UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: LALITHA A/P MANIAM (I.C/Passport No: 841109-10-5356)

Registration/Matric No: SGF090003

Name of Degree: MASTER OF BIOTECHNOLOGY

Title of Project Paper/Research Report/Dissertation/Thesis (“Growth and Biochemical Composition of Selected Algae in Palm Oil Mill Effluent”):

Field of Study: Algae Biotechnology

I do solemnly and sincerely declare that:

1) I am the sole author/writer of this Work;
2) This Work is original;
3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature

Date

Subscribed and solemnly declared before,

Witness’s Signature

Date

Name : PROF DR. PHANG SIEW MOI

Designation : PROFESSOR
ABSTRACT

The palm oil industry in Malaysia is one of the largest producers of agroindustrial wastewater known as Palm Oil Mill Effluent (POME). POME is highly organic in content which is acidic, thick, dark in colour, with high levels of chemical oxygen demand, ammonical nitrogen, orthophosphate, nitrate, nitrite, total suspended solids, and total solids. Due to high organic load, the raw POME has to be digested anaerobically to reduce the pollutant level, in order to meet the effluent discharge standard for palm oil mills. The objective of the present study is to investigate the potential of selected microalgae to grow in POME and anaerobic liquor (AL) as well as to assess the biochemical composition of the biomass and finally the percentage of pollution reduction obtained. Nine microalgae strains from the University of Malaya Algae Culture Collection (UMACC) which are Chlorella vulgaris UMACC 001, Scenedesmus UMACC 010, Scenedesmus UMACC 036, Scenedesmus UMACC 068, Ankistrodesmus convolutus UMACC 101, Nannochloris bacillaris UMACC 109, Chlorococcum oviforme UMACC 110, Chlamydomonas augustae UMACC 246 and Chlorella UMACC 300 were screened for growth and biochemical composition using flask cultures. Of nine strains, Chlorella UMACC 300 (specific growth rate (µ) =0.35±0.02 d⁻¹ and 39.88±2.73% DW of lipid), Chlorella vulgaris UMACC 001 (µ=0.32±0.02 and 40.61±2.78% DW of lipid), Scenedesmus UMACC 036 (µ=0.30±0.05 d⁻¹ and 32.75±1.01% DW of lipid) and Ankistrodesmus convolutus (µ=0.28±0.02 d⁻¹ and 38.89 ±2.70% DW of lipid) were selected to grow in different concentrations of POME and anaerobic liquor. The Chlorella UMACC 300 showed better tolerance to grow in higher concentrations of POME and AL. Chlorella UMACC 300 which grew in 25% AL (Bold Basal Medium, BBM) produce biomass of 677.33±11.37 mg L⁻¹ with 39.98±0.38 %DW protein, 19.12 ± 0.12 %DW carbohydrate and 43.44±0.92 %DW lipid on day 16 of culture period. This Chlorella UMACC 300
also produced higher pollution reduction when compared with other three selected microalgae, whereby it attained 87.66±0.59% reduction of chemical oxygen demand (COD), 65.38±2.51% ammonical nitrogen, 78.56±6.54% orthophosphate, 45.24±4.12 % nitrate and 42.13±11.81% nitrite. The second best strain which grew in different concentrations of POME and AL was Chlorella vulgaris UMACC 001 followed by Scenedesmus UMACC 036 and Ankistrodesmus convolutus respectively. The results obtained from this study shows that Chlorella UMACC 300 which was isolated from POME is tolerant of POME and AL and may be a potential species to be used for POME and AL treatment.
ABSTRAK

Industri kelapa sawit merupakan penyebab utama kepada bahan pencemar agroindustri yang dikenali sebagai efluen kilang kelapa sawit (POME). POME merupakan pencemar yang mempunyai kandungan organic yang tinggi dan bersifat asid, pekat, berwarna gelap dan mengandungi keupayaan kimia oksigen, ammonikal nitrogen, orthofosfat, nitrat, nitrit, total suspended solid and total solid. Disebabkan oleh kandungan organik yang tinggi, POME perlu dicerna secara anaerobik untuk mengurangkan kandungan bahan pencemar sebelum disalur keluar dari kilang pemprosesan minyak kelapa sawit, bagi memenuhi ‘Discharge Standards’ yang ditetapkan untuk kilang kelapa sawit. Objektif utama dalam kajian ini adalah untuk mengkaji potensi mikroalga terpilih untuk bertumbuh di media POME dan POME dicerna (AL) yang disediakan menggunakan kepekatan yang berbeza, bagi menilai kandungan biokimia and peratusan penurunan kandungan pencemar. Untuk itu, sembilan microalga dari ‘University Malaya Algae Culture Collection’ ia itu Chlorella vulgaris UMACC 001, Scenedesmus UMACC 010, Scenedesmus UMACC 036, Scenedesmus UMACC 068, Ankistrodesmus convolutus UMACC 101, Nannochloris bacillaris UMACC 109, Chlorococcum oviforme UMACC 110, Chlamydomonas augustae UMACC 246 and Chlorella UMACC 300 telah dikaji untuk mengenalpasti kandungan biokimia menggunakan sistem kultur. Daripada sembilan mikroalga Chlorella UMACC 300 (kadar pertumbuhan sesifik (μ)=0.35±0.02d$^{-1}$ dan 39.88±2.73%DW lipid), Chlorella vulgaris UMACC 001(μ=0.32±0.02 dan 40.61±2.78%DW lipid), Scenedesmus UMACC 036 (μ=0.30±0.05d$^{-1}$ dan 32.75±1.01%DW lipid) and Ankistrodesmus convolutus (μ=0.28±0.02d$^{-1}$ dan 38.89±2.70%DW of lipid) telah dipilih untuk dikulturkan di dalam POME dan AL media yang disediakan menggunakan pelbagai kepekatan. Chlorella UMACC 300 menunjukkan toleransi yang tinggi untuk tumbuh di dalam POME dan AL yang berkepekatan tinggi. Chlorella UMACC 300 turut menunjukkan
pertumbuhan yang tinggi di dalam 25% AL (BBM) dengan 448.00±18.33mg L biomass, 27.70±0.93%DW protein, 1.60±0.07%DW karbohidrat dan 30.67±1.38%DW lipid. Mikroalga ini turut mencatatkan peratusan penurunan kandungan pencemar yang tinggi, dimana 87.66±0.59% penurunan COD, 65.38±2.51% ammonikal nitrogen, 78.56±6.54% orthofosfat, 45.24±4.12% nitrat and 42.13±11.81% nitrit. Mikroalga *Chlorella vulgaris* UMACC 001 menujukkan toleransi kedua tetinggi untuk bertumbuh di dalam POME dan di dalam AL. *Chlorella* UMACC 300 merupakan mikroalga yang mempunyai toleransi yang tinggi untuk bertumbuh di dalam POME media dan dapat mencapai peratusan penurunan pencemar yang tinggi. Keputusan yang diperolehi melalui kajian ini menunjukkan bahawa mikroalga yang berasal daripada POME mempunyai toleransi yang tinggi untuk bertumbuh di dalam POME dan di dalam AL, dimana mikroalga ini lebih sesuai untuk digunakan merawat POME dan AL.
ACKNOWLEDGEMENTS

First and foremost, I take great pleasure and honour to express my sincere appreciation to my main supervisor Professor Dr. Phang Siew Moi for giving me this opportunity to work on this project under Malaysian Palm Oil Board (MPOB). Prof. Dr. Phang Siew Moi as my supervisor, providing me a motivation, enthusiastic, continuous support, encouragement and also a proper guidance, ideas and comments throughout this experiment period. I am also would like to thank her for permitting me to use the equipments and facilities available in Algae Research Laboratory during the entire period of my bench work. I am also heartily thankful to my co-supervisors, Professor Dr. Chu Wan Loy from International Medical University (IMU) for his guidelines and sharing his valuable experiences in the field of microalgae research and also special thanks to Dr. Loh Soh Khaeng from Malaysian Palm Oil Board (MPOB) for her support to complete this project.

Besides that I would also like to thank MPOB for funding this experiment by supplying the chemicals and other important utilities needed throughout the experiment period, and also for their help in providing the transportation to me for the POME sample collection. Special thanks to Miss.Azreena Idris, Research Officer (RO) from MPOB for her support and guidelines throughout this experiment. Not forgetful the Tennamaram Estate Palm Oil organization which permitting me to collect the raw POME sample and digested POME sample for this experiment and also to the worker who help me during the sample collection.

I also would like to thank all the members of Algae Research Laboratory and Institute of Oceans and Earth Sciences (IOES) or their guidelines and sharing knowledge throughout this study. I would like to make a special reference to my dearest friend Saraswathy Ramachandaran, Teoh Ming Li, Pei San and Vijeysri for their
assistance especially when I am dealing with chemicals and equipment at Algae Research Laboratory.

Last but not least, I also would like to express my deepest gratitude and love to my father Mr. Maniam, my mother Madam. Valliammah, my brother Mr. Vishnu and also to my beloved husband Mr. Suresh and my daughter Lavannya for their unconditional love, patience, understanding, and sacrifices and support to me throughout this study. Thanks again to all of them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOL AND UNIT</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
<tr>
<td>CHAPTER 1 : INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.2 OBJECTIVES OF RESEARCH</td>
<td>6</td>
</tr>
<tr>
<td>1.3 RESEARCH APPROACH</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER 2 : LITERATURE REVIEW</td>
<td>10</td>
</tr>
<tr>
<td>2.1 PALM OIL MILL EFFLUENT (POME)</td>
<td>10</td>
</tr>
<tr>
<td>2.2 PALM OIL AND POME PRODUCTION PROCESS</td>
<td>11</td>
</tr>
<tr>
<td>2.3 EFFLUENT DISCHARGE STANDARDS FOR PALM OIL MILLS IN MALAYSIA</td>
<td>13</td>
</tr>
<tr>
<td>2.4 CURRENT POME TREATMENT METHOD</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Ponding System</td>
<td>15</td>
</tr>
<tr>
<td>2.4.2 Anaerobic Ponding System</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2.1 Open Tank Digesters</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2.2 Closed Tank Digesters</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3 Facultative Ponding System</td>
<td>20</td>
</tr>
<tr>
<td>2.4.4 Aerobic Ponds</td>
<td>20</td>
</tr>
<tr>
<td>2.4.4.1 Aerated Lagoons</td>
<td>21</td>
</tr>
<tr>
<td>2.4.4.2 High Rate Algal Pond</td>
<td>21</td>
</tr>
<tr>
<td>2.5 NON BIOLOGICAL SYSTEM</td>
<td>22</td>
</tr>
<tr>
<td>2.6 GLOBAL WARMING AND GREEN HOUSE GASES EMISSION FROM POME TREATMENT</td>
<td>23</td>
</tr>
<tr>
<td>2.6.1 Green Houses Gases Emission from POME</td>
<td>24</td>
</tr>
</tbody>
</table>
2.6.2 Microalgae As a CO₂ Sequestration 25

2.7 POTENTIAL USE OF POME 27
2.7.1 POME as Fermentation Media 27
2.7.2 Reuse of POME as Fertiliser 28
2.7.3 Reuse of POME as Liverstock and Aquaculture Feeds 29

2.8 MICROALGAE 30
2.8.1 Algal Biofuel 35

2.9 PHYCOREMEDIATION 42
2.9.1 Removal of Nutrients and Pollutants from Wastewater by 48
Microalgae
2.9.2 Factors Affecting the Removal of Nutrients and Pollutants from 50
Wastewater by Microalgae

CHAPTER 3: METHODOLOGY 53
3.1 MICROALGAE 53
3.2 PREPARATION OF BASAL BOLD’S MEDIUM (BBM) CULTURE 53
MEDIUM
3.3 STOCK CULTURE MAINTENANCE 57
3.4 PREPARATION OF INOCULUM 57
3.5 SOURCE OF POME AND ANAEROBICALLY DIGESTED POME 58
(ANAEROBIC LIQUOR, AL)
3.6 POME ANALYTICAL METHOD 62
3.6.1 Temperature 62
3.6.2 pH 62
3.6.3 Total Solid 62
3.6.4 Total Volatile Solid 63
3.6.5 Total Suspended Solid 63
3.6.6 Ammonical Nitrogen 64
3.6.7 Nitrate 64
3.6.8 Nitrite 65
3.6.9 Orthophosphate 65
3.6.10 Chemical Oxygen Demand 66
3.7 MICROALGAE ANALYTICAL METHOD 66
3.7.1 Optical Density 66
3.7.2 Cell Count 67
3.7.3 Chlorophyll a 67
3.7.4 Carotenoid 68
3.7.5 Specific Growth Rate 69
3.7.6 Dry Weight 69
3.7.7 Protein Content 70
3.7.8 Carbohydrate Content 71
3.7.9 Lipid Content 73
3.7.10 Fatty Acid Composition 74

3.8 EXPERIMENTS 75
3.8.1 Experiment 1: Growth and Biochemical Composition of Microalgae Cultured in 1200mL BBM Medium for 12 Days of Culture 75
3.8.2 Selection of Microalgae for Cultured in Different Concentrations of POME and Anaerobically Digested POME (AL) 76
3.8.3 Experiment 2: Characterization of Raw POME and Anaerobically Digested POME (AL) 76
3.8.4 Experiment 3: Growing Selected Microalgae in Different Concentrations of POME and Anaerobically Digested Liquor (AL) 77
3.8.4.1 Preparation of Culture Medium 77
3.8.4.2 Biochemical Analysis 79
3.8.4.3 Pollution Reduction Analysis 79

CHAPTER 4 : RESULTS 80
4.1 EXPERIMENT 1: GROWTH AND BIOCHEMICAL CHARACTERIZATION OF MICROALGAE CULTURED IN 1200ML BBM MEDIUM FOR 12 DAYS OF CULTURE PERIOD 80
4.1.1 Semi Logarithmic Growth Curve of Microalgae 80
4.1.2 Cell Count of Microalgae 85
4.1.3 Chlorophyll a Content of Microalgae 87
4.1.4 Carotenoid Content of Microalgae 87
4.1.5 Biomass Content of Microalgae 90
4.1.6 Specific Growth Rate of Microalgae 90
4.1.7 Protein Content of Microalgae 92
4.1.8 Carbohydrate Content of Microalgae
4.1.9 Lipid Content of Microalgae
4.1.10 Fatty Acid Content of Microalgae

4.2 EXPERIMENT 2: CHARACTERIZATION OF RAW POME AND ANAEROBICALLY DIGESTED POME (AL)

4.3 EXPERIMENT 3: GROWING MICROALGAE IN DIFFERENT CONCENTRATIONS OF RAW POME AND ANAEROBICALLY DIGESTED POME (AL)

4.3.1 Semilogrithmic Growth Curve Based on Cell Count of Microalgae Cultured in Different Concentration of POME and AL
 4.3.1.1 Chlorella UMACC 300
 4.3.1.2 Chlorella vulgaris UMACC 001
 4.3.1.3 Scenedesmus UMACC 036
 4.3.1.4 Ankistrodesmus convolutus UMACC 101

4.3.2 pH Profile of Microalgae Cultured in Different Concentrations of Raw POME and Anaerobically Digested POME (AL)

4.3.3 Specific Growth Rate of Microalgae cultured in Different Concentration of POME and AL

4.3.4 Dry Weight Content of Microalgae cultured in Different Concentration of POME and AL on Day 0 and Day 16

4.3.5 Protein Content of Microalgae cultured in Different Concentration of POME and AL on Day 0 and Day 16

4.3.6 Carbohydrate Content of Microalgae cultured in Different Concentration of POME and AL on Day 0 and Day 16

4.3.7 Lipid Content of Microalgae cultured in Different Concentration of POME and AL on Day 0 and Day 16

4.3.8 Fatty Acid Compositions of Microalgae Cultured in Different Concentration of POME and AL on Day 16
 4.3.8.1 Chlorella UMACC 300
 4.3.8.2 Chlorella vulgaris UMACC 001
 4.3.8.3 Scenedesmus UMACC 036
 4.3.8.4 Ankistrodesmus convolutus UMACC 101

4.3.9 Pollution Reduction Percentage of Microalgae Cultured in Different Concentrations of POME and AL
4.3.9.1 Chemical Oxygen Demand 138
4.3.9.2 Orthophosphate 139
4.3.9.3 Ammonical Nitrogen 140
4.3.9.4 Nitrate 141
4.3.9.5 Nitrite 142

CHAPTER 5 : DISCUSSION 145
5.1 EXPERIMENT 1: GROWTH AND BIOCHEMICAL CHARACTERIZATION OF MICROALGAE 145
5.2 EXPERIMENT 2: SUITABILITY OF POME AND ANAEROBICALLY DIGESTED POME (AL) AS SUBSTRATE FOR MICROALGAL GROWTH 152
5.3 EXPERIMENT 3: GROWTH OF SELECTED FOUR MICROALGAE IN DIFFERENT CONCENTRATION OF POME AND ANAEROBICALLY DIGESTED POME (AL) 153
 5.3.1 POME and AL Medium with Culture Condition 153
 5.3.2 Growth of Microalgae in POME and Anaerobically Digested POME (AL) 158
 5.3.3 Biochemical Composition of Microalgae Cultured in Different Concentration of POME and Anaerobically Digested POME (AL) 161
 5.3.4 Pollution Reduction in POME and Anaerobically Digested POME (AL) by Growth of Microalgae 166
 5.3.5 Potential Use of Chlorella for Bioremediation of POME and Anaerobically Digested POME (AL) 171
 5.3.6 Appraisal 173
 5.3.7 Areas for Future Research 174

CHAPTER 6 : CONCLUSION 177

BIBLIOGRAPHY 180

APPENDICES 193
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Overview Design of POME Treatment Incorporating With Microalgae Culture</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Outline of Research Approach</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Flow Diagram of Crude Palm Oil(CPO) and POME Production</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Anaerobic Conversion of Organic Matter To Methane</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>A Standard Growth Curve Of Microalgae</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Transesterification of Oil to Biodiesel</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Photomicrograph of Selected Nine Microalgae</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>A. Chlorella vulgaris UMACC 001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Scenedesmus UMACC 010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Scenedesmus UMACC 036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Scenedesmus UMACC 068</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Ankistrodesmus convolutus UMACC 101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Nannochloris bacillaris UMACC 109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Chlorococcum oviforme UMACC 110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Chlamydomonas augustae UMACC 246</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. Chlorella UMACC 300</td>
<td></td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Tennamaram Estate Palm Oil Mill</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Fresh POME Sample at Oil Recovery Pond</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>POME Sample Collection from Pipe Outline</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Anaerobic pond</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Closed Tank Anaerobic Digesters</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Anaerobically Digested POME(AL) Sample Collection from Closed Tank Digester 1</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>POME sludge Disposal on Land at Tennamaram Estate Palm Oil Mill</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Determination of Lipid Content for Microalgae</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Semi logarithmic Growth Curve of Chlorella vulgaris UMACC 001 Based on OD$_{620nm}$</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>a) Chlorella vulgaris UMACC 001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Scenedesmus UMACC 010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Scenedesmus UMACC 036</td>
<td></td>
</tr>
</tbody>
</table>
d) *Scenedesmus* UMACC 068

e) *Ankistrodesmus convolutus* UMACC 101

f) *Nannochloris bacillaris* UMACC 109

g) *Chlorococcum oviforme* UMACC 110

h) *Chlamydomonas augustae* UMACC 246

i) *Chlorella* UMACC 300

Figure 4.2 Cell count (Mean±St.Dev) of Selected Nine Microalgae on Day 0, day 4, day 8 and day 12 of culture period

Figure 4.3 Chlorophyll a Content (Mean±St.Dev) of Selected Nine Microalgae on Day 0, day 4, day 8 and day 12 of culture period

Figure 4.4 Carotenoid Content of Selected Nine Microalgae on Day 0, day 4, day 8 and day 12 of culture period

Figure 4.5 Dry Weight of Selected Nine Microalgae on Day 0, day 4, day 8 and day 12 of culture period

Figure 4.6 Protein Content of Selected Nine Microalgae on Day 0, day 4, day 8 and day 12 of culture period

Figure 4.7 Carbohydrate Content of Selected Nine Microalgae on Day 0, day 4, day 8 and day 12 of culture period

Figure 4.8 Lipid Content of Selected Nine Microalgae on Day 0, day 4, day 8 and day 12 of culture period

Figure 4.9 Semi logarithmic growth curve of *Chlorella* UMACC 300 cultured in

a) 25% AL (distilled water)

b) 25% AL (BBM)

c) 25% POME (distilled water)

d) 50% AL (distilled water)

e) BBM medium (control)

Figure 4.10 Semi logarithmic growth curve of *Chlorella vulgaris* UMACC 001 cultured in

a) 25% AL (distilled water)

b) 25% AL (BBM)

c) 25% POME (distilled water)

d) 50% AL (distilled water)

e) BBM medium (control)
Figure 4.11 Semi-logarithmic growth curve of *Scenedesmus* UMACC 036 cultured in
a) 25% AL (distilled water)
b) 25% AL (BBM)
c) 25% POME (distilled water)
d) 50% AL (distilled water)
e) BBM medium (control)

Figure 4.12 Semi-logarithmic growth curve of *Ankistrodesmus convolutus* UMACC 101 cultured in
a) 25% AL (distilled water)
b) 25% AL (BBM)
c) 25% POME (distilled water)
d) 50% AL (distilled water)
e) BBM medium (control)

Figure 4.13 pH Profile of microalgae cultured in different concentration of POME and Digested POME
a) *Chlorella* UMACC 300
b) *Chlorella vulgaris* UMACC 001
c) *Scenedesmus* UMACC 036
d) *Ankistrodesmus convolutus* UMACC 101

Figure 4.14 Percentage of Chemical Oxygen Demand (COD) Reduction of Microalgae Cultured in Different Concentrations of POME and AL

Figure 4.15 Percentage of Orthophosphate Reduction of Microalgae Cultured in Different Concentrations of POME and AL

Figure 4.16 Percentage of Ammonical Nitrogen Reduction of Microalgae Cultured in Different Concentrations of POME and AL

Figure 4.17 Percentage of Nitrate Reduction of Microalgae Cultured in Different Concentrations of POME and AL

Figure 4.18 Percentage of Nitrite Reduction of Microalgae Cultured in Different Concentrations of POME and AL
LIST OF TABLES

Table 2.1 Characteristics of Raw POME 11
Table 2.2 Effluent Discharge Standard for Crude Palm Oil (CPO) under Environment Quality Act (EQA,1984) 14
Table 2.3 Total Methane Emission from POME in Year 2009 25
Table 2.4 Sustainable Reuse of POME as Fermentation Media 28
Table 2.5 Lipid Content of Some Selected Microalgae on Dry Weight Basis 34
Table 2.6 Comparison of Some Crop Sources for Production of Biodiesel 39
Table 3.1 Brief Details of Nine Microalgae Used for This Study 55
Table 3.2 Composition of Bold Basal Medium (BBM) 56
Table 3.3 Protein Standard Preparation 70
Table 3.4 Carbohydrate Standard Preparation 72
Table 3.5 Composition of Different Media Using POME or AL 77
Table 4.1 Specific Growth Rate of Microalgae 79
Table 4.2 Fatty acid composition of microalgae cultured in 1200 mL of BBM medium on day 12 99
Table 4.3 Characteristics of Batch I, Raw POME and anaerobically digested POME Collected Tennamaram Estate Palm Oil Mill at Kuala Selangor to culture Chlorella UMACC 300 103
Table 4.4 Characteristics of Batch II, Raw POME and anaerobically digested POME Collected Tennamaram Estate Palm Oil Mill at Kuala Selangor to culture Chlorella vulgaris UMACC 001 103
Table 4.5 Characteristics of Batch III, Raw POME and anaerobically digested POME Collected Tennamaram Estate Palm Oil Mill at Kuala Selangor to culture Scenedesmus UMACC 036 104
Table 4.6 Characteristics of Batch IV, Raw POME and anaerobically digested POME Collected Tennamaram Estate Palm Oil Mill at Kuala Selangor to culture Ankistrodesmus convolutus UMACC 101 104
Table 4.7 Specific Growth Rate of microalgae cultured in Different Concentration of POME and AL 121
Table 4.8 Dry weight of microalgae cultured in different concentrations of POME and AL on day 0 and day 16 123
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>Protein content of microalgae cultured in different concentrations of POME and AL on day 0 and day 16</td>
<td>125</td>
</tr>
<tr>
<td>4.10</td>
<td>Carbohydrate content of microalgae cultured in different concentrations of POME and AL on day 0 and day 16</td>
<td>127</td>
</tr>
<tr>
<td>4.11</td>
<td>Lipid content of microalgae cultured in different concentrations of POME and AL on day 0 and day 16</td>
<td>129</td>
</tr>
<tr>
<td>4.12</td>
<td>Fatty Acid Compositions of Chlorella UMACC 300 in Different Concentrations of POME and AL on day 16</td>
<td>131</td>
</tr>
<tr>
<td>4.13</td>
<td>Fatty Acid Compositions of Chlorella vulgaris UMACC 001 in Different Concentrations of POME and AL on day 16</td>
<td>133</td>
</tr>
<tr>
<td>4.14</td>
<td>Fatty Acid Compositions of Scenedesmus UMACC 036 in Different Concentrations of POME and AL on day 16</td>
<td>135</td>
</tr>
<tr>
<td>4.15</td>
<td>Fatty Acid Compositions of Ankistrodesmus convolutus UMACC 101 in Different Concentrations of POME and AL</td>
<td>137</td>
</tr>
<tr>
<td>4.16</td>
<td>Summary of Pollution reduction (%) for selected microalgae in different concentrations of POME and AL</td>
<td>143</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>BBM</td>
<td>Bold’ Basal Medium</td>
<td></td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
<td></td>
</tr>
<tr>
<td>CER</td>
<td>Certified Emission Reduction</td>
<td></td>
</tr>
<tr>
<td>Chl-a</td>
<td>Chlorophyll-a</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
<td></td>
</tr>
<tr>
<td>CPO</td>
<td>Crude Palm Oil</td>
<td></td>
</tr>
<tr>
<td>DEE</td>
<td>Department of Environmental Enforcement</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>Dry Weight</td>
<td></td>
</tr>
<tr>
<td>EQA</td>
<td>Environmental Quality Act</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>Fatty Acid</td>
<td></td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty Acid Methyl Esters</td>
<td></td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh Fruit Bunch</td>
<td></td>
</tr>
<tr>
<td>FGB</td>
<td>First Generation Biofuel</td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
<td></td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gases</td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td>Global Warming</td>
<td></td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-Hydroxyethyl)-1-piperazinethanesulfonic acid</td>
<td></td>
</tr>
<tr>
<td>HRAP</td>
<td>High Rate Algal Pond</td>
<td></td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic Retention Time</td>
<td></td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel for Climate Changes</td>
<td></td>
</tr>
<tr>
<td>MAS</td>
<td>Membrane Anaerobic System</td>
<td></td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated Fatty Acid</td>
<td></td>
</tr>
</tbody>
</table>
NaOH - Sodium hydroxide
OD - Optical Density
pH - Potential of hydrogen
PHA - Polyhydroxyalkanoates
POME - Palm Oil Mill Effluent
PUFA - Polyunsaturated Fatty Acid
RPM - Rotates per Minute
SBR - Sequencing Batch Reactor
SFA - Saturated Fatty Acid
SGB - Second Generation Biofuel
STR - Solid Retention Time
TDS - Total Dissolved Solid
TGB - Third Generation Biofuel
TS - Total Solid
TSS - Total Suspended Solid
TVS - Total Volatile Solid
UMACC - University of Malaya Algae Culture Collection
LIST OF SYMBOL AND UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>µ</td>
<td>specific growth rate</td>
</tr>
<tr>
<td>µg</td>
<td>micro gram</td>
</tr>
<tr>
<td>cell / mL</td>
<td>cells per millimetre</td>
</tr>
<tr>
<td>d⁻¹</td>
<td>per day</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>mg / L</td>
<td>milligram per liter</td>
</tr>
<tr>
<td>ºC</td>
<td>degree Celcius</td>
</tr>
<tr>
<td>OD₆₂₀nm</td>
<td>Optical density at 620nm</td>
</tr>
<tr>
<td>psi</td>
<td>pound per square inch</td>
</tr>
<tr>
<td>Rpm</td>
<td>revolution per minute</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix A: OD$_{620\text{nm}}$ of nine microalgae strains culture on BBM medium for 12 days

Appendix B: Cell Count of Microalgae Cultured in BBM Medium for 12 Days of Culture Period

1. *Chlorella vulgaris* UMACC 001
2. *Scenedesmus* UMACC 010
3. *Scenedesmus* UMACC 036
4. *Scenedesmus* UMACC 068
5. *Ankistrodesmus convolutus* UMACC 101
6. *Nannochloris bacillaris* UMACC 109
7. *Chlorococcum oviforme* UMACC 110
8. *Chlamydomonas augustae* UMACC 246
9. *Chlorella* UMACC 300

Appendix C: Chlorophyll –a content of Microalgae Cultured in BBM Medium for 12 Days of Culture Period

1. *Chlorella vulgaris* UMACC 001
2. *Scenedesmus* UMACC 010
3. *Scenedesmus* UMACC 036
4. *Scenedesmus* UMACC 068
5. *Ankistrodesmus convolutus* UMACC 101
6. *Nannochloris bacillaris* UMACC 109
7. *Chlorococcum oviforme* UMACC 110
8. *Chlamydomonas augustae* UMACC 246
9. *Chlorella* UMACC 300

Appendix D: Carotenoid content of Microalgae Cultured in BBM Medium for 12 Days of Culture Period

1. *Chlorella vulgaris* UMACC 001
2. *Scenedesmus* UMACC 010
3. *Scenedesmus* UMACC 036
4. *Scenedesmus* UMACC 068
5. *Ankistrodesmus convolutus* UMACC 101
6. *Nannochloris bacillaris* UMACC 109
7. *Chlorococcum oviforme* UMACC 110
8. *Chlamydomonas augustae* UMACC 246
9. *Chlorella* UMACC 300
Appendix E: Specific Growth Rate (µ) Based on Chlorophyll-a Content of Microalgae Cultured in BBM Medium for 12 Days of Culture Period

208

Appendix F: Biomass Content of Microalgae Cultured in BBM Medium for 12 Days of Culture Period

209

<table>
<thead>
<tr>
<th>Microalgae</th>
<th>Culture Medium</th>
<th>UMACC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Chlorella vulgaris UMACC 001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Scenedesmus UMACC 010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Scenedesmus UMACC 036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Scenedesmus UMACC 068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Ankistrodesmus convolutus UMACC 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. Nannochloris bacillaris UMACC 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII. Chlorococcum oviforme UMACC110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII. Chlamydomonas augustae UMACC 246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX. Chlorella UMACC 300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix G: Protein Content of Microalgae Cultured in BBM Medium for 12 Days of Culture Period

212

<table>
<thead>
<tr>
<th>Microalgae</th>
<th>Culture Medium</th>
<th>UMACC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Chlorella vulgaris UMACC 001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Scenedesmus UMACC 010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Scenedesmus UMACC 036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Scenedesmus UMACC 068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Ankistrodesmus convolutus UMACC 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. Nannochloris bacillaris UMACC 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII. Chlorococcum oviforme UMACC110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII. Chlamydomonas augustae UMACC 246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX. Chlorella UMACC 300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix H: Carbohydrate Content of Microalgae Cultured in BBM Medium for 12 Days of Culture Period

223

<table>
<thead>
<tr>
<th>Microalgae</th>
<th>Culture Medium</th>
<th>UMACC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Chlorella vulgaris UMACC 001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Scenedesmus UMACC 010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Scenedesmus UMACC 036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Scenedesmus UMACC 068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Ankistrodesmus convolutus UMACC 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. Nannochloris bacillaris UMACC 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII. Chlorococcum oviforme UMACC110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII. Chlamydomonas augustae UMACC 246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX. Chlorella UMACC 300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix I: Lipid Content of Microalgae Cultured in BBM Medium for 12 Days of Culture Period

232

<table>
<thead>
<tr>
<th>Microalgae</th>
<th>Culture Medium</th>
<th>UMACC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Chlorella vulgaris UMACC 001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Scenedesmus UMACC 010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Scenedesmus UMACC 036</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV. *Scenedesmus* UMACC 068
V. *Ankistrodesmus convolutus* UMACC 101
VI. *Nannochloris bacillaris* UMACC 109
VII. *Chlorococcum oviforme* UMACC110
IX. *Chlorella* UMACC 300

Appendix J: Fatty Acid Composition of Microalgae Cultured in BBM Medium for 12 Days of Culture Period
 I. *Chlorella vulgaris* UMACC 001
 II. *Scenedesmus* UMACC 010
 III. *Scenedesmus* UMACC 036
 IV. *Scenedesmus* UMACC 068
 V. *Ankistrodesmus convolutus* UMACC 101
 VI. *Nannochloris bacillaris* UMACC 109
 VII. *Chlorococcum oviforme* UMACC110
 IX. *Chlorella* UMACC 300

Appendix K: Cell Count of Microalgae Cultured in Different Concentration of POME and AL
 I. *Chlorella* UMACC 300
 II. *Chlorella vulgaris* UMACC 001
 III. *Scenedesmus* UMACC 036
 IV. *Ankistrodesmus convolutus* UMACC 101

Appendix L: Specific Growth Rate(μ) Based on Cell Count of Microalgae Cultured in Different Concentration of POME and AL
 I. *Chlorella* UMACC 300
 II. *Chlorella vulgaris* UMACC 001
 III. *Scenedesmus* UMACC 036
 IV. *Ankistrodesmus convolutus* UMACC 101

Appendix M: Dry weight of Microalgae Cultured in Different Concentration of POME and AL on Day 0 and day 16
 I. *Chlorella* UMACC 300
 II. *Chlorella vulgaris* UMACC 001
 III. *Scenedesmus* UMACC 036
 IV. *Ankistrodesmus convolutus* UMACC 101
Appendix N: Protein Content Microalgae Cultured in Different Concentration of POME and AL on day 0 and Day 16
I. Chlorella UMACC 300
II. Chlorella vulgaris UMACC 001
III. Scenedesmus UMACC 036
IV. Ankistrodesmus convolutus UMACC 101

Appendix O: Carbohydrate Content of Microalgae Cultured in Different Concentration of POME and AL on Day 0 and Day 16
I. Chlorella UMACC 300
II. Chlorella vulgaris UMACC 001
III. Scenedesmus UMACC 036
IV. Ankistrodesmus convolutus UMACC 101

Appendix P: Lipid Content of Microalgae Cultured in Different Concentration of POME and AL on Day 0 and Day 16
I. Chlorella UMACC 300
II. Chlorella vulgaris UMACC 001
III. Scenedesmus UMACC 036
IV. Ankistrodesmus convolutus UMACC 101

Appendix Q: Fatty Acid Composition of Four Selected Microalgae Cultured in Different Concentration of POME and AL on day 16

A) Chlorella UMACC 300
I. 25% AL(distilled water)
II. 25% AL(BBM)
III. 25% Raw POME (distilled water)
IV. 50% AL (distilled water)
V. BBM(control)

(B) Chlorella vulgaris UMACC 001
I. 25% AL(distilled water)
II. 25% AL(BBM)
III. 25% Raw POME (distilled water)
IV. 50% AL (distilled water)
V. BBM(control)

(C) Scenedesmus UMACC 036
I. 25% AL(distilled water)
II. 25% AL(BBM)
III. 25% Raw POME (distilled water)
IV. 50% AL (distilled water)
V. BBM(control)
(D) *Ankistrodesmus convolutus* UMACC 101

I. 25% AL (distilled water)
II. 25% AL (BBM)
III. 25% Raw POME (distilled water)
IV. 50% AL (distilled water)
V. BBM (control)

Appendix R: Pollution Reduction profile of Microalgae Cultured in Different Concentration of POME and AL

A. *Chlorella* UMACC 300
 I. Chemical Oxygen Demand
 II. Orthophosphate
 III. Ammonical Nitrogen
 IV. Nitrate
 V. Nitrite

B. *Chlorella vulgaris* UMACC 001
 I. Chemical Oxygen Demand
 II. Orthophosphate
 III. Ammonical Nitrogen
 IV. Nitrate
 V. Nitrite

C. *Scenedesmus* UMACC 036
 I. Chemical Oxygen Demand
 II. Orthophosphate
 III. Ammonical Nitrogen
 IV. Nitrate
 V. Nitrite

D. *Ankistrodesmus convolutus* UMACC 101
 I. Chemical Oxygen Demand
 II. Orthophosphate
 III. Ammonical Nitrogen
 IV. Nitrate
 V. Nitrite

Appendix S: Characteristics of raw POME and Anaerobically digested POME (AL) collected from Tennamaram Estate Palm Oil Processing Mill to culture selected microalgae

I. *Chlorella* UMACC 300
II. *Chlorella vulgaris* UMACC 001
III. *Scenedesmus* UMACC 036
IV. *Ankistrodesmus convolutus* UMACC 101

300

320