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ABSTRACT

Let F be a field and n an integer > 2. We say that a square matrix A is persymmetric

if A is symmetric in the second diagonal. Let STn(F) denote the linear space of all

n×n persymmetric upper triangular matrices over F. A subspace S of STn(F) is said

to be a space of bounded rank-two matrices if each matrix in S has rank bounded

above by two, and a rank-two space if each nonzero element in it has rank two.

In this dissertation, we classify subspaces of bounded rank-two matrices of STn(F)

over a field F with at least three elements. As a corollary, a complete description

of rank-two subspaces of STn(F) is obtained. We next deduce from the structural

results of subspaces of bounded rank-two matrices of STn(F), a characterization of

linear maps φ : STn(F) → STm(F), m > n > 2, that send nonzero matrices with

rank at most two to nonzero matrices with rank at most two.
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ABSTRAK

Katakan F adalah medan dan n adalah integer> 2. Suatu matriks segiempat sama A

dikatakan persimetri jika A adalah simetri pada pepenjuru yang kedua. Biar STn(F)

menandakan ruang linear yang terdiri daripada semua matriks persimetri segitiga

atas jenis n× n terhadap F. Suatu subruang S bagi STn(F) dikenali sebagai ruang

matriks disempadani pangkat-dua jika setiap matriks dalam S mempunyai pangkat

yang disempadani atas oleh dua, dan dikenali sebagai ruang pangkat-dua jika setiap

unsur bukan sifar mempunyai pangkat dua. Dalam disertasi ini, kami mencirikan

subruang matriks disempadani pangkat-dua bagi STn(F) terhadap medan F yang

mempunyai sekurang-kurangnya tiga unsur. Sebagai korolari, pencirian lengkap

tentang subruang pangkat-dua bagi STn(F) telah diperolehi. Seterusnya, daripada

hasil struktur subruang matriks disempadani pangkat-dua bagi STn(F), kami dapat

mendeduksikan suatu pencirian pemetaan linear φ : STn(F)→ STm(F), m > n > 2,

yang menghantar matriks bukan sifar dengan pangkat selebih-lebihnya dua kepada

matriks bukan sifar dengan pangkat selebih-lebihnya dua.
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INTRODUCTION

One of the most active research topics in matrix theory and operator theory in

the last century is the linear preserver problem. Linear preserver problems concern

the characterization of linear maps between matrix spaces leaving invariant certain

functions, subsets, or relations. A solution of a linear preserver problem consists of a

structural description of the preserver. One well-known result, dating back over one

hundred years, is the Frobenius’s classical theorem see [5], concerning determinant

preservers on Mn(C) (the algebra of n× n matrices over the complex field C). He

proved that every linear map φ on Mn(C) satisfying

det(φ(A)) = det(A) for all A ∈Mn(C),

is either of the form

φ(A) = MAN for all A ∈Mn(C) (1)

or

φ(A) = MAtN for all A ∈Mn(C) (2)

for some invertible matrices M,N ∈Mn(C) with det(MN) = 1. Here and through-

out the dissertation, At denotes the transpose of A. The mappings φ above are

examples of function preservers.

In general, let M be a matrix space or a tensor space. Typically, there are four

types of linear preserver problem:

(I) (Function-preserving) Let F be a (scalar-valued, vector-valued, or set-valued)

1



given function on M. Characterize those linear maps φ on M which satisfy

F (φ(A)) = F (A) for all A ∈M.

(II) (Subset-preserving) Let S be a given subset of M. Characterize those linear

maps φ on M which satisfy

A ∈ S ⇒ φ(A) ∈ S for all A ∈M

or satisfy

A ∈ S ⇔ φ(A) ∈ S for all A ∈M.

(III) (Relation-preserving) Let ∼ be a relation on M. Characterize those linear

maps φ on M which satisfy

A ∼ B ⇒ φ(A) ∼ φ(B) for all A,B ∈M

or satisfy

A ∼ B ⇔ φ(A) ∼ φ(B) for all A,B ∈M.

(IV) (Function-commuting) Let F : M → M be a function. Characterize those

linear maps φ on M which satisfy

φ ◦ F = F ◦ φ

that is, F (φ(A)) = φ(F (A)) for all A ∈M.

One may see that the formulation of linear preserver problems is simple and
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natural. The answers are often very elegant. In the last few decades, thousands of

papers have been published on linear preservers and many interesting results have

been obtained. We note that not all linear maps with a special preserving property

have the standard forms (1) or (2). For example, Hiai [6] proved that a linear map

φ on Mn(C) preserves the relation of similarity if and only if there exist α, β ∈ C

and an invertible S ∈Mn(C) such that φ has the form

A 7→ S−1AS + α(trA)In or A 7→ S−1AtS + β(trA)In,

or there exists a fixed B ∈Mn(C) such that φ has the form

A 7→ (trA)B.

Here, At denotes the transpose of A. Furthermore, in the 1990s, Pierce and other

researchers wrote a monograph [12] which can be viewed as a summary of the results

on linear preserver problems ranging from 1897 to 1991.

Without restricting themselves to linear maps acting on the same space, some

researchers started to consider linear maps between different matrix spaces, i.e.

φ :M→M′ for some matrix spaces M,M′. Such problems are more challenging

and their study might lead to the discovery of hidden structures due to the differences

between the two spaces, and hence to a generalization of the results for the case

M = M′. However, it is usually hard to obtain new structures. For example, the

characterization of additive rank-one preservers from the space of triangular matrices

to the space of rectangular matrices was obtained in [2] while the characterization of

additive rank-one preservers between the spaces of rectangular matrices of different

sizes was obtained in [14]. It turns out that the structure for additive rank one
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preservers on spaces of triangular matrices is much more complicated than the one

on spaces of rectangular matrices.

Linear preserver problems can be divided into many subcategories. It is impos-

sible to cover all of them in this section. In the following, we give only a brief survey

of those results related to the title of this dissertation.

Research on rank linear preservers was carried out by Marcus and Moyls [9].

They described the structure of rank-one linear preservers on Mm,n(F), where F is

an algebraically closed field of characteristic 0. The preservers have the standard

form (1) or, when m = n, possibly the standard form (2) with invertible matrices

M,N of suitable sizes. The authors proved the above result in the setting of tensor

spaces whereas Minc [10] gave an alternative proof using only elementary matrix

theory fifteen years later.

Back in the 1970s, L. J. Cummings [3] characterized the maximal decomposable

subspaces of the kth symmetric product space
∨
k V , where V is a finite-dimensional

vector space over an algebraically closed field of characteristic 0. In particular,

when k = 2, the result is closely related to subspaces of symmetric matrix spaces

of bounded rank-two only if the field has characteristic not equal to two. Later,

he used the structure obtained for decomposable subspaces and some lemmas from

[3] to investigate linear transformations on the k-fold symmetric product of an n-

dimensional vector space V , n > k + 1, which carry nonzero decomposable tensors

to nonzero decomposable tensors, see [4].

Meanwhile, M. H. Lim [8] studied the structure of linear maps on the vector

space of all n × n symmetric matrices preserving matrices of rank one, two or n

by using the tools of second symmetric product spaces. The paper [8] also con-

tains a characterization of subspaces of symmetric tensors of order two consisting of
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elements of rank less than or equal to two.

Rank non-increasing linear maps first appeared in [7]. The author employed the

language of tensors to obtain a result which was then used to obtain the structure

of those rank-one non-increasing linear maps on Mm,n(F). Then in the late 90’s,

research on certain preserver problems on spaces of upper triangular matrices was

carried out by W.L. Chooi, M.H. Lim [1] and L. Molnár, P. Sěmrl [11]. They first

classify rank-one linear preserver structures and then make use of these structures

to classify other preserver problems on triangular spaces, specifically the adjugate

commuting problem and the rank-one idempotent preserver problem.

Motivated by all these results, we carry out, in this dissertation, a study on

bounded rank-two linear preservers on persymmetric upper triangular spaces. We

now give the basic notations and definitions needed to describe our work.

Let F be a field and let m,n be integers > 2. Let Mm,n(F) be the linear space

of all m × n matrices over F. We abbreviate Mn,n(F) to Mn(F). Let A = (aij) ∈

Mm,n(F). We denote by A+ the matrix (bij) ∈Mn,m(F) such that

bij = an+1−j,m+1−i for every 1 6 i 6 n and 1 6 j 6 m.

We see that A+ = JnA
tJm where Jn is the n × n matrix with 1′s on the second

diagonal and 0′s elsewhere, and At stands for the transpose of A. We say that a

square matrix A ∈Mn(F) is persymmetric if it is symmetric in the second diagonal,

that is, A+ = A. Let Tn(F) denote the subspace of Mn(F) consisting of all n × n

upper triangular matrices. We denote by STn(F) the set of all n × n persymmetric

upper triangular matrices over F. Symbolically,

STn(F) := {A ∈ Tn(F) | A+ = A}.
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Clearly, STn(F) forms a subspace of Tn(F); we shall call it the persymmetric trian-

gular matrix space over F.

Now, let U and V be subspaces of Mn(F) and Mm(F), respectively, and let k

be a positive integer with k 6 min{m,n}. A mapping φ : U → V is said to be a

bounded rank-k linear preserver if φ is linear and satisfies

1 6 rankφ(A) 6 k whenever 1 6 rankA 6 k

where rankA denotes the rank of the matrix A. Let S be a subspace of U . We

say that S is a subspace of bounded rank-k matrices if each matrix in S has rank

bounded above by k, and that S is a rank-k subspace if each nonzero element in it

has rank k.

We assume throughout this dissertation, unless otherwise stated, that F is an

arbitrary field and n > 2. We use 〈u1, . . . , ur〉 to denote the linear space spanned

by the vectors u1, . . . , ur. As usual, we denote the vectors of the standard basis of

Mn,1(F) by {e1, . . . , en} and employ the notation Eij := ei · etj to denote the matrix

in Mn(F) having the (i, j)-th entry equal to one and all others equal to zero.

This dissertation is divided into three chapters. We now give a brief description

of each chapter.

Chapter 1 provides all the notations needed in this dissertation. We then describe

the rank canonical form of a persymmetric upper triangular matrix. The result

enables us to define a tensor for symmetric matrices and this definition holds even

for a field with characteristic two. Some properties of the new tensor can also be

found in this chapter.

In Chapter 2, we characterize subspaces of bounded rank-two matrices of STn(F).

Consequently, a characterization of rank-two subspaces of STn(F) is obtained. As
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shown in [4, 8], the characterization of subspaces of bounded rank-two matrices is

essential to a study of bounded rank-two linear preservers.

Chapter 3 carries out a study of bounded rank-two linear preservers between

persymmetric triangular matrix spaces. We see from the results that if the dimension

of the domain is very small, then we obtain some surprisingly odd structures. Besides

the persymmetric and the upper triangular properties, the structures appear mainly

due to the difference of dimensions between two linear spaces and there is one special

form when the underlying field has four elements.
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Chapter 1

PRELIMINARIES

We begin this chapter by introducing the rank canonical form of an arbitrary matrix

in STn(F). If we consider only those matrices with rank at most two, then the rank

canonical forms enable us to define a new tensor product as shown in Lemma 1.2.

This allows us to establish a link between a matrix with rank at most two in STn(F)

and a tensor product of two vectors from Mn,1(F). Although the representation of

the matrix under this new tensor is not unique, it proves to be very useful in the

construction of our subspaces of bounded rank-two matrices, as shown in the next

chapter.

Let F be a field and let n be an integer > 2. Let α ∈ F, and let 1 6 i, j 6 n be

integers such that 1 6 i 6 j < n+ 1− i. We define

Zα
ij := Eij + E+

ij + αEi,n+1−i (1.1)

and Zij := Z 0
ij. For example, if n = 4, then

Zα
11 =


1 0 0 α

0 0 0 0

0 0 0 0

0 0 0 1

, Zα
13 =


0 0 1 α

0 0 0 1

0 0 0 0

0 0 0 0

 and Zα
22 =


0 0 0 0

0 1 α 0

0 0 1 0

0 0 0 0

.

It is easy to see that Zα
ij ∈ STn(F) for every α ∈ F, 1 6 i 6 j < n + 1− i 6 n. We

begin our work by finding the rank canonical forms of the vectors in STn(F).

Lemma 1.1. Let F be an arbitrary field, and let n, k be integers such that n > 2
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and 0 6 k 6 n. Then A ∈ STn(F) is of rank k if and only if there exist an integer

0 6 h 6 k
2
, scalars α1, . . . , αh ∈ F, nonzero scalars β2h+1, . . . , βk ∈ F, and an

invertible matrix P ∈ Tn(F) such that

A = P

(
h∑
i=1

Z αi
siti +

k∑
i=2h+1

βiEpi,n+1−pi

)
P+

where {s1, . . . , sh, p2h+1, . . . , pk} and {t1, . . . , th, n+1−p2h+1, . . . , n+1−pk} are two

sets of distinct positive integers such that 1 6 si 6 ti < n + 1− si for i = 1, . . . , h,

and 1 6 pi 6 n+1
2

for i = 2h+1, . . . , k. Moreover, if there exists an integer 1 6 j 6 h

such that αj 6= 0, then F has characteristic 2.

Proof. The sufficiency part is clear. We now prove the necessity part. Suppose

that A = (aij) is nonzero. Let Ri and Cj denote the i-th row and the j-th column

of A, respectively. Since 0 6= A ∈ STn(F), there exists a pair of integers (i0, j0) with

1 6 i0 6 j0 6 n+ 1− i0 such that

ai0,j0 6= 0

and ai,j0 = 0 for all i0 < i 6 n, and aij = 0 for all 1 6 j < j0 and 1 6 i 6 n. We

divide our proof into the following two cases:

Case I: j0 = n + 1− i0. For each 1 6 s < i0, we apply the following elementary

row and column operations:

Rs → Rs − as,j0 a−1i0,j0Ri0 and Cn+1−s → Cn+1−s − ai0,n+1−s a
−1
i0,j0

Cj0

on A. We note that, for each 1 6 s < i0, there exists the elementary matrix

In − csEs,i0 ∈ Tn(F) corresponding to the the row operation Rs → Rs − csRi0 ,
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where cs = as,j0 a
−1
i0,j0
∈ F. Since A+ = A, it follows that ai0,n+1−s = as,j0 for every

1 6 s < i0, and so, there exists an invertible matrix P1 ∈ Tn(F) such that

P1AP
+
1 = ai0,j0Ei0,j0 + A1 (1.2)

for some matrix A1 = (bij) ∈ STn(F) such that bi,j0 = 0 for all 1 6 i 6 n, bi0,j = 0

for all 1 6 j 6 n, and bij = 0 for all 1 6 j < j0 and 1 6 i 6 n.

Case II: j0 6= n + 1 − i0. Then an+1−j0,n+1−i0 = ai0,j0 6= 0. Without loss of

generality, we may assume ai0,j0 = 1 = an+1−j0,n+1−i0 . For each 1 6 s < i0, we apply

the elementary row and column operations:

Rs → Rs − as,j0Ri0 and Cn+1−s → Cn+1−s − an+1−j0,n+1−sCn+1−i0

on A, and this is followed by the following elementary row and column operations:

Rt → Rt − at,n+1−i0Rn+1−j0 and Cn+1−t → Cn+1−t − ai0,n+1−tCj0

for every 1 6 t < n + 1 − j0. We note that, for each 1 6 s < i0 (respectively,

for each 1 6 t < n + 1 − j0), there exists the elementary matrix In − as,j0Es,i0

(respectively, In − at,n+1−i0Et,n+1−j0) in Tn(F) corresponding to the row operation

Rs → Rs−as,j0Ri0 (respectively, Rt → Rt−at,n+1−i0Rn+1−j0). Since an+1−j0,n+1−s =

as,j0 for every 1 6 s < i0, and ai0,n+1−t = at,n+1−i0 for every 1 6 t < n+ 1− j0, there

exists an invertible matrix P2 ∈ Tn(F) such that

P2AP
+
2 = Zα1

i0j0
+ A1 (1.3)

for some scalar α1 ∈ F and some matrix A1 = (bij) ∈ STn(F) such that bi,j0 = 0 for
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all 1 6 i 6 n, bi0,j = 0 for 1 6 j 6 n, and bij = 0 for all 1 6 j < j0 and 1 6 i 6 n.

In view of (1.2) and (1.3), if A1 = 0, then we are done. If A1 6= 0, then, by

repeating a similar argument on A1, since A is of rank k, there exist an integer

0 6 h 6 k
2
, scalars α1, . . . , αh, β2h+1, . . . , βk ∈ F, and an invertible matrix Q ∈ Tn(F)

such that

QAQ+ =
h∑
i=1

Z αi
siti +

k∑
i=2h+1

βiEpi,n+1−pi (1.4)

where {s1, . . . , sh, p2h+1, . . . , pk} and {t1, . . . , th, n+1−p2h+1, . . . , n+1−pk} are two

sets of distinct positive integers such that 1 6 si 6 ti < n + 1− si for i = 1, . . . , h,

and 1 6 pi 6 n+1
2

for i = 2h + 1, . . . , k. If F has characteristic 2, then the proof is

complete. If F has characteristic not 2, then, for each 1 6 i 6 h, we further perform

the elementary row and column operations:

Rsi → Rsi − 2−1αiRn+1−ti and Cn+1−si → Cn+1−si − 2−1αiCti

on QAQ+ in (1.4) to annihilate αi in Z αi
siti . Since si < n + 1 − ti for all 1 6 i 6 h,

there exists an invertible P ∈ Tn(F) such that

PAP+ =
h∑
i=1

Zsiti +
k∑

i=2h+1

βiEpi,n+1−pi .

The proof is complete. �

Let F be a field and let n be an integer > 2. Let u, v ∈Mn,1(F). Define

u� v := u · v+ + v · u+ and u2 := u · u+ (1.5)

where u · v+ ∈ Mn(F) is the usual matrix product of the vectors u ∈ Mn,1(F) and
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v+ ∈ Fn. We verify easily from (1.5) that (u, v) 7→ u � v is a symmetric bilinear

map from Mn,1(F)×Mn,1(F) into Mn(F). Also, for each u, v ∈Mn,1(F), we have

(u� v)+ = u� v and (u2)+ = u2

and

P (u� v)P+ = (Pu)� (Pv) and P (u2)P+ = (Pu)2 (1.6)

for every P ∈ Mn(F). It is easy to see that ei � ej = Ei,n+1−j + Ej,n+1−i and

e2i = Ei,n+1−i for every pair of integers 1 6 i, j 6 n. It can immediately be seen

from (1.5) that u, v ∈ Mn,1(F) are linearly independent vectors if and only if each

of the matrices u� v, u� v + u2 and u2 + v2 is of rank two.

Now, let 1 6 i 6 n. We write

U i :=
{

(u1, . . . , ui, 0, . . . , 0)T
∣∣ u1, . . . , ui ∈ F

}
.

Let u ∈ Up, v ∈ Uq and w ∈ Ur for some positive integers 1 6 p, q, r 6 n. It is

immediate from the definitions in (1.5) that u2 ∈ STn(F) if and only if 1 6 p 6 n+1
2

,

and v � w ∈ STn(F) when 1 6 q 6 n+ 1− r 6 n.

The following lemma allows us to express the matrices in STn(F) in tensor lan-

guage.

Lemma 1.2. Let F be a field and let n be an integer > 2. The following statements

hold.

(a) Then A ∈ STn(F) with 0 6 rankA 6 2 if and only if A is of one of the following

forms:

A = αu2 + βv2 (1.7)
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for some linearly independent vectors u, v ∈ Up with 1 6 p 6 n+1
2

and scalars

α, β ∈ F; or

A = u� v + λu2 (1.8)

for some linearly independent vectors u ∈ Up and v ∈ Uq with 1 6 p 6

n + 1 − q < n + 1 − p and scalar λ ∈ F. Further, if A is of form (1.8) with

λ 6= 0, then F has characteristic two.

(b) Let A = u� v + λu2 for some linearly independent vectors u ∈ Up and v ∈ Uq

with 1 6 p < q 6 n+1
2

and scalar λ ∈ F. If charF 6= 2 or charF = 2 with

λ 6= 0, then A can be rewritten in form (1.7), i.e.,

A = µw2 + ηz2

for some linearly independent vectors w, z ∈ Uq and nonzero scalars µ, η ∈ F.

Proof. (a) The sufficiency part is clear. We now consider the necessity part. Let

A ∈ STn(F) be a matrix of bounded rank-two. In view of Lemma 1.1, there exists

an invertible matrix P ∈ Tn(F) such that either

A = P (αEp,n+1−p + βEq,n+1−q)P
+ (1.9)

for some scalars α, β ∈ F and distinct integers 1 6 q < p 6 n+1
2

; or

A = PZα
pqP

+ = P (Epq + E+
pq + λEp,n+1−p)P

+ (1.10)

for some integers 1 6 p 6 q < n + 1 − p and some scalar λ ∈ F such that λ 6= 0

implies charF = 2. If A is of form (1.9), then 0 6 rankA 6 2, and A = αP (e2p)P
+ +

βP (e2q)P
+ = αu2 + βv2, where u = Pep and v = Peq are linearly independent
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vectors in Up. If A is of form (1.10), then rankA = 2, and A = P (ep � en+1−q)P
+ +

λP (e2p)P
+ = u� v + λu2 by (1.6), where u = Pep ∈ Up and v = Pen+1−q ∈ Un+1−q

are linearly independent vectors. We are done.

(b) We divide into two cases:

Case I: λ 6= 0. Then A = u�v+λu2 = λ(u+λ−1v)2+(−λ−1)v2 = λw2+(−λ−1)z2,

where w = u+ λ−1v and z = v are linearly independent vectors in Uq.

Case II: λ = 0. Then A = u � v = P1(ep � eq)P
+
1 for some invertible matrix

P1 ∈ Tn(F). If charF 6= 2, then we perform the following elementary row and column

operations on ep � eq :

Rp → Rp +Rq and Cn+1−p → Cn+1−p + Cn+1−q.

Then there is an invertible matrix P2 ∈ Tn(F) such that

A = (P1P2)(ep� eq + 2e2p)(P1P2)
+ = (P1P2ep)� (P1P2eq) + 2(P1P2ep)

2 = x� y+ 2x2

by (1.6), where x = P1P2ep and y = P1P2eq are linearly independent vectors in Uq.

By a similar argument as in Case I, we are done. �

The following two lemmas illustrate some properties of the new tensor product.

Lemma 1.3. Let F be a field and let n be an integer > 2. Let u, v, x, y ∈Mn,1(F)

and let α, β, γ, µ, η ∈ F be scalars such that µ, η 6= 0. Then the following assertions

hold.

(a) If u� v + αu2 = x� y + βx2 6= 0, then 〈u, v〉 = 〈x, y〉.

(b) If u� v + αu2 = µx2 + ηy2 6= 0, then 〈u, v〉 = 〈x, y〉.

(c) 0 6= u� v ∈ STn(F) if and only if either
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(i) u ∈ Up and v ∈ Uq for some integers 1 6 p 6 n+ 1− q 6 n, or

(ii) u ∈ Uq and v = αu + w ∈ Uq for some nonzero scalar α ∈ F and some

vector w ∈ Up with 1 6 p 6 n + 1 − q < n+1
2

such that u,w are linearly

independent.

Furthermore, if (ii) holds, then F has characteristic 2.

(d) Suppose that F has characteristic 2, and that u, v, y are linearly independent

vectors. Let A = α(u� v) + β(u� y) + µ(v � y) and B = u� x+ γu2. Then

γ = 0 and x ∈ 〈u, v, y〉 if and only if rank(A + λB) 6 2 for every nonzero

scalar λ ∈ F.

Proof. (a) We divide our proof into two cases.

Case I: u, v are linearly dependent. Then rank(u� v+αu2) = 1, and so x, y are

linearly dependent. Evidently, u, x are nonzero. It follows that v = λ1u and y = λ2x

for some scalars λ1, λ2 ∈ F, and hence (2λ2 + β)x2 = (2λ1 + α)u2 6= 0. Therefore,

〈x〉 = 〈u〉, and the result holds.

Case II: u, v are linearly independent. Then x, y are linearly independent. We

claim that 〈u, v〉 = 〈x, y〉. Suppose to the contrary that 〈u, v〉 6= 〈x, y〉. Then

x /∈ 〈u, v〉 or y /∈ 〈u, v〉.

Case II-1: x /∈ 〈u, v〉. Then y ∈ 〈u, v, y〉. Let y = a′u + b′v + c′y for some

a′, b′, c′ ∈ F. So,

0 = u�v+αu2−x�y−βx2 = u�v+αu2−a′x�u− b′x�v− (β+ 2c′)x2. (1.11)

We extend {x, u, v} to an ordered basis B of Mn,1(F). Let P ∈ Mn(F) be the

transition matrix obtained from B to the standard ordered basis ofMn,1(F). From

(1.11), we see that P (u� v + αu2 − a′x� u− b′x� v − (β + 2c′)x2)P+ = 0, and by
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(1.6), we obtain

 −b′ −a′ −(β + 2c′)

1 α −a′

0 1 −b′

 = 0

an impossibility.

Case II-2: y /∈ 〈u, v〉. Then x ∈ 〈u, v, y〉. We write x = au + bv + cy for some

scalars a, b, c ∈ F. So, −u� v − αu2 + x� y + βx2 = 0 implies that

(βab− 1)u� v− (α− a2β)u2 + b2βv2 + a(1 + βc)u� y+ b(1 + βc)v� y+ c2βy2 = 0.

We extend {y, u, v} to an ordered basis C of Mn,1(F). Let Q ∈ Mn(F) be the

transition matrix obtained from C to the standard ordered basis ofMn,1(F). Then

Q((βab−1)u�v−(α−a2β)u2+b2βv2+a(1+βc)u�y+b(1+βc)v�y+c2βy2)Q+ = 0,

and by (1.6), we have

 b(1 + βc) a(1 + βc) c2β

βab− 1 a2β − α a(1 + βc)

b2β βab− 1 b(1 + βc)

 = 0.

Note that βab− 1 = 0. If β = 0, then 1 = 0, a contradiction. If β 6= 0, then b2β = 0

yields b = 0. Therefore, βab − 1 = 0 implies that 1 = 0, an impossibility. In both

Case II-1 and Case II-2 , we conclude that x, y ∈ 〈u, v〉. By the linear independence

of x, y, we have 〈u, v〉 = 〈x, y〉.

(b) If u, v are linearly dependent, then the result holds by arguments similar to

Case I of (a). Suppose that u, v are linearly independent. Then x, y are linearly

independent. If x /∈ 〈u, v〉, then rank(ηy2) = rank(u � v + αu2 − µx2) = 3, a

contradiction. So, x ∈ 〈u, v〉. Similarly, we obtain y ∈ 〈u, v〉. Hence, by the linear
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independence of x and y, 〈u, v〉 = 〈x, y〉, as desired.

(c) The sufficiency part is clear. We now consider the necessity part. Since

u� v 6= 0, we have the following two cases:

Case A: rank(u � v) = 1. By Lemma 1.2, there exist a nonzero vector x ∈ Up

with 1 6 p 6 n+1
2

and a nonzero scalar α ∈ F such that u�v = αx2. Then charF 6= 2

and u, v are nonzero linearly dependent vectors such that 〈u〉 = 〈x〉 = 〈v〉. Thus,

u, v ∈ Up, and so (i) holds true.

Case B: rank(u� v) = 2. By Lemma 1.2, we have the following two cases:

Case B-1: u � v = αx2 + βy2 for some nonzero scalars α, β ∈ F and linearly

independent vectors x, y ∈ Up with 1 6 p 6 n+1
2

. By (b), we have 〈u, v〉 = 〈x, y〉.

So, u, v ∈ Up and (i) holds.

Case B-2: u � v = x � y + λx2 for some linearly independent vectors x ∈ Up

and y ∈ Uq with 1 6 p 6 n + 1 − q < n + 1 − p 6 n, and some scalar λ ∈ F. By

(a), we have 〈u, v〉 = 〈x, y〉. Then u = ax + by and v = cx + dy for some scalars

a, b, c, d ∈ F, and so

u� v = (2ac)x2 + (2bd) y2 + (ad+ bc)x� y. (1.12)

Consider charF 6= 2. If bd 6= 0, then 1 6 q 6 n+1
2

. So, u, v ∈ U` with ` =

max{p, q} 6 n+1
2

. Therefore, (i) holds. If bd = 0, then either b = 0 or d = 0.

It follows that either u ∈ Up or v ∈ Up with p 6 n+1
2

, and thus (i) holds true.

We now consider charF = 2. By (1.12), we have u � v = (ad + bc)x � y with

ad + bc 6= 0. If q 6 n+1
2

, b = 0 or d = 0, then (i) holds. If q > n+1
2

and b, d 6= 0,

then 1 6 p 6 n + 1− q < n+1
2

and v = cx + dy = αu + w where α = b−1d ∈ F and

w = b−1(ad + bc)x ∈ Up. It is clear that α 6= 0 and u,w are linearly independent.

Hence, (ii) holds true.
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(d) We first prove the necessity part. Let x = au + bv + cy for some scalars

a, b, c ∈ F. Then u� x = b(u� v) + c(u� y), and thus rank(A+ λB) 6 2 for every

nonzero scalar λ ∈ F because

det

 β + λc α + λb 0

µ 0 α + λb

0 µ β + λc

 = −2µ(β + λc)(α + λb) = 0.

We now prove the sufficiency part. If x /∈ 〈u, v, y〉, then rank(A + λB) = 4 > 2 for

every nonzero scalar λ ∈ F since

det


β λ α λγ

µ 0 0 α

0 0 0 λ

0 0 µ β

 = µ2λ2 6= 0

for every nonzero scalar λ ∈ F. Suppose that γ 6= 0. The result holds if x /∈ 〈u, v, y〉.

We now consider x ∈ 〈u, v, y〉. Let x = au + bv + cy for some scalars a, b, c ∈ F.

Then A + λB = (α + λb)u � v + (β + λc)u � y + µ(v � y) + λγu2 is of rank 3 for

every nonzero scalar λ ∈ F since

det

 β + λc α + λb λγ

µ 0 α + λb

0 µ β + λc

 = λγµ2 6= 0.

We are done. �
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Chapter 2

SPACES OF BOUNDED RANK-TWO MATRICES AND

RANK-TWO SPACES

We shall use this chapter to determine subspaces of bounded rank-two matrices of

STn(F) and eventually give a classification of these subspaces in Theorem 2.6. The

classification of subspaces is very important and should be viewed as groundwork

for the study of bounded rank-two linear preservers in Chapter 3. In the process

of proving our main theorem, we develop a few lemmas which, at the same time,

illustrate the behaviour of subspaces of bounded rank-two matrices of STn(F).

In [8], M. H. Lim proved Theorem 2.1 below. We need the following preamble:

Let F denote an infinite field of characteristic not equal to two. Let U be a finite

dimensional vector space of dimension n over F and U (2) be the second symmetric

product space over U . Let Jk denote the set of all vectors in U (2) of the form∑k
i=1 λix

2
i , where x1, . . . , xk are linearly independent vectors and λ1, . . . , λk ∈ F\{0}.

Theorem 2.1. Let M be a subspace of U (2) such that M ⊆ {0} ∪ J1 ∪ J2. Then

either

(I) M ⊆ W (2) for some 2-dimensional subspace W of U or

(II) M ⊆ u · U for some nonzero vector u ∈ U .

We strengthen Theorem 2.1 to Theorem 2.6 by replacing the underlying field F with

any field containing at least three elements. To begin our investigation, we first give

the following definitions concerning the subspaces of bounded rank-two matrices.
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Let x ∈Mn,1(F) and let U be a subspace of Mn,1(F). We denote

x� U := {x� u | u ∈ U } (2.1)

and

U2 :=
〈
u2
∣∣ u ∈ U 〉 . (2.2)

Lemma 2.2. Let F be a field and let n be an integer > 2. Let u, v ∈Mn,1(F) and

let U be a subspace of Mn,1(F). Then the following assertions hold.

(a) If A ∈ u � U , then rankA 6 2. Moreover, if charF = 2, then rankA = 2 for

every nonzero A ∈ u� U .

(b) If u, v are linearly independent, then

(i) 〈u, v〉2 = 〈u2, v2, u� v〉 is a 3-dimensional subspace of Mn(F).

(ii) If A ∈ 〈u, v〉2, then rank A 6 2.

Proof. (a) Let A ∈ u � U . By (2.1), we have A = u � y for some y ∈ U . Since

rank(u · y+) 6 1, it follows that rankA = rank(u · y+ + y · u+) 6 rank(u · y+) +

rank(y ·u+) 6 2. Consider now charF = 2. If y ∈ U is a vector such that u� y 6= 0,

then 〈y〉 6= 〈u〉. For, if not, then y = αu for some α ∈ F, and so u� y = 2αu2 = 0.

Hence, rank(u� y) = rank(u · y+ + y · u+) = 2.

(b) (i) By (2.2), we see that

〈u, v〉2 = 〈w2 | w ∈ 〈u, v〉〉 = 〈(αu+ βv)2 | α, β ∈ F〉. (2.3)

Note that (αu+βv)2 = α2u2+β2v2+(αβ)u�v ∈ 〈u2, v2, u�v〉 for α, β ∈ F. By (2.3),

we get 〈u, v〉2 ⊆ 〈u2, v2, u� v〉. On the other hand, we see that u2 = ((1)u+ (0)v)2
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and v2 = ((0)u + (1)v)2 with 0, 1 ∈ F, and u � v = (u + v)2 − u2 − v2. It follows

from (2.3) that u2, v2, u� v ∈ 〈u, v〉2. Hence, we have 〈u, v〉2 = 〈u2, v2, u� v〉. Note

that u2, v2, u � v are linearly independent whenever u, v are linearly independent.

It follows that 〈u, v〉2 is a 3-dimensional subspace of Mn(F).

(ii) Let A ∈ 〈u, v〉2 be nonzero. By (i), we have A = αu2 +βv2 +γu� v for some

α, β, γ ∈ F. If α = β = 0, then A = γ(u · v+ + v · u+) is of rank 2. Suppose that

α 6= 0 or β 6= 0. Without loss of generality, we may assume α 6= 0. Then

A = α(u+ γ(α−1)v)2 + (β − α−1γ2)v2.

Since rankw2 6 1 for every w ∈Mn,1(F), it follows that rankA 6 2. This completes

the proof. �

The next three lemmas are essential for us to prove the main theorem.

Lemma 2.3. Let F be a field and let n be an integer > 2. Then the following

assertions hold.

(a) Let u ∈ Up and let U be a subspace of U q with 1 6 p 6 n + 1 − q 6 n. Then

u� U is a subspace of bounded rank-two matrices of STn(F).

(b) Let u ∈ Up and let U be a subspace of U q with 1 6 p 6 n+1
2

and 1 6 p 6

n+ 1− q 6 n. Then u� U + 〈u2〉 is a subspace of bounded rank-two matrices

of STn(F).

(c) Let U be a subspace of U q with 1 6 q 6 n+1
2

. Then U2 is a subspace of STn(F).

Moreover, if U is a 2-dimensional subspace of Uq, then U2 is a subspace of

bounded rank-two matrices of STn(F).

(d) Let u ∈ Up, v ∈ Uq and w ∈ Ur be linearly independent vectors such that

1 6 p, q 6 n + 1 − r 6 n and either p 6 n + 1 − q, or p = q > n+1
2
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and v = αu + z for some nonzero scalar α ∈ F and vector z ∈ U` with

1 6 ` 6 n+ 1− p < n+1
2

such that u, z are linearly independent. If charF = 2,

then 〈u� v, u� w, v � w〉 is a rank-two subspace of STn(F).

Proof. (a) Let v ∈ U . Since 1 6 p 6 n + 1 − q, we have u · v+ ∈ Tn(F), and

so v · u+ = (u · v+)+ ∈ Tn(F). Further, since (u � v)+ = u � v, we conclude that

u� v ∈ STn(F) for every v ∈ U . Next, we claim that u� U is a subspace of STn(F).

Clearly, 0 ∈ u� U , and so u� U 6= ∅. Let A1, A2 ∈ u� U and α ∈ F. Then there

exist v1, v2 ∈ U such that Ai = u� vi for i = 1, 2. So

A1 + αA2 = u� v1 + α(u� v2) = u� v1 + u� αv2 = u� (v1 + αv2).

Since v1 + αv2 ∈ U , we get A1 + αA2 ∈ u � U , and hence u � U is a subspace

of STn(F). Together with Lemma 2.2 (a), we have u � U is a subspace of bounded

rank-two matrices of STn(F).

(b) Since 1 6 p 6 n+1
2

and (u2)+ = u2, we have u2 ∈ STn(F), and so 〈u2〉 is a

subspace of STn(F). Let A ∈ u� U + 〈u2〉. Then A = u� y + αu2 for some y ∈ U

and α ∈ F. So, rankA = rank(u · (y+ +αu+) + y · u+) 6 2. Therefore, u�U + 〈u2〉

is a subspace of bounded rank-two matrices of STn(F).

(c) Since 1 6 q 6 n+1
2

, it follows that y2 ∈ STn(F) for every y ∈ U . So, U2 is a

subspace of STn(F). Further, if U is 2-dimensional, then, by Lemma 2.2 (b)(ii), U2

is a subspace of bounded rank-two matrices of STn(F).

(d) Let A ∈ 〈u� v, u� w, v � w〉 be nonzero. Then A = a(u� v) + b(u�w) +

c(v�w) for some scalars a, b, c ∈ F with (a, b, c) 6= 0. It is clear that A ∈ STn(F) by

Lemma 1.3 (c). Let
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X =

 b a 0

c 0 a

0 c b

.

Since rankX 6= 1 and detX = −2abc = 0 since charF = 2. It follows that rankX =

2, and so rankA = 2. Therefore, 〈u� v, u� w, v � w〉 is a rank-two subspace of

STn(F). �

Lemma 2.4. Let F be a field of characteristic two and let n be an integer > 2. Let

u ∈ Up and v1, . . . , vk ∈ Uq with 1 6 p 6 n+1
2

and 1 6 q 6 n + 1 − p 6 n, and let

λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0 such that u � v1 + λ1u
2, . . . , u � vk + λku

2 are

matrices in STn(F) .

(a) If u, v1, . . . , vk are linearly independent, then u � v1 + λ1u
2, . . . , u � vk + λku

2

are linearly independent, and each nonzero element of

〈u� v1 + λ1u
2, . . . , u� vk + λku

2〉 is of rank two.

(b) Suppose that u � v1 + λ1u
2, . . . , u � vk + λku

2 are linearly independent. If

u, v1, . . . , vk are linearly dependent, then there exists an integer 1 6 i0 6 k

such that

〈
u� v1 + λ1u

2, . . . , u� vk + λku
2
〉

= u� U +
〈
u2
〉

for some (k − 1)-dimensional subspace U = 〈v1, . . . , vi0−1, vi0+1, . . . , vk〉 of Uq.

Proof. We denote G := 〈u� v1 + λ1u
2, . . . , u� vk + λku

2〉.

(a) Suppose that µ1(u � v1 + λ1u
2) + · · · + µk(u � vk + λku

2) = 0 for some

scalars µ1, . . . , µk ∈ F. Then u � (µ1v1 + · · · + µkvk) + (µ1λ1 + · · · + µkλk)u
2 = 0.

Since u, v1, . . . , vk are linearly independent, it follows that u, µ1v1 + · · · + µkvk are
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linearly independent if (µ1, . . . , µk) 6= 0. Hence µ1 = · · · = µk = 0, and thus

u� v1 + λ1u
2, . . . , u� vk + λku

2 are linearly independent.

Let A ∈ G be a nonzero matrix. Then there exist scalars β1, . . . , βk ∈ F not all

of which are zero such that

A = β1(u� v1 + λ1u
2) + · · ·+ βk(u� vk + λku

2)

= u� (β1v1 + · · ·+ βkvk) + (β1λ1 + · · ·+ βkλk)u
2.

Since u, v1, . . . , vk are linearly independent and (β1, . . . , βk) 6= 0, it follows that

β1v1 + · · ·+ βkvk, u are linearly independent, and so rankA = 2, as desired.

(b) If u, v1, . . . , vk are linearly dependent, then there exist scalars α, α1, . . . , αk ∈

F not all of which are zero such that αu+ α1u1 + · · ·+ αkuk = 0. Since charF = 2,

we have

α1(u� v1 + λ1u
2) + · · ·+ αk(u� vk + λku

2)

= u� (αu+ α1u1 + · · ·+ αkuk) + (α1λ1 + · · ·+ αkλk)u
2

= (α1λ1 + · · ·+ αkλk)u
2.

If α1λ1 + · · ·+αkλk = 0, then α1 = · · · = αk = 0 as u� v1 + λ1u
2, . . . , u� vk + λku

2

are linearly independent. Therefore αu = 0, and hence α = 0 since u 6= 0. This

leads to a contradiction because (α, α1, . . . , αk) 6= 0. Hence α1λ1 + · · · + αkλk 6= 0.

It follows that

u2 = (α1λ1 + · · ·+ αkλk)
−1(α1(u� v1 + λ1u

2) + · · ·+ αk(u� vk + λku
2)) ∈ G,

and hence 〈u2〉 ⊆ G. Therefore G+ 〈u2〉 = G. On the other hand, it is easily verified
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that u� 〈v1, . . . , vk〉+ 〈u2〉 = G + 〈u2〉, and so

G = u� 〈v1, . . . , vk〉+
〈
u2
〉
. (2.4)

By Lemma 2.2 (a), we see that each nonzero element of u � 〈v1, . . . , vk〉 is of rank

two. It follows that u�〈v1, . . . , vk〉∩〈u2〉 = {0}. Since G is k-dimensional, it follows

from (2.4) that u � 〈v1, . . . , vk〉 has dimension k − 1. Thus v1, . . . , vk are linearly

dependent, and so there exists i0 ∈ {1, . . . , k} such that v1, . . . , vi0−1, vi0+1, . . . , vk

are linearly independent. Hence G = u � 〈v1, . . . , vi0−1, vi0+1, . . . , vk〉 + 〈u2〉. This

completes our proof. �

Lemma 2.5. Let F be a field with |F| > 3, and let n be an integer > 2. Let S

be a subspace of bounded rank-two matrices of STn(F). Let A1, A2 ∈ S be rank two

matrices such that

A1 = αu2 + βv2 (2.5)

for some linearly independent vectors u, v ∈ Up with 1 6 p 6 n+1
2

and nonzero

scalars α, β ∈ F, or

A1 = u� v + γu2 (2.6)

for some linearly independent vectors u ∈ Up and v ∈ Uq with 1 6 p 6 n + 1− q <

n+ 1− p and scalar γ ∈ F; and

A2 = α1u
2
1 + β1v

2
1 (2.7)

for some linearly independent vectors u1, v1 ∈ Us with 1 6 s 6 n+1
2

and nonzero

scalars α1, β1 ∈ F, or

A2 = u1 � v1 + γ1u
2
1 (2.8)
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for some linearly independent vectors u1 ∈ Us and v1 ∈ Ut, with 1 6 s 6 n+ 1− t <

n+ 1− s and scalar γ1 ∈ F. If

u1 /∈ 〈u, v〉 or v1 /∈ 〈u, v〉 , (2.9)

then the following assertions hold.

(a) If charF 6= 2, then there exist linearly independent vectors w ∈ U` and y, z ∈ Uh

such that A1 and A2 can be represented as

A1 = w � y and A2 = w � z (2.10)

for some integers 1 6 ` 6 n+ 1− h 6 n.

(b) If charF = 2, then there exist linearly independent vectors w ∈ U` and y, z ∈

Uh and scalars α1, α2 ∈ F such that A1 and A2 can be represented as

A1 = w � y + α1w
2 and A2 = w � z + α2w

2 (2.11)

for some integers 1 6 ` 6 n+ 1− h 6 n, and 1 6 ` 6 n+1
2

when (α1, α2) 6= 0.

Proof. (a) We divide our proof into the following four cases:

Case A-(i) : A1 is of form (2.5) and A2 is of form (2.7). In view of (2.9), we

consider only u1 /∈ 〈u, v〉 as the second case can be verified similarly. Since rank(A1+

A2) 6 2, it follows that v1 ∈ 〈u, v, u1〉. Let v1 = c1u + d1v + g1u1 for some scalars

c1, d1, g1 ∈ F. Let λ ∈ F. Note that

λ(β−1A1) + β−11 A2 = λau2 + λv2 + bu21 + (c1u+ d1v + g1u1)
2 ∈ S
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where a = αβ−1 and b = α1β
−1
1 are nonzero scalars in F, and so

λ(β−1A1) + β−11 A2 = (λa + c21)u
2 + (λ+ d21)v

2 + (b+ g21)u21 +

c1d1(u� v) + c1g1(u� u1) + d1g1(v � u1)

is of rank at most 2. Therefore, we have

det

 c1g1 c1d1 λa+ c21
d1g1 λ+ d21 c1d1

b+ g21 d1g1 c1g1

= 0,

and hence a(b + g21)λ2 + b(ad21 + c21)λ = 0 for every λ ∈ F. Since |F | > 3, it follows

that

ad21 + c21 = 0, (2.12)

b+ g21 = 0. (2.13)

Since u1, v1 are linearly independent, by (2.12), we get c1, d1 6= 0. By (2.12) and

(2.13),

β−1A1 = au2 + v2 = 2−1(c1u+ d1v)� (ac−11 u+ d−11 v), (2.14)

β−11 A2 = bu21 + (c1u+ d1v + g1u1)
2 = 2−1(c1u+ d1v)� (c1u+ d1v + 2g1u1). (2.15)

From (2.14) and (2.15), we have A1 = w1 � y1 and A2 = w1 � z1, where w1 =

2−1(c1u+d1v) ∈ Up, y1 = β(ac−11 u+d−11 v) ∈ Uh1 and z1 = β(c1u+d1v+2g1u1) ∈ Uh1 ,

with h1 = max{p, s}, are linearly independent vectors. So, (2.10) is proved.

Case A-(ii) : A1 is of form (2.5) and A2 is of form (2.8). Then γ1 = 0, and by

Lemma 1.2 (b), we may assume without loss of generality that u1 ∈ Us and v1 ∈ Ut

for some integers s 6 n + 1 − t < n + 1 − s and t > n+1
2

. Since p, s < t, we

have v1 /∈ 〈u, v〉. Since rank(A1 + A2) 6 2, it follows that {u, v, u1, v1} is linearly
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dependent. Then u1 ∈ 〈u, v〉, and so u1 = c2u+ d2v for some scalars c2, d2 ∈ F. Let

λ ∈ F. Then

λ(β−1A1) + A2 = λau2 + λv2 + u1 � v1 = λau2 + λv2 + c2(u� v1) + d2(v � v1)

where a = αβ−1 ∈ F. Since ρ(λ(β−1A1) + A2) 6 2, it follows that

0 = det

 c2 0 λa

d2 λ 0

0 d2 c2

= (ad22 + c22)λ

for every λ ∈ F. Then ad22 + c22 = 0. Since u1 6= 0 and a 6= 0, we have c2, d2 6= 0. So

β−1A1 = au2 + v2 = 2−1u1 � (ac−12 u+ d−12 v). (2.16)

A2 = u1 � v1 = 2−1u1 � 2v1. (2.17)

From (2.16) and (2.17), we see that A1 = w2 � y2 and A2 = w2 � z2, where w2 =

2−1u1 ∈ Us, y2 = β(ac−12 u + d−12 v) ∈ Uh2 and z2 = 2v1 ∈ Uh2 , with h2 = max{s, t},

are linearly independent vectors. So, (2.10) is proved.

Case A-(iii) : A1 is of form (2.6) and A2 is of form (2.7). By (2.9), we obtain

u /∈ 〈u1, v1〉 or v /∈ 〈u1, v1〉. By a similar argument as in Case A-(ii), (2.10) holds.

Case A-(iv) : A1 is of form (2.6) and A2 is of form (2.8). Then γ = γ1 = 0. By

Lemma 1.2 (b), we assume without loss of generality that u ∈ Up and v ∈ Uq for

some integers p 6 n + 1− q < n + 1− p and q > n+1
2

, and u1 ∈ Us and v1 ∈ Ut for

some integers s 6 n + 1 − t < n + 1 − s and t > n+1
2

. By (2.9), we argue in the

following two cases:

Sub-case A-(iv)-1: u1 /∈ 〈u, v〉. Then v1 ∈ 〈u, v, u1〉. Let v1 = c3u + d3v + g3u1
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for some scalars c3, d3, g3 ∈ F. Since t > s, p, we get d3 6= 0. Let λ ∈ F. Then

λA1 + A2 = λu� v + u1 � v1 = 2g3u
2
1 + λu� v + c3u� u1 + d3v � u1.

Since rank(λA1 + A2) 6 2, we obtain

0 = det

 c3 λ 0

d3 0 λ

2g3 d3 c3

 = 2g3λ
2 − 2c3d3λ

for every λ ∈ F. Since |F | > 3 and d3 6= 0, it follows that g3 = c3 = 0. Thus,

v1 = d3v, and so

A1 = v � u, (2.18)

A2 = v � d3u1. (2.19)

From (2.18) and (2.19), we have A1 = w3�y3 and A2 = w3�z3, where w3 = v ∈ Uq,

y3 = u ∈ Uh1 and z3 = d3u1 ∈ Uh1 , with h1 = max{p, s}, are linearly independent

vectors, and so (2.10) holds.

Sub-case A-(iv)-2: v1 /∈ 〈u, v〉. Then u1 ∈ 〈u, v, v1〉. Let u1 = c4u + d4v + g4v1

for some scalars c4, d4, g4 ∈ F. Since u1 ∈ Us, we have d4 = 0 ⇔ g4 = 0. By

a similar argument as in Sub-case A-(iv)-1, it can be shown that d4 = 0, and so

g4 = 0. Thus, u1 = c4u, and so A1 = w4� y4 and A2 = w4� z4, where w4 = u ∈ Up,

y4 = v ∈ Uh3 and z4 = c4v1 ∈ Uh3 , with h3 = max{q, t}, are linearly independent

vectors. Consequently, (2.10) is proved.

(b) We divide our proof into the following six cases:

Case B-(i) : A1 is of form (2.5) and A2 is of form (2.7). We consider only

u1 /∈ 〈u, v〉 as the second case v1 /∈ 〈u, v〉 can be verified similarly. Then v1 =
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c5u+ d5v + g5u1 for some scalars c5, d5, g5 ∈ F. Let λ ∈ F. So, we have

λ(β−1A1) + β−11 A2 = (λa + c25)u
2 + (λ+ d25)v

2 + (b+ g25)u21 +

c5d5(u� v) + c5g5(u� u1) + d5g5(v � u1) ∈ S

where a = αβ−1 and b = α1β
−1
1 are nonzero scalars in F. Therefore

det

 c5g5 c5d5 λa+ c25
d5g5 λ+ d25 c5d5

b+ g25 d5g1 c5g5

= 0.

Since |F | > 3, we get ad25 + c25 = 0 and b+ g25 = 0, and so c5, d5 6= 0. Then

β−1A1 = (c5u+ d5v)� (d−15 v) + d−25 (c5u+ d5v)2,

β−11 A2 = (c5u+ d5v)� (g5u1) + (c5u+ d5v)2.

So, we have A1 = w5 � y5 + (βd−25 )w2
5 and A2 = w5 � z5 + β1w

2
5, where w5 =

c5u + d5v ∈ Up, y5 = βd−15 v ∈ Uh1 and z5 = β1g5u1 ∈ Uh1 , with h1 = max{p, s}, are

linearly independent vectors. Hence, (2.11) holds.

Case B-(ii) : A1 is of form (2.5) and A2 is of form (2.8) with γ1 6= 0. By Lemma

1.2 (b) and (2.8), we may assume without loss of generality that u1 ∈ Us and v1 ∈ Ut

for some integers s 6 n + 1− t < n + 1− s and t > n+1
2

. Since p, s < t, v1 /∈ 〈u, v〉

and {u, v, u1, v1} is linearly dependent, we have u1 ∈ 〈u, v〉, and so u1 = c6u + d6v

for some c6, d6 ∈ F. Let λ ∈ F. Then

λ(β−1A1) + A2 = λau2 + λv2 + u1 � v1 + γ1u
2
1

= (λa+ γ1c
2
6)u

2 + (λ+ γ1d
2
6)v

2 + γ1c6d6(u� v)

+c6(u� v1) + d6(v � v1)
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where a = αβ−1 ∈ F. Since ρ(λ(β−1A1) + A2) 6 2, it follows that

0 = det

 c6 γ1c6d6 λa+ γ1c
2
6

d6 λ+ γ1d
2
6 γ1c6d6

0 d6 c6

= (ad26 + c26)λ

for every λ ∈ F. Then ad26 + c26 = 0. Since u1 6= 0, it follows that c6, d6 6= 0, and so

a = c26(d
−1
6 )2. Therefore,

β−1A1 = u1 � (d−16 v) + d−26 u21 and A2 = u1 � v1 + γ1u
2
1.

Thus, A1 = w6 � y6 + (βd−26 )w2
6 and A2 = w6 � z6 + γ1w

2
6, where w6 = u1 ∈ Us,

y6 = βd−16 v ∈ Uh4 and z6 = v1 ∈ Uh4 , with h4 = max{p, t}, are linearly independent

vectors. So, (2.11) holds.

Case B-(iii) : A1 is of form (2.6) with γ 6= 0, and A2 is of form (2.7). By a similar

argument as in the proof of Case B-(ii), (2.11) holds true.

Case B-(iv) : A1 is of form (2.6) with γ 6= 0, and A2 is of form (2.8) with

γ1 6= 0. In view of Lemma 1.2 (b), we may assume without loss of generality that

u ∈ Up and v ∈ Uq for some integers p 6 n + 1 − q < n + 1 − p and q > n+1
2

, and

u1 ∈ Us and v1 ∈ Ut for some integers s 6 n + 1 − t < n + 1 − s and t > n+1
2

.

Suppose that u1 /∈ 〈u, v〉. Then v1 ∈ 〈u, v, u1〉, and so v1 = c7u + d7v + g7u1

for some c7, d7, g7 ∈ F. Since p, s < q, t, we have d7 6= 0. Let λ ∈ F. Then

λA1 + A2 = λγu2 + γ1u
2
1 + λ(u� v) + c7(u� u1) + d7(v � u1) ∈ S. So

0 = det

 c7 λ λγ

d7 0 λ

γ1 d7 c7

 = γ1λ
2 + γd27λ

for every λ ∈ F. Since |F | > 3 and d7 6= 0, we conclude that γ1 = 0 and γ = 0,

a contradiction. Then v1 /∈ 〈u, v〉 by (2.9). Thus, u1 ∈ 〈u, v, v1〉, and so u1 =
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c8u + d8v + g8v1 for some scalars c8, d8, g8 ∈ F. Note that g8 = 0 for if not, then

v1 = g−18 u1 − g−18 c8u − g−18 d8v and an argument analogous to the above yields a

contradiction. Hence, g8 = 0, and so d8 = 0 since u1 ∈ Us. Then

A1 = u� v + γu2 and A2 = u� (c8v1) + γ1c
2
8u

2.

Therefore, we have A1 = w8 � y8 + γw2
8 and A2 = w8 � z8 + (γ1c

2
8)w

2
8, where

w8 = u ∈ Up, y8 = v ∈ Uh3 and z8 = c8v1 ∈ Uh3 , with h3 = max{q, t}, are linearly

independent vectors. Hence, (2.11) is proved.

Case B-(v): A1 is of form (2.6) with γ = 0, and A2 is of form (2.7). In view

of (2.9), we have 〈u1, v1〉 6= 〈u, v〉, and so u /∈ 〈u1, v1〉 or v /∈ 〈u1, v1〉. We consider

only the case u /∈ 〈u1, v1〉 as the second case can be verified similarly. So, v =

c9u1 + d9v1 + g9u for some c9, d9, g9 ∈ F. Let λ ∈ F. Then λA1 + β−11 A2 =

au21 + v21 + λc9u� u1 + λd9u� v1 ∈ S with a = α1β
−1
1 ∈ F. So

0 = det

 λd9 λc9 0

0 a λc9

1 0 λd9

= (ad29 + c29)λ
2

for every λ ∈ F. Since |F | > 3, we have ad29 + c29 = 0, and so c9, d9 6= 0 and

a = c29(d
−1)2. Then

A1 = v � u = (c9d
−1
9 u1 + v1)� d9u,

β−11 A2 = au21 + v21 = (c9d
−1
9 u1 + v1)� v1 + (c9d

−1
9 u1 + v1)

2.

Thus, A1 = w9 � y9 and A2 = w9 � z9 + β1w
2
9, where w9 = c9d

−1
9 u1 + v1 ∈ Us,

y9 = d9u ∈ Uh1 and z9 = β1v1 ∈ Uh1 , with h1 = max{p, s}, are linearly independent

vectors. So, (2.11) is proved.

Case B-(vi): A1 is of form (2.6) with γ = 0, and A2 is of form (2.8).
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We first consider γ1 6= 0. If u1 /∈ 〈u, v〉, then rank(A1 +A2) = rank(u� v+u1�

v1 + γ1u
2
1) > 2, a contradiction. By (2.9), we have v1 /∈ 〈u, v〉, and so u1 ∈ 〈u, v, v1〉.

Let u1 = c10u+ d10v + g10v1 for some scalars c10, d10, g10 ∈ F. Let λ ∈ F. Then

λA1 + A2 = γ1c
2
10u + γ1d

2
10v

2 + γ1g
2
10v

2
1 + (λ+ γ1c10d10)(u� v) +

(c10 + γ1c10g10)(u� v1) + (d10 + γ1d10g10)(v � v1).

Since rank(λA1 + A2) 6 2, we have

0 = det

 c10 + γ1c10g10 λ+ γ1c10d10 γ1c
2
10

d10 + γ1d10g10 γ1d
2
10 λ+ γ1c10d10

γ1g
2
10 d10 + γ1d10g10 c10 + γ1c10g10

= γ1g
2
10λ

2

for every λ ∈ F. Since |F | > 3 and γ1 6= 0, we get g10 = 0, and so u1 = c10u+ d10v.

If c10 = 0, then d10 6= 0, and so v = d−110 u1 ∈ Us. Thus, A1 = v � u = u1 � d−110 u.

Hence, we have A1 = w10 � y10 and A2 = w10 � z10 + γ1w
2
10, where w10 = u1 ∈ Us,

y10 = d−110 u ∈ Uh4 and z10 = v1 ∈ Uh4 , with h4 = max{p, t}, are linearly independent

vectors. Thus, (2.11) holds. If c10 6= 0, then A1 = u � v = u1 � c−110 v. So, we have

A1 = w11 � y11 and A2 = w11 � z11 + γ1w
2
11, where w11 = u1 ∈ Us, y11 = c−110 v ∈ Uh3

and z11 = v1 ∈ Uh3 , with h3 = max{q, t}, are linearly independent vectors. So,

(2.11) holds true.

We now consider γ1 = 0. We consider only u1 /∈ 〈u, v〉 as the second case v1 /∈

〈u, v〉 can be verified similarly. Then v1 ∈ 〈u, v, u1〉. Let v1 = c11u+ d11v+ g11u1 for

some c11, d11, g11 ∈ F. If c11 = 0, then A2 = u1�v1 = u1�(d11v+g11u1) = v�d11u1.

So, A1 = w12 � y12 and A2 = w12 � z12, where w12 = v ∈ Uq, y12 = u ∈ Uh1

and z12 = d11u1 ∈ Uh1 , with h1 = max{p, s}, are linearly independent vectors.

Therefore, (2.11) is proved. If c11 6= 0, then A1 = u� v = (c11u+ d11v)� c−111 v and
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A2 = u1 � v1 = u1 � (c11u+ d11v + g11u1) = (c11u+ d11v)� u1. Therefore,

A1 = w13 � y13 and A2 = w13 � z13

where y13 = c−111 v ∈ Uq, z13 = u1 ∈ Us and w13 = c11u + d11v ∈ Uh5 , with h5 =

max{p, q}, are independent vectors. We see that if q 6 n+1
2

, then (2.11) holds. If

q > n+1
2

, then h5 = q. Since w13 � y13 ∈ STn(F), it follows from Lemma 1.3 (c)(ii)

that nonzero scalar α ∈ F and some vector y′13 ∈ U` with 1 6 ` 6 n+ 1− h5 < n+1
2

such that w13, y
′
13 are linearly independent. Then

A1 = w13 � (αw13 + y′13) = w13 � y′13.

Note that if y′13, z13 are linearly dependent, then 〈w13, y
′
13〉 = 〈w13, z13〉, and so

〈u1, v1〉 = 〈w13, z13〉 = 〈w13, y
′
13〉 = 〈u, v〉, a contradiction. Further, since h5 >

n+1
2
> `, s, it follows that w13, y

′
13, z13 are linearly independent. Consequently, (2.11)

holds. The proof is complete. �

We are now in a position to give a classification of spaces of bounded rank-two

persymmetric triangular matrices over a field with at least three elements.

Theorem 2.6. Let F be a field with |F| > 3, and let n be an integer > 2. Then S

is a subspace of bounded rank-two matrices of STn(F) if and only if S is of one of

the following forms:

(a) S ⊆ 〈u2, v2, u� v〉 for some linearly independent vectors u, v ∈ Up with 1 6

p 6 n+1
2

.

(b) S = u � U for some nonzero vector u ∈ Up and some subspace U of Uq with

1 6 p 6 n+ 1− q 6 n.
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(c) S = u� U + 〈u2〉 for some nonzero vector u ∈ Up with 1 6 p 6 n+1
2

and some

subspace U of Uq with 1 6 q 6 n+ 1− p 6 n.

(d) S = 〈u� v1 + λ1u
2, . . . , u� vk + λku

2〉 for some linearly independent vectors

u, v1, . . . , vk such that u ∈ Up with 1 6 p 6 n+1
2

and v1, . . . , vk ∈ Uq with

1 6 q 6 n+ 1− p 6 n, and scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

(e) S = 〈u� v, u� w, v � w〉 for some linearly independent vectors u ∈ Up, v ∈

Uq and w ∈ Ur such that 1 6 p, q 6 n+ 1− r 6 n and either p 6 n+ 1− q, or

p = q > n+1
2

and v = αu+ z for some nonzero scalar α ∈ F and vector z ∈ Uk

with 1 6 k 6 n+ 1− p < n+1
2

such that u, z are linearly independent.

Moreover, if S takes any of the forms (c), (d) or (e), then F has characteristic two.

Proof. The sufficiency part follows immediately from Lemmas 2.3 and 2.4.

We now consider the necessity part. Let S 6= {0}. Suppose that S has no

rank two matrices. Let A,B ∈ S be nonzero matrices. Then A and B are of rank

one, and by Lemma 1.2 (a), there exist nonzero vectors x ∈ Up and u ∈ Uq, with

1 6 p, q 6 n+1
2

, such that A = αx2 and B = βu2 for some nonzero scalars α, β ∈ F.

If 〈x〉 6= 〈u〉, then A + B = αx2 + βu2 ∈ S is of rank two, a contradiction. Hence,

〈x〉 = 〈u〉, and so S = 〈u2〉 for some vector u ∈ Up such that 1 6 p 6 n+1
2

.

Suppose that S has a rank two matrix, say A1. In view of Lemma 1.2 (a), we see

that either

A1 = αu2 + βv2 (2.20)

for some linearly independent vectors u, v ∈ Up with 1 6 p 6 n+1
2

, and nonzero

scalars α, β ∈ F; or

A1 = u� v + γu2 (2.21)

for some linearly independent vectors u ∈ Up and v ∈ Uq with 1 6 p 6 n + 1− q <
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n + 1 − p, and some scalar γ ∈ F. We distinguish our proof into the following two

main cases:

Case I : S ⊆ 〈u, v〉2. In view of Lemma 2.2 (b)(i), we notice that 〈u, v〉2 =

〈u2, v2, u � v〉 and it is a 3-dimensional subspace of Mn(F) since {u, v} is linearly

independent. If u, v ∈ Up with 1 6 p 6 n+1
2

, then we have

S ⊆ 〈u2, v2, u� v〉.

However, if u ∈ Up with 1 6 p 6 n+1
2

and v ∈ Uq with n+1
2

< q 6 n, then

S ⊆ 〈u2, u� v〉. Since S contains a rank two matrix, in this case, we conclude that

S = u� 〈v〉, or

S = u� 〈v〉+
〈
u2
〉

or S =
〈
u� v + γu2

〉
(2.22)

for some nonzero scalar γ ∈ F. Note that if S is of a form in (2.22), then F has

characteristic two by Lemma 1.2 (a). We are done.

Case II : S * 〈u, v〉2. Let A2 ∈ S be a matrix such that A2 /∈ 〈u, v〉2. By Lemma

1.2 (a), we have either A2 = α1u
2
1 + β1v

2
1 for some linearly independent vectors

u1, v1 ∈ Us with 1 6 s 6 n+1
2

, and scalars α1, β1 ∈ F; or A2 = u1�v1 +γ1u
2
1 for some

linearly independent vectors u1 ∈ Us and v1 ∈ Ut, with 1 6 s 6 n+1− t < n+1−s,

and scalar γ1 ∈ F. Since A2 /∈ 〈u, v〉2, it follows that u1 /∈ 〈u, v〉 or v1 /∈ 〈u, v〉.

We first show that rankA2 = 2. Suppose to the contrary that rankA2 = 1. Then

A2 = α1u
2
1 for some nonzero scalar α1 ∈ F with u1 /∈ 〈u, v〉. If A1 is of form (2.20),

then A1 + A2 = αu2 + βv2 + α1u
2
1 is of rank 3, a contradiction. Therefore, A1 is of

form (2.21), and so A1 + A2 = u� v + γu2 + α1u
2
1 is of rank 3 because
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det

 0 0 α1

1 γ 0

0 1 0

= α1 6= 0,

a contradiction. So, rankA2 = 2. We now divide our proof into the following two

cases:

Case II-1: F has characteristic two. By Lemma 2.5 (b), A1 and A2 can be

represented as

A1 = w � y + ς1w
2 and A2 = w � z + ς2w

2 (2.23)

for some scalars ς1, ς2 ∈ F and linearly independent vectors w ∈ U` and y, z ∈ Uh

with 1 6 ` 6 n + 1 − h 6 n, and 1 6 ` 6 n+1
2

when (ς1, ς2) 6= 0. Let A ∈ S

be a nonzero element. If A is of rank one, then, in view of Lemma 1.2 (a), A is

of the form (1.7), i.e., A = λx2 for some nonzero scalar λ ∈ F and nonzero vector

x ∈ U`1 with 1 6 `1 6 n+1
2

. Since rank(A + Ai) 6 2 for i = 1, 2, it follows from

(2.23) that x ∈ 〈w, y〉 and x ∈ 〈w, z〉. Since w, y, z are linearly independent, we

have x ∈ 〈w, y〉 ∩ 〈w, z〉 = 〈w〉. Then ` = `1 6 n+1
2

and

A = λAw
2 for some scalar λA ∈ F. (2.24)

We now consider A is of rank two. By Lemma 1.2 (a), we have either

A = α2x
2
1 + β2x

2
2 (2.25)

for some linearly independent vectors x1, x2 ∈ Uh1 with 1 6 h1 6 n+1
2

, and scalars

α2, β2 ∈ F; or

A = x1 � x2 + γ2x
2
1 (2.26)

37



for some linearly independent vectors x1 ∈ U`2 and x2 ∈ Uh2 with 1 6 `2 6 n+ 1−

h2 < n + 1− `2, and scalar γ2 ∈ F. We divide our argument into the following two

cases:

Case II-1-A: xi /∈ 〈w, y, z〉 for some 1 6 i 6 2. For each ζ ∈ F, we denote

zζ := y + ζz and Bζ := w � zζ + (ς1 + ζς2)w
2.

Since Bζ = A1 + ζA2 ∈ S and 〈x1, x2〉 6= 〈w, zζ〉 for every ζ ∈ F, it follows from

Lemma 2.5 (b) that A and Bζ can be rewritten in the form as in (2.11), i.e., there

exist linearly independent vectors wζ ∈ U`′ and yζ , vζ ∈ Uh′ and scalars θζ , ϑζ ∈ F

such that

A = wζ � yζ + θζw
2
ζ and Bζ = wζ � vζ + ϑζw

2
ζ . (2.27)

for some integers 1 6 `′ 6 n+ 1−h′ 6 n, and 1 6 `′ 6 n+1
2

when (θζ , ϑζ) 6= 0. Since

w � zζ + (ς1 + ζς2)w
2 = Bζ = wζ � vζ + ϑζw

2
ζ , it follows from Lemma 1.3 (a) that

〈wζ , vζ〉 = 〈w, zζ〉. Therefore, for each ζ ∈ F, there exist scalars aζ , bζ ∈ F such that

wζ = aζw + bζzζ . (2.28)

Let ζ1 and ζ2 be a pair of distinct scalars in F. By an argument analogous to (2.27),

we obtain wζ1 � yζ1 + θζ1w
2
ζ1

= A = wζ2 � yζ2 + θζ2w
2
ζ2

, and so 〈wζ1 , yζ1〉 = 〈wζ2 , yζ2〉

by Lemma 1.3 (a). Therefore

wζ1 = cwζ2 + dyζ2 (2.29)

for some c, d ∈ F. On the other hand, in view of (2.25) and (2.26), and by Lemma

1.3 (a), we get 〈wζ2 , yζ2〉 = 〈x1, x2〉. By (2.28), we note that wζ2 ∈ 〈w, y, z〉. It
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follows that yζ2 /∈ 〈w, y, z〉 since xi /∈ 〈w, y, z〉 for some 1 6 i 6 2. Together with

(2.28) and (2.29), we have d = 0, and so

wζ1 = cwζ2 with c 6= 0. (2.30)

Since w, y, z are linearly independent, we have 〈zζ1〉 6= 〈zζ2〉 for every pair of distinct

elements ζ1, ζ2 ∈ F. Thus, w, zζ1 , zζ2 are linearly independent. By (2.28) and (2.30),

we obtain

aζ1w+bζ1zζ1 = c(aζ2w+bζ2zζ2) ⇒ (aζ1−caζ2)w+bζ1zζ1 +(−cbζ2)zζ2 = 0. (2.31)

Hence, bζ1 = bζ2 = 0. Since the result holds true for any two distinct scalars

ζ1, ζ2 ∈ F, it follows that bζ = 0 for every ζ ∈ F. By (2.28), we have 〈wζ〉 = 〈w〉 for

every ζ ∈ F. It follows from (2.27) that

A = w � yA + αAw
2 (2.32)

for some scalar αA ∈ F and some nonzero vector yA ∈ Uh3 such that either 1 6 h3 6

n+ 1− ` 6 n, and 1 6 ` 6 n+1
2

when αA 6= 0.

Case II-1-B: xi ∈ 〈w, y, z〉 for i = 1, 2. Let x1 = a1w + b1y + c1z and x2 =

a2w + b2y + c2z for some scalars a1, a2, b1, b2, c1, c2 ∈ F. We first consider A is of

form (2.25). Let λ ∈ F. Then

A+ λA1 = (α2a
2
1 + β2a

2
2 + λς1)w

2 + (α2b
2
1 + β2b

2
2)y

2 + (α2c
2
1 + β2c

2
2)z

2

+ w � [(α2a1b1 + β2a2b2 + λ)y + (α2a1c1 + β2a2c2)z] + (α2b1c1 + β2b2c2)y � z
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by (2.23) and (2.25). Since rank (A+ λA1) 6 2, we have

det

 α2a1c1 + β2a2c2 α2a1b1 + β2a2b2 + λ α2a
2
1 + β2a

2
2 + λς1

α2b1c1 + β2b2c2 α2b
2
1 + β2b

2
2 α2a1b1 + β2a2b2 + λ

α2c
2
1 + β2c

2
2 α2b1c1 + β2b2c2 α2a1c1 + β2a2c2

 = 0.

Then (α2c
2
1 + β2c

2
2)λ

2 + ς1α2β2(b1c2 + b2c1)
2λ = 0 for every λ ∈ F. Since |F| > 3, we

get

α2c
2
1 + β2c

2
2 = 0 = ς1α2β2(b1c2 + b2c1)

2. (2.33)

Likewise, since rank (A+ λA2) 6 2, we get

det

 α2a1c1 + β2a2c2 + λ α2a1b1 + β2a2b2 α2a
2
1 + β2a

2
2 + λς2

α2b1c1 + β2b2c2 α2b
2
1 + β2b

2
2 α2a1b1 + β2a2b2

α2c
2
1 + β2c

2
2 α2b1c1 + β2b2c2 α2a1c1 + β2a2c2 + λ

 = 0,

and so (α2b
2
1 + β2b

2
2)λ

2 + ς2α2β2(b1c2 + b2c1)
2λ = 0 for every λ ∈ F. Therefore, we

obtain

α2b
2
1 + β2b

2
2 = 0 = ς2α2β2(b1c2 + b2c1)

2. (2.34)

If (ς1, ς2) 6= 0, then, by (2.33) and (2.34), we have α2β2(b1c2 + b2c1)
2 = 0. Notice

that

(α2b1c1 + β2b2c2)
2 = (α2b

2
1 + β2b

2
2)(α2c

2
1 + β2c

2
2) + α2β2(b1c2 + b2c1)

2 = 0.

Thus, α2b1c1 + β2b2c2 = 0. Together with (2.33) and (2.34), we have

A = w � ((α2a1b1 + β2a2b2)y + (α2a1c1 + β2a2c2)z) + (α2a
2
1 + β2a

2
2)w

2. (2.35)

Suppose that (ς1, ς2) = 0, and that α2b1c1 + β2b2c2 6= 0. Then, by (2.33) and (2.34),
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we have

A = (α2a
2
1 + β2a

2
2)w

2 + (α2b1c1 + β2b2c2) y � z

+ (α2a1b1 + β2a2b2)w � y + (α2a1c1 + β2a2c2)w � z.

Since rankA 6 2, it follows that α2a
2
1 + β2a

2
2 = 0. Hence, we have

A = (α2b1c1+β2b2c2) y�z+(α2a1b1+β2a2b2)w�y+(α2a1c1+β2a2c2)w�z. (2.36)

We now consider A is of form (2.26). Let λ ∈ F. Then

A+ λA1 = (γ2a
2
1 + λς1)w

2 + γ2b
2
1y

2 + γ2c
2
1z

2 + (γ2b1c1 + b1c2 + b2c1)y � z

+ w � [(γ2a1b1 + a1b2 + a2b1 + λ)y + (γ2a1c1 + a1c2 + a2c1)z]

by (2.23) and (2.26). Since rank(A+ λA1) 6 2, it follows that

det

 γ2a1c1 + a1c2 + a2c1 γ2a1b1 + a1b2 + a2b1 + λ γ2a
2
1 + λς1

γ2b1c1 + b1c2 + b2c1 γ2b
2
1 γ2a1b1 + a1b2 + a2b1 + λ

γ2c
2
1 γ2b1c1 + b1c2 + b2c1 γ2a1c1 + a1c2 + a2c1

 = 0.

Then γ2c
2
1λ

2 + ς1(b1c2 + b2c1)
2λ = 0 for every λ ∈ F. Since |F| > 3, we obtain

γ2c
2
1 = 0 = ς1(b1c2 + b2c1)

2. (2.37)

Similarly, since rank(A+ λA2) 6 2, we get

det

 γ2a1c1 + a1c2 + a2c1 + λ γ2a1b1 + a1b2 + a2b1 γ2a
2
1 + λς2

γ2b1c1 + b1c2 + b2c1 γ2b
2
1 γ2a1b1 + a1b2 + a2b1

γ2c
2
1 γ2b1c1 + b1c2 + b2c1 γ2a1c1 + a1c2 + a2c1 + λ

 = 0,
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and so γ2b
2
1λ

2 + ς2(b1c2 + b2c1)
2λ = 0 for every λ ∈ F. Thus

γ2b
2
1 = 0 = ς2(b1c2 + b2c1)

2. (2.38)

If (ς1, ς2) 6= 0, then, in view of (2.37) and (2.38), we have (b1c2 + b2c1)
2 = 0, and so

b1c2 + b2c1 = 0. Furthermore, (γ2b1c1)
2 = (γ2b

2
1)(γ2c

2
1) = 0 implies that γ2b1c1 = 0.

Hence, we obtain

A = w � ((γ2a1b1 + a1b2 + a2b1)y + (γ2a1c1 + a1c2 + a2c1)z) + (γ2a
2
1)w

2. (2.39)

Suppose now that (ς1, ς2) = 0 and that b1c2 + b2c1 6= 0. Then (b1, c1) 6= 0. By (2.37)

and (2.38), we conclude that γ2 = 0, and so

A = (b1c2 + b2c1) y � z + (a1b2 + a2b1)w � y + (a1c2 + a2c1)w � z. (2.40)

Since y � z ∈ STn(F), it follows that if h > n+1
2

, then, by Lemma 1.3 (c) (ii), we

have z = αy + y′ for some nonzero scalar α ∈ F and some vector y′ ∈ U`′ with

1 6 `′ 6 n + 1 − h < n+1
2

such that y, y′ are linearly independent. Consequently,

since A1, A2 ∈ S and w ∈ U`, y, z ∈ Uh are linearly independent vectors, it follows

from (2.24), (2.32), (2.35), (2.36), (2.39) and (2.40) that if S contains no rank one

matrices, then we have either

S = w � V1

for some subspace V1 of Uk1 with 1 6 ` 6 n + 1 − k1 6 n, and y, z ∈ V1 and

(ς1, ς2) = 0, or by Lemma 2.4 (a), we get

S =
〈
w � y1 + λ1w

2, . . . , w � yk + λkw
2
〉
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for some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0, and some vectors y1, . . . , yk ∈

Uk2 with 1 6 k2 6 n + 1 − ` and 1 6 ` 6 n+1
2

such that w, y1, . . . , yk are linearly

independent, or by Lemma 1.3 (d), we have

S = 〈w � y, w � z, y � z〉 ;

or if S contains rank one matrices, then, by Lemma 2.4 (b), we get

S = w � V2 + 〈w2〉

for some subspace V2 of Uk3 with 1 6 k3 6 n + 1 − ` 6 n and 1 6 ` 6 n+1
2

, and

y, z ∈ V2. We are done.

Case II-2: F has characteristic not two. In view of Lemma 2.5 (a), we see that

A1 and A2 can be rewritten as

A1 = w � y and A2 = w � z (2.41)

for some linearly independent vectors w ∈ Up and y, z ∈ Uq with 1 6 p 6 n+1−q 6

n. Let A be an arbitrary nonzero element of S. If A is of rank one, then, by an

argument analogous to (2.24), we can show that p 6 n+1
2

and

A = λAw
2 for some scalar λA ∈ F. (2.42)

We now consider A is of rank two. By Lemma 1.2 (a), we have

A = α2x
2
1 + β2x

2
2 (2.43)
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for some linearly independent vectors x1, x2 ∈ Uq1 with 1 6 q1 6 n+1
2

, and scalars

α2, β2 ∈ F; or

A = x1 � x2 + γ2x
2
1 (2.44)

for some linearly independent vectors x1 ∈ Up2 and x2 ∈ Uq2 , with 1 6 p2 6

n + 1 − q2 < n + 1 − p2, and scalar γ2 ∈ F. We divide our argument into the

following two cases:

Case II-2-A: xi /∈ 〈w, y, z〉 for some 1 6 i 6 2. For each ζ ∈ F, we denote

zζ = y + ζz and Bζ = w � zζ .

By the hypothesis of Case II-1-A, we see that 〈x1, x2〉 6= 〈w, zζ〉 for every ζ ∈ F.

Since Bζ = A1 + ζA2 ∈ S, it follows from Lemma 2.5 (a) that there exist linearly

independent vectors wζ ∈ Up3 and yζ , vζ ∈ Uq3 with 1 6 p3 6 n + 1 − q3 6 n such

that A and Bζ can be rewritten as

A = wζ � yζ and Bζ = wζ � vζ . (2.45)

By an argument analogous to Case II-1-A, we can show that 〈wζ〉 = 〈w〉 for every

ζ ∈ F. In view of (2.45), we have

A = w � yA (2.46)

for some nonzero vector yA ∈ Up4 with 1 6 p 6 n+ 1− p4 6 n.

Case II-2-B: xi ∈ 〈w, y, z〉 for i = 1, 2. Let x1 = a1w + b1y + c1z and x2 =

a2w + b2y + c2z for some scalars a1, a2, b1, b2, c1, c2 ∈ F. We first consider A is of
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form (2.43). Let λ ∈ F. Then

A+ λA1 = α2x
2
1 + β2x

2
2 + λw � y

= (α2a
2
1 + β2a

2
2)w

2 + (α2b
2
1 + β2b

2
2)y

2 + (α2c
2
1 + β2c

2
2)z

2

+w � [(α2a1b1 + β2a2b2 + λ)y + (α2a1c1 + β2a2c2)z] + (α2b1c1 + β2b2c2)y � z.

Since rank (A+ λA1) 6 2, we have

det

 α2a1c1 + β2a2c2 α2a1b1 + β2a2b2 + λ α2a
2
1 + β2a

2
2

α2b1c1 + β2b2c2 α2b
2
1 + β2b

2
2 α2a1b1 + β2a2b2 + λ

α2c
2
1 + β2c

2
2 α2b1c1 + β2b2c2 α2a1c1 + β2a2c2

= 0,

and so

(α2c
2
1+β2c

2
2)λ

2+2[(α2c
2
1+β2c

2
2)(α2a1b1+β2a2b2)−(α2b1c1+β2b2c2)(α2a1c1+β2a2c2)]λ = 0

for every λ ∈ F. Since |F| > 3, it follows that

α2c
2
1 + β2c

2
2 = 0, (2.47)

(α2b1c1 + β2b2c2)(α2a1c1 + β2a2c2) = 0. (2.48)

Similarly, since rank (A+ λA2) 6 2, we get

det

 α2a1c1 + β2a2c2 + λ α2a1b1 + β2a2b2 α2a
2
1 + β2a

2
2

α2b1c1 + β2b2c2 α2b
2
1 + β2b

2
2 α2a1b1 + β2a2b2

α2c
2
1 + β2c

2
2 α2b1c1 + β2b2c2 α2a1c1 + β2a2c2 + λ

= 0,

and so
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(α2b
2
1 + β2b

2
2)λ

2 + 2[(α2b
2
1+ β2b

2
2)(α2a1c1 + β2a2c2)

−(α2b1c1 + β2b2c2)(α2a1b1 + β2a2b2)]λ = 0

for every λ ∈ F. Then

α2b
2
1 + β2b

2
2 = 0, (2.49)

(α2b1c1 + β2b2c2)(α2a1b1 + β2a2b2) = 0. (2.50)

We now claim that α2b1c1 +β2b2c2 = 0. Suppose that α2b1c1 +β2b2c2 6= 0. By (2.48)

and (2.50), α2a1c1 + β2a2c2 = 0 = α2a1b1 + β2a2b2. Together with (2.41), (2.43),

(2.47) and (2.49), we have

A+ λA1 + A2 = (α2a
2
1 + β2a

2
2)w

2 + (α2b1c1 + β2b2c2)y � z + w � (λy + z)

is of rank at most two. Then 2(α2b1c1+β2b2c2)λ−(α2a
2
1+β2a

2
2)(α2b1c1+β2b2c2)

2 = 0

for all λ ∈ F. Since |F| > 3, we conclude that α2b1c1 + β2b2c2 = 0, a contradiction.

Therefore, we have α2b1c1 + β2b2c2 = 0, as claimed. So, we have

A = w � ((α2a1b1 + β2a2b2)y + (α2a1c1 + β2a2c2)z + 2−1(α2a
2
1 + β2a

2
2)w). (2.51)

Next, we consider A is of form (2.44). Let λ ∈ F. By (2.41) and (2.44), we have

A+ λA1 = 2a1a2w
2 + 2b1b2y

2 + 2c1c2z
2

+w � [(a1b2 + a2b1 + λ)y + (a1c2 + a2c1)z] + (b1c2 + b2c1)y � z.
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Since rank(A+ λA1) 6 2, it follows that

det

 a1c2 + a2c1 a1b2 + a2b1 + λ 2a1a2

b1c2 + b2c1 2b1b2 a1b2 + a2b1 + λ

2c1c2 b1c2 + b2c1 a1c2 + a2c1

= 0.

So, 2c1c2λ
2 + 2[(2c1c2)(a1b2 + a2b1)− (b1c2 + b2c1)(a1c2 + a2c1)]λ = 0 for all λ ∈ F.

Since |F| > 3, we have

2c1c2 = 0 = (b1c2 + b2c1)(a1c2 + a2c1). (2.52)

Similarly, since rank(A+ λA2) 6 2, we have

det

 a1c2 + a2c1 + λ a1b2 + a2b1 2a1a2

b1c2 + b2c1 2b1b2 a1b2 + a2b1

2c1c2 b1c2 + b2c1 a1c2 + a2c1 + λ

= 0,

and so 2b1b2λ
2 +2[(2b1b2)(a1c2 +a2c1)− (b1c2 +b2c1)(a1b2 +a2b1)]λ = 0 for all λ ∈ F.

Then

2b1b2 = 0 = (b1c2 + b2c1)(a1b2 + a2b1). (2.53)

Suppose that b1c2 + b2c1 6= 0. By (2.52) and (2.53), we have a1c2 + a2c1 = 0 =

a1b2 + a2b1. Therefore, we obtain

A+ λA1 + A2 = 2a1a2w
2 + (b1c2 + b2c1)y � z + w � (λy + z)

is of rank at most 2 for all λ ∈ F. So, (b1c2 + b2c1)λ − a1a2(b1c2 + b2c1)
2 = 0 for

all λ ∈ F. Since |F| > 3, we obtain b1c2 + b2c1 = 0, a contradiction. So, we have
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b1c2 + b2c1 = 0, and hence

A = w � (a1a2w + (a1b2 + a2b1)y + (a1c2 + a2c1)z). (2.54)

Since A1, A2 ∈ S and w ∈ U`, y, z ∈ Uh are linearly independent vectors, together

with (2.42), (2.46), (2.51) and (2.54), we conclude that

S = w � U

for some nonzero vector w ∈ Up and some subspace U of Ur with 1 6 p 6 n+1−r 6

n. The proof is complete. �

As an immediate consequence of Lemmas 2.3 (d) and 2.4 (a) and Theorem 2.6,

we give a complete description of rank-two subspaces of STn(F) over a field F with

at least three elements.

Theorem 2.7. Let F be a field with |F| > 3, and let n be an integer > 2. Then S

is a rank-two subspace of STn(F) if and only if S is of one of the following forms:

(a) S = 〈α1u� v+ α2u
2 + α3v

2, β1u� v + β2u
2 + β3v

2〉 for some linearly inde-

pendent vectors u, v ∈ Up with 1 6 p 6 n+1
2

, and some fixed scalars

α1, α2, α3, β1, β2, β3 ∈ F such that

det

(
aα1 + bβ1 aα2 + bβ2

aα3 + bβ3 aα1 + bβ1

)
6= 0

for every scalar a, b ∈ F with (a, b) 6= 0.

(b) S = u � U for some nonzero vector u ∈ Up and some subspace U of Uq with

1 6 p 6 n+ 1− q 6 n when charF = 2, and U ∩ 〈u〉 = {0} when charF 6= 2.

(c) S = 〈u� v1 + λ1u
2, . . . , u� vk + λku

2〉 for some linearly independent vectors
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u, v1, . . . , vk such that u ∈ Up with 1 6 p 6 n+1
2

and v1, . . . , vk ∈ Uq with

1 6 q 6 n+ 1− p, and some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

(d) S = 〈u� v, u� w, v � w〉 for some linearly independent vectors u ∈ Up, v ∈

Uq and w ∈ Ur such that 1 6 p, q 6 n+ 1− r 6 n and either p 6 n+ 1− q, or

p = q > n+1
2

and v = αu+ z for some nonzero scalar α ∈ F and vector z ∈ Uk

with 1 6 k 6 n+ 1− p < n+1
2

such that u, z are linearly independent.

Moreover, if S takes the form (c) or (d), then F has characteristic two.

Proof. The sufficiency part of the theorem is clear. We now prove the necessity.

Since S is a rank-two subspace of STn(F), it follows from Lemmas 2.3 (d) and 2.4 (a)

and Theorem 2.6 that S takes one of the following forms:

(A) S ⊆ 〈u2, v2, u� v〉 for some linearly independent vectors u, v ∈ Up with 1 6

p 6 n+1
2

.

(B) S = u � U for some nonzero vector u ∈ Up and some subspace U of Uq with

1 6 p 6 n+ 1− q 6 n when charF = 2, and U ∩ 〈u〉 = {0} when charF 6= 2.

(C) S = 〈u� v1 + λ1u
2, . . . , u� vk + λku

2〉 for some linearly independent vectors

u, v1, . . . , vk such that u ∈ Up with 1 6 p 6 n+1
2

and v1, . . . , vk ∈ Uq with

1 6 q 6 n+ 1− p, and some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

(D) S = 〈u� v, u� w, v � w〉 for some linearly independent vectors u ∈ Up,

v ∈ Uq and w ∈ Ur such that 1 6 p, q 6 n+ 1− r 6 n and either p 6 n+ 1− q,

or p = q > n+1
2

and v = αu + z for some nonzero scalar α ∈ F and vector

z ∈ Uk with 1 6 k 6 n+ 1− p < n+1
2

such that u, z are linearly independent.

Moreover, if S is of Form (C) or Form (D), then F has characteristic two. It is clear

that Forms (B), (C) and (D) are rank-two subspaces of STn(F). We now consider
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S of Form (A). If dimS = 3, then S = 〈u2, v2, u� v〉, and so S consists of rank one

matrices, a contradiction. Thus dimS 6 2 and we have

S =
〈
α1u� v+ α2u

2 + α3v
2, β1u� v + β2u

2 + β3v
2
〉

for some fixed scalars α1, α2, α3, β1, β2, β3 ∈ F. If all scalars αi and βi are zero, then

S = {0} and it is of Form (B). Suppose that S 6= {0}. Let A ∈ S be nonzero. Then

there exist scalars a, b ∈ F with (a, b) 6= 0 such that A = a(α1u� v+α2u
2 +α3v

2) +

b(β1u�v+β2u
2 +β3v

2), and so A = (aα1 +bβ1)u�v+(aα2 +bβ2)u
2 +(aα3 +bβ3)v

2

is of rank two. Then we have

det

(
aα1 + bβ1 aα2 + bβ2

aα3 + bβ3 aα1 + bβ1

)
6= 0.

This completes our proof. �

We give a few examples of rank-two subspaces of STn(F) to illustrate the form

of type (a) in Theorem 2.7.

Example 2.8. Let F be a field with |F| > 3, and let n be an integer > 3. Let

{e1, . . . , en} be the standard basis of Mn,1(F).

(a) Let S1 = 〈e21 + e22〉. Clearly, each nonzero element in S1 is of the form a(E1n +

E2,n−1) with a ∈ F nonzero which is certainly of rank two. Therefore, S1 is a

1-dimensional rank-two subspace of STn(F).

(b) Suppose that F = R.

(i) Let S2 = 〈e1 � e2 + e21, e1 � e2 + 2e22〉. Then S2 is a 2-dimensional sub-

space of STn(R). Let A ∈ S2 be nonzero. Then there are scalars a, b ∈ R

not all zero such that
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A = a(e1 � e2 + e21) + b(e1 � e2 + 2e22)

= (a+ b)E1,n−1 + aE1n + 2bE2,n−1 + (a+ b)E2n.

Note that (a, b) 6= 0 implies

det

(
a+ b a

2b a+ b

)
= (a+ b)2 − 2ab = a2 + b2 6= 0.

Thus, A is of rank two. Then S2 is a rank-two subspace of STn(R).

(ii) Let S3 = 〈e1 � e2, e1 � e2 + e21 − e22〉. Let A be a nonzero element in S3.

Then A = (a + b)E1,n−1 + bE1n − bE2,n−1 + (a + b)E2n for some scalars

a, b ∈ R with (a, b) 6= 0. Since

det

(
a+ b b

−b a+ b

)
= (a+ b)2 + b2 6= 0,

it follows that S3 is a 2-dimensional rank-two subspace of STn(R).

(c) Let F = {0, 1, α, β} be a finite field with four elements with the addition and

multiplication tables

+ 0 1 α β

0 0 1 α β

1 1 0 β α

α α β 0 1

β β α 1 0

× 0 1 α β

0 0 0 0 0

1 0 1 α β

α 0 α β 1

β 0 β 1 α

Clearly F has characteristic two. Let S4 = 〈e1 � e2 + e21, e1 � e2 + αe22〉 ⊆

STn(F). We wish to show that every nonzero element in S4 is of rank two, that

is, λ1(e1�e2 +e21)+λ2(e1�e2 +αe22) is of rank two for any nonzero λ1, λ2 ∈ F.

Let A =

(
λ1 + λ2 λ1

λ2α λ1 + λ2

)
. Then we have detA = λ21 + λ22 + λ1λ2α. The

following tables
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λ1 λ2 detA

1 1 α

1 α 1

1 β α

λ1 λ2 detA

α 1 1

α α 1

α β β

λ1 λ2 detA

β 1 α

β α β

β β β

show that detA 6= 0 for any nonzero λ1, λ2 ∈ F. Hence S4 is a rank-two

subspace of STn(F).
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Chapter 3

BOUNDED RANK-TWO LINEAR PRESERVERS

As mentioned in the introduction, from the structural result in Theorem 2.6, we shall

proceed to give a characterization of bounded rank-two linear preservers between

persymmetric triangular matrix spaces.

Let F be a field with at least three elements and m > n > 2 be integers. Let

T : STn(F) −→ STm(F) be a bounded rank-two linear preserver. Suppose that S

is a subspace of bounded rank-two matrices of STn(F). Then from our definition of

bounded rank-two linear preservers, it is immediate that T (S) is again a subspace

of bounded rank-two matrices of STm(F). Consequently, Theorem 2.6 gives us the

structure of T (S).

The characterization of rank linear preservers can be a great help in the study

of other types of linear preserver problems. For example, in [13], Watkins used a

result of Marcus and Moyls [9] on rank-one linear preservers to characterize those

nonsingular linear transformations on the space of n × n matrices (n > 4) over

an algebraically closed field of characteristic 0 that preserve commuting pairs of

matrices.

Here, we adapt the technique of constructing rank linear preservers from [1] to

study bounded rank-two linear preservers between persymmetric triangular matrix

spaces. The lemmas below play an important role in proving all the theorems in

this chapter.

Lemma 3.1. Let F be a field with |F| > 3, and let n be an integer > 2. Let w ∈ Up

and u, v ∈ Uq be vectors and let a, b ∈ F be scalars such that w�u+aw2, w�v+bw2
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are linearly independent. If

w � u+ aw2, w � v + bw2 ∈ x�X +
〈
x2
〉
.

for some vector x ∈ Mn,1(F) and subspace X of Mn,1(F), then x,w are linearly

dependent.

Proof. Suppose that 〈u〉 = 〈w〉. Then a 6= 0. Since w � u + aw2 ∈ x �X + 〈x2〉,

then by Lemma 1.3(a) we have x ∈ 〈w, u〉 = 〈w〉. The case 〈v〉 = 〈w〉 can be verified

similarly. Suppose that u,w are linearly independent vectors. Then consider the

case v ∈ 〈u,w〉. Let v = cu + dw for some scalars c, d ∈ F with c 6= 0. Then

w�v+bw2 = cw�u+(2d+b)w2. Hence w2 ∈ x�X+〈x2〉 implying w ∈ 〈x〉. Consider

the case w, u, v are linearly independent. Since w�u+aw2, w�v+bw2 ∈ x�X+〈x2〉,

then by Lemma 1.3(a) we have x ∈ 〈w, u〉 ∩ 〈w, u〉 = 〈w〉. We are done. �

Lemma 3.2. Let F be a field with |F| > 3, and let n be an integer > 2. Let

u, v, x, y ∈Mn,1(F) and let α, β ∈ F such that u� v+αu2 = x� y+βx2. If u, x are

linearly independent, then u � v + αu2 is of rank two, and the following assertions

hold.

(a) If F has characteristic two, then α = β = 0 and x = au + bv and y = b−1(1−

ac)u+ cv for some a, b, c ∈ F with b 6= 0.

(b) If F has characteristic not two, then either

(i) x = dv and y = d−1u− 2−1βdv for some nonzero scalar d ∈ F, or

(ii) x = gu+ (βg + (2g)−1α)−1v and y = ((2g)−1(α− βg2))u+ (−2−1β(βg +

(2g)−1α)−1)v for some nonzero scalar g ∈ F.

Further if α = β = 0, then (i) holds.
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Proof. By Lemma 1.3(a), we have 〈u, v〉 = 〈x, y〉. If u�v+αu2 is of rank one then

〈u〉 = 〈v〉 and so x ∈ 〈u, v〉 = 〈u〉, a contradiction. Hence u�v+αu2 is of rank two.

This implies that u, v are linearly independent. Let x = au + bv and y = cu + dv

for some scalars a, b, c, d ∈ F with b 6= 0. Then

u� v + αu2 = (2ac+ βa2)u2 + (ad+ bc+ 2βab)u� v + (2bd+ βb2)v2.

Hence

2ac+ βa2 = α, (3.1)

ad+ bc+ 2βab = 1, (3.2)

2bd+ βb2 = 0. (3.3)

We argue in the following two cases.

Case I: F has characteristic two. From (3.3), βb2 = 0. This implies that β = 0

since b 6= 0. So by (3.1), α = 0. Then (3.2) implies that ad+bc = 1 or c = b−1(1−ad).

Case II: F has characteristic not two. By (3.3), d = −2−1βb. If a = 0, then it

follows from (3.1), α = 0. Then (3.2) implies that bc = 1 or c = b−1 yielding x = bv

and y = b−1u − 2−1βbv. Suppose that a 6= 0. Then by (3.1), c = (2a)−1(α − βa2).

It follows from (3.2) that b = (βa + 1
2
a−1α)−1. Note that if α = β = 0, then from

(3.2) and (3.3), we see that d = 0 and bc = 1 implying c 6= 0. Then by (3.1) we have

a = 0. The proof is complete. �

Lemma 3.3. Let F be a field with |F| > 3, and let n be an integer > 2. Let

u, v, w, z ∈Mn,1(F) be vectors and let α, β ∈ F be scalars such that u� v+αu2, w�

z + βw2 are linearly independent. If w, u, v are linearly independent vectors such
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that u � v + αu2 + λ(w � z + βw2) has rank bounded by two for every λ ∈ F, then

the following assertions hold.

(a) If F has characteristic two, then either β = 0 and z ∈ 〈u,w〉 \ 〈w〉, or α = β = 0

and z ∈ 〈u, v, w〉 \ 〈u,w〉.

(b) If F has characteristic not two, then either z = au− 2−1βw for some nonzero

scalar a ∈ F or z = b(2−1αu+ v)− 2−1βw for some nonzero scalar b ∈ F.

Proof. It is clear that z ∈ 〈u, v, w〉, otherwise u� v+αu2 +w� z+ βw2 is of rank

four. Let z = au+ bv + cw for some a, b, c ∈ F. We check that

u� v + αu2 + λ(w � z + βw2) = u� (λaw + v) + αu2 + λbw � v + λ(β + 2c)w2

is of rank bounded above by two for any λ ∈ F, yielding

det

 1 λa α

λb λ(β + 2c) λa

0 λb 1

 = λ2(αb2 − 2ab) + λ(β + 2c) = 0.

Since |F| > 3, we have (αb− 2a)b = β + 2c = 0.

Case I: F has characteristic two. Then β = 0. If b = 0, then we have z ∈ 〈u,w〉

and we are done. Suppose that b 6= 0. Then α = 0 and the result follows.

Case II: F has characteristic not two. Then c = −2−1β. If b = 0, then z =

au− 2−1βw. If b 6= 0, then a = 2−1αb and so z = b(2−1αu+ v)− 2−1βw and we are

done. �

Let {f1, . . . , fm} denote the standard ordered basis of Mm,1(F). Recall that

U i :=
{

(u1, . . . , ui, 0, . . . , 0)T
∣∣ u1, . . . , ui ∈ F

}
.
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Lemma 3.4. Let F be a field with |F| > 3 and let n,m be integers such that m >

n > 2. Let P ∈ Mm,n(F) be a matrix of rank n and let T : STn(F) −→ STm(F) be

the linear map defined by

T (A) = PAP+

for all A ∈ STn(F). Then there exists an invertible matrix Q ∈Mm(F) such that

T (A) = Q

(
0n,m−n A

0 0m−n,n

)
Q+ (3.4)

for all A ∈ STn(F), where Qfi = Pei ∈ Upi and Qfj = Pej ∈ Uqj with 1 6 pi 6 m+1
2

for every 1 6 i 6 n+1
2

, and qj = max{m + 1 − pk | 1 6 k 6 n + 1 − j} for every

n+1
2
< j 6 n+ 1− i. In particular, Q ∈ Tn(F) when m = n.

Proof. We note that PAP+ is upper triangular, it follows that f+
m+1−s(PAP

+)ft =

0 for all s > t. By letting A = e2k for some 1 6 k 6 n+1
2

, we see that

f+
m+1−sPek(f

+
t Pek)

+ = 0. Since P is of rank n, then for each k there exists a

corresponding tk such that f+
tk
Pek 6= 0 and f+

m+1−sPek = 0 for all s > tk. Further,

1 6 m+ 1− tk 6 m+1
2

; otherwise if tk <
m+1
2

or tk < m+ 1− tk, then we have

(f+
tk
Pek)

2 = f+
tk
Pe2kP

+ftk = 0.

Hence f+
tk
Pek = 0 which contradicts our earlier assumption. Therefore Pek = zk ∈

Upk for some 1 6 pk 6 m+1
2

, for all 1 6 k 6 n+1
2

. Next, consider zj where n+1
2
< j 6

n. Note that for a fixed j, we have zi � zj ∈ STm(F) for all 1 6 i < j 6 n + 1 − i.

Hence this implies that zj ∈ Uqj for some integer qj where qj 6 m + 1 − pi for all

1 6 i < j 6 n+ 1− i.
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Let Q ∈ Mm(F) be the transition matrix from the ordered basis {f1, . . . , fm}

to the ordered basis {z1, . . . , zm} such that Qfk = zk for all 1 6 k 6 n, where

{z1, . . . , zm} is an ordered basis obtained by extending {z1, . . . , zn}. Then we have

T (A) = λQ

(
0n,m−n A

0 0m−n,n

)
Q+.

In particular, when m = n, we wish to show that Q ∈ Tn(F). Notice that

Qe1 = u1, . . . , Qen = un are linearly independent vectors, then we have ui ∈ Un\Un−1

for some 1 6 i 6 n and it follows that u1 ∈ U1 for u21, u1�u2, . . . , u1�un ∈ STn(F).

Further, being linearly independent, we have ui /∈ U1 for all 2 6 i 6 n. Suppose that

uj ∈ Uj\Uj−1 for all 1 6 j 6 k. Then we claim that uk+1 ∈ Uk+1\Uk. Since u1, . . . , un

are linearly independent, so we have uk+1 /∈ Uk, in other words, uk+1 ∈ Ul\Uk for

some k + 1 6 l 6 n. Further, u1u
+
k+1, . . . , un−ku

+
k+1 ∈ Tn(F) would imply that there

exists some ik+1 where 1 6 ik+1 6 n − k such that uik+1
∈ Un−k and it follows

that uk+1 ∈ Un+1−(n−k) = Uk+1, the claim then holds. Hence we conclude that

ui ∈ Ui\Ui−1 where we define U0 = {0}, for all 1 6 i 6 n and hence Q ∈ Tn(F). �

We now prove our main theorem.

Theorem 3.5. Let F be a field with |F| > 3, and let n,m be integers such that

m > n > 5. If T : STn(F) −→ STm(F) is a bounded rank-two linear preserver, then

T is one of the following forms:

(a) ImT = u�U for some nonzero vector u ∈ Up and some subspace U of Uq with

1 6 p 6 m+ 1− q 6 m.

(b) F has characteristic two and ImT = u � U + 〈u2〉 for some nonzero vector

u ∈ Up with 1 6 p 6 m+1
2

and some subspace U of Uq with 1 6 q 6 m+ 1− p.

(c) F has characteristic two and ImT = 〈u� v1 + λ1u
2, . . . , u� vk + λku

2〉 for
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some linearly independent vectors u ∈ Up and v1, . . . , vk ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m+ 1− p, and some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

(d) there exist an invertible matrix P ∈ Mm(F) and some scalars λ, λ′ ∈ F with

λ 6= 0 such that

T (A) = λP

(
0n,m−n A

0 0m−n,n

)
P+ + λ′a11(Pe1)

2

for all A = (aij) ∈ STn(F), where Pei ∈ Upi and Pej ∈ Uqj with 1 6 pi 6 m+1
2

for every 1 6 i 6 n+1
2

, and qj = max{m+ 1− pk | 1 6 k 6 n+ 1− j} for every

n+1
2
< j 6 n+ 1− i, and λ′ 6= 0 only if F has characteristic two. In particular,

P ∈ Tn(F) when m = n.

Proof. We distinguish our proof into two parts:

Case I: F has characteristic two. Since T is a bounded rank-two linear preserver,

then we have T (e21), T (e1 � e2), . . . , T (e1 � en) are linearly independent. Further,

since n > 5, then by Theorem 2.6 we see that

T (e21) = u1 � un+1 + αn+1u
2
1, T (e1 � ei) = u1 � ui + αiu

2
1 (3.5)

for some u1 ∈ Up, un+1, ui ∈ Uq satisfying 1 6 p 6 m + 1 − q 6 m and some

αn+1, αi ∈ F such that 1 6 p 6 m+1
2

whenever (α2, . . . , αn+1) 6= 0, for all 2 6 i 6 n.

Using a similar argument, we have T (e2� e1), T (e22), T (e2� e3), . . . , T (e2� en−1) are

linearly independent and

T (e22) = v2 � vn + βnv
2
2, T (e2 � ej) = v2 � vj + βjv

2
2 (3.6)

for some v2 ∈ Us, vn, vj ∈ Ut satisfying 1 6 s 6 m+ 1− t 6 m and some βn, βj ∈ F

59



such that 1 6 s 6 m+1
2

whenever (β1, β3, . . . , βn) 6= 0, for all j = 1 and 3 6 j 6 n−1.

Case I-A: v2 = γu1 for some γ ∈ F. We first claim that for any 3 6 k 6 n+1
2

T (e2k) ∈ u1 � Uq1 +
〈
u21
〉

(3.7)

for some subspace Uq1 satisfying 1 6 p 6 m+ 1− q1 6 m. Note that

〈T (e1 � ek), T (e2 � ek), T (e2k)〉 is a 3-dimensional subspace of bounded rank-two ma-

trices and so by Theorem 2.6 and Lemma 3.1, we have either T (e2k) ∈ u1�Uq1 +〈u21〉,

as claimed, or αk = βk = 0 such that u1, uk, vk are linearly independent and

T (e2k) = a1uk � vk + b1u1 � uk + c1u1 � vk

for some scalars a1, b1, c1 ∈ F with a1 6= 0. If 〈un+1〉 = 〈u1〉, then T (e21+e2k) is of rank

three, a contradiction. A similar argument can be applied to the case 〈vn〉 = 〈v2〉.

Hence T (e21), T (e22) are of rank two. For arbitrary λ1, λ2 ∈ F, we have T (λ1e
2
1 + e2k)

and T (λ2e
2
2 + e2k) both have ranks bounded by two. Hence by Lemma 3.3, we obtain

αn+1 = βn = 0 and

T (e21) = u1 � (a2uk + b2vk), T (e22) = γu1 � (a3uk + b3vk)

for some scalars a2, a3, b2, b3 ∈ F such that a2b3 − a3b2 6= 0. Consider T (e1 � e2).

Since 〈T (e1 � e2), T (e21), T (e22)〉 is a subspace of bounded rank-two matrices and from

(3.5), we have u2 /∈ 〈un+1, vn〉 = 〈uk, vk〉. This implies that

T ((e1 +e2)
2 +e2k) = a1uk�vk+u1� (u2 +(b1 +a2 +γa3)uk+(c1 +b2 +γb3)vk)+α2u

2
1

has rank > 2, a contradiction. Hence claim (3.7) is proved. Using the fact that
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〈T (es � et), T (e1 � es), T (e2 � es), T (e2s)〉 is a subspace of bounded rank-two matri-

ces, it follows from Theorem 2.6 and Lemma 3.1 that

T (es � et) ∈ u1 � Uq2 +
〈
u21
〉

(3.8)

for some subspace Uq2 satisfying 1 6 p 6 m+ 1− q2 6 m, for all 3 6 s 6 n+1
2
< t 6

n+ 1− s. Conclusively, by (3.5)− (3.8), ImT is one of the following forms:

(a) ImT = u1 � U for some nonzero vector u1 ∈ Up and some subspace U of Uq

with 1 6 p 6 m+ 1− q 6 m.

(b) ImT = u1 � U + 〈u21〉 for some nonzero vector u1 ∈ Up with 1 6 p 6 m+1
2

and

some subspace U of Uq with 1 6 q 6 m+ 1− p.

(c) ImT = 〈u1 � w1 + λ1u
2
1, . . . , u1 � wk + λku

2
1〉 for some linearly independent

vectors u1 ∈ Up and w1, . . . , wk ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m+ 1−p,

and some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

Case I-B: u1, v2 are linearly independent. Note that T (e1�e2) = u1�u2+α2u
2
1 =

v2 � v1 + β1v
2
2. Then by Lemma 3.2, we have α2 = β1 = 0 and T (e1 � e2) is of rank

two such that v1 = γ1u1+γ2u2, v2 = γ3u1+γ4u2 for some γ1, . . . , γ4 ∈ F with γ4 6= 0.

We also note that

T (e1 � e2) = u1 � u2 = u1 � γ−14 v2. (3.9)

We claim that {u1, . . . , un−1} is linearly independent. Suppose to the contrary

that {u1, . . . , un−1} is linearly dependent. Then T (e1 � f) = αfu
2
1 for some f ∈

〈e1, . . . , en−1〉 \ 〈e2〉 where αf ∈ F. Hence αf 6= 0 for T is a bounded rank-two linear

preserver. On the other hand, in view of (3.6), we have T (e2 � f) = v2 � vf + βfv
2
2

61



for some vf ∈ 〈v1, . . . , vn−1〉 where βf ∈ F. Since T ((e1 + e2)� f) has rank bounded

by two, then vf ∈ 〈u1, v2〉. Hence

T (e2 � f) = a4v2 � u1 + βfv
2
2

for some scalar a4 ∈ F. Note that T (e2 � (f + a4γ4e1)) = βfv
2
2, and so βf 6= 0.

Consider T (e1 � el) for some 3 6 l 6 n− 1 such that el, f are linearly independent.

If ul ∈ 〈u1, v2〉, then we see that

T (e1 � el) ∈ 〈T (e1 � e2), T (e1 � f)〉

a contradiction, and so ul /∈ 〈u1, v2〉. Since T (e1 � el + λe2 � el) has rank bounded

by two for any λ ∈ F, applying Lemma 3.3, then we have βl = 0 and either vl ∈

〈u1, v2〉 \ 〈v2〉 or αl = 0 such that vl ∈ 〈u1, v2, ul〉 \ 〈u1, v2〉. The first case will give

us T (e2 � el) ∈ 〈T (e1 � e2), T (e2 � f)〉 leading to a contradiction. Hence

T (e1 � el) = b−15 u1 � u′l, T (e2 � el) = v2 � u′l

where u′l = a5u1 + b5ul for some a5, b5 ∈ F with b5 6= 0 and so u1, v2, u
′
l are linearly

independent. Now for any λ ∈ F,

T ((λe1 + e2)� (f + el + a4γ4e2)) = λαfu
2
1 + βfv

2
2 + (λb−15 u1 + v2)� u′l

has rank bounded by two, giving us

det

 λb−15 0 λαf

1 βf 0

0 1 λb−15

 = λαf + λ2βfb
−2
5 = 0.
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Since |F| > 3, we have αf = 0, a contradiction. Hence {u1, . . . , un−1} is linearly

independent, as claimed. In a similar manner, we may show that {v1, . . . , vn−1} is

linearly independent. Next we see that for any 3 6 k 6 n−1, T ((e1 +λe2)�ek) has

rank bounded by two for any λ ∈ F. Thus applying Lemma 3.3, we have βk = 0,

and either T (e2 � ek) ∈ 〈T (e1 � e2)〉, or αk = 0 with vk ∈ 〈u1, v2, uk〉 \ 〈u1, v2〉. The

first case obviously is a contradiction and so we conclude that

T (e1 � ek) = b−10k u1 � vk, T (e2 � ek) = v2 � vk (3.10)

such that vk = a0ku1 +b0kuk for some a0k, b0k ∈ F with b0k 6= 0, for all 3 6 k 6 n−1.

Here we wish to show that b0k = b0 ∈ F for all 3 6 k 6 n − 1. So, by considering

any two distinct k1, k2 where 3 6 k1, k2 6 n− 1, we have T ((e1 + e2)� (ek1 + ek2)) is

of rank bounded by two implying that b0k1 = b0k2 and we are done. Next, we have

two sub-cases to be considered:

Case I-B-(i): n > 6. For any pair of integers (s, t) satisfying 3 6 s 6 n+1
2

and

3 6 s < t 6 n+ 1− s,

〈
T (e1 � es), T (e2 � es), T (e2s), T (es � et)

〉

forms a 4-dimensional subspace of bounded rank-two matrices. Hence by Theorem

2.6 and Lemma 3.1, we obtain

T (e2s), T (es � et) ∈ vs � Uq3 +
〈
v2s
〉

(3.11)

for some subspace Uq3 satisfying 1 6 p 6 m+ 1− q3 6 m, for all (s, t). On the other
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hand,

〈T (e1 � et), T (e2 � et), T (es � et)〉

is a 3-dimensional subspace of bounded rank-two matrices and so by Theorem 2.6

and Lemma 3.1, we obtain either T (es � et) = a6u1 � u2 + b6u1 � vt + c6u2 � vt for

some scalars a6, b6, c6 ∈ F with a6 6= 0, or

T (es � et) ∈ vt � Uq4 +
〈
v2t
〉

for some subspace Uq4 satisfying 1 6 p 6 m+ 1− q4 6 m, for all 3 6 s 6 n+1
2
< t 6

n+ 1− s. The first case is not possible by (3.11) and so

T (es � et) ∈ (vs � Uq3 +
〈
v2s
〉
) ∩ (vt � Uq4 +

〈
v2t
〉
) = 〈vs � vt〉

and so we have

T (es � et) = γstvs � vt (3.12)

for some nonzero scalar γst ∈ F, for all 3 6 s 6 n+1
2
< t 6 n+ 1− s.

We wish to show that T sends rank one matrices to rank one matrices, or in other

words T preserves rank one matrices. We start off by considering T (e21). Suppose

to the contrary that αn+1 = 0. Then un+1 /∈ 〈u1, . . . , un−1〉. Note that T (e21 + λe22)

has rank bounded by two for any λ ∈ F. Applying Lemma 3.3, we have βn = 0

and either T (e22) ∈ 〈T (e1 � e2)〉, or vn ∈ 〈u1, v2, un+1〉 \ 〈u1, v2〉. The first case is a

contradiction. Hence T (e22) = v2 � (a7u1 + b7un+1) for some a7, b7 ∈ F with b7 6= 0.

64



Then for any 3 6 s 6 n+1
2

, by (3.11), we get

T (e2s) = vs � v′s + γ5v
2
s

for some vector v′s and some scalar γ5 ∈ F with vs, v
′
s linearly independent, if not

then T (e2s) = γ6v
2
s for some γ6 ∈ F would imply that T (e22 + e2s) is of rank three. We

first note that T (e21), T (e22), T (e2s) are of rank two. Since T (e21 + λ1e
2
s), T (e22 + λ2e

2
s)

both have rank bounded by two for any λ1, λ2 ∈ F, so by Lemma 3.3 we conclude

that γ5 = 0 and v′s ∈ 〈vs, un+1〉 \ 〈vs, un+1〉. Hence T (e2s) = a8us � un+1 for some

nonzero a8 ∈ F. But this gives us that, for any λ0 ∈ F\{γ4a7, 0},

T (e2s + (λ0e1 + e2)
2) = un+1 � (a8us + b7v2 + λ20u1) + (λ0γ

−1
4 + a7)u1 � v2

is of rank four, a contradiction. Hence αn+1 6= 0. Further, if un+1, u1, v2 are linearly

independent and T (e21+λe22) has rank bounded by two for any λ ∈ F, then by Lemma

3.3 we have vn ∈ 〈u1, v2〉 as αn+1 6= 0. But this implies that T (e22), T (e1 � e2) are

linearly dependent, a contradiction. Hence we have un+1 ∈ 〈u1, v2〉 and it follows

that vn ∈ 〈u1, v2〉 as αn+1, βn 6= 0. Moreover, for 3 6 s 6 n+1
2

, we see that

T (e21 + e2s), T (e22 + e2s) both are of rank bounded by two. So by (3.11), it follows that

T (e21) = αn+1u
2
1, T (e22) = βnv

2
2, T (e2s) = γssv

2
s (3.13)

for some nonzero scalar γss ∈ F. Hence T preserves rank one matrices. Without

loss of generality, we take αn+1 = 1, that is, T (e21) = u21. Since

T ((e1 + e2 + es)
2 − e2s) = (b−10 u1 + v2)� vs + γ−14 u1 � v2 + u21 + βnv

2
2
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has rank bounded above by two, we have

det

 b−10 γ−14 1

1 βn γ−14

0 1 b−10

 = 1 + βnb
−2
0 = 0.

This implies that βn = b20 or T (e22) = b20v
2
2. On the other hand, for any λ ∈ F, by

(3.10) and (3.13), we have

T ((e1 + e2 + es)
2 + (λ− 1)e22) = (b−10 u1 + v2)� vs + γ−14 u1� v2 + u21 + λb−20 v22 + γssv

2
s

is of rank bounded by two. This gives rise to

det

 b−10 γ−14 1

1 λb20 γ−14

γss 1 b−10

 = λ(γssb
2
0 + 1) + 1 + γssγ

−2
4 = 0.

Since |F| > 3, we obtain γss = γ24 = b−20 . Hence from (3.10) and (3.13),

T (e1 � ek) = γ4u1 � vk, T (e2s1) = (γ4vs1)
2

for all 3 6 k 6 n − 1 and 2 6 s1 6 n+1
2

. For arbitrary pair of (s, t) satisfying

3 6 s 6 n+1
2

and 3 6 s < t 6 n+ 1− s, by (3.12), we have

T ((e1 + es + et)
2 − e2t ) = (γ4u1 + γstvs)� vt + γ4u1 � vs + u21 + γ24v

2
s

has rank bounded above by two implying

det

 γ4 γ4 1

γst γ24 γ4

0 γst γ4

 = (γst + γ24)2 = 0.

Thus, γst = γ24 yielding T (es � et) = γ4vs � γ4vt for all (s, t). Finally, we claim that
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u1, . . . , un are linearly independent. Recall that we have shown that u1, . . . , un−1

are linearly independent (just after equation (3.9)), so it suffices to show that un /∈

〈u1, . . . , un−1〉. Suppose to the contrary that un ∈ 〈u1, . . . , un−1〉. Then T (e1�f ′) ∈

〈T (e21)〉 for some nonzero vector f ′ ∈ 〈u1, . . . , un〉, a contradiction.

Let z1 = u1, z2 = γ−14 v2, zn = un and zj = γ4vj for all 3 6 j 6 n − 1. Define

Pei = zi for all 1 6 i 6 n. Then P ∈ Mm,n(F) is of full column rank and since

m > n, we say P is of rank n. For any 1 6 i 6 n+1
2

and i < j 6 n + 1 − i with

j 6= n, we have

T (E1,1 + En,n) = T (e1 � en) = z1 � zn + αnz
2
1 = P [(e1 � en) + αne

2
1]P

+

T (Ei,n+1−i) = T (e2i ) = z2i = (Pei)
2 = P (e2i )P

+

T (Ei,n+1−j + Ej,n+1−i) = T (ei � ej) = zi � zj = (Pei)� (Pej) = P (ei � ej)P+.

Thus this proves that

T (A) = λPAP+ + αna11(Pe1)
2

for all A ∈ STn(F) and some nonzero λ ∈ F where a11 denotes the (1, 1)-th entry of

matrix A. Then by Lemma 3.4, we are done.

Case I-B-(ii): n = 5. Note that

〈
T (e1 � e3), T (e2 � e3), T (e23)

〉

forms a 3-dimensional subspace of bounded rank-two matrices. By Theorem 2.6 and
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Lemma 3.1, we have either (3.11) with s = 3, or

T (e23) = a9u1 � v2 + v3 � (b9u1 + c9v2)

for some scalars a9, b9, c9 ∈ F with a9 6= 0. If the first case happens, then a similar

argument from Case I-B-(i) can be applied here and the result follows easily.

Suppose the later holds. From (3.5) with n = 5, we first claim that α6 6= 0.

Suppose to the contrary that α6 = 0. Then by (3.10), u6 /∈ 〈u1, v2, v3〉. Since

T (e21 + e23) has rank bounded above by two, then we have c9 = 0 and so

T ((e1 + e2 + e3)
2 − e22) = v2 � v3 + u1 � (u6 + (a9 + γ−14 )v2 + (b9 + b−10 )v3)

is of rank four, a contradiction. Hence α6 6= 0, as claimed. Notice that if u6, u1, v2

are linearly independent and T (e21 + λe22) has rank bounded above by two for any

λ ∈ F, then by Lemma 3.3 we conclude that T (e22) ∈ 〈T (e1 � e2)〉 as α6 6= 0, which

is a contradiction. Thus u6 ∈ 〈u1, v2〉. Using a similar argument, we may also show

that β5 6= 0 and v5 ∈ 〈u1, v2〉. Hence

T (e21) = d9u1 � v2 + α6u
2
1, T (e22) = h9v2 � u1 + β5v

2
2

for some scalars d9, h9 ∈ F and α6, β5 6= 0. Further, since T (e21 + e23) and T (e22 + e23)

are of rank bounded by two, it follows that b9 = c9 = 0. But we see that

T ((e1 + e2 + e3)
2 − e22) = α6u

2
1 + v2 � v3 + u1 � ((a9 + d9 + γ−14 )v2 + b−10 v3)

is of rank three leading to a contradiction. Hence we conclude that for n = 5, T (e23)

is of the form (3.11) with s = 3. We are done.
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Case II: F has characteristic not two. Since T is a bounded rank-two linear

preserver, then we have T (e21), T (e1 � e2), . . . , T (e1 � en) are linearly independent.

Further, since n > 5, then by Theorem 2.6, we see that

T (e21) = u1 � un+1, T (e1 � ei) = u1 � ui (3.14)

for some u1 ∈ Up, un+1, ui ∈ Uq satisfying 1 6 p 6 m+ 1− q 6 m for all 2 6 i 6 n.

Using a similar argument, we have T (e2� e1), T (e22), T (e2� e3), . . . , T (e2� en−1) are

linearly independent and

T (e22) = v2 � vn, T (e2 � ej) = v2 � vj (3.15)

for some v2 ∈ Us, vn, vj ∈ Ut satisfying 1 6 s 6 m + 1 − t 6 m for all j = 1 and

3 6 j 6 n− 1.

Case II-A: v2 = γu1 for some γ ∈ F. Note that for any 3 6 k 6 n+1
2

,

〈T (e1 � ek), T (e2 � ek), T (e2k)〉 is a 3-dimensional subspace of bounded rank-two ma-

trices. Then by Theorem 2.6 and Lemma 3.1, we have

T (e2k) ∈ u1 � Uq1 (3.16)

for some subspace Uq1 satisfying 1 6 p 6 m+ 1− q1 6 m. Similarly for any pair of

(s, t) satisfying 3 6 s 6 n+1
2
< t 6 n+ 1− s, we have

〈
T (e1 � es), T (e2 � es), T (e2s), T (es � et)

〉

is a 4-dimensional subspace of bounded rank-two matrices. Applying Theorem 2.6
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and Lemma 3.1, we obtain

T (es � et) ∈ u1 � Uq2 (3.17)

for some subspace Uq2 satisfying 1 6 p 6 m + 1 − q2 6 m. Conclusively, by

(3.14)− (3.17) with v2 ∈ 〈u1〉, we conclude that

ImT = u1 � U

for some nonzero vector u1 ∈ Up and some subspace U of Uq such that 1 6 p 6

m+ 1− q 6 m.

Case II-B: u1, v2 are linearly independent. Note that T (e1�e2) = u1�u2 = v2�v1

and so by Lemma 3.2, we have T (e1 � e2) is of rank two such that v1 = γu1,

v2 = γ−1u2 for some nonzero scalar γ ∈ F. Hence

T (e1 � e2) = u1 � u2 = u1 � γv2.

Next we claim that un+1 ∈ 〈u1, v2〉. Suppose to the contrary that u1, v2, un+1 are

linearly independent. Then we see that T (e21 +λe22) has rank bounded above by two

for any λ ∈ F. Hence by Lemma 3.3, we conclude that vn = b4un+1 for some nonzero

scalar b4 ∈ F. But this implies that

T ((e1 + e2)
2) = u1 � un+1 + γu1 � v2 + b4v2 � un+1

is of rank three, a contradiction. Thus the claim is proved. It follows that

T (e21) = a5u1 � v2 + αn+1u
2
1, T (e22) = b5u1 � v2 + βnv

2
2 (3.18)
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for some scalars a5, b5, αn+1, βn ∈ F with αn+1, βn 6= 0. Further with αn+1, βn 6= 0,

it is immediate that {u1, . . . , un} and {v1, . . . , vn−1} are linearly independent. Next

we see that for any 3 6 k 6 n − 1, T ((e1 + λe2) � ek) has rank bounded above by

two for any λ ∈ F. Thus applying Lemma 3.3, we have vk ∈ 〈u1〉 ∪ 〈uk〉. Clearly

vk /∈ 〈u1〉 and so we conclude that

T (e1 � ek) = u1 � uk, T (e2 � ek) = b0kv2 � uk (3.19)

for some nonzero scalar b0k ∈ F, for all 3 6 k 6 n − 1. Here we wish to show that

b0k = b0 ∈ F for all 3 6 k 6 n− 1. So, by considering any two distinct k1, k2 where

3 6 k1, k2 6 n − 1, we have T ((e1 + e2) � (ek1 + ek2)) is of rank bounded by two

implying that b0k1 = b0k2 and we are done.

For any s, t satisfying 3 6 s 6 n+1
2
< t 6 n+ 1− s, we have

〈
T (e1 � es), T (e2 � es), T (e2s)

〉

is a 3-dimensional subspace of bounded rank-two matrices and

〈
T (e1 � es), T (e2 � es), T (e2s), T (es � et)

〉

is a 4-dimensional subspace of bounded rank-two matrices. Thus applying Theorem

2.6 and Lemma 3.1, we obtain

T (e2s), T (es � et) ∈ us � Uq3 (3.20)

for some subspace Uq3 satisfying 1 6 p 6 m+ 1− q3 6 m, for all 3 6 s 6 n+1
2
< t 6
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n+ 1− s. On the other hand,

〈T (e1 � et), T (e2 � et), T (es � et)〉

is a 3-dimensional subspace of bounded rank-two matrices. Then by Theorem 2.6

and Lemma 3.1, we obtain

T (es � et) ∈ ut � Uq4

for some subspace Uq4 satisfying 1 6 p 6 m+ 1− q4 6 m, for all 3 6 s 6 n+1
2
< t 6

n+ 1− s. Hence we see that

T (es � et) ∈ (us � Uq3) ∩ (ut � Uq4) = 〈us � ut〉

and so we have

T (es � et) = γstus � ut

for some nonzero scalar γst ∈ F, for all 3 6 s 6 n+1
2
< t 6 n + 1− s. On the other

hand, since T (e21 + e2s), T (e22 + e2s) both have rank bounded above by two, so from

(3.20) and (3.18), we obtain

T (e21) = αn+1u
2
1, T (e22) = βnv

2
2, T (e2s) = γssv

2
s (3.21)

for some nonzero scalar γss ∈ F. Without loss of generality, we let αn+1 = 1, that is
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T (e21) = u21. Then

T ((e1 + e2)
2 + e2s) = u21 + γu1 � v2 + βnv

2
2 + γssv

2
s

has rank bounded above by two yielding

det

 0 γ 1

0 βn γ

γss 0 0

 = (γ2 − βn)γss = 0

and so βn = γ2 or T (e22) = γ2v22. On the other hand, for any λ ∈ F, we see that

T ((e1 + e2 + es)
2 + (λ− 1)e22) = (u1 + b0v2)� vs + γu1 � v2 + u21 + λγ2v22 + γssu

2
s

has rank bounded above by two giving rise to

det

 1 γ 1

b0 λγ2 γ

γss b0 1

 = λγ2(1− γss) + b20 + γ2γss − 2γb0 = 0.

Since |F| > 3, we obtain 1− γss = b20 + γ2γss − 2γb0 = 0. Hence γss = 1 and b0 = γ.

It follows from (3.19) and (3.21) that

T (e2s) = u2s, T (e2 � ek) = γv2 � uk

for all 3 6 s 6 n+1
2

and 3 6 k 6 n − 1. Now for any pair of (s, t) satisfying

3 6 s 6 n+1
2
< t 6 n+ 1− s, we have

T ((e1 + es + et)
2 − e2t ) = (u1 + γstus)� ut + u1 � us + u21 + u2s

73



has rank bounded above by two implying

det

 1 1 1

γst 1 1

0 γst 1

 = (γst − 1)2 = 0

and thus we have γst = 1 yielding T (es � et) = us � ut for all 3 6 s 6 n+1
2

< t 6

n + 1 − s. Let z1 = u1, z2 = γv2 and zj = uj for all 3 6 j 6 n. Define Pei = zi

for all 1 6 i 6 n. Then P ∈ Mm,n(F) is of rank n and for any 1 6 i 6 n+1
2

and

i < j 6 n+ 1− i, we have

T (Ei,n+1−i) = T (e2i ) = z2i = (Pei)
2 = P (e2i )P

+

T (Ei,n+1−j + Ej,n+1−i) = T (ei � ej) = zi � zj = (Pei)� (Pej) = P (ei � ej)P+.

Thus this proves that

T (A) = λPAP+

for all A ∈ STn(F) and some nonzero λ ∈ F. Then by Lemma 3.4, we are done. The

proof is complete. �

We give a few examples of bounded rank-two linear preservers STn(F)→ STm(F),

m > n > 5, to illustrate the forms (a), (b) and (c) listed in Theorem 3.5.

Example 3.6. Let F be a field with at least three elements and of characteristic

two. Let m,n be integers such that m > n > 5. Let {e1, . . . , em} be the standard

basis of Mm,1(F).

(a) Let T1 : STn(F)→ STm(F) be the linear map defined by

T1(A) = a1,ne1 � en+1 +
n−1∑
k=1

bn−k
2 c+1∑
i=1

ai,i+k−1

 e1 � en+1−k
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for all A = (aij) ∈ STn(F). Then T1 is a bounded rank-two linear preserver

with

ImT1 = e1 � 〈e2, . . . , en+1〉 .

(b) Let T2 : STn(F)→ STm(F) be the linear map defined by

T2(A) = a1,ne
2
1 +

n−1∑
k=1

bn−k
2 c+1∑
i=1

ai,i+k−1

 e1 � en+1−k

for all A = (aij) ∈ STn(F). Then T2 is a bounded rank-two linear preserver

with

ImT2 = e1 � 〈e2, . . . , en〉+
〈
e21
〉
.

(c) Let T3 : STn(F)→ STm(F) be the linear map defined by

T3(A) = a1,n
(
e1 � en+1 + e21

)
+

n−1∑
k=1

bn−k
2 c+1∑
i=1

ai,i+k−1

 e1 � en+1−k

for all A = (aij) ∈ STn(F). Then T3 is a bounded rank-two linear preserver

with

ImT3 =
〈
e1 � en+1 + e21, e1 � e2, . . . , e1 � en

〉
.

We now consider the bounded rank-two linear preservers T : ST4(F) −→ STm(F)

for some integer m. It is clear that m > 4 since there always exists some subspace

U of bounded rank-two matrices of ST4(F) such that dim T (U) = 4.

Theorem 3.7. Let F be a field with |F| > 3, and let m be an integer with m > 4.

If T : ST4(F) −→ STm(F) is a bounded rank-two linear preserver, then T is one of

the following forms:

(a) ImT = u�U for some nonzero vector u ∈ Up and some subspace U of Uq with
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1 6 p 6 m+ 1− q 6 m.

(b) F has characteristic two and ImT = u � U + 〈u2〉 for some nonzero vector

u ∈ Up with 1 6 p 6 m+1
2

and some subspace U of Uq with 1 6 q 6 m+ 1− p.

(c) F has characteristic two and ImT = 〈u� v1 + λ1u
2, . . . , u� vk + λku

2〉 for

some linearly independent vectors u ∈ Up and v1, . . . , vk ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m+ 1− p, and some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

(d) there exist an invertible matrix P ∈Mm(F) and some scalars λ1, λ2, λ3, λ4, λ5 ∈

F with λ1, λ4 6= 0 such that

T (A) = P


a11 a1s1 λ1a13 + λ2a1s2 + λ3a2t2 λ4a1s2 + λ5a11

0 a2t1 λ4a2t2 λ1a13 + λ2a1s2 + λ3a2t2
04,m−4 0 0 a2t1 a1s1

0 0 0 a11

0 0m−4,4

P+

for all A = (aij) ∈ ST4(F), where Pei ∈ Upi and Pej ∈ Uqj with 1 6 pi 6 m+1
2

for i = 1, 2, and qj = max{m + 1 − pk | 1 6 k 6 5 − j} for j = 3, . . . , 5 − i,

{s1, s2} = {2, 4}, {t1, t2} = {2, 3}, and (λ2, λ3, λ5) 6= 0 only if F has charac-

teristic two and (s1, s2) = (4, 2) only if |F| = 4. In particular, P ∈ T4(F) when

m = 4.

Proof. We distinguish our proof into two parts:

Case I: F has characteristic two. Since T is a bounded rank-two linear preserver,

then we have T (e21), T (e1� e2), T (e1� e3), T (e1� e4) are linearly independent. Fur-

ther, by Theorem 2.6, we see that

T (e21) = u1 � u5 + α5u
2
1, T (e1 � ei) = u1 � ui + αiu

2
1 (3.22)

for some u1 ∈ Up, u5, ui ∈ Uq satisfying 1 6 p 6 m+1−q 6 m and some αi ∈ F such
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that 1 6 p 6 m+1
2

whenever (α2, . . . , α5) 6= 0, for i = 2, 3, 4. On the other hand, we

have T (e22), T (e2 � e1), T (e2 � e3) are linearly independent. Then by Theorem 2.6,

there are three possible forms:

T (e22) = v2 � v4 + β4v
2
2, T (e2 � ej) = v2 � vj + βjv

2
2 (3.23)

for some v2 ∈ Us, v4, vj ∈ Ut satisfying 1 6 s 6 m + 1 − t 6 m and some βj ∈ F

such that 1 6 s 6 m+1
2

whenever (β1, β3, β4) 6= 0, for j = 1, 3.

〈
T (e22), T (e2 � e1), T (e2 � e3)

〉
= 〈w1 � w2, w1 � w3, w2 � w3〉 (3.24)

for some linearly independent vectors w1 ∈ Up, w2 ∈ Uq and w3 ∈ Ur such that

p, q 6 m + 1 − r and either p 6 m + 1 − q, or p = q > m+1
2

and w2 = αw1 + z for

some nonzero scalar α ∈ F and some vector z ∈ Uk with 1 6 k 6 m + 1− p < m+1
2

such that w2, z are linearly independent.

〈
T (e22), T (e2 � e1), T (e2 � e3)

〉
=
〈
x2, y2, x� y

〉
(3.25)

for some linearly independent vectors x, y ∈ Us such that 1 6 s 6 m+1
2

.

Case I-A: (3.23) holds. If v2 ∈ 〈u1〉, then ImT is one of the following forms:

(a) ImT = u1 � U for some nonzero vector u1 ∈ Up and some subspace U of Uq

with 1 6 p 6 m+ 1− q 6 m.

(b) ImT = u1 � U + 〈u21〉 for some nonzero vector u1 ∈ Up with 1 6 p 6 m+1
2

and

some subspace U of Uq with 1 6 q 6 m+ 1− p.

(c) ImT = 〈u1 � w1 + λ1u
2
1, . . . , u1 � wk + λku

2
1〉 for some linearly independent

vectors u1 ∈ Up and w1, . . . , wk ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m+ 1−p,
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and some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

Suppose now that u1, v2 are linearly independent. Then we see that T (e1�e2) =

u1 � u2 + α2u
2
1 = v2 � v1 + β1v

2
2. Hence by Lemma 3.2, we have α2 = β1 = 0 and

that 〈v1, v2〉 = 〈u1, u2〉. It follows that

T (e1 � e2) = u1 � u2 = u1 � γ1v2 = v1 � v2

for some nonzero γ1 ∈ F. Suppose that u3 ∈ 〈u1, u2〉. Then we have ζ1u1+ζ2u2+u3 =

0 for some ζ1, ζ2 ∈ F such that (ζ1, ζ2) 6= 0. This implies that T (e1 � (ζ1e1 + ζ2e2 +

e3)) = α3u
2
1 6= 0 and hence

T (e1 � e3) = α3u
2
1 − ζ2γ1u1 � v2.

On the other hand, we see that T (e2� (ζ1e1 + ζ2e2 + e3)) = v2� (ζ1v1 +v3) + (ζ1β1 +

β3)v
2
2. Hence we have ζ1v1 + v3 ∈ 〈u1, v2〉 yielding T (e2 � (ζ1e1 + ζ2e2 + e3)) =

a1v2 � u1 + (ζ1β1 + β3)v
2
2 for some scalar a1 ∈ F such that ζ1β1 + β3 6= 0. Thus

T (e2 � e3) = (ζ1β1 + β3)v
2
2 + (a1 − ζ1γ1)v2 � u1.

Next by (3.22) and (3.23), it is easy to verify that {u1, u2, u5} and {v1, v2, v4} are

linearly independent. Since T (e21 + λe22) has rank bounded above by two for any

λ ∈ F, then by Lemma 3.3 we have β4 = 0 and either v4 ∈ 〈u1, v2〉 \ 〈v2〉 or α5 = 0

with v4 ∈ 〈u1, v2, u5〉 \ 〈u1, v2〉. The first case would imply that

T (e22) ∈ 〈T (e1 � e2), T (e1 � (ζ1e1 + ζ2e2 + e3))〉
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a contradiction. Thus we obtain

T (e21) = u1 � u5 = b−12 u1 � v4, T (e22) = v2 � v4

such that v4 = a2u1 + b2u5 for some a2, b2 ∈ F with b2 6= 0. Here we note that

u1, u2, v4 are linearly independent. Hence for any λ ∈ F, we have

T ((λe1 + e2 + e3)
2 − e23) = (λγ1(1− ζ2) + (a1 − ζ1γ1))u1 � v2

+λα3u
2
1 + (ζ1β1 + β3)v

2
2 + λ2b−12 u1 � v4 + v2 � v4

has rank bounded above by two. Let P (λ) = λγ1 + λγ1(1− ζ2) + (a1 − ζ1γ1). Then

this implies that

det

 λ2b−12 P (λ) λα3

1 (ζ1β1 + β3) P (λ)

0 1 λ2b−12

 = λ(α3 + λ3(ζ1β1 + β3)b
−2
2 ) = 0. (3.26)

Case I-A-(i): |F| > 5. Then it suffices to conclude that α3 = 0. But this

contradicts the fact that α3 6= 0. Therefore we have {u1, u2, u3} is linearly in-

dependent and a similar argument holds to show {v1, v2, v3} is linearly indepen-

dent. Since T ((e1 + λe2) � e3) has rank bounded above by two for any λ ∈ F,

then by Lemma 3.3 we have β3 = 0 and either v3 ∈ 〈u1, v2〉 \ 〈v2〉 or α3 = 0 with

v3 ∈ 〈u1, v2, u3〉 \ 〈u1, v2〉. The first case is not possible since T (e1 � e2), T (e2 � e3)

are linearly independent, so the second case holds. Hence we have

T (e1 � e3) = b−14 u1 � v3, T (e2 � e3) = v2 � v3
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such that v3 = a4u1 + b4u3 for some scalars a4, b4 ∈ F with b4 6= 0. Next, we claim

that α5 6= 0. Suppose to the contrary that α5 = 0. Then u1, v2, u3, u5 are linearly

independent. Since T (e21 + λe22) is of rank two for any λ ∈ F, then by Lemma 3.3

we have β4 = 0 and either v4 ∈ 〈u1, v2〉 \ 〈v2〉 or v4 ∈ 〈u1, v2, u5〉 \ 〈u1, v2〉. The first

case is not possible and so the second case holds. Therefore we obtain

T (e21) = b−15 u1 � v4, T (e22) = v2 � v4

such that v4 = a5u1 + b5u5 for some scalars a5, b5 ∈ F with b5 6= 0. Then we see that

T ((λe1 + e2 + e3)
2 − e23) = u1 � (λγ1v2 + λb−14 v3 + λ2b−15 v4) + v2 � (v3 + v4)

has rank bounded above by two for any λ ∈ F, yielding

det


λ2b−15 λb−14 λγ1 0

1 1 0 λγ1

0 0 1 λb−14

0 0 1 λ2b−15

 = λ2(λb−15 − b−14 )2 = 0.

But if we take any nonzero scalar λ 6= b5b
−1
4 , then the determinant is nonzero and so a

contradiction. Hence α5 6= 0. Suppose that u5 /∈ 〈u1, u2〉. Then, since T (e21 +λe22) is

of rank bounded by two for any λ ∈ F, by Lemma 3.3, we conclude that v4 ∈ 〈u1, v2〉

since α5 6= 0, but this give rise to T (e22) ∈ 〈T (e1 � e2)〉, a contradiction. Hence

u5 ∈ 〈u1, u2〉 and we obtain

T (e21) = a6u1 � v2 + α5u
2
1, T (e22) = b6u1 � v2 + β4v

2
2
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for some a6, b6 ∈ F and that α5, β4 6= 0. Then we see that

T ((λe1+e2+e3)
2−e23) = λ2α5u

2
1+β4v

2
2 +(λ(λa6+γ)+b6)u1�v2+(λb−14 u1+v2)�v3

has rank bounded above by two for any λ ∈ F, thus it yields that

det

 λb−14 λ(λa6 + γ) + b6 λ2α5

1 β4 λ(λa6 + γ) + b6

0 1 λb−14

 = λ2(α5 + β4b
−2
4 ) = 0.

Hence we obtain β4 = α5b
2
4. Conclusively we have

T (e21) = a6b
−1
4 u1 � (b4v2) + α5u

2
1, T (e22) = b6b

−1
4 u1 � (b4v2) + α5(b4v2)

2

T (e1 � e2) = γb−14 u1 � (b4v2), T (e1 � e4) = u1 � u4 + α4u
2
1

T (e1 � e3) = u1 � (b−14 v3), T (e2 � e3) = (b4v2)� (b−14 v3)

such that u1, v2, v3, u4 are linearly independent and α5 6= 0. Let z1 = u1, z2 = b4v2,

z3 = b−14 v3 and z4 = u4 and we define Pei = zi for all 1 6 i 6 4. Then by Lemma

3.4, we get the required result.

Case I-A-(ii): |F| = 3, 4. Since F has characteristic two, then |F| 6= 3 and so we

consider |F| = 4 such that F = {0, 1, λ1, λ2}. By (3.26), we obtain λ31 = λ32 = 1 which

yields the relations λ1 +λ2 + 1 = 0 and λ1λ2 = 1. Hence we obtain ζ1β1 +β3 = α3b
2
2

and so

T (e21) = u1 � (b−12 v4), T (e22) = b2v2 � (b−12 v4)

T (e1 � e2) = γb−12 u1 � (b2v2), T (e1 � e4) = u1 � u4 + α4u
2
1

T (e1 � e3) = α3u
2
1 − ζ2γ1u1 � v2,

T (e2 � e3) = α3(b2v2)
2 + (a1 − ζ1γ1)v2 � u1.

81



For the case v3 ∈ 〈v1, v2〉, we may argue in a similar way as in Case-I-A to

show that the result of Case I-A-(ii) still holds. On the other hand, if {u1, u2, u3}

and {v1, v2, v3} are linearly independent, then the argument and result follow from

Case-I-A-(i).

Case I-B: (3.24) holds. We first note that T (e1 � e2) = u1 � u2 + α2u
2
1. Then by

the form of (3.24), we have α2 = 0. Next, we see that T (e2 � e3) = u23 � u′23 for

some u23 ∈ 〈w1, w2〉 and u′23 ∈ 〈w1, w2, w3〉. Without loss of generality, say u1, u2, u23

are linearly independent as the case for u1, u2, u
′
23 can be verified similarly. Since

T ((e1 + λe2) � e3) has rank bounded above by two for any λ ∈ F, then by Lemma

3.3 we conclude that

T (e2 � e3) = u23 � (a7u1 + b7u2) 6= 0 (3.27)

for some scalars a7, b7 ∈ F. By (3.24), we may write

〈
T (e22), T (e2 � e1), T (e2 � e3)

〉
= 〈u1 � u2, u1 � u23, u2 � u23〉

implying, in view of (3.27), T (e22) = u23�(a8u1+b8u2)+c8u23�(a7u1+b7u2)+d8u1�u2

for some a8, b8, c8, d8 ∈ F such that a7b8 + a8b7 6= 0. Further, we see that

T (e1 � e2) = u1 � u2 = (a7b8 + a8b7)
−1(a7u1 + b7u2)� (a8u1 + b8u2).

Let v1 = (a7b8 + a8b7)
−1(a8u1 + b8u2), v2 = a7u1 + b7u2 and v3 = u23. Then

T (e1 � e2) = v1 � v2, T (e2 � e3) = v2 � v3,

T (e22) = (a9v1 + b9v2)� v3 + c9v1 � v2 (3.28)
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for some scalars a9, b9, c9 ∈ F with a9 6= 0 such that v1, v2, v3 are linearly independent.

On the other hand, we have

〈T (e1 � e3), T (e1 � e2), T (e2 � e3)〉 = 〈T (e1 � e3), v1 � v2, v2 � v3〉

is a 3-dimensional subspace of bounded rank-two matrices. Hence by Theorem 2.6

and Lemma 3.1, we have either

T (e1 � e3) = v2 � v13 + β13v
2
2 (3.29)

for some vector v13 and some scalar β13 ∈ F, or

T (e1 � e3) = a10v1 � v3 + b10v2 � v3 + c10v1 � v2 (3.30)

for some scalars a10, b10, c10 ∈ F with a10 6= 0. Since 〈u1, u2〉 = 〈v1, v2〉, then we

consider the following two possible cases:

Case I-B-(i): v2 = γu1 for some nonzero scalar γ ∈ F. Then u1, v1, v3 are

linearly independent. By (3.22), it is not possible to have (3.30) and so (3.29)

holds. Now since T (λe21 + (c9e1 � e2 + e22)) has rank bounded above by two for

any λ ∈ F, then by Lemma 3.3 we have α5 = 0 and u5 ∈ 〈u1, a9v1 + b9γu1, v3〉. If

u5 ∈ 〈u1, a9v1 + b9γu1〉, then we have T (e21) ∈ 〈T (e1 � e2)〉, a contradiction. Hence

we obtain T (e21) = v2 � (a11v3 + b11v1) for some scalars a11, b11 ∈ F with a11 6= 0.

Then we see that

T ((e1 + e2 + e3)
2−e23) = a9v1 � v3 + β13v

2
2

+v2 � (v13 + (a11 + b9 + 1)v3 + (b11 + c9 + 1)v1)
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has rank bounded above by two and thus β13 = 0 and v13 ∈ 〈v1, v2, v3〉. Hence we

obtain T (e1�e3) = v2�(a12v3+b12v1) such that a12b11+a11b12 6= 0 for T (e21), T (e1�

e3) are linearly independent. But we see that T (e1�e2) = v1�v2, T (b11e1�e2+e21) =

a11v2 � v3 implying T (e1 � e3) ∈ 〈T (e21), T (e1 � e2)〉, a contradiction. Hence Case

I-B-(i) is not possible.

Case I-B-(ii): u1, v2 are linearly independent. Suppose that (3.29) holds. Then

by (3.22), we have v2�v13 +β13v
2
2 = u1�u3 +α3u

2
1 and so by Lemma 3.2, we obtain

T (e1 � e3) = v2 � (a13v1 + b13u3) for some a13, b13 ∈ F. Further we may show that

u3 /∈ 〈v1, v2, v3〉 and that b13 6= 0. On the other hand, T (e1 � (a13e2 + e3) + λe21) is

of rank bounded by two for any λ ∈ F. By Lemma 3.3, we have α5 = 0 and hence

T (e21) = u1 � (a14v2 + b14u3). Since 〈u1, u2〉 = 〈v1, v2〉, then we obtain

T (e21) = (a15v1 + b15v2)� u3 + c15v1 � v2

for some a15, b15, c15 ∈ F with a15 6= 0. Next, we see that

T ((λe1 + e2 + e3)
2 − e23) = (λ2a15v1 + (λb13 + λ2b15)v2)� u3

+(λ2c15 + λa13 + λ+ c9)v1 � v2 + (a9v1 + (b9 + 1)v2)� v3

is of rank bounded by two for any λ ∈ F, it yields that

det


λ2a15 a9 λ2c15 + λa13 + λ+ c9 0

λb13 + λ2b15 b9 + 1 0 λ2c15 + λa13 + λ+ c9

0 0 b9 + 1 a9

0 0 λb13 + λ2b15 λ2a15


= λ2(λ(a15(b9 + 1) + a9b15) + a9b13)

2 = 0.

If |F| > 5, then it is immediate that a9b13 = 0. On the other hand, if |F| = 4, then
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λ4 = λ ∈ F, since every element in the field is of order 3. Hence by substituting in

any two nonzero distinct scalars, we have a9b13 = 0. But this is not true since a9, b13

are nonzero. Hence (3.30) holds. We first note that v3 /∈ 〈v1, v2〉 = 〈u1, u2〉. Then

for T (e1� (e3 + c10e2)), we get v3� (a10v1 + b10v2) = u1� (c10u2 +u3) +α3u
2
1. Hence

by Lemma 1.3(a), we obtain

u1 ∈ 〈v3, a10v1 + b10v2〉 ∩ 〈v1, v2〉 = 〈a10v1 + b10v2〉

and for the sake of convenience, we let u1 = a10v1+b10v2. Hence v1 = a−110 (u1+b10v2)

which implies that v1 � v2 = a−110 u1 � v2. Then it follows from (3.28) that

T (e1 � e3) = u1 � v3 + a−110 c10v1 � v2.

We now assume that α5 in (3.22) is nonzero. Since T (e21 + e22) has rank bounded

above by two, then we have a9v1 + b9v2 = a16u1 for some nonzero scalar a16 ∈ F. It

follows from (3.28) that

T (e22) = a16u1 � v3 + a−110 c9u1 � v2.

Note that u1, v2, v3 are linearly independent and so

T ((e1 + e2 + e3)
2−e23) = α5u

2
1 + v2 � v3

+u1 � (u5 + (a16 + 1)v3 + a−110 (c9 + c10 + 1)v2)

has rank > 2, a contradiction. Thus α5 = 0 and it follows that u5 /∈ 〈v1, v2, v3〉.

Further since T (e21 + e22 + c9e1 � e2) has rank bounded above by two, we conclude
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that a9v1 + b9v2 = a17u1 for some nonzero scalar a17 ∈ F. But this implies that

T ((e1 + e2 + e3)
2−e23) = v2 � v3

+u1 � (u5 + (a17 + 1)v3 + a−110 (c9 + c10 + 1)v2)

is of rank four, a contradiction. Hence Case I-B-(ii) will not occur.

Case I-C: Suppose that (3.25) holds. Then

u1 � u2 + α2u
2
1 = T (e1 � e2) ∈

〈
x2, y2, x� y

〉
. (3.31)

Case I-C-(i): u1, u2 are linearly dependent. Then T (e1�e2) = α2u
2
1 and u1, u3, u5

are linearly independent. Further, without loss of generality, in view of (3.31), we

see that T (e1 � e2) ∈ 〈x2〉. Thus u1, x are linearly dependent, and so

〈
x2, y2, x� y

〉
=
〈
u21, y

2, u1 � y
〉
.

Let T (e22) = a11u
2
1 + b11u1 � y + c11y

2 for some a11, b11, c11 ∈ F. If c11 6= 0, then

T (e21 + e22) = u1 � u5 + (α5 + a11)u
2
1 + b11u1 � y + c11y

2

has rank bounded above by two. Thus, y ∈ 〈u1, u5〉. It follows that

〈
T (e22), T (e2 � e1), T (e2 � e3)

〉
=
〈
x2, y2, x� y

〉
=
〈
u21, u

2
5, u1 � u5

〉
.

Since T (e1� e3) /∈ 〈u21, u25, u1 � u5〉, then we have T ((e1 + λ1e2 + λ2e3)
2 + λ22e

2
3) is of

rank three for some λ1, λ2 ∈ F with λ2 6= 0, a contradiction.

Suppose that c11 = 0. Then T (e2 � e3) = a′11u
2
1 + b′11u1 � y + c′11y

2 for some
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a′11, b
′
11, c

′
11 ∈ F with c′11 6= 0. It follows that

T ((e1 + e2)� e3) = u1 � u3 + (α3 + a′11)u
2
1 + b′11u1 � y + c′11y

2

has rank bounded above by two. Thus, y ∈ 〈u1, u3〉 and this implies that

〈
T (e22), T (e2 � e1), T (e2 � e3)

〉
=
〈
x2, y2, x� y

〉
=
〈
u21, u

2
3, u1 � u3

〉
.

Since T (e21) /∈ 〈u21, u23, u1 � u3〉, then we have T ((e1 + λ′1e2 + λ′2e3)
2 + (λ′2)

2e23) is of

rank three for some λ′1, λ
′
2 ∈ F, a contradiction. Hence Case I-C-(i) is not possible.

Case I-C-(ii): u1, u2 are linearly independent. By Lemma 2.2 and Lemma 1.3(a)

and (b), we obtain that 〈u1, u2〉 = 〈x, y〉. Thus

〈
T (e22), T (e2 � e1), T (e2 � e3)

〉
=
〈
x2, y2, x� y

〉
=
〈
u21, u

2
2, u1 � u2

〉
.

Note that either T (e22) or T (e2 � e3) has nonzero u22 term. Hence we first consider

T (e22). Suppose that T (e22) = a12u
2
1 + b12u1 � u2 + c12u

2
2 for some a12, b12, c12 ∈ F

with c12 6= 0. Then, since T (e21 + e22) has rank bounded above by two, it follows that

〈T (e21), T (e1 � e2)〉 = 〈u21, u1 � u2〉. Hence T (e1 � e3) /∈ 〈u21, u22, u1 � u2〉. But this

implies that T ((e1 +λ1e2 +λ2e3)
2 +λ22e

2
3) is of rank three for some λ1, λ2 ∈ F where

λ2 6= 0, a contradiction.

Now, suppose that T (e2�e3) = a′12u
2
1+b′12u1�u2+c′12u

2
2 for some a′12, b

′
12, c

′
12 ∈ F

with c′12 6= 0. Since T ((e1 + e2)� e3) has rank bounded above by two, it follows that

〈T (e21), T (e1 � e2)〉 = 〈u21, u1 � u2〉. Hence T (e1 � e3) /∈ 〈u21, u22, u1 � u2〉. But this

implies that T ((e1 + λ′1e2 + λ′2e3)
2 + (λ′2)

2e23) is of rank three for some λ′1, λ
′
2 ∈ F

where λ′2 6= 0, a contradiction. Hence Case-I-C-(ii) is also not possible.
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Case II: F has characteristic not two. Since T is a bounded rank-two linear pre-

server, then we have T (e21), T (e1�e2), T (e1�e3), T (e1�e4) are linearly independent.

Further, by Theorem 2.6, we see that

T (e21) = u1 � u5, T (e1 � ei) = u1 � ui

for some u1 ∈ Up, u5, ui ∈ Uq satisfying 1 6 p 6 m + 1 − q 6 m and some αi ∈ F,

for i = 2, 3, 4. On the other hand, we have T (e22), T (e2 � e1), T (e2 � e3) are linearly

independent. Then by Theorem 2.6, we have either

T (e22) = v2 � v4, T (e2 � ej) = v2 � vj (3.32)

for some v2 ∈ Us, v4, vj ∈ Ut satisfying 1 6 s 6 m + 1 − t 6 m such that {T (e2 �

e1), T (e22), T (e2 � e3)} is linearly independent, for j = 1, 3; or

〈
T (e22), T (e2 � e1), T (e2 � e3)

〉
=
〈
x2, y2, x� y

〉
(3.33)

for some linearly independent vectors x, y ∈ Us such that 1 6 s 6 m+1
2

.

Case II-A: Suppose that (3.32) holds. Notice that if v2 ∈ 〈u1〉, then we have

ImT = u1 � U

for some nonzero vector u1 ∈ Up and some subspace U of Uq with 1 6 p 6 m+1−q 6

m. Suppose now that u1, v2 are linearly independent. Then T (e1 � e2) = u1 � u2 =

v2 � v1, by Lemma 3.2, implies that u2 = γv2 for some nonzero γ ∈ F and so

u1 = γ−1v1. We now claim that u5, v4 ∈ 〈u1, v2〉. Suppose to the contrary that

u5, u1, v2 are linearly independent. Then we see that T (e21 + λe22) has rank bounded
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above by two for any λ ∈ F, yielding v4 = λ0u5 for some nonzero scalar λ0 ∈ F. But

this implies that

T ((e1 + e2)
2) = (u1 + λ0v2)� u5 + u1 � γv2

is of rank three, a contradiction and so the claim is proved. So we obtain

T (e21) = a6u1 � v2 + α5u
2
1, T (e22) = b6u1 � v2 + β4v

2
2

for some scalars a6, b6, α5, β4 ∈ F with α5, β4 6= 0. Thus, this implies that {u1, u2, u3, u4}

and {v1, v2, v3} are linearly independent. Now, since T ((e1 + λe2) � e3) has rank

bounded above by two for any λ ∈ F, then by Lemma 3.3 we conclude that v3 = b4u3

for some nonzero scalar b4 ∈ F. Hence we have

T (e1 � e3) = b−14 u1 � v3, T (e2 � e3) = v2 � v3.

Then we see that

T ((λe1+e2+e3)
2−e23) = λ2α5u

2
1+β4v

2
2 +(λ(λa6+γ)+b6)u1�v2+(λb−14 u1+v2)�v3

has rank bounded above by two for any λ ∈ F, thus it yields that

det

 λb−14 λ(λa6 + γ) + b6 λ2α5

1 β4 λ(λa6 + γ) + b6

0 1 λb−14


= λ2(α5 + β4b

−2
4 − 2b−14 γ)− 2λ3b−14 a6 − 2λb−14 b6 = 0.

By substituting λ = −1, 1 we can easily conclude that β4 = 2b4γ − α5b
2
4 and so
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b6 = −a6. Conclusively we have

T (e21) = a6b
−1
4 u1 � (b4v2) + α5u

2
1, T (e22) = (γv2 − a6b−14 u1)� (b4v2)− α5(b4v2)

2

T (e1 � e2) = γb−14 u1 � (b4v2), T (e1 � e4) = u1 � u4

T (e1 � e3) = u1 � (b−14 v3), T (e2 � e3) = (b4v2)� (b−14 v3)

such that u1, v2, v3, u4 are linearly independent and α5 6= 0. Let z1 = u1, z2 = b4v2,

z3 = b−14 v3 and z4 = u4 and we define Pei = zi for all 1 6 i 6 4. Then by Lemma

3.4, we get the required result. Here we remark that if |F| > 4, then a6 = 0.

Case II-B: Suppose that (3.33) holds. Then we may show in a similar way as in

Case-I-C above that Case-II-B is not possible. We are done. �

We give the following example to illustrate the special form of the linear preserver

T when the underlying field F has exactly four elements.

Example 3.8. Let F be a field with four elements. Let P ∈ T4(F) be an invertible

matrix and let λ1, λ2, λ3, λ4, λ5 ∈ F with λ1, λ4 6= 0. Let T be the linear map on

ST4(F) defined by,

T (A) = P


a11 a14 λ1a13 + λ2a12 + λ3a22 λ4a12 + λ5a11

0 a23 λ4a22 λ1a13 + λ2a12 + λ3a22

0 0 a23 a14

0 0 0 a11

P+

for all A = (aij) ∈ ST4(F). To show that T is a bounded rank-two linear preserver,

it suffices to consider the following two matrices:

B =

 a12 a13 a14

a22 a23 a13

0 a22 a12

 , C =

 a14 λ1a13 + λ2a12 + λ3a22 λ4a12

a23 λ4a22 λ1a13 + λ2a12 + λ3a22

0 a23 a14

 .
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Note that

det(B) = a14a
2
22 + a33a

2
12 = 0 ⇔ det(C) = λ4(a12a

2
33 + a22a

2
14) = 0

since every nonzero element in F is of order 3.

Theorem 3.9. Let F be a field with |F| > 3, and let m be an integer such that

m > 3. If T : ST3(F) −→ STm(F) is a bounded rank-two linear preserver, then T is

one of the following forms:

(a) ImT = u � U for some nonzero vector u ∈ Up and some nonzero subspace U

of Uq with 1 6 p 6 m+ 1− q 6 m.

(b) ImT = 〈x2, y2, x� y〉 for some linearly independent vectors x, y ∈ Us with

1 6 s 6 m+1
2

.

(c) F has characteristic two, and ImT = u � U + 〈u2〉 for some nonzero vector

u ∈ Up with 1 6 p 6 m+1
2

and some nonzero subspace U of Uq with 1 6 q 6

m+ 1− p.

(d) F has characteristic two, and ImT = 〈u� v1 + λ1u
2, . . . , u� vk + λku

2〉 for

some linearly independent vectors u ∈ Up and v1, . . . , vk ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m+ 1− p, and some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

(e) there exist an invertible matrix P ∈Mm(F) and some scalars λ0, λ1, λ2, λ3, λ4, λ5 ∈

F with λ4, λ5 6= 0, such that

T (A) = P


as1s1 a1s2 + λ0at1t1 λ1as1s1 + λ2a1s2 + λ3at1t1 + λ4a1t2

03,m−3 0 λ5at1t1 a1s2 + λ0at1t1
0 0 as1s1

0 0m−3,3

P+

for all A = (aij) ∈ ST3(F), where Pei ∈ Upi and Pe3 ∈ Uq with 1 6 pi 6 m+1
2
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and q 6 m + 1 − p1, for i = 1, 2, {s1, t1} = {1, 2}, {s2, t2} = {2, 3}, and

(λ1, λ2) 6= 0 only if F has characteristic two. In particular, P ∈ T3(F) when

m = 3.

(f) m > 4, F has characteristic two, and ImT = 〈w1 � w2, w1 � w3, w2 � w3〉 for

some linearly independent vectors w1 ∈ Up, w2 ∈ Uq and w3 ∈ Ur with p, q 6

m+1−r and either p 6 m+1−q, or p = q > m+1
2

and w2 = αw1+z for some

nonzero scalar α ∈ F and some vector z ∈ Uk with 1 6 k 6 m + 1− p < m+1
2

such that w2, z are linearly independent.

(g) m > 4, F has characteristic two, and there exist an invertible matrix P ∈

Mm(F) and some scalars λ0, λ1, λ2, λ3, λ4 ∈ F with λ4 6= 0 and (λ0, λ3) 6= 0,

such that

T (A) = P


λ0ass a12 + λ1att a13 + λ2att λ3ass

0 λ4att 0 a13 + λ2att

04,m−4 0 0 λ4att a12 + λ1att

0 0 0 λ0ass

0 0m−4,4

P+

for all A = (aij) ∈ ST3(F), where {s, t} = {1, 2}, Pe1 ∈ Up and Pej ∈ Uqj with

1 6 p 6 m+1
2

and 1 6 qj 6 m+ 1−p for j = 2, 3, 4, and either q3 6 m+ 1− q2

or q2 = q3 >
m+1
2

and Pe3 = αPe2 + z for some nonzero scalar α ∈ F and

some vector z ∈ Uk with 1 6 k 6 m + 1 − q2 <
m+1
2

such that Pe2, z are

linearly independent.

Proof. We distinguish our proof into two parts:

Case I: F has characteristic two. Since T is a bounded rank-two linear preserver,

then we have T (e21), T (e1� e2), T (e1� e3), T (e1� e4) are linearly independent. Fur-

92



ther, by Theorem 2.6 there are three possible forms:

T (e21) = u1 � u4 + α4u
2
1, T (e1 � ei) = u1 � ui + αiu

2
1 (3.34)

for some u1 ∈ Up, u4, ui ∈ Uq satisfying 1 6 p 6 m + 1 − q 6 m and some αi ∈ F

such that 1 6 p 6 m+1
2

whenever (α2, α3, α4) 6= 0, for i = 2, 3.

〈
T (e21), T (e1 � e2), T (e1 � e3)

〉
= 〈u5 � u6, u5 � u7, u6 � u7〉 (3.35)

for some linearly independent vectors u5 ∈ Up, u6 ∈ Uq and u7 ∈ Ur such that

p, q 6 m + 1 − r and either p 6 m + 1 − q, or p = q > m+1
2

and u6 = αu5 + z for

some nonzero scalar α ∈ F and some vector z ∈ Uk with 1 6 k 6 m + 1− p < m+1
2

such that u6, z are linearly independent.

〈
T (e21), T (e1 � e2), T (e1 � e3)

〉
=
〈
u28, u

2
9, u8 � u9

〉
(3.36)

for some linearly independent vectors u8, u9 ∈ Us such that 1 6 s 6 m+1
2

. Further

we note that if 〈T (e21), T (e1 � e2), T (e1 � e3)〉 is a rank-two subspace then m > 4.

Next there are two possible cases for T (e22):

Case I-A: Suppose that T (e22) ∈ 〈T (e21), T (e1 � e2), T (e1 � e3)〉. Then it is clear

that T (e22) /∈ 〈T (e21), T (e1 � e2)〉 and so we have ImT is one of the following forms:

(a) ImT = u1 � U for some nonzero vector u1 ∈ Up and some subspace U of Uq

with 1 6 p 6 m+ 1− q 6 m.

(b) ImT = u1 � U + 〈u21〉 for some nonzero vector u1 ∈ Up with 1 6 p 6 m+1
2

and

some subspace U of Uq with 1 6 q 6 m+ 1− p.

(c) ImT = 〈u1 � w1 + λ1u
2
1, . . . , u1 � wk + λku

2
1〉 for some linearly independent
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vectors u1 ∈ Up and w1, . . . , wk ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m+ 1−p,

and some scalars λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0.

(d) ImT = 〈w1 � w2, w1 � w3, w2 � w3〉 for some linearly independent vectors

w1 ∈ Up, w2 ∈ Uq and w3 ∈ Ur such that p, q 6 m + 1 − r and either

p 6 m + 1 − q, or p = q > m+1
2

and w2 = αw1 + z for some nonzero scalar

α ∈ F and some vector z ∈ Uk with 1 6 k 6 m+ 1− p < m+1
2

such that w2, z

are linearly independent.

(e) ImT = 〈x2, y2, x� y〉 for some linearly independent vectors x, y ∈ Us such

that 1 6 s 6 m+1
2

.

Case I-B: Suppose that T (e22) /∈ 〈T (e21), T (e1 � e2), T (e1 � e3)〉. Then T is a

bounded rank-two linear preserver implies that {T (e21), T (e1� e2), T (e22)} is linearly

independent. Further, we note that 〈T (e21), T (e1 � e2), T (e22)〉 is a 3-dimensional

subspace of bounded rank-two matrices, and there are three possible forms for T (e21):

T (e21) = v1 � v4 + β4v
2
1, T (e1 � e2) = v1 � v2 + β2v

2
1, T (e22) = v1 � v3 + β3v

2
1(3.37)

for some v1 ∈ Up, vj ∈ Uqj satisfying 1 6 p 6 m + 1 − qj 6 m and some scalars

βj ∈ F, j = 2, 3, 4, such that 1 6 p 6 m+1
2

whenever (β2, β3, β4) 6= 0.

〈
T (e21), T (e1 � e2), T (e22)

〉
= 〈v5 � v6, v5 � v7, v6 � v7〉 (3.38)

for some linearly independent vectors v5 ∈ Up, v6 ∈ Uq and v7 ∈ Ur such that

p, q 6 m + 1 − r and either p 6 m + 1 − q, or p = q > m+1
2

and v6 = βv5 + z′ for

some nonzero scalar β ∈ F and some vector z′ ∈ Uk with 1 6 k 6 m+ 1− p < m+1
2
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such that v6, z
′ are linearly independent.

〈
T (e21), T (e1 � e2), T (e22)

〉
=
〈
v28, v

2
9, v8 � v9

〉
(3.39)

for some linearly independent vectors v8, v9 ∈ Us such that 1 6 s 6 m+1
2

. Further

we note that if 〈T (e21), T (e1 � e2), T (e22)〉 is a rank-two subspace then m > 4. Then

we have four possible cases to consider:

Case I-B-(i): T (e21), T (e1�e2) are of rank two. Then either (3.34) or (3.35) holds.

Suppose that (3.34) holds. Then this implies that either (3.37) or (3.38) holds. We

first consider the case where (3.37) holds. If either 〈u21〉 ⊂ 〈T (e21), T (e1 � e2)〉, or

u1, u2, u4 are linearly independent, then by Lemma 3.1, one can easily conclude that

v1 ∈ 〈u1〉. Hence ImT is one of the forms (a), (b), (c) listed in Case I-A. Now assume

that (3.38) holds. Then α2 = α4 = 0 and 〈u1, u2, u4〉 = 〈v5, v6, v7〉. Hence we write

T (e22) = a1u2� u4 + b1u1� u2 + c1u1� u4 for some scalars a1, b1, c1 ∈ F with a1 6= 0.

If u1, . . . , u4 are linearly independent, then we define Pe1 = u1, P e2 = u4, P e3 =

u2, P e4 = u3. Otherwise, choose some u5 ∈ Mm,1(F) such that u1, u2, u4, u5 are

linearly independent, then we take Pe4 = u5 instead of Pe4 = u3. Hence we obtain

T (A) = P


λ0a11 a12 + λ1a22 a13 + λ2a22 λ3a11

0 λ4a22 0 a13 + λ2a22

04,m−4 0 0 λ4a22 a12 + λ1a22

0 0 0 λ0a11

0 0m−4,4

P+

for some scalars λ0, . . . , λ4 ∈ F with λ4 6= 0 and (λ0, λ3) 6= 0, for all A = (aij) ∈

ST3(F).

Suppose that (3.35) holds. Then this implies that either (3.37) or (3.38) holds.

We first consider the case where (3.37) holds. Then β2 = β4 = 0 and 〈v1, v2, v4〉 =

〈u5, u6, u7〉. Hence we write T (e1 � e3) = a2v2 � v4 + b2v1 � v2 + c2v1 � v4 for
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some scalars a2, b2, c2 ∈ F with a2 6= 0. If v1, . . . , v4 are linearly independent,

then we define Pe1 = v1, P e2 = v4, P e3 = v2, P e4 = v3. Otherwise, choose some

v5 ∈Mm,1(F) such that v1, v2, v4, v5 are linearly independent, then we take Pe4 = v5

instead of Pe4 = v3. Hence we obtain

T (A) = P


λ0a22 a12 + λ1a11 a13 + λ2a11 λ3a22

0 λ4a11 0 a13 + λ2a11

04,m−4 0 0 λ4a11 a12 + λ1a11

0 0 0 λ0a22

0 0m−4,4

P+

for some scalars λ0, . . . , λ4 ∈ F with λ4 6= 0 and (λ0, λ3) 6= 0, for all A = (aij) ∈

ST3(F). On the other hand, if (3.35) and (3.38) hold, then we have 〈u5, u6, u7〉 =

〈v5, v6, v7〉. This therefore implies that T (e22) ∈ 〈T (e21), T (e1 � e2), T (e1 � e3)〉 and

contradicts our earlier hypothesis of Case I-B.

We are only left with the description of matrix P . Note that P is invertible.

Further, by similar argument as in the proof of Lemma 3.4, we can show that

Pe1 ∈ Up, Pej ∈ Uqj with 1 6 p 6 m+1
2

and 1 6 qj 6 m + 1 − p, for all j = 2, 3

(including j = 4 if λ0 6= 0). Since Pe2 � Pe3 ∈ STn(F), then by Lemma 1.3 we have

either q3 6 m+1−q2 or q2 = q3 >
m+1
2

and Pe3 = αPe2 +z for some nonzero scalar

α ∈ F and some vector z ∈ Uk with 1 6 k 6 m+ 1− q2 < m+1
2

such that Pe2, z are

linearly independent.

Case I-B-(ii): T (e21), T (e1 � e2) are of rank one. Then we have (3.36) and (3.39)

hold. Hence 〈u8, u9〉2 = 〈v8, v9〉2 yielding

T (e22) ∈
〈
T (e21), T (e1 � e2), T (e1 � e3)

〉

and so again contradicts the earlier hypothesis of Case I-B.

Case I-B-(iii): T (e1� e2) is of rank one and T (e21) is of rank two and so u1, u3, u4
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are linearly independent. Then either (3.34) or (3.36) holds. Suppose that (3.34)

holds. Then we have either (3.37) or (3.39) holds. We first consider the case where

(3.37) holds. Thus v1 ∈ 〈u1〉 and so we obtain ImT is one of the forms (a), (b), (c)

listed in Case I-A. Now assume that (3.39) holds. Then 〈u1, u4〉 = 〈v8, v9〉. Hence

〈u1, u4〉2 = 〈v8, v9〉2. Thus we have T (e22) = a4u
2
4 + b4u1 � u4 + c4u

2
1 for some scalars

a4, b4, c4 ∈ F with a4 6= 0. Define Pe1 = u1, P e2 = u4, P e3 = u3, then we have

T (A) = P


a11 a13 + λ0a22 λ1a11 + λ2a13 + λ3a22 + λ4a12

03,m−3 0 λ5a22 a13 + λ0a22

0 0 a11

0 0m−3,3

P+

for some scalars λ0, . . . , λ5 ∈ F with λ4, λ5 6= 0 for all A = (aij) ∈ ST3(F).

Now suppose that (3.36) holds. Then we have either (3.37) or (3.39) holds. We

first consider the case where (3.37) holds. Then 〈v1, v4〉 = 〈u8, u9〉. Thus 〈v1, v4〉2 =

〈u8, u9〉2. Hence we have T (e22) = a6v
2
4 +b6v1�v4+c6v

2
1 for some scalars a6, b6, c6 ∈ F

with a6 6= 0. Define Pe1 = v1, P e2 = v4, P e3 = v3, then we have

T (A) = P


a22 a13 + λ0a11 λ1a22 + λ2a13 + λ3a11 + λ4a12

03,m−3 0 λ5a11 a13 + λ0a11

0 0 a22

0 0m−3,3

P+

for some scalars λ0, . . . , λ5 ∈ F with λ4, λ5 6= 0 for all A = (aij) ∈ ST3(F). Now

assume that (3.39) holds. Then 〈u8, u9〉 = 〈v8, v9〉. But this implies that T (e22) ∈

〈T (e21), T (e1 � e2), T (e1 � e3)〉, a contradiction.

Case I-B-(iv): T (e21) is of rank one and T (e1� e2) is of rank two and so u1, u2, u3

are linearly independent. Then either (3.34) or (3.36) holds. Suppose that (3.34)

holds. Then we have either (3.37) or (3.39) holds. We first consider the case where

(3.37) holds. Thus v1 ∈ 〈u1〉 and so we obtain ImT is one of the forms (a), (b), (c)
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listed in Case I-A. Now assume that (3.39) holds. Then 〈u1, u2〉 = 〈v8, v9〉. Thus

〈u1, u2〉2 = 〈v8, v9〉2. Then we have T (e22) = a8u
2
2 + b8u1� u2 + c8u

2
1 for some scalars

a8, b8, c8 ∈ F with a8 6= 0. Define Pe1 = u1, P e2 = u2, P e3 = u3, then we have

T (A) = P


a11 a12 + λ0a22 λ1a11 + λ2a12 + λ3a22 + λ4a13

03,m−3 0 λ5a22 a12 + λ0a22

0 0 a11

0 0m−3,3

P+

for some scalars λ0, . . . , λ5 ∈ F with λ4, λ5 6= 0 for all A = (aij) ∈ ST3(F).

Now suppose that (3.36) holds. Then we have either (3.37) or (3.39) holds.

We first consider the case where (3.37) holds. Then 〈v1, v2〉 = 〈u8, u9〉. Thus,

〈v1, v2〉2 = 〈u8, u9〉2. Hence we have T (e22) = a10v
2
2 + b10v1 � v2 + c10v

2
1 for some

scalars a10, b10, c10 ∈ F with a10 6= 0. Define Pe1 = v1, P e2 = v2, P e3 = v3, then we

have

T (A) = P


a22 a12 + λ0a11 λ1a22 + λ2a12 + λ3a11 + λ4a13

03,m−3 0 λ5a11 a12 + λ0a11

0 0 a22

0 0m−3,3

P+

for some scalars λ0, . . . , λ5 ∈ F with λ4, λ5 6= 0 for all A = (aij) ∈ ST3(F). Now

assume that (3.39) holds. Then 〈u8, u9〉 = 〈v8, v9〉. But this implies that T (e22) ∈

〈T (e21), T (e1 � e2), T (e1 � e3)〉, a contradiction.

Case II: F has characteristic not two. Since T is a bounded rank-two linear pre-

server, then 〈T (e21), T (e1 � e2), T (e1 � e3)〉 is a 3-dimensional subspace of bounded

rank-two matrices. Hence by Theorem 2.6 we have either

T (e21) = u1 � u4, T (e1 � e2) = u1 � u2, T (e1 � e3) = u1 � u3 (3.40)

for some u1 ∈ Up, ui ∈ Uqi satisfying 1 6 p 6 m + 1− qi 6 m, i = 2, 3, 4, such that
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{T (e21), T (e1 � e2), T (e1 � e3)} is linearly independent; or

〈
T (e21), T (e2 � e1), T (e2 � e3)

〉
=
〈
u25, u

2
6, u5 � u6

〉
(3.41)

for some linearly independent vectors u5, u6 ∈ Us such that 1 6 s 6 m+1
2

. Further

we note that if 〈T (e21), T (e1 � e2), T (e1 � e3)〉 is a rank-two subspace then m > 4.

Next there are two possible cases for T (e22):

Case II-A: Suppose that T (e22) ∈ 〈T (e21), T (e1 � e2), T (e1 � e3)〉. Then it is clear

that T (e22) /∈ 〈T (e21), T (e1 � e2)〉 and so we have ImT is one of the following forms:

(a) ImT = u1 � U for some nonzero vector u1 ∈ Up and some subspace U of Uq

with 1 6 p 6 m+ 1− q 6 m.

(b) ImT = 〈x2, y2, x� y〉 for some linearly independent vectors x, y ∈ Us such

that 1 6 s 6 m+1
2

.

Case II-B: Suppose that T (e22) /∈ 〈T (e21), T (e1 � e2), T (e1 � e3)〉. Then we note

that 〈T (e21), T (e1 � e2), T (e22)〉 is a 3-dimensional subspace of bounded rank-two ma-

trices. Hence by Theorem 2.6, we have either

T (e21) = v1 � v4, T (e1 � e2) = v1 � v2, T (e22) = v1 � v3 (3.42)

for some v1 ∈ Up, vj ∈ Uqj satisfying 1 6 p 6 m+ 1− qj 6 m, j = 2, 3, 4, such that

{T (e21), T (e1 � e2), T (e22)} is linearly independent; or

〈
T (e21), T (e1 � e2), T (e22)

〉
=
〈
v25, v

2
6, v5 � v6

〉
(3.43)

for some linearly independent vectors v5, v6 ∈ Us such that 1 6 s 6 m+1
2

. Further

we note that if 〈T (e21), T (e1 � e2), T (e22)〉 is a rank-two subspace then m > 4. Then
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we have four possible cases to consider:

Case II-B-(i): T (e21), T (e1�e2) are of rank two. Then (3.40) and (3.42) both hold.

We note that either 〈u21〉 ⊂ 〈T (e21), T (e1 � e2)〉, or u1, u2, u4 are linearly independent,

one can easily conclude that v1 ∈ 〈u1〉 and so we obtain ImT is of the form (a) listed

in Case II-A.

Case II-B-(ii): T (e21), T (e1� e2) are of rank one. Then we have (3.41) and (3.43)

both hold. Hence 〈u5, u6〉2 = 〈v5, v6〉2 yielding T (e22) ∈ 〈T (e21), T (e1 � e2), T (e1 � e3)〉,

and so contradicts the hypothesis of Case II-B.

Case II-B-(iii): T (e1�e2) is of rank one and T (e21) is of rank two and so u1, u3, u4

are linearly independent. Suppose that (3.40) holds. Then we first consider the case

where (3.42) holds. Thus v1 ∈ 〈u1〉 and so we obtain ImT is of the form (a)

listed in Case II-A. Now assume that (3.43) holds. Then 〈u1, u4〉 = 〈v5, v6〉. Thus

〈u1, u4〉2 = 〈v5, v6〉2. Hence we have T (e22) = a4u
2
4 + b4u1�u4 + c4u

2
1 for some scalars

a4, b4, c4 ∈ F with a4 6= 0. Define Pe1 = u1, P e2 = u4, P e3 = u3, then we have

T (A) = P


a11 a13 + λ0a22 λ1a22 + λ2a12

03,m−3 0 λ3a22 a13 + λ0a22

0 0 a11

0 0m−3,3

P+

for some scalars λ0, . . . , λ3 ∈ F with λ2, λ3 6= 0 for all A = (aij) ∈ ST3(F).

Now suppose that (3.41) holds. We first consider the case where (3.42) holds.

It follows that 〈v1, v4〉 = 〈u5, u6〉. Thus 〈v1, v4〉2 = 〈u5, u6〉2. Then we have T (e22) =

a6v
2
4 + b6v1 � v4 + c6v

2
1 for some scalars a6, b6, c6 ∈ F with a6 6= 0. Define Pe1 =
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v1, P e2 = v4, P e3 = v3, then we have

T (A) = P


a22 a13 + λ0a11 λ1a11 + λ2a12

03,m−3 0 λ3a11 a13 + λ0a11

0 0 a22

0 0m−3,3

P+

for some scalars λ0, . . . , λ3 ∈ F with λ2, λ3 6= 0 for all A = (aij) ∈ ST3(F). Now

assume that (3.43) holds. Then 〈u5, u6〉 = 〈v5, v6〉. But this implies that T (e22) ∈

〈T (e21), T (e1 � e2), T (e1 � e3)〉, a contradiction.

Case II-B-(iv): T (e21) is of rank one and T (e1�e2) is of rank two and so u1, u2, u3

are linearly independent. Suppose that (3.40) holds. Then we consider the case

where (3.42) holds. Thus v1 ∈ 〈u1〉 and so we obtain ImT is of the form (a)

listed in Case II-A. Now assume that (3.43) holds. Then 〈u1, u2〉 = 〈v5, v6〉. Thus

〈u1, u2〉2 = 〈v5, v6〉2. Hence we have T (e22) = a8u
2
2 + b8u1�u2 + c8u

2
1 for some scalars

a8, b8, c8 ∈ F with a8 6= 0. Define Pe1 = u1, P e2 = u2, P e3 = u3, then we have

T (A) = P


a11 a12 + λ0a22 λ1a22 + λ2a13

03,m−3 0 λ3a22 a12 + λ0a22

0 0 a11

0 0m−3,3

P+

for some scalars λ0, . . . , λ3 ∈ F with λ2, λ3 6= 0 for all A = (aij) ∈ ST3(F).

Now suppose that (3.41) holds. We first consider the case where (3.42) holds.

It follows that 〈v1, v2〉 = 〈u5, u6〉. Thus 〈v1, v2〉2 = 〈u5, u6〉2. Then we have T (e22) =

a10v
2
2 + b10v1 � v2 + c10v

2
1 for some scalars a10, b10, c10 ∈ F with a10 6= 0. Define

Pe1 = v1, P e2 = v2, P e3 = v3, then we have

T (A) = P


a22 a12 + λ0a11 λ1a11 + λ2a13

03,m−3 0 λ3a11 a12 + λ0a11

0 0 a22

0 0m−3,3

P+
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for some scalars λ0, . . . , λ3 ∈ F with λ2, λ3 6= 0 for all A = (aij) ∈ ST3(F).

Now assume that (3.43) holds. Then 〈u5, u6〉 = 〈v5, v6〉. But this implies that

T (e22) ∈ 〈T (e21), T (e1 � e2), T (e1 � e3)〉, a contradiction.

Finally, we apply Lemma 3.4 to those forms obtained in Cases I-B-(iii), I-B-(iv),

II-B-(iii) and II-B-(iv), to obtain the required result. The proof is complete. �

The reader should note that for form (g), even if we restrict m to 4, the matrix

P will not necessarily be of upper triangular form. The following example illustrates

this situation.

Example 3.10. Let F be a field with at least three elements and of characteristic

two. Let T : ST3(F) −→ ST4(F) be the bounded rank-two linear preserver defined

by

T (A) = P


a11 a12 a13 0

0 a22 0 a13

0 0 a22 a12

0 0 0 a11

P+

for all A = (aij) ∈ ST3(F), where

P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ∈M4(F).

Clearly T is a bounded rank-two linear preserver. To see that T (A) is still of upper

triangular form, we may take a11 = a12 = a13 = a22 = 1 and countinue with the

matrix multiplication.

The next example shows that if F has characteristic two, then it is possible to

102



have Pe2, P e3 ∈ Uk such that k > n+1
2

.

Example 3.11. Let F be a field with at least three elements and of characteristic

two. Let T : ST3(F) −→ ST4(F) be the bounded rank-two linear preserver defined

by

T (A) = P


a11 a12 a13 0

0 a22 0 a13

0 0 a22 a12

0 0 0 a11

P+

for all A = (aij) ∈ ST3(F), where

P =


1 0 0 0

0 0 1 0

0 1 1 0

0 0 0 1

 ∈M4(F).

Clearly T is a bounded rank-two linear preserver and it can be verified easily that

T (A) is of upper triangular form. Here, we have Pe2, P e3 ∈ U3 where 3 > 4+1
2

.

We give a few examples of bounded rank-two linear preservers ST3(F)→ ST4(F)

to illustrate the forms (b) and (f) listed in Theorem 3.9.

Example 3.12. Let F be a field with at least three elements and of characteristic

two. Let {e1, . . . , e4} be the standard basis of M4,1(F).

(a) Let T1 : ST3(F)→ ST4(F) be the linear map defined by

T1(A) = a13e
2
1 + a12e1 � e2 + (a11 + a22) e

2
2

for all A = (aij) ∈ ST3(F). Then T1 is a bounded rank-two linear preserver

with

ImT1 =
〈
e21, e

2
2, e1 � e2

〉
.
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(b) Let T2 : ST3(F)→ ST4(F) be the linear map defined by

T2(A) = (a13 + a22) e1 � e2 + (a12 + a22) e1 � e3 + (a11 + a22) e2 � e3

for all A = (aij) ∈ ST3(F). Then T2 is a bounded rank-two linear preserver

with

ImT2 = 〈e1 � e2, e1 � e3, e2 � e3〉 .

We note that 〈T (e21), T (e1 � e2)〉 is a 2-dimensional subspace of bounded rank-

two matrices. Hence in view of Theorem 2.6, we have the following

Corollary 3.13. Let F be an arbitrary field with |F| > 3, and let m be an integer

such that m > 2. If T : ST2(F) −→ STm(F) is a bounded rank-two linear preserver

then T is one of the following forms:

(a) there exist an invertible matrix P ∈Mm(F) and scalars λ0, λ1, λ2, λ3 ∈ F with

λ0, λ3 6= 0, such that

T (A) = P


λ0a1s + λ1a1t λ2a1s + λ3a1t

02,m−2
0 λ0a1s + λ1a1t

0 0m−2,2

P+

for all A = (aij) ∈ ST2(F), where Pe1 ∈ Up and Pe2 ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m + 1 − p, {s, t} = {1, 2}, and (λ1, λ2) 6= 0 only if F has

characteristic two. In particular, P ∈ T2(F) when m = 2.

(b) m > 3 and ImT = 〈α1u� v+ α2u
2 + α3v

2, β1u� v + β2u
2 + β3v

2〉 is two-

dimensional, for some linearly independent vectors u, v ∈ Up with 1 6 p 6

m+1
2

, and some fixed scalars α1, α2, α3, β1, β2, β3 ∈ F with (α2, β2) 6= 0 and

(α3, β3) 6= 0.
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(c) m > 3 and ImT = u � 〈v1, v2〉 for some linearly independent vectors u ∈ Up

and v1, v2 ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m+ 1− p.

(d) m > 3, F has characteristic two, and ImT = 〈u� v1 + λ1u
2, u� v2 + λ2u

2〉

for some linearly independent vectors u ∈ Up and v1, v2 ∈ Uq with 1 6 p 6 m+1
2

and 1 6 q 6 m+ 1− p, and some scalars λ1, λ2 ∈ F with (λ1, λ2) 6= 0.

(e) m > 4, F has characteristic two, and ImT = 〈w1 � w2, (w1 + λw2)� w3〉 for

some nonzero scalar λ ∈ F and some linearly independent vectors w1 ∈ Up,

w2 ∈ Uq and w3 ∈ Ur such that p, q 6 m + 1 − r and either p 6 m + 1 − q,

or p = q > m+1
2

and w2 = αw1 + z for some nonzero scalar α ∈ F and some

vector z ∈ Uk with 1 6 k 6 m + 1 − p < m+1
2

such that w2, z are linearly

independent.
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