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ABSTRACT 

 

An efficient protocol was developed for rapid propagation and regeneration of the 

Polianthes tuberosa L. plantlets via somatic embryogenesis pathway using leaf, stem and 

flower bud as explants. Explants were cultured on MS media supplemented with various 

combinations and concentrations of BAP and NAA to induce callus formation. Leaf 

explants cultured on MS media supplemented with 2.0 mg/l NAA was the best to produce 

optimum callus. Within 5 months the percentage of explant produce callus was 100.00 ± 

0.00%. Stem explants started to produce callus earlier (4 weeks) than other explants. 

100.0±0.00 % of stem explant produced callus in MS media supplemented with 2.0 mg/l 

NAA, MS media supplemented with 3.0 mg/l NAA and MS media supplemented with 0.5 

mg/l BAP in combination with 2.0 mg/l NAA. Flower bud explants was suitable when 

cultured on MS media supplemented with 2.0 mg/l NAA and MS media supplemented with 

0.5 mg/l BAP in combination with 2.0 mg/l NAA. All the explants (100.0±0.00 %) 

produced callus. Green and white creamy in colour and soft watery structure of callus from 

leaf explant were then identified whether it is embryogenic or non embryogenic callus 

using double staining method. Embryogenic callus was stained in red and non embryogenic 

callus was stained in blue. Embryogenic callus was then subculture onto solid and liquid 

somatic embryos induction media. MS media supplemented with 2,4-D at concentration 2.5 

mg/l combine with 0.1 mg/l BAP is the best media, where an average of 26.67±0.42 

somatic embryos was obtained from 0.5 cm of embryogenic callus from liquid media and 

20.53±0.50
  
somatic embryos was form on solid media.  Globular, heart shape, torpedo and 

cotyledonary stage of somatic embryos were observed in this media. Somatic embryos were 

then transferred to regeneration media. A combination of 2.0 mg/l Kin with 2.0 mg/l NAA 
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yield the best shoot regeneration from somatic embryos, producing 26.23±0.74 number of 

microshoot. MS media supplemented with 0.5 mg/l Kin and 2.0 mg/l NAA is the most 

suitable media for root formation with 4.23±0.40 number of roots formation. Complete 

plantlets were then transferred to greenhouse. Plantlets response positively when 

acclimatized in garden soil (combination of black soil and red soil at ratio 2 to 1) with 

63.33±0.09
 
% of survival rate. 
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ABSTRAK 

 

Satu protokol yang efisien telah dihasilkan untuk regenerasi dan propagasi pesat 

pokok Polianthes tuberosa melalui proses pembentukan somatik embrio menggunakan 

eksplan daun, batang dan kudup bunga. Eksplan telah dikultur ke atas MS media yang 

ditambah dengan beberapa kombinasi dan kepekatan BAP dan NAA untuk menggalakkan 

pembentukan kalus. Eksplan daun yang dikultur dalam MS media yang dibekalkan 2.0 mg/l 

NAA adalah yang terbaik untuk menghasilkan kalus yang optimum. Dalam masa 5 bulan, 

peratus kalus yang terbentuk ialah 100.00 ± 0.00%. Eksplan batang mula menghasilkan 

kalus lebih awal (4 minggu) berbanding eksplan yang lain. 100.00 ± 0.00% eksplan batang 

menghasilkan kalus dalam media MS yang dibekalkan dengan 2.0 mg/l NAA, media MS 

yang dibekalkan dengan 3.0 mg/l NAA dan media MS yang dibekalkan dengan 0.5 mg/l 

BAP dikombinasikan dengan 2.0 mg/l NAA, Eksplan kudup bunga adalah sesuai bila 

dikultur ke atas media MS yang ditambah dengan 2.0 mg/l NAA dan media MS yang 

ditambah dengan 0.5 mg/l BAP dan 2.0 mg/l NAA. Semua explan (100.0±0.00 %) 

menghasilkan kalus. 100.0±0.00 % daripada explan batang menghasilkan kalus di atas 

media MS yang ditambah dengan 2.0 mg/l NAA, media MS yang ditambah dengan 3.0 

mg/l NAA dan media MS yang ditambah dengan 0.5 mg/l BAP dikombinasikan dengan 2.0 

mg/l NAA. Kalus yang bewarna putih kekuningan dan hijau serta mempunyai struktur yang 

lembut berair daripada eksplan daun dikenalpasti sama ada kalus tersebut embriogenik atau 

pun tidak menggunakan teknik pewarnaan berganda. Kalus embriogenik akan diwarnakan 

dengan warna merah dan kalus bukan embriogenik akan diwarnakan dengan warna biru. 

Selepas itu, kalus embriogenik di subkultur ke atas media penggalak pembentukan embrio 

somatik pepejal dan cecair. Media MS yang dibekalkan dengan 2.5 mg/l 2,4-D dan 0.1 mg/l 
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BAP adalah media yang terbaik, dimana 26.67±0.42 bilangan embrio somatik diperolehi 

daripada 0.5 cm kalus embriogenik dalam media cecair dan 20.53±0.50
  

bilangan
 
embrio 

somatik dalam media pepejal. Peringkat-peringkat pembentukan embrio somatik seperti 

‘globular’, ‘heart shape’, ‘torpedo’ dan ‘cotyledonary’ dapat diperhatikan dalam media ini. 

Embrio somatik kemudian dipindahkan ke dalam media regenerasi. Kombinasi antara 2.0 

mg/l Kin dengan 2.0 mg/l NAA menghasilkan regenerasi pucuk yang terbaik dari embrio 

somatik dengan menghasilkan 26.23±0.74 bilangan pucuk mikro. Media MS yang 

dibekalkan 0.5 mg/l Kin dan 2.0 g/l NAA adalah media yang paling sesuai untuk 

pembentukan akar dengan bilangan 4.23±0.40 akar. Plantlet kemudian dipindahkan ke 

rumah hijau. Plantlet memberi respon positif bila di aklimitasi pada tanah kebun (gabungan 

tanah hitam dan merah dengan nisbah 2 kepada 1) dengan 63.33±0.09
 

% kadar 

keterushidupan. 
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CHAPTER 1 

 INTRODUCTION AND LITERATURE REVIEW 

 

1.1 General Introduction 

 

1.1.1 Plant tissue culture  

Plant tissue culture includes all the aspects of the in vitro culture of cell, tissue and 

organ. According to Debergh and Read (1991), tissue culture is alternatively known as cell, 

tissue and organ culture through in vitro condition. Such tissue cultures have been used in 

five broad areas of research and application (Thorpe, 1990). These are studies on clonal 

propagation, cell behavior, secondary product formation, plant modification and 

development and production of pathogen free plants and germplasm storage. According to 

Dirr (1987), tissue culture has four potential applications, the production of natural 

products, genetic improvement of crops and germplasm storage, the production of disease 

free plants and rapid multiplication which offers the greatest significance to the commercial 

propagator.  

 

The history of plant tissue culture started in 1756 when Henry-Louise Duhamel du 

Monceau’s pioneering experiments on wounding healing plants demonstrated spontaneous 

callus formation on the decorticated region of elm plants. According to Gautheret (1985), 
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Henry-Louise Duhamel du Monceau’s studies could be considered a ‘foreword’ for the 

discovery of plant tissue culture.  

 

During 1838-1839, Schleiden and Schwann established the ‘Cell Theory’ which 

become the foundation of plant tissue and cell culture. In this theory, plantcell was 

described as the smallest biological unit, autonomic and capable of generating to give a 

complete plant. This theory was called totipotency theory. This cellular totipotency concept 

was than popularized by Virchow (1858) with his famous aphorism ‘every cell from a cell’. 

In 1878, Vochting was successful in dissecting plants into smaller and smaller fragments 

and keeping the fragment viable and growing.  

 

In year 1902, German Botanist Gottlieb Haberlandt developed the concept of in 

vitro cell culture. He was the first to culture isolated, fully differentiated cells in a nutrient 

medium containing glucose, peptone and Knop’s salt solution (Razdan, 1993). The first 

attempt by him was failed. His paper entitled ‘Experiment on the Culture of Isolated Plants 

Cells’ was set forth clearly the totipotency concept. Haberlandt was known as the father of 

tissue culture. 

  

Although the first attempts at initiating cultures of plant cells were made by 

Haberlandt at the turn of this century, it has only been during the last three decades that 

rapid developments in plant cell, tissue, and organ culture have occurred. In 1922, Kotte 

from Germany and Robbins from USA postulated that a true in vitro culture could be made 
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easier by using meristematic cells. White (1934), was the first that successfully to cultured 

excised roots. White used yeast extract in a medium containing inorganic salts and sucrose 

but later replaced yeast extract by pyridoxine, thiamine and nicotinic acid. This media later 

proved to be one of the basic media for the variety of cells and tissue culture (Razdan, 

1993). 

 

The discovery of plant hormone, make the true plant tissue culture was achieved. 

Snow, (1935), showed that IAA can stimulate cambial activity. Gautherat found that the 

addition of auxin enhanced the proliferation of his cambial cultures. In 1939, Gautherat in 

Paris, Nobecourt in Grenoble and White in Princeton independently succeeded in obtaining 

the first real plant tissue culture. Later on in 1948-1957, the discovery of various types of 

cytokinin helps in the tissue culture progression. Skoog and Miller (1957) published the 

study that clarified the interrelationship of auxin and cytokinins in the control of shoot and 

root regeneration. In 1962, Murashige and Skoog, published the formulation of new media 

known as MS medium. This media later on used by many researchers in tissue culture. 

Thus from here, rapid progression of tissue culture can be observed. Many plants can be 

regenerate through tissue culture technique using this media or modified media.  

 

Clonal propagation of plants refers to the production of genetically identical plants 

through nonsexual method. In vivo vegetative propagation has for many years played an 

important role in agriculture. The most widely used in vivo methods of cloning agricultural 

crops include cuttings of vegetative parts, layering, grafting and budding. This method 
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often fall short of the required which mean too slow, too difficult, too expensive or a 

completely impossible (Pierik, 1987).  

 

Clonal propagation through tissue culture (in vitro propagation) also called 

micropropagation is the alternative method to overcome this problem. It has now become 

possible to clone species by in vitro culture techniques that are impossible to clone in vivo. 

According to Tisserat (1995), the procedures of plant tissue culture have developed to such 

a level that any plant species can be regenerated in vitro through several methodologists. 

The list of plants that can be propagated in vitro is extensive and encompasses ornamental, 

woody, vegetable and crop species (Jonas and Karp, 1985). 

 

Micropropagation is an alternative method of vegetative propagation, which is well 

suited for multiplication of elite clones. It is accomplished by several means, i.e., 

multiplication of shoots from different explants such as shoots tips or axillary buds or direct 

formation of adventitious shoots or somatic embryos from tissues, organs or zygotic 

embryos. The goal of micropropagation is to obtain a large number of genetically and 

physiologically uniform plantlets (true to type) with high photosynthetic potential and able 

to survive the transfer to ex vitro conditions (Jeong et al., 1993; Solarova and Pospisilova, 

1997).  

 

There are 5 stages of micropropagation. Murashige, (1974) proposed three (i-iii) 

stages. Debergh and Maena, (1981) added first stage which is stage 0. This stage involves 
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the selection and preparation of the starting materials. According to Debergh and Maena, 

(1981) this stage is important and crucial in order to ensure the starting materials are free 

from contaminants. Second stage is initiation of the culture. This stage involves the shoot 

multiplication. Usually plant growth hormones are used. Roots induction from the shoots 

involve in stage 3. Stage 4 is hardening process which is involving acclimatization of the in 

vitro regenerated plantlet. This stage is carried out under green house environment or 

plantlets were transferred to the soil.  

 

In vitro propagation is the same as multiplication of plants from vegetative parts 

except that plants are produced by culturing explants (small pieces of leaf, stem, flower, 

embryo, cotyledon and axillary bud) on medium instead of soil under aseptic conditions. 

All the instruments use also must be sterile. Micropropagation has many advantages over 

conventional method of vegetative propagation which suffer from several limitations 

(Nehra and Kartha, 1994).  

 

To propagate plants in vitro, it is necessary that they are capable of regeneration. 

According to Vasil and Vasil (1972), plant cell and tissue culture have two important 

characteristics which are the ability to regenerate normal adult plant from single cells or 

group or highly specialized cells and in many cases to recapitulate various stages of cell 

division, differentiation and morphogenesis undergone by the zygote after normal gametic 

fusion.  
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Morphogenesis refers to the development of organs (shoots, roots or flowers) and 

overall plant shape and structure. Plant morphogenesis in vitro can be achieved via two 

pathways, organogenesis or somatic embryogenesis. In plants, differentiated of somatic 

cells reinitiated the ontogenic programme: when given the proper stimuli, they develop into 

adventitious meristem (De Klerk, 2003). Adventitious meristem will generate adventitious 

roots, adventitious shoots and embryo.  The formation of adventitious shoots and 

adventitious roots is referred as organogenesis and the formation of embryo from somatic 

cells is referred as somatic embryogenesis.   

 

There are three phases of organogenesis. According to Sugiyama (1999), in the first 

phase, cells in the explants acquire ‘competence’ which is defined as the ability (not 

capacity) to respond to hormonal signals of organ induction. This process of acquisition of 

organogenic competence is referred to as dedefferentiation. Through the second phase, the 

competence cells in cultured explants are canalized and determined for specific organ 

formation under the influence of the phytohormone (hormone like substances). During the 

third phase, the morphogenesis proceeds independently of the exogenously supplied 

hormone.   

 

The concept of hormonal control of organ formation was proposed by Skoog and 

Miller (1957).  In their experiment, they found that bud and root initiation were controled 

by a balance between auxin and cytokinins. High concentration of auxin promoted the 

formation of roots while high concentration of cytokinins promote bud and shoots 

formation. Gibberallin and abscisic acid in the medium are also reported to inhibit roots 
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formation. Auxins, cytokinins and auxin cytokinins interaction are usually considered to be 

the most important for regulating growth and organized development in plant tissue and 

organ cultures as these two classes of hormones are generally required (Evans et al., 1981; 

Vasil and Thorp, 1994). 

 

Organogenesis can occur directly or indirectly. In direct organogenesis, plant organs 

such as shoots and roots were formed directly from the explants cultured whereas in 

indirect organogenesis, plant organ were formed from callus.   

 

Callus is a mass of unorganized cell. According to Pierik, (1987) callus is an 

actively dividing non-organized tissue of undifferentiated and differentiated cells often 

developing from injury (wounding) or in tissue culture. The process of callus formation is 

known as callogenesis. Callus can be subdivided by random dissection or by placing in a 

homogeniser to produce many thousands of propagules in a single operation. Each 

propagule can be used in mass propagation of multiple shoots. The production of many 

thousands of plantlets from callus either derived from cell suspension or isolated protoplast 

constitutes unique cases of cloning such as calliclones and protoclones (Razdan, 1993). 

Calliclones are variants selected in tissue culture from callus culture (Skirvin, 1978). Such 

clones commonly exhibit somaclonal variation.   

 

 An exogenous supply of plant growth regulators is often recommended to initiate 

callus formation on explant. Callus can be used for regeneration of organs and somatic 



8 

 

embryos. There are two types of callus which is embryogenic callus and non embryogenic 

callus. Embryogenic callus have the potential to regenerate the formation of somatic 

embryo and can be induce to regenerate a whole plant under appropriate conditions. Non 

embryogenic callus will die after sometimes in culture. 

 

  Suspension culture or liquid culture is used to produce more callus. Liquid cultures  

provide a system for rapid growth and multiplication of plants in vitro, reduce labor- 

intensive manipulation required for media replenishment and propagules transfer and 

facilitate scaling- up of the culture systems (Ammirato and Styer, 1985; Ziv, 1989, 1992; 

Ilan et al., 1995). This suspension cultures can be started either from compact or from 

friable callus. Friable callus which is soft and highly embryogenic is regarded as the best 

source for initiating a fast growing suspension culture (Remotti, 1995). Phillips et al., 

(1995) quoted that the first step towards de novo regeneration is to establish callus or 

suspension culture. Cell in suspension cultures receive more homogeneous stimuli in a 

defined medium supplemented with the requisite amount of inducers such as sugar or auxin 

(Razdan, 1993).  

 

Somatic embryogenesis is defined as the process in which bipolar structure arises 

through a series of stages characteristic for zygotic embryo development and having no 

vascular connection with the parental tissue (Ammirato, 1987; Sharp et al., 1980; Terzi and 

Loschiavo, 1990 and Raemakers et al., 1995). These bipolar embryos also called 

embryoids. Somatic embryogenesis was first induced in suspension culture (Stewart et al., 

1958) and in callus culture (Reinert, 1959) of carrot.  
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There are two types of somatic embryogenesis which are direct somatic 

embryogenesis and indirect somatic embryogenesis. The term ‘direct’ somatic 

embryogenesis is applied to explants that undergo a minimum proliferation before forming 

somatic embryos, whereas ‘indirect’ somatic embryogenesis refers to explants which 

undergo an extensive proliferation before the development of somatic embryos (Sharp et al, 

1980). Yeung (1995) suggested that in direct somatic embryogenesis, embryogenic cells a 

present and simply require favorable conditions for embryo development, while indirect 

embryogenesis requires the re-determination of differentiated cells. Evans et al (1981) also 

distinguished direct and indirect somatic embryogenesis. According to him, direct somatic 

embryogenesis proceeds from already pre-embryonic determined cells and indirect somatic 

embryogenesis from cell which require redifferentiation before they can express 

embryogenic competence. 

 

Cells capable of direct somatic embryogenesis are physiologically similar to those 

in zygotic embryos. They are frequently found in tissue before the onset of embryogenesis 

(i.e. in the flower organ) or in the developing zygotic embryo (Reamakers, 1995). In these 

cells the genes necessary for zygotic embryogenesis are active in varying degrees (Carman, 

1990; Sharp et al., 1980). 

 

In indirect somatic embryogenesis, callus formation precedes the formation of 

embryos. In most cases, somatic embryos develop up to pre-embryogenic masses (PEM’s) 

or globular embryos, without differentiation into organs before they are subjected to 
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secondary embryogenesis. According to Raven and Johnson (2001), the globular somatic 

embryo will later turn into heart and torpedo shaped somatic embryos before converting to 

cotyledon and finally form shoots and further develops into new plants. 

 

Direct and indirect should be considered as two extremes of a continuum (Carman, 

1990; Wann, 1988; William and Maheswaran, 1986). It is not always clear which types 

occurs or both direct and indirect can be observed. Emonds (1994) argued that in many 

systems where embryogenesis has been described as indirect, the embryogenic callus is 

organized in young embryos (pre-embryogenic masses or (pre-) globular embryos) and that 

the type of embryogenesis is applied. If that period of embryogenesis is short the process 

will be direct and if it is long than the process will be indirect (Reamakers, et al., 1995). 

 

All somatic cells within a plant contain the entire set of genetic information 

necessary to create a complete and functional plant. The induction of somatic 

embryogenesis consist of the termination of the existing gene expression pattern in explant 

tissue, and its replacement with an embryogenic gene expression program in those cells of 

the explant tissue which will give rise to somatic embryogenesis (Merkle, et al.,1995). A 

treatment with the ability to down regulate gene expression can stimulate somatic 

embryogenesis.  

 

One possible mechanism to down regulate gene expression is DNA methylation, 

which has been found in study to correlate with the amount of exogenous auxin.  The 
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effects of cytokinins in the somatic embryogenesis usually negative effects. High 

endogenous of cytokinins levels in leaves tissue have associated with lack an embryogenic 

response in both napier grass and orchard grass (Ling et al., 1989; Ranga Swamy, 1961). 

The frequency of embryogenesis is decrease when a cytokinin is used in conjunction with 

an auxin (Kochba et al., 1972; Raj Bhansali and Arya, 1977; Dhillon et al., 1989). 

 

Somatic embryogenesis is the most promising technique for plant multiplication, 

because of its high proliferation potential and the fact that the risk of chimeric plant 

development in this case can minimize or eliminated (Stefaniak, 1994). Direct somatic 

embryogenesis has a lower probability of genetic variation than embryos from intervening 

callus (Kim et al., 2003) because maintenance of a callus for prolonged period in vitro 

results in greater genetic variability (Lloyd et al., 1998; Arene et al., 1993). When plant 

occurs via somatic embryogenesis it has several advantages such as the probable single cell 

origin of the regenerated plants and the high rate of plant regenerated, even from long term 

cultures (Vasil, 1983). 

 

There are advantages and disadvantages of somatic embryogenesis in large scale 

plant multiplication (Jain, 2002). According to Rout et al., (2006), the major advantages are 

large scale somatic embryo production in bioreactors, encapsulation, cryopreservation, 

genetic transformation and clonal propagation and the major limitation are genotype 

dependence of somatic embryo production and poor germination rate. 
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Somatic embryogenesis can be coated with synthetic gel to produce synthetic seed 

or artificial seed. Synthetic seed technology has advanced quite dramatically in recent years 

since the first description of systems which be used to clonally propagate plants using 

somatic embryos (Kitto and Janick, 1980; Redenbaugh et al., 1984; Kitto and Janick, 1985; 

Mc Kersie et al., 1989). Artificially encapsulated somatic embryogenesis can be sown 

under in vitro or ex conditions, producing uniform clones (Aitken et al., 1995).  

 

One prerequisite for the application of synthetic seed technology in 

micropropagation is the production of high quality, vigorous somatic embryos that can 

produce plants with frequencies comparable to natural seed. Standardi and Piccioni, (1998) 

reported other than synthetic seed from somatic embryo there are advance in using non 

embryogenic (unipolar) structures for encapsulation as synthetic seed. There seems to be a 

lower risk of somaclonal variation using unipolar structures such as microbulbs, 

microtubers, rhizomes, corms, shoots or nodes containing either apical or axillary buds, 

meristemoid and bud primodia for encapsulation, and the synthetic seed technology can be 

extended to a wider variety of genotypes (Phillips, 2004). 

 

According to Razdan (1993), the practical applications of plant tissue culture 

technology are based on advancement made in the areas of morphology, biochemistry, 

pathology and genetics. In areas of biochemistry, plant tissue culture technology also 

involved in production of secondary metabolites. It has been clearly demonstrated that 

secondary metabolites play a major role in the adaptation of plants to their environment. 

They have been described as being antibiotic, antifungal and antiviral thus therefore able to 
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protect plants from pathogen (phytoalexin) and also anti germinative or toxic for other 

plants (Bourgaud et al., 2001).  

 

The last two decades have witnessed a dramatic rise in the incidence of life 

threatening systemic fungal infection. The majority of clinically used antifungal have 

various drawbacks in terms of toxicity, efficacy and cost and their frequent use has led to 

the emergency of resistance strains. One approach might be used to overcome this problem 

is testing of plants traditionally used for their antifungal activities as potential source for 

drug development. There are many studies shows plants extract have antifungal activities. 

Muschietti et al. (2005) investigate on methanol extracts from eleven traditionally 

medicinal plants for antifungal against yeast, hialohypomycetes as well as dermatophyte 

and the plant that most effected the yeast growth are Eupatorium bunifolium and 

Terminalia triflora. 

 

Plant secondary metabolites usually classified according to their biosynthetic 

pathway (Harborne, 1999). Three large molecule families are generally considered: 

phenolics, terpenes and steroids and alkaloids (Bourgaud et al., 2001). Phenolics compound 

is a widespread metabolite family in plant.  

 

Most valuable phytochemicals are product of plant secondary metabolism (Nehra, 

1993). Due to their large biological activities, plant secondary metabolites have been used 

for centuries in traditional medicine. Even today, the World Health Organization estimates 
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that up to 80% of people still rely mainly on traditional remedies such as herbs for their 

medicine (Tripathi and Tripathi, 2003). There are surveys that in westerns countries, where 

chemistry is the backbone of the pharmaceutical industry, 25% of the molecules used are of 

natural plant origin (Payne et al., 1991). It is estimated that approximately one quarter of 

prescribed drugs contain plants extracts or active ingredients obtained from or modeled on 

plant substances (Tripathi and Tripathi, 2003). The most popular analgesic, aspirin was 

originally derived from species of Salix and Spiraea and some of the most valuable anti-

cancer agents such as paclitaxel and viblastine are derived solely from plant source 

(Katzung, 1995; Taxol, 1996; Roberts, 1988).  

 

The production of secondary metabolite in vitro can be possible through plant cell 

culture (Barzn and Ellis, 1981; Deus and Zenk, 1982). According to Razdan (1993), the 

industrial production of secondary metabolites was initiated during the period 1950-1960 

by the Pzifer Company with the assistance of Nickell, a distinguished expert in tissue 

culture. Zenk, (1978) established the successful of cell lines capable of producing high 

yields of secondary compounds in cell suspension cultures. Cephaelin and emetine 

(alkaloids) were isolated from callus cultures of Cephaelis ipecacuanha (Jha, 1988). 

According to Kanetkar et al., (2006) in vitro developed callus tends to produce various 

active compounds, including gymnemic acid and gymnemaganin. Srividya et al., (1998) 

compared the production of azadirachtin and nimbin in vivo and in vitro. They found that 

the production of azadirachtin and nimbin has been shown to be higher in cultured shoots 

and roots of Azadirachta indica compared to field grown plant. 
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Nowadays, bioreactor is used in the large scale production of economical secondary 

metabolite. Bioreactors have several advantages for mass propagation of plants. It gives 

better control for scale up of cell suspension cultures under defined parameters for the 

production of bioactive compounds and large number of plantlets are easily produce and 

can be scale up (Tripathi and Tripathi, 2003). Bioreactor offer optimal conditions for large 

scale plant production for commercial manufacture (Hahn et al., 2003). The bioreactor also 

has been applied for embryogenic and organogenic cultures of several plant species (Levin 

et al., 1988; Preil et al., 1988). 

 

1.1.2 Medium selection and preparation 

Minerals play an important role in the regulation of plant morphogenesis and 

growth. Successful plant tissue culture depends on the choice of nutrient medium 

(Gamborg et al., 1976). The cells of most plant species can be grown on completely defined 

medium. MS (Murashige and Skoog, 1962) media is the widely use media for tissue 

culture. According to Gamborg and Phillips (1995), MS medium is among the best media 

for plant regeneration for most species. LS (Linsmaier and Skoog, 1965) medium contains 

the same salt composition as MS. Nowadays, there are numerous media in use such as B5 

(Gamborg et al.,1968), NN (Nitsch and Nitsch, 1969), N6 (Chu et al., 1975), McCown 

woody plant (Lloyd and McCown, 1980) and DKW/Juglans (Driver and Kuniyuki, 1984). 

 

Most of all the plant tissue culture media contained inorganic nutrient consist of 

macronutrients and micronutrients, organic nutrient, carbon source, gelling agent and plant 

growth regulators. Mineral elements that required by plants in concentration which is 
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greater than 0.5 mmol l
-1 

are referred to as macronutrients and those less than 0.005 mmol l
-

1 
as micronutrients. Macronutrients contained include six major elements: nitrogen (N), 

phosphorus (P), potassium (K), calcium (Ca), Magnesium (Mg) and sulphur (S). 

Micronutrients contained iron (Fe), manganese (Mn), zinc (Zn), boron (B), copper (Cu), 

molybdenum (Mo), cobalt (Co), iodine (I) and sodium (Na).  

 

Macronutrients and micronutrients are the essential mineral for tissue culture media. 

To be classified as essential the mineral must fulfill the following criteria: (1) an obligatory 

requirement for normal growth and reproduction; (2) it is not possible to replace the 

mineral with another mineral or substance; (3) have a direct or indirect role in plant 

metabolism (Arnon and Stout, 1939). Macronutrients are important components of 

macromolecules such as protein and nucleic acids as well as constituents of many small 

molecules (Carl and Richard, 2002).  

 

Micronutrients are required in much smaller quantities than macronutrients and 

function in various roles such as enzymes cofactors or components of electron transport 

protein (Marschner, 1995). Organic nutrients that usually added into the media are 

vitamins, amino acids, activated charcoal, antibiotics and other organic supplements like 

protein (casein) hydrolysates, coconut milk, yeast and malt extracts, ground banana, orange 

juice and tomato juice.  
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Vitamins are added in small quantities into the tissue culture media to achieve the 

best growth of the tissue. Vitamins like myoinositol, Thiamin (B1), Nicotinic acid (B3), and 

Pyridoxine (B6) usually used in tissue culture. Thiamine is the basic vitamin required by all 

cells and tissue (Razdan, 1993). Most plants are able to synthesize vitamins in vitro. Amino 

acid is important for stimulating cell growth. Amino acids added singly prove inhibitory to 

cell growth while their mixtures are frequently beneficial (Razdan, 1993). Supplemented 

the medium with adenine sulphate can stimulate cell growth. Skoog and Tsui, (1948) was 

the first scientist used adenine in the tobacco tissue culture. Adenine can stimulate the 

adventitious shoot formation. 

 

Sometimes activated charcoal was added in tissue culture media to stimulate growth 

and differentiation. Studies were reported on orchids, tomato, ivy and carrot. Activated 

charcoal also helps to reduce toxicity by removing toxic compounds like phenolic 

compounds produced during the culture and permits unhindered cell growth.  

 

Hormones are organic compounds naturally synthesized in higher plants, which 

influence growth and development. Plant hormones have also been referred to as 

phytohormones though this term is seldom used. Synthetic compounds have been 

developed which correspond to the natural one. Auxin, cytokinins, gibberellins and abscisic 

acid are the most important hormones use in tissue culture.  
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Auxins usually added into the media to induce root formation. There are various 

kinds of auxins: 1 naphthaleneacetic acids (NAA), 1H-indole-acetic acid (IAA), 1H-indole-

3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D). IAA is the main auxin in 

most plant. Auxin usually cause cell elongation and swelling of tissues, cell division (callus 

formation) and the formation of adventitious roots and the inhibition of adventitious and 

axillary shoots formation, often embryogenesis. Commonly used synthetic auxin in tissue 

culture are IAA, IBA (tend to denatured in media and rapidly metabolized within plant 

tissue), 2,4-D (often used for callus induction and suspension culture), and NAA (when 

organogenesis is required). Among others, dicamba (3,6-dichloro-o-asinic acid) and 

picloram (4-amino-3,5,6-trichloropyridine-2-carboxylic acid) are often effective in 

inducing the formation of embryogenic tissue or in maintaining suspension cultures (Gray 

and Conger, 1985; Hagen et al., 1991). BSAA (benzo(b)selenienyl-3-) acetic acid) is 

another synthetic auxin with powerful auxin like activities (Lamproye et al., 1990; Gasper, 

1995). In several systems, auxin, particularly at high concentration is inhibitory. With low 

auxin concentrations, adventitious roots formation is predominates whereas with high auxin 

concentrations root formation fail to occur and callus formation takes places (Pierik, 1987).  

 

Cytokinins are adenine derivatives which are often used to stimulate cell division, 

modification of apical dominance and shoots dedifferentiation in the tissue culture. The 

most common use cytokinins in tissue culture are the substituted purines, BAP (6-

benzylaminopurine) or BA (6-benzyladenine) and kinetin (N-1-H-purine-6-amine). 

Adenine, adenosine and adenylic acid may have the cytokinin activity although less than 

that of the cytokinins (Gaspar et al., 1996). Adenine can be used to bring about or reinforce 

response normally attributed to cytokinin action. In higher concentration (1-10 mg/l) 
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adenine can induce adventitious shoot formation but root formation is generally inhibited 

(Pierik, 1987). The ratio of auxin and cytokinin is important with respect to morphogenesis 

in tissue culture system. For embryogenesis, callus initiation and root initiation the requisite 

ratio of auxins to cytokinin is high while the reverse leads to axillary and shoot 

proliferation (Razdan, 1993).  

 

Gibberellins usually used to promote the growth of cell culture, enhanced callus 

growth and induced dwarf of stunted plantlets to elongate. Gibberellins also break 

dormancy of isolated embryos or seeds and inhibit adventitious roots formation. 

Gibberallins are a family of compounds based on the ent-gibberellane structure. The most 

widely available compounds is gibberellic acid, GA3 which is a fungal product. The most 

important gibberellins in plant is GA1, which is the gibberellins primarily responsible for 

stem elongation. GA3 is the most commonly used gibberellins in tissue culture. Gibberellins 

have numerous interactions with other hormones. Gibberellins induced α-amylase activity 

is antagonized by ABA. Ethylene blocks promote the stem response to Gibberellins. 

Gibberellins antagonized the senescence promoting effect of ABA and in leaves and petals. 

 

Abcisic acid (ABA) is a single compounds used in the tissue culture medium to 

promote callus growth. ABA is synthesized from mevalonic acid in roots and mature 

leaves, particularly in response to water stress. ABA is exported from roots in the xylem 

and from leaves in the phloem. ABA is often regarded as being an inhibitor, as it 

maintaines bud and seed dormancy, inhibits auxin-promoted cell wall acidification 

loosening and slows cell elongation. In tissue culture, at low concentration ABA can effect 
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callus growth and organogenesis. Some ABA is essential for the maturation and normal 

growth of somatic embryos and only in its presence do they closely resemble zygotic 

embryos in their morphological and biochemical development (Roberts et al., 1990; Rock 

and Quatrano, 1995). Other plant hormones that usually used in tissue culture are ethylene, 

polyamines, jasmonates, oligosaccharins and salicylates. 

 

Gelling agent is added into the media to prepare solid or semisolid media. Agar, 

gelrite, alginate, phytagel and methacel can be used as a gelling agent. Agar, a 

polysaccharide obtained from seaweed used in most nutrient media. Agar has several 

advantages over other gelling agent. Agar does not react with media constituent and agar is 

not digested by plant enzyme and remains stable at all feasible incubation temperature. 

 

Sugar usually sucrose also was added into the media as an energy source for in vitro 

growth and development. Sugar is important in tissue culture because photosynthesis is 

insufficient, due to growth taking place in conditions unsuitable for photosynthesis or 

without photosynthesis. Sugar also used to maintain the osmolarity of the culture medium. 

According to Pierik (1987), it is striking that a high sugar concentration is needed for 

adventitious root formation, especially in the case of woody plants. 

 

Plant cells and tissue need optimum pH for growth and development. pH can affect 

the ions uptake of the cell. pH that suitable for tissue culture for most of the plants is 
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around 5.00-6.00. pH higher than 6.00  is likely to give hard medium while a low pH result 

in unsatisfactory solidification of the agar. 

 

1.1.3   Incubation and culture conditions 

Environmental factors have great influence to the process of differentiation and 

growth of tissue in cultures. All cultures must be kept in a room which light, temperature, 

air circulation and humidity that can be controled. According to Peirik (1987), it is 

extremely difficult to indicate whether a particular culture should be grown in the light or 

the dark, at high or low temperature but the best to choose is those light and temperature 

conditions that are the best for the growth and development of the experimental material in 

vivo.  

 

A diurnal illumination of 16 hours day and 8 hours night is generally found 

satisfactory for multiplication and proliferation of shoots although there are exceptions such 

as cauliflower which require 9 hours daylight regimes (Razdan, 1993). In most cultures, the 

temperature is maintaining around 25ºC. The optimal temperature for in vitro growth and 

development is generally 3-4 ºC higher than in vivo (Peirik, 1987).  

 

The volume of culture container also can affect the growth. The volume of the 

culture container can affect the constitution of the gas phase within the culture vessel. 

Ethylene, oxygen, carbon dioxide, ethanol and acetaledehyde  are metabolically active 



22 

 

gases with possible effects on morphogenesis and may promote unorganized growth of cell 

(Razdan, 1993). 

 

1.1.4 Acclimatization 

Micropropagation on large scale can be successful only when plants after transfer 

from culture to the soil show high survival rates and the cost involved in the process is low 

(Razdan, 1993). After in vitro rooting stages plants are transfer to the soil. This transfer 

process were done step by step. Environmental condition for ex vitro growth is quite 

different from those used for in vitro cultivation (Kozai et al., 1997; Hazarika, 2006).  

 

In vitro acclimatization is one of the key factors in producing healthy plantlets 

before they are transplanted to ex vitro conditions (Pospisilova et al., 1999; Hazarika, 

2003). Kozai et al. (1990) suggested increasing in photosynthetic efficiency of in vitro 

plantlets would be helpful during acclimatization to ex vitro conditions. Humidity and 

temperature play important roles in the growth and development of plantlets metabolism 

during acclimatization (Jeon et al., 2006). Kranz (1996) and Remigio et al. (2003) stated 

that high humidity often causes shoot elongation and increase fresh weight and leaf area. 

High humidity can be built up around transplanted plants by covering them with clean 

transparent plastic bags having a small hole for air circulation (Razdan, 1993).  
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1.1.5 Different types of plant tissue culture 

Every part of plant that undergoes dedeferentiation can be used for tissue culture. 

Organ (Leaf, stem, flower), meristem, embryo, anther, ovary, ovul and endosperme can be 

used as explants. Meristem culture was used to obtain virus free plants and it is the best 

mean to produce a large numbers of plants in a short span of time. Quak, (1966) suggested 

that the absence of vascular elements in the meristem greatly hinders the transport of virus 

particle. Shoot apex culture methods leading to plant regeneration have also been adopted 

for plant propagation and production of virus free plant.   

 

Zygotic embryo culture is an aseptic isolation and growth of sexually produced 

immature or mature embryos in vitro with the objective of obtaining viable plant. There are 

two types of embryo cultures which are culture of immature embryos and culture of mature 

embryos. Immature embryo is originating from unripe seed and mature embryo derives 

from ripe seed. Tukey (1933a,b), succeeded in getting normal plants from thousands of 

abortive embryos of early ripening cultivars of different stone fruits. 

 

Anther culture was used to produce haploid plant (Tsay et al., 1992) and partially 

sterile diploid plant (Woo and Su, 1975; Mok and Wu, 1976; Hsu, 1978; Chung, 1987; 

Zhang, 1989). Kameya and Hinata (1970) is the first scientist to report on the tissue 

formation from isolated pollen of an angiosperm. Peirik, (1987) summarized that most of 

the haploid plants which are obtained in vitro have arisen from isolated anthers or 

sometimes from pollen.   
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Ovary culture often use for embryo rescue, when the embryo culture and ovule 

culture fail or not feasible due to very small ovules. Ovary culture also use for in vitro 

pollination and fertilization. In vitro pollination is the process of seed formation following 

stigmatic pollination of cultured whole pistils (Bhojwani and Razdan, 1983). The technique 

of ovary culture was developed by Nitsch (1951) who successfully reared ovaries of 

Cucumis and Lycopersicon excised from pollinated flowers in vitro to develop into mature 

fruits. Ovary culture can be used to produce haploid and diploid plant.  

 

Ovule culture usually prefer when embryo aborts very early and embryo culture is 

not possible due to difficulty of its excision at very early stage. Haploid plant also can be 

produce using ovule culture. Haploids provide a relatively easier system for the induction 

of mutation; therefore they can be employed in rapid selection of mutants having traits for 

disease resistance (Razdan, 1993).  

 

The function of endosperm tissue is to store reserve food substance for seed 

germination and growth. Endosperm is regarded as the second embryo due to the lacks of 

any organogenic or vascular differentiation. During the last few decades the technique of 

endosperm culture has been applied to raise triploid plantlets which have a significant role 

in plant improvement (Razdan, 1993). Regeneration of plant from endosperm tissue 

provides an easy and direct approach to triploid production (Bhojwani and Razdan, 1996). 

Triploid plants are useful for production of seedless fruits like watermelon without seeds 

and for the production of trisomics for cytogenetic studies.  
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1.1.6 Genetic stability in micropropagated plant 

Plant regeneration isolated from tissue culture could have substantial application in 

agriculture. Plants regenerated from populations of single cell may retain all the essential 

characters of a cultivar or clone but selectively alter undesirable traits. Heredity variations 

can be observed in cell colonies or plants regenerated in vitro which may later express at 

the time of vegetative multiplication or sexual reproduction (Razdan, 1993).  

 

One of the important aspects of plant breeding is for selection and introduction of 

better trait qualities in existing crop species. The example heredity variations are haploid, 

triploid and polyploidy plant production. Plant pathogen or insect attacks have become a 

great problem in agricultural. To overcome this problem, tissue culture technique for 

produce virus free plant and plant that resistance to antibiotic and insect attack were 

introduce. 

 

Somaclonal variation involves all forms of variation among regenerated plants 

derived from tissue culture (Larkin and Scowcroft, 1981; Jain et al., 1998; Jain and De 

Klerk, 1998), such as: i) physical and morphological changes in undifferentiated callus; ii) 

differences in the ability to organize and form organs in vitro; iii) changes manifested 

among differentiated plants and chromosomal changes. 

 

 

 



26 

 

1.1.7 Advantages of Plant tissue culture  

Micropropagation can create a large number of clones from a single seed or explant. 

It can produce many copies of the same plants then which may be used to produce plants 

with better flowers, odors, fruits or any other properties of the plants that are beneficial to 

the human beings. 

 

  It is easy to select desirable traits directly from the in vitro culture. Protoplast fusion 

is one of the methods, offers the potential of combining genomes that cannot be combined 

sexually and combination of genomes in different ways (Evans, 1983). Mutant and 

somaclonal variants will be exploited and changes in flower colour or growth habit can 

result in novel varieties (Jones, 1976). Mutants may also contribute in genetic engineering 

by identifying important genes, provide marker genes and recipients for gene transfer or 

increase knowledge for plant functioning (Bright et al., 1985).  

 

  Tissue culture technique can help in eliminating plant diseases through careful stock 

selection and sterile techniques. Viruses can be eliminated through in vitro culture by 

excision and culture of small meristematic parts of plants such as shoot tips which are 

usually protected and free from infection. Usually in plant tissue culture, the starting 

materials or source of explant were selected from healthy mother plant and sometimes 

combined with heat or chemical treatment. 

 



27 

 

  The time required is much shortened, no need to wait for the whole life cycle of 

seed development. For species that have long generation time, low levels of seed 

production, or seeds that do not readily germinate, rapid propagation is possible. It 

overcomes seasonal restrictions for seed germination. To produce plants anytime we want 

although the climates are not appropriate to produce a plant. It enables the preservation of 

pollen and cell collections form which plants may be propagated (like a seed bank). It 

allows for the international exchange of sterilized plant materials (eliminating the need for 

quarantine.) It enables cold storage of large numbers of viable plants in a small space. 

   

  Tissue culture technique very useful solution for the prevention of starvation in third 

world countries since the process is highly efficient, by using only one plant, it is possible 

to produce more than one thousand of the same plant with higher productive if its genome 

changed. 

 

1.1.8 Disadvantages of Tissue Culture 

  If large scale production is being thinking, the costs of the equipment and labour are 

very expensive. The procedure is very variable and it depends on the type of the species so 

sometimes it needs trial-and-error type of experiments if there is not any review about that 

species. The procedure needs special attention and diligently done observation. There may 

be error in the identity of the organisms after culture. 
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1.2 General Description of Polianthes tuberosa L.                 

 

1.2.1 History of Polianthes tuberosa  L.                                                                                                                                                              

Polianthes tuberosa L. is a well known ornamental plant because of its floral scent 

that is described as a complex, exotic and hypnotic sweet. Most flowers begin to lose their 

scent when they are picked but not so with tuberose, the flower scent continues to produce 

itself like jasmine. The tuberose is a night blooming plant. The flowers have a mild 

fragrance during the day and a strong fragrance at night.  

 

Polianthes tuberosa L. is a flower with centuries of romantic history. The legend of 

Polianthes tuberosa L. in France warns that young girls should not breathe in its fragrance; 

for fear that it would put them in a romantic mood. In India, Polianthes tuberosa L. is 

known as “raat ki rani” which is means queen of the night for the similar reason. In parts of 

South India, it is known as "Sugandaraja", which translates to "king of fragrance/smell". In 

Persian, it is called “Maryam” and is a popular name of girls. In Cuba, it is called 

“azucena” which is the name given to amaryllis in Mexico. In Indonesia, it is called “bunga 

harum sedap malam” which means fragrant night flower. In Singapore it is called “Ye Lai 

Xiang”, which means "fragrance that comes at night" in Mandarin. In Malaysia we have 

known it as “bunga harum sundal malam”. In Hawaii it was used traditionally for wedding 

ceremony. Bride wears a wreath of Polianthes tuberosa L. and pikaki flowers around the 

head called “a haku”. This costume is still popular until today. In the Mekong Delta of 

Vietnam, Polianthes tuberosa L. is today a symbol of purity and spirituality and is grown 

http://en.wikipedia.org/wiki/Singapore
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commercially for cut flowers used in temples and pagodas in the worship of ancestors 

during weddings or funerals (Nguyen and Marc, 2007). 

 

Polianthes tuberosa L. is endemic to Mexico and surrounding countries. The 

Aztects called it as “Omixochiltl” or bone flower from the words “omitl”, bone and 

“xocitl”, flower. In Mexico today one also hears the names “nardo”, “azucena”, “amole” 

and “amigo de noche” applied to the white Polianthes tuberosa L. sold in the Indian 

markets of Mexico city, neighbouring towns and especially in and near Guadalajara where 

these flowers are cultivated extensively (Emily, 1973). Da Oarta, (1908) reported that in the 

early 16
th

 century Polianthes tuberosa L. was one of costly items which the Portuguese 

merchants brought from India following the route of their early from the Cape of Good 

Hope. 

 

Now this plant grows over much of tropical and temperate world.  De Hertogh and 

Le Nard, (1993) stated that this plant was cultivated in tropical and subtropical regions. The 

cultivation of tuberose usually in Morocco, the Cameron Island, France, Hawaii, South 

Africa, India and China. Polianthes tuberosa L. is cultivated on large scale in France, Italy, 

South Africa, North Carolina in USA and many tropical and subtropical India. In India the 

commercial cultivation of tuberose in confined mainly to west Bengal, Karnataka, 

Maharashtra, Tamil Nadu and Uttar Pradesh. 
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1.2.2 Classification and Nomenclature  

Kingdom : Plantae 

Division : Magnoliophyta 

Class  : Liliopsida 

Subclass : Liliidae 

Order  : Amaryllidales 

Family  : Agavaceae 

Subfamily : Agavoideae 

Genus  : Polianthes 

Species : tuberosa 

Name  : Polianthes tuberosa L. 

 

Polianthes tuberosa L. is a perennial plant belonging to the family Agavaceae. The 

genus of Polianthes consists of 14 species, 3 varieties and 2 cultivars (Solano and Feria, 

2007). Most species in this genus are used for ornamental and ceremonial purposes. The 

example of species are P. bicolor, P. densiflora, P. geminiflora, P. howardii, P.logiflora, P. 

montana, P. multicolor, P. palustris, P. sessiliflora and P. venustaliflora. The best known 

taxon is Polianthes tuberosa L., which has been cultivated and used for medicinal, 

ornamental and ceremonial practices since prehispanic times (Solano and Feria, 2007).  
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Species of P. tuberosa L. have been recorded in 18 Mexican states, where most 

occur in pine forest, oak forest or pine oak forest, some in grassland and a few tropical dry 

or semidecidous forest or pine oak forest (Solano, 2000). Five species of Polianthes which 

are P. densiflora, P. howardii, P. logiflora, P. palustris and P. platyphylla are listed by 

IUCN (IUCN, 1997) and are considered to be in the category of special protection 

according to Mexican Law (SEMARNA, 2002). 

 

1.2.3 Morphological Description of Polianthes tuberosa L. 

Polianthes tuberosa is an herbaceous species consist of grass like leaves arising 

from underground tuberose structure produce offsets that result in small clump of leaves. It 

is a half hardy, bulbous perennial perpetuating itself through the bulblets. Although some 

different botanical terms such as tuberose rhizome and tuberose rootstock have been 

suggested for the underground storage of this flower, practically is called bulb (Bryan, 

1989). Bulbs are made up of scales and leaf base and the stem is condensed structure which 

remains concealed within scales. Roots are adventitious and shallow. 

 

This plant can reach about 30 to 46 cm tall. It has dull green leaves often with slight 

reddish cast, thin, linear and slightly succulent. These leaves are borne in sets of six arising 

from the tuber. Usually leaves length are between 30 and 50 cm long. The inflorescence is a 

spike which is 3 to 4 meter tall. This spike produce clusters of waxy pure white flowers on 

the upper part of the stalk. There are some 20 fragrant white florosets (Morris, 1984; 

Huxley et al., 1992). They are consisting of a funnel shape tube in 3.6 to 6 cm long. The 

tube is narrow at its base and separates into six segments approximately.  
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Single, semi double and double flower varieties are available. Single flower variety 

has one row of corolla segments. Semi-double flower variety bearing flowers with two or 

three rows of corolla. Double for which crops has to be grown flowers variety having more 

than three rows of corolla. Selection of suitable cultivar depends on purpose for which 

crops has to be grown i.e use in loose flower, cut flower, extraction of essential oil , pot 

culture beautification of surrounding. Single cultivars are more suitable for loose flower 

and essential oil.  

 

1.2.4  Propagation and planting 

Polianthes tuberosa L. is typically propagated through bulbs. Each bulb has 

potential to produce one flower. The yield of flowers depends much on the size of bulbs 

used at planting (Kale and Bhujbal, 1972; Sadhu and Bose, 1973; Pathak et al., 1980; 

Yadav et al., 1984) and the environmental conditions (Brundell and Steenstra, 1985; Sadhu 

and Das, 1978).  

 

Plant height (leaf length) and number of leaves per clump also show gradual 

increase with the increase in bulb size (Dhua et al., 1987). This was due to better vegetative 

growth of the plants and sufficient stored food materials in such bulbs.  

 

After planting the bulb, the terminal bud sprouts and develops into a flowering 

shoot (Kosugi and Kimura, 1961). Axillary buds sprouts a few weeks later, produce foliage 
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shoot (bud seldom flowers), and eventually thicken at the base of the shoot to form 15-20 

new bulbs per plant in a sympodial or clump form (Ruth, 1992).  

 

To cultivation, this plant requires a warm sheltered position and a well-drained soil. 

When grown in pots it is best to use a fibrous loam enriched with compost and some silver 

sand for drainage. This plant requires copious amounts of moisture when starting into 

growth. Bulb should be planted at a distance 30 cm from one another. 

 

In vitro propagation of Polianthes tuberosa L. is more efficient than conventional 

propagation for building up aseptic stocks of varieties especially for the establishment of 

new cultivars and the production of pathogen-free stock materials. Furthermore, because of 

large number of propagation cycles in the field, conventionally produced bulbs may 

become easily infected (Anbari et al., 2007; Chen et al., 2005; Gang et al., 2007; Sochacki 

and Ozlikowska, 2005). According to Staikidou et al., (2005) and Ziv and Chen (2003), the 

application of tissue culture techniques allow rapid and large scale propagation of uniform 

plants for field culture.  

 

1.2.5 The Economic Importance of Polianthes tuberose L. 

Polianthes tuberosa L. can be used in landscapes in all white gardens or with other 

plants. Polianthes tuberosa L. in pots can be put in containers and use for entranceways and 

interiors decoration. It is also widely grown commercially as cut flowers and as a source of 
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perfume as they have a powerful fragrance. India, Mexico, Japan and New Zealand 

commercially grown P. tuberosa for its fragrant cut flowers (Naidu and Reid, 1989).  

 

According to Benschop (1993), tuberose is one of the most important cut flowers in 

tropical and subtropical area. Being fragrant has made it a favourable flower and also one 

of the most important cut flowers in Iran, where it holds 5 % of the total cut flower 

production (Anonymous, 2002). In Taiwan, it occupies a prime position in the floriculture 

industry (Huang and Huang, 1982; Shen et al., 1987; Shen et al., 1991). In Kenya, P. 

tuberosa is an important export crop among small scale farmers. Nguyen and Marc (2007), 

stated that many farmers in Mekong Delta, Vietnam dedicate up to a quarter of their land 

for P. tuberosa culture, often in intercropping or rotation with rice or vegetables. The crop 

is highly valuable, fetching as much as 10 times the value of a rice crop over a given area. 

 

Essential oils, known as nature’s living energy are the natural aromatic volatile 

liquids found in shrubs, flowers, trees, roots, bushes and seeds. Essential oils are extracted 

from aromatic plant. Essential oils often have pleasant aroma, their chemical makeup is 

complex and their benefits vast which make them more than something that simply smells 

good. Tuberose essential oil is very expensive because it is hard enough to get the essential 

oil from the flower. The natural flower oil of P. tuberosa remain today as one of the most 

expensive of the perfumer’s raw materials.  
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According to Guenther, (1957) it requires 150 kg of flowers to yield one kg of 

absolute of effleurage which is brown, semisolid, alcohol soluble liquid pomades. The 

purified “absolute” is used today in perfumes of the highest grade and is usually blended 

with other perfume. The pomade is used as a base in nearly all the heavier types of 

perfumes such as that of gardenia, (Emily, 1973). In the Latin manuscript it has referred to 

by Pliny (2379 AD) as an ingredient in royal perfume.  Polianthes tuberosa was cultivated 

in France and India for perfume industry (Naidu and Reid, 1989). The exotic smell of 

Polianthes tuberosa was included in several worldwide known perfumes such as ‘Pison’ by 

Cristian Dior and ‘Chole’ by Karl Lagerfeld. 

 

Beside the essential oil from the flower also can be used as a food flavour and 

chocolate flavour. Nguyen and Marc (2007) stated the Aztec in Maxico used the essential 

oil of the plant to flavor chocolate. The most common constituents of tuberose concrete are 

geraniol, nerol, benzyl alcohol methyl benzoate and methyl anthranilate. The flower buds 

contain an alkaloid lycorine which causes vomiting. Two steroidal sapogenins namely 

becogenin and small amount of licogenin, a poly-fructose are isolated from the bulbs. Dried 

tuberose bulbs in the powdered form are used to treat gonorrhea. 

 

The luminous white flowers also contain anti-inflammatory and antispasmodic 

properties. Tuberose is known to improve one’s capacity for emotional depth. It also 

amplifies artistic inspiration as it stimulates the creative right side of the brain and it brings 

serenity to the mind and hearts. Polianthes tuberosa L. are gaining an importance in 
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pharmaceutical and perfume industries because of their peculiar of various commercial 

valuable compounds (Sangavai and Chellapandi, 2008). 

 

1.2.6 The limitation of Polianthes tuberose L. 

Polianthes tuberosa L. is a plant which does not produce seeds. It is propagated 

commercially through bulb. There are a lot of problems faced when using this propagation 

technique. The main challenges facing production and marketing of good quality 

Polianthes tuberosa cut flowers in the lack of clean planting materials as the resources poor 

farmers multiply their own propagules. 

 

Polianthes tuberosa L. facing a lot of diseases problems include botrytis, erwina, 

fusarium and anthracnose. Polianthes tuberosa L. is subjected to infection by several fungi 

and among them tuber rot is an important disease incited by Fusarium oxysporum as it 

causes a considerable damage to the crop and reduces the flower yield. The main symptoms 

of the disease are the rotting symptoms observed from the neck region of tubers. The 

affected plants were stunted in growth, resulting in poor flower setting. The affected tubers 

showed reddish brown discolouration. Botrytis is economically important on soft fruits and 

bulb crops. Botrytis cinerea is a necrotrophic fungus that affects many plant species. 

Anthracnose caused by Colletotrichum. Anthracnose is usually a problem during period of 

high humidity.  

 

http://en.wikipedia.org/wiki/Necrotrophic
http://en.wikipedia.org/wiki/Fungus
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In the Mekong Delta, Vietnam, the culture of Poliantes tuberosa L. is a risky 

business; more often than not, the crop is severely damaged or completely destroyed by 

nematodes of the genus Aphelenchoides (Nguyen and Marc, 2007). Nguyen et al., (2010), 

found that the nematode is Aphelenchoides besseyi Christie. This is an ectoparasite that can 

persist for several months on the harvested bulbs or dried flowers (Cuc and Pilon, 2007). A. 

besseyi has also previously been shown to be a parasite of Polianthes tuberosa L. in West 

Bengal, India (Khan, 2004; Khan and Pal, 2001), as well as in Hawaii (Holtzmann, 1968). 

Besides that, this plant very susceptible to aphid, mite and thrips infestation. 

 

Virus also becomes one of the big problems faces by conventional propagation of 

Polianthes tuberosa L. More recently, a serologically and biologically distinct potyvirus, 

Tuberose mild mosaic virus (TuMMV), has been reported from Taiwan (Chen and Chang, 

1998; Chen et al., 1998) and and the sequence of its 3-terminus, including the coat protein 

gene, was determined (Chen et al., 2002). All the major tuberose cultivars have been found 

to be infected by TuMMV and a virus-free bulb propagation programme is becoming 

established (Chen et al., 2002). Lin et al., (2004) reported that a new genus of potyvirus 

(TuMMoV) has infecting Hangzhou, China tuberose plant. 

 

Weeds also become a serious problem in the successful cultivation of tuberose, as 

heavy manurial and irrigation requirement and perennial nature of the crop create 

conductive condition for growth and development of different species of weed. In India 

weeding is generally being done by hand. If done frequently, it is effective but this 

procedure is highly consuming thereby increasing cost of cultivation. 
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1.3 Micropropagation of Polianthes tuberosa L. 

 

Regeneration of whole plants from cells, tissues or segments from different parts of 

the plant body is a relatively common phenomenon in most plant groups and is an 

important means of vegetative propagation in nature as well as in horticulture and 

agriculture (Vasil and Vasil, 1972). Little studies consider tissue culture has been done for 

Polianthes tuberosa. A few reports were done on micropropagation of these species. 

Sangavai and Chellapandi, (2008) has worked on the effect of IAA and IBA for the 

proliferation of callus and shoot.  

 

1.4 The objectives of the present work 

 

Due to many advantages that can be obtained from Polianthes tuberosa L. and in 

order to improve the productivity and to fulfill the consumer demands, studies concerning 

propagation of this species is very important. In the present studies, experiments on callus 

induction and formation in Polianthes tuberosa L. were carried out. Different types of 

hormones such as NAA, BAP, and 2,4-D were used to induce callus formation. Leaf, stem 

and flower buds of Polianthes tuberosa L. were used as explants. The best explant and the 

best combinations of hormones for callus formation will be determined. Further study will 

be carried using the callus.  
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 Other objective of this study was to differentiate and identify embryogenic and 

non-embryogenic callus using ‘double staining’ technique. Callus was induced using plant 

growth hormone like NAA, BAP and 2, 4-D from leaf, stem and flower bud explants. 

Embryogenic callus developed into somatic embryos. Somatic embryos can be induced by 

subculture the embryogenic callus cells into suspension media for about 4-5 weeks. 

 

The process of somatic embryos and their stages were also studied. Somatic 

embryos are structurally similar to zygotic embryos found in seeds. Somatic embryos also 

have the ability to grow into complete plants as zygotic embryos. The different between 

these two types of embryos is that the somatic embryos develop from somatic cells but the 

zygotic embryos develop from the fusion of male and female gametes. Somatic embryos 

have the specialty to produce more plantlets and can be potentially used for clonal 

propagation system.  

 

The main objective of this study was to establish in vitro propagation of Polianthes 

tuberosa L. Regeneration of Polianthes tuberosa L. was investigated in this study. Indirect 

regeneration from somatic embryo was observed. Shoot and root formation were induced 

using plant growth regulators. The effect of plant growth regulators was investigated. 

Different combination of auxin (NAA) and cytokinin (BAP and IBA) at various 

concentrations were used for this purpose. 
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Finally acclimatization process were carried out after complete plantlet was 

obtained from tissue culture. The successful of acclimatization process is an assurance that 

the whole micropropagation process, from the beginning of selecting the starting materials, 

initiation of in vitro cultures and establishment of an efficient acclimatization system has 

been achieved. During this period, the plantlets were observed to study the capability of 

plantlets to adapt to new environments. This study also was carried out to determine 

whether the plantlets could grow into healthy and vigorous plants. 

 

 

Figure 1.1: Intact plant of Polianthes tuberosa L. grown at University of 

Malaya green house. 
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CHAPTER 2 

CALLUS INDUCTION FROM VARIOUS EXPLANTS OF POLIANTHES 

TUBEROSA L. 

 

2.1 EXPERIMENTAL AIMS 

 

Callus is basically a more or less non organized tumour tissue which usually arises 

on wounds of differentiated tissues and organ. Callus from different plant species may be 

different in structure and growth habit. There are white or coloured callus, free (easily 

separated) or fixed, soft (watery) or hard, easy or difficult to separate into cells and 

aggregates in liquid media. In exceptional conditions, and sometimes spontaneously, the 

regeneration of adventitious organs and or embryos can occur from a callus. 

 

The initiation of callus formation is referred to as callus induction. All types of 

explants and tissue can be used for starting material for callus induction. A lot of research 

has been done using various parts of plant as explants. Salehzadeh et al., (2008) used scale, 

leaf primordial and immature floret explant for callus induction of Hyacinthus orientalis L. 

Khawar et al., (2005) used bulb scale of Madonna lily (Lilium candidum L.) as an explant 

for callus formation. Slabbert et al., (1995) used immature floral stem of Crinum 

macowanii as an explant for callus induction.  

   

Exogenous provided plant growth regulators are often recommended to initiate 

callus formation on an explant. Some explant required only auxin, some need cytokinin 

alone and some need booth auxin and cytokinin to start callus formation. According to 
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Pierik (1987), monocotyledons react differently when considering callus induction 

generally being less likely to form callus tissue than dicotyledons, it is often only necessary 

to add auxin as the hormonal stimulus for callus induction. 

 

In this chapter, the main aim of this experiment was to investigate the effect of plant 

growth regulators on callus formation from leaf, stem and flower bud explants of P. 

tuberosa. BAP and NAA with different concentration were used in this experiment.  
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2.2 MATERIALS AND METHODS 

 

2.2.1 Source of Explants 

Intact plants of Polianthes tuberosa L. was collected from Cameron Highlands, 

Malaysia and purchased at nurseries in Sungai Buluh, Selangor. The same size of the bulbs 

was selected and grown in University of Malaya. Five-month-old plants with flower spike 

(stem) and flower bud were used in this tissue culture studies. 

 

2.2.2 Types of Explant 

 Polianthes tuberosa L. produce no seeds. Intact explants were used as source for 

explant in this study. Three different explants were used which are leaf, stem and flower 

bud. 

  

2.2.3 Explants Sterilization 

Explants (leaf, stem and flower) from intact plant of Polianthes tuberosa L. were 

sterilized. First explants were surface sterilize under running tap water for 30 minutes to 

remove contaminants and any residue that found on the explants. Then explants were 

soaked in different concentrations (70%. 50%, 30%, 20%, and 10%) of sodium 

hypochlorite (clorox). At the first soaked of 70% sodium hypoclorite, two drops of Tween 

20 was added. After that, the explants were rinsed with sterile distilled water to get rid of 

any trace of sodium hypochlorite that was used earlier. Each rinse lasting approximately for 

three minutes. The explants were then soaked in ethanol 70% for three minutes. Finally the 

explants were washed 3 times in sterile distilled water for three minutes. 
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2.2.4 Media Preparation 

2.2.4.1 Preparation of Basic Media 

Murashige and Skoog, MS (1962) was used as a basic medium for callus induction. 

MS media powder from Sigma was used. To prepare the basic media, first 1000ml conical 

flask were filled up with 800ml of distilled water. 30 g/l sucrose, 4.4 g/l MS powder and 8 

g/l technical agar were diluted in distilled water. The media solution was stirred until all the 

sucrose, MS powder and technical agar were dissolved. After that, distilled water was made 

up to 1 Litre in the conical flask. pH of the media solution was adjusted to 5.8 using 1.0 M 

HCl (hydrochloric acid) and 1.0 M NaOH (sodium hydroxide). The media was autoclaved 

at a pressure of 104 kPa (15 Psi
2
)
 
and temperature of 121ºC for 20 minutes. After the media 

has been autoclaved and cooled (50ºC), the media were dispensed into 60 ml sterile 

universal container.  

 

2.2.4.2 Preparation of Media with Hormones 

Culture media with hormones was prepared using the same method but before the 

solution was autoclaved, hormones were added into the media. For hormones that are 

sensitive to heat like GA3 and Abscisic acid, the hormones were added into the media 

solution after the autoclaved process and the media was cooled until 50ºC. The hormones 

need to be filtered sterilize before added into the media. Sterile membrane filtered was used 

to filter the hormones. 

 

2.2.4.3 Media Sterilization 

 The media was autoclaved at internal steam temperature of about 120°C and steam 

pressured was allowed to build up to 1.2 kg per square metre for about 20 minutes. After 

autoclaving, the media was left to attain a temperature of about 50°C before it was poured 
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into sterile universal container which has dimensions of about 4.5 mm in diameter and 60 

mm in height. Media was dispensed under aseptic condition in laminar flow chamber.  

 

2.2.5 Culture Conditions 

All equipments and apparatus used for tissue culture process must be sterilized 

before used. Laminar flow chamber, which all tissue culture work was done in, was 

sterilized by spraying the area with 70% ethanol and then wiped with autoclaved tissue. 

Before that, the shortwave length ultraviolet (UV) lamp was switched on in the chamber for 

about 15 minutes. All tissue culture apparatus like forceps and scalpels were autoclaved 

first before used. Sterile blades, universal containers and Petri dishes purchased from the 

supplier, Megalab Company were used. All apparatus and related tools must be wiped with 

70% ethanol prior to culturing. Scalpels and forceps were dipped into hot bead sterilizer 

and cooled in sterile distilled water before used to excise the explants. The hot bead 

sterilizer was switch on for about 15 minutes before used (to get the desirable temperature, 

250ºC). 

 

2.2.6 Callus Induction 

Leaf explants were cut into segments (1 cm x 1 cm) stem and flower bud explants 

were cut into 1 cm in length. All the explants were cultured on MS media (Murashige and 

Skoog, 1962) containing 30 gL
-1

 sucrose and 8 gL
-1

 agarose gel. MS (Murashige and 

Skoog, 1962) culture medium was used together with different types, concentrations and 

combinations of hormones. All cultures were kept in the culture room with photoperiod of 

16 hours light and 8 hours dark.  

The list of media used in this study: 
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1. MS basal 

2. MS + 0.5 mg/l BAP 

3. MS + 1.0 mg/l BAP 

4. MS + 1.5 mg/l BAP 

5. MS + 2.0 mg/l BAP 

6. MS + 0.5 mg/l NAA 

7. MS + 1.0 mg/l NAA 

8. MS + 1.5 mg/l NAA 

9. MS + 2.0 mg/l NAA 

10. MS + 2.5 mg/l NAA 

11. MS + 3.0 mg/l NAA 

12. MS + 3.5 mg/l NAA 

13. MS + 4.0 mg/l NAA 

14. MS + 0.5 mg/l BAP + 0.5 mg/l NAA 

15. MS + 0.5 mg/l BAP + 1.0 mg/l NAA  

16. MS + 0.5 mg/l BAP + 1.5 mg/l NAA 

17. MS + 0.5 mg/l BAP + 2.0 mg/l NAA 

18. MS + 0.5 mg/l BAP + 2.5 mg/l NAA 

19. MS + 0.5 mg/l BAP + 3.0 mg/l NAA 

20. MS + 0.5 mg/l BAP + 3.5 mg/l NAA 

21. MS + 0.5 mg/l BAP + 4.0 mg/l NAA 

22. MS + 1.0 mg/l BAP + 0.5 mg/l NAA 

23. MS + 1.0 mg/l BAP + 1.0 mg/l NAA  

24. MS + 1.0 mg/l BAP + 1.5 mg/l NAA 

25. MS + 1.0 mg/l BAP + 2.0 mg/l NAA 
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26. MS + 1.0 mg/l BAP + 2.5 mg/l NAA 

27. MS + 1.0 mg/l BAP + 3.0 mg/l NAA 

28. MS + 1.0 mg/l BAP + 3.5 mg/l NAA 

29. MS + 1.0 mg/l BAP + 4.0 mg/l NAA 

30. MS + 1.5 mg/l BAP + 0.5 mg/l NAA 

31. MS + 1.5 mg/l BAP + 1.0 mg/l NAA 

32. MS + 1.5 mg/l BAP + 1.5 mg/l NAA 

33. MS + 1.5 mg/l BAP + 2.0 mg/l NAA 

34. MS + 1.5 mg/l BAP + 2.5 mg/l NAA 

35. MS + 1.5 mg/l BAP + 3.0 mg/l NAA 

36. MS + 1.5 mg/l BAP + 3.5 mg/l NAA 

37. MS + 1.5 mg/l BAP + 4.0 mg/l NAA 

38. MS + 2.0 mg/l BAP + 0.5 mg/l NAA 

39. MS + 2.0 mg/l BAP + 1.0 mg/l NAA 

40. MS + 2.0 mg/l BAP + 1.5 mg/l NAA 

41. MS + 2.0 mg/l BAP + 2.0 mg/l NAA 

42. MS + 2.0 mg/l BAP + 2.5 mg/l NAA 

43. MS + 2.0 mg/l BAP + 3.0 mg/l NAA 

44. MS + 2.0 mg/l BAP + 3.5 mg/l NAA 

45. MS + 2.0 mg/l BAP + 4.0 mg/l NAA 
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2.2.7 Data Analysis 

 

Thirty replicates were used for each treatment and the data were analyzed 

statistically using Duncan’s Multiple Range Test (DMRT). The statistical analysis based on 

mean values per treatment was made using the technique of analysis of variance. The 

comparative LSD multiple range test (p=0.01) was used to determine the differences 

between treatments.  
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2.3 RESULTS 

 

2.3.1 Callus induction 

Callus induction from leaf, stem, and flower bud explants of Polianthes tuberosa L. 

has been successfully achieved. Callus initiation was observed from the cut end surfaces of 

leaf, stem and flower bud explants within 3 months in all media tested with the exception of 

the media MS without hormone and MS supplemented with BAP alone. Explants in the MS 

media without hormone become necrotic after some time in the media and explants in the 

MS media supplemented with BAP alone showed no active growth and died after 4 weeks.  

 

Stem started to produce callus earlier than other explants. Within 4 weeks, a small 

clump of green undifferentiated cells (Figure 2.3) could be observed but the callus 

proliferation was slow in stem explants. The percentage of callus formation was lower 

compared to other explants tested after 5 months in the culture media. Flower bud explants 

produced more callus compared to stem explants but the initiation of callus was started late 

compared to other explants. Only after 12 weeks in culture callus could be observed.  Leaf 

explant was the best explant for callus formation. Explants started to produce callus after 5 

weeks in the culture and the callus proliferation was fast. After 5 months the whole explant 

was covered with callus. 

 

Two types of callus could be recognized according to the colour. The first type is 

the callus which is nodular, friable, soft (watery) and greenish. The second type is the callus 

which is nodular, friable, soft, wet looking surface and yellow whitish and cream in colour. 

Most of the callus induction from flower bud explants (Figure 2.4) is the second type callus 

and the callus formation from leaf explant (Figure 2.2) was the first type. 
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MS medium supplemented with 2.0 mg/l NAA, MS media supplemented with 0.5 

mg/l BAP in combination with 2.0 mg/l NAA, MS media supplemented with 3.0 mg/l NAA 

and MS media supplemented with 0.5 mg/l BAP in combination with 2.5 mg/l NAA are 

suitable for callus formation from leaf explant. 100.0±0.00 % of the explant tested 

produced callus. MS media supplemented with 1.5 mg/l BAP in combination with 2.5 mg/l 

NAA, MS media supplemented with 1.5 mg/l BAP in combination with 3.0 mg/l NAA and 

MS media supplemented with 2.0 mg/l BAP in combination with 4.0 mg/l NAA are 

inappropriate for the formation of callus from leaf explant.  Only 60.0±0.09 % of the 

explants cultured produced callus (Table 2.1). 

 

100.0±0.00 % of stem explant produced callus in MS media supplemented with 2.0 

mg/l NAA, MS media supplemented with 3.0 mg/l NAA and MS media supplemented with 

0.5 mg/l BAP in combination with 2.0 mg/l NAA. These 3 media were the right media for 

callus callus induction from stem explant. MS media supplemented with 1.5 mg/l BAP in 

combination with 2.5 mg/l NAA and MS media supplemented with 2.0 mg/l BAP in 

combination with 4.0 mg/l NAA were not suitable for callus formation from stem explant 

of this species, only 50.0±0.09 % of the explant produced callus (Table 2.1). 

 

Flower bud explant was suitable when cultured on MS media supplemented with 

2.0 mg/l NAA and MS media supplemented with 0.5 mg/l BAP in combination with 2.0 

mg/l NAA. All the explants (100.0±0.00 %) produced callus.  MS media supplemented 

with 2.0 mg/l BAP in combination with 2.0 mg/l NAA and MS media supplemented with 

0.5 mg/l BAP in combination with 4.0 mg/l NAA were not suitable media for callus 
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formation from flower bud explants. Only 56.67±0.09 % and 50.0±0.09 % of the explants 

produced callus (Table 2.1). 

 

 MS media supplemented with 2.0 mg/l NAA alone and MS media 

supplemented with 0.5 mg/l BAP in combination with 2.0 mg/l NAA were the best media 

for callus formation. 100.0±0.00 % of explants from leaf, stem and flower buds produced 

callus after 5 months in culture. In MS media supplemented with 3.0 mg/l NAA alone, all 

explant cultured (100.0±0.00 %) from leaf and stem produced callus and 90.0±0.06 % of 

flower bud explants produced callus (Table 2.1).  

 

Higher percentage of explants produced callus could be observed in MS media 

supplemented with NAA combination with lower concentrations of BAP. 100.00±0.00 of 

explant produced callus could be observed in MS media supplemented with 2 mg/l NAA 

and 0.5 mg/l BAP. On MS media supplemented with NAA and higher concentrations of 

BAP (1.0 mg/l, 1.5 mg/l and 2.0 mg/l) lower percentage of explants produced callus. 

50.00±0.09 % of callus formation was the lowest percentage obtained from this study. This 

percentage was obtained from stem and flower bud explants cultured on MS media 

supplemented with 2.0 mg/l BAP and 4.0 mg/l NAA and stem explant cultured on 1.5 mg/l 

BAP and 2.5 mg/l NAA (Table 2.1).  
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Table 2.1: Callus induction from leaf explant of Polianthes tuberosa L. cultured on MS 

supplemented with various concentrations of BAP and NAA maintained at 25±1 ºC under 

16 hours light and 8 hours dark. Thirty replicates were used in each treatment. Data were 

recorded after 5 months of culture. 

 

MS + Hormone 

(mg/l) 

 

Explants Percentage of 

explant produced 

callus 

(mean ± SE) 

Observations 

BAP NAA 

0  0 

(control) 

Leaf 

 

 

 

Stem 

 

 

 

Flower bud 

0.00±0.00
e
 

 

 

 

0.00±0.00
f
 

 

 

 

0.00±0.00
g
 

 

 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

0 0.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

76.67±0.08
abcd 

 

 

 

 

 

70.00±0.06
abcde 

 

 

 

 

 

86.67±0.06
abcde 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0 1.0 Leaf 

 

 

 

 

 

Stem 

 

 

90.00±0.06
abcd 

 

 

 

 

 

90.00±0.06
abc 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 
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Flower bud 

 

 

 

83.33±0.07
abcde 

 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0 1.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

96.67±0.03
ab 

 

 

 

 

 

93.33±0.05
ab 

 

 

 

 

 

96.67±0.03
ab 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0 2.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

100.00±0.00
a 

 

 

 

 

 

100.00±0.00
a 

 

 

 

 

 

100.00±0.00
a 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0 2.5 Leaf 

 

 

 

 

 

96.67±0.03
ab 

 

 

 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 
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Stem 

 

 

 

 

 

Flower bud 

90.00±0.06
abc 

 

 

 

 

 

96.67±0.03
ab 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0 3.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

100.00±0.00
a 

 

 

 

 

 

100.00±0.00
a 

 

 

 

 

 

90.00±0.06
abcd 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0 3.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

86.67±0.06
abcd 

 

 

 

 

 

93.33±0.05
ab 

 

 

 

 

 

96.67±0.03
ab 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0 4.0 Leaf 

 

 

86.67±0.06
abcd 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 
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Stem 

 

 

 

 

 

Flower bud 

 

 

 

83.33±0.07
abcd 

 

 

 

 

 

83.33±0.07
abcde 

 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0.5 0 Leaf 

 

 

 

Stem 

 

 

 

Flower bud 

0.00±0.00
e
 

 

 

 

0.00±0.00
f
 

 

 

 

0.00±0.00
g
 

 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

0.5 0.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

Flower bud 

83.33±0.07
abcd 

 

 

 

 

 

76.67±0.09
abcde 

 

 

 

 

80.00±0.07
abcdef 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0.5 1.0 Leaf 

 

 

 

 

86.67±0.06
abcd 

 

 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 
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Stem 

 

 

 

 

 

Flower bud 

 

83.33±0.07
abcd 

 

 

 

 

 

83.33±0.07
abcde 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0.5 1.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

93.33±0.05
abc 

 

 

 

 

 

90.00±0.06
abc 

 

 

 

 

 

90.00±0.06
abcd 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0.5 2.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

100.00±0.00
a 

 

 

 

 

 

100.00±0.00
a 

 

 

 

 

 

100.00±0.00
a 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0.5 2.5 Leaf 

 

100.00±0.00
a 

 

Explant still fresh but 

swollen after 3 weeks. 



57 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

 

 

 

 

83.33±0.07
abcd 

 

 

 

 

 

93.33±0.05
abc 

 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0.5 3.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

86.67±0.06
abcd 

 

 

 

 

 

90.00±0.06
abc 

 

 

 

 

 

83.33±0.07
abcde 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

0.5 3.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

 

83.33±0.07
abcd 

 

 

 

 

 

76.67±0.08
abcde 

 

 

 

 

 

80.00±0.07
abcdef 

 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 
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0.5 4.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

76.67±0.08
abcd 

 

 

 

 

 

76.67±0.08
abcde 

 

 

 

 

 

90.00±0.06
abcd 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.0 0 Leaf 

 

 

 

Stem 

 

 

 

Flower bud 

0.00±0.00
e
 

 

 

 

0.00±0.00
f
 

 

 

 

0.00±0.00
g
 

 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

1.0 0.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

73.33±0.08
abcd 

 

 

 

 

 

66.67±0.09
bcd 

 

 

 

 

 

66.67±0.09
bcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.0 1.0 Leaf 

 

73.33±0.08
abcd 

 
Explant still fresh but 

swollen after 3 weeks. 
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Stem 

 

 

 

 

 

Flower bud 

 

 

 

 

86.67±0.06
abcd 

 

 

 

 

 

66.67±0.08
bcdef

 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.0 1.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

83.33±0.07
abcd 

 

 

 

 

 

73.33±0.08
abcdef 

 

 

 

 

 

90.00±0.06
abcd

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.0 2.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

80.00±0.07
abcd 

 

 

 

 

 

76.67±0.08
abcde 

 

 

 

 

 

83.33±0.07
abcde

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 
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1.0 2.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

63.33±0.09
cd 

 

 

 

 

 

73.33±0.08
abcde 

 

 

 

 

 

73.33±0.08
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.0 3.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

70.00±0.09
abcd 

 

 

 

 

 

70.00±0.09
abcde 

 

 

 

 

 

83.33±0.07
abcde

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.0 3.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

73.33±0.08
abcd 

 

 

 

 

 

63.33±0.09
bcde 

 

 

 

 

 

70.00±0.09
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 



61 

 

observed after 2 months. 

 

1.0 4.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

73.33±0.08
abcd 

 

 

 

 

 

66.67±0.09
bcde 

 

 

 

 

 

70.00±0.09
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.5 0 Leaf 

 

 

 

Stem 

 

 

 

Flower bud 

0.00±0.00
e
 

 

 

 

0.00±0.00
f
 

 

 

 

0.00±0.00
g
 

 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

1.5 0.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

73.33±0.08
abcd 

 

 

 

 

 

66.67±0.09
bcde 

 

 

 

 

 

76.67±0.08
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 
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1.5 1.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

70.00±0.09
abcd 

 

 

 

 

 

63.33±0.09
bcde 

 

 

 

 

 

66.67±0.09
bcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.5 1.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

76.67±0.08
abcd 

 

 

 

 

 

76.67±0.08
abcde 

 

 

 

 

 

70.00±0.09
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.5 2.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

80.00±0.07
abcd 

 

 

 

 

 

66.67±0.09
bcde 

 

 

 

 

 

73.33±0.08
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 months 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 
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observed after 2 months. 

 

1.5 2.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

60.00±0.09
d 

 

 

 

 

 

50.00±0.09
e 

 

 

 

 

 

73.33±0.08
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.5 3.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

60.00±0.09
d 

 

 

 

 

 

63.33±0.09
bcde 

 

 

 

 

 

70.00±0.09
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.5 3.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

70.00±0.09
abcd 

 

 

 

 

 

73.33±0.08
abcde 

 

 

 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 
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Flower bud 66.67±0.09
bcdef

 Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

1.5 4.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

70.00±0.09
abcd 

 

 

 

 

 

76.67±0.08
abcde 

 

 

 

 

 

70.00±0.09
abcdef

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

2.0 0 Leaf 

 

 

 

 

Stem 

 

 

 

Flower bud 

0.00±0.00
e
 

 

 

 

 

0.00±0.00
f
 

 

 

 

0.00±0.00
g
 

 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

 

No response. Explants 

became necrotic after 2 

weeks in culture. 

2.0 0.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

63.33±0.09
cd 

 

 

 

 

 

56.67±0.09
de 

 

 

 

 

 

56.67±0.09
ef

  

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 
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soft (watery) callus was 

observed after 2 months. 

 

2.0 1.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

63.33±0.09
cd 

 

 

 

 

 

73.33±0.08
abcde 

 

 

 

 

 

60.00±0.09
def 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

2.0 1.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

66.67±0.09
bcd 

 

 

 

 

 

66.67±0.09
bcde 

 

 

 

 

 

56.67±0.09
bcde 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

2.0 2.0 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

73.33±0.08
abcd 

 

 

 

 

 

56.67±0.09
de 

 

 

 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 
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Flower bud 

 

60.00±0.09
abcde 

 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

2.0 2.5 Leaf 

 

 

 

 

 

Stem 

 

 

 

 

 

Flower bud 

76.67±0.08
abcd 
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Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 
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Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 
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Explant still fresh but 

swollen after 3 weeks. 
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63.33±0.09
cdef 

 

 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 
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Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 2 months. 

 

Explant still fresh but 

swollen after 3 weeks. 

Green, friable, and soft 

(watery) callus was 

observed after 1 month. 

 

Explant was swollen after 3 

weeks. Green, friable, and 

soft (watery) callus was 

observed after 2 months. 

 

 



68 

 

Figure 2.1: Effect of NAA and BAP on callus induction from leaf, stem and flower bud explants. The vertical bars represent standard 

errors. 
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Figure 2.2: Callus derived from leaf explant cultured on MS media 

supplemented with 2 mg/l NAA and 0.5 mg/l BAP. Bars = 1 mm. 

 

Figure 2.3: Callus derived from stem explant cultured on MS media 

supplemented with 2 mg/l NAA. Bars = 1 mm. 

 



70 

 

 

Figure 2.4: Callus derived from flower bud explant cultured on MS 

media supplemented with 2 mg/l NAA. Bars = 1 mm.  
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SUMMARY OF THE RESULTS 

 

1. The results indicate that all explants could produce callus. 

  

2. Stem started to produce callus earlier (4 weeks) than other explants. Leaf explants 

started to produce callus after 5 weeks and flower bud explants started to produced 

callus after 12 weeks. 

 

3. Flower bud explants produced more callus compared to leaf and stem explant. 

  

4. Two types of callus were obtained from the present study. First type of callus was 

nodular, friable, soft (watery) and greenish and the other types was compact nodular 

and creamy yellow. 

 

5. There was no callus formation when explants were cultured on MS medium without 

hormone. 

 

6. MS medium supplemented with NAA alone was the best media for callus formation 

in all explants. 

 

7. The frequency of explants produced callus in media supplemented with higher 

concentrations of BAP was lower compared to explants produced callus in media 

supplemented with lower concentrations of BAP. 
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CHAPTER 3 

SOMATIC EMBRYOGENESIS INDUCTION IN POLIANTHES TUBEROSA L. 

 

3.1 EXPERIMENTAL AIMS 

 

Plant morphogenesis can be achieved via two pathways, organogenesis or somatic 

embryogenesis. In somatic embryogenesis, a plant with both root and shoots axes arises 

from actively dividing cells, but does not form any direct vascular connections with the 

original tissue (Hicks,1980). Somatic embryogenesis is the process of a single cell or a 

group of cells initiating the developmental pathway that leads to reproducible regeneration 

of non-zygotic embryos capable of germinating to form a complete plant. This process is 

the best exemplifies the concept of totipotency, that all normal living cells possess the 

potential to regenerate the entire organism. 

 

Of the method use for micropropagation, somatic embryogenesis is potentially 

important as it is capable of providing a large number of plants in shorter period of time 

than organogenic approaches. Since the 1960s much information has been gathered about 

the requirements for the manipulation of somatic embryogenesis in vitro (Thorpe, 1995). 

Levine (1947) reported the recovery of Daucus carota seedlings from tissues exposed to 

low level of NAA. Reinert (1958) and Steward (1958) were known as the first scientist to 

observe somatic embrogenesis in Daucus carota cell suspension culture. 
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The main objective of this experiment was to investigate the effects of plant growth 

regulators, state of culture media on somatic embryogenesis from leaf explants of P. 

tuberose. In addition, we differentiated embryogenic and non embryogenic callus by double 

staining method. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Preparation of explants 

Leaf explants from five-month-old intact plants were used in this experiment. In 

order to get the sterilized explants, explants sterilization process were done. Firstly explants 

were surface sterilize under running tap water for 30 minutes to remove contaminants and 

any residue that found on the explants. Then explants were rinsed in different 

concentrations (70%. 50%, 30%, 20%, and 10%) of sodium hypochlorite (clorox) and 70% 

ethanol. At first rinse of 70% sodium hypochlorite two drops of Tween 20 was added. 

Finally the explants were washed 3 times in sterile distilled water. Each rinse lasting 

approximately for one minute. Sterilized explants were cultured on culture medium. 

Embryogenic callus that obtained from the explants were used for somatic embryo 

induction.  

 

3.2.2 Preparation of culture medium and callus induction 

Solid culture media and liquid culture media were used in this study. Solid media 

was prepared by diluting MS powder with 30 g/l sucrose and 8 g/l agar in distilled water 

(same as media preparation in chapter 2) and the  pH of the medium was adjusted by 

adding 1.0 M NaOH or 1.0 M HCl to 5.8 prior to autoclaving. Suspension culture media 

was prepared using the same method but without the gelling agent. Various types and 

concentrations of plant hormones such as 2,4-D and NAA were added into the culture 

medium to study the induction and formation of somatic embryo. Solid and liquid media 

were supplemented with the same concentrations and combinations of hormones. Below is 

the list of media that was used in this study. 
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1. MS media (control) 

2. MS + 0.1 mg/l BAP 

3. MS + 0.5 mg/l BAP 

4. MS + 1.0 mg/l BAP 

5. MS + 2.0 mg/l BAP 

6. MS + 2.5 mg/l BAP 

7. MS + 2.0 mg/l NAA 

8. MS + 2.5 mg/l NAA 

9. MS + 3.0 mg/l NAA 

10. MS + 3.5 mg/l NAA 

11. MS + 4.0 mg/l NAA 

12. MS + 0.1 mg/l 2-4,D 

13. MS + 0.5 mg/l 2-4,D 

14. MS + 1.0 mg/l 2-4,D 

15. MS + 1.5 mg/l 2-4,D 

16. MS + 2.0 mg/l 2-4,D 

17. MS + 2.5 mg/l 2-4,D 

18. MS + 3.0 mg/l 2-4,D 

19. MS + 4.0 mg/l 2-4,D 

20. MS + 3.5 mg/l NAA + 0.1 mg/l BAP 

21. MS + 3.5 mg/l NAA + 0.5 mg/l BAP 

22. MS + 3.5 mg/l NAA + 1.0 mg/l BAP 

23. MS + 3.5 mg/l NAA + 1.5 mg/l BAP 

24. MS + 3.5 mg/l NAA + 2.0 mg/l BAP 

25. MS + 3.5 mg/l NAA + 2.5 mg/l BAP 



76 

 

26. MS + 2.5 mg/l 2-4,D + 0.1 mg/l BAP 

27. MS + 2.5 mg/l 2-4,D + 0.5 mg/l BAP 

28. MS + 2.5 mg/l 2-4,D + 1.0 mg/l BAP 

29. MS + 2.5 mg/l 2-4,D + 1.5 mg/l BAP 

30. MS + 2.5 mg/l 2-4,D + 2.0 mg/l BAP 

31. MS + 2.5 mg/l 2-4,D + 2.5 mg/l BAP 

Callus induction studies were discussed in chapter 2. Callus that was obtained were 

analyzed whether it is embryogenic or non embryogenic.  

 

3.2.3 Identification of embryogenic callus 

Callus can be divided into two types, embryogenic callus and non-embryogenic 

callus. Embryogenic callus has the ability to regenerate new plantlets whereas non 

embryogenic callus will die after sometimes in the culture. Embryogenic and non 

embryogenic callus can be identified by using ‘double staining’ technique (Gupta and 

Durzan, 1987). First, the callus cells stained with acetocarmine and evan’s blue dye and 

then were observed under microscope with different magnifications.  

 

Double staining technique: 

Preparation of 2% acetocarmine 

1. Distilled water (55 ml) was measured using a 100 ml cylinder. 

2. The distilled water was poured into a beaker containing a stir bar. 

3. 45 ml of glacial acetic acid was measured using a pipette. 

4. Glacial acetic acid was added to the beaker containing distilled water. 

5. This gave a 45% acid solution. 
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6. The beaker containing the solution was placed on a stir plate in a fume hood. 

7. The solution was boiled gently for 5 minutes on highest setting, stirred, cooled and 

filtered by funnel using Whatmant filter paper. 

8. Finally it was stored at room temperature 

 

Preparation of 0.5% Evan’s Blue 

1. Distilled water (100 ml) was measured out into a 250 ml flask. 

2. 0.5 grams of Evan’s Blue was added to the 100 ml distilled water in the flask.  

3. The solution was swirled to mix properly. 

4. Finally, it was stored at room temperature.  

 

Double staining method 

1. Small pieces of callus (3-5 mm) were placed on clean glass slides. 

2. A few drops of acetocarmine was added until all callus were submerged. 

3. The callus was gently divided with forceps into very small pieces in the 

acetocarmine solution. 

4. The specimens were flamed or heated gently for 2 minutes without boiling it. 

5. The callus was washed for 2 to 3 times with distilled water to remove all liquid of 

acetocarmine. 

6. 2 drops of 0.5% Evan’s Blue was added to Acetocarmine stained cells. 

7. After 30 seconds, the slides were washed 2-3 times with water and then all water 

was removed. 

8. One to two drops of glycerol was added to stained cells to prevent drying. 

9. The slides were observed under light microscope and the embryogenic and non 

embrogenic callus were identified. 
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3.2.4 Embryogenic callus initiation 

Leaf explants were cultured on MS medium supplemented with different types and 

combination of hormones as shown before. The culture was incubated in the culture room. 

After 2 months, green and white friable callus was observed. These calluses were 

transferred to other media for somatic embryo induction. 

 

3.2.5 Induction of somatic embryo 

Embryogenic callus were subcultured onto solid media or liquid media for somatic 

embryo formation. Embryogenic callus derived from callus induction medium were cut into 

small pieces (0.5 cm) and then transferred to solid media or liquid media. Cultures in solid 

media were maintained on the rack in the culture room at photoperiod of 16 hours light and 

8 hours dark. Cultures in liquid media were maintained on a horizontal shaker at 100 rpm in 

the culture room condition. Different stages of somatic embryogenesis were observed after 

2 months. 

 

3.2.6 Data analysis 

Three replications with 30 explants in each replication were maintained for each 

treatment and the data was analyzed statistically using Duncan’s Multiple Range Test 

(DMRT). The statistical analysis based on mean values per treatment was made using the 

technique of analysis of variance. The comparative LSD multiple range test (p=0.01) was 

used to determine the differences between treatments.  

 

 



79 

 

3.3 Results 

 

3.3.1 Induction and identification of embryogenic callus 

Callus obtained was soft and watery in structure. The colour was green and white 

creamy. MS media supplemented with 2.0 mg/l NAA and 3.0 mg/l NAA gave the highest 

result with the percentage of callus formation (100.00±0.00) (Table 3.1). 

 

Embryogenic callus were identified using double staining method. Embryogenic 

callus stained red with acetocarmine (Figure 3.1) and non-embryogenic callus cells stained 

blue with Evan’s blue (Figure 3.2).  
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Table 3.1: Induction of callus formation from leaf explant cultured on MS solid medium 

supplemented with different concentrations of NAA 

 

MS + NAA(mg/l) Callus formation 

(%) 

Observation 

0.5 76.67±0.08
abcd 

 

Embryogenic callus. Green and white 

creamy in colour and soft watery in 

structure. 

1.0 90.00±0.06
abcd

 Embryogenic callus. Green and white 

creamy in colour and soft watery in 

structure. 

1.5 96.67±0.03
ab

 Embryogenic callus. Green and white 

creamy in colour and soft watery in 

structure. 

2.0 100.00±0.00
a
 Embryogenic callus. Green and white 

creamy in colour and soft watery in 

structure. 

2.5 96.67±0.03
ab

 Embryogenic callus. Green and white 

creamy in colour and soft watery in 

structure. 

3.0 100.00±0.00
a
 Embryogenic callus. Green and white 

creamy in colour and soft watery in 

structure. 

3.5 86.67±0.06
abcd

 Embryogenic callus. Green and white 

creamy in colour and soft watery in 

structure. 

4.0 86.67±0.06
abcd

 Embryogenic callus. Green and white 

creamy in colour and soft watery in 

structure. 
Means followed by the same letter are not significantly different at the 0.01 level of confidence 
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Figure 3.1: Embryogenic callus cells stained red with acetocarmine. 

 

Figure 3.2: Non-embryogenic callus cells stained blue with Evan’s blue. 
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Figure 3.3: Embryogenic callus derived leaf explant cultured on MS media supplemented 

with 2.0 mg/l NAA. 
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3.3.2 Somatic embryo development  

 

In order to encourage the production of mature development stages somatic 

embryos, callus embryogenic (Figure 3.3) must be transferred to other media. 35 

combinations of liquid and solid media were used in this study.  The best media for somatic 

embryo formation were determined.  

 

Embryogenic callus after being transferred to MS hormone free medium and MS 

supplemented with BAP alone did not produce any somatic embryo. Embryogenic callus 

became necrotic and died after some time in the culture media. However, on the medium 

supplemented with BAP in combination with NAA or 2,4-D, smooth round structure 

occurred on the surface of embryogenic callus within 3 months. Embryogenic callus that 

was subcultured on MS media supplemented with NAA or 2,4-D alone also gave rise to the 

smooth round structure (Figure 3.5). According to Luo et al., (1999) whose done the 

histological studies of the same structure from callus of Astaragalus sp. showed that  these 

structures was somatic embryos at globular stage without vascular connection to the callus.  

 

Somatic embryo at globular stage will become oblong (Figure 3.6) after 13 weeks 

and developed further into heart shape (Figure 3.7) after 15 weeks. Heart shape somatic 

embryo elongated (Figure 3.8) after 16 weeks and after 17 weeks torpedo stages (Figure 

3.9) were observed. The last stage (Figure 3.10) which is cotyledonary stage was observed 

after 19 weeks in culture. Similar results was obtained from embryogenic callus cultured on 

solid media. 
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 Compared to NAA, NAA combined with BAP and 2,4-D alone, 2, 4-D combined 

with BAP promoted somatic embryogenesis effectively. The high frequencies of somatic 

embryogenesis occurred on MS medium supplemented with 2,4-D at concentration of 2.5 

mg/l combined with 0.1 mg/l BAP where an average of 26.67±0.42 somatic embryos were 

obtained from 0.5 cm of embryogenic callus from liquid media and 20.53±0.50
  

somatic 

embryos were formed on solid media. MS supplemented with 2,4-D alone also gave the 

best result with 24.47±0.41
 
 of somatic embryo formation on  liquid media and 19.67±0.61

 

on solid media (Table 3.2). 

 

 MS media supplemented with 0.1 mg/l 2-4,D was not very suitable for somatic 

embryo induction. Only 5.77±0.29
 
was observed on liquid media and 4.63±0.41 on solid 

media. Liquid media was the best media for formation of somatic embryo compared to 

solid media. Higher number of somatic embryo was found in liquid media in every test 

with the same treatment except in MS media supplemented with 2.5 mg/l 2-4,D and 2.5 

mg/l BAP. 7.70±0.48
 
was found in liquid media and

 
9.03±0.52

 
in solid media (Table 3.2). 
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Table 3.2: Number of somatic embryo produced in liquid and solid media supplemented 

with different concentrations of BAP, NAA and 2,4-D. 

 

MS + Hormone (mg/l) Number of Somatic Embryo per 

Explant 

Liquid media Solid media 

MS media (control) 0.00±0.00
p
 0.00±0.00

q
 

MS + 0.1 mg/l BAP 0.00±0.00
p
 0.00±0.00

q
 

MS + 0.5 mg/l BAP 0.00±0.00
p
 0.00±0.00

q
 

MS + 1.0 mg/l BAP 0.00±0.00
p
 0.00±0.00

q
 

MS + 1.5 mg/l BAP 0.00±0.00
p
 0.00±0.00

q
 

MS + 2.0 mg/l BAP 0.00±0.00
p
 0.00±0.00

q
 

MS + 2.5 mg/l BAP 0.00±0.00
p
 0.00±0.00

q
 

MS + 2.0 mg/l NAA 12.63±0.26
lm

 7.43±0.29
o
 

MS + 2.5 mg/l NAA 16.17±0.35
ij
 9.30±0.29

lmn
 

MS + 3.0 mg/l NAA 19.27±0.48
def

 11.53±0.32
ijk

 

MS + 3.5 mg/l NAA 24.67±0.32
b
 19.43±0.23

a
 

MS + 4.0 mg/l NAA 20.43±0.38
cde

 16.70±0.39
d
 

MS + 0.1 mg/l 2-4,D 5.77±0.29
o
 4.63±0.41

p
 

MS + 0.5 mg/l 2-4,D 8.93±0.40
n
 7.57±0.31

no
 

MS + 1.0 mg/l 2-4,D 13.87±0.35
kl

 10.53±0.65
klm

 

MS + 1.5 mg/l 2-4,D 15.83±0.39
ij
 12.60±0.54

hij
 

MS + 2.0 mg/l 2-4,D 19.93±0.43
def

 15.13±0.56
def

 

MS + 2.5 mg/l 2-4,D 24.47±0.41
b
 19.67±0.61

a
 

MS + 3.0 mg/l 2-4,D 21.00±0.25
cd

 16.30±0.71
cde

 

MS + 3.5 mg/l 2-4,D 17.70±0.43
gh

 14.40±0.59
fgh

 

MS + 4.0 mg/l 2-4,D 14.90±0.48
ij 

11.80±0.64
ijk

 

MS + 3.5 mg/l NAA + 0.1 mg/l BAP 26.93±0.38
a
 20.10±0.62

a
 

MS + 3.5 mg/l NAA + 0.5 mg/l BAP 23.47±0.38
b
 17.28±0.60

bc
 

MS + 3.5 mg/l NAA + 1.0 mg/l BAP 20.73±0.38
cd

 14.20±0.57
fgh

 

MS + 3.5 mg/l NAA + 1.5 mg/l BAP 18.78±0.27
fg

 13.00±0.51
ghi

 

MS + 3.5 mg/l NAA + 2.0 mg/l BAP 16.43±0.31
hi

 10.97±0.49
jkl

 

MS + 3.5 mg/l NAA + 2.5 mg/l BAP 11.40±0.31
m

 8.13±0.49
no

 

MS + 2.5 mg/l 2-4,D + 0.1 mg/l BAP 26.67±0.42
a
 20.53±0.50

a
 

MS + 2.5 mg/l 2-4,D + 0.5 mg/l BAP 23.53±0.37
b
 18.90±0.54

ab
 

MS + 2.5 mg/l 2-4,D + 1.0 mg/l BAP 21.63±0.48
c
 16.00±0.63

cdef
 

MS + 2.5 mg/l 2-4,D + 1.5 mg/l BAP 19.70±0.46
def

 14.63±0.58
efg

 

MS + 2.5 mg/l 2-4,D + 2.0 mg/l BAP 13.40±0.63
l
 12.30±0.60

ijk
 

MS + 2.5 mg/l 2-4,D + 2.5 mg/l BAP 7.70±0.48
n
 9.03±0.52

mno
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Figure 3.4: Graph showing mean number of somatic embryos produced in liquid media and solid media at temperature 21ºC with 16 

hours light and 8 hours dark.
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Figure 3.5: Somatic embryo at globular stage (after 12 weeks) 

 

 

 
Figure 3.6: Somatic embryo at oblong stage (after 13 weeks) 
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Figure 3.7: Somatic embryo at heart shape stage (after 15 weeks) 

 

 
Figure 3.8: Somatic embryo at heart shape elongated stage (after 16 weeks) 
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Figure 3.9: Somatic embryo at torpedo stage (after 17 weeks) 

 

 
Figure 3.10: Somatic embryo at cotyledonary stage (after 19 weeks) 
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Figure 3.11: Somatic embryo at mature cotyledonary stage  
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3.4  SUMMARY OF THE RESULTS 

 

1. In this research, four clear development stages of somatic embryo were recognized. 

The embryos were globular shaped, heart shaped, torpedo stages and the last stage was 

cotyledonary stage was observed. 

 

2. There were no somatic embryo formation was observed on MS media without 

hormone and MS media supplemented with BAP alone. 

 

3. MS media supplemented with NAA, 2, 4-D, NAA combined with BAP and 2,4-D 

combined with BAP gave rise to somatic embryos. 

 

4. MS media supplemented with 2.5 mg/l 2,4-D combined with 0.1 mg/l BAP was the 

most suitable media for somatic embryo induction in liquid and solid media. 

 

5. The lowest number of somatic embryos was obtained from MS media supplemented 

with 0.1 mg/l 2-4,D (4.63±0.41). 

 

6. Liquid media is the most suitable media for somatic embryo production compared to 

solid media. 
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CHAPTER 4 

REGENERATION OF POLIANTHES TUBEROSA L. THROUGH SOMATIC 

EMBRYOGENESIS 

 

4.1 EXPERIMENTAL AIMS 

 

Somatic embryogenesis is a process where group of somatic cells or tissues lead to the 

formation of somatic embryos which resemble the zygotic embryos of intact seeds and can 

grow into seedlings on suitable medium (Tripathi, 2003). Few plant species have been shown 

to regenerate by both organogenic and somatic embryogenic pathways, but many plants 

species can regenerate by one or the other of these pathways (Phillips, 2004). Both processes, 

organogenesis and somatic embryogenesis have been reported to occur in the same explant 

(He et al., 1990) but originate from particular tissue layers or cell within explant (Osternack et 

al., 1999). However, somatic embryogenesis is nowadays known as a good pathway to induce 

regeneration from in vitro tissue culture (Victor, 2001). 

 

Finding the right conditions to induce somatic embryogenesis in different species and 

cultivars is yet, for the greater part, based on trial and and error experiments (Jacobsen, 1991: 

Henry et al., 1994), analyzing the effect of different culture conditions and media modifying 

especially the types and level of growth regulators. In Polianthes tuberosa, there is no organ 

formation from explants culture. All the explants produce callus (discuss in chapter 2) and 

somatic embryos after induce the callus the media with high auxin especially 2, 4-D (discuss 

in chapter 3).  
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The objective of this study is to develop plant regeneration protocol for Polianthes 

tuberosa via somatic embryogenesis since there is no direct regeneration were observed from 

three types of explant used. Micro shoots formation will be induce from somatic 

embyogenesis and formation of complete plant will be discussed. The ability to understand 

the mechanism involved in the induction of somatic embryogenesis in this species will 

increase the number of genotypes capable of regeneration by this process. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Preparation of explants 

Callus was induced using 3 types of explant which are leaf, stem and flower bud 

(chapter 2). Callus from leaf explant was used to induce embryogenic callus and somatic 

embryo (chapter 3). Somatic embryo as explants were excised into 1cm x 1cm and cultured 

onto MS media supplemented with various combinations and concentration of hormones. 

 

4.2.2 Preparation of the regeneration medium 

 MS media was prepared by diluting MS powder with 30 g/l sucrose and 8 g/l agar in 

distilled water (same as media preparation in chapter 2). Plant growth regulator (Kin, IBA and 

NAA) was added to the media before autoclaving except GA3. GA3 was added after 

autoclaving due to heat sensitivity. To sterile GA3 hormone, sterilization filter 0.05 micropore 

was used. Autoclaved media was left and wait for the heat to cool down about 70°C. GA3 was 

added into the media after that. 

 

4.2.3 Screening for suitable hormones  

 Several concentration and combination of hormones were tested for regeneration of 

Polianthes tuberosa for somatic embryo. Nine concentrations of Ga3, eight concentrations of 

Kinetin combine with 2.0 mg/l IBA and eight concentrations of Kinetin combine with 2.0 

mg/l NAA were prepared. The following is the list of media that were used in this experiment.  

 

1. MS media (as control) 

2. MS + 0.1 mg/l GA3 
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3. MS + 0.5 mg/l GA3 

4. MS + 1.0 mg/l GA3 

5. MS + 1.5 mg/l GA3 

6. MS + 2.0 mg/l GA3 

7. MS + 2.5 mg/l GA3 

8. MS + 3.0 mg/l GA3 

9. MS + 3.5 mg/l GA3 

10. MS + 4.0 mg/l GA3 

11. MS + 0.1 mg/l Kin + 2.0 mg/l IBA 

12. MS + 0.5 mg/l Kin + 2.0 mg/l IBA 

13. MS + 1.0 mg/l Kin + 2.0 mg/l IBA 

14. MS + 1.5 mg/l Kin + 2.0 mg/l IBA 

15. MS + 2.0 mg/l Kin + 2.0 mg/l IBA 

16. MS + 2.5 mg/l Kin + 2.0 mg/l IBA 

17. MS + 3.0 mg/l Kin + 2.0 mg/l IBA 

18. MS + 3.5 mg/l Kin + 2.0 mg/l IBA 

19. MS + 4.0 mg/l Kin + 2.0 mg/l IBA 

20. MS + 0.1 mg/l Kin + 2.0 mg/l NAA 

21. MS + 0.5 mg/l Kin + 2.0 mg/l NAA 
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22. MS + 1.0 mg/l Kin + 2.0 mg/l NAA 

23. MS + 1.5 mg/l Kin + 2.0 mg/l NAA 

24. MS + 2.0 mg/l Kin + 2.0 mg/l NAA 

25. MS + 2.5 mg/l Kin + 2.0 mg/l NAA 

26. MS + 3.0 mg/l Kin + 2.0 mg/l NAA 

27. MS + 3.5 mg/l Kin + 2.0 mg/l NAA 

28. MS + 4.0 mg/l Kin + 2.0 mg/l NAA 

 

4.2.4 Data Analyses 

30 replicate were maintained for each treatment and the data was analyzed statistically 

using Duncan’s Multiple Range Test (DMRT). The statistical analysis based on mean values 

per treatment was made using the technique of analysis of variance. The comparative LSD 

multiple range test (p=0.01) was used to determine the differences between treatments.  
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4.3 Result  

 

4.3.1 Microshoot formation 

 Microshoot and roots formation from somatic embryo were observed in 2 months in 

all media tested with the exception of the medium containing GA3 alone in which somatic 

embryo showed no signs of active growth and after some time in the culture media it will 

become necrotic (Table 4.1).  

 

 In MS media without hormone, 4.23±0.22
 
shoots and 0.57±0.10

 
roots were observed. 

MS media supplemented with 2.0 mg/l Kin and 2.0 mg/l NAA was found to be the best media 

for microshoot formation (Figure 4.1) with the number of microshoot is 26.23±0.74. 2.5 mg/l 

Kin and 2.0 mg/l IBA give the higher result for microshoot formation with the number of 

microshoot is 23.63±0.53. For root formation MS media supplemented with 0.5 mg/l Kin and 

2.0 mg/l NAA is the most suitable media for root formation (Figure 4.3) with 4.23±0.40 

number of roots formation. 
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Table 4.1: Number of microshoots and roots formation from somatic embryo. Thirty 

replicates were used in each treatment. 

 

MS + Hormone mg/l No of shoot formation No of root formation 

MS media 4.23±0.22
j
 0.57±0.10

fg
 

MS + 0.1 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 0.5 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 1.0 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 1.5 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 2.0 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 2.5 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 3.0 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 3.5 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 4.0 GA3 0.00±0.00
k
 0.00±0.00

g
 

MS + 0.1 Kin + 2.0 IBA 6.50±0.21
i
 0.67±0.12

efg
 

MS + 0.5 Kin + 2.0 IBA 6.97±0.26h
i
 1.37±0.11

def
 

MS + 1.0 Kin + 2.0 IBA 8.50±0.30
h
 2.23±0.20

bcd
 

MS + 1.5 Kin + 2.0 IBA 13.00±0.37
f
 3.20±0.23

ab
 

MS + 2.0 Kin + 2.0 IBA 20.23±0.54
c
 3.63±0.34

a
 

MS + 2.5 Kin + 2.0 IBA 23.63±0.53
b
 3.63±0.35

a
 

MS + 3.0 Kin + 2.0 IBA 17.8000±0.55
d
 3.30±0.35

ab
 

MS + 3.5 Kin + 2.0 IBA 10.90±0.49
g
 3.70±0.41

a
 

MS + 4.0 Kin + 2.0 IBA 7.03±0.44h
i
 2.23±0.28

bcd
 

MS + 0.1 Kin + 2.0 NAA 4.80±0.41
j
 1.03±0.14

defg
 

MS + 0.5 Kin + 2.0 NAA 8.57±0.65
h
 4.23±0.40

a
 

MS + 1.0 Kin + 2.0 NAA 11.13±0.43
g
 3.63±0.33

a
 

MS + 1.5 Kin + 2.0 NAA 17.53±0.79
d
 3.00±0.31

abc
 

MS + 2.0 Kin + 2.0 NAA 26.23±0.74
a
 3.37±0.29

ab
 

MS + 2.5 Kin + 2.0 NAA 20.80±0.55
c
 3.20±1.10

ab
 

MS + 3.0 Kin + 2.0 NAA 18.20±0.59
d
 1.90±0.26

cd
 

MS + 3.5 Kin + 2.0 NAA 15.83±0.62
e
 1.80±0.26

cde
 

MS + 4.0 Kin + 2.0 NAA 12.00±0.69f
g
 1.97±0.20

cd
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Figure 4.1: Microshoots formation in MS media supplemented with 2.0 mg/l 

Kin and 2.0 mg/l NAA. 

 

Figure 4.2: Shoots elongation in MS media supplemented with 2.0 mg/l Kin and 

2.0 mg/l NAA. 
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Figure 4.3: Roots formation in MS media supplemented with 0.5 mg/l Kin and 

2.0 mg/l NAA 

 

 

Figure 4.4: Tuber and root formation in MS media supplemented with 0.5 mg/l 

Kin and 2.0 mg/l NAA 
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4.4 SUMMARY OF THE RESULT 

 

1. No microshoots and roots formation was observed on MS media supplemented with 

GA3 alone. 

 

2. MS media supplemented with 2.0 mg/l Kin + 2.0 mg/l NAA was the best media for 

micro shoot formation. 

 

3. MS media supplemented with 0.5 mg/l Kin + 2.0 mg/l NAA was the best media for 

roots formation. 
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CHAPTER 5 

ACCLIMATIZATION OF PLANTLETS OF POLIANTHES TUBEROSA L. 

 

5.1 EXPERIMENTAL AIMS 

 

 Acclimatization is an adaptation process to the natural environment for various plant 

species which has undergone growth and development process in vitro (Preece and Sutter, 

1991). Culture induce phenotype cannot survive the environmental condition when directly 

transfer to the field or green house because plantlets were developed within the culture vessels 

under low level of light, aseptic conditions, on a medium containing ample sugar and 

nutrients to allow for heterotrophic growth and in an atmosphere with high level of humidity.  

 

According to Kozai (1991) and Pospisilova et al., (1997), the specific in vitro 

environment with artificial medium usually supplied with sugars, the growth of plantlets in 

small air tight vessels with high air humidity, low gas exchange and thus a CO2 shortage 

during almost the whole photoperiod, ethylene production and relatively low photosynthetic 

photon flux density (PFD), induces disturbance in plant development and photosynthetic 

performance.  

 

 Leaves formed during tissue culture are anatomically and physiologically affected by 

the culture environment. The physiological and anatomical characteristics of micropropagated 

plantlets necessitate that they should be gradually acclimatized to the environment of the 

greenhouse or field. Transfer and acclimatization to the ex vitro environment is the final but 

frequently most hazardous step in successful micropropagation system (Preece and Sutter, 

1991). 
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 The plants that developed under lower relative humidity have fewer transpiration and 

translocation problems ex vitro, and persistent leaves that look like normal ones. The low 

deposition of surface wax, stomatal abnormalities and a non-continuous cuticle are typical 

anatomical features of herbaceous plants growing under conditions of abundant moisture. 

This typical in vitro anatomy can be prevented by increasing the vapour-pressure gradient 

between the leaf and the atmosphere.  

 

Varying experiments have been done to lower the relative humidity like opening 

culture container (Brainerd and Fuchigami, 1981), adjusting culture closure or using culture 

closure that facilitate water loss (Fari et al, 1987) or use of desiccants, by coating the medium 

with oily materials or both (Sutter, and Langhans, 1982; Ziv et al., 1983).  

 

In this study, plantlets from tissue culture container were transferred to the greenhouse 

to observe the capability of the plantlet to adapt to the natural environment. The aims of this 

process were to measure the survival rate of acclimatized plantlets from somatic embryos. 

The successful of the plantlets to survive means the successful of tissue culture of this plant.  
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5.2 MATERIALS AND METHODS 

 

5.2.1 Plant materials 

 Micropropagated or regenerated Polianthes tuberosa L. plantlets were used in this 

study. Polianthes tuberosa L. was micropropagated through indirect somatic embryogenesis. 

Somatic embryos were transferred to the medium to induce shoots and roots formation. After 

4 months, new plantlets obtained from in vitro cultures were ready to be transferred to the 

greenhouse. 

 

5.2.2 Transfer to ex vitro environment 

 After 3 months in vitro plantlets were transferred to pots (80 x 60 mm) filled with a 1 

cm layer of sand and a mixture of garden soil and red soil. The agar medium was carefully 

washed off the roots with distilled water before planted in the pot. The potted plantlets were 

first kept in the culture room at 25 ± 1 °C under 16 hours light and 8 hours dark for 3 weeks. 

The plantlets were watered every day. 

 

 Plantlets were transferred to 3 different scheme of growth medium: 

1) Garden soil – Combination of black soil and red soil at ratio of 2 to 1 

2) Autoclaved garden soil – Combination of black soil and red soil at ratio of 2 to 1  

3) Red soil 

 

The potted plantlets were covered with a transparent plastic with small holes before 

transfer to the greenhouse to reduce water lost. Shading was used to reduce irradiance during 

the first day of acclimatization. After 20 days in the greenhouse, the plastic cover was slowly 
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lifted up and the shading of the covered reduced. At day 35 the plastic covered was removed 

completely. 

 

Based on all experiments done, the best acclimatization technique which gave the 

highest survival rate was identified. 

 

5.2.3 Data analyses  

 Data obtained were analysed using Duncan Multiple Range Test (DMRT). Mean with 

different letters in the same column differ significantly at p=0.01. 
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5.3 RESULTS 

 

5.3.1 Survival rate of Polianthes tuberosa L. plantlets 

 The complete plantlets achieved through shoot formation and root formation from 

somatic embryos (chapter 4) were successfully transferred to ex vitro environment. A great 

care was taken to minimize exposure to extreme light intensity. High humidity was 

maintained by covering potted plantlets and the cover was removed in stages, creating partial 

exposure of the plantlets to the sunlight and full exposure after 35 days in the greenhouse. By 

this treatment, the plantlets were able to acclimatize progressively. 

 

 Plantlets responded positively when acclimatized in garden soil (combination of black 

soil and red soil at ratio of 2:1) (Figure 5.1 and 5.2). This treatment gave the highest survival 

rate for acclimatization of Polianthes tuberosa plantlets with the percentage of 63.33±0.09
 
%. 

Lower survival rate (50.00±0.09
 
%) was observed in red soil. Polianthes tuberosa L. plantlets 

did not survive when acclimatized in autoclaved garden soil (combination of black soil and 

red soil at ratio of 2:1) (Table 5.1).
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Table 5.1: Responses showed by in vitro Polianthes tuberosa plantlets after being 

acclimatized in various sowing media. Results obtained after 2 months being acclimatized 

 

Methods Observations Survival Of Polianthes 

tuberosa (%) 

Plantlets were transferred to Garden 

soil (Combination of black soil and 

red soil at ratio 2 to 1) 

 

Plantlets survived and 

showed healthy growth 

  63.33±0.09
a 

 

Plantlets were transferred to 

autoclaved garden soil 

(Combination of black soil and red 

soil at ratio 2 to 1) 

 

Plantlets did not survive  0.00 ± 0.00
c
 

Plantlets were transferred to red soil  

 

Plantlets survived with 

slow growth 

50.00±0.09
b 

 

Mean ± SE, n=30. Mean with different letters in the same column differ significantly at 

p=0.01. 

 

   

  



108 

 

 

Figure 5.1: Four-month-old Polianthes tuberosa L. plantlets after being transferred to the 

garden soil. 

 

 

Figure 5.2: Seven-months-old Polianthes tuberosa L. plantlets after being transferred to the 

garden soil. 
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5.4 SUMMARY OF RESULT 

 

1. In vitro plantlets of Polianthes tuberosa L. were successfully acclimatized with 

percentage 63.33±0.09%. 

 

2. Garden soil was identified as the most suitable sowing medium for acclimatization of 

Polianthes tuberosa L. plantlets. 

 

3. Plantlets that were cultured on MS media were removed carefully and the roots were 

rinsed with distilled water. Plantlets were then acclimazation on garden soil step by 

step. 
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CHAPTER 6 

DISCUSSIONS 

 

Tissue culture studies have been observed and reported in many monocotyledon 

species. These include the members of the Gramineae like oats (Carter et al., 1967), rice 

(Yatawa et al., 1967; Nishi et al., 1968), wheat (Trione, et al., 1968), sorghum (Masteller and 

Holden, 1970) and a number of temperate grasses (Atkin and Barton, 1973) as well as some 

bulbous and related species like Lilium (Sheridan, 1968), Asparagus ( Wilmar and 

Hellerdoorn, 1968), Allium (Fridborg, 1971), Haworthia (Kaul and Sabharwal, 1972), 

Gladious (Ziv et al., 1970; Simonsen and Hildebrandt, 1971) and Freesia (Davies, 1971, 

1972). There are many reports of regeneration from cell suspension of cereals and grasses but 

less attention has been given to monocotyledonous ornamental. Only a few reports exist about 

cell suspension culture of Agavaceae.  

 

In the present work, tissue culture studies of Agavaceae family, Polianthes tuberosa L. 

are discussed.  Polianthes tuberosa L. was selected because it is a very unique ornamental 

plant with attractive long spikes, pleasant fragrant flowers that have strong fragrant at night 

and mild during the day. This plant has very high commercial values in cut flowers and 

perfumery industries. Though this plant has been exploited to produce perfume all over the 

world, however research and application of Polianthes tuberosa L. are limited in Malaysia. In 

vitro work was carried out for this species as an alternative method for mass propagation and 

as a tool to overcome the problems occurring during the conventional propagation. The 

present tissue culture study was focused on regeneration of complete plantlets of Polianthes 

tuberosa L. This study was separated into several chapters. It encompasses the studies of 
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callus induction, somatic embryogenesis induction, regeneration from somatic embryos and 

acclimatization of plantlets. 

 

In chapter 2 studies concerning callus induction of Polianthes tuberosa L. was carried 

out in order to identify and determine the best concentration and combination of hormones for 

optimum callus formation. Callus could be established from many types of explants. In this 

study, three types of explants were used which are leaf, stem and flower bud. 

 

From the observation, callus started to initiate from the excision side or cut surfaces of 

the explants and after some time the whole explant produced callus. According to Haberlandt 

(1902), induction of callus formation is due to interaction between wound hormones and other 

hormones present. Wounding can increase uptake of nutrients and growth regulators from the 

media (Peirik and Steegmans, 1975). It can be considered as a wound response from almost 

any part of the original plant, both from plant organs and from specific tissue types or cells 

(Collin and Edwards, 1998). While, according to Yeoman and Aitchison (1977), excision 

caused destruction of the cells. Slicing eliminates or reduces the anatomical barrier which 

would cause mechanical resistance, thereby allowing axillary shoots to grown from shoot tips 

(Pierik, 1987). According to Thorpe (1980) and Wagley et al., (1987), formation of callus 

from explants tissues involved the development of progressively more random planes of cell 

division, less frequent specialization of cells and loss of organized structures. 

 

The explants used for callus induction could affect the formation of callus. In the 

present study, all the explants used, leaf, stem and flower bud produced callus after cultured 

onto the media.  
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Rapid callus growth was obtained from flower bud explants cultured on MS media 

supplemented with 0.5 mg/l BAP combined with 2.0 mg/l NAA. According to 

Supaibulwatana and Mii (1997), flower head tissue of Agapanthus africanus was also the 

most responsive part to the culture media. These results suggest that flower tissue probably 

has the undifferentiated meristematic nature as previous suggested by Novak and Havel 

(1981).  

 

Stem explant started to produce callus early than other explants but the proliferation 

was slow. In Digitaria exilis (L.), stem segments started to produce callus after seven days in 

culture but no callus formation from leaf explants even after 4 weeks in vitro (Ntui et al., 

2010). According to Hussey (1975), young, elongating, inflorescence stem proved to be the 

most consistently reactive tissue. The initiation of callus in the leaf explant was late compared 

to stem but proliferation was more rapid than flower bud segment.  

 

Sangavai and Chellapandai (2008), used rhizome of Polianthes tuberosa L. as an 

explant to induced callus formation but low frequency of callus was observed with the 

maximum percentage of callus formation (37.8±1.2). Hutchinson et al., (2004) used shoots tip 

explant to investigate in vitro propagation of Polianthes tuberosa L. 

 

Callus formation in tissue culture of Polianthes tuberosa L. is likely resulted from a 

combination effect of auxin and cytokinin and auxin alone. MS media supplemented with 2.0 

mg/l NAA; 0.5 mg/l BAP in combination with 2.0 mg/l NAA; 3.0 mg/l NAA and MS media 

supplemented with 0.5 mg/l BAP in combination with 2.5 mg/l NAA were suitable for callus 

formation from leaf explants with 100.0±0.00 % of the explant tested produced callus. 

100.0±0.00 % of stem explants produced callus in MS media supplemented with 2.0 mg/l 
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NAA, MS media supplemented with 3.0 mg/l NAA and MS media supplemented with 0.5 

mg/l BAP in combination with 2.0 mg/l NAA. Flower bud explants were suitable when 

cultured on MS media supplemented with 2.0 mg/l NAA and MS media supplemented with 

0.5 mg/l BAP in combination with 2.0 mg/l NAA. All the explants (100.0±0.00 %) produced 

callus.   

 

In the present study, MS media supplemented with NAA alone was found to be the 

best media for callus formation (Table 2.1). Khan et al., (2007) also obtained efficient callus 

induction in Saintpaulia ionantha when leaf explants were cultured on MS media 

supplemented with 1.0 mg/l NAA. Sangavai and Chellapandai (2008) observed that MS 

media supplemented with 0.5 mg/l BAP with 1AA at concentrations of 0.5, 1.0, 2.0, 2.5, 3.0, 

and 3.5 could produce callus from rhizome explants of Polianthes tuberosa L. MS media 

supplemented with 0.5 mg/l BAP and 3.0 mg/l IAA was the best media in inducing callus 

formation of with highest percentage (37.8±1.2). 

 

There is no callus formation in MS media without hormone and MS media 

supplemented with BAP alone. Similar observation was reported by Paranjothy et al., (1988), 

whereby callus initiation required an auxin but it may be inhibited by cytokinin. Some 

researchers found the opposite results compared to this study. In their finding, cytokinin alone 

could induce callus production. For example, Kathal et al., (1993) found that BAP was the 

best cytokonin because it induced maximum callus growth in terms of fresh weight in 

Cucumis melo.  

 

Two types of callus could be observed in the culture according to the colour. The first 

type is the callus which is nodular, friable, soft (watery) and greenish. The second type is the 
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callus which is nodular, friable, soft, wet looking surface and yellow whitish and cream in 

colour. According to Lin et al., (2000) plant regeneration in monocots has been achieved from 

either friable or a compact callus morphotype. In many monocots, the composition of plants 

growth regulators in the culture medium directed the callus morphotype (Ntui et al., 2010). In 

Digitaria sanguinalis, medium supplemented with 2,4-D alone induced friable callus 

formation (Le et al., 1997), in Sorghum bocolour, medium supplemented with 2,4-D alone 

produced friable callus whereas 2,4-D together with dicambia induced compact callus 

formation (Gendy et al., 1996), in Asparagus densiflorus, P-chlorophenoxyacetic acid 

together with BAP induced friable callus and 2,4-D together with kinetin induced compact 

callus formation (Benmoussa et al., 1996). 

 

Callus can be induced for organogenesis and somatic embryogenesis pathways. 

According to Hasbullah et al., (2008), the first step towards de novo regeneration is to 

establish callus or cell suspension cultures.  

 

In chapter 3, embryogenic callus was induced to produce somatic embryos. 

Embryogenic callus was induced when leaf explants were cultured on MS medium 

supplemented with 0.5- 4.0 mg/l NAA (Table 3.1). The embryogenic callus was than 

determined using double staining method. This method was done according to ‘double 

staining’ technique prepared by Gupta and Durzan (1987). 

 

In the present study, callus obtained from leaf explant was used as an explant because 

leaf of Polianthes tuberosa is easy to obtain compared with stem and flower buds explant. 

Suzuki et al., (2002) also used leaf as a source of explant for callus embryogenic induced in 

Agaphantus praecox because of difficulties to get the flower bud explant. Mature vegetative 
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tissue usually used because they are more convenient and more readily available than 

immature and floral tissues (Thorpe, 1995). In Chrysanthemum, embryogenic callus were 

produced from mid-rib explants on modified MS medium supplemented with 1.0 mg/l 2,4-D 

and 0.2 mg/l BAP (May and Trigiano, 1991). Basal and Pandey (1993) obtained efficient 

callus induction from leaf explant of Sesbanea aculeate in MS media supplemented with high 

concentration of 2,4-D (5.0 to 10.0 mg/l) in combination with different BA concentration. 

 

Some tissue culturists used flower buds to induce callus embryogenic formation. 

Supaibulwatana and Mii, (1997) used floral organ explants to induce embryogenic callus in 

Agaphantus africanus. Wojciechowicz, (2009) also managed to get embryogenic callus from 

petal explants of Sedum species. Young floral tissues are known to be conducive to in vitro 

culture with good embryogenic potential (Ammirato, 1989). Levels of endogenous growth 

regulators can be vary among organs and likely effect embryogenesis (Carman, 1990). Myers 

(2004) founds that the use of entire immature zygotic embryos was more efficient in inducing 

somatic embryogenesis.  

 

Culture media composition is very important to induce callus embryogenic. In the 

present study of Polianthes tuberosa L., a high concentration level of auxin in the callus 

induction medium was necessary to enhance embryogenic callus production. MS media 

supplemented with 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mg/l NAA was successful in 

inducing embryogenic callus formation, whereas 2.0 and 3.0 mg/l was found to be the best 

concentration of NAA when 100.0±0.00 of explants cultured managed to produce callus. 

Nagarajan et al, 1986; Meijer and Brown, 1987; Nolan et al., 1989; Shri and Daris, 1992) also 

found similar resultsnas they reported for other species. Carman, (1990); Ammirato, (1987); 
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Luo et al., (1999), also stated that the induction of embryogenic callus was usually promoted 

by a relatively high concentration of auxins especially 2, 4-D. 

 

Some scientists managed to get callus embryogenic in high level of cytokinins and low 

level of auxin.  Kim et al., (2003) produced callus embryogenic from zygotic embryo of rose 

at a relatively high concentration of BA (4.44 µM) in combination relatively low 

concentration of 2, 4-D (1.36 µM). Rout et al., (1991) also obtained the same result as Kim et 

al., (2003). He also produced embryogenic callus from immature leaf and stem explants of 

rose at a relatively high concentration of BA (2.22 µM) and a relatively low concentration of 

NAA (0.05 µM) in addition of 0.3 µM GA3.  

 

In monocotyledonous plants including Liliaceous plants, 2,4-D was predominantly 

used for the induction of embryogenic callus (Krikorian and Khan, 1984; Van der Valk et 

al.,1992). In Medicado truncatula and M. sativa, 2,4-D supplemented with BAP promoted 

enhanced embryogenic calli and subsequent embryo differentiation (Trinh et al., 1998). In 

Digitaria exilis, somatic embryogenesis was observed higher in medium containing 2,4-D 

supplemented with BAP compared to medium supplemented with 2,4-D alone (Ntui et al., 

2010). 

  

Embryonic callus can be preserved for a long time. Embryogenic callus of Agaphantus 

praecox ssp. orientalis (Leighton) Leighton can be maintained for over 2 years by monthly 

subculture without apparent loss of their regeneration ability (Suzuki et al., 2002). Bouman et 

al., (2001) reported that efficiency of embryogenic callus of Cyclamen seems to be stable for 

more than 5 years however suspension cultures can lose embryogenic potential after a number 
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of subcultures. Pueschal et al., (2003) succeeded in plant regeneration via somatic 

embryogenesis of C. persicum and maintained the regeneration ability for prolong period. 

 

Somatic embryos have the same potential of zygotic embryos to regenerate new 

plants. Under controlled environmental conditions, somatic embryos germinate readily, 

similar to their seedlings counterpart. Somatic embryo can provide a useful model to study 

embryo development in plant (Zimmerman, 1993). Once the induction of an embryogenic 

state is complete, the mechanisms of pattern formation that lead to the zygotic embryo are 

common to all other form of embryogenesis (Mordhorst et al., 1997). Thus, somatic and 

zygotic embryos share similar gross ontogenies, with typically passing through globular, heart 

shape and torpedo shape stages in dicots or globular scutellar (trasition) and coleoptilar stages 

in monocots (Gray et al., 1995; Toonen and de Vries, 1996). In contrast to zygotic 

embryogenesis, somatic embryogenesis can easily be observed, the culture conditions can be 

controled and large quantity of embryos can be easily obtained (Kawahara and Komamine, 

1995). 

 

Somatic embryogenesis is a very valuable tool for achieving a wide range of 

objectives, from basic biochemicals, physiological and morphological studies, to the 

development of technologies with a high degree of practical application (Victor, 2001). 

According to Haccius (1978), somatic embryogenesis has been considered to be a distinct 

developmental pathway different from shoot or root organogenesis, in which a single cell 

gives rise to a structure containing bipolar meristem and with no direct vascular connection to 

the maternal tissue. The mass propagation of plants through multiplication of embryogenic 

propagules is the most commercially attractive application of somatic embryogenesis (Merkle 

et al., 1990). 
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Somatic embryogenesis potentially offers a promising system for plant regeneration 

because of the high proliferation capacity and the probable single cell origin, which may 

avoid the risk of chimeric plants and facilitate the application for mutant selection and 

recombinant DNA technology (Luo et al., 1999; Ponsamuel et al., 1996; Roberts et al., 1995; 

Stefaniak, 1994). Thus in this chapter, somatic embryogenesis was induced from embryogenic 

callus of leaf explant of Polianthes tuberosa. Indirect somatic embryogenesis was obtained 

from this study.  

 

Indirect somatic embryogenesis was observed in this species. Somatic embryos 

occurred only after callus embryogenic was subcultured onto somatic embryogenesis induce 

media. According to Sharp et al., (1980) the term indirect is referring to explants which 

undergo an extensive proliferation before the development of somatic embryogenesis. Indirect 

somatic embryogenesis generally considered to have a unicellular or multicellular origin 

(Quiroz- Figuera et al., 2002). Histological studies in different species have described both 

unicellular (Trigiano et al., 1989; Faure et al., 1996) and multicellular (Taylor and Vasil, 

1996; Fernandez et al., 1996) pathways.  

 

A lot of works have been reported in indirect somatic embryogenesis. Lin et al., 

(2000) observed indirect somatic embryogenesis in Alstromeria. Saqlan et al., (2005), Rashid 

et al., (2003) and Liu et al., (2001) managed to get direct somatic embryogenesis from rice. 

 

Direct somatic embryogenesis can occur when explant cultured produced somatic 

embryo without callus phase formation. According to Sharp et al., (1980) the term direct is 

applied to explants that undergo a minimum in proliferation before forming somatic embryos. 



119 

 

Direct somatic embryogenesis was observed in many monocotyledon species. Park et al., 

(2005) observed somatic embryo in Eleutherococcus koreanum. In the absence of growth 

regulators, roots segment of Eleutherococcus koreanum cultured in 1/3, half, full and double 

strength MS media developed globular embryo directly on surface root without any callus 

mediation. Castillo and Smith (1997) induced direct somatic embryogenesis from petiole and 

leaf blade explants of B. gracilis on MS medium supplemented with 0.5 mg/l Kin and 2% 

(v/v) coconut water. 

 

It is not always clear the types of somatic embryogenesis that occurs or both direct and 

indirect can be observed in the cultures. According to Carman (1990) and William and 

Mahaswaran (1986), direct and indirect somatic embryogenesis have been considered as two 

extremes of a continuum. Once induction of embryogenic cells have been achieved, they 

appear to be no fundamental differences between indirect and direct somatic embryogenesis 

(Williams and Maheswaran, 1986). 

 

Somatic embryos produced directly from an explant are less subjected to genetic 

variation (Kim et al., 2003) because maintenance of calluses for a long time in vitro results in 

greater genetic variation (Llyod et al., 1988; Arene et al., 1993). Therefore, it is useful to 

control the induction of somatic embryogenesis both directly and indirectly from explants in 

order to produce the maximum number of genetically uniform clonal plant develop from 

somatic embryogeneis. 

 

To induce somatic embryo formation, embryogenic callus obtained from leaf explant 

were then transferred to liquid and solid MS media supplemented with thirty combinations of 

hormone which are NAA alone, 2,4-D alone, BAP alone, NAA combined with BAP and 2,4-
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D combined with BAP. When the callus obtained were transferred to somatic embryogenesis 

induction media, internal cell divisions led the formation of proembryos, distinct from each 

other in the callus at the beginning of the developmental phase of somatic embryos. This 

probably indicates the single cell origin of embryos, as in the case of Agapanthus praecox 

spp. orientalis (Suzuki et al., 2002), Pelargonium x domesticum (Wilson et al., 1994), Freesia 

refracta (Wang et al., 1990), Juglans regia (Polito et al., 1989) and Tricum aestivum 

(Magnusson and Bornman, 1985). Unicellular origin of somatic embryogenesis obtained in 

the present study may allow the production of non- chimeric plants of Polianthes tuberosa. 

 

After 3 months in the culture, round structure of globular stage and other stages like 

heart shape, torpedo and cotyledonary could be observed. Somatic embryo development was 

asynchronous in this plant species where different stages of development could be observed 

within the same treatment and replication unit. Asynchronous was observed also in somatic 

embryogenesis callus culture of Kampung Royal Poinciana (Myers and Vendrame, 2004), 

Astragalus adsurgens Pall (Luo et al., 1999), and Azadirachta indica A. Juss (Medha et al., 

1993). 

In the current studies, the entire media used produced somatic embryos except for MS 

media and MS media supplemented with BAP alone (Table 3.2). The highest number of 

embryos, (26.93±0.38) was obtained from MS media supplemented with 3.5 mg/l NAA and 

0.1 mg/l BAP in liquid media. MS media supplemented with 2.5 mg/l 2,4-D and 0.1 mg/l 

BAP also gave high results with 26.67±0.42 number of somatic embryos.  

 

In MS media without hormone and MS media supplemented with BAP alone, there 

were no further growth from embryogenic callus. Embryogenic callus were dehydrated after 2 

weeks in the media. According to the result (Table 3.2) there is no somatic embryo formation 
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in MS basal media but MS media supplemented with auxin is the best combination media for 

somatic embryogenesis. According to Thorpe (1995), over 2000 media formulation has been 

documented (George et al., 1987; George et al., 1988) but a survey of literature concerning 

somatic embryogenesis reveals that about half of the embryo induction medium used across 

all the species is MS based medium. 

 

Many factors including choice of growth regulators, choice of explants and culture 

medium composition are responsible for successful of somatic embryogenesis. All the result 

for somatic embryo production shows that liquid media produce more number of somatic 

embryo compared to solid media with the same treatment (Table 3.2) except only one 

treatment, MS media supplemented with 2.5 mg/l 2-4,D and 2.5 mg/l BAP, liquid media 

produce 7.70±0.48
 
number of somatic embryos while solid media produce 9.03±0.52

 
number 

of somatic embryo. This result indicated that maybe some mistake occurred in the handling 

process of embryogenic callus transferred to the media because other result showed that liquid 

or suspension media is better in producing more number of somatic embryos.  

 

Liquid medium seems to be more effective which is due to better aeration. Many 

tissue culturists used liquid suspension culture media for rapid development of somatic 

embryos. Winkelmann et al., (1998) and Hohe et al., (2001) used cell suspension culture for 

large scale production of Cyclamen somatic embryos. Atanassov and Brown (1984) and Mc 

Kersie et al., (1989) used suspension culture to induce somatic embryos from Medicago sativa 

L. in MS media supplemented with 1.0 mg/l 2,4-D. 

 

Growth regulators and nutrient component of the media have profoundly influenced 

the embryogenesis process in plant species and suitable medium composition should be 
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worked out for embryo induction, development, maturation and conversion. In the present 

study, combination of auxin and cyctokinin play an important role in somatic embryos 

production.  

 

MS combined with high auxin and low cytokinin gave the best results compared to 

MS combined with auxin alone or MS combined with cytokoinin alone (Table 3.2). MS 

media supplemented with 3.5 mg/l NAA gave rise to 24.67±0.32
 
number of somatic embryos 

compared to MS media supplemented with 3.5 mg/l NAA and  0.1 mg/l BAP which gave rise 

to 26.93±0.38
 
number of somatic embryo. MS supplemented with 2.5 mg/l 2-4,D gave rise to 

24.47±0.41
 
number of somatic embryos compared to MS media supplemented with 2.5 mg/l 

NAA and  0.1 mg/l BAP gave rise to 26.67±0.42
 
number of somatic embryos. 

 

Exogenous applied hormone, mainly auxin such as NAA and 2,4-D play a critical role 

in the reactivation of the cell cycle and the initiation of the reactivation of the cell cycle and 

the initiation of the embryo formation. Application of high concentration of 2,4-D in the 

culture medium itself is a stress signal, since embryogenic induction requires the use of a 

physiological auxin concentration that inhibit callus growth. Sage et al., (2000) observed that 

somatic embryos could developed in 0.5, 5.0, and 10.0 mg/l NAA and 2,4-D. More somatic 

embryos were produced on media supplemented with 5.0 and 10.0 mg/l 2,4-D compared to 

0.5 mg/l 2,4-D. In the present studies of Polianthes tuberosa L., 2,4-D at concentration 2.5 

mg/l produced more somatic embryo compared to 3.0 mg/l 2,4-D. 

 

However, response to auxin and cyatokinins is variable and depends on the species 

and types of auxin and cyatokinin used (Lakshmanan and Taji, 2000) and relative amounts 

applied (Myers and Vendrame, 2004). Some species required high auxin and cytokinin 
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concentration supplemented medium. Luo et al., (1999) reported that the high frequencies 

(63-74%) of somatic embryogenesis of Astragalus adsurgens occurred on MS medium 

containing 0.1 mg/l NAA in combination with BAP at the concentration of 1.0- 2.0 mg/l, 

where an average of 280 somatic embryos was obtained from 1 g of embryogenic callus. 

Similar needs for somatic embryo formation also reported for other species such as Coffea 

canephora (Hatanaka et al., 1991), Coronilla varia (Moyer and Gustine, 1984), Eleusina 

caracana (Eapen and George, 1989), Oryza sativa (Ram and Nabors, 1984) and Thevetia 

peruviana (Kumar, 1992). 

 

Somatic embryogenesis also occurs in this species when kinetin was applied with the 

auxin (2,4-D and NAA) in the media. Similar needed was observed in bulb plant Agave 

(Amaryllidaceae). According to Bansude et al., (2003) 0.5 mg/l NAA in combination with 1-2 

mg/l BAP can induce somatic embryo in Agave. In Narcissus bulbocodium, the formation of 

somatic embryo was stimulated using the combination of IBA and BAP (Salema and 

Salamak, 2000). Anbari et al., (2007) found that MS media supplemented with 2,4-D (1.6 

mg/l), BAP (1.6 mg/l) and GA3 (0.5 mg/l) managed to induce globular stages in Narcissus 

papyraceus cv Shirazi. The findings of Zive et al., (1995) confirmed the positive effects of 

2,4-D and BAP on induction of somatic embryogenesis in bulb plant of Nerine 

(Amaryllidaceae). 

 

In some species, results which were contrast with Polianthes tuberosa L.were 

obtained. The embryogenic callus subsequently gave rise to somatic embryo when growth 

regulators were removed. Examples include many herbaceous species such as cucumber 

(Raharjo and Punja, 1994), melon (Gray et al., 1993), squash (Chee, 1992), strawberry (Wang 

et al., 1984). Reports by Carman (1990) and Ammirato (1987) also indicated that embryo 
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development was usually associated with a reduction or the omission of auxin from the 

medium. However, according to Laksmanan and Taji (2000), the removal of plant growth 

regulators could be critical for somatic embryo differentiation and maturation.  

 

The choice of explants has a great influence on the success of somatic embryogenesis 

production. Research has been done to observe embryogenic response among young tissue 

(Punja et al., 1990; Chee, 1990), mature vegetative tissue (Willian and Maheswaran, 1986) 

and floral tissue (Carman, 1990). According to Thorpe (1995), the relative responsiveness of 

various immature tissues seems to be species-specific. For examples, cotyledons were more 

embryogenic than hypocotyls in cucumber (Chee, 1990) while in cotton hypocotyls produced 

more embryos than seeds or cotyledons (Trolinder and Chen, 1989). According to Carman 

(1990), floral tissue (ovaries, pedicels, peduncles, buds and inflorescences) may be 

embryogenic because of their developmental proximity to embryogenesis in vivo. According 

to Razdan (1993), premeiotic inflorescences with the primordia of the individual florosets just 

beginning to protrude has been observed to be the most suitable material in some systems. In 

some plant species, induction of embryogenesis from microspores at the uninucleate stage is 

the most efficient way to induce androgenesis, either from cultured anthers or from isolated 

microspores (Touraev et al., 2001; Segui Simarro and Nuez, 2005; Litcher, 1989; Testillano et 

al., 2004). Augustine et al., (2008) use anthers of Curculogo orchioides as explants cultured 

on media with 2,4-D and managed to get small meristematic clumps.  

 

Secondary somatic embryogenesis can occur while inducing somatic embryogenesis. 

Remotti (1995) observed primary and secondary somatic embryos from cell suspension 

cultures of Gladiolus. No secondary somatic embryogenesis was observed in the present 

studies of somatic embryogenesis of Polianthes tuberosa L. Secondary somatic 
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embryogenesis is the phenomenon whereby new somatic embryos are initiated from somatic 

embryos (embryos are form from embryos). It is associated with loss of integrated group 

control of cells organized in the somatic embryos. Some cells break away from group control 

and initiate new somatic embryos (William and Maheswaran, 1986).  

 

A major limitation of the embryogenic systems used in Polianthes tuberosa L. is the 

maintenance of embryogenic competence and the low conversion rate of somatic embryos in 

plants. In a number of species low conversion rates have been shown to be due to poor 

somatic embryo quality and a lack of maturation and desiccation tolerance (Etienne et al., 

1993). 

  

In some other bulbous plant like Liliaceous plant species such as Agapanthus 

africanus (Supaibulwatana and Mii, 1997) Asparagus officinalis (Kunitake and Mii, 1990; 

May and Sink, 1995), Allium ampeloprasum (Buiteveld and Creemers-Molenaar, 1994) and 

Lilium X formolongi (Mii et al., 1994; Godo et al., 1996), somatic embryo with high shoot 

regeneration ability has been utilized as the source of explants which would regenerate into 

complete plants. 

 

In chapter 4, regeneration of Polianthes tuberosa L. through somatic embryogenesis 

was carried out. No direct regeneration was observed for this species. Indirect regeneration 

via somatic embryogenesis pathway was observed. Explants cultured produce embryogenic 

callus (chapter 2), developed into somatic embryo stages (chapter 3) and subsequently  were 

induced to produce shoots and roots.  
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Several concentrations and combinations of hormones were tested for regeneration of 

Polianthes tuberosa L. from somatic embryos. The development of whole plants with shoots 

and roots was observed on MS medium without hormone after 2 months. MS medium without 

growth regulators is a typical medium for somatic embryo maturation and germination in 

many plants including wetlands monocots like Phragmites australis (Straub et al., 1988) and 

Sporobolus virginicus (Straub et al., 1992).  

 

However, in MS medium without hormone, somatic embryo showed weak growth 

with small number of shoots (4.23±0.22)
 
and roots formation (0.57±0.10) (Table 4.1). Wang 

et al., (2004) obtained the same result when germinated somatic embryo of monocot Scirpus 

robustus in MS medium, weak shoot growth with both small shoots numbers and shoots no 

more than 1 cm in height was obtained. 

 

Other than full strength MS medium, half strength MS also can be used for 

regenerated plantlets from somatic embryogenesis. Jain et al., (2002) used half strength MS 

medium to regenerated Phlox paniculata Linn. plantlets from somatic embryo. Of the somatic 

embryos, 70 to 75% produced shoot and root meristem after 12 to 14 days in culture. Luo et 

al., (1999) also used half strength MS to develope somatic embryo of Astragalus adsurgens 

Pall. into complete plantlets within 2 weeks. 

 

The addition of plant growth regulators, auxin and cytokonin to the medium 

significantly increased the number of generated shoots and roots. The highest number 

(26.23±0.74) of microshoots were observed in MS media supplemented with 2.0 mg/l Kin and 

2.0 mg/l NAA (Table 4.1). According to Preil (2003) and Rout and Jain (2004), many 

ornamental plants are being propagated by in vitro culture on the culture medium containing 
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auxins and cytokinins. Medha et al., (1993), found similar result using different kind of 

cytokinin and auxin in regeneration of neem from somatic embryos, 60 to 70% of somatic 

embryos enlarged and germinated on MS media containing 2.0 mg/l BAP and 0.5 mg/l IAA 

after 20 to 30 days. According to Wang et al., (2004) addition of cytokinin (BA) into the MS 

medium can increase shoot regenerated (Scirpus robustus) from 8 to 35 and up to 53 depends 

on BA concentration.  

 

Root initiation typically requires a moderate to high auxin signal but rarely with the 

use of a more natural source auxin (Gamborg and Phillips, 1995). Highest roots formation 

was observed on MS media supplemented with 0.5 mg/l Kin and 2.0 mg/l NAA with an 

average of 4.23±0.40 roots per explant. Root formation occurred when explants were cultured 

on medium with higher auxin concentration and lower cytokinins concentration (Hasbullah et 

al., 2008). 

 

Two types of auxin were used in this experiment which is NAA and IBA. NAA is 

more suitable auxin for plantlets regeneration of this species compared to IBA according to 

the result obtained. Others also observed the same results for different plant species. Poddar et 

al., observed 12. 5 plantlets regeneration on MS medium supplemented with 1.0 mg/l NAA 

alone from somatic embryo of finger millet Eleusine coracana (L.) Gaertn. Addition of strong 

auxin (NAA) with BAP promoted better shoot formation compared to weak auxin like IAA 

(Pierik et al., 1973).  

 

MS supplemented with cytokinin and auxin was found to be the best media for 

microshoot formation in all explants. In the present study, no microshoot and root formation 

was observed on MS media supplemented with GA3 alone. This result contrary from the 
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previous research by Philip et al., (2011), when they transferred mature somatic embryos of 

Arachis hypogaea L. to somatic embryo regeneration medium containing MS salts, B5 

Vitamins, 0.2mg/l GA3 and 1.0 mg/l BA and observed 53% plant regeneration from mature 

somatic embryos after 8 weeks of culture with subculture at 8 day intervals. While, 

Iyyakkannu et al., (2011), observed embryo maturation and germination of Crocus vernus on 

the MS medium with 2.0 mg/l BA and 1.0 mg/l GA3. When the globular embryos were 

transferred to the MS medium containing 6% (w/v) sucrose, 2.0 mg/l BA, and 1.0 mg/l GA3 

resulted in the highest frequency of plant regeneration and microcorm formation. The 

microcorms developed new shoots when they were cultured on the half-strength MS medium 

with 1.0 mg/l GA3. These results obtained were contrast with regeneration of Polianthes 

tuberosa L. from somatic embryo. 

 

Gibberellin is generally thought to be inhibitory to rooting. Gibberellin inhibits 

adventitious root formation in many species especially when applied during the early stages of 

root formation (Brian et al., 1960; Jasen, 1967; Reinet and Besemer, 1967; Smith and Thorpe, 

1975). The present studies, shows that low and high concentrations of GA3 inhibit root 

formation in Polianthes tuberosa L. as well.  

 

According to Brian et al., (1960) and Reinert and Basemer, (1967), the inhibitory 

effect of adventitious root formation has been attributed to an inhibition of cell division at an 

early stage of primordium development. Nanda et al., (1968) suggested that the inhibition of 

root formation by gibberellins was a result of a change in the partitioning of respirable 

substrates between shoot and root. Hansen (1976), suggested that GA3 may inhibit rooting by 

increasing the soluble carbohydrates. In some species and under special condition, GA3 
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promotes root formation (Eriksen, 1971; Varga and Humphries, 1974, Hansen, 1975; Smith 

and Thorpe, 1975; Bhattacharya et al., 1978).  

 

Tissue culture was considered successful when plantlets obtained successfully 

acclimatized to the natural environment (ex vitro). Thus, in chapter 5, acclimatization of 

Polianthes tuberosa plantlets to the greenhouse was carried out. Three types of soil were used 

as the substrate for transplanting the plantlets which are garden soil (combination of black soil 

and red soil at ratio 2 to 1), autoclaved garden soil (combination of black soil and red soil at 

ratio 2 to 1) and red soil.   

 

Garden soil (combination of black soil and red soil at ratio 2 to 1) was found to be the 

most suitable substrate for acclimatization of Polianthes tuberosa L. plantlets with the 

percentage of survival rate of 63.33±0.09 %. The percentage of plantlets acclimatized survival 

rate in red soil was lower compared to the percentage of the acclimatized plants in garden soil 

(combination of black soil and red soil at ratio 2 to 1) with the percentage of survival rate 

50.00±0.09. This is could be due to garden soil (combination of black soil and red soil at ratio 

2 to 1) provide good drainage system for the plant and good aeration system. Sink (1984) 

obtained similar results and he stated that retain water will deplete oxygen level in the soil and 

thus, this causes failure of the plant rooting system. Debergh et al., (1990) also stated that the 

soil should not be too wet and the exposure to higher light intensity should be gradual. Da 

Silva et al., (2005) demonstrated that the greater the aeration the more efficient the survival 

and the higher the growth and vigour of the plant.
 

 

 Various substrates were used for plantlets acclimatization. The selection of a suitable 

substrate can be decisive for acclimatization. Rodrigues et al., (2005) used washed sand and 
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vermiculate to acclimatize Heliconia bihai plantlets. The substrates used for acclimatization 

revealed that vermiculite has a low yield as compared to washed sand. The low effectiveness 

of vermiculite as a substrate in the acclimatization of apple tree rootstocks and gloxinia 

plantlets was reported by Hoffmann et al., (2001) and Silva et al., (2003). Van Huylenbroeck 

et al., (2000) used a peat substrate for acclimatization of Calathea louisae Gagnep. ‘Maui 

Queen’ plantlets. Petru and Matous (1984) successfully transferred the plantlets the sterilize 

peat and perlite (in ratio 1 to 1) substrate and then to a standard horticulture substrate. 

 

 Directly after transfer to ex vitro conditions, micropropagated plants are very 

susceptible to various stresses because they have not yet developed adequate patterns of 

resource allocation and morphological and physiological features required by the new 

environment (Chaves, 1994). Low photosynthesis rates (Grout and Aston, 1978; Cournac, et 

al., 1991) and the malfunctioning of the water housekeeping system (Capellades et al., 1990) 

are the two of the major constrains in tissue cultured plants. When plantlets are in culture, it 

only used a fraction of CO2 because it is constantly supplied with a carbon energy source, 

however when exposed to an in vivo environment it becomes autotrophic (Hoe, 1992). 

Plantlets getting stress because of stomatal development are not complete. 

 

Besides suffer light stress (photoinhibition), plantlets also suffer water stress due to the 

differences between in vitro and ex vitro relative humidity. In in vitro environment the culture 

was supplied with high level of humidity but when plantlets were transferred to the 

greenhouse the level of humidity was decreased because of direct light intensity.  

 

 Therefore in this study, gradual decrease of relative humidity was done by keeping the 

plantlets in culture rooms at 25 ± 1 °C under 16 hours light and 8 hours dark for 3 weeks, 
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watered every day, covering the plantlets with transparent plastics with small holes and the 

plastic covered was stepwise opened. By this acclimatization process the in vitro plantlets 

features will slowly develop to the level of intact plant. Lee and Roa, (1987) reported that 

change in humidity during the process of transfer was the greatest contributing factor to high 

mortality rate of plantlets. Ziv (1986) stated that by exposing plants to reduced relative 

humidity the survival rate of plants in vitro may be increased during acclimatization. 

According to Ziv et al., (1983), the low relative humidity condition of the culture vessels is 

important in order to develop more vigorous plantlets structure and therefore, plantlets could 

adapt easily when transferred to the field. 

 

 A range of methods have been used to lowering the relative humidity in vitro. 

Experiment has been done with varying results. The use of antitranspirants to reduce water 

loss during acclimatization has had mixed results (Hazarika, 2003). Leaf surfaces covering 

agents such as glycerol, paraffin and grease promoted ex vitro survival of several herbaceous 

species, but not has evaluated over a long term or examined on woody species (Selvapandian, 

1988). ABA sprayer on the leaf surface was done by Wardle et al., (1979) to decrease 

stomatal transpiration of micropropagated cauliflower plantlets. Wardle et la., (1983) used 

silica gel and lanolin oil to reduce humidity in chrysanthemum. Their experiment recorded 

high mortality. Ritchie et al., (1991) reported that leaves of chrysanthemum and sugar beet, 

which were initiated and developed at relative humidity below 100.00 % displayed increased 

epicuticular wax, improved stomatal functioning and reduced leaf dehydration.   
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CHAPTER 7 

CONCLUSION 

 

Polianthes tuberosa L. gain an importance in pharmaceutical and perfumed industries 

because of their unique secondary metabolic reactions for the synthesis of various commercial 

valuable compounds. In Malaysia, cut flower of Polianthes tuberosa L., received a lot of 

consumer demands from cut flower lover because of their beautiful pure white flowers and 

scented that describe as exclusive. Polianthes tuberosa L. have limitation to grow in warm 

countries, so that a tremendous application of plant tissue culture has been used for in vitro 

cultivation of this plant. 

 

Plant tissue culture is a practice used to propagate plants under sterile conditions, often 

to produce clones of a plant, which relies on the fact that many plant cells have the ability to 

regenerate a whole plant (totipotency). Monocotyledonous plants have been regarded as 

difficult in vitro materials. However, an increasing number of monocotyledons have been 

successfully cultured. Less research have been done on in vitro propagation of Polianthes 

tuberosa L. which is monocotyledonous bulbous plant belongs to the family Agavaceae. The 

present work reported in greater detail on tissue culture studies of Polianthes tuberosa L.  

 

 Indirect regeneration via somatic embryogenesis pathway occurred in this species. 

Researchers using cell cultures have brought somatic embryogenesis to the forefront of plant 

tissue culture activity, in part because of the importance of micropropagation to agriculture, 

horticulture and forestry. Of the method used for clonal propagation, somatic embryogenesis 

is potentially the most important as it is capable of providing a larger number of plants in a 

shorter period of time than organogenic approaches.  
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Callus was induced on MS media supplemented with various concentrations of BAP 

and NAA. MS media supplemented with 2.0 mg/l NAA and MS media supplemented with 0.5 

mg/l BAP in combination with 2.0 mg/l NAA were the best media for callus induction. All 

types of explants used which were leaf, stem and flower bud produced 100.0±0.00% callus in 

these media. Stem started to produce callus after 4 weeks in culture. Leaf explants started to 

produce callus after 5 weeks and flower bud explants started to produced callus after 12 

weeks. Leaf explants was the best explant compared with other explants because callus from 

this explant proliferated well on all medium tested.  

 

Embryogenic callus was formed from leaf explant cultured on MS media 

supplemented with 0.5 -4.0 mg/l NAA. Double staining technique has been used to 

distinguish embryogenic and non embryogenic callus. Embryogenic callus were then 

transferred to MS media supplemented with BAP, MS media supplemented with NAA, MS 

media supplemented with 2,4-D, MS media supplemented with NAA combined with BAP 

and MS media supplemented with 2,4-D combined with BAP to induce somatic embryo 

formation.  

 

After 3 months in the culture media, various stages of somatic embryos could be 

observed. Globular, heart shaped, torpedo and cotyledonary stage were obtained in all media 

excluded MS basal media and MS supplemented with BAP alone. MS media supplemented 

with 2.5 mg/l 2, 4-D combined with 0.1 mg/l BAP promoted somatic embryogenesis 

effectively with high frequencies of somatic embryogenesis occurred, where an average of 

26.67±0.42 somatic embryos was obtained from 0.5 cm of embryogenic callus from liquid 

media and 20.53±0.50
 

somatic embryo was formed on solid media. Somatic embryo 
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formations are better on liquid media compared to solid media because of surface interaction 

between explant and media in liquid media are higher than in solid media. 

 

Somatic embryos were then transferred to regeneration media. Complete Polianthes 

tuberosa L. plantlet with shoots and roots were observed on MS basal media, MS media 

supplemented with Kin combined with IBA and MS media supplemented with Kin combined 

with NAA. MS media supplemented with 2.0 mg/l Kin combined with 2.0 mg/l NAA was the 

most suitable media for shoot regeneration with 26.23±0.74
 
number of shoot formation. 

4.23±0.40
 
number of roots were obtained on MS media supplemented with 0.5 mg/l Kin 

combined with 2.0 mg/l NAA. 

 

Regeneration of Polianthes tuberosa was successful only when the plantlets obtained 

from tissue culture can survive in the natural environment.  Acclimatization process was then 

carried out and 89% of the plantlets grown in garden soil (combination of black soil and red 

soil at ratio 2 to 1) were successfully adapted with the new environment which is very 

different from tissue culture environment.  

 

Because of the high ability in regeneration and multiplication, the plant regeneration 

system of Polianthes tuberosa established in the present study will be efficiently used for 

rapid clonal propagation if the micropropagated plants have no aberrant somaclonal 

variations. Moreover, callus cultures with high regeneration ability may also be used for 

breeding of this crop through, for example, selection of useful somaclonal variations, 

polyploid production, somatic hybridization and genetic transformation. 
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 Micropropagation and plant tissue culture scientists have always three important 

factors to consider when assessing the efficiency of a micropropagation system which are; 

capacity to induce organogenesis with subsequent successful regeneration, efficient 

acclimatization and cost. This study of tissue culture of Polianthes tuberosa L. was 

considered a success and the findings of these studies hopefully can be shared with others in 

the similar field. 

 

For the future studies of this species, a lot of experiments can be done. Analyzing 

pigment and chemical compound extraction from callus of Polianthes tuberosa L. can be 

done using GCMS (Gas Chromatography Mass Spectroscopy) and HPLC (High Performance 

Liquid Chromatography). Gas chromatography-mass spectroscopy (GC-MS) is one of the so-

called hyphenated analytical techniques. As the name implies, it is actually two techniques 

that are combined to form a single method of analyzing mixtures of chemicals. Gas 

chromatography separates the components of a mixture and mass spectroscopy characterizes 

each of the components individually. By combining the two techniques, an analytical chemist 

can both qualitatively and quantitatively evaluate a solution containing a number of 

chemicals.  

 

High performance liquid chromatography is basically a highly improved form of 

column chromatography. Instead of a solvent being allowed to drip through a column under 

gravity, it is forced through under high pressures of up to 400 atmospheres. That makes it 

much faster. It also allows us to use a very much smaller particle size for the column packing 

material which gives a much greater surface area for interactions between the stationary phase 

and the molecules flowing past it. This allows a much better separation of the components of 

the mixture. The other major improvement over column chromatography concerns the 
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detection methods which can be used. These methods are highly automated and extremely 

sensitive. 

 

Cytology studies also should be done for this species. Cytology, more specifically 

karyology, is a branch of cytological research that includes studies with particular reference to 

variation in chromosome morphology and number, evolutionary interpretation of 

chromosomal changes and genomic relationship. Chromosome counting, mitotic index, 

meiotic studies and other studies using roots of Polianthes tuberosa obtained from tissue 

culture and from intact plant will be compared. For karyological studies, root tip meristems 

are commonly favoured and the most convenient. Other actively growing parts of a plant like 

shoot apex with leaf primodia, developing anthers and ovules in very young floral also can be 

used for cytological studies. 
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Abstract  

Polianthes tuberosa L. is one of the ornamental plants with many uses, such as for medicinal 

purposes, religious ceremony and cut flower industry. It has white flowers with strong odor. 

In Malaysia, this species is still considered as underexploited. However, in other countries the 

essential oil of this plant has been processed into valuable expensive perfumes. Based on the 

potential uses of Polianthes tuberosa, mass propagation of this species through tissue culture 

is urgently needed. Therefore, in the present study, plant regeneration was established using 

various plant growth regulators and callus formation especially to obtain embryogenic callus 

was initiated from various plant organs. The effect of different hormones such as 2,4-D (2,4 

Dichlorophenoxy acetic acid), NAA (Naphthalene acetic acid), BAP (Benzyl aminopurine) 

etc. were investigated on the embryogenic callus formation and regeneration capacity of  this 

interesting species which can be found in highlands of Malaysia. Our results showed that 

complete plant regeneration could be achieved on MS medium supplemented with 2.0 mg L
-1

 

Kin and 2.0 mg L
-1

 NAA from somatic embryos derived from intact leaf explants. 

Embryogenic callus and subsequent somatic embryogenesis were obtained on MS fortified 

with 2.5 mg L
-1

 2,4-D. Various stages of somatic embryos development such as globular, 

heart-shaped, torpedo and cotyledonary phases were observed. Plant regeneration was also 

successfully obtained from the subsequent development of these somatic embryos subcultured 

on MS supplemented with 2.5 mg L
-1

 Kin and 2.0 mg L
-1

 IBA, whereby micro shoots initially 

formed and root formation was achieved on MS medium supplemented with 0.5 mg L
-1

 Kin 

and 2.0 mg L
-1

 NAA. Acclimatization of the regenerants was successfully obtained when 

plantlets were transferred to black soil combined with red soil at a ratio of 2:1 with 63.33 ± 

0.03 % survival rate. 

Keywords: Tissue culture, Plant growth regulator, Polianthes tuberosa, embryogenic callus, 

somatic embryogenesis, plant regeneration 
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1.0 Introduction 

Polianthes tuberosa L. is a well known ornamental plant due to its floral scent that is 

described as a complex, exotic and hypnotic sweet. Most flowers begin to lose their scent 

when they are picked but not so with tuberose, the flower scent continues to produce itself 

like jasmine.This plant grows over much of tropical and temperate world. This plant was 

cultivated in tropical and subtropical regions. For instance, Polianthes tuberosa is cultivated 

on large scale in France, Italy, South Africa, North Carolina in USA and many tropical and 

subtropical areas in India. Polianthes tuberosa is an herbaceous species consists of grass like 

leaves arising from underground tuberose structure produce offsets that result in small clump 

of leaves. Polianthes tuberosa is a half hardy, bulbous perennial perpetuating itself through 

the bulblets. Bulbs are made up of scales and leaf base and the stem is condensed structure 

which remains concealed within scales. Polianthes tuberosa is a perennial plant of family 

Agavaceae. This genus consists of 14 species, three varieties and 2 cultivars (Solano and 

Feria, 2006). The best known taxon is Polianthes tuberosa, which has been cultivated and 

used for medicinal, ornamental and ceremonial practices since pre-hispanic times (Solano and 

Feria, 2006). Although in Malaysia, this plant receives a lot of consumer demands from cut 

flower lover, however, this species is still considered as underexploited and can be found in 

the wild. In other countries, the essential oil of this plant has been processed into valuable 

expensive perfumes. Essential oils, known as nature’s living energy are the natural aromatic 

volatile liquids found in shrubs, flowers, trees, roots, bushes and seeds. Tuberose essential oil 

is very expensive because it is very difficult to collect the essential oil from the flowers. The 

natural flower oil of Polianthes tuberosa remain today as one of the most expensive of the 

perfumer’s raw materials. It requires 150 kg of flowers to yield one kg of absolute of 

effleurage which is brown, semisolid, alcohol soluble liquid pomades. The exotic smell of 

Polianthes tuberosa was included in several worldwide known perfumes such as ‘Pison’ by 

Christian Dior and ‘Chole’ by Karl Lagerfeld. Based on the potential uses of Polianthes 

tuberosa, mass propagation of this species through tissue culture is urgently needed. Amongst 

the methods used for micropropagation, somatic embryogenesis is potentially important and 

powerful as it is capable of providing a large number of plants in shorter period of time than 

organogenic approaches. Thus far, somatic embryogenesis from leaf explants of this species 

has hardly been reported. However, plant regeneration of this species have been achieved 

using rhizome (Sangavai and Chellapandi, 2008). In the present study, we report and discuss 

the induction of embryogenic callus from intact leaf explants, subsequent formation and 

development of somatic embryos and ultimately complete plant regeneration of Polianthes 

tuberosa L. through somatic embryogenesis process and development of a protocol for 

successful field transfer. 

 

1.1 Materials and Methods 

 

1.1.1 Preparation of explants 

Leaf explants from 3 month-old intact plants were used in the present study. For 

sterilization process, the explants were surface sterilized under running tap water for 30 

minutes to remove contaminants and any residue that were found on the explants. The 

explants were then rinsed in different concentrations (70%. 50%, 30%, 20%, and 10%) of 
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sodium hypochlorite (chlorox) and 70% ethanol. At first rinse, 70% sodium hypochlorite and 

two drops of Tween 20 was added. Finally the explants were washed 3 times in sterile 

distilled water. Each rinse lasting approximately for one minute. Sterilized leaf explants were 

cultured on MS media supplemented with various hormones for callus induction, somatic 

embryogenesis and plant regeneration. 

 

1.1.2 Preparation of culture medium and embryogenic callus induction 

Solid culture media and liquid or suspension culture media were used in this study for 

induction of embryogenic callus. Solid media was prepared by diluting MS media powder 

with 30 g l
-1

 sucrose and 8 g l
-1

 agar in distilled water. The medium pH was adjusted by 

adding NaOH or HCl to 5.8 prior to autoclaving. Suspension culture media was prepared 

using the same method but without the gelling agent. Various types and concentration of plant 

hormones such as 2,4-D and NAA were added into the culture medium to study the induction 

and formation of embrogenic callus and somatic embryos. Solid and liquid media were 

supplemented with equivalent concentrations and combinations of hormones.  

 

1.1.3 Induction of somatic embryos 

Embryogenic callus that were formed on MS supplemented with 0.5 – 4.0 mg L
-1

 

NAA were subcultured onto solid media or suspension culture media for somatic embryo 

formation. Embryogenic callus derived from callus induction medium were cut into small 

pieces (0.5 cm) and then transferred to solid media or suspension culture media. Cultures in 

solid media were maintained in the culture room under 16 h light and 8 h dark at 25±1ºC. 

Suspension cultures were maintained on a shaker at 100 rpm in the culture room condition. 

Different stages of somatic embryogenesis were observed. 

 

1.1.4 Development of somatic embryos 

Somatic embryos formed on MS fortified with 3.5 mg L
-1

 NAA and 0.1 mg L
-1

 BAP 

were selected and cultured onto germination media. Somatic embryos treated as explants were 

excised into 1cm x 1cm and cultured onto MS media supplemented with various combinations 

and concentration of hormones. Nine concentrations of GA3, eight concentrations of Kinetin 

combined with 2.0 mg L
-1

 IBA and eight concentrations of Kinetin combined with 2.0 mg L
-1

 

NAA were utilized for culturing of the somatic embryos. 

 

1.1.5 Protocol for field transfer of regenerants/ Acclimatization  

 After 3 months in vitro plantlets were transferred to pots (80 x 60 mm) filled with a 1 

cm layer of sand and a mixture of garden soil and red soil. The remaining agar was carefully 

washed off the roots with distilled water before planted in the pots. The potted plantlets were 

first kept in the culture room at 25 ± 1 °C under 16 hours light and 8 hours dark for 3 weeks. 

The plantlets were watered every day. 

 Plantlets were transferred to 3 different scheme of growth media: 

4) Garden soil – Combination of black soil and red soil at ratio of 2 to 1 

5) Autoclaved garden soil – Combination of black soil and red soil at a ratio of 2 to 1  
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6) Red soil 

 

1.1.6 Data analysis 

Three replicates consisting of 30 explants in each replication were maintained for each 

treatment and the data was analyzed statistically using Duncan’s Multiple Range Test 

(DMRT). The statistical analysis based on mean values per treatment was done using the 

technique of analysis of variance. The comparative LSD multiple range test (p=0.01) was 

used to determine the significant differences between treatments.  

 

1.2 Results and Discussion 

 

1.2.1 Embryogenic callus induction 

All media tested for callus induction produced green and white creamy and soft watery 

structure of callus. Embryogenic callus were identified using double staining method (Gupta 

et. al. 1987). All the callus was stained red and was considered as embryogenic because non 

embryogenic callus would stain blue. All explants produced callus in MS medium 

supplemented with 2.0 and 3.0 mg L
-1

 NAA (Table 1). Culture media composition is very 

important to induce embryogenic callus. In the present study of Polianthes tuberosa, a high 

concentration level of auxin (3.0 mg L
-1

) which was NAA in the callus induction medium was 

necessary to enhance embryogenic callus production. This is in agreement with the results 

obtained by previous researchers such as Nagarajan et al, (1986), Meijer and Brown, (1987), 

Nolan et al., (1989),  Shri and Daris, (1992), Carman, (1990), Ammirato, (1987) and Luo et 

al., (1999). They also found that the induction of embryogenic callus was usually promoted 

by a relatively high concentrations of auxin, especially 2, 4-D. Ahmed et al. ( 2011) also 

induced  viable embryogenic callus on MS medium supplemented with 2,4-D and NAA but, 

with addition of ascorbic acid in Phyla nodiflora. 

 

1.2.2 Induction of somatic embryos 

In order to encourage the production of mature development stages of somatic 

embryos, embryogenic callus was transferred to 35 combinations of liquid and solid media as 

shown in Table 2. Embryogenic callus cultured on MS hormone free medium and MS 

supplemented with BAP alone did not produce any somatic embryos. Embryogenic callus 

became necrotic and died after some time in the culture media. However, on the medium 

supplemented with BAP, in combination with NAA or 2,4-D, callus formed showed smooth 

round structures which occurred on the surfaces of embryogenic callus within 3 months. 

Embryogenic callus that was subcultured onto MS media supplemented with NAA or 2,4-D 

alone also gave rise to smooth round structures (Fig. 1a ). According to Luo, (1999), who did 

the histological studies of the same structure from callus of Astaragalus sp. stated that  these 

structures were somatic embryos at globular stage without vascular connection to the callus. 

After 3 months in culture, round structures of globular stage and other stages like heart shape, 

torpedo and cotyledonary could be observed. Somatic embryo development was asynchronous 

in this plant species where different stages of development could be observed within the same 

treatment. Asynchronous development was observed also in somatic embryogenesis callus 
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cultures of Kampung Royal Poinciana (Myer and Vendrame, 2004), Astragalus adsurgens 

Pall (Luoet al., 1999), and Azadiracht aindica A. Juss (Medha et al., 1993). 

In the present study, the highest number of embryos, 27±0.4 was obtained on MS 

media supplemented with 3.5 mg L
-1

 NAA and 0.1 mg L
-1

 BAP in liquid media. MS media 

supplemented with 2.5 mg L
-1

 2,4-D and 0.1 mg L
-1

 BAP also gave high results with 27±0.4 

number of somatic embryos. Similar nutrients requirement was observed in bulb plant Agave 

(Amaryllidaceae). According to Bansudeet al., (2003), 0.5 mg L
-1

 NAA in combination with 

1-2 mg L
-1

 BAP could induce somatic embryos in this species. In Narcissus bulbocodium, the 

formation of somatic embryo was stimulated by using the combinations of IBA and BAP 

(Salema and Salamak, 2000).  

Compared to NAA applied singly, NAA combined with BAP and 2,4-D alone, 2 4-D 

combined with BAP promoted somatic embryogenesis effectively. The high frequencies of 

somatic embryogenesis occurred on MS medium supplemented with 2,4-D at concentration of 

2.5 mg L
-1

 combined with 0.1 mg L
-1

 BAP, whereby an average of 27±0.4 somatic embryos 

were obtained from 0.5 cm of embryogenic callus from liquid media and 21±0.5 somatic 

embryos were formed on solid media. MS supplemented with 2,4-D alone also gave quite 

encouraging results with 24±0.4 of somatic embryo formation in  liquid media and 20±0.6 on 

solid media. In previous study by Siong et. al., (2011) also showed that in cauliflower , 2,4-D 

applied singly and as well as in combination with kinetin was able to induce somatic 

embryogenesis. Higher number of somatic embryos were found in liquid media in all 

experiments with the same treatment except in MS media supplemented with 2.5 mgl
-1

 2-4,D 

and 2.5 mgl
-1

 BAP whereby, 8±0.5 somatic embryos were formed in liquid media and 9±0.5 

in solid media. 

Many factors including choice of growth regulators, choice of explants and culture 

medium composition are responsible for successful formation of somatic embryogenesis. In 

the present investigation for somatic embryo production showed that liquid media produced 

higher number of somatic embryos compared to solid media with the same hormone treatment 

(Table 2). Somatic embryo at globular stage became oblong in shape after 13 weeks and 

developed further into heart shape (Fig. 1c) after 15 weeks. Heart shaped somatic embryo 

then elongated after 16 weeks and after 17 weeks torpedo stages were observed. The last stage 

(Fig. 1d) which was cotyledonary stage was observed after 19 weeks in culture. Same 

developmental stages were obtained from embryogenic callus cultured on solid media. 

 

 

 

1.2.3 Germination of somatic embryos 

Several concentrations and combinations of hormones were tested for regeneration of 

Polianthes tuberosa from somatic embryos. The development of whole plants with shoots and 

roots was observed on MS medium without hormone after 2 months. MS medium without 

growth regulators is a typical medium for somatic embryo maturation and germination in 

many plants including wetlands monocots like Phragmites australis (Straub et al., 1988) and 

Sporobolus virginicus (Straub et al., 1992). However, in MS medium without hormone, 

somatic embryos showed weak growth with small mean numbers of shoots and root 

formation, 4±0.2   shoots and 1±0.1 root were observed (Table 3). Wang et al., (2004) 
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obtained similar result when they germinated somatic embryos of monocot Scirpus robustus 

in MS medium. They reported slow shoot growth with both small mean shoot numbers and 

shoot length no more than 1 cm in height was obtained.  

 

The addition of plant growth regulators, auxin and cytokonin to the medium 

significantly increased the number of generated shoots and roots. The highest number 

(26±0.7) of micro shoots were observed in MS media supplemented with 2.0 mg L
-1

 Kin and 

2.0 mg L
-1

 NAA (Table 3). According to Preil, (2003) and Rout and Jain (2004), many 

ornamental plants are propagated by in vitro culture on the culture medium containing auxins 

and cytokinins. Medha et al., (1993), found similar result using different kind of cytokinin 

and auxin in regeneration of neem from somatic embryos, 60 to 70% of somatic embryos 

enlarged and germinated on MS media containing 2.0 mg L
-1

 BAP and 0.5 mg L
-1

 IAA after 

20 to 30 days. According to Wang et.al (2004), addition of cytokinin (BA) into the MS 

medium could increase shoot regenerated (Scirpus robustus) from 8 to 35 and up to 53 

depending on BA concentration.  

Root initiation typically requires a moderate to high auxin signal but rarely with the 

use of a more natural source auxin (Gamborg and Phillips, 1995). The highest root formation 

was observed on MS media supplemented with 0.5 mg L
-1

 Kin and 2.0 mg L
-1

 NAA with an 

average of 4.23±0.40 roots per explant. In contrast, root formation in sugar beet, occurred 

when embryogenic callus were transferred onto half strength MS medium supplemented with 

high auxin ( 3.0 mg L
-1

 IBA) and in the absence of cytokinin. 

 

 

1.2.4 Acclimatization 

 

 Tissue culture was considered successful when plantlets obtained could be 

acclimatized to the natural environment (ex vitro). Three types of soils were used as the 

substrates for transplanting the plantlets which are garden soil (combination of black soil and 

red soil at ratio of 2 to 1), autoclaved garden soil (combination of black soil and red soil at 

ratio of 2 to 1) and red soil.  Garden soil (combination of black soil and red soil at ratio of 2 to 

1) was found to be the most suitable substrate for acclimatization of Polianthes tuberosa 

plantlets with the percentage of survival rate of 63.33±0.09 %. The percentage of plantlets 

acclimatized survival rate in red soil was lower compared to the percentage of plantlets 

acclimatized in garden soil (combination of black soil and red soil at ratio of 2 to 1) with the 

survival percentage of 50.00±0.09. This could be because garden soil (combination of black 

soil and red soil at ratio of 2 to 1) provided good drainage system for the plant and good 

aeration system. Sink (1984) obtained similar results and stated that by retaining water would 

deplete oxygen level in the soil and thus, this caused failure of the plant rooting system. 

 

 

1.3 Conclusion  

Callus derived from leaf explants was induced on MS supplemented with 2-3 mg L
-1

 NAA. 

Embryogenic callus formed when MS was fortified with 3.5 mg/l NAA and 0.1 mg L
-1

 BAP. 

Various stages of somatic embryo development were observed. Successful in vitro 

regeneration of whole plantlets of Polianthes tuberosa through somatic embryogenesis 

pathway was obtained on MS supplemented with 2 mg L
-1

 kin and 2 mg L
-1

 NAA. The 

regenerants were transferred to soil with 63.33% success rate. This procedure could be 

utilised in future for somatic embryogenesis which has higher efficiency to mass propagate 
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Polianthes tuberosa, especially when very limited in vitro work is being reported for this 

species. 
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Table 1: Induction of callus formation from leaf explants cultured on MS medium 

supplemented with different concentrations of hormones after 12 weeks of culture. 

MS + NAA(mg L
-1

) 

Percentage of explant produced callus (%) 

Observations 

0.5 77±0.1
abcd 

Embryogenic callus. Green and white creamy 

in colour and soft watery structure. 

1.0 90±0.1
abcd 

Embryogenic callus. Green and white creamy 

in colour and soft watery structure. 

1.5 97±0.0
ab 

Embryogenic callus. Green and white creamy 

in colour and soft watery structure. 

2.0 100±0
a 

Embryogenic callus. Green and white creamy 

in colour and soft watery structure. 

2.5 97±0.0
ab 

Embryogenic callus. Green and white creamy 

in colour and soft watery structure. 

3.0 100±0
a 

Embryogenic callus. Green and white creamy 

in colour and soft watery structure. 

3.5 87±0.1
abcd 

Embryogenic callus. Green and white creamy 

in colour and soft watery structure. 

4.0 87±0.1
abcd 

Embryogenic callus. Green and white creamy 

in colour and soft watery structure. 
Mean followed by the same letter are not significantly different at the 0.01 level of confidence 
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Table 2: Number of somatic embryos produced in liquid and solid media after 8 weeks of 

culture. 

MS + Hormone (mg/l) No. of Somatic Embryos per Explant 

Liquid media Solid media 

MS media (control) 0±0
p
 0±0

q
 

MS + 0.1 mg L
-1

 BAP 0±0
p
 0±0

q
 

MS + 0.5 mg L
-1

 BAP 0±0
p
 0±0

q
 

MS + 1.0 mg L
-1

 BAP 0±0
p
 0±0

q
 

MS + 1.5 mg L
-1

 BAP 0±0
p
 0±0

q
 

MS + 2.0 mg L
-1

 BAP 0±0
p
 0±0

q
 

MS + 2.5 mg L
-1

 BAP 0±0
p
 0±0

q
 

MS + 2.0 mg L
-1

 NAA 13±0.3
lm

 7±0.3
o
 

MS + 2.5 mg L
-1

 NAA 16±0.4
ij
 9±0.3

lmn
 

MS + 3.0 mg L
-1

 NAA 19±0.5
def

 12±0.3
ijk

 

MS + 3.5 mg L
-1

 NAA 25±0.3
b
 19±0.2

a
 

MS + 4.0 mg L
-1

 NAA 20±0.4
cde

 17±0.4
d
 

MS + 0.1 mg L
-1

 2-4,D 6±0.3
o
 5±0.4

p
 

MS + 0.5 mg L
-1

 2-4,D 9±0.4
n
 8±0.3

no
 

MS + 1.0 mg L
-1

 2-4,D 14±0.4
kl

 11±0.7
klm

 

MS + 1.5 mg L
-1

 2-4,D 16±0.4
ij
 13±0.5

hij
 

MS + 2.0 mg L
-1

 2-4,D 20±0.4
def

 15±0.6
def

 

MS + 2.5 mg L
-1

 2-4,D 24±0.4
b
 20±0.6

a
 

MS + 3.0 mg L
-1

 2-4,D 21±0.3
cd

 16±0.7
cde

 

MS + 3.5 mg L
-1

 2-4,D 18±0.4
gh

 14±0.6
fgh

 

MS + 4.0 mg L
-1

 2-4,D 15±0.5
ij 

12±0.6
ijk

 

MS + 3.5 mg L
-1

 NAA + 0.1 mg L
-1

 BAP 27±0.4
a
 20±0.6

a
 

MS + 3.5 mg L
-1

 NAA + 0.5 mg L
-1

 BAP 23±0.4
b
 17±0.6

bc
 

MS + 3.5 mg L
-1

 NAA + 1.0 mg L
-1

 BAP 20±0.4
 cd

 14±0.6
 fgh

 

MS + 3.5 mg L
-1

 NAA + 1.5 mg L
-1

 BAP 19±0.3
 fg

 13±0.5
ghi

 

MS + 3.5 mg L
-1

 NAA + 2.0 mg L
-1

 BAP 16±0.3
hi

 11±0.5
jkl

 

MS + 3.5 mg L
-1

 NAA + 2.5 mg L
-1

 BAP 11±0.3
m

 8±0.5
no

 

MS + 2.5 mg L
-1

 2-4,D + 0.1 mg L
-1

 BAP 27±0.4
a
 21±0.5

a
 

MS + 2.5 mg L
-1

 2-4,D + 0.5 mg L
-1

 BAP 24±0.4
b
 19±0.5

ab
 

MS + 2.5 mg L
-1

 2-4,D + 1.0 mg L
-1

 BAP 22±0.5
c
 16±0.6

cdef
 

MS + 2.5 mg L
-1

 2-4,D + 1.5 mg L
-1

 BAP 20±0.5
def

 15±0.6
efg

 

MS + 2.5 mg L
-1

 2-4,D + 2.0 mg L
-1

 BAP 13±0.6
l
 12±0.6

ijk
 

MS + 2.5 mg L
-1

 2-4,D + 2.5 mg L
-1

 BAP 8±0.5
n
 9±0.5

mno
 

Mean followed by the same letter are not significantly different at the 0.01 level of confidence 
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Table 3: Number of micro shoots and roots formation from somatic embryos. Thirty replicates 

were used in each treatment. 

MS + Hormone mg L
-1

 No of shoot formation No of root formation 

MS media 4±0.2
j
 1±0.1

fg
 

MS + 0.1 GA3 0±0
k
 0±0

g
 

MS + 0.5 GA3 0±0k 0±0
g
 

MS + 1.0 GA3 0±0k 0±0
g 

MS + 1.5 GA3 0±0
k
 0±0

g
 

MS + 2.0 GA3 0±0
k
 0±0

g 

MS + 2.5 GA3 0±0
k
 0±0

g
 

MS + 3.0 GA3 0±0
k 0±0

g 

MS + 3.5 GA3 0±0
k
 0±0

g
 

MS + 4.0 GA3 0±0
k
 0±0

g
 

MS + 0.1 Kin + 2.0 IBA 7±0.2
i
 1±0.1

efg
 

MS + 0.5 Kin + 2.0 IBA 7±0.3h
i
 1 ±0.1

def
 

MS + 1.0 Kin + 2.0 IBA 9±0.3
h
 2±0.2

bcd
 

MS + 1.5 Kin + 2.0 IBA 13±0.4
f
 3±0.2

ab
 

MS + 2.0 Kin + 2.0 IBA 20±0.5
c
 4±0.3

a
 

MS + 2.5 Kin + 2.0 IBA 24±0.5
b
 4±0.4

a
 

MS + 3.0 Kin + 2.0 IBA 18±0.6
d
 3±0.4

ab
 

MS + 3.5 Kin + 2.0 IBA 11±0.5
g
 4±0.4

a
 

MS + 4.0 Kin + 2.0 IBA 7±0.4h
i
 2±0.3

bcd
 

MS + 0.1 Kin + 2.0 NAA 5±0.4
j
 1±0.1

defg
 

MS + 0.5 Kin + 2.0 NAA 9±0.7
h
 4±0.4

a
 

MS + 1.0 Kin + 2.0 NAA 11±0.4
g
 4±0.3

a
 

MS + 1.5 Kin + 2.0 NAA 18±0.8
d
 3±0.3

abc
 

MS + 2.0 Kin + 2.0 NAA 26±0.7
a
 3 ±0.3

ab
 

MS + 2.5 Kin + 2.0 NAA 21±0.6
c
 3±1.1

ab
 

MS + 3.0 Kin + 2.0 NAA 18±0.6
 d
 2±0.3

cd
 

MS + 3.5 Kin + 2.0 NAA 16±0.6
e
 2±03 

MS + 4.0 Kin + 2.0 NAA 1±0.7f
g
 2±0.2

cd
 

Mean followed by the same letter are not significantly different at the 0.01 level of confidence 
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Table 4: Responses showed by in vitro Polianthes tuberosa plantlets after being acclimatized 

in various sowing media. Result obtained after 2 months being acclimatized 

Method Observation Survival Of Polianthes 

tuberosa (%) 

Plantlets were transferred to Garden 

soil (Combination of black soil and 

red soil at ratio 2 to 1) 

 

Plantlets survived and 

showed healthy growth 

  63.33±0.09
a 

 

Plantlets were transferred to 

autoclaved garden soil 

(Combination of black soil and red 

soil at ratio 2 to 1) 

 

Plantlets not survived  0.00 ± 0.00
c
 

Plantlets were transferred to red soil  

 

Plantlets survived with 

slow growth 

50.00±0.09
b 

 

Mean ± SE, n=30. Mean with different letters in the same column different letters in the same 

column differ significantly at p=0.01. 
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Figure 1: In vitro somatic embryogenesis of Polianthes tuberosa: a) embryogenic callus; (b) 

somatic embryos at globular stage; (c) somatic embryos at heart shape stage; (d) somatic 

embryos at cotyledonary stage; (e) micro shoots formation on MS media supplemented with 

2.0 mg/l Kin and 2.0 mg/l NAA; (f) root formation on MS medium supplemented with 0.5 

Kin and 2.0 mg/l NAA; (g) Three-month-old intact plant of Polianthes tuberosa which were 

used for explant sources ;(h) Plant regeneration of Polianthes tuberosa after 12  weeks of 

culture. Bars = 1 mm;(i) Four-month-old  months old Polianthes tuberosa plantlets after being 

transferred to the garden soil. 
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Abstract (150 words) 

The direct regeneration of Nelumbo nucifera Gaertn. was successfully achieved from mature 

explants (green plumule) cultured on a solid MS media supplemented with 1.5 mg/l BAP and 

0.5 mg/l NAA with 10.33±0.23 shoots per explant. A new characteristic of layered multiple 

shoots from immature explants (yellow plumule) cultured on a solid MS media 

supplemented with combinations of 0.5 mg/l BAP and 1.5 mg/l NAA with higher number of 

shoots per explant (16.00±0.30). The double-layered media gave the highest number of 

shoots per explant with a ratio of 2:1 (liquid to solid) with a mean number of 16.67±0.23 

shoots per explant from immature explants and 9.00±0.15 shoots per explant from mature 

explants. In the study involving light distance, the highest shoot obtained (16.67±0.23 mm) 

from the immature explants was at a light distance of 20 mm compared to the mature 

explants (9.41±1.11 mm) at a light distance of 250 mm. 
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Abstract 

An efficient protocol has been developed for the rapid mass propagation of an edible and 

medicinal aquatic plant, Nelumbo nucifera Gaertn. The direct regeneration of Nelumbo 

nucifera Gaertn. was successfully achieved from mature explants (green plumule) cultured 

on a solid MS media supplemented with 1.5 mg/l BAP and 0.5 mg/l NAA with 10.33±0.23 

shoots per explant (true-to-type). The regeneration was completed with 3.67±0.32 roots per 

explant after 10-12 weeks in culture. At the same time, direct regeneration from immature 

explants (yellow plumule) cultured on a solid MS media supplemented with combinations of 

0.5 mg/l BAP and 1.5 mg/l NAA resulted in a higher number of shoots per explant 

(16.00±0.30) and exhibited a new characteristic of layered multiple shoots, while roots 

formed on the solid MS basal media. The formation of abnormal shoots (pinkish, red and 

oval leaf) occurred only in mature explants on the solid MS media supplemented with either 

1mg/l BAP and 2.5 mg/l NAA, 2.5 mg/l BAP and 2.5 mg/l NAA, 1.5 mg/l BAP plus 2 mg/l NAA 

or 1.5 mg/l BAP and 2.5 mg/l NAA. The solid MS basal medium was optimum for root 

formation and occurred within 2-4 weeks for both mature and immature explants. The 

double-layered media gave the highest number of shoots per explant with a ratio of 2:1 

(liquid to solid) with a mean number of 16.67±0.23 shoots per explant with the formation of 

primary and secondary roots from immature explants. In contrast, a lower mean number of 

9.00±0.15 shoots per explant was obtained from mature explants. In the study involving light 

distance, the highest shoot obtained (16.67±0.23 mm) from the immature explants was at a 

light distance of 20 mm compared to the mature explants (9.41±1.11 mm) at a light distance 

of 250 mm. 

 

Keywords : Nelumbo; plumule;  mass propagation;  hormones combination; tissue culture  

 

Introduction 

 

Lotus is in the genus of Nelumbo and belongs to the family of Nelumbonaceae. The 

Nelumbonaceae family consists of a perennial aquatic and emergent angiosperm plant 

which consists of two species: Nelumbo nucifera Gaertn. (the Asian or sacred lotus) and 

Nelumbo lutea (Willd.) Pers. (the American lotus or water chinquapin). The former is 

distributed in Asia and North Australia and the latter is found in North and South America  
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(Borsch and Barthlott 1996, Han et al. 2007). Lotus is an important economic aquatic plant, not 

only as a dainty and ornamental flower but also as a source of herbal medicine, with strong 

bioactive ingredients including alkaloids and flavonoids, and antioxidant, anti-steroidal, 

antipyretic, anti-cancerous, antiviral and anti-obesity properties (Mukherjee et al. 1997, Sinha 

et al. 2000, Qian 2002, Sridhar and Bhat 2007). 

 

The lotus is usually propagated vegetatively through rhizome division or tuber production, 

but the normal propagation rate is very low (Shou et al 2008). It can also be multiplied 

through seeds but, for quick and more efficient germination, the seeds need to be scarified 

by rubbing the outer hard seed coat gently on sand paper at both ends and finally immersing 

in water to initiate germination. Scarified seeds germinated after 3-4 days while normal 

seeds took 10-15 days to germinate. If the hard coating remains intact, the seeds will remain 

viable for centuries and it may take a few years for the seed to sprout if placed in water ( 

Hartman et al 1990). 

 

Tissue culture methods for the selection of variant types in ornamentals have been 

documented for many years, especially for flower colour, plant morphology and also 

physiological characteristics. In vitro methods have been known to shorten breeding cycles 

and therefore reduce the costs of the development of a new cultivar. A few factors that 

need to be considered in the selection of explants in tissue culture are the source of explants 

(intact or aseptic), the size of the explants, ontogeny, the age of the explants or the 

maturation of the stock plant. In addition to factors that are related to explant tissues, there 

are also other factors that play important roles in the success of micropropagation, including 

the addition of the growth regulators (plant hormones).The plants produced by in vitro 

propagation were genetically uniform and free from associations with other microorganisms 

(Alistock and Shafer 2006). Tissue culture has previously been successfully employed for the 

micro-propagation of a wide range of aquatic plants, but its application in lotus is rarely 

reported, possibly because of this plant’s recalcitrance to regeneration in vitro (Zhou 1999). 

So far, a protocol for lotus flower regeneration (Arunyanart 1998, Arunyanart and 

Chaitrayagun 2005) and the in vitro multiplication of lotus plants through shoot proliferation 

from underground rhizomes  (Shou et al 2008) have been reported. 
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The present study aimed to compare in vitro regeneration between mature (green plumule) 

and immature (yellow plumule) explants on a solid MS media supplemented with different 

combinations and concentrations of BAP and NAA. To date, this is the first report of 

succesful in vitro regeneration  from immature explants (yellow plumule) with new 

characteristics (layered multi shoots) in double-layered MS media. At the same time, the 

study aimed to investigate the effect of light distance on the in vitro regeneration of this 

species. 

 

Materials and methods 

 

Nelumbo nucifera Gaertn. were obtained from a natural lake, the Chini Lake, in Pahang, 

Malaysia. No specific permits were required for the described field studies.  The location is 

not privately-owned or protected in any way and the field studies did not involve 

endangered or protected species.Two types of seeds were collected from intact plants 

including mature (green) and immature (yellow) types. These seeds were initially washed 

with tap water and teepol. The seeds were then sterilised with 99% (v/v) sodium 

hypochlorite solution for 1 min and rinsed with distilled water three times. In a laminar flow 

cabinet, the seeds were dipped in 70% (v/v) ethanol for 1 minute and blotted with sterile 

tissue. The cotyledons were excised into two and plumules were cultured on solid basal 

Murashige and Skoog (Murashige and Skoog 1962) Murashige and S medium supplemented 

with 30 g/l sucrose and 8 g/l agar. Growth regulator, α-naphtaleneacetic acid (NAA) and 6-

benzyl aminopurine (BAP) were dissolved in NaOH and added to MS media.  After two 

weeks, the plumules were cut into small pieces (3 mm2) and cultured on MS media with 30 

different combinations and concentrations of NAA and BAP. Thirty replicates for each 

treatment were used. The pH was adjusted to 5.5 by adding 0.1 M of either sodium hyroxide 

(NaOH) or hydrochloric acid (HCl). Finally, the media was set to pH 5.5 and autoclaved at 104 

kPa (15 Psi2) at 121°C for 21 minutes. The sterilised media was poured into 1/3 of 60ml 

sterile containers. All cultures were incubated in a culture room at 25±1°C, with a 16 hour 

photoperiod at 80-85 µmol m-2 s-1 under white fluorescent light (1000 lux). Subcultures were 
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performed every 21-28 days to provide new and fresh nutrients under the same conditions.

  

 

The completely regenerated plantlets (6-8 weeks) with shoots and roots were transferred 

onto solid MS media supplemented with a hormone media (bottom layer) and liquid MS 

basal media (upper layer). Solid media were fixed to 1cm height in the sterile tubes. At the 

same time the liquid media level was altered to a ratio of either 1:1, 1:2 or 1:3 to a solid 

level. Cultures were also exposed to the light source at different distances (55 cm, 10 cm, 15 

cm, 20 cm, 25 cm and 30 cm). Cultures were incubated at 25±1°C with 16 hours light and 8 

hours dark. Thirty replicates for each treatment were prepared. 

 

 

Results and discussion 

Table 1 showed the responses from mature (green) and immature (yellow) plumule explants 

on 30 different combinations and concentrations of BAP and NAA on a solid MS media. The 

solid MS basal media (as control) only showed a response for the formation of primary roots 

in mature explants within 4 weeks without any elongation of the shoots. In contrast, solid 

MS basal medium was identified for the best rooting formation 2-4 weeks after samples 

were transferred from the optimum MS media supplemented with BAP and NAA to the MS 

basal media. Table 1 only shows four treatments which were successful for root formation. 

The highest number of roots per explant for green explants were on MS basal media with 

4.33±0.53 shoots per explant. This was followed by 1.5 mg/l BAP and 0.5 mg/l NAA, 1.5 mg/l 

BAP and 1.5 mg/l NAA, and 1.0 mg/l BAP and 2.5 mg/l NAA with 3.67±0.32 roots per explant, 

0.67±0.09 roots per explant and 0.57±0.35 roots per explant, respectively. Previous studies 

showed that both direct and indirect shoot organogenesis was demonstrated in several 

aquatic plant species (Kane et al 1991). Although information which indicates that aquatic 

angiosperms are adaptable to in vitro culture is limited, the results showed vigorous shoots 

with fewer roots, which was contrary to the report by Christensen ( Christensen 1996) where 

many tissue cultures of water plant species showed more adventitious shoots. The present 

study successfully developed a direct regeneration from lotus plumule explants through a 

tissue culture system within 10-12 weeks. 
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Table 1 also shows that the highest number of shoots per explant from green plumules were 

found on the MS media that was supplemented with combinations of 1.5 mg/l BAP and 0.5 

mg/l NAA, with a mean of 10.33±0.23 shoots per explant. The shoots elongated vertically on 

the surface of the solid MS within 2 weeks. Rolled leaves formed in week 12, while open or 

unrolled leaves were visible after another 4 weeks. The lowest number of shoots per explant 

for green plumules were on the MS media supplemented with combinations of 3  mg/l BAP 

and 2.5 mg/l NAA, with a mean of 1.33±0.23 shoots per explant, which was slightly lower 

than in the solid MS without hormone (1.43±0.10 shoots per explant). Only mature explants 

showed the formation of abnormal shoots (pinkish, red and oval leaf) which occurred on the 

solid MS media supplemented with combinations of 1.0 mg/l BAP and 2.5 mg/l NAA, 2.5mg/l 

BAP and 2.5 mg/l NAA, 1.5 mg/l BAP and 2.0  mg/l NAA, and 1.5 mg/l BAP and 2.5 mg/l NAA 

(Figure 3). Table 1 also shows that the highest number of shoots per explant was found 

when yellow explants were cultured on MS media supplemented with combinations of 0.5 

mg/l BAP and 1.5 mg/l NAA, resulting in 16.00±0.30 shoots per explant. In contrast, no root 

formation was seen in all treatments from yellow explants. The root formation occurred 2-4 

weeks after transferrance to solid MS media. No abnormal shoot formation was seen in the 

tall treatments of yellow explants. Shou et al. (2008) also reported that shoots derived from 

lotus buds were cultured on MS medium containing 0.5-2.0 μM NAA, 0.2% activated 

charcoal, with or without 0.1 μM BA for 1 week, but had to be transferred onto MS basal 

medium for 4 weeks for root induction (9.2±0.7 number of root/explant). 

  

Comparing the regeneration ability of green plumules with yellow plumules explants, it was 

found that green plumules explants could regenerate faster (7-8 weeks) than yellow 

plumules explants (10-12 weeks). The in vitro growth of green plumules explants was true-

to-type, with dark green horizontal shoots (4 shoots) and root formation (primary and 

secondary) before the start of the next shoot extension. At the same time, the regeneration 

of yellow plumules resulted in a new characteristic, with smaller and lighter green vertically-

layered shoot and root formation (only primary). Overall, the combination range of 0.5-1.0 

mg/l BAP with 0.5-2.5 mg/l NAA was optimum for immature explants and gave the highest 

(2-16) number of shoots per explant. In contrast, the combination of 1.5-2.0 mg/l BAP with 

0.5-2.5 mg/l NAA was optimum for mature explants, and gave the highest (1-10) number of 

shoots per explant. Among the treatments, the same concentration ratios of BAP and NAA 
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(0.5 mg/l BAP and 0.5 mg/l NAA, 1.0 mg/l BAP and 1.0 mg/l NAA, 1.5 mg/l BAP and 1.5 mg/l 

NAA, 2.0 mg/l BAP and 2.0 mg/l NAA, 2.5 mg/l BAP and 2.5 mg/l NAA) were recognised to 

response twice as well for yellow plumules explants (immature) compared to green plumules 

explants (mature). Subcultures were needed every 21-28 days to maintain the freshness of 

the media and the accumulation of shoots and roots. Shou et al. (Shou et al 2008) reported 

that the maximum number of shoots was induced from lotus bud explants on MS medium 

containing 8 g/l agar, 30 g/l sucrose, and 4.44 µM benzyladenine (BA) added with 0.54 μM α-

naphthalene acetic acid (NAA) for 4 weeks, with low rates of lotus multiplication (3.50±0.05 

number of shoots/bud). The different results within a shorter period of response (2-4 

weeks), which were influenced by the types of explants and ratios between NAA and BAP 

and cytokinin and auxin, were considered critical factors for in vitro shoot multiplication ( 

Dantu and Bhojwani 1987, Rao and Purohit 2006). 

In the present study, the successful direct regeneration of mature explants (green plumule) 

cultured on solid MS media supplemented with combinations of 1.5 mg/l BAP and 0.5 mg/l 

NAA gave 10.33±0.23 shoots per explant (true-to-type), whilst immature explants (yellow 

plumule) cultured on solid MS media supplemented with combinations of 0.5 mg/l BAP and 

1.5 mg/l NAA gave 16.00±0.30 shoots per explant. Arunyanart and Chaitrayagun [12] 

reported that lotus bud explants cultured on MS medium containing 4 µM 2,4-

dichlorophenoxy acetic acid (2,4-D) and 1 μM benzyladenine (BA) gave the best callus 

growth. Shou et al. [7] reported a low rate of shoot multiplication from lotus bud explants 

cultured on MS medium containing 8 g/l agar, 30 g/l sucrose, 4.44 µM benzyladenine (BA) 

and 0.54 μM α-naphthalene acetic acid (NAA). In addition, Rahman et al (Rahman et al 2004) 

reported that cotyledonary explants with and without petiolar gave the best shoot initiation 

cultured in half strength MS medium supplemented with 1.0 mg/l BA + 0.5 mg/l kinetin + 0.1 

mg/l NAA.  

 

The present study also showed that immature explants (yellow plumules) responded better 

compared to mature explants (green plumules). These results are in agreement with the 

most frequently reported finding that juvenile explants are most responsive (Merkle et al. 

1987,Jain et al. 1995, George 1996). However, the results contrast with Ke et al. (Ke et al. 

1987a) and Liu et al. (Liu et al. 2002), who reported that callus formation was only induced 

from immature embryos, green plumules and young cotyledons. The shoot formation was 



8 

 

influenced by many factors, such as explant types and growth regulators (Jain et al. 1995, 

Nhut et al. 2001, Guo et al. 2005). Shoot regeneration from cotyledon explants has been 

achieved in a wide range of plant species using cytokinin in combination with auxin 

(Bornman 1983). 

 

A few factors that need to be considered in the selection of explants in tissue culture are the 

source of the explants (intact or aseptic plant), the explant size, ontogeny, the age of 

explants and the maturation of the plant stock (Murashige 1974a). Explants consisting of 

young cells and tissues normally show better results compared to older ones. This is because 

young meristematic cells divide actively. Each desired cultural effect has its own unique 

requirements, such as cytokinin (high-cytokinin-low-auxin ratio) for the initiation and 

development of adventitious shoots and auxin for the induction of adventitious roots. In 

order to enhance the regeneration rate, the MS media was supplemented with NAA and 

BAP, which induced both shoot and root formation. Historically, auxins (IAA, IBA, NAA, 2,4-D) 

are well characterized, and have functions in the establishment and maintenance of polarity 

in organised tissues, as well as in whole plants. Their most marked effect is the maintenance 

of apical dominance and the mediation of tropisms. In plant tissue culture, cytokinins (BAP, 

Kinetin, zeatin, 2iP) are commonly used in adventitious shoot bud formation, multiple shoot 

proliferation, somatic embryogenesis and the inhibition of root formation. Cytokinins are 

generally considered a critical factor for in vitro shoot production, and there are many 

reports that BAP exhibits a beneficial effect over other cytokinins with regards to shoot 

multiplication (Dantu and Bhojwani 1987, Rao and Purohit 2006). 

 

Based on the results obtained, some formation of abnormal (red and oval) shoots occurred 

in MS media supplemented with combinations of 1.0 mg/l BAP and 2.5 mg/l NAA, 2.5 mg/l 

BAP and 2.5 mg/l NAA, 1.5 mg/l BAP and 2.0 mg/l NAA, and 1.5 mg/l BAP and 2.5 mg/l NAA 

(Figure 3). Media that was rich in nutrients such as Murashige and Skoog ( Murashige and 

Skoog 1962)  were shown to promote vitrification in some plant species (Pâques and Boxus 

1987, Pierik 1987), and root formation occurred with the addition of auxin at lower 

concentrations, while a higher concentration of cytokinin was found to induce the formation 

of shoots. The ratio between auxin and cytokinin can determine the organ formation (Miller 

and Skoog 1953, Paulet 1965, Ghautheret 1959). The most common uses of auxins in plant 
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tissue culture include the induction of callus growth, organ cultures, somatic embryogenesis 

and the induction of rhizogenesis. In intact plants, these substances particularly stimulate 

protein synthesis and participate in cell cycle control. When added to shoot culture media, 

these compounds overcome apical dominance and release lateral buds from dormancy. 

Auxins, together with cytokinins, are involved in the control of morphogenesis in plant tissue 

culture. Different concentrations and combinations of auxins and cytokinins have different 

effects on the growth of explants. A balance between the auxin and cytokinin growth 

regulators is most often required for the formation of adventitious shoot and root 

meristems. The required concentration of each type of hormone differs greatly according to 

the kind of plant being cultured, the cultural conditions and the types of hormones used, as 

interactions between the two classes of regulator are often complex, and more than one 

combination of substances is likely to produce optimal results. A low concentration of auxin 

is often beneficial in conjunction with a high level of cytokinin when shoot multiplication is 

required, while a low concentration of cytokinin (typically 0.5-2.5 μM) is often added to 

media containing a relatively high concentration of auxin for the induction of an 

embryogenic callus, especially in broad-leafed plants (Geoge 1993). 

The present study showed that the best explants (yellow plumule) cultured on the optimum 

solid MS media supplemented with 0.5 mg/l BAP and 1.5 mg/l NAA for 20 weeks developed 

a new characteristic (layered multiple shoots). Within the same period (1-24 weeks) of 

culture on solid MS media, regeneration from green seed explants was achieved, exactly as 

for the mother plant, with shoots and roots (complete plantlet). In contrast, regeneration 

from yellow seeds was different, with smaller elongated shoots. No abnormal shoot 

formation was seen in the treatment of yellow seed explants. A small percentage of in vitro 

plants showed morphological and cytological changes that can be termed somaclonal 

variation (Evans and Sharp 1986) . This proved that in vitro plantlets could not guarantee the 

new plant produced, even though the in vitro multiplication was true-to-type. The nature of 

abnormal morphogenesis in vitro emphasises the need for the optimisation of plant culture 

conditions (Gasper et al. 1987). For instance, a tetraploid lotus (4n=32) was produced via in 

vitro culture with colchicine treatment (Yamamoto and Matsumoto 1990). 
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Table 2 and Figure 4 show the effects of solid and liquid levels in the regeneration of 

explants from green and yellow seeds. As a control, explants were cultured on solid MS basal 

media. Green shoots were elongated with a mean number of 4.31±0.80 shoots per explant 

and the formation of primary roots (Figure 3(a-b)). In contrast, yellow shoots turned green, 

with a mean number of 9.10±0.51 shoots per explant and the formation of primer roots. The 

highest number of shoots per explants was found in the liquid to solid ratio of 2:1 with a 

mean of 16.67±0.23 shoots per explant and the formation of primary and secondary roots 

for explants from yellow seeds (Figure 3(c)), while a mean of 9.00±0.15 shoots per explant 

was seen for green seeds with the formation of layered multiple shoots. In media containing 

a liquid to solid ratio of 1:1, both shoots elongated normally with a mean of 8.33±0.23 and 

15.67±0.09 shoots per explant for green and yellow shoots, respectively (Figure 3(d)). Even 

though the lotus is an aquatic plant, in a liquid to solid ratio of 3:1 (flooded), both shoots 

turned brown with a mean of 5.33±0.23 shoots per explant for green shoots and 10.33±0.23 

shoots per explant for yellow shoots. The better contact between explants and the liquid 

medium increased the availability of cytokinin and the ability for nutrient uptake (Deberg 

1983), increased the dilution of any exudates from explants in the liquid medium (Ziv and 

Halevy 1983) and made the aeration in the liquid medium more adequate, which enhanced 

both growth and multiplication (Ibrahim 1994). 

In natural habitats, the growth of the lotus is affected by water levels and their fluctuation. 

The deepest water level recorded was about 2-3 m for the wild lotus (Unni 1971a, Unni 

1971b, Unni 1976, Kunii and Maeda 1982, Wang and Zhang 2004) . Rhizomes of some 

species were killed by anaerobic incubation at 22°C for 7 days, while others survived and 

showed normal shoot extension upon return to aerobic conditions (Barclay and Crawford 

1982). According to Nohara and Kimura (Nohara and Kimura 1997), the maximum depth for 

lotus growth is 2.4 m (water depth) in an artificial environment of concrete ponds, while no 

petiole elongation is seen from water depths of 3-5 m.  

Table 3 shows the effects of the distance of the light source on the multiplication of lotus 

shoots. The results showed the highest height of shoots from green seed explants (9.41±1.11 

mm) when the light source was at a distance of 250 mm. The lowest height of shoots was at 

a distance of 50mm with shoots of 1.21±1.01 mm seen from green seed explants. The 

highest height of shoots (16.67±0.23 mm) obtained from yellow seed explants was at a 
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distance of 20mm, and the lowest height of shoots (9.12±0.51 mm) was at 50 mm. All of the 

explants in the nearest light distance (0.0 mm) were dried out and dead. From this 

experiment, a light distance of 200-250 mm was found to be optimum for the growth of 

shoots from green seed explants and 100-150 mm from yellow seed explants. 

 

The production of ornamental lotus is on a very small scale in the world, with the plants 

usually sold in the form of dormant rhizomes. In this research, juvenile shoot explants of 

Nelumbo nucifera Gaertn. were successfully established in vitro. Stock plant cultures were 

increased by repeatedly subdividing cultures at 21-day intervals. Plants cultured in solid MS 

media produced leaves with elongated petioles. In general, the in vitro regeneration of lotus 

was difficult to maintain on the same solid media for more than 28 days, as the plantlets 

became yellowish and died. A significant difference in the capability of shoot initiation was 

found among mature and immature explants, and may be due to the different degree of 

their sensitivity towards growth regulators, double-layered media and light distances. The 

results of the present study showed that plantlets survived without subculture for 6-12 

months on a double-layer media (liquid basal MS media combined with solid MS added NAA 

and BAP) that was exposed to light distances of 20-25 mm.  
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SUPPORTING INFORMATION 

Table 1.  The effects of  different combinations and concentrations of BAP and NAA on mature (green plumules) and immature (yellow 

plumules) explants, cultured on solid MS media at  25±1°C. This was performed with 16 hours light and 8 hours dark, with 1000 lux intensity of 

light for 12 weeks. 

MS+Hormone Explant Observations No. of shoots 

per explant 

(mean±SE) 

No. of roots 

per explant 

(mean±SE) 

BAP 

(mg/l) 

NAA 

(mg/l) 

0.0 

 

0.0 Yellow 

Green 

No response 

Shoots elongation, roots formation after 4 weeks.Adventitious roots 

after 6 weeks 

0 

1.43 ±0.10abc 

0 

4.33±0.53d 

0.5 0.5 Yellow 

Green  

Yellow shoots turned green after 1 week 

Shoots elongated 

6.00±0.31ef 

3.00 ± 0.26e 

0 

0 

0.5 1.0 Yellow 

Green  

Yellow shoots turned green after 1 week  

Shoots elongated 

8.00±0.00h 

3.67±0.32fg 

0 

0 

0.5 1.5 Yellow 

Green 

Layered green  shoots after 7 weeks 

Shoots elongated 

16.00±0.30m 

4.33±0.23gh 

0 

0 

0.5 2.0 Yellow 

Green 

Yellow shoots elongated 

Shoots elongated 

2.67±0.18bc 

2.67±0.23de 

0 

0 

0.5 2.5 Yellow 

Green  

Yellow shoots elongated 

Shoots elongated 

2.67±0.67bc 

2.10 ±0.32bcde 

 

0 
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1.0 0.5 Yellow 

Green  

Shoots yellow to green after 1 week  

Shoots elongated 

14.20±0.73l 

6.00 ±0.15jk 

0 

0 

1.0 1.0 Yellow 

Green 

Yellow shoots turned green after 1 week  

Shoots elongated  

11.33±0.17k 

4.00 ±0.40g 

0 

0 

1.0 1.5 Yellow 

Green 

Yellow shoots elongated  

Multiple shoots formation after 8 weeks  

5.77±0.34e 

6.33± 0.23k 

0 

0 

1.0 

 

2.0 Yellow 

Green  

Shoots yellow to green after 1 week  

Multiple shoots formation after 8 weeks 

10.67±0.18jk 

6.33 ±0.17k 

0 

0 

1.0 2.5 Yellow 

Green  

Shoots yellow to green after 1 week  

Shoots elongated 

6.00±0.30m 

2.67 ±0.23de* 

0 

0.57 ±0.35a 

1.5 0.5 Yellow 

Green 

Yellow shoots elongated  

Multiple shoots formation after 4 weeks  

3.67±0.32d 

10.33 ±0.23m 

0 

3.67 ±0.32c 

1.5 

 

1.0 Yellow 

Green 

Shoots yellow to green after 1 week  

Multiple shoots formation after 6 weeks 

9.33±0.18i 

8.67 ±0.18l 

0 

0 

1.5 1.5 Yellow 

Green  

Shoots to green Multiple shoots  

Shoots elongated 

10.33±0.88j 

5.33 ±0.38ij 

0 

0.67 ±0.09b 

1.5 2.0 Yellow 

Green  

Yellow shoots elongated  

Shoots elongated 

2.00±0.00b 

2.33 ±0.32cde* 

 

0 

1.5 2.5 Yellow 

Green 

No response 

Shoots elongated  

0 

2.33 ±0.32cde* 

0 

0 
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2.0 0.5 Yellow 

Green 

Yellow shoots turned green after 1 week  

Multiple shoots formation after 4 weeks 

7.33±0.18gh 

8.00 ±0.40l 

0 

0 

2.0 1.0 Yellow 

Green  

Shoots yellow to green after 1 week  

Multiple shoots formation after 4 weeks 

8.00±0.00h 

6.33 ±0.31k 

0 

0 

2.0 1.5 Yellow 

Green  

Yellow shoots elongated  

Multiple shoots after 8 weeks  

6.00±0.00ef 

5.33 ±0.09ij 

0 

0 

2.0 2.0 Yellow 

Green 

Yellow shoots elongated  

Shoots elongated 

5.33±0.35e 

1.07 ±0.15a 

0 

0 

2.0 2.5 Yellow 

Green 

Yellow shoots elongated  

Multiple shoots formation after 8 weeks 

3.33±0.35cd 

5.67 ±0.17ijk 

0 

0 

2.5 0.5 Yellow 

Green  

Yellow shoots elongated  

Shoots elongated  

6.07±0.41ef 

3.67 ±0.18fg 

0 

0 

2.5 1.0 Yellow 

Green  

Yellow shoots elongated  

Shoots elongated  

3.33±0.18cd 

4.00 ±0.40g 

0 

0 

2.5 1.5 Yellow 

Green 

Yellow shoots elongated  

Shoots elongated  

2.00±0.00b 

5.00 ±0.46hi 

0 

0 

2.5 2.0 Yellow 

Green 

Shoots elongated  

Multiple shoots  

2.00±0.00b 

6.33 ±0.35k 

0 

0 

2.5 2.5 Yellow 

Green  

Shoots elongated  

Shoots elongated  

2.00±0.00b 

2.33 ±0.35cde* 

0 

0 
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3.0 0.5 Yellow 

Green  

Shoots elongated  

Multiple shoots  

6.67±0.18fg 

4.33 ±0.31gh 

0 

0 

3.0 1.0 Yellow 

Green 

Shoots elongated  

Multiple shoots  

2.67±0.18bc 

4.33 ±0.35gh 

0 

0 

3.0 1.5 Yellow 

Green  

Shoots elongated  

Shoots elongated  

2.00±0.00b 

2.00 ±0.26bcd 

0 

0 

3.0 2.0 Yellow 

Green  

Shoots elongated  

Multiple shoots  

2.00±0.00b 

5.00 ±0.26hi 

0 

0 

3.0 2.5 Yellow 

Green 

No response 

Shoots elongated  

0 

1.33 ±0.23ab 

0 

0 

*Formation of abnormal shoots. Mean with different letters in the same column differ significantly at p<0.05, as determined by Duncan’s 

Multiple Range Test (DMRT). Mean ± Standard error (SE), replicates (n=30). 
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Table 2. The effect of double-layered media on the regeneration of shoots. Cultures were 

maintained at 25±1°C with 16 hours light and 8 hours dark, with 1000 lux intensity of light for 4 

weeks. 

 

Ratio 

liquid:solid  

(mm) 

Explant 

 

No. of shoots 

per explants 

(Mean ±SE) 

Observations 

0:1 

(control) 

Green shoot* 

 

Yellow shoot# 

4.31±0.80 

 

9.10±0.51 

Dark green shoots elongated. Primary root 

formation. 

Yellow shoots turned green and elongated. 

Primary root formation. 

1:1 Green shoot* 

Yellow shoot# 

8.33±0.23 

15.67±0.09 

Shoots elongated 

Shoots elongated 

2:1 Green shoot* 

 

Yellow shoot# 

9.00±0.15 

 

16.67±0.23 

Shoots crept and formed rolled leaves. 

Primary and secondary root formation  

Layered shoots. Primary root formation 

3:1 Green shoot* 

Yellow shoot# 

5.33±0.23 

10.33±0.23 

Shoots turned brown 

Shoots turned brown 

  

*Double-layered medium (green shoot): combination of Solid MS + 1.5 mg/l BAP + 0.5 mg/l NAA and liquid MS 

basal. 

#
Double-layered medium (yellow shoot): combination of Solid MS + 0.5 mg/l BAP + 1.5 mg/l NAA and liquid MS 

basal. 

Each value represents the mean of thirty replicates. Mean ± Standard error (SE), replicates (n=30).  
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Table 3. The effect of light distance on the regeneration of shoots. Cultures were maintained at 

25±1°C with 16 hours light and 8 hours dark, with 1000 lux intensity of light for 4 weeks. 

 

Light 

Distance 

(mm) 

Height of shoot,mm 

 (Mean ±SE) 

Observations 

Green Seeds Yellow Seeds 

0.0 

(control) 

0 0 Green and yellow shoots became dried and 

turned brown 

 50 1.21±1.01 9.12±0.51 Wrinkle green shoots. Yellow shoots 

turned green  

100 7.67±0.09 10.67±0.09 Green shoots elongation. Yellow shoots 

turned green 

150 7.13±0.72 13.10±1.01 Green shoots elongation. Yellow shoots 

turned to green 

200 9.00±0.15 16.67±0.23 Green and yellow shoots elongated 

250 9.41±1.11 9.13±0.50 Green and yellow shoots elongated 

300 4.67±0.09 6.33±0.18 Green and yellow shoots turned brown 

 

Each value represents the mean of thirty replicates. Mean ± Standard error (SE), replicates (n=30).  
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Fig. 1. Effects of BAP and NAA on shoot formation from the immature explants (yellow plumule) 

of N. Nucifera  after 24 weeks in culture on MS medium. Yellow plumule cultured on MS solid 

media supplemented with 0.5 mg/l BAP and 1.5 mg/l NAA. The cultures were maintained at 

25±1˚C with 16 hours light and 8 hours dark, with 1000 lux intensity of light for 24 weeks. 

A Yellow pod with nine immature seeds. 

B Two hinged shoots (explants) on. 
(b) 

(a) 

0.5cm 

 

0.5cm 

 

0.5cm 

 

0.5cm 

 

1.0 cm 

 

1.0cm 

 

1.0cm 

 

0.5cm 

 

0.5cm 

 

A 

I H 

F E D 

B C 

G 
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C First subculter after 2 weeks cultured on solid MS basal (control). 

D Elongation of first shoot. 

E Two  rolled shoots after 3 weeks. 

F Formation of layered shoots after 4 weeks.  

G Elongation of shoots after 6 weeks. 

H Formation of first unrolled leaf after 8 weeks. 

I  Layered multiple shoots (vertical position) with formation of primary roots after 12 weeks. 
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Fig. 2. Effects of BAP and NAA on shoot formation from the mature explants (green plumule) of 

N. Nucifera  after 24 weeks in culture on MS medium. Green plumule cultured on MS solid 

(c) 
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1cm 
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I H G 
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media supplemented with 1.5 mg/l BAP and 0.5 mg/l NAA. The cultures were maintained at 

25±1˚C with 16 hours light and 8 hours dark, with 1000 lux intensity of light for 24 weeks. 

A Green pod with twenty nine mature seeds. 

B Three hinged shoots (explants) cultured on solid MS basal (control). 

C After 2 weeks cultured on solid MS. 

D Elongation of  shoot. 

E Rolled shoots after 3 weeks. 

F Shoots after 4 weeks.  

G First subculter and formation of rolled shoots after 6 weeks. 

H Formation of first unrolled leaf after 8 weeks. 

I Multiple shoots (cluster) with formation of primary and secondary roots after 12 weeks. 

 

   

 

Fig. 3. Abnormal structures occurred when green plumule of N. Nucifera  cultured on solid MS 

media supplemented with combination of 1.0-2.5 mg/l BAP and 2.5 mg/l NAA within 4 weeks. 

A Pink Shoots 

B Red rolled leaf 

C Pink and green oval leaf 

A B C 

D 

G 

0.5cm 

 

1cm 

 

2.0cm 

 

0.5cm 

 

1cm 

 

E F 

1cm 
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D Green spongy tissue 

E Green and round leaf 

F Stem with tiny thorns (prickles) 

 

 

Fig. 4. Effects of yellow plumule of N. Nucifera  on double layered media (on solid MS media 

and liquid MS media supplemented with 0.5 mg/l BAP and 1.5 mg/l NAA).  

A Formation of the first and second shoots.  

B Elongation of the first three shoots.  

C Layered multiple shoots after 6 weeks. 

D Formation of roots after 4 weeks subculture. 

E Elongation of leaves after 7 weeks 

F Layered multiple shoots after 10 weeks 

 

 

 

A C B 
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0.5cm 

 

5.0 cm 

 

D E F 
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Fig. 5. Comparison of plantlets morphology of N. nucifera  from various conditions of growth 

development. 

A. In vitro multiple shoots from immature explant on double layered MS media 

B. Layered multiple shoots  transfer to solid MS media for root formation. 

C. Multiple shoots  from mature on  MS media for root formation. 

D. In vivo of lotus after 4 months. 
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Abstract 

The present work reports on in vitro flowering of Phlox paniculata L. Various explants such as 

leaf, petiole and stem, excised from intact matured plants, aged 4 months old were cultured on 

MS solid medium supplemented with different concentrations and combinations of 1-

napthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). The range of concentration was 

2.6 -10.6 µM for NAA and 2.2 – 8.8 µM for BAP, respectively. Adventitious shoot formation 

from different explants was obtained depending on the culture conditions. Among the explants 

tested, leaf segments were found to be the most responsive, and had the highest regeneration 

frequency (100%) when cultured in the presence of 8.0 μM NAA and 6.6 μM BAP. However, 

the regenerated plantlets did not form any flower bud in their successive subcultures. In vitro 

flowering was only induced after 4 weeks of culture from shoot tip segments which were 

maintained on MS solid medium supplemented with zeatin (2.2-11.2 μM) or gibberellic acid 

(1.4-7.2 μM)). In the present study, treatment with 11.2 μM zeatin showed the highest frequency 
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of in vitro flowering (67.8 ±3.2%) whereas, 5.6 μM GA3 gave a frequency of 48.8±9.3%. 

Although the flowers generated in vitro were sterile, our study would provide an important step 

towards future investigation on the essential factors for in vitro flowering in P. paniculata and to 

elucidate other developmental and environmental stimuli, which are required for promoting or 

inhibiting the transition of vegetative state to flowering state in this species. 

 

Key words: Phlox paniculata L., in vitro flowering, zeatin, GA3, micropropagation 

 

Resumo 

trabalho atual relata in vitro em flowering do paniculata L. do Phlox. Os vários explants tais 

como a folha, o petiole e a haste, excised das plantas amadurecidas intatas, envelhecidas 4 meses 

velho foram cultivados no meio contínuo do ms suplementadas com as concentrações e as 

combinações diferentes de 1 ácido napthaleneacetic (NAA) e de benzylaminopurine 6 (BAP). A 

escala da concentração era o µM 2.6 -10.6 para NAAand 2.2 - o µM 8.8 para BAP, 

respectivamente. A formação Adventitious do tiro dos explants diferentes foi obtida dependendo 

das condições da cultura. Entre os explants testados, os segmentos da folha foram encontrados 

para ser os mais responsivos, e tiveram a freqüência a mais elevada da regeneração (100%) 

quando cultivados na presença 8.0 do μM NAA e 6.6 o μM BAP. Entretanto, os plantlets 

regenerados não deram forma a nenhum bud da flor em seus subcultures sucessivos. Flowering 

foi induzido in vitro somente após 4 semanas da cultura dos segmentos da ponta do tiro que 

foram mantidos no meio contínuo do ms suplementado com o zeatin (μM 2.2-11.2) ou o ácido 

gibberellic (μM 1.4-7.2)). No estudo atual, o tratamento com o zeatin 11.2 do μM mostrou a 

freqüência a mais elevada in vitro de flowering (67.8 ±3.2%) visto que, 5.6 o μM GA3 deu uma 

freqüência de 48.8±9.3%. Embora as flores geradas in vitro fossem sterile, nosso estudo 

forneceria uma etapa importante para a investigação futura nos fatores essenciais in vitro 

flowering no P. paniculata e para elucidate outros stimuli developmental e ambientais, que são 

requeridos promovendo ou inibindo a transição do estado vegetative ao estado flowering nesta 

espécie. 



4 

 

 

Palavras-chave : Paniculata L. do Phlox, in vitro flowering, zeatin, GA3, micropropagation 

 

INTRODUCTION 

Phlox paniculata L. is an important flowering plant that belongs to Polemoniaceae, a 

family with 67 species, of which about 15 species are extensively grown in the gardens (Wherry, 

1955). P. paniculata L. is a perennial ornamental plant, bears dense terminal clusters of flowers 

in pink, crimson and mauve and are commonly grown for borders, and also suited for window 

boxes and tubs (Bailey 1950; Hay and Synge 1969; Massingham, 1971). The species is seed 

sterile (Bailey 1950; Wherry 1955) therefore, the traditional method of propagation is by root 

cuttings although roots are often damaged by red ants and sometimes by soil born fungi. 

Therefore, in vitro culture is an effective technique to obtain a large scale clonal propagation of 

P. paniculata. Schnabelrauch and Sink (1979) studied on the clonal propagation of P. paniculata 

through axiliary bud culture. Later, shoot regeneration was induced from adult leaf segments 

cultured by Declerck and Korban (1995). Those studies revealed potential for inducing multiple 

shoots in in vitro culture of this species. Moreover, multiple shoot regeneration technique is more 

advantageous for obtaining rapid clonal plants as well as for  conservation. 

 Flowering is a unique developmental event in plants which involves the transition of 

vegetative shoot apex to form either an inflorescence or a floral meristem, followed by initiation 

and subsequent maturation of the floral organ ( Sim et. al., 2007). The flowering process is one 

of the critically important stages in plant and is vital for the completion of the life cycle and seed 

production ( Ziv and Naor, 2006). Under natural growth, flower formation usually begins when a 

plant reaches maturity ( Virupakshi et. al., 2002). In plant, the transition of vegetative state to 

floral stage is considered to be a complex process regulated by a combination of various 

environmental and genetic factors; some of the important factors are plant growth regulators, 

carbohydrates, light and pH of the culture medium (Heylen and Vendrig, 1988). However, such 

transition mechanism from vegetative state to reproductive development is not well understood 

in most of the plants using the traditional methods. In vitro flowering is an important tool to 

minimize the influence of environmental factors and therefore, this technique clarifies the key 
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influences on flowering by the precise control of plant growth regulators. Furthermore, in vitro 

flowering also provides an ideal experimental system over in vivo grown plants in order to study 

the biological mechanism of flowering. In the present work, influences of plant growth 

regulators on clonal propagation from different explants and in vitro flowering from shoot apices 

of P. paniculata were examined. So far, the in vitro flowering in ‘Garden Phlox’ has not been 

reported. In the current work, we used various concentrations of 1-napthaleneacetic acid (NAA) 

and 6-benzylaminopurine (BAP) to induce direct regeneration and at the same time to induce in 

vitro flowering from shoot tips of this species using zeatin and gibberellic acid (GA3).  

 

MATERIALS AND METHODS 

 

Plant materials and culture conditions for in vitro shoot regeneration 

Three types of explants; leaf, petiole and stem, were collected from intact, garden raised 

mature plants at the time of their vegetative stages. All explants were initially washed with tap 

water for 30 min, surface sterilized with 50% commercial bleach ( containing 5% sodium 

hypochlorite) for 1min, then rinsed with sterile distilled water (SDW) for at least three times and 

finally dipped in 70% (v/v) ethanol for 1 min, followed by three times rinsing with SDW. These 

sterile explants were cut into segments (approx. 5-10 mm in length for both petioles and stems 

and around 5x5 mm
2 

pieces for leaves) and cultured on MS (Murashige & Skoog, 1962) solid 

medium (0.8% Agar Technical, No.3, Oxoid Ltd., England) supplemented without (control) or 

with combinations of 2.6, 5.3, 8.0 and 10.6 μM NAA (Sigma-Aldrich, USA) and 2.2, 4.4, 6.6 

and 8.8 μM BAP (Sigma-Aldrich, USA). Prior to sterilization, the pH of the media was adjusted 

to 5.8 and then autoclaved at 121ºC and 103 kpa for 20 min. All the cultures were maintained at 

25±1ºC with a 16 h photoperiod.  
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Explant preparation and culture conditions for in vitro flowering 

Shoot apices were collected aseptically from the 4-month-old axenic cultures (vegetative 

stage) of P. paniculata plant. The explants were further aseptically excised into small pieces 

containing meristems with 3-4 true leaf primordia and cultured on to solid MS medium (prepared 

as described above) supplemented without (control) or with various concentrations (2.2, 4.5, 6.7, 

9.0 and 11.2 μM) of zeatin (Sigma-Aldrich, USA) or gibberellic acid-3 (GA3; Sigma-Aldrich, 

USA; 1.4, 2.8, 4.3, 5.6 and 7.2 μM).  Prior to sterilization, the pH of the media was adjusted to 

5.8 and then autoclaved (121ºC, 103 kpa) for 20 min. All the cultures were incubated at 25±1ºC 

with a 16 h photoperiod.  

 

Morphological analysis 

All cultures were continuously observed from one week of treatment, to evaluate their 

development by counting the total number of shoot buds/leaves initiated by the explant and 

recording the state of the apical meristem, either vegetative or floral. A meristem was classified 

as floral when the first sepal primordium of the flower that characterizes the reproductive 

structure was visible. It was referred to as ‘vegetative’ when there was no apparent reproductive 

morphogenesis. The presence or absence of a basal callus and of roots was also registered. Each 

experiment was repeated at least twice with 10 explants per treatment. Pooled results of the 

different experiments are presented.  

 

Statistical analysis  

All data and variables were statistically analyzed using SPSS statistical package version 11. 

Values are presented as mean ±SE. One-way ANOVA and Multiple Range Analysis were done 

on all data using 95% LSD intervals method. 
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RESULTS AND DISCUSSION 

 

Shoot regeneration from different explants 

Initially, three types of explants, leaf, petiole and stem, were collected from mature plant, and 

they were sterilized and cultured on to MS solid medium supplemented without (control) or with 

different levels of phytohormones as described in the materials and methods. In the beginning of 

the culture, direct shoot bud formation was observed in all types of explants when treated with 

phytohormones ( NAA and BAP) but not in the control. However, none of the explants showed 

callus formation. Within 5 weeks of culture, vegetative buds further developed and regenerated 

into shoots (Fig. 1A). We observed that the highest frequency (100%) of shoot regeneration was 

obtained from leaf explants when cultured on medium supplemented with 8.0 μM NAA and 6.6 

μM BAP (Fig. 1B). However, at this level of phytohormones, maximum shoot regeneration was 

also observed in petiole and stem explants showing the rate of 67.8 ±3.2 and 48.8±9.3%, 

respectively (Fig. 1B). Subsequently, root formation was observed in all clonal shoots within 11 

weeks and they were all developed into individual plantlets in the following culture period. 

When acclimatized and transferred to the field condition, about 90% of clonal plantlets survived 

under natural environment without showing any morphological variation during their 

development. 

Cytokinin and auxin addition for the in vitro shoot regeneration has been studied in many 

plant species. Various reports have shown that in vitro shoot regeneration could be successfully 

induced by using the combination of BA/BAP and NAA. In the medicinal plant, Withania 

somnifera Dunal, cultured on MS medium supplemented with 8.8 μM BA and 0.5 μM NAA 

showed multiple shoots regeneration (Saritha and Naidu 2007). Also, in an in vitro multiple 

shoot regeneration protocol of Boerhaavia diffusa L. by Roy (2008), showed that maximum 

frequency (90%) was possible to obtain only when cultured on  MS medium containing BA (6.6 

μM) and NAA (2.6 μM). Consistent with those previous findings, in the present work, we also 

showed that both NAA (8.0 μM) and BAP (6.6 μM) treatment generated the maximum 

frequency of multiple shoots regeneration in vitro in P. paniculata. Thus, the success in raising 

plants through direct regeneration and by passing the callogenesis phase has opened up the 
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possibility for large-scale clonal propagation of P. paniculata. When the other combinations of 

phytohormones, like kinetin and NAA, kinetin and 3-indole acetic acid (IAA), BA and 2,4-

dichlorophenoxyacetic acid (2,4-D) or kinetin and 2,4-D were used at different concentrations, 

profuse shoot regeneration was not evident in all three types of cultured segments. However, in 

the current work, the successive subculturing of the regenerated plants did not show further 

morphogenetic differentiation such as floral transition. 

 

In vitro flowering 

To induce in vitro flowering, shoot tip explants were further collected from 4-month-old 

aseptic plants and cultured on  MS solid medium supplemented with various concentrations of 

singly applied zeatin and GA3,(Table 1). After 4 weeks of treatment period, development of 

multiple shoots and initiation of flower buds were observed from cultured explants only when 

treated with NAA and BAP but not in control (Table 1). Their successive subcultures generated 

bloomed flowers of white with purple or pink stripes (Fig. 2). In this experiment, 3-4 flowers per 

plant were developed within 7-8 weeks of culture period. In this study, treatment with zeatin at 

the concentration of 11.2 μM resulted in the highest frequency (67.8±3.2%), whereas, 5.6 μM 

GA3 gave 48.8±9.3% in vitro flower induction (Table 1). However, treatment with either zeatin 

or GA3 exhibited formation of white or pink flowers occasionally. All the in vitro developed 

flowers were approximately 1.7-2.0 cm in width and extended laterally from the stem (Fig. 2). 

Each bloom had 5 sepals, slightly extended and pointed shape at their middles with an extended, 

fused throat that opens into 5 distinct and overlapping lobes. However, the in vitro flowers failed 

to develop other reproductive parts, like stamens, stigmas or pistil even when they were 

subcultured for a long period of about 10 months. 

In earlier studies, the cytokinin requirement for the growth and development of flower buds 

has been reported in both monocots (Zhong et al. 1992) and dicots (Rastogi and Sawhney 1987, 

Zhou et al. 2004).  Promotion of in vitro flowering by cytokinins has been repeatedly reported 

(Scorza 1982, Dickens and van Staden 1988, van der Krieken et al. 1991, Roberts et al. 1993, 

Das et al. 1996, Joshi and Nadguada 1997, Kumar and Reddy 1997). The influence of cytokinin 

on the in vitro flowering of Perilla frutescens was found remarkable (Zhang 2007). Also, the 
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beneficial effect of cytokinins on the induction of flowering for other plants was reported in 

orchids (Kostenyuk et al. 1999), Fortunella hindsii (Jumin and Nito 1996) and Lemna (Fujioka et 

al. 1999). The results presented here are similar with those previous findings and revealed an 

optimum concentration of zeatin (11.2 μM) which could induce the maximum frequency (67.8%) 

of floral induction in this species (Table 1). However,  high concentration of zeatin caused 

inhibition of in vitro flowering ( data not shown).    

In certain plants, auxin has been reported as either ineffective (Rastogi and Sawhney 1987) 

or inhibitory (Deaton et al. 1984) for in vitro flowering induction process. In this study, absence 

of in vitro flowering induction was observed when different concentrations of 2,4-D and IAA 

were used in the culture medium. In contrast, gibberellins have been reported as an inducer of 

flowering process in several long day (LD) and cold-requiring rosette plants (Bernier 1988). 

Earlier work has been postulated that a GA promotive pathway exists in A. thaliana (Koornneef 

et al. 1998) where GA3 activates LEAFY (LFY) transcription (Blảzquez et al. 1998).  Considering 

these findings, our results supported the idea that independently zeatin or GA3 may form one of 

the key factors without which floral bud initiation and their subsequent development was not 

possible in P. paniculata. However, detail study on the actual mode of action of zeatin and GA3 

in the in vitro flowering process in Phlox, remains to be examined. In both cases, two to four 

flowers were produced for each in vitro cultured explant (Fig. 2) of which none of them showed 

fruiting in the subsequent culture, might be due to the absence of other reproductive organs. In 

this study, complete flowering was not possible even when they were cultured in the presence of 

kinetin and IAA . In Murraya paniculata, complete plant regeneration was achieved from 

portions of cotyledons and shoot explants when they were cultured in MS supplemented with 

4.44 μM BA. In vitro flowering of the same species was observed on subsequent transfer to MS 

basal (80%) and also on MS fortified with 2.69-10.74 μM NAA ( 62-72%)( Taha, 1997). In 

Begonia x hiemalis, the best explant for in vitro flowering was inflorescence cultured on MS 

supplemented with 4.44 μM BA, 5.37 μM NAA, 4% sucrose and 40 mg/l adenine ( Taha, 2010). 

It seems that different species require different hormonal regime for in vitro flowering. 

Flowering is an important transition of the developmental processes for floricultural crops. In 

this study, an attempt was made to find out the most favorable sets of environmental and 

nutritional conditions for adventitious shoot regeneration and flower induction in vitro. An 
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interesting feature of the present study was that the potential of shoot apices embarked upon 

flowering in vitro in response to only zeatin or GA3. The phenomenon assumes significance 

considering the fact that explants were obtained from axenic cultures and was possible to avoid 

the maturation period spanning several months before a plant bore flowers. Thus, the 

observations reported here for in vitro flowering of P. paniculata are novel and further 

experiments should lead to a better understanding of the physiological and molecular events 

underlying the shift from the vegetative state to the flower state, factors related to overcome 

flower sterility and seed formation in vitro.  This protocol also can be extended to plant breeding 

studies for the purpose of quick flowering, fruit and seed formation under in vitro conditions and 

also to overcome problems associated with premature fruit drop or poor seed set. 
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Figure legends  

Fig. 1 In vitro shoot regeneration of Phlox paniculata L. A Profuse vegetative shoot formation 

from adult leaf explants cultured onto MS solid medium supplemented with NAA and BAP (8.0 

and 6.6 μM, respectively) in plastic sterile tube on 5
th

 week. Bar indicates 1 cm. B Graph 

showing in vitro shoot regeneration pattern from different explants in response to various 

concentrations of NAA and BAP, after 8 weeks of culture.  
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Fig. 2 Flower development after 6 weeks on shoot tip explant cultures of Phlox paniculata in 

vitro. The MS medium when supplemented with zeatin (11.2 μM) or GA3 (5.6 μM), shoot 

multiplication with flowers (arrow indicated) of purple (A) or pink stripes (B) were observed. 

Bars indicate 1 cm.  

 

 

 

 

 


