commercial 0.5 Tris-HCl, pH 6.8, 1.5 M Tris-HCL, pH 8.8, 30% Acrylamide/Bis solution, 37.5:1 (2.6% C) and 10X Tris/ Glycine/ SDS buffer were used throughout the experiment. The assembly and preparation of the apparatus, other buffers and reagents were as described in the instruction manual provided and listed in Appendix C-3, based on Laemmli (1970).

#### 2.2.6.1 Gel Preparation

The 4% stacking gel and 12% resolving gel were prepared as shown in Table 2.1.

**Table 2.1.** Stacking and resolving gel formulations.

| Solution                | 12% Stacking Gel | 4% Resolving Gel |
|-------------------------|------------------|------------------|
| dH <sub>2</sub> O (ml)  | 3.4              | 6.1              |
| 30% Acrylamide/Bis (ml) | 4.0              | 1.3              |
| Gel buffer* (ml)        | 2.5              | 2.5              |
| 10% (w/v) SDS (ml)      | 0.1              | 0.1              |

\*Stacking gel buffer is 0.5 M Tris-Hcl, pH 6.8 while resolving gel buffer is 1.5 M Tris-Hcl, pH 8.8.

The monomers were prepared by mixing all the reagents except TEMED and APS. The solutions were then degassed for 15 minutes. Prior to pouring gel into gel cassettes, 5  $\mu$ l of TEMED and 50  $\mu$ l of 10% (w/v) APS were added (resolving gel) and 10  $\mu$ l of TEMED and 50  $\mu$ l APS (stacking gel) and swirl gently to initiate polymerization. Once the stacking gel has been poured, 200  $\mu$ l of overlay solution was laid onto the top of the gel solution and left to polymerized. Only after the stacking gel has polymerized was the resolving gel poured. A comb was inserted to create wells and the gel was left to polymerize.

#### 2.2.6.2 Electrophoresis

Before loading samples into the wells, the wells were rinsed 3 times with running buffer. Equal volumes of samples were loaded into the wells. The electrophoresis was run at 120 V for 2.5 h. For molecular weight estimation, a protein standard (BENCHMARK<sup>™</sup> Protein Ladder) was loaded into a free well along with the samples.

#### 2.2.7 Two-Dimensional (2-D) Gel Electrophoresis

#### 2.2.7.1 Sample Application by In-Gel Rehydration

The 70 mm IPG strips used (Ready Strip<sup>TM</sup>) can absorb a total volume of 125  $\mu$ l of solution. As such, a minimal volume of concentrated protein sample (e.g 25  $\mu$ l) was added with a volume of rehydration buffer (Appendix C-4), with a final volume of 125  $\mu$ l. The immobiline strip was inserted (gel side down) into a graduated plastic pipette used as replacement to the rehydration tray. One end of the pipette was sealed with parafilm and the sample solution was pipetted underneath the strip into the gel. Care was given to avoid and minimise bubble formations and the strip was left to rehydrate overnight at room temperature.

#### 2.2.7.2 Isoelectric Focusing (IEF)

The strip(s) in the graduated plastic pipette (rehydration 'tray') was pulled out with tweezers and placed gel side up into the lane on the IPGphor tray, with acidic end of the strip positioned at the anode end, and the basic end at the cathode end. A paper wick was soaked with approximately 100 µl of deionized water and cut into two. The paperwicks were placed on each end of the strips with half of the paperwicks covering the gel edge. The electrodes were then placed onto the paperwicks that covered the gel, and locked into position. About 3.5 ml of IPG Dry Strip Fluid were then pipetted into the lane, covering the strip and the paperwicks. The IPGphor was programmed to run in 3 stages with the first stage in gradient mode at 250 V for 10 min, second stage, also in gradient mode at 3500 V for 1:30 h and the final stage, in steep mode at 3500 V also at 1:30 h. All three stages were set to run at 2 mA and 5W. Once the IEF run was completed the strip were removed and proceed to the second dimension.

#### 2.2.7.3 Second Dimension (SDS-PAGE)

Following the first dimension process, the IPG strips then underwent a two step equilibration process, 15 min each. Each strip required 2.5 ml of equilibration buffer (Appendix C-4). In the first equilibration step, 0.25% (w/v) of dithiothreitol (DTT) was dissolved in 2.5 ml of equilibration buffer. This solution was then poured in a 15 ml centrifuge tube and the strip is immersed in the solution, gel side down. The centrifuge tube was capped and shaken gently on a shaker for 15 min. During this time, the second equilibration solution was prepared. 4.5% (w/v) of iodoacetamide (IAA) and traces of bromophenol blue (BPB) was dissolved in 2.5 ml of equilibration buffer.

After the first equilibration step ended, the solution in the centrifuge tube was discarded and the second solution was poured in and left gentle shaking for another 15 minutes. Then the strip was rinsed with SDS running buffer and excess buffer was blotted out by letting it stand on a filter paper. The second dimension was carried out on mini-PROTEAN<sup>TM</sup> Tetra Cell electrophoresis units. The strip was then lubricated in SDS running buffer and positioned in between plates. The gel edge was made sure to touch the surface of the SDS-PAGE gels with extra care to prevent bubbles between the gel strip and the SDS-PAGE gel. The molecular weight marker was placed at the acidic end of the strip. The strip was then sealed with agarose sealing solution (0.5% (w/v) agarose in SDS running buffer) to prevent it from moving. The electrophoresis was run at a constant voltage of 120 V using PowerPac<sup>TM</sup> Basic power supply unit.

## 2.2.8 Gel Staining

Colloidal Coomassie Blue Staining G-250 was used as due to its sensitivity (up to 10 ng of protein can be detected) and compatibility with subsequent mass spectrometry analysis. The procedure was adopted from Neuhoff *et al.* (1988). The

stock solution was prepared by firstly dissolving 100 g of ammonium sulphate in about 500 ml of water. Then, 2% (w/v) ortho-phosphoric acid was added into the ammonium sulphate solution. 5% (w/v) CBB G-250 (1 g in 20 ml, prepared separately) was then added gradually. The volume was then made up to 1 L. The solution was shaken vigorously before use for even distribution of the colloidal particles. The actual staining solution was prepared by mixing methanol and colloidal stock solution at a 1:4 ratio (methanol: colloidal CBB). 20 ml of methanol was mixed with 80 ml of colloidal stock stain solution. During staining, air tight container was used to prevent methanol evaporation and placed on a shaker to prevent evaporation. The staining solution was changed once after 12 h to enhance dye deposition on low abundance proteins. Destaining was carried out by washing the gel slab in 20% (v/v) methanol, to wash out the colloidal particle.

#### 2.2.9 Gel Visualisation and Spot Analysis

Destained gels were scanned using Image Scanner<sup>TM</sup> III with the LabScan software. The scanner was first calibrated with Kodak Step Tablets no. 2 and 3. The scanner was then set to transparent mode before scanning. Both *.mel* and *.tif* files were saved for visualization and analysis purposes.

#### 2.2.9.1 Analysis of 2-D Gels

Coomassie blue stained gels were scanned (as described earlier) and its .mel images generated were analysed using Melanie Version 7.0 and ImageMaster<sup>TM</sup> 2D Platinum software Version 7.0. Qualitative and quantitative differences between susceptible and resistant samples were sought. Qualitative differences were defined as spots that were present in the susceptible sample gels but absent in the resistant sample gels, or *vice versa*. Quantitative differences were sought in spots that were present in both gel (susceptible and resistant) sets and the mean 'volumes' (volume = area X intensity) of scanned spots were compared.

The gels from susceptible and resistant biotypes were analysed by an automated procedure to identify spots. The smoothness, saliency and min. area was adjusted to give the best spots detection. The best image from gel of the resistant biotype was used as reference and all gels are matched to it. The background value each gel was subtracted. Spot volumes were then normalized against the total volume for all spots. Matched spot volumes were compared and analysed statistically for any significant change. A particular spot that is present in all samples were chosen as a marker to evaluate similarities in all samples tested.

#### **2.2.10 MALDI-TOF**

Protein spots (1 mm<sup>3</sup>) were excised from the Jerantut biotype gel using a clean scalpel and transferred into 1.5 ml Eppendorf tube. The gel plugs were dried and sent to Proteomics International (Perth, Australia) for analysis. Protein samples were trypsin digested and peptides extracted according to standard techniques (Bringans *et al.* 2008). Peptides were analysed by MALDI TOF-TOF mass spectrometer using a 5800 Proteomics Analyzer (AB Sciex). Bovine serum albumin was used as standard.

Generated mass spectra of the peptides were analysed using ProFound, a tool for searching a protein sequence collections with peptide mass maps (http://prowl.rockefeller.edu/prowl-cgi/profound.exe). ProFound utilizes Bayesian algorithm to rank the protein sequences in the NCBI non-redundant (NR) database according to their probability of being the analysed protein. The Z score indicates the quality of the search, corresponding to the percentile of the candidate in the random match population. Thus, a Z score of 1.65 (a 95<sup>th</sup> percentile) for a search means there are about another 5% of random matches that could probably be the candidate.

Several information were included in all the searches, such as a maximum of one missed cleavage allowed, digestion by trypsin, the appropriate taxa, pI and molecular weight of the samples. Partial carbamidomethylation of cysteine and partial modification of methionine (methionine oxidation) were assumed. A mass tolerance of 0.05 Dalton was set initially, with gradual increase to a maximum of 0.50 Dalton, depending on the situation.

# **CHAPTER 3**

# RESULTS

## 3.1 Field Evaluation of Herbicide Resistant Goosegrass

Glufosinate-ammonium provided very good control of the goosegrass populations at the Kesang farm. Even at a sub-lethal dose of 247.5 g a.i. ha<sup>-1</sup> (half of the recommended rate of application), 77% of control was achieved 14 days after treatment (DAT). There were rate-mediated increases in the percentage control of goosegrass with glufosinate-ammonium, as evident in Fig. 3.3 and 3.4. Glufosinate-ammonium at the recommended rate of 495 g ai ha<sup>-1</sup> registered 82% control of the goosegrass while the same herbicide at 990 g ai ha<sup>-1</sup> caused 94% kill of the weed. At four times than the recommended rate (1980 g ai. ha<sup>-1</sup>), 97% control was achieved (Fig. 3.1 and Table 3.1).

Figure 3.2 illustrates the level of control of goosegrass biotype from Jerantut, Pahang populations subjected to the recommended rate of 495 g ai ha<sup>-1</sup> vis-à-vis 3960 g ai ha<sup>-1</sup> or eight times the recommended rate of glufosinate-ammonium. Interestingly, at 495 g ai ha<sup>-1</sup> very poor control of the scourge was achieved (Fig. 3.5), apparently with no sign of breakdown of resistance with age. With 3960 g ai ha<sup>-1</sup> the herbicide impacted measurable control against the weed, ranging from 65 to 85% kill. Intriguingly, there was time-mediated reduction in the ability of the herbicide to kill the weed. These phenomena were exemplified by the initial 92% kill of the weed at 7 DAT vis-à-vis 85, 72, and 67% kill at 14, 21, and 28 DAT, respectively.

Glufosinate-ammonium at the recommended application rate of 495 g a.i. ha<sup>-1</sup> failed to inflict any damage on the goosegrass populations in Jerantut, Pahang (Table 3.1 and Fig. 3.2). Nevertheless, the rate-mediated increase in the level of control of the goosegrass populations by the herbicide prevailed. For example, with 990 g a.i. ha<sup>-1</sup>, a 45% control was achieved, and the percentage control increased by 20% with a two-fold increase in rate of glufosinate-ammonium used.

**Table 3.1.** Percentage control of goosegrass in the field by different rates of glufosinateammonium 14 days after treatment.

| Biotype  | Rate (g ai ha <sup>-1</sup> ) | Percentage control |
|----------|-------------------------------|--------------------|
| Kesang   | 247.5                         | 77                 |
|          | 495                           | 82                 |
|          | 990                           | 94                 |
|          | 1980                          | 97                 |
|          | 3960                          | NA                 |
| Jerantut | 495                           | 0                  |
|          | 990                           | 45                 |
|          | 1980                          | 65                 |
|          | 3960                          | 85                 |

\* NA – not applicable or not tested.



Fig. 3.1. Field evaluation on differential responsess of the goosegrass biotype from Kesang, Malacca to glufosinate-ammonium at 247.5 - 1980 g ai ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.



**Fig. 3.2.** Field evaluation on differential responses of the goosegrass biotype from Jerantut, Pahang to glufosinate-ammonium at 495 - 3960 g ai ha<sup>-1</sup>. Bars represent 1±SD values.



**Fig. 3.3.** Control of goosegrass in Kesang, Malacca by glufosinate-ammonium at 247.5 g ai ha<sup>-1</sup>.



**Fig. 3.4.** Control of goosegrass in Kesang, Malacca by glufosinate-ammonium at 1980 g ai ha<sup>-1</sup>.



**Fig. 3.5.** Control of goosegrass plot in Jerantut, Pahang by glufosinate-ammonium at 495 g ai ha<sup>-1</sup>.



**Fig. 3.6.** Control of goosegrass in Jerantut, Pahang by glufosinate-ammonium at 3960 g ai ha<sup>-1</sup>.

On the other hand, it was a different story for glyphosate-treated goosegrass for Kesang and Jerantut populations. Glyphosate sprayed in the Kesang farm at twice than the recommended rate (1080 g ae ha<sup>-1</sup>), produced only 10% of control, 14 days after glyphosate application. Quadrupling that rate at 4320 g ae ha<sup>-1</sup> resulted in a mere increase of another 3% in control (Table 3.2 and Fig. 3.7).

As illustrated in Figure 3.8, glyphosate application had close to no effect on the goosegrass at the oil palm nursery in Jerantut, Pahang. Throughout the 4 weeks after treatment with glyphosate, the highest level of control achieved was approximately 5% and that was during the first week for the higher rates (2160 g ae ha<sup>-1</sup> and 4320 g ae ha<sup>-1</sup>). Figure 3.9 and 3.10 illustrate how little the effect of glyphosate, at the highest rate used, had to the goosegrass in Kesang, Malacca and Jerantut, Pahang.

**Table 3.2.** Percentage control of goosegrass in the field by different rates of glyphosate14 days after treatment.

| Biotype  | Rate (g ae ha <sup>-1</sup> ) | Percentage control |
|----------|-------------------------------|--------------------|
| Kesang   | 540                           | NA                 |
|          | 1080                          | 10                 |
|          | 2160                          | 18                 |
|          | 4320                          | 13                 |
| Jerantut | 540                           | 0                  |
|          | 1080                          | 0                  |
|          | 2160                          | 3                  |
|          | 4320                          | 3                  |

\* NA – not applicable or not tested.



**Fig. 3.7.** Field evaluation on differential responses of the goosegrass biotype from Kesang, Malacca to glyphosate at 1080 - 4320 g ae ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.



**Fig. 3.8.** Field evaluation on differential responses of the goosegrass biotype from Jerantut, Pahang to glyphosate at 540 - 4320 g ae ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.



Fig. 3.9. Control of goosegrass in Kesang, Malacca by glyphosate at 4320 g ae ha<sup>-1</sup>.



Fig. 3.10. Control of goosegrass in Jerantut, Pahang by glyphosate at 4320 g ae ha<sup>-1</sup>.

## **3.2** Greenhouse Evaluation of Herbicide Resistant Goosegrass

The same level efficacy of the herbicide on the goosegrass in Kesang field was not manifested on the goosegrass populations in the greenhouse trial. At the recommended label rate of 495 g a.i. ha<sup>-1</sup>, only 43% of control was achieved. As the rate(s) increased, so did the level of control (Fig. 3.11 and Fig. 3.12). A total annihilation (100% control) of the goosegrass populations for the Kesang biotype was achieved (100%) at 4- and 8-times more than the recommended rate of application of the herbicide (Table 3.3).

Glufosinate-ammonium under greenhouse studies produced a similar pattern of control against the Jerantut biotype, similar to those in the field trials. At 495 g a.i. ha<sup>-1</sup>, only 3% of control was achieved. The herbicide at 990, 1980 and 3960 g a.i. ha<sup>-1</sup> produced 37%, 28% and 64% control, respectively against the Jerantut biotype of goosegrass at 14 DAT (Fig. 3.13, Fig. 3.14 and Table 3.3).

While treatment with 495 g a.i. ha<sup>-1</sup> failed to impact any significant kill on the Jerantut biotype of goosegrass, similar treatment afforded 35-46% kill on the Kesang biotype of goosegrass (Fig.3.15). Albeit measurable differences in the percentage kill of the scourge with time for both biotypes, such damages were not very significant.



**Fig. 3.11.** Greenhouse evaluation on differential responses of the goosegrass biotype from Kesang, Malacca to glufosinate-ammonium at 495 - 3960 g ai ha<sup>-1</sup>. Bars represent 1±SD values.



**Fig. 3.12.** Greenhouse evaluation of transplanted goosegrass from Kesang, Malacca with different rates of glyphosate. Plant in the black poly bag represents the untreated control.



Fig. 3.13. Greenhouse evaluation on differential responses of the goosegrass biotype from Jerantut, Pahang to glufosinate-ammonium at 495 - 1980 g ai ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.



**Fig. 3.14.** Greenhouse evaluation of transplanted goosegrass from Jerantut, Pahang with different rates of glufosinate-ammonium.

**Table 3.3.** Percentage control of goosegrass in greenhouse evaluation by different ratesof glufosinate-ammonium 14 days after treatment.

| Biotype  | Rate (g ai ha <sup>-1</sup> ) | Percentage (%) control |  |
|----------|-------------------------------|------------------------|--|
| Kesang   | 247.5                         | NA                     |  |
|          | 495                           | 43                     |  |
|          | 990                           | 72                     |  |
|          | 1980                          | 100                    |  |
|          | 3960                          | 100                    |  |
| Jerantut | 495                           | 3                      |  |
|          | 990                           | 37                     |  |
|          | 1980                          | 28                     |  |
|          | 3960                          | 64                     |  |

\* NA – not applicable or not tested.



**Fig. 3.15.** Greenhouse evaluation on the differential responses of the Kesang and Jerantut biotypes to glufosinate-ammonium treatments at the recommended rate of 495 g ai ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.

Greenhouse evaluation of transplanted goosegrass from the Kesang farm showed increased susceptibility towards glyphosate (Fig 3.16). At the higher rates of glyphosate (2160 and 4320 g ae ha<sup>-1</sup>) applied, the control capacity on the scourge was 71% (greenhouse trial) compared to 18% in the field trial and 94% (greenhouse trial) compared to 13% (field trial) respectively at 14 DAT (Table 3.4). Time-mediated increase in terms of weed control was observed as illustrated in Figure 3.16. With the exception of the recommended rate of 540 g ae ha<sup>-1</sup>, all other rates showed time-mediated increase in goosegrass control.

Subsequent greenhouse trial on the transplanted Jerantut biotype suggested higher susceptibility towards glyphosate (Fig. 3.18 and 3.19). At fourteen days after application, only glyphosate at the recommended rate of 540 g ae  $ha^{-1}$  had no effect on

the Jerantut biotype. However at twice, four and eight times more than the recommended rate, there were about 19% to 25% kill of the weed (Table 3.4).

Figure 3.20 illustrates a comparison between the Kesang and Jerantut biotypes treated with 4320 g ae ha<sup>-1</sup> of glyphsosate. While treatment with 4320 g ae ha<sup>-1</sup> failed to control the Jerantut biotype 14 DAT, the Kesang biotype was adequately controlled at 14 DAT with the same treatment. Despite the differences in percentage control of goosegrass, similar time-mediated response was observed.



**Fig. 3.16.** Greenhouse evaluation on differential responses of the goosegrass biotype from Kesang, Malacca to glyphosate at 540 - 4320 g ae ha<sup>-1</sup>. Bars represent 1±SD values.

| Biotype  | Rate (g ae ha <sup>-1</sup> ) | Percentage (%) Control |            |  |
|----------|-------------------------------|------------------------|------------|--|
|          |                               | Field trial            | Greenhouse |  |
| Kesang   | 540                           | NA*                    | 0          |  |
|          | 1080                          | 10                     | 10         |  |
|          | 2160                          | 18                     | 71         |  |
|          | 4320                          | 13                     | 94         |  |
| Jerantut | 540                           | 0                      | 1          |  |
|          | 1080                          | 0                      | 22         |  |
|          | 2160                          | 3                      | 25         |  |
|          | 4320                          | 3                      | 19         |  |

**Table 3.4.** Percentage control of goosegrass by different rates of glyphosate at 14 days after treatment.

\* NA – not applicable or not tested.



**Fig. 3.17.** Greenhouse evaluation of transplanted goosegrass from Kesang, Malacca with different rates of glyphosate. Plant in the black poly bag represents the untreated control.



Fig. 3.18. Greenhouse evaluation on differential responses of the goosegrass biotype from Jerantut, Pahang to glyphosate at 540 - 4320 g ae ha<sup>-1</sup>. Bars represent 1±SD values.



**Fig. 3.19.** Greenhouse evaluation of transplanted goosegrass from Jerantut, Pahang with different rates of glyphosate. Plant in the black poly bag at the left side represents the untreated control.



Fig. 3.20. Greenhouse evaluation on the differential responses of the Kesang and Jerantut biotypes to glyphosate treatments at 4320 g ae ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.

The LC<sub>50</sub> values together with the resistance index for all three biotypes are shown in Table 3.5. The transplanted Kesang biotype has a resistance index of 1.97 for glufosinate-ammonium. The parallel figure for the transplanted Jerantut biotype was 7.63. The same transplanted Kesang biotype recorded a resistance index of 8.41 for glyhosate and 24.37 for the transplanted Jerantut biotype.

Tukey's analysis showed that when treated with glufosinate-ammonium at various rates (495 to 3960 g ai ha<sup>-1</sup>), the Kesang biotype produced significantly different level of control of the weed at the recommended label rate of 495 g ai ha<sup>-1</sup>, compared to the other rates. This was also true for 990 g ai ha<sup>-1</sup>. However at the higher
rates of 1980 g ai ha<sup>-1</sup> and 3960 g ai ha<sup>-1</sup>, the control capacity of glufosinateammonium on the goosegrass, are much or less the same, albeit significantly different from 495 and 990 g ai ha<sup>-1</sup>. Both Jerantut and the susceptible biotypes generated similar results for treatment with glufosinate-ammonium (Table 3.6).

No significant differences were achieved, regardless of the rate used, for the susceptible biotype of goosegrass treated with glyphosate. There were significant difference in control of the weed between the two lower rates (540 and 1080 g ae ha<sup>-1</sup>) of glyphosate and the two higher rates (2160 and 4320 g ae ha<sup>-1</sup>) on the Kesang biotype. Interestingly, the Jerantut biotype showed significantly different level of control of the scourge, based on the rates used.

As illustrated in Table 3.6, glufosinate-ammonium at 495 g ai ha<sup>-1</sup> did not display any significant difference in the control of the susceptible and the Kesang biotype. However the Jerantut biotype produced significantly different level of control compared to the other 2 biotypes when treated with 495 g ai ha<sup>-1</sup>. These trends prevailed in the other two rates of 1980 g ai ha<sup>-1</sup> and 3960 g ai ha<sup>-1</sup>. Only the treatment with 990 g ai ha<sup>-1</sup> of glufosinate seems to give significantly different control of the weed between the three biotypes (susceptible, Kesang and Jerantut).

Treatment with glyphosate at 540 g ae ha<sup>-1</sup> did not show any significant affect on the susceptible and the Jerantut biotype. Only the Kesang biotype seemed to be affected significantly by glyphosate treatment at 540 g ae ha<sup>-1</sup>. Glyphosate treatment at twice than the recommended rate also produced the same control capacity for all three biotypes compared to those treated with 540 g ae ha<sup>-1</sup>. For the two higher rates at 2160 and 4320 g ae ha<sup>-1</sup>, there were no difference in control of goosegrass between susceptible and Kesang biotype. However treatment at these rates (2160 g ae ha<sup>-1</sup> and 4320 g ae ha<sup>-1</sup>) produced different control on the Jerantut biotype, as compared to the susceptible and the Kesang biotypes.

**Table 3.5.** The amount of glufosinate-ammonium and glyphosate required for 50% control of the susceptible, Kesang and Jerantut biotypes of goosegrass. Values are  $LC_{50}$  calculated by Probit Analysis on the data from greenhouse experiments.

| Treatment    | Biotype     | $LC_{50}$ (g ai ha <sup>-1</sup> /g ae ha <sup>-1</sup> ) | Resistance Index** |
|--------------|-------------|-----------------------------------------------------------|--------------------|
| Glufosinate- | Susceptible | 301 (135-523)*                                            | 1.00               |
| ammonium     | Kesang      | 593 (347-903)                                             | 1.97               |
|              | Jerantut    | 2297 (1580-3594)                                          | 7.63               |
|              | Susceptible | 232 (24-621)                                              | 1.00               |
| Glyphosate   | Kesang      | 1950 (892-4888)                                           | 8.41               |
|              | Jerantut    | 5653 (2588-29618)                                         | 24.37              |

\* Values in parentheses represent the 95% confidence intervals.

\*\* The Resistance Index is the ratio of  $LC_{50}$  of suspected resistant biotypes to that of the susceptible population.

\*\*\* Glyphosate rate is in g ae ha<sup>-1</sup>

**Table 3.6.** Differences in control of goosegrass by rates (glufosinate-ammonium and glyphosate) and biotypes for transplanted goosegrass.

|                          | Rate                                | Biotypes*   |        |          |  |  |
|--------------------------|-------------------------------------|-------------|--------|----------|--|--|
| Herbicide                | $(g ai ha^{-1}) / (g ae ha^{-1})**$ | Susceptible | Kesang | Jerantut |  |  |
|                          | 495                                 | aFG         | aFG    | aH       |  |  |
| Glufosinate-<br>ammonium | 990                                 | bF          | bG     | bH       |  |  |
|                          | 1980                                | cdFG        | cdFG   | cdH      |  |  |
|                          | 3960                                | cdFG        | cdFG   | cdH      |  |  |
|                          | 540                                 | abcdFH      | abG    | acFH     |  |  |
|                          | 1080                                | abcdFH abG  |        | bcdFH    |  |  |
| Glyphosate**             | 2160                                | abcdFG cdFG |        | abcdH    |  |  |
|                          | 4320                                | abcdFG      | cdFG   | bcdH     |  |  |

\* Values followed by the same uppercase letters in a row, and those followed by the same lowercase letters in a column are not significantly different at p < 0.05 (Tukey's test).

\*\* Glyphosate rate is in g ae ha<sup>-1</sup>

### 3.3 Seed Test on the Kesang, Jerantut and Susceptible Goosegrass Biotypes

Glufosinate-ammonium sprayed on goosegrass grown from seeds collected in the field provided satisfactory control of the weed. At the recommended rate of 450 g ai ha<sup>-1</sup>, 77% of control on the Kesang biotype was achieved 14 days after treatment. The control of goosegrass increased with the parallel increase in rates, with 8 times more than the recommended rate (450 g ai ha<sup>-1</sup>) yielded nearly total control of goosegrass (99%) (Table 3.7; Fig. 3.21). However, the efficacy of the herbicide that controls some of the Kesang biotype did not prevail with the Jerantut biotype. The recommended rate provided a mere control of 15%, with no sign of breakdown with age (Fig. 3.22). The increased in rates improved glufosinate-ammonium efficacy with 61% control of goosegrass at double the initial rate. At four and eight times (1980 and 3960 g ai ha<sup>-1</sup>) more than the recommended rate, the herbicide provided satisfactory kill of the scourge with 82% and 83% each (Table 3.7; Fig 3.23).

The goosegrass of Kesang and Jerantut biotypes grown from seeds displayed high tolerance towards glyphosate, as evident in Table 3.7. Interestingly, although little control was achieved at the recommended rate and at twice the recommended rate, a large increase in the control of the scourge was observed for the Kesang biotype at 2160 g ae ha<sup>-1</sup>. This rate-mediated increase, although expected, was surprising as the increase was very high (about 60%) (Fig. 3.24 and Fig. 3.25). However, this significant increase in control of goosegrass was not evident for the Jerantut biotype. As illustrated in Fig. 3.26 and Fig. 3.27, there was still rate-mediated increase over time, but the increase was not significant.

The LC<sub>50</sub> values together with the resistance index are shown in Table 3.8. The Kesang biotype grown from seeds has a resistant index of 5.604 for glufosinateammonium. The parallel figure for the Jerantut biotype also grown from seeds was 30.606. The same Kesang biotype recorded a resistance index of 1.37 for glyhosate and 3.28 for the Jerantut biotype. The seeds of both the Kesang and Jerantut biotypes were grown in the greenhouse.

| Table 3.7. Percentage control of goosegrass from seeds by different rates of |
|------------------------------------------------------------------------------|
| glufosinate-ammonium and glyphosate 14 days after treatment (DAT).           |

|              | Rate        | Percentag | e Control |
|--------------|-------------|-----------|-----------|
| Treatment    | (g ai/ha) / | by Bi     | otype     |
|              | (g ae/ha)*  | Kesang    | Jerantut  |
|              | 495         | 77        | 15        |
| Glufosinate- | 990         | 88        | 61        |
| ammonium     | 1980        | 95        | 82        |
|              | 3960        | 99        | 83        |
|              | 540         | 12        | 6         |
| Glyphosate*  | 1080        | 11        | 15        |
|              | 2160        | 71        | 18        |
|              | 4320        | 87        | 43        |

\* Glyphosate rate is in g ae ha<sup>-1</sup>



**Fig. 3.21.** Greenhouse evaluation of goosegrass grown from seed (Kesang biotype) with different rates of glufosinate-ammonium. Plants in the left pot represents the untreated control.



Fig. 3.22. Greenhouse evaluation on the differential responses of the Kesang and Jerantut biotypes grown from seeds to glufosinate-ammonium at 495 g ai ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.



**Fig. 3.23.** Greenhouse evaluation of goosegrass grown from seed (Jerantut biotype) with different rates of glufosinate-ammonium. Plants in the left pot represents the untreated control.



**Fig. 3.24.** Greenhouse evaluation on the differential responses of the Kesang biotype grown from seeds to glyphosate at 540 to 4320 g ae ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.



**Fig. 3.25.** Greenhouse evaluation of goosegrass grown from seed (Kesang biotype) with different rates of glyphosate. Plants in the left pot represents the untreated control.



**Fig. 3.26.** Greenhouse evaluation on the differential responses of the Jerantut biotype grown from seeds to glyphosate at 540 to 4320 g ae ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.



**Fig. 3.27.** Greenhouse evaluation of goosegrass grown from seed (Jerantut biotype) with different rates of glyphosate. Plants in the left pot represents the untreated control.

**Table 3.8:** The amount of glufosinate-ammonium and glyphosate required for 50% control of the susceptible, Kesang and Jerantut biotypes of goosegrass grown from seeds. Values are  $LC_{50}$  calculated by Probit Analysis on the data from greenhouse experiments.

| Treatment    | Biotype     | $LC_{50}$ (g ai ha <sup>-1</sup> ) | Resistance Index** |
|--------------|-------------|------------------------------------|--------------------|
| Glufosinate- | Susceptible | 29.8 (0-284)*                      | 1.00               |
| ammonium     | Kesang      | 167 (0.18-500)                     | 5.604              |
|              | Jerantut    | 909 (122-2018)                     | 30.606             |
|              | Susceptible | 1297 (743-2198)                    | 1.00               |
| Glyphosate   | Kesang      | 1775 (1054-3105)                   | 1.37               |
|              | Jerantut    | 4260 (2482-9642)                   | 3.28               |

\* Values in parentheses represent the 95% confidence intervals.

\*\* The Resistance Index is the ratio of  $LC_{50}$  of suspected resistant biotypes to that of the susceptible population.

Tukey's test (Table 3.9) showed that there were no significant differences between the rates (495 to 3960 g ai ha<sup>-1</sup>) in terms of the control achieved for the susceptible biotype. However for the Kesang and Jerantut biotype, each rate tested produced significantly different level of control for both Kesang and Jerantut biotype.

Glyphosate at 540 and 1080 g ae ha<sup>-1</sup> produced significantly different control on the susceptible biotype. At four and eight times more than the recommended rate, the control achieved were more or less the same (better to state the value). Kesang biotype also registered no significant differences in control between 540 and 1080 g ae ha<sup>-1</sup>, and between 2160 and 4320 g ae ha<sup>-1</sup>, but between the two lowest and two highest rates used, there were a marked difference in the control capacity on the weed. Interestingly, the Jerantut biotype showed significant differences in each of the rate tested.

In terms of differences in response between biotypes, treatment with glufosinateammonium at 495 g ai ha<sup>-1</sup> resulted in significant difference between susceptible, the Kesang and the Jerantut biotypes. However at two to eight times (990-3960 g ai ha<sup>-1</sup>) more than the recommended rate, only the Jerantut biotype showed significant difference. Both the Kesang and the susceptible biotypes had no significant differences in their control.

The case was nearly the same for glyphosate treatment. The only difference is the rate where significant difference was achieved between the susceptible and the Kesang biotypes was at twice than the recommended label rate for glyphosate (1080 g ae ha<sup>-1</sup>). For the other three rates (540, 2160 and 4320 g ae ha<sup>-1</sup>), there were no significant difference between the control of goosegrass achieved for susceptible and Kesang biotypes. Again, only the Jerantut biotype had a significant affect from the treatment of glyphosate at these rates (540, 2160 and 4320 g ae ha<sup>-1</sup>).

64

**Table 3.9:** Differences in control of goosegrass by rates (glufosinate-ammonium and glyphosate) and biotypes for goosegrass grown from seeds.

|              | Rate                       | Biotypes*   |        |          |  |  |
|--------------|----------------------------|-------------|--------|----------|--|--|
| Herbicide    | (g ai/ha) /<br>(g ae/ha)** | Susceptible | Kesang | Jerantut |  |  |
|              | 495                        | abcdF       | abG    | aH       |  |  |
| Glufosinate- | 990                        | abcdFG      | abcFG  | bH       |  |  |
| ammonium     | 1980                       | abcdFG      | bcdFG  | cdH      |  |  |
|              | 3960                       | abcdFG      | cdFG   | cdH      |  |  |
|              | 540                        | aFG         | abFG   | abH      |  |  |
| Glyphosate   | 1080                       | bF          | abG    | abcH     |  |  |
|              | 2160                       | cdFG        | cdFG   | bcdH     |  |  |
|              | 4320                       | cdFG        | cdFG   | cdH      |  |  |

\* Values followed by the same uppercase letters in a row, and those followed by the same lowercase letters in a column are not significantly different at p < 0.05 (Tukey's test).

\*\* Glyphosate rate is in g ae ha<sup>-1</sup>

#### **3.4 Protein Extraction**

Goosegrass shoots of the susceptible, the Kesang and the Jerantut biotypes pulverized under liquid nitrogen produced fine, greenish-coloured powders. Following filtration (two layers of muslin cloth) and centrifugation (12000 rpm, 40 min), the homogenates underwent ammonium sulphate precipitation (up to 80%) before being centrifuged again at 12000 rpm for 10 min. Once dissolved with buffer A (20 mM Tris-HCl, pH 7.5, 1mM DTT with protease inhibitor) the crude homogenates were then filtered through 0.45 µm syringe filter.

The solutions were subjected to Sephadex G-25 column. Figure 3.28 illustrates the elution profile of the susceptible/ resistant goosegrass biotypes. Two distinct peaks of different sizes were resolved. The first peak (peak I) was collected for further analysis while the second peak (peak II) was eluted out along with the salts that were present in the protein solution.

#### **3.5 SDS-PAGE**

The collected elutions of the susceptible, the Kesang and the Jerantut biotypes from size filtration chromatography were first concentrated, then subjected to discontinuous SDS-PAGE to visualize the proteins present in each biotype. The proteins were separated based on their molecular weight (Fig. 3.29). Multiple bands were revealed for all three biotypes (the susceptible, the Kesang and the Jerantut biotypes).



**Fig. 3.28.** Elution profile of the goosegrass biotypes on Sephadex G-25, equilibrated with 20 mM Tris-HCl, pH 7.5, containing 1mM DTT. Five ml of sample were applied and flow rate was set at 2.5 ml/min. Elution profiles of the Jerantut and Kesang biotypes were omitted for clarity.

#### **3.6** Two-Dimensional (2-D) Gel Electrophoresis

The concentrated protein samples of goosegrass (susceptible, Kesang and Jerantut biotypes) underwent 2-D electrophoresis in order to further separate the proteins according to their isoelectric points and molecular weights. Figures 3.30 illustrates the proteome profile for the susceptible, the Jerantut and the Kesang biotypes respectively.



**Fig. 3.29.** The SDS-PAGE result of the Jerantut, the susceptible and the Kesang biotypes extracts on 12% polyacrylamide gel following gel chromatography on Sepahadex G-25. SDS-PAGE was performed by the method of Laemmli (1970). M = molecular weight marker(s), L = lane, Susc. = susceptible, J = Jerantut biotype, K = Kesang biotype. Molecular weight markers used were BENCHMARK<sup>TM</sup> from Invitrogen. 10.50 µg of Jerantut biotype sample protein were loaded into lane 2, 15.08 µg of susceptible biotype sample protein were loaded into lane 3and 10.00 µg of Jerantut biotype sample protein were loaded into lane 3and 10.00 µg of Jerantut biotype sample protein were loaded into lane 3and 10.00 µg of Jerantut biotype sample protein were loaded into lane 5.

#### 3.7 **Proteome Analysis**

Protein spots revealed by colloidal coomassie staining of the gels in the susceptible, the Kesang and the Jerantut biotypes were then analysed using ImageMaster Platinum 7 software. The susceptible biotype was used as control and its protein spots were matched against the Jerantut and the Kesang biotypes. The protein spots were checked based on their percentage volume and a t-test was carried out on the matched spots in order to determine whether they were significantly expressed or otherwise.

The ImageMaster analysis revealed that there were a total of 82, 113 and 93 protein spots for the susceptible, Jerantut and Kesang biotypes, respectively. Between the susceptible and the Jerantut biotypes, there were 150 matched spots. Out of 150 spots, 45 spots were present in the proteome of both the susceptible and the Jerantut biotypes. However, a student's t-test showed only 4 spots were differentially expressed. Thirty seven spots were present only in the susceptible biotype and 68 spots were present only in the Jerantut biotype. Table 3.10 shows a list of selected spots. The total spots are listed in Appendix D1.

Between the susceptible and the Kesang biotypes, a total of 144 spots were matched. Thirty one spots were present in both the susceptible and the Jerantut biotypes, but only 3 spots were differentially expressed. There were 51 spots that were only available in the susceptible biotype and 62 spots present only in the Kesang biotype. Table 3.11 shows a list of selected spots. The total spots are listed in Appendix D2.



Fig. 3.30. Protein profiles of different biotypes of goosegrass. Proteins were separated by isoelectric points ranging from pH 3-10 (NL) by IEF and resolved on 12% polyacrylamide gel. M = molecular weight markers, Susc.= susceptible, J = Jerantut biotype, K = Kesang biotype. Molecular markers used were BENCHMARK<sup>TM</sup> from Invitrogen. A total of 150.8 ug, 105 ug and 100 ug of the susceptible (Susc.), the Jerantut (J) and the Kesang (K) biotype sample protein were loaded into their respective gels. The number in the white boxes show the spots that were present in the susceptible and the Jerantut biotypes (spot no. 2, 4, 31 and 36) and in the susceptible and the Kesang biotypes (spot no. 49, 53 and 78). The numbers correspond to Table 3.10 and Table 3.11. The numbers from software (ImageMaster Platinum 7) used in running the blue boxes the analysis. in were the

| Spot No. | Percentage Volume (mean) |                  | Expression | T-test          |
|----------|--------------------------|------------------|------------|-----------------|
|          | Susceptible biotype      | Jerantut biotype | fold       | <i>p</i> < 0.05 |
| 2        | 23.5713                  | 11.6548          | -2.02245   | 0.025726        |
| 4        | 3.56795                  | 1.78848          | -1.99496   | 0.01180         |
| 31       | 0.14538                  | 0.478199         | +3.2893    | 0.04723         |
| 36       | 0.398881                 | 0.153762         | -2.59415   | 0.001961        |
| 43       | 1.1855                   | -                |            | NA**            |
| 69       | 0.637785                 | -                |            | NA              |
| 73       | 0.194973                 | -                |            | NA              |
| 164      | -                        | 0.319382         |            | NA              |
| 165      | -                        | 0.136688         |            | NA              |
| 167      | -                        | 0.216187         |            | NA              |
| 172      | -                        | 0.854836         |            | NA              |
| 183      | -                        | 0.425706         |            | NA              |

**Table 3.10.** Mean volumes of selected spots between the susceptible and the Jerantut biotypes\*.

\*Complete list is in Appendix D1

\*\*NA – not applicable

| Spot No | Percentage Vo       | Expression       | T-test  |                 |
|---------|---------------------|------------------|---------|-----------------|
|         | Susceptible biotype | Jerantut biotype | fold    | <i>p</i> < 0.05 |
| 49      | 0.556205            | 0.19911          | -2.7934 | 0.034128        |
| 53      | 0.562996            | 0.0838862        | -6.7114 | 0.02099         |
| 78      | 1.93845             | 0.296506         | -6.5376 | 0.03757         |
| 29      | 0.446804            | -                |         | NA**            |
| 34      | 0.408136            | -                |         | NA              |
| 36      | 0.403388            | -                |         | NA              |
| 37      | 0.564688            | -                |         | NA              |
| 89      | -                   | 2.58392          |         | NA              |
| 96      | -                   | 0.346853         |         | NA              |
| 100     | -                   | 0.32396          |         | NA              |
| 103     | -                   | 0.328636         |         | NA              |
| 128     | -                   | 0.200548         |         | NA              |

**Table 3.11.** Mean volumes of matched spots between the susceptible and the Kesang biotypes\*.

\*Complete list is in Appendix D2

\*\*NA – not applicable

#### **3.8 MALDI-TOF Peptide Mass Fingerprinting**

A set of 36 protein spots were chosen from the Jerantut biotype proteome profile and sent to the Proteomics International in Perth, Australia, for MALDI-TOF MS analysis. From this set of 36 protein spots, three spots provided poor spectra that could not be used for further analysis and the remaining 33 spots were used for database searches to identify proteins with similar peptide mass fingerprints.

A total 13 of the spectra were matched to peptides with known functions based on genome analysis, functional studies or sequence comparisons with proteins of known functions. A further 16 spectra were hypothetical proteins, mostly based on genome analysis of various plant species. The remaining 4 spectra were of unknown proteins, matched to amino acid of several species deduced by conceptual translation method (Table 3.12).

However, only 6 from the 13 matched spectra were of high confidence, having a Z score of more than 1.65 (Spot no. 202, 4, 161, 28, 174 and 163). Similarly, protein spot no. 164 and 168, two of the 16 hypothetical proteins identified, produced a Z score in excess of 1.65 above. Another two unknown proteins also had a Z score that is more than 1.65 (Spot no. 24 and 173) (Table 3.13).

**Table 3.12.** Identification of mass fingerprints using ProFound. Searches were made against Viridiplantae NCBI NR database. Parameters such as one missed cleavage allowed, carbamidomethylation of cysteine, methionine oxidation and an initial mass tolerance of 0.05 Da were keyed in prior to the search. The value of the Z score, probability, and the percentage of the sequence coverage were used as criteria for identification of proteins.

| *Spot |                                                                                               |          |             | Coverage | Predicted   |
|-------|-----------------------------------------------------------------------------------------------|----------|-------------|----------|-------------|
| no.   | Identified Protein [Plant Species]                                                            | Z score* | Probability | (%)      | MW/pI       |
| 202   | chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (Flaveria vaginata) | 2.21     | 1.00E+00    | 26       | 11.7 / 5.4  |
| 2     | NADH dehydrogenase subunit J (Arabidopsis thaliana)                                           | 0.3      | 6.60E-01    | 28       | 14.9 / 5.9  |
| 150   | Unidentified                                                                                  | -        | -           | -        | -           |
| 1     | unknown (Picea sitchensis)                                                                    | 1.16     | 1.00E+00    | 39       | 15.03 / 6.8 |
| 4     | peptidyl-prolyl cis-trans isomerase / cyclophilin (CYP2) / rotamase (Arabidopsis thaliana)    | 2.43     | 1.00E+00    | 21       | 18.87 /8.8  |
| 155   | hypothetical protein SORBIDRAFT_03g016086 (Sorghum bicolour)                                  | 0.09     | 1.50E-01    | 14       | 18.19/ 5.2  |
| 11    | hypothetical protein OsJ_20009 (Oryza sativa Japonica Group)                                  | 1.35     | 6.60E-01    | 20       | 20.57 / 5.9 |
| 161   | chloroplastic 2-Cys peroxiredoxin BAS1                                                        | 2.29     | 1.00E+00    | 21       | 23.39 /5.5  |
| 11    | Os02g0707900 (Oryza sativa Japonica Group)                                                    | 1.14     | 5.10E-01    | 16       | 20.20 / 6.0 |
| 13    | hypothetical protein SORBIDRAFT_06g001600 (Sorghum bicolor)                                   | 1.45     | 1.00E+00    | 18       | 24.36/ 5.6  |
| 166   | Hypothetical protein MICPUN_104759 (Micromonas sp. RCC299)                                    | 0.43     | 8.80E-01    | 13       | 26.75 / 5.5 |
| 83    | cytochrome-c oxidase (Pisum sativum)                                                          | 1.44     | 9.00E-01    | 8        | 28.81 / 5.0 |
| 83    | cytochrome-c oxidase (Pisum sativum)                                                          | 1.34     | 6.80E-01    | 8        | 28.81 / 5.1 |
| 26    | Os05g0198100 (Oryza sativa Japonica Group)                                                    | 1.41     | 9.40E-01    | 11       | 33.64 / 5.8 |
| 175   | Os05g0198100 (Oryza sativa Japonica Group)                                                    | 0.88     | 9.00E-01    | 11       | 33.64 / 5.9 |
| 172   | hypothetical protein VITISV_027126 (Vitis vinifera)                                           | 0.9      | 4.20E-01    | 20       | 30.2 /5.0   |
| 24    | unknown (Arabidopsis thaliana)                                                                | 2.43     | 1.00E+00    | 15       | 33.99 / 5.0 |
| 173   | unknown (Zea mays)                                                                            | 2.43     | 1.00E+00    | 12       | 33.7 / 6.7  |
| 28    | Chain A, Pea FNR Y308s Mutant In Complex With NADP+                                           | 2.43     | 1.00E+00    | 17       | 34.99 / 6.5 |
| 210   | AT-HSFB3; DNA binding / transcription factor (Arabidopsis thaliana)                           | 1.56     | 9.90E-01    | 18       | 28.57 / 5.3 |

\*Protein spots are from the Jerantut biotype proteome

| Table 3 | 12 (cont.)                                                                |      |          |    |             |
|---------|---------------------------------------------------------------------------|------|----------|----|-------------|
| 15      | ATMKK8 (Arabidopsis lyrata subsp. Lyrata)                                 | 0.16 | 4.50E-01 | 7  | 28.28 / 6.5 |
| 174     | WD-repeat protein (Humulus lupulus)                                       | 2.43 | 1.00E+00 | 13 | 38.13/ 4.9  |
| 183     | hypothetical protein VOLCADRAFT_103197 (Volvox carteri f. Nagariensis)    | 0.47 | 8.20E-01 | 10 | 42.29 / 6.4 |
| 25      | maturase K (Succisa pratensis)                                            | 0.62 | 9.80E-01 | 14 | 35.18/9.5   |
| 171     | hypothetical protein SORBIDRAFT_01g032640 (Sorghum bicolor)               | 0.92 | 5.50E-01 | 8  | 32.88 / 6.2 |
| 21      | phosphoserine phosphatase (Chlamydomonas reinhardtii)                     | 1.41 | 8.30E-01 | 12 | 29.32 /6.3  |
| 167     | Unidentified                                                              | -    | -        | -  | -           |
| 14      | hypothetical protein OsI_07141 (Oryza sativa Indica Group)                | 0.09 | 2.20E-01 | 5  | 25.58 / 7.0 |
| 163     | granule-bound starch synthase (Neomicrocalamus prainii)                   | 1.66 | 1.00E+00 | 15 | 24.05 / 6.2 |
| 207     | Unidentified                                                              | -    | -        | -  | -           |
| 164     | hypothetical protein VITISV_043600 (Vitis vinifera)                       | 2.43 | 1.00E+00 | 20 | 20.10/9.5   |
| 12      | conserved hypothetical protein (Ricinus communis)                         | 0.15 | 1.90E-01 | 15 | 20.27 / 9.3 |
| 20      | predicted protein (Populus trichocarpa)                                   | 1.58 | 1.00E+00 | 18 | 26.73 / 8.5 |
| 168     | hypothetical protein ARALYDRAFT_485883 (Arabidopsis lyrata subsp. lyrata) | 2.14 | 1.00E+00 | 11 | 29.17 /9.5  |
| 177     | unknown (Picea sitchensis)                                                | 1.25 | 8.10E-01 | 8  | 36.53 / 9.1 |
| 178     | Os03g0754800 (Oryza sativa Japonica Group)                                | 1.24 | 7.70E-01 | 8  | 35.08 / 9.9 |

\*Protein spots are from the Jerantut biotype proteome

Figure 3.31 shows the location of the identified proteins in the gel of the Jerantut biotype proteome. From the ten identified spectra that have a Z score of more than 1.65, three were expressed in both susceptible and Jerantut biotype (spot no. 4, 24 and 28), with only protein spot no. 4 (peptidyl-prolyl cis-trans isomerase) showed significant difference in expression level between the two biotypes (Table 3.10 and Table 3.13). The remaining seven spots were present only in the Jerantut biotype proteome.

| Spot | Identified Protein                            | Z     | Coverage | Expression |
|------|-----------------------------------------------|-------|----------|------------|
| No.* | Identified I Totem                            | score | (%)      | fold**     |
| 4*   | peptidyl-prolyl cis-trans isomerase /         | 2.43  | 21       | -1.9949    |
|      | cyclophilin (CYP2) / rotamase (Arabidopsis    |       |          |            |
|      | thaliana)                                     |       |          |            |
| 24*  | unknown (Arabidopsis thaliana)                | 2.43  | 15       | +1.679     |
| 28*  | Chain A, Pea FNR Y308s Mutant In Complex      | 2.43  | 17       | -1.1086    |
|      | With NADP+                                    |       |          |            |
| 161  | chloroplastic 2-Cys peroxiredoxin BAS1        | 2.29  | 21       | 0.8791     |
| 163  | granule-bound starch synthase                 | 1.66  | 15       | 0.1387     |
|      | (Neomicrocalamus prainii)                     |       |          |            |
| 164  | hypothetical protein VITISV_043600 (Vitis     | 2.43  | 20       | 0.3194     |
|      | vinifera)                                     |       |          |            |
| 168  | hypothetical protein ARALYDRAFT_485883        | 2.14  | 11       | 0.2239     |
|      | (Arabidopsis lyrata subsp. lyrata)            |       |          |            |
| 173  | unknown (Zea mays)                            | 2.43  | 12       | 0.6917     |
| 174  | WD-repeat protein (Humulus lupulus)           | 2.43  | 13       | 0.7438     |
| 202  | chloroplast ribulose-1,5-bisphosphate         | 2.21  | 26       | 0.1113     |
|      | carboxylase/oxygenase small subunit (Flaveria |       |          |            |
|      | vaginata)                                     |       |          |            |

**Table 3.13.** Identified proteins that are present in the Jerantut biotype proteome.

\*Indicates spots that are present in both the susceptible and the Jerantut biotype.

\*\*Symbol positive (+) show up-regulation of the protein, while the negative symbol (-) indicates down-regulation of the protein.



**Fig. 3.31.** Location of the identified protein from the Jerantut biotype proteome of *Eleusine indica* as listed in Table 3.13. M = molecular weight markers.

# **CHAPTER 4**

## **GENERAL DISCUSSION**

#### 4.1 Herbicide Resistance

Initially this study on goosegrass (*Eleusine indica*) was conducted in response of a much rumoured and suspected, lately, of (new) goosegrass biotypes that are resistant to glufosinate-ammonium. Resistance in goosegrass itself is not a new thing. Since the late 80's, one by one herbicide from different groups, or mode of actions, have been reported to be ineffective in controlling goosegrass. Currently, three major herbicide groups, the bipyridilliums (e.g. paraquat) (Seng *et al.* 2010), the ACCase inhibitors as exemplified by fluazifop-P-butyl (Leach *et al.* 1993), and the glycine (e.g. glyphosate) (Lim and Ngim, 2000) have reported cases of goosegrass resistance in Malaysia.

The Syngenta Quick-Test (QT) was adopted as it was robust, not dependent on seed availability and was not influenced by seed dormancy (Boutsalis 2001). During sampling, goosegrass seeds were mostly non viable for seed test as they were affected either by the earlier herbicide treatment and/or attacked by pests. The QT overcame these problems as it involved cuttings from the whole plant. Additionally it is also applicable to many other graminaceous and dicot weeds. Another major appeal of this QT is the results can be generated within 4 weeks from time of sampling. The feedback from the results should be useful to farmers and enable them to implement other weed management strategies.

Normally for marginal cases of resistance, higher controls of weeds were anticipated under greenhouse studies as the recommended rate is more effective under greenhouse conditions (Heap 2005). This was not the case where lesser percentage of control was achieved by glufosinate-ammonium for both the Kesang and Jerantut biotypes of goosegrass transplanted in our greenhouse studies. We believe this is due to the selection process during sampling, where goosegrass that survived herbicide treatment in the field were collected for the greenhouse trial. It is possible that those cuttings from the field employed in the greenhouse experiments exhibited a higher level of resistance towards glufosinate-ammonium. However, in the seed test, the level of control of glufosinate-ammonium on the goosegrass was about the same, and in some cases, only slightly higher compared to those achieved in the field trials. This is a total reversal from the results achieved in the greenhouse trial of the transplanted goosegrass biotypes. One explanation for this anomaly is that during seed sampling, seeds were collected over a large area, thus taking in more seeds that represent the true population of goosegrass in respective fields. As such the results of the seed test were similar to the field trials.

Comparing the results from Tables 3.1, 3.3 and 3.7, we can see that glufosinateammonium treatment of the Kesang and the Jerantut biotypes of goosegrass generated results at 14 DAT that were somewhat similar to the ones in the field. Intriguingly the treatment of glyphosate on the same biotypes (the Kesang and the Jerantut) produced results at 14 DAT that were more similar, parallel to those results obtained from the transplanted goosegrass (Tables 3.2, 3.4 and 3.7). The possible explanation for this was that the goosegrass populations in both Kesang and Jerantut were still relatively sensitive to glufosinate-ammonium, with the latter populations displaying more resistance than the former populations. We believe there exist goosegrass individuals in both populations that were developing, or has already been resistant to a certain degree, to glufosinate-ammonium but the number of these individuals in both populations were low or minimal compared with the whole population at large. As for the response of the Kesang and the Jerantut biotypes towards glyphosate, it is reasonable to surmise that both populations were homogenous in terms of having developed resistance towards the herbicide. The fact that the transplanted goosegrass and those grown from seeds were affected by glyphosate at nearly the same level following treatment showed that there

was little difference between selectively chosen goosegrass for experimentation and the rest of the population(s).

As such, it was surprising to see differences in resistance index (R.I) values of both types, of goosegrass either transplanted or the ones grown from seeds. By looking at the percentage control by the herbicides on the Kesang and the Jerantut biotypes alone, it would be reasonable to expect the R.I values of the seed-grown goosegrass were lesser than the transplanted goosegrass. Indeed, this was the case for the Kesang and the Jerantut biotypes response to glyphosate. However, this was not the case in their response to glufosinate-ammonium treatments. Surprisingly the resistance index of the Kesang biotype grown from seeds to glufosinate-ammonium was 5.60 compared with 1.97 for the transplanted goosegrass. Meanwhile, the seed grown Jerantut biotype recorded an R.I value of 30.61 compared with 7.63 of the transplanted scourge (Table 3.5 and Table 3.8).

In order to address this problem, we looked into the control capacity of glufosinate-ammonium on susceptible goosegrass used as the control in both the greenhouse (transplanted goosegrass) evaluation and seed test experiments. As illustrated in Fig. 4.1, the time-mediated control of the weed at 495 g ai ha<sup>-1</sup> of glufosinate-ammonim in the greenhouse experiment were from 68, 66, 50 and 45% at 7, 14, 21 and 28 days after treatment, respectively. However, the percentage control achieved with the same rate of the herbicide in the seed test was very high, ranging from 92 to 97% from the first week to the fourth week after treatment. It was clear that the sensitivity of the susceptible biotype differs greatly in both greenhouse and seed test experiments.

This difference in sensitivity greatly impacted the  $LC_{50}$  values of the susceptible biotype. Referring to Tables 3.5 and 3.8, the huge differences in the  $LC_{50}$  values resulted

in the major shift of the R.I values for the Kesang biotype from 1.97 (greenhouse transplant experiments) to 5.60 (seed test experiments) and the Jerantut biotype from 7.63 (greenhouse transplant experiments) to 30.61 (seed test experiments).

Moss (2009) had advocated the use of the same herbicide sensitive plant as the control in detecting herbicide resistance. Although the susceptible biotype used in both experiments were of the same origin, it is suspected that these differences in sensitivity was inherent in the plant itself. The susceptible biotypes used in the greenhouse experiments were transplanted, unlike in the seed test where it was grown from seed. This finding could well signify that although goosegrass from urban housing areas were never exposed to any herbicides, it is perhaps due to its exposure from other pollutants, such as the heavy metal, lead, from vehicle exhaust, could confer slight tolerance or otherwise towards herbicides.

Theoretically any resistance index of more than 1 should be considered as resistant. However, Heap (2005) suggested that any resistance index that is less than 10fold is considered as low level or partial resistance. Taking the resistance index from the seed test experiments, it is reasonable to believe that the Kesang biotype is developing resistance towards glufosinate-ammonium. As it is, the Jerantut biotype poses a more serious threat, most probably already developed resistance to the herbicide.

Despite the differential responses of the three biotypes (the susceptible, the Kesang and the Jerantut) of goosegrass to glufosinate-ammonium, they displayed different degrees of resistance to glyphosate. This was possibly due to the low kill of glyphosate on the Kesang and Jerantut biotypes, including the susceptible counterpart. The low kill of the susceptibly biotype by glyphosate is intriguing, since it has never been previously exposed to glyphosate treatment. After about 10 years since the discovery of goosegrass resistance to glyphosate by Lim and Ngim (2000), there are

possibilities that the resistance genes have escaped from the agricultural environment due to anthropogenic activities. Another possible explanation would be the same as discussed in the paragraph above (tolerance due to exposure to pollutants). However, the actual reason for this resistance to glyphosate remains unknown.



**Fig. 4.1.** Greenhouse evaluation on differential responses of the susceptible goosegrass biotype in greenhouse evaluation and seed test experiments to glufosinate-ammonium at 495 g ai ha<sup>-1</sup>. Bars represent  $1\pm$ SD values.

Treatment history revealed that the vegetable farmer in Kesang, Malacca have only started using glufosinate-ammonium in the past one and half years after the previous glyphosate treatments which failed to control the goosegrass population. In addition to the chemical control adopted, he ploughed his land each time before a new round of planting. The planters in the palm oil nursery, however, solely rely on glufosinate-ammonium as the only form of weed control for the past 5 years with high intensity of sprays, and there were as many as 24 spray rounds per annum. This high intensity of sprays may have led to selection level leaving only the resistant biotype remaining intact. Further, goosegrass's high fecundity coupled with high selection pressure following repeated sprays with glufosinate-ammonium may have resulted in more resistant gooosegrass populations dominating.

There was clear evidence that the Jerantut biotype was developing resistance to glufosinate (Fig. 3.11, Table 3.8). The Kesang biotype, albeit having a resistance ratio of 5.604, can still be controlled with glufosinate-ammonium, but the ensuing repeated sprays may lead to the build-up of resistance to the herbicide among thriving populations. The control level of goosegrass by glufosinate-ammonium decreased gradually over time, a probable manifestation of age-mediated breakdown of resistance among the treated populations, or reduced efficacy of the herbicide with time, perhaps due to the breakdown of the herbicide. Similar findings were recorded by other workers on age-mediated breakdown or reduction in herbicide resistance by weeds (Baki 1980). The appearance of substantial resistance to glufosinate-ammonium in glufosinate-ammonium selected field populations of goosegrass is truly worrying as this weed species has previously demonstrated resistance to other herbicides such as fluazifop-butyl and glyphosate (Leach *et al.* 1993; Lim and Ngim 2000). Such resistance has now appeared in glufosinate-ammonium-treated field populations of goosegrass in Malacca, Pahang and elsewhere in Peninsular Malaysia (Ngim and Chua 2011, *pers. comms.*).

Previously, there have been reports in the UK and Japan of glufosinateammonium-resistant transgenes has been transferred to weedy relatives of experimental crops (Saji *et al.* 2005; Brown 2005). Recently two reports of goosegrass in Malaysia were reported to be resistance to glufosinate-ammonium (Jalaludin *et. al* 2010; Seng *et. al* 2010) due to selective pressure. Invariably, our data are indicative of being the first case(s) of proven or recorded resistance to glufosinate-ammonium among goosegrass populations in the world in general, and in Malaysia in particular. We advocate that integrated weed management should be adopted by those involved in agricultural practice in order to manage weed resistance problems and to prevent weed resistance to herbicide(s) from escalating.

#### 4.2 **Proteome Map of** *Eleusine indica*

SDS-PAGE on the extracted protein samples from the susceptible, the Jerantut and the Kesang biotype of goosegrass produced a lot of bands, as evident in Fig. 3.29. These protein bands were separated based on their molecular weights. Although the bands were visible and resolved sharply, there were not many differences noticeable between the gels. However, following two-dimensional gel electrophoresis, the differences between the three goosegrass biotypes were more pronounced, as illustrated in Fig. 3.30. We can easily see differences between the proteome maps of the differing biotypes of goosegrass. Generally more spots can be seen, especially in the 20 – 50 kDa region, whereas the same region in the SDS-PAGE only had not more than 10 bands (at most) that were visible.

The reason behind this is because two-dimensional gel electrophoresis separates proteins based on their isoelectric point (pI) and molecular weight, enabling it to have a very powerful resolving capacity. Furthermore, a single band in the SDS-PAGE does not always translate into a single protein. It could have more than one protein, which is often the case when resolving complex mixtures of proteins, due to protein isoforms. A single band in an SDS-PAGE could be several spots of proteins in a 2-D gel electrophoresis.

As such, analysis was not carried out on any discrete single bands from SDS-PAGE, as it will most likely reveal multiple proteins. This is true to almost all complex protein samples (Phinney and Thelen 2005). However, PMF (peptide mass fingerprinting) analysis can be carried out from a single SDS-PAGE band if the sample is of low complexity or highly purified samples. Due to this, PMF is most effectively employed in identifying gels on 2-D spots as they are more likely to contain only one prominent protein.

From the proteome map of the susceptible, the Jerantut and the Kesang biotypes, there were major differences in protein spots in the 25 – 50 kDa regions. There were also differences in the 50 kDa region and above and less than 20 kDa region. Most of these differences in abundance were due to the presence or absence of a protein in either the susceptible or the Jerantut and Kesang biotype. This is truly surprising, as often differences in expressed proteins were recorded when the samples (in this case the goosegrass) were exposed to stress such as water deficit, extreme temperature, high salt concentrations, herbicides, etc. (Vincent and Zivy 2007). However the three biotypes used in this study (the susceptible, the Jerantut and the Kesang biotypes) were under the same conditions and were not treated with herbicide prior to pulverization with liquid nitrogen. They were grown from seed and directly processed. These proteins (that were absent in the susceptible biotype) were expressed in low volumes, which could mean that any trigger in stress caused by herbicides could lead to rapid increase in the expression levels of these proteins, which may result in various biochemical pathways involved in resistance towards the herbicides. Perhaps the reason these proteins are

readily expressed was as precautionary measures, a pre-emptive form of protection against herbicides.

Between the susceptible and the Kesang biotypes, there were three spots that were present in both biotypes and were differentially expressed, namely spot no. 49, 53 and 78 (Table 3.11; Fig. 3.30). Meanwhile, between the susceptible and the Jerantut biotypes, four spots that were present in both biotypes were found to be differentially expressed, that is spot no. 2, 4, 31 and 36 (Table 3.10; Fig. 3.30). To avoid confusion, it should be noted that the numbers assigned for each spot is exclusive to its own analysis. What this mean is that for example, spot no. 2 in the analysis between the susceptible and the Kesang biotype is not the same with spot no. 2 from the susceptible and the Jerantut biotype analysis.

That being said, although there were significant differences in the expression of several spots between the susceptible and the Kesang biotypes, only spots from the Jerantut biotype were excised and sent for MALDI-TOF analysis. The reason behind the selection of spots exclusively from the Jerantut biotype was because between the Jerantut and the Kesang biotypes, the Jerantut showed a higher level of resistance towards glufosinate-ammonium and glyphosate (Table 3.8 and 3.5 respectively) than the Kesang biotype.

Furthermore, despite the availability of spots with significant differences in expression between the susceptible and the Jerantut biotypes, only 36 spots were excised and sent for MALDI-TOF analysis (Table 3.12). This was because most of the spots, especially the small ones, although were visible through the image analysis software, were barely visible to the naked eye. Due to the manual spot picking, it was very hard to correctly excise the spots, causing a lot of the spots to be overlooked, including spots of high interest such as spot no. 2, 31 and 36 (spots with significant differences in expression between the susceptible and the Jerantut biotypes). Automated spot picking, where the scanned image of the gel is linked to a machine that excised the spots, can easily overcome this problem and greatly improve the identification process of the protein spots.

Of the 36 protein spots cut out for MALDI-TOF MS, only 10 recorded estimated Z scores of more than 1.65 (95th percentile) with probability values very close to 1 (Table 3.13). These 10 proteins were considered to have a high probability to be the sample proteins. Spots that scored estimated Z values in the 90th percentile were not considered since there is a 10% probability it could be other proteins in the random match population and the 10% probability is just too high. The other proteins identified scored either low Z values (less than 1.65) or low probability or both and as such, were unlikely to be the sample proteins.

Out of the ten highly probable proteins, three were expressed in both the susceptible and the Jerantut biotypes. They are peptidyl-prolyl cis-trans isomerase (spot no. 4), an unknown protein (spot no. 24) and Chain A, pea ferredoxin NADP<sup>+</sup> reductase, or FNR (spot no.28; Table 3.13). However, only peptidyl-prolyl cis-trans isomerase had a significant difference in its expression. The other seven highly probable proteins are present only in the Jerantut biotype proteome. They consist of chloroplastic 2-Cys peroxiredoxin, granule bound starch synthase, WD repeat protein, chloroplast RuBisCo small subunit, 2 hypothetical proteins and another unknown protein (Table 3.13).

Two proteins were of high interest, due to their significance in expression level and functions in plants. The two said proteins are peptidyl-prolyl cis-trans isomerase and chloroplastic 2-Cys peroxiredoxin Bas1. Peptidyl-prolyl cis-trans isomerase is involved in the folding of proteins, where it catalyzes the conversion of *cis* and *trans* isomers of peptide bonds with the amino acid proline. This protein was detected in both the susceptible and the Jerantut biotype, with a reduction of about 2 fold in expression. Apart from the basic role of assisting protein folding, peptidyl-prolyl cis-trans isomerase or cyclophilin is believed to also play an important role in mRNA processing, protein degradation and signal transduction and thus may be crucial during both development and stress responsiveness (Romano *et al.* 2004). Furthermore, Marivet *et al.* (1994) had demonstrated that there were differences in mRNA accumulation profile upon heat and salt stress, further suggesting that cyclophilin might be a stress-related protein. How exactly it contributes to herbicide resistance towards glufosinate-ammonium remains unknown, since its expression is lower in the Jerantut biotype but the fact that cyclophilin could play a role in plants under abiotic stress is worthy of note.

In the case of herbicide-resistant plants and its response towards herbicides, it was observed that proteins involved in the reactive oxygen species (ROS) scavenging mechanisms were often induced. Chloroplastic 2-Cys peroxiredoxin Bas1 is one of those enzymes. This protein was expressed in the Jerantut biotype with no expression detectable in the susceptible variety. 2-Cys peroxiredoxins is a family of enzymes which catalyze the transfer of electrons from sulfhydryl residues to peroxides. They are thiol-specific antioxidant proteins (TSA) which confer a protective role in cells through its peroxidase activity by reducing hydrogen peroxides, peroxynitrite, and organic hydroperoxides.

Netto *et al.* (1996) reported that TSA protects glutamine synthethase from inactivation by a metal-catalyzed oxidation (MCO) system. However TSA is not able to prevent glutamine synthetase and other enzymes from oxidative inactivation if a nonsulfhydryl reducing agent replaces a thiol compound in the reaction mixture. This

protein is mainly expressed in the plastids and chloroplasts of the leaf blade, sheath, basiplast, stem and green spike with maximal expression in young developing shoots segments where cell division and elongation take place, to protect it from oxidative damage and that the damage is reduced by the accumulation of 2-Cys peroxiredoxin (Baier and Dietz 1996; 1999).

Despite the capability of 2-Cys peroxiredoxin to protect glutamine synthethase, it is highly plausible that 2-Cys peroxiredoxin role in the Jerantut biotype is limited to only reducing the ROS. As explained by Netto *et al.* (1996), 2-Cys peroxiredoxin as a TSA only protects glutamine synthethase from oxidative inactivation as long as the reaction mixture does not involve nonsulfhydryl reducing agent. However, in the case of glutamine synthese inhibition by glufosinate-ammonium, it inhibits glutamine synthetase due to the fact that it is an analogue to glutamate.

The other identified proteins belong to various groups of biochemical pathways in plants. For example, the chain A pea FNR was involved in photosynthesis, where it catalyzes the reduction of NADP<sup>+</sup> to NADPH. Expressed in both susceptible and the Jerantut biotypes, it is believed that it does not contribute to resistance to the herbicide since it was expressed in both biotypes and the differences were non-significant.

It is interesting to note that the other remaining highly probable proteins were available only in the Jerantut biotype proteome (Table 3.13). Four of the proteins consist of unknown and hypothetical proteins, which make their functions in the Jerantut biotype unknown. The granule-bound starch synthase or GBSS for short are involved in the biosynthesis of cell wall polysaccharides, the addition of N-linked glycans to glycoproteins, and the attachment of sugar moieties to small molecules such as hormones and flavonoids (Keegstra and Raikhel 2001). How they are related or could
play a role to the resistance of goosegrass towards glufosinate-ammonium remains unknown.

The chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RuBisCO), identified from *Flaveria vaginata*, is another protein that functions in photosynthesis. Unlike the chain A pea FNR, this protein was found to be expressed only in the Jerantut biotype proteome. Although only the small subunit was identified, the possibility of the large subunit present in the proteome should not be ruled out. RuBisCO catalyzes the photosynthetic carbon fixation and photorespiratory carbon oxidation (Mehta *et al.* 1992). Researches have shown that RuBisCO degrades under abiotic stress such as herbicides and drought (Feller *et al.* 2008; Sedigheh *et al.* 2011). It is possible that the overexpression of RuBisCO was to prepare the plant for this very reason.

The WD-repeat protein, on the other hand, is a protein of a wide variety of important biological functions. Its role in plants ranges from signal transduction, transcription regulation, apoptosis, signalling and vision, cell motility, flowering and meristem organization, to name a few (Li and Roberts 2001). Its exact contribution towards glufosinate-ammonium resistance remains to be uncovered, but from its critical involvement in plant's signalling and regulation, it is plausible it could have a hand in the Jerantut biotype's resistance towards glufosinate-ammonium.

The peroxiredoxin identified is a thiol-specific antioxidant while the peptidylprolyl cis/trans isomerase could have a role in heat and salt stress. Although the peroxiredoxin was only detected in the Jerantut biotype proteome, the presence or absence of other antioxidants or ROS scavenging enzymes in the susceptible biotype of goosegrass cannot be ruled out as there are still tens of spots unidentified. For the other highly probable proteins that were only expressed in the Jerantut biotype proteome, their absence from the susceptible biotype is truly intriguing. The fact that there is huge difference in protein abundance between the glufosinate-ammonium-resistant goosegrass (the Jerantut biotype) and the susceptible goosegrass biotype leads to an interesting possibility that hidden in those unidentified spots could be a protein that might well explain the occurrence of resistance in goosegrass towards glufosinateammonium.

# **CHAPTER 5**

## CONCLUSION

To date, goosegrass in Malaysia have been reported to be resistant towards several herbicides with different modes of action. They include the ACCase inhibitors, the bipydiriliums and the glycines. With this study, it is undoubtful that another class of herbicides are included in that group. Glufosinate-ammonium belongs to the glutamine-synthase inhibitors. This study confirms that there exist populations/ biotypes of goosegrass that are developing and/or have developed resistance towards glufosinate-ammonium. Furthermore another independent study by another Malaysian weed scientist reported the same finding, but with a different population of goosegrass (Seng *et al.* 2010).

The Kesang biotype registered a resistance index (R.I) of 1.97 for transplanted goosegrass and 5.6 for seed-grown goosegrass against glufosinate-ammonium. Against glyphosate, its R.I was 8.41 and 1.37 for transplanted and seed-grown goosegrass, respectively. Meanwhile the Jerantut biotype had an R.I of 7.63 for transplanted goosegrass and 30.6 for goosegrass grown from seeds against glufosinate-ammonium. Against glyphosate, its R.I was 24.37 and 3.28 for transplanted and seed-grown goosegrass, goosegrass, respectively.

Regardless of the difference in the R.I value between the transplanted and seedgrown goosegrass, it is suffice to say that the Kesang biotype is developing resistance towards glufosinate-ammonium. On the other hand, the Jerantut biotype is most likely to have had already developed resistance towards the herbicide. The same can be said for both biotypes against glyphosate, where both the Jerantut and Kesang biotype were resistant towards glyphosate. One of the more interesting revelation is perhaps the control of the susceptible goosegrass biotype by glufosinate-ammonium and glyphosate. The susceptible biotype seems to have acquired resistance towards glyphosate, while still being sensitive towards glufosinate-ammonium treatment. Despite the increase in reported cases of herbicide-resistant weeds, it is impossible for those involved in agricultural practice to avoid using herbicide as a form of chemical control for scourge plants. It is also impossible to assume that weeds will not become resistant to new or other herbicides with different mode of actions in the near future. Integrated weed management provide both short and long term solution by focusing not just on chemical control techniques, but also physical and biological methods in an integrated manner without excessive reliance on any one method (Powles and Matthews 1992).

The proteomics study approach have revealed the differences in proteins expressed in abundance by the three biotypes (the susceptible, the Jerantut and the Kesang). The Jerantut and the Kesang goosegrass biotypes have many more proteins in abundance compared to the susceptible biotype, even under the absence of herbicide (glufosinate-ammonium) stress.

Although there were ten spots identified from the Jerantut biotype proteome, many more were still unknown. It is imperative to remember that this proteome does not represent the total proteome of the Jerantut biotype of *Eleusine indica*. Size exclusion chromatography was used in order to desalt the sample and to enrich it with high molecular weight proteins, eliminating low molecular weight proteins and those that were eluted along with salts.

The diversity of protein solubilities and plant tissue composition ensure no single protein extraction method is effective enough for all samples. The sheer dynamic range between low and high abundance proteins alone presents an uphill challenge in obtaining total proteome. It was estimated that only 25% of the expected proteome can be observed in 2-D gels (Patterson 2004), and entire proteome coverage is not possible. Any future endeavour in deciphering the resistance mechanism through proteomics may

consider a few aspects, such as different protein extraction methods, anlaysis of the proteome under herbicide stress, isolation of the subproteomes, and combining proteomics with metabolomics studies.

Analysis of subcellular proteins could improve the proteome coverage by several folds, and unmask the low abundance proteins. It could also provide new insights into the functions, regulations and intracellular protein transport of organelles. Combination of proteomic and metabolomic studies will allow better understandings of the integrated plant responses to herbicides, or glufosinate-ammonium in particular.

With the confirmation of this new glufosinate-resistant *Eleusine indica*, the importance of investigating its resistance mechanisms is more pronounced than ever. Proteomics could allow identification of proteins or novel genes, characterisation of their regulation and function and perhaps the very cellular processes involved in the response under herbicide treatment. Better understanding of the resistance mechanisms is vital in order to manage herbicide resistant weeds in the future and protecting our precious cash crops in the economic long run.

## PUBLICATIONS

- Jalaludin, A., Ngim, J., Bakar, B. H. and Alias, Z. (2010). Preliminary findings of potentially resistant goosegrass (*Eleusine indica* (L.) Gaertn.) to glufosinate. *Seminar On Weed Resistance Management in Oil Palm Plantations*, 26 November 2009, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
- Jalaludin, A., Ngim, J., Bakar, B. H. and Alias, Z. (2010). Resistant goosegrasss (Eleusine indica (L.) Gaertn.) biotypes and resistance level evaluation towards glufosinate and glyphosate. Some preliminary findings. 11<sup>th</sup> Malaysian Symposium of Applied Biology, 13 – 15 June 2010, Kota Bharu, Kelantan.
- Jalaludin, A., Ngim, J., Bakar, B. H. and Alias, Z. (2010). Preliminary findings of potentially resistant goosegrass (*Eleusine indica*) to glufosinate-ammonium in Malaysia. Weed Biology and Management, 10: 256–260.
- Jalaludin, A., Bakar, B. H. and Alias, Z. (2011). Proteome analysis of glufosinate-ammonium resistant *Eleusine indica*. *Weed Biology and Management* (in press).

### REFERENCES

#### References

- Alexandrov, N.N., Troukhan, M. E., Brover, V. V., Tatarinova, T., Flavell, R. B. and Feldmann, K. A. (2006). Features of Arabidopsis genes and genome discovered using full-length cDNAs. *Plant Mol. Biol.* 60: 69-85.
- Anderson, M. P. and Grownland, J. W. (1991). Atrazine resistance in velvetleaf (*Abutilon theophrasti*) biotype due to enhanced glutathione s-transferase activity. *Plant Physiol.* 96: 104-109.
- Ahn I-P. (2008). Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease Protection in *bar*-transgenic rice. *Plant Physiol*. 146: 213-227
- Ahrens, W.H. (ed.) (1994). *Herbicide Handbook*. 7th ed. Champaign, IL: Weed Science Society of America, pp. 147-149.
- Baier, M. and Dietz, K. J. (1996). Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases. *Plant Mol. Biol.* 31: 553-564.
- Baier, M. and Dietz, K. J. (1999). Protective Function of Chloroplast 2-Cysteine Peroxiredoxin in Photosynthesis. Evidence from Transgenic Arabidopsis. *Plant Physiol.* 119: 1407-1414.
- Baki B.B. 1980. Mode of action and selectivity of ethofumesate. *MSc thesis, University of Wales*, United Kingdom.
- Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Görg, A., Westermeier, R. and Postel, W. (1982). Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods. 6: 317–339.

- Board, P. G. (1981). Biochemical genetics of glutathione S-transferase in man. *Am. J. Hum. Genet.* 3: 36-43.
- Board, P. G., Coggan, M., Johnston, P., Ross, V., Suzuki, T. and Webb, G. (1990). Genetic heterogeneity of the human glutathione transferases; a complex of gene families. *Pharmacol. Ther.* 48: 357-369.
- Bonaventura, C., Bonaventura, J., Stevens, R. And Millington, D. (1994). Acrylamide in polyacrylamide gels can modify proteins during electrophoresis. *Anal. Chem.* 222: 44-48.
- Boutsalis, P. (2001). Syngenta Quick-Test: A Rapid Whole-Plant Test for Herbicide Resistance. Weed Technol. 15: 257-263.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72: 248-254.
- Brattsten, L. B., C. W. Holyoke, Jr., J. R. Leeper, and K. F. Raffa. (1986). Insecticide resistance: challenge to pest management and basic research. *Science* 231: 1255-1260.
- Brown, P. (2005). Modified rape crosses with wild plant to create tough pesticideresistant strain. *The Guardian* Monday July 25. UK.
- Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk, A., Lock, R. and Lipscombe, R. (2008). Proteomic analyses of the venom of *Heterometrus longimanus* (Asian black scorpion). *Proteomics* 8: 1081-1096.

- Candiano, G., Bruschi, M., Musante, L., Santucci, L., Chiggeri, G. M., Carnemolla, B., Orecchia, P., Zardi, L. And Righetti P. G. (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. *Electrophoresis* 25: 1327-1333.
- Chelvanayagam, G., Parker, M. W. and Board, P. G. (2001). Fly fishing for GSTs: a unified nomenclature for mammalian and insect glutathione transferases. *Chem. Biol. Interact.* 133: 256-260.
- Chevalier, F., Rofidal, V., Vanova, P., Bergoin, A. and Rosignol, M. (2004). Proteomic capacity of recent fluorescent dyes for protein staining. *Phytochemistry* 65: 1449-1506.
- Clark, A. G. (1989). The comparative enzymology of gluta- thione S-transferases from non-vertebrate organisms. *Comp. Biochem. Physiol.* 92: 419-446.
- Clauser, K. R., Baker, P. and Burlingame, A. L. (1999). Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. *Anal. Chem.* 71: 2871–2882.
- Coleman, J. O. D., Mechteld, M. A., Blake-Kalff and Davis, E. (1997). Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. *Trends Plant Sci.* 2: 141-151.
- Cummins, I., Cole, D. J. and Edwards, R. (1999). A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. *Plant J.* 18: 285-292.

- Cummins, I., Moss, S., Cole, D. J. and Edwards, R. (1997). A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. *Pestic. Sci.* 51: 244-250.
- Deng, Z., Aliverti, A., Zanetti, G., Arakaki, A. K., Ottado, J., Orellano, E. G., Calcaterra, N. B., Ceccarelli, E.A., Carrillo, N. and Karplus, P. A. (1999). A productive NADP+ binding mode of ferredoxin-NADP<sup>+</sup> reductase revealed by protein engineering and crystallographic studies. *Nat. Struct. Biol.* 6: 847-853.
- Dill, G.M. (2005). Glyphosate-resistant crops: History, status and future. *Pest Manag. Sci.* 61: 219-224.
- Dixon, D., Cole, D. J. and Edwards, R. (1997). Characterisation of multiple glutathione transferases containing the GST I subunit with activities toward herbicide substrates in maize (*Zea mays*). *Pestic. Sci.* 50: 72-82.
- Drogg, F. N. J., Hooykaas, P. J. J. and Van der Zaal, B. J. (1995). 2,4-Dichlorophenoxyacetic acid and related chlorinated compounds inhibit two auxin-regulated type-III tobacco glutathione S-transferases. *Plant Physiol.* 107: 1139-1146.
- Edwards, R. and Cole, D. J. (2000). The Role of Glutathione in Herbicide Metabolism. In: Cobb, A. H. and Kirkwood, R. C. (eds.) Herbicides and Their Mechanisms of Action. Sheffield Academic Press, pp 33-71.
- Edwards, R. Dixon, D. P. and Walbot, V. (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. *Trends Plant Sci.* 5: 193-198.

- Feller, U., Anders, I. and Demirevska, K. (2008). Degradation of RuBisCO and other chloroplast proteins under abiotic stress. *Gen. Appl. Plant Physiol.* 34: 5-18.
- Fenn, J. B., Mann, M., Meng, C. K., Wong S. F. and Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. *Science* 246: 64-71.
- Finney, D. J. (1971). Probit Analysis 3<sup>rd</sup> ed. Cambridge University Press, London. 333 p.
- Fischer, G. and Schmid, F. X. (1990). The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. *Biochemistry* 29: 2205–2212.
- Flachmann, R., Zhu, G., Jensen, R. G. and Bohnert, H. J. (1997). Mutations in the small subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase increase the formation of the misfire product xylulose-1,5-bisphosphate. *Plant Physiol*. 14: 131-136.
- Frear, D. S. and Swanson, H. R. (1970). Biosynthesis of S-(4-ethylamino-6isopropylamino-2-s-triazino) glutathione: Partial purification and properties of a glutathione S-transferase from corn. *Phytochemistry* 9: 2123-2132.
- Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In: John M. Walker (ed) The Proteomics Protocols Handbook. Humana Press, pp. 571-607.

- Georghiou, G. P. (1986). The Magnitude of the Resistance Problem. In: Pesticide Resistance: Strategies and Tactics for Management. National Academy Press, Washington D.C.
- Görg, A., Postel, W. and Westermeir, R. (1978). Ultrathin-layer isoelectric focusing in polyacrylamide gels on cellophane. *Anal. Biochem.* 89: 60-70.
- Görg, A., Postel, W., Wese, J., Günther, S., Strahler, J. R., Hanash, S. M. and Somerlot, L. (1987). Elimination of point streaking on silver stained two-dimensional gels by addition of iodoacetamide to the equilibration buffer. *Electrophoresis* 8: 122– 124.
- Görg, A., Boguth, G., Obermaier, C., Posch, A. and Weiss, W. (1995). Twodimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical vs horizontal systems. *Electrophoresis* 16: 1079–1086.
- Görg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. and Weiss, W. (2000). The current state of two-dimensional electrophoresis with immobilized pH gradients. *Electrophoresis* 21: 1037-1053.
- Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974). Glutathione s-transferase. The first step in mercapturic and formation. J. Biol. Chem. 249: 7130-7139.
- Harper, J. L. (1956). The evolution of Weeds in relation to resistance in herbicides, *Proc. Brighton Weed Control Conf.* 3: 179.

- Hatton, P. J., Cummins, I., Cole, D. J. and Edwards, R. (1999). Glutathione transferases involved in herbicide detoxification in the leaves of *Setaria faberi* (giant foxtail). *Physiol. Plant.* 105: 9–16.
- Hatton, P. J., Dixon, D. Cole, D. J. and Edwards, R. (1996). Glutathione transferase activity and herbicide selectivity in maize and associated weed species. *Pestic. Sci.* 46: 267-275.
- Hayes, J. D., Flanagan, J. U. and Jowsey, I. R. (2005). Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45: 51-88.
- Heap, I. M. and LeBaron, H. (2001). Introduction and Overview of Resistance. In: Powles, S. B. and Shaner, D. L. (eds.) *Herbicide Resistance and World Grains*. CRC Press, Florida, pp. 1-20.
- Heap, I.M. (2005). Criteria for Confirmation of Herbicide-Resistant Weeds. Online Internet. Accessed on 1 November 2009. Available at <u>www.weedscience.com</u>.
- Heap, I.M. (2009). International survey of herbicide resistant weeds. Online Internet. Accessed on 1 November 2009. Available at <u>www.weedscience.com</u>.
- Henzel, W. J., Billeci, T. M., Stults, J.T., Wong, S. C., Grimley, C. and Watanabe, C. (1993). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. *Proc. Natl. Acad. Sci.* 90: 5011–5015.
- Hilton, H.W. (1957). Herbicide tolerant strains of weeds. *Hawaiian Sugar Planters* Association Annual Reports, p. 69.

- Holm, L.G., Plucknett, D.L., Pancho, J.V. and Herberger, J.P. (1977). The World's Worst Weeds: Distribution and Biology. Honolulu, HI: The University Press of Hawaii.
- Holtum, J. A. M., and Powles S. B. (1991). Annual ryegrass: an abundance of resistance, a plethora of mechanisms. *The Brighton Crop Prot. Conf.- Weeds*, pp. 1071-1078.
- Hurkman, W. J. and Tanaka, C. K. (2007). High Resolution Two-Dimensional Gel Electrophoresis; A Cornerstone of Plant Proteomics. In: Šamaj, J and Thelen, J. J (eds.) *Plant Proteomics*. Heidelberg, Germany. Springer, pp 14-28.
- Hurley, J K., Morales, R., Martinez-Julvez, M., Brody, T. B., Medina, M., Gomez-Moreno, C. and Tollin, G. (2002). Structure–function relationships in Anabaena ferredoxin/ferredoxin: NADP+ reductase electron transfer: insights from sitedirected mutagenesis, transient absorption spectroscopy and X-ray crystallography. *Biochim. Biophys. Acta.* 1554: 5-21.
- Jalaludin, A., Ngim, J., Bakar, B. B. and Alias, Z. (2010). Preliminary findings of potentially resistant goosegrass (*Eleusine indica*) to glufosinate-ammonium in Malaysia. *Weed Biol. Manag.* 10: 256–260.
- James, P., Quadroni, M., Carafoli, E. and Gonnet, G. (1993). Protein identification by mass profile fingerprinting. *Biochem. Biophys. Res. Commun.* 195: 58–64.
- Kang, D., Gho, Y. S., Suh, M. and Kang, C. (2002). Highly sensitive and fast protein detection with Coomassie Brilliant Blue in sodium dodecyl sulphatepolyacrylamide gel electrophoresis. *Bull. Korean Chem. Soc.* 23: 1511-1512.

- Karaoglu, D., Kelleher, D. J. and Gilmore, R. (1995). Functional characterization of Ost3p. Loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates. J. Cell Biol. 130: 567-577.
- Karas, M. and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. *Anal. Chem.* 60: 2299-2301.
- Keegstra, K. and Raikhel, N. (2001). Plant glycosyltransferases. Curr. Opin. Plant. Biol. 4: 219-224.
- Ketterer, B., Meyer, D. and Clark, A. G. (1989). Soluble glutathione transferase isozymes. In: Sies, H. and Ketterer, B. (eds.). Glutathione Conjugation: Mechanisms and Biological Significance. Academic Press, San Diego. California, pp. 73-135
- Knauer, R. and Lehle, L. (1999). The oligosaccharyltransferase complex from Saccharomyces cerevisiae. Isolation of the OST6 gene, its synthetic interaction with OST3, and analysis of the native complex. J. Biol. Chem. 274: 17249-17256.
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage. *Nature* 227: 680.
- Leach, G. E., Kirkwood, R. C. and Marshall, G. (1993). The basis of resistance displayed to fluazifop-butyl by biotypes of *Eleusine indica*, in *Proc. Brighton Crop. Prot. Conf. –Weeds*, BCPC, Farnham, Surrey, UK, pp. 201-206.
- LeBaron, H. M., (1982). Introduction. In: Gressel, J. and Lebaron, H.M. (eds). *Herbicide Resistance in Plants*. John Wiley & Sons, Canada, pp. 1-8.

- Li, D. and Roberts, R. (2001). WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. *Cell. Mol. Life. Sci.* 58: 2085-2097.
- Lim, J. L. and Ngim, J. (2000). A first report of Glyphosate-resistant goosegrass (*Eleusine indica* (L) Gaertn.) in Malaysia. *Pest Manag. Sci.* 56: 336-339.
- Lorraine-Golwill, D.F., Powles, S.B., Hawkes, T.R., Hollinshead, P.H., Warner, S.A.J. and Preston. C. (2003). Investigation into the mechanism of glyphosate resistance in *Lolium rigidum*. *Pest. Biochem. Physiol*. 74: 62-72.
- Mann, M., Højrup, P. and Roepstorff, P. (1993). Use of mass spectrometric molecular weight information to identify proteins in sequence databases. *Biol. Mass. Spectrom.* 22: 338–345.
- Mannervik, B., Awasthi, Y. C., Board, P. G., Hayes, J. D. (1992). Nomenclature for human glutathione transferases. *Biochem. J.* 282: 305-306.
- Mannervik, B. and Danielson, H. (1988). Glutathione transferases--structure and catalytic activity. *Crit. Rev. Biochem.* 23: 283-337.
- Marivet, J., Marcia, M-P., Frendo, P. and Burkard, G. (1994). Bean cyclophilin gene expression during plant development and stress conditions. *Plant Molec. Biol.* 26: 1181-1189.
- Marrs, K. A. (1996). The functions and regulations of glutathione S-transferases in plants. *Annu. Rev. Plant. Physiol. Plant. Mol. Biol.* 47: 127-158.

- Masni, A. A, Nik, M. S., Salmijah, S. and Ismail, B. S. (2008). Studies on the differentially expressed gene in goosegrass (*Eleusine indica*) resistant to glyphosate using reverse transcriptase-polymerase chain reaction (RT-PCR) approach. *Adv. in Nat. Appl. Sci.* 2: 1-5.
- Mason-Gamer, R. J., Weil, C. F. and Kellogg, E. A. (1998). Granule-Bound Starch Synthase: Structure, Function, and Phylogenetic Utility. *Mol. Biol. Evol.* 15: 1658–1673.
- Mehta, R. A., Fawcett, T. W., Porath, D. and Mattoo, A. K. (1992). Oxidative stress causes rapid membrane translocation and *in Vivo* degradation of ribulose-1,5bisphosphate carboxylase/oxygenase. *J. Biol. Chem.* 4: 2810-2816.
- Melander A. L. (1914). Can insects become resistant to sprays ? J. Econ. Entomol. 7: 164-166.
- Meyer, D. J., Coles, B. Pemble, S. E., Gilmore, K. S. Fraser, G. M. and Ketterer, B. (1991). Theta, a new class of glutathione transferases purified from rat and man. *Biochem. J.* 274: 409-414.
- Mortz, E., Krogh, T. N., Vorum, H. and Görg, A. (2001). Improved silver-staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. *Proteomics* 1: 1359-1363.
- Moss, S. (2009). Detecting herbicide resistance. Online Internet. Accessed on July 13, 2009. Available at <u>www.weedscience.com.</u>
- Motoyama, N. and Dauterman, W. C. (1977). Purification and properties of house fly glutathione S-transferases. *Insect Biochem.* 7: 361-369.

- Nakamura, T., Vrinten, P., Hayakawa, K. and Ikeda, J. (1998). Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. *Plant. Physiol.* 118: 451–459.
- Neer, E. J, Schmidt, C. J., Nambudripad, R. and Smith, T. F. (1994). The ancient regulatory-protein family of WD-repeat proteins. *Nature* 371: 297-300.
- Netto, L. E. S., Chae, H. Z., Kang S-W., Rhee S. G. and Stadtman, E. R. (1996). Removal of hydrogen peroxide by Thiol-specific antioxidant enzyme (tsa) is involved with its antioxidant activity. *J. Biol Chem.* 26: 15315-15321.
- Neuhoff, V., Stamm, R. and Eibl, H. (1985). Clear background and highly sensitive protein staining with Coomassie Ble dyes in polyacrylamide gels: a systematic analysis. *Electrophoresis* 6: 427-448.
- Neuhoff, V., Arold, N., Taube, D. and Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background in nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. *Electrophoresis* 9: 255-262.
- Nocker, S. V. and Ludwig, P. (2003). The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. *BMC Genomics*. Open access available at http://www.biomedcentral.com/content/pdf/1471-2164-4-50.pdf.
- Ocbs, D. C., McConkey, E. H. and Sammons, D. W. (1981). Silver stains in proteins for polyacrylamide gels: a comparison of six methods. *Electrophoresis* 2: 304-307.

- O'Farrel, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J. *Biol. Chem.* 250: 4007-4021.
- Patterson, S. D. (2004). How much of the proteome do we see with discovery-based proteomic methods and how much do we need to see? *Curr. Proteomics* 1: 3-12.
- Patton, W. F. (2000). A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. *Electrophoresis* 21: 1123-1144.
- Pappin, D. J, Hojrup, P. and Bleasby, A. J (1993). Rapid identification of proteins by peptide-mass fingerprinting. *Curr. Biol.* 3: 327–332.
- Perkins, D.N., Pappin, D. J, Creasy, D. M., and Cottrell, J. S. (1999). Probabilty-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis* 20: 3551-3567.
- Phinney, B. and Thelen, J. J. (2005). Proteomic characterization of a Triton X-100 insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures. J. Proteome. Res. 4: 497-506.
- Powles, S. B., Lorraine-Golwill, D. F., Dellow, J. J. and Preston, C. (1998). Evolved resistance to glyphosate in rigid ryegrass (*Lolium rigidum*) in Australia. *Weed Sci.* 46: 604 - 607.
- Powles, S. B. and Matthews, J. M. (1992). Multiple Herbicide Resistance in Annual Ryegrass (*Lolium rigidum*), The Driving Force for The Adoption of Integrated Weed Management. In: Denholm, I., Devonshire, A. and Holloman, D. (eds.) *Achievements and Developments in Combating Pest Resistance*. Elsevier, London, pp. 75-87.

- Powles, S. B., and Preston, C. (2009). Herbicide Cross Resistance and Multiple Resistance In Plants. Online internet. Accessed on 5 November 2009. Available at <u>www.hracglobal.com</u>.
- Rabilloud, T. (1990). Mechanisms of protein silver staining in polyacrylamide gels: a 10 year synthesis. *Electrophoresis* 11: 785-794.
- Rabilloud, T. (1996). Solubilization of proteins for electrophoretic analysis. *Electrophoresis* 17: 813–829.
- Rabilloud, T., Strub, J-M., Luche, S., Girardet, J. L., van Dorsselaer, A. and Lunardi, J. (2000). Ruthenium II tris (bathophenanthroline disulfonate), a powerful fluorescence stain for detection proteins in gel with minimal interference in subsequent mass spectrometry analysis. *Proteome*. 1: 1-14.
- Rabilloud, T., Strub, J-M., Luche, S., Girardet, J. L., van Dorsselaer, A. and Lunardi, J. (2001). A comparison between SyproRuby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescence stains for protein detection in gels. *Proteomics* 1: 699-704.
- Rabilloud, T., Adessi, C., Giraudel, A. and Lunardi, J. (2007). Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. *Electrophoresis* 18, 307–316.
- Reade, J. P. H., Milner, L. J. and Cobb, A. H. (2004). A role for glutathione Stransferases in resistance to herbicides in grasses. *Weed Sci.* 52: 468-474.

- Romano, P. G. N, Horton, P. and Gray, J. E. (2004). The Arabidopsis Cyclopholin Gene Family. *Plant Physiol*.134: 1268-1282.
- Ryan, G. F. (1970). Resistance of common groundsel to simazine and atrazine. *Weed Sci.* 18: 614-616.
- Saari, L. L., Cotterman J. C. and Thill, D. C. (1994). Resistance to acetolactate synthase inhibiting herbicides. In: S. B. Powles and J. A. M. Holtum (eds.). Herbicide Resistance in Plants: Biology and Biochemistry. Lewis Publishers, Boca Raton, Florida, pp. 83-139.
- Saji, H., Nakajima, N., Aono, M., Tamaoki, M., Kubo, A., Wakiyama, S., Hatase, Y., and Nagatsu, M. (2005). Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. *Environ. Biosafety Res.* 4: 217-222.
- Sedigheh, H-G., Ghorbhani, M., Mortazaviyan, M., Norouzian, D., Atyabi, M., Akbarazadeh, A. and Chamani, E. (2011). Oxidative Stress and Leaf Senescence. *Insight Botany*. 1: 5-14.
- Seng, C. T., Van Lun, L., San, C. T. and Sahid, I. B. (2010). Initial report of glufosinate and paraquat multiple resistance that evolved in a biotype of goosegrass (*Eleusine indica*) in Malaysia. *Weed Biol. Manag.* 10: 229–233.
- Sheehan, D. and Casey, J. P. (1993). Evidence for alpha and Mu class glutathione Stransferases in a number of fungal species. *Comp. Biochem. Physiol.* 104: 1-6.
- Shevchenko, A., Wilm, M., Vorm, A. and Mann, M. (1996). Mass spectrometric analysis of proteins from silver-stained polyacrylamide gels. *Anal. Chem.* 68: 850-858.

- Smith, A. P, DeRidder, B. P., Guo, W. J., Seeley, E. H., Regnier, F. E. and Goldsbrough, P. B. (2004). Proteomic analysis of Arabidopsis glutathione Stransferases from benoxacor- and copper-treated seedlings. *J. Biol. Chem.* 279: 26098-26104.
- Speicher, K. D., Kolbas, O., Harper, S. and Speicher, D. W. (2000). Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J. Biomol. Tech. 11: 74-86.
- Spencer, H. 1864. *Principles of Biology*. Vol. 1. Williams and Norgate, London, pp. 444.
- Steinberg, T. H., Chernokalskaya, E., Berggren, K., Lopez, M. F., Diwu, Z., Haupland, R. P. and Patton, W. F. (2000). Ultrasensitive fluorescence protein detection in isoelectric focusing gels using a ruthenium metal chelate stain. *Electrophoresis* 21: 486-496.
- Spreitzer, R. J. (2003). Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. *Arch. Biochem. Biophys.* 414, 141-149.
- Swarbrick, J. T. (1997). *Weeds of the Pacific Islands*. Technical paper no. 209. South Pacific Commission, Noumea, New Caledonia. 124 p.
- Syngenta Crop Protection Pty. Ltd. (2008). Innova Glyphosate 450 Herbicide Safety Data Sheet. Accessed on 15 June 2012. Available at www.syngenta.com.au.

- Tanaka, K. H., Wake, H., Ido, Y., Akita, S., Yoshida, Y. and Yoshida, I. (1988). Protein and polymer analysesup to m/z 100,000 by laser desorption ionization time-offlight mass spectrometer. *Rapid Commun. Mass Spectr.* 2: 151-153.
- Taylor, N. L., Heazlewood, J. L., Day, D. A. and Millar, A. H. (2005). Differential impact of environmental stresses on the pea mitochondrial proteome. *Mol. Cell. Proteomics* 4: 1122-1133.
- Thelen, J. J. (2007). Introduction to Proteomics; A Brief Historical Perspective On Contemporary Approaches. In: Šamaj, J and Thelen, J. J (eds.) *Plant Proteomics*. Heidelberg, Germany. Springer, pp 1-13.
- Tonge, R.P., Shaw. J., Middleton, B., Rowlinson, R., Rayner, S. Young, J., Pognant, F., Hawkins, E., Curie, I. and Davison, M. (2001). Validation and development of fluorescence two-dimensional gel electrophoresis proteomics technology. *Proteomics* 1: 377-396.
- Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A., Pruss, D., Pindo, M., Fitzgerald, L. M., Vezzulli, S., Reid, J., Malacarne, G., Iliev, D., Coppola, G., Wardell, B., Micheletti, D., Macalma, T., Facci, M., Mitchell, J. T., Perazzolli, M., Eldredge, G., Gatto, P., Oyzerski, R., Moretto, M., Gutin, N., Stefanini, M., Chen, Y., Segala, C., Davenport, C., Dematte, L., Mraz, A., Battilana, J., Stormo, K., Costa, F., Tao, Q., Si-Ammour, A., Harkins, T., Lackey, A., Perbost, C., Taillon, B., Stella, A., Solovyev, V., Fawcett, J. A., Sterck, L., Vandepoele, K., Grando, S. M., Toppo, S., Moser, C., Lanchbury, J., Bogden, R., Skolnick, M., Sgaramella, V., Bhatnagar, S. K., Fontana, P., Gutin, A., Van de Peer, Y., Salamini, F. and Viola, R. (2007). The first genome sequence of an elite grapevine cultivar (Pinot noir Vitis vinifera L.): coping with a highly heterozygous genome. *PLoS ONE 2*, 12: E1326.

- Vincent, D. and Zivy, M. (2007). Plant proteome responses to abiotic stress. In: Šamaj, J and Thelen, J. J (eds.) *Plant Proteomics*. Heidelberg, Germany. Springer, pp 346-364.
- Vuilleumier, S. (1997). Bacterial glutathione S-transferases: what are they good for? J. Bacteriol. 179: 1431-1441.
- Wang, C., Zhang, S. H., Wang, P. F., Li, F. and Lu, J. (2010). Effects of ammonium on the antioxidative response in *Hydrilla verticillata* (L.f.) Royle plants. *Ecotoxicol. Environ. Safety*.73: 189-195.
- Westermeier, R. and Naven, T. (2002). *Proteomics in Practice: A Laboratory Manual of Proteome Analysis*. Wiley-VCH, Weinhem. 315 p.
- Wildman, S.G. (2002). Along the trail from fraction I protein to Rubisco (ribulose bisphosphate carboxylase-oxygenase). *Photosyn. Res.* 73 (1-3): 243–250.
- Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphrey-Smith, I., Hochtrasser, D. F. and Williams, K. L. (1995). Progress with proteome projects: why all proteins expressed by a gene should be identified and how to do it. *Biotechnol. Genet. Eng. Rev.* 13: 19-50.
- Wilkins, M. R., Pasqualli, C., Appel R. D., Ou, K., Golaz, O., Snchez, J. C., Yan, J. X., Gooley, A. A., Hughes, G., Humphery-Smith, I., Williams, K. L. and Hochtrasser, D. F. (1996). From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and aminoacid analysis. *Nature Biotech.* 14: 61–65.

- Wilkins, M. R. and Gooley, A. A. (1998). Protein Identification in Proteome Analysis. In: Appel, R. D. and Hochtrasser, D. F. (eds.) *Proteome research: new frontiers in functional genomics*. Springer, New York, pp 35-64.
- Wilson, C. M. (1979). Staining of protein on gels: comparisons of dyes and procedures. *Methods Enzymol.* 91: 236-247.
- Yates, J. R, Speicher, S., Griffin, P. R. and Hunkapiller, T. (1993). Peptide mass maps: a highly informative approach to protein identification. *Anal. Biochem.* 214: 397–408.
- Yates, J. R. 3rd (1998). Database searching using mass spectrometry data. *Electrophoresis* 19: 893-900.
- Yu, S. J. (1996). Insect glutathione-S-transferase. Zool. Stud. 35: 9-19.
- Zazali, A. 2004. The proteome of insect glutathione S transferases: its response to toxic challenge, *PhD thesis. Victoria University, Wellington, New Zealand.*
- Zazali, A. and Clark, A. G. (2007). Studies on the glutathione S-transferase proteome of adult *Drosophila melanogaster*: Responsiveness to chemical challenge. *Proteomics* 7: 3618-3628.
- Zhang, W. and Chait, B. T. (2000). ProFound An expert system for protein identification using mass spectrometry peptide mapping information. *Anal. Chem.* 72: 2482-2489.

## **APPENDICES**

#### **APPENDIX A-1**

#### Raw data of field evaluation on Kesang biotype of goosegrass with glufosinateammonium.

| Treatment | 247.5 g ai/ha |          |          |          |
|-----------|---------------|----------|----------|----------|
| DAT       | 7             | 14       | 21       | 28       |
| % Control | 70            | 75       | 75       | 75       |
| % Control | 70            | 70       | 80       | 70       |
| % Control | 80            | 85       | 95       | 90       |
| Average   | 73.33333      | 76.66667 | 83.33333 | 78.33333 |

| Treatment | 495 g ai/ha |            |    |          |  |  |
|-----------|-------------|------------|----|----------|--|--|
| DAT       | 7           | 7 14 21 28 |    |          |  |  |
| % Control | 85          | 80         | 80 | 80       |  |  |
| % Control | 90          | 85         | 85 | 80       |  |  |
| % Control | 85          | 80         | 90 | 75       |  |  |
| Average   | 86.66667    | 81.66667   | 85 | 78.33333 |  |  |

| Treatment | 990 g ai/ha |          |    |    |
|-----------|-------------|----------|----|----|
| DAT       | 7           | 14       | 21 | 28 |
| % Control | 80          | 85       | 85 | 85 |
| % Control | 90          | 98       | 90 | 90 |
| % Control | 95          | 98       | 98 | 98 |
| Average   | 88.33333    | 93.66667 | 91 | 91 |

| Treatment | 1980 g ai/ha |    |          |    |
|-----------|--------------|----|----------|----|
| DAT       | 7            | 14 | 21       | 28 |
| % Control | 95           | 95 | 98       | 95 |
| % Control | 98           | 98 | 98       | 95 |
| % Control | 98           | 98 | 100      | 98 |
| Average   | 97           | 97 | 98.66667 | 96 |

### APPENDIX A-1, cont.

### Raw data of field evaluation on Kesang biotype of goossegrass with glyphosate.

| Treatment | 1080 g/ha |            |          |    |  |  |
|-----------|-----------|------------|----------|----|--|--|
| DAT       | 7         | 7 14 21 28 |          |    |  |  |
| % Control | 0         | 0          | 5        | 10 |  |  |
| % Control | 15        | 10         | 10       | 10 |  |  |
| % Control | 25        | 20         | 10       | 10 |  |  |
| Average   | 13.33333  | 10         | 8.333333 | 10 |  |  |

| Treatment | 2160 g/ha |          |          |          |
|-----------|-----------|----------|----------|----------|
| DAT       | 7         | 14       | 21       | 28       |
| % Control | 15        | 10       | 5        | 10       |
| % Control | 10        | 20       | 5        | 5        |
| % Control | 15        | 25       | 10       | 10       |
| Average   | 13.33333  | 18.33333 | 6.666667 | 8.333333 |

| Treatment | 4320 g/ha |          |          |    |
|-----------|-----------|----------|----------|----|
| DAT       | 7         | 14       | 21       | 28 |
| % Control | 0         | 10       | 5        | 5  |
| % Control | 5         | 10       | 5        | 10 |
| % Control | 10        | 20       | 15       | 15 |
| Average   | 5         | 13.33333 | 8.333333 | 10 |

### **APPENDIX A-2**

Raw data of field evaluation on Jerantut biotype of goosegrass with glufosinateammonium.

| Treatment | 495 g ai/ha |            |          |          |  |  |
|-----------|-------------|------------|----------|----------|--|--|
| DAT       | 7           | 7 14 21 28 |          |          |  |  |
| % Control | 10          | 0          | 0        | 0        |  |  |
| % Control | 10          | 0          | 0        | 0        |  |  |
| % Control | 15          | 0          | 5        | 10       |  |  |
| Average   | 11.66667    | 0          | 1.666667 | 3.333333 |  |  |

| Treatment | 990 g ai/ha |    |    |    |
|-----------|-------------|----|----|----|
| DAT       | 7           | 14 | 21 | 28 |
| % Control | 40          | 20 | 10 | 0  |
| % Control | 70          | 65 | 20 | 10 |
| % Control | 45          | 50 | 15 | 5  |
| Average   | 51.66667    | 45 | 15 | 5  |

| Treatment | 1980 g ai/ha |    |    |    |
|-----------|--------------|----|----|----|
| DAT       | 7            | 14 | 21 | 28 |
| % Control | 75           | 60 | 60 | 40 |
| % Control | 85           | 70 | 50 | 30 |
| % Control | 80           | 65 | 40 | 20 |
| Average   | 80           | 65 | 50 | 30 |

| Treatment | <b>3960</b> g ai/ha |    |          |          |  |  |
|-----------|---------------------|----|----------|----------|--|--|
| DAT       | 7 14 21 28          |    |          |          |  |  |
| % Control | 90                  | 80 | 75       | 90       |  |  |
| % Control | 90                  | 90 | 70       | 60       |  |  |
| % Control | 95                  | 85 | 70       | 50       |  |  |
| Average   | 91.66667            | 85 | 71.66667 | 66.66667 |  |  |

#### APPENDIX A-2, cont.

Raw data of field evaluation on Jerantut biotype of goosegrass with glyphosate.

| Treatment | 540 g/ha |    |        |        |
|-----------|----------|----|--------|--------|
| DAT       | 7        | 14 | 21     | 28     |
| % Control | 0        | 0  | 0      | 0      |
| % Control | 0        | 0  | 0      | 0      |
| % Control | 5        | 0  | 5      | 5      |
| Average   | 1.667    | 0  | 1.6667 | 1.6667 |

| Treatment | 1080 g/ha |    |    |    |  |
|-----------|-----------|----|----|----|--|
| DAT       | 7         | 14 | 21 | 28 |  |
| % Control | 0         | 0  | 0  | 0  |  |
| % Control | 5         | 0  | 0  | 0  |  |
| % Control | 0         | 0  | 0  | 0  |  |
| Average   | 1.667     | 0  | 0  | 0  |  |

| Treatment | 2160 g/ha |       |    |    |  |
|-----------|-----------|-------|----|----|--|
| DAT       | 7         | 14    | 21 | 28 |  |
| % Control | 0         | 0     | 0  | 0  |  |
| % Control | 5         | 0     | 0  | 0  |  |
| % Control | 10        | 10    | 0  | 0  |  |
| Average   | 5         | 3.333 | 0  | 0  |  |

| Treatment | 4320 g/ha |       |       |        |
|-----------|-----------|-------|-------|--------|
| DAT       | 7         | 14    | 21    | 28     |
| % Control | 0         | 0     | 0     | 0      |
| % Control | 5         | 5     | 0     | 0      |
| % Control | 10        | 5     | 5     | 10     |
| Average   | 5         | 3.333 | 1.667 | 3.3333 |

| Treatment |       | 495 g ai/ha |       |       |  |  |
|-----------|-------|-------------|-------|-------|--|--|
| DAT       | 7     | 14          | 21    | 28    |  |  |
| % Control | 20    | 20          | 5     | 10    |  |  |
| % Control | 40    | 40          | 50    | 70    |  |  |
| % Control | 40    | 40          | 50    | 40    |  |  |
| % Control | 60    | 60          | 60    | 30    |  |  |
| % Control | 40    | 40          | 60    | 30    |  |  |
| % Control | 15    | 25          | 40    | 40    |  |  |
| % Control | 80    | 60          | 60    | 20    |  |  |
| % Control | 75    | 60          | 60    | 40    |  |  |
| Average   | 46.25 | 43.13       | 48.13 | 35.00 |  |  |

| APPENDIX A-3 - Raw data of greenhouse experiment on transplanted Kesang biotype of | f |
|------------------------------------------------------------------------------------|---|
| goosegrass with glufosinate-ammonium.                                              |   |

| Treatment | 990 g ai/ha |       |       |       |  |
|-----------|-------------|-------|-------|-------|--|
| DAT       | 7           | 14    | 21    | 28    |  |
| % Control | 95          | 98    | 98    | 90    |  |
| % Control | 80          | 90    | 75    | 30    |  |
| % Control | 60          | 40    | 10    | 10    |  |
| % Control | 75          | 60    | 80    | 70    |  |
| % Control | 80          | 60    | 60    | 10    |  |
| % Control | 80          | 70    | 70    | 10    |  |
| % Control | 75          | 60    | 60    | 10    |  |
| % Control | 80          | 100   | 100   | 100   |  |
| Average   | 78.13       | 72.25 | 69.13 | 41.25 |  |

| Treatment |       | 1980 g ai/ha |       |       |  |  |  |
|-----------|-------|--------------|-------|-------|--|--|--|
| DAT       | 7     | 14           | 21    | 28    |  |  |  |
| % Control | 98    | 98           | 85    | 80    |  |  |  |
| % Control | 100   | 100          | 100   | 90    |  |  |  |
| % Control | 100   | 100          | 100   | 100   |  |  |  |
| % Control | 100   | 100          | 100   | 100   |  |  |  |
| % Control | 100   | 100          | 100   | 90    |  |  |  |
| % Control | 100   | 100          | 100   | 100   |  |  |  |
| % Control | 100   | 100          | 100   | 100   |  |  |  |
| % Control | 100   | 100          | 100   | 100   |  |  |  |
| Average   | 99.75 | 99.75        | 98.13 | 95.00 |  |  |  |

| Treatment |       | 3960 g ai/ha |        |       |  |  |
|-----------|-------|--------------|--------|-------|--|--|
| DAT       | 7     | 14           | 21     | 28    |  |  |
| % Control | 95    | 100          | 100    | 85    |  |  |
| % Control | 100   | 100          | 100    | 40    |  |  |
| % Control | 100   | 100          | 100    | 100   |  |  |
| % Control | 100   | 100          | 100    | 100   |  |  |
| % Control | 100   | 100          | 100    | 70    |  |  |
| % Control | 100   | 100          | 100    | 100   |  |  |
| % Control | 100   | 100          | 100    | 20    |  |  |
| % Control | 100   | 100          | 100    | 100   |  |  |
| Average   | 99.38 | 100.00       | 100.00 | 76.88 |  |  |

| APPENDIX A-3 (cont.) - Raw data of greenhouse | experiment on transplanted susceptible biotype of |
|-----------------------------------------------|---------------------------------------------------|
| goosegrass with glufosinate-ammonium.         |                                                   |

| Treatment | 495 g ai/ha |       |       |       |  |
|-----------|-------------|-------|-------|-------|--|
| DAT       | 7           | 14    | 21    | 28    |  |
| % Control | 20          | 65    | 40    | 25    |  |
| % Control | 75          | 65    | 40    | 60    |  |
| % Control | 75          | 65    | 60    | 60    |  |
| % Control | 75          | 55    | 40    | 10    |  |
| % Control | 80          | 70    | 90    | 95    |  |
| % Control | 60          | 40    | 10    | 5     |  |
| % Control | 80          | 100   | 100   | 100   |  |
| % Control | 75          | 65    | 20    | 5     |  |
| Average   | 67.50       | 65.63 | 50.00 | 45.00 |  |

| Treatment | 990 g ai/ha |        |        |       |  |
|-----------|-------------|--------|--------|-------|--|
| DAT       | 7           | 14     | 21     | 28    |  |
| % Control | 98          | 100    | 100    | 100   |  |
| % Control | 95          | 100    | 100    | 100   |  |
| % Control | 98          | 100    | 100    | 40    |  |
| % Control | 98          | 100    | 100    | 100   |  |
| % Control | 100         | 100    | 100    | 90    |  |
| % Control | 98          | 100    | 100    | 100   |  |
| % Control | 98          | 100    | 100    | 60    |  |
| % Control | 100         | 100    | 100    | 100   |  |
| Average   | 98.13       | 100.00 | 100.00 | 86.25 |  |

| Treatment | 1980 g ai/ha |        |        |        |  |
|-----------|--------------|--------|--------|--------|--|
| DAT       | 7            | 14     | 21     | 28     |  |
| % Control | 100          | 100    | 100    | 100    |  |
| % Control | 100          | 100    | 100    | 100    |  |
| % Control | 100          | 100    | 100    | 100    |  |
| % Control | 100          | 100    | 100    | 100    |  |
| % Control | 100          | 100    | 100    | 100    |  |
| % Control | 100          | 100    | 100    | 100    |  |
| % Control | 100          | 100    | 100    | 100    |  |
| % Control | 100          | 100    | 100    | 100    |  |
| Average   | 100.00       | 100.00 | 100.00 | 100.00 |  |

| Treatment | 3960 g ai/ha |        |       |       |
|-----------|--------------|--------|-------|-------|
| DAT       | 7            | 14     | 21    | 28    |
| % Control | 100          | 100    | 80    | 75    |
| % Control | 100          | 100    | 100   | 100   |
| % Control | 100          | 100    | 100   | 100   |
| % Control | 100          | 100    | 100   | 100   |
| % Control | 100          | 100    | 100   | 100   |
| % Control | 100          | 100    | 100   | 100   |
| % Control | 100          | 100    | 100   | 100   |
| % Control | 100          | 100    | 100   | 100   |
| Average   | 100.00       | 100.00 | 97.50 | 96.88 |

| APPENDIX A-3 (cont.) - Raw data of green | house experiment on Jerantut | biotype of goosegrass with |
|------------------------------------------|------------------------------|----------------------------|
| glufosinate-ammonium.                    |                              |                            |

| Treatment | 495 g ai/ha |      |      |      |
|-----------|-------------|------|------|------|
| DAT       | 7           | 14   | 21   | 28   |
| % Control | 5           | 5    | 5    | 5    |
| % Control | 0           | 0    | 0    | 5    |
| % Control | 5           | 5    | 0    | 5    |
| % Control | 5           | 5    | 30   | 20   |
| % Control | 0           | 0    | 0    | 5    |
| % Control | 5           | 0    | 5    | 5    |
| % Control | 5           | 5    | 10   | 5    |
| % Control | 10          | 5    | 5    | 5    |
| Average   | 4.38        | 3.13 | 6.88 | 6.88 |

| Treatment | 990 g ai/ha |       |      |      |
|-----------|-------------|-------|------|------|
| DAT       | 7           | 14    | 21   | 28   |
| % Control | 50          | 50    | 0    | 0    |
| % Control | 60          | 60    | 0    | 0    |
| % Control | 50          | 40    | 0    | 10   |
| % Control | 25          | 15    | 5    | 10   |
| % Control | 15          | 10    | 0    | 0    |
| % Control | 98          | 100   | 0    | 0    |
| % Control | 20          | 10    | 5    | 10   |
| % Control | 25          | 10    | 10   | 10   |
| Average   | 42.88       | 36.88 | 2.50 | 5.00 |

| Treatment | 1980 g ai/ha |       |       |       |
|-----------|--------------|-------|-------|-------|
| DAT       | 7            | 14    | 21    | 28    |
| % Control | 60           | 50    | 5     | 5     |
| % Control | 5            | 5     | 0     | 5     |
| % Control | 50           | 40    | 0     | 0     |
| % Control | 100          | 100   | 100   | 100   |
| % Control | 5            | 5     | 5     | 5     |
| % Control | 5            | 5     | 5     | 5     |
| % Control | 5            | 5     | 0     | 5     |
| % Control | 20           | 15    | 20    | 5     |
| Average   | 31.25        | 28.13 | 16.88 | 16.25 |

| Treatment | 3960 g ai/ha |       |       |       |
|-----------|--------------|-------|-------|-------|
| DAT       | 7            | 14    | 21    | 28    |
| % Control | 60           | 40    | 5     | 0     |
| % Control | 60           | 40    | 0     | 5     |
| % Control | 60           | 90    | 80    | 10    |
| % Control | 60           | 20    | 20    | 10    |
| % Control | 100          | 100   | 100   | 100   |
| % Control | 100          | 100   | 100   | 100   |
| % Control | 60           | 60    | 60    | 40    |
| % Control | 60           | 60    | 60    | 60    |
| Average   | 70.00        | 63.75 | 53.13 | 40.63 |
| Treatment |   | 540 g/ha |    |      |  |  |
|-----------|---|----------|----|------|--|--|
| DAT       | 7 | 14       | 21 | 28   |  |  |
| % Control | 0 | 0        | 0  | 0    |  |  |
| % Control | 0 | 0        | 0  | 5    |  |  |
| % Control | 0 | 0        | 10 | 10   |  |  |
| % Control | 0 | 0        | 0  | 0    |  |  |
| % Control | 0 | 0        | 70 | 25   |  |  |
| % Control | 0 | 0        | 60 | 40   |  |  |
| % Control | 0 | 0        | 70 | 30   |  |  |
| % Control | 0 | 0        | 70 | 70   |  |  |
| Average   | 0 | 0        | 35 | 22.5 |  |  |

| Treatment | 1080 g/ha |    |        |       |  |
|-----------|-----------|----|--------|-------|--|
| DAT       | 7         | 14 | 21     | 28    |  |
| % Control | 0         | 5  | 25     | 60    |  |
| % Control | 0         | 10 | 15     | 25    |  |
| % Control | 0         | 10 | 40     | 100   |  |
| % Control | 5         | 10 | 25     | 20    |  |
| % Control | 5         | 15 | 20     | 30    |  |
| % Control | 10        | 15 | 20     | 5     |  |
| % Control | 5         | 10 | 40     | 30    |  |
| % Control | 5         | 5  | 60     | 20    |  |
| Average   | 3.75      | 10 | 30.625 | 36.25 |  |

| Treatment | 2160 g/ha |        |       |     |  |
|-----------|-----------|--------|-------|-----|--|
| DAT       | 7         | 14     | 21    | 28  |  |
| % Control | 15        | 75     | 100   | 90  |  |
| % Control | 25        | 85     | 98    | 100 |  |
| % Control | 20        | 70     | 98    | 100 |  |
| % Control | 10        | 60     | 100   | 100 |  |
| % Control | 10        | 80     | 98    | 95  |  |
| % Control | 5         | 15     | 60    | 100 |  |
| % Control | 15        | 80     | 100   | 80  |  |
| % Control | 60        | 100    | 100   | 95  |  |
| Average   | 20        | 70.625 | 94.25 | 95  |  |

| Treatment | 4320 g/ha |        |        |        |  |
|-----------|-----------|--------|--------|--------|--|
| DAT       | 7         | 14     | 21     | 28     |  |
| % Control | 60        | 95     | 100    | 100    |  |
| % Control | 100       | 100    | 100    | 100    |  |
| % Control | 60        | 98     | 100    | 80     |  |
| % Control | 85        | 100    | 100    | 95     |  |
| % Control | 65        | 90     | 95     | 90     |  |
| % Control | 30        | 80     | 98     | 100    |  |
| % Control | 60        | 98     | 100    | 100    |  |
| % Control | 20        | 90     | 98     | 100    |  |
| Average   | 60        | 93.875 | 98.875 | 95.625 |  |

APPENDIX A-4 - Raw data of greenhouse experiment on Kesang biotype of goosegrass with glyphosate.

| Treatment | 540 g/ha |        |        |       |  |
|-----------|----------|--------|--------|-------|--|
| DAT       | 7        | 14     | 21     | 28    |  |
| % Control | 60       | 95     | 100    | 100   |  |
| % Control | 60       | 90     | 90     | 75    |  |
| % Control | 50       | 75     | 95     | 95    |  |
| % Control | 50       | 85     | 100    | 95    |  |
| % Control | 60       | 95     | 100    | 100   |  |
| % Control | 50       | 70     | 95     | 30    |  |
| % Control | 60       | 95     | 100    | 100   |  |
| % Control | 60       | 80     | 95     | 75    |  |
| Average   | 56.25    | 85.625 | 96.875 | 83.75 |  |

| Treatment |       | 1080 g/ha |       |       |  |  |
|-----------|-------|-----------|-------|-------|--|--|
| DAT       | 7     | 14        | 21    | 28    |  |  |
| % Control | 20    | 80        | 100   | 80    |  |  |
| % Control | 60    | 98        | 100   | 100   |  |  |
| % Control | 10    | 98        | 100   | 100   |  |  |
| % Control | 80    | 100       | 100   | 90    |  |  |
| % Control | 60    | 100       | 100   | 100   |  |  |
| % Control | 60    | 100       | 100   | 100   |  |  |
| % Control | 60    | 85        | 95    | 90    |  |  |
| % Control | 60    | 90        | 95    | 90    |  |  |
| Average   | 51.25 | 93.875    | 98.75 | 93.75 |  |  |

| Treatment | 2160 g/ha |     |     |      |  |
|-----------|-----------|-----|-----|------|--|
| DAT       | 7         | 14  | 21  | 28   |  |
| % Control | 35        | 95  | 100 | 80   |  |
| % Control | 60        | 100 | 100 | 100  |  |
| % Control | 60        | 95  | 100 | 100  |  |
| % Control | 40        | 80  | 100 | 100  |  |
| % Control | 25        | 90  | 100 | 100  |  |
| % Control | 0         | 60  | 100 | 80   |  |
| % Control | 60        | 100 | 100 | 100  |  |
| % Control | 100       | 100 | 100 | 80   |  |
| Average   | 47.5      | 90  | 100 | 92.5 |  |

| Treatment |        | 4320 g/ha |       |      |  |  |
|-----------|--------|-----------|-------|------|--|--|
| DAT       | 7      | 14        | 21    | 28   |  |  |
| % Control | 75     | 100       | 100   | 100  |  |  |
| % Control | 75     | 100       | 100   | 95   |  |  |
| % Control | 75     | 100       | 100   | 100  |  |  |
| % Control | 65     | 100       | 100   | 100  |  |  |
| % Control | 5      | 90        | 100   | 95   |  |  |
| % Control | 95     | 100       | 100   | 100  |  |  |
| % Control | 75     | 100       | 100   | 95   |  |  |
| % Control | 80     | 95        | 98    | 95   |  |  |
| Average   | 68.125 | 98.125    | 99.75 | 97.5 |  |  |

APPENDIX A-4 (cont.) - Raw data of greenhouse experiment on susceptible biotype of goosegrass with glyphosate.

| APPENDIX A-4 (cont.) - Raw data of greenhouse experiment on Jerantut biotype of goosegrass with glyphos | sate. |
|---------------------------------------------------------------------------------------------------------|-------|
|                                                                                                         |       |

| Treatment |       | 540 g/ha |    |       |  |  |
|-----------|-------|----------|----|-------|--|--|
| DAT       | 7     | 14       | 21 | 28    |  |  |
| % Control | 5     | 0        | 0  | 0     |  |  |
| % Control | 0     | 0        | 0  | 0     |  |  |
| % Control | 10    | 5        | 10 | 5     |  |  |
| % Control | 0     | 0        | 40 | 15    |  |  |
| % Control | 5     | 0        | 10 | 15    |  |  |
| % Control | 10    | 5        | 10 | 10    |  |  |
| % Control | 5     | 0        | 5  | 10    |  |  |
| % Control | 0     | 0        | 5  | 10    |  |  |
| Average   | 4.375 | 1.25     | 10 | 8.125 |  |  |

| Treatment |     | 1080   | σ/ha  |        |
|-----------|-----|--------|-------|--------|
| DAT       | 7   | 20     |       |        |
| DAT       | /   | 14     | 21    | 28     |
| % Control | 0   | 15     | 20    | 5      |
| % Control | 5   | 40     | 100   | 100    |
| % Control | 0   | 5      | 10    | 10     |
| % Control | 0   | 60     | 95    | 100    |
| % Control | 10  | 35     | 100   | 100    |
| % Control | 0   | 0      | 5     | 5      |
| % Control | 5   | 10     | 70    | 95     |
| % Control | 0   | 10     | 10    | 20     |
| Average   | 2.5 | 21.875 | 51.25 | 54.375 |

| Treatment |       | 2160 g/ha |       |      |  |  |
|-----------|-------|-----------|-------|------|--|--|
| DAT       | 7     | 14        | 21    | 28   |  |  |
| % Control | 20    | 100       | 100   | 100  |  |  |
| % Control | 10    | 70        | 98    | 100  |  |  |
| % Control | 0     | 15        | 95    | 100  |  |  |
| % Control | 0     | 0         | 0     | 0    |  |  |
| % Control | 5     | 5         | 10    | 100  |  |  |
| % Control | 0     | 0         | 0     | 0    |  |  |
| % Control | 5     | 5         | 5     | 0    |  |  |
| % Control | 5     | 5         | 10    | 60   |  |  |
| Average   | 5.625 | 25        | 39.75 | 57.5 |  |  |

| Treatment | 4320 g/ha |       |                     |        |  |  |
|-----------|-----------|-------|---------------------|--------|--|--|
| DAT       | 7         | 14    | 21                  | 28     |  |  |
| % Control | 5         | 5     | 10                  | 10     |  |  |
| % Control | 10        | 15    | 100                 | 100    |  |  |
| % Control | 10        | 15    | 100                 | 100    |  |  |
| % Control | 5         | 5     | 5<br>95<br>100<br>5 | 100    |  |  |
| % Control | 0         | 5     |                     | 100    |  |  |
| % Control | 30        | 90    |                     | 0      |  |  |
| % Control | 5         | 10    |                     | 5      |  |  |
| % Control | 0         | 5     | 5                   | 100    |  |  |
| Average   | 8.125     | 18.75 | 52.5                | 64.375 |  |  |

| <b>APPENDIX A-5</b> - | Raw data of greenhouse | experiment on K | Lesang biotype of g | goosegrass growi | from seed with |
|-----------------------|------------------------|-----------------|---------------------|------------------|----------------|
| glufosinate-ammo      | onium.                 |                 |                     |                  |                |

| Treatment | 495 g ai/ha |          |          |          |  |
|-----------|-------------|----------|----------|----------|--|
| DAT       | 7           | 14       | 21       | 28       |  |
| % Control | 80          | 80       | 60       | 40       |  |
| % Control | 90          | 85       | 85       | 80       |  |
| % Control | 85          | 60       | 60<br>60 | 60       |  |
| % Control | 70          | 60       |          | 60       |  |
| % Control | 90          | 90 85    |          | 80       |  |
| % Control | 90          | 85       | 65       | 60       |  |
| Average   | 84.16667    | 76.66667 | 69.16667 | 63.33333 |  |

| Treatment | 990 g ai/ha |          |      |          |  |  |  |
|-----------|-------------|----------|------|----------|--|--|--|
| DAT       | 7           | 14       | 21   | 28       |  |  |  |
| % Control | 95          | 95       | 80   | 70       |  |  |  |
| % Control | 80          | 70       | 65   | 55       |  |  |  |
| % Control | 95          | 95       | 65   | 55       |  |  |  |
| % Control | 80          | 80       | 65   | 55       |  |  |  |
| % Control | 98          | 95       | 80   | 75       |  |  |  |
| % Control | 98          | 95       | 80   | 70       |  |  |  |
| Average   | 91          | 88.33333 | 72.5 | 63.33333 |  |  |  |

| Treatment | 1980 g ai/ha |          |     |     |  |
|-----------|--------------|----------|-----|-----|--|
| DAT       | 7            | 7 14     |     | 28  |  |
| % Control | 90           | 95       | 80  | 70  |  |
| % Control | 98           | 100      | 100 | 95  |  |
| % Control | 95           | 95       | 85  | 85  |  |
| % Control | 90           | 80       | 60  | 55  |  |
| % Control | 95           | 98       | 85  | 75  |  |
| % Control | 98           | 100      | 100 | 100 |  |
| Average   | 94.33333     | 94.66667 | 85  | 80  |  |

| Treatment | 3960 g ai/ha |          |     |          |  |  |
|-----------|--------------|----------|-----|----------|--|--|
| DAT       | 7            | 14       | 21  | 28       |  |  |
| % Control | 100          | 100      | 100 | 100      |  |  |
| % Control | 100          | 100      | 100 | 100      |  |  |
| % Control | 100          | 100      | 100 | 100      |  |  |
| % Control | 98           | 98       | 85  | 80       |  |  |
| % Control | 98           | 98       | 85  | 80       |  |  |
| % Control | 100          | 100      | 100 | 100      |  |  |
| Average   | 99.33333     | 99.33333 | 95  | 93.33333 |  |  |

| Treatment | 495 g ai/ha |       |       |       |  |  |
|-----------|-------------|-------|-------|-------|--|--|
| DAT       | 7           | 14    | 21    | 28    |  |  |
| % Control | 98          | 100   | 100   | 100   |  |  |
| % Control | 100         | 100   | 100   | 100   |  |  |
| % Control | 98          | 98    | 98    | 98    |  |  |
| % Control | 95          | 98    | 95    | 90    |  |  |
| % Control | 98          | 100   | 98    | 95    |  |  |
| % Control | 90          | 90    | 80    | 70    |  |  |
| Average   | 96.50       | 97.67 | 95.17 | 92.17 |  |  |

| APPENDIX A-5 (cont.) - Raw data of green | ouse experiment on susceptible biotype of goosegrass grown from |
|------------------------------------------|-----------------------------------------------------------------|
| seed with glufosinate-ammonium.          |                                                                 |

| Treatment | 990 g ai/ha |     |       |       |  |  |  |
|-----------|-------------|-----|-------|-------|--|--|--|
| DAT       | 7           | 14  | 21    | 28    |  |  |  |
| % Control | 100         | 100 | 100   | 90    |  |  |  |
| % Control | 100         | 100 | 100   | 100   |  |  |  |
| % Control | 100         | 100 | 98    | 85    |  |  |  |
| % Control | 100         | 100 | 100   | 100   |  |  |  |
| % Control | 100         | 100 | 100   | 100   |  |  |  |
| % Control | 100         | 100 | 85    | 75    |  |  |  |
| Average   | 100         | 100 | 97.17 | 91.67 |  |  |  |

| Treatment | 1980 g ai/ha |       |            |           |  |  |
|-----------|--------------|-------|------------|-----------|--|--|
| DAT       | 7            | 14    | 21         | 28        |  |  |
| % Control | 100          | 100   | 98         | 85        |  |  |
| % Control | 100          | 100   | 95         | 85<br>100 |  |  |
| % Control | 100          | 100   | 100<br>100 |           |  |  |
| % Control | 100          | 100   |            | 100       |  |  |
| % Control | 100          | 100   | 98         | 100       |  |  |
| % Control | 98           | 90    | 85         | 80        |  |  |
| Average   | 99.67        | 98.33 | 96.00      | 91.67     |  |  |

| Treatment | 3960 g ai/ha |     |       |       |  |  |  |
|-----------|--------------|-----|-------|-------|--|--|--|
| DAT       | 7            | 14  | 21    | 28    |  |  |  |
| % Control | 100          | 100 | 100   | 100   |  |  |  |
| % Control | 100          | 100 | 85    | 80    |  |  |  |
| % Control | 100          | 100 | 100   | 95    |  |  |  |
| % Control | 100          | 100 | 95    | 80    |  |  |  |
| % Control | 100          | 100 | 100   | 100   |  |  |  |
| % Control | 100          | 100 | 100   | 95    |  |  |  |
| Average   | 100          | 100 | 96.67 | 91.67 |  |  |  |

|             |            | 0 | - |  | • • | 0 | 0 | 0 |
|-------------|------------|---|---|--|-----|---|---|---|
| glufosinate | -ammonium. |   |   |  |     |   |   |   |
|             |            |   |   |  |     |   |   |   |
|             |            |   | - |  |     |   |   |   |
|             |            |   |   |  |     |   |   |   |

APPENDIX A-5 (cont.) - Raw data of greenhouse experiment on Jerantut biotype of goosegrass grown from seed with

| Treatment | 495 g ai/ha |    |    |    |  |
|-----------|-------------|----|----|----|--|
| DAT       | 7           | 14 | 21 | 28 |  |
| % Control | 10          | 10 | 10 | 10 |  |
| % Control | 10          | 10 | 10 | 10 |  |
| % Control | 15          | 20 | 40 | 40 |  |
| % Control | 20          | 15 | 30 | 30 |  |
| % Control | 20          | 20 | 30 | 30 |  |
| % Control | 25          | 15 | 30 | 30 |  |
| Average   | 16.66667    | 15 | 25 | 25 |  |

| Treatment | 990 g ai/ha |          |          |    |
|-----------|-------------|----------|----------|----|
| DAT       | 7           | 14       | 21       | 28 |
| % Control | 50          | 75       | 60       | 55 |
| % Control | 40          | 70       | 55       | 50 |
| % Control | 65          | 80       | 65       | 60 |
| % Control | 40          | 70       | 60       | 50 |
| % Control | 65          | 60       | 10       | 10 |
| % Control | 30          | 10       | 10       | 15 |
| Average   | 48.33333    | 60.83333 | 43.33333 | 40 |

| Treatment | 1980 g ai/ha |          |     |     |  |  |
|-----------|--------------|----------|-----|-----|--|--|
| DAT       | 7            | 14       | 21  | 28  |  |  |
| % Control | 98           | 100      | 100 | 100 |  |  |
| % Control | 98           | 100      | 100 | 100 |  |  |
| % Control | 65           | 60       | 45  | 40  |  |  |
| % Control | 65           | 80       | 65  | 80  |  |  |
| % Control | 65           | 80       | 80  | 60  |  |  |
| % Control | 65           | 70       | 60  | 40  |  |  |
| Average   | 76           | 81.66667 | 75  | 70  |  |  |

| Treatment | 3960 g ai/ha |          |          |          |  |
|-----------|--------------|----------|----------|----------|--|
| DAT       | 7            | 14       | 21       | 28       |  |
| % Control | 90           | 90       | 85       | 100      |  |
| % Control | 98           | 100      | 100      | 80       |  |
| % Control | 75           | 80       | 60       | 95       |  |
| % Control | 75           | 80       | 60       | 80       |  |
| % Control | 60           | 70       | 50       | 100      |  |
| % Control | 70           | 80       | 40       | 95       |  |
| Average   | 78           | 83.33333 | 65.83333 | 91.66667 |  |

| Treatment | 540 g/ha |       |       |       |  |
|-----------|----------|-------|-------|-------|--|
| DAT       | 7        | 14    | 21    | 28    |  |
| % Control | 0        | 10    | 35    | 35    |  |
| % Control | 0        | 5     | 20    | 20    |  |
| % Control | 0        | 20    | 15    | 15    |  |
| % Control | 0        | 5     | 20    | 20    |  |
| % Control | 0        | 20    | 15    | 20    |  |
| % Control | 0        | 10    | 10    | 15    |  |
| Average   | 0        | 11.67 | 19.17 | 20.83 |  |

| APPENDIX A-6 - Raw data of greenhouse experiment on Kesang biotype of goosegrass grown from seed wit | h |
|------------------------------------------------------------------------------------------------------|---|
| glyphosate.                                                                                          |   |

| Treatment | 1080 g/ha |       |       |       |  |
|-----------|-----------|-------|-------|-------|--|
| DAT       | 7         | 14    | 21    | 28    |  |
| % Control | 0         | 10    | 5     | 5     |  |
| % Control | 30        | 20    | 10    | 10    |  |
| % Control | 5         | 5     | 5     | 5     |  |
| % Control | 5         | 10    | 10    | 10    |  |
| % Control | 5         | 5     | 40    | 40    |  |
| % Control | 10        | 15    | 40    | 40    |  |
| Average   | 9.17      | 10.83 | 18.33 | 18.33 |  |

| Treatment | 2160 g/ha |       |       |       |  |
|-----------|-----------|-------|-------|-------|--|
| DAT       | 7         | 14    | 21    | 28    |  |
| % Control | 10        | 90    | 95    | 95    |  |
| % Control | 5         | 85    | 90    | 90    |  |
| % Control | 10        | 85    | 90    | 90    |  |
| % Control | 10        | 85    | 90    | 90    |  |
| % Control | 5         | 40    | 60    | 60    |  |
| % Control | 10        | 40    | 40    | 40    |  |
| Average   | 8.33      | 70.83 | 77.50 | 77.50 |  |

| Treatment | 4320 g/ha |       |       |       |
|-----------|-----------|-------|-------|-------|
| DAT       | 7         | 14    | 21    | 28    |
| % Control | 15        | 95    | 85    | 85    |
| % Control | 10        | 85    | 98    | 98    |
| % Control | 10        | 85    | 85    | 85    |
| % Control | 10        | 98    | 95    | 95    |
| % Control | 10        | 80    | 85    | 85    |
| % Control | 15        | 80    | 90    | 90    |
| Average   | 11.67     | 87.17 | 89.67 | 89.67 |

| Treatment | 540 g/ha |    |       |       |  |
|-----------|----------|----|-------|-------|--|
| DAT       | 7        | 14 | 21    | 28    |  |
| % Control | 0        | 20 | 10    | 15    |  |
| % Control | 0        | 5  | 60    | 80    |  |
| % Control | 0        | 20 | 25    | 30    |  |
| % Control | 0        | 15 | 25    | 40    |  |
| % Control | 0        | 10 | 25    | 25    |  |
| % Control | 0        | 20 | 30    | 30    |  |
| Average   | 0        | 15 | 29.17 | 36.67 |  |

| APPENDIX A-6 (cont.) - Raw data of greenhouse experiment on susceptible biotype of goosegrass gr | own |
|--------------------------------------------------------------------------------------------------|-----|
| rom seed with glyphosate.                                                                        |     |

| Treatment | 1080 g/ha |       |       |       |  |
|-----------|-----------|-------|-------|-------|--|
| DAT       | 7         | 14    | 21    | 28    |  |
| % Control | 0         | 20    | 100   | 100   |  |
| % Control | 5         | 40    | 75    | 70    |  |
| % Control | 0         | 10    | 80    | 95    |  |
| % Control | 0         | 5     | 20    | 20    |  |
| % Control | 10        | 60    | 40    | 40    |  |
| % Control | 15        | 25    | 70    | 70    |  |
| Average   | 5         | 26.67 | 64.17 | 65.83 |  |

| Treatment | 2160 g/ha |       |     |     |  |  |  |  |
|-----------|-----------|-------|-----|-----|--|--|--|--|
| DAT       | 7         | 14    | 21  | 28  |  |  |  |  |
| % Control | 20        | 85    | 98  | 98  |  |  |  |  |
| % Control | 10        | 98    | 98  | 98  |  |  |  |  |
| % Control | 20        | 90    | 98  | 98  |  |  |  |  |
| % Control | 80        | 100   | 100 | 100 |  |  |  |  |
| % Control | 10        | 60    | 90  | 90  |  |  |  |  |
| % Control | 10        | 60    | 80  | 80  |  |  |  |  |
| Average   | 25        | 82.17 | 94  | 94  |  |  |  |  |

| Treatment | 4320 g/ha |           |       |       |  |  |  |  |  |
|-----------|-----------|-----------|-------|-------|--|--|--|--|--|
| DAT       | 7         | 7 14 21 2 |       |       |  |  |  |  |  |
| % Control | 20        | 85        | 100   | 100   |  |  |  |  |  |
| % Control | 40        | 95        | 100   | 100   |  |  |  |  |  |
| % Control | 20        | 98        | 98 98 |       |  |  |  |  |  |
| % Control | 15        | 98        | 98    | 98    |  |  |  |  |  |
| % Control | 90        | 100 10    |       | 100   |  |  |  |  |  |
| % Control | 40        | 40 98 100 |       |       |  |  |  |  |  |
| Average   | 37.5      | 95.67     | 99.33 | 99.33 |  |  |  |  |  |

**APPENDIX** A-6 (*cont.*) - Raw data of greenhouse experiment on Jerantut biotype of goosegrass grown from seed with glyphosate.

| Treatment | 540 g/ha |          |      |      |  |  |  |  |  |
|-----------|----------|----------|------|------|--|--|--|--|--|
| DAT       | 7        | 14 21 28 |      |      |  |  |  |  |  |
| % Control | 0        | 0        | 10   | 10   |  |  |  |  |  |
| % Control | 0        | 0        | 10   | 10   |  |  |  |  |  |
| % Control | 0        | 10       | 10   | 10   |  |  |  |  |  |
| % Control | 0        | 10       | 10   | 10   |  |  |  |  |  |
| % Control | 0        | 10       | 5    | 5    |  |  |  |  |  |
| % Control | 0        | 5        | 5    | 5    |  |  |  |  |  |
| Average   | 0        | 5.83     | 8.33 | 8.33 |  |  |  |  |  |

| Treatment | 1080 g/ha |                |    |    |  |  |  |  |
|-----------|-----------|----------------|----|----|--|--|--|--|
| DAT       | 7         | 14 21 28       |    |    |  |  |  |  |
| % Control | 0         | 10             | 5  | 5  |  |  |  |  |
| % Control | 0         | 25             | 0  | 5  |  |  |  |  |
| % Control | 0         | 15             | 30 | 30 |  |  |  |  |
| % Control | 0         | 40             | 40 | 40 |  |  |  |  |
| % Control | 0         | 0              | 15 | 15 |  |  |  |  |
| % Control | 0         | 0 50 50        |    |    |  |  |  |  |
| Average   | 0         | 15 23.33 24.17 |    |    |  |  |  |  |

| Treatment | 2160 g/ha |      |       |       |  |  |  |  |
|-----------|-----------|------|-------|-------|--|--|--|--|
| DAT       | 7         | 14   | 21    | 28    |  |  |  |  |
| % Control | 20        | 25   | 50    | 50    |  |  |  |  |
| % Control | 40        | 10   | 10    | 10    |  |  |  |  |
| % Control | 0         | 5    | 5     | 5     |  |  |  |  |
| % Control | 0         | 20   | 45    | 45    |  |  |  |  |
| % Control | 0         | 20   | 45    | 45    |  |  |  |  |
| % Control | 0         | 25   | 60    | 60    |  |  |  |  |
| Average   | 10        | 17.5 | 35.83 | 35.83 |  |  |  |  |

| Treatment | 4320 g/ha |            |      |      |  |  |  |  |  |
|-----------|-----------|------------|------|------|--|--|--|--|--|
| DAT       | 7         | 7 14 21 28 |      |      |  |  |  |  |  |
| % Control | 100       | 30         | 100  | 100  |  |  |  |  |  |
| % Control | 0         | 0          | 5    | 5    |  |  |  |  |  |
| % Control | 10        | 0          | 15   | 15   |  |  |  |  |  |
| % Control | 60        | 5          | 60   | 60   |  |  |  |  |  |
| % Control | 25        | 0          | 30   | 30   |  |  |  |  |  |
| % Control | 25        | 5          | 45   | 45   |  |  |  |  |  |
| Average   | 36.67     | 43.33      | 42.5 | 42.5 |  |  |  |  |  |

## **APPENDIX B-1**

# Probit Analysis (transplant, glyphosate)

|                     | Parameter Estimates    |   |          |            |         |      |             |                         |  |  |  |
|---------------------|------------------------|---|----------|------------|---------|------|-------------|-------------------------|--|--|--|
|                     | _                      |   |          |            |         |      | 95% Confide | 95% Confidence Interval |  |  |  |
|                     | Parameter              |   | Estimate | Std. Error | Z       | Sig. | Lower Bound | Upper Bound             |  |  |  |
| PROBIT <sup>a</sup> | Dose                   |   | .867     | .057       | 15.232  | .000 | .755        | .978                    |  |  |  |
|                     | Intercept <sup>b</sup> | А | -7.069   | .437       | -16.160 | .000 | -7.507      | -6.632                  |  |  |  |
|                     |                        | В | -6.565   | .428       | -15.329 | .000 | -6.993      | -6.137                  |  |  |  |
|                     |                        | С | -4.722   | .403       | -11.726 | .000 | -5.124      | -4.319                  |  |  |  |
|                     |                        | D | -7.488   | .444       | -16.875 | .000 | -7.931      | -7.044                  |  |  |  |

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 2.718 logarithm.)

b. Corresponds to the grouping variable Biotype.

### **Confidence Limits**

|                     |         |             | 95% C    | Confidence Limi | ts for Dose | 95% Confidence Limits for log(Dose) <sup>b</sup> |             |             |  |
|---------------------|---------|-------------|----------|-----------------|-------------|--------------------------------------------------|-------------|-------------|--|
|                     | Biotype | Probability | Estimate | Lower Bound     | Upper Bound | Estimate                                         | Lower Bound | Upper Bound |  |
| PROBIT <sup>a</sup> | А       | 0.01        | 238.172  | 13.512          | 620.726     | 5.473                                            | 2.604       | 6.431       |  |
|                     |         | 0.02        | 326.211  | 26.708          | 783.286     | 5.788                                            | 3.285       | 6.663       |  |
|                     |         | 0.03        | 398.264  | 40.949          | 912.344     | 5.987                                            | 3.712       | 6.816       |  |
|                     |         | 0.04        | 462.778  | 56.290          | 1026.671    | 6.137                                            | 4.031       | 6.934       |  |
|                     |         | 0.05        | 522.888  | 72.730          | 1133.085    | 6.259                                            | 4.287       | 7.033       |  |
|                     |         | 0.06        | 580.164  | 90.257          | 1234.986    | 6.363                                            | 4.503       | 7.119       |  |
|                     |         | 0.07        | 635.523  | 108.862         | 1334.384    | 6.454                                            | 4.690       | 7.196       |  |
|                     |         | 0.08        | 689.558  | 128.531         | 1432.612    | 6.536                                            | 4.856       | 7.267       |  |
|                     |         | 0.09        | 742.680  | 149.252         | 1530.635    | 6.610                                            | 5.006       | 7.333       |  |
|                     |         | 0.1         | 795.189  | 171.012         | 1629.198    | 6.679                                            | 5.142       | 7.396       |  |
|                     |         | 0.15        | 1.055E3  | 294.918         | 2148.973    | 6.961                                            | 5.687       | 7.673       |  |
|                     |         | 0.2         | 1.321E3  | 442.460         | 2752.563    | 7.186                                            | 6.092       | 7.920       |  |
|                     |         | 0.25        | 1.602E3  | 611.126         | 3490.206    | 7.379                                            | 6.415       | 8.158       |  |
|                     |         | 0.3         | 1.905E3  | 798.287         | 4419.542    | 7.552                                            | 6.682       | 8.394       |  |
|                     |         | 0.35        | 2.237E3  | 1001.846        | 5613.822    | 7.713                                            | 6.910       | 8.633       |  |

|   |      |         |           |             |        |       | -      |
|---|------|---------|-----------|-------------|--------|-------|--------|
|   | 0.4  | 2.605E3 | 1220.826  | 7171.015    | 7.865  | 7.107 | 8.878  |
|   | 0.45 | 3.018E3 | 1455.728  | 9227.533    | 8.012  | 7.283 | 9.130  |
|   | 0.5  | 3.489E3 | 1708.714  | 11980.636   | 8.157  | 7.443 | 9.391  |
|   | 0.55 | 4.033E3 | 1983.795  | 15726.646   | 8.302  | 7.593 | 9.663  |
|   | 0.6  | 4.674E3 | 2287.212  | 20929.443   | 8.450  | 7.735 | 9.949  |
|   | 0.65 | 5.442E3 | 2628.288  | 28350.841   | 8.602  | 7.874 | 10.252 |
|   | 0.7  | 6.390E3 | 3021.135  | 39318.065   | 8.762  | 8.013 | 10.579 |
|   | 0.75 | 7.598E3 | 3488.184  | 56327.098   | 8.936  | 8.157 | 10.939 |
|   | 0.8  | 9.214E3 | 4068.026  | 84587.035   | 9.129  | 8.311 | 11.346 |
|   | 0.85 | 1.154E4 | 4835.469  | 136750.006  | 9.353  | 8.484 | 11.826 |
|   | 0.9  | 1.531E4 | 5966.282  | 252112.489  | 9.636  | 8.694 | 12.438 |
|   | 0.91 | 1.639E4 | 6270.893  | 292535.574  | 9.704  | 8.744 | 12.586 |
|   | 0.92 | 1.765E4 | 6617.090  | 343950.875  | 9.779  | 8.797 | 12.748 |
|   | 0.93 | 1.915E4 | 7017.072  | 411137.030  | 9.860  | 8.856 | 12.927 |
|   | 0.94 | 2.098E4 | 7489.080  | 502025.356  | 9.951  | 8.921 | 13.126 |
|   | 0.95 | 2.328E4 | 8062.062  | 630781.909  | 10.055 | 8.995 | 13.355 |
|   | 0.96 | 2.630E4 | 8785.886  | 825370.862  | 10.177 | 9.081 | 13.624 |
|   | 0.97 | 3.056E4 | 9757.258  | 1149647.754 | 10.328 | 9.186 | 13.955 |
|   | 0.98 | 3.732E4 | 11203.070 | 1788161.532 | 10.527 | 9.324 | 14.397 |
|   | 0.99 | 5.111E4 | 13896.727 | 3595671.102 | 10.842 | 9.539 | 15.095 |
| В | 0.01 | 133.085 | 4.596     | 389.030     | 4.891  | 1.525 | 5.964  |
|   | 0.02 | 182.279 | 9.169     | 486.337     | 5.206  | 2.216 | 6.187  |
|   | 0.03 | 222.541 | 14.171    | 561.996     | 5.405  | 2.651 | 6.331  |
|   | 0.04 | 258.589 | 19.624    | 627.785     | 5.555  | 2.977 | 6.442  |
|   | 0.05 | 292.177 | 25.535    | 687.953     | 5.677  | 3.240 | 6.534  |
|   | 0.06 | 324.181 | 31.912    | 744.594     | 5.781  | 3.463 | 6.613  |
|   | 0.07 | 355.115 | 38.760    | 798.924     | 5.872  | 3.657 | 6.683  |
|   | 0.08 | 385.308 | 46.085    | 851.729     | 5.954  | 3.830 | 6.747  |
|   | 0.09 | 414.992 | 53.897    | 903.560     | 6.028  | 3.987 | 6.806  |
|   | 0.1  | 444.333 | 62.202    | 954.825     | 6.097  | 4.130 | 6.862  |
|   | 0.15 | 589.583 | 111.460   | 1212.111    | 6.379  | 4.714 | 7.100  |
|   | 0.2  | 738.195 | 174.488   | 1487.896    | 6.604  | 5.162 | 7.305  |
|   | 0.25 | 895.212 | 252.465   | 1800.975    | 6.797  | 5.531 | 7.496  |
| • | 0.3  | 1.064E3 | 346.388   | 2171.205    | 6.970  | 5.848 | 7.683  |
|   |      |         |           |             |        |       |        |

xxxvi

|   |      |         |          |             |        |        | _      |
|---|------|---------|----------|-------------|--------|--------|--------|
|   | 0.35 | 1.250E3 | 456.967  | 2623.631    | 7.131  | 6.125  | 7.872  |
|   | 0.4  | 1.455E3 | 584.630  | 3192.131    | 7.283  | 6.371  | 8.068  |
|   | 0.45 | 1.686E3 | 729.695  | 3924.208    | 7.430  | 6.593  | 8.275  |
|   | 0.5  | 1.950E3 | 892.711  | 4888.392    | 7.575  | 6.794  | 8.495  |
|   | 0.55 | 2.254E3 | 1074.960 | 6186.825    | 7.720  | 6.980  | 8.730  |
|   | 0.6  | 2.612E3 | 1279.083 | 7977.979    | 7.868  | 7.154  | 8.984  |
|   | 0.65 | 3.041E3 | 1509.876 | 10520.225   | 8.020  | 7.320  | 9.261  |
|   | 0.7  | 3.570E3 | 1775.531 | 14261.375   | 8.180  | 7.482  | 9.565  |
|   | 0.75 | 4.246E3 | 2089.939 | 20040.590   | 8.354  | 7.645  | 9.906  |
|   | 0.8  | 5.149E3 | 2477.752 | 29604.456   | 8.546  | 7.815  | 10.296 |
|   | 0.85 | 6.446E3 | 2987.366 | 47185.103   | 8.771  | 8.002  | 10.762 |
|   | 0.9  | 8.554E3 | 3732.963 | 85895.773   | 9.054  | 8.225  | 11.361 |
|   | 0.91 | 9.159E3 | 3933.053 | 99427.314   | 9.122  | 8.277  | 11.507 |
|   | 0.92 | 9.864E3 | 4160.167 | 116621.893  | 9.197  | 8.333  | 11.667 |
|   | 0.93 | 1.070E4 | 4422.236 | 139068.254  | 9.278  | 8.394  | 11.843 |
|   | 0.94 | 1.172E4 | 4731.115 | 169401.784  | 9.369  | 8.462  | 12.040 |
|   | 0.95 | 1.301E4 | 5105.618 | 212326.633  | 9.473  | 8.538  | 12.266 |
|   | 0.96 | 1.470E4 | 5578.147 | 277122.751  | 9.595  | 8.627  | 12.532 |
|   | 0.97 | 1.708E4 | 6211.532 | 384965.042  | 9.746  | 8.734  | 12.861 |
|   | 0.98 | 2.085E4 | 7153.160 | 596998.557  | 9.945  | 8.875  | 13.300 |
|   | 0.99 | 2.856E4 | 8905.331 | 1196106.479 | 10.260 | 9.094  | 13.995 |
| C | 0.01 | 15.865  | .073     | 83.676      | 2.764  | -2.617 | 4.427  |
|   | 0.02 | 21.729  | .147     | 103.936     | 3.079  | -1.920 | 4.644  |
|   | 0.03 | 26.529  | .228     | 119.412     | 3.278  | -1.479 | 4.783  |
|   | 0.04 | 30.826  | .317     | 132.651     | 3.428  | -1.147 | 4.888  |
|   | 0.05 | 34.830  | .415     | 144.571     | 3.550  | 879    | 4.974  |
|   | 0.06 | 38.645  | .522     | 155.620     | 3.654  | 650    | 5.047  |
|   | 0.07 | 42.332  | .637     | 166.056     | 3.746  | 450    | 5.112  |
|   | 0.08 | 45.932  | .762     | 176.042     | 3.827  | 272    | 5.171  |
|   | 0.09 | 49.470  | .896     | 185.691     | 3.901  | 109    | 5.224  |
|   | 0.1  | 52.968  | 1.041    | 195.082     | 3.970  | .040   | 5.273  |
|   | 0.15 | 70.283  | 1.925    | 239.908     | 4.253  | .655   | 5.480  |
|   | 0.2  | 87.999  | 3.128    | 283.757     | 4.477  | 1.140  | 5.648  |
|   | 0.25 | 106.716 | 4.728    | 328.704     | 4.670  | 1.554  | 5.795  |
|   |      |         |          |             |        |        | xxxvii |

| 0.3     126.895     6.633     376.182     4.843     1.922     5.934       0.35     148.985     9.586     427.507     5.004     2.260     6.605       0.4     173.492     13.177     484.125     5.156     2.578     6.618       0.45     20.002     17.868     547.819     5.503     2.863     6.633       0.55     268.665     32.122     0706.841     5.593     3.417     6.649       0.65     362.522     273.808     999.259     5.893     4.067     6.644       0.7     425.630     78.248     1106.182     6.644     4.360     7.00       0.75     506.112     107.315     1334.108     6.642     5.303     8.200       0.85     613.764     150.232     1669.019     6.401     5.303     8.200       0.94     1.02023     332.040     330.983     6.927     5.805     8.200       0.91     1.02023     365.365     365.61     6.906     5.901     8.200 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th></t<>                                                           |   |      |         |          |           |       |       | _      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|---------|----------|-----------|-------|-------|--------|
| 0.35     148,985     9.586     427.507     5.004     2.260     6.055       0.4     173.492     13.177     484.125     5.156     2.578     6.303       0.55     232.401     24.023     620.922     5.448     3.179     6.433       0.55     268.665     32.162     706.841     5.593     3.471     6.656       0.65     362.522     75.808     399.229     5.893     4.057     6.484       0.7     425.630     78.248     1106.182     6.054     4.360     7.000       0.75     506.112     107.315     1334.108     6.227     4.675     7.429       0.85     768.472     217.21     2218.189     6.644     5.381     7.00       0.91     1.00213     335.365     3658.611     6.905     5.901     8.200       0.92     1.17623     404.158     4103.455     7.010     6.602     8.202       0.93     1.27673     3505.198     542.851     7.143     6.613     7.151     6.103                                                                                                                                     |   | 0.3  | 126.895 | 6.834    | 376.182   | 4.843 | 1.922 | 5.930  |
| 0.4     173.492     13.177     484.125     5.156     2.578     6.183       0.45     201.032     17.868     547.819     5.303     2.883     6.30       0.5     232.401     24.023     620.952     5.448     3.179     6.43       0.5     268.665     32.162     706.841     5.593     3.471     6.699       0.63     362.522     57.808     939.259     5.893     4.057     6.844       0.7     425.630     78.248     1106.182     6.654     4.360     7.00       0.75     506.112     107.315     1334.108     6.227     4.676     7.19       0.8     613.764     150.232     1669.019     6.420     5.012     7.420       0.85     768.472     217.21     2218.189     6.644     5.381     7.70       0.85     768.472     217.221     2218.189     6.642     5.805     8.10       0.91     1.092E3     365.519     365.8611     6.996     5.901     8.20       0                                                                                                                                               |   | 0.35 | 148.985 | 9.586    | 427.507   | 5.004 | 2.260 | 6.058  |
| 0.45     201.032     17.868     547.819     5.303     2.883     6.300       0.5     232.401     24.023     620.952     5.448     3.179     6.433       0.55     268.665     32.162     706.841     5.593     3.471     6.569       0.65     362.522     57.808     939.259     5.893     4.057     6.644       0.7     425.630     78.248     1106.182     6.654     4.360     7.00       0.75     506.112     107.315     1334.108     6.227     4.676     7.19       0.8     613.764     150.232     1669.019     6.420     5.012     7.42       0.85     768.472     217.21     22.18.189     6.644     5.381     7.00       0.91     1.002E3     365.365     365.861     6.996     5.901     8.202       0.92     1.176E3     449.990     4671.694     7.151     6.109     8.422       0.93     1.276E3     661.097     7992.900     7.649     6.323     8.77                                                                                                                                                 |   | 0.4  | 173.492 | 13.177   | 484.125   | 5.156 | 2.578 | 6.182  |
| 0.5     232.401     24.023     620.952     5.448     3.179     6.433       0.55     268.665     32.162     706.841     5.993     3.471     6.569       0.6     311.314     43.043     810.391     5.741     3.762     6.699       0.65     362.522     57.808     939.259     5.893     4.057     6.844       0.7     425.630     78.248     1106.182     6.054     4.360     7.000       0.75     506.112     107.315     1334.108     6.227     4.676     7.199       0.8     613.764     150.232     1669.019     6.420     5.012     7.424       0.85     768.472     217.221     2218.189     6.644     5.381     7.00       0.91     1.020E3     332.040     330.093     6.927     5.805     8.10       0.92     1.176E3     404.158     4103.435     7.070     6.022     8.232       0.93     1.276E3     661.097     7.992.900     7.469     6.469     9.363                                                                                                                                              |   | 0.45 | 201.032 | 17.868   | 547.819   | 5.303 | 2.883 | 6.306  |
| 0.55     268.665     32.162     706.841     5.593     3.471     6.56       0.6     311.314     43.043     810.391     5.741     3.762     6.693       0.65     362.522     57.808     939.259     5.893     4.057     6.842       0.7     425.630     78.248     1106.182     6.054     4.360     7.000       0.75     506.112     107.315     1334.108     6.227     4.676     7.19       0.8     613.764     150.232     1669.019     6.420     5.012     7.420       0.85     768.472     217.21     2218.189     6.644     5.381     7.70       0.9     1.02023     332.040     3300.983     6.927     5.805     8.10       0.91     1.09283     365.365     3658.611     6.996     5.901     8.20       0.92     1.17683     404.158     4103.435     7.070     6.002     8.32       0.93     1.27683     505.198     5422.851     7.243     6.252     8.59                                                                                                                                                  |   | 0.5  | 232.401 | 24.023   | 620.952   | 5.448 | 3.179 | 6.431  |
| 0.6     311.314     43.043     810.391     5.741     3.762     6.699       0.65     362.522     57.808     939.259     5.893     4.057     6.844       0.7     425.630     78.248     1106.182     6.054     4.360     7.009       0.75     506.112     107.315     1334.108     6.227     4.676     7.199       0.8     613.764     150.232     1669.019     6.420     5.012     7.420       0.85     768.472     217.21     2218.189     6.644     5.381     7.70       0.91     1.09283     365.365     3658.611     6.996     5.901     8.200       0.92     1.17683     4404.158     4103.435     7.070     6.002     8.321       0.93     1.27683     551.98     5422.851     7.243     6.225     8.599       0.94     1.398E3     505.198     5422.851     7.243     6.232     8.77       0.96     1.551E3     573.464     6461.815     7.349     6.469     9.33                                                                                                                                           |   | 0.55 | 268.665 | 32.162   | 706.841   | 5.593 | 3.471 | 6.561  |
| 0.65     362.522     57.808     939.259     5.893     4.057     6.684       0.7     425.630     78.248     1106.182     6.054     4.360     7.00       0.75     506.112     107.315     1334.108     6.227     4.676     7.19       0.8     613.764     150.322     1669.019     6.420     5.012     7.420       0.85     768.472     2.17.21     2.218.189     6.644     5.381     7.70       0.9     1.02023     332.040     3300.983     6.927     5.805     8.10       0.91     1.09233     365.365     3658.611     6.996     5.901     8.20       0.92     1.17623     404.158     4103.435     7.070     6.002     8.32       0.93     1.27623     449.990     4671.694     7.151     6.109     8.49       0.94     1.39823     555.198     5422.851     7.243     6.322     8.59       0.95     1.55123     661.07     7.992.900     7.469     6.464     8.98                                                                                                                                             |   | 0.6  | 311.314 | 43.043   | 810.391   | 5.741 | 3.762 | 6.698  |
| 0.7     425.630     78.248     1106.182     6.054     4.360     7.000       0.75     506.112     107.315     1334.108     6.227     4.676     7.19       0.8     613.764     150.232     1669.019     6.420     5.012     7.420       0.85     768.472     217.221     2218.189     6.644     5.381     7.70       0.9     1.020E3     332.040     3300.983     6.927     5.805     8.10       0.91     1.092E3     365.365     3658.611     6.996     5.901     8.20       0.92     1.176E3     440.158     4103.435     7.070     6.002     8.32       0.93     1.276E3     449.990     4671.694     7.151     6.109     8.44       0.94     1.398E3     505.198     5422.851     7.243     6.225     8.59       0.95     1.551E3     573.464     6461.815     7.469     6.660     9.257       0.96     1.752E3     661.097     7.992.900     7.619     6.660     9.639                                                                                                                                         |   | 0.65 | 362.522 | 57.808   | 939.259   | 5.893 | 4.057 | 6.845  |
| 0.75     506.112     107.315     1334.108     6.227     4.676     7.194       0.8     613.764     150.232     1669.019     6.420     5.012     7.424       0.85     768.472     217.221     2218.189     6.644     5.381     7.70       0.9     1.020E3     332.040     3300.983     6.927     5.805     8.10       0.91     1.092E3     365.365     3658.611     6.996     5.901     8.200       0.92     1.176E3     404.158     4103.435     7.070     6.002     8.322       0.93     1.276E3     449.990     4671.694     7.151     6.109     8.449       0.94     1.398E3     505.198     5422.851     7.243     6.622     8.599       0.95     1.551E3     573.464     6461.815     7.469     6.649     9.263       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.639       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.639                                                                                                                                 |   | 0.7  | 425.630 | 78.248   | 1106.182  | 6.054 | 4.360 | 7.009  |
| 0.8     613.764     150.232     1669.019     6.420     5.012     7.424       0.85     768.472     217.221     2218.189     6.644     5.381     7.70       0.9     1.020E3     332.040     3300.983     6.927     5.805     8.100       0.91     1.092E3     365.365     3658.611     6.996     5.901     8.200       0.92     1.176E3     404.158     4103.435     7.070     6.002     8.320       0.93     1.276E3     449.990     4671.694     7.151     6.109     8.449       0.94     1.398E3     505.198     5422.851     7.243     6.225     8.590       0.95     1.551E3     573.464     6461.815     7.346     6.352     8.77       0.96     1.752E3     661.07     7992.900     7.469     6.494     8.980       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.633       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.633                                                                                                                                  |   | 0.75 | 506.112 | 107.315  | 1334.108  | 6.227 | 4.676 | 7.196  |
| 0.85     768.472     217.221     2218.189     6.644     5.381     7.70       0.9     1.020E3     332.040     3300.983     6.927     5.805     8.10       0.91     1.092E3     365.365     3658.611     6.996     5.901     8.20       0.92     1.176E3     404.158     4103.435     7.070     6.002     8.32       0.93     1.276E3     449.990     4671.694     7.151     6.109     8.44       0.94     1.398E3     505.198     5422.851     7.243     6.225     8.59       0.95     1.551E3     573.464     6461.815     7.346     6.6352     8.77       0.96     1.752E3     661.097     7992.900     7.469     6.494     8.98       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.25       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.633       0.99     3.404E3     1295.353     28108.624     8.133     7.167     6.452                                                                                                                                    |   | 0.8  | 613.764 | 150.232  | 1669.019  | 6.420 | 5.012 | 7.420  |
| 0.9     1.020E3     332.040     3300.983     6.927     5.805     8.10       0.91     1.092E3     365.365     3658.611     6.996     5.901     8.20       0.92     1.176E3     404.158     4103.435     7.070     6.002     8.32       0.93     1.276E3     449.990     4671.694     7.151     6.109     8.44       0.94     1.398E3     505.198     5422.851     7.243     6.225     8.59       0.95     1.551E3     573.464     6461.815     7.346     6.352     8.77       0.96     1.752E3     661.097     7992.900     7.469     6.494     8.98       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.255       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.639       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6.853<                                                                                                                              |   | 0.85 | 768.472 | 217.221  | 2218.189  | 6.644 | 5.381 | 7.704  |
| 0.91     1.092E3     365.365     3658.611     6.996     5.901     8.20       0.92     1.176E3     404.158     4103.435     7.070     6.002     8.32       0.93     1.276E3     449.990     4671.694     7.151     6.109     8.44       0.94     1.398E3     505.198     5422.851     7.243     6.225     8.590       0.95     1.551E3     573.464     6461.815     7.346     6.494     8.988       0.96     1.752E3     661.097     7992.900     7.469     6.660     9.257       0.96     1.752E3     661.097     7992.900     7.619     6.660     9.257       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.257       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.633       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6                                                                                                                              |   | 0.9  | 1.020E3 | 332.040  | 3300.983  | 6.927 | 5.805 | 8.102  |
| 0.92     1.176E3     4404.158     4103.435     7.070     6.002     8.324       0.93     1.276E3     449.990     4671.694     7.151     6.109     8.444       0.94     1.398E3     505.198     5422.851     7.243     6.225     8.593       0.95     1.551E3     573.464     6461.815     7.346     6.352     8.77       0.96     1.752E3     661.097     7992.900     7.469     6.494     8.984       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.257       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.633       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6.853       0.02     528.550     64.165     1220.542     6.270     4.161     7.107       0.03     645.297     96.805     1444.790     6.470     4.573                                                                                                                                   |   | 0.91 | 1.092E3 | 365.365  | 3658.611  | 6.996 | 5.901 | 8.205  |
| 0.93     1.276E3     449.990     4671.694     7.151     6.109     8.444       0.94     1.398E3     505.198     5422.851     7.243     6.225     8.594       0.95     1.551E3     573.464     6461.815     7.346     6.352     8.774       0.96     1.752E3     661.097     7992.900     7.469     6.494     8.984       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.257       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.633       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       0.01     385.903     33.093     948.778     5.956     3.499     6.852       0.02     528.550     64.165     1220.542     6.270     4.161     7.102       0.03     645.297     96.805     1444.790     6.470     4.573     7.274       0.04     749.826     131.114     1650.115     6.620     4.876     7.409 <td></td> <td>0.92</td> <td>1.176E3</td> <td>404.158</td> <td>4103.435</td> <td>7.070</td> <td>6.002</td> <td>8.320</td>      |   | 0.92 | 1.176E3 | 404.158  | 4103.435  | 7.070 | 6.002 | 8.320  |
| 0.94     1.398E3     505.198     5422.851     7.243     6.225     8.594       0.95     1.551E3     573.464     6461.815     7.346     6.352     8.774       0.96     1.752E3     661.097     7992.900     7.469     6.494     8.986       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.257       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.634       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6.855       0.02     528.550     64.165     1220.542     6.270     4.161     7.10       0.03     645.297     96.805     1444.790     6.470     4.573     7.276       0.04     749.826     131.114     1650.115     6.620     4.876     7.400       0.05     847.221     167.030     1847.041     6.742     5.118     7                                                                                                                              |   | 0.93 | 1.276E3 | 449.990  | 4671.694  | 7.151 | 6.109 | 8.449  |
| 0.95     1.551E3     573.464     6461.815     7.346     6.352     8.77       0.96     1.752E3     661.097     7992.900     7.469     6.494     8.98       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.257       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.639       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6.853       0.02     528.550     64.165     1220.542     6.270     4.161     7.100       0.03     645.297     96.805     1444.790     6.470     4.573     7.270       0.04     749.826     131.114     1650.115     6.620     4.876     7.400       0.05     847.221     167.030     1847.041     6.742     5.118     7.52       0.06     940.023     204.463     2040.931     6.846     5.320     7.6                                                                                                                              |   | 0.94 | 1.398E3 | 505.198  | 5422.851  | 7.243 | 6.225 | 8.598  |
| 0.96     1.752E3     661.097     7992.900     7.469     6.494     8.984       0.97     2.036E3     780.276     10475.609     7.619     6.660     9.257       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.634       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6.857       0.02     528.550     64.165     1220.542     6.270     4.161     7.107       0.03     645.297     96.805     1444.790     6.470     4.573     7.276       0.04     749.826     131.114     1650.115     6.620     4.876     7.409       0.05     847.221     167.030     1847.041     6.742     5.118     7.52       0.06     940.023     204.463     2040.931     6.846     5.320     7.62       0.07     1.030E3     243.314     2235.052     6.937     5.494     7.                                                                                                                              |   | 0.95 | 1.551E3 | 573.464  | 6461.815  | 7.346 | 6.352 | 8.774  |
| 0.97     2.036E3     780.276     10475.609     7.619     6.660     9.257       0.98     2.486E3     959.459     15214.311     7.818     6.866     9.630       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6.853       0.02     528.550     64.165     1220.542     6.270     4.161     7.107       0.03     645.297     96.805     1444.790     6.470     4.573     7.270       0.04     749.826     131.114     1650.115     6.620     4.876     7.409       0.05     847.221     167.030     1847.041     6.742     5.118     7.52       0.06     940.023     204.463     2040.931     6.846     5.320     7.62       0.07     1.030E3     243.314     2235.052     6.937     5.494     7.712       0.08     1.117E3     283.485     2431.658     7.019     5.647     7.                                                                                                                              |   | 0.96 | 1.752E3 | 661.097  | 7992.900  | 7.469 | 6.494 | 8.986  |
| 0.98     2.486E3     959.459     15214.311     7.818     6.866     9.630       0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6.853       0.02     528.550     64.165     1220.542     6.270     4.161     7.107       0.03     645.297     96.805     1444.790     6.470     4.573     7.270       0.04     749.826     131.114     1650.115     6.620     4.876     7.400       0.05     847.221     167.030     1847.041     6.742     5.118     7.52       0.06     940.023     204.463     2040.931     6.846     5.320     7.62       0.07     1.030E3     243.314     2235.052     6.937     5.647     7.79       0.08     1.117E3     283.485     2431.658     7.019     5.647     7.99       0.09     1.203E3     367.419     2838.811     7.161     5.907     7.95<                                                                                                                              |   | 0.97 | 2.036E3 | 780.276  | 10475.609 | 7.619 | 6.660 | 9.257  |
| 0.99     3.404E3     1295.353     28108.624     8.133     7.167     10.24       D     0.01     385.903     33.093     948.778     5.956     3.499     6.853       0.02     528.550     64.165     1220.542     6.270     4.161     7.107       0.03     645.297     96.805     1444.790     6.470     4.573     7.270       0.04     749.826     131.114     1650.115     6.620     4.876     7.400       0.05     847.221     167.030     1847.041     6.742     5.118     7.52       0.06     940.023     204.463     2040.931     6.846     5.320     7.62       0.07     1.030E3     243.314     2235.052     6.937     5.494     7.712       0.08     1.117E3     283.485     2431.658     7.019     5.647     7.99       0.09     1.203E3     324.884     2632.452     7.093     5.783     7.87       0.11     1.288E3     367.419     2838.811     7.161     5.907     7.95 </td <td></td> <td>0.98</td> <td>2.486E3</td> <td>959.459</td> <td>15214.311</td> <td>7.818</td> <td>6.866</td> <td>9.630</td> |   | 0.98 | 2.486E3 | 959.459  | 15214.311 | 7.818 | 6.866 | 9.630  |
| D     0.01     385.903     33.093     948.778     5.956     3.499     6.853       0.02     528.550     64.165     1220.542     6.270     4.161     7.107       0.03     645.297     96.805     1444.790     6.470     4.573     7.276       0.04     749.826     131.114     1650.115     6.620     4.876     7.409       0.05     847.221     167.030     1847.041     6.742     5.118     7.52       0.06     940.023     204.463     2040.931     6.846     5.320     7.62       0.07     1.030E3     243.314     2235.052     6.937     5.494     7.712       0.08     1.117E3     283.485     2431.658     7.019     5.647     7.99       0.09     1.203E3     324.884     2632.452     7.093     5.783     7.87       0.1     1.288E3     367.419     2838.811     7.161     5.907     7.95       0.15     1.710E3     594.363     3991.892     7.444     6.387     8.292                                                                                                                                   |   | 0.99 | 3.404E3 | 1295.353 | 28108.624 | 8.133 | 7.167 | 10.244 |
| 0.02528.55064.1651220.5426.2704.1617.100.03645.29796.8051444.7906.4704.5737.2700.04749.826131.1141650.1156.6204.8767.4000.05847.221167.0301847.0416.7425.1187.520.06940.023204.4632040.9316.8465.3207.620.071.030E3243.3142235.0526.9375.4947.7120.081.117E3283.4852431.6587.0195.6477.7900.091.203E3324.8842632.4527.0935.7837.8700.111.288E3367.4192838.8117.1615.9077.950.151.710E3594.3633991.8927.4446.3878.2920.22.141E3839.2995432.4087.6696.7338.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D | 0.01 | 385.903 | 33.093   | 948.778   | 5.956 | 3.499 | 6.855  |
| 0.03645.29796.8051444.7906.4704.5737.2700.04749.826131.1141650.1156.6204.8767.4090.05847.221167.0301847.0416.7425.1187.520.06940.023204.4632040.9316.8465.3207.620.071.030E3243.3142235.0526.9375.4947.7120.081.117E3283.4852431.6587.0195.6477.7900.091.203E3324.8842632.4527.0935.7837.8700.111.288E3367.4192838.8117.1615.9077.950.151.710E3594.3633991.8927.4446.3878.2920.22.141E3839.2995432.4087.6696.7338.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 0.02 | 528.550 | 64.165   | 1220.542  | 6.270 | 4.161 | 7.107  |
| 0.04749.826131.1141650.1156.6204.8767.400.05847.221167.0301847.0416.7425.1187.520.06940.023204.4632040.9316.8465.3207.620.071.030E3243.3142235.0526.9375.4947.7120.081.117E3283.4852431.6587.0195.6477.7960.091.203E3324.8842632.4527.0935.7837.8760.11.288E3367.4192838.8117.1615.9077.950.151.710E3594.3633991.8927.4446.3878.2920.22.141E3839.2995432.4087.6696.7338.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 0.03 | 645.297 | 96.805   | 1444.790  | 6.470 | 4.573 | 7.276  |
| 0.05847.221167.0301847.0416.7425.1187.520.06940.023204.4632040.9316.8465.3207.620.071.030E3243.3142235.0526.9375.4947.7120.081.117E3283.4852431.6587.0195.6477.7960.091.203E3324.8842632.4527.0935.7837.8760.11.288E3367.4192838.8117.1615.9077.950.151.710E3594.3633991.8927.4446.3878.2920.22.141E3839.2995432.4087.6696.7338.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 0.04 | 749.826 | 131.114  | 1650.115  | 6.620 | 4.876 | 7.409  |
| 0.06940.023204.4632040.9316.8465.3207.620.071.030E3243.3142235.0526.9375.4947.7130.081.117E3283.4852431.6587.0195.6477.7940.091.203E3324.8842632.4527.0935.7837.8760.11.288E3367.4192838.8117.1615.9077.950.151.710E3594.3633991.8927.4446.3878.2920.22.141E3839.2995432.4087.6696.7338.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 0.05 | 847.221 | 167.030  | 1847.041  | 6.742 | 5.118 | 7.521  |
| 0.07   1.030E3   243.314   2235.052   6.937   5.494   7.712     0.08   1.117E3   283.485   2431.658   7.019   5.647   7.794     0.09   1.203E3   324.884   2632.452   7.093   5.783   7.874     0.1   1.288E3   367.419   2838.811   7.161   5.907   7.95     0.15   1.710E3   594.363   3991.892   7.444   6.387   8.292     0.2   2.141E3   839.299   5432.408   7.669   6.733   8.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 0.06 | 940.023 | 204.463  | 2040.931  | 6.846 | 5.320 | 7.621  |
| 0.08   1.117E3   283.485   2431.658   7.019   5.647   7.790     0.09   1.203E3   324.884   2632.452   7.093   5.783   7.870     0.1   1.288E3   367.419   2838.811   7.161   5.907   7.955     0.15   1.710E3   594.363   3991.892   7.444   6.387   8.292     0.2   2.141E3   839.299   5432.408   7.669   6.733   8.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 0.07 | 1.030E3 | 243.314  | 2235.052  | 6.937 | 5.494 | 7.712  |
| 0.09   1.203E3   324.884   2632.452   7.093   5.783   7.876     0.1   1.288E3   367.419   2838.811   7.161   5.907   7.95     0.15   1.710E3   594.363   3991.892   7.444   6.387   8.292     0.2   2.141E3   839.299   5432.408   7.669   6.733   8.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 0.08 | 1.117E3 | 283.485  | 2431.658  | 7.019 | 5.647 | 7.796  |
| 0.1   1.288E3   367.419   2838.811   7.161   5.907   7.95     0.15   1.710E3   594.363   3991.892   7.444   6.387   8.292     0.2   2.141E3   839.299   5432.408   7.669   6.733   8.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 0.09 | 1.203E3 | 324.884  | 2632.452  | 7.093 | 5.783 | 7.876  |
| 0.151.710E3594.3633991.8927.4446.3878.2920.22.141E3839.2995432.4087.6696.7338.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 0.1  | 1.288E3 | 367.419  | 2838.811  | 7.161 | 5.907 | 7.951  |
| 0.2 2.141E3 839.299 5432.408 7.669 6.733 8.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 0.15 | 1.710E3 | 594.363  | 3991.892  | 7.444 | 6.387 | 8.292  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 0.2  | 2.141E3 | 839.299  | 5432.408  | 7.669 | 6.733 | 8.600  |

xxxviii

| 0.25 | 2.596E3 | 1097.151  | 7278.018    | 7.862  | 7.000 | 8.893  |
|------|---------|-----------|-------------|--------|-------|--------|
| 0.3  | 3.087E3 | 1366.002  | 9669.026    | 8.035  | 7.220 | 9.177  |
| 0.35 | 3.624E3 | 1646.385  | 12788.694   | 8.195  | 7.406 | 9.456  |
| 0.4  | 4.220E3 | 1940.648  | 16888.287   | 8.348  | 7.571 | 9.734  |
| 0.45 | 4.890E3 | 2252.611  | 22324.277   | 8.495  | 7.720 | 10.013 |
| 0.5  | 5.653E3 | 2587.547  | 29618.215   | 8.640  | 7.858 | 10.296 |
| 0.55 | 6.535E3 | 2952.500  | 39558.579   | 8.785  | 7.990 | 10.586 |
| 0.6  | 7.573E3 | 3357.020  | 53383.626   | 8.932  | 8.119 | 10.885 |
| 0.65 | 8.818E3 | 3814.522  | 73130.192   | 9.085  | 8.247 | 11.200 |
| 0.7  | 1.035E4 | 4344.821  | 102350.076  | 9.245  | 8.377 | 11.536 |
| 0.75 | 1.231E4 | 4979.142  | 147727.060  | 9.418  | 8.513 | 11.903 |
| 0.8  | 1.493E4 | 5771.079  | 223217.548  | 9.611  | 8.661 | 12.316 |
| 0.85 | 1.869E4 | 6824.530  | 362736.301  | 9.836  | 8.828 | 12.801 |
| 0.9  | 2.480E4 | 8383.779  | 671670.264  | 10.119 | 9.034 | 13.418 |
| 0.91 | 2.656E4 | 8804.775  | 779987.399  | 10.187 | 9.083 | 13.567 |
| 0.92 | 2.860E4 | 9283.627  | 917790.528  | 10.261 | 9.136 | 13.730 |
| 0.93 | 3.103E4 | 9837.308  | 1097903.343 | 10.343 | 9.194 | 13.909 |
| 0.94 | 3.400E4 | 10491.199 | 1341611.587 | 10.434 | 9.258 | 14.109 |
| 0.95 | 3.772E4 | 11285.594 | 1686936.508 | 10.538 | 9.331 | 14.338 |
| 0.96 | 4.262E4 | 12289.914 | 2208938.776 | 10.660 | 9.417 | 14.608 |
| 0.97 | 4.952E4 | 13638.809 | 3079030.148 | 10.810 | 9.521 | 14.940 |
| 0.98 | 6.046E4 | 15648.283 | 4792641.256 | 11.010 | 9.658 | 15.383 |
| 0.99 | 8.281E4 | 19395.851 | 9644538.820 | 11.324 | 9.873 | 16.082 |

b. Logarithm base = 2.718.

## **Probit Transformed Responses**

Biotype

OA OB OC OD



## **APPENDIX B-2**

# Probit Analysis (glufosinate,transplant)

|                     |                        |   |          |            |         |      | 95% Confide | ence Interval |  |
|---------------------|------------------------|---|----------|------------|---------|------|-------------|---------------|--|
|                     | Parameter              |   | Estimate | Std. Error | Z       | Sig. | Lower Bound | Upper Bound   |  |
| PROBIT <sup>a</sup> | Dose                   |   | 1.307    | .074       | 17.640  | .000 | 1.162       | 1.452         |  |
|                     | Intercept <sup>b</sup> | А | -8.295   | .507       | -16.362 | .000 | -8.802      | -7.788        |  |
|                     |                        | В | -8.347   | .507       | -16.473 | .000 | -8.853      | -7.840        |  |
|                     |                        | С | -7.458   | .492       | -15.160 | .000 | -7.950      | -6.966        |  |
|                     |                        | D | -10.117  | .561       | -18.019 | .000 | -10.678     | -9.556        |  |

**Parameter Estimates** 

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 2.718 logarithm.)

b. Corresponds to the grouping variable Biotype.

|                     |         |               |          |                 |             |          |                   | -                         |
|---------------------|---------|---------------|----------|-----------------|-------------|----------|-------------------|---------------------------|
|                     |         |               | 95% C    | Confidence Limi | ts for Dose | 95% Conf | idence Limits for | or log(Dose) <sup>b</sup> |
|                     | Biotype | e Probability | Estimate | Lower Bound     | Upper Bound | Estimate | Lower Bound       | Upper Bound               |
| PROBIT <sup>a</sup> | А       | 0.01          | 96.140   | 23.875          | 192.893     | 4.566    | 3.173             | 5.262                     |
| l                   |         | 0.02          | 118.432  | 32.936          | 226.825     | 4.774    | 3.495             | 5.424                     |
| l                   |         | 0.03          | 135.185  | 40.356          | 251.628     | 4.907    | 3.698             | 5.528                     |
| l                   |         | 0.04          | 149.332  | 46.992          | 272.217     | 5.006    | 3.850             | 5.607                     |
| l                   |         | 0.05          | 161.925  | 53.165          | 290.322     | 5.087    | 3.973             | 5.671                     |
| l                   |         | 0.06          | 173.477  | 59.035          | 306.780     | 5.156    | 4.078             | 5.726                     |
| l                   |         | 0.07          | 184.282  | 64.695          | 322.064     | 5.216    | 4.170             | 5.775                     |
|                     |         | 0.08          | 194.526  | 70.205          | 336.472     | 5.271    | 4.251             | 5.819                     |
|                     |         | 0.09          | 204.336  | 75.607          | 350.208     | 5.320    | 4.326             | 5.859                     |
|                     |         | 0.1           | 213.803  | 80.931          | 363.414     | 5.365    | 4.394             | 5.896                     |
|                     |         | 0.15          | 257.899  | 107.037         | 424.521     | 5.553    | 4.673             | 6.051                     |
|                     |         | 0.2           | 299.345  | 133.274         | 481.763     | 5.702    | 4.892             | 6.177                     |
|                     |         | 0.25          | 340.171  | 160.436         | 538.382     | 5.829    | 5.078             | 6.289                     |
|                     |         | 0.3           | 381.558  | 189.050         | 596.338     | 5.944    | 5.242             | 6.391                     |
|                     |         | 0.35          | 424.392  | 219.568         | 657.192     | 6.051    | 5.392             | 6.488                     |
|                     |         | 0.4           | 469.475  | 252.441         | 722.464     | 6.152    | 5.531             | 6.583                     |
|                     |         | 0.45          | 517.647  | 288.169         | 793.853     | 6.249    | 5.664             | 6.677                     |
|                     |         | 0.5           | 569.878  | 327.343         | 873.441     | 6.345    | 5.791             | 6.772                     |
|                     |         | 0.55          | 627.379  | 370.706         | 963.958     | 6.442    | 5.915             | 6.871                     |
|                     |         | 0.6           | 691.753  | 419.227         | 1069.175    | 6.539    | 6.038             | 6.975                     |
|                     |         | 0.65          | 765.237  | 474.243         | 1194.573    | 6.640    | 6.162             | 7.086                     |
|                     |         | 0.7           | 851.143  | 537.691         | 1348.569    | 6.747    | 6.287             | 7.207                     |
|                     |         | 0.75          | 954.699  | 612.579         | 1544.974    | 6.861    | 6.418             | 7.343                     |
|                     |         | 0.8           | 1.085E3  | 703.985         | 1808.556    | 6.989    | 6.557             | 7.500                     |
|                     |         | 0.85          | 1.259E3  | 821.574         | 2189.754    | 7.138    | 6.711             | 7.692                     |
|                     |         | 0.9           | 1.519E3  | 987.535         | 2814.542    | 7.326    | 6.895             | 7.943                     |
|                     |         | 0.91          | 1.589E3  | 1030.842        | 2995.007    | 7.371    | 6.938             | 8.005                     |
|                     |         | 0.92          | 1.670E3  | 1079.395        | 3206.118    | 7.420    | 6.984             | 8.073                     |
|                     |         | 0.93          | 1.762E3  | 1134.657        | 3457.806    | 7.474    | 7.034             | 8.148                     |
|                     |         | 0.94          | 1.872E3  | 1198.789        | 3765.273    | 7.535    | 7.089             | 8.234                     |
|                     |         | 0.95          | 2.006E3  | 1275.181        | 4153.307    | 7.604    | 7.151             | 8.332                     |

| <b>Confidence Limits</b> |
|--------------------------|
|--------------------------|

| - | _    |         |          |          |       |       |       |
|---|------|---------|----------|----------|-------|-------|-------|
|   | 0.96 | 2.175E3 | 1369.598 | 4665.952 | 7.685 | 7.222 | 8.448 |
|   | 0.97 | 2.402E3 | 1493.037 | 5391.877 | 7.784 | 7.309 | 8.593 |
|   | 0.98 | 2.742E3 | 1670.768 | 6549.305 | 7.917 | 7.421 | 8.787 |
|   | 0.99 | 3.378E3 | 1986.372 | 8936.127 | 8.125 | 7.594 | 9.098 |
| В | 0.01 | 100.033 | 25.472   | 198.275  | 4.606 | 3.238 | 5.290 |
|   | 0.02 | 123.228 | 35.136   | 233.171  | 4.814 | 3.559 | 5.452 |
|   | 0.03 | 140.660 | 43.048   | 258.686  | 4.946 | 3.762 | 5.556 |
|   | 0.04 | 155.380 | 50.123   | 279.872  | 5.046 | 3.914 | 5.634 |
|   | 0.05 | 168.483 | 56.704   | 298.508  | 5.127 | 4.038 | 5.699 |
|   | 0.06 | 180.502 | 62.959   | 315.453  | 5.196 | 4.142 | 5.754 |
|   | 0.07 | 191.745 | 68.990   | 331.194  | 5.256 | 4.234 | 5.803 |
|   | 0.08 | 202.403 | 74.860   | 346.037  | 5.310 | 4.316 | 5.847 |
|   | 0.09 | 212.611 | 80.614   | 360.191  | 5.359 | 4.390 | 5.887 |
|   | 0.1  | 222.461 | 86.284   | 373.803  | 5.405 | 4.458 | 5.924 |
|   | 0.15 | 268.343 | 114.069  | 436.841  | 5.592 | 4.737 | 6.080 |
|   | 0.2  | 311.467 | 141.962  | 495.980  | 5.741 | 4.956 | 6.207 |
|   | 0.25 | 353.947 | 170.802  | 554.570  | 5.869 | 5.141 | 6.318 |
|   | 0.3  | 397.010 | 201.141  | 614.648  | 5.984 | 5.304 | 6.421 |
|   | 0.35 | 441.579 | 233.446  | 677.848  | 6.090 | 5.453 | 6.519 |
|   | 0.4  | 488.488 | 268.181  | 745.772  | 6.191 | 5.592 | 6.614 |
|   | 0.45 | 538.610 | 305.855  | 820.219  | 6.289 | 5.723 | 6.710 |
|   | 0.5  | 592.956 | 347.069  | 903.397  | 6.385 | 5.850 | 6.806 |
|   | 0.55 | 652.786 | 392.576  | 998.208  | 6.481 | 5.973 | 6.906 |
|   | 0.6  | 719.767 | 443.360  | 1108.661 | 6.579 | 6.094 | 7.011 |
|   | 0.65 | 796.227 | 500.778  | 1240.581 | 6.680 | 6.216 | 7.123 |
|   | 0.7  | 885.612 | 566.806  | 1402.907 | 6.786 | 6.340 | 7.246 |
|   | 0.75 | 993.362 | 644.515  | 1610.301 | 6.901 | 6.468 | 7.384 |
|   | 0.8  | 1.129E3 | 739.114  | 1889.042 | 7.029 | 6.605 | 7.544 |
|   | 0.85 | 1.310E3 | 860.531  | 2292.624 | 7.178 | 6.758 | 7.737 |
|   | 0.9  | 1.580E3 | 1031.600 | 2954.654 | 7.365 | 6.939 | 7.991 |
|   | 0.91 | 1.654E3 | 1076.209 | 3145.942 | 7.411 | 6.981 | 8.054 |
|   | 0.92 | 1.737E3 | 1126.215 | 3369.738 | 7.460 | 7.027 | 8.123 |
|   | 0.93 | 1.834E3 | 1183.123 | 3636.577 | 7.514 | 7.076 | 8.199 |
|   | 0.94 | 1.948E3 | 1249.160 | 3962.584 | 7.574 | 7.130 | 8.285 |

xlii

|   |      |         |          |          |       |       | -     |
|---|------|---------|----------|----------|-------|-------|-------|
|   | 0.95 | 2.087E3 | 1327.819 | 4374.058 | 7.643 | 7.191 | 8.383 |
|   | 0.96 | 2.263E3 | 1425.039 | 4917.726 | 7.724 | 7.262 | 8.501 |
|   | 0.97 | 2.500E3 | 1552.150 | 5687.671 | 7.824 | 7.347 | 8.646 |
|   | 0.98 | 2.853E3 | 1735.193 | 6915.461 | 7.956 | 7.459 | 8.842 |
|   | 0.99 | 3.515E3 | 2060.305 | 9447.916 | 8.165 | 7.631 | 9.154 |
| С | 0.01 | 50.687  | 9.704    | 117.248  | 3.926 | 2.273 | 4.764 |
|   | 0.02 | 62.439  | 13.366   | 138.087  | 4.134 | 2.593 | 4.928 |
|   | 0.03 | 71.272  | 16.362   | 153.329  | 4.267 | 2.795 | 5.033 |
|   | 0.04 | 78.731  | 19.041   | 165.981  | 4.366 | 2.947 | 5.112 |
|   | 0.05 | 85.370  | 21.532   | 177.104  | 4.447 | 3.070 | 5.177 |
|   | 0.06 | 91.460  | 23.901   | 187.211  | 4.516 | 3.174 | 5.232 |
|   | 0.07 | 97.156  | 26.185   | 196.591  | 4.576 | 3.265 | 5.281 |
|   | 0.08 | 102.557 | 28.409   | 205.429  | 4.630 | 3.347 | 5.325 |
|   | 0.09 | 107.729 | 30.591   | 213.847  | 4.680 | 3.421 | 5.365 |
|   | 0.1  | 112.721 | 32.741   | 221.934  | 4.725 | 3.489 | 5.402 |
|   | 0.15 | 135.969 | 43.305   | 259.242  | 4.912 | 3.768 | 5.558 |
|   | 0.2  | 157.820 | 53.960   | 293.977  | 5.061 | 3.988 | 5.684 |
|   | 0.25 | 179.344 | 65.047   | 328.076  | 5.189 | 4.175 | 5.793 |
|   | 0.3  | 201.164 | 76.800   | 362.673  | 5.304 | 4.341 | 5.894 |
|   | 0.35 | 223.747 | 89.434   | 398.628  | 5.411 | 4.493 | 5.988 |
|   | 0.4  | 247.515 | 103.170  | 436.746  | 5.511 | 4.636 | 6.079 |
|   | 0.45 | 272.912 | 118.268  | 477.890  | 5.609 | 4.773 | 6.169 |
|   | 0.5  | 300.449 | 135.042  | 523.091  | 5.705 | 4.906 | 6.260 |
|   | 0.55 | 330.765 | 153.897  | 573.674  | 5.801 | 5.036 | 6.352 |
|   | 0.6  | 364.704 | 175.376  | 631.444  | 5.899 | 5.167 | 6.448 |
|   | 0.65 | 403.446 | 200.236  | 699.001  | 6.000 | 5.299 | 6.550 |
|   | 0.7  | 448.737 | 229.584  | 780.317  | 6.106 | 5.436 | 6.660 |
|   | 0.75 | 503.334 | 265.144  | 881.880  | 6.221 | 5.580 | 6.782 |
|   | 0.8  | 571.981 | 309.819  | 1015.300 | 6.349 | 5.736 | 6.923 |
|   | 0.85 | 663.902 | 369.114  | 1204.172 | 6.498 | 5.911 | 7.094 |
|   | 0.9  | 800.828 | 455.588  | 1507.284 | 6.686 | 6.122 | 7.318 |
|   | 0.91 | 837.931 | 478.574  | 1593.851 | 6.731 | 6.171 | 7.374 |
|   | 0.92 | 880.189 | 504.513  | 1694.709 | 6.780 | 6.224 | 7.435 |
| • | 0.93 | 929.118 | 534.225  | 1814.465 | 6.834 | 6.281 | 7.504 |

xliii

| 1 |      |         |          |           |       |       | 1     |
|---|------|---------|----------|-----------|-------|-------|-------|
|   | 0.94 | 986.987 | 568.923  | 1960.165  | 6.895 | 6.344 | 7.581 |
|   | 0.95 | 1.057E3 | 610.512  | 2143.280  | 6.964 | 6.414 | 7.670 |
|   | 0.96 | 1.147E3 | 662.225  | 2384.161  | 7.045 | 6.496 | 7.777 |
|   | 0.97 | 1.267E3 | 730.228  | 2723.702  | 7.144 | 6.593 | 7.910 |
|   | 0.98 | 1.446E3 | 828.690  | 3262.320  | 7.276 | 6.720 | 8.090 |
|   | 0.99 | 1.781E3 | 1004.470 | 4365.968  | 7.485 | 6.912 | 8.382 |
| D | 0.01 | 387.503 | 138.868  | 658.399   | 5.960 | 4.934 | 6.490 |
|   | 0.02 | 477.354 | 190.758  | 777.513   | 6.168 | 5.251 | 6.656 |
|   | 0.03 | 544.880 | 232.893  | 865.637   | 6.301 | 5.451 | 6.763 |
|   | 0.04 | 601.903 | 270.297  | 939.569   | 6.400 | 5.600 | 6.845 |
|   | 0.05 | 652.660 | 304.840  | 1005.229  | 6.481 | 5.720 | 6.913 |
|   | 0.06 | 699.221 | 337.457  | 1065.481  | 6.550 | 5.821 | 6.971 |
|   | 0.07 | 742.770 | 368.691  | 1121.952  | 6.610 | 5.910 | 7.023 |
|   | 0.08 | 784.060 | 398.892  | 1175.673  | 6.664 | 5.989 | 7.070 |
|   | 0.09 | 823.602 | 428.299  | 1227.343  | 6.714 | 6.060 | 7.113 |
|   | 0.1  | 861.760 | 457.082  | 1277.463  | 6.759 | 6.125 | 7.153 |
|   | 0.15 | 1.039E3 | 595.274  | 1515.458  | 6.946 | 6.389 | 7.323 |
|   | 0.2  | 1.207E3 | 729.108  | 1748.299  | 7.096 | 6.592 | 7.466 |
|   | 0.25 | 1.371E3 | 862.306  | 1988.650  | 7.223 | 6.760 | 7.595 |
|   | 0.3  | 1.538E3 | 996.931  | 2245.082  | 7.338 | 6.905 | 7.716 |
|   | 0.35 | 1.711E3 | 1134.488 | 2525.164  | 7.445 | 7.034 | 7.834 |
|   | 0.4  | 1.892E3 | 1276.369 | 2836.796  | 7.546 | 7.152 | 7.950 |
|   | 0.45 | 2.086E3 | 1424.102 | 3189.141  | 7.643 | 7.261 | 8.068 |
|   | 0.5  | 2.297E3 | 1579.543 | 3593.634  | 7.739 | 7.365 | 8.187 |
|   | 0.55 | 2.529E3 | 1745.087 | 4065.353  | 7.835 | 7.465 | 8.310 |
|   | 0.6  | 2.788E3 | 1923.963 | 4625.185  | 7.933 | 7.562 | 8.439 |
|   | 0.65 | 3.084E3 | 2120.690 | 5303.516  | 8.034 | 7.659 | 8.576 |
|   | 0.7  | 3.431E3 | 2341.894 | 6147.041  | 8.141 | 7.759 | 8.724 |
|   | 0.75 | 3.848E3 | 2597.897 | 7232.505  | 8.255 | 7.862 | 8.886 |
|   | 0.8  | 4.373E3 | 2906.134 | 8697.758  | 8.383 | 7.975 | 9.071 |
|   | 0.85 | 5.076E3 | 3299.733 | 10824.073 | 8.532 | 8.102 | 9.290 |
|   | 0.9  | 6.122E3 | 3854.623 | 14315.484 | 8.720 | 8.257 | 9.569 |
|   | 0.91 | 6.406E3 | 3999.696 | 15324.648 | 8.765 | 8.294 | 9.637 |
|   | 0.92 | 6.729E3 | 4162.550 | 16505.486 | 8.814 | 8.334 | 9.711 |

| 0.93 | 7.103E3 | 4348.185 | 17913.688 | 8.868 | 8.378 | 9.793  |
|------|---------|----------|-----------|-------|-------|--------|
| 0.94 | 7.546E3 | 4564.001 | 19634.555 | 8.929 | 8.426 | 9.885  |
| 0.95 | 8.084E3 | 4821.616 | 21807.256 | 8.998 | 8.481 | 9.990  |
| 0.96 | 8.766E3 | 5140.783 | 24679.250 | 9.079 | 8.545 | 10.114 |
| 0.97 | 9.683E3 | 5559.221 | 28749.108 | 9.178 | 8.623 | 10.266 |
| 0.98 | 1.105E4 | 6163.680 | 35245.124 | 9.310 | 8.726 | 10.470 |
| 0.99 | 1.362E4 | 7241.403 | 48664.807 | 9.519 | 8.888 | 10.793 |

b. Logarithm base = 2.718.



## Probit Transformed Responses

## **APPENDIX B-3** (seed test, glyphosate)

# **Probit Analysis**

|                     | Parameter Estimates    |   |          |            |         |      |                         |             |  |  |  |  |
|---------------------|------------------------|---|----------|------------|---------|------|-------------------------|-------------|--|--|--|--|
|                     | _                      |   |          |            |         |      | 95% Confidence Interval |             |  |  |  |  |
|                     | Parameter              |   | Estimate | Std. Error | Z       | Sig. | Lower Bound             | Upper Bound |  |  |  |  |
| PROBIT <sup>a</sup> | Dose                   |   | 1.113    | .063       | 17.792  | .000 | .990                    | 1.235       |  |  |  |  |
|                     | Intercept <sup>b</sup> | 1 | -7.977   | .459       | -17.397 | .000 | -8.435                  | -7.518      |  |  |  |  |
|                     |                        | 2 | -8.325   | .468       | -17.784 | .000 | -8.794                  | -7.857      |  |  |  |  |
|                     |                        | 3 | -9.300   | .489       | -19.007 | .000 | -9.789                  | -8.810      |  |  |  |  |

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 2.718 logarithm.)

b. Corresponds to the grouping variable Biotype.

|                     |                     |          | Connuer        | ice Linnis  |          |                  |                           |
|---------------------|---------------------|----------|----------------|-------------|----------|------------------|---------------------------|
|                     |                     | 95% C    | onfidence Limi | ts for Dose | 95% Conf | idence Limits fo | or log(Dose) <sup>b</sup> |
|                     | Biotype Probability | Estimate | Lower Bound    | Upper Bound | Estimate | Lower Bound      | Upper Bound               |
| PROBIT <sup>a</sup> | 1 0.01              | 160.370  | 29.261         | 344.980     | 5.077    | 3.376            | 5.843                     |
|                     | 0.02                | 204.886  | 44.072         | 415.661     | 5.322    | 3.786            | 6.030                     |
|                     | 0.03                | 239.338  | 57.057         | 468.611     | 5.478    | 4.044            | 6.150                     |
|                     | 0.04                | 269.023  | 69.218         | 513.376     | 5.595    | 4.237            | 6.241                     |
|                     | 0.05                | 295.864  | 80.936         | 553.349     | 5.690    | 4.394            | 6.316                     |
|                     | 0.06                | 320.811  | 92.403         | 590.179     | 5.771    | 4.526            | 6.380                     |
|                     | 0.07                | 344.408  | 103.733        | 624.807     | 5.842    | 4.642            | 6.437                     |
|                     | 0.08                | 367.006  | 114.999        | 657.831     | 5.905    | 4.745            | 6.489                     |
|                     | 0.09                | 388.843  | 126.252        | 689.659     | 5.963    | 4.838            | 6.536                     |
|                     | 0.1                 | 410.091  | 137.531        | 720.584     | 6.016    | 4.924            | 6.580                     |
|                     | 0.15                | 511.144  | 195.135        | 867.931     | 6.237    | 5.274            | 6.766                     |
|                     | 0.2                 | 608.938  | 256.059        | 1012.625    | 6.412    | 5.545            | 6.920                     |
|                     | 0.25                | 707.620  | 321.426        | 1162.502    | 6.562    | 5.773            | 7.058                     |
|                     | 0.3                 | 809.797  | 392.052        | 1323.235    | 6.697    | 5.971            | 7.188                     |
|                     | 0.35                | 917.604  | 468.675        | 1500.242    | 6.822    | 6.150            | 7.313                     |
|                     | 0.4                 | 1.033E3  | 552.064        | 1699.606    | 6.940    | 6.314            | 7.438                     |
|                     | 0.45                | 1.159E3  | 643.106        | 1928.808    | 7.055    | 6.466            | 7.565                     |

xlvi

# **Confidence Limits**

| -      |       |       |           |          |         |        |  |
|--------|-------|-------|-----------|----------|---------|--------|--|
| 7.695  | 6.611 | 7.168 | 2197.604  | 742.907  | 1.297E3 | 0.5    |  |
| 7.832  | 6.749 | 7.281 | 2519.296  | 852.936  | 1.452E3 | 0.55   |  |
| 7.977  | 6.883 | 7.396 | 2912.794  | 975.259  | 1.629E3 | 0.6    |  |
| 8.133  | 7.015 | 7.514 | 3406.248  | 1112.906 | 1.834E3 | 0.65   |  |
| 8.305  | 7.147 | 7.639 | 4043.936  | 1270.524 | 2.078E3 | 0.7    |  |
| 8.497  | 7.283 | 7.774 | 4900.521  | 1455.628 | 2.378E3 | 0.75   |  |
| 8.718  | 7.427 | 7.924 | 6114.215  | 1681.275 | 2.764E3 | 0.8    |  |
| 8.984  | 7.587 | 8.099 | 7977.505  | 1972.790 | 3.293E3 | 0.85   |  |
| 9.329  | 7.779 | 8.320 | 11257.295 | 2389.168 | 4.104E3 | 0.9    |  |
| 9.413  | 7.824 | 8.373 | 12249.747 | 2498.997 | 4.328E3 | 0.91   |  |
| 9.506  | 7.872 | 8.431 | 13433.918 | 2622.750 | 4.586E3 | 0.92   |  |
| 9.608  | 7.925 | 8.494 | 14876.620 | 2764.404 | 4.886E3 | 0.93   |  |
| 9.722  | 7.983 | 8.565 | 16682.060 | 2929.866 | 5.246E3 | 0.94   |  |
| 9.853  | 8.048 | 8.646 | 19023.761 | 3128.452 | 5.688E3 | 0.95   |  |
| 10.009 | 8.124 | 8.741 | 22217.648 | 3376.080 | 6.256E3 | 0.96   |  |
| 10.201 | 8.217 | 8.858 | 26918.589 | 3703.326 | 7.032E3 | 0.97   |  |
| 10.457 | 8.338 | 9.014 | 34799.544 | 4181.065 | 8.214E3 | 0.98   |  |
| 10.865 | 8.526 | 9.259 | 52321.851 | 5046.640 | 1.049E4 | 0.99   |  |
| 6.118  | 3.797 | 5.391 | 453.932   | 44.561   | 219.435 | 2 0.01 |  |
| 6.306  | 4.205 | 5.636 | 547.962   | 66.992   | 280.346 | 0.02   |  |
| 6.428  | 4.461 | 5.791 | 618.707   | 86.597   | 327.487 | 0.03   |  |
| 6.520  | 4.653 | 5.908 | 678.740   | 104.910  | 368.105 | 0.04   |  |
| 6.597  | 4.808 | 6.003 | 732.530   | 122.513  | 404.832 | 0.05   |  |
| 6.662  | 4.939 | 6.084 | 782.251   | 139.697  | 438.966 | 0.06   |  |
| 6.720  | 5.054 | 6.155 | 829.147   | 156.637  | 471.255 | 0.07   |  |
| 6.773  | 5.156 | 6.219 | 874.010   | 173.443  | 502.176 | 0.08   |  |
| 6.822  | 5.248 | 6.277 | 917.377   | 190.191  | 532.055 | 0.09   |  |
| 6.867  | 5.332 | 6.330 | 959.640   | 206.939  | 561.128 | 0.1    |  |
| 7.059  | 5.676 | 6.550 | 1162.780  | 291.868  | 699.399 | 0.15   |  |
| 7.219  | 5.942 | 6.725 | 1365.186  | 380.593  | 833.212 | 0.2    |  |
| 7.364  | 6.162 | 6.875 | 1577.842  | 474.543  | 968.238 | 0.25   |  |
| 7.501  | 6.354 | 7.010 | 1809.032  | 574.644  | 1.108E3 | 0.3    |  |
| 7.634  | 6.525 | 7.135 | 2066.879  | 681.683  | 1.256E3 | 0.35   |  |
| 7.767  | 6.680 | 7.254 | 2360.602  | 796.489  | 1.414E3 | 0.4    |  |
| xlvii  |       |       |           |          |         |        |  |

|   |      |         |          |           |       |       | _      |
|---|------|---------|----------|-----------|-------|-------|--------|
|   | 0.45 | 1.586E3 | 920.073  | 2701.557  | 7.369 | 6.824 | 7.902  |
|   | 0.5  | 1.775E3 | 1053.786 | 3104.529  | 7.482 | 6.960 | 8.041  |
|   | 0.55 | 1.987E3 | 1199.526 | 3589.635  | 7.595 | 7.090 | 8.186  |
|   | 0.6  | 2.229E3 | 1360.038 | 4185.460  | 7.709 | 7.215 | 8.339  |
|   | 0.65 | 2.510E3 | 1539.387 | 4934.594  | 7.828 | 7.339 | 8.504  |
|   | 0.7  | 2.844E3 | 1743.796 | 5904.130  | 7.953 | 7.464 | 8.683  |
|   | 0.75 | 3.254E3 | 1983.252 | 7207.411  | 8.088 | 7.592 | 8.883  |
|   | 0.8  | 3.782E3 | 2274.977 | 9054.550  | 8.238 | 7.730 | 9.111  |
|   | 0.85 | 4.505E3 | 2652.197 | 11890.680 | 8.413 | 7.883 | 9.384  |
|   | 0.9  | 5.615E3 | 3192.074 | 16883.884 | 8.633 | 8.068 | 9.734  |
|   | 0.91 | 5.922E3 | 3334.686 | 18395.111 | 8.686 | 8.112 | 9.820  |
|   | 0.92 | 6.275E3 | 3495.471 | 20198.463 | 8.744 | 8.159 | 9.913  |
|   | 0.93 | 6.686E3 | 3679.624 | 22395.807 | 8.808 | 8.211 | 10.017 |
|   | 0.94 | 7.178E3 | 3894.864 | 25146.042 | 8.879 | 8.267 | 10.132 |
|   | 0.95 | 7.783E3 | 4153.359 | 28713.812 | 8.960 | 8.332 | 10.265 |
|   | 0.96 | 8.560E3 | 4475.910 | 33581.024 | 9.055 | 8.406 | 10.422 |
|   | 0.97 | 9.621E3 | 4902.472 | 40746.811 | 9.172 | 8.497 | 10.615 |
|   | 0.98 | 1.124E4 | 5525.672 | 52764.250 | 9.327 | 8.617 | 10.874 |
|   | 0.99 | 1.436E4 | 6655.762 | 79497.264 | 9.572 | 8.803 | 11.283 |
| 3 | 0.01 | 526.665 | 148.363  | 997.382   | 6.267 | 5.000 | 6.905  |
|   | 0.02 | 672.856 | 219.712  | 1222.244  | 6.512 | 5.392 | 7.108  |
|   | 0.03 | 785.999 | 280.625  | 1396.698  | 6.667 | 5.637 | 7.242  |
|   | 0.04 | 883.486 | 336.390  | 1548.524  | 6.784 | 5.818 | 7.345  |
|   | 0.05 | 971.635 | 389.016  | 1687.637  | 6.879 | 5.964 | 7.431  |
|   | 0.06 | 1.054E3 | 439.513  | 1818.877  | 6.960 | 6.086 | 7.506  |
|   | 0.07 | 1.131E3 | 488.473  | 1945.029  | 7.031 | 6.191 | 7.573  |
|   | 0.08 | 1.205E3 | 536.277  | 2067.873  | 7.094 | 6.285 | 7.634  |
|   | 0.09 | 1.277E3 | 583.185  | 2188.633  | 7.152 | 6.369 | 7.691  |
|   | 0.1  | 1.347E3 | 629.387  | 2308.203  | 7.205 | 6.445 | 7.744  |
|   | 0.15 | 1.679E3 | 853.782  | 2907.885  | 7.426 | 6.750 | 7.975  |
|   | 0.2  | 2.000E3 | 1073.033 | 3542.257  | 7.601 | 6.978 | 8.173  |
|   | 0.25 | 2.324E3 | 1291.744 | 4240.364  | 7.751 | 7.164 | 8.352  |
|   | 0.3  | 2.659E3 | 1513.012 | 5026.234  | 7.886 | 7.322 | 8.522  |
|   | 0.35 | 3.013E3 | 1739.591 | 5925.031  | 8.011 | 7.461 | 8.687  |
|   |      |         |          |           |       |       | xlviii |

| 0 | 0.4  | 3.393E3 | 1974.346  | 6966.578   | 8.129  | 7.588 | 8.849  |
|---|------|---------|-----------|------------|--------|-------|--------|
| 0 | 0.45 | 3.805E3 | 2220.533  | 8188.785   | 8.244  | 7.706 | 9.011  |
| 0 | 0.5  | 4.260E3 | 2482.073  | 9642.154   | 8.357  | 7.817 | 9.174  |
| 0 | 0.55 | 4.770E3 | 2763.912  | 11396.626  | 8.470  | 7.924 | 9.341  |
| 0 | 0.6  | 5.350E3 | 3072.580  | 13552.872  | 8.585  | 8.030 | 9.514  |
| 0 | 0.65 | 6.023E3 | 3417.119  | 16262.207  | 8.703  | 8.137 | 9.697  |
| 0 | 0.7  | 6.825E3 | 3810.742  | 19764.356  | 8.828  | 8.246 | 9.892  |
| 0 | 0.75 | 7.811E3 | 4274.064  | 24465.643  | 8.963  | 8.360 | 10.105 |
| 0 | 0.8  | 9.076E3 | 4842.106  | 31120.745  | 9.113  | 8.485 | 10.346 |
| 0 | 0.85 | 1.081E4 | 5581.945  | 41330.191  | 9.288  | 8.627 | 10.629 |
| 0 | .9   | 1.348E4 | 6648.958  | 59296.926  | 9.509  | 8.802 | 10.990 |
| 0 | .91  | 1.421E4 | 6932.054  | 64734.509  | 9.562  | 8.844 | 11.078 |
| 0 | .92  | 1.506E4 | 7251.727  | 71223.459  | 9.620  | 8.889 | 11.174 |
| 0 | 0.93 | 1.605E4 | 7618.439  | 79130.640  | 9.683  | 8.938 | 11.279 |
| 0 | .94  | 1.723E4 | 8047.739  | 89028.386  | 9.754  | 8.993 | 11.397 |
| 0 | .95  | 1.868E4 | 8564.152  | 101870.034 | 9.835  | 9.055 | 11.531 |
| 0 | .96  | 2.054E4 | 9209.604  | 119391.877 | 9.930  | 9.128 | 11.690 |
| 0 | .97  | 2.309E4 | 10064.667 | 145194.368 | 10.047 | 9.217 | 11.886 |
| 0 | .98  | 2.698E4 | 11316.205 | 188479.688 | 10.203 | 9.334 | 12.147 |
| 0 | .99  | 3.446E4 | 13590.459 | 284810.681 | 10.448 | 9.517 | 12.560 |

b. Logarithm base = 2.718.

# **Probit Transformed Responses**



## **APPENDIX B-4** (seed test, glufosinate)

## **Probit Analysis**

| T at anieter Estimates |                        |   |          |            |        |      |                         |             |  |
|------------------------|------------------------|---|----------|------------|--------|------|-------------------------|-------------|--|
|                        | -                      |   |          |            |        |      | 95% Confidence Interval |             |  |
|                        | Parameter              |   | Estimate | Std. Error | Z      | Sig. | Lower Bound             | Upper Bound |  |
| PROBITª                | Dose                   |   | .668     | .073       | 9.169  | .000 | .525                    | .811        |  |
|                        | Intercept <sup>b</sup> | 1 | -2.266   | .520       | -4.354 | .000 | -2.787                  | -1.746      |  |
|                        |                        | 2 | -3.416   | .508       | -6.723 | .000 | -3.924                  | -2.908      |  |
|                        |                        | 3 | -4.550   | .528       | -8.625 | .000 | -5.078                  | -4.023      |  |

Parameter Estimates

a. PROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 2.718 logarithm.)

b. Corresponds to the grouping variable Biotype.

Biotype

|                     | -       | -             | 95% C    | onfidence Limi | ts for Dose | 95% Confidence Limits for log(Dose) <sup>b</sup> |             |             |
|---------------------|---------|---------------|----------|----------------|-------------|--------------------------------------------------|-------------|-------------|
|                     | Biotype | e Probability | Estimate | Lower Bound    | Upper Bound | Estimate                                         | Lower Bound | Upper Bound |
| PROBIT <sup>a</sup> | 1       | 0.01          | .914     | .000           | 26.716      | 090                                              | -25.400     | 3.285       |
|                     |         | 0.02          | 1.375    | .000           | 34.463      | .318                                             | -23.503     | 3.540       |
|                     |         | 0.03          | 1.781    | .000           | 40.576      | .577                                             | -22.302     | 3.703       |
|                     |         | 0.04          | 2.164    | .000           | 45.926      | .772                                             | -21.399     | 3.827       |
|                     |         | 0.05          | 2.536    | .000           | 50.831      | .930                                             | -20.665     | 3.929       |
|                     |         | 0.06          | 2.902    | .000           | 55.446      | 1.065                                            | -20.042     | 4.015       |
|                     |         | 0.07          | 3.266    | .000           | 59.862      | 1.184                                            | -19.495     | 4.092       |
|                     |         | 0.08          | 3.631    | .000           | 64.137      | 1.289                                            | -19.006     | 4.161       |
|                     |         | 0.09          | 3.998    | .000           | 68.312      | 1.386                                            | -18.562     | 4.224       |
|                     |         | 0.1           | 4.368    | .000           | 72.415      | 1.474                                            | -18.153     | 4.282       |
|                     |         | 0.15          | 6.305    | .000           | 92.490      | 1.841                                            | -16.463     | 4.527       |
|                     |         | 0.2           | 8.440    | .000           | 112.818     | 2.133                                            | -15.125     | 4.726       |
|                     |         | 0.25          | 10.840   | .000           | 134.256     | 2.383                                            | -13.980     | 4.900       |
|                     |         | 0.3           | 13.571   | .000           | 157.467     | 2.608                                            | -12.955     | 5.059       |
|                     |         | 0.35          | 16.712   | .000           | 183.118     | 2.816                                            | -12.009     | 5.210       |
|                     |         | 0.4           | 20.363   | .000           | 211.991     | 3.014                                            | -11.114     | 5.357       |
|                     |         | 0.45          | 24.653   | .000           | 245.085     | 3.205                                            | -10.251     | 5.502       |
|                     |         | 0.5           | 29.756   | .000           | 283.753     | 3.393                                            | -9.406      | 5.648       |
|                     |         | 0.55          | 35.916   | .000           | 329.920     | 3.581                                            | -8.566      | 5.799       |
|                     |         | 0.6           | 43.482   | .000           | 386.467     | 3.772                                            | -7.716      | 5.957       |
|                     |         | 0.65          | 52.981   | .001           | 457.933     | 3.970                                            | -6.845      | 6.127       |
|                     |         | 0.7           | 65.246   | .003           | 551.972     | 4.178                                            | -5.934      | 6.313       |
|                     |         | 0.75          | 81.686   | .007           | 682.641     | 4.403                                            | -4.962      | 6.526       |
|                     |         | 0.8           | 104.910  | .020           | 878.997     | 4.653                                            | -3.896      | 6.779       |
|                     |         | 0.85          | 140.439  | .069           | 1212.578    | 4.945                                            | -2.681      | 7.101       |
|                     |         | 0.9           | 202.707  | .299           | 1919.332    | 5.312                                            | -1.206      | 7.560       |
|                     |         | 0.91          | 221.495  | .423           | 2168.915    | 5.400                                            | 861         | 7.682       |
|                     |         | 0.92          | 243.885  | .611           | 2491.512    | 5.497                                            | 492         | 7.821       |
|                     |         | 0.93          | 271.124  | .910           | 2924.139    | 5.603                                            | 094         | 7.981       |
|                     | _       | 0.94          | 305.157  | 1.405          | 3533.003    | 5.721                                            | .340        | 8.170       |

**Confidence Limits** 

|   | 0.95 | 349.217 | 2.271   | 4448.095  | 5.856 | .820    | 8.400  |
|---|------|---------|---------|-----------|-------|---------|--------|
|   | 0.96 | 409.175 | 3.907   | 5959.667  | 6.014 | 1.363   | 8.693  |
|   | 0.97 | 497.173 | 7.344   | 8851.534  | 6.209 | 1.994   | 9.088  |
|   | 0.98 | 644.119 | 15.880  | 16024.021 | 6.468 | 2.765   | 9.682  |
|   | 0.99 | 968.758 | 45.281  | 48289.015 | 6.876 | 3.813   | 10.785 |
| 2 | 0.01 | 5.113   | .000    | 57.510    | 1.632 | -17.900 | 4.052  |
|   | 0.02 | 7.690   | .000    | 72.955    | 2.040 | -15.987 | 4.290  |
|   | 0.03 | 9.962   | .000    | 84.915    | 2.299 | -14.774 | 4.442  |
|   | 0.04 | 12.105  | .000    | 95.238    | 2.494 | -13.862 | 4.556  |
|   | 0.05 | 14.183  | .000    | 104.593   | 2.652 | -13.120 | 4.650  |
|   | 0.06 | 16.231  | .000    | 113.311   | 2.787 | -12.490 | 4.730  |
|   | 0.07 | 18.269  | .000    | 121.582   | 2.905 | -11.937 | 4.801  |
|   | 0.08 | 20.309  | .000    | 129.526   | 3.011 | -11.442 | 4.864  |
|   | 0.09 | 22.362  | .000    | 137.228   | 3.107 | -10.992 | 4.922  |
|   | 0.1  | 24.435  | .000    | 144.747   | 3.196 | -10.579 | 4.975  |
|   | 0.15 | 35.268  | .000    | 180.894   | 3.563 | -8.868  | 5.198  |
|   | 0.2  | 47.212  | .001    | 216.595   | 3.855 | -7.510  | 5.378  |
|   | 0.25 | 60.636  | .002    | 253.477   | 4.105 | -6.349  | 5.535  |
|   | 0.3  | 75.913  | .005    | 292.720   | 4.330 | -5.309  | 5.679  |
|   | 0.35 | 93.487  | .013    | 335.471   | 4.538 | -4.348  | 5.816  |
|   | 0.4  | 113.910 | .032    | 383.060   | 4.735 | -3.439  | 5.948  |
|   | 0.45 | 137.907 | .077    | 437.218   | 4.927 | -2.564  | 6.080  |
|   | 0.5  | 166.454 | .181    | 500.381   | 5.115 | -1.707  | 6.215  |
|   | 0.55 | 200.910 | .425    | 576.225   | 5.303 | 857     | 6.356  |
|   | 0.6  | 243.234 | .999    | 670.706   | 5.494 | .000    | 6.508  |
|   | 0.65 | 296.371 | 2.390   | 794.295   | 5.692 | .871    | 6.677  |
|   | 0.7  | 364.980 | 5.880   | 967.475   | 5.900 | 1.772   | 6.875  |
|   | 0.75 | 456.940 | 15.037  | 1236.425  | 6.125 | 2.711   | 7.120  |
|   | 0.8  | 586.856 | 40.214  | 1728.500  | 6.375 | 3.694   | 7.455  |
|   | 0.85 | 785.601 | 110.879 | 2915.981  | 6.666 | 4.708   | 7.978  |
|   | 0.9  | 1.134E3 | 295.683 | 7564.538  | 7.033 | 5.689   | 8.931  |
|   | 0.91 | 1.239E3 | 355.415 | 10040.399 | 7.122 | 5.873   | 9.214  |
|   | 0.92 | 1.364E3 | 425.246 | 13939.508 | 7.218 | 6.053   | 9.542  |
|   | 0.93 | 1.517E3 | 506.884 | 20432.479 | 7.324 | 6.228   | 9.925  |

|      | 0.94 | 1.707E3 | 602.992  | 32031.426   | 7.442 | 6.402   | 10.374 |
|------|------|---------|----------|-------------|-------|---------|--------|
|      | 0.95 | 1.953E3 | 718.080  | 54752.240   | 7.577 | 6.577   | 10.911 |
|      | 0.96 | 2.289E3 | 860.387  | 105329.061  | 7.736 | 6.757   | 11.565 |
|      | 0.97 | 2.781E3 | 1046.569 | 241728.497  | 7.931 | 6.953   | 12.396 |
|      | 0.98 | 3.603E3 | 1316.748 | 752104.105  | 8.190 | 7.183   | 13.531 |
|      | 0.99 | 5.419E3 | 1810.330 | 4700750.574 | 8.598 | 7.501   | 15.363 |
| 3    | 0.01 | 27.936  | .000     | 166.289     | 3.330 | -11.058 | 5.114  |
|      | 0.02 | 42.015  | .000     | 211.037     | 3.738 | -9.145  | 5.352  |
|      | 0.03 | 54.434  | .000     | 245.805     | 3.997 | -7.933  | 5.505  |
|      | 0.04 | 66.140  | .001     | 275.920     | 4.192 | -7.022  | 5.620  |
|      | 0.05 | 77.496  | .002     | 303.315     | 4.350 | -6.281  | 5.715  |
|      | 0.06 | 88.685  | .004     | 328.943     | 4.485 | -5.652  | 5.796  |
|      | 0.07 | 99.817  | .006     | 353.357     | 4.603 | -5.100  | 5.867  |
|      | 0.08 | 110.966 | .010     | 376.910     | 4.709 | -4.606  | 5.932  |
|      | 0.09 | 122.183 | .016     | 399.848     | 4.806 | -4.158  | 5.991  |
|      | 0.1  | 133.507 | .024     | 422.352     | 4.894 | -3.746  | 6.046  |
|      | 0.15 | 192.701 | .130     | 532.371     | 5.261 | -2.043  | 6.277  |
|      | 0.2  | 257.962 | .498     | 644.937     | 5.553 | 698     | 6.469  |
|      | 0.25 | 331.305 | 1.565    | 766.964     | 5.803 | .448    | 6.642  |
|      | 0.3  | 414.780 | 4.331    | 905.754     | 6.028 | 1.466   | 6.809  |
|      | 0.35 | 510.800 | 10.966   | 1071.765    | 6.236 | 2.395   | 6.977  |
|      | 0.4  | 622.389 | 25.956   | 1282.834    | 6.434 | 3.256   | 7.157  |
|      | 0.45 | 753.504 | 57.958   | 1573.431    | 6.625 | 4.060   | 7.361  |
|      | 0.5  | 909.480 | 121.801  | 2018.050    | 6.813 | 4.802   | 7.610  |
|      | 0.55 | 1.098E3 | 237.091  | 2794.378    | 7.001 | 5.468   | 7.935  |
|      | 0.6  | 1.329E3 | 416.535  | 4356.147    | 7.192 | 6.032   | 8.379  |
|      | 0.65 | 1.619E3 | 650.285  | 7904.933    | 7.390 | 6.477   | 8.975  |
|      | 0.7  | 1.994E3 | 916.351  | 16808.936   | 7.598 | 6.820   | 9.730  |
|      | 0.75 | 2.497E3 | 1207.718 | 41683.465   | 7.823 | 7.096   | 10.638 |
|      | 0.8  | 3.206E3 | 1540.183 | 122203.761  | 8.073 | 7.340   | 11.713 |
|      | 0.85 | 4.292E3 | 1954.469 | 447931.948  | 8.365 | 7.578   | 13.012 |
|      | 0.9  | 6.196E3 | 2545.302 | 2379438.170 | 8.732 | 7.842   | 14.682 |
|      | 0.91 | 6.770E3 | 2703.228 | 3574455.833 | 8.820 | 7.902   | 15.089 |
|      | 0.92 | 7.454E3 | 2882.640 | 5568044.533 | 8.917 | 7.966   | 15.533 |
| <br> |      |         |          |             |       |         | liii   |

| 0.93 | 8.287E3 | 3090.068 | 9075428.200 | 9.022  | 8.036 | 16.021 |
|------|---------|----------|-------------|--------|-------|--------|
| 0.94 | 9.327E3 | 3335.314 | 1.568E7     | 9.141  | 8.112 | 16.568 |
| 0.95 | 1.067E4 | 3634.011 | 2.930E7     | 9.276  | 8.198 | 17.193 |
| 0.96 | 1.251E4 | 4013.244 | 6.114E7     | 9.434  | 8.297 | 17.929 |
| 0.97 | 1.520E4 | 4525.918 | 1.514E8     | 9.629  | 8.418 | 18.835 |
| 0.98 | 1.969E4 | 5297.357 | 5.062E8     | 9.888  | 8.575 | 20.042 |
| 0.99 | 2.961E4 | 6760.852 | 3.408E9     | 10.296 | 8.819 | 21.949 |

b. Logarithm base = 2.718.



# Probit Transformed Responses

### **APPENDIX C-1**

## **Protein Extraction Buffers**

Extraction buffer (100 mM Tris-HCl, pH 7.5 with 2mM EDTA, 1.5% (w/v) PVP and 5 mM DTT): 12.114 g of Tris, 1.5845 g of EDTA and 0.7713g of DTT were dissolved in 800 ml of distilled water. The pH was adjusted to 7.5 and the volume was made up to 1 L with distilled water. 5 ml of extraction buffer was added for each gram powder and 50  $\mu$ l of protease inhibitor cocktail were added for every 5 ml of extraction buffer.

**Buffer A (20 mM Tris-HCl, pH 7.5 containing 1 mM DTT):** 2.4228 g of Tris and 0.1543 g of DTT were dissolved in distilled water. Its pH was adjusted to 7.5 and the final volume was made up to 1 L with distilled water.

### **APPENDIX C-2**

#### **Protein Content Determination**

**Bradford reagent:** Coomassie Brilliant Blue G-250 (100 mg) was dissolved in 50 ml 95% ethanol. To this solution 100 ml 85% (w/v) phosphoric acid was added. The resulting solution was diluted to a final volume of 1 liter. Final concentrations in the reagent were 0.01% (w/v) Coomassie Brilliant Blue G-250, 4.7% (w/v) ethanol, and 8.5% (w/v) phosphoric acid.

Protein concentrations in samples were determined as described by Bradford (1976). Each time protein estimation was carried out, a standard curve was constructed. Figure A1 is one example of a standard curve based on the following straight line equation:

$$(Absorbance)_{595 nm} = 0.0048 (Amount of protein, mg) + 0.0019$$
 (1)

lv

Absorbance of diluted sample(s) was taken and concentration of sample(s) was determined using equation 1. The amount generated was then multiplied with the dilution factor.



**Fig. A1.** Standard curve for the determination of protein content based on the method of Bradford (1976).

## **APPENDIX C-3**

## Laemli Discontinuous SDS-PAGE

## **Reagents and Buffers**

**10%** (w/v) SDS solution: 10 g of SDS was dissolved in 50 ml of water with gentle shaking. The final volume was then made to 100 ml.

**10% (w/v) APS solution:** 10 mg of SDS were dissolved in1 ml of distilled water. The solution was prepared fresh just before gel casting.

**Overlay solution:** 100  $\mu$ l of 10% (w/v) was mixed with 900  $\mu$ l of distilled water.

**Running buffer:** 10X Tris /Glycine/SDS buffer (stock) was diluted according to the manufacturer's instruction, with 1:9 ratio of running buffer to distilled water.

**Sample buffer:** 1.25 ml of 0.5 M Tris-HCl, pH 6.8, 2.5 ml of glycerol, 2.0 ml of 10 (w/v) SDS, 0.2 ml of 0.5% (w/v) bromophenol blue (BPB) and 3.55 ml of distilled water were mixed. This stock solution was kept at room temperature. To prepare a 1 ml sample buffer, 50  $\mu$ l of 2-mercaptoethanol was added to 950  $\mu$ l of (stock) sample buffer. Sample was diluted with sample buffer at a 1:4 ratio. The sample was then heated at 95 °C for 5 minutes.

## **APPENDIX C-4**

## **Two-Dimensional (2-D) Gel Electrophoresis**

### Reagents

Rehydration buffer (8 M Urea, 15 mM DTT, 30 mM Thiourea, 0.5% (v/v) Ampholyte, pH 3-10, 2% (w/v) CHAPS, traces of BPB): 0.48 g of urea was dissolved in 500  $\mu$ l deionized water in 1.5 ml Eppendorf tube. 0.0015 g of DTT, 0.017 g of thiourea and 0.02 g of CHAPS were added and the mixture was vortexed. 5  $\mu$ l of Ampholyte was then added. The volume was made up to 1 ml and traces of BPB were mixed to give the solution a pale blue colour.

Equilibration buffer (50 mM Tris-HCl pH 8.0, 6 M Urea, 30% (v/v) glycerol, 2% (w/v) SDS: A stock solution was made by dissolving 7.207 g of urea and 0.4 g of SDS in 5 ml of deionized water. Then, 6.9 ml of glycerol and 0.67 ml of 50 mM Tris-HCL, pH 8.0 was added. The volume was made up to 20 ml.

# **APPENDIX D-1**

| Matched spots betwee | en the susceptible and | d the Jerantut biotype. |
|----------------------|------------------------|-------------------------|
|----------------------|------------------------|-------------------------|

| Spot ID | % Vol.                | Susceptible | Jerantut | t-test |  |
|---------|-----------------------|-------------|----------|--------|--|
| opotib  | <i>/</i> ° <b>·</b> • | biotype     | biotype  |        |  |
| 0       | 0.777476              | 0.777476    | 0.349157 | 0.4152 |  |
| 1       | 3.47347               | 3.47347     | 2.16243  | 0.4996 |  |
| 2       | 23.5713               | 23.5713     | 11.6548  | 0.0257 |  |
| 3       | 1.98355               | 0.20583     | 1.98355  | 0.2342 |  |
| 4       | 3.56795               | 3.56795     | 1.78848  | 0.0118 |  |
| 5       | 0.549682              | 0.549682    | 0.02281  | 0.0818 |  |
| 6       | 0.169784              | 0.169784    | 0.139955 | 0.8848 |  |
| 7       | 0.13177               | 0.106298    | 0.13177  | 0.7295 |  |
| 8       | 1.83558               | 1.83558     | 0.188748 | 0.1304 |  |
| 9       | 0.369888              | 0.246066    | 0.369888 | 0.1374 |  |
| 10      | 0.251769              | 0.251769    | 0.031573 | 0.0727 |  |
| 11      | 3.86004               | 2.82172     | 3.86004  | 0.3561 |  |
| 12      | 0.357706              | 0.357706    | 0.14987  | 0.3822 |  |
| 13      | 1.06803               | 0.615712    | 1.06803  | 0.6609 |  |
| 14      | 0.228067              | 0.228067    | 0.17282  | 0.7515 |  |
| 15      | 0.420831              | 0.420831    | 0.358855 | 0.8074 |  |
| 16      | 0.0336701             | 0.032089    | 0.03367  | 0.9745 |  |
| 17      | 0.241738              | 0.140395    | 0.241738 | 0.2907 |  |
| 18      | 0.226036              | 0.090451    | 0.226036 | 0.4797 |  |
| 19      | 0.336304              | 0.336304    | 0.131751 | 0.4449 |  |
| 20      | 0.504141              | 0.504141    | 0.162173 | 0.0503 |  |
| 21      | 0.292433              | 0.17248     | 0.292433 | 0.5634 |  |
| 22      | 0.19157               | 0.19157     | 0.085288 | 0.3914 |  |
| 23      | 0.409253              | 0.409253    | 0.096195 | 0.1176 |  |
| 24      | 1.04282               | 0.620831    | 1.04282  | 0.0712 |  |
| 25      | 0.383942              | 0.362036    | 0.383942 | 0.9356 |  |
| 26      | 1.63719               | 0.172716    | 1.63719  | 0.1436 |  |
| 27      | 0.558285              | 0.558285    | 0.45648  | 0.8785 |  |
| 28      | 0.28701               | 0.28701     | 0.258885 | 0.8914 |  |
| 29      | 0.446094              | 0.446094    | 0.086331 | 0.065  |  |
| 30      | 0.619552              | 0.037589    | 0.619552 | 0.404  |  |
| 31      | 0.478199              | 0.14538     | 0.478199 | 0.0472 |  |
| 32      | 0.572029              | 0.572029    | 0.039967 | 0.2506 |  |
| 33      | 0.155701              | 0.155701    | 0.034595 | 0.4188 |  |
| 34      | 0.408419              | 0.408419    | 0.179204 | 0.4144 |  |
| 35      | 0.474109              | 0.474109    | 0.365254 | 0.0654 |  |
| 36      | 0.398881              | 0.398881    | 0.153762 | 0.002  |  |
| 37      | 0.554108              | 0.554108    | 0.295537 | 0.3037 |  |
| 38      | 0.87737               | 0.169897    | 0.87737  | 0.0615 |  |

| 39        | 0.577387  | 0.577387 | 0.410405 | 0.2951 |
|-----------|-----------|----------|----------|--------|
| 40        | 0.280563  | 0.280563 | 0.100545 | 0.5888 |
| 41        | 0.349928  | 0.349928 | 0.063076 | 0.3494 |
| 42        | 0.114223  | 0.114223 |          |        |
| 43        | 1.18552   | 1.18552  |          |        |
| 44        | 0.172918  | 0.172918 |          |        |
| 45        | 0.633054  | 0.633054 |          |        |
| 46        | 0.534022  | 0.534022 |          |        |
| 47        | 0.745236  | 0.745236 |          |        |
| 48        | 0.615736  | 0.615736 |          |        |
| 49        | 0.552834  | 0.552834 |          |        |
| 50        | 0.211378  | 0.211378 |          |        |
| 51        | 0.352117  | 0.352117 |          |        |
| 52        | 0.406215  | 0.406215 |          |        |
| 53        | 0.560807  | 0.560807 |          |        |
| 54        | 0.37867   | 0.37867  |          |        |
| 55        | 0.547418  | 0.547418 |          |        |
| 56        | 0 179358  | 0 179358 |          |        |
| 57        | 0 287168  | 0 287168 |          |        |
| 58        | 0 718016  | 0 718016 |          |        |
| 59        | 0 182315  | 0 182315 |          |        |
| 60        | 0.376906  | 0.376906 |          |        |
| 61        | 0 124069  | 0 124069 |          |        |
| 62        | 0.124003  | 0.124003 |          |        |
| 63        | 0.733316  | 0.733316 |          |        |
| 64        | 0.352763  | 0.352763 |          |        |
| 65        | 0.0656824 | 0.065682 |          |        |
| 66        | 0.076312  | 0.076312 |          |        |
| 67        | 0.0916142 | 0.091614 |          |        |
| 68        | 0.0010142 | 0.831091 |          |        |
| 60        | 0.637785  | 0.637785 |          |        |
| 70        | 0.037783  | 0.037785 |          |        |
| 70        | 0.32437   | 0.32437  |          |        |
| 71        | 0.402934  | 0.402934 |          |        |
| 72        | 0.101340  | 0.101040 |          |        |
| 73        | 0.1343/3  | 0.1343/3 |          |        |
| 74        | 0.240007  | 0.24000/ |          |        |
| 75        | 0.202005  | 0.202003 |          |        |
| 70        | 0.301074  | 0.301074 |          |        |
| 01        | 0.20200   | 0.203108 | 1 00721  | 0 2021 |
| 10        | 3.2707    | 3.2/0/   | 1 00740  | 0.2450 |
| 02<br>02  | 1.5055    | 1 51500  | 2 17002  | 0.3438 |
| ۵3<br>۱۸0 | 2.1/083   | 1.21228  | 2.1/083  | 0.7913 |
| 148       | 0.1/95/8  |          | 0.1/92/8 |        |
| 149       | 0.32951   |          | 0.32951  |        |
| 150       | 1.383/4   |          | 1.383/4  |        |
| 151       | 0.0658553 |          | 0.065855 |        |

| 152 | 0.0961924 | 0.096192 |  |
|-----|-----------|----------|--|
| 153 | 0.665318  | 0.665318 |  |
| 154 | 0.604238  | 0.604238 |  |
| 155 | 0.951644  | 0.951644 |  |
| 156 | 0.0602126 | 0.060213 |  |
| 157 | 0.0634799 | 0.06348  |  |
| 158 | 1.00902   | 1.00902  |  |
| 159 | 0.134997  | 0.134997 |  |
| 160 | 0.0943541 | 0.094354 |  |
| 161 | 0.879124  | 0.879124 |  |
| 162 | 1.22048   | 1.22048  |  |
| 163 | 0.138746  | 0.138746 |  |
| 164 | 0.319382  | 0.319382 |  |
| 165 | 0.136688  | 0.136688 |  |
| 166 | 1.65785   | 1.65785  |  |
| 167 | 0.216187  | 0.216187 |  |
| 168 | 0.22388   | 0.22388  |  |
| 169 | 0.189011  | 0.189011 |  |
| 170 | 0.159509  | 0.159509 |  |
| 171 | 0.395177  | 0.395177 |  |
| 172 | 0.854836  | 0.854836 |  |
| 173 | 0.691733  | 0.691733 |  |
| 174 | 0.743769  | 0.743769 |  |
| 175 | 1.90018   | 1.90018  |  |
| 176 | 0.0701215 | 0.070122 |  |
| 177 | 0.192507  | 0.192507 |  |
| 178 | 0.101854  | 0.101854 |  |
| 179 | 0.151094  | 0.151094 |  |
| 180 | 0.266113  | 0.266113 |  |
| 181 | 0.311789  | 0.311789 |  |
| 182 | 0.212034  | 0.212034 |  |
| 183 | 0.425706  | 0.425706 |  |
| 184 | 0.23583   | 0.23583  |  |
| 185 | 0.365403  | 0.365403 |  |
| 186 | 0.419214  | 0.419214 |  |
| 187 | 0.288003  | 0.288003 |  |
| 188 | 0.056273  | 0.056273 |  |
| 189 | 0.0410239 | 0.041024 |  |
| 190 | 0.248369  | 0.248369 |  |
| 191 | 0.872486  | 0.872486 |  |
| 192 | 0.432613  | 0.432613 |  |
| 193 | 0.156524  | 0.156524 |  |
| 194 | 0.209551  | 0.209551 |  |
| 195 | 0.0472487 | 0.047249 |  |
| 196 | 0.632398  | 0.632398 |  |
| 197 | 1.55399   | 1.55399  |  |
| 198 | 0.484333  |          | 0.484333 |  |
|-----|-----------|----------|----------|--|
| 199 | 0.356359  |          | 0.356359 |  |
| 200 | 0.101441  |          | 0.101441 |  |
| 201 | 0.239461  |          | 0.239461 |  |
| 202 | 6.11131   |          | 6.11131  |  |
| 203 | 0.0972767 |          | 0.097277 |  |
| 204 | 0.484609  |          | 0.484609 |  |
| 205 | 0.130624  |          | 0.130624 |  |
| 206 | 0.0577062 |          | 0.057706 |  |
| 207 | 0.259432  |          | 0.259432 |  |
| 208 | 0.113947  |          | 0.113947 |  |
| 209 | 0.0663607 |          | 0.066361 |  |
| 210 | 0.302774  |          | 0.302774 |  |
| 211 | 0.0732257 |          | 0.073226 |  |
| 212 | 0.162969  |          | 0.162969 |  |
| 213 | 0.159893  |          | 0.159893 |  |
| 214 | 0.109892  |          | 0.109892 |  |
| 215 | 0.0911249 |          | 0.091125 |  |
| 216 | 0.214592  | 0.214592 |          |  |

## **APPENDIX D-2**

Matched spots between the susceptible and the Kesang biotype.

| Spot ID | % Vol.                                 | Susceptible | Kesang   | t-test |  |
|---------|----------------------------------------|-------------|----------|--------|--|
| oporio  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | biotype     | biotype  |        |  |
| 0       | 0.789004                               | 0.789004    |          |        |  |
| 1       | 2.14009                                | 2.14009     | 0.508146 | 0.1069 |  |
| 2       | 23.7643                                | 23.7643     | 12.3276  | 0.0577 |  |
| 3       | 0.212487                               | 0.212487    |          |        |  |
| 4       | 3.59147                                | 3.59147     | 3.25961  | 0.6290 |  |
| 5       | 0.549898                               | 0.549898    |          |        |  |
| 6       | 0.175276                               | 0.175276    |          |        |  |
| 7       | 0.108111                               | 0.108111    | 0.045751 | 0.4622 |  |
| 8       | 4.69505                                | 1.85691     | 4.69505  | 0.2695 |  |
| 9       | 0.225409                               | 0.225409    |          |        |  |
| 10      | 0.251578                               | 0.251578    |          |        |  |
| 11      | 4.37614                                | 2.84301     | 4.37614  | 0.4279 |  |
| 12      | 0.362014                               | 0.362014    |          |        |  |
| 13      | 4.16536                                | 4.16536     | 3.08214  | 0.1078 |  |
| 14      | 0.058891                               | 0.058891    |          |        |  |
| 15      | 0.185684                               | 0.185684    |          |        |  |
| 16      | 0.033127                               | 0.033127    |          |        |  |
| 17      | 0.142474                               | 0.142474    | 0.073895 | 0.5439 |  |
| 18      | 0.093376                               | 0.093376    |          |        |  |
| 19      | 0.337749                               | 0.337749    |          |        |  |
| 20      | 0.509227                               | 0.509227    |          |        |  |
| 21      | 0.182456                               | 0.178058    | 0.182456 | 0.9839 |  |
| 22      | 0.146025                               | 0.134754    | 0.146025 | 0.9023 |  |
| 23      | 0.415842                               | 0.415842    |          |        |  |
| 24      | 0.626254                               | 0.626254    |          |        |  |
| 25      | 0.360881                               | 0.360881    | 0.063446 | 0.2446 |  |
| 26      | 0.31896                                | 0.178302    | 0.31896  | 0.5209 |  |
| 27      | 1.35146                                | 0.576342    | 1.35146  | 0.3101 |  |
| 28      | 0.086312                               | 0.086312    |          |        |  |
| 29      | 0.446804                               | 0.446804    |          |        |  |
| 30      | 0.127465                               | 0.127465    |          |        |  |
| 31      | 0.147757                               | 0.147757    |          |        |  |
| 32      | 0.575682                               | 0.575682    |          |        |  |
| 33      | 0.159761                               | 0.159761    |          |        |  |
| 34      | 0.408136                               | 0.408136    |          |        |  |
| 35      | 0.479362                               | 0.479362    |          |        |  |
| 36      | 0.403388                               | 0.403388    |          |        |  |
| 37      | 0.564688                               | 0.564688    |          |        |  |
| 38      | 0.175392                               | 0.175392    | 0.153021 | 0.9281 |  |
| 39      | 0.581043                               | 0.581043    |          |        |  |

| 40 | 0.289637 | 0.289637 |          |        |
|----|----------|----------|----------|--------|
| 41 | 0.3511   | 0.3511   |          |        |
| 42 | 0.141921 | 0.117028 | 0.141921 | 0.8354 |
| 43 | 1.23986  | 1.19561  | 1.23986  | 0.9298 |
| 44 | 0.174671 | 0.174671 |          |        |
| 45 | 0.120001 | 0.120001 |          |        |
| 46 | 0.537799 | 0.537799 | 0.151956 | 0.3373 |
| 47 | 0.568937 | 0.568937 | 0.395604 | 0.4218 |
| 48 | 0.458464 | 0.458464 | 0.238401 | 0.6799 |
| 49 | 0.556205 | 0.556205 | 0.19911  | 0.0341 |
| 50 | 0.212453 | 0.212453 | 0.197148 | 0.2300 |
| 51 | 0.196964 | 0.196964 |          |        |
| 52 | 0.645187 | 0.645187 |          |        |
| 53 | 0.562996 | 0.562996 | 0.083886 | 0.0210 |
| 54 | 0.379264 | 0.379264 | 0.182692 | 0.2066 |
| 55 | 0.548805 | 0.548805 | 0.250361 | 0.5233 |
| 56 | 0.232429 | 0.232429 |          |        |
| 57 | 0.289247 | 0.289247 |          |        |
| 58 | 0.723926 | 0.723926 |          |        |
| 59 | 0.078283 | 0.078283 |          |        |
| 60 | 0.152117 | 0.152117 |          |        |
| 62 | 0.114811 | 0.114811 |          |        |
| 63 | 0.739666 | 0.739666 |          |        |
| 64 | 0.362036 | 0.362036 |          |        |
| 65 | 0.066469 | 0.066469 |          |        |
| 66 | 0.077048 | 0.077048 | 0.016797 |        |
| 67 | 0.09655  | 0.092348 | 0.09655  | 0.9369 |
| 68 | 1.07229  | 1.07229  |          |        |
| 69 | 0.765927 | 0.765927 |          |        |
| 70 | 0.326769 | 0.326769 |          |        |
| 71 | 0.669644 | 0.669644 | 0.237087 | 0.2544 |
| 72 | 0.164542 | 0.164542 |          |        |
| 73 | 0.384888 | 0.384888 |          |        |
| 74 | 0.242492 | 0.242492 |          |        |
| 75 | 0.266963 | 0.266963 |          |        |
| 76 | 0.301602 | 0.301602 |          |        |
| 77 | 0.270944 | 0.270944 | 0.076535 | 0.3945 |
| 78 | 1.93845  | 1.93845  | 0.296506 | 0.0376 |
| 79 | 2.98339  | 2.94338  | 2.98339  | 0.9638 |
| 80 | 0.215008 | 0.215008 | 0.106643 | 0.6830 |
| 84 | 0.217653 | 0.217653 |          |        |
| 85 | 0.714228 | 0.714228 |          |        |
| 86 | 19.2744  |          | 19.2744  |        |
| 87 | 0.394305 |          | 0.394305 |        |
| 88 | 0.096252 |          | 0.096252 |        |
| 89 | 2.58392  |          | 2.58392  |        |

|     | 1        |          |  |
|-----|----------|----------|--|
| 90  | 0.327165 | 0.327165 |  |
| 91  | 7.27634  | 7.27634  |  |
| 92  | 0.154254 | 0.154254 |  |
| 93  | 0.072633 | 0.072633 |  |
| 94  | 0.288429 | 0.288429 |  |
| 95  | 0.167423 | 0.167423 |  |
| 96  | 0.346853 | 0.346853 |  |
| 97  | 0.101181 | 0.101181 |  |
| 98  | 0.413472 | 0.413472 |  |
| 99  | 0.214949 | 0.214949 |  |
| 100 | 0.32396  | 0.32396  |  |
| 101 | 0.191349 | 0.191349 |  |
| 102 | 0.16849  | 0.16849  |  |
| 103 | 0.328636 | 0.328636 |  |
| 104 | 0.192053 | 0.192053 |  |
| 105 | 0.17179  | 0.17179  |  |
| 106 | 0.412928 | 0.412928 |  |
| 107 | 2.09359  | 2.09359  |  |
| 108 | 0.078575 | 0.078575 |  |
| 109 | 0.131838 | 0.131838 |  |
| 110 | 0.256803 | 0.256803 |  |
| 111 | 0.407044 | 0.407044 |  |
| 112 | 0.3312   | 0.3312   |  |
| 113 | 0.35454  | 0.35454  |  |
| 114 | 0.541301 | 0.541301 |  |
| 115 | 0.045075 | 0.045075 |  |
| 116 | 0.047177 | 0.047177 |  |
| 117 | 3.16638  | 3.16638  |  |
| 118 | 0.058262 | 0.058262 |  |
| 119 | 1.33663  | 1.33663  |  |
| 120 | 0.277147 | 0.277147 |  |
| 121 | 0.167905 | 0.167905 |  |
| 122 | 0.04197  | 0.04197  |  |
| 123 | 0.168306 | 0.168306 |  |
| 124 | 0.087019 | 0.087019 |  |
| 125 | 0.145676 | 0.145676 |  |
| 126 | 0.216321 | 0.216321 |  |
| 127 | 0.232391 | 0.232391 |  |
| 128 | 0.200548 | 0.200548 |  |
| 129 | 0.162192 | 0.162192 |  |
| 130 | 0.277195 | 0.277195 |  |
| 131 | 0.248594 | 0.248594 |  |
| 132 | 0.399927 | 0.399927 |  |
| 133 | 0.178415 | 0.178415 |  |
| 134 | 0.165267 | 0.165267 |  |
| 135 | 0.168856 | 0.168856 |  |

| 136 | 0.056019 | 0.056019 |  |
|-----|----------|----------|--|
| 137 | 0.196867 | 0.196867 |  |
| 138 | 0.092131 | 0.092131 |  |
| 139 | 0.040787 | 0.040787 |  |
| 140 | 0.27746  | 0.27746  |  |
| 141 | 0.283044 | 0.283044 |  |
| 142 | 0.280497 | 0.280497 |  |
| 143 | 0.037384 | 0.037384 |  |
| 144 | 0.426322 | 0.426322 |  |
| 145 | 0.402865 | 0.402865 |  |
| 146 | 0.220544 | 0.220544 |  |
| 147 | 0.08002  | 0.08002  |  |
|     |          |          |  |

#### **APPENDIX E-1**

## Identification of spots listed in Table 3.12 using ProFound

| ProFo  | und - Search  | Result S | ummary                                                                                                                                                                      |           |     |       |   |
|--------|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-------|---|
| Protei | in Candidates |          |                                                                                                                                                                             |           |     |       |   |
| Rank   | Probability   | Est'd Z  | Protein Information and Sequence Analyse Tools<br>(T)                                                                                                                       | %         | pI  | kDa   | R |
| +1     | 1.0e+000      | 2.21     | gi 321273474 gb ADW80737.1  chloroplast<br>ribulose-1,5-bisphosphate carboxylase/oxygenase<br>small subunit [Flaveria vaginata]                                             | 26        | 5.4 | 11.70 | ٢ |
| 1      | 6.6e-001      | 0.30     | gi 164453462 gb ABY57490.1  NADH dehydrogenase<br>subunit J [Arabidopsis thaliana]                                                                                          | 28        | 5.9 | 14.90 | ۲ |
| 1      | 1.0e+000      | 1.16     | gi 148908879 gb ABR17544.1  unknown [Picea sitchensis]                                                                                                                      | <u>39</u> | 6.8 | 15.03 | ۲ |
| +1     | 1.0e+000      | 2.43     | <u>gi 15226467 ref NP_179709.1 </u> peptidyl-prolyl cis-<br>trans isomerase / cyclophilin (CYP2) / rotamase<br>[Arabidopsis thaliana]                                       | 21        | 8.8 | 18.67 | ۲ |
| 1      | 1.5e-001      | 0.09     | gi 242057419 ref XP_002457855.1  hypothetical<br>protein SORBIDRAFT_03g016086 [Sorghum<br>bicolor]                                                                          | <u>14</u> | 5.2 | 18.19 | ۲ |
| 1      | 6.6e-001      | 1.35     | gi 222634899 gb EEE65031.1  hypothetical protein<br>OsJ_20009 [Oryza sativa Japonica Group]                                                                                 | <u>20</u> | 5.9 | 20.57 | ۲ |
| +1     | 1.0e+000      | 2.29     | <u>gi 2499477 sp Q96468.1 BAS1_HORVU</u> RecName:<br>Full=2-Cys peroxiredoxin BAS1, chloroplastic;<br>AltName: Full=Thiol-specific antioxidant protein; Flags:<br>Precursor | 21        | 5.5 | 23.39 | ۲ |
| 1      | 5.1e-001      | 1.14     | <u>gi 115448199 ref NP_001047879.1 </u> Os02g0707900<br>[Oryza sativa Japonica Group]                                                                                       | <u>16</u> | 6.0 | 20.20 | ٢ |
| 1      | 1.0e+000      | 1.45     | <u>gi 242072310 ref XP_002446091.1 </u> hypothetical protein<br>SORBIDRAFT_06g001600 [Sorghum bicolor]                                                                      | <u>18</u> | 5.6 | 24.36 | ۲ |

| 1  | 8.8e-001 | 0.43        | gi 255072661 ref XP_002500005.1  Hypothetical protein               | <u>13</u> | 5.5 | 26.75 | ۲ |
|----|----------|-------------|---------------------------------------------------------------------|-----------|-----|-------|---|
|    |          |             | MICPUN_104759 [Micromonas sp. RCC299]                               |           |     |       | _ |
| 1  | 9.0e-001 | 1.44        | gi 56675440 emb CAA37047.2  cytochrome-c oxidase<br>[Pisum sativum] | <u>8</u>  | 5.0 | 28.81 | ۲ |
| 1  | 6.8e-001 | 1.34        | gi 56675440 emb CAA37047.2  cytochrome-c oxidase                    | <u>8</u>  | 5.0 | 28.81 | ۲ |
|    |          |             | [Pisum sativum]                                                     |           |     |       |   |
| 1  | 9.4e-001 | 1.41        | gi 297723807 ref]NP_001174267.1  Os05g0198100                       | <u>11</u> | 5.8 | 33.64 | ۲ |
|    |          |             | [Oryza sativa Japonica Group]                                       |           |     |       |   |
| 1  | 9.0e-001 | 0.88        | <u>gi 297723807 ref NP_001174267.1 </u> Os05g0198100                | <u>11</u> | 5.8 | 33.64 | ۲ |
|    |          |             | [Oryza sativa Japonica Group]                                       |           |     |       |   |
| 1  | 4.2e-001 | 0.90        | gi 147791081 emb CAN68019.1  hypothetical protein                   | 20        | 5.0 | 30.20 | ۲ |
|    |          |             | VITISV_027126 [Vitis vinifera]                                      |           |     |       |   |
| +1 | 1.0e+000 | 2.43        | gi 21593527 gb AAM65494.1  unknown [Arabidopsis                     | <u>15</u> | 5.0 | 33.99 | ۲ |
|    |          |             | thaliana]                                                           |           |     |       |   |
| +1 | 1.0e+000 | 2.43        | gi 219888599 gb ACL54674.1  unknown [Zea mays]                      | <u>12</u> | 6.7 | 33.70 | ۲ |
| +1 | 1.0e+000 | 2.43        | gi 4930119 pdb 1QFY A Chain A, Pea Fnr Y308s                        | <u>17</u> | 6.5 | 34.99 | ۲ |
|    |          |             | Mutant In Complex With Nadp+                                        |           |     |       |   |
| 1  | 9.9e-001 | 1.56        | gi 15227413 ref]NP_181700.1  AT-HSFB3; DNA                          | <u>18</u> | 5.3 | 28.57 | ۲ |
|    |          |             | binding / transcription factor [Arabidopsis thaliana]               |           |     |       |   |
| 1  | 4.5e-001 | 0.16        | gi 297829148 ref XP 002882456.1  ATMKK8                             | 7         | 6.5 | 28.28 | ۲ |
|    |          |             | [Arabidopsis lyrata subsp. lyrata]                                  |           |     |       |   |
| +1 | 1.0e+000 | <u>2.43</u> | gi 310897866 emb CBK62755.1  WD-repeat protein                      | <u>13</u> | 4.9 | 38.13 | ۲ |
|    |          |             | [Humulus lupulus]                                                   |           |     |       |   |
| 1  | 8.2e-001 | 0.47        | gi 302830410 ref XP_002946771.1  hypothetical protein               | <u>10</u> | 6.4 | 42.29 | ۲ |
|    |          |             | VOLCADRAFT_103197 [Volvox carteri f. nagariensis]                   |           |     |       |   |
| 1  | 9.8e-001 | 0.62        | gi 226534275 gb ACO71420.1  maturase K [Succisa                     | <u>14</u> | 9.5 | 35.18 | ۲ |
|    |          |             | pratensis]                                                          |           |     |       |   |
| 1  | 5.5e-001 | 0.92        | gi 242035489 ref XP_002465139.1  hypothetical protein               | <u>8</u>  | 6.2 | 32.88 | ۲ |
|    |          |             | SORBIDRAFT_01g032640 [Sorghum bicolor]                              |           |     |       |   |
|    | 8.3e-001 | 1.41        | gi 159486427 ref XP_001701241.1  phosphoserine                      | <u>12</u> | 6.3 | 29.32 | ۲ |
| 1  |          |             | phosphatase [Chlamydomonas reinhardtii]                             |           |     |       |   |
| 1  | 2.2e-001 | 0.09        | gi 218190702 gb EEC73129.1  hypothetical protein                    | <u>5</u>  | 7.0 | 25.58 | ۲ |
|    |          |             | OsI_07141 [Oryza sativa Indica Group]                               |           |     |       |   |
| +1 | 1.0e+000 | <u>1.66</u> | gi 85680944 gb ABC72667.1  granule-bound starch                     | <u>15</u> | 6.2 | 24.05 | ۲ |
|    |          |             | synthase [Neomicrocalamus prainii]                                  |           |     |       |   |
| +1 | 1.0e+000 | <u>2.43</u> | gi 147780183 emb CAN75527.1  hypothetical protein                   | <u>20</u> | 9.5 | 20.10 | ۲ |
|    |          |             | VITISV_043600 [Vitis vinifera]                                      |           |     |       |   |
| 1  | 1.9e-001 | 0.15        | gi 255620495 ref XP_002540120.1  conserved                          | <u>15</u> | 9.3 | 20.27 | ۲ |
|    |          |             | hypothetical protein [Ricinus communis]                             |           |     |       |   |
|    |          |             |                                                                     | _         |     |       | _ |

| 1  | 1.0e+000 | 1.58        | gi 224074567 ref XP_002304391.1  predicted protein    | <u>18</u> | 8.5 | 26.73 | $\overline{\mathbf{O}}$ |
|----|----------|-------------|-------------------------------------------------------|-----------|-----|-------|-------------------------|
|    |          |             | [Populus trichocarpa]                                 |           |     |       |                         |
| +1 | 1.0e+000 | <u>2.14</u> | gi 297820232 ref XP 002877999.1  hypothetical protein | <u>11</u> | 9.5 | 29.17 | $\overline{\mathbf{O}}$ |
|    |          |             | ARALYDRAFT_485883 [Arabidopsis lyrata subsp.          |           |     |       |                         |
|    |          |             | lyrata]                                               |           |     |       |                         |
| 1  | 8.1e-001 | 1.25        | gi 116782595 gb ABK22565.1  unknown [Picea            | <u>8</u>  | 9.1 | 36.53 | $\overline{\mathbf{O}}$ |
|    |          |             | sitchensis]                                           |           |     |       |                         |
| 1  | 7.7e-001 | 1.24        | gi 115455415 ref NP_001051308.1  Os03g0754800         | <u>8</u>  | 9.9 | 35.08 | $\overline{\mathbf{O}}$ |
|    |          |             | [Oryza sativa Japonica Group]                         |           |     |       |                         |

#### **APPENDIX E-2**

# Identification of standard control used in MALDI-TOF using ProFound

| ProFo       | ProFound - Search Result Summary |                |                                                       |           |           |            |          |  |
|-------------|----------------------------------|----------------|-------------------------------------------------------|-----------|-----------|------------|----------|--|
| Protein     | n Candidates                     |                |                                                       |           |           |            |          |  |
| <u>Rank</u> | Probability                      | <u>Est'd Z</u> | Protein Information and Sequence Analyse Tools<br>(T) | <u>%</u>  | <u>pI</u> | <u>kDa</u> | <u>R</u> |  |
| 1           | 1.0e+000                         | <u>2.34</u>    | <u>gi 229552 prf  754920A</u> albumin                 | <u>16</u> | 5.8       | 67.78      | ۲        |  |