LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>List of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Presented Papers and Posters Presentation at Conferences</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION
1.1 General Introduction 1
1.2 Work on electrode materials 3
1.3 Objective of the research 6
1.4 Scope of the Thesis 6

CHAPTER 2: LITERATURE REVIEW
2.1 Introduction 11
2.2 Vanadium Oxide Cathode Materials 14
2.3 Inverse spinel lithium transition metal vanadium oxide 15
 2.3.1 Lithium Cobalt Vanadate, LiCoVO₄ 16
 2.3.2 Lithium Nickel Vanadate, LiNiVO₄ 16
 2.3.3 Lithium Nickel Manganese Vanadate, LiNiMnVO₄ 18
2.4 Methods 19
 2.4.1 Solid state reaction 20
2.4.2 Wet chemistry method / Soft solution technique 21
 2.4.2.1 Combustion method 22
 2.4.2.2 Hydrothermal Synthesis 23
 2.4.2.3 Sol-gel method 25
 2.4.2.4 Polymer precursor method 27
2.5 Doping in inverse spinel cathode 29
2.6 Characterization of inverse spinel 30
2.7 Summary 32

CHAPTER 3: EXPERIMENTAL METHODS

3.1 Introduction 34
3.2 Sample preparation 34
 3.2.1 LiNiVO₄ Sol-gel System 36
 3.2.2 LiNiVO₄ Polymer Precursor System 38
 3.2.3 LiNi₁₋ₓMnxVO₄ Sol-gel System 40
 3.2.4 LiNi₁₋ₓMnxVO₄ Polymer Precursor System 42
3.3 X-ray Diffraction (XRD) 45
3.4 Thermal Gravimetric Analysis (TGA) / Differential Thermal Analysis (DTA) 49
3.5 Scanning Electron Microscopy (SEM) 51
3.6 Transmission electron microscopy (TEM) 53
3.7 Cyclic Voltammetry Analysis 55
 3.7.1 Sample Fabrication 57
3.8 Elemental Analysis of Energy-dispersive X-ray spectroscopy (EDAX) 58
3.9 Summary 59
CHAPTER 4: LITHIUM NICKEL VANADATE BY THE SOL-GEL METHOD

4.1 Introduction 60
4.2 Structural studies 61
 4.2.1 X-ray diffraction (XRD) 61
 4.2.2 Crystallite size 64
4.3 Chemical Reaction 65
4.4 Thermogravimetric Analysis (TGA) 66
4.5 Morphology studies 68
 4.5.1 Scanning Electron Microscopy (SEM) 68
 4.5.2 Transmission Electron Microscope (TEM) 69
4.6 Elemental Studies (EDAX) 71
4.7 Cyclic voltammetry (CV) 77
4.8 Summary 79

CHAPTER 5: LITHIUM NICKEL VANADATE BY THE POLYMER PRECURSOR METHOD

5.1 Introduction 80
5.2 Structural studies 81
 5.2.1 X-ray diffraction (XRD) 81
 5.2.2 Crystallite size 82
5.3 Chemical Reaction 83
5.4 Thermogravimetric Analysis (TGA) 85
5.5 Morphology studies 86
5.5.1 Scanning Electron Microscopy (SEM) 86
5.5.2 Transmission Electron Microscope (TEM) 87
5.6 Cyclic voltammetry (CV) 89
5.7 Summary 90

CHAPTER 6: LITHIUM NICKEL MANAGANESE VANADATE BY THE SOL-GEL METHOD

6.1 Introduction 92
6.2 Structural studies 93
6.2.1 X-ray diffraction (XRD) 93
6.2.2 Crystallite size 96
6.2.3 Lattice constants and the volumes of crystal cell 97
6.3 Chemical Reaction 99
6.4 Thermogravimetric Analysis (TGA) 101
6.5 Morphology studies 103
6.5.1 Scanning Electron Microscopy (SEM) 103
6.5.2 Transmission Electron Microscope (TEM) 104
6.6 Elemental Studies (EDAX) 105
6.7 Cyclic voltammetry (CV) 111
6.8 Summary 112

CHAPTER 7: LITHIUM NICKEL MANAGANESE VANADATE BY THE POLYMER PRECURSOR METHOD

7.1 Introduction 114
7.2 Structural studies 115
List of Contents

7.2.1 X-ray diffraction (XRD) 115
7.2.2 Crystallite size 118
7.2.3 Lattice constants and the volumes of crystal cell 119
7.3 Chemical Reaction 122
7.4 Thermogravimetric Analysis (TGA) 123
7.5 Morphology studies 125
7.5.1 Scanning Electron Microscopy (SEM) 125
7.5.2 Transmission Electron Microscope (TEM) 128
7.6 Cyclic voltammetry (CV) 129
7.7 Summary 130

CHAPTER 8: DISCUSSION 132

CHAPTER 9: CONCLUSIONS AND SUGGESTIONS 154

REFERENCES 159