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Abstract 

Streptococcus salivarius is known to produce different bacteriocin-like inhibitory 

substances (BLIS). In this study six S. salivarius strains were isolated from different 

Malaysian subjects. The isolates were identified using morphological and biochemical 

characterization and 16S rDNA gene sequencing. Levansucrase enzyme was characterized 

from sucrose-enriched culture of strain S. salivarius YU10. 

BLIS production was investigated using simultaneous and deferred antagonism tests that 

showed YU10 and NU10 as the best BLIS-producing strains among the Malaysian isolates 

in this study. Strain HJEFF was the only S. salivarius isolate which produced a more 

limited quantity of BLIS in liquid medium. However, all other strains failed to produce any 

BLIS activity in liquid media. The distribution of salA, sboB and sivA genes encoding the 

production of salivaricin A, B and 9 was investigated in this study using BLIS producing 

strains NU10 and YU10. Strains NU10 and K12 (commercial probiotic) were the only 

strains that harboured the sboB structural gene.  Both strains (NU10 and YU10) but not 

K12 harbored the sivA structural gene. Isolation of BLIS was done using acidic methanol 

extraction of the producer cells and freeze thaw extraction. BLIS-YU10 proved 

bacteriostatic while BLIS-NU10 was bactericidal. When added to different growth phases 

of sensitive bacteria, BLIS-NU10 reduced its growth significantly. BLIS-NU10 was 

purified from its crude form using different steps of initial purification namely ammonium 

sulphate precipitation, gel filtration, XAD-2 and solid phase extraction chromatography.  

BLIS-NU10 showed to be auto-regulated whereby it enhanced the production of the same 

molecule when added to NU10 culture. The induction ability was used to develop BLIS-

production in liquid medium. BLIS-NU10 showed to be of cationic nature and it was 
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purified using a cation exchange column. The cation exchange chromatography was 

performed using Fast Protein Liquid Chromatography system. Tris-ticine SDS page of the 

active fractions showed that BLIS-NU10 had a molecular weight of approximately 3,000 

Da. The pure fraction was subjected to MALDI-TOF MS analysis. The only known 

salivaricin detected in BLIS-NU10 was salivaricin 9 (2560 Da). Other peptides where also 

detected in BLIS-NU10 with molecular weights of approximately 2,000 Da.  

BLIS-NU10 showed to have permeability activity towards selected target cells and showed 

to induce pore formation in the cytoplasmic membrane of targeted cells. The stability of 

BLIS-NU10 was also investigated in this study. BLIS-NU10 exhibited thermo-stability 

when exposed to 100oC for 30 minutes and retained biological activity when subjected to 

different pH values ranging from 2 to10. When treated with proteinase K or peptidase, 

BLIS-NU10 lost the antimicrobial activity. One major difficulty with strain NU10 was its 

erratic BLIS production. However, although strain NU10 harbors three different genes 

encoding known lantibiotics, analysis of pure BLIS-NU10 showed the presence of only 

lantibiotic salivaricin 9 in addition to other proline-rich peptides. The reason for the 

absence of salivaricin A and B in the purified BLIS-NU10 is still unknown and worthy of 

further investigation. Due to its uniqueness, strain NU10 can be further studied using whole 

genome sequencing approach to determine if this strain can be a potential probiotic.   
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Abstrak 

Streptococcus salivarius dikenali untuk menghasilkan bahan-bahan yang melarang 

bakteriosin seperti berbeza (BLIS). Dalam kajian ini enam jenis S. salivarius telah 

diasingkan daripada mata pelajaran yang berbeza di Malaysia. Pencilan telah dikenal pasti 

menggunakan pencirian morfologi dan biokimia dan 16S rDNA urutan gen. Enzim 

Levansucrase dicirikan dari budaya yang kaya dengan sukrosa ketegangan S. salivarius 

YU10. Pengeluaran BLIS telah disiasat menggunakan ujian permusuhan serentak dan 

tertunda yang menunjukkan YU10 dan NU10 sebagai yang terbaik jenis BLIS yang 

menghasilkan antara pencilan Malaysia dalam kajian ini. Terikan HJEFF adalah satu-

satunya S. salivarius mengasingkan yang menghasilkan kuantiti yang lebih terhad BLIS 

dalam medium cecair. Walau bagaimanapun, semua jenis lain gagal mengemukakan apa-

apa aktiviti BLIS dalam media cecair. Pengagihan salA, sboB dan sivA gen pengekodan 

pengeluaran salivaricin A, B dan 9 telah disiasat dalam kajian ini menggunakan BLIS 

menghasilkan tekanan NU10 dan YU10. Terikan NU10 dan K12 (probiotik komersial) 

adalah satu jenis yang melabuhkan gen struktur sboB. Kedua-dua jenis (NU10 dan YU10) 

tetapi tidak K12 menaruh gen sivA struktur. Pengasingan BLIS telah dilakukan dengan 

menggunakan pengeluaran methanol berasid daripada sel sel pengeluar dan pengeluaran 

cair beku. BLIS-YU10 membuktikan bacteriostatic manakala BLIS-NU10 adalah bakteria. 

Apabila dimasukkan ke dalam fasa pertumbuhan yang berbeza bakteria sensitif, BLIS-

NU10 dikurangkan pertumbuhan ketara. BLIS-NU10 telah disucikan dari bentuk mentah 

dengan menggunakan langkah-langkah yang berbeza pembersihan awal iaitu hujan 

ammonium sulfat, penapisan gel, XAD-2 dan pepejal fasa kromatografi pengekstrakan. 

BLIS-NU10 menunjukkan untuk menjadi auto-terkawal di mana ia meningkatkan 
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pengeluaran molekul yang sama apabila ditambah kepada NU10 budaya. Keupayaan 

induksi telah digunakan untuk membangunkan BLIS pengeluaran dalam medium cecair. 

BLIS-NU10 menunjukkan kepada bersifat kationik dan ia telah disucikan menggunakan 

ruang pertukaran kation. Pertukaran kromatografi kation dilakukan menggunakan Protein 

Sistem Kromatografi cecair segera. Tris-ticine SDS halaman pecahan aktif menunjukkan 

bahawa BLIS-NU10 mempunyai berat molekul kira-kira 3,000 Da. Pecahan tulen adalah 

tertakluk kepada MALDI-TOF analisis MS. Salivaricin hanya diketahui dikesan dalam 

BLIS-NU10 adalah salivaricin 9 (2560 Da). Peptida lain di mana juga dikesan dalam BLIS-

NU10 dengan berat molekul kira-kira 2,000 Da. BLIS-NU10 menunjukkan mempunyai 

aktiviti kebolehtelapan terhadap sel-sel sasaran terpilih dan menunjukkan kepada 

mendorong pembentukan liang dalam membran cytoplasmic sel sel yang disasarkan. 

Kestabilan BLIS-NU10 juga diselidiki dalam kajian ini. BLIS-NU10 dipamerkan termo-

kestabilan apabila terdedah kepada 100°C selama 30 minit dan mengekalkan aktiviti 

biologi apabila tertakluk kepada nilai pH yang berbeza antara 2 tersebut adalah 10. Apabila 

dirawat dengan proteinase K atau peptidase, BLIS-NU10 hilang aktiviti antimikrobial. 

Salah satu masalah utama dengan tekanan NU10 adalah pengeluaran BLIS tidak menentu 

itu. Walau bagaimanapun, walaupun ketegangan NU10 pelabuhan tiga gen yang berbeza 

pengekodan lantibiotics dikenali, analisis tulen BLIS-NU10 menunjukkan kehadiran hanya 

lantibiotic salivaricin 9 di samping lain lain peptida proline yang kaya. Sebab ketiadaan 

salivaricin A dan B dalam suci BLIS-NU10 masih tidak diketahui dan memerlukan siasatan 

lanjut. Disebabkan keunikannya, ketegangan NU10 boleh lagi dikaji dengan menggunakan 

pendekatan keseluruhan genom penjujukan untuk menentukan sama ada tekanan ini boleh 

menjadi potensi probiotik. 
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Introduction 
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Different genera of lactic acid bacteria (LAB) can produce different kinds of antimicrobial 

peptides and bacteriocins such as plantaricin from Lactobacillus plantarum (Tiwari and 

Srivastava, 2008), enterococcin from Enterococcus faecium (Klocke et al., 2005), leucocin 

from Leuconostoc carnosum (Wan et al., 2012), pediocin from Pediococcus acidilactici 

(Papagianni and Anastasiadou, 2009) and several others. The scientific interest in 

bacteriocins has increased significantly recently due to their antimicrobial activity towards 

Gram-positive pathogens (Abee et al., 1995; Lee et al., 2011; Wilson-Stanford and Smith, 

2011). Bacteriocins produced by many oral microorganisms have been reported previously 

(Hyink et al., 2007; Nicolas et al., 2011; Wescombe et al., 2012; Wescombe et al., 2006; 

Wescombe et al., 2011). Most of the bacteriocins produced by human oral streptococci are 

understood to be controlled by quorum sensing, whereby it can only produce the bioactive 

bacteriocin when grown on solid or semi-solid medium supplemented with agar or agarose 

(Hyink et al., 2007; Nicolas et al., 2011; Ross et al., 1993). Other lantibiotics such as nisin 

could be produced in significant quantity when the producer is grown in liquid medium 

(Flores and Alegre, 2001; Gonzalez-Toledo et al., 2010; Lv et al., 2005). In recent years 

methods to enhance and optimize bacteriocin production have been developed (Cheigh et 

al., 2005; Liu et al., 2010; Pongtharangkul and Demirci, 2006) due to the potential 

importance of bacteriocin-producing strains in replacement therapy (Cotter et al., 2005). 

Many strains produce bacteriocins that have already been used as probiotics. Streptococcus 

salivarius K12 is an oral probiotic producing two kinds of antimicrobial peptides referred 

as salivaricin A2 and salivaricin B (Hyink et al., 2007). Both bacteriocins can be produced 

by freeze thaw extraction method after the producer is grown on solid medium. Pore 

forming mechanism is a common mode of action of lantibiotics (Garcera et al., 1993; van 

Heusden et al., 2002). The permeabilization of the cytoplasmic membrane of the targeted 
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cells by lantibiotics has been studied in the past to investigate whether the bioactive 

lantibiotic can penetrate the cell membrane of the potential pathogens (Chun and Hancock, 

2000; Zendo et al., 2010). 

In this study a number of S. salivarius strains were isolated from the oral cavity of 

Malaysian subjects. Some of the identified strains showed to produce BLIS molecules with 

antimicrobial activity against selected oral pathogens. New techniques to produce BLIS-

NU10 in liquid medium were developed for the first time using Streptococcus salivarius 

strain NU10 isolated from a Malaysian subject. The purification method used to recover 

BLIS-NU10 was planned in this study through the use of XAD-16 chromatography 

followed by cation exchange chromatography. MALDI-TOF MS analysis showed the 

presence of salivaricin 9 lantibiotic in addition to proline-rich peptides. The current 

research work also included an investigation on the mechanism of action of the pure BLIS-

NU10 using SYTOX green and Real-Time PCR system.  

Scanning electron microscopy was used to detect the morphological changes of the targeted 

indicator microorganisms that are sensitive on exposure to BLIS-NU10. Investigating the 

mechanism of action of lantibiotics produced by oral streptococci was carried out with the 

intent of furthering knowledge in future development of new antimicrobials and probiotics 

that might enhance the health of the human oral anatomy and the upper respiratory tract.  
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Main objectives of the study: 

 

1- Isolation, identification and characterization of BLIS producing S. salivarius strains 

and their antimicrobial activity using simultaneous and deferred antagonism assays. 

2- Enhanced production, purification and characterization of the antimicrobial peptide 

using different methods. 

3- Investigation of salA, sboB and sivA structural genes distribution among Malaysian 

isolates. 

4- Elucidation of the mechanism of action of BLIS-NU10. 
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2.1 Lactic acid bacteria 

 

Joseph Lister obtained the first pure culture of lactic acid bacteria which was designated as 

Bacterium lactis in 1873. In 1890 the first starter culture to be used for cheese production 

was introduced. Lactic acid bacteria (LAB) were classified according to Orla-Jensen who 

divided the LAB according to morphology into rods (Lactobacillus and Corynebacterium) 

and cocci (all other genera) and this classification system was only at the genus level and 

this first monograph was the first basis in LAB classification (Orla-Jensen, 1919). LAB are 

Gram-positive, oxidase and catalase negative, non-sporulating, non-motile bacteria which 

includes many genera namely: Lactobacillus, Enterococcus, Pediococcus, Lactococcus, 

Oenococcus, Leuconostoc, Streptococcus and others. All these LAB are acid tolerant and 

can produce lactic acid as a major end product. Current taxonomic outline of lactic acid 

bacteria is stated in table 2.1. Next differentiation of LAB genera was introduced according 

to the mode of glucose fermentation under standard conditions (e.g. non limited supply 

with: glucose, amino acids, nucleic acid precursors, vitamins and oxygen limitation) under 

these fermentation characteristics LAB can be divided into two groups: 

I. Homofermentative bacteria. 

II. Heterofermentative bacteria. 

Based on a biochemical perspective, LAB comprise homofermenters (which 

basically yield lactic acid) and heterofermenters (which produce different 

fermentation products e.g. ethanol, acetic acid, carbone dioxide and formic acid) 

(Kleerebezem and Hugenholtz, 2003). LAB use sugars as primary energy sources to 

grow on substrates (de Vos, 1996). Phosphotransferase system (PTS) and ATP-
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binding cassette (ABC) both are basic systems which contribute in the uptake of 

carbohydrates in LAB. In Lactococcus lactis lactose is hydrolyzed after been 

transported by PTS resulting in transformation of the galactose-6p moiety by the 

tagatose pathway, while in Streptococcus thermophilis only glucose moiety of 

lactose is fermented while the galactose moiety is released into the medium 

(Vaughan et al., 2001). LAB can also produce bacteriocins to compete in their 

environments. Most of these bacteriocins are small peptides with antimicrobial 

properties toward bacteria of the same taxonomically related species (Castellano et 

al., 2008). After the advent of genome sequencing genes encoding bacteriocin 

production in LAB were well understood and studied. Clustered genes associated 

with bacteriocin-coding sequences were well studied in 7 different Lactobacillus 

genomes (Makarova and Koonin, 2007). Bacteriocins play a role in cell signaling. 

Bacteriocin producing LAB also confer self-protection by possessing immunity 

mechanisms (Cotter et al., 2005). LAB have plenty of applications which contribute 

to human health like using those species designated as generally recognized as safe 

(GRAS) in the probiotics industry (Burton et al., 2006). 
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Table 2.1: Current taxonomic outline of lactic acid bacteria (König et al., 2009) 

Phylum Class Order Family Genus 

Fi
rm

ic
ut

es
 

B
ac

ill
i 

La
ct

ob
ac

ill
al

es
 

Lactobacillaceae 
Lactobacillus 
Paralactobacillus 
Pediococcus 

Aerococcaceae 

Aerococcus 
Abiotrophia 
Dolosicoccus 
Eremococcus 
Facklamia 
Globicatella 
Ignavigranum 

Carnobacteriaceae 

Carnobacterium 
Agitococcus 
Alkalibacterium 
Allofustis 
Alloiococcus 
Desemzia 
Dolosigranulum 
Granulicatella 
Isobaculum 
Lactosphaera 
Marinilactibacillus 
Trichococcus 

Enterococcaceae 

Enterococcus 
Atopobacter 
Melissococcus 
Tetragenococcus 
Vagococcus 

Leuconostocaceae 
Leuconostoc 
Oenococcus 
Weissella 

Streptococcaceae 
Streptococcus 
Lactococcus 
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2.2 Streptococcus salivarius and oral cavity health  

 

Streptococcus salivarius is a member of lactic acid bacteria group or family which form an 

important part of the normal flora of the human oral cavity and upper respiratory tract 

(Kang et al., 2006; Sherman et al., 1943). Among all the dominant streptococci of the oral 

cavity S. salivarius is numerically the most significant colonist, especially on the tongue 

(McCarthy et al., 1965). It is also inhabits the oral epithelial surfaces and is one of the first 

microorganisms to be established in the mouths of infants (Carlsson et al., 1970). It has 

been reported that some strains of S. salivarius can produce many bacteriocins, most of 

which are lantibiotics (Birri et al., 2012; Hyink et al., 2007; Ross et al., 1993; Wescombe et 

al., 2006). These bacteriocins or bacteriocin-like inhibitory substances (BLIS) have been 

reported to inhibit some oral pathogens such as Corynebacterium diphtheriae (Bill and 

Washington, 1975), Streptococcus pneumonia (Johanson et al., 1970) and Streptococcus 

pyogenes (Sanders and Sanders, 1982). S. salivarius usually colonize the tongue dorsum 

and can be found in great numbers there (Aas et al., 2005). Because of the bacteriocin 

molecules that some of S. salivarius can produce, the oral cavity will remain healthy and 

protected. The protection comes from the reduction in oral pathogens numbers. S. 

salivarius strain K12, discovered by Professor John Tagg from Otago University, is the first 

oral probiotic which can produce more than one kind of bacteriocin- the lantibiotics 

salivaricin A2 and salivaricin B (Hyink et al., 2007). This protective mouth bacterium can 

prevent sore throats which can lead to rheumatic fever especially in children. BLIS 

produced by S. salivarius had been described previously (Bill and Washington, 1975; Tagg 

et al., 1983). BLIS are extracellular peptides or protein molecules released by some bacteria 

which can kill some closely related bacteria. BLIS-producer bacteria use these substances 
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to compete better in their environment by reducing the numbers of other related bacteria, 

some of which may cause some diseases in the host.  

 

2.3 Bacteriocins: 
 

Reports of antimicrobial molecules produced by either Gram-positive or Gram-negative 

bacteria have increased gradually through the last decade. Usually these antimicrobials are 

called bacteriocins, specially those of protein nature. Proteinaceous antimicrobial 

bacteriocins which have the physiological capability of interfering with the growth of other 

bacteria have taken researchers attention especially after the significant drug-resistant 

reports due to over use of conventional antibiotics. The first bacteriocins to be investigated 

were the colicins produced by different members of the Enterobacteriaceae family (Jack et 

al., 1995).  

 

2.3.1 Bacteriocins from gram negative bacteria 
 

A variety of bacteriocins can be produced by Gram-negative bacteria e.g. klebsin produced 

by Klebsiella pneumoniae, marcescin produced by Serratia marcescens, alveicin produced 

by Hafina alvei and colicin produced by E. coli. On the basis of their size the bacteriocins 

of Gram-negative bacteria can be divided in three groups: 

- colicin-like bacteriocins (25-80 kDa) 

- microcins (<10 kDa) 

- phage tail-like bacteriocins (multimeric peptide assemblies) 
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2.3.1.1 Colicin-like bacteriocins 
 

Colicins are large plasmid-encoded ribosomally-synthesized bacteriocins produced by 

many strains of E. coli. Colicin synthesis repression is controlled by an inducible DNA 

repair system called the SOS response which helps many bacteria to survive under 

circumstances of exposure to DNA damaging agents (Michel, 2005). Colicins have three 

killing domains which form the functional modules which catalyze deleterious changes in 

the targeted cell. The first step of colicin activation is the binding of central domain 

(located within the central region of the colicin molecule) to the specific receptor (Brunden 

et al., 1984). Translocation of the colicin N-terminus across the outer membrane of the 

targeted cell is the second step of colicin activation. This N-terminal domain differs among 

colicins depending on which import system is used (Pilsl and Braun, 1995). The third step 

in the colicin killing mechanism is formation of pores in the cytoplasmic membrane of the 

target cell and this step is carried out by the C-terminal domain. The killing activity of 

some colicins can be caused by nuclease activity which cut up the nucleic material DNA of 

the target cell (Martinez et al., 1983).  

 

2.3.1.2 Microcins 
 

Members of this group of bacteriocins from Gram-negative bacteria are low molecular 

weight peptides which have a similarity to bacteriocins produced by Gram-positive bacteria 

(Jack and Jung, 2000; Moreno et al., 2002). Microcins are non-SOS-inducible peptides 

which inhibit transcription by binding to the DNA-dependent RNA polymerase RNAP (the 

central enzyme of bacterial gene expression) secondary channel. Binding of microcin 
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within this channel blocks nucleotide substrates from entering the enzyme active site 

(Yuzenkova et al., 2002). 

 

2.3.1.3 Phage tail-like bacteriocins 
 

Phage tail-like bacteriocins are rod-like molecules resembling a bacteriophage tail. 

Members of this group are nuclease and protease-resistant rod-like bacteriocins. 

Cytoplasmic membrane depolarization is the mechanism of action of phage tail-like 

bacteriocins toward sensitive cells (Strauch et al., 2003). Pyocins (bacteriocin produced by 

Pseudomonas aeruginosa) are of two types; R2 related to P2 phage and Pyocin F2, similar 

to lamda phage (Nakayama et al., 2000). 

 

2.3.2 Bacteriocins from gram positive bacteria 
 

Bacteriocins are antimicrobial proteins or peptides produced by many genera of bacteria. 

Many microbiologists are now focusing their interest on bacteriocins which can be 

produced by gram positive bacteria, especially LAB, because the number of bacteriocins 

discovered from this group is increasing exponentially every year. LAB is a sub group of 

gram positive bacteria and can produce four classes of bacteriocins: 

Class I: Lanthionine-containing bacteriocins 

Class II: non- modified bacteriocins 

Class III: large bacteriocins 

Class IV: cyclic peptides 
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2.3.2.1 Class I: Lanthionine containing bacteriocins (Lantibiotics) 
 

Lantibiotics are heat-stable, posttranslationally modified, ribosomally synthesized small 

peptides (Al-Mahrous and Upton, 2011; Islam et al., 2012; Perin et al., 2012; Zhao, 2011). 

Unlike other bacteriocins, this group contains some unusual residues e.g., (Lan) 

Lanthionine and (MeLan) β-methellanthionine (Al-Mahrous and Upton, 2011; Bierbaum 

and Sahl, 1993, 2009; Cotter et al., 2005). Prior to cleavage of the leader peptide 

posttranslational modification happens to the propeptide region of the precursor molecule. 

The modifications are the result of the dehydration of serine (Ser) and threonine (Thr) 

residues to 2,3-dehydoalanine (Dha) and (Z)-2,3-dehydrobutyrine (Dhb) while neighboring 

cysteines (Cys) link covalently to Dha and Dhb resulting in formation of (Lan) Lanthionine 

and (MeLan) β-methellanthionine bridges which give lantibiotics their distinctive ring 

structure (Willey and van der Donk, 2007). Then the leader peptide of 23-59 amino acids is 

proteolytically removed to give the lantibiotic in its bioactive form (Xie and van der Donk, 

2004).  

Many factors play roles in lantibiotic activity, while Lan and MeLan (positively charged 

amino acids) interact with the negatively charged phospholipid head group in the 

cytoplasmic membrane of targeted microorganism, other amino acids like cystine, 

didhydrobutyrine and didhydroalanine increase the bio-activity of the peptide (Morris et al., 

1984).  

Lantibiotics can be subdivided into three subclasses (type A, type B and type C) depending 

on their antimicrobial activity and the mechanisms by which the peptide gains maturity. 
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2.3.2.1.1 Type A lantibiotics  
 

These lantibiotics are screw-shaped and amphipathic molecules with molecular masses 

varying from 2164 to 3488 Da, with 2 to 7 net positive charges. Nisin produced by 

Lactococcus lactis is an example of Type A lantibiotics. Genes encoding nisin production 

are located in a 70 kb conjugative transposon (Rodriguez and Dodd, 1996). Nisin has long 

been used in food preservation (Delves-Broughton et al., 1996; Pajohi et al., 2011; 

Udompijitkul et al., 2012). Nisin production is affected by posttranslational modification of 

a propeptide molecule (Bierbaum and Sahl, 1993; Sahl et al., 1995; Xie and van der Donk, 

2004) before a subtilisin-like protease (encoded by NisP) removes the leader peptide to 

give the nisin bioactive form. The same gene has been found in other lantibiotics (Schnell 

et al., 1992; Siezen et al., 1995; van der Meer et al., 1993; Ye et al., 1995). The first stage 

of the nisin killing activity is an electrostatic interaction between the positively charged C-

terminal residues of nisin and the negatively charged membrane phospholipid of the 

targeted bacteria. After nisin insertion membrane pores are formed and this leads to cell 

death (Breukink et al., 1997). Type A lantibiotics have bacteriocidal activity against gram 

positive bacteria, but not against gram negative bacteria unless the integrity of the outer 

membrane is first disrupted (Blackburn, 1989). S. salivarius can also produce type A 

lantibiotics which are called salivaricins. Hyink et al. (2007) reported that S. salivarius 

strain K12 can produce two different kinds of bacteriocins (salivaricins A & B) both having 

strong inhibitory activity against Streptococcus pyogenes (oral pathogen causes rheumatic 

fever). However, S. salivarius strain 5M6C has been reported to produce a trypsin resistant 

lantibiotic (salivaricin D) which is effective against Bacillus subtilis, Clostridium 

bifermentans and Clostridium butyricum (Birri et al., 2012). Salivaricin 9 (lantibiotic 
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produced by probiotic S. salivarius M18 can inhibit all Streptococcus pyogenes strains 

tested so far) has been described by Wescombe et al. (2011). Usually the genes encoding 

salivaricin production could be located on a megaplasmid (for example, the genes encoding 

salivaricin A & B (Wescombe et al., 2006), or the gene locus can be a DNA chromosomal 

segment like salivaricin D (Birri et al., 2012). However, the genetic locus of salivaricin 9 

can be located on either the chromosome or megaplasmid. The production of salivaricin is 

also dependent on the strain itself, with some strains producing the BLIS in liquid media 

others failing. Strain 5M6C produces salivaricin D when it is grown in MRS broth, but 

strain K12 does not because no detectable activity can be recovered from this strain in 

liquid media. Other ways of obtaining salivaricin from this strain are from cultures on solid 

media (freeze thaw of agar cultures) or methanol extraction of the cells (Wescombe et al., 

2006). Salivaricin 9 produced by strain M18 can be detected by freeze thaw extraction of 

the agar cultures or in liquid media if an inducer of the bacteriocin is added to the liquid 

culture. Some bacteriocins are cell-associated, like SA-FF22 from Streptococcus pyogenes, 

and mutacin K8 produced by Streptococcus mutans (Robson et al., 2007). 
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Figure 2.1: Predicted dehydration/bonding pattern of salivaricin B (Hyink et al., 2007). 

 

 

 

 

 

 

 

 

Figure 2.2: Arrangement of the two gene clusters encoding salivaricins A and B in S. 
salivarius K12 (Hyink et al., 2007).Predicted transcriptional terminators for both loci are 
indicated by stem-loop symbols, with the dashed stem-loop showing a possible weak 
terminator. Two putative genes are located between the two lantibiotic loci. The three 
repeat regions (R1, R2, and R3) identified are also indicated, as is the position of a small 
insertion sequence (IS; black triangle) identified upstream of the salivaricin B locus in 
some strains. 
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Figure 2.3: Nisin, an example of type A bacteriocins 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Post translation modifications during nisin biosynthesis (Xie and van der Donk, 
2004) 
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2.3.2.1.2 Type B lantibiotics  
 

There are some structural modifications between this subclass and type A lantibiotics. The 

molecular mass of known type B lantibiotics is 1959 to 2041 Da with zero or negative net 

charge (Altena et al., 2000). Mersacidin produced by Bacillus spp is an example of type B 

lantibiotics which contains three ring-form structures of MeLan and a compact size of 20 

amino acids (Herzner et al., 2011).  The mechanism of action of type B lantibiotics is not 

cytoplasmic membrane pore formation, but inhibition of cell wall synthesis by targeting the 

cell wall precursor lipid II (Brotz et al., 1995; Sass et al., 2008). Merasacidin is active 

against methicillin-resistant Staphylococcus aureus (MRSA) and it can be used as a 

potential alternative to vancomycin. 

 

 

 

 

 

 

 

Figure 2.5: Merasacidin, an example of type B lantibiotics 
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2.3.2.1.3 Type C lantibiotics: 
 

Type C lantibiotics basically consist of two peptides working synergistically in a sequential 

pathway with pore forming activity of the cytoplasmic membrane of the targeted cells. 

Lacticin 3147 is an example of this subclass of lantibiotics which consists of two peptides: 

Ltnα, which has a similar structure to type B lantibiotics and Ltnβ which is similar to type 

A lantibiotics in adopting an elongated linear conformation (Martin et al., 2004). The 

activity starts when Ltnα binds to lipid II, followed by interaction of Ltnβ with the Ltnα-

lipid II complex, which results in more peptide insertion and pore formation (Morgan et al., 

2005). 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.6: Lacticin 3147, an example of type C lantibiotics 
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Table 2.2: Lantibiotics produced by lactic acid bacteria 

Lantibiotic  Producing LAB Reference 
Nisin A Lactococcus lactis  (Gross and Morell, 1971) 
Nisin Z Lactococcus lactis  (Mulders et al., 1991) 
Nisin F Lactococcus lactis  (de Kwaadsteniet et al., 2008) 
Nisin U Lactococcus lactis  (Wirawan et al., 2006) 
Nisin U2 Lactococcus lactis  (Wirawan et al., 2006) 
Nisin Q Lactococcus lactis  (Zendo et al., 2003) 
Mutacin B-NY266 Streptococcus mutans  (Mota-Meira et al., 1997) 
Mutacin 1140 Streptococcus mutans  (Hillman et al., 1998) 
Mutacin I Streptococcus mutans  (Tsang et al., 2005) 
Mutacin K8 Streptococcus mutans  (Robson et al., 2007) 
Mutacin II Streptococcus mutans  (Chikindas et al., 1995) 
Streptin Streptococcus pyogenes (Wescombe and Tagg, 2003) 
Macedocin  Streptococcus macedonicus (Georgalaki et al., 2002) 
Lacticin 481 Lactococcus lactis  (Piard et al., 1993) 
Streptococcin A-FF22 Streptococcus pyogenes (Tagg and Wannamaker, 1978) 
Salivaricin A1 Streptococcus salivarius  (Wescombe et al., 2006) 
Salivaricin A2 Streptococcus salivarius  (Wescombe et al., 2006) 
Salivaricin A3 Streptococcus salivarius  (Wescombe et al., 2006) 
Salivaricin A4 Streptococcus salivarius  (Wescombe et al., 2006) 
Salivaricin A5 Streptococcus salivarius  (Wescombe et al., 2006) 
Salivaricin  A Streptococcus salivarius  (Ross et al., 1993) 
Salivaricin B Streptococcus salivarius  (Hyink et al., 2007) 
Salivaricin 9 Streptococcus salivarius  (Wescombe et al., 2011) 
Plantaricin C  Lactobacillus plantarum  (Turner et al., 1999) 
Plantaricin W Lactobacillus plantarum  (Holo et al., 2001) 
Lacticin 481 Lactococcus lactis  (Piard et al., 1993) 
Lacticin 3147 Lactococcus lactis  (McAuliffe et al., 1998) 
Lacticin J46  Lactococcus lactis  (Huot et al., 1996) 
SmbB  Streptococcus mutans (Yonezawa and Kuramitsu, 2005) 
BhtA Streptococcus rattus (Hyink et al., 2005) 
Lactocin S Lactobacillus sake (Mortvedt et al., 1991) 
Bovicin HJ50 Streptococcus bovis (Xiao et al., 2004) 
Bovicin HC5 Streptococcus bovis (Mantovani et al., 2002) 
Cytolysin  Enterococcus faecalis  (Gilmore et al., 1996) 
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Figure 2.7: Some of bacteriocins types produced by different 
microorganisms http://bactibase.pfba-lab-tun.org. (Hammami et al., 2010). 
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2.3.2.2  Class II: Non- modified bacteriocins 
 

This group of bacteriocins can be divided into three subclasses: 

Subclass IIa: Pediocin-like bacteriocins 

Subclass IIb: Two peptide bacteriocins 

Subclass IIc: Other peptide bacteriocins 

 

2.3.2.2.1 Subclass IIa 
 

The pediocin-like antimicrobial peptides are typical single functional peptides of the class 

II bacteriocins and usually include two cysteine residues that form a disulfide bridge 

(Eijsink et al., 1998). Class IIa bacteriocins can be produced by many LAB, namely 

Pediococcus, Enterococcus, Carnobacterium and Lactobacillus. Pediocin-like peptides 

contain a YGNGV amino acid sequence in their N-terminus. Many studies suggested that 

the C-terminal of pediocin-like peptides play a significant role in their inhibitory activity 

spectrum (Fimland et al., 1996). The mode of action of pediocin-like peptides is similar to 

type A lantibiotics and includes binding, insertion and pore formation in the cytoplasmic 

membrane of the targeted bacterial cell. The hinge motifs between the N-terminal and the 

C-terminal regions play a role in pediocin-like peptide penetration into the targeted 

membrane (Fimland et al., 2005). 
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2.3.2.2.2 Subclass IIb  

The complementary activity of two peptides is the basic characteristic of this kind of 

bacteriocin (Nissen-Meyer et al., 1992). Sometimes the individual peptide cannot be active 

alone but clear synergistic activity is observed upon combination of the two peptides 

(Anderssen et al., 1998). 

2.3.2.2.3 Subclass IIc 

This group of bacteriocins does not contain any of lantibiotics or subclass IIa and IIb 

bacteriocins but represents bacteriocins derived from a variety of LAB. These bacteriocins 

are non-cyclic and non-lantibiotic small peptides. The activity of this group of bacteriocin 

is due to either single or multiple bioactive peptides. 

 

 

 

 

 

Figure 2.8: Pediocin example of Class II (unmodified bacteriocins) 
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2.3.2.3 Class III large bacteriocins 
 

Members of this group are large >10 kDa, heat labile bacteriocins produced mostly by 

streptococcal bacteria. Zoocin produced by Streptococcus equi. subsp zooepidemicus is an 

example of this kind of bacteriocin. Zoocin is 27.8 kDa, antimicrobial peptide with 

similarity to lysostaphin (Simmonds et al., 1997). The mechanism of action of zoocin can 

be summarized by binding to the putative receptor-recognition region of the targeted cell by 

the C-terminal domain of zoocin, while the N-terminal domain is involved in the peptidase 

activity of the molecule which targets the interpeptide crossbridge, which leads to cell wall 

hydrolysis. Dysgalacticin (21.5 kDa anionic protein produced by Streptococcus 

dysgalactiae subsp. equisimilis) is also a member of this group of bacteriocins and it differs 

from zoocin in the mode of action in that dysgalacticin kills its target without inducing 

lysis. Dysgalacticin inhibits sugar uptake into the sensitive cell which leads to loss of 

intracellular potassium ions and disruption of membrane integrity (Heng et al., 2006; Swe 

et al., 2009). 

 

2.3.2.4 Class IV: Cyclic peptides 
 

This group comprises the post translationally modified cyclic peptides whose first and last 

amino acids are covalently joined forming a head-to-tail linkage (Maqueda et al., 2004). 

Enterocin AS-48 produced by Enterococcus faecalis subsp. liquefaciens is a member of this 

group. In enterocin AS-48 there is a peptide linkage between C-terminal Try-70 and N-

terminal Met-1with no thioether residues in the structure. This bacteriocin is heat and pH 

stable (Maqueda et al., 2004). Enterocin can be used in food preservation due to its 

effectiveness at inhibiting Bacillus coagulans and enhancing anti-spore activity when 
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combined with high temperature thermal treatment (Lucas et al., 2006). Uberolysin 

produced by Streptococcus uberis is a 7048 Da cyclic peptide which induces lysis of the 

metabolically susceptible targeted cell. Uberolysin is post-translationally and covalently 

modified to form a head-to-tail monocycle (Wirawan et al., 2007). 
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3.1 Streptococcus salivarius isolates and indicator strains: 

 

The Streptococcus salivarius strains used in this study were strains HJEFF originally 

isolated and maintained in the culture collection of Koshy Philip (Fermentation Laboratory, 

Microbiology Division, Institute of Biological Sciences, University of Malaya), NU10, 

GT2, YU10, IND9 (isolated from healthy Malaysian subjects), SAM3, 7YE (isolated in the 

Dental Clinic of University of Malaya from Malaysian subjects with dental problems) and 

K12™ (producer of salivaricin A2 and salivaricin B) provided by John Tagg (University of 

Otago, New Zealand). S. salivarius strain ATCC13419 (BLIS-negative strain) was used as 

a reference strain. The indicator test strains (Table 3.1) were from the culture collection 

maintained in the Fermentation Laboratory, Microbiology Division, Institute of Biological 

Sciences, University of Malaya and American Type Culture Collection (ATCC). 

Table 3.1: Indicators strains 

Microorganisms Strains 
Actinomyces naeslundii TG2 
Bacillus cereus ATCC14579 
Corynebacterium spp GH17 
Gemella sanguinis TGH12 
Haemophilus parainfluenzae TONEJ11 
Lactococcus lactis ATCC11454 
Micrococcus luteus ATCC10240 
Staphylococcus aureus RF122 
Streptococcus equisimilis ATCC12388 
Streptococcus gordonii ST2 
Streptococcus mutans GEJ11 
Streptococcus pyogenes ATCC12344 
Streptococcus pyogenes ATCC12384 
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3.2 Bacterial growth media and cultures  

 

Difco Mitis Salivarius Agar (MSA) was used to obtain pure colonies of S. salivarius since 

it is a selective medium used for the isolation of S. salivarius, Streptococcus mitis and 

enterococci. Todd Hewitt Broth (THB) was used to propagate all S. salivarius isolates and 

indicator strains. Difco Columbia Agar Base (CAB) was used for antimicrobial activity 

assays (well diffusion and spot-on-lawn). Difco Columbia Agar Base supplemented with 

0.1% (w/v) calcium carbonate and 5% (v/v) whole human blood (BACa) was used in 

simultaneous and deferred antagonism assays. Difco Tryptic Soy Broth supplemented with 

1% (w/v) yeast extract, 0.1% (w/v) calcium carbonate (TSYECa) was also used in deferred 

antagonism tests. Difco M17 Broth supplemented with 1% sucrose and 0.1% calcium 

carbonate M17SUCa was used to produce BLIS activity in strains K12, YU10 and NU10.  

 

3.3 Sterilization and storage conditions 

 

All the liquid media used in this study were steam autoclaved at 121oC for 15 minutes and 

cooled to 30oC prior to use. Agar media was also prepared in the same way as the liquid 

media but they were cooled to 50oC in water bath prior to pouring into petri dishes (20 ml 

each plate). After the agar had set, the plates were inverted and incubated overnight at 37oC 

to ensure its contamination free condition before bacterial inoculation. Both liquid and agar 

media were stored at 4oC for subsequent use.  
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3.3.1 Ultra violet (UV) sterilization 

 

The unopened agar plate and surface was sterilized by exposing to UV light source (270 

nm) for 25 minutes in a covered hood. Tips, pipettes, inoculation loops and all items used 

for bacterial sub-culture and inoculation were sterilized the same way prior to use.  

 

3.3.2 Chloroform sterilization  

 

The agar surface was inverted over a Whatman filter paper no 1 (soaked with chloroform) 

for 30 minutes before the agar surface was aired for another 30 minutes to evaporate any 

residue of chloroform left over. This sterilization technique was used specially for the 

deferred antagonism assay. 

 

3.4 Isolation and identification of Streptococcus salivarius 

 

Streptococcus salivarius strains were isolated from Malaysian subjects using sterilized 

cotton swabs, either from the dorsal surface of the tongue or from saliva. Each subject who 

agreed to participate in this study was required to sign a consent form for isolation of S. 

salivarius from their oral cavity. All protocols used were based on Good Laboratory 

Practices and isolation from subjects conducted with the necessary approval of the 

University Ethics Committee and complied with the principles of the Helsinki Declaration. 

The cotton swabs were kept in 0.85% NaCl before streaking on MSA plates within 1 hour 

of isolation. The plates were incubated anaerobically for 18 h at 37oC and dome shaped 

blue colonies were selected and subsequently sub-cultured on fresh MSA (commonly used 
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for the detection of oral streptococci in human and animals) (Takada et al., 2006). Glycerol 

stocks of the pure cultures were kept at -20oC. Some of the S. salivarius isolates have rough 

shaped colony morphology which can adhere to the agar medium like strain GT2, while the 

others appeared smooth. Gram staining, catalase and oxidase tests  were applied before 

using 50 CHL and 20 Strep API kits  (Biomerieux) to identify the biochemical 

characteristics of the isolates and the final bacteria identification was done using 16S rDNA 

gene sequencing.  DNA was extracted using i-genomic mini kit from iNtRON 

Biotechnology, Korea, with some modifications. The bacterial pellets were washed thrice 

with NaCl 85% to reduce the amount of proteins attached to the cell wall and then 

incubated 10 hours with lysozyme (50 mg ml-1) at 37oC during the lysis step. Universal 

primers 27f (AGAGTTTGATCATGGCTCAG) and 1492r 

(TACGGCTACCTTGTTACGACTT) were used to amplify the 16S rDNA gene. The 16S 

rDNA gene sequence of the samples was compared to the human oral microbiome 

Database BLAST tool.  

For further investigation of the morphology of the isolates, transmission electron 

microscopy TEM was applied to visualize and determine the morphology and size of S. 

salivarius cells and how they replicated to form the typical chaining arrangements. 

Levansucrase enzyme was detected in the cell-free supernatant of strain YU10 as follows; 

M17 medium supplemented with 20% sucrose was used to produce the enzyme from strain 

YU10 after 18 hours of incubation aerobically at 37oC. The sample was subjected to LC-

MS/MS analysis (Thermo Fisher Scientific, UVic Genome BC PROTIOMICS CENTRE) 

and the raw data were analysed with Proteome Discoverer 1.3.0.339 software suite 

(Thermo Scientific).   

32 

 



 

3.5 Simultaneous antagonism test 

  

A sterilized toothpick was used to pick colonies of S. salivarius grown on MSA and 

stabbed into a fresh lawn of Corynebacterium spp GH17 or Micrococcus luteus 

ATCC10240 seeded on blood agar supplemented with 0.1% CaCO3. This assay was done 

in duplicate plates which were then incubated aerobically at 37oC for 18 hours. A clear 

zone of inhibition surrounding the site where the producer was stabbed was recorded as 

positive bacteriocin-like activity. S. salivarius K12™ (BLIS Technologies) was used as a 

positive control in this study (Figures 4.13 and 4.14) 

 

3.6 Deferred antagonism test  

 

The deferred antagonism test described previously (Tagg and Bannister, 1979) was used 

with minimum modification. The producer strains were streaked across Tryptic Soy agar 

plates supplemented with 1% yeast extract and 0.1% calcium carbonate (TSYECa) or 

BACa plates as a 1 cm wide strip using a sterilized cotton swab. Then the plates were 

incubated anaerobically at 37oC for 20 hours. Then the visible growth of the producer strain 

was removed by using a glass slide and then the agar surface was sterilized by exposing to 

chloroform vapors by inverting the plate over a filter paper soaked with chloroform for 30 

min to kill any living but invisible bacterial cells. The plates were aired for 30 min to 

remove any chloroform residue. Two colonies of the indicator strains already grown on 

CAB (Columbia agar base) were suspended in 3 ml of 0.85% NaCl. Then a cotton swab 

was immersed in this suspension and streaked across the agar plate at a right angles to the 
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producer streak. The plates were again incubated aerobically for 18 hours at 37oC. Zones of 

growth inhibition indicated the presence of inhibitory substances produced by the producer 

strain. Results were recorded as follows: + inhibition zone < 0.75 cm, ++ inhibition zone = 

0.75 - 1 cm, +++ inhibition zone > 1 cm, - no inhibition. 

 

3.7 Distribution of salA, sboB and sivA structural genes in S. salivarius isolates 

 

Primers to detect salA, sboB and sivA (Table 4) were synthesized according to Wescombe 

et al., 2006 and Wescombe et al., 2011). The PCR reactions included 30 cycles that 

included denaturation at 95oC for 30 s, annealing at 55 (salA and sivA) or 44oC (sboB) for 

30 s and finally extension at 65oC for 30 s. The final PCR mixture volume was maintained 

at 50 µl for each single reaction and consisted of 41.5 µl of ultrapure DNA-free water, 5 µl 

of 10X buffer (i-genomic, Korea), 1 µl of dNTP (i-genomic, Korea), 1 µl of each forward 

and reverse primer (10 pmol ml-1) and 0.5 µl of i-Taq (5 U ml-1) (i-genomic, Korea). 

 

Table 3.2: Primers used to detect the genes encoding peptide (salivaricin A, B and 9) 

Lantibiotic Primer 

name 

Primer sequence Reference 

SalivaricinA salAUS GTAGAAAATATTTACTACATACT (Ross et al., 

1993) salADS GTTAAAGTATTCGTAAAACTGATG 

SalivaricinB salBF GTGAATTCTCTTCAAGAATTGACTCTT (Hyink et al., 

2007) salBR AAAATATTCATACCGCTCTTCC 

Salivaricin9 sivF AAAAAGGCGCTTCTATATCCATGA (Wescombe et 

al., 2011) sivR ATCTTTACCTCAAACTTTTAAGTCCATT 
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3.8 Evaluation of inhibitory activity 

 

3.8.1 Production of inhibitory activity in liquid media 

 

All S. salivarius strains failed to express detectable amount of inhibitory substances in 

liquid media, except strain HJEFF which yielded a very small quantity of inhibitory activity 

while growing in Mueller Hinton broth (MHB). Growth experiments were performed in a 

2-litre fermenter (BRAUN BIOTECH INTERNATIONAL) using 2 litre of MHB or THB. 

S. salivarius [4.8 x 104colony forming units (CFU) ml-1] was inoculated and the culture was 

incubated at 37oC for 41 h. Cell viability was determined by the plate dilution method using 

MSA. After enumerating the CFU every hour to determine the growth patterns of S. 

salivarius early stationary phase the cells were collected for BLIS extraction. The cells 

were sedimented by centrifugation 11,000 x g for 5 min followed by filtration of the 

supernatant using a Millipore filter (0.22 µm pore size). Then ammonium sulphate was 

added to attain 50% saturation. After stirring and centrifugation (15,000 x g for 20 min at 

4oC), the precipitate was collected and then dissolved in a minimal volume of phosphate 

buffer saline (PBS) made up to pH 7.0. The crude bacteriocin preparation was desalted by 

using 3,000 Da cut-off dialysis centrifuge tube and then tested for inhibitory activity. 
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3.8.1.1 Binding of BLIS produced by strain HJEFF to DEAE anion exchanger column  

 

Desalted crude peptide produced by strain HJEFF was manually injected onto a DEAE 

anion exchanger column equilibrated in Buffer A (20 mM Tris, pH 8.0) at a flow rate of 

1ml min-1.  

Table 3.3: Column and buffers used in anion exchange study. 

Column* Buffer A Buffer B 

DEAE FF (1 ml) 20 mM Tris, pH 8.0 20 mM Tris, pH 8.0 + 1 M NaCl 

*HiTrap DEAE FF diethylaminoethyl Sepharose, fast flow (weak anion exchanger).  

The column was then washed with 10 ml of buffer A and the effluent was designated as the 

“unbound” fraction. Fractions containing the inhibitory activity started to elute from the 

column following application of buffer B. Each fraction was tested for inhibitory activity 

by the spot-on-lawn method using Corynebacterium spp as the indicator strain.  

 

3.8.2 Acidic methanol extraction 

 

This method was as described by Wescombe et al. (2006) as a standard procedure for 

recovery of Sal-A like peptides, with little modification. One liter of THB base 

supplemented with 0.1% (w/v) calcium carbonate was inoculated with S. salivarius. The 

fermentation process was done by using a BRAUN BIOTECH INTERNATIONAL 

fermenter at 32OC for 18 h. The initial preparation of the BLIS was obtained by extracting 

the cells obtained from the fermentation process mentioned above with 200 ml of 95% 

methanol (adjusted to approximately pH 2 by adding 25 mmol l-1 of HCl) at 4oC for 20 h. 

After centrifugation (15000 x g), the supernatant was subjected to rotary evaporation to 
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remove the methanol. The extract was then lyophilized and re-dissolved in 1 ml of PBS 

buffer (pH 7). This preparation was used in antimicrobial assay (well-diffusion) to check 

for inhibitory activity. 

 

3.8.3 Freeze thaw extraction 

 

It was noticed that when the producer strain, S. salivarius NU10, is grown in the presence 

of a small quantity of its own bacteriocin product large quantities of bacteriocin are 

produced. A newly modified medium was used in this production experiment that included 

M17 broth supplemented with 1% sucrose, 0.1% calcium carbonate, 0.1 fetal calf serum 

(Sigma) and 0.7% agarose. After the media was autoclaved and cooled down to 50oC, 0.05 

g mL-1 of crude NU10 peptide (4 AU/ml) and 1% of an 18-hour old S. salivarius NU10 

culture grown in THB were added to the production medium prior to pouring it into petri 

dishes (20 ml per dish). After the agarose was set, the plates were incubated anaerobically 

at 37oC for 22 hour before they were transferred to -80oC freezer and kept there for 10 

hours. Then the plates were taken out of the freezer and thawed at room temperature where 

all the plates’ contents (liquid and agarose) were transferred to sterilized gauze to separate 

the agarose debris. The liquid was collected in sterilized Scott bottle. After the cells were 

removed by centrifugation at 12000 x g for 20 min at 4 ºC, the supernatant was collected 

and stored at 4ºC for further purification. 
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3.9 Purification of BLIS produced by Streptococcus salivarius NU10 

    

After isolation of the bacteriocin by freeze thaw extraction, solid ammonium sulphate was 

added to the crude peptide to achieve 65% saturation before the solution was stirred 

overnight at 4oC to dissolve the ammonium sulphate. The peptide pellet was collected after 

centrifugation at 18000 x g for 25 minutes at 4oC and the peptide was dissolved in a 

minimal volume of 25 mM phosphate buffer pH 5.8.  This preparation was desalted on 

SEPHADEX G 25 column (sigma) (Column volume 100 ml and diameter 1.5 cm). The 

column was washed with twice the column volume of 25 mM phosphate buffer pH 5.8 

before the sample of 5ml was loaded at a flow rate of 3ml min-1. Protein concentration of 

the fractions was measured using Nanodrop 2000 at 280 nm (Figure 4.22). All the fractions 

were tested for bacteriocin activity by loading 50µl of each fraction into pre-cut wells on 

CAB freshly seeded with Micrococcus luteus ATCC® 10240. Fractions showing 

antimicrobial activity were pooled and lyophilized for storage purpose. The lyophilized 

fraction was dissolved in distilled water and transferred to a shaker flask with 20 g of 

Amberlite® XAD-2 resin added. The mixture was incubated at 4oC for 2 hours on 150 rpm 

orbital shaker. The matrix was packed into glass chromatography column and washed with 

200 ml of distilled water, 200 ml 70% methanol and 200 ml 95% methanol at pH 2. 

Fractions were collected at a flow rate of 5 ml/min. The methanol was evaporated and the 

pellet was dissolved in ultrapure water and filtered by 0.2 nm millipore membrane before 

injecting into Sep-Pack C18 classic cartridge (Waters Model). The cartridge was washed 

with 10 ml of 95% methanol at pH 2 followed by 10 ml ultrapure water before the sample 

was loaded. To elute the activity, 2 ml of different concentrations of methanol were used as 
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follows: 50%, 60%, 70%, 80% and 95% adjusted to pH 2. The fractions were subjected to 

speed vacuum to evaporate the methanol before antimicrobial activity was tested. 

 

3.10 BLIS-NU10 induction assay 

 

BLIS-NU10 production was shown to be auto regulated in this study whereby a small 

amount of the active peptide could induce its production in a large scale production system. 

One colony of an 18-hour old culture of S. salivarius NU10 grown anaerobically on BACa 

agar was used to inoculate 10 ml of M17YESUCa broth and incubated again under the 

same conditions before the cells were collected by centrifugation and washed 3 times in 

saline buffer to reduce the amount of BLIS-NU10 attached to the cells. Two tubes 

containing 0.9 ml of M17YESUCa were inoculated with 0.1 ml of the cell suspension. 0.05 

ml of BLIS-NU10 preparation (titre 4 AU/ml) was added to one of the tubes marked as 

“induced” and the other marked as “control”. Both tubes were incubated anaerobically for 

18 h before 0.05 ml BLIS-NU10 preparation (titre 4 AU/ml) was added to the control tube. 

50µl of each sample (induced and control) was used to test for antimicrobial activity by 

well diffusion assay. The positive control was recorded as a clear zone of inhibition 

representing the induced sample and the inhibition representing the control sample 

appeared nil or faint (Table 4.9).  
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3.11 Production of BLIS-NU10 in liquid medium 

 

Usually bacteriocins produced by S. salivarius can be isolated from cultures grown on solid 

medium using the freeze thaw method described previously (Hyink et al., 2007). Strain 

NU10 is also able to produce the bioactive peptide in solid phase medium and showed 

extremely weak expression of BLIS-NU10 in the liquid media. To overcome this 

limitation, a new technique was used in this study to enhance the production of the BLIS-

NU10 in liquid media. Strain NU10 was grown on MSA plate for 18 h under anaerobic 

condition at 37oC before one colony (dome-shape) was used to inoculate 20 ml of 

M17YESUCa broth and incubated under the same conditions mentioned above on an 

orbital shaker at 150 rpm. The broth culture was centrifuged at 6000 x g for 5 min at 4oC 

before the cells were collected and washed twice in 0.85% NaCl sterile solution and then 

resuspended in 20 ml of the same solution. The cell suspension was used to inoculate 50 ml 

of fresh M17YESUCa broth at 37oC in anaerobic condition for 20 h. The resulting culture 

was fed with fresh 50 ml of the same medium and 0.05 g/ml of pure BLIS-NU10 was 

added to the broth medium as an inducer before the 100 ml culture was incubated for 

another 18 h. 80 ml of the final culture was used to inoculate 1.5 litres of M17YESUCa 

broth. The pH was adjusted to 6.5 using concentrated HCl. CFU and AU was measured for 

colony forming units and arbitrary units per ml during production (Figure 4.31). 
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3.12 Cation exchange chromatography  

 

Induced culture of S. salivarius NU10 was centrifuged at 8000 x g to pellet the cells. The 

cell free supernatant (CFS) was filtered through 0.2 µm sterilized cellulose membrane 

(Millipore). The filtered crude bacteriocin (800 ml) was passed through 100 ml XAD-16 

particles (Sigma) packed in a glass column. The column was washed with 400 ml of 

distilled water followed by 200 ml of 70% methanol before the active fraction was eluted 

using 200 ml of 95% methanol (adjusted to pH 2) at a flow rate of 15 ml/min. The 

methanol was removed using a rotary evaporator and the resulting peptide was lyophilized 

and stored at -20oC. The lyophilized peptide pellets were dissolved in 20 ml of 20 mM 

sodium phosphate pH 5.8 (binding buffer) Then the sample was injected into fast protein 

liquid chromatography (FPLC) system (ÄKTA Purifier™, Malaysia Genome Institute) 

using SP FF 5ml strong cation exchanger column (GE Healthcare) equilibrated with the 

same buffer at a flow rate of 1 ml/min. Then the column was washed with 10X column 

volume of the binding buffer before BLIS-NU10 was eluted using linear gradient of 0 to 

1M NaCl in 20 mM sodium phosphate buffer at pH 5.8 (Figure 4.32). All bound and 

unbound fractions were tested for inhibitory activity using Micrococcus luteus GAB13 as 

the indicator microorganism.  
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Table 3.4: Column and buffers used in cation exchange study. 

Column* Buffer A Buffer B 

SP FF  

(5 ml) 
20 mM sodium phosphate PH 5.8 

20 mM sodium phosphate PH 5.8 

+ 1 M NaCl 

*HiTrap SP FF is prepacked with SP Sepharose Fast Flow and is a strong cation exchanger.  

 

 

3.13 Tris-Tricine SDS PAGE  

 

The active fractions eluted from the FPLC system were subjected to 16.5% sodium dodecyl 

sulphate (SDS) as described previously (Schagger, 2006) and Tris-Tricine running buffer 

system. Mini-Protean Tetra Cell (Bio Rad) was used according to the manufacturer’s 

instructions. Dual Xtra protein marker (Bio Rad) was used to estimate the molecular weight 

of the pure BLIS-NU10. The gel was run at 125 V for 45 min and stained using 

SimplyBlue™ SafeStain (Life Technologies-Invitrogen). After de-staining, the gel was 

visualized and the molecular weight was estimated (Figure 4.34). 

 

3.14 Activity assay of the purified BLIS-NU10 peptide 

 

The samples were subjected to two-fold serial dilutions and 20µl samples were spotted onto 

the surface of CAB freshly seeded with Micrococcus luteus ATCC® 10240. After 

incubation at 37oC for 18 hours, zones of inhibition were observed and the arbitrary units of 

the inhibitor peptide per ml were measured. The arbitrary unit (AU) is the reciprocal of the 

highest dilution of the pure peptide that showed clear inhibition of Micrococcus luteus 

growth (Mantovani and Russell, 2008) as shown in Figure 4.25. 
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3.15 Characterization of BLIS-NU10 peptides 

 

The pure FPLC fraction was subjected to nano liquid chromatography electrospray 

ionization mass spectrometry LC/MS-ESI analysis. The sample was injected into a 

Symmetry C18 pre-column (5 µm, 20 mm x 180 µm) attached to BEH C18 reversed phase 

analytical column (1.7 µm, 20 cm x 75 µm) using nano ACQUITY@ UPLC system at the 

Malaysia Genome Institute located in Bangi, Malaysia. Elution was carried out with solvent 

A (0.1 formic acid in water) and solvent B (0.1 formic acid in acetonitrile) with a gradient 

of 4-45% of solvent B in solvent A at a flow rate of 3 µl /min for 70 min. The eluted 

peptide molecules were subjected directly to positive electrospray ionization. Q-TOF 

premier system and Protein Lynx Global SERVER V 2.4 software (Malaysia Genome 

Institute) were used to search for peptide spectra. Data directed analysis (DDA) was used 

for de novo amino acids sequencing. For further analysis pure BLIS-NU10 was analyzed by 

matrix-assisted laser desorption ionization - time of flight (MALDI-TOF) mass 

spectrometry (MS) at the Medical Biotechnology Laboratory, Faculty of Medicine, 

University of Malaya (Figure 4.35 and 4.36). 
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3.16 Mode of action bacteriostatic, bactericidal and bacteriolytic  

 

One ml of purified peptide was added to 10 ml of log-phase culture of the indicator strain 

(Micrococcus luteus ATCC) grown in THB. The optical density was measured at 620 nm at 

various times to check if there is any bacterial growth in the bacteriocin-containing culture. 

One ml of distilled water was added to the sensitive culture as a negative control. If the 

indicator bacteria succeeded in growing after sometime, it means the mode of action of the 

inhibitor is bacteriostatic but if it fails then it is bactericidal as shown in figure 4.27. 

Growth kinetics of the indicator bacteria was recorded and analyzed by Microsoft Excel 

software. The bactericidal effect of pure BLIS-NU10 was studied at different phases of 

growth as shown in figure 4.28 where salivaricin was added to freshly inoculated culture 

after 10, 15, 30, 60, 120 and 210 minutes at 37oC and the bacterial growth was recorded by 

measuring OD600.   

 

3.17 Membrane permeabilization assay 

 

Indicator bacteria Micrococcus luteus ATCC 10240, Streptococcus equisimilis 

ATCC12388 and Corynebacterium spp GH17 were subcultured on CAB (Columbia agar 

base). One colony was used to inoculate 1 ml of THB (Todd Hewitt broth) and incubated at 

32oC aerobically for 18 hours at 150 rpm. 1 ml of test strain culture was used to inoculate 

10 ml of THB and incubated with the same conditions mentioned above. The culture was 

grown to an OD600nm value of 0.6 (exponential growing phase). Then the bacterial CFU was 

enumerated using Miles and Misra method (surface viable count) (Heritage et al., 1996). At 
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OD600nm = 0.6 the CFU count was 3.4 X 105. The bacterial culture was centrifuged at 2,000 

x g for 15 minutes, after which the supernatant was discarded. Bacterial pellets were 

washed with 10mm sodium phosphate buffer at pH 7.2 and centrifuged at 2,000 x g for 15 

minutes. This washing step was performed twice. Pellet was suspended with 10 ml of 10 

mM sodium phosphate sterile buffer pH 7.2.  The bacteria was diluted again to reach OD600 

= 0.6 in sodium phosphate buffer. Final volume was made up to 10 ml. 5 µl-1 of SYTOX 

stock solution was added to 5 ml of bacterial preparation mentioned above. 10 µl of peptide 

solution to be tested at different concentrations was added to 90 µl of the (bacteria cells + 

SYTOX) preparation in 96-Well Real Time PCR Plate. Positive control (acidic methanol 

extract from S.salivarius K12 and 70% ethanol) was also added to the same bacterial 

preparation. For negative control bacterial cells without addition of any peptide or positive 

control was used. Each experiment was performed in triplicate. The wells were sealed by 

using optical cap strips and the plate was placed as soon as possible in the Real-Time PCR. 

The real-time PCR (Applied Biosystems StepOnePlus™Real-Time PCR Systems) was 

programmed with SYBR Green filter selected and 60 cycles of 1 min duration at 37oC read 

at the end of each cycle. Raw data was exported into Excel. Results were expressed as 

fluorescence units (FU). Each sample was tested in triplicate. Mean values and standard 

deviation were calculated using Microsoft Excel. 
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3.18 Scanning electron microscopy (SEM) 

 

SEM was used to visualize the mechanism of antimicrobial action of BLIS NU10. Indicator 

bacteria Micrococcus luteus ATCC 10240 was grown in THB for 10 hours till it reached 

the exponential phase with CFU count of 1.2 x 106. The cells were then centrifuged at 8000 

x g for 5 minutes and washed with 20 mM HEPES buffer pH 7 (washing step was repeated 

twice). Cells were centrifuged again at 9000 x g for 2 minutes, supernatant was discarded 

and bacterial pellet was resuspended in 1 ml of purified BLIS NU10 containing 8 AU/ml. 

The samples were fixed with 8% glutaraldehyde in 1:1 (v/v) Sorensen’s phosphate buffer 

for one hour. Samples were then  washed with Sorensen’s phosphate buffer and water 

mixture 1:1 (v/v) before the samples were fixed with 4% OsO4 mixed with 1:1 (v/v) H2O 

and then left  overnight. After washing with deionized water for 15 minutes, the samples 

were dehydrated in increasing concentrations of ethanol as follows: 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, 90% and 100%. Dehydration with ethanol-acetone mixture was 

applied before the samples were finally washed with pure acetone as the last step of 

preparation before critical point drying (CPD). After the samples were prepared and coated 

with gold particles the mechanism of antimicrobial action was visualized using JEOL JSM-

7001F Scanning Electron Microscope. Control sample (without BLIS NU10 treatment) and 

treated sample were then compared for morphological changes. 
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3.19 Stability tests on BLIS-NU10 

 

Heat stability of pure salivaricin was studied by treating the peptide at different 

temperatures for one hour following which the sample was centrifuged and the supernatant 

was tested for inhibitory activity. The stability of the peptide at different pH values was 

also evaluated and tested similarly. For enzymatic effects on salivaricin stability, two wells 

of 6mm diameter each separated by a distance of 4 mm were prepared in a CAB plate. One 

well was filled with 50µl of the pure salivaricin while the other was filled with 50µl of the 

enzyme (1 mg/ml). The plate was incubated at 50oC for 2 hours and then at 37oC overnight 

before the indicator strain was seeded onto the agar surface using a cotton swab. Then the 

plate was re-incubated at 37oC for 18 hours and the zones of inhibition that appeared 

indicated the stability of salivaricin, while absence of inhibition zones indicated the 

denaturation of the antimicrobial peptide by the applied enzymes namely proteinase K, 

peptidase, lyticase and catalase The stability of BLIS-NU10 to the chemicals namely 

EDTA, SDS, urea, NaCl and β-merchaptoethanol was examined by adding 1% of the 

chemicals to the bacteriocin followed by incubation for two hours at RT before the samples 

were centrifuged and the supernatant was tested as described above. If the chemical was a 

solvent e.g. β-mercaptoethanol, the solvent was evaporated before testing for antimicrobial 

activity (Table 4.11). 
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4.1 Streptococcus salivarius isolation and identification 

 

All the strains were isolated from the oral cavities of Malaysian subjects. Some of them 

were isolated from the dorsal surface of the tongue while the others from the saliva. It 

appeared that all isolates were negative for both catalase and oxidase tests with gram 

positive characteristics when viewed under the light microscope after gram staining Figure 

(4.1-4.4).  

 

 

 

 

Figure 4.1: Gram staining of Streptococcus salivarius NU10 

 

 

 

 

 

 

Figure 4.2: Gram staining of Streptococcus salivarius YU10 
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Figure 4.3: Gram staining of Streptococcus salivarius K12 

 

 

 

 

 

Figure 4.4: Gram staining of Streptococcus salivarius GT2 

 

Table 4.1 summarizes the basic characteristics of the isolates with results from the 

simultaneous antagonism assay to evaluate the ability of these strains for producing 
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antimicrobial agents.  Strains NU10 and YU10 were most significant for inhibitory activity 

as shown in figure 4.13 where a large halo zone can be observed surrounding the spot 

where the producer was stabbed. Strain GT2 also showed some activity, but it appeared as a 

smaller halo zone. Further study showed that the inhibitory activity of this strain can be 

extracted using the acidic methanol extraction method of the GT2 cells. All the isolated 

colonies appear blue dome-shaped when grown on MSA plate. Some of the strains 

appeared to have rough colony morphology like strain GT2 which adhered strongly to the 

surface of the agar. This was challenging, especially when the deffered antagonism test was 

applied because the macroscopic growth (visible to the naked eye) of the producer strain 

needed to be scraped off the agar surface before indicator bacteria were applied by 

swabbing. Other colonies of the strains in the study appeared smooth. All the isolates 

appeared to have a dome shape on MSA and this puffy gum shape is due to the production 

of levan as levansucrase enzyme was also detected from the methanol extract of the 

producer’s cells. Some modification on the manufacturer’s protocol was applied to isolate 

the total DNA by adding 100 mg/ml of lysozyme with overnight incubation at 37oC 

increased the yield of DNA recovered significantly. The thick cell wall of S. salivarius 

makes it difficult to lyse in the presence of lysozyme for a short period of incubation (30 

min). But the cell lysis was enhanced significantly with overnight incubation in lysozyme. 

The 16s rDNA gene sequences of the isolates were assembled using DNA baser software. 

After that, the data was blasted on the human oral microbiome database www.homd.org. 

All strains scored ≥99% on the database. 16S rDNA gene identification finally confirmed 

the identity of the isolates. 
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Table 4.1: The basic characteristics of Streptococcus salivarius isolates  

S. salivarius 

isolate 

Gram 

Stain 
Shape 

Catalase 

Test 

Oxidase 

Test 

Isolation 

source 

Antagonism activity* 

Micrococcus 

luteus 

Corynebacterium 

Spp 

NU10 Positive Cocci - - Tongue + + 

YU10 Positive Cocci - - Tongue + + 

7YE Positive Cocci - - Saliva - - 

GT2 Positive Cocci - - Tongue ± - 

HJEFF Positive Cocci - - Tongue - - 

IND9 Positive Cocci - - Saliva - - 

SAM3 Positive Cocci - - Saliva - - 

* Simultaneous antagonism test on BACa plates. 

16s rDNA gene sequencing identification scores according to BLAST tool used in human 

oral microbiome database are listed in Table 4.3. The NCBI data base was used to confirm 

the identity of the isolates. All the isolates showed to be S. salivarius. Finally the 16s rDNA 

gene sequences of all the isolates were deposited in NCBI gene bank. 
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API tests were used to determine the metabolic profile of the strains as shown in Table 4.2. 

Strains NU10 and YU10 differ from strain K12. While K12 was able to metabolize D-

galactose, both strains NU10 and YU10 were negative to this biochemical test. Both strains 

K12 and YU10 were able to metabolize D-tagatose while strain NU10 showed otherwise. 

Inulin metabolism was positive for both strains K12 and NU10 while this test was negative 

when strain YU10 was used. However, strain YU10 metabolized both D-sorbitol and 

GENtiobios, but both strains K12 and NU10 did not metabolize these substrates. Strain 

NU10 was the only strain that showed positive reaction when incubated with AMYgdaline.  

The entire biochemical test for all the strains showed a similar result when API 20 Strep 

was used as they are listed in Table 4.2. The main reason for conducting the API 

biochemical tests was to identify the metabolic profile of strains NU10 and YU10 as they 

showed the best production pattern and it was useful to compare their metabolic pattern 

with that of strain K12 the commercial probiotic which can produce both salivaricin A2 and 

salivaricin B. 
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Table 4.2: Metabolic profile of S. salivarius isolates using API 20 Strep and API 50 CH. 

API 20 Strep K12 NU10 YU10 
Acetoin production + + + 
β-Glucosidase + + + 
Pyrrolidonyl arylamidase    
6-Bromo-2-naphthyl _-D-
galactopyranoside 

- - - 

Naphthol AS-BI_-D-
glucuronate 

- - - 

D- galactosidase - - - 
Alkaline phosphatase + + + 
Leucine arylamidase + + + 
Arginine dihydrolase - - - 
Ribose - - - 
L-Arabinose - - - 
Mannitol - - - 
Sorbitol - - - 
D-Lactose + - + 
    
Trehalose + + + 
Inulin + + - 
Raffinose + + + 
Starch (2) - - - 
Glycogen - - - 
    
API 50 CH    
D-Galactose + - - 
D-Glucose + + + 
D-Fructose + + + 
D-Mannose + + + 
N-Acetylglucosamine + + + 
Arbutine + + - 
Salicin + + + 
D-Cellobiose + + + 
D-Maltose + + + 
D-Lactose + - + 
D-Saccharose + + + 
D-Trehalose + + + 
Inulin + + - 
D-Raffinose + + + 
D-Tagatose + - + 
AMYgdaline - + - 
D-Sorbitol - - + 
GENtiobios - - + 
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Several of the S. salivarius isolates were observed by transmission electron microscopy 

(TEM) to determine the size of the bacteria and details of the bacterial cell morphology. 

TEM pictures showed that the chain-forming bacteria are surrounded by capsular material. 

 

Figure 4.5: TEM section of Streptococcus salivarius NU10. 

The width of each S. salivarius cell was recorded as ≤ 400 nm for bacterial cells in the log 
phase of growth. 
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Figure 4.6: TEM section of Streptococcus salivarius YU10. 

No flagella was detected in all isolates of S. salivarius since this bacteria is not motile. 
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Figure 4.7: TEM section of Streptococcus salivarius HJEFF 

Sometimes S. salivarius can be shown as single cocci depending on the plane of the 
section. 
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Figure 4.8: TEM section of Streptococcus salivarius 7YE  
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Figure 4.9: TEM section of Streptococcus salivarius GT2 

 

 

60 

 



 

 

 

 

 

 

 

 

 

Figure 4.10: The genome DNA extracted from Streptococcus salivarius isolates. A, B and 
D: DNA extracted from S. salivarius strains K12, NU10 and YU10 respectively after cells 
lysis for overnight in presence of 100 mg/ml of lysozyme. C and E: DNA extracted from S. 
salivarius strains NU10 and YU10 respectively after incubation with lysozyme was for 
only 30 min. incubating the cells with lysozyme for overnight enhance the yield of DNA 
recovered significantly. 

  

A B C D E 
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Figure 4.11: Gel electrophoresis of 16S rDNA gene sequencing of Streptococcus salivarius 
strains YU10 and NU10 isolated from Malaysian subjects. The PCR product showed a 
single band of amplified gene. The PCR product was purified and sequenced before the 
results were blasted on www.homd.org. 

 

 

Table 4.3: 16s rDNA gene sequencing identification 

Strain Significant alignment Score E value Identities 

NU10 Streptococcus salivarius 2109 0.0 99.9 

YU10 Streptococcus salivarius 2118 0.0 99.9 

7YE Streptococcus salivarius 2198 0.0 99.9 

GT2 Streptococcus salivarius 2176 0.0 99.9 

HJEFF Streptococcus salivarius 2210 0.0 99.9 

IND9 Streptococcus salivarius 2111 0.0 99.9 

SAM3 Streptococcus salivarius 2204 0.0 99.9 

 

  

62 

 

http://www.homd.org/


 

Figure 4.12: MS/MS spectrum evidence for VGTLAFLGATQVKA (Levansucrase 
enzyme) produced by Streptococcus salivarius YU1-0 

 

 Levansucrase was detected in the acidic methanol extract of the YU10 cells. The bacteria 

were grown into M17SUCa medium and the extract showed to have antimicrobial activity 

against selected indicators. The detection of cell-bound levansucrase enzyme at a 

significant quantity indicates that this enzyme is a major product of strain YU10 when 

sucrose was used as the only sugar source in the production medium since the detection 

method was developed to detect the most intensive peak. On solid medium levansucrase 

usually polymerizes fructose moiety of sucrose into fructans which possess either inulin or 

levan and this will resulted in a dome-shape colony morphology of the S. salivarius when it 

is grown on MSA (sucrose-enriched selective medium).  
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4.2 Simultaneous antagonism test 

 

Simultaneous antagonism test was used initially to screen for bacteriocin-producing S. 

salivarius strains. Some of the S. salivarius stabbed into BACa medium were able to 

produce antimicrobial activity (Figures 4.13 and 4.14). In this assay a sensitive bacteria like 

Micrococcus luteus was used against which K12, YU10 and NU10 produced the largest 

inhibition zones. HJEFF and GT2 also produced inhibition zones but the activity was faint 

indicating perhaps inhibition due to acidic metabolites.  

 

Figure 4.13: Simultaneous antagonism test of Streptococcus salivarius isolates. A, the test 
was done using Micrococcus luteus as an indicator strain. B, the test was done using 
Corynebacterium spp as indicator strain. The S. salivarius strains were stabbed into a fresh 
lawn of indicator strain seeded on BACa agar. Strains K12, NU10 and YU10 were the best 
producers. 
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Figure 4.14: Simultaneous antagonism test for strains NU10 and K12. A: NU10 was 
stabbed as producer, B: K12 was stabbed as producer. Strain NU10 showed similar activity 
when compared with strain K12. The production of the bacteriocins was on BACa. The 
edges of the inhibition zones caused by antimicrobial activity produced by strain K12 are 
relatively sharp compared with that of strain NU10 and this may be due to the production of 
multiple bacteriocins by strain K12. Micrococcus luteus ATCC 10240 was used as 
indicator. 
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4.3 Deferred antagonism test 

 

For the deferred antagonism assay, two different kinds of production media were used.  Of 

these, TSYECa medium seemed to be good especially for strains HJEFF, 7YE, GT2 and 

SAM3. However, it must be noted that the production appeared inconsistent and inhibition 

was not shown always with the strains from the unhealthy subjects from the Dental Clinic. 

But the strains from the healthy Malaysian subjects showed relatively stable production of 

inhibitory activity. Although the inhibitory activity was not so strong, some strains like 

HJEFF, 7YE and GT2 could also inhibit the growth of Bacillus cereus. Haemophilus 

parainfluenzae was also inhibited by HJEFF and 7YE. After supplying the media with 

0.4% of calcium carbonate, the inhibitory activity was reduced. BACa medium is a 

routinely used medium for this test and it gave a better bacteriocin production especially 

with strains YU10, NU10 and K12.  

One of the reasons for absence of inhibitory activity against some of the indicator bacteria 

when using BACa in deferred antagonism assays is that the inhibitory activity seen when 

using TSYECa might be due to lactic acid produced by the S. salivarius. S. salivarius strain 

HJEFF in later experiments produced minimum inhibition of Bacillus cereus in liquid 

media and the inhibitor was recovered by ammonium sulphate precipitation which proved 

the presence of an inhibitor(s) of protein or peptide constitution produced by HJEFF strain. 

Strains GT2 and K12 were the only producers that caused inhibition of Streptococcus 

mutans in deferred antagonism tests on BACa.   
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Figure 4.15: Deferred antagonism test on BACa agar plates. (Left) K12 was used as 
producer strain. (Right) NU10 was used as a producer strain. Indicator bacteria from top to 
bottom: Micrococcus luteus ATCC 10240, Streptococcus gordonii ST2, Streptococcus 
pyogenes ATCC 12344, Corynebacterium spp GHG17, Streptococcus equisimilis ATCC 
12388 and Lactococcus lactis ATCC 11454.  

 

 

The inhibition characteristic of strain NU10 isolated from a Malaysian subject is similar to 

strain K12. At other times when the deferred antagonism test was repeated, the zones of 

inhibition were more or less. The reason for this fluctuation in production is still unknown. 

However, when Streptococcus pyogenes ATCC 12344 was diluted to OD600 of 0.2 before 

using it as indicator in this test, a significant inhibition zone was observed. 
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Figure 4.16: Deferred antagonism test on TSYECa agar plates. A: BLIS-negative reference 
strain ATCC13419. B: producer strain K12. Indicator bacteria from top to bottom: 
Lactococcus lactis, Bacillus cereus, Corynebacterium spp, Haemophilus parainfluenza, 
Streptococcus mutans, Staphylococcus aureus, Gemella sanguinis, Micrococcus luteus. 
Strain ATCC13419 could not inhibit any of the indicator strains while K12 secreted BLIS 
which inhibited four of the indicator strains used. Table 4.4 summarizes the production 
pattern of all S. salivarius isolates using BACa and TSYECa plates in deferred antagonism 
test.  

 

A B 
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Table 4.4: Deferred antagonism test to evaluate BLIS production by Streptococcus salivarius isolates using two different production media. 

Indicator strain 

Deferred antagonism test using two different type of production media (TSYECa and BACa) 

HJEFF 7YE SAM3 GT2 NU10 YU10 IND9 K12™ 

TSY
ECa BACa TSY

ECa BACa TSY
ECa BACa TSY

ECa BACa TSY
ECa BACa TSY

ECa BACa TSY
ECa BACa TSY

ECa BACa 

Bacillus cereus ++ - ++ - - - + - - - + - - - - - 

Haemophilu 
sparainfluenza ++ - ++ - - - + - - - - - - - - - 

Lactococcus lactis - - - - - - - - - + - ++ - - +++ +++ 

Corynebacterium spp +++ + +++ + ++ + +++ ++ +++ +++ +++ +++ - - +++ +++ 

Streptococcus mutans - - - - - - ++ ++ - - - - - - +++ +++ 

Staphylococcus aureus - - - - - - + - - - - - - - ++ ++ 

Streptococcus equisimilis 
 

- 
 

- 
 

- - - +++ +++ +++ +++ - - +++ +++ 

Actinomyces naeslundii - - - - - - - - - - - - - - - - 

Micrococcus luteus + + + + + + 
 

+ +++ +++ +++ +++ - - +++ +++ 

Streptococcus gordonii - - - - - - - - - - - - - - - - 

Streptococcus pyogenes - - - - - - - - + + + + - - ++ +++ 

+ inhibition zone < 0.75 cm, ++ inhibition zone = 0.75 - 1 cm, +++ inhibition zone > 1 cm, - no inhibition
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4.4 Production of BLIS activity in liquid media 

 

All the isolates failed to produce antimicrobial activity while growing in liquid medium. 

Strain HJEFF was able to grow in Muller Hinton broth and the concentrated cell free 

supernatant showed some inhibitory activity. The production of this activity was not stable 

where only small quantity of inhibitory activity could be recovered. When the same 

experiment was repeated no inhibitory activity was recovered. 

Table 4.5: production of BLIS activity using different production methods 

S.salivarius 
strain 
 

Production of 
BLIS in liquid 
media 

Production of BLIS by 
freeze thaw extraction 
 

Production of BLIS by 
methanol extraction of 
producer cells 

NU10 - + + 

YU10 - + + 

7YE - - + 

GT2 - + + 

HJEFF +α - + 

IND9 - - - 

SAM3 - - + 

K12™ - + + 

ATCC13419 - - - 

α Very small quantity of inhibitory activity could be recovered from the concentrated supernatant of this strain 

 

The growth curve of strain HJEFF was studied and the BLIS activity was recovered from 

the late log phase and early stationary phase. Because no activity could be detected directly 

70 

 



from the cell free supernatant, ammonium sulphate was added to the supernatant at a 

saturation of 50% to concentrate the activity. 

 

Figure 4.17: Growth curve of strain HJEFF that produce minimum inhibitory activity in 
liquid medium. 

 

 

The bacteria reached the stationary phase after 14 hours of incubation in Mueller Hinton 

broth. The antimicrobial activity test from the supernatant did not detect any inhibitory 

activity during the production. The ammonium sulphate precipitation of cell free 

supernatant harvested from the late log phase and early stationary phase revealed inhibitory 

activity especially against Bacillus cereus. When the production experiment was repeated 

using other media like M17 or THB no activity could be recovered neither from the 

supernatant nor from the ammonium sulphate precipitate. In this case, maybe MH broth 

which has less nutrients comparing with M17 and THB played a role in making the 

bacterial environment more stressful. The inhibitory activity in the ammonium sulphate 

precipitate was purified using DEAE anion exchanger. The inhibitory agent was able to 
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bind to the column and eluted out using 1M NaCl. No activity could be recovered from the 

unbound fractions while three fractions eluted once 1M NaCl was applied showed 

antimicrobial activity against Corynebacterium spp.  

Figure 4.18: Binding of inhibitory activity produced by strain HJEFF in liquid medium to 
the anion exchanger DEAE column. The activity was eluted using 1M NaCl and the 
fractions were tested against Corynebacterium spp. Fractions 1-6 bounded to the DEAE 
column and eluted after washing the column with high salt buffer. The protein was detected 
at wavelength of 280 nm. 
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Figure 4.19: well diffusion assay of the BLIS activity extracted from cell-free supernatant 
of S.salivarius HJEFF grown in liquid medium after the ammonium sulphate precipitation. 
50µl of the crude inhibitory activity dissolved in distilled water was loaded in each well 
previously cut in CAB plate. After incubation at 37oC for 18 hours clear zones of inhibition 
surrounding the well was measured. Each test was done in triplicate and the standard 
deviation was calculated using Microsoft Office Excel. 

 

 

4.5 Isolation of antimicrobial peptides using acidic methanol extraction 

 

This method has been use for long time to isolate lantibiotics from lactic acid bacteria 

especially in the medical industry were this method can give relatively pure peptide with 

strong activity. In this project the cell-associated peptide was eluted from the cells surfaces 

using 95% methanol pH 2. To enhance the quantity recovered, the producer bacterial strain 

was grown in 2 liters bioreactor and the production media was supplemented with 0.1% 

calcium carbonate which worked as a buffer to reduce the changing in pH condition of the 

culture. Since the peptide was recovered from the cells surfaces it was very important to 
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reduce the acidity of the culture by supplying it with calcium carbonate. If the media got 

more and more acidic, the peptide will start to be eluted out from the bacterial surface into 

the supernatant (desorption), but when the media condition during bacterial growth was 

maintained between pH of 4-6, the extra cellular metabolite (in this case antimicrobial 

peptide) will adsorbed to the surface of the producer strain (adsorption). This method was 

ideal in peptide recovering and the peptides isolated using this method was reasonably pure 

peptide comparing with that recovered by freeze thaw method. From the figure 4.20 we can 

see that the most sensitive indicator bacteria for peptide preparations using acidic methanol 

extraction are Corynebacterium spp and Micrococcus luteus. This support the results 

achieved from deferred antagonism test, where these strains were the most sensitive for the 

producers and this is evidence that the same peptide secreted into agar and cause strong 

inhibition for both sensitive indicators during deferred antagonism assay is the same 

produced and isolated with acidic methanol extraction method.  Peptide extracted by this 

method achieved 64 AU.ml-1 against Corynebacterium spp and 128 AU.ml-1 against 

Micrococcus luteus when S. salivarius NU10 was used as producer strain while S. 

salivarius YU10 gave a titer of 32 AU.ml-1 and 64 AU.ml-1 against Corynebacterium spp 

and Micrococcus luteus respectively. 
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Figure 4.20: Well diffusion assay of BLIS extracted from different S. salivarius strains by using acidic methanol extraction of the cells.
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Corynebacterium seemed to be one of the most sensitive strains to the acidic methanol 

extraction, while Lactococcus lactis and Bacillus cereus showed some resistance to extracts 

from strains GT2 and NU10.  

Gemella sanguinis and Actinomyces naslundii were not inhibited by the acidic methanol 

extracts of all S. salivarius strains. While Streptococcus mutans was sensitive to extracts 

from strains K12, YU10 and GT2. 

Both strains Micrococcus luteus ATCC10240 and Streptococcus equisimilis were inhibited 

strongly by all acidic methanol extracts especially those extracted from the cell surfaces of 

strains K12 and NU10. Concentrated BLIS extracted from strains K12, NU10, YU10 and 

GT2 inhibited Streptococcus pyogenes. 

  

4.6 Production of BLIS NU10 by freeze thaw extraction 

 

This is a standard method to recover salivaricin A and salivaricin B from S. salivarius K12. 

The production media used to produce the inhibitory peptides from strain K12 was 

modified to produce enhanced quantity of the putative peptide from strain NU10. The 

modified media used in this method was M17 broth supplemented with 1% sucrose, 0.1% 

calcium carbonate and 0.7% agarose. The agarose was selected instead of bacteriological 

agar because it was more efficient during freeze thaw extraction. After autoclaving and 

before pouring the media into petri dishes the media was cooled down till 50oC when 4% of 

S. salivarius NU10 was added to the media and mixed by gentle stirring. 1% of crude BLIS 

NU10 was added before pouring. After the agarose was set the plates (approximately 100 

plates) were incubated anaerobically at 35oC for 22 hours. This method enhanced the 
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B C 

D E 

production of the putative peptide after 65% ammonium sulphate precipitation from 8 

AU.ml-1 against Micrococcus luteus to 128 AU.ml-1 against the same bacteria. 

Table 4.6: Well diffusion assay of BLIS produced by freeze thaw extraction. 

Indicator strain 
Inhibitory activity recovered from  S. salivarius strains with freeze 
thaw  extraction 
HJEFF 7YE GT2 K12 NU10 YU10 

Micrococcus luteus - - 9 15 12 11 

Corynebacterium spp - - 8 16 15 15 

Streptococcus 
equisimilis - - - 12 10 10 

Inhibition zones were measured in millimeter. 

 

 

 

 

 

 

 

  

 

Figure 4.21: Well diffusion assay for BLIS preparation achieved by different methods. 
A,B,C are wells filled with BLIS achieved by freeze thaw extraction from strains YU10, 
NU10 and GT2 strains respectively. D is the desalted BLIS recovered from HJEFF strain 
using vivaspin column after ammonium sulphate precipitation. E is the effluent of the 
desalting process.  
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4.7 Purification of BLIS-NU10 produced by freeze thaw extraction: 

 

After the crude BLIS NU10 was extracted by freeze thaw extraction 50% ammonium 

sulphate saturation was applied to concentrate the BLIS activity. The resulting crude BLIS 

NU10 was desalted using Sephadex G 25 column. Figure 4.22 shows the elution profile of 

BLIS NU10 from gel filtration column. 

 

Figure 4.22: Gel filtration chromatography of BLIS NU10 using Sephadex G-25. Gel 
filtration using Sephadex G25 column equilibrated with 25 mM phosphate buffer pH 5.8. 5 
ml fractions were collected at a flow rate of 3 ml/min. The protein concentration was 
measured by NanoDrop 2000 (Thermo Scientific) at 280 nm. All the fractions were tested 
by well diffusion assay using Micrococcus luteus ATCC® 10240 as indicator bacteria. 
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Figure 4.23: Well diffusion assay of fractions eluted from Sephadex G-25 column during 
gel filtration process. Antimicrobial activity of the fractions eluted from Sephadex G25 
column using 25mM Phosphate buffer pH 5.8. 5ml fractions were collected at a flow rate 
of 3 ml/min and 50 µl of each fraction was loaded into 6mm well that had been cut into the 
CAB assay agar freshly seeded with Micrococcus luteus ATCC 10240 by using cotton 
swab. The plates were incubated at 37oC for 18 hours and zone of inhibition was noticed as 
an effect of the desalted antimicrobial peptide. 
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 Table 4.7: purification of BLIS NU10 produced by Streptococcus salivarius NU10 

Step 
Volume 

(ml) 

Activity 

(AU/ml) 

Total 
protein 

(mg) 

Total 
activity 

(AU.103) 

Specific 
activity 

(AU/mg) 

Yield 

(%) 

Purification 

(fold) 

Freeze thaw 
culture 
supernatant 

1000 800 10000 800 80 100 1 

Ammonium 
sulphate 
precipitation 

100 3200 4000 320 40 40 1 

SEPHADEX G-25 
gel filtration  30 3200 320 96 300 12 3.75 

Amberlite XAD-2 
chromatography 15 1600 50 24 480 3 6 

Sep-pak C18 8 3200 0.005 25 5 x106 0.032 640 

 

The XAD-2 chromatography and C18 chromatography following gel filtration gave pure 

NU10 peptide as it shown in table 4.7. Following these steps achieved pure NU10 peptide. 

When the freeze thaw culture supernatant was applied directly to XAD-2 column only 

small quantity of peptide was recovered. That is why steps of ammonium sulphate 

precipitation and Gel filtration were applied to concentrate the inhibitory activity before 

loading into XAD-2 column. XAD-2 chromatography was a great technique to remove all 

hydrophobic proteins from the crude peptide. And it was very easy to recover the activity 

using acidic methanol of 95% concentration. Sep-Pak C18 resin was ideal to capture the 

NU10 peptide and fractionate it by applying gradient concentrations of methanol. 

 

80 

 



 

 

 

 

 

 

 

 

 

 

Figure 4.24: Well diffusion assay of different preparations of BLIS NU10. A: freeze thaw 
crude, B: 65% ammonium sulphate precipitation, C: Amberlite XAD-2, D: gel filtration G-
25, E: Sep-Pak C18 purification. Indicator bacteria: Micrococcus luteus ATCC® 10240.  
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Figure 4.25: Spot on lawn assay of both crude and purified BLIS NU10 isolated from S. 
salivarius NU10. (Left) BLIS NU10 (crude) activity after freeze thaw extraction and 65% 
ammonium sulphate precipitation.(Right) BLIS NU10 (semi pure) activity after freeze thaw 
extraction, 65% ammonium sulphate precipitation, followed by Sephadex G25 XAD-2 
chromatography and C18 Reverse Phase Sep-pack cartridge solid phase extraction. The 
samples were diluted as two fold serial dilution and spotted as 20µl onto the surface of 
CAB freshly seeded with Micrococcus luteus ATCC® 10240. After incubation at 37oC for 
18 hours a zone of inhibition were noticed and the arbitrary units of the inhibitor per ml 
were counted. 
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4.8 Bacteriostatic, bactericidal and bacteriolytic activity 

 

 

Figure 4.26: Bacteriostatic mode of action of BLIS produced by Streptococcus salivarius 
YU10, Micrococcus luteus ATCC10240 was used as a test culture. 

 

Figure 4.27: Bactericidal mode of action of BLIS produced by Streptococcus salivarius 
NU10, Micrococcus luteus ATCC10240 was used as a test culture. 
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Bacteriostatic and bactericidal mode of action of BLIS preparation was studied depending 

on the growth kinetics of the indicator strain after incubation with BLIS extracted from 

strains NU10 and YU10. After incubation with BLIS YU10, Micrococcus luteus 

ATCC10240 was able to grow again after 20 hours of incubation which indicated that the 

mode of action of BLIS YU10 is bacteriostatic rather than bactericidal. BLIS NU10 

showed bactericidal mode of action where Micrococcus luteus ATCC10240 could not grow 

even after incubation with BLIS NU10 for 30 hours.   

 Figure 4.28: Bacteriolytic Effect of salivaricin BLIS-NU10 on growing culture of 
Micrococcus luteus ATCC10240 when added at different phases of growth. BLIS-NU10 
was added to freshly inoculated culture after 10, 15, 30, 60, 120 and 210 minutes at 37oC. 
Bacterial growth without adding salivaricin was designated as control. The bacterial growth 
was recorded by measuring OD600.   
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4.9 Lantibiotic structural genes 

 

 

 

 

 

 

 

Figure 4.29: Distribution of salivaricin A and salivaricin B encoding structural genes in the 
best two positive producers. salA and sboB genes distribution in S. salivarius isolates (A) 
Gel electrophoresis to detect salivaricin B structural gene after PCR reaction. (B) Gel 
electrophoresis to detect salivaricin A structural gene after PCR reaction. K12 (positive 
control) showed a thick bands for salivaricin A and salivaricin B encoding genes detection. 
The gene expression in K12 strain resulted in thick bands. Strain YU10 appeared to be 
positive for salivaricin A gene and strain NU10 was positive for salivaricin B while K12 
was positive for both genes. 

 

 

Table 4.8: Lantibiotic structural genes: 

S. salivarius salA sboB sivA 

NU10 ±† + + 

YU10 + - + 

† Faint band of salA gene was detected in the PCR product of NU10. 

250 bp 

500 bp 

750 bp 

YU10 K12 

250 bp 

500 bp 

750 bp 

NU10 K12 

A B 
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DNA sequencing of the sboB gene encoding salivaricin B production by S. salivarius strain 
NU10:  

GGTGTGAATTTCCTTCAAGAATTGACTCTTGAAGAAATTGACAACGTTCTTGGT

GCTGGTGGTGGAGTAATCCAAACCATTTCACACGAATGTCGCATGAACTCATG

GCAGTTCTTGTTTACTTGTTGCTCTTAATTACGTTCTATAAGCCTAAATTTTAGC

ACGTAATTTGACTTTTAAGAATTTTAAGGGAGATATATTTAAAATAATATCTTC

TAGAAATTCTAATAGTATCACAATCTAACAATGAGAGGTGTCTCTACTCTTGGT

TTTATTCATAGAAATCTTGTTCATCATGAAAATAGGTGGTCAAAATGGAAAATA

CCGAGAAAAATAAATTATTTAACAAATTTACTAGAAATTTTATCCAAACAAACT

TCTCAGAGTATGATATGCAAAACTGTGAGATAGAATTTTTAGAAGATAAAGTTT

TAGATATTTATATGAATACACTAATCCGTTTGATAAACGAAAAAACAAAATAA

GGAATTTAAAGGGCCCAACTTCGGAAGAGCGGTATGAATATTTTA 

The DNA sequence of sboB gene was translated using expasy translate tool 
(http://web.expasy.org/translate/) and shown to have the following amino acid sequencing: 

GVNFLQELTLEEIDNVLGAGGGVIQTISHECRMNSWQFLFTCCS 

When this sequence blasted on http://www.uniprot.org/ the identity was similar to sboB 

gene product. Strain NU10 and K12 were the only isolates harbour sboB gene. However 

salivaricin B lantibiotic was not detected in the purified BLIS-NU10. Surprisingly 

salivaricin B was not detected when pure BLIS-NU10 was subjected to MALDI-TOF 

analysis. 
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DNA sequencing of the sivA gene encoding salivaricin 9 production by S. salivarius strain 

NU10: 

TATATCCATGAGCTCTCCTAGTGAAATAATTTGAATTTTCCATATTTATAGTATA

TCAAAAATATCAAGTAAAATGTAAGCTCACTAAATTCTTTAGGTTTTCTTAAGG

TAAATTTTGACATTTCTTTATCTTGTACTTATAAAATGTAATTGTAGCTAGATAA

AGATGCTTAATATTGATTTAAATTAAAAAAGGAGAAATATCCATGAAATCAAC

AAATAATCAAAGTATCGCAGAAATTGCAGCAGTAAACTCACTACAAGAAGTAA

GTATGGAGGAACTAGACCAAATTATTGGTGCCGGAAACGGAGTGGTTCTTACT

CTTACTCATGAATGTAACCTAGCAACTTGGACAAAAAAACTAAAATGTTGCTA

ATTATTTAACAAGAAAATTTTACTTAAGCATTCAAGTATTTTTATCTGTTACATA

TTAAGTTGTGTTAATTAACTTAATGGACTTAAAAGTTTGGGGTAAAG 

Expassy DNA to protein translation of the sivA gene detected in strain NU10: 

MKSTNNQSIAEIAAVNSLQEVSMEELDQIIGAGNGVVLTLTHECNLATWTKKLKCC 

sivA gene product (salivaricin 9) was the only known lantibiotic to be detected in the 

MALDI-TOF analysis of purified BLIS-NU10. 
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4.10 BLIS-NU10 induction assay 

 

Table 4.9: Induction of inhibitor production by S. salivarius strains NU10, YU10, K12 and 
nisin-producing strain ATCC11454 using crude preparations, purified FPLC-fraction of 
BLIS-NU10 and nisin. 
 

Inhibitor-positive 

preparation tested for 

inducing activity 

Preparation induces inhibitor production in S. 

salivarius strains and nisin-producing strain 

NU10 YU10 K12 ATCC11454 † 

BLIS-NU10 α Yes  Yes  Yes  No  

FPLC fraction BLIS-NU10 β Yes  Yes  No  No  

BLIS-YU10 α Yes  Yes  Yes  No  

BLIS-K12 α Yes  Yes  Yes  No  

Nisin (Sigma) No  No  No  Yes  

α BLIS (bacteriocin-like inhibitory substances) representing the crude extract of each producer strain. 
β FPLC-purified fraction BLIS-NU10 produced by strain NU10. 
† Lactococcus lactis strain (producer of nisin lantibiotic). 
 

BLIS-NU10 shown to be Auto regulated while small amount of the crude peptide was able 

to enhance the production of BLIS-NU10 when it was incubated with the producer strain. 

BLIS-NU10 shown to be auto-regulated and this discovery used to enhance the production 

of the putative peptide. After the cells were incubated with BLIS produced by K12, YU10 

or NU10 the small quantity of BLIS peptide helped to induce BLIS production (Figure 

4.30). Control sample (washed producer cells + BLIS) was not incubated together with the 

BLIS inducer, the inducer was added to the producer cell free supernatant just before 

loading 50µl of the mixture into the well to test for activity. Absence of the inhibitory 
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action in the control well and clear zone of inhibition in the induced well leads to 

conclusion that strains K12, YU10 and NU10 induced BLIS-NU10 production. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30: well diffusion assay of the induced producer’s strains. A: BLIS NU10; B & C: 
control (supernatant of the producer strain); D: K12 cells + BLIS YU10; E: YU10 cells + 
BLIS K12; F: YU10 cells + BLIS YU10; G: NU10 cells + BLIS K12; H: NU10 cells + 
BLIS NU10. 
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4.11 Production of BLIS-NU10 in liquid medium 

 

To enhance the production of BLIS-NU10 in liquid medium, a new induction assay was 

developed. The induced culture of S. salivarius NU10 showed detectable amount of the 

inhibitory activity. After 8 hours of the final inoculation the production of BLIS-NU10 

started to increase gradually until it reached more than 1200 AU/ml after 16 hours. Once 

the growth kinetics of strain NU10 reached the stationary phase the level of the inhibitory 

activity remained stable and consistent. 

Figure 4.31: growth kinetics of strain NU10 and BLIS-NU10 production. 

  

4.12 Cation exchange Chromatography 

 

BLIS-NU10 shown to be of cation nature for this reason SP FF strong cation exchanger 

was used to purify the bioactive peptide. This is the first report of using cation 
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chromatography to purify BLIS-NU10. BLIS-NU10 could not be detected at 280 nm. That 

is why two additional wavelengths were used to detect the bioactive peptide. This method 

was ideal to get rid of most of contaminant proteins which was washed out of the column 

without any binding to the cation exchange column. Before injecting the sample into the 

FPLC system the column was washed with 20 mM sodium phosphate buffer to equilibrate 

the column before the positively charged peptide bind to the negatively charged column 

resin. BLIS-NU10 started to be eluted when the NaCl concentration of the elution buffer 

reached 23%. Three fractions (1 ml each) showed significant BLIS-NU10 activity when 

tested in spot on lawn assay using Micrococcus luteus as indicator microorganism. BLIS-

NU10 was detected at wavelengths of 214 and 207 nm. The active fractions eluted from the 

column were colorless with no turbidity at all.  Dissolving the sample with the binding 

buffer enhanced the binding process. Sample preparation before cation exchange 

purification also played a great role in enhancing the binding between the inhibitory 

activity and SP column. The sample was desalted on XAD-16 column before pursuing to 

cation exchange chromatography. This cleaning up process was essential to further purify 

step using AKTA purifier FPLC system. From figure 4.32 it can be seen that BLIS-NU10 

could not be detected at 280 nm due to the absence of aromatic amino acids in this 

lantibiotic. In spot on lawn assay only 10µl or 20µl of each fraction was applied on the 

surface of indicator lawn, in this case only 3 fractions showed antimicrobial activity but 

when well diffusion assay was applied whereby 50µl of each sample was loaded into 6mm 

and this test 6 fractions showed antimicrobial activity including the three fractions from the 

spot on lawn assay. 
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Figure 4.32: Cation exchange chromatography of BLIS-NU10 using SP FF 5ml column.
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Figure 4.33: Spot on lawn assay of the active pure fractions eluted from SP FF column. F1, 
F2, and F3: the three active pure fractions of purified BLIS-NU10 using cation exchange 
chromatography. 

 

 

4.13 Tris-Tricine SDS PAGE 

 

SDS page was used to check the purity of the active three fractions of BLIS-NU10. The 

protein standard used was especially for the low molecular weight proteins and all of the 

three fractions showed to have exactly the same molecular weight of approximately 3,000 

Da. Aliquots (50 µl) of the three fractions from the cation exchange FPLC analyzed by 1D-

SDS-PAGE (Figure 4.34). 
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 Lane 1 was loaded with 10µl the protein marker. Lanes 2,3 and 4 were loaded with 15µl of 

each FPLC fraction prepared in sample buffer. Each of the three fractions showed single 

intense band. 

 

 

 

 

 

 

 

 

 

Figure 4.34: SDS-PAGE of cation exchange FPLC active fractions of BLIS produced by 
strain NU10. Lane 1: Dual Xtra protein marker. Lane 2,3 and 4: FPLC  active BLIS-NU10 
fractions. 
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4.14 Characterization of BLIS-NU10 

 

Pure BLIS-NU10 was subjected to LC/MS-ESI and MALDI-TOF mass spectrometry to 

identify BLIS-NU10. Salivaricin 9 (2560 Da) was detected in the pure BLIS-NU10. Also 2 

intensive peaks (2068 Da and 2082 Da) were detected.  

Figure 4.35: MALDI-TOF MS analysis of active fraction of BLIS-NU10 from FPLC 
fractionation.  

 

 

 

 

 

 

 

 

 

 

Figure 4.36: MALDI-TOF MS analysis of salivaricin 9 (2560 Da) detected in BLIS-NU10 
fraction from FPLC fractionation. 
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Figure 4.37: LC/MS-ESI TOF analysis of BLIS-NU10. A: pooled active fractions eluted 
from FPLC system. B: single active fraction eluted from FPLC system (with higher 
inhibitory activity). 

 

LC/MS-ESI analysis also detected the most intensive peaks which were detected in 

MALDI-TOF MS analysis with a molecular weight of 2068 and 2082 Da. The De novo 

amino acid sequencing suggested that these two peptides are rich in proline.  
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Table 4.10: De novo amino acid sequencing of some detected peptides in pure BLIS-NU10 

Peptide detected in pure BLIS-NU10 Amino acids sequencing 

Salivaricin 9 (2560 Da) GNGVVLTLTHECNLATWTKKLKCC 

Peptide 1 (2068 Da) TPPQHGAVQSPLPSPFPPSQ 

Peptide 2 (2082 Da) TPPNGASGALPHGAAPFNPPQS 

 

When de novo sequenced peptides of molecular weights (2082, 2068) was blasted against 

data base of Swiss port, no significant results could be achieved. 

 

4.15 Membrane permeabilization assay 

 

Investigation of the mode of action of antimicrobial peptide was as described by Bourbon 

et al., (2008) with some modifications. 10 mM Phosphate buffer pH 7.2 was ideal to 

suspend the bacterial cells and do the fluorescence assay because it does not contain any 

DNA fragments which might bind to the SYTOX Green stain and enhance the background 

fluorescence. 70% ethanol was used as a positive control as it is known that ethanol can 

penetrate the bacterial membrane by detergent-like mechanism. The fluorescence in the 

70% ethanol microplate well was strong due to fast penetrating and binding between 

SYTOX green and the inner nucleic acid. The other positive control, K12 bacteriocin, was 

extracted from S. salivarius K12 and this extract contains more than two antimicrobial 

peptides since the strain can produce salivaricin A, salivaricin B and others. The SYTOX 

fluorescence was also strong in this well but it was also noticed that the membrane 

penetration started very fast once the K12 extract was added to the bacteria. We can see 

97 

 



from Figure 4.38 that BLIS-NU10 isolated from S. salivarius strain NU10 at different 

concentrations had penetrated the cell membrane of Micrococcus luteus ATCC 10240. 

Even 0.00625 g ml-1 of NU10 peptide could penetrate the cell membrane and cause 

permeabilization of the indicator bacteria in which the fluorescence signal for this well was 

significantly higher than the negative control (indicator bacteria without peptide added). 

This negative control well showed low and consistent fluorescence signal. Tetracycline was 

added to the indicator bacteria in the final well to see if any obvious fluorescence could be 

detected after treating the bacteria with 0.1 mg ml-1 of tetracycline and the fluorescence 

was below the negative control and this is evidence that tetracycline did not penetrate the 

cell membrane and no permeabilization action occurred. After the real time PCR run was 

completed, the bacteria was collected from the wells and washed with phosphate buffer and 

then diluted 1:100 with the same buffer and streaked on CAB plates before incubation for 

18 hours. Bacteria collected from negative control wells could grow perfectly while 

bacteria collected from 70% ethanol and tetracycline wells were not able to grow. 

Micrococcus luteus cells treated with tetracycline did not exhibit significant fluorescence 

during Real-Time PCR run and when the tetracycline treated cells were subcultured on 

fresh medium after the Real-Time PCR run was complete, there was no bacterial growth 

indicating that Tetracycline mechanism of action is not membrane permeabilization action 

but protein synthesis inhibition. The Permeabilization assay was repeated using different 

indicator microorganisms to confirm the membrane penetration activity toward targeted 

cells. Figure 4.39 shows the permeabilization activity using Streptococcus equisimilis and 

Corynebacterium spp as indicator strains. 
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Figure 4.38: Permeabilization of Micrococcus luteus ATCC® 10240 membrane by BLIS-
NU10. The bacterial cells suspension was incubated with different concentration of BLIS-
NU10 with 5 µM SYTOX Green. ●, ethanol 70%; ●BLIS-K12; ●BLIS-NU10 0.05 g ml-1; 
● BLIS-NU10 0.025 g ml-1; ●negative control; ● tetracycline 0.1 mg m-1. Binding of 
fluorescent probe to intracellular nucleic acid was determined at 521nm.
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Figure 4.39: Permeabilization of targeted cell membrane by BLIS-NU10. A: indicator 
strain used Streptococcus equisimilis. B: indicator strain used Corynebacterium spp. 
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Figure 4.40: Well diffusion assay of purified BLIS-NU10 peptide isolated from S. 
salivarius NU10. 50µl of the purified peptide (0.05 g ml-1) added to the wells (6 mm) have 
been cut into CAB media. A: Streptococcus gordonii ST2, B: Micrococcus luteus ATCC 
10240, C: Streptococcus equisimilis ATCC 12388, D: Corynebacterium spp GHG17, E: 
Lactococcus lactis ATCC11454, F: Streptococcus pyogenes ATCC 12344, G: Haemophilus 
parainfluenza TONE J11 and H:   Actinomyces naeslundii TG2. 
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4.16 Scanning Electron Microscopy  

 

Scanning electron microscopy helped to confirm that the mechanism of action was done by 

permeabilization of the cell membrane. Six hours of bacterial incubation time with BLIS-

NU10 was enough to penetrate the cell membrane as shown in figure 4.41 that the bacteria 

was affected by BLIS-NU10 and some pores were formed in the cell membrane causing 

bacterial contents to ooze through the pores as the first step of the peptide penetrating the 

cell membrane. This is a common mechanism of action for lantibiotics. After that the 

bacteria will lose all the inner contents and start to collapse and die. Some cells were badly 

affected by BLIS-NU10 and after the inner material went out through the pores, the cells 

were ruptured.  

 Figure 4.41: SEM sections show the mechanism of action of purified BLIS-NU10 isolated 
from S. salivarius NU10. A: a healthy Micrococcus luteus ATCC 10240 cell without 
treatment used as a control in this experiment. B: release of internal materials through pores 
formed by NU10 peptide. C: a ruptured Micrococcus luteus ATCC 10240 cell after 
incubation with purified NU10 peptide at 37oC for 6 hours. 
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Figure 4.42: SEM sections show the mechanism of action of purified BLIS-NU10 isolated 
from Streptococcus salivarius NU10 using different indicator strains. 

Indicator strain Control (untreated) Treated with BLIS-NU10 
Micrococcus luteus  A B 
Streptococcus equisimilis C D 
Corynebacterium spp E F 
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4.17 BLIS-NU10 stability (thermo-stability/ pH/ proteinase K/ chemicals) 

 

Table 4.11: Stability profile of BLIS-NU10  

Stability  Concentration  Inhibition zone  
Temperature (oC)   
4, 20, 30, 37, 40, 50, 60, 70, 80 
 for 1 hour 

 ++++ 

90, 100 
 for 30 min 

 +++ 

121 for 20 min 
 

 - 

pH value   
2- 7  ++++ 
8-10  +++ 
11-12 
 

 - 

Enzymes 1 mg ml-1  
Proteinase   - 
Proteinase K  - 
Peptidase  - 
Lyticase  ++++ 
Catalase 
 

 ++++ 

Detergents / Chemicals 1% (W/V)  
Tween 80  ++++ 
Tween 20  ++++ 
Tritone X100  ++ 
β-merchaptoethanol  ++++ 
SDS  ++++ 
EDTA  ++++ 
Urea  ++++ 
NaCl  ++++ 
(++++): inhibition zone >20 mm, (+++): inhibition zone =20 mm, (++): inhibition zone < 20 mm, (-): no bacterial inhibition. 
Micrococcus luteus was used as indicator. Salivaricin 9 titer: 800 AU/ml. 
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Figure 4.43: Enzyme stability test of BLIS-NU10. Black arrows indicates where the 
enzymes where loaded close to where BLIS-NU10 was loaded. A: proteinase K, B: 

catalase, C: control and D: lyticase.
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5.1 Streptococcus salivarius isolation  

 

S. salivarius is a predominant coloniser of the oral cavity in humans. Some S. salivarius 

produce small molecules called BLIS to aid their competition within the oral ecosystem 

which comprises of a large number of diverse communities of microorganisms. Most of the 

BLIS molecules produced by S. salivarius are lantibiotics or lanthionine-containing 

peptides. All Malaysian subjects in this study were shown to have S. salivarius in their oral 

cavity. Some of these isolates were swabbed from the tongue of subjects with periodontal 

problems e.g. dental caries, gum disease and halitosis. Two of the S. salivarius isolated 

from these subjects (SAM3 and IND9) failed to produce significant BLIS activity and in 

further investigations in this present study it was found that most of the activity totally 

disappeared when the isolates were grown on medium supplemented with calcium 

carbonate (refer to the data as table or figure from Results). This indicates that their limited 

activity is due to the production of lactic acid. However, some of the S. salivarius isolated 

from healthy Malaysian subjects (NU10 and YU10) showed significant BLIS production, 

especially when blood-containing medium was used in the production study.  

For primary isolation, MSA or M17 supplemented with 20% sucrose media were used 

since S. salivarius colonies appear as dome-shaped puffy colonies when the growth 

medium is supplemented with sucrose. This unique characteristic is due to levan 

production. In further investigation of BLIS-producing isolate YU10, the bacteria were 

shown to produce a significant amount of 103.9 kDa levansucrase enzyme (Figure 4.12) 

when grown in M17 supplemented with 1% sucrose and 0.1 % calcium carbonate. This 

enzyme polymerizes the fructose moiety of sucrose into fructans which possess levan 

structure (Ebisu et al., 1975).  
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5.2 BLIS production by Streptococcus salivarius isolated from Malaysian subjects 

 

S. salivarius strain HJEFF was the only strain that showed some BLIS production when it 

was growing in MHB. No BLIS activity could be detected from the cell free supernatant 

(CFS) but anti-Bacillus cereus and anti-Haemophilus parainfluenzae activity could be 

detected from the ammonium sulphate precipitate of the CFS. Surprisingly no BLIS 

production was evident when more enriched media was used in the production study. In the 

deferred antagonism assay some strains, namely HJEFF, 7YE and GT2, showed a very 

weak BLIS production when BACa was used as a production medium but when TSYECa 

was used instead of BACa the BLIS activity was increased significantly. The production of 

BLIS activity in TSYECa medium and its reduced production in BACa medium was also 

reported in a study of salivaricin M production. Unlike most of the bacteriocins produced 

by S. salivarius, salivaricin M was not produced efficiently in blood-enriched medium and 

there appeared to be strict regulation of its locus expression (Wescombe et al., 2012). 

Salivaricin M produced by S. salivarius strain M18 (BLIS Technologies) is a 

chromosomally encoded lantibiotic (unlike most lantibiotics produced by S. salivarius) 

which is active against Streptococcus mutans. The very first characterized lantibiotic 

produced by S. salivarius strain 20P3 is salivaricin A (2315 Da). Salivaricin A production 

is encoded by salA, located on a megaplasmid. Salivaricin A has 5 variants namely A1, A2, 

A3, A4 and A5 with molecular weights of 2327 Da, 2368 Da, 2319 Da, 2342 Da and 2329 

Da respectively. The mode of action of salivaricin A appeared to be bacteriostatic rather 

than bactericidal. Strain YU10, isolated from a Malaysian subject appeared to have the 

structural gene salA and the antimicrobial activity of the lantibiotic produced by this strain 

was reported in this study. Techniques used to extract the bioactive peptide from this strain 
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were successful when freeze thawed extraction from the agar culture and acidic methanol 

extraction of the centrifuged and isolated cells were applied. No detectable BLIS activity 

could be recovered from this strain when the bacteria were grown in liquid medium. In 

further investigation, strain YU10 appeared to harbour both sivA and slnA (structural genes 

encoding salivaricin 9 and salivaricin G32 respectively) in addition to salA which makes 

strain YU10 a good BLIS producing strain (Tagg, 2013). BLIS produced by strain YU10 

was bacteriostatic in action and this mode of action was similar to that of salivaricin A. 

Strain NU10 was also isolated from one Malaysian subject and showed BLIS production in 

deferred and simultaneous antagonism tests. Out of six isolates, both strains NU10 and 

YU10 showed good BLIS production especially when the deferred antagonism test was 

done on BACa medium and that is linked to the need blood medium to secrete the 

antimicrobial peptide into the agar-supplemented medium. Strain NU10 showed erratic 

BLIS production. When this strain was used as BLIS producer in deferred and 

simultaneous antagonism tests, it secreted BLIS in BACa medium when it was grown in 

both aerobic and anaerobic conditions. It has been noticed that when NU10 was grown in 

anaerobic condition, the BLIS production was increased significantly. Usually BLIS 

production is optimum in CO2-enriched atmosphere, especially when strain K12 is used as 

the BLIS producer (Hyink et al., 2007). When strain NU10 was grown in such a CO2 

enriched condition, it took a longer time than K12 to reach the stationary phase although it 

could still secrete BLIS into the medium. BLIS production in strain NU10 was unstable and 

when glucose or lactose was used instead of sucrose as a carbon source, almost no BLIS 

production could be detected. In an attempt to enhance BLIS production in strain NU10, 

1% of sucrose was added to M17 medium supplemented with 0.1% calcium carbonate 

instead of 0.5% of sucrose as used in past and published procedures to generate BLIS in 
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K12 (Hyink et al., 2007). In this study increasing the sucrose percentage from 0.5% to 1% 

resulted in a more homogenous and turbid bacterial culture increasing the CFU as well.  

 

5.3 BLIS-NU10 purification 

 

Attempts to purify the inhibitory molecules produced by strain NU10 began by first 

concentrating the BLIS activity of the freeze thawed extract by adding solid ammonium 

sulphate. The lowest saturation that precipitated the inhibitory activity was 40%, but to 

recover significant amounts of BLIS, 65% saturated ammonium sulphate was required. 

Ammonium sulphate precipitation was found to be the ideal method to precipitate and 

concentrate BLIS-NU10 based on the current investigations. Gel filtration was applied 

using SEPHADEX G25 column. This combination of ammonium sulphate and gel filtration 

was reported previously for purification of zoocin A produced by Streptococcus 

zooepidemicus strain 4881 and viridin B produced by Streptococcus mitis (Apelgren and 

Dajani, 1979). This preparation of crude BLIS-NU10 was loaded into XAD-2 column to 

get rid of hydrophobic molecules and impurities. XAD-2 was previously used to prepare 

salivaricin A and B from freeze thawed extract of K12 culture (Hyink et al., 2007). Sep-pak 

C18 cartridge increased the purity from 6 to 640 fold which makes this technique effective 

in BLIS-NU10 purification. Sep-pak C18 cartridge was used previously to achieve semi 

purified streptin (type A1 lantibiotic produced by Streptococcus pyogenes strain M25) 

(Wescombe and Tagg, 2003).  
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5.4 BLIS-NU10 and BLIS-YU10 mode of action 

 

Salivaricin A, the first lantibiotic to be characterized from S. salivarius, has no dehydrated 

residues in its biologically active propeptide form and it exhibits bacteriostatic mode of 

action towards the targeted cells rather than bactericidal (Hyink et al., 2007). BLIS-YU10 

appeared to exhibit a bacteriostatic mode of action when the BLIS was added to a log phase 

culture of the indicator microorganism the bacterial growth being inhibited and no increase 

in OD measurement observed. However, after a few hours of incubation the bacteria started 

to grow again in the presence of BLIS-YU10. Purified BLIS-NU10 produced by strain 

NU10 showed a bactericidal mode of action and the indicator microorganism failed to grow 

in the presence of BLIS-NU10 after 30 hours of incubation. BLIS-NU10 was added to 

different phases of targeted bacterial growth and each time BLIS-NU10 effectively reduced 

the OD readings when it was added. Such bacteriolytic activity was reported as a mode of 

action for both bovicin and nisin (de Carvalho et al., 2007) 

 

5.5 Bacteriocin induction activity and BLIS-NU10 production in liquid medium  

 

It has been reported that some bacteriocins including salivaricin A, B (Hyink et al., 2007; 

Ross et al., 1993) and mutacin (Nicolas et al., 2011) are controlled by quorum sensing 

mechanisms and they are better expressed when the producer bacteria is grown on solid 

media where the bacteria can be found in high density. This production strategy will result 

in significant bacteriocin expression in that particular medium comparing with low density 

of bacteria growing in liquid media where no detectable bacteriocin production can be 

observed (Kleerebezem et al., 1997; Qi et al., 2000). Usually to produce these classes of 
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bacteriocins, a freeze thaw method is used while the bacteria are grown on solid or semi-

solid media containing agar or agarose. In this study, a new method was developed to 

produce the bacteriocin in liquid medium. When the production experiment was applied for 

the first time using S. salivarius NU10 as a producer, no inhibitory activity could be 

detected from the cell free supernatant of the culture. Most lantibiotics biosynthesis can be 

auto regulated by signal transduction system like bovicin HJ50 produced by Streptococcus 

bovis (Ni et al., 2011) and salivaricin A produced by S. salivarius 20P3 (Upton et al., 2001) 

and nisin produced by Lactococcus lactis (Kuipers et al., 1995). To investigate in what 

stage of the bacterial growth the optimum quantity of BLIS-NU10 is being produced, a 

liquid medium system was applied to count the CFU followed by the peptide titer. The 

induction procedure showed that BLIS-NU10 is auto-regulated. As the bacteria continues 

to grow in the medium in the presence of the introduced BLIS-NU10 molecules for the 

induction, the expression of BLIS-NU10 in liquid medium was increased significantly by 

1200 AU/mL (Figure 4.31). Feeding the induced culture with fresh medium helped to scale 

up the productivity while the culture itself worked as inoculum and inducer at the same 

time. 

 

5.6 Cation exchange chromatography as BLIS purification strategy 

 

Using cation exchange chromatography to purify lantibiotics has been described previously 

(Furmanek et al., 1999; Sahl, 1994). Salivaricin B purification described previously (Hyink 

et al., 2007) by using XAD-2 chromatography and RPHPLC system has been used to 

separate specific lantibiotics namely salivaricin A2 and B produced by strain S. salivarius 

strain K12. The current study is the first report of BLIS-NU10 purification using SP 
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sepharose column as a cation exchange technique. Using cation exchange chromatography 

resulted in enhanced yield of BLIS-NU10 which was recovered after XAD-16 

chromatography and preferred over XAD-2 chromatography due to its higher capacity to 

bind the lantibiotic. XAD-2 particles had been used previously to adsorb salivaricin A 

molecule (Ross et al., 1993). Amberlite XAD-4 was used to adsorb nisin molecules 

(Tolonen et al., 2004). XAD-16 hydrophobic resin was a critical step in the current 

protocol to achieve clear and desalted crude peptide. XAD-16 Amberlite was used 

previously to adsorb LtnA1 and LtnA2 that formed the two components of lacticin 3147 

(Morgan et al., 2005). FPLC system showed capability to separate BLIS-NU10 from crude 

preparations achieved from XAD-16 chromatography and this purification protocol 

resulted in single protein intensive band when Tris-Tricine SDS-PAGE was applied. Most 

but not all of the impurities were washed out from the column without any binding to the 

SP Sepharose resin while more than one bound peak was detected after elution with a linear 

gradient of increasing salt concentration. The bioactivity test of all the unbound and bound 

fractions showed that 3 active fractions related to one peak were eluted after applying a 

specific moderate concentration of NaCl ≈ 23%. This finding indicates that BLIS-NU10 is 

of cationic nature. 

 

5.7 Membrane permeabilization and pores forming mechanism of action 

 

Permeabilization activity of lantibiotics toward gram positive bacteria has been studied 

previously (Chun and Hancock, 2000). The depolarization of the cytoplasmic membrane of 

gram positive bacteria was assessed by dequenching of SYTOX green fluorescence by pure 

BLIS-NU10 in this study. Type A lantibiotics (e.g. nisin, salivaricin and epidermin) are 
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amphipathic and elongated molecules which mainly act by forming pores into the 

cytoplasmic membrane of the targeted bacterial cell (Kordel et al., 1989; Moll et al., 1996; 

van Heusden et al., 2002). Lipid II is an initial factor to induce a transmembrane orientation 

of the pore forming lantibiotic (van Heusden et al., 2002). At some stages lantibiotics such 

as nisin can form pores and can inhibit the cell wall biosynthesis when it binds to the 

peptidoglycan precursor lipid II (Wiedemann et al., 2001). Studying the mechanism of 

action of BLIS-NU10 showed the same characteristics compared with other lantibiotics 

while it shares the membrane permeabilization mechanism of action which form pores in 

the cytoplasmic membrane of the sensitive gram positive bacteria as shown in this study in 

the SEM images (Figures 4.41 and 4.42) using targeted bacteria incubated with BLIS-

NU10. The pores formed after incubation with BLIS-NU10 showed variation when the 

three indicator strains were used. After 240 minutes of BLIS-NU10 incubation with 

Micrococcus luteus or Corynebacterium spp, the SEM image in figure 4.42 showed 

significant pores in the targeted cell membrane wherein the bacterial cells were ruptured 

completely resulting in significant changes in cell morphology. However, another sensitive 

strain namely Streptococcus equisimilis showed less susceptibility to BLIS-NU10 

compared to Micrococcus luteus or Corynebacterium spp in deferred antagonism test and 

permeabilization activity assay. The SEM visualized that no significant changes in cell 

morphology occurred in this strain after incubation with BLIS-NU10.  
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5.8 BLIS-NU10 stability 

 

BLIS-NU10 showed heat stability when it was exposed to high temperature (90-100oC). 

BLIS-NU10 remained active for 9 months when it was stored at 4oC. At low temperature 

conditions (-20oC) BLIS-NU10 did not lose any of its activity for 9 months. BLIS-NU10 is 

stable in different values of pH ranging 2-10. However, at extreme alkaline conditions (pH 

11-12) BLIS-NU10 lost most if not all its activity while it was noticed that the optimum pH 

values of BLIS-NU10 stability is pH 2-7 (Table 4.16). However BLIS-NU10 activity 

showed no decreasing in activity after heating at 80oC for 30 min when all available 

indicator strains were tested including Micrococcus luteus, Corynebacterium spp and 

Streptococcus equisimilis. Usually bacteriocins with a molecular weight <5 kDa are heat 

stable molecules including lantibiotics (Nes et al., 2007). When treated with proteinase K 

or peptidase, BLIS-NU10 lost its antimicrobial activity which indicates that BLIS-NU10 is 

of protein nature.  

 

5.9 BLIS-NU10 as a potential probiotic 

 

When strain NU10 was tested as a producer strain in deferred antagonism test using 9 

indicator strains (Tagg and Bannister, 1979) to determine what kind of salivaricin strain 

NU10 can produce, the scheme showed no production characteristics of either salA nor 

salB (Tagg, personal communication). However, strain NU10 showed to harbour the 

structural genes of three different lantibiotics (salA, salB and sal9). This finding indicates 

that although NU10 harbours known structural genes of previously described lantibiotics, 
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the biologically active product of the structural genes mentioned above might not be 

expressed during production studies and the only gene product detected in MALDI-TOF 

MS analysis is salivaricin 9 (Figure 4.36). The mode of action of BLIS-NU10 showed to be 

bactericidal rather than bacteriostatic. Hence we can conclude that BLIS-NU10 is not salA 

(the bacteriostatic lantibiotic) (Wescombe et al., 2006). BLIS-NU10 showed to be auto-

inducible where it enhanced the inhibitory activity production when incubated with the 

washed cells of strain NU10. To enhance BLIS-NU10 production, strain NU10 always 

required to be stimulated by induction assay of the same BLIS molecules. MALDI-TOF 

MS analysis showed the presence of salivaricin 9 (2560 Da) in the current study. However, 

in addition to the salivaricin 9 peak, another 3 intensive peaks were detected, each of 

molecular weight approximately 2000 Da and these peaks showed to be proline-rich 

peptides which is uncommon among salivaricins. When these peptides were de novo 

sequenced, they showed no significant similarity of any previously characterized 

bacteriocins.  
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Chapter Six 

Conclusion  
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S. salivarius strains were isolated from six Malaysian subjects using sucrose-enriched 

media. Sucrose was used in the medium as S. salivarius metabolize sucrose into levan by 

levansucrase enzyme which was detected in the cultures of S. salivarius grown in such a 

medium. The isolates were identified using API kits and 16S rDNA gene sequencing for 

further confirmation. All these isolated strains 16S rDNA genomic sequences were 

deposited in the NCBI database. Some of the isolates appeared to produce bacteriocin-like 

inhibitory activity when tested in both simultaneous and deferred antagonism tests. An 

attempt was applied to produce the inhibitory activity in liquid media. However, strain 

HJEFF was the only strain that produced limited inhibitory activity when grown in MHB. 

The ammonium sulphate precipitate of the cell free supernatant of strain HJEFF was of 

anionic nature inhibiting Bacillus cereus and Haemophilus parainfluenzae.  Strains K12, 

NU10 and YU10 showed significant inhibition against Micrococcus luteus, 

Corynebacterium spp, Streptococcus equisimilis and Lactococcus lactis. Antimicrobial 

crude peptide was obtained from strains K12, NU10 and YU10 using acidic methanolic 

extraction of the producer cells and freeze thaw extraction of the strains using M17SUCa 

medium. BLIS produced by strain YU10 was bacteriostatic in its mode of action while 

BLIS obtained from strain NU10 was bactericidal. The distribution of structural genes 

encoding previously characterized salivaricins was investigated in the Malaysian isolates. 

Strain YU10 harboured salA, sivA and slnA encoding salivaricin A, salivaricin 9 and 

salivaricin G32 respectively. Hence strain YU10 has good potential for application as a 

probiotic. Strains K12 and NU10 harboured sboB (a structural gene encoding salivaricin B) 

and sivA encoding salivaricin 9. When strain NU10 was applied in deferred antagonism 

assay using 9 standard indicators, it appeared that the inhibitory activity produced by NU10 

was not from either salivaricin A or salivaricin B. A new method was used to enhance 
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BLIS-NU10 production in liquid medium. BLIS-NU10 was shown to be auto-regulated. 

Cation exchange chromatography was used to purify BLIS-NU10 and the pure fractions 

were subjected to Tris-Tricine SDS PAGE to demonstrate the molecular weight, which 

appeared to be about 3,000 Da. Further analysis of the purified BLIS-NU10 using MALDI-

TOF MS showed the presence of salivaricin 9 lantibiotic (2560 Da). Other peptides with 

molecular weights of 2068 Da and 2082 Da detected in BLIS-NU10. When these peptide 

sequences where blasted against SwissProt and NCBI databases, no significant matches 

were found. The BLIS-NU10 mechanism of action was studied using SYTOX green dye to 

investigate the ability of BLIS-NU10 to penetrate the cytoplasmic membrane of the 

targeted cells. BLIS-NU10 induced cytoplasmic membrane permeabilization of its targeted 

bacteria. Scanning Electron Microscope images of sensitive bacteria treated with BLIS-

NU10 showed that the antimicrobial peptide induces pore formation in the indicator 

bacterial membrane. BLIS-NU10 exhibited thermo-stability when exposed to a temperature 

of 100oC for 30 minutes and retained biological activity when subjected to different pH 

values ranging from 2 to 10. When treated with proteinase K, BLIS-NU10 lost all of its 

antimicrobial activity. BLIS-NU10 can be a potentially new antimicrobial peptide, but 

further work may be needed to detect the structural genes encoding BLIS-NU10 

production. 
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APPENDIX A 

26th April 2012 

 

Volunteer information sheet 

Re: Study of bacteriocins produced by Streptococcus salivarius isolated from 
Malaysian subjects 

Dear volunteer, 

We would like to invite you to take part in a research study. In this study, we wish 
to obtain information about the bacteriocins produced by Streptococcus salivarius isolated 
from Malaysian subject.  

As part of the research, your oral samples will be collected in the morning (9-10 
am) before consuming any food. Please refrain from oral hygiene measures on the sampling 
day. You can have teeth brushed on the previous day as usual but brushing and mouth rinse 
solution should be avoided on the day of sampling. Your oral samples will be collected 
from the tongue surface by cotton swabs. The sampling procedure is a painless and non-
invasive process. 

Taking part in this research will not benefit you directly and is entirely voluntary. If 
you have any questions about the research, please do not hesitate to ask. 

 

Thank you. 

 

………………….. 

Abdelahhad Barbour 

M.S.c Candidate 

Microbiology Division 

Institute of Biological Sciences 

Faculty of Science 

University of Malaya 

Kuala Lumpur 
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APPENDIX B 

Consent form 

 

Re: Study of bacteriocins produced by Streptococcus salivarius isolated from 
Malaysian subjects 

 

1. I have read the volunteer information sheet 

2. I have had the opportunity to ask questions and discuss the research 

3. I am satisfied with the answers to the questions 

4. I have received enough information about the research 

5. I agree to take part in this research 

 

 

 

Signature of volunteer: ………………………………….. 

 

Name   :…………………………………… 
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APPENDIX C 

Details of subjects included in this study:  

S. salivarius 

isolate 
Gender Age Race Smoker* 

Dental 

problems 

Isolation 

source 

NU10 Female 25 Malay No No Tongue 

YU10 Female 25 Chinese No No Tongue 

GT2 Female 25 Chinese No No Tongue 

7YE Male 7 Malay No Yes Saliva 

IND9 Female 26 Indian No Yes Saliva 

SAM3 Female 35 Indian No Yes Saliva 

HJEFF Male 26 Malay No No Tongue 

*Only exclusion criterion used was to exclude smokers  
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APPENDIX D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deferred antagonism assay using different S. salivarius strains. The producer strains were 
grown aerobically. Indicators used from top to bottom: Micrococcus luteus, Haemophilus 
parainfluenzae, Bacillus cereus, Lactococcus lactis, Corynebacterium spp, Streptococcus 
Pyogenes, Staphylococcus aureus, Streptococcus equisimilis, Streptococcus mutans and 
Streptococcus gordonii. When strain K12 was grown aerobically with 5% CO2, an 
increment in the inhibitory activity was observed specially against Streptococcus 
equisimilis and Streptococcus mutans. 
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Deferred antagonism assay using TSYECa as a production medium.  

  
  
  
  

Deferred antagonism test using 7YE and HJEFF strains as producers. TSYE 

medium was used with or without calcium carbonate supplement. 

Corynebacterium spp was used as an indicator in replicates. 
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Freeze thaw extraction using M17SUCa as a production medium. The frozen solid culture 
was thawed at a room temperature.  

 

 

Precipitated protein obtained from 60% ammonium sulphate 

precipitation. Solid ammonium sulphate was added to the liquid 

obtained from freeze thaw extraction and centrifuged at 18,000 

x g for 30 min to precipitate the inhibitory activity. 
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Concentrated crude BLIS-NU10 obtained by freeze thaw extraction using two different 

production medium namely M17SUCa and THBCa. When tested by well diffusion assay 

BLIS-NU10 obtained using M7SUCa medium showed positive inhibitory activity when 

tested against Corynebacterium spp. 
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APPENDIX E 

SEM (Morphological changes) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Morphological changes of Streptococcus equisimilis treated with pure BLIS-NU10. White 
arrow indicates the inner bacterial material oozing out through pore formed by BLIS-
NU10.  
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Morphological changes of Streptococcus equisimilis treated with pure BLIS-NU10. 
White arrow indicates the inner bacterial material oozing out through pore formed 
by BLIS-NU10. 
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Morphological changes of Corynebacterium spp treated with pure BLIS-NU10. White 
arrow indicates the inner bacterial material oozing out through pore formed by BLIS-
NU10.  
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APPENDIX F 

Streptococcus salivarius isolates in this study deposited to NCBI gene bank: 

 
Streptococcus salivarius strain NU10 16S ribosomal RNA gene, partial sequence 
GenBank: KC796011.1 
LOCUS       KC796011                1358 bp    DNA     linear   BCT 06-APR-2013 
ORIGIN       

1 gctcttcttg gatgagttgc gaacgggtga gtaacgcgta ggtaacctgc cttgtagcgg 

61 gggataacta ttggaaacga tagctaatac cgcataacaa tggatgactc atgtcattta 

121 tttgaaaggg gcaaatgctc cactacaaga tggacctgcg ttgtattagc tagtaggtga 

181 ggtaacggct cacctaggcg acgatacata gccgacctga gagggtgatc ggccacactg 

241 ggactgagac acggcccaga ctcctacggg aggcagcagt agggaatctt cggcaatggg 

301 ggcaaccctg accgagcaac gccgcgtgag tgaagaaggt tttcggatcg taaagctctg 

361 ttgtaagtca agaacgagtg tgagagtgga aagttcacac tgtgacggta gcttaccaga 

421 aagggacggc taactacgtg ccagcagccg cggtaatacg taggtcccga gcgttgtccg 

481 gatttattgg gcgtaaagcg agcgcaggcg gtttgataag tctgaagtta aaggctgtgg 

541 ctcaaccata gttcgctttg gaaactgtca aacttgagtg cagaagggga gagtggaatt 

601 ccatgtgtag cggtgaaatg cgtagatata tggaggaaca ccggtggcga aagcggctct 

661 ctggtctgta actgacgctg aggctcgaaa gcgtggggag cgaacaggat tagataccct 

721 ggtagtccac gccgtaaacg atgagtgcta ggtgttggat cctttccggg attcagtgcc 

781 gcagctaacg cattaagcac tccgcctggg ggagtacgac cgcaaggttg aaactcaaag 

841 gaattgacgg gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgaag 

901 aaccttacca ggtcttgaca tcccgatgct atttctagag atagaaagtt acttcggtac 

961 atcggtgaca ggtggtgcat ggttgtcgtc agctcgtgtc gtgagatgtt gggttaagtc 

1021 ccgcaacgag cgcaacccct attgttagtt gccatcattc agttgggcac tctagcgaga 

1081 ctgccggtaa taaaccggag gaaggtgggg atgacgtcaa atcatcatgc cccttatgac 

1141 ctgggctaca cacgtgctac aatggttggt acaacgagtt gcgagtcggt gacggcaagc 

1201 taatctctta aagccaatct cagttcggat tgtaggctgc aactcgccta catgaagtcg 

1261 gaatcgctag taatcgcgga tcagcacgcc gcggtgaata cgttcccggg ccttgtacac 

1321 accgcccgtc acaccacgag agtttgtaac acccgaag 
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Streptococcus salivarius strain YU10 16S ribosomal RNA gene, partial sequence 
GenBank: KC796012.1 
LOCUS       KC796012                1371 bp    DNA     linear   BCT 06-APR-2013 
ORIGIN       

1 ggtagccgta acttgctctt cttggatgag ttgcgaacgg gtgagtaacg cgtaggtaac 

61 ctgccttgta gcgggggata actattggaa acgatagcta ataccgcata acaatggatg 

121 actcatgtca tttatttgaa aggggcaaat gctccactac aagatggacc tgcgttgtat 

181 tagctagtag gtgaggtaac ggctcaccta ggcgacgata catagccgac ctgagagggt 

241 gatcggccac actgggactg agacacggcc cagactccta cgggaggcag cagtagggaa 

301 tcttcggcaa tgggggcaac cctgaccgag caacgccgcg tgagtgaaga aggttttcgg 

361 atcgtaaagc tctgttgtaa gtcaagaacg agtgtgagag tggaaagttc acactgtgac 

421 ggtagcttac cagaaaggga cggctaacta cgtgccagca gccgcggtaa tacgtaggtc 

481 ccgagcgttg tccggattta ttgggcgtaa agcgagcgca ggcggtttga taagtctgaa 

541 gttaaaggct gtggctcaac catagttcgc tttggaaact gtcaaacttg agtgcagaag 

601 gggagagtgg aattccatgt gtagcggtga aatgcgtaga tatatggagg aacaccggtg 

661 gcgaaagcgg ctctctggtc tgtaactgac gctgaggctc gaaagcgtgg ggagcgaaca 

721 ggattagata ccctggtagt ccacgccgta aacgatgagt gctaggtgtt ggatcctttc 

781 cgggattcag tgccgcagct aacgcattaa gcactccgcc tggggagtac gaccgcaagg 

841 ttgaaactca aaggaattga cgggggcccg cacaagcggt ggagcatgtg gtttaattcg 

901 aagcaacgcg aagaacctta ccaggtcttg acatcccgat gctatttcta gagatagaaa 

961 gttacttcgg tacatcggtg acaggtggtg catggttgtc gtcagctcgt gtcgtgagat 

1021 gttgggttaa gtcccgcaac gagcgcaacc cctattgtta gttgccatca ttcagttggg 

1081 cactctagcg agactgccgg taataaaccg gaggaaggtg gggatgacgt caaatcatca 

1141 tgccccttat gacctgggct acacacgtgc tacaatggtt ggtacaacga gttgcgagtc 

1201 ggtgacggca agctaatctc ttaaagccaa tctcagttcg gattgtaggc tgcaactcgc 

1261 ctacatgaag tcggaatcgc tagtaatcgc ggatcagcac gccgcggtga atacgttccc 

1321 gggccttgta cacaccgccc gtcacaccac gagagtttgt aacacccgaa g 

  

133 

 



Streptococcus salivarius strain Gt2 16S ribosomal RNA gene, partial sequence 
GenBank: KC796010.1 
LOCUS       KC796010                1039 bp    DNA     linear   BCT 06-APR-2013 
ORIGIN       

1 tgaagttgcg gcggctatac atgcaagtag aacgctgaag agaggagctt gctcttcttg 

61 gatgagttgc gaacgggtga gtaacgcgta ggtaacctgc cttgtagcgg gggataacta 

121 ttggaaacga tagctaatac cgcataacaa tggatgacac atgtcattta tttgaaaggg 

181 gcaattgctc cactacaaga tggacctgcg ttgtattagc tagtaggtga ggtaacggct 

241 cacctaggcg acgatacata gccgacctga gagggtgatc ggccacactg ggactgagac 

301 acggcccaga ctcctacggg aggcagcagt agggaatctt cggcaatggg ggcaaccctg 

361 accgagcaac gccgcgtgag tgaagaaggt tttcggatcg taaagctctg ttgtaagtca 

421 agaacgagtg tgagagtgga aagttcacac tgtgacggta gcttaccaga aagggacggc 

481 taactacgtg ccagcagccg cggtaatacg taggtcccga gcgttgtccg gatttattgg 

541 gcgtaaagcg agcgcaggcg gtttgataag tctgaagtta aaggctgtgg ctcaaccata 

601 gttcgctttg gaaactgtca aacttgagtg cagaagggga gagtggaatt ccatgtgtag 

661 cggtgaaatg cgtagatata tggaggaaca ccggtggcga aagcggctct ctggtctgta 

721 actgacgctg aggctcgaaa gcgtggggag cgaacaggat tagataccct ggtagtccac 

781 gccgtaaacg atgagtgcta ggtgttggat cctttccggg attcagtgcc gcagctaacg 

841 cattaagcac tccgcctggg gagtacgacc gcaaggttga aactcaaagg aattgacggg 

901 ggcccgcaca agcggtggag catgtggttt aattcgaagc aacgcgagaa ccttaccagg 

961 tcttgacatc ccgatgctat ttctagagat agaaagttac ttcggtacat cggtgacagg 

1021 tggtgcatgg ttgtcgtca 
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Streptococcus salivarius strain 7YE 16S ribosomal RNA gene, partial sequence 
GenBank: KC796009.1 
LOCUS       KC796009                1025 bp    DNA     linear   BCT 06-APR-2013 
ORIGIN       

1 cgtggggggg gtgctaatac atgcaagtag aacgctgaag agaggagctt gctcttcttg 

61 gatgagttgc gaacgggtga gtaacgcgta ggtaacctgc cttgtagcgg gggataacta 

121 ttggaaacga tagctaatac cgcataacaa tggatgactc atgtcattta tttgaaaggg 

181 gcaattgctc cactacaaga tggacctgcg ttgtattagc tagtaggtga ggtaacggct 

241 cacctaggcg acgatacata gccgacctga gagggtgatc ggccacactg ggactgagac 

301 acggcccaga ctcctacggg aggcagcagt agggaatctt cggcaatggg ggcaaccctg 

361 accgagcaac gccgcgtgag tgaagaaggt tttcggatcg taaagctctg ttgtaagtca 

421 agaacgagtg tgagagtgga aagttcacac tgtgacggta gcttaccaga aagggacggc 

481 taactacgtg ccagcagccg cggtaatacg taggtcccga gcgttgtccg gatttattgg 

541 gcgtaaagcg agcgcaggcg gtttgataag tctgaagtta aaggctgtgg ctcaaccata 

601 gttcgctttg gaaactgtca aacttgagtg cagaagggga gagtggaatt ccatgtgtag 

661 cggtgaaatg cgtagatata tggaggaaca ccggtggcga aagcggctct ctggtctgta 

721 actgacgctg aggctcgaaa gcgtggggag cgaacaggat tagataccct ggtagtccac 

781 gccgtaaacg atgagtgcta ggtgttggat cctttccggg attcagtgcc gcagctaacg 

841 cattaagcac tccgcctggg gagtacgacc gcaagtgttg aaactcaaag gaattgacgg 

901 gggcccgcac aagcggtgga gcatgtggtt taattcgaag caacgcgaag aaccttacca 

961 ggtctgacat cccgatgcta tttctagaga tagaaagtta cttcggtaca tcggtgacag 

1021 tgttg 
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Streptococcus salivarius strain SAM3 16S ribosomal RNA gene, partial sequence 
GenBank: KC796008.1 
LOCUS       KC796008                1021 bp    DNA     linear   BCT 06-APR-2013 
ORIGIN       

1 ggaagggcgg gtgctataca tgcaagtaga acgctgaaga gaggagcttg ctcttcttgg 

61 atgagttgcg aacgggtgag taacgcgtag gtaacctgcc ttgtagcggg ggataactat 

121 tggaaacgat agctaatacc gcataacaat ggatgactca tgtcatttat ttgaaagggg 

181 caattgctcc actacaagat ggacctgcgt tgtattagct agtaggtgag gtaacggctc 

241 acctaggcga cgatacatag ccgacctgag agggtgatcg gccacactgg gactgagaca 

301 cggcccagac tcctacggga ggcagcagta gggaatcttc ggcaatgggg gcaaccctga 

361 ccgagcaacg ccgcgtgagt gaagaaggtt ttcggatcgt aaagctctgt tgtaagtcaa 

421 gaacgagtgt gagagtggaa agttcacact gtgacggtag cttaccagaa agggacggct 

481 aactacgtgc cagcagccgc ggtaatacgt aggtcccgag cgttgtccgg atttattggg 

541 cgtaaagcga gcgcaggcgg tttgataagt ctgaagttaa aggctgtggc tcaaccatag 

601 ttcgctttgg aaactgtcaa acttgagtgc agaaggggag agtggaattc catgtgtagc 

661 ggtgaaatgc gtagatatat ggaggaacac cggtggcgaa agcggctctc tggtctgtaa 

721 ctgacgctga ggctcgaaag cgtggggagc gaacaggatt agataccctg gtagtccacg 

781 ccgtaaacga tgagtgctag gtgttggatc ctttccggga ttcagtgccg cagctaacgc 

841 attaagcact ccgcctgggg agtacgaccg caaggttgaa actcaaagga attgacgggg 

901 gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgaagaa ccttaccagg 

961 tcttgacatc ccgatgctat ttctagagat agaaagttac ttcggtacat cggtgacagt 

1021 g 
 

136 

 



APPENDIX G 

 

De novo amino acid sequencing of the major peaks detected in pure BLIS-NU10. A: 2068.0376Da; B: 2084.00

137 

 



Bibliography 

Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. and Dewhirst, F. E. (2005). Defining the 
normal bacterial flora of the oral cavity. J Clin Microbiol, 43(11), 5721-5732. doi: 
10.1128/JCM.43.11.5721-5732.2005 

Abee, T., Krockel, L. and Hill, C. (1995). Bacteriocins: modes of action and potentials in 
food preservation and control of food poisoning. Int J Food Microbiol, 28(2), 169-
185.  

Al-Mahrous, M. M. and Upton, M. (2011). Discovery and development of lantibiotics; 
antimicrobial agents that have significant potential for medical application. Expert 
Opin Drug Discov, 6(2), 155-170. doi: 10.1517/17460441.2011.545387 

Altena, K., Guder, A., Cramer, C. and Bierbaum, G. (2000). Biosynthesis of the lantibiotic 
mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ 
Microbiol, 66(6), 2565-2571.  

Anderssen, E. L., Diep, D. B., Nes, I. F., Eijsink, V. G. and Nissen-Meyer, J. (1998). 
Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide 
bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl 
Environ Microbiol, 64(6), 2269-2272.  

Apelgren, L. D. and Dajani, A. S. (1979). Purification of a streptococcal bacteriocin (viridin 
B) and its separation from alpha-hemolysin. Antimicrob Agents Chemother, 15(3), 
436-439.  

Bierbaum, G. and Sahl, H. G. (1993). Lantibiotics--unusually modified bacteriocin-like 
peptides from gram-positive bacteria. Zentralbl Bakteriol, 278(1), 1-22.  

Bierbaum, G. and Sahl, H. G. (2009). Lantibiotics: mode of action, biosynthesis and 
bioengineering. Curr Pharm Biotechnol, 10(1), 2-18.  

Bill, N. J. and Washington, J. A. (1975). Bacterial interference by Streptococcus salivarius. 
Am J Clin Pathol, 64(1), 116-120.  

Birri, D. J., Brede, D. A. and Nes, I. F. (2012). Salivaricin D, a novel intrinsically trypsin-
resistant lantibiotic from Streptococcus salivarius 5M6c isolated from a healthy 
infant. Appl Environ Microbiol, 78(2), 402-410. doi: 10.1128/AEM.06588-11 

Blackburn, P., J. Polak, S. A. Gusik, and S. D. Rubing. (1989). Nisin composition for use 
as enhanced broad range bactericides. International Patent Application publication 
WO 89112399.  

Bourbon, C., Bry, C., Roggemans, C., Soulard, C., Thizon, C. and Garbay, B. (2008). Use 
of a real-time polymerase chain reaction thermocycler to study bacterial cell 
permeabilization by antimicrobial peptides. Anal Biochem, 381(2), 279-281. doi: 
10.1016/j.ab.2008.07.005 

138 

 



Breukink, E., van Kraaij, C., Demel, R. A., Siezen, R. J., Kuipers, O. P. andde Kruijff, B. 
(1997). The C-terminal region of nisin is responsible for the initial interaction of 
nisin with the target membrane. Biochemistry, 36(23), 6968-6976. doi: 
10.1021/bi970008u 

Brotz, H., Bierbaum, G., Markus, A., Molitor, E. and Sahl, H. G. (1995). Mode of action of 
the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel 
mechanism? Antimicrob Agents Chemother, 39(3), 714-719.  

Brunden, K. R., Cramer, W. A. and Cohen, F. S. (1984). Purification of a small receptor-
binding peptide from the central region of the colicin E1 molecule. J Biol Chem, 
259(1), 190-196.  

Burton, J. P., Wescombe, P. A., Moore, C. J., Chilcott, C. N. and Tagg, J. R. (2006). Safety 
assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ 
Microbiol, 72(4), 3050-3053. doi: 10.1128/AEM.72.4.3050-3053.2006 

Carlsson, J., Grahnen, H., Jonsson, G. and Wikner, S. (1970). Early establishment of 
Streptococcus salivarius in the mouth of infants. J Dent Res, 49(2), 415-418.  

Castellano, P., Belfiore, C., Fadda, S. and Vignolo, G. (2008). A review of 
bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat 
produced in Argentina. Meat Sci, 79(3), 483-499. doi: 
10.1016/j.meatsci.2007.10.009 

Cheigh, C. I., Park, H., Choi, H. J. and Pyun, Y. R. (2005). Enhanced nisin production by 
increasing genes involved in nisin Z biosynthesis in Lactococcus lactis subsp. lactis 
A164. Biotechnol Lett, 27(3), 155-160. doi: 10.1007/s10529-004-7661-3 

Chikindas, M. L., Novak, J., Driessen, A. J., Konings, W. N., Schilling, K. M. and 
Caufield, P. W. (1995). Mutacin II, a bactericidal antibiotic from Streptococcus 
mutans. Antimicrob Agents Chemother, 39(12), 2656-2660.  

Chun, W. and Hancock, R. E. (2000). Action of lysozyme and nisin mixtures against lactic 
acid bacteria. Int J Food Microbiol, 60(1), 25-32.  

Cotter, P. D., Hill, C. and Ross, R. P. (2005). Bacterial lantibiotics: strategies to improve 
therapeutic potential. Curr Protein Pept Sci, 6(1), 61-75.  

Cotter, P. D., Hill, C. and Ross, R. P. (2005). Bacteriocins: developing innate immunity for 
food. Nat Rev Microbiol, 3(10), 777-788. doi: 10.1038/nrmicro1273 

De Carvalho, A. A., Mantovani, H. C. and Vanetti, M. C. (2007). Bactericidal effect of 
bovicin HC5 and nisin against Clostridium tyrobutyricum isolated from spoiled 
mango pulp. Lett Appl Microbiol, 45(1), 68-74. doi: 10.1111/j.1472-
765X.2007.02150.x 

De Kwaadsteniet, M., Ten Doeschate, K. and Dicks, L. M. (2008). Characterization of the 
structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis 

139 

 



subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl Environ 
Microbiol, 74(2), 547-549. doi: 10.1128/AEM.01862-07 

De Vos, W. M. (1996). Metabolic engineering of sugar catabolism in lactic acid bacteria. 
Antonie Van Leeuwenhoek, 70(2-4), 223-242.  

Delves-Broughton, J., Blackburn, P., Evans, R. J. and Hugenholtz, J. (1996). Applications 
of the bacteriocin, nisin. Antonie Van Leeuwenhoek, 69(2), 193-202.  

Ebisu, S., Kato, K., Kotani, S. and Misaki, A. (1975). Structural differences in fructans 
elaborated by Streptococcus mutans and Streptococcus. salivarius. J Biochem, 
78(5), 879-887.  

Eijsink, V. G., Skeie, M., Middelhoven, P. H., Brurberg, M. B. and Nes, I. F. (1998). 
Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ 
Microbiol, 64(9), 3275-3281.  

Fimland, G., Blingsmo, O. R., Sletten, K., Jung, G., Nes, I. F. and Nissen-Meyer, J. (1996). 
New biologically active hybrid bacteriocins constructed by combining regions from 
various pediocin-like bacteriocins: the C-terminal region is important for 
determining specificity. Appl Environ Microbiol, 62(9), 3313-3318.  

Fimland, G., Johnsen, L., Dalhus, B. and Nissen-Meyer, J. (2005). Pediocin-like 
antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: 
biosynthesis, structure, and mode of action. J Pept Sci, 11(11), 688-696. doi: 
10.1002/psc.699 

Flores, S. H. and Alegre, R. M. (2001). Nisin production from Lactococcus lactis A.T.C.C. 
7962 using supplemented whey permeate. Biotechnol Appl Biochem, 34(Pt 2), 103-
107.  

Furmanek, B., Kaczorowski, T., Bugalski, R., Bielawski, K., Bohdanowicz, J. and 
Podhajska, A. J. (1999). Identification, characterization and purification of the 
lantibiotic staphylococcin T, a natural gallidermin variant. J Appl Microbiol, 87(6), 
856-866.  

Garcera, M. J., Elferink, M. G., Driessen, A. J. and Konings, W. N. (1993). In vitro pore-
forming activity of the lantibiotic nisin. Role of protonmotive force and lipid 
composition. Eur J Biochem, 212(2), 417-422.  

Georgalaki, M. D., Van Den Berghe, E., Kritikos, D., Devreese, B., Van Beeumen, J., 
Kalantzopoulos, G., De Vuyst, L. and Tsakalidou, E. (2002). Macedocin, a food-
grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Appl 
Environ Microbiol, 68(12), 5891-5903.  

Gilmore, M. S., Skaugen, M. and Nes, I. (1996). Enterococcus faecalis cytolysin and 
lactocin S of Lactobacillus sake. Antonie Van Leeuwenhoek, 69(2), 129-138.  

Gonzalez-Toledo, S. Y., Dominguez-Dominguez, J., Garcia-Almendarez, B. E., Prado-
Barragan, L. A. and Regalado-Gonzalez, C. (2010). Optimization of nisin 

140 

 



production by Lactococcus lactis UQ2 using supplemented whey as alternative 
culture medium. J Food Sci, 75(6), M347-353. doi: 10.1111/j.1750-
3841.2010.01670.x 

Gross, E. and Morell, J. L. (1971). The structure of nisin. J Am Chem Soc, 93(18), 4634-
4635.  

Hammami, R., Zouhir, A., Le Lay, C., Ben Hamida, J. and Fliss, I. (2010). BACTIBASE 
second release: a database and tool platform for bacteriocin characterization. BMC 
Microbiol, 10, 22. doi: 10.1186/1471-2180-10-22 

Heng, N. C., Ragland, N. L., Swe, P. M., Baird, H. J., Inglis, M. A., Tagg, J. R. and Jack, 
R. W. (2006). Dysgalacticin: a novel, plasmid-encoded antimicrobial protein 
(bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. 
Microbiology, 152(Pt 7), 1991-2001. doi: 10.1099/mic.0.28823-0 

Heritage, J., Evans, E. G. V. and Killington, R. A. (1996). Introductory microbiology. 
Cambridge, Eng. ; New York: Cambridge University Press. 

Herzner, A. M., Dischinger, J., Szekat, C., Josten, M., Schmitz, S., Yakeleba, A., Reinartz, 
R., Jansen, A., et al. (2011). Expression of the lantibiotic mersacidin in Bacillus 
amyloliquefaciens FZB42. PLoS One, 6(7), e22389. doi: 
10.1371/journal.pone.0022389 

Hillman, J. D., Novak, J., Sagura, E., Gutierrez, J. A., Brooks, T. A., Crowley, P. J., Hess, 
M., Azizi, A., et al. (1998). Genetic and biochemical analysis of mutacin 1140, a 
lantibiotic from Streptococcus mutans. Infect Immun, 66(6), 2743-2749.  

Holo, H., Jeknic, Z., Daeschel, M., Stevanovic, S. and Nes, I. F. (2001). Plantaricin W from 
Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. 
Microbiology, 147(Pt 3), 643-651.  

Huot, E., Barrena-Gonzalez, C. and Petitdemange, H. (1996). Comparative effectiveness of 
nisin and bacteriocin J46 at different pH values. Lett Appl Microbiol, 22(1), 76-79.  

Hyink, O., Balakrishnan, M. and Tagg, J. R. (2005). Streptococcus rattus strain BHT 
produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS 
Microbiol Lett, 252(2), 235-241. doi: 10.1016/j.femsle.2005.09.003 

Hyink, O., Wescombe, P. A., Upton, M., Ragland, N., Burton, J. P. and Tagg, J. R. (2007). 
Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on 
a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus 
salivarius K12. Appl Environ Microbiol, 73(4), 1107-1113. doi: 
10.1128/AEM.02265-06 

Islam, M. R., Nagao, J., Zendo, T. and Sonomoto, K. (2012). Antimicrobial mechanism of 
lantibiotics. Biochem Soc Trans, 40(6), 1528-1533. doi: 10.1042/BST20120190 

Jack, R. W. and Jung, G. (2000). Lantibiotics and microcins: polypeptides with unusual 
chemical diversity. Curr Opin Chem Biol, 4(3), 310-317.  

141 

 



Jack, R. W., Tagg, J. R. and Ray, B. (1995). Bacteriocins of gram-positive bacteria. 
Microbiol Rev, 59(2), 171-200.  

Johanson, W. G., Jr., Blackstock, R., Pierce, A. K. and Sanford, J. P. (1970). The role of 
bacterial antagonism in pneumococcal colonization of the human pharynx. J Lab 
Clin Med, 75(6), 946-952.  

Kang, J. G., Kim, S. H. and Ahn, T. Y. (2006). Bacterial diversity in the human saliva from 
different ages. J Microbiol, 44(5), 572-576.  

Kleerebezem, M. and Hugenholtz, J. (2003). Metabolic pathway engineering in lactic acid 
bacteria. Curr Opin Biotechnol, 14(2), 232-237.  

Kleerebezem, M., Quadri, L. E., Kuipers, O. P. and de Vos, W. M. (1997). Quorum sensing 
by peptide pheromones and two-component signal-transduction systems in Gram-
positive bacteria. Mol Microbiol, 24(5), 895-904.  

Klocke, M., Mundt, K., Idler, F., Jung, S. and Backhausen, J. E. (2005). Heterologous 
expression of enterocin A, a bacteriocin from Enterococcus faecium, fused to a 
cellulose-binding domain in Escherichia coli results in a functional protein with 
inhibitory activity against Listeria. Appl Microbiol Biotechnol, 67(4), 532-538. doi: 
10.1007/s00253-004-1838-5 

König, Helmut, Unden, Gottfried and Fröhlich, Jürgen. (2009). Biology of microorganisms 
on grapes, in must and in wine. Berlin: Springer. 

Kordel, M., Schuller, F. and Sahl, H. G. (1989). Interaction of the pore forming-peptide 
antibiotics Pep 5, nisin and subtilin with non-energized liposomes. FEBS Lett, 
244(1), 99-102.  

Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G., Luesink, E. J. and de Vos, W. M. 
(1995). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal 
transduction. J Biol Chem, 270(45), 27299-27304.  

Lee, J. H., Li, X. and O'Sullivan, D. J. (2011). Transcription analysis of a lantibiotic gene 
cluster from Bifidobacterium longum DJO10A. Appl Environ Microbiol, 77(17), 
5879-5887. doi: 10.1128/AEM.00571-11 

Liu, W., Zheng, H., Wu, Z. and Wang, Y. (2010). Effects of pH profiles on nisin 
fermentation coupling with foam separation. Appl Microbiol Biotechnol, 85(5), 
1401-1407. doi: 10.1007/s00253-009-2217-z 

Lucas, R., Grande, M. A., Abriouel, H., Maqueda, M., Ben Omar, N., Valdivia, E., 
Martinez-Canamero, M. and Galvez, A. (2006). Application of the broad-spectrum 
bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and 
vegetable foods. Food Chem Toxicol, 44(10), 1774-1781. doi: 
10.1016/j.fct.2006.05.019 

142 

 



Lv, W., Zhang, X. and Cong, W. (2005). Modelling the production of nisin by Lactococcus 
lactis in fed-batch culture. Appl Microbiol Biotechnol, 68(3), 322-326. doi: 
10.1007/s00253-005-1892-7 

Makarova, K. S. and Koonin, E. V. (2007). Evolutionary genomics of lactic acid bacteria. J 
Bacteriol, 189(4), 1199-1208. doi: 10.1128/JB.01351-06 

Mantovani, H. C., Hu, H., Worobo, R. W. and Russell, J. B. (2002). Bovicin HC5, a 
bacteriocin from Streptococcus bovis HC5. Microbiology, 148(Pt 11), 3347-3352.  

Mantovani, H. C. and Russell, J. B. (2008). Bovicin HC5, a lantibiotic produced by 
Streptococcus bovis HC5, catalyzes the efflux of intracellular potassium but not 
ATP. Antimicrob Agents Chemother, 52(6), 2247-2249. doi: 10.1128/AAC.00109-
08 

Maqueda, M., Galvez, A., Bueno, M. M., Sanchez-Barrena, M. J., Gonzalez, C., Albert, A., 
Rico, M. and Valdivia, E. (2004). Peptide AS-48: prototype of a new class of cyclic 
bacteriocins. Curr Protein Pept Sci, 5(5), 399-416.  

Martin, N. I., Sprules, T., Carpenter, M. R., Cotter, P. D., Hill, C., Ross, R. P. and Vederas, 
J. C. (2004). Structural characterization of lacticin 3147, a two-peptide lantibiotic 
with synergistic activity. Biochemistry, 43(11), 3049-3056. doi: 10.1021/bi0362065 

Martinez, M. C., Lazdunski, C. and Pattus, F. (1983). Isolation, molecular and functional 
properties of the C-terminal domain of colicin A. EMBO J, 2(9), 1501-1507.  

McAuliffe, O., Ryan, M. P., Ross, R. P., Hill, C., Breeuwer, P. and Abee, T. (1998). 
Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the 
membrane potential. Appl Environ Microbiol, 64(2), 439-445.  

McCarthy, C., Snyder, M. L. and Parker, R. B. (1965). The indigenous oral flora of man. I. 
the newborn to the 1-year-old infant. Arch Oral Biol, 10, 61-70.  

Michel, B. (2005). After 30 years of study, the bacterial SOS response still surprises us. 
PLoS Biol, 3(7), e255. doi: 10.1371/journal.pbio.0030255 

Moll, G. N., Roberts, G. C., Konings, W. N. and Driessen, A. J. (1996). Mechanism of 
lantibiotic-induced pore-formation. Antonie Van Leeuwenhoek, 69(2), 185-191.  

Moreno, F., Gonzalez-Pastor, J. E., Baquero, M. R. and Bravo, D. (2002). The regulation of 
microcin B, C and J operons. Biochimie, 84(5-6), 521-529.  

Morgan, S. M., O'Connor P, M., Cotter, P. D., Ross, R. P. and Hill, C. (2005). Sequential 
actions of the two component peptides of the lantibiotic lacticin 3147 explain its 
antimicrobial activity at nanomolar concentrations. Antimicrob Agents Chemother, 
49(7), 2606-2611. doi: 10.1128/AAC.49.7.2606-2611.2005 

Morris, S. L., Walsh, R. C. and Hansen, J. N. (1984). Identification and characterization of 
some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and 
antibiotic action. J Biol Chem, 259(21), 13590-13594.  

143 

 



Mortvedt, C. I., Nissen-Meyer, J., Sletten, K. and Nes, I. F. (1991). Purification and amino 
acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl 
Environ Microbiol, 57(6), 1829-1834.  

Mota-Meira, M., Lacroix, C., LaPointe, G. and Lavoie, M. C. (1997). Purification and 
structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. 
FEBS Lett, 410(2-3), 275-279.  

Mulders, J. W., Boerrigter, I. J., Rollema, H. S., Siezen, R. J. and de Vos, W. M. (1991). 
Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. 
Eur J Biochem, 201(3), 581-584.  

Nakayama, K., Takashima, K., Ishihara, H., Shinomiya, T., Kageyama, M., Kanaya, S., 
Ohnishi, M., Murata, T., et al. (2000). The R-type pyocin of Pseudomonas 
aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol 
Microbiol, 38(2), 213-231.  

Nes, I. F., Diep, D. B. and Holo, H. (2007). Bacteriocin diversity in Streptococcus and 
Enterococcus. J Bacteriol, 189(4), 1189-1198. doi: 10.1128/JB.01254-06 

Ni, J., Teng, K., Liu, G., Qiao, C., Huan, L. and Zhong, J. (2011). Autoregulation of 
lantibiotic bovicin HJ50 biosynthesis by the BovK-BovR two-component signal 
transduction system in Streptococcus bovis HJ50. Appl Environ Microbiol, 77(2), 
407-415. doi: 10.1128/AEM.01278-10 

Nicolas, G. G., LaPointe, G. and Lavoie, M. C. (2011). Production, purification, 
sequencing and activity spectra of mutacins D-123.1 and F-59.1. BMC Microbiol, 
11, 69. doi: 10.1186/1471-2180-11-69 

Nissen-Meyer, J., Holo, H., Havarstein, L. S., Sletten, K. and Nes, I. F. (1992). A novel 
lactococcal bacteriocin whose activity depends on the complementary action of two 
peptides. J Bacteriol, 174(17), 5686-5692.  

Orla-Jensen, Sigurd. (1919). The lactic acid bacteria. Københaven,: A. F. Høst. 

Pajohi, M. R., Tajik, H., Farshid, A. A. and Hadian, M. (2011). Synergistic antibacterial 
activity of the essential oil of Cuminum cyminum L. seed and nisin in a food model. 
J Appl Microbiol. doi: 10.1111/j.1365-2672.2011.04946.x 

Papagianni, M. and Anastasiadou, S. (2009). Pediocins: The bacteriocins of Pediococci. 
Sources, production, properties and applications. Microb Cell Fact, 8, 3. doi: 
10.1186/1475-2859-8-3 

Perin, L. M., Moraes, P. M., Silva, A., Jr. and Nero, L. A. (2012). Lantibiotics biosynthesis 
genes and bacteriocinogenic activity of Lactobacillus spp. isolated from raw milk 
and cheese. Folia Microbiol (Praha), 57(3), 183-190. doi: 10.1007/s12223-012-
0113-x 

144 

 



Piard, J. C., Kuipers, O. P., Rollema, H. S., Desmazeaud, M. J. and de Vos, W. M. (1993). 
Structure, organization, and expression of the lct gene for lacticin 481, a novel 
lantibiotic produced by Lactococcus lactis. J Biol Chem, 268(22), 16361-16368.  

Pilsl, H. and Braun, V. (1995). Strong function-related homology between the pore-forming 
colicins K and 5. J Bacteriol, 177(23), 6973-6977.  

Pongtharangkul, T. and Demirci, A. (2006). Effects of fed-batch fermentation and pH 
profiles on nisin production in suspended-cell and biofilm reactors. Appl Microbiol 
Biotechnol, 73(1), 73-79. doi: 10.1007/s00253-006-0459-6 

Qi, F., Chen, P. and Caufield, P. W. (2000). Purification and biochemical characterization 
of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic 
analysis of mutacin I biosynthesis genes. Appl Environ Microbiol, 66(8), 3221-
3229.  

Robson, C. L., Wescombe, P. A., Klesse, N. A. and Tagg, J. R. (2007). Isolation and partial 
characterization of the Streptococcus mutans type AII lantibiotic mutacin K8. 
Microbiology, 153(Pt 5), 1631-1641. doi: 10.1099/mic.0.2006/003756-0 

Rodriguez, J. M. and Dodd, H. M. (1996). Genetic determinants for the biosynthesis of 
nisin, a bacteriocin produced by Lactococcus lactis. Microbiologia, 12(1), 61-74.  

Ross, K. F., Ronson, C. W. and Tagg, J. R. (1993). Isolation and characterization of the 
lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 
20P3. Appl Environ Microbiol, 59(7), 2014-2021.  

Sahl, H. G. (1994). Staphylococcin 1580 is identical to the lantibiotic epidermin: 
implications for the nature of bacteriocins from gram-positive bacteria. Appl 
Environ Microbiol, 60(2), 752-755.  

Sahl, H. G., Jack, R. W. and Bierbaum, G. (1995). Biosynthesis and biological activities of 
lantibiotics with unique post-translational modifications. Eur J Biochem, 230(3), 
827-853.  

Sanders, C. C. and Sanders, W. E., Jr. (1982). Enocin: an antibiotic produced by 
Streptococcus salivarius that may contribute to protection against infections due to 
group A streptococci. J Infect Dis, 146(5), 683-690.  

Sass, P., Jansen, A., Szekat, C., Sass, V., Sahl, H. G. and Bierbaum, G. (2008). The 
lantibiotic mersacidin is a strong inducer of the cell wall stress response of 
Staphylococcus aureus. BMC Microbiol, 8, 186. doi: 10.1186/1471-2180-8-186 

Schagger, H. (2006). Tricine-SDS-PAGE. Nat Protoc, 1(1), 16-22. doi: 
10.1038/nprot.2006.4 

Schnell, N., Engelke, G., Augustin, J., Rosenstein, R., Ungermann, V., Gotz, F. and Entian, 
K. D. (1992). Analysis of genes involved in the biosynthesis of lantibiotic 
epidermin. Eur J Biochem, 204(1), 57-68.  

145 

 



Sherman, J. M., Niven, C. F. and Smiley, K. L. (1943). Streptococcus salivarius and other 
non-hemolytic streptococci of the human throat. J Bacteriol, 45(3), 249-263.  

Siezen, R. J., Rollema, H. S., Kuipers, O. P. and de Vos, W. M. (1995). Homology 
modelling of the Lactococcus lactis leader peptidase NisP and its interaction with 
the precursor of the lantibiotic nisin. Protein Eng, 8(2), 117-125.  

Simmonds, R. S., Simpson, W. J. and Tagg, J. R. (1997). Cloning and sequence analysis of 
zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory 
substance having a domain structure similar to that of lysostaphin. Gene, 189(2), 
255-261.  

Strauch, E., Kaspar, H., Schaudinn, C., Damasko, C., Konietzny, A., Dersch, P., Skurnik, 
M. and Appel, B. (2003). Analysis of enterocoliticin, a phage tail-like bacteriocin. 
Adv Exp Med Biol, 529, 249-251. doi: 10.1007/0-306-48416-1_48 

Swe, P. M., Cook, G. M., Tagg, J. R. and Jack, R. W. (2009). Mode of action of 
dysgalacticin: a large heat-labile bacteriocin. J Antimicrob Chemother, 63(4), 679-
686. doi: 10.1093/jac/dkn552 

Tagg, J. R. (2013). Personal communication.  

Tagg, J. R. and Bannister, L. V. (1979). "Fingerprinting" beta-haemolytic streptococci by 
their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol, 
12(4), 397-411.  

Tagg, J. R., Pybus, V., Phillips, L. V. and Fiddes, T. M. (1983). Application of inhibitor 
typing in a study of the transmission and retention in the human mouth of the 
bacterium Streptococcus salivarius. Arch Oral Biol, 28(10), 911-915.  

Tagg, J. R. and Wannamaker, L. W. (1978). Streptococcin A-FF22: nisin-like antibiotic 
substance produced by a group A streptococcus. Antimicrob Agents Chemother, 
14(1), 31-39.  

Takada, K., Hayashi, K., Sasaki, K., Sato, T. and Hirasawa, M. (2006). Selectivity of Mitis 
Salivarius agar and a new selective medium for oral streptococci in dogs. J 
Microbiol Methods, 66(3), 460-465. doi: 10.1016/j.mimet.2006.01.011 

Tiwari, S. K. and Srivastava, S. (2008). Purification and characterization of plantaricin 
LR14: a novel bacteriocin produced by Lactobacillus plantarum LR/14. Appl 
Microbiol Biotechnol, 79(5), 759-767. doi: 10.1007/s00253-008-1482-6 

Tolonen, M., Saris, P. E. and Siika-Aho, M. (2004). Production of nisin with continuous 
adsorption to Amberlite XAD-4 resin using Lactococcus lactis N8 and L. lactis 
LAC48. Appl Microbiol Biotechnol, 63(6), 659-665. doi: 10.1007/s00253-003-
1413-5 

Tsang, P., Merritt, J., Nguyen, T., Shi, W. and Qi, F. (2005). Identification of genes 
associated with mutacin I production in Streptococcus mutans using random 

146 

 



insertional mutagenesis. Microbiology, 151(Pt 12), 3947-3955. doi: 
10.1099/mic.0.28221-0 

Turner, D. L., Brennan, L., Meyer, H. E., Lohaus, C., Siethoff, C., Costa, H. S., Gonzalez, 
B., Santos, H., et al. (1999). Solution structure of plantaricin C, a novel lantibiotic. 
Eur J Biochem, 264(3), 833-839.  

Udompijitkul, P., Paredes-Sabja, D. and Sarker, M. R. (2012). Inhibitory effects of nisin 
against Clostridium perfringens food poisoning and nonfood-borne isolates. J Food 
Sci, 77(1), M51-56. doi: 10.1111/j.1750-3841.2011.02475.x 

Upton, M., Tagg, J. R., Wescombe, P. and Jenkinson, H. F. (2001). Intra- and interspecies 
signaling between Streptococcus salivarius and Streptococcus pyogenes mediated 
by SalA and SalA1 lantibiotic peptides. J Bacteriol, 183(13), 3931-3938. doi: 
10.1128/JB.183.13.3931-3938.2001 

Van der Meer, J. R., Polman, J., Beerthuyzen, M. M., Siezen, R. J., Kuipers, O. P. and De 
Vos, W. M. (1993). Characterization of the Lactococcus lactis nisin A operon genes 
nisP, encoding a subtilisin-like serine protease involved in precursor processing, 
and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol, 
175(9), 2578-2588.  

Van Heusden, H. E., de Kruijff, B. and Breukink, E. (2002). Lipid II induces a 
transmembrane orientation of the pore-forming peptide lantibiotic nisin. 
Biochemistry, 41(40), 12171-12178.  

Vaughan, E. E., van den Bogaard, P. T., Catzeddu, P., Kuipers, O. P. and de Vos, W. M. 
(2001). Activation of silent gal genes in the lac-gal regulon of Streptococcus 
thermophilus. J Bacteriol, 183(4), 1184-1194. doi: 10.1128/JB.183.4.1184-
1194.2001 

Wan, X., Li, R., Saris, P. E. and Takala, T. M. (2012). Genetic characterisation and 
heterologous expression of leucocin C, a class IIa bacteriocin from Leuconostoc 
carnosum 4010. Appl Microbiol Biotechnol. doi: 10.1007/s00253-012-4406-4 

Wescombe, P. A., Burton, J. P., Cadieux, P. A., Klesse, N. A., Hyink, O., Heng, N. C., 
Chilcott, C. N., Reid, G., et al. (2006). Megaplasmids encode differing 
combinations of lantibiotics in Streptococcus salivarius. Antonie Van Leeuwenhoek, 
90(3), 269-280. doi: 10.1007/s10482-006-9081-y 

Wescombe, P. A., Dyet, K. H., Dierksen, K. P., Power, D. A., Jack, R. W., Burton, J. P., 
Inglis, M. A., Wescombe, A. L., et al. (2012). Salivaricin G32, a homolog of the 
prototype Streptococcus pyogenes nisin-like lantibiotic SA-FF22, produced by the 
commensal species Streptococcus salivarius. Int J Microbiol, 2012, 738503. doi: 
10.1155/2012/738503 

Wescombe, P. A., Hale, J. D., Heng, N. C. and Tagg, J. R. (2012). Developing oral 
probiotics from Streptococcus salivarius. Future Microbiol, 7(12), 1355-1371. doi: 
10.2217/fmb.12.113 

147 

 



Wescombe, P. A. and Tagg, J. R. (2003). Purification and characterization of streptin, a 
type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol, 
69(5), 2737-2747.  

Wescombe, P. A., Upton, M., Dierksen, K. P., Ragland, N. L., Sivabalan, S., Wirawan, R. 
E., Inglis, M. A., Moore, C. J., et al. (2006). Production of the lantibiotic salivaricin 
A and its variants by oral streptococci and use of a specific induction assay to detect 
their presence in human saliva. Appl Environ Microbiol, 72(2), 1459-1466. doi: 
10.1128/AEM.72.2.1459-1466.2006 

Wescombe, P. A., Upton, M., Renault, P., Wirawan, R. E., Power, D., Burton, J. P., 
Chilcott, C. N. and Tagg, J. R. (2011). Salivaricin 9, a new lantibiotic produced by 
Streptococcus salivarius. Microbiology, 157(Pt 5), 1290-1299. doi: 
10.1099/mic.0.044719-0 

Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O. P., Bierbaum, G., de Kruijff, B. 
and Sahl, H. G. (2001). Specific binding of nisin to the peptidoglycan precursor 
lipid II combines pore formation and inhibition of cell wall biosynthesis for potent 
antibiotic activity. J Biol Chem, 276(3), 1772-1779. doi: 10.1074/jbc.M006770200 

Willey, J. M. and van der Donk, W. A. (2007). Lantibiotics: peptides of diverse structure 
and function. Annu Rev Microbiol, 61, 477-501. doi: 
10.1146/annurev.micro.61.080706.093501 

Wilson-Stanford, S. and Smith, L. (2011). Commercial development and application of 
type A lantibiotics. Recent Pat Antiinfect Drug Discov, 6(2), 175-185.  

Wirawan, R. E., Klesse, N. A., Jack, R. W. and Tagg, J. R. (2006). Molecular and genetic 
characterization of a novel nisin variant produced by Streptococcus uberis. Appl 
Environ Microbiol, 72(2), 1148-1156. doi: 10.1128/AEM.72.2.1148-1156.2006 

Wirawan, R. E., Swanson, K. M., Kleffmann, T., Jack, R. W. and Tagg, J. R. (2007). 
Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. 
Microbiology, 153(Pt 5), 1619-1630. doi: 10.1099/mic.0.2006/005967-0 

Xiao, H., Chen, X., Chen, M., Tang, S., Zhao, X. and Huan, L. (2004). Bovicin HJ50, a 
novel lantibiotic produced by Streptococcus bovis HJ50. Microbiology, 150(Pt 1), 
103-108.  

Xie, L. and van der Donk, W. A. (2004). Post-translational modifications during lantibiotic 
biosynthesis. Curr Opin Chem Biol, 8(5), 498-507. doi: 10.1016/j.cbpa.2004.08.005 

Ye, S. Y., Koponen, O., Qiao, M., Immonen, T. and Saris, P. E. (1995). NisP is related to 
nisin precursor processing and possibly to immunity in Lactococcus lactis. J Tongji 
Med Univ, 15(4), 193-197.  

Yonezawa, H. and Kuramitsu, H. K. (2005). Genetic analysis of a unique bacteriocin, Smb, 
produced by Streptococcus mutans GS5. Antimicrob Agents Chemother, 49(2), 541-
548. doi: 10.1128/AAC.49.2.541-548.2005 

148 

 



Yuzenkova, J., Delgado, M., Nechaev, S., Savalia, D., Epshtein, V., Artsimovitch, I., 
Mooney, R. A., Landick, R., et al. (2002). Mutations of bacterial RNA polymerase 
leading to resistance to microcin j25. J Biol Chem, 277(52), 50867-50875. doi: 
10.1074/jbc.M209425200 

Zendo, T., Fukao, M., Ueda, K., Higuchi, T., Nakayama, J. and Sonomoto, K. (2003). 
Identification of the lantibiotic nisin Q, a new natural nisin variant produced by 
Lactococcus lactis 61-14 isolated from a river in Japan. Biosci Biotechnol Biochem, 
67(7), 1616-1619.  

Zendo, T., Yoneyama, F. and Sonomoto, K. (2010). Lactococcal membrane-permeabilizing 
antimicrobial peptides. Appl Microbiol Biotechnol, 88(1), 1-9. doi: 10.1007/s00253-
010-2764-3 

Zhao, M. (2011). Lantibiotics as probes for phosphatidylethanolamine. Amino Acids, 41(5), 
1071-1079. doi: 10.1007/s00726-009-0386-9 

 

149 

 


	Inside cover
	ORIGINAL LITERARY WORK DECLARATION 17Sep13
	“For with God nothing shall be impossible”

	17Sep13 Final
	Table 4.9: Induction of inhibitor production by S. salivarius strains NU10, YU10, K12 and nisin-producing strain ATCC11454 using crude preparations, purified FPLC-fraction of BLIS-NU10 and nisin.
	Chapter Five Discussion
	Streptococcus salivarius strain NU10 16S ribosomal RNA gene, partial sequence
	Streptococcus salivarius strain YU10 16S ribosomal RNA gene, partial sequence
	Streptococcus salivarius strain Gt2 16S ribosomal RNA gene, partial sequence
	Streptococcus salivarius strain 7YE 16S ribosomal RNA gene, partial sequence
	Streptococcus salivarius strain SAM3 16S ribosomal RNA gene, partial sequence


