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APPENDIX A 

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM (MOEA) 

 

At present, there are two main optimization approaches for multi-objective optimization 

problems (MOOPs) which are the derivative-based and derivative-free methods. The 

derivative-based schemes, such as Newton’s and conjugate gradient (CG) methods, have 

long been used in engineering applications. Meanwhile, the derivative-free optimization, 

such as, Evolutionary Algorithm (EA), Monte Carlo methods, Tabu search (TS) and 

Simulated Annealing (SA) are mostly employed in the field of control, machine 

intelligence and CAD/CAM (Marion, Michel, & Faye, 2006; Masoum, Ladjevardi, 

Jafarian, & Fuchs, 2004). Compared to the derivative-based approach, the functional 

derivative of a given objective is not necessary for derivative-free approach since it relies 

on repeated evaluation of the objective functions and identifies the search direction under 

nature-inspired heuristic guidelines. Although the derivative-free methods are generally 

slower than derivative-based methods in term of computer execution, the former are much 

more effective for complicated objective functions and combinatorial problems than the 

latter.  

 

EA is a stochastic search technique, whose search mechanisms mimic the natural evolution 

and the Darwinian concept of survival of the fittest (Goldberg, 1989). EA embodies the 

techniques of genetic algorithms (GAs), evolutionary strategies (ES) and evolutionary 

programming (EP). Originally, EA is proposed to solve the single-objective optimization 

problems (Goldberg, 1989; Holland, 1975); subsequently it was developed for MOOPs. 
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MOEAs deal with a set of possible solutions, the so-called “population”, simultaneously. 

 

Figure A.1  Family of search techniques 

 

 

The search process of MOEAs takes place between two spaces, namely, decision variable 

space and objective function space, simultaneously. MOEAs search for solution vectors x 

within the feasible region S and evaluate the objective function vectors     based on 

Pareto dominance relation. Therefore, many Pareto optimal solutions are found within a 

single run of the algorithm instead of performing a series of separate runs as in the case of 

the traditional mathematical programming techniques (Coello, 1999). Additionally, 

MOEAs can easily deal with discontinuous Pareto fronts, whereas these are the real 

concern for single-objective approach and aggregating approach. MOEAs also have ability 

to search the partially ordered spaces for several alternatives trade-off. In the past decades, 

many researchers successfully used MOEAs to find good solutions for the complex 

MOOPs in medical, scientific and engineering field of research. 
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A.1 THE STRUCTURE OF EVOLUTIONARY ALGORITHMS  

 

In the EAs, the evolution process is executed using evolutionary operators. Firstly, a 

solution vector (individual), i.e. solution x, is coded using strings of characters which are 

referred to as “chromosome”. A chromosome x is made up of N bit partitions. One bit 

partition corresponds to one decision variable of the problem, i.e.   . Due to natural 

selection process of EA, good solutions (fit individual) of the current generation, i.e. 

iteration, will be selected and reproduced by performing the genetic operators in order to 

create the better solutions for the next generation. The reproduction processes are operated 

by slightly changing some values in the bit partition of good solutions (fit individual) in 

order to explore the neighboring search space and to promote the propagation of desired 

characteristics from generation to generation. The standard procedure of EAs is displayed 

in Figure A.2 and explained as follows: 

 

Step 1 Create individuals for initial population  

Step 2 Decode chromosomes of individuals to obtain solution vectors of the problem 

Step 3 Calculate the objective value of solution vectors 

Step 4 Calculate the fitness of individuals using the obtained objective values. 

Step 5 Select a parent population from the current population based on the fitness value of 

individuals 
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Step 6 Produce an offspring population from a parent population using crossover operator 

and mutation operator 

Step 7 Go back to step 2 until a termination condition, i.e. number of iteration, is satisfied.  

Completion of one loop from steps 2 to 6 is accounted for one generation of algorithm run. 

The detailed explanation for genetic operators is given in the next section.   

  

Figure A.2 Standard procedure of EAs 
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A.2 EVOLUTIONARY OPERATORS 

 

(a) Population Initiation Operator 

As previously stated, population is made up of a set of solution vectors which coded as the 

strings of characters or chromosomes. Many chromosome coding techniques has been 

proposed such as binary coding, integer coding, and real-number. This study employed the 

real-number coding which is the newly developed technique and found to improve the 

running time of algorithms. However, an explanation of the binary coding is provided to 

give some fundamental explanations of how evolutionary operators work. 

 

Basically, a chromosome x is made up of N bit partitions. One bit partition corresponds to 

one decision variable of the problem, i.e.   . For example, we consider a solution vector x 

having 3 decision variables or 3 bit partitions, i.e.   [      ] . According to the 

binary coding, decision maker has to design bit partition’s length. Suppose that the bit 

partitions’ lengths are 4, 5 and 6 for partition 1, 2 and 3, respectively. And given that 

   [    ],    [   ] and    [   ]. By randomly generating the binary values, a 

chromosome x can be illustrated as follows: 

    

   (    )   ( 
 )   (  )   (  )   (  )      Given   ,    and    are 

corresponding decoded decimal numbers of binary bit partitions of   ,    and    

respectively and are simply evaluated as follows: 
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   (    )   ( 
 )   (  )   (  )   (  )     

     (     )     and    (      )     

Then    can be simply decoded as the following equation: 

      
    (  

    
 ) (     ) (A.1) 

 

where   
 ,   

  and    are the lower limit, upper limit and length of corresponding bit 

partition of xi. Thus a solution vector x is decode as   [               ] . Using 

the real-number coding, the solution x can be directly coded by the real-coded chromosome 

with three bit partition of which any bit i directly represents   . According to this example, 

a solution vector   [               ]  is coded by 3 bit partitions chromosome as 

follows: 

 

Next an encoded individual will be calculated its objective values and evaluated its fitness 

value. 

 

(b) Fitness Evaluation Operator 

In the case that the optimized objectives are expressed in mathematic form, the fitness of 

individual is firstly evaluated by its objective values. The fitness evaluation of single-

objective EAs is quite easy because it depends on the type of problem, i.e. either 

maximization or minimization problems. Maximizing rate of returns function, for instance, 
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the fitness of this objective has positive relation with its objective value. In the case of 

maximization problem, a fitness of an individual is equal to a constant plus its objective 

value. Meanwhile, for the minimization problem, the fitness of an individual is equal to a 

constant minus its objective value. The chosen values of the constant in both types must be 

able to guarantee that a fitness value of individuals is positive. 

 

Pareto-based fitness evaluation, on the other hand, is performed in the objective function 

space based on the Pareto dominance relation. For example, considering two objectives 

optimization problem which both objectives will be minimized, i.e. Min-Min optimization, 

the objective values of individuals will be computed and projected on the two-dimension 

objective function diagram. Then, MOEAs compare objective values of individuals and 

assign ranking to individuals according to its dominance power.  There are various ranking 

techniques proposed in the literature, such as, dominance rank, dominance count and 

dominance depth. Dominance count method, for instance, assigns rank to the considered 

individual relative to how many individuals in population does the considered individual 

dominate. Thus, the higher the assigned number the fitter the solution. Dominance depth 

technique assigns rank to the considered individual relative to which front or layer is the 

considered individual resided. Hence, the lower the front’s number the fitter the individual. 

The graphical illustrations of dominance rank and dominance count method are displayed 

in Figure A.3 and Figure A.4, respectively.  
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Figure A.3 Dominance count method for Min-Min optimization problem 

 

[Source: Coello, Lamont, and Van Veldhuizen (2007)] 
 

 

 

Figure A.4. Dominance depth method for Min-Min optimization problem 

 

[Source: Coello, Lamont, and Van Veldhuizen (2007)] 
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(c) Selection Operator 

The selection operator is performed after the fitness assignment is done. The goal of the 

selection operator is to keep the fit individuals, i.e. good solutions, for either reproducing 

offspring solutions or representing the next generation solutions and to eliminate the weak 

individuals from the current population. There are several selection techniques that are 

usually implemented in MOEAs such as tournament selection, roulette wheel selection and 

stochastic universal sampling (SUS). For the tournament selection, which is widely used in 

the literature, the q solutions are randomly picked from the population. Then, the best 

solution among q solutions is selected. For example, in the Binary Tournament selection 

which is the most common used in MOEAs, two solutions (q = 2) are selected and 

compared. Then, the better solution is selected. The selection is repeated until the selection 

criterion is fulfilled.  

 

(d) Crossover Operator 

An EA explores the search space by reproducing the new individuals from the fit 

individuals. The crossover operator is used to guide the searching direction toward the true 

Pareto front. In crossover process, two fit individuals, referred to as parent individuals, are 

randomly picked out. Then, the elements in the chromosome of parents are passed onto two 

offspring individuals. Three widely implemented crossover techniques including n-point 

crossover, uniform crossover and simulated binary crossover (SBX) are illustrated here. 

The first two techniques are used for binary chromosomes, while the last one is used for 

real-number coded chromosomes. 

 



209 

 

n-point crossover 

This crossover is operated on two randomly selected parent individuals. The crossover 

positions are randomly chosen from the numbers that range between 1 and L – 1 where L is 

the chromosome length. Figure A.5 and Figure A.6 illustrate the single-point crossover and 

the three-point crossover, respectively. For single-point crossover, the elements of 

chromosome behind the crossover point are split and swapped with the counterpart 

individual. In three-point crossover, split and swap processes are conducted three times to 

create a pair of offspring individuals. 

 

Figure A.5 Single-point crossover 

 

Figure A.6 Three-point crossover 
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Uniform crossover 

In this technique, two parents are randomly selected and then assign “head” to one parent 

and “tail” to another parent. Next, randomly generate numbers between 0 and 1 for 

elements along the chromosome of the first offspring. By considering at each element, if 

the generated number of an element less than 0.5, the value of this element will be inherited 

from “head parent” and the value of this element of the second offspring will be transferred 

from “tail parent”.  his assignment process is curried on until the last element of the first 

offspring is assessed. A schematic diagram describing uniform crossover is given in Figure 

A.7 

 

Figure A.7 Uniform crossover 

 

 

 Simulated binary crossover 

The simulated binary crossover (SBX) (Deb & Agrawal, 1995) adapts the one-point 

crossover on binary strings for real-number coded chromosomes. In this crossover, a 

probability distribution is used around parent solutions to create two offspring solutions. As 

an example for one-bit real-coded chromosome without lower and upper bound, offspring 
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individuals 1

iy  and 2

iy  are computed from parent individuals 1

ix  and 2

ix  where 1

ix   2

ix . 

They are created by the use of a probability distribution around the parent individuals. The 

absolute difference values of offspring divided by that of the parent is a spread factor i and 

given by the following equation: 

 2 1

2 1

i i
i

i i

y y

x x






 (A.2) 

 

The probability distribution used to created offspring individuals has a similar search power 

as that of a single-point crossover in the binary-coded chromosomes. The probability 

distribution is given by the Equation (A.3) and its profile is shown in the Figure 3.6.  
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 (A.3) 

 

where c is the distribution index which can be any non-negative real number. The value of 

c has an effect on the distance between parent and offspring individuals which will be 

described later. From the Equation (A.3),  
0

1iP 


 ,  
1

0
0.5i  , and  

1
0.5i


  . 

In each crossover, a number u from 0 to 1 is randomly generated, then the parameter 
iu  is 

found so that the area under curve  i  from 0 to 
iu  is equal to u or  

0

ui

i u


  . The 

iu  can be evaluated from the integral which is given by the following equation: 
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After 
iu  is obtained, the offspring individuals 1

iy  and 2

iy  can be computed by Equation 

(A.5) and Equation (A.6), respectively. 

         
 

1 1 20.5 1 1
i ii u i u iy x x  (A.5) 

         
 

2 1 20.5 1 1
i ii u i u iy x x  (A.6) 

 

From Equation (A.5) and Equation (A.6), it can be noted that 2 1 2 1( )/( )
ii i i i uy y x x     as in 

the Equation (A.2). Figure 3.7 shows a probability density distribution with c = 2 and 5 for 

creating offspring individuals from two parent individuals 1

ix  = 1.0 and 2

ix  = 3.0. A large 

value of c gives a higher probability for creating near parent individuals and a small value 

of c allows distant solutions to be selected as children individuals. 

 

In the case that lower and upper boundaries (x
l
 and x

u
) are specified, two parameter 1

iu  and 

2

iu  are evaluated by Equation (A.7) and Equation (A.8), then, they are used to calculate 1

iy  

and 2

iy  respectively. 
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 (A.8) 

 

where the parameters 1  and 2  are evaluated according to Equation (A.9) and Equation 

(A.10), respectively. 

      1

1 1 1 1 2 12 ,  1 2c lx x x x


  
 

       (A.9) 

      1

2 2 2 2 2 12 ,  1 2c ux x x x


  
 

       (A.10) 

 

Thus, the offspring individuals 1

iy  and 2

iy  can be calculated by the Equation (A.11) and 

Equation (A.12), respectively. 

 

     1 1 2 1 2 10.5
ii i i u i iy x x x x     (A.11) 

        2 1 2 2 2 10.5
ii i i u i iy x x x x  (A.12) 

 

The above description is the derivation of the SBX crossover for single-bit chromosomes. 

For multiple-bit chromosomes, similar to a uniform crossover in binary-code chromosome, 

two parent genes 1

ix  and 2

ix  at a same location are crossed by a probability 0.5. If the 

crossover is permitted, the parents are crossed to obtain offspring genes 1

iy  and 2

iy  as 
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single-bit chromosomes, 1

iy  and 2

iy  are randomly switched to produce corresponding genes 

of offspring chromosomes. 

Figure A.8  Probability distribution for creating offspring individuals 
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 [Source: Deb & Agrawal (1995)] 

 

(e) Mutation Operator 

A mutation operator is used to transform offspring individuals in order to promote a search 

at a neighboring area which has certain distance away from the original search point of 

parent individuals. It is used to maintain the diversity of individuals in a population 

resulting in prevention of the premature convergence of solution. Similar to crossover, the 

mutation of an offspring individual is also governed by the mutation probability. In the 

mutation, the randomly generated number having value between 0 and 1 is assigned to each 

element in an offspring’s chromosome. In the case that the assigned number of a particular 

gene is less than or equal to the mutation probability, this gene is mutated, otherwise it 
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remains unchanged. Two mutation methods for binary-coded and real-number coded 

chromosomes are presented as follows. 

 

Bit-flipped mutation 

For a binary chromosome, a mutation can be achieved by reversing the allele value of a 

gene. Figure A.9 illustrates bit-flipped mutation process which the mutation site is located 

at the element 4 of the chromosome. Thus the value at this element changes from 1 to 0. 

Similar to the crossover operation, mutation will not be operated to every elements of the 

chromosome. The mutation sites are chosen from the mutation probability of elements.  

 

Figure A.9 Bit-flipped mutation for four mutation sites 

 

 

Variable-Wise Polynomial Mutation 

For real-coded chromosomes, a polynomial probability distribution is used to create a gene 

y in a mutated individual the vicinity of a corresponding gene x in an offspring individual 

(Deb, 1997). In the case of no lower and upper boundaries, firstly a random number u 

whose value is from 0 to 1 is generated. The parameter   is calculated as the following 

equation: 
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where m  is the distribution index for mutation and takes any non-negative value. The gene 

y is evaluated as the following equation: 

   maxy x  (A.14) 

 

where max  is the maximum perturbation allowed in the considering gene in the offspring 

individual. For the gene whose lower and upper boundaries (x
l
 and x

u
) are specified, the 

equation of parameter   is changed as following equation: 
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 (A.15) 

 

where min[( ),( )] /( )l u u lx x x x x x      and max

u lx x   . The defined value of  

guarantees that no mutated genes are outside the range [x
l
, x

u
]. In Equation (A.14) and 

Equation (3.23), the mutated gene y is in the negative and positive sides of the 

corresponding gene x for u < 0.5 and u > 0.5, respectively. In addition, the value of 

normalized perturbation    / u ly x x x   or   is the same order as that of 1/m (Deb & 

Gulati, 2001). This implies that, for example, in order to get mutation effect of 5% 

perturbation in mutated genes, m should be set to 20. 
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A.3 THE NON-DOMINATED SORTING GENETIC ALGORITHM II (NSGA-II) 

 

A fast elitist non-dominated sorting genetic algorithm (NSGA-II) purposed by Deb, et al. 

(2002) is quite different from the original algorithm, a non-dominated sorting genetic 

algorithm (NSGA) (Srinivas & Deb, 1994). Only the ranking technique of the previous 

version is remain unchanged and used in NSGA-II. This improved version does not require 

a niching parameter (share) to maintain the diversity since it is found as a weak point when 

it is incorporated in a MOEA as in the NSGA. To maintain diversity of solutions, NSGA-II 

proposed a crowding distance sorting. Its procedure is as follows: 

 

A.3.1 NSGA-II Main Algorithm 

1. Create random initial population Pt of size N and set t = 0. 

2. Compute fitness functions and evaluate fitness of individuals in the population 

3. Assign rank for an individual in the population Pt. 

4. Evaluate a crowding distance of an individual of each rank in Pt. The crowding 

distance of an individual indicates diversity of the individual. 

5. Select parent population (At) from the current population Pt by binary selection 

which judges by rank and crowding distance value. For each time of binary 

selection, two solutions are randomly selected, if the ranks of the solutions are not 

equal, the solution with higher rank will be chosen. If their ranks are equal, for 
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diversity of parent population (At), the solution with more crowding distance value 

is chosen. 

6. Apply crossover and mutation to At to form offspring population Qt of size N. 

7. Merge the current population Pt and offspring population Qt to form a merged 

population Rt of size 2N. 

8. Compute fitness functions and evaluate fitness of individuals in the merged 

population Rt 

9. Assign rank for an individual and evaluate crowding distance of each individual in 

the merged population Rt. 

10. Obtain a new population Pt+1 of size N from Rt of size 2N by using NSGA-II 

truncation method. 

11. Check a termination condition. If the condition is satisfied, the algorithm is stop, the 

non-dominated solutions of final population Pt+1 is the output of the algorithm, 

otherwise increase t to t+1 and go back to 3. 

Three unique processes of NSGA-II including rank assignment, crowding distance 

evaluation and NSGA-II truncation will be described below. 

 

A.3.2 NSGA-II Rank Assignment 

As previously stated, a rank assignment of the non-dominated sorting genetic algorithm II 

(NSGA-II) is same as that of the original version. In the original algorithm, for a solution 
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set P of size N, non-dominated solutions have the highest rank (rank = 1), they are then 

removed from the set. Subsequently, the non-dominated solutions of the remaining set are 

assigned the next rank or rank 2, and are removed from the current solution set again. The 

ranking process is repeated again until the remaining solution set is empty. The NSGA-II 

presents the fast non-dominated sorting for its ranking as the following pseudo-code in 

Figure A.10. 

 

Figure A.10  Pseudo-code of fast-non-dominated sorting 

Fast-non-dominated-sorting (P) 
For each p  P 

   Sp =  

   F1 =  

   np = 0 

      For each q  P 

         If (p  q) then   # If p dominates q 

            Sp = Sp   [q]                         # Add q to the set of solutions dominated by p 

         Else if (q  p) then  # p belongs to the first rank 

            np = np+1 

      If np = 0 then 

         rankp = 1 

         F1 = F1   [p] 

i =1     # Initialize the front counter 

while Fi   

   Q =                 # Used to store the members of the next rank 

   For each p  Fi 

      For each q  Sp 

         nq = nq-1 

         if nq = 0 then   # q belongs to the next rank 

            rankq = i+1 

            Q = Q   [q] 

   i = i + 1  

   Fi = Q 
 

 [Source: Deb, et al. (2002)] 
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According to Deb (2005), the sorting procedure can be explained as follows. Firstly, for 

each solution, calculations for two entities are performed. The firs entity is domination 

count that is the number of solutions which dominate the solution i. The second entity is Sp 

which is a set of solutions which the solution i dominates. At the end of this procedure, all 

solutions in the first non-dominated front will have their domination count as zero. Now, 

for each of these solutions (each solution i with ni = 0), we visit each member (j) of its set 

Sp, and reduce its domination count by one. In doing so, if for any member j the domination 

count becomes zero, we put it in a separate list Q. After such modifications on Sp are 

performed for each i with n = 0, all solutions of Q would belong to the second non-

dominated front. The above procedure can be continued with each member of Q and the 

third non-dominated front can be identified. This process continues until all solutions are 

classified. 

 

A.3.3 Crowding Distance Evaluation 

NSGA-II proposed a crowding distance for diversity preservation of solutions in a 

population. The niching parameter (share) of the original NSGA is replaced with a crowd 

comparison method, which sort the population according to the crowding distance of 

objective values. The crowd comparison method does not require any user-defined 

parameter such as sharing factor for maintaining diversity among population members. The 

crowding distance evaluation requires sorting the population according to each objective 

function. After that a crowding distance of a solution corresponding to each objective 

function is evaluated. The corresponding crowding distance of a boundary solution is equal 

to infinity, while, that of an interior solution is equal to the absolute normalized difference 
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in the function values of two adjacent solutions. Figure A.11 shows the difference of two 

adjacent solutions of a non-extreme solution i in objective j ( j

id ), where min

jf  and max

jf  are 

the minimum and maximum values of objective function j. The corresponding crowding 

distance of the interior solution i for objective j ( j

icd ) is given by Equation (A.16). 

 

 max min

j
j i

i j j

d
cd

f f



 (A.16) 

   

Figure A.11  Corresponding crowding distance to objective  j 

max

jfmin

jf
i

j
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After the corresponding crowding distance of an individual to each objective is obtained, 

the overall crowding distance of the individual is computed as the sum of its corresponding 

crowding distance for each objective function. The crowding distance of a solution i (cdi) 

for an K-objective optimization problem is given by the following equation: 

 

    ∑   
 

 

   

 (A.17) 

The crowding distance is used not only in the binary selection but also in the truncation. 

The truncation of NSGA-II will be described in the following topic. 
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A.3.4 NSGA-II Truncation Method 

After the merging of the current population Pt and offspring population Qt, the new 

population Pt+1 of size N is picked out from the merged population Rt of size 2N by NSGA-

II truncation operator. At first, members of the merged population Rt is sorted according to 

their ranks from the highest rank (rank 1) to the lowest rank, afterward, Pt+1 is formed. If 

the number of members in rank 1 is less than N, all members in the rank are put into the 

Pt+1, then, members in a next rank, rank 2, are considered to be chosen into Pt+1, the 

consideration for the rank is similar to that for the rank 1. If the number of members of rank 

1 and rank 2 is less than N, all members in the rank are chosen, then, the members in the 

next rank are considered. The process is repeated until in the rank i such that the 

accumulated number of members of rank 1 to rank i is more than or equal to N. If the 

number is equal to N, the process is finished; otherwise if the number is more than N, the 

first members with the most crowding distances are fully filled Pt+1. The procedure of 

NSGA-II truncation is also described in Figure A.12. 

Figure A.12  NSGA-II truncation 
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[Source: Deb, et al. (2002)] 
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A.4 IMPROVED STRENGTH PARETO EVOLUTIONARY ALGORITHM (SPEA-

II) 

 

An improved strength Pareto evolutionary algorithm (SPEA-II) (Zitzler, et al., 2002) is a 

upgraded version of the strength Pareto evolutionary algorithm (SPEA) (Zitzler & Thiele, 

1999a). This new version has three major differences from the previous version. Firstly, it 

incorporates a fine-grained fitness assignment strategy which takes into account for each 

individual the number of individuals that dominate it and the number of individuals that it 

dominates. The second improvement is to use the nearest neighbor density estimation 

technique for guiding the more efficient search. The last point is to ensure the preservation 

of boundary solutions by using the enhanced archive truncation method. Given N
pop

 and 

N
arc

 is population size and archive size, unlike the original algorithm SPEA, the number of 

individuals in archive of SPEA-II is constant in every generation. The overall algorithm of 

SPEA-II is as the follows: 

 

A.4.1 SPEA-II Main Algorithm 

1. Create random initial population Pt of size N
pop

 and create the empty archive 

(external set) A0, set t = 0. 

2. Merge current population Pt and current archive At to form merged population Rt 

and then calculate fitness values of individuals in Rt. 

3. Put all non-dominated solutions from Rt to the new archive At+1. If size of At+1 is 

bigger than archive size N
arc

 then reduce At+1 by using truncation operator, if size of 

At+1 is equal to N
arc

 stop and go to the next step, otherwise, if size of At+1 is smaller 
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than N
arc

 then fill At+1 with the best 
1 t

arc AN   dominated individuals in Rt. 

4. Check a termination condition. If the condition is satisfied, the algorithm is stop, the 

non-dominated solutions of final archive At+1 is the output of the algorithm, 

otherwise go to the next step. 

5. Perform binary tournament selection with replacement on the current archive At+1 in 

order to fill the mating pool. In SPEA-II, only fitness values are consider in the 

binary selection. 

6. Apply crossover and mutation operators to the mating pool and set Pt+1 as the 

resulting population. Increase the generation counter by one, and then go back to 

Step 2. 

The details of fitness assignment and archive truncation will be described below. 

 

A.4.2 SPEA-II Fitness Assignment 

At first, an individual i in merged population Rt is assigned its strength Si as the number of 

solutions in Rt that it dominates. Si is described as the following equation: 

  i tS j j R i j    (A.18) 

After strengths of all individuals in Rt are obtained, a raw fitness value of an individual i or 

RFi is equal to the sum of strengths of individuals that dominate it. RFi is computed by the 

following equation: 

 

  t

i j

j R j i

RF S
 

   (A.19) 
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It is important to note that a raw fitness of a non-dominated individual is equal to zero. 

Although the raw fitness assignment provides a reasonable measurement based on the 

concept of Pareto domination, it may be fail when most individuals do not dominate each 

other. Therefore, a diversity value of an individual is incorporated to discriminate 

individuals with identical raw fitness values. The diversity value of an individual is 

evaluated from the density estimation technique, which is an adaptation of the k-th nearest 

neighbor method (Coello, 2001), where the density of a point i is inverse variation of its k-

th nearest distance or k

id . Therefore, in SPEA-II, the density of an individual i or Di is 

simply taken to the inverse of k

id , where k is equal to square root of the data size (Coello, 

2001), i.e. k = 
arcpop NN  . An individual with large density means that there are many 

neighboring point near it. Therefore, if the individual is selected, it contributes a little 

diversity to the mating pool. This implies that a density of an individual i or Di is to be 

minimized as the raw fitness RFi. The fitness or Fi is then equal to the sum of its raw fitness 

RFi and its density Di, hence the fitness Fi is also to be minimized. In addition, the 

evaluations of Di and Fi can be described by Equation (A.20) and Equation (A.21), 

respectively. 

 

The main goal of MOEAs developers is to upgrade the algorithms in order to provide the 

solutions which are close to the true Pareto front and well-diversified along the true Pareto 

front. The innovations of algorithms mostly deal with improving the fitness evaluation 

operator and the diversity preservation technique. For example, fitness assignment of 

NSGA-II and SPEA-II is evaluated based on dominance depth and dominance count 
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method, respectively. For diversity preservation technique, NSGA-II uses the crowding 

distance technique, while SPEA-II employs nearest neighbor density estimation technique.  

 1

2
i k

i

D
d




 (A.20) 

 
i i iF RF D   (A.21) 

In Equation (A.20), value of two is added to k

id  in order to ensure that the value of Di is 

more than zero and less than one. In addition, the fitness of a non-dominated individual is 

less than one, while the fitness of dominated individual is more than or equal one. 

 

A.4.3 SPEA-II Archive Truncation 

Although Zitzler, et al., 2002 stated that the archive truncation of SPEA-II differs from that 

of its predecessor SPEA in the respect that it can prevent loss of extreme individuals which 

may happen by the clustering selection in SPEA. By detailed consideration, it prevents this 

loss only in a two objectives optimization problem, on the other hand, an extreme 

individual may be removed from the archive for a three-or-more objectives optimization 

problem. After non-dominated individuals of size more than the archive size N
arc

 in merged 

population Rt are put into the archive At+1, the archive truncation will iteratively removes 

individuals from the archive At+1 until arc

t NA 1
. For each iterative removal, an individual 

i is chosen to be removed from At+1 if for all j  At+1, i ≤d j. The notation i ≤d j is described 

by the following equation: 
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(A.22) 

 

where k

id  denotes the k
th

 nearest distance from i to its neighbor in current At+1. The first 

condition in the above equation means that the objective vectors of i is the same as that of j. 

While the other condition can be described that the individual which has the minimum 

distance to another individual is chosen at each stage, if there are several individuals with 

minimum distance, the tie is broken by considering the second nearest distance and so on.  

 


