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ABSTRACT

Let F be a field and n an integer > 2. We say that a square matrix A is persymmetric
if A is symmetric in the second diagonal. Let ST,(F) denote the linear space of all
n X n persymmetric upper triangular matrices over F. A subspace S of ST,(F) is said
to be a space of bounded rank-two matrices if each matrix in S has rank bounded
above by two, and a rank-two space if each nonzero element in it has rank two.
In this dissertation, we classify subspaces of bounded rank-two matrices of ST,(F)
over a field F with at least three elements. As a corollary, a complete description
of rank-two subspaces of ST,(F) is obtained. We next deduce from the structural
results of subspaces of bounded rank-two matrices of ST,(FF), a characterization of
linear maps ¢ : ST,(F) — ST, (F), m > n > 2, that send nonzero matrices with

rank at most two to nonzero matrices with rank at most two.



ABSTRAK

Katakan F adalah medan dan n adalah integer > 2. Suatu matriks segiempat sama A
dikatakan persimetri jika A adalah simetri pada pepenjuru yang kedua. Biar ST,(IF)
menandakan ruang linear yang terdiri daripada semua matriks persimetri segitiga
atas jenis n X n terhadap F. Suatu subruang S bagi ST,(FF) dikenali sebagai ruang
matriks disempadani pangkat-dua jika setiap matriks dalam S mempunyai pangkat
yang disempadani atas oleh dua, dan dikenali sebagai ruang pangkat-dua jika setiap
unsur bukan sifar mempunyai pangkat dua. Dalam disertasi ini, kami mencirikan
subruang matriks disempadani pangkat-dua bagi ST,(F) terhadap medan F yang
mempunyai sekurang-kurangnya tiga unsur. Sebagai korolari, pencirian lengkap
tentang subruang pangkat-dua bagi ST,(IF) telah diperolehi. Seterusnya, daripada
hasil struktur subruang matriks disempadani pangkat-dua bagi ST,(F), kami dapat
mendeduksikan suatu pencirian pemetaan linear ¢ : ST, (F) — ST,,(F), m > n > 2,
yang menghantar matriks bukan sifar dengan pangkat selebih-lebihnya dua kepada

matriks bukan sifar dengan pangkat selebih-lebihnya dua.
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INTRODUCTION

One of the most active research topics in matrix theory and operator theory in
the last century is the linear preserver problem. Linear preserver problems concern
the characterization of linear maps between matrix spaces leaving invariant certain
functions, subsets, or relations. A solution of a linear preserver problem consists of a
structural description of the preserver. One well-known result, dating back over one
hundred years, is the Frobenius’s classical theorem see [5], concerning determinant
preservers on M,,(C) (the algebra of n x n matrices over the complex field C). He

proved that every linear map ¢ on M,,(C) satisfying

det(¢(A)) = det(A) for all A € M, (C),

is either of the form

¢(A) = MAN for all A € M,,(C) (1)

or

p(A) = MA'N for all A € M, (C) (2)

for some invertible matrices M, N € M,,(C) with det(M N) = 1. Here and through-
out the dissertation, A’ denotes the transpose of A. The mappings ¢ above are
examples of function preservers.

In general, let M be a matrix space or a tensor space. Typically, there are four

types of linear preserver problem:

(I) (Function-preserving) Let F' be a (scalar-valued, vector-valued, or set-valued)



given function on M. Characterize those linear maps ¢ on M which satisfy

F(¢(A)) = F(A) forall A € M.

(IT) (Subset-preserving) Let S be a given subset of M. Characterize those linear

maps ¢ on M which satisfy

AeS = ¢(A)eS forallAe M

or satisfy

AceS & ¢(A)eS forallAe M.

(III) (Relation-preserving) Let ~ be a relation on M. Characterize those linear

maps ¢ on M which satisfy

A~B= ¢(A) ~¢(B) foral A,Be M

or satisfy

A~B<& ¢(A) ~¢(B) forall A,Be M.

(IV) (Function-commuting) Let F' : M — M be a function. Characterize those

linear maps ¢ on M which satisfy

goF=Fo¢

that is, F'(¢(A)) = ¢(F(A)) for all A € M.

One may see that the formulation of linear preserver problems is simple and



natural. The answers are often very elegant. In the last few decades, thousands of
papers have been published on linear preservers and many interesting results have
been obtained. We note that not all linear maps with a special preserving property
have the standard forms (1) or (2). For example, Hiai [6] proved that a linear map
¢ on M,,(C) preserves the relation of similarity if and only if there exist a, f € C

and an invertible S € M,,(C) such that ¢ has the form

A STTAS +a(trA)L, or Aw STYA'S + B(trA)I,,

or there exists a fixed B € M,,(C) such that ¢ has the form

A (trA)B.

Here, At denotes the transpose of A. Furthermore, in the 1990s, Pierce and other
researchers wrote a monograph [12] which can be viewed as a summary of the results
on linear preserver problems ranging from 1897 to 1991.

Without restricting themselves to linear maps acting on the same space, some
researchers started to consider linear maps between different matrix spaces, i.e.
¢ : M — M’ for some matrix spaces M, M’. Such problems are more challenging
and their study might lead to the discovery of hidden structures due to the differences
between the two spaces, and hence to a generalization of the results for the case
M = M’. However, it is usually hard to obtain new structures. For example, the
characterization of additive rank-one preservers from the space of triangular matrices
to the space of rectangular matrices was obtained in [2] while the characterization of
additive rank-one preservers between the spaces of rectangular matrices of different

sizes was obtained in [14]. It turns out that the structure for additive rank one



preservers on spaces of triangular matrices is much more complicated than the one
on spaces of rectangular matrices.

Linear preserver problems can be divided into many subcategories. It is impos-
sible to cover all of them in this section. In the following, we give only a brief survey
of those results related to the title of this dissertation.

Research on rank linear preservers was carried out by Marcus and Moyls [9].
They described the structure of rank-one linear preservers on M,, ,,(F), where F is
an algebraically closed field of characteristic 0. The preservers have the standard
form (1) or, when m = n, possibly the standard form (2) with invertible matrices
M, N of suitable sizes. The authors proved the above result in the setting of tensor
spaces whereas Minc [10] gave an alternative proof using only elementary matrix
theory fifteen years later.

Back in the 1970s, L. J. Cummings [3] characterized the maximal decomposable
subspaces of the k' symmetric product space \/, V, where V is a finite-dimensional
vector space over an algebraically closed field of characteristic 0. In particular,
when k = 2, the result is closely related to subspaces of symmetric matrix spaces
of bounded rank-two only if the field has characteristic not equal to two. Later,
he used the structure obtained for decomposable subspaces and some lemmas from
[3] to investigate linear transformations on the k-fold symmetric product of an n-
dimensional vector space V', n > k + 1, which carry nonzero decomposable tensors
to nonzero decomposable tensors, see [4].

Meanwhile, M. H. Lim [8] studied the structure of linear maps on the vector
space of all n X n symmetric matrices preserving matrices of rank one, two or n
by using the tools of second symmetric product spaces. The paper [8] also con-

tains a characterization of subspaces of symmetric tensors of order two consisting of



elements of rank less than or equal to two.

Rank non-increasing linear maps first appeared in [7]. The author employed the
language of tensors to obtain a result which was then used to obtain the structure
of those rank-one non-increasing linear maps on M,, ,,(F). Then in the late 90’s,
research on certain preserver problems on spaces of upper triangular matrices was
carried out by W.L. Chooi, M.H. Lim [1] and L. Molnar, P. Sémrl [11]. They first
classify rank-one linear preserver structures and then make use of these structures
to classify other preserver problems on triangular spaces, specifically the adjugate
commuting problem and the rank-one idempotent preserver problem.

Motivated by all these results, we carry out, in this dissertation, a study on
bounded rank-two linear preservers on persymmetric upper triangular spaces. We
now give the basic notations and definitions needed to describe our work.

Let F be a field and let m, n be integers > 2. Let M,, ,(F) be the linear space
of all m x n matrices over F. We abbreviate M,, ,,(F) to M,,(F). Let A = (a;;) €

Mo (F). We denote by AT the matrix (b;;) € M, ,,(F) such that

bij = Gpy1—jms1—i forevery 1<i<n and 1<j<m.

We see that AT = J,A!J,, where J, is the n x n matrix with 1’s on the second
diagonal and 0's elsewhere, and A* stands for the transpose of A. We say that a
square matrix A € M,,(F) is persymmetric if it is symmetric in the second diagonal,
that is, At = A. Let 7,(F) denote the subspace of M,,(F) consisting of all n x n
upper triangular matrices. We denote by ST,(F) the set of all n X n persymmetric

upper triangular matrices over F. Symbolically,

STH(F) = {A € T,(F) | A* = A}.



Clearly, ST,(FF) forms a subspace of T,(F); we shall call it the persymmetric trian-
gular matriz space over F.

Now, let U and V' be subspaces of M,,(F) and M,,(F), respectively, and let k
be a positive integer with & < min{m,n}. A mapping ¢ : U — V is said to be a

bounded rank-k linear preserver if ¢ is linear and satisfies

1 <rank¢(A) <k whenever 1 <rankA <k

where rank A denotes the rank of the matrix A. Let S be a subspace of U. We
say that S is a subspace of bounded rank-k matrices if each matrix in S has rank
bounded above by k, and that S is a rank-k subspace if each nonzero element in it
has rank k.

We assume throughout this dissertation, unless otherwise stated, that [ is an
arbitrary field and n > 2. We use (uq,...,u,) to denote the linear space spanned
by the vectors uq,...,u,. As usual, we denote the vectors of the standard basis of
M., 1(F) by {e1,...,e,} and employ the notation E;; :=e; - e§- to denote the matrix
in M,,(F) having the (7, j)-th entry equal to one and all others equal to zero.

This dissertation is divided into three chapters. We now give a brief description
of each chapter.

Chapter 1 provides all the notations needed in this dissertation. We then describe
the rank canonical form of a persymmetric upper triangular matrix. The result
enables us to define a tensor for symmetric matrices and this definition holds even
for a field with characteristic two. Some properties of the new tensor can also be
found in this chapter.

In Chapter 2, we characterize subspaces of bounded rank-two matrices of ST, (IF).

Consequently, a characterization of rank-two subspaces of ST,(FF) is obtained. As



shown in [4, 8], the characterization of subspaces of bounded rank-two matrices is
essential to a study of bounded rank-two linear preservers.

Chapter 3 carries out a study of bounded rank-two linear preservers between
persymmetric triangular matrix spaces. We see from the results that if the dimension
of the domain is very small, then we obtain some surprisingly odd structures. Besides
the persymmetric and the upper triangular properties, the structures appear mainly
due to the difference of dimensions between two linear spaces and there is one special

form when the underlying field has four elements.



Chapter 1

PRELIMINARIES

We begin this chapter by introducing the rank canonical form of an arbitrary matrix
in ST,(FF). If we consider only those matrices with rank at most two, then the rank
canonical forms enable us to define a new tensor product as shown in Lemma 1.2.
This allows us to establish a link between a matrix with rank at most two in ST, (F)
and a tensor product of two vectors from M,, 1 (F). Although the representation of
the matrix under this new tensor is not unique, it proves to be very useful in the
construction of our subspaces of bounded rank-two matrices, as shown in the next
chapter.

Let F be a field and let n be an integer > 2. Let a € F, and let 1 < 4,5 < n be

integers such that 1 <i <7 <n+1—14. We define

Zla] = EZ] + E:]r + CtELnJrl,i (11)

and Z;; = Zi(])-. For example, if n = 4, then

1 00 « 001 o 00 0O
00 0 0 00 0 1 0 1 0
Zh = , Zi3 = and Zg, = “
00 00 0000 0010
00 0 1 00 00 00 0 O

It is easy to see that Z; € ST,(F) forevery a € F, 1 <i<j<n+1—i<n We

begin our work by finding the rank canonical forms of the vectors in ST,(F).

Lemma 1.1. Let F be an arbitrary field, and let n,k be integers such that n > 2



and 0 < k < n. Then A € ST,(F) is of rank k if and only if there exist an integer

0 <h <

NI

, scalars aq,...,ap € F, nonzero scalars Bopi1,...,0k € F, and an

invertible matriz P € T,(F) such that

h k
A= P(Z Zgt, + Z ﬂiEpi,n+1—pi>P+
i=1

i=2h+1

where {S1, ..., Sh, Danits-- - Pet and {t1, ... tp,n+1—popi1,...,n+1—pi} are two
sets of distinct positive integers such that 1 < s; <t;<n+1—s; fori=1,...,h,
and1 < p; < "TH fori=2h+1,... k. Moreover, if there exists an integer 1 < j < h

such that ai; # 0, then I has characteristic 2.

Proof. The sufficiency part is clear. We now prove the necessity part. Suppose
that A = (a;;) is nonzero. Let R; and C; denote the i-th row and the j-th column
of A, respectively. Since 0 # A € ST,(F), there exists a pair of integers (ig, jo) with

1 <19 < jo<n+1—1psuch that

Qig,jo 7£ 0

and a;j, = 0 for all ip <7< n,and a;; =0 forall 1 <j<joand 1 <i<n We
divide our proof into the following two cases:
Case I: jo=n+1—1iy. For each 1 < s < 79, we apply the following elementary

row and column operations:

1 -1
RS — RS — Os,5, @ Rio and Cn—l—l—s — Cn—l—l—s — Qign+l—s aiOVjOCjO

%0,J0

on A. We note that, for each 1 < s < 17p, there exists the elementary matrix

I, — ¢Es;, € To(F) corresponding to the the row operation R, — R, — ¢, R,



where ¢, = € F. Since A" = A, it follows that a;,,4+1-s = as, for every

= Qs ,Jo ’LQ ]0

1 < s < g, and so, there exists an invertible matrix P, € T,(F) such that

PlApl+ = aiMOEiO,jo + A1 (1'2)

for some matrix A; = (b;;) € ST,(F) such that b;;,, =0forall 1 <i<n,b,; =0
forall1<j<mn,and b =0forall 1 <j<joand 1 <i<n.

Case II: jo # n+ 1 —ip. Then anti1—jon+1-iy = Giy,j, 7 0. Without loss of
generality, we may assume a;, j, = 1 = apy1—jont1-io- For each 1 < s < ip, we apply

the elementary row and column operations:

Rs — Rs - as,joRio and Cn+1—s — Cn—i—l—s - an+1—jg,n+1—scn+1—i0

on A, and this is followed by the following elementary row and column operations:

Ry — Ry — aypy1—igRnp1—j, and  Chp—y — Chpi—p — Gigny1-:Cj

for every 1 <t < n+1— j,. We note that, for each 1 < s < iy (respectively,
for each 1 <t < n+ 1 — jy), there exists the elementary matrix I, — a, j, Es,
(respectively, I, — a¢pni1—igEtnt1—j,) In Tn(F) corresponding to the row operation
Ry — Ry —as j, Ry, (respectively, Ry — Ry — ¢ pt1—igRnt1-j,)- SINCE Upp1—jont1—s =
asj, for every 1 < s < g, and a; nt1-¢t = At np1—i, for every 1 <t < n+1— jo, there

exists an invertible matrix P, € T,(F) such that

PAP =7 + 4 (1.3)

20J0

for some scalar oy € F and some matrix A, = (b;;) € ST,(FF) such that b; ;, = 0 for

10



all1<e<n, b,;=0for1 <j<n,and b; =0forall 1 <j<joand1l<i<n.
In view of (1.2) and (1.3), if A; = 0, then we are done. If A; # 0, then, by

repeating a similar argument on A;, since A is of rank k, there exist an integer

0<h< g, scalars o, ..., o, Pont1, - - -, B € F, and an invertible matrix @ € T, (F)
such that
h k
QAQ" = Z Zs?zi + Z BiEp, n1-p; (1.4)
i=1 i=2h+1

where {s1,...,Sn, Pons1,---, Pk} and {t1, ..., th,n+1—popyi1,...,n+1—pg} are two
sets of distinct positive integers such that 1 < s; <t; <n+1—s;fori=1,... h,
and 1 < p; < "T“ fori =2h+1,... k. If F has characteristic 2, then the proof is
complete. If F has characteristic not 2, then, for each 1 < ¢ < h, we further perform

the elementary row and column operations:
~1 ~1
RS;’ — Rsi -2 aiRn+1—ti and On+1_si — O?’L-i—l—si -2 O[Z‘Oti

on QAQ™ in (1.4) to annihilate a; in Z; . Since s; <n+1—1t; forall 1 <i < h,

there exists an invertible P € 7, (F) such that

h k
PAPT = Z Zsiti + Z ﬁiEpi,n+1*pi'
=1

i=2h+1

The proof is complete. [

Let F be a field and let n be an integer > 2. Let u,v € M,,1(F). Define

+

wuQvi=u-v 4+ v-u and u? = -ut (1.5)

where u - vT € M,,(F) is the usual matrix product of the vectors u € M,, ;(FF) and

11



vt € F*. We verify easily from (1.5) that (u,v) — u @ v is a symmetric bilinear

map from M,, ;(F) x M,,1(F) into M,,(F). Also, for each u,v € M,,;(F), we have

(wov)t=uov and (u?)t =u?

and

Puov)P" = (Pu)© (Pv) and P(u*)P" = (Pu)? (1.6)
for every P € M,(F). It is easy to see that e; @ ¢; = E;,41-j + Ej 41— and
e? = E;,11-; for every pair of integers 1 < 4,7 < n. It can immediately be seen

from (1.5) that u,v € M, 1(F) are linearly independent vectors if and only if each
of the matrices u @ v, © @ v + u? and u? + v? is of rank two.

Now, let 1 <7 < n. We write

Z/{Z- I:{<U1,...,ui,0,...,O)T| ul,...,uiEIF}.

Let u € U,, v € U, and w € U, for some positive integers 1 < p,q,r < n. It is
immediate from the definitions in (1.5) that u? € ST,(F) if and only if 1 < p < %,
and v Qw € ST,(F) when 1 <g¢g<n+1—-7<n.

The following lemma allows us to express the matrices in ST,(F) in tensor lan-

guage.

Lemma 1.2. LetF be a field and let n be an integer > 2. The following statements

hold.

(a) Then A € ST,(F) with 0 < rank A < 2 if and only if A is of one of the following
forms:

A = au® + Bv? (1.7)

12



for some linearly independent vectors u,v € U, with 1 < p < ™ and scalars
P 2
a,B€F; or

A=uov+ P (1.8)

for some linearly independent vectors w € U, and v € U, with 1 < p <
n+1—qg<n+1—p and scalar X € F. Further, if A is of form (1.8) with

A # 0, then F has characteristic two.

(b) Let A=u@ v+ Mu? for some linearly independent vectors u € U, and v € U,
with 1 < p < q < "TH and scalar A € F. If charF # 2 or charF = 2 with

A # 0, then A can be rewritten in form (1.7), i.e.,

A = pw?* + nz?

for some linearly independent vectors w, z € U, and nonzero scalars p,n € F.

Proof. (a) The sufficiency part is clear. We now consider the necessity part. Let
A € ST,(F) be a matrix of bounded rank-two. In view of Lemma 1.1, there exists

an invertible matrix P € 7,(FF) such that either

A= P(aEpni1-p+ BEqni1-q)PT (1.9)

for some scalars o, f € F and distinct integers 1 < g < p < ”TH; or

A=PZ3P" = P(Epy + Ef + My 1) PT (1.10)

for some integers 1 < p < g < n+ 1 — p and some scalar A € F such that A # 0
implies charF = 2. If A is of form (1.9), then 0 < rank A < 2, and A = aP(e}) P +
BP(e2)PT = au® 4+ Bv?, where u = Pe, and v = Pe, are linearly independent

q

13



vectors in U,. If A is of form (1.10), then rank A = 2, and A = P(e, @ epq1-¢) P +
AP(e2)PT = u @ v+ Mu? by (1.6), where u = Pe, € U, and v = Pey1_q € Uni1
are linearly independent vectors. We are done.

(b) We divide into two cases:

Case I: A # 0. Then A = u@v+Au? = Mu+A"10)2+(=A")o? = Mw?+(—=A71)22%
where w = v+ A7'v and z = v are linearly independent vectors in U,.

Case II: A = 0. Then A = u©@v = Pi(e, @ ¢,)P;" for some invertible matrix
Py € T,(F). If charF # 2, then we perform the following elementary row and column

operations on e, @ e, :

Rp — Rp + Rq and Cn+1_p — Cn+1—p + Cn+1—q-

Then there is an invertible matrix P, € 7,(FF) such that

A= (PP)(e,0e,+ 263,)(P1P2)+ = (P Pye,) @ (P Pyey) + 2(P Pye,)? = 20y + 22°

by (1.6), where x = P Pye, and y = P, Pse, are linearly independent vectors in U.

By a similar argument as in Case I, we are done. [J

The following two lemmas illustrate some properties of the new tensor product.

Lemma 1.3. Let F be a field and let n be an integer > 2. Let u,v,x,y € M, 1(F)

and let o, 8,7, ,m € F be scalars such that p,m # 0. Then the following assertions

hold.
(a) Ifuov+au>=zQy+ fz*#0, then (u,v) = (z,y).
(b) Ifuov+ au® = pz® +ny* #0, then (u,v) = (x,y).

(c) 0#uve ST,(F) if and only if either

14



i) uwel, andv € U, for some integers 1 <p<n+1—q<n, or
( ) P q g p q J)
i) veld, andv = au+w € U, for some nonzero scalar o« € F and some
q q
vector w € U, with 1 <Kp<n+1—-¢qg< "T“ such that w,w are linearly

independent.

Furthermore, if (ii) holds, then F has characteristic 2.

(d) Suppose that F has characteristic 2, and that u,v,y are linearly independent
vectors. Let A= a(uov)+ u@y)+ulvoy) and B=u®@ x+~yu®. Then
v =0 and z € (u,v,y) if and only if rank (A + AB) < 2 for every nonzero

scalar A € F.

Proof.  (a) We divide our proof into two cases.

Case I: u, v are linearly dependent. Then rank (u @ v+ au?) = 1, and so z,y are
linearly dependent. Evidently, u, z are nonzero. It follows that v = \ju and y = Ao
for some scalars A\;, \y € F, and hence (2)\y + 8)z% = (2\; + a)u?® # 0. Therefore,
(x) = (u), and the result holds.

Case II: u,v are linearly independent. Then z,y are linearly independent. We
claim that (u,v) = (x,y). Suppose to the contrary that (u,v) # (z,y). Then
x ¢ (u,v) ory ¢ (u,v).

Case II-1: = ¢ (u,v). Then y € (u,v,y). Let y = d'u+ b'v + 'y for some

a, b, eF. So,

0=uovt+au’—rQy—Br*=uovtau’—drou—brzov—(B+2d)2% (1.11)

We extend {z,u,v} to an ordered basis & of M, 1(F). Let P € M,(F) be the
transition matrix obtained from 2 to the standard ordered basis of M,, ;(F). From

(1.11), we see that P(u @ v+ au® —dz @ u— bz @ v — (8 +2¢)2*)PT =0, and by

15



(1.6), we obtain

an impossibility.
Case 1I-2: y ¢ (u,v). Then z € (u,v,y). We write z = au + bv + cy for some

scalars a,b,c € F. So, —u @ v — au? + x @ y + fx? = 0 implies that

(Bab—1Nuv—(a—a*B)u® +b*Bv* +a(l+ Be)u@ y+b(1 + Be)v @ y + *By* = 0.

We extend {y,u,v} to an ordered basis € of M, 1(F). Let @ € M,(F) be the
transition matrix obtained from % to the standard ordered basis of M,, ;(F). Then
Q((Bab—1)u@v—(a—a?B)u*+b*fv? +a(1+ Be)uy+b(1+Bc)voy+c*fy*) QT =0,
and by (1.6), we have

b(1+ Bc) a(l+ Be) B

fab—1 a*B—a a(l+pc) | =0.
b3 Bab—1  b(1+ Bc)

Note that fab—1 = 0. If 3 =0, then 1 = 0, a contradiction. If 8 # 0, then v*8 =0
yields b = 0. Therefore, Sab — 1 = 0 implies that 1 = 0, an impossibility. In both
Case II-1 and Case I1-2 , we conclude that x,y € (u,v). By the linear independence
of z,y, we have (u,v) = (z,y).

(b) If u, v are linearly dependent, then the result holds by arguments similar to
Case I of (a). Suppose that u, v are linearly independent. Then z, y are linearly
independent. If z ¢ (u,v), then rank (ny?) = rank(u @ v + au® — pz?) = 3, a

contradiction. So, x € (u,v). Similarly, we obtain y € (u,v). Hence, by the linear
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independence of x and y, (u,v) = (x,y), as desired.

(¢) The sufficiency part is clear. We now consider the necessity part. Since
u@ v # 0, we have the following two cases:

Case A: rank (u © v) = 1. By Lemma 1.2, there exist a nonzero vector z € U,
with1 < p < "T“ and a nonzero scalar o € I such that u@v = aw?. Then charF # 2
and u,v are nonzero linearly dependent vectors such that (u) = (x) = (v). Thus,
u,v € Uy, and so (i) holds true.

Case B: rank (u @ v) = 2. By Lemma 1.2, we have the following two cases:

Case B-1: u® v = az? + By? for some nonzero scalars o, 3 € F and linearly
independent vectors z,y € U, with 1 < p < . By (b), we have (u,v) = (z,y).
So, u,v € U, and (i) holds.

Case B-2: w©v = x @y + Az? for some linearly independent vectors = € U,
andy eU, withl <p<n+1-g<n+1-p<n,and some scalar A\ € F. By
(a), we have (u,v) = (z,y). Then v = azx + by and v = cx + dy for some scalars

a,b,c,d € F, and so

u@v = (2ac) 2* + (2bd) y* + (ad + be) x @ y. (1.12)

Consider charF # 2. If bd # 0, then 1 < ¢ < ®. So, u,v € U, with £ =

max{p, ¢} < ”TH Therefore, (i) holds. If bd = 0, then either b = 0 or d = 0.

It follows that either u € U, or v € U, with p < ”TH, and thus (i) holds true.
We now consider charF = 2. By (1.12), we have v @ v = (ad + bc) x @ y with
ad +bc # 0. If ¢ < "TH, b=0ord=0, then (i) holds. If ¢ > "T“ and b,d # 0,
then 1 <p<n+1-g¢<2tand v =cx+dy = au+w where « = b~*d € F and

w = b (ad + be)x € U,. Tt is clear that o # 0 and u, w are linearly independent.

Hence, (ii) holds true.
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(d) We first prove the necessity part. Let x = au + bv + cy for some scalars
a,b,c € F. Then u@x = b(u@v) + ¢(u@y), and thus rank (A + AB) < 2 for every
nonzero scalar A € F because

B4+ A a+ b 0

det u 0 a+ A | = =2u(8+ Ae)(a + Ab) = 0.
0 L B+ Ac

We now prove the sufficiency part. If ¢ (u,v,y), then rank (A + A\B) =4 > 2 for

every nonzero scalar A € [F since

det = 12N #£0

SO OoOr W
o o o >

T O © Q9
= > Q

for every nonzero scalar A € F. Suppose that v # 0. The result holds if x ¢ (u, v,y).
We now consider = € (u,v,y). Let x = au + bv + cy for some scalars a,b,c € F.
Then A+ AB = (a+ AX)u @ v+ (8 + A)u @y + pu(v @ y) + Myu? is of rank 3 for
every nonzero scalar A € [F since

B+A a+ b Ay

det 1 0 a+ b | =My #£0.
0 I B+ Ac

We are done. O
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Chapter 2

SPACES OF BOUNDED RANK-TWO MATRICES AND

RANK-TWO SPACES

We shall use this chapter to determine subspaces of bounded rank-two matrices of
ST.(F) and eventually give a classification of these subspaces in Theorem 2.6. The
classification of subspaces is very important and should be viewed as groundwork
for the study of bounded rank-two linear preservers in Chapter 3. In the process
of proving our main theorem, we develop a few lemmas which, at the same time,
illustrate the behaviour of subspaces of bounded rank-two matrices of ST, (F).

In [8], M. H. Lim proved Theorem 2.1 below. We need the following preamble:
Let F denote an infinite field of characteristic not equal to two. Let U be a finite
dimensional vector space of dimension n over F and U® be the second symmetric
product space over U. Let J, denote the set of all vectors in U® of the form

Zle \;ix?, where z1, . . ., ), are linearly independent vectors and Ay, ..., \; € F\{0}.

Theorem 2.1. Let M be a subspace of U such that M C {0} U J, U J,. Then

either
(I) M C W for some 2-dimensional subspace W of U or
(I) M Cu-U for some nonzero vector u € U.

We strengthen Theorem 2.1 to Theorem 2.6 by replacing the underlying field F with
any field containing at least three elements. To begin our investigation, we first give

the following definitions concerning the subspaces of bounded rank-two matrices.
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Let € M,,1(F) and let U be a subspace of M,, ;(IF). We denote

QU ={zou|luelU} (2.1)

and

U =(u*|uecl). (2.2)

Lemma 2.2. Let F be a field and let n be an integer > 2. Let u,v € M, 1(F) and

let U be a subspace of M, 1(F). Then the following assertions hold.

(a) If A€ uoU, then rank A < 2. Moreover, if charF = 2, then rank A = 2 for
every nonzero A € u@ U.

(b) Ifu,v are linearly independent, then
(i) (u,v)? = (u?,v*,u @) is a 3-dimensional subspace of M, ().

(ii) If A € (u,v)?, then rank A < 2.

Proof. (a) Let A € w@U. By (2.1), we have A = u © y for some y € U. Since
rank (u - y*) < 1, it follows that rank A = rank (u - y™ + y - u™) < rank (u-y™) +
rank (y-u™) < 2. Consider now charlF = 2. If y € U is a vector such that u@y # 0,
then (y) # (u). For, if not, then y = au for some a € F, and so v © y = 2au® = 0.
Hence, rank (v @ y) = rank (v -y +y - u™) = 2.

(b) (i) By (2.2), we see that

(u,v) = (w* | w € (u,v)) = ((au + fv)* | a, B € F). (2:3)

Note that (qu+5v)? = a*u?+2v*+(af)uov € (u?, v, uov) for o, 8 € F. By (2.3),

we get (u,v)? C (u?,v*,u @v). On the other hand, we see that u* = ((1)u + (0)v)?
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and v? = ((0)u + (1)v)? with 0,1 € F, and u @ v = (u + v)? — u* — v%. Tt follows
from (2.3) that u?,v?, u @ v € (u,v)?. Hence, we have (u,v)? = (u*,v* u@v). Note
that u2, v?, u @ v are linearly independent whenever u,v are linearly independent.
It follows that (u,v)? is a 3-dimensional subspace of M,,(F).

(ii) Let A € (u,v)? be nonzero. By (i), we have A = au?® + fv? +~yu @ v for some
a,B,y€€F. fa=p5=0, then A = y(u-v" +v-u") is of rank 2. Suppose that

a # 0 or B # 0. Without loss of generality, we may assume « # 0. Then

A=alu+y(a )’ + (8 —a 'y

Since rankw? < 1 for every w € M,, ;(F), it follows that rank A < 2. This completes

the proof. [

The next three lemmas are essential for us to prove the main theorem.

Lemma 2.3. Let F be a field and let n be an integer > 2. Then the following

assertions hold.

(a) Letu €U, and let U be a subspace of U, with1 < p<n+1—q<n. Then

u@ U is a subspace of bounded rank-two matrices of ST,(FF).

(b) Letu € U, and let U be a subspace of U, with 1 < p < ”T“ and 1 < p <

n+1—q<n. Thenu@ U + (u?) is a subspace of bounded rank-two matrices

of STH(F).

(c) LetU be a subspace of U, with 1 < q < ”T“ Then U? is a subspace of ST,(FF).

Moreover, if U is a 2-dimensional subspace of U,, then U? is a subspace of

bounded rank-two matrices of ST,(F).

(d) Letu € Uy, v € U, and w € U, be linearly independent vectors such that

1 <pg<n+1—r <n and eitherp < n+1-—gq, 0rp:q>"T+1
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and v = au + z for some nonzero scalar o« € F and vector z € U, with
1<l<n+1—-p< ”T“ such that u, z are linearly independent. If charF = 2,

then (u @ v, u © w, v @ w) is a rank-two subspace of ST,(F).

Proof. (a) Let v € U. Since 1 < p < n+ 1 — ¢, we have u - vt € T,(F), and
sov-ut = (u-v")T € T,(F). Further, since (u @ v)* = u @ v, we conclude that
u@v € ST,(F) for every v € U. Next, we claim that u @ U is a subspace of ST,(F).
Clearly, 0 e u@ U, and so u @ U # &. Let A1, Ay € u@ U and a € F. Then there

exist vy, vy € U such that A;, =u@wv; fori =1,2. So

Al+ady=u0v+ aud ) =u v+ udave =u@ (v; + avy).

Since v + avy € U, we get Ay + alds € u @ U, and hence u @ U is a subspace
of ST,(F). Together with Lemma 2.2 (a), we have u @ U is a subspace of bounded
rank-two matrices of ST,(F).

(b) Since 1 < p < 2 and (u?)" = w?, we have u? € ST,(F), and so (u?) is a
subspace of ST,(F). Let A € u@ U + (u?). Then A = v @ y + au? for some y € U
and a € F. So, rank A = rank (u - (y™ + au™) + y-u™) < 2. Therefore, u@ U + (u?)
is a subspace of bounded rank-two matrices of ST,(F).

(c) Since 1 < ¢ < 25, it follows that y* € ST,(F) for every y € U. So, U? is a
subspace of ST,(F). Further, if U is 2-dimensional, then, by Lemma 2.2 (b)(ii), U?
is a subspace of bounded rank-two matrices of ST,(F).

(d) Let A € (u@ v, u®w, v®w) be nonzero. Then A = a(u®v) + b(u @ w) +

c(v @ w) for some scalars a,b,c € F with (a,b,c) # 0. It is clear that A € ST,(F) by

Lemma 1.3 (c). Let
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Since rank X # 1 and det X = —2abc = 0 since charF = 2. It follows that rank X =

2, and so rank A = 2. Therefore, (u @ v, u @ w, v @ w) is a rank-two subspace of

ST(F). O

Lemma 2.4. LetF be a field of characteristic two and let n be an integer > 2. Let
u €U, and vy, ..., vy € Uy with1 < p < ”T“ and 1 <qg<n+1—p<n, and let

Ay A € Fwith (Mg, ..., \) # 0 such that u @ vy + Mu?, ..., u @ vy, + A\gu? are

matrices in ST,(F) .

(a) Ifu,vy,...,v are linearly independent, then u @ vy + Mu?, ..., u @ vy + A\pu?
are linearly independent, and each nonzero element of

(u@ v+ Mu?, ..., u@ v, + \u?) is of rank two.

(b) Suppose that v @ vy + Mu?, ..., u @ vy + \u? are linearly independent. If
u,v1,...,0 are linearly dependent, then there exists an integer 1 < ig < k

such that

<u®v1+/\1u2,...,u®vk+)\ku2>:u®U+<u2>

for some (k — 1)-dimensional subspace U = (vq, ..., Vig—1,Vig+1, - - -, Ug) Of Uy.

Proof. We denote G := (u @ vy + Mu?,...,u @ vg + A\pu?).
(a) Suppose that pi(u @ vy + Mu?) + -+ + pp(u @ vy + Mu?) = 0 for some
scalars ji1, ..., pux € F. Then u @ (uyvy + -+ + ppvr) + (A + -+ + updp)u® = 0.

Since u, vy, ..., v are linearly independent, it follows that u, ujvq + - - - + prvg are
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linearly independent if (g1,...,ux) # 0. Hence puy = --- = p = 0, and thus
uw Qv+ Mu?, ... u @ v, + Mu? are linearly independent.
Let A € G be a nonzero matrix. Then there exist scalars Sy, ..., € F not all

of which are zero such that

A:ﬂl(u®vl—|—)\1u2) +"'+5k(u®vk+/\ku2)

=u @ (Brvr + -+ Brvr) + (Bids + -+ + Bedp)u’.

Since u,vq,...,v; are linearly independent and (fi,...,0;) # 0, it follows that
Biv1 + -+ + Brug, u are linearly independent, and so rank A = 2, as desired.

(b) If w, vy, ..., v are linearly dependent, then there exist scalars a, oy, ..., €
IF not all of which are zero such that au 4+ aju; + - - - + agu,, = 0. Since charlF = 2,

we have

ar(u @ vy + Mu?) + - 4 (v @ v + Mu?)
=u@ (qu+ aguy + - -+ agug) + (@A + - 4 apdg)u?

= (Ofl/\l 4+ o+ ozk)\k)u2.

o+ -+l =0thena; = =ap, =0asu@uvy + M2, ..., uQ v, + \u?
are linearly independent. Therefore au = 0, and hence o = 0 since u # 0. This
leads to a contradiction because («, aq,...,ar) # 0. Hence ay Ay + -+ + ap A # 0.

It follows that

u? = (i Ay + - - +ak/\k)_1(a1(u®v1 + A1u2) + 4 ag(u @ v, + )\kUQ)) €g,

and hence (u?) C G. Therefore G+ (u?) = G. On the other hand, it is easily verified
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that u @ (vy, ..., vk) + (u?) = G + (u?), and so

G=u (vi,...,v) + (u®). (2.4)

By Lemma 2.2 (a), we see that each nonzero element of u @ (vy,...,vx) is of rank

two. It follows that u@ (vy, ..., vx) N(u?) = {0}. Since G is k-dimensional, it follows

from (2.4) that u @ (vy,...,v;) has dimension k — 1. Thus vy,...,v; are linearly
dependent, and so there exists ig € {1,...,k} such that vy,... v;—1,Vig41,--., Uk
are linearly independent. Hence G = u @ (v, ..., Vi1, Vigs1, - - -, V) + (u?). This

completes our proof. [J

Lemma 2.5. Let F be a field with |F| > 3, and let n be an integer > 2. Let S
be a subspace of bounded rank-two matrices of ST,(F). Let Ay, Ay € S be rank two

matrices such that

Ay = au® + Bv? (2.5)

n+1

5 and nonzero

for some linearly independent vectors u,v € U, with 1 < p <

scalars o, B € F, or

Al =uQv+yu? (2.6)

for some linearly independent vectors w € U, and v € Uy with 1 <p<n+1—-¢<

n+1—p and scalar v € F; and

A2 = alu% + 611)% (27)

”TH and nonzero

for some linearly independent vectors ui,v; € Uy with 1 < s <

scalars oy, By € F, or

AQ =u QU+ vlu% (28)
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for some linearly independent vectors uy € Uy and vi € Uy, with1 < s<n+1—-t<

n+1—s and scalar v, € F. If

uy & (u,v) or v & (u,v), (2.9)

then the following assertions hold.

(a) IfcharF # 2, then there exist linearly independent vectors w € Uy and y, z € U,

such that Ay and As can be represented as

Ai=woy and Ay,=w0z (2.10)

for some integers 1 <L <n+1—h<n.

(b) If char[F = 2, then there exist linearly independent vectors w € Uy and y,z €

U, and scalars aq, a9 € F such that Ay and Ay can be represented as

Al=woy+ow’ and Ay =wdz+ aww (2.11)

for some integers 1 <L <n+1—h<n,and1 << ”TH when (aq, ag) # 0.

Proof.  (a) We divide our proof into the following four cases:

Case A-(i): A is of form (2.5) and Aj is of form (2.7). In view of (2.9), we
consider only u; ¢ (u,v) as the second case can be verified similarly. Since rank (A;+
Ay) < 2, it follows that vy € (u,v,uq). Let v = cyu + dyv + gruy for some scalars

c1,di,g1 € F. Let A € F. Note that

MBTEAY) + Byt Ay = dan® + M+ bud 4 (cqu+ div + grug)* €S
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where a = a8~ and b = oy B, are nonzero scalars in F, and so

MBEAN) 4 BTt Ay = a + A + (N + d2)o® + (b+ g2’ +

cidi(u@v) +c1gi(u@u) + digi(v @ uy)

is of rank at most 2. Therefore, we have

191 cdy  da+ ¢k
det dlgl A+ d% Cldl = 0,
b+gi dig 191
and hence a(b + ¢g2)A? + b(ad? + c3)\ = 0 for every A € F. Since |F| > 3, it follows

that

ad? + ¢ =0, (2.12)

b+ g; =0. (2.13)

Since uq,v; are linearly independent, by (2.12), we get ¢;,d; # 0. By (2.12) and

(2.13),

BTA = au® + v = 27 (cru + dyv) © (ac; M u 4 dy M), (2.14)

Bt Ay = bu? + (cyu+ dyv + giuy)? = 27 (eyu + dyv) @ (cyu + dyv + 2g1uy). (2.15)

From (2.14) and (2.15), we have A; = w; @ y; and Ay = w; @ 21, where w; =
27 cu+dv) €Uy, yr = Blac; u+d ') € Uy, and 21 = B(ciut-div+2g1ur) € Uy,
with h; = max{p, s}, are linearly independent vectors. So, (2.10) is proved.

Case A-(ii): A; is of form (2.5) and A, is of form (2.8). Then v, = 0, and by
Lemma 1.2 (b), we may assume without loss of generality that u; € Us and v; € U,
for some integers s < n+1—-—t <n+1—sandt > ”TH Since p,s < t, we

have v; ¢ (u,v). Since rank (A; + Ag) < 2, it follows that {w,v,us, v} is linearly
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dependent. Then u; € (u,v), and so u; = cau + dov for some scalars co,dy € F. Let

A €F. Then

MBTTAY) + Ay = dau? + M? +up @ vy = dau® + P+ c(u @ 1) + do(v @ v1)

where a = af~' € F. Since p(A(87 A1) + Ag) < 2, it follows that

ca 0 Aa
O=det| dy A 0 |=(adj+c3)\
0 dg Co

for every A € F. Then ad3 + ¢3 = 0. Since u; # 0 and a # 0, we have ¢y, dy # 0. So

B1A = av® +v* = 27y @ (acy tu + dy ). (2.16)

A2 =U QU = 2_1U1 %) 2U1. (217)

From (2.16) and (2.17), we see that A; = wy @ yo and Ay = wy @ 25, where wy =
27 uy € Uy, yo = Blacy u + dy'v) € Uy, and 2z, = 2v; € Uy, with hy = max{s,t},
are linearly independent vectors. So, (2.10) is proved.

Case A-(iii): A, is of form (2.6) and A, is of form (2.7). By (2.9), we obtain
u ¢ (uy,v1) or v & (uy,vq). By a similar argument as in Case A-(ii), (2.10) holds.

Case A-(iv): A; is of form (2.6) and A, is of form (2.8). Then v =+, = 0. By
Lemma 1.2(b), we assume without loss of generality that u € U, and v € U, for
some integers p<n+1—q¢<n+1—pandq> ”T“, and u; € Us and vy € U, for
some integers s <n+1—t<n+1—sandt > "TH By (2.9), we argue in the

following two cases:

Sub-case A-(iv)-1: u; ¢ (u,v). Then vy € (u,v,uy). Let v = csu + dsv + gsuy
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for some scalars c3,ds, g3 € F. Since t > s, p, we get d3 # 0. Let A € F. Then

)\A1+A2:)\u®v—l—u1®vl:Qggu%%—)\u@v—{—c;z,u@ul~|—dgv®u1.

Since rank (AA; + Ay) < 2, we obtain

C3 A 0
O=det| d3 0 X | =2¢g3\% — 2c3dsA
293 d3 c3

for every A € F. Since |F| > 3 and ds # 0, it follows that g3 = ¢35 = 0. Thus,

v1 = d3v, and so

A =vou, (2.18)

A2 =0V0Q dgul. (219)

From (2.18) and (2.19), we have A; = w3 @y3 and Ay = w3 @ 23, where wz = v € Uy,
ys = u € Uy, and z3 = dzu; € Uy,,, with h; = max{p, s}, are linearly independent
vectors, and so (2.10) holds.

Sub-case A-(iv)-2: vy ¢ (u,v). Then uy; € (u,v,v1). Let u; = cqu + dgv + g4vy
for some scalars c4,dy, g4 € F. Since u; € U, we have dy = 0 & g4 = 0. By
a similar argument as in Sub-case A-(iv)-1, it can be shown that dy = 0, and so
ga = 0. Thus, u; = cqu, and so A; = wy © ys and Ay = wy © 24, where wy = u € U,
Yy = v € Up, and z4 = c4vy € Up,, with hy = max{q,t}, are linearly independent
vectors. Consequently, (2.10) is proved.

(b) We divide our proof into the following six cases:

Case B-(i): A; is of form (2.5) and A, is of form (2.7). We consider only

u; ¢ (u,v) as the second case v; ¢ (u,v) can be verified similarly. Then v; =
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csu + dsv + gsuy for some scalars cs, ds, g5 € F. Let A € F. So, we have

MBTYAY) + B Ay = Ma+ A)u? + (A + d2w? + (b4 gH)u? +

csds(u @ v) + c5g95(u @ uy) + dsgs(v @ uy) € S

where a = a8~ and b = o, 8, * are nonzero scalars in F. Therefore

C505 C5d5 Aa + Cg
det d5g5 A+ dg C5d5 =0.
b+gs dsgu C595

Since |F| = 3, we get ad? + ¢2 = 0 and b+ g2 = 0, and so ¢5,d5 # 0. Then

BYA; = (csu+ dsv) @ (d5 ') + d5? (esu + dsv)?,

Byt A = (csu + dsv) @ (gsur) + (csu + dsv)?.

So, we have A; = ws @ ys + (Bd;?)w? and Ay = ws @ 25 + f1w2, where ws =
csu+ dsv € Uy, ys = Bdy'v € Uy, and z5 = Bigsuy € Uy, , with hy = max{p, s}, are
linearly independent vectors. Hence, (2.11) holds.

Case B-(ii): A; is of form (2.5) and A, is of form (2.8) with 7, # 0. By Lemma
1.2 (b) and (2.8), we may assume without loss of generality that u; € Us and vy € U,
for some integers s <n+1—t<n+1—sandt > "T“ Since p,s < t, v; ¢ (u,v)
and {u,v,uy,v;} is linearly dependent, we have u; € (u,v), and so u; = cgu + dgv

for some cg,dg € F. Let A € F. Then

MBHA) + Ay = dav® + AP+ uy @ v+l
= (Aa +mcg)u’ + (A +mdg)v* + yieeds(u @ v)
+cs(u @ vy) + dg(v @ vq)
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where a = a8~ € F. Since p(A(B71A1) + Ay) < 2, it follows that

6 Mceds Aa+7cG
0=det| d¢ A+nd: yiceds = (ad2 + )\
0 d6 Cg

for every A € F. Then ad? + ¢2 = 0. Since u; # 0, it follows that cg,ds # 0, and so

a = c2(dg")?. Therefore,

BrA = u @ (dg'v) +dgu]  and Ay =u; @ vy + Ml

Thus, A; = ws @ ys + (Bds?)w? and Ay = ws @ 2z + V1we, where wg = u; € Us,
ys = Bdg'v € Uy, and 25 = vy € U,,, with hy = max{p,t}, are linearly independent
vectors. So, (2.11) holds.

Case B-(iii) : A is of form (2.6) with v # 0, and A is of form (2.7). By a similar
argument as in the proof of Case B-(ii), (2.11) holds true.

Case B-(iv): A; is of form (2.6) with v # 0, and Ay is of form (2.8) with
v # 0. In view of Lemma 1.2 (b), we may assume without loss of generality that

n+tl

u € U, and v € U, for some integers p <n+1—-qg<n+1-pandq> "=, and

uy € Us and vy € U, for some integers s <n+1—t<n+1—sandt > ”TH
Suppose that u; ¢ (u,v). Then v; € (u,v,u;), and so v; = cru + d7v + gruy
for some c7,d7,g7 € F. Since p,s < q,t, we have d; # 0. Let A € F. Then

M+ Ay = M + w2 + Muov) + cr(u@uy) +di(vou) €S. So

A Ay
O=det| d7 0 X | =\ +~d2)
M dr ¢

for every A € F. Since |F| > 3 and d; # 0, we conclude that v; = 0 and v = 0,

a contradiction. Then v; ¢ (u,v) by (2.9). Thus, u; € (u,v,v1), and so u; =
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csu + dgv + ggvy for some scalars cg, dg, gs € F. Note that gg = 0 for if not, then
v = gg'uy — gg csu — gy "dgv and an argument analogous to the above yields a

contradiction. Hence, ggs = 0, and so dg = 0 since u; € U;. Then

Al =u@v+yu® and Ay =u (cgvi) + %cqu.

Therefore, we have A; = wg @ ys + yw? and Ay = wg @ 23 + (71¢2)w3, where
ws =u € Uy, ys = v € Up, and zg = cgvy € Up,, with hy = max{q,t}, are linearly
independent vectors. Hence, (2.11) is proved.

Case B-(v): A; is of form (2.6) with v = 0, and A, is of form (2.7). In view
of (2.9), we have (uy,v1) # (u,v), and so u ¢ (uy,v1) or v & (uy,v;). We consider
only the case u ¢ (uy,v;) as the second case can be verified similarly. So, v =
couy + dygvi + gou for some cg,dg,g9 € F. Let X € F. Then AA; + Bl_lAQ =

au? + v} + Aegu @ uy + Mdou @ vy € S with a = oy 87! € F. So

)\dg )\Cg 0
O=det| 0 a Ao |=(adi+ )N\
1 0 Ay

for every A € F. Since |F| > 3, we have ad: + ¢ = 0, and so cy,dy # 0 and
a=ci(d ") Then

Ay =v0ou = (cody uy +v1) @ dyu,

Bl Ay = au? + v] = (cody ur +v1) @ vy + (codg 'ug + v1)?.

Thus, A] = wyg @ yg and Ay = wy @ 29 + Srws, where wg = 09d9_1u1 + v € U,
Yo = dou € Uy, and zg = vy € Uy,, with hy = max{p, s}, are linearly independent
vectors. So, (2.11) is proved.

Case B-(vi): A; is of form (2.6) with v = 0, and A is of form (2.8).
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We first consider v, # 0. If uy ¢ (u,v), then rank (A; + Ay) = rank (u @ v+ u; @
vy +mu?) > 2, a contradiction. By (2.9), we have v; ¢ (u,v), and so u; € (u,v,vy).

Let u; = ciou + digv + grov1 for some scalars cq, dig, g10 € F. Let A € F. Then

AL+ Ay = yidgu + ndigv® + ngiovi + (A + mciodio) (v @ v) +

(c10 + Y1€10910) (U @ v1) + (d1g + Y1d10G10) (v @ V7).

Since rank (AA; + Ay) < 2, we have

cio +71c0910 A+ Yiciodio 710%0
0=det| dio+ 11d10910 Mnd?, A yicwdiy | =75\
Y1930 dyo + 71d10g10 €10 + V1€10910

for every A € F. Since |F| > 3 and v; # 0, we get g0 = 0, and so u; = cyou + dyov.
If ¢;9p = 0, then dyg # 0, and so v = dl_olul €U, Thus, A, =vQou=u © dl_olu.
Hence, we have A; = wip @ y10 and Ay = wyg @ 219 + fylwfo, where w9 = u; € Us,
Y10 = digu € Uy, and 219 = vy € Uy,, with hy = max{p,t}, are linearly independent
vectors. Thus, (2.11) holds. If ¢;g # 0, then A} = u @ v = u; @ ¢jgv. So, we have
Ay =wy; @y and Ay = wyg @ 211 + 7171)%1, where wy; = uy € Uy, y11 = cl_olv € Uy,
and z1; = vy € Up,, with hy = max{q,t}, are linearly independent vectors. So,
(2.11) holds true.

We now consider y; = 0. We consider only u; ¢ (u,v) as the second case v, ¢
(u,v) can be verified similarly. Then vy € (u,v,u;). Let vy = ¢jyu+ dyyv + gryuy for
some c11,d11,g11 € F. If ¢17 = 0, then Ay = w3 @ v = w1 @ (dj1v+ gr1u1) = V@ di1uy.
So, A1 = wis @ Y12 and Ay = w2 @ 219, where wip = v € Uy, 112 = u € Uy,
and z12 = dyju; € Uy,, with hy = max{p, s}, are linearly independent vectors.

Therefore, (2.11) is proved. If ¢;; # 0, then A, = v @ v = (c1u + d1v) @ ¢ v and
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Ay =uy @ vy =uy @ (cr1u + div + griug) = (cr1u + diyv) @ uy. Therefore,

Al =wi3 @ i3 and Ay = w3 @ 213

where 113 = cl_llv € Uy, 213 = w1 € Us and wiz = cnu + dnv € Uy, with hy =
max{p, ¢}, are independent vectors. We see that if ¢ < ”T“, then (2.11) holds. If
g > " then hs = q. Since wiz @ y13 € ST,(F), it follows from Lemma 1.3 (c)(ii)

that nonzero scalar a € F and some vector yj3 € Uy with 1 < <n+1—hs < 2

such that w3, yj5 are linearly independent. Then

Ay = w13 © (Quis + yy3) = Wiz @ Yy

Note that if yis, 213 are linearly dependent, then (wis,vy};) = (wis,z13), and so
(ur,v1) = (wis, z213) = (wi3,¥y}3) = (u,v), a contradiction. Further, since hy >
n+1

m3= > L, s, it follows that w3, y}3, 213 are linearly independent. Consequently, (2.11)

holds. The proof is complete. [

We are now in a position to give a classification of spaces of bounded rank-two

persymmetric triangular matrices over a field with at least three elements.

Theorem 2.6. Let F be a field with |F| > 3, and let n be an integer > 2. Then S
is a subspace of bounded rank-two matrices of ST,(F) if and only if S is of one of

the following forms:

(a) S C (u*,v*,u@v) for some linearly independent vectors u,v € U, with 1 <

p<

(b) S=uoU for some nonzero vector u € U, and some subspace U of U, with

1<p<n+1—-—qg<n.
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(c) S=uoU+ (u2> for some nonzero vector w € U, with 1 < p < ”T“ and some

subspace U of Uy, with1 <g<n+1—p<n.
(d) S=wmov +Mu? ..., u@ v, + M\u?) for some linearly independent vectors
u,v1,. .., such that w € U, with 1 < p < ”T“ and vi,...,v € Uy with

1<g<n+1-p<n,and scalars Ay, ..., \p, € F with (A, ..., ) #0.

(e) S=wov,uw,vow) for some linearly independent vectors uw € U,, v €
U, and w € U, such that 1 < p,g<n+1—-r<n andetherp <n+1-—gq, or
p=q> "TH and v = au + z for some nonzero scalar o € F and vector z € U,

withl <ks<n+1—-—p< "TH such that u, z are linearly independent.
Moreover, if S takes any of the forms (c), (d) or (e), then F has characteristic two.

Proof. 'The sufficiency part follows immediately from Lemmas 2.3 and 2.4.

We now consider the necessity part. Let S # {0}. Suppose that S has no
rank two matrices. Let A, B € S be nonzero matrices. Then A and B are of rank
one, and by Lemma 1.2 (a), there exist nonzero vectors z € U, and u € U, with
1<p,qg< "TH, such that A = az? and B = Bu? for some nonzero scalars a, 3 € .
If (z) # (u), then A+ B = az? + pu? € S is of rank two, a contradiction. Hence,
(z) = (u), and so S = (u?) for some vector u € U, such that 1 < p < 2.

Suppose that S has a rank two matrix, say A;. In view of Lemma 1.2 (a), we see

that either

Ay = au® + Bv? (2.20)

for some linearly independent vectors u,v € U, with 1 < p < "T“, and nonzero
scalars a, 8 € F; or

A =uov+yu’ (2.21)

for some linearly independent vectors u € U, and v € U, with 1 <p<n+1—-¢<
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n + 1 — p, and some scalar v € F. We distinguish our proof into the following two
main cases:

Case I: S C (u,v)’. In view of Lemma 2.2 (b)(i), we notice that (u,v)? =
(u?,v?,u @ v) and it is a 3-dimensional subspace of M,,(F) since {u,v} is linearly

independent. If u,v € U, with 1 < p < ”TH, then we have

S C (W v} uov).

However, if u € U, with 1 < p < ”T“ and v € U, with "TH < q < n, then
S C (u?,u @ v). Since S contains a rank two matrix, in this case, we conclude that

S=u (v), or

S=uo () +{w) o S=uov+y?) (2.22)

for some nonzero scalar v € F. Note that if S is of a form in (2.22), then F has
characteristic two by Lemma 1.2 (a). We are done.

Case IT: S ¢ (u,v)”. Let Ay € S be a matrix such that Ay ¢ (u,v)?. By Lemma
1.2 (a), we have either Ay = aju? + Bv? for some linearly independent vectors
uy,v1 € Uy with 1 < s < ”TH, and scalars ay, 81 € F; or Ay = uy @ vy +vy1u? for some
linearly independent vectors uy € Us and v1 € Uy, with 1 < s <n+1—t<n+1-—s,
and scalar 7, € F. Since Ay ¢ (u,v)?, it follows that u; ¢ (u,v) or vy ¢ (u,v).
We first show that rank A, = 2. Suppose to the contrary that rank A, = 1. Then
Ay = aqu? for some nonzero scalar «; € F with uy ¢ (u,v). If A; is of form (2.20),

then A; + Ay = au? + Bv? + ayu? is of rank 3, a contradiction. Therefore, A; is of

form (2.21), and so A; + Ay = u @ v + yu? + ayu? is of rank 3 because
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aq

det =01 7£ 07

o = O
-2 o

0
0
a contradiction. So, rank Ay = 2. We now divide our proof into the following two
cases:

Case II-1: F has characteristic two. By Lemma 2.5(b), A; and A, can be

represented as
Al=woy+quw? and Ay=w0 z+ quw’ (2.23)

for some scalars ¢1,¢ € F and linearly independent vectors w € U, and y, 2z € U,
with 1l </ <n+1—h<n,and 1 </ < "T“When (¢1,52) # 0. Let A € S
be a nonzero element. If A is of rank one, then, in view of Lemma 1.2(a), A is
of the form (1.7), i.e., A = Az? for some nonzero scalar A\ € F and nonzero vector
x € Up, with 1 < 01 < ”T“ Since rank (A + A;) < 2 for ¢ = 1,2, it follows from

(2.23) that x € (w,y) and = € (w,z). Since w,y, z are linearly independent, we

have z € (w,y) N (w, z) = (w). Then £ = ¢; < 2 and

A= w?  for some scalar Ay € F. (2.24)

We now consider A is of rank two. By Lemma 1.2 (a), we have either

A = a2’ + Bo’ (2.25)
for some linearly independent vectors zy,zs € Uy, with 1 < hy < ”TH, and scalars
g, B € TF; or

A =121 Qxy + Yo1] (2.26)
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for some linearly independent vectors x; € Uy, and x9 € Uy, with 1 <l <n+1—
hy <n+1—/{y, and scalar v € F. We divide our argument into the following two

cases:

Case II-1-A: z; ¢ (w,y, z) for some 1 < i < 2. For each ¢ € F, we denote

z=y+Cz and  Bri=w0 oz + (1 + ()u.

Since B = A1 + (As € S and (z1,22) # (w, 2) for every ¢ € F, it follows from
Lemma 2.5 (b) that A and B, can be rewritten in the form as in (2.11), i.e., there
exist linearly independent vectors we € Uy and y¢,ve € Uy and scalars 0q, 7, € F
such that

A=w; @y +0w; and B =we @ v+ Dew?. (2.27)

for some integers 1 < <n+1—h <n,and 1 <V < ”T“ when (0¢,9;) # 0. Since
w @ 2 + (q + (@)w® = Be = we @ ve + Jewg, it follows from Lemma 1.3 (a) that

(we,ve) = (w, z¢). Therefore, for each ¢ € F, there exist scalars a¢, b, € F such that

wc = agw —|— bCZC’ (228)

Let ¢; and (s be a pair of distinct scalars in F. By an argument analogous to (2.27),
we obtain we, @ ye, + 0w, = A = we, @ ye, + O, wg,, and so (we,, Ye,) = (Wey, Yey)

by Lemma 1.3 (a). Therefore

We, = cwe, + dye, (2.29)

for some ¢,d € F. On the other hand, in view of (2.25) and (2.26), and by Lemma

1.3 (a), we get (we,,Ye,) = (w1,22). By (2.28), we note that we, € (w,y,z). It
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follows that y¢, ¢ (w,y, z) since x; ¢ (w,y, z) for some 1 < ¢ < 2. Together with

(2.28) and (2.29), we have d = 0, and so

we, = cwe, with ¢ # 0. (2.30)

Since w, y, z are linearly independent, we have (z¢,) # (z,) for every pair of distinct
elements (1, ¢y € F. Thus, w, 2, , 2, are linearly independent. By (2.28) and (2.30),

we obtain

agw+be zg, = clagw+be,z,,) = (ag —cag)w+be 2 +(—cbg,) 2, = 0. (2.31)

Hence, b;, = b;, = 0. Since the result holds true for any two distinct scalars
(1, G € F, it follows that b = 0 for every ¢ € F. By (2.28), we have (w;) = (w) for

every ¢ € F. It follows from (2.27) that

A=woys+ asw? (2.32)

for some scalar a4 € F and some nonzero vector y4 € Uy, such that either 1 < hs <
n+1—4/0<n, andlgﬁg’%lwhen(m;&o.

Case II-1-B: z; € (w,y,z) for i = 1,2. Let 1 = aw + byy + ¢1z and xy =
asw + by + coz for some scalars aq, as, by, by, c1,c0 € F. We first consider A is of

form (2.25). Let A € F. Then

A+ AAL = (qa] + Baai + Xs1)w? + (agb? + Bab3)y? + (il + Bacs) 22

+ w @ [(aga1by + Paasbs + Ny + (asaicy + Paasca)z] + (agbicy + Pabaca)y © 2
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by (2.23) and (2.25). Since rank (A 4+ AA;) < 2, we have

Qaa1C1 + Baascs  aoaiby + PBaashy + N anai + [aa3 + A
det a26101 + 52[)262 agb% + ﬁgb% agalbl + 62&2[)2 + A = 0.

2 2
oy + Bach asbici + Babacs asaic1 + Barascy

Then (qoc? + B2c2)A? + ranfBa(bics + bacy)*A = 0 for every A € F. Since |F| > 3, we

get

a6} + focs = 0 = qranfa(bica + bacy)?. (2.33)

Likewise, since rank (A + AAy) < 2, we get

QoaqCy + ﬁQGQCQ + A a2a1b1 -+ ﬁg&ng Oéga% —+ Bzag + )\§2
det asbici + Babacy aobi + B2b3 aza1by + Baagby =0,

0420% + 5205 agbicy + Babacy  asaicy + Paasce + A

and 80 (aob? + Bob2) A2 + GoraBa(bicy + byci )’ = 0 for every X € F. Therefore, we
obtain

b} + Bab = 0 = Ganf(bicy + bycy)?. (2.34)

If (s1,52) # 0, then, by (2.33) and (2.34), we have asfa(bica + bacy)? = 0. Notice

that

(aobiey + Babaca)? = (b + Bob3)(aci + Bacy) + afBa(brca + bacy)® = 0.

Thus, asbicy + Pobacy = 0. Together with (2.33) and (2.34), we have

A =w @ ((aa1by + Paasbs)y + (aaicy + Paascs)z) + (04261% + Bzai)w2- (2.35)

Suppose that (¢1,¢2) = 0, and that asbic; + Babaca # 0. Then, by (2.33) and (2.34),
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we have

A= (04201% + 52613)1”2 + (qabicy + Babaca) y © 2

+ (apa1by + Prazhy) w @ y + (azaicy + Paascy) w @ 2.

Since rank A < 2, it follows that asa? + B.a3 = 0. Hence, we have

A = (agbicq + Babace) y@ 2+ (a1 by + Baasbs) w @y + (cpaicy + frascy) w@ 2. (2.36)

We now consider A is of form (2.26). Let A € F. Then

A+ A = (720} + Xa)w? + 12bTy? + 122 + (1ebicr + bica + bacy)y @ 2

+ w @ [(2a1b1 + arbs + agby + Ny + (V2a101 + arco + azcy) 2]

by (2.23) and (2.26). Since rank (A + AA;) < 2, it follows that

Yoa1€1 + a1C2 + a2C 72a161 —+ albg + CL2b1 + A 7201% -+ )\§1
det| ~obici + bica + bacy Y2b3 Yaa1by + arby + azby + A | =0.
Y2Ci Yaobicr + bica + bacy Yaa1c1 + a1co + ascy

Then Y222 + 61 (byca + bacy )X = 0 for every A € F. Since |F| > 3, we obtain

72ct = 0= qi(brcy + bacr)*. (2.37)

Similarly, since rank (A + A\As) < 2, we get

YaaiC1 + a1y + ascy + A yaa1by 4 a1be + asby Y203 + Ay
det 72b101 + b102 + bQCl ’Yzb% %albl + ale + a261 == 0,
")/QC% ")/lecl + b102 + bgCl Y2a1C1 + a1Cy + asCy + A
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and 80 Y902 A\? + Go(b1cy + bycr )2\ = 0 for every A € F. Thus

Y2bT = 0 = @ (bica + bacy). (2.38)

If (61,52) # 0, then, in view of (2.37) and (2.38), we have (bjcy + bacy)? = 0, and so
bicy + bocy = 0. Furthermore, (72b1c1)? = (7207)(72¢}) = 0 implies that yebic; = 0.

Hence, we obtain

A =w 0 ((y2a1b1 + a1bs + asby)y + (120101 + arc + asey)z) + (72613)102. (2.39)

Suppose now that (¢1,s2) = 0 and that bycy + becy # 0. Then (b, ¢1) # 0. By (2.37)

and (2.38), we conclude that v = 0, and so

A= (bicg + bycy) y @ z + (a1be + ashy) w @ y + (arc2 + azey) w @ z. (2.40)

Since y @ z € ST,(F), it follows that if h > ™t then, by Lemma 1.3 (c) (ii), we
have z = ay + 3 for some nonzero scalar a € F and some vector 3y’ € Uy with
1<V <n+1-h< ”TH such that v, are linearly independent. Consequently,
since Ay, Ay € S and w € Uy, y, z € Uy, are linearly independent vectors, it follows
from (2.24), (2.32), (2.35), (2.36), (2.39) and (2.40) that if S contains no rank one

matrices, then we have either

S=woWV

for some subspace V) of U, with 1 < ¢ < n+1—k < n, and y,z € V; and

(¢1,62) = 0, or by Lemma 2.4 (a), we get

S:<w®y1+)\1w2, ...,w@yk+/\kw2>
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for some scalars Ay, ..., A\p € F with (A, ..., \x) # 0, and some vectors yi,...,yx €

U, with 1 < ks <n+1—-Cand 1 </ < ”TH such that w,y,...,y, are linearly

independent, or by Lemma 1.3 (d), we have

S=(woy, woz yodz);

or if S contains rank one matrices, then, by Lemma 2.4 (b), we get

S=woV+ (w)

for some subspace V5 of Uy, with 1 < ks <n+1—-/¢<nand 1 </l < ”TH, and
y,z € V5. We are done.
Case 1I-2: F has characteristic not two. In view of Lemma 2.5 (a), we see that

Ay and A, can be rewritten as

Ai=woy and Ay=woz (2.41)

for some linearly independent vectors w € U, and y,z € U, with 1 <p<n+1—¢ <

n. Let A be an arbitrary nonzero element of §. If A is of rank one, then, by an

n+l

argument analogous to (2.24), we can show that p < "= and

A= \qw?  for some scalar A4 € F. (2.42)

We now consider A is of rank two. By Lemma 1.2 (a), we have

A = apa? + Box (2.43)
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for some linearly independent vectors zy, 22 € U, with 1 < ¢; < ”T“, and scalars
Qg, /82 € Fv or

A= T O Ty + ’723[7% (244)

for some linearly independent vectors z; € U,, and xs € Uy, with 1 < p <
n+1—q < n+1-—p, and scalar 7» € F. We divide our argument into the
following two cases:

Case II-2-A: z; ¢ (w,y, z) for some 1 < i < 2. For each ¢ € F, we denote

2=y+Cz and Br=w z.

By the hypothesis of Case II-1-A, we see that (x1,22) # (w, 2) for every ¢ € F.
Since B = Ay + (A, € S, it follows from Lemma 2.5 (a) that there exist linearly
independent vectors w¢ € Uy, and y¢,ve € Uy, with 1 < ps < n+ 1 — g3 < n such

that A and B, can be rewritten as

A=wc 0y, and B =weOv. (2.45)

By an argument analogous to Case II-1-A, we can show that (w¢) = (w) for every

¢ € F. In view of (2.45), we have

A=woya (2.46)

for some nonzero vector y4 € Uy, with 1 <p<n+1—ps < n.
Case II-2-B: z; € (w,y,z) for i = 1,2. Let 1 = ayw + bjy + ¢1z and zy =

asw + boy + coz for some scalars aq,as, by, by, c1,co € F. We first consider A is of
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form (2.43). Let A € F. Then

A+ AAL = gz + o2 + Aw Oy
= (20} + Baaz)w?® + (aby + Bob3)y? + (et + Pac)2?

+w o [(Oégalbl + ﬁg(lgbg + /\)y + (a2a101 + /BQCLQCQ)Z] + (a2b101 + /BQbQCQ)y O z.

Since rank (A + AA;) < 2, we have

a1y + Paagca  aarby + Baashy + A aoa? + Boa?
det| agbicy + Babaco bt + Fab3 aza1by + Baagby + A | =0,
a2c; + Bacs agbicy + Babacy agaicy + Paagcs

and so

(0‘26%"‘5263)/\2"‘2[(0‘20%"‘5203) (aaa1b1+F2a2bs ) —(aby e +Pabacsa) (2ar ci+Paasca)| A = 0

for every A € F. Since |F| > 3, it follows that

ac? + Byca = 0, (2.47)

(qgbicy + Babaca)(anaicy + Pragce) = 0. (2.48)

Similarly, since rank (A + AA2) < 2, we get

Qpa1Cy + PaasCe + A anaiby + [arazby wai + [aa3
det a2b161 + 525202 Oézb% + ﬁgbg a2a1b1 + 52&2[)2 =0,
QQC% -+ ﬁQC% a2b101 + /BQbQCQ Qo1Cq + ﬁQCLQCQ + )\

and so
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(b + Bob3) A + 2[(2bi+ B2b3) (aarcy + Boascy)

—(abycy + Pabacy)(aarby + 520252)})‘ =0

for every A € F. Then
bl + Bab = 0, (2.49)

(a2b161 + 62()202)(()[2@1[?1 + 62@262) =0. (250)

We now claim that asbicq + Babace = 0. Suppose that asbicy + Babace # 0. By (2.48)
and (250), QoaCy + 62@202 =0= Oézalbl + Bzagbg. Together with (241), (243),

(2.47) and (2.49), we have

A+ M+ Ay = (042a§ + 52‘13)@”2 + (abicy + Pabaca)y @ 2 +w @ (Ay + 2)

is of rank at most two. Then 2(aubyc; + Babaca) A — (apa?+ Boa?) (axbicy + Babaca)? = 0
for all A € F. Since |F| > 3, we conclude that asbic; + Babscy = 0, a contradiction.

Therefore, we have asbic; + Babaca = 0, as claimed. So, we have

A=wo ((04261151 + 52612172)3/ + (042(1101 + 52G2C2>Z + 271(“251% + ﬁzag)w)- (2~51)

Next, we consider A is of form (2.44). Let A € F. By (2.41) and (2.44), we have

A + )\Al = 2&10,211)2 + 2blb2’y2 + 2C10222

+w @ [(a1by + azby + Ny + (ar1c2 + ager)z] + (biea + bacy)y @ 2.

46



Since rank (A + AA;) < 2, it follows that

aicy + azcy  arby + azby + A 2a1a9
det blcg + b261 2blbg CleQ + CLle + A = 0.
20102 b102 + bQCl aicy + asCy

SO, 20102)\2 -+ 2[(20162)(CL152 -+ &le) — (blCQ + bgcl)(alcg + CL261>]>\ =0forall A eF.

Since |F| > 3, we have

201C2 =0= (b102 + b2C1)((l1C2 + CLQCl). (252)

Similarly, since rank (A + AA3) < 2, we have

a1Co + ascy + A arbs 4 ashy 2a1 a9
det b1€2 + bgCl 2b1b2 albg —+ CLle = O,
2c1c9 bico + baci  arca + azer + A

and so 2b1b2)\2 +2[(2b1b2)(a102 +6L201) — (b102 +b201)((l1b2 —|—a2b1)])\ =0forall A eF.

Then

lebg =0= (b102 + b261)<a1b2 + agbl). (253)

Suppose that byce + bacy # 0. By (2.52) and (2.53), we have ajcy + age; = 0 =

a1by 4+ asby. Therefore, we obtain

A+ NAL + Ay = 2100w + (biey +bac))y @ 2 +w @ (My + 2)

is of rank at most 2 for all A\ € F. So, (bicy + baci)A — ajas(bica + byey)? = 0 for

all A € F. Since |F| > 3, we obtain bjcy 4+ byc; = 0, a contradiction. So, we have
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bica + bac; = 0, and hence
A =w 0 (ajasw + (a1by + asby)y + (a1c2 + ascy)z). (2.54)

Since Ay, Ay € S and w € Uy, y,z € U, are linearly independent vectors, together

with (2.42), (2.46), (2.51) and (2.54), we conclude that
S=woU

for some nonzero vector w € U, and some subspace U of U, with1 <p <n+1—r <

n. The proof is complete. [

As an immediate consequence of Lemmas 2.3 (d) and 2.4 (a) and Theorem 2.6,
we give a complete description of rank-two subspaces of ST,(F) over a field F with

at least three elements.

Theorem 2.7. Let F be a field with |F| > 3, and let n be an integer > 2. Then S
is a rank-two subspace of ST,(F) if and only if S is of one of the following forms:

(a) S = (u Qv+ au®+ azv?, Biu @ v + Bou + B3v?) for some linearly inde-

n+1

pendent vectors u,v € U, with 1 < p < "=, and some fized scalars

aq, 02, O3, 517627&3 S F such that

det ac; + bB1  aas + bfs 40
aaz +bBs  aay + 0By

for every scalar a,b € F with (a,b) # 0.

(b) S=uoU for some nonzero vector u € U, and some subspace U of U, with
1<p<n+1—gq<nwhencharF =2, and UN (u) = {0} when charF # 2.
(c) S=wmouv +Mu? ..., uQuv+ \u?) for some linearly independent vectors
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(d)

u,vy,. .., such that w € U, with 1 < p < ”T“ and vy, ..., v € Uy with

1<qg<n+1-p, and some scalars Ay,..., \p, € F with (\,...,\) #0.

S=(uov, uw, vow) for some linearly independent vectors u € U,, v €
U, and w € U, such that 1 < p,g <n+1—r < n and eitherp <n+1—gq, or
p=q> ”T“ and v = au+ z for some nonzero scalar o € F and vector z € U,

withl <k<n+1—-p< "TH such that u, z are linearly independent.

Moreover, if S takes the form (c) or (d), then F has characteristic two.

Proof. The sufficiency part of the theorem is clear. We now prove the necessity.

Since § is a rank-two subspace of ST,(FF), it follows from Lemmas 2.3 (d) and 2.4 (a)

and Theorem 2.6 that S takes one of the following forms:

(A)

(B)

(C)

(D)

S C (u*,v*,u @ v) for some linearly independent vectors u,v € U, with 1 <

P

S = u @ U for some nonzero vector u € U, and some subspace U of U, with

1<p<n+1—-g<nwhen charF =2, and UN (u) = {0} when charF # 2.

S=uwov +Mu? ..., u® v, + \u?) for some linearly independent vectors
u,vi,. ..,V such that v € U, with 1 < p < ”TH and vy,...,v; € Uy with

1 <g<n+1-p,and some scalars i, ..., A\ € F with (A,..., A\x) #0.

S = (Wov,u@w, v@w) for some linearly independent vectors u € U,

v €Uy and w € U, such that 1 < p,g <n+1—7r < nandeitherp <n+1-—g,

orp=gq > ”T“ and v = au + z for some nonzero scalar « € F and vector

zeUy withl <k<n+1—-p< ”TH such that u, z are linearly independent.

Moreover, if S is of Form (C) or Form (D), then F has characteristic two. It is clear

that Forms (B), (C) and (D) are rank-two subspaces of ST,(F). We now consider
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S of Form (A). If dim S = 3, then S = (u?,v?, u @ v), and so S consists of rank one

matrices, a contradiction. Thus dim S < 2 and we have
S = {au Qv+ a4+ azv®, fiu @ v + Bou’ + B3v?)

for some fixed scalars aq, aa, a3, B, B2, B3 € F. If all scalars «; and ; are zero, then
S = {0} and it is of Form (B). Suppose that S # {0}. Let A € S be nonzero. Then
there exist scalars a,b € F with (a,b) # 0 such that A = a(aju @ v + asu? + azv?) +
b(Bru@ v+ Bou®+ B3v?), and so A = (aa; +b61)u@v+ (acg + bB2)u* + (acs + bB3)v?

is of rank two. Then we have

det| @ + 0B acs + bfsy £0.
aasg + bPB3 aaq + by

This completes our proof. [

We give a few examples of rank-two subspaces of ST,(F) to illustrate the form

of type (a) in Theorem 2.7.

Example 2.8. Let F be a field with |F| > 3, and let n be an integer > 3. Let

{e1,..., ey} be the standard basis of M,, ;(F).

(a) Let S; = (e? + e3). Clearly, each nonzero element in S; is of the form a(Ey,, +
Es 1) with a € F nonzero which is certainly of rank two. Therefore, S; is a
1-dimensional rank-two subspace of ST,(F).

(b) Suppose that F = R.

(i) Let S; = (€1 @ ea+e€f, €1 @ ey + 2€3). Then Sy is a 2-dimensional sub-
space of ST,(R). Let A € S; be nonzero. Then there are scalars a,b € R

not all zero such that
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A =ale; @ ey +e2) 4 bley @ ey + 2€3)

= (CL —I— b)El,n—l —|— CLEln + QbEgm_l —I— ((l + b)Egn
Note that (a,b) # 0 implies

a-+b a
det = (a+b)? = 2ab = a® + b> # 0.
e( % a+b> (a+b)"—2ab=a 7

Thus, A is of rank two. Then S, is a rank-two subspace of ST,(R).
(ii) Let S3 = (€] @ eq, €1 @ ey + €2 —€2). Let A be a nonzero element in Ss.
Then A = (a + b)E1 -1 + bEy, — bEy,—1 + (a + b) Ey, for some scalars

a,b € R with (a,b) # 0. Since

a+b b
det = b)2 +b% #£0,
e( L a+b> (a+0b)°+ 0 #

it follows that S is a 2-dimensional rank-two subspace of ST,(R).

(c) Let F={0,1,a,3} be a finite field with four elements with the addition and

multiplication tables

+10|1|a|p Xx|0|1|a|p
001 |a|p 0[0]0]0|O0
1 (10|08« 1101 |a|p
alalpf]0]1 al0|lal|lp]1l
Bl1Blall]0 L1081«

Clearly F has characteristic two. Let Sy = (e; @ ey + €2, e1 @ ey + ae3) C
ST,.(F). We wish to show that every nonzero element in Sy is of rank two, that
is, \1(e1 @ea+e2) + Xo(e1 @ eg +e3) is of rank two for any nonzero Aj, Ay € F.
Let A = ( ALt Ao M ) Then we have det A = A3 + A2 + A\ A\sa. The

/\204 )\1 + )\2

following tables
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A | Ao | det A A | Ag [ det A A | Ag [ det A
1] 1 « a |1 1 g1 Q
1| « 1 a | «a 1 B | « 16
1| 5| « a | p| B B1B| B

show that det A # 0 for any nonzero A\, Ay € F. Hence S, is a rank-two

subspace of ST, (F).
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Chapter 3

BOUNDED RANK-TWO LINEAR PRESERVERS

As mentioned in the introduction, from the structural result in Theorem 2.6, we shall
proceed to give a characterization of bounded rank-two linear preservers between
persymmetric triangular matrix spaces.

Let F be a field with at least three elements and m > n > 2 be integers. Let
T : ST, (F) — ST,.(F) be a bounded rank-two linear preserver. Suppose that S
is a subspace of bounded rank-two matrices of ST,(F). Then from our definition of
bounded rank-two linear preservers, it is immediate that 7'(.S) is again a subspace
of bounded rank-two matrices of S7,,(F). Consequently, Theorem 2.6 gives us the
structure of 7'(.9).

The characterization of rank linear preservers can be a great help in the study
of other types of linear preserver problems. For example, in [13], Watkins used a
result of Marcus and Moyls [9] on rank-one linear preservers to characterize those
nonsingular linear transformations on the space of n x n matrices (n > 4) over
an algebraically closed field of characteristic 0 that preserve commuting pairs of
matrices.

Here, we adapt the technique of constructing rank linear preservers from [1] to
study bounded rank-two linear preservers between persymmetric triangular matrix
spaces. The lemmas below play an important role in proving all the theorems in

this chapter.

Lemma 3.1. Let F be a field with |F| > 3, and let n be an integer > 2. Let w € U,

and u,v € U, be vectors and let a,b € F be scalars such that w @ u+ aw?, w@ v+ bw?
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are linearly independent. If

w®u+aw2,w®v+bw2E:B@X+<$2>.

for some vector v € M, 1(F) and subspace X of M, 1(F), then x,w are linearly

dependent.

Proof. Suppose that (u) = (w). Then a # 0. Since w @ u + aw? € x @ X + (x?),
then by Lemma 1.3(a) we have z € (w,u) = (w). The case (v) = (w) can be verified
similarly. Suppose that u,w are linearly independent vectors. Then consider the
case v € (u,w). Let v = cu + dw for some scalars ¢,d € F with ¢ # 0. Then
wov+bw? = cwu+(2d+b)w?. Hence w? € x@ X +(x?) implying w € (x). Consider
the case w, u, v are linearly independent. Since w@u+aw?, wOv+bw? € x@ X +(z?),

then by Lemma 1.3(a) we have z € (w,u) N (w,u) = (w). We are done. [

Lemma 3.2. Let F be a field with |F| > 3, and let n be an integer > 2. Let
u, v, 2,y € My1(F) and let o, 8 € F such that u@v+au® = x @y + Ba?. Ifu,z are
linearly independent, then u @ v + au? is of rank two, and the following assertions

hold.

(a) IfF has characteristic two, then a = 8 =0 and x = au + bv and y = b= (1 —

ac)u + cv for some a,b,c € F with b # 0.
(b) IfF has characteristic not two, then either

(i) x=dvandy=d'u—2"18dv for some nonzero scalar d € F, or
(if) = gu+ (Bg + (29) ') v and y = ((29) ' (a — Bg*))u + (=27'8(Bg +

(29)"'a) Y for some nonzero scalar g € F.

Further if « = =0, then (i) holds.
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Proof. By Lemma 1.3(a), we have (u,v) = (z,y). If u® v+ au? is of rank one then
(u) = (v) and so x € (u,v) = (u), a contradiction. Hence u@ v+ au? is of rank two.
This implies that u,v are linearly independent. Let x = au + bv and y = cu + dv

for some scalars a,b,c,d € F with b # 0. Then

u@ v+ au® = (2ac + Ba®)u* + (ad + be + 2Bab)u @ v + (2bd + Bb*)v?.

Hence

2ac + fa’ = a, (3.1)
ad + bc + 2pab = 1, (3.2)
2bd + pb* = 0. (3.3)

We argue in the following two cases.

Case I: F has characteristic two. From (3.3), 8b* = 0. This implies that 8 = 0
since b # 0. So by (3.1), @ = 0. Then (3.2) implies that ad+bc = 1 or ¢ = b~ (1—ad).

Case II: F has characteristic not two. By (3.3), d = —27'8b. If a = 0, then it
follows from (3.1), @ = 0. Then (3.2) implies that bc = 1 or ¢ = b™! yielding = = bv
and y = b~'u — 27! Bbv. Suppose that a # 0. Then by (3.1), ¢ = (2a) (o — Ba?).
It follows from (3.2) that b = (8a + 3a 'a)™. Note that if « = 3 = 0, then from
(3.2) and (3.3), we see that d = 0 and bc = 1 implying ¢ # 0. Then by (3.1) we have

a = 0. The proof is complete. [

Lemma 3.3. Let F be a field with |F| > 3, and let n be an integer > 2. Let
u, v, w, z € M, 1(F) be vectors and let o, 8 € F be scalars such that u@ v+ au®, w@
2 + Bw? are linearly independent. If w,u,v are linearly independent vectors such
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that u @ v + au?® + Mw @ z + Bw?) has rank bounded by two for every X € F, then

the following assertions hold.

(a) IfF has characteristic two, then either f = 0 and z € (u,w) \ (w), ora = =0

and z € (u,v,w) \ (u,w).

(b) IfF has characteristic not two, then either z = au — 27 fw for some nonzero

scalar a € F or z = b(2 'au +v) — 271 Bw for some nonzero scalar b € F.

Proof. Tt is clear that z € (u,v,w), otherwise u @ v + au® + w @ z + fw? is of rank

four. Let z = au + bv + cw for some a,b,c € F. We check that

U v+ au® + ANw oz + Bw?) = uo (Aaw +v) + au® + \bw @ v + A(B + 2c)w?

is of rank bounded above by two for any A € I, yielding

1 Aa «
det | Ao MNB+2¢) da | = (ab® —2ab) + \(B + 2c) = 0.
0 Ab 1
Since |F| > 3, we have (ab — 2a)b =+ 2¢ = 0.
Case I: IF has characteristic two. Then 5 = 0. If b = 0, then we have z € (u, w)
and we are done. Suppose that b £ 0. Then a = 0 and the result follows.
Case II: F has characteristic not two. Then ¢ = —27'8. If b = 0, then z =
au— 27 Bw. If b # 0, then a = 27 ab and so z = b(27 'au + v) — 271 fw and we are

done. O

Let {fi,..., fm} denote the standard ordered basis of M,, ;(IF). Recall that

Z/{Z- ::{(ul,...,ui,o,...,O)T| ul,...,uiGF}.
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Lemma 3.4. Let F be a field with |F| > 3 and let n,m be integers such that m >
n = 2. Let P € M, ,(F) be a matriz of rank n and let T : ST, (F) — ST,(F) be
the linear map defined by

T(A) = PAP*

for all A € ST, (F). Then there exists an invertible matriz Q € M,,(F) such that

T(4) = Q ( O 2 ) Q" (3.4)

for all A € ST,(F), where Qf; = Pe; € Uy, and Q f; = Pej € Uy, with 1 < p; < mT“
for every 1 < i < ™ and ¢; = maz{m +1 —pp|1 <k < n+1—j} for every

"TH <j<n+1—i. Inparticular, Q € T,(F) when m = n.

Proof.  We note that PAP™ is upper triangular, it follows that f ., (PAP™)f, =
0 for all s > t. By letting A = €2 for some 1 < k < ”;1, we see that

[ Pex(fi Pex)t = 0. Since P is of rank n, then for each k there exists a
corresponding ¢, such that f;"Pej, # 0 and f,,,_  Pey = 0 for all s > ¢;. Further,

1<m+1—t, < ; otherwise if 5, < m“ or tpy <m+ 1 —t;, then we have
(fif Pey)® = firPe;PTf,, = 0.

Hence ft:Pek = 0 which contradicts our earlier assumption. Therefore Pej, = 2, €
Uy, for some 1 < pp < 2, for all 1 < k < 2E. Next, consider z; where 28 < j <
n. Note that for a fixed j, we have z; © z; € ST, (F) forall 1 <i<j<n+1—i.
Hence this implies that z; € U, for some integer q; where ¢; < m + 1 — p; for all

1<i<j<n+1-—i
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Let @ € M,,(F) be the transition matrix from the ordered basis {fi,..., fi}
to the ordered basis {z1,...,2z,} such that Qfy = z for all 1 < k < n, where

{z1,...,2m} is an ordered basis obtained by extending {z1,...,2,}. Then we have

T(A) = AQ ( O"”g‘" - A ) O+,

In particular, when m = n, we wish to show that @ € 7,(F). Notice that
Qe; = uy,...,Qe, = u, are linearly independent vectors, then we have u; € U, \U,,—1
for some 1 < i < n and it follows that uy € U; for u?, uy @ uy, ..., u; @u, € ST,(F).
Further, being linearly independent, we have u; ¢ U; for all 2 < i < n. Suppose that
u; € U\U;j_; for all 1 < j < k. Then we claim that w1 € Uy \Uy,. Since uy, ..., uy,
are linearly independent, so we have ug; & Uy, in other words, ugr; € U\Uy for
some k + 1 <1 < n. Further, wyu),,, ..., un—gui,; € To(F) would imply that there
exists some i,y where 1 < dxy; < n — k such that w;, € U, and it follows
that up41 € Upii—(n—k) = U4, the claim then holds. Hence we conclude that
u; € U;\U;—1 where we define Uy = {0}, for all 1 < i < n and hence Q € T,(F). O

We now prove our main theorem.

Theorem 3.5. Let F be a field with |F| > 3, and let n,m be integers such that
m>=n=5. IfT:ST,(F) — ST,(F) is a bounded rank-two linear preserver, then

T is one of the following forms:

(a) ImT =uoU for some nonzero vector u € U, and some subspace U of U, with
I<psm+1-g<m.

(b) T has characteristic two and ImT = u @ U + (u?) for some nonzero vector

u€U, withl <p< mT“ and some subspace U of U, with1 < g < m+1—p.

(c) T has characteristic two and ImT = (u @ vy + \u?, ..., u @ vy, + A\u?) for
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some linearly independent vectors u € U, and vy, ..., v, € Uy, with1 < p < mT“

and 1 < g < m+1—p, and some scalars i, ..., \, € F with (Ay,...,\x) # 0.

(d) there exist an invertible matriz P € M., (F) and some scalars A\, \' € F with

A # 0 such that

Onnn | A
0 | Omonn

T(A) = \P ( ) Pt + XNay (Pey)?

for all A = (a;;) € ST,(F), where Pe; € Uy, and Pe; € Uy, with 1 < p; < ™

2

n+1

for every 1 <i < ™=, and g; = mar{m+1—p; |1 <k <n+1—j} for every

”T“ <j<n+1—i, and N # 0 only if F has characteristic two. In particular,

P e T,(F) when m = n.

Proof. We distinguish our proof into two parts:
Case I: F has characteristic two. Since T' is a bounded rank-two linear preserver,
then we have T'(e?),T(e; @ e3),...,T(e1 @ e,) are linearly independent. Further,

since n > 5, then by Theorem 2.6 we see that
T(€2) = u1 D Upyy + i, Tley @e) = uy @ u; + gl (3.5)

for some w; € Uy, upy1,u; € U, satisfying 1 < p < m+1—¢ < m and some

Qpa1,; € F such that 1 < p < mTH whenever (s, ..., a,11) # 0, for all 2 <i < n.

Using a similar argument, we have T'(ex @ e;),T(e3), T(ex @ e3),...,T(ex @ e, 1) are

linearly independent and
T(e%) = V9 @ Uy + ang, T(eg %) €j> =V Uy + Bj'U% (36)

for some vy € Us, vy, v € U, satisfying 1 < s <m+1—t < m and some §,,3; € F
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such that 1 < s < mT“ whenever (51, fs,...,0,) #0,forallj =land3 < j <n—1.

n+1

Case I-A: vy = yu; for some v € F. We first claim that for any 3 < k < "=

T(eF) € u1 @ Uy, + (ui) (3.7)

for some subspace U, satisfying 1 <p <m + 1 — ¢ < m. Note that
(T(e1 @ ex), T(ea @ ex), T(e3)) is a 3-dimensional subspace of bounded rank-two ma-
trices and so by Theorem 2.6 and Lemma 3.1, we have either T'(e2) € uy @U,, + (u?),

as claimed, or o = 8 = 0 such that uy, ug, vy are linearly independent and

T(ei) = aup @ Vg + bus @ u + cru @ vy

for some scalars ay, by, ¢; € F with a; # 0. If (u,41) = (1), then T'(e?+¢3) is of rank
three, a contradiction. A similar argument can be applied to the case (v,) = (vy).
Hence T'(e?),T(€3) are of rank two. For arbitrary A, Ay € F, we have T'(A\je? + €7)
and T'(A\2€3 + e7) both have ranks bounded by two. Hence by Lemma 3.3, we obtain

Qpi1 = PBn =0 and

T(eQ) = uy @ (aguy + bouy), T(e%) = yu; @ (asuy + bsvy)

for some scalars asy, as, by, b3 € F such that asbs — azby # 0. Consider T'(e; @ es).
Since (T'(e; @ e), T'(€3), T(e3)) is a subspace of bounded rank-two matrices and from

(3.5), we have uy ¢ (upy1,v,) = (ug, vg). This implies that

T((e1+e2)* +€3) = arup @vg +u1 @ (uz + (b1 + az +yaz)ug, + (c1 + by +vbs)vy) + aoul

has rank > 2, a contradiction. Hence claim (3.7) is proved. Using the fact that
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(T(es @ e), T(e1 @es), T(ex @es), T(e?)) is a subspace of bounded rank-two matri-

S

ces, it follows from Theorem 2.6 and Lemma 3.1 that

T(es @ €;) € ug @ Uy, + (ui) (3.8)

for some subspace U, satisfying 1 <p<m+1—g, <m, forall 3 <s < ”T“ <t<

n+ 1 —s. Conclusively, by (3.5) — (3.8), ImT is one of the following forms:

(a) ImT = u; © U for some nonzero vector u; € U, and some subspace U of U,

withl<p<m+1—qg<m.

(b) ImT =wu; @ U + (u}) for some nonzero vector u; € U, with 1 < p < ™ and

some subspace U of U, with 1 <g<m+1—p.
(c) ImT = (u; @ wy + A2, ..., ug @ wg + M\u?) for some linearly independent
vectors uy € U, and wy, ..., w, € Uy with 1 < p < mT“ and 1 <g<m+1—p,

and some scalars A, ..., A\, € F with (A,...,\¢) #0.

Case I-B: uy, vy are linearly independent. Note that T'(e; @e3) = u1 Qug+aou? =
v9 @ vy + f1v3. Then by Lemma 3.2, we have ap = 31 = 0 and T'(e; @ e3) is of rank
two such that vy = yu; +Y2us, V9 = Y3uy +y4us for some vy, ..., v4 € F with v4 # 0.

We also note that

T(e1 @ey) =u1 @ Uy = up @Yy 0o (3.9)

We claim that {ui,...,u,_1} is linearly independent. Suppose to the contrary
that {uy,...,u,_1} is linearly dependent. Then T'(e; @ f) = ayu? for some f €
(€1, .. en_1) \ (e2) where ay € F. Hence ay # 0 for T is a bounded rank-two linear

preserver. On the other hand, in view of (3.6), we have T(e2 @ f) = va @ vy + 5403
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for some vy € (vy,...,v,—1) where By € F. Since T'((e; + e2) © f) has rank bounded

by two, then vy € (uy,vq). Hence

T(e2 @ f) = asvy @ ug + 5fU§

for some scalar ay € F. Note that T(ex @ (f + asyae1)) = Byv3, and so 8y # 0.
Consider T'(e; @ ¢;) for some 3 <1 < n — 1 such that ¢, f are linearly independent.

If w; € (uy,vy), then we see that

T(er0e) e (T(e1@es), T(e1 @ f))

a contradiction, and so w; ¢ (u1,vq). Since T'(e; @ e; + Aex @ €;) has rank bounded
by two for any A € F, applying Lemma 3.3, then we have 5, = 0 and either v; €
(ug,va) \ (v9) or oy = 0 such that v; € (uy,va,w;) \ (u1,v2). The first case will give

us T(es @ ¢;) € (T'(e1 @ e3),T(e2 @ f)) leading to a contradiction. Hence

Tley@e) =bstuyou), T(ea@e)=1vy0u,

where u; = asuy + bsu; for some a5, bs € F with bs # 0 and so uy, va, uj are linearly

independent. Now for any A € IF,

T((Ner + e2) @ (f + e+ asyaea)) = dagui + Byvs + (Abs'uy + va) @ )

has rank bounded by two, giving us

A0 Aoy
det 1 By O = Aoy + N?Bsbs 2 = 0.
0 1 Ab'
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Since |F| > 3, we have ay = 0, a contradiction. Hence {uy,...,u,_1} is linearly
independent, as claimed. In a similar manner, we may show that {vy,...,v,_1} is
linearly independent. Next we see that for any 3 <k <n—1, T((e; + Ae2) @ ey) has
rank bounded by two for any A € F. Thus applying Lemma 3.3, we have 8, = 0,
and either T'(es @ ex) € (T'(e1 @ €2)), or ag = 0 with vy € (uy, va, ug) \ (ug, ve). The

first case obviously is a contradiction and so we conclude that

T(es@er) =bylus @vg, Tlea@ey) =2 @ vy (3.10)

such that vy = agrut + boruy for some agg, bop € F with by, # 0, for all 3 < k <n—1.
Here we wish to show that by, = by € F for all 3 < k < n — 1. So, by considering
any two distinct ki, ks where 3 < ki, ko <n—1, we have T'((e; + e2) @ (g, + €x,)) is
of rank bounded by two implying that boy, = bor, and we are done. Next, we have

two sub-cases to be considered:

n+1

5 and

Case I-B-(i): m > 6. For any pair of integers (s,t) satisfying 3 < s <

3<s<t<n+1—s,

(T(er@¢,),T(e2 @ ¢,), T(e2), T(es @ 1))

forms a 4-dimensional subspace of bounded rank-two matrices. Hence by Theorem

2.6 and Lemma 3.1, we obtain

T(e2), T(es @ e) € vy @ Uy, + (v7) (3.11)

for some subspace Uy, satisfying 1 <p < m+1—¢q3 < m, for all (s,¢). On the other
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hand,

(T'(e10e€),T(ea@e), T(es @ey))

is a 3-dimensional subspace of bounded rank-two matrices and so by Theorem 2.6
and Lemma 3.1, we obtain either T'(e5 @ €;) = agu; @ us + bguy @ vy + cgus @ vy for

some scalars ag, bg, cg € F with ag # 0, or

T(es@ey) €v; @ Uy, + <Ut2>

for some subspace U, satisfying 1 <p<m+1—gqgs <m, forall 3<s < ”T“ <t<

n+ 1 —s. The first case is not possible by (3.11) and so

T(es %) et) € (Us O Uyy + <U§>) N (Ut @ Uy, + <UtQ>) = <Us % Ut>

and so we have

T(es % et) = VstUs © V¢ (312)

for some nonzero scalar v, € I, for all 3 < s < "TH <t<n+1-s.

We wish to show that T sends rank one matrices to rank one matrices, or in other
words T preserves rank one matrices. We start off by considering T'(e?). Suppose
to the contrary that a,,; = 0. Then w,.1 & (ug,...,u,_1). Note that T'(e? + \e2)
has rank bounded by two for any A € F. Applying Lemma 3.3, we have 3, = 0

and either T'(e3) € (T(e; @ e3)), or v, € (uy, va, Upy1) \ (u1,ve). The first case is a

contradiction. Hence T'(€3) = vy @ (ayuy + by, 1) for some az, by € F with by # 0.
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Then for any 3 < s < ”T“, by (3.11), we get

T(e3) = vs @ v, + 503

for some vector v/, and some scalar 75 € F with v, v/ linearly independent, if not
then T'(e?) = 60?2 for some 75 € F would imply that T'(e3 + €2) is of rank three. We
first note that T'(e?), T(e3), T(e?) are of rank two. Since T'(e? + A\je?), T(e2 + \xe?)
both have rank bounded by two for any A, \» € F, so by Lemma 3.3 we conclude

that 75 = 0 and v, € (v, Ups1) \ (Vs, Uny1). Hence T(e?) = agus @ u, 11 for some

nonzero ag € F. But this gives us that, for any \g € F\{v4a7,0},

T(e§ + (Aoer + 62)2) = Up+1 @ (agus + brvg + A%ul) + (>\0’Y4_1 + az)u; @ vy

is of rank four, a contradiction. Hence a,,,1 # 0. Further, if w, 1, u1, vo are linearly
independent and T'(e?+ \e3) has rank bounded by two for any A € F, then by Lemma
3.3 we have v, € (uj,vs) as a1 # 0. But this implies that T'(e3), T(e; © ey) are
linearly dependent, a contradiction. Hence we have u,41 € (ui,vs) and it follows
that v, € (uj,ve) as any1, B, # 0. Moreover, for 3 < s < ”T“, we see that

T(e?+€?),T(e2+ €*) both are of rank bounded by two. So by (3.11), it follows that

T(e}) = anprui,  T(e3) = Bavy,  T(e) = Vst (3.13)

for some nonzero scalar v, € F. Hence T preserves rank one matrices. Without

loss of generality, we take a,,.1 = 1, that is, T'(e?) = u?. Since

T((e1+ ez +es)* —€2) = (by'uy + v2) @ vs + 75 Uy @ vg + uj + Bavs
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has rank bounded above by two, we have

' w1
det | 1 B, ' | =1+8by°=0.
0 1 bt

This implies that 3, = b2 or T'(e2) = b2v3. On the other hand, for any A € F, by

(3.10) and (3.13), we have

T((e1 +es+ 65)2 +(A— 1)63) = (bglul +v9) @ Vs + 74_1u1 @ vy + u% + Abg%% + %Svg

is of rank bounded by two. This gives rise to

bt o1
det 1 A\ 74_1 = )\('yssbg +1)+1+ 75374_2 = 0.
Vs 1 byt

Since |F| > 3, we obtain 7, = 72 = by *. Hence from (3.10) and (3.13),

T(e1 @ ex) = Yauy @ v, T(eil) = (74vs,)”

forall 3 <k <n—-—1and 2 < s < ”T“ For arbitrary pair of (s,t) satisfying

3<s<”7+1and3<s<t<n+1—s,by(3.12),Wehave

T((61 + e + et)Q - 6?) = (74”1 + ")/stvs) v+ YalUa @ vs + u% + ’YZUE

has rank bounded above by two implying

Ya a1
det | v v | =0+15)*=0.
0 Yst Ma

Thus, 75 = 73 yielding T'(e, @ e;) = Y405 @ Y4v; for all (s,t). Finally, we claim that
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Uy, ..., u, are linearly independent. Recall that we have shown that wu,...,u,_1
are linearly independent (just after equation (3.9)), so it suffices to show that u, ¢
(U, ..., up_1). Suppose to the contrary that u, € (ui,...,u,—1). Then T(e; @ f) €
(T(e?)) for some nonzero vector f’ € (uy,...,u,), a contradiction.

Let 21 = uy, 20 = 74’12]2, 2 = U, and z; = y4v; for all 3 < j < n — 1. Define
Pe; = z; for all 1 <i < n. Then P € M,,,(F) is of full column rank and since
m > n, we say P is of rank n. For any 1 < i < "T“andi<j<n+1—iwith

j # n, we have

T(E11+ Enn) =T(e1 @ e,) =21 @ 2z, + an2i = Pl(e; @ e,) + aped] P

T(Ein1-i) = T(ef) = 2 = (Pe;)* = P(ef) PT

(3 (2

T(Eint1-j + Ejnt1-i) =T(e; © e5) = 2 @ z; = (Pe;) @ (Pej) = Ple; @ e;) PT.

Thus this proves that

T(A) = APAP" + ay,a1;(Pe;)?

for all A € ST, (F) and some nonzero A € F where a;; denotes the (1,1)-th entry of
matrix A. Then by Lemma 3.4, we are done.

Case I-B-(ii): n = 5. Note that

<T(el ©es), T(ex @ es), T(e§)>

forms a 3-dimensional subspace of bounded rank-two matrices. By Theorem 2.6 and
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Lemma 3.1, we have either (3.11) with s = 3, or

T(eg) = agu; @ vy + v3 @ (bouy + covo)

for some scalars ag, by, cg € F with ag # 0. If the first case happens, then a similar

argument from Case I-B-(i) can be applied here and the result follows easily.
Suppose the later holds. From (3.5) with n = 5, we first claim that ag # 0.

Suppose to the contrary that ag = 0. Then by (3.10), ug ¢ (uy,vs,v3). Since

T(e? + €3) has rank bounded above by two, then we have ¢y = 0 and so

T((er +ex+e3)* —e3) =vy@v3 +up @ (ug + (ag + v5 )va + (b + by ' )vs)

is of rank four, a contradiction. Hence ag # 0, as claimed. Notice that if ug, ui, vo
are linearly independent and T'(e? + Ae3) has rank bounded above by two for any
A € F, then by Lemma 3.3 we conclude that T'(e3) € (T(e; @ e3)) as ag # 0, which
is a contradiction. Thus ug € (uy,v9). Using a similar argument, we may also show

that 85 # 0 and vs € (uy,v2). Hence

T(e}) = dyus @ vs + agui, T(e3) = hova @ uy + P50}

for some scalars dg, hg € F and «g, 85 # 0. Further, since T'(e? + €2) and T'(e3 + €3)

are of rank bounded by two, it follows that by = cg = 0. But we see that

T((e1 + €2+ €3)° — €3) = agu; + v2 @ v3 + u1 @ ((ag + do + 75 vz + by 'v3)

is of rank three leading to a contradiction. Hence we conclude that for n = 5, T'(e3)

is of the form (3.11) with s = 3. We are done.

68



Case II: F has characteristic not two. Since T is a bounded rank-two linear
preserver, then we have T'(e?),T(e; @ €3),...,T(e1 @ e,) are linearly independent.

Further, since n > 5, then by Theorem 2.6, we see that

T(e}) =u Qunr, Tler@e)=u Quy (3.14)

for some uy; € Uy, Upy1,u; € Uy satisfying 1l <Kp<Km+1—-—g<mforall 2<7<n.
Using a similar argument, we have T'(ex @ e;), T(e2),T(ex@e3),...,T(es @ e, 1) are

linearly independent and

T(e3) =v2@vn, T(e2@6)) =120 (3.15)

for some vy € Uy, vy, v; € Uy satisfying 1 < s <m+1—t <mforall j =1and
3<i<n—1.
Case II-A: vy = ~u; for some 7 € F. Note that for any 3 < k < ”TH,

(T(e; @ex), T(ea @ ex), T(e3)) is a 3-dimensional subspace of bounded rank-two ma-

trices. Then by Theorem 2.6 and Lemma 3.1, we have

T(e}) € uy U, (3.16)

for some subspace U, satisfying 1 <p <m+ 1 — ¢ < m. Similarly for any pair of

s,t) satisfying 3 < s < 2 <t <n+1— s, we have
ying 2

<T(61 @ es),T(es @ ey), T(€§)7 T(es @ 6t)>

is a 4-dimensional subspace of bounded rank-two matrices. Applying Theorem 2.6
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and Lemma 3.1, we obtain

T(es @ er) € up @ Uy, (3.17)

for some subspace U, satisfying 1 < p < m + 1 — ¢ < m. Conclusively, by

(3.14) — (3.17) with vy € (u;), we conclude that

ImT:u1®U

for some nonzero vector u; € U, and some subspace U of U, such that 1 < p <
m+1—qg<<m.

Case II-B: uy, vy are linearly independent. Note that T'(e;@e3) = 1 @Qus = v2@uv;
and so by Lemma 3.2, we have T(e; @ eg) is of rank two such that v; = ~yuy,

vy = v~ luy for some nonzero scalar v € F. Hence

T(e1 @ ey) = up @ ug = ug @ Yva.

Next we claim that w,11 € (uy,ve). Suppose to the contrary that uy, vy, u,.; are
linearly independent. Then we see that T'(e? + Ae3) has rank bounded above by two
for any A € F. Hence by Lemma 3.3, we conclude that v, = byu,1, for some nonzero

scalar by € F. But this implies that

T((e1 + €2)?) = u1 @ Uns1 + YUy @ V2 + byvy @ Upis

is of rank three, a contradiction. Thus the claim is proved. It follows that

T(e3) = asu; @ vy + apui, T(e3) = bsu; @ vy + Bpvs (3.18)
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for some scalars as, b5, api1, B, € F with a1, 8, # 0. Further with a1, 8, # 0,
it is immediate that {uy,...,u,} and {vy,...,v,_1} are linearly independent. Next
we see that for any 3 < k < n —1, T((e; + \e2) @ ex) has rank bounded above by
two for any A € F. Thus applying Lemma 3.3, we have vy € (u;) U (uy). Clearly

vk ¢ (uq) and so we conclude that

T(e1 @ex) =u; Qug, T(ex@ ex) = borve @ ug (3.19)

for some nonzero scalar by, € IF, for all 3 < k < n — 1. Here we wish to show that
bo = by € F for all 3 < k < n—1. So, by considering any two distinct ky, ko where
3 < ki,ky < n—1, we have T'((eq + e2) @ (ex, + €x,)) is of rank bounded by two
implying that box, = box, and we are done.

For any s,t satisfying 3 < s < ”T“ <t<n+1-s, we have

<T(61 %) 65), T<€2 %) 65)7 T(€§)>

is a 3-dimensional subspace of bounded rank-two matrices and

(T(ey @es),T(e2@es), T(€2), T(es @ eyr))

is a 4-dimensional subspace of bounded rank-two matrices. Thus applying Theorem
2.6 and Lemma 3.1, we obtain
T(e2),T(es @ e;) € us @ Uy, (3.20)

s

for some subspace U, satisfying 1 <p<m+1—g <m,forall3<s <= <t <
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n + 1 —s. On the other hand,

(T(e1 @er), T(es @er), T(es @ ey))

is a 3-dimensional subspace of bounded rank-two matrices. Then by Theorem 2.6

and Lemma 3.1, we obtain

T(es @ er) € uy © Uy,

for some subspace U,, satisfying 1 <p<m+1—q <m, forall3<s <2 <t <

n + 1 — s. Hence we see that

T(es @ er) € (us @ Uyy) N (ur @ Usy) = (us @ )

and so we have

T(es @ et) = YotlUs O Uy

for some nonzero scalar v € I, for all 3 < s < ”TH <t<n+1-—s5s. On the other
hand, since T'(e? + €2),T(e2 + €?) both have rank bounded above by two, so from
(3.20) and (3.18), we obtain

T(e1) = anpauy, T(e3) = Buvs,  T(e) = Yasty (3.21)

S

for some nonzero scalar s, € F. Without loss of generality, we let a,,11 = 1, that is
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T(e?) = u?. Then

T((e1 + e2)? + €2) = ul + yus @ va + B3 + Vss02

has rank bounded above by two yielding

0 v 1
det 0 Bn Y = (72 - BH)PYSS =0
Yss 00

and so (3, = 72 or T(e3) = 7y?v3. On the other hand, for any A\ € F, we see that

T((e1 +ea+es)* + (A —1)e3) = (ug + bova) @ v + YUy @ vy + uf + MY*03 + Yesti?

has rank bounded above by two giving rise to

1~ 1
det | by Av? v | = M1 = Yes) + b5 + 7Y*7ss — 2700 = 0.
Vss bO 1

Since |F| > 3, we obtain 1 — 745 = b3 + 7?5 — 27bo = 0. Hence 755 = 1 and by = 7.

It follows from (3.19) and (3.21) that

T(eg) =us, Tle2@ex) =02 0wy

for all 3 < s < "T“ and 3 < k < n— 1. Now for any pair of (s,t) satisfying

3<s<"7+1<t<n+1—s,wehave

T((eyr+es+ et)2 - 6?) = (U1 + Yseths) @ Uy + ur @ ug + u% + ui
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has rank bounded above by two implying

1 1 1
det | v¢ 1 1 |=(12—1)%*=0
0 Vst 1

and thus we have v, = 1 yielding T'(es @ €;) = us @ u; for all 3 < s < "T“ <t<
n+1—s. Let 21 = w1, 22 = yvp and z; = u; for all 3 < j < n. Define Pe; = 2
for all 1 < i < n. Then P € M,,,(F) is of rank n and for any 1 < ¢ < "TH and

1< j<n+1-—1, we have

T(Eip1-i) = T(e2) = 312 = (Pei)2 = P(e})P*

K3 (2

T(Ei,n-l—l—j + Ej,n+1—i) = T(@Z (%) 6]') = Z; (%) Zj = (PGZ) (%) (Pej) = P(Gl %) 6j)P+.

Thus this proves that

T(A) = APAP*

for all A € ST,(F) and some nonzero A € F. Then by Lemma 3.4, we are done. The

proof is complete. [

We give a few examples of bounded rank-two linear preservers ST,(F) — ST,,(F),

m > n > 5, to illustrate the forms (a), (b) and (c) listed in Theorem 3.5.

Example 3.6. Let F be a field with at least three elements and of characteristic
two. Let m,n be integers such that m > n > 5. Let {ej,..., ey} be the standard
basis of M., 1(FF).

(a) Let T : ST,(F) — ST.(F) be the linear map defined by

n—1 I_nT_kJ +1

Ti(A) = a1 ne1 @ g1 + Z Z Qiitk—1 | €1 O €ny1—k

k=1 =1
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for all A = (a;;) € ST,(F). Then T; is a bounded rank-two linear preserver
with

IIHTl =610 <62, . ,€n+1> .

(b) Let Ty : ST(F) — STn(F) be the linear map defined by

n—1 LnTikJ +1

2
Tz(A) = a1 €] + E E iirk—1 | €1 O enp1—k
k=1

i=1

for all A = (a;;) € ST,(F). Then T3 is a bounded rank-two linear preserver
with

ImT, =e; @ (eq,...,6,) + <e%>.

(c) Let 75 : ST,(F) — ST,(F) be the linear map defined by

n—1 L%J"'l

T3(A) = ar, (61 @ ent1 + €%> + Z Z Giivk—1 | €1 QD €ny1-k

k=1 i=1

for all A = (a;;) € ST,(F). Then T3 is a bounded rank-two linear preserver
with

ImT3:<€1®€n+1+€%761@62,...,61@6n>.

We now consider the bounded rank-two linear preservers T : ST,(F) — S7,,(F)

for some integer m. It is clear that m > 4 since there always exists some subspace

U of bounded rank-two matrices of ST;(F) such that dim T'(U) = 4.

Theorem 3.7. Let F be a field with |F| > 3, and let m be an integer with m > 4.
If T': STAF) — STw(F) is a bounded rank-two linear preserver, then T is one of
the following forms:

(a) ImT =uoU for some nonzero vector u € U, and some subspace U of U, with
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I1<p<m+1—g<m.

(b) T has characteristic two and ImT = u @ U + (u®) for some nonzero vector

ueU, withl <p< mT“ and some subspace U of U, with1 < g <m+1—p.

(c) T has characteristic two and ImT = (u @ vy + \u?, ..., u @ vy, + A\u?) for
some linearly independent vectors u € U, and vy, ..., v, € Uy with 1 < p < 2

2

and 1 < g < m+1—p, and some scalars \y, ..., \p, € F with (Ay,..., \x) # 0.

(d) there exist an invertible matriz P € M,(F) and some scalars A\, Aa, A3, Aa, A5 €

F with A, Ay # 0 such that

a1y G1s;  A1013 + AaGis, + A3aa, AqQ1s, + Asar
0 ag, gy, Ara13 + Aa@ys, + Azagy,
TA)=P| Ogpma| 0O 0 ast, as, Pt
0 0 0 ai
0 Om—a.4

for all A = (a;;) € STa(F), where Pe; € Uy, and Pe; € Uy, with 1 < p; < ™
fori=1,2, and gj = max{m +1—pg |1 <k <5—j} forj=3,....5—1,
{s1,82} = {2,4}, {t1,t2} = {2,3}, and (A3, A3, A5) # 0 only if F has charac-
teristic two and (s1,$2) = (4,2) only if | F| = 4. In particular, P € T4(F) when

m =4.

Proof. We distinguish our proof into two parts:
Case I: F has characteristic two. Since 1" is a bounded rank-two linear preserver,
then we have T'(e?), T(e; @ e3),T(e1 @ e3), T (e1 @ e4) are linearly independent. Fur-

ther, by Theorem 2.6, we see that

T(ef) =w @ us +azui, Tler@e;) =u @u; + auui (3.22)

for some u; € Uy, us, u; € U, satistying 1 < p < m+1—¢ < m and some «; € IF such
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that 1 < p < mT“ whenever (qo,...,a5) # 0, for i = 2,3,4. On the other hand, we
have T'(€3),T(ex @ e1), T(ex @ e3) are linearly independent. Then by Theorem 2.6,

there are three possible forms:

T(e3) = va @ v4+ Bavs, T(e2 @ ej) = va @ v; + P03 (3.23)

for some vy € Uy, v4,v; € Uy satisfying 1 < s <m+1—1 < m and some 3; € F

such that 1 < s < mTH whenever (81, 3, 84) # 0, for j =1,3.

<T(e§), T(es @e1), T(es @ 63)> = (w1 @ wq, w1 @ w3, Wy @ W3) (3.24)

for some linearly independent vectors w; € U,, wy € U, and ws € U, such that

m+1

p,q <m+1—7andeither p<m+1—gq, or p=q> "= and wy = aw; + 2 for

m+1

some nonzero scalar a € F and some vector z € Uy, with 1 <k <m+1—p < 7=

such that ws, z are linearly independent.

(T(e3),T(e2@e€1),T(ea @ e3)) = (2%, 9>, 2D y) (3.25)

for some linearly independent vectors x,y € Us such that 1 < s < TH

Case I-A: (3.23) holds. If vy € (uy), then Im7T is one of the following forms:

(a) ImT = u; © U for some nonzero vector u; € U, and some subspace U of U,

withl<p<m+1—qg<m.

(b) ImT =u; @ U + (u}) for some nonzero vector u; € U, with 1 < p < ™ and

some subspace U of U, with 1 <g<m+1—p.

(¢) ImT = (u; @ wy + Mu?, ..., uy @ wg + A\gu?) for some linearly independent

Vectorsu1EL{pandwl,...jwkEL{qwithl<p<mT“andlgqém—l—l—p,
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and some scalars Ay, ..., Ay € F with (A,...,\;) #0.

Suppose now that uy, ve are linearly independent. Then we see that T'(e; @ ey) =
Uy @ Uy + aud = vy @ vy + B3, Hence by Lemma 3.2, we have ap = 3; = 0 and

that (vy,v9) = (ug, us). It follows that

T(e1@ez) =up Quy =u; QY102 = V1 @ Vg

for some nonzero v; € F. Suppose that ug € (uy, us). Then we have (iui+Cus+uz =
0 for some (3, (s € F such that (¢1,2) # 0. This implies that T'(e; @ ((1e1 + Caea +

e3)) = azu? # 0 and hence

T(e1 @ e3) = azui — (ay1us @ va.

On the other hand, we see that T(62 (%) (4_161 + C2€2 + 63)) =V (Clvl + U3) + (Clﬁl +
B3)v3. Hence we have (jv; + v € (uy,vp) yielding T'(ex @ ((rer + Coea + €3)) =

a1vy @ uy + (181 + Bs)vs for some scalar a; € F such that (8 + 83 # 0. Thus

T(es @ e3) = (G + Bs)v3 + (a1 — (i) v @ wy.

Next by (3.22) and (3.23), it is easy to verify that {uy,us, us} and {vy, vo, v4} are
linearly independent. Since T'(e? + Ae2) has rank bounded above by two for any
A € F, then by Lemma 3.3 we have 8, = 0 and either vy € (uy,v9) \ (v2) or a5 =0

with vy € (uy,ve,us) \ (u1,ve). The first case would imply that

T(e3) € (T(e1 @ €2),T(e1 @ (Crer + (a2 + €3)))
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a contradiction. Thus we obtain

T(ez) =u; O us = by u; © vy, T(eg) = Uy @ Uy

such that vy = asuy + bous for some as, by € F with by # 0. Here we note that

Uy, ug, vy are linearly independent. Hence for any A € F, we have

T((Ne1+ex+e3)” —e3) = (Mn(l—G) + (a1 — (7)) ur @ vy

+)\063U§ + (Clﬂl + BS)US + )\2bglu1 %) Vg + V2 (%) Uy

has rank bounded above by two. Let P(\) = Ay + Ay1(1 — &) + (a1 — (71). Then

this implies that

A2, ! P()\) Aavs
det 1 (GBi+B3) PO | =Maz+ X (GB+ Bs)by?) =0. (3.26)
0 1 A2by !

Case I-A-(i): |F| > 5. Then it suffices to conclude that a3 = 0. But this
contradicts the fact that ag # 0. Therefore we have {uy,us,u3} is linearly in-
dependent and a similar argument holds to show {wvy,vs,v3} is linearly indepen-
dent. Since T'((e; + Aey) @ es) has rank bounded above by two for any A € F,
then by Lemma 3.3 we have 83 = 0 and either v € (uj,vq) \ (v2) or a3 = 0 with
vg € (u1,v9,ug) \ (u1,ve). The first case is not possible since T'(e; @ e3),T'(e2 @ e3)

are linearly independent, so the second case holds. Hence we have

T(e1 @es) =bylug @vs, Tles @e3) =12 D03
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such that v3 = aqu; + byug for some scalars aq, by € F with by # 0. Next, we claim
that a5 # 0. Suppose to the contrary that as = 0. Then wuy, v, us, us are linearly
independent. Since T'(e? + Ae3) is of rank two for any A € F, then by Lemma 3.3
we have 4 = 0 and either vy € (uy,v9) \ (va) or vy € (U, va, us) \ (u1,ve). The first

case is not possible and so the second case holds. Therefore we obtain

T(e3) =bslus @vy, T(e3) = vy @ vy

such that vy = asu; + bsus for some scalars as, by € F with b5 # 0. Then we see that

T((Ne1 + ez + 63)2 — eg) =u; @ (AMy1v2 + )\b4_1v3 + )\2b5_lv4) + ve @ (v3 + v4)

has rank bounded above by two for any A € F, yielding

Aot At Ay 0
1 I 0 Ay
0 0 1 !
0 0 1 X!

det = A2(A\bgt — b h)? = 0.

But if we take any nonzero scalar A # bsb, *, then the determinant is nonzero and so a
contradiction. Hence as # 0. Suppose that us ¢ (uy, us). Then, since T'(e? + \e3) is
of rank bounded by two for any A € F, by Lemma 3.3, we conclude that vy € (uy, vs)
since as # 0, but this give rise to T(e3) € (T(e; @ e3)), a contradiction. Hence

us € (u1,us) and we obtain

T(e3) = agu1 @ vy + asus, T(e3) = bguy @ vy + 403
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for some ag, bg € F and that as, 54 # 0. Then we see that

T((Ner+ea+es)® —e3) = Nagui + B4v5 + (A(Aag +7) +bg)us @ va + (Aby 'y +v9) Qw3

has rank bounded above by two for any A € I, thus it yields that

Aot A Aag + ) + bg Nag
det | 1 By AAag +7) +bs | = N(as + Baby?) = 0.
0 1 byt

Hence we obtain 3, = asb?. Conclusively we have

T(€2) = aghy 'u1 @ (byva) + asu?, T(e2) = beb; 'uy @ (byvy) + s (byvy)?
T(61 %) 62) = ’ybful (%) <b41}2), T(61 %) 64) =Uu; Qug + oz4u%

T(61 %) 63) = Uy %) (bzl’l)g), T(€2 %) 63) = (b4U2) %) (bzlvg)

such that uq, vs, v3, uy are linearly independent and az # 0. Let 21 = uy, 2o = byvs,
23 = bfvg and z4; = uy and we define Pe; = z; for all 1 < i < 4. Then by Lemma
3.4, we get the required result.

Case I-A-(ii): |F| = 3,4. Since F has characteristic two, then |F| # 3 and so we
consider |F| = 4 such that F = {0, 1, A\;, \a}. By (3.26), we obtain A3 = A3 = 1 which
yields the relations A; + Xy +1 = 0 and A\; Ay = 1. Hence we obtain (; 3, + 33 = asb3

and so

T(e3) =u @ (by'vy), T(€3) = bovy @ (b 'v4)
T(61 (%) 62) = ’ybglul @ (bzvg), T(61 (%) 64) = U1 (%) Uy + oz4u%
T(e1 @ e3) = azui — yiug @ va,

T(e2 @ e3) = az(bav2)® + (a1 — G171)v2 @ wy.
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For the case v3 € (v1,v9), we may argue in a similar way as in Case-I-A to
show that the result of Case I-A-(ii) still holds. On the other hand, if {uq,us,us}
and {vy,v9,v3} are linearly independent, then the argument and result follow from
Case-I-A-(i).

Case I-B: (3.24) holds. We first note that T'(e; @ es) = uy @ ug + aou?. Then by
the form of (3.24), we have ap = 0. Next, we see that T'(ex @ e3) = ug3 @ uby for
some ugg € (wq,wq) and uby € (wy, wy, ws). Without loss of generality, say uq, ug, usg
are linearly independent as the case for wuy, us, u); can be verified similarly. Since
T((e; + Aezx) @ e3) has rank bounded above by two for any A € F, then by Lemma

3.3 we conclude that

T(eg @ 63) = U923 %) ((17U1 + b7’U2) # 0 (327)

for some scalars a7, by € F. By (3.24), we may write

<T(e§), T(ez @ e1), T(e2 @ €3>> = (u1 @ ug, U1 @ Ugs, Uz O Us3)

1mply1ng, in view of (327), T(e%) = UQg@(Q8U1+b8U2)+08U23®<6L7U1+b7U2)+d8U1@U2

for some asg, bg, cs, dg € F such that azbg + agb; # 0. Further, we see that

T(61 (%) 62) = U QU = (a7bg + agb7)_1(a7u1 + b7U2) %) (a8u1 + bgUg).

Let v = (a7b8 + a8b7)*1(a8u1 + bgUg), Vg = a7Uq + b7U2 and V3 = U23. Then

T(ey @ ez) =v1 Qva, Tega @ e3) =vo @ s,

T(e3) = (agv1 + byva) @ v3 + cov1 @ vy (3.28)
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for some scalars ag, by, cg € F with ag # 0 such that vy, vy, v3 are linearly independent.

On the other hand, we have

(T(ey @e3), T(e1 @es), T(ea @e3)) = (T(ey @ e3),v1 @ v, V2 @ U3)

is a 3-dimensional subspace of bounded rank-two matrices. Hence by Theorem 2.6

and Lemma 3.1, we have either

T(@l %) 63) = V2 @ V13 + 6131)% (329)

for some vector v13 and some scalar 513 € F, or

T(er @ e3) = ajpv1 @ v + bigvy @ V3 + c19v1 @ Vo (3.30)

for some scalars ajg, by, c10 € F with ajp # 0. Since (uq,us) = (vq,v2), then we
consider the following two possible cases:

Case I-B-(i): vy = ~yuy for some nonzero scalar v € F. Then wuy,vy,v5 are
linearly independent. By (3.22), it is not possible to have (3.30) and so (3.29)
holds. Now since T'(A\e? + (coge; @ ey + €3)) has rank bounded above by two for
any A € F, then by Lemma 3.3 we have a5 = 0 and us € (uq, agvy + boyus,vs). If
us € (uy, agvy + boyuy), then we have T'(e?) € (T(e; @ es)), a contradiction. Hence
we obtain T'(e?) = vy @ (ay1vs + b1yv1) for some scalars ayq,by; € F with aqy # 0.

Then we see that

T((e1 + ez +e3)? —e3) = agvy @ v3 + Pi3vs

vy @ (i3 + (a1 + by + 1)vg + (b1 + o + 1)vq)
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has rank bounded above by two and thus 813 = 0 and vi3 € (vy,v9,v3). Hence we
obtain T'(e; @ e3) = v2 @ (a12v3+biavy) such that ajabyy +ay1bis # 0 for T'(e?), T(e1 @
e3) are linearly independent. But we see that T'(e;@e3) = v,@vy, T(bi1e1Dea+e€3) =
ai1ve @ vz implying T'(e; @ e3) € (T(e2),T(e; @ e3)), a contradiction. Hence Case
I-B-(i) is not possible.

Case [-B-(ii): wuy, vy are linearly independent. Suppose that (3.29) holds. Then
by (3.22), we have vy @ v13 + 813035 = u; @ uz + azu? and so by Lemma 3.2, we obtain
T(e1 @ e3) = vy @ (a3v1 + bigus) for some ay3,b13 € F. Further we may show that
u3 & (v1,ve,v3) and that by3 # 0. On the other hand, T'(e; @ (ajzes + €3) + Ae?) is
of rank bounded by two for any A € F. By Lemma 3.3, we have a5 = 0 and hence

T(e2) = uy @ (ayqve + bygus). Since {uy, us) = (vy, v2), then we obtain

T(e%) = (a15v1 + bisv2) @ uz + c15v1 @ Vo

for some a5, bys, 15 € F with aj5 # 0. Next, we see that

T(()\€1 —I— €9 —f- 63)2 — 6%) = ()\20,151)1 + (/\613 —f- )\2b15)’U2) @ us

+()\2615 + /\a13 + )\ =+ Cg)Ul @ () —|— (agvl + (bg —f- ].)’UQ) @ V3

is of rank bounded by two for any A\ € FF, it yields that

Naqs ag  ANci5+ a3+ A+ 0
et Abig + A2bys by + 1 0 Acys + Aagz + A+ ¢
0 0 bg + 1 agy
0 0 bz + A2y Aays

= >\2<>\(6L15(b9 + 1) + CL9bl5> + a9bl3)2 = 0.

If |F| > 5, then it is immediate that agbi3 = 0. On the other hand, if |F| = 4, then
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A = )\ €T, since every element in the field is of order 3. Hence by substituting in
any two nonzero distinct scalars, we have agb;3 = 0. But this is not true since ag, by3
are nonzero. Hence (3.30) holds. We first note that vs ¢ (vy,v2) = (u1,uz). Then
for T'(e; @ (e3 + cipez)), we get v3 @ (aiovy + bigva) = u1 @ (crous +usz) + azu?. Hence

by Lemma 1.3(a), we obtain

uy € (vs, a1ovy + bigva) N (v, v2) = (a19v1 + bigva)

. 1
and for the sake of convenience, we let uy = a19v1 +b1gve. Hence vy = ajy (ug +bigv2)

which implies that v; @ vy = al_olul @ vy. Then it follows from (3.28) that

T(e1 @ e3) = uy @ v3 + aj, crgv1 @ Vo

We now assume that s in (3.22) is nonzero. Since T'(e? + e2) has rank bounded
above by two, then we have agv; + byvs = ai6u; for some nonzero scalar a1 € F. It

follows from (3.28) that

2 —1
T(e5) = ajgur @ v + ajy Cotg @ Vs.

Note that uy, v, v3 are linearly independent and so

T((e1 + e + e3)? —e%) = oz5uf + V9 @ U3

+uy @ (U5 + ((116 + 1)U3 + al_ol (Cg + ci19 + 1)02)

has rank > 2, a contradiction. Thus a5 = 0 and it follows that us ¢ (v, va,vs).

Further since T'(e? + €3 + coe; @ e3) has rank bounded above by two, we conclude
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that agvy + bgvy = ay7uq for some nonzero scalar a;; € F. But this implies that

T((el + €9 + 63)2 —6%) = VU9 (%) Vs

+U1 %) (U5 + (CL17 + ].)1)3 + al_ol (Cg + C10 + 1)1)2)

is of rank four, a contradiction. Hence Case I-B-(ii) will not occur.

Case I-C: Suppose that (3.25) holds. Then

w @ uy + opui =T(e1 @ er) € (2%, y°, 2 Qy). (3.31)

Case I-C-(i): uy,us are linearly dependent. Then T'(e; @es) = apu? and uy, us, us
are linearly independent. Further, without loss of generality, in view of (3.31), we

see that T'(e; @ e3) € (x?). Thus uy, z are linearly dependent, and so

(#*2z0y) = (ul, ¥’ u1 0y).

Let T'(e2) = apu? + byuy @ y + c11y? for some ayy, by, cyp € F. If ¢y # 0, then

T(el +e3) =u @ us+ (a5 + all)u% + bius @y + ey’

has rank bounded above by two. Thus, y € (uy, us). It follows that

2 /.2 2 /.2 2
2/ ) ) ) ) ) .
<T(e ), T(e2 @e1), T(es @ 63)> = <a: Y, xQ y> = <u1 Uz, Uy @ u5>

Since T'(ey @ e3) & (u?, u2, u; @ us), then we have T'((e; + Ajea + Aaez)? + A3e?) is of
rank three for some A\j, Ay € F with Ay # 0, a contradiction.

Suppose that ¢;; = 0. Then T'(ex @ e3) = aju? + byu; @ y + ¢4y for some
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aiy, by, € F with ¢y # 0. Tt follows that

T((er +e2) @ e3) = uy @ us + (az + afy)ui + bjus @y + 9

has rank bounded above by two. Thus, y € (u;, u3) and this implies that

<T(eg),T(62 @e1), T(es @ 63)> = <a:2,y2, %) y> = <u%, uz, up @ U3> )

Since T'(e?) ¢ (u?, u2,u; @ uz), then we have T'((e; + Njea + Nyes)? + (\))?€2) is of
rank three for some A}, \) € F, a contradiction. Hence Case I-C-(i) is not possible.
Case I-C-(ii): wuy,us are linearly independent. By Lemma 2.2 and Lemma 1.3(a)

and (b), we obtain that (uy,us) = (x,y). Thus

<T(€§),T(€2 ©er), T(ea @ 63)> = <x2, T 2% y> = <u%,u§, (R%) u2> )

Note that either T'(e2) or T(e; @ e3) has nonzero u3 term. Hence we first consider
T(e2). Suppose that T(€3) = aju? + biouy @ us + cypu3 for some ajo, bio,c1p € F
with c1o # 0. Then, since T'(e2 + e3) has rank bounded above by two, it follows that
(T(e2), T(e1 @e2)) = (u?,ug @ uy). Hence T(e; @ e3) & (u?,u3, u; @ uy). But this
implies that T'((e; + A1z + Aae3)? + A3e3) is of rank three for some Aj, Ay € F where
Ay # 0, a contradiction.

Now, suppose that T'(ea@e3) = aj,u? +biu; @ us+cjyus for some d}y, by, ¢y € F
with ¢}, # 0. Since T'((e; + e2) @ e3) has rank bounded above by two, it follows that
(T(e?), T(e1 @e2)) = (ud,ug @ uy). Hence T(e; @ e3) & (u?, u3, u; @ uy). But this
implies that T'((e; + Njea + Mye3)? + (Ay)%e?) is of rank three for some N, \) € F

where A, # 0, a contradiction. Hence Case-I-C-(ii) is also not possible.
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Case II: F has characteristic not two. Since 7" is a bounded rank-two linear pre-
server, then we have T'(e?), T(e;@es), T (e1@e3), T'(e; @ e4) are linearly independent.

Further, by Theorem 2.6, we see that

T(ef) =uQus, T(e10e)=u 0w

for some u; € U, us,u; € U, satisfying 1 <p < m+1—-¢ < m and some o; € F,
for i = 2,3,4. On the other hand, we have T'(e2),T(ex @ e1),T(e3 @ e3) are linearly

independent. Then by Theorem 2.6, we have either

T(e3) =v20vs, T(e20€;) =v200; (3.32)

for some vy € Uy, vy, v; € Uy satisfying 1 < s < m+1—¢ < m such that {T'(e2 @

e1), T(e3), T(ex @ e3)} is linearly independent, for j = 1, 3; or

<T(6%), T(62 % 61)7 T(GQ © 63)> = <£B2, y27 QO y> (333)

for some linearly independent vectors x,y € U, such that 1 < s < TH

Case II-A: Suppose that (3.32) holds. Notice that if vy € (uy), then we have

ImT:u1®U

for some nonzero vector u; € U, and some subspace U of U, with 1 <p <m+1—¢ <
m. Suppose now that uy, ve are linearly independent. Then T'(e; @ e3) = uy @ ug =
vy © vy, by Lemma 3.2, implies that us = vy for some nonzero v € F and so
u; = v 'v;. We now claim that us,vs € (up,vs). Suppose to the contrary that

us, U1, vy are linearly independent. Then we see that T'(e? + Ae2) has rank bounded
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above by two for any A € I, yielding vy = Agus for some nonzero scalar \y € F. But

this implies that

T((€1 -+ 62)2> = (Ul -+ )\0’02) %) Us + Uq (%) YU2

is of rank three, a contradiction and so the claim is proved. So we obtain

T(e}) = agu1 @ va + asui, T(e3) = bour @ v + Sav3

for some scalars ag, bg, a5, B4 € F with a5, 54 # 0. Thus, this implies that {uq, us, us, us}
and {vy,v,v3} are linearly independent. Now, since T'((e; + Aez) @ e3) has rank
bounded above by two for any A € [F, then by Lemma 3.3 we conclude that v3 = byus

for some nonzero scalar by € F. Hence we have

T(61 @ 63) = bZlul @ Vs, T<€2 @ 63) = V2 @ V3.

Then we see that

T((/\61 +e9+ 63)2 - 6%) = )\2045U% +B4U§ + ()\(/\(lﬁ +’7> + bﬁ)ul QU9+ ()\b4_1u1 —|—U2) QU3

has rank bounded above by two for any A € [, thus it yields that

byt A(Aag + ) + bg Ao
det 1 54 /\()\a6 + ’7) + b6
0 1 byt

= M (a5 + Bsby? — 20, 1y) — 2230 tag — 2Mb; T = 0.

By substituting A = —1,1 we can easily conclude that 8; = 2byy — asb? and so
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bg = —ag. Conclusively we have

T(€2) = aghy 'u1 @ (bgva) + asu?, T(e2) = (yva — aghy 'uy) @ (bava) — ars(byvy)?
T(ey @eg) = ’szllh @ (bgva), T(e1 @eq) =1u @ uy

T(ey @e3) =u @ (by'vg), T(ex@e3) = (byva) @ (by'v3)

such that uq, v, v3, uy are linearly independent and ay # 0. Let z; = uq, 29 = byvo,
23 = b;lvg and z; = uy and we define Pe; = z; for all 1 < i < 4. Then by Lemma
3.4, we get the required result. Here we remark that if | F| > 4, then ag = 0.

Case II-B: Suppose that (3.33) holds. Then we may show in a similar way as in

Case-I-C above that Case-II-B is not possible. We are done. [

We give the following example to illustrate the special form of the linear preserver

T when the underlying field F has exactly four elements.

Example 3.8. Let F be a field with four elements. Let P € T;(IF) be an invertible
matrix and let A, Ao, A3, Ay, A5 € F with A\, Ay # 0. Let T be the linear map on

STi(F) defined by,

11 G4 Aia13 + Aaai2 + Azag A + Asaqq

T(A) _p 0 ag A4@22 >\1a13 + Aoaqo + )\3a22 pt
0 0 a93 a4
O 0 O all

for all A = (a;;) € STi(F). To show that 7" is a bounded rank-two linear preserver,

it suffices to consider the following two matrices:

12 13 Q14 a4 Aai3 + Aaaiz + Azags Asai2
B = agy a3 ayz |, C = 23 A4@22 A1a13 + Aaarg + Azag
0 azp ap 0 @23 Q14
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Note that

det(B) = CL14CL§2 + CL33(L%2 =0 & det(C’) = )\4(a12a§3 + azgai) =0

since every nonzero element in FF is of order 3.

Theorem 3.9. Let F be a field with |F| > 3, and let m be an integer such that
m = 3. If T': ST3(F) — ST (F) is a bounded rank-two linear preserver, then T' is

one of the following forms:

(a) ImT =u@U for some nonzero vector uw € U, and some nonzero subspace U

of Uy with1 <p<m+1—-qg<m.

(b) ImT = (% y* x@y) for some linearly independent vectors x,y € Us with

1<s <

(c) T has characteristic two, and ImT = u @ U + (u?®) for some nonzero vector
+1

u € Uy, with 1 < p < ™5~ and some nonzero subspace U of U, with 1 < q <

m+1—p.
(d) T has characteristic two, and ImT = (u @ vy + A\u?, ..., u @ vy + M\u?) for
some linearly independent vectors u € U, and vy, ..., v, € Uy with1 < p < T+1

and 1 < g < m+1—p, and some scalars i, ..., \, € F with (Ay,..., \x) # 0.

(e) there exist an invertible matriz P € M,,(F) and some scalars Mg, A1, A2, Az, Mg, A5 €

F with Ay, A5 # 0, such that

Asis;  Olsy T AUt AMlss; + AaGig, + A3Gyyg, + M@y,
03,m—3| 0 A5yt A1y + Aol ¢,
0 O aSlSl
0 ‘ Orm—33

T(A) =P

for all A = (a;;) € ST:(F), where Pe; € U, and Pey € U, with 1 < p; <



and ¢ < m+1—py, fori = 1,2, {s1,t1} = {1,2}, {s9,t2} = {2,3}, and
(A1, A2) # 0 only if F has characteristic two. In particular, P € T3(F) when

m = 3.

(f) m >4, F has characteristic two, and ImT = (w; @ we, w1 @ w3, wy @ ws) for

some linearly independent vectors wy € U, wy € U, and ws € U, with p,q <

m+1—r and eitherp < m+1—q, orp=q > mTH and wy = qwy + 2 for some
nonzero scalar o € F and some vector z €e Uy, with 1 < k<m+1—-—p< mTH

such that wsy, z are linearly independent.

(g) m = 4, F has characteristic two, and there exist an invertible matriz P €

M. (F) and some scalars Ao, A1, Ao, A3, Ay € F with Ay # 0 and (Ao, \3) # 0,

such that
Aolss Q12 + A1y @13 + AoGy A3
0 Ayl 0 a3 + Aaay
T(A)=P| Ogma| O 0 MGy ays + M\ag | P
0 0 0 Aol
0 Op—a.4

for all A = (a;;) € ST3(F), where {s,t} = {1,2}, Pe; € U, and Pe; € U,, with

1<p< mTH and1 < gy <m+1—p forj=2,3,4, and either gs < m+1—q

or qa = q3 > mTH and Pes = aPey + z for some nonzero scalar o € F and

some vector z € U, with 1 < k< m+1—q < mT“ such that Pes, z are

linearly independent.

Proof. 'We distinguish our proof into two parts:
Case I: F has characteristic two. Since T' is a bounded rank-two linear preserver,

then we have T'(e?), T(e; @ e3),T(e1 @ e3), T (e1 @ e4) are linearly independent. Fur-
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ther, by Theorem 2.6 there are three possible forms:

T(e?) =uy @ug +agu?, Tley@e;) =us @ u; + aus (3.34)

for some u; € U, uy,u; € Uy satisfying 1 <p<m+1—¢ <m and some o; € F

such that 1 < p < mT“ whenever (aw, ag, ay) # 0, for i = 2, 3.

<T(e%), T(e1 @ es), T(e1 @ 63)> = (us @ ug, us @ ur, ug @ urz) (3.35)

for some linearly independent vectors us € U,, us € U, and u; € U, such that

p,g <m+1—randeitherp<m+1-—gq, orp:q>mT+1andu6:au5+zfor
some nonzero scalar a € F and some vector z € U with 1 < k<m+1—-—p< mT“

such that ug, 2z are linearly independent.

(T(e}),T(e1 @ €3), T(er @ es)) = (u3, ug, us @ ug) (3.36)

for some linearly independent vectors ug, ug € U such that 1 < s < T+1 Further
we note that if (T'(e?),T(e; @ es),T(e1 @ e3)) is a rank-two subspace then m > 4.
Next there are two possible cases for T'(e2):

Case I-A: Suppose that T(e3) € (T(e?),T(e; @ e3),T(e1 @ e3)). Then it is clear

that T'(e2) ¢ (T(€2),T(e; @ e3)) and so we have ImT is one of the following forms:

(a) ImT = u; © U for some nonzero vector u; € U, and some subspace U of U,

withl<p<m+1—-—qg<m.

(b) ImT =wu; @ U + (u?) for some nonzero vector u; € U, with 1 < p < 2 and

some subspace U of U, with 1 <g<m+1—p.

(¢) ImT = (u; @ wy + Mud, ..., ug @ wg + M\u?) for some linearly independent
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Vectorsu1Eupandwl,...,wkeblqwithl<p<%“andléqém%—l—p,

and some scalars Ay, ..., A\, € F with (A,..., \g) #0.

(d) ImT = (w; ©wy, w; @ ws,ws @ ws) for some linearly independent vectors
wy € Uy, wy € Uy and wz € U, such that p,g < m + 1 — r and either
p<m+1—qg, orp=gq> mTH and wy = aw; + z for some nonzero scalar

«a € F and some vector z € U, With1<k<m+1—p<mTHsuchthat Wa, 2

are linearly independent.

(e) ImT = (22 y?,x @y) for some linearly independent vectors =,y € U, such

that 1 < s < 2.

Case I-B: Suppose that T'(e3) & (T(e2),T(e; @ e3), T(e; @ e3)). Then T is a
bounded rank-two linear preserver implies that {T'(e?), T (e; @ es), T (e3)} is linearly
independent. Further, we note that (T'(e?),T(e; @ es),T(€3)) is a 3-dimensional

subspace of bounded rank-two matrices, and there are three possible forms for 7'(e?):

T(e?) = v @ vy + Byvi, T(er @ e3) = vy @ vy + Bov, T(e€3) = v1 @ vs + B307(3.37)

for some vy € U, v; € U, satisfying 1 < p < m+ 1 — ¢; < m and some scalars

Bj €, j =2,3,4, such that 1 <p < mT“ whenever (s, fs, 54) # 0.

(T(e}),T(e1 @ €2), T(€3)) = (v5 @ vg,v5 @ V7, V6 @ V7) (3.38)

for some linearly independent vectors vs € U,, v € U, and v; € U, such that

p,q<m+1—randeitherp<m—|—1—q,orp:q>mTHandv(g:ﬁvg,—l—z’for

m+1

some nonzero scalar 5 € F and some vector 2’ e U, with 1 <k<m+1—-—p< =
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such that vg, 2’ are linearly independent.

<T(€%)a T(el % 62)7 T(63)> = <U§7 US? vg @ U9> (339)

for some linearly independent vectors vg,vg € Uy such that 1 < s < TH Further
we note that if (T'(e?),T(e; @ e2), T(€3)) is a rank-two subspace then m > 4. Then
we have four possible cases to consider:

Case I-B-(i): T(€?),T(e;@es) are of rank two. Then either (3.34) or (3.35) holds.
Suppose that (3.34) holds. Then this implies that either (3.37) or (3.38) holds. We
first consider the case where (3.37) holds. If either (u?) C (T'(e%),T(e; @ es)), or
Uy, Us, uy are linearly independent, then by Lemma 3.1, one can easily conclude that
v1 € (uy). Hence ImT is one of the forms (a), (b), (¢) listed in Case I-A. Now assume
that (3.38) holds. Then ay = ay = 0 and (uy, ug, ug) = (vs, vg, v7). Hence we write
T(e2) = ayus @ ug + byuy @ ug + cyuy @ uy for some scalars ay, by, c; € F with a; # 0.
If uq,...,uy are linearly independent, then we define Pe; = uy, Pes = uy, Pes =

ug, Pey = uz. Otherwise, choose some us € M,,1(F) such that uy, us, us, us are

linearly independent, then we take Pe, = uj instead of Pey = u3. Hence we obtain

AoG11 Q12 + A1Go2  G13 + A2z A3a11
0 A4z 0 a13 + Aol
T(A)=P| Ogm-a| O 0 A4z a2 + Magp | PT
0 0 0 Ao@11
0 Om—a.4

for some scalars Ag,..., Ay € F with Ay # 0 and (Ag, A3) # 0, for all A = (a;;) €
ST;(F).

Suppose that (3.35) holds. Then this implies that either (3.37) or (3.38) holds.
We first consider the case where (3.37) holds. Then Sy = 4 = 0 and (vy, v, v4) =
(us, ug, u7). Hence we write T(e; @ e3) = aguy @ vy + bavy @ Vg + cov; @ vy for
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some scalars ag, bg,co € F with ay # 0. If vy,...,v4 are linearly independent,
then we define Pe; = vy, Pey = vy, Pes = vy, Pey = v3. Otherwise, choose some
vs € M, 1(F) such that vy, vq, vy, v5 are linearly independent, then we take Pey = vg

instead of Pes = v3. Hence we obtain

Aoz Q12 + A1ai1 a3 + Agan A3022
0 a1 0 a13 + A2a11
TA) =P | Ogm-a 0 0 Asaqy arp + May | PT
0 0 0 A2
0 Om—a,4

for some scalars Xo,..., Ay € F with Ay # 0 and (Ao, A3) # 0, for all A = (a;;) €
ST3(F). On the other hand, if (3.35) and (3.38) hold, then we have (us, ug, u7) =
(vs,vg,v7). This therefore implies that T'(e2) € (T'(e?),T(e; @ es),T(e; @ e3)) and
contradicts our earlier hypothesis of Case I-B.

We are only left with the description of matrix P. Note that P is invertible.
Further, by similar argument as in the proof of Lemma 3.4, we can show that
Pe, € U,, Pej € U,; with 1 < p < mT“ and 1 < ¢ <m+1—p, forall j =23
(including j = 4 if Ay # 0). Since Pey @ Pes € ST,(F), then by Lemma 1.3 we have

either s <m—+1—qq or g = g3 > mT“ and Pes = aPey + 2z for some nonzero scalar

a € F and some vector z e Uy, with 1 < k<m+1—q¢ < mT“ such that Pes, z are

linearly independent.
Case I-B-(ii): T(e?),T(e; @ e3) are of rank one. Then we have (3.36) and (3.39)

hold. Hence (ug, ug)* = (vs, vy)> yielding

T(e2) € <T(e%), T(ey @es), T(e1 @ 63)>

and so again contradicts the earlier hypothesis of Case I-B.

Case I-B-(iii): T'(e; @ e3) is of rank one and T'(e?) is of rank two and so uy, us, uy
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are linearly independent. Then either (3.34) or (3.36) holds. Suppose that (3.34)
holds. Then we have either (3.37) or (3.39) holds. We first consider the case where
(3.37) holds. Thus v; € (u;) and so we obtain Im7 is one of the forms (a), (b), (c)
listed in Case I-A. Now assume that (3.39) holds. Then (uy,us) = (vs,v9). Hence
(uy,u4)® = (vs,vg)°. Thus we have T(e2) = ayu + byu; @ uy + c4u’ for some scalars
ay, by, cy € F with a4 # 0. Define Pey = uy, Peg = uy, Pes = ug, then we have

a1 a1z + Aoz A1an + Aoaiz + Azase + Asanz
03m—3| O 522 a1z + Aoz

0 0 ain
0 Opm—3.3

p+

for some scalars Xg, ..., A; € F with Ay, A5 # 0 for all A = (a;;) € ST3(F).
Now suppose that (3.36) holds. Then we have either (3.37) or (3.39) holds. We
first consider the case where (3.37) holds. Then (vy,vs) = (us, ug). Thus (v, v4)> =
(us, ug)”. Hence we have T(e2) = agv? +bgv1 @ vy +cgu? for some scalars ag, bg, cg € F
with ag # 0. Define Pe; = vy, Pes = vy, Pe3 = v3, then we have
aze 13+ Ao Az + Asarz + Azain + Aganz
03m—3| O Asa11 aiz + Aoai1

0 0 22
0 Orn—3.3

p+

for some scalars Ag,...,A\s € F with Ay, \s # 0 for all A = (a;;) € ST3(F). Now
assume that (3.39) holds. Then (ug, ug) = (vs,ve). But this implies that T'(e3) €
(T(e3),T(e1 @ e3), T(e1 @ e3)), a contradiction.

Case [-B-(iv): T'(e?) is of rank one and T'(e; @ e3) is of rank two and so uy, us, uz
are linearly independent. Then either (3.34) or (3.36) holds. Suppose that (3.34)
holds. Then we have either (3.37) or (3.39) holds. We first consider the case where

(3.37) holds. Thus v; € (u;) and so we obtain Im7 is one of the forms (a), (b), (c)
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listed in Case I-A. Now assume that (3.39) holds. Then (uj,us) = (vs,vg). Thus
(u1,u3)* = (vs,vg)°. Then we have T'(e2) = agu2 + bguy @ uy 4 csu? for some scalars
ag, bg, cs € F with ag # 0. Define Pe; = uy, Pey = us, Pe3 = ug, then we have

ai Gz + Aoz A1ain + Asaiz + Azag + Aags
03m—31] 0 522 a2 + NGz

0 0 ain
0 Opm—3.3

p+

for some scalars Xg, ..., A; € F with Ay, A5 # 0 for all A = (a;;) € ST3(F).

Now suppose that (3.36) holds. Then we have either (3.37) or (3.39) holds.
We first consider the case where (3.37) holds. Then (vi,ve) = (us,ug). Thus,
(v1,v2)* = (ug,ug)>. Hence we have T(e2) = ayov3 + bigvy @ v + 102 for some

scalars ayq, b1g, c190 € F with ayg # 0. Define Pe; = vy, Pes = vy, Peg = v3, then we

have
Ay Q12 + X1 A1age + Aeaia + Azan + A\gais
03m-3| O 5011 a2 + Aoai1
T(A)=P 0 0 oy PT
0 Orm—3.3

for some scalars Ag,...,A; € F with Ay, A5 # 0 for all A = (a;;) € ST3(F). Now
assume that (3.39) holds. Then (ug,ug) = (vs,vg). But this implies that T'(e3) €
(T(e2),T(e; @ e3), T(e1 @ e3)), a contradiction.

Case II: F has characteristic not two. Since 7" is a bounded rank-two linear pre-
server, then (T'(e3),T(e; @ e3),T(e; @ e3)) is a 3-dimensional subspace of bounded

rank-two matrices. Hence by Theorem 2.6 we have either

T(e?) =u; @ uy, T(ey @ey) =us @uy, T(er @es) =uy @ us (3.40)

for some u; € U, u; € U, satisfying 1 <p<m+1—¢q; <m, ¢ =2,3,4, such that
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{T(€2),T(e; @ es), T(e; @ e3)} is linearly independent; or

(T(e}),T(e2@e1),T(ex @ e3))y = (u2,ug, us @ ug) (3.41)

for some linearly independent vectors us, ug € Uy such that 1 < s < T+1 Further
we note that if (T'(e?), T(e; @ e3),T(e; @ e3)) is a rank-two subspace then m > 4.
Next there are two possible cases for T'(e3):

Case II-A: Suppose that T'(e2) € (T'(€2),T(e; @ es),T(e1 @ e3)). Then it is clear

that T'(e2) € (T'(e2),T(e; @ es)) and so we have ImT is one of the following forms:

(a) ImT = u; @ U for some nonzero vector u; € U, and some subspace U of U,
withl<p<m+1—qg<m.

(b) ImT = (2% y* x @ y) for some linearly independent vectors x,y € U, such

that 1 < s < 2.

Case II-B: Suppose that T'(e3) & (T(e?),T(e; @ e3),T(e; @ e3)). Then we note
that (T'(e2),T(e; @ es), T(€3)) is a 3-dimensional subspace of bounded rank-two ma-

trices. Hence by Theorem 2.6, we have either

T =v,0v, Tle0e)=v,0v, T(e3)=v0v; (3.42)

for some vy € Uy, v; € Uy, satisfying 1 <p<m+1—¢q; <m, j=2,3,4, such that

{T(€2),T(e; @ es), T(e2)} is linearly independent; or

(T(e}), T(er @ e2), T(e3)) = (v3,v3,v5 D vg) (3.43)

for some linearly independent vectors vs, vg € U, such that 1 < s < TH Further

we note that if (T'(e2), T(e; @ e2), T(€3)) is a rank-two subspace then m > 4. Then
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we have four possible cases to consider:

Case II-B-(i): T'(e?), T (e1@es) are of rank two. Then (3.40) and (3.42) both hold.
We note that either (u?) C (T'(e?),T(e; @ e3)), or uy, ug, uy are linearly independent,
one can easily conclude that v; € (u;) and so we obtain Im 7 is of the form (a) listed
in Case II-A.

Case II-B-(ii): T(€?),T(e; @ e3) are of rank one. Then we have (3.41) and (3.43)
both hold. Hence (us, ug)” = (vs, vg)” yielding T'(e2) € (T(e?),T(e1 @ e3), T(e1 @ e3)),
and so contradicts the hypothesis of Case II-B.

Case II-B-(iii): T'(e; @) is of rank one and T'(e?) is of rank two and so uy, us, uy
are linearly independent. Suppose that (3.40) holds. Then we first consider the case
where (3.42) holds. Thus v; € (u;) and so we obtain Im7 is of the form (a)
listed in Case II-A. Now assume that (3.43) holds. Then (u;,us) = (vs,vs). Thus
(uy,u4)”® = (v5,v6)°. Hence we have T(e3) = ayu? + byuy @ uy + c4u? for some scalars
ay, by, cy € F with a4 # 0. Define Pey = uy, Peg = uy, Pes = ug, then we have

air @iz + Aoz Arage + A2arz
03m—3| O 322 a1z + Aoz

0 0 ain
0 Orm—33

P+

for some scalars X, ..., A3 € F with Ay, A\3 # 0 for all A = (a;5) € ST3(F).
Now suppose that (3.41) holds. We first consider the case where (3.42) holds.
It follows that (v, vs) = (us, ug). Thus (vy,v4)” = (us, ug)>. Then we have T(e3) =

agvs + bgvy @ vy + cgv? for some scalars ag, bg, cg € F with ag # 0. Define Pe; =
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vy, Pes = vy, Pes = v3, then we have

aza 13+ Aoair Arai + Again
O3,m—3| O A3 aiz + Aoai1
0 0 Q22
0 O 5

P+

for some scalars Ao, ..., A3 € F with Xy, A3 # 0 for all A = (a;;) € ST3(F). Now
assume that (3.43) holds. Then (us,ug) = (vs,vs). But this implies that T'(e3) €
(T(e3),T(e1 @ e3), T(e1 @ e3)), a contradiction.

Case II-B-(iv): T'(¢?) is of rank one and T'(e; @ ez) is of rank two and so uy, us, uz
are linearly independent. Suppose that (3.40) holds. Then we consider the case
where (3.42) holds. Thus v; € (u;) and so we obtain Im7T is of the form (a)
listed in Case II-A. Now assume that (3.43) holds. Then (uj,us) = (vs,vs). Thus
(uy, u3)” = (vs,v6)°. Hence we have T'(€2) = agu3 4 bsuy @ ug + cgu? for some scalars
ag, bg, cg € F with ag # 0. Define Pe; = uy, Peg = ug, Pe3 = ug, then we have

air a2 + Aoz Ar1age + A2a13
O3m—3| O 322 a2 + Aoz

0 0 a1y
0 Om—3.3

P+

for some scalars Ao, ..., A3 € F with Ay, A3 # 0 for all A = (a;;) € ST3(F).
Now suppose that (3.41) holds. We first consider the case where (3.42) holds.
It follows that (v, vs) = (us, ug). Thus (vy,vs)” = (us, ug)>. Then we have T(e2) =
aipv3 + bigvy @ vy + c1ov? for some scalars ajg, big, c1p € F with ayg # 0. Define
Pe; = vy, Pes = vy, Pes = v3, then we have
azy a2 + Aoann  Aran + Asans
03,m—3| O Asaiq aip + Ao

0 0 929
0 Om—3.3

P+
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for some scalars Ag,...,A\3 € F with X\, A\3 # 0 for all A = (a;;) € ST3(F).
Now assume that (3.43) holds. Then (us,ug) = (vs,v). But this implies that

T(e2) € (T(e2),T(e; @ es), T(e; @ e3)), a contradiction.

Finally, we apply Lemma 3.4 to those forms obtained in Cases I-B-(iii), I-B-(iv),

II-B-(iii) and II-B-(iv), to obtain the required result. The proof is complete. [

The reader should note that for form (g), even if we restrict m to 4, the matrix
P will not necessarily be of upper triangular form. The following example illustrates

this situation.

Example 3.10. Let I be a field with at least three elements and of characteristic
two. Let T : ST3(F) — STi(F) be the bounded rank-two linear preserver defined
by

a1 aip aiz 0

0 929 0 ais

T(A) =P pt
0 0 ax ap
0 0 0 a1
for all A= (a;;) € ST5(F), where
1 000
0010
P = S M4(F)
01 00
0001

Clearly T is a bounded rank-two linear preserver. To see that T(A) is still of upper
triangular form, we may take a;; = a1 = a;3 = ags = 1 and countinue with the

matrix multiplication.

The next example shows that if F' has characteristic two, then it is possible to
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have Pesy, Pes € U, such that k > ”T“

Example 3.11. Let F be a field with at least three elements and of characteristic
two. Let T : ST3(F) — ST4(F) be the bounded rank-two linear preserver defined
by

ay; aiz a0
0 ax 0 a3

T(A) =P pt
0 0 ax ap
0 0 0 a1
for all A= (a;;) € ST5(F), where
1 000
0010
P = S M4(F)
0110
0001

Clearly T' is a bounded rank-two linear preserver and it can be verified easily that

T(A) is of upper triangular form. Here, we have Pesy, Pes € Us where 3 > %.

We give a few examples of bounded rank-two linear preservers ST3(F) — STi(F)

to illustrate the forms (b) and (f) listed in Theorem 3.9.

Example 3.12. Let F be a field with at least three elements and of characteristic
two. Let {ey,...,es} be the standard basis of My (F).

(a) Let T : ST3(F) — ST4(F) be the linear map defined by

Ti(A) = CL13€% + ape; @ ex + (a1 + age) 63

for all A = (a;;) € ST3(F). Then T; is a bounded rank-two linear preserver
with

ImT; = <e%, eg,el %) €2> .
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(b) Let T : ST5(F) — STi(F) be the linear map defined by

T5(A) = (a13 + ax) e1 @ e2 + (a12 + a2) €1 @ e3 + (a11 + ag2) e2 @ e3

for all A = (a;;) € ST5(F). Then T} is a bounded rank-two linear preserver
with

ImT) = (e; @ 3,1 @ €3,e2 @ €3) .

We note that (T'(e3),T(e; @ e3)) is a 2-dimensional subspace of bounded rank-

two matrices. Hence in view of Theorem 2.6, we have the following

Corollary 3.13. Let F be an arbitrary field with |F| > 3, and let m be an integer
such that m > 2. If T : STo(F) — STw(F) is a bounded rank-two linear preserver

then T is one of the following forms:

(a) there exist an invertible matriv P € M, (F) and scalars Mo, A1, A2, A3 € F with

Ao, A3 # 0, such that

Ao@is + A1ay Aears + Asay

_ O2,m—2 n
T(A) =P 0 )\0@15 + )\1a1t P

0 | Opm_2.2

for all A = (a;;) € ST5(F), where Pe; € U, and Pe; € U, with 1 < p < ™
and 1 < g < m+1—p, {s,t} = {1,2}, and (M, 2) # 0 only if F has

characteristic two. In particular, P € T3(F) when m = 2.

(b) m = 3 and ImT = {(ayu @ v+ au?+ azv?, fiu @ v+ Bou? + P3v?) is two-
dimensional, for some linearly independent vectors uw,v € U, with 1 < p <

"L and some fized scalars on, oz, a3, B, Bo, B3 € F with (o, f2) # 0 and

(as, B3) # 0.
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(c) m =3 and ImT = u @ (vq,v9) for some linearly independent vectors u € U,

and vy,vy € Uy wz’thlgpng“ and 1 <g<m+1—p.

(d) m > 3, F has characteristic two, and ImT = (u @ vy + M\u?, u @ vy + Aou?)
for some linearly independent vectors uw € U, and vy, vy € Uy with 1 < p < T+1
and 1 < g <m+1—p, and some scalars A, \y € F with (A1, \2) # 0.

(e) m >4, F has characteristic two, and ImT = (w; @ ws, (w1 + A\wy) @ w3) for
some nonzero scalar A € F and some linearly independent vectors wy € U,
wy € U, and wy € U, such that p,q < m+1—r and eitherp < m+1—gq,

orp=gq > mTH and wy = awy + z for some nonzero scalar a € F and some

vector z € Uy, with 1 < k<m+1—-p< ’”T“ such that wsy, z are linearly

independent.
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