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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

 

In portfolio selection theory, a rational investor who seeks to maximize his expected utility 

encounters the optimization problem of choosing a portfolio from a feasible set of 

competing alternatives that maximize his end-of-period wealth. The mean-variance (MV) 

analysis (Markowitz, 1952) provides investors the principle of the portfolio selection 

theory. To achieve the MV efficient portfolios, the bi-objective optimization problem is 

solved by maximizing the expected returns and minimizing the variance simultaneously. 

Among a set of MV efficient portfolios, the portfolio choices of investors depend on their 

trade–off between risk and returns. In other words, an investor chooses his preferred 

portfolio based upon individual preference for risk and returns which is theoretically 

described by the utility function. 

 

However, unrealistic assumptions that the MV analysis relies on have been widely 

criticized in the literature. The major shortcoming is its ability to handle the asymmetric 

distribution of asset returns. It is assumed by the MV model that asset returns are normally 

distributed during the period of analysis and parameterized by only the mean and variance 

of the return distributions. However, ample evidences reveal that the return distributions are 

non-normal (Amaya & Vasquez, 2010; Arditti, 1967; Bates, 1996; Bekaert & Harvey, 
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2002; Black, 1976; Campbell & Hentschel, 1992; Canela & Collazo, 2007; Chen, Hong, & 

Stein, 2001; Christie, 1982; Chunhachinda, Dandapani, Hamid, & Prakash, 1997; Fielitz, 

1976; French, Schwert, & Stambaugh, 1987; Gennotte & Leland, 1990; Gibbons, Ross, & 

Shanken, 1989; Grossman, 1989; Hwang & Satchell, 1999; Jorion, 1988; Prakash, Chang, 

& Pactwa, 2003; Simkowitz & Beedles, 1978; Singleton & Wingender, 1986; Wang, 

Meric, Liu, & Meric, 2009). Although, Levy and Markowitz (1979) argued that the MV 

model might maximize the expected utility, even when return distributions are not normal, 

if the variation in rate of returns is relatively small. This idea is acceptable but very costly 

in practice because portfolio rebalancing is required frequently.    

 

In addition, the MV model assumes that an investor’s preference can be described by a 

preference function over the mean and the variance of the portfolio return. This implies that 

the utility of the investor is approximated by the quadratic function. Although, the quadratic 

utility function satisfies the non-satiation and risk aversion property, the critical invalidity 

is that it exhibits an increasing absolute risk aversion for all level of wealth (Bierwag, 1974; 

Blume & Friend, 1975; Borch, 1974; Friend & Blume, 1975). In the context of portfolio 

selection, decreasing absolute risk aversion for wealth implies that when an agent 

experiences an increase in wealth, he will increase the portion of risky asset in his portfolio. 

In a contrary, an investor with increasing absolute risk aversion for wealth will reduce the 

proportion of risky asset in portfolio when facing the same situation. The latter case is an 

unreasonable behavior in the real economy.  Besides, another shortcoming of a quadratic 

utility is the bounded range of possible outcome. Since positive marginal utility is 

acknowledged as a desirable property of any utility function, quadratic utility is consistent 
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with this property in some range of wealth (Hanoch & Levy, 1970; Levy, 1974). These 

evidences suggest that the use of quadratic utility should be restricted. 

 

Moreover, the MV analysis assumes that asset prices follow a diffusion or stochastic 

process in an investor’s decision. As a consequence, based on Itõ’s lemma which is an 

identity used in Itõ calculus for finding the differential of a time-dependent function of a 

stochastic process, moments higher than the second order are not relevant in the investment 

decision. However, Samuelson (1970) demonstrated that an investor’s decision is actually 

restricted to a discrete time horizon, therefore, efficiency of the MV model could be 

inadequate for making an investment decision and higher moments should not be neglected 

in portfolio selection.  

 

1.2 WHY SKEWNESS PREFERENCE MATTERS? 

 

Statistically, skewness is a measure of the asymmetry of the probability distribution of a 

random variable. Its value can be either unbounded positive or negative. In the case of a 

normal distribution, skewness is zero. For a distribution with positive skewness, the tail on 

the right side of the probability density function is longer than that on the left and the mass 

of the distribution is concentrated on the left side of the distribution. For the distribution 

with negative skewness, the left tail of the probability density function is longer and the 

mass is concentrated on the right side of the distribution. In the context of investment 

alternative, a security exhibiting positive skewness in its return distribution has the chances 
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of gaining extreme positive returns. On the other hand, the probabilities of potential large 

loss are inherited in an asset with a return distribution of negative skewness. Hence, 

intuitively, rational investors would prefer a security that possesses a return distribution 

with higher skewness, if the mean and the variance are equal.  

 

Theoretically, the preference for positive skewness can be examined, if investor utility is 

described by a preference function over the mean, standard deviation, and skewness of the 

portfolio return distributions. The majority of researchers developed the skewness 

preference theory based upon the third-order Taylor’s series approximation of the expected 

utility. This approach is favored among researchers and economists because it is consistent 

with the desirable properties of utility function described by Arrow (1964) and Pratt (1964). 

These properties include (a) positive marginal utility for wealth, i.e., non-satiety, (b) 

decreasing marginal utility for wealth, i.e., risk aversion, and (c) non-increasing absolute 

risk aversion for wealth, i.e., risky assets are not inferior good.      

 

Among the pioneer works on skewness preference theory, Aditti (1967) demonstrated that 

an investor whose utility can be approximated by the third-order Taylor’s expansion around 

the expected value will prefer positive skewness in asset returns. He theoretically explained 

that skewness preference is not a gambling behavior but is a common trait for a rational 

risk-averse investor. Subsequently, Levy (1969) demonstrated that skewness preference can 

be proved even when the risk aversion assumption in Arditti’s work is relaxed. He showed 

that at a low level of wealth, utility of an investor is concave but will converge to convex 

when his wealth has accumulated beyond a certain level.  In addition, various forms of 
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utility function such as negative exponential, constant elastic function, hyperbolic absolute 

risk aversion and log function were analyzed using the Taylor’s series expansion to 

establish the skewness preference theory (Ingersoll, 1975; Kane, 1982; Tsiang, 1972). 

Moreover, Scott and Horvath (1980) showed that investors who exhibit positive marginal 

utility, consistent a risk aversion for all wealth levels and strictly consistent moment 

preference will prefer assets with positive skewness in the return distributions. 

 

Apart from the expected utility model, a collection of empirical papers on asset pricing 

provides the evidences that contribute to the skewness preference theory. Following the 

influential contributions by Arditti (1967), Samuelson (1970), and Tsiang (1972), several 

authors developed the expected return models that incorporate the skewness variable within 

the context of capital asset pricing. Rubinstein (1973) and Kraus and Litzenberger (1976) 

established an equilibrium three-moment capital asset pricing model (CAPM) to show that 

systematic co-skewness is priced. Subsequently, a number of papers verified the model of 

Kraus and Litzenberger (1976) in different perspectives (Friend & Westerfield, 1980; 

Galagedera & Brooks, 2007; Lim, 1989; Sears & Wei, 1985, 1988). In addition, Harvey 

and Siddique (2000) proposed a three-moment CAPM that is focused upon the conditional 

co-skewness. They demonstrated that co-skewness of portfolios is priced and the average 

annualized skewness premium of monthly U.S. equities for the period of July 1963 to 

December 1993 is 3.60 percent. Subsequently, their model was applied to the U.S. stock 

market (Smith, 2007) and the data of Australian stock market (Doan, Lin, & Zurbruegg, 

2010). It was found that the rates of returns of securities were significantly explained by a 

conditional co-skewness factor. These results reinforce the implication of skewness 
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preference on asset pricing by confirming that investors do trade expected return for 

skewness. 

 

1.3 IMPACT OF SKEWNESS PREFERENCE ON PORTFOLIO CHOICE 

 

While the preference for skewness of return distributions in portfolio choice is evidently 

pronounced and its implication on asset pricing is widely documented, the impact of 

skewness preference on finding the optimal portfolio choice remains undisclosed. In fact, 

an introduction of skewness to portfolio selection brings about a new research direction in 

portfolio optimization problem, leading to the mean-variance-skewness (MVS) analysis. In 

this framework, an investor whose utility that can be approximated by a third-order 

Taylor’s series expansion constructs a portfolio to maximize expected return, minimize risk 

and maximize skewness simultaneously (Arditti & Levy, 1975; Jean, 1971, 1973). The 

MVS portfolio optimization problem (hereafter, MVS-POP) is tri-objective and consists of 

two non-linear objective functions, i.e. variance and skewness, whose objectives compete 

and conflict with each other. From the optimization point of view, a portfolio that optimizes 

three objectives at the same time does not exist. Instead, analogous to the MV-POP, a set of 

trade-off portfolios is usually searched in the multi-dimension moment spaces. 

 

When the number of objectives to be optimized increases from two (MV) to three (MVS), 

the searching mechanism of an optimization technique becomes more complex because the 

search space has expanded from two-dimension (2D) to three-dimension (3D). In the early 
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stage of solving the MVS-POP, various mathematical derivations were proposed for 

attaining MVS efficient portfolios and defining the shape of MVS efficient surface, but, 

experiment on the real data remained unattainable due to computation restriction (Arditti & 

Levy, 1975; Jean, 1971, 1973). In the last few decades, various techniques have been 

applied for solving this problem. These techniques can be categorized into two approaches, 

i.e. single-objective optimization approach (Konno, Shirakawa, & Yamazaki, 1993; Konno 

& Suzuki, 1995; Ryoo, 2006) and aggregating approach (Canela & Collazo, 2007; 

Chunhachinda et al., 1997; Lai, 1991; Prakash et al., 2003; Yu, Wang, & Lai, 2008). 

However, disadvantages of using these approaches for solving a multi-objective 

optimization problem are widely acknowledged in the field of operation research (Athan & 

Papalambros, 1996; Das & Dennis, 1997; Marler & Arora, 2004; Messac, Puemi-Sukam, & 

Melachrinoudis, 2000). 

 

The most critical shortcoming of these approaches is that there is no guarantee that the 

obtained solutions represent the global optima or efficient solutions, especially when 

dealing with a class of non-concave maximization problem, such as maximizing the 

skewness function of the MVS-POP. It is severe because the notion of efficiency is central 

to portfolio theory. Basically, when choosing among a feasible set of competing portfolio 

choices, rational investors who act to maximize their expected utility will consider only the 

portfolios in the efficient set. Investors with different demand functions and degree of 

preference may select different choice of efficient portfolios, but none of them will choose 

the inefficient portfolios. Briec and Kerstens (2010) argued that a clear idea on portfolio 

choices and relative preference can be developed by investors when they can view the 

efficient portfolios graphically displayed on the MVS space. In the similar vein, Mitton and 
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Vorkink (2007, p. 1274) suggested that “to assess MVS efficiency of a portfolio, ideally, 

MVS efficient frontier would be constructed using return characteristics of available stocks 

at times of portfolio formation. However, the large number of computation required to 

construct this frontier in three dimensions makes this approach intractable”. It is observed 

that, the ability of the techniques that were proposed and implemented in the research in 

finance is limited for performing this ideal procedure. As a result, the impact of skewness 

on portfolio choice cannot be accurately analyzed if the MVS-POP is solved by using either 

the single-objective optimization approach or aggregating approach. 

 

1.4 THE APPLICATION OF MVS ANALYSIS IN ELECTRICITY MARKET 

 

In a deregulated electricity market, the power generation company (Genco) has to decide 

how to allocate its production among various types of trading instruments for profit 

maximization. Since a Genco has limited production capacity, generation asset allocation 

among the trading instruments is an important decision. During the last decade, the MV 

analysis of Markowitz (1952) was applied for solving the optimal electricity allocation 

problems (Donghan, Deqiang, Jin, & Yixin, 2007; Hatami, Seifi, & Sheikh-El-Eslami, 

2011; Liu & Wu, 2006; Liu & Wu, 2007a, 2007b; Xiaohong, Jiang, Feng, & Guoji, 2008). 

The problem involves allocation of the generated electricity to several customers in 

different markets to maximize the Genco’s utility. In their works, it was assumed that a 

Genco of interest operates within a deregulated energy market by trading its electricity 

through physical trading instruments, i.e. spot market, day-ahead market and forward 

contract.  
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However, the finance literature suggests that skewness of return distributions cannot be 

neglected in an asset allocation decision unless there is a reason to believe that the 

distributions are symmetric and investor utility is a function of only the mean and variance 

(Harvey & Siddique, 2000; Kraus & Litzenberger, 1976; Samuelson, 1970). Besides, many 

theoretical papers suggested that utility functions that satisfy the non-increasing absolute 

risk aversion condition (Arrow, 1964; Pratt, 1964) exhibit a preference for skewness in 

return distributions (Arditti, 1967; Kane, 1982; Levy, 1969; Tsiang, 1972). In the electricity 

market, several authors provided the evidences that the distribution of electricity spot prices 

is not normal but skewed (Benth, Cartea, & Kiesel, 2008; Bessembinder & Lemmon, 2002; 

Cartea & Villaplana, 2008; Hajiabadi & Mashhadi, 2013; Longstaff & Wang, 2004; Lucia 

& Torró, 2011; Redl, Haas, Huber, & Böhm, 2009).  

 

In addition, the preference for positive skewness can be observed from the agents in the 

electricity markets. A number of studies showed that the forward premium is positively 

related with skewness of the spot price distribution (Bessembinder & Lemmon, 2002; 

Douglas & Popova, 2008; Longstaff & Wang, 2004; Lucia & Torró, 2011; Parsons & De 

Roo, 2008; Redl et al., 2009; Viehmann, 2011). As a result, electricity allocation under the 

MV analysis may no longer be sufficient to obtain efficient solutions. According to these 

observations, the electricity allocation problem should be established under the MVS 

portfolio model. In other words, the electricity allocation problem should be formulated as 

a MVS-POP where the expected return, variance and skewness are optimized 

simultaneously. 
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1.5 RESEARCH QUESTIONS 

 

This research has the following questions: 

1. How to solve the MVS efficient portfolio allocation problem in the multi-dimension 

space? 

2. How does the introduction of skewness into the portfolio selection problem affect 

the risk-return trade-off?  

3. What are the impacts of skewness preference on the portfolio choice? 

4. What are the implications for the application of the MVS analysis when the number 

of trading choices is small? 

 

1.6 RESEARCH OBJECTIVES 

 

To find the answers to the research questions stated above, this research has the following 

objectives: 

1. To demonstrate how multi-objective evolutionary algorithms are applicable for 

solving problems in MVS efficient portfolio allocation in the multi-dimension 

space. 

2. To examine the risk-return trade-off and the characteristics of MVS efficient 

portfolios. 
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3. To investigate the impacts of skewness preference on the efficient portfolio choice 

by developing a single-period model that allows for a heterogeneous degree of risk 

aversion and skewness preference.  

4. To examine the applicability of the MVS analysis for solving portfolio selection 

problems when the number of trading choices is small. 

 

1.7 ORGANIZATION OF THE THESIS 

 

This thesis consists of seven chapters. This chapter discusses the background and 

motivations of the thesis. The second chapter provides a literature review on the skewness 

preference theory and its implications with the aim to highlight three research gaps. Chapter 

3 explains the conceptual framework, formulated optimization problem, and methodology 

used to achieve the research objectives as well as provides a discussion on the data used. 

Chapter 4 and Chapter 5 demonstrated how the MVS efficient portfolios are obtained from 

the proposed techniques in the three-dimension space with an application to the stock 

market. In addition, the characteristics of MVS efficient portfolios are examined and 

discussed in Chapter 4. Then, the impacts of skewness preference on the efficient portfolio 

choice are investigated and the results are reported in Chapter 5. Chapter 6 demonstrates 

the application of the MVS analysis for solving the electricity allocation problem, where 

the number of trading choices is small. The results are discussed in the context of a 

Generation Company in the electricity market. Finally, Chapter 7 summarizes the major 

findings of the thesis and discusses their implications.      
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

 

The literature review of this thesis is divided into six sections. The development of the 

skewness preference theory is documented in Section 2.2. Section 2.3 reviews the studies 

that discuss the impact of skewness preference on the decision of portfolio holding. The 

explanation of the underlying causes of skewness in a stock market is given in Section 2.4. 

Section 2.5 surveys the application of portfolio models for solving the electricity allocation 

problem of generation companies in the electricity market. A brief discussion on the 

techniques used by other researchers for solving multi-objective portfolio optimization 

problems is given in Section 2.6. Finally, the research gaps in the literature are highlighted 

in Section 2.7. 

 

2.2 SKEWNESS PREFERENCE THEORY 

  

Empirical evidence reveals that skewness preference plays an importance role in 

understanding various risk-taking behaviors of an economic agent. A number of researchers 

have attempted to develop the theoretical explanation from different perspective and 

different approaches. 
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2.2.1 Expected Utility Theory 

In economics and finance, the expected utility maximization is the most popular approach 

to the problem of choice under uncertainty. The principle of expected utility maximization 

explains that in considering a set of completing feasible investment alternatives, a rational 

decision maker (DM) selects a choice that maximizes his expected utility of wealth.  

  

In the context of portfolio, suppose that a DM at time 0 has to make decision about his 

portfolio choice that will be held until the end of period 1, and there are N available assets 

whose returns are denoted by 𝑅𝑖 where 𝑖 = 1, … , 𝑁. If initial wealth is denoted by 𝑊0, his 

wealth at the end of period 1 (𝑊1) is defined as:  

  𝑊1 = (1 + ∑ 𝑤𝑖𝑅𝑖
𝑁
𝑖=1 )𝑊0 = (1 + 𝑅𝑝(x)) 𝑊0  (2.1) 

 

where 𝑅𝑝(𝐱) = ∑ 𝑥𝑖𝑅𝑖
𝑁
𝑖=1  and x = [𝑥1 𝑥2    ⋯ 𝑥𝑁]T represents the vector of allocation 

proportions. According to the expected utility maximization, a rational DM with utility 

function U is dealing with the optimization problem for solving a portfolio choice x: 

  max
x

E[𝑈(𝑊1)] = E {𝑈 [(1 + 𝑅𝑝(𝐱)) 𝑊0]}  (2.2) 

 

It is generally acknowledged that an important property of the utility function is that it is a 

continuously differentiable function of wealth 𝑈(𝑊) defined for 𝑊 > 0. The economic 

implication of this property is that 𝑈(𝑊) has the property of non-satiation, i.e. positive 
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marginal utility for wealth (𝑈′(𝑊) > 0)
1
, and of risk aversion, i.e. decreasing marginal 

utility for wealth (𝑈′′(𝑊) < 0) (Friedman & Savage, 1948). For the non-satiation property, 

utility is an increasing function of wealth. This means that an investor prefers more wealth 

to less wealth. In other words, an investor’s preference for wealth has never satiated. For 

the risk aversion property, marginal utility is diminishing with the accumulation of more 

wealth which implies that the utility function is concave. A general example of diminishing 

marginal utility with wealth is that an additional gain of one dollar will increase utility of an 

investor whose initial endowment is one dollar but will be meaningless for another investor 

who owns an initial wealth of a million dollar. Economists, in general, acknowledge that 

the increase in marginal utility caused by obtaining an additional dollar decreases as an 

individual owns more wealth. 

 

Although the expected utility approach is widely used to analyze the decision making 

process  of an economic agent under uncertainty, it will be controversial to conclude on the 

type of function that best describe the behavior of the majority of investors because 

different investors generally have different utility functions. However, any choices of 

function used in the analysis should satisfy at least two properties, namely, non-satiation 

and risk aversion.  

 

2.2.2 Expected Utility and Mean-variance Analysis 

In the seminal work of Markowitz (1952) on the parameter-preference approach, the so 

called “mean-variance analysis” denoted by “E-V analysis” in his article is proposed as the 

                                                           
1 Throughout, 𝑈(𝑛)(∙) is 𝑛𝑡ℎ-order derivative of the utility function. 
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approximation of the expected utility maximization approach. He assumed that an 

investor’s preference can be described by a function over the mean and the variance of the 

portfolio return, i.e. 𝑈 = 𝑈(𝐸, 𝑉). To make E-V analysis reconcilable with expected utility 

maximization, he managed the quantitative part based upon the use of quadratic utility 

function. Stated formally, suppose that the utility function of an investor is given by: 

  𝑈(𝑊) = 𝑊 −
𝑏

2
𝑊2, 𝑏 > 0  (2.3) 

 

where W refers to the wealth owned by the investor and b is a coefficient relating wealth 

preference to utility. This quadratic utility function satisfies non-satiation and risk aversion 

property since 𝑈′(𝑊) = 1 − 𝑏𝑊 > 0 for 𝑊 < 1 𝑏⁄  and 𝑈′′(𝑊) = −𝑏 < 0 for 𝑏 > 0, 

which guarantee the non-satiation and risk aversion conditions. By taking expectation on 

both sides, the expected utility is  

  E[𝑈(𝑊)] = E(𝑊) −
𝑏

2
E(𝑊2)   

                  = E(𝑊) −
𝑏

2
[Var(𝑊) + E2(𝑊)]   

                  = μ −
𝑏

2
[𝜎2 + μ2]  (2.4) 

 

where μ and 𝜎2 are respectively the mean and the variance of W. The expected utility of 

Equation (2.4) is an increasing function of mean and a decreasing function of variance 

since 
𝜕𝑈

𝜕𝜇
= 1 − 𝑏𝜇 > 0 and 

𝜕𝑈

𝜕𝜎
= −𝑏𝜎 < 0. Thus, in the E-V analysis, a set of efficient 

portfolios comprises of those with the lowest variance for any given level of expected 

return and those with the highest expected return for a given level of variance. It should be 

noted that risk aversion in the context of E-V analysis is referred to as the aversion to the 
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dispersion of the probability of the outcome since variance is considered as the risk 

measure.  

 

Although the portfolio solution obtained from the E-V analysis may not be equivalent to 

that of expected utility approach, it gives an economical approximation with the advantage 

of less information is required for the analysis. As a result, the mean-variance analysis is 

extensively discussed in the liquidity preference theory (Tobin, 1958) and the capital asset 

pricing model (Lintner, 1965; Sharpe, 1964). However, the limitation of using quadratic 

utility to represent utility of investor was widely criticized (Bierwag, 1974; Blume & 

Friend, 1975; Borch, 1974; Friend & Blume, 1975; Hanoch & Levy, 1970; Levy, 1974; 

Simkowitz & Beedles, 1978; Tsiang, 1974), especially after the Arrow-Pratt measure of the 

degree of risk aversion was introduced (Arrow, 1964; Pratt, 1964). 

 

In general, a risk aversion DM dislikes zero-mean risk. In other words, this DM will always 

refuse to play a fair game with zero expected return. The degree of risk aversion of a DM 

can be generally defined by quantifying how much a DM is willing to pay to eliminate the 

zero-mean risk. This measure is called the “risk premium”, denoted as 𝜋, and can be 

defined by: 

  E[𝑈(𝑊 + �̃�)] = 𝑈(𝑊 − 𝜋)   (2.5) 

 

where �̃� is zero-mean risk, i.e. E(�̃�) = 0. Pratt (1964) made an analysis of the utility 

function expressed in Equation (2.5) using the second- and first-order Taylor’s series 
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expansion to approximate the left hand side (LHS) and right hand side (RHS) of Equation 

(2.5), respectively. This approximation yields: 

 E [𝑈(𝑊) + �̃�𝑈′(𝑊) +
𝑧2

2
𝑈′′(𝑊)] = 𝑈(𝑊) − 𝜋𝑈′(𝑊)     

 
                  𝑈(𝐸[𝑊]) +

𝜎�̃�
2

2
𝑈′′(𝑊) = 𝑈(𝐸[𝑊]) − 𝜋𝑈′(𝑊)   

                                                     𝜋 ≅
𝜎2

2
𝐴(𝑊)  (2.6) 

 

where 𝐴(𝑊) = −
𝑈′′(𝑊)

𝑈′(𝑊)
 is the Arrow-Pratt measure of absolute risk aversion. This measure 

quantifies the degree of individual risk aversion which can be regarded as a measure of the 

degree of the concavity of the utility function of an individual.  

  

According to the Arrow-Pratt notion of risk aversion, the critical invalidity of quadratic 

utility can be explained in two aspects. Firstly, Arrow (1964), Pratt (1964), and Friend and 

Blume (1975) argued that the degree of an investor’s risk aversion is supposed to decrease 

with more wealth held by the investor. The economic implication of this argument is 

straightforward. For example, consider a coin flipping game where the possible outcome is 

a gain or loss of 100. The loss of 100 is severe for an agent whose initial wealth is 100 but 

has a trivial impact on another agent with an initial wealth of a million dollar. Thus the first 

agent is willing to accept the risk only if he is compensated by a higher premium compared 

to the second agent. In the context of portfolio selection, decreasing absolute risk aversion 

with wealth implies that when an agent experiences an increase in wealth, he will increase 

the portion of risky asset in his portfolio. But many researchers demonstrated that the 

quadratic utility function exhibits an increasing absolute risk aversion for all level of wealth 
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(Bierwag, 1974; Blume & Friend, 1975; Borch, 1974; Friend & Blume, 1975) which is 

irrational in the implicational aspect. Secondly, another shortcoming of quadratic utility 

comes from the bounded range of possible outcome. Since positive marginal utility is 

considered as a desirable property of any utility function, quadratic utility is consistent with 

this property only in some range of wealth, i.e. 𝑊 < 1 𝑏⁄ . These evidences suggest the 

limits to the use of quadratic utility.  

 

In addition to the quadratic utility function assumption, the mean-variance analysis is 

restricted to the case where an asset return has a multivariate normal distribution. 

Therefore, the distribution of returns of an asset will differ from others only by the mean 

and the variance. In contrast, a collection of empirical studies showed that the return 

distributions are asymmetric at not only the market level but also firm level (Amaya & 

Vasquez, 2010; Arditti, 1967; Bates, 1996; Bekaert & Harvey, 2002; Black, 1976; 

Campbell & Hentschel, 1992; Canela & Collazo, 2007; Chen et al., 2001; Christie, 1982; 

Chunhachinda et al., 1997; Fielitz, 1976; French et al., 1987; Gennotte & Leland, 1990; 

Gibbons et al., 1989; Grossman, 1989; Hwang & Satchell, 1999; Jorion, 1988; Liu, 

Margaritis, & Wang, 2012; Prakash et al., 2003; Simkowitz & Beedles, 1978; Singleton & 

Wingender, 1986; Wang et al., 2009). Hence, this assumption is not realistic in the real 

economy. 

 

2.2.3 Skewness Preference in Expected Utility Model 

According to the Arrow (1964) and Pratt (1964), the desirable properties of utility function 

are (a) positive marginal utility for wealth, i.e., non-satiety, (b) decreasing marginal utility 
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for wealth, i.e., risk aversion, and (c) non-increasing absolute risk aversion for wealth, i.e., 

risky assets are not inferior good. The utility functions that satisfy these conditions are, for 

instance, the cubic function, the negative exponential function, the family of constant 

elastic utility functions, and the log function. In general, the Taylor’s series approximation 

of the expected utility is widely used in the analysis of utility functions. The general Taylor 

series expansion for a function 𝑓(𝑥) can be written as follows: 

 𝑓(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1!
(𝑥 − 𝑥0) +

𝑓′′(𝑥0)

2!
(𝑥 − 𝑥0)2 + ⋯     

 
 +

𝑓(𝑛)(𝑥0)

𝑛!
(𝑥 − 𝑥0)𝑛 +

𝑓(𝑛+1)(𝑥0)

(𝑛+1)!
(𝑥 − 𝑥0)𝑛+1   (2.7) 

 

A rational investor will maximize the expected value 𝐸[𝑈(∙)] of 𝑈(∙) where 𝑈(∙) is the 

utility function of an investor. Suppose that 𝑈(∙) is a function of wealth, i.e. 𝑈(𝑊) and can 

be approximated by the third-order Taylor’s series expansion around its expected value, 

thus we obtain: 

 𝑈(𝑊) = 𝑈(𝐸[𝑊]) + 𝑈′(𝑊)(𝑊 − 𝐸[𝑊]) +
𝑈′′(𝑊)

2!
(𝑊 − 𝐸[𝑊])2      

  +
𝑈′′′(𝑊)

3!
(𝑊 − 𝐸[𝑊])3   (2.8) 

 

By taking expectation on both sides, the second term on the RHS of Equation (2.8) is 

𝐸[𝑊 − 𝐸[𝑊]] = 0. Thus, we obtain: 

        𝐸[𝑈(𝑊)] = 𝑈(𝐸[𝑊]) +
𝑈′′(𝑊)

2!
𝐸[(𝑊 − 𝐸[𝑊])2] +

𝑈′′′(𝑊)

3!
𝐸[(𝑊 − 𝐸[𝑊])3]      (2.9) 
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It can be seen that the expected utility presented in Equation (2.9) is a function of those 

risks associated with higher moments of the wealth distributions. However, if the 

distribution of wealth is symmetric, the third term on the RHS of Equation (2.9) is zero and 

therefore an investor utility is a function of solely the mean and variance of the wealth 

distributions. According to Pratt (1964), risk premium decreases with increasing wealth. 

Arditti (1967) proved that: 

 𝜕

𝜕𝑊
[−

𝜎2

2

𝑈′′(𝑊)

𝑈′(𝑊)
] =

𝜎2

2

−𝑈′(𝑊)𝑈′′′(𝑊)+[𝑈′′(𝑊)]
2

[𝑈′(𝑊)]2
< 0       (2.10) 

 

His argument is based on the desirable properties of an investor’s utility of (i) positive 

marginal utility for wealth, 𝑈′(𝑊) > 0 and (ii) decreasing marginal utility for wealth, 

𝑈′′(𝑊) < 0. Thus, Equation (2.10) holds if and only if 𝑈′′′(𝑊) > 0. Since 𝑈′′′(𝑊) is the 

coefficient of third moment of the distribution of wealth, the positive value of this 

coefficient implies that the investor utility can be partly maximized by increasing the 

skewness of the wealth distribution. 

 

In fact, Markowitz (1952) discussed that the mean-variance analysis will not yield the 

optimal solutions to investors if either their utilities depend on the first three moments or 

the preference for the third moment exists. He explained that if an investor’s preference is 

described by a preference function over the mean, the variance, and the skewness of the 

portfolio return, which is denoted by 𝑈 = 𝑈(𝐸, 𝑉, 𝑀) in his article, the return skewness is 

relevant for portfolio selection. He pointed out that skewness preference is connected to a 

propensity to gamble which should be avoided in investment practice. Therefore, he 

suggested that skewness should be dropped in portfolio selection.  
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However, a number of theoretical studies provided results to support Arditti’s argument 

that an investor whose utility can be approximated by the third-order Taylor’s expansion 

around the expected value will prefer positive skewness in asset returns (Hanoch & Levy, 

1970; Ingersoll, 1975; Kane, 1982; Levy, 1969; Rubinstein, 1973; Samuelson, 1970; Scott 

& Horvath, 1980; Tsiang, 1972). For instance, Levy (1969) demonstrated that skewness 

preference can be proved even when the risk aversion assumption is relaxed. He showed 

that at a low level of wealth, the utility of an investor is concave but will converge to 

convexity when his wealth is higher than a certain level. The implication of his results is 

that an investor can be both risk-averse and skewness-lover which depend on the level of 

wealth at a given time.  In addition, various forms of utility function such as, negative 

exponential, constant elastic function, hyperbolic absolute risk aversion and log function 

were analyzed using the Taylor’s series expansion to establish the skewness preference 

theory (Ingersoll, 1975; Kane, 1982; Tsiang, 1972). These studies demonstrated that 

investors with utility functions that satisfy the Arrow-Pratt’s desirable properties for utility 

function have a preference for positive skewness. Moreover, Scott and Horvath (1980) 

showed that investors exhibiting positive marginal utility, consistent with risk aversion for 

all wealth and strict consistency of moment preference will prefer positive skewness in the 

distribution of returns. These results support the fact that skewness preference is not a mark 

of gambler or bettor but a common trait of a rational investor who acts to maximize his 

expected utility. 

 

In the expected utility model, it is unanimous to define skewness preference by a positive 

sign of the third-order derivative of utility function, i.e. 𝑈′′′ > 0. However, the measure of 

the degree of skewness preference, in the similar vein as the Arrow-Pratt measure of the 
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degree of absolute risk aversion, is still contradictory. There are a few measures that were 

proposed and discussed in the finance literature. Simkowitz and Beedles (1978) discussed 

the measure of individual’s concern for skewness vis-à-vis dispersion in their proposed 

utility model and named it as “skewness/variance awareness”. However, the application of 

this measure is restricted only for risk averse and risk lover investors because this measure 

is not defined if investors are risk neutral.
2
 Another measure is “speculation ratio” which is 

quantified by 
𝑈′′

𝑈′′′ (Conine & Tamarkin, 1981). The authors suggested that it is a 

combination of investor trade-off of risk aversion for return skewness and is independent 

among investors. Nevertheless, economists suggest that a proper measure of skewness 

preference should have a global property that is comparable to Arrow-Pratt’s measure of 

absolute risk aversion. The global property of Arrow-Pratt’s index of absolute risk aversion 

states that if 𝑉(𝑊) = 𝑠(𝑈(𝑊)) with 𝑠′ > 0 and 𝑠′′ < 0, an agent with utility 𝑉(𝑊) has a 

greater risk aversion than one with utility 𝑈(𝑊). However, the proof of this property has 

yet to be theoretically addressed.  

 

In the finance literature, skewness preference is usually linked to either gambling or 

speculating behavior. In contrast, economists look at the positive third-order derivative of 

utility function in different perspectives. After the concept of downside risk aversion 

(DRA) was introduced (Menezes, Geiss, & Tressler, 1980), skewness preference is linked 

to prevention behavior of the agents who try to protect themselves from negative extreme 

returns. Kimball (1990) proposed the local index of −
𝑈′′′

𝑈′′  to measure the degree of 

precautionary-saving motive which is named as “prudence measure”. This measure 

                                                           
2 Their utility model is expressed as 𝑈𝑖 = 𝑎𝑖𝑅 − 𝑏𝑖(𝜎𝑅

2) + 𝑐𝑖(𝑚𝑅
3 ) where 𝜎𝑅

2 and 𝑚𝑅
3  is respectively the second and the third central 

moment of return. They defined the skewness/variance awareness as 𝜃𝑖 ≜ 𝑐 𝑏⁄ . 𝜃𝑖 is undefined if 𝑏 = 0, i.e. for a risk neutral investor.  
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suggests the propensity to prepare in the face of future uncertainty. Chui (2000, 2005) 

demonstrated that the prudence measure can be interpreted as measuring the degree of 

DRA against one’s own risk aversion. He indicated that the prudence premium that a DM is 

willing to pay for self-protection depends on the degree of his skewness preference relative 

to his risk aversion. Jindapon and Neilson (2007) verified the results of the previous studies 

using the comparative statistic approach. They explained that agents with greater prudence 

have higher willingness to forgo their expected utility in exchange for a reduction in 

downside risk. From the above arguments, many theoretical papers suggest that −
𝑈′′′

𝑈′′  is a 

good measure of the degree of DRA due to the fact that DRA and prudence are treated as 

similar. In addition, the local and global comparison properties of the measure as well as its 

decreasing prudence property make this measure very useful in various applications.  

 

Another potential measure of the degree of skewness preference was proposed by Modica 

and Scarsini (2005). Based on Ross’s notion of stronger risk aversion (Ross, 1981), they 

demonstrated that the degree of DRA should be measured by the local index of  
𝑈′′′

𝑈′  which 

decreases with wealth, i.e. satisfying the second-order derivative condition.
3
 Their result 

demonstrated that an agent with a greater index of 
𝑈′′′

𝑈′  is willing to pay more to insure 

against a risk with higher negative skewness if the mean and variance of risk is similar. 

However, they failed to prove that the local comparison of the proposed measure can be 

translated into a global comparison (Modica & Scarsini, 2005, p. 270). Based on the results 

of Modica and Scarsini (2005), Jindaporn and Neilson (2007) analyzed the monetary cost 

                                                           
3 For DRA, the property of decreasing aversion with wealth explains that when an agent is wealthier, his aversion to downside risk 

decreases. This is analogous to the property of absolute risk aversion measure which describes that an agent become less risk-averse with 

more wealth accumulation.  
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problem of agents who choose to shift from the initial probability distribution toward the 

preferred one, i.e. a lower downside risk. They showed that agents with greater DRA are 

willing to pay higher cost for protecting themselves from downside risk. Subsequently, 

Crainich and Eeckhoudt (2008) convincingly argued in favor of the local index 
𝑈′′′

𝑈′
 as a 

measure of the intensity of DRA in that the global property of this index can be simply 

proved in a similar way as the obtained global property of the Arrow-Pratt’s index of 

absolute risk aversion. Meanwhile, the global property of the local index 
𝑈′′′

𝑈′′
 proposed by 

Kimball (1990) is not easy to obtain unless some restrictions are imposed on the utility 

function. Finally, their result implies that the greater the index of DRA (
𝑈′′′

𝑈′  ), the larger is 

the compensation required for accepting an investment alternative with negative skewness 

in its return distribution. 

 

2.2.4 Skewness Preference and Decision to Gamble 

In general, an individual with diminishing marginal utility and seeking to maximize his 

utility dislikes a zero-mean risk and always refuses to participate in a fair game with an 

expected return of zero, unless a premium is paid. However people in reality always 

participate in fair games, for example, purchasing lottery and horse-race ticket. This risk-

taking behavior of an agent is the first economics implication of skewness preference. This 

is because these investment alternatives exhibit a large chance of losing a small investment, 

i.e. the lottery ticket price, and a small chance of winning a large return, i.e. the prize. In 

other words, these fair bets possess a positive skewness in the probability distribution of 

returns. The plausible explanation of this irrational behavior was developed based on the 
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expected utility model (Friedman & Savage, 1948; Kwang, 1965). Friedman and Savage 

(1948) argued that an agent with utility function depending on the first three moments of 

return is a risk lover, and therefore, he will choose an investment alternative that exhibits 

positive skewness in the probability distribution of returns. 

 

Golec and Tamarkin (1998) provided empirical evidence from the horse track to support 

the preference for skewness. They used the racetrack data to estimate the coefficients of the 

proposed expected utility model. They proposed a cubic utility model as a function of a 

winning the prize of a horse race. They found that the utility function is concave for the low 

winning prizes and convex for the big prizes. This result supports the previous finding that 

bettors globally prefer positive skewness, however they are not globally risk lover. In 

addition, Garrett and Sobel (1999) used the U.S. state lottery data to estimate the utility 

function proposed by Golec and Tamarkin (1998). Their finding is consistent with that of 

Golec and Tamarkin (1998). They showed that a lottery buyer exhibits a global skewness 

preference. 

 

2.2.5 Skewness Preference and Pricing Implication 

Following the influential contributions by Arditti (1967), Samuelson (1970), and Tsiang 

(1972), their models predict that rational investors prefer among others an investment 

alternative hat has a positive skewness if the mean and the variance are identical. They 

argued that if expected return is not normally distributed, skewness should be considered as 

a risk measure and relevant for explaining risk-return relationship. Subsequently, several 

authors developed the expected return models incorporating skewness as a variable of the 



26 

 

capital asset pricing. Rubinstein (1973) and Kraus and Litzenberger (1976) established an 

equilibrium three-moment capital asset pricing model to show that systematic co-skewness 

is priced.
4
 Systematic co-skewness is defined as a measure of co-movement between 

individual assets and the aggregate market portfolio. The empirical data of the NYSE from 

January 1926 through December 1970 experimented by Kraus and Litzenberger (1976) 

reveals that investors have a preference for positive skewness. As a result, they are willing 

to trade some expected return for an asset with positive co-skewness with the aggregate 

market portfolio. Subsequently, a number of papers verified the model of Kraus and 

Litzenberger (1976) in different perspectives (Friend & Westerfield, 1980; Galagedera & 

Brooks, 2007; Lim, 1989; Sears & Wei, 1985, 1988). 

 

Friend and Westerfield (1980) extended the work of Kraus and Litzenberger (1976) by 

including bonds into the market portfolio and constructing the portfolio based on value-

weighted index, which is more practical in the real world, instead of equal-weighted index 

used in previous studies. They found some evidences to support the previous finding that 

investors are willing to pay a premium for a positively skewed asset. However, the intercept 

term of their regression is insignificant, i.e. the estimated risk free rate of return is higher 

than the actual value, which is inconsistent with the results of Kraus and Litzenberger 

(1976). Some plausible causes of the contradictory results are the difference in market 

portfolio composition, estimation procedure, and testing methods. Subsequently, Lim 

(1989) proposed the GMM test method which is more suitable for estimating multivariate 

models. After setting the conditions according to the model of Friend and Westerfield 

(1980), he provided empirical evidences to support the result that systematic skewness is 

                                                           
4 In both works, the utility function is restricted to the first three moments. Rubinstein (1973) relied on a cubic utility function, while 

Kraus and Litzenberger (1976) approximated investors’ utility using a Taylor’s series expansion up to third order. 
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priced. Galagedera and Brooks (2007) tested the systematic co-skewness in the context of 

downside risk measure and compared it to the downside beta. Using emerging market data, 

they suggested that downside co-skewness is significantly priced and may be a better 

explanatory variable of asset price variation than downside beta. 

 

Unlike co-skewness used by the previous studies, Harvey and Siddique (2000) proposed a 

three-moment CAPM that is focused upon the conditional co-skewness. In other words, 

their model is allowed to be time-varying. In addition, a procedure to obtain a new 

systematic skewness factor is introduced. At the end of each month, stocks were 

categorized into three different portfolios according to the presence of co-skewness and 

then the return spread between the lowest and highest co-skewness portfolio was computed. 

This methodology is analogous to the three factors model of Fama and French (1993) that 

classified stocks into quintile portfolios according to size premium, SMB, i.e. small (market 

capitalization) minus big, and, premium on book value to market value, HML, i.e. high 

(book-to-market ratio) minus low. Harvey and Siddique (2000) demonstrated that the co-

skewness of portfolios is priced and the average annualized skewness premium of U.S. 

equities for the period of July 1963 to December 1993 is 3.60 percent. The conditional 

three-moment CAPM of Harvey and Siddique (2000) was tested using the data of S&P 500 

from July 1993 through December 1997 (Smith, 2007) and Australian S&P/ASX 300 from 

January 2001 through July 2007 (Doan et al., 2010). They suggested that the rates of 

returns of securities are significantly explained by a conditional co-skewness factor. Smith 

(2007) found that a preference for co-skewness varies over time with the extent of market 

skewness. He showed that when the market returns are positively skewed, investors are 

willing to sacrifice 7.87 percent per unit of gamma, i.e. a standardized measure of co-
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skewness risk. When the market returns are negatively skewed, the annualized premium 

demanded for bearing gamma risk is 1.80 percent over the period of study. 

 

Another approach that is widely adopted for testing pricing implication of skewness is to 

use sorting procedure (Amaya & Vasquez, 2010; Boyer, Mitton, & Vorkink, 2010; Chen et 

al., 2001; Xu, 2007). For this approach, securities are sorted according to their skewness 

value and grouped to form a number of portfolios. Thus the risk-return tradeoff as well as 

the relationship between skewness and other variables can be examined. For instance, Chen 

et al. (2001) estimated the coefficient of skewness from other variables such as past returns, 

standard deviation, firm size, and monthly turnover, and then sorted the securities into 

quintile portfolios based on the size of skewness. Boyer et al. (2010) sorted stocks into 

quintile portfolios based on the predicted “idiosyncratic skewness”. In their work, 

idiosyncratic skewness of stocks is extracted from their idiosyncratic volatility computed 

from the residuals of time series regressions of the pricing model. Then the predicted 

idiosyncratic skewness of stocks is forecasted from lagged idiosyncratic volatility, lagged 

idiosyncratic skewness, and other exogenous variables. In recent years, Amaya and 

Vasquez (2010) exploited the availability of high frequency data by sorting firms into 

quintile portfolios based on the “realized skewness” of their returns. The concept of 

realized skewness is analogous to that of the “realized volatility” (Andersen, Bollerslev, 

Diebold, & Ebens, 2001; Andersen, Bollerslev, Diebold, & Labys, 2001) which is said to 

be more suitable for explaining intraday data. Regardless of the calculation method for 

obtaining skewness and the data set, these studies consistently asserted that the negative 

relation between skewness and expected return is significantly pronounced. This result 
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reinforces the implication of skewness preference on asset pricing by confirming that 

investors do trade expected return for skewness. 

 

2.3 SKEWNESS PREFERENCE AND DECISION ON PORTFOLIO CHOICE 

 

In general, complete diversification is a rational investment strategy for a risk-averse agent 

in a homogeneous stock market, who considers the risk-return tradeoff based only on the 

mean and variance of return distribution. It is generally accepted that the main purpose of 

holding a diversified portfolio is to eliminate firm-specific risk, the so called “unsystematic 

risk” or “idiosyncratic risk”. Some investors construct portfolios according to the rule of 

thumb by randomly including 30 to 50 stocks in their portfolios with the hope that the 

idiosyncratic risk will be reduced (Campbell, Lettau, Burton, & Xu, 2001; Statman, 1987). 

However, the observed behavior of the market participants shows that the majority of 

individual investors hold only a few stocks in their portfolio which is known as an 

“undiversified portfolio” (Blume & Friend, 1975; Elton & Gruber, 1977; Evans & Archer, 

1968; Goetzmann & Kumar, 2008; Kelly, 1995; Mitton & Vorkink, 2007; Odean, 1999; 

Polkovnichenko, 2005). This undiversified behavior has attracted attention from many 

researchers to give an explanation for this phenomenon. For instance, Shefrin and Statman 

(2000) and Statman (2004) argued that undiversified investors construct portfolios as layers 

with the bottom layer consisting of defensive stocks for downside protection, and the top 

layer including offensive stocks for upside gain. The strategy normally considers positively 

skewed stocks as the offensive component. 
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Simkowitz and Beedles (1978) pointed out that diversification is not necessarily desirable 

for an agent whose decision is based on the first three moments of return distribution. They 

showed empirically that increasing the number of risky assets in a portfolio not only 

reduces portfolio variance, but also portfolio skewness. Thus they suggested that a 

progressive loss of portfolio skewness caused by increasing diversification is a plausible 

explanation of the observed phenomenon of undiversified portfolio held by individual 

investors (Blume & Friend, 1975). Conine and Tamarkin (1981) derived the optimal 

number of risky assets for portfolio holding based upon a homogeneous securities universe 

and equally-weighted portfolio. They demonstrated that the utility with skewness 

preference decreases with an increase in the number of risky assets in portfolio. Therefore a 

rational investor may choose to remain undiversified since only a few risky assets are 

required to construct an optimal portfolio. Mitton and Vorkink (2007) developed a model in 

which investor preference for the first two moments is homogeneous but for the third 

moment is heterogeneous. Their model predicts that investors with skewness preference are 

willing to earn lower returns and accept higher volatility in order to increase portfolio 

skewness. Using a data set of household accounts from a large discount brokerage in the 

U.S., they found that the undiversified portfolios have higher skewness and lower Sharp’s 

ratio than the diversified ones. They argued that undiversified investors do not randomly 

select the small number of stocks in their portfolios but rather intentionally choose stocks 

that will be most likely to increase the skewness of their portfolios. Using a data set of 

about 60,000 individual accounts at a large U.S. discount brokerage house during 1991 to 

1996, Goetzmann and Kumar (2008) revealed that the highly skewed stocks are favored 

among undiversified investors and skewness preference is more pronounced for investors 

who are younger, male, and less affluent. 
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Apart from the expected utility model, the behavior of undiversified portfolio holders is 

explained theoretically by the cumulative prospect theory (Barberis & Huang, 2007) and 

the optimal expectation framework (Brunnermeier, Gollier, & Parker, 2007; Brunnermeier 

& Parker, 2005). According to Barberis and Huang (2007), undiversified behavior can be 

described based on cumulative prospect theory which is modified from the prospect theory 

(Tversky & Kahneman, 1992). According to this theory, an agent evaluates risk using a 

value function that is defined from transformed probabilities rather than objective 

probabilities. The transformed probabilities can be obtained from applying a weighting 

function to the objective probabilities. Thus, the cumulative prospect theory investors will 

have the tendency to put a higher weight on the tail of the distribution to capture his 

preference, i.e. skewness. In other words, they intentionally construct their portfolios by 

collecting the high skewness assets in order to make their portfolios a lottery-like asset. As 

a result, the optimal portfolio can be constructed by including only a few assets. 

Brunnermeier and Parker (2005) developed a non-expected utility model in which agents 

optimize based on beliefs of outcomes. In their model, agents have higher level of beliefs 

about the probabilities of a positive payoff than a negative one. And the felicity of agents 

which is analogous to utility is an increasing function of the beliefs. Thus, an implication of 

their model is that agents prefer an investment alternative having positive skewness in the 

return distribution. Based on this framework, Brunnermeier et al. (2007) contributed to 

explain undiversified behavior that investors in equilibrium will allocate their wealth to 

positively skewed assets to increase their felicity, although they may earn a lower average 

return.   
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2.4 CAUSE OF SKEWNESS IN STOCK PRICES 

 

Skewness in a stock market has a significant impact on an investor decision making, capital 

asset pricing as well as some economic phenomenon such as stock market crash, 

speculation, and bubble burst in many stock markets. A number of researchers in the field 

of finance especially behavioral finance have provided the explanations to rationalize this 

phenomenon.  

 

The first explanation is the “leverage effects” (Black, 1976; Christie, 1982). After a large 

decrease in stock prices, operating leverage and financial leverage will increase resulting in 

higher volatility of stock returns. A large volatility increases the risk premium that 

subsequently enhances the selling activities and causes negative skewness in the return 

distribution. The second explanation is “volatility feedback mechanism” developed by 

Campbell and Hentschel (1992) and French et al. (1987). Based on the assumption of 

asymmetry information, stock market volatility increases when news arrives at the market 

resulting in an increase in risk premiums. The benefits of good news are compensated by an 

increased risk premium. In contrast, the impacts of bad news are strengthened by an 

additional risk premium that drives up the skewness of the distribution of returns. With the 

homogeneous expectation assumption, however the volatility feedback can cause positive 

skewness in stock market returns in the case where good news are interpreted by 

homogeneous investors. This good news will push up the stock price as well as the trading 

volume, thus causing skewness to be pronouncedly positive.   
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According to the third explanation, the asymmetry in return distributions is due to 

stochastic bubble generated by emotional and cognitive biases. The stock market bubble 

can be rational (De Long, Shleifer, Summers, & Waldmann, 1990; Shleifer & Summers, 

1990), speculative (Blanchard & Watson, 1983), intrinsic (Froot & Obstfeld, 1991) and 

contagious (Topol, 1991). When the price of a particular stock rises, some investors are 

interested to study its fundamental factors. However, for others, an upward movement in 

price is a good-enough driving force to invest. In some cases of rational bubble, large 

traders are powerful enough to rapidly drive up the stock price far beyond its fundamental 

value, resulting in bubble generation. This bubble building process generates positive 

skewness in the distribution of stock returns. On the other hand, bubble burst causes the 

distribution of return to be negatively skewed (Blanchard & Watson, 1983). 

 

Additional explanation is developed based on investor heterogeneity theory that argues that 

investors’ opinions about the fundamental values of individual securities and stock market 

are diverse. Due to differences in opinions, private and hidden information can be revealed 

through the trading process by other investors (Harris & Raviv, 1993; Kandel & Pearson, 

1995; Odean, 1998). The reactions from observing the trading process can drive stock price 

movements, although in reality, there is no new information on changes of the firm’s 

fundamental value. Several hypotheses related to investors’ heterogeneity were tested. For 

example, the large trade volume of insurance portfolios and/or dynamic hedgers who 

strategically track their portfolios with movements of the market portfolio regardless of 

whether any information is received might be misinterpreted by other traders. In the case of 

bear market, the reaction from aggregate investors, who trade their wealth by observing the 

trading process of other investors, will create price pressure that results in negative 
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skewness in stock market return distributions and eventually a crash in stock market 

(Gennotte & Leland, 1990; Grossman, 1989). On the other hand, the large buy volume from 

insurance portfolios in a bull market can stimulate investors aggregately to drive up the 

stock market returns. As a result, positive skewness in stock market returns can be 

generated.  

 

Furthermore, investor heterogeneity coupled with the hypothesis of short sale constraints of 

investors in a bearish market will lead to asymmetry in the distribution of returns due to the 

revelation of private signals of relatively pessimistic investors during market declines. Such 

revelation could lead other investors to increase their expected risk premium and to enlarge 

the sale forces (Diamond & Verrecchia, 1987; Hong & Stein, 2003). Moreover, Xu (2007) 

developed the price convexity function of information by observing that investors react 

with different extent to the same signal. In his model, disagreement over information 

precision and short sale constraints are the causes to price convexity. His empirical findings 

are consistent with several other studies (Bris, Goetzmann, & Zhu, 2007; Chang, Cheng, & 

Yu, 2007) which reveal that heterogeneity combined with precision of signals increases 

skewness of individual stock returns rather than reduces skewness. 

 

2.5 ASSET ALLOCATION PROBLEM IN THE ELECTRICITY MARKET 

 

In a deregulated electricity market, a power generation company (Genco) has various types 

of trading choices available for profit maximization. Due to the fact that a Genco has 
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limited capacity to produce the electricity, the allocation of generated electricity among the 

multiple energy markets is an important decision for a Genco. In the financial market, 

investors allocate their wealth to securities such as stock, bond and derivative instruments 

to form an investment portfolio. The number of assets available for investment is usually 

large. In the electricity market, on the other hand, a Genco trades its generated electricity 

via various trading choices including transaction in the spot market, transaction in the 

forward market and contractual instruments such as forward contract, future contract, 

options and swaps. The number of trading choices, hence, is limited. Although the form of 

trading choices in the financial market and electricity market seems different, a number of 

similarities can be observed. For example, each trading instrument has its own return 

characteristic associated with a particular sort of risk. The properties of risky and risk-free 

asset in finance are also present in the trading choices in the electricity market. From this 

sense, asset allocation concept in finance can be easily extended to energy allocation in the 

electricity market.  

 

2.5.1 Trading Environment 

The deregulated electricity market facilitates its price efficiency and liquidity by offering 

several types of trading choices not only to the Gencos but also other market participants. 

In the electricity market, market participants can be electricity producers, i.e. Gencos, 

electricity distributors, retail users, power trading firms and investors. Trading choices in an 

electricity market can be generally categorized into three main groups. In the first group, 

Gencos trade their electricity in the real-time market or the so called “spot market”. In this 

market, participants can enter to sell their offers or to purchase other participants’ bids on 



36 

 

real-time basis. A market operator does matching between bids and offers then determines 

the market clearing price (MCP). The MCP will be announced on an hourly basis; hence 24 

spot prices are announced daily. It should be noted that spot prices have high fluctuations 

because the demand for electricity is uncertain and electricity is a non-storable product.  

Transaction in day-ahead market or the so called “forward market” is the second group of 

trading alternatives for the Gencos. In this market, a Genco submits its offer to sell 

electricity in terms of price ($/MWh) and quantity (MWh) for the next delivery day to the 

pool market system. The market operator clears the orders by matching bids and offers and 

then informs the Genco of interest whether its offers are accepted or rejected. It should be 

noted that there is no guarantee that all Genco’s offers will be matched. Thus, the bidding 

strategy is another importance issue for the Gencos participating in this market. 

 

The third group of trading choice is contractual instruments such as forward contract, future 

contract, options and swaps. For a forward contract, the buyer and the seller agree, in 

advance, on a pre-specified price of electricity that will be transmitted from the seller to the 

buyer at a fixed amount and for a certain period of time. Similarly, a future contract has the 

same features as the forward contract except that the quantity of electricity in this contract 

is standardized. Additionally, physical delivery is not necessary for closing the contract’s 

position since the future contract can be settled by financial payment at any time before its 

maturity date. Options represent the rights but not obligation to buy or sell electricity at a 

pre-specified price at a certain time in the future. Again, options are usually settled by 

financial payment rather than physical delivery.  
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In general, electricity futures and options are traded at an organized exchange such as the 

Power Pool and Independent System Operator (ISO), meanwhile forward contract is 

transacted over-the-counter (OTC) or between two parties. The forward contract between 

two parties is technically known as “bilateral forward contract”. The physical delivery 

transactions, namely, transactions in the spot market, transactions in the day-ahead market 

and forward contracts are basically exchanged at a physical electricity market such as 

Pennsylvania-New Jersey-Maryland (PJM) market and California Independent System 

Operator (CAISO).  

 

2.5.2 Studies on the Generation Asset Allocation Problem 

During the last decade, the MV analysis in finance was widely applied for solving the 

optimal electricity allocation problems (Donghan et al., 2007; Hatami et al., 2011; Liu & 

Wu, 2006; Liu & Wu, 2007a, 2007b; Xiaohong et al., 2008). The problem involves 

allocation of the generated electricity to several customers in different markets to maximize 

the Genco’s expected return and minimize risk measured by the variance of return. It is 

generally assumed that the Genco of interest operates within a deregulated energy market 

by trading its electricity through physical trading instruments, i.e. spot market, day-ahead 

market and forward contract.  

 

According to their research framework, a Genco can sell its generated electricity in the spot 

market on real-time basis. However, electricity spot price is highly volatile due to non-

storability of the product and uncertainty in its demand. Therefore, trading in the spot 

market is regarded as a risky trading choice. In the case of forward contract, a Genco 
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bilaterally makes a trade agreement in terms of price ($/MWh), quantity (MWh), delivery 

time and location with a counterparty in advance. A Genco can sign forward contracts with 

customers located in the same pricing zone, known as “local forward contract”, and 

different pricing zones, known as “non-local forward contract”. According to the locational 

marginal pricing (LMP) scheme where the location of buyer and seller has an influence on 

the Genco’s revenue, a local forward contract can be considered as risk-free trading choice 

because the transmitted quantity and contract price are established beforehand, and 

therefore no uncertainty is involved. Although the details of a non-local bilateral contract is 

agreed in advance as the case of a local bilateral contract, it bears risk since the congestion 

charge is levied on the Genco when there is line congestion during the delivery. Since line 

congestion is unpredictable, non-local forward contract is considered as a risky trading 

choice. 

 

In their methodology, these authors computed the expected returns and variance-covariance 

matrix of available trading choices and solved the optimal electricity allocation problem by 

maximizing the Genco’s utility function. In their works, the Genco’s utility was formulated 

based on quadratic function, thus only the first two moments of the return distribution were 

considered. Although the distribution of electricity spot prices exhibits asymmetry, the 

skewness of returns was neglected by these studies.  
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2.6 SOLVING THE MVS PORTFOLIO OPTIMIZATION PROBLEM 

 

As stated earlier, many researchers experience the empirical and theoretical difficulties of 

using the MV analysis due to its restrictive assumptions. This is true for application in the 

portfolio optimization problem both in the financial and electricity markets. For instance, 

MV portfolio model assumes that asset returns are normally distributed during the period of 

analysis and can be characterized by mean and variance of returns distribution. In reality, 

the asset returns are not normally distributed (Amaya & Vasquez, 2010; Arditti, 1967; 

Bates, 1996; Bekaert & Harvey, 2002; Black, 1976; Campbell & Hentschel, 1992; Canela 

& Collazo, 2007; Chen et al., 2001; Christie, 1982; Chunhachinda et al., 1997; Fielitz, 

1976; French et al., 1987; Gennotte & Leland, 1990; Gibbons et al., 1989; Grossman, 1989; 

Hwang & Satchell, 1999; Jorion, 1988; Liu, Margaritis, & Tourani-Rad, 2012; Prakash et 

al., 2003; Simkowitz & Beedles, 1978; Singleton & Wingender, 1986; Wang et al., 2009). 

However, Levy and Markowitz (1979) argued that the MV model might maximize the 

expected utility, even when return distributions are not normal, if the deviation in rate of 

returns is relatively small. This idea is costly for a real application since portfolio 

rebalancing is required very frequently.   

 

Besides, the MV model relies on a continuous time distribution assumption where asset 

prices follow a diffusion or stochastic process. Thus, based on Ito’s lemma, any moments 

higher than the second order are not relevant to investors’ investment decisions. However, 

it has been proved that an investor’s decision making is restricted to a discrete time interval. 

Therefore, MV efficiency becomes inadequate and higher moments become relevant to 
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portfolio selection (Samuelson, 1970). Furthermore, a number of authors questioned on the 

usefulness of the quadratic utility function (Blume & Friend, 1975; Hanoch & Levy, 1970; 

Levy, 1974) and derived skewness preference theory using various forms of the utility 

function (Arditti, 1967; Kane, 1982; Levy, 1969; Tsiang, 1972). A number of empirical 

papers have shown that skewness, regardless of its form, is priced meaning that investors 

are willing to pay a premium for holding an asset with positive skewness (Harvey & 

Siddique, 2000; Kraus & Litzenberger, 1976; Xu, 2007). However, investigations on the 

impact of skewness preference on efficient portfolio selection are very limited because of 

the difficulties in obtaining a set of MVS efficient portfolios from the search in the multi-

dimension space.  

 

2.6.1 The Existing Approaches  

According to the fact that a rational investor favors an investment exhibiting positive 

skewness in the return distribution when the mean and the variance of two portfolios are 

similar, portfolio selection under the MV model may no longer satisfy the portfolio holders. 

In the MVS analysis, an investor whose utility is a function of the first three moments of 

return distributions constructs a portfolio so as to maximize expected return, minimize risk 

and maximize skewness simultaneously (Arditti & Levy, 1975; Jean, 1971, 1973). Thus, 

the MVS-POP is a tri-objective optimization problem whose objectives compete and 

conflict with each other. From the optimization point of view, a portfolio that optimizes 

three objectives at the same time does not exist. In the last few decades, various techniques 

have been applied for solving this problem. These techniques can be categorized into two 

approaches including single-objective optimization approach and aggregating approach. 
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For the single-objective optimization approach, a tri-objective MVS-POP is converted to a 

single-objective optimization problem where portfolio skewness is optimized with respect 

to the constraints in the expected return and variance. Thus MVS-POP is commonly 

expressed in single-objective framework as follows: 

 Maximize 𝑆𝑝(x)   

 Subject to 𝑅𝑝(x) = 𝑅𝐶  

  𝑉𝑝(x) = 𝑉𝐶  

  ∑ 𝑥𝑖
𝑁
𝑖=1 = 1 , 𝑥𝑖 ≥ 0  

 

where 𝑅𝑝(x), 𝑉𝑝(x), and 𝑆𝑝(x) denote respectively the expected return, variance, and 

skewness of a portfolio. Thus a portfolio solution, i.e. x = [𝑥1 𝑥2    ⋯ 𝑥𝑁]T, is one that 

satisfies the constraint ∑ 𝑥𝑖
𝑁
𝑖=1 = 1, 𝑥𝑖 ≥ 0 and maximizes the portfolio skewness at given 

values of 𝑅𝐶 and 𝑉𝐶. According to the optimization theory, however, maximizing the 

skewness function is a class of non-concave maximization problems where the global 

maximum cannot be solved by the conventional linear programming. Therefore, several 

studies focused upon derivations of a linear function that can be used to approximate 

skewness function (Konno et al., 1993; Konno & Suzuki, 1995; Ryoo, 2006). Then the 

MVS-POP can be solved using a mathematic programing technique. For instance, Konno et 

al. (1993) developed the mean-absolute deviation-skewness (MADS) portfolio model. In 

their model, the use of absolute deviation which can be written in a linear form was 

suggested instead of the quadratic function. Then, the skewness function was approximated 
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by the lower semi-third moment derived from a piecewise linear function. Thus, the MVS-

POP can be solved by maximizing the lower semi-third moment with respect to the mean 

and absolute deviation constraints. This concept was further improved by Konno and 

Suzuki (1995). They derived and optimized the piecewise linear function of skewness 

subject to given values of mean and the piecewise linear function of variance. Based on the 

concept of fuzzy variable, Bhattacharyya, Kar, and Majumder (2011) and Li, Qin, and Kar 

(2010) applied the fuzzy variable technique to analyze a MVS portfolio model. They 

optimized the skewness of a fuzzy return variable at given values of its mean and variance 

using the fuzzy simulation. 

 

In the aggregating approach or the so called “weighted-sum approach”, a MVS-POP is 

reformulated into a single-objective. However, the single-objective optimization approach, 

this approach combines all objectives into an aggregate objective with the use of relative 

importance coefficients assigned to each optimized objectives. In the aggregating approach, 

a MVS-POP can be stated as follows:  

 Problem min
x

𝐹(x) = [−𝛽1𝑅𝑝(x) + 𝛽2𝑉𝑝(x) − 𝛽3𝑆𝑝(x)] (2.11) 

 Subject to ∑ 𝑥𝑖
𝑁
𝑖=1 = 1, 𝑥𝑖 ≥ 0   

 

where 𝛽𝑖 is a relative importance coefficient that represents a preference for objective i. A 

portfolio solution that satisfies the constraint ∑ 𝑥𝑖
𝑁
𝑖=1 = 1, 𝑥𝑖 ≥ 0 and minimizes the 

aggregate function 𝐹(x) can be obtained for a given value of 𝛽𝑖. A higher value assigned to 

the coefficient of an objective implies the higher preference for that objective. By varying 
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the values of these coefficients, a set of solutions can be obtained by optimizing the 

aggregate objective function. For instance, polynomial goal programming (PGP), 

introduced by Tayi and Leonard (1988) to solve problems in the field of operations 

research, has been widely applied for solving the MVS-POP in the finance literature. This 

technique allows the levels of preference toward an objective of individual investors to be 

taken into account in portfolio selection. For PGP, a new objective, i.e. deviation from the 

goal (best) value of return and skewness, is formulated and minimized with the use of 

parameters that represent investor preferences for return and skewness. Then, by restricting 

the variance to be equal to one, the optimal portfolio can be solved at any given parameter 

values. The PGP was applied for solving MVS-POP with different data sets. For instance, 

Lai (1991) used five US stocks to prove this model. Chunhachinda et al. (1997) tested Lai’s 

model with 14 country indices, while Prakash et al. (2003) extended the work of 

Chunhachinda et al. (1997) by adding the emerging Latin American country indices. The 

industrial indices of emerging markets constructed by MSCI Global Industrial 

Classification Standard were used by Canela and Collazo (2007). Although different data 

sets were used, they consistently concluded that the incorporation of skewness preference 

of individual investors in portfolio selection lead to major changes in optimal portfolio 

selection. In recent years, the neural network-based method was utilized for solving a 

MVS-POP based on the weighted-sum approach. Yu et al. (2008) demonstrated that a set of 

MVS optimal portfolios can be obtained by changing the values of objective coefficients.  
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2.6.2 Shortcomings of the Existing Approaches 

Although a portfolio solution can be obtained by these approaches, many concerns were 

widely discussed in the field of operations research. Firstly, prior knowledge about the 

preference for each objective and the given value of constraints which are subjective to a 

DM is required. In many cases, these predetermined values unfavorably guided search 

mechanism of an algorithm to the wrong direction. As a result, the obtained solution is 

most likely to be a sub-optimal solution (Athan & Papalambros, 1996; Messac et al., 2000). 

Secondly, only one solution is obtained from one optimization run. Thus a collection of 

portfolio solutions has to be generated by performing a series of separate runs of an 

algorithm by changing the given values of preference coefficients and constraints. 

However, a large number of time-consuming computations are required which makes 

solving a MVS-POP intractable within reasonable time in practice. Thirdly, since a MVS-

POP belongs to the class of non-concave maximization problems, Das and Dennis (1997), 

Marler and Arora (2004), and Messac et al. (2000) demonstrated that even when the set 

values of preference coefficients or constraints are fractionally and continuously varied, 

there is no guarantee that an obtained solution will be the global optimum. 

 

Among the observed shortcomings, the possibility of not achieving the global optimum or 

efficient solutions is very serious because the notion of efficiency is central to portfolio 

theory and it is one of the main concerns of this thesis. In general, a utility maximization 

agent facing a decision to choose a portfolio among a feasible set of investment portfolios, 

will consider only a choice within a set of efficient portfolios. Among a group of agents, 

portfolio choice varies based on individual preference or utility function. However, none of 
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them will choose an inefficient portfolio. As a consequence, the portfolio choices obtained 

from the approaches discussed above may be far from the choices that maximize investor 

utility.  

 

2.6.3 Multi-objective Evolutionary Algorithms (MOEAs) 

In the MV model, investors determine a set of feasible portfolios by using the mean, the 

variance, and the covariance. The efficient portfolios are those among a feasible set with 

minimum variance at a given expected return, or maximum expected return for a given 

variance. In the MVS model, Ingersoll (1975) suggested that the MVS efficient set is a 

collection of portfolios with: 

 Maximum 𝑅𝑝(x) for given 𝑉𝑝(x) and 𝑆𝑝(x),   

 Minimum 𝑉𝑝(x) for given 𝑅𝑝(x) and 𝑆𝑝(x),   

 Maximum 𝑆𝑝(x) for given 𝑅𝑝(x) and 𝑉𝑝(x),   

 

Due to the conditions above it can be seen that to obtain a set of MVS efficient portfolios 

requires a large number of computations in the multi-dimension spaces. Firstly, a sufficient 

number of plausible solutions that satisfy the problem constraints have to be generated. 

Secondly, the evaluating and the screening process are performed to keep only the efficient 

solutions and eliminate the inefficient ones. Then, investors can choose from a set of MVS 

efficient portfolios, a portfolio that is most likely to maximize his utility. 
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Evolutionary algorithm (EA) is a generic term for a class of stochastic search techniques, 

whose search mechanisms mimic the natural evolution and the Darwinian concept of 

survival of the fittest (Goldberg, 1989). EA embodies the techniques of genetic algorithms 

(GAs), evolutionary strategies (ES) and evolutionary programming (EP). Originally, EA is 

proposed for solving single-objective optimization problems (Goldberg, 1989; Holland, 

1975). Subsequently, it was developed for solving MOOPs. In addition, EA is considered 

as a derivative-free approach, thus it is suitable for solving a class of non-concave 

maximization problems such as the MVS-POP. Its ability for solving a complex MOOPs 

significantly attracts researchers to implement MOEAs for solving MOOPs in different 

areas of research.   

 

As widely recognized in the literature, an MOEA has the ability for searching partially 

ordered spaces for several alternative trade-offs and for dealing with discontinuous efficient 

surface. Thus, a set of resulting solutions can be obtained within a single run of simulation 

instead of performing a series of separate runs as in the case of the single-objective 

approach and the aggregating approach. Importantly, the selection process of MOEAs 

which is performed based on Pareto dominance relation (Deb, 2001) ensures that the 

resulting solutions are efficient portfolios. Unlike other stochastic search techniques whose 

solutions are randomly generated until a number of iterations is satisfied, the solutions for a 

new iteration (or the new generation) of MOEAs are developed from the efficient solutions 

found in the current iteration. Therefore, the approximation of multiple efficient solutions 

can be effectively executed within a short CPU time.  
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In the past decades, many MOEAs using the Pareto-based approach were introduced to 

solve this problem. The initial proposed Pareto-based MOEAs are non-elitist
5
 MOEAs such 

as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1993), the Niched 

Pareto genetic algorithm (NPGA) (Horn & Nafpliotis, 1993), and the non-dominated 

sorting genetic algorithm (NSGA) (Srinivas & Deb, 1994). Meanwhile, the modern Pareto-

based MOEAs incorporate the elitist process into the GA operators such as the strength 

Pareto evolutionary algorithm (SPEA) (Zitzler & Thiele, 1999a), the Pareto envelope-based 

selection algorithm (PESA) (Corne, Knowles, & Oates, 2000), the Pareto-archive evolution 

strategy (PAES) (Corne et al., 2000), the non-dominated sorting genetic algorithm II 

(NSGA-II) (Deb, Pratap, Agarwal, & Meyarivan, 2002), and improved strength Pareto 

evolutionary algorithm (SPEA-II) (Zitzler, Laumanns, & Thiele, 2002b).  

 

2.6.4 Application of MOEAs for Solving Portfolio Optimization Problem 

The most well-known MOOP in finance is portfolio selection problem or portfolio 

optimization problem. The MV model of Markowitz (1952) explains that investors 

optimize their portfolio by minimizing the portfolio’s risk and maximizing its expected 

return, simultaneously. This problem can be efficiently resolved using either linear 

programming (LP) or quadratic programming (QP). Due to the successfulness of MOEAs 

for solving MOOPs in the field of engineering and science, several papers introduced 

MOEAs for solving the MV-POP. For instance, Shoaf and Foster (1998) applied MOGA 

for solving the MV-POP with five assets. They demonstrated two advantages of uing 

MOGA over QP. Firstly, MOGA can simultaneously optimize two objectives, whereas QP 

sets expected return as a constraint while risk is minimized. Therefore, QP returns only one 

                                                           
5 Elitist is a process designed to ensure that the good solutions will be reserved and passed through the next iteration (generation). 
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solution for a set value of expected return, while MOGA produced many solutions within a 

single run of algorithm. Secondly, the solutions of MOGA are superior than those of QP. 

Their result shows that, at a given value of risk, the portfolios obtained from MOGA offer 

higher expected return than those obtained from QP. Subsequently, (Vedarajan, Chan, & 

Goldberg, 1997) authenticated the findings by experimenting NSGA for solving portfolio 

selection problem with five stocks in the US stock market, namely, Boeing, Disney, Exxon, 

McDonald, and Microsoft. Their results confirmed the superiority of the solutions solved 

by NSGA over those attained from QP. 

 

The progressive capabilities of MOEAs for solving the MV-POPs attracted the attention of 

researchers to utilize MOEAs for the complex portfolio selection problems. The literature 

has developed in two aspects. Firstly, the practical constraints and objectives that exist in 

the real-world trading situation are incorporated into the MV-POPs. The well-known 

constraints in the literature are cardinality constraint, i.e. number of assets held in portfolio 

(Anagnostopoulos & Mamanis, 2010; Chang, Meade, Beasley, & Sharaiha, 2000; Felix 

Streichert , Holger Ulmer , & Zell, 2003; Soleimani, Golmakani, & Salimi, 2009), lower 

and upper bounds, i.e. the minimum and maximum allocation ratio to an asset 

(Skolpadungket, Dahal, & Harnpornchai, 2007), transaction cost constraint (Lin & Liu, 

2008; Soleimani et al., 2009), roundlots constraint, i.e. roundup number of stocks bought, 

and non-negative constraint, i.e. disallowing of short sale. In addition, some objectives such 

as, tracking error and other firm’s fundamental data are incorporated into the standard 

portfolio optimization problem (Beasley, Meade, & Chang, 2003; Branke, Scheckenbach, 

Stein, Deb, & Schmeck, 2009; Ghandar, Michalewicz, Zurbruegg, & Chee, 2010; Adam 

Ghandar, Michalewicz, & Zurbruegg, 2012). In this aspect, the ability of MOEAs 
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compared to the traditional mathematic programming is strengthened because it is widely 

recognized that when these constraints are incorporated in POPs, the Pareto front or 

efficient frontier is most likely to be discontinuous. Therefore, the traditional mathematic 

programming such as QP and LP are no longer suitable for solving these problems.  

Secondly, various MOEAs with some modifications in the GA operator were proposed for 

dealing with the MO-POP. For instance, Chang et al. (2000) compared the performance of  

three heuristic stochastic search techniques including MOGA, tabu search, and simulated 

annealing for solving the POP with cardinality constraint. They asserted that GA 

outperforms tabu search and simulated annealing. Ehrgott, Klamroth, and Schwehm (2004) 

reinvestigated the performance of MOGA, tabu search, and simulated annealing in dealing 

with the five-objective POP. Their results confirm the superiority of MOGA among the 

three algorithms. The performances of the PESA, the NSGA-II and the SPEA-II were 

evaluated for solving the standard MV-POP (Diosan, 2005). She found that the 

performance of PESA dominates the other two algorithms. In recent year, Anagnostopoulos 

and Mamanis (2010) reassessed the performance of the three MOEAs as used in the work 

of Diosan (2005). But the problem was set as the tri-objective POP including maximizing 

expected return and minimizing both risk and cardinality, at the same time. They argued 

that the SPEA-II outperforms in the sense of the closeness to the true Pareto front and the 

diversity of solutions along the true Pareto front. Subsequently, Anagnostopoulos and 

Mamanis (2011) confirmed these findings by investigating the performance of five MOEAs 

for solving their proposed tri-objective POP with a different data set.  
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According to a recent comprehensive literature review on the application of MOEAs for 

portfolio management (Metaxiotis & Liagkouras, 2012), the authors pointed out that the 

majority of papers experimented with MOEA for solving bi-objective optimization 

problems where the expected return is maximized and variance is minimized. Several 

works proposed the use of other risk measure such as value at risk (VaR), expected shortfall 

(ES), and semi variance instead of variance used in the traditional MV analysis. Although 

the importance of skewness in asset pricing is widely documented and recognized, it is 

surprising that there are only two papers that considered skewness as an objective in 

portfolio selection problem (Chang, Yang, & Chang, 2009; Lin, 2012). However, the 

problem in their work was formulated based on weighted sum approach whose 

disadvantages are discussed in the previous sub-section. 

 

2.7 RESEARCH GAPS 

 

The research gaps found from the literature can be categorized into three parts as discussed 

in the following sub-sections. 

 

2.7.1 MVS Efficient Portfolios in Multi-dimension Moment Space  

As stated in the paper of Tsiang (1972, p. 359), a pioneering work on skewness preference, 

“if we regard the phenomenon of increasing absolute risk aversion as absurd, we must 

acknowledge that a normal risk-averter individual would have a preference for skewness, in 

addition to an aversion to dispersion of the probability distribution of returns”. Many 
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studies suggest the use of skewness in portfolio selection in the case where the return 

distribution is not normal and the investor utility cannot be approximated by only mean and 

variance (Jean, 1971, 1973; Kane, 1982; Samuelson, 1970). With the assumptions that 

investors are single-period maximizers of expected utility of terminal wealth, and utility 

function is either a cubic utility or a Taylor’s series expansion of terminal wealth, the 

efficient portfolio is one that maximizes investor utility. However, maximizing this convex 

utility function, if possible, is very cumbersome. Most of the studies employed a parameter-

preference model
6
, MVS model, to investigate the impact of skewness preference on 

portfolio selection. 

 

However, solving the MVS-POP is not easy due to the complexity of the problem itself and 

the procedure for determining the MVS efficient portfolios. To obtain the MVS efficient 

portfolios, ideally, a feasible set of portfolios that satisfy the constraints is firstly generated. 

Then, efficiency comparison between portfolios is conducted in order to retain only the 

efficient portfolios and to remove the inefficient ones out of the efficient set. Although 

various techniques were proposed in the literature as discussed in Section 2.6.1, their ability 

is restricted to perform these mentioned processes. In addition, the disadvantages of using 

these techniques for solving the MOOPs such as the MVS-POP are well recognized in the 

field of operations research (Athan & Papalambros, 1996; Das & Dennis, 1997; Marler & 

Arora, 2004; Messac et al., 2000), especially their unwarranted ability to provide efficient 

solutions. As a result, the impact of skewness on portfolio selection may be inaccurately 

                                                           
6 Rubinstein (1973) explained that a parameter-preference model is a model in which probability data are summarized by “parameter”, 

ordinarily the central moments. Due to the difficulties the expected utility model encounters in empirical studies, this model is widely 

employed. The MV model is a well-known parameter-preference model where investors make a portfolio decision based on the 

parameters such as mean, variance, and covariance. 



52 

 

interpreted. To close this research gap, Chapter 4, Chapter 5, and Chapter 6 employ the 

MOEAs for solving the MVS-POP and obtaining the MVS efficient portfolios in the multi-

dimension moment space. 

  

2.7.2 Skewness Preference and Portfolio Choice 

Due to the fact that elimination of the firm-specific risk or unsystematic risk can be 

achieved through diversification, this task is crucial for risk-averse investors whose utility 

can be described by the mean and variance of return distribution. However, observed 

behavior from economic agents reveals that portfolio holding of investors is far from 

diversification since there are only very few assets held in their portfolios (Blume & Friend, 

1975). One plausible theoretical explanation of this behavior is linked to skewness 

preference. Based upon the expected utility model, Simkowitz and Beedles (1978) 

explained that diversification may not be desirable for investors who base their decisions on 

the first three moments of return distributions. Conine and Tamarkin (1981) proved 

mathematically that the demand function of investors who homogeneously prefer skewness 

can be optimized by holding a small number of assets in their portfolio.
7
  

 

Subsequently, Mitton and Vorkink (2007) developed a model in which the preference of 

investors for the first two moments is the same but the preference for skewness is 

heterogeneous across agents. They argued that by allowing heterogeneous preference for 

skewness, their model allows investors, in equilibrium, to hold undiversified portfolio. The 

empirical finding of Goetzmann and Kumar (2008) reveals that undiversified portfolios of 

                                                           
7 The derivation is conducted by assuming that each asset in a portfolio has equal weight, i.e. investment proportion. 
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household accounts obtained from a large discount brokerage house in the U.S. are less 

efficient in the MV analysis and have higher skewness than the diversified ones.  

 

In the literature, a collection of studies examined the impacts of skewness preference on 

portfolio choice using different approaches but none of them conducted the investigation in 

the context of MVS efficient portfolios due to computation restriction. For example, Mitton 

and Vorkink (2007) pointed out that undiversified portfolios which are inefficient in MV 

analysis may be efficient under MVS analysis. However, “to assess MVS efficiency of a 

portfolio, ideally, MVS efficient frontier would be constructed using return characteristics 

of available stocks at times of portfolio formation. However, the large number of 

computation required to construct this frontier in three dimensions makes this approach 

intractable” (Mitton & Vorkink, 2007, p. 1274). In addition, the model proposed by Mitton 

and Vorkink (2007) requires economic agents to be classified into two groups including the 

Traditional investors with concave utility function and the Lotto investors with convex 

utility function.
8
 This assumption seems unreasonable due to the fact that skewness 

preference, i.e. 𝑈′′′ > 0 , is an inheriting result of risk aversion, i.e. 𝑈′′ < 0 (Arditti, 1967). 

Therefore, skewness preference is a common trait for a rational risk-averse investor and not 

only for the Lotto investors. 

 

To close the research gap, Chapter 5 of this thesis develops a single-period model that 

allows for heterogeneity in the degree of risk aversion and skewness preference. The MVS 

                                                           
8 In their work, Traditional investor is used to represent an investor whose utility is described by the quadratic function. In other words, a 
Traditional investor acts to maximize their utility based on the MV analysis. The term Lotto investor is used to describe an investor 

whose demand function can be approximated by the third-order Taylor’s series expansion. Thus, the utility of a Lotto investor can be 

maximized by maximizing expected return and skewness, and minimizing variance of the return distribution.  
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efficient portfolios obtained from the MOEAs are used to examine the impact of skewness 

preference on efficient portfolio choice. 

 

2.7.3 MVS Analysis for Solving an Electricity Allocation Problem 

A number of studies examined how a Genco allocates its generated electricity to available 

trading choices in order to maximize its utility under the MV framework (Donghan et al., 

2007; Hatami et al., 2011; Liu & Wu, 2006; Liu & Wu, 2007a, 2007b; Xiaohong et al., 

2008). However, the use of the MV analysis is limited only for the case that the utility of an 

agent is represented by quadratic function and the return of the asset follows the normal 

distribution (Harvey & Siddique, 2000; Kraus & Litzenberger, 1976; Samuelson, 1970). 

Many theoretical papers suggested that utility functions that satisfy the non-increasing 

absolute risk aversion condition (Arrow, 1964; Pratt, 1964) exhibit a preference for 

skewness in return distributions (Arditti, 1967; Kane, 1982; Levy, 1969; Tsiang, 1972). 

Besides, several authors provided the evidence that the distribution of electricity spot prices 

is not normal but skewed (Benth et al., 2008; Bessembinder & Lemmon, 2002; Cartea & 

Villaplana, 2008; Hajiabadi & Mashhadi, 2013; Longstaff & Wang, 2004; Lucia & Torró, 

2011; Redl et al., 2009). Moreover, the preference for positive skewness can be observed 

from agents in the electricity markets. Many studies showed that the forward premium is 

positively related with skewness of the spot price distribution (Bessembinder & Lemmon, 

2002; Douglas & Popova, 2008; Longstaff & Wang, 2004; Lucia & Torró, 2011; Parsons & 

De Roo, 2008; Redl et al., 2009; Viehmann, 2011). As a result, the electricity allocation 

problem should be established under the MVS model. Thus, the asymmetry in the 
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distribution of electricity spot prices which was assumed to be symmetric in previous works 

is taken into account in this thesis.  

 

In addition, the generation asset allocation problem between the spot and physical forward 

markets is generally analyzed based on known forward prices and forecasted spot prices. 

Since spot prices during the decision making period are unknown, the reliability of the 

optimization solution depends crucially on the accuracy of their forecasts. Given the fact 

that electricity spot prices are characterized by non-constant mean and variance (Garcia, 

Contreras, van Akkeren, & Garcia, 2005; Jun Hua, Zhao Yang, Zhao, & Kit Po, 2008), 

multiple seasonalities and high volatility (Aggarwal, Saini, & Kumar, 2009), omission of 

these effects in the forecasting model may result in erroneous Pareto-optimal solutions 

(Suksonghong & Goh, 2012). In previous studies, spot prices were forecasted using simple 

forecasting methods (Liu & Wu, 2006; Liu & Wu, 2007a, 2007b ), while seasonality was 

determined from the mean value of historical spot prices of a similar day and month 

(Donghan et al., 2007).  

 

Moreover, the number of available trading choices in an electricity market is small 

compared to a stock market. Steuer, Qi, and Hirschberger (2007) observed that when an 

investment universe is significantly small, the allocation of investment of the resulting 

portfolio solutions obtained from an optimization is clustered in only a few assets. In other 

words, the efficient portfolio solutions consist of a small number of assets.  In the finance 

point of view, diversification helps reduce firm-specific risk, thus allocation of investment 

to only a few investment alternatives may not be a desirable strategy for a Genco. 
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Constraints such as cardinality constraint, ceiling limit constraint and class constraint are 

typically incorporated in the optimization problem to increase the number of assets in the 

portfolio and/or to prevent excessive investment in a small number of assets. However, the 

value of constraint is subjectively predetermined by a DM leading to unnecessary 

restriction of the search space of an algorithm. As a result, the obtained solutions may not 

be efficient (Steuer et al., 2007).  

 

To close the research gap, the electricity allocation problem is formulated as the MVS-POP 

in Chapter 6 where expected return, variance and skewness are optimized simultaneously. 

Besides, the generalized autoregressive conditional heteroscedastic (GARCH) model with 

seasonality dummies (Suksonghong & Goh, 2012) is employed to capture the seasonality 

patterns and time varying volatility of electricity spot prices. The forecasts are used for 

computing the variables such as expected return, variance, skewness, variance-covariance 

matrix and skewness-coskewness matrix. These variables are the input variables for solving 

the MVS-POP. 

 

In addition, we propose an additional objective to increase the number of trading choices 

included in the portfolio solutions of a Genco. The proposed objective is set to minimize 

the difference between the highest and the lowest proportion of investment within a 

portfolio solution. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 INTRODUCTION 

 

This chapter is divided into five sections. In the first section, after this introduction, the 

conceptual framework is developed and the MVS portfolio model is formulated. The 

proposed approach for solving the formulated MVS-POP is discussed in the second section. 

The third, the fourth, and the fifth section explain respectively the methodology for Chapter 

4, Chapter 5, and Chapter 6 including the analytical framework, procedure, the data, and 

the optimization methodology.  

 

3.2 CONCEPTUAL FRAMEWORK 

 

This section illustrates the conceptual model for investors whose utility can be described 

over the first three moments of the return distributions. This utility function is the Taylor’s 

series expansion up to the third order. Let 𝑈(𝑅) represent the investor utility function 

where R is the random return. Using Taylor’s series expansion around the mean value of R 

and taking expected value on both sides, we obtain the following: 
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𝑈(𝑅) = 𝑈(𝐸[𝑅]) + 𝑈′(𝑅)(𝑅 − 𝐸[𝑅]) +
𝑈′′(𝑅)

2!
(𝑅 − 𝐸[𝑅])2 +

𝑈′′′(𝑅)

3!
(𝑅 − 𝐸[𝑅])3  (3.1) 

𝐸[𝑈(𝑅)] = 𝑈(𝐸[𝑅]) +
𝑈′′(𝑅)

2!
𝐸[(𝑅 − 𝐸[𝑅])2] +

𝑈′′′(𝑅)

3!
𝐸[(𝑅 − 𝐸[𝑅])3]  (3.2) 

 

where 𝐸(∙) is the expected value operator, 𝐸[𝑅] is the expected return, and 𝐸[(𝑅 − 𝐸[𝑅])𝑛] 

is the 𝑛𝑡ℎ moment of the return distribution. The desirable properties of the investor utility 

are (i) positive marginal utility, i.e. 𝑈′ > 0, (ii) decreasing marginal utility, i.e. 𝑈′′ < 0, 

and (iii) non-increasing absolute risk aversion, i.e. 𝑈′′′ > 0 (Pratt, 1964; Samuelson, 1970). 

Therefore, the expected utility can be optimized by simultaneously maximizing the 

expected return and skewness and minimizing the variance of the return distribution. Since 

the parameter-preference based approach is used in our study, we adopt the MVS portfolio 

model. The purpose is to develop a multi-objective framework for a single-period MVS 

model for solving the portfolio optimization problem. Thus, it is noted that all considered 

variables are deterministic as assumed by Markowitz (1952). In other words, the expected 

return, variance-covariance matrix, and skewness-coskewness matrix are known before 

making a decision. Suppose that a single investment holding period where N securities are 

available for investment is considered. At the beginning of the holding period, an investor 

determines the proportion of his initial investment that will be allocated to each available 

security. Suppose that x, which represents a portfolio solution, is a 𝑁 × 1 vector of 

investment allocation proportion to N securities. Let vector R with size 𝑁 × 1 represent the 

expected returns of N securities. Matrix 𝚲 is a non-singular 𝑁 × 𝑁 variance-covariance 

matrix. The theoretical model of Conine and Tamarkin (1981) suggests that all joint 

product moments between assets are relevant for portfolio selection, thus the total skewness 

should be decomposed as idiosyncratic skewness, curvilinear, and triplicate product 
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moments. As a result, matrix Ω with size 𝑁 × 𝑁 × 𝑁 is used to represents skewness-

coskewness matrix. We transform matrix Ω size 𝑁 × 𝑁 × 𝑁 to 𝑁 × 𝑁2 matrix by slicing 

each 𝑁 × 𝑁 layer and then placing each layer in the same order, adjacent to each other.  

 

According to the literature, a large class of investors whose utility can be approximated by 

the third order Taylor’s series expansion around the expected value will maximize the 

expected return and skewness of portfolio as well as minimize the portfolio variance 

simultaneously. Suppose that the expected return, variance, and skewness of a portfolio are 

denoted by 𝑅𝑝(x), 𝑉𝑝(x), and 𝑆𝑝(x), respectively. Thus, the three objectives of a MVS-POP 

can be expressed as follows:  

 Maximize 𝑅𝑝(x) = 𝐱T𝐑 = ∑ 𝑥𝑖𝑅𝑖
𝑁
𝑖=1   (3.3) 

 Minimize 𝑉𝑝(x) = 𝐱T𝚲 𝐱 = ∑ 𝑥𝑖𝑥𝑗𝜎𝑖,𝑗
𝑁
𝑖=1   (3.4) 

 Maximize 𝑆𝑝(x) = 𝐱T𝛀 (𝐱 ⨂ 𝐱) = ∑ ∑ ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝛾𝑖,𝑗,𝑘
𝑁
𝑘=1

𝑁
𝑗=1

𝑁
𝑖=1   (3.5) 

 

where 𝐱T is the transpose of vector x, 𝑥𝑖 is the proportion of investment allocated to 

security i, and 𝑅𝑖 is the expected return of security i, 𝜎𝑖,𝑗 is covariance between securities i 

and j, and 𝛾𝑖,𝑗,𝑘 represents the coskewness between securities i, j and k. The sign   is the 

Kronecker product. Thus, the proposed MVS-POP can be formulated under the multi-

objective optimization framework as follows: 

 Prob. 1 min
x

𝐹(x) = [−𝑅𝑝(x), 𝑉𝑝(x), −𝑆𝑝(x)] (3.6) 
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It is implied in the Prob.1 that all objectives are optimized at the same time without any 

priori information about the preference for any particular objective. In the other words, 

these three objectives are equally important in the optimization process. 

 

3.3 THE PROPOSED TECHNIQUE 

 

For a multi-objective optimization problem (MOOP) such as that of MVS-POP whose 

objectives are completing and conflicting with each other, a solution that optimizes all 

objectives at the same time does not exist. Therefore, the task of DM is to find a set of 

compromising (non-dominated) solutions in the multi-dimensional feasible space and then 

select the best solution that matches with the preference of a DM.  

 

3.3.1 The Multi-objective Optimization Framework 

Basically, a MOOP contains at least two objectives that will be optimized, i.e. minimized or 

maximized. The general form of a MOOP is usually stated with objective functions and 

constraint functions as follows: 

 Optimize 𝑓𝑘(x)                  𝑘 = 1, 2, … , 𝐾 (3.7) 

 Subject to 𝑔𝑙(x) = 0;          𝑙 = 1, 2, … , 𝐿 

  ℎ𝑚(x) ≥ 0;      𝑚 = 1, 2, … , 𝑀 

  𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈;   𝑖 = 1, 2, … , 𝑁 
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where x = [

𝑥1

𝑥2

⋮
𝑥𝑁

] is a solution vector of N decision variables which can be conveniently 

written as x = [𝑥1 𝑥2    ⋯ 𝑥𝑁]T, and K represents the number of objective functions to 

be optimized. 𝑔𝑙(x) and ℎ𝑚(x) are the equality and inequality constraint functions 

respectively, where L and M represent the number of equality and inequality constraints. 𝑥𝑖
𝐿 

and 𝑥𝑖
𝑈 are the lower and upper bound of the value of 𝑥𝑖 which constitute the boundary of 

the solution space (S). Noted that the inequality function, ℎ𝑚(x), is normally treated as 

greater than or equal to, however, it can be represented a constraint function of less than or 

equal to by multiplying the function with (-1).  

 

3.3.2 Multi-dimension Search Space 

In single-objective optimization problems, there is only one objective to be optimized. 

Thus, an algorithm searches for a solution vector x ∈ 𝑆  that satisfies all constraints and 

optimizes (minimizes or maximizes) a scalar 𝑓(x). The search process of an algorithm 

takes place in the solution space ℝ𝑁 restricted in the feasible region S. In other words, the 

search directions are guided by the setting values of the constraints.  

Meanwhile, in the multi-objective optimization approach, not only a solution vector, but 

also a vector of objective functions located in the objective space ℝ𝐾 is taken into account. 

The elements of the objective-value vector 𝐳 ∈ 𝑍 = [

𝑓1(x)

𝑓2(x)
⋮

𝑓𝐾(x)

] or 𝐳 ∈ 𝑍 = [

𝑧1

𝑧2

⋮
𝑧𝐾

] represent the 

values of objectives contributed by a solution vector x where K is the number of considered 

objectives. Thus, a vector of solution x ∈ 𝑆, in the solution space, associates with a vector 
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of objective function z ∈ 𝑍 in the objective value space. This mapping takes place between 

an N-dimension solution space to a K-dimension objective space. 

 

3.3.3 Determination of Non-dominated Solutions (Efficient Solutions) 

In general, the optimization procedure is started by randomly generating a set of solutions 

that satisfy the problem constraints. The proposed technique detects the efficient solutions 

by evaluating the objective functions of the candidate solutions. For example, consider 

Prob.1 with five assets as an investment universe. The value of expected return, variance, 

and skewness of the candidate portfolio solution xA = [𝑥1 𝑥2    ⋯ 𝑥5]T is computed. 

Then, these objective values are saved as an objective-value vector, i.e. 

zA = [𝑧1 𝑧2 𝑧3]𝐓, where 𝑧1, 𝑧2, and 𝑧3 represent respectively the value of expected 

return, variance, and skewness.  Then, the objective-value vector zA is stored in the 

objective space. In the other words, one solution vector has one corresponding objective-

value vector in the objective space. Many of such objective-value vectors can be obtained. 

 

In order to determine a set of efficient solutions, the objective-value vectors are compared. 

In general, for MOOP whose objectives are equally important, a comparison can be 

conducted based on the Pareto dominance relation to obtain solutions that achieve “Pareto 

optimality”. Let K
+
 be a set of maximized objectives and K

- 
be a set of minimized 

objectives. 
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Definition 1. Objective-value vector z∗ is said to be better than (dominates) vector z if and 

only if ∀𝑖 ∈ 𝐾+, 𝑧𝑖
∗ ≥ 𝑧𝑖 ∧ ∃𝑖 ∈ 𝐾+, 𝑧𝑖

∗ > 𝑧𝑖 and ∀𝑖 ∈ 𝐾−, 𝑧𝑖
∗ ≤ 𝑧𝑖 ∧  ∃𝑖 ∈ 𝐾−, 𝑧𝑖

∗ < 𝑧𝑖 

 

Performing a comparison based on Definition 1, the set of non-dominated objective-value 

vectors can be obtained. From each non-dominated objective vector, we trace back to its 

corresponding solution vector. These are Pareto optimal solutions. 

 

Definition 2. A solution vector x∗ is said to be the efficient (non-dominated) solution if and 

only if its corresponding objective-value vector z∗ is the non-dominated objective-value 

vector. Otherwise, x∗ is the inefficient (dominated) solution. 

 

Figure 3.1: Mapping between Solution Space and Objective Space 
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Figure 3.1 is an illustration of the portfolio optimization problem where the expected return 

is maximized and variance is minimized simultaneously. It is assumed that there are three 

available securities, i.e. x = [𝑥1 𝑥2 𝑥3]T, as an investment universe. The solution space 

is shown on the left panel while the objective space is presented on the right panel. The 

figure demonstrates that the portfolio solution A, B, C, and D can be traced back to its 

corresponding objective-value vector A
′
, B′, C

′
 and D′, respectively. According to 

Definition 1, vectors A
′
 and B′ have the same expected return. However, vector B′ has a 

lower standard deviation than vector A
′
. Thus, vector A

′
 is dominated by vector B′. By 

comparing vector B′ with vector C
′
, vector B′ is better than C

′
 for one objective (standard 

deviation), but it is worse than C
′
 for another objective (expected return). Therefore, vector 

A
′
 does not dominate vector C

′
 and vice versa. Similar results can be observed when 

comparing vector B′ to D′ and C
′
 to D′. Thus, by comparing all pairs of vectors, vectors B′, 

C
′
 and D′ are considered as the non-dominated objective-value vectors. According to 

Definition 2, by tracing back to their corresponding portfolio solutions, portfolios B, C and 

D are the non-dominated portfolio solutions which are generally referred to as the “efficient 

portfolios”. The boundary or front that is formed by the non-dominated objective-value 

vectors is named as the “Pareto optimal front” or “efficient frontier”. 

 

In the context of the MVS-POP formulated as Prob. 1, the searching process takes place 

within the N-dimensional solution space, where N is the number of available securities, and 

3-dimentional objective space, i.e. the expected return, variance, and skewness. Therefore, 

we can say that portfolio A (x𝐴) dominates portfolio B (x𝐵) if and only if 𝑅𝑝(x𝐴) ≥

𝑅𝑝(x𝐵), 𝑉𝑝(x𝐴) ≤ 𝑉𝑝(x𝐵) and 𝑆𝑝(x𝐴) ≥ 𝑆𝑝(x𝐵) with at least one strict inequality. A 
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portfolio that is not dominated by any other portfolios is the MVS efficient portfolios and is 

a member of the MVS efficient surface. 

 

As discussed in Section 2.6.3, MOEAs have the ability to perform the search in the multi-

dimension space, in parallel with the ability to evaluate the efficiency of the solutions based 

on the concept of Pareto optimality. Thus, a set of MVS efficient portfolios can be 

effectively obtained within a single run of simulation. In the past decade, many MOEAs 

were developed and proposed for solving complex MOOPs in various disciplines. The non-

dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002) and the improved 

strength Pareto evolutionary algorithm (SPEA-II) (Zitzler, Laumanns, & Thiele, 2002a) are 

regarded as the most efficient and well-established MOEAs. However, the result of 

performance comparison between these two algorithms is incoherent. In some problems the 

NSGA-II outperforms the SPEA-II, and vice versa. Therefore, these two algorithms are 

employed in this study,
9
 and a comparison is made in Chapter 4.  

 

3.4 PORTFOLIO SELECTION WITH SKEWNESS PREFERENCE 

 

Chapter 4 examines portfolio selection of financial assets within the MVS framework. The 

proposed MOEAs techniques, specifically NSGA-II and SPEA-II are applied for solving 

MVS-POP in the multi-dimension space. Besides, the characteristics of MVS efficient 

portfolios in terms of risk-return trade-of as well as the efficient surface are examined using 

                                                           
9 The detailed explanation of the NSGA-II and SPEA-II is provided in APPENDIX A. 
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the data of emerging stock market indices. The impact of different investment horizons on 

the characteristics of MVS efficient portfolios is discussed. 

 

3.4.1 The Optimization Problem 

The MVS-POP is as stated in Prob. 1 with two standard constraints. The optimization 

problem is as follows: 

 Prob. 1 min
x

𝐹(x) = [−𝑅𝑝(x), 𝑉𝑝(x), −𝑆𝑝(x)]  

 Subject to ∑ 𝑥𝑖
𝑁
𝑖=1 = 1   

  𝑥𝑖 ≥ 0  

 

The first constraint is applied to make sure that all investment is fully allocated to available 

securities. The second constraint implies that the short selling is not allowed. As pointed 

out by Levy (1972) that different investment horizons can result in different efficient 

portfolio set to investors. He argued that the portfolio performance evaluated using the 

yearly rate of returns differs significantly from that using the monthly data set. In addition, 

Prakash, De Boyrie, and Hamid (1997) demonstrated that the estimates of the moments of 

the return distribution can be biased by the choice of an investment horizon. Therefore, to 

investigate whether different investment horizons has an impact on the MVS portfolio 

performance and composition, Prob. 1 is solved using two sets of data including weekly 

and monthly rate of stock market returns. 
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3.4.2 Data 

The data set consists of the indices for sixteen emerging stock markets including ten in Asia 

and six in Latin America.
10

 The weekly and monthly price indices of these countries were 

obtained from the Morgan Stanley Capital International (MSCI) database which is available 

from DataStream. It should be noted that the MSCI converts the international price indices 

into US dollars using the spot foreign exchange rate for a particular period. The data range 

from January 2009 to December 2012. Therefore, there are 209 and 48 observations for the 

weekly and monthly data set, respectively.  

 

This study covers the emerging markets in Asia that include China, India, Indonesia, 

Malaysia, Pakistan, Philippines, South Korea, Sri Lanka, Taiwan, and Thailand. The 

emerging markets of Latin America examined are Argentina, Brazil, Chile, Columbia, 

Mexico, and Peru. The skewness of return distributions of emerging markets is generally 

more pronounced because these markets are relatively small in size (in terms of market 

capitalization) (Doan et al., 2010; Harvey & Siddique, 2000).  

 

3.4.3 Procedure 

The procedure adopted for the analysis in Chapter 4 is divided into three parts. Firstly, the 

weekly and monthly returns from January 2009 to December 2012 for sixteen market 

indices are calculated. As a conventional approach for a single-period model, the rate of 

returns is computed from dividing the difference between closing price of today and the 

previous trading day by the closing price of the previous trading day as below.  

                                                           
10 All the stock exchanges categorized by MSCI as emerging markets in Asia and Latin America are used in this chapter. 
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𝑅𝑖,𝑡 =

𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1

𝑃𝑖,𝑡−1
 (3.8) 

 

where 𝑅𝑖,𝑡 is the rate of returns for market i at time t and 𝑃𝑖,𝑡 is the index closing price at 

time t for market i. The vectors are annualized for the different investment horizons.
11

 

Then, the following statistics are computed from the historical rate of returns of the market 

indices: 

 𝑅𝑖 =
1

𝑇
∑ 𝑅𝑖,𝑡

𝑇
𝑡=1   (3.9) 

 𝜎𝑖,𝑗 =
1

𝑇
∑ (𝑅𝑖,𝑡 − �̅�𝑖)(𝑅𝑗,𝑡 − �̅�𝑗)𝑇

𝑡=1   (3.10) 

 
𝛾𝑖,𝑗,𝑘 =

1

𝑇
∑

(𝑅𝑖,𝑡−�̅�𝑖)

√𝜎𝑖,𝑖

(𝑅𝑗,𝑡−�̅�𝑗)

√𝜎𝑗,𝑗

(𝑅𝑘,𝑡−�̅�𝑘)

√𝜎𝑘,𝑘

𝑇
𝑡=1   (3.11) 

 

where i, j, and k = 1, 2, 3,…, 16, and T is total number of observations. The set of sixteen 

values of 𝑅𝑖 is stored in the 16×1 vector R. The covariance 𝜎𝑖,𝑗 is kept in the variance-

covariance matrix 𝚲 with dimensions 16×16 and the coskewness 𝛾𝑖,𝑗,𝑘 is organized in the 

skewness-coskewness matrix 𝛀 of size 16×256.  

 

Secondly, the normality test is conducted to test whether the return distributions of the 

sixteen market indices are normal. Since we assumed that the investor utility function can 

be expanded in the Taylor’s series, the investors will prefer assets having a probability of 

large upside gain. Nevertheless, if the distribution of assets returns is symmetric and can be 

sufficiently characterized by mean and variance, investors are not capable to form 

                                                           
11 For weekly annualized returns, the values obtained from Equation (3.8) are multiplied by 52. Meanwhile, the value of 12 is used as a 
multiplier in the case of the monthly annualized returns.  



69 

 

portfolios having high skewness in the return distribution. As a result, the normality test is 

regarded as a prerequisite step for constructing MVS portfolios.  

 

There are various methods for conducting the normality test. However, which test should 

be used is an important question due to the fact that each test works well under different 

conditions. For example, with small sample sizes, the normality tests have small power to 

reject the null hypothesis of normal distribution. As a result, the test statistic always shows 

that small sample data come from the normal distribution, even though they are actually 

non-normally distributed. In the literature of statistics, the Shapiro-Wilk test (Shapiro & 

Wilk, 1965) and the Jarque-Bera test (Jarque & Bera, 1987) are popular as they are 

powerful normality tests. The former has good power especially when we anticipate that the 

distribution is asymmetric (Yap & Sim, 2011). The latter is suitable when we suspect that 

the data come from normal distribution, but it does not work well when dealing with small 

sample data (less than 50 observations) (Yazici & Yolacan, 2006). Since we did not have a 

priori information on the shape of distribution, we conducted the normality test using both 

the Shapiro-Wilk and Jarque-Bera tests. The hypothesis to be tested is stated as follows: 

 H0: The parent population is normally distributed.  

 H1: The parent population is not normally distributed.  

 

To determine whether to reject the null hypothesis, the probability associated with the test 

statistic is computed. If the probability or the P-value is less than the significance level, i.e. 

α = 0.10, the null hypothesis is rejected in the favor of the alternative hypothesis that the 

data distribution is not normal.  
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Thirdly, the proposed MOEAs together with the Pareto dominance relation described in 

Section 3.3 are utilized for searching the MVS efficient portfolios in 3D space. The non-

dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002) and the improved 

strength Pareto evolutionary algorithm (SPEA-II) (Zitzler et al., 2002a), regarded as the 

most efficient and well-established MOEAs, are applied. The summary of the parameter 

setting for the NSGA-II and SPEA-II is exhibited in Table 3.1. 

 

Table 3.1: Parameter Setting for the NSGA-II and SPEA-II  

Parameter  Setting and Values for  NSGA-II  Setting and Values for SPEA-II 

Chromosome coding Real-number coding with 16-bit 

chromosome 

Real-number coding with 16-bit 

chromosome 

Problem setting Prob. 1 with 16 assets as a 

universe 

Prob. 1 with 16 assets as a 

universe 

Crossover method SBX crossover with probability = 

1.0 

SBX crossover with probability = 

1.0 

Mutation method Variable-wise polynomial mutation 

with probability = 1/number of 

decision  variable  

Variable-wise polynomial 

mutation  with probability = 

1/number of decision variable  

Population size 200 200 

Archive size  N/A 200 

Number of generations 500 500 

Number of repeated 

runs 

5 5 
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3.5 THE IMPACT OF SKEWNESS PREFERENCE ON PORTFOLIO CHOICE 

 

In Chapter 5, the impact of different degree of risk aversion and skewness preference on 

portfolio choice and portfolio holding is investigated. We develop a single-period model in 

which investors exhibit a homogeneous preference for the first three moments of return 

distributions but possess a heterogeneous degree of risk aversion and skewness preference. 

Our proposed model is built upon the model of Mitton and Vorkink (2007) with several key 

extensions. Firstly, in Mitton and Vorkink (2007), agents in the economy are classified as 

either Traditional investors or the Lotto investors. As discussed in Section 2.7.2, this 

assumption seems unreasonable since skewness preference is recognized as a common trait 

for a rational risk-averse investor, not only for a Lotto investor. In addition, Barberis and 

Huang (2007) discussed a potential pitfall of Mitton and Vorkink (2007)’s model that the 

global optimum portfolio for a Lotto investor may involve only a highly skewed stock with 

the investor taking an infinite position in this one asset portfolio. In the contrary, a different 

degree of risk aversion and skewness preference in our proposed model not only allows 

risk-averse agents to rationally hold portfolios with return skewness, but also allows 

skewness preference investors to take into account the return dispersion in portfolio 

decisions.  

 

Secondly, in contrast to the coefficient that governs preference for skewness used by Mitton 

and Vorkink (2007), the local index (
𝑈′′′

𝑈′ ) in our model that measures the degree of 

skewness preference, as discussed in Section 2.2.3, demonstrates the local and the global 

properties in the similar way as the global property of Arrow-Pratt’s measure of degree of 
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absolute risk aversion.
12

 Finally, the implications of the model of Mitton and Vorkink 

(2007) were tested by a case study of three assets as an investment universe. However, their 

findings may be of limit because Konno and Yamazaki (1991) demonstrated that the 

behavior of a model with a small number of assets is often different from that with a large 

set universal. In contrast, the optimization techniques that we proposed to use allow us to 

overcome this problem. The implications of our proposed model can be tested from a set of 

MVS efficient portfolios obtained from a large number of assets that forms the investment 

universe. 

 

3.5.1 The Model 

The proposed model is developed based on the approach of Arrow-Pratt in deriving the 

measure of risk premium. Basically, a risk-averse agent will always refuse any risky 

investment (�̃�) with an expected payoff of zero unless it is compensated by a risk premium 

(𝜋). His expected utility can be stated as: 

  E[𝑈(𝑊 + �̃�)] = 𝑈(𝑊 − 𝜋)   (3.12) 

 

where W represents the wealth of the agent. The value of certainty equivalent (CE) is 

generally used to measure risk premium for a risk-averse agent. CE is the minimum amount 

of money that a risk-averse agent will accept where he is indifferent between taking up the 

risky investment and having this certain monetary amount of CE. For a risk-neutral agent, 

the CE of a risky investment is equal to the expected monetary value of the investment. 

Meanwhile, the CE of any risky investment for a risk-averse agent is less than the expected 

                                                           
12 For the theoretical derivation, please refer to Modica and Scarsini (2005) and Crainich and Eeckhoudt (2008). 
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monetary value of the investment. Thus, the risk premium is the difference between the 

expected monetary value of the investment and CE which can be stated mathematically as: 

  π =𝐸(𝑊 + �̃�) − CE   (3.13) 

 

Pratt (1967) explained that the risk premium is a function of the distribution of risky 

investment, initial wealth, and utility function. Using the third-order Taylor’s series 

expansion to approximate the LHS of Equation (3.12), we get: 

 𝐸[𝑈(𝑊 + �̃�)] ≅ 𝐸 [𝑈(𝑊) +
𝑧𝑈′(𝑊)

1!
+

𝑧2𝑈′′(𝑊)

2!
+

𝑧3𝑈′′′(𝑊)

3!
]   

  = 𝑈(𝐸[𝑊]) +
𝑈′(𝑊)

1!
𝐸(�̃�) +

𝑈′′(𝑊)

2!
𝐸(�̃�2) +

𝑈′′′(𝑊)

3!
𝐸(�̃�3)   

  = 𝑈(𝐸[𝑊]) +
𝜎2

2!
𝑈′′(𝑊) +

𝑆

3!
𝑈′′′(𝑊) (3.14) 

 

where 𝐸(�̃�) = 0, 𝐸(�̃�2) = 𝜎2 is the variance of the return distributions of the risky 

investment �̃�, and 𝐸(�̃�3) = 𝑆 is the skewness of the return distribution of risky investment 

�̃�. The Taylor’s series first-order expansion of the RHS of Equation (3.12) yields: 

 𝑈(𝑊 − 𝜋) = 𝑈(𝐸[𝑊]) − 𝜋𝑈′(𝑊)  (3.15) 

 

Then, by replacing Equation (3.14) and Equation (3.15) into Equation (3.12), we obtain: 

 𝑈(𝐸[𝑊]) +
𝜎2

2!
𝑈′′(𝑊) +

𝑆

3!
𝑈′′′(𝑊) = 𝑈(𝐸[𝑊]) − 𝜋𝑈′(𝑊)   

 𝜋 = −
𝜎2

2!

𝑈′′(𝑊)

𝑈′(𝑊)
−

𝑆

3!

𝑈′′′(𝑊)

𝑈′(𝑊)
 (3.16) 
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In the expected utility theory, it is well recognized that when the utility is an increasing 

function of the random variable, maximizing the utility of CE, i.e. 𝑈(𝐶𝐸), is equivalent to 

maximizing the expected utility, i.e. 𝐸[𝑈(𝑊 + �̃�)]. Replacing Equation (3.16) into 

Equation (3.13) and rearranging terms, we obtain: 

  Max 𝑈(𝐶𝐸) = Max [𝑈(𝐸[𝑊]) +
𝜎2

2!

𝑈′′(𝑊)

𝑈′(𝑊)
+

𝑆

3!

𝑈′′′(𝑊)

𝑈′(𝑊)
]   

or Max 𝑈(𝐶𝐸) = Max [𝑈(𝐸[𝑊]) −
𝜎2

2!
𝐴 +

𝑆

3!
𝑃 ]  (3.17) 

 

where A is Arrow-Pratt’s absolute risk aversion coefficient, i.e. −
𝑈′′

𝑈′ , and P represents the 

degree of skewness preference, i.e. 
𝑈′′′

𝑈′ , which was proposed by Modica and Scarsini (2005) 

and Crainich and Eeckhoudt (2008). Given the desirable properties of investor utility of (i) 

positive marginal utility, i.e. 𝑈′ > 0, (ii) decreasing marginal utility, i.e. 𝑈′′ < 0, and (iii) 

non-increasing absolute risk aversion, i.e. 𝑈′′′ > 0, thus coefficient A > 0 and P > 0. It 

implies that a rational investor averts to dispersion and favors positive skewness of return 

distributions.  

 

In this model, rational investors exhibit a homogeneous preference for the first three 

moments of return distributions. However, the model allows investors to possess a different 

degree of risk aversion and skewness preference. Therefore, the proposed model has three 

major implications. Firstly, for a given level of variance, the model predicts that investors 

with greater skewness preference will accept lower expected returns to enjoy the benefit of 

increased skewness. The benefit of investing in an asset with a larger skewness of the return 

distribution can be thought of as chasing after the possibilities of positive extreme 
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outcomes or to avoid downside risks. Secondly, at a given level of expected return, the 

model predicts that investors with greater degree of skewness preference are willing to 

expose themselves to larger return dispersions in order to stretch the right tail of the return 

distribution. On the other hand, the greater absolute risk-averse investors will hold 

portfolios with lower variance at the expense of the return skewness. Observed from the 

first two implications, investors with greater risk aversion and a lower degree of skewness 

preference has a greater tendency to select a portfolio located nearby the MV efficient set, 

but those with greater skewness preference and who are less risk-averse will sacrifice MV 

efficiency in exchange for a portfolio that has either higher possibilities of achieving 

extreme returns or lower downside risks. Finally, our model predicts that investors with 

greater skewness preference tend to hold less number of assets in their portfolio, i.e. 

undiversified portfolio, in order to increase their exposure to positive skewness of the return 

distribution. In contrast, the greater risk-averse investors reduce portfolio variance mainly 

through diversification, thus they tend to hold higher number of assets in their portfolio.  

 

To investigate the empirical implications of the proposed model, there are two steps to be 

accomplished. Firstly, the MVS efficient portfolios are searched in the multi-dimension 

space. This step can be done by solving the MVS-POP formulated as Prob. 1 in Section 3.2 

using the MOEAs suggested earlier. Secondly, using the resulting MVS efficient portfolios 

from step one, the impact of the degree of skewness preference on portfolio selection can 

be examined.  
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3.5.2 The Optimization Problem 

In Chapter 5, Prob. 1 is optimized with respect to two standard constraints. The first 

constraint is applied to make sure that all initial investment is fully allocated to available 

securities. The second constraint implies that short selling is not allowed. The analytical 

framework can be expressed as follows: 

 Prob. 1 min
x

𝐹(x) = [−𝑅𝑝(x), 𝑉𝑝(x), −𝑆𝑝(x)]  

 Subject to ∑ 𝑥𝑖
𝑁
𝑖=1 = 1   

  𝑥𝑖 ≥ 0  

 

3.5.3 Data 

We expand the analysis on the application of the MVS framework in the stock market by 

using firm-level data in Chapter 5. The monthly closing prices of the component securities 

of Dow Jones Industrial Average index (DJIA) were collected. These data were extracted 

from DataStream. The sample period is from January 2004 to December 2011. It should be 

noted that DJIA is comprised of 30 large publicly owned companies based in the U.S. 

However, the stock of the VISA Inc. was dropped in this study because it was firstly traded 

in March 19, 2008. Thus, 29 securities were considered in our analysis. The list of the 

companies and their trading symbols are exhibited in Table 3.2 
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Table 3.2: The List of Securities for Analysis on the Impact of Skewness Preference 

Symbol Company Symbol Company 

U:AXP AMERICAN EXPRESS U:MCD MCDONALD'S 

U:BA BOEING U:MMM 3M 

U:CAT CATERPILLAR U:MRK MERCK & CO. 

U:CVX CHEVRON @:MSFT MICROSOFT 

@:CSCO CISCO SYSTEMS U:NKE NIKE 

U:DD DU PONT U:PFE PFIZER 

U:DIS WALT DISNEY U:PG PROCTER & GAMBLE 

U:GE GENERAL ELECTRIC U:T AT&T 

U:GS GOLDMAN SACHS U:TRV TRAVELERS COS. 

U:HD HOME DEPOT U:UNH UNITEDHEALTH GP. 

U:IBM IBM U:UTX UNITED TECHNOLOGIES 

@:INTC INTEL U:VZ VERIZON COMMUNICATIONS 

U:JNJ JOHNSON & JOHNSON U:WMT WAL MART STORES 

U:JPM JP MORGAN CHASE & CO. U:XOM EXXON MOBIL 

U:KO COCA COLA 

  Note: U: and @: indicate that a security is traded in the New York Stock Exchange (NYSE) or NASDAQ, 

respectively. 

 

3.5.4 Procedure 

The procedure for Chapter 5 is divided into four parts. The first two parts are adopted from 

Chapter 4. We firstly calculated the monthly returns of the 29 securities using the data from 

January 2004 to December 2011. The rate of return is computed from: 

  

 
𝑅𝑖,𝑡 =

𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1

𝑃𝑖,𝑡−1
 (3.18) 

 

Then, monthly rate of returns were annualized by using 12 as a multiplier. The following 

statistics are computed from the rates of return of the 29 stocks: 
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 𝑅𝑖 =
1

𝑇
∑ 𝑅𝑖,𝑡

𝑇
𝑡=1   (3.19) 

 𝜎𝑖,𝑗 =
1

𝑇
∑ (𝑅𝑖,𝑡 − �̅�𝑖)(𝑅𝑗,𝑡 − �̅�𝑗)𝑇

𝑡=1   (3.20) 

 
𝛾𝑖,𝑗,𝑘 =

1

𝑇
∑

(𝑅𝑖,𝑡−�̅�𝑖)

√𝜎𝑖,𝑖

(𝑅𝑗,𝑡−�̅�𝑗)

√𝜎𝑗,𝑗

(𝑅𝑘,𝑡−�̅�𝑘)

√𝜎𝑘,𝑘

𝑇
𝑡=1   (3.21) 

 

Since the data include 29 stocks, i, j, and k = 1, 2, 3,…, 29. T is the total number of 

observations. The 29 values of average return 𝑅𝑖 are stored in the 29×1 vector R. The 

covariance 𝜎𝑖,𝑗 is saved in the variance-covariance matrix 𝚲  with dimensions 29×29 and 

the coskewness 𝛾𝑖,𝑗,𝑘 is stored in the skewness-coskewness matrix 𝛀 with dimensions 

29×841.  

 

Secondly, we perform the normality test to test whether the return distributions of the 29 

stocks are symmetric. Our time series data for each stock consists of 96 observations. The 

sample size is reasonably large, thus the Jarque-Bera test is employed. The hypothesis to be 

tested is stated as follows: 

 H0: The parent population is normally distributed.  

 H1: The parent population is not normally distributed.  

 

Thirdly, MOEAs are utilized for searching the MVS trade-off solutions in the 3D space. As 

is shown in Chapter 4, the optimization results suggest the superiority of the SPEA-II over 

the NSGA-II. Therefore, the SPEA-II is implemented for finding the MVS efficient 

portfolios in Chapter 5. The summary of parameter setting for the SPEA-II is given in 
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Table 3.3. Lastly, the resulting set of MVS efficient portfolios is used to examine the 

implication of heterogeneous degree of risk aversion and skewness preference on portfolio 

choices of investors. Two methods are adopted for this investigation. First, we sort the 

resulting MVS efficient portfolios into quintile portfolios according to two considered 

factors, i.e. portfolio skewness and number of assets included in portfolios. Then the 

average expected return, SD, and skewness for all the portfolios in each of the quintiles 

were compared. Second, the MVS efficient portfolios that maximize 𝑈(𝐶𝐸) were identified 

for given values of degree of risk aversion (A) and skewness preference (P) that represent 

an investor’s preference. From these efficient portfolios, the three implications of the model 

(3.17) stated in Section 3.5.1 are examined. 

 

Table 3.3: Parameter Setting for the SPEA-II  

Parameter  Setting and Values for SPEA-II 

Chromosome coding Real-number coding with 29-bit chromosome 

Problem setting Prob. 1 with 29 stocks as a universe 

Crossover method SBX crossover with probability = 1.0 

Mutation method Variable-wise polynomial mutation  with 

probability = 1/number of decision variable  

Population size 200 

Archive size  200 

Number of generations 500 

Number of repeated runs 5 
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3.6 ELECTRICITY ALLOCATION PROBLEM 

 

In deregulated electricity markets, generation companies are faced with the problem of how 

to allocate their electricity output to different trading options in order to maximize profit. 

The problem is very much similar to the asset allocation problem in stock markets. In 

Chapter 6, the use of the MVS portfolio model is proposed in the presence of skewness 

preference in the electricity market (Bessembinder & Lemmon, 2002; Douglas & Popova, 

2008; Longstaff & Wang, 2004; Lucia & Torró, 2011; Parsons & De Roo, 2008; Redl et al., 

2009; Viehmann, 2011) and asymmetric distribution of the electricity spot prices (Benth et 

al., 2008; Bessembinder & Lemmon, 2002; Cartea & Villaplana, 2008; Hajiabadi & 

Mashhadi, 2013; Longstaff & Wang, 2004; Lucia & Torró, 2011; Redl et al., 2009). The 

MVS-POP formulated in Section 3.2 is applied to the generation asset allocation problem in 

the electricity market. Besides, given that the number of trading options is not as many as 

that for stock markets, an additional objective is proposed to prevent under-diversification 

and to promote diversification benefits.  

 

3.6.1 The Optimization Problem 

This analytical chapter focuses on electricity allocation between the spot and forward 

markets as presented in Liu and Wu (2007a and 2007b). In the spot market, a Genco can 

sell the electricity it generates on real-time basis. However, electricity spot prices are highly 

volatile due to non-storability of the product and uncertainty in its demand. Therefore, 

trading in the spot market is considered a risky choice. In the case of a forward contract, the 

Genco makes a bilateral trade agreement on price ($/MWh), quantity (MWh) as well as 
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delivery time and location with its customers in advance. A Genco can sign forward 

contracts with customers located in the same pricing zone (known as local forward 

contract) as well as in different pricing zones (known as non-local forward contract). The 

local forward contract is risk free because the transmitted quantity and contract price are 

agreed beforehand, and no uncertainty is involved. Although a non-local bilateral contract 

is also established in advance, it bears risk because according to the locational marginal 

pricing (LMP) scheme, a congestion charge is levied on the Genco if there is line 

congestion during the delivery to the customer located in a different pricing zone.  

 

In Chapter 5, the asset allocation problem of the Genco is formulated as a MVS-POP. 

According to the fact that the distribution of electricity spot prices is asymmetric and 

skewness preference can be observed from the agents in the electricity market, the MVS 

portfolio model is proposed for solving the electricity allocation problem. Thus, Prob. 1 

with two standard constraints formulated in Section 3.2 is implemented.  

 Prob. 1 min
x

𝐹(x) = [−𝑅𝑝(x), 𝑉𝑝(x), −𝑆𝑝(x)]  

 Subject to ∑ 𝑥𝑖
𝑁
𝑖=1 = 1   

  𝑥𝑖 ≥ 0  

 

In addition, as explained in the research gaps in Section 2.7.3, an additional objective is 

proposed to enhance the diversification of the solutions. The diversification benefit can be 

achieved by increasing the number of trading options in the portfolio and preventing 

excessive allocation to a small number of options. This process can be completed using a 
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constraint such as cardinality constraint, ceiling limit constraint and class constraint. 

However, the value of constraint in these approaches is subjectively predetermined by a 

DM causing the searching space of an algorithm to be unnecessarily restricted. As a result, 

the obtained solutions may not be optimal in the context of optimization (Steuer et al., 

2007). In this study, under-diversification is avoided by adding an objective to minimize 

the difference between the highest and the lowest proportion of electricity allocation within 

a solution vector x. Let this difference be denoted as 𝐷(x). The fourth objective can be 

stated as follows: 

 Minimize 𝐷(x) = Max 𝐱 − Min 𝐱  
 

 

where Max 𝐱 represents the maximum proportion of electricity allocated to an option in a 

solution vector x, whereas the minimum proportion is indicated by Min 𝐱.  Therefore, 

Prob. 2 has four objectives to be optimized. Denoted as the MVS-D model, the problem is 

formulated as follows: 

 Prob. 2 min
x

𝐹(x) = [−𝑅𝑝(x), 𝑉𝑝(x), −𝑆𝑝(x), 𝐷(x)]  

 Subject to ∑ 𝑥𝑖
𝑁
𝑖=1 = 1   

  𝑥𝑖 ≥ 0  

 

3.6.2 Data 

The analysis in Chapter 6 is based on electricity spot prices quoted in the Pennsylvania-

New Jersey-Maryland (PJM) electricity market, which is the largest deregulated electricity 
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market in the U.S. Since the LMP scheme is adopted in this market, the electricity spot 

prices are different from location to location. The considered areas of this market cover 

nine pricing zones or pricing nodes, including AEGO, BGE, DPL, METED, PECO, 

PENELEC, PEPCO, PPL, and PSEG. The electricity spot prices of nine pricing zones are 

downloaded from the PJM website.
13

 There are daily data for the period of 1 August 1998 

to 30 July 2006. 

 

 3.6.3 Procedure 

To solve Prob. 1 and Prob. 2, the expected return for each trading choice are firstly 

calculated. Then the variance, skewness, covariance, and coskewness are computed using 

historical data of the electricity spot prices. Prob. 1 and Prob. 2 involve different input 

variables as discussed below. Suppose that N trading choices are available and the Genco of 

interest is located in zone 1. The following notations are used in the discussion: 

 𝐸(∙) expected value  

 𝑃G power generation output (MWh) 

 ℎ trading time of each trading interval 

 𝜆𝑖,𝑡
𝑠  spot price of zone i at 𝑡th trading interval ($/MWh) 

 𝑎, 𝑏, 𝑐 fuel consumption coefficients of the power plant 

 𝜆𝑡
𝑐 coal price at 𝑡th trading interval ($/MBtu) 

 𝜆𝑖,𝑡
𝐵  bilateral forward price of zone i at 𝑡th trading interval ($/MWh) 

 

 

                                                           
13 Available at http://www.pjm.com/ 
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(a) Return, variance and skewness for spot market 

The rate of return to the Genco is calculated from its profit, i.e. revenue minus production 

cost, divide by the production cost. Revenue is the product of selling price ($/MWh) and 

selling quantity (MWh). We conventionally assume that the production cost of the Genco 

of interest is a quadratic function of energy output, trading time and energy price (Donghan 

et al., 2007; Liu & Wu, 2007a). The expected return, variance and skewness for trading in 

the spot market are as follows: 
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where 𝑡 = 1, … , 𝑇 represents the period when the trading decision has to be made, and 

(𝑎 + 𝑏𝑃𝐺 + 𝑐𝑃𝐺
2)ℎ𝜆𝑡

𝑐 represents the production cost of the Genco. The expected return 

𝐸(𝜆1,𝑡
𝑆 ) is obtained by forecasting the spot prices (see discussion below). The terms 𝑉(𝜆1,𝑡

𝑆 ) 

and  𝑆(𝜆1,𝑡
𝑆 ) are variance and skewness respectively, calculated using historical data of the 

same date. 
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(b) Return, variance and skewness for forward market 

Of the N trading choices that are available, there are N-1 non-local bilateral forward 

contracts. The expected return, variance and skewness for non-local bilateral forward 

trading in zone i are as follows: 
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where i = 2 to N , and 𝐸(𝜆𝑖,𝑡
𝑆 ) − 𝐸(𝜆1,𝑡

𝑆 ) represents the expected congestion charge. 

 

(c) Covariance between trading choices 

The covariance of returns to trading in zone 1 and zone i is: 
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The covariance of returns to trading in zone i and zone j is: 
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where i = 2 to N and 𝑖 ≠ 𝑗. 
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(d) Coskewness between trading choices 

To reduce the computation complexity, we considered only curvilinear product moments, 

i.e. 𝛾𝑖,𝑖,𝑗, as coskewness between trading choices. The coskewness coefficients for returns to 

trading in different pricing zones are given by the following:  
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


T

t

S

ti

S

t

S

t

S

tG ShPK
1

,,1,1,1

33 ),,()()(   (3.30) 

 
𝛾𝑖,𝑖,1 =  




T

t

S

t

S

ti

S

t

S

t

S

ti

S

ti

S

tG VShPK
1

,1,,1,1,,,1

33 )),()((2),,()()(   (3.31) 

 
𝛾𝑖,𝑖,𝑗 = 




T

t

S

t

S

ti

S

ti

S

tj

S

t

S

t

S

tG ShPK
1

,1,,,,1,1,1

33 ),,(),,()([)(   (3.32) 

    ))],,(),,((2),,( ,,,1,,1,1,,,

S

tj

S

ti

S

t

S

ti

S

t

S

t

S

tj

S

ti

S

ti     

 

where i = 2 to N and 𝑖 ≠ 𝑗. 

 

(e) Forecasting of expected spot prices 

To compute the expected returns of trading in the spot market and the non-local bilateral 

forward contracts as shown in Equations (3.22) and (3.25), the expected spot prices during 

the decision-making period of all the pricing zones have to be forecasted. Since the daily 

spot prices for the decision making period are unknown, the reliability of the optimization 

solutions depends crucially on the accuracy of their forecasts. Given the fact that electricity 

spot prices are characterized by non-constant mean and variance, multiple seasonalities and 

high volatility (Aggarwal et al., 2009; Garcia et al., 2005; Jun Hua et al., 2008), omission of 
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these effects in forecasting will not produce accurate solutions (Suksonghong & Goh, 

2012). 

 

The GARCH model with seasonality (Suksonghong & Goh, 2012) is employed for 

forecasting the daily spot prices in the decision making horizon. The model is given as 

follows: 

 𝜆𝑖,𝑡
𝑠    = 𝜔. 𝑡𝑟𝑡 + ∑ 𝜃𝑗𝜆𝑖,𝑡−𝑗

𝑠 + ∑ 𝛼𝑘𝐷𝑘,𝑡
7
𝑘=1

𝐽
𝑗=1 + ∑ 𝜌𝑙𝑀𝑙,𝑡 + 𝑢𝑡

12
𝑙=1   

 𝑢𝑡 = 𝑧𝑡 . √ℎ𝑡 (3.33) 

 ℎ𝑡 = 𝛽0 + ∑ 𝛽𝑞𝑢𝑡−𝑞
2 + ∑ 𝛿𝑝ℎ𝑡−𝑝

𝑃
𝑝=1

𝑄
𝑞=1 + 𝜙1𝐷𝑀𝑜𝑛,𝑡 + ⋯ +  

     𝜙6𝐷𝑆𝑎𝑡,𝑡 + 𝜙7𝑀𝐽𝑎𝑛,𝑡 + ⋯ + 𝜙17𝑀𝑁𝑜𝑣,𝑡  

 

where 𝑡𝑟𝑡 deterministic time trend variable 

 𝐷𝑘,𝑡 dummy variable for day-of-the-week effect 

 𝑀𝑙,𝑡 dummy variable for month-of-the-year effect 

 
𝑢𝑡 noise at time t  and utt-1~(0, ht), t-1 is the information set available at 

time t-1 

 ℎ𝑡 conditional variance of the spot prices at time t 

 
𝑧𝑡 an independently and identically distributed random variable with mean 

0 and variance 1 

 

The day-of-the-week dummy variable is 𝐷𝑘,𝑡= 1 for day-k and 0 otherwise, k = Monday, 

Tuesday,…, Sunday. The month-of-the-year dummy variable is 𝑀𝑙,𝑡= 1 for month-l and 0 
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otherwise, l = January, February,…, December. Lags of the electricity spot prices 𝜆𝑖,𝑡−𝑗
𝑆  are 

included in the equation to allow for a lag dependent structure up to order J. The 

coefficients 𝜔, 𝜃, 𝛼, 𝜌, 𝛽, 𝛿, and 𝜙 are estimated using the maximum likelihood estimation 

method on the historical spot prices. Only the day-of-the-week and month-of-the-year 

factors that are significant are included in the conditional variance (ℎ𝑡) equation to preserve 

parsimony of the model. The autocorrelation and partial autocorrelation functions of the 

squared residuals are used as guidance to determine the order of P and Q in Equation (3.33) 

(Garcia et al., 2005). 

 

3.6.4 The Setting of the Numerical Case Studies  

In the field of power systems research, a numerical case study is generally used to 

demonstrate the application of the proposed model. Suppose that the Genco trades the 

generated electricity in PJM electricity market where the LMP scheme is adopted. It is 

assumed that the Genco is making decisions on the optimal electricity allocation solutions 

for the month of August 2006. Therefore, the expected spot prices from 1 to 31 August 

2006 of nine pricing zones need to be forecasted. The daily electricity spot prices between 1 

August 1998 and 30 July 2006 were collected from the PJM market for estimating Equation 

(3.33), and for computing the variance, covariance, skewness and coskewness of the 

different trading choices. We assume that the Genco of interest is located in PEPCO and is 

making the portfolio optimization decision by considering to trade in the spot market and 

non-local bilateral forward contracts as the investment universe. Following Liu and Wu 

(2007a), the two case studies of non-local bilateral forward contract prices ($/MWh) during 

the period of August 2006 are given as follows: 
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Case study 1:
14

 

AEGO: 𝜆2,𝑡
𝐵 = 40.9 METED: 𝜆5,𝑡

𝐵 = 39.0 PPL: 𝜆8,𝑡
𝐵 = 38.3 

BGE: 𝜆3,𝑡
𝐵 = 40.2 PECO: 𝜆6,𝑡

𝐵 = 39.6 PSEG: 𝜆9,𝑡
𝐵 = 41.4 

DPL: 𝜆4,𝑡
𝐵 = 40.7 PENELEC: 𝜆7,𝑡

𝐵 = 37.0    

 

Case study 2: 

AEGO: 𝜆2,𝑡
𝐵 = 40.5 METED: 𝜆5,𝑡

𝐵 = 40.5 PPL: 𝜆8,𝑡
𝐵 = 40.5 

BGE: 𝜆3,𝑡
𝐵 = 40.5 PECO: 𝜆6,𝑡

𝐵 = 40.5 PSEG: 𝜆9,𝑡
𝐵 = 40.5 

DPL: 𝜆4,𝑡
𝐵 = 40.5 PENELEC: 𝜆7,𝑡

𝐵 = 40.5    

 

It is further assumed that the Genco has a cost function of 𝐶(𝑃𝐺 , 𝜆𝑡
𝑐) = (𝑎 + 𝑏𝑃𝐺 +

𝑐𝑃𝐺
2)𝜆𝑡

𝑐. Suppose that this Genco has a 350-MW fossil generator. Therefore, the fuel 

consumption coefficients are: a = 647.0865 MBtu/h, b = 14.8661 MBtu/MWh and c = 

0.0065 MBtu/MW
2
h (Wood & Wollenberg, 1996). The cost of coal is assumed constant at 

1.29 $/MBtu during the period of analysis (EIA, 2011). For the considered trading 

constraints, the two standard constraints presented in Prob. 1 imply respectively that all the 

generated capacity must be traded, and short sales, i.e. selling contracts borrowed from a 

broker with an obligation to buy these contracts back for returning to the broker, are not 

allowed. 

 

 

                                                           
14 The average spot prices of the individual zones were used in this case study. 
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3.6.5 Optimization Method and Setting 

In the literature, the robustness of the NSGA-II and SPEA-II for solving a MOOP with 

three objectives or less to be optimized, as is the case of Prob. 1, is widely documented. 

However, in Prob. 2, the MOOP is formulated as MVS-D portfolio model. This adds to the 

complexity of the optimization problem by increasing the number of objectives from three 

to four. In optimization problems, an increase in the number of conflicting objectives 

significantly raises the difficulty in the use of an algorithm to find the optimal solutions 

(Deb, Thiele, Laumanns, & Zitzler, 2005). According to the dominance relation explained 

by Definition 1 and Definition 2 in Section 3.1.2, the chance that no one solution can 

dominate the other is expectably high if the number of objectives to be optimized is large. 

Therefore, in order for algorithms to provide a good approximation of the true Pareto front, 

a large number of non-dominated solutions have to be screened using suitable techniques 

(Pierro, Soon-Thiam, & Savic, 2007; Purshouse & Fleming, 2007).  

 

Since we formulated the electricity allocation problem as the MVS-D portfolio model 

expressed in Prob. 2, which is a four-objective optimization problem, the NSGA-II and 

SPEA-II may not yield a good approximation of the true Pareto solutions. Chapter 6 

experimentd the use of a newly developed MOEA, the compressed objective genetic 

algorithm II (COGA-II) (Boonlong, Chaiyaratana, & Maneeratana, 2010), which is 

purposively designed for the optimization problem with a large number of objectives. The 

performance of the NSGA-II, SPEA-II, and COGA-II for solving Prob.1 and Prob. 2 is 

compared using two standard performance comparison methods, namely, the average 

distance to the true Pareto-optimal front (M1) and the Hypervolume (HV). In addition, we 
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propose a method which is named as “Contribution Ratio to Artificial true Pareto solutions” 

(CRA).  

 

The M1 criterion (Zitzler, Deb, & Thiele, 2000) can be evaluated in the solution space or 

objective space. In this chapter, the metric M1 is measured in the objective space by 

computing a distance of a solution i to the true Pareto-optimal front, di, which is the 

Euclidean distance of the solution i to its nearest solution j on the true Pareto-optimal front. 

The Euclidean distance is given by:  

 

𝑑𝑖 =
   

2

1 minmax
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where 𝑓𝑖𝑘 and 𝑓𝑗𝑘 are the values of objective k for solutions i and j respectively, while 

(𝑓𝑘)min and (𝑓𝑘)max are respectively the minimum and maximum values of objective k for 

the true Pareto-optimal solutions. Since the true Pareto front of a tested problem is not 

known, the artificial true Pareto front which is obtained from the merged non-dominated 

individuals from all runs of the three MOEAs was used instead in the evaluation of M1. The 

distance, di, of a solution i is estimated as the Euclidean distance of the solution i to its 

nearest solution j on the artificial true Pareto-optimal front. M1 is the average of di for all 

individuals in a set of non-dominated solutions. However, it should be noted that M1 

obtained from the artificial true Pareto-optimal front is not the exact value of that obtained 

from the true Pareto front. It can only be used to compare the closeness of solutions from 

the employed MOEAs to the Pareto front.  
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The HV criterion, a maximum criterion, was originally proposed and employed in Zitzler 

and Thiele (1999b). It measures not only the closeness to the true Pareto front but also the 

diversity of solutions. The HV refers to the area (two objectives), volume (three objectives) 

or hypervolume (four or more objectives) between a given reference point and a non-

dominated front to be evaluated. The HV is a popular criterion especially for a problem 

with unknown true Pareto solutions.  

 

Since the true Pareto solutions are unknown, M1 is probably not sufficient for evaluating 

the performance of different MOEAs. To overcome this weakness, we propose the criterion 

termed as the contribution ratio to the artificial true Pareto solutions (CRA). The artificial 

true Pareto solutions were firstly determined from the combination of output sets from the 

three algorithms. CRA refers to the ratio of the number of solutions that are members of the 

artificial true Pareto solutions to the total number of solutions in the output set. Therefore, it 

ranges in values between 0 and 1. If CRA is equal to 1.0, all solutions in the output set 

contribute to the forming of the artificial true Pareto solutions. On the other hand, if CRA is 

equal to 0.0, none of the solutions in the output set are members of the artificial true Pareto-

optimal solutions. The summary of parameter setting for the three experimented algorithms 

for solving Prob. 1 and Prob. 2 is given in Table 3.4. 
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Table 3.4: Parameter Setting for the NSGA-II, SPEA-II, and COGA-II for Solving the 

Numerical Case Studies of Prob. 1 and Prob. 2 

Parameter  Setting and Values  

Chromosome coding Real-number coding with 9-bit chromosome 

Problem setting 
Prob. 1 and Prob. 2 with 9 trading choices 

as a universe 

Crossover method SBX crossover with probability = 1.0 

Mutation method Variable-wise polynomial mutation with 

probability = 1/number of decision  variable  

Population size 100 

Archive size
15

  100 

Number of generations 600 

Number of repeated runs 30 

 

 

 

 

 

 

  

 

 

 

                                                           
15 It should be noted that, according to the algorithm procedure, the archive is used in the COGA-II and SPEA-II but not in NSGA-II. 
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CHAPTER 4 

PORTFOLIO SELECTION WITH SKEWNESS PREFERENCE: EVIDENCE 

FROM THE EMERGING STOCK MARKETS  

 

4.1 INTRODUCTION  

 

This chapter demonstrates the implementation of MOEAs for the search of MVS efficient 

portfolios in the multi-dimension space.  The MVS-POP formulated as Prob. 1 in Section 

3.2 is solved by using the NSGA-II and SPEA-II. The results obtained are used to examine 

the risk-return characteristics of MVS efficient portfolios as well as the shape of MVS 

efficient surface. Besides, two different investment horizons are used to empirically 

investigate the impact of investment horizon on risk-return relationship of the MVS 

efficient portfolios. Section 4.2 reports the summary statistics and the normality test results 

for weekly and monthly data of the sixteen emerging market indices. It also documents the 

estimated value of the input variables required for solving Prob. 1. Section 4.3 illustrates 

graphically the MVS efficient portfolios plotted in the 3D MVS space. The risk-return 

characteristics of the MVS efficient portfolios together with the impact of different 

investment horizons are discussed in Section 4.4. The concluding remarks of the chapter 

are stated in Section 4.5. 
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4.2 SUMMARY STATISTICS AND THE NORMALITY TEST RESULTS 

 

Table 4.1 and Table 4.2 exhibit the summary statistics together with the normality tests 

statistics for the annualized weekly and monthly rates of returns of the 18 emerging 

markets, respectively.
16

 The second column of Table 4.1 reveals that Sri Lanka has the 

highest average weekly rate of returns (0.3187) followed by Thailand (0.2892) and 

Indonesia (0.2791). For the average monthly rate of returns, Table 4.2 shows that Sri Lanka 

also recorded the highest value (0.3064), followed by Indonesia (0.2864) and Taiwan 

(0.2809). Meanwhile, Argentina, China, and Brazil have the lowest average weekly and 

monthly rate of returns. It is observed that only Argentina exhibits an average rate of 

returns that is negative in the period of study. 

 

For the average volatility, regardless of the investment horizon, Argentina and Sri Lanka 

are the most volatile markets, whereas Malaysia and Philippines have the lowest standard 

deviation.  The evidence in the fourth column of Table 4.1 indicates that for weekly rate of 

returns, only five market indices of Sri Lanka, India, Indonesia, China, and Colombia 

exhibit positive skewness, whereas the rest of the market indices have negative skewness. 

Interestingly, monthly rate of returns shows a different picture. Table 4.2 reveals that the 

indices of five markets namely Malaysia, Philippines, Thailand, Argentina, and Chile have 

negative skewness. The contrast in results of the higher moments computed from the 

different investment horizons are consistent with the findings of Chunhachinda, Dandapani, 

                                                           
16 Hereafter, for short, the terms “weekly rate of returns” and “monthly rate of returns” refer to “annualized weekly rate of returns” and 

“annualized monthly rate of returns”, respectively. 
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Hamid, and Prakash (1994), Chunhachinda et al. (1997), Prakash et al. (1997), and Prakash 

et al. (2003). They referred to this observation as the “intervalling effect” 

 

The results of the normality test of the return distributions of the 16 indices are presented in 

the last four columns of Table 4.1 and Table 4.2. The probability value (P-value) associated 

with the W-statistic of the Shapiro-Wilk test and JB-statistic of the Jarque-Bera test 

indicates the significance level of the rejection of the null hypothesis. For weekly rate of 

returns, Table 4.1 reveals that the majority of the market indices have skewness that is 

significant. The Shapiro-Wilk test fails to reject the null hypothesis only for Taiwan and 

Colombia, while the Jarque-Bera test fails to reject the null hypothesis for Sri Lanka, 

Thailand, and Mexico. In all cases, at least one of the tests rejected the normality. There is 

also strong evidence against normality when monthly were used, but there are more cases 

where the null hypothesis cannot be rejected compared to weekly data. The market indices 

of Indonesia, Philippines, Argentina, Colombia, and Peru do not exhibit evidence against 

normality, as indicated by both the Shapiro-Wilk and Jarque-Bera tests. Overall, the results 

support the argument that non-zero skewness is present and therefore it should not be 

neglected in portfolio decision. 

 

To solve Prob. 1 formulated in Section 3.2.1, the input variables explained in Equation 

(3.3) to Equation (3.5) are required. To obtain these variables, computations were 

performed according to Equation (3.8) to Equation (3.11) using the data of the 16 emerging 

market indices. The input variables including the return matrix R and variance-covariance 
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Table 4.1: Summary Statistics and the Normality Test Results of the Annualized Weekly Rate of Returns for Sixteen Emerging Markets 

Market Index Mean 
Standard  

Deviation 
Skewness Kurtosis W-statistic P-value JB-statistic P-value 

China 0.1062 1.7962 0.0248 3.9744 0.9767 0.0016*** 6.4064 0.0406** 

India 0.1434 2.0696 0.3668 5.0282 0.9671 0.0001*** 8.6167 0.0135** 

Indonesia 0.2791 1.9558 0.0595 5.2986 0.9593 0.0000*** 24.1349 0.0000*** 

Malaysia 0.1829 1.0894 -0.3694 3.4381 0.9869 0.0531* 4215.1826 0.0000*** 

Pakistan 0.1844 1.8587 -0.3883 10.6545 0.8801 0.0000*** 8.0923 0.0175** 

Philippines 0.2657 1.5941 -0.1596 3.9448 0.9824 0.0106*** 15.5225 0.0004*** 

South Korea 0.1980 2.0587 -0.4197 4.4429 0.9636 0.0000*** 62.1303 0.0000*** 

Sri Lanka 0.3187 2.2935 2.8051 24.3271 0.7756 0.0000*** 0.4488 0.7990 

Taiwan 0.1456 1.5987 -0.0711 2.9019 0.9955 0.7942 55.2406 0.0000*** 

Thailand 0.2892 1.7725 -0.3478 3.6711 0.9865 0.0446** 3.8632 0.1449 

Argentina -0.0044 2.6046 -0.7420 5.3087 0.9557 0.0000*** 8.2297 0.0163** 

Brazil 0.1252 2.2456 -0.2952 4.2016 0.9755 0.0011*** 40.3435 0.0000*** 

Chile 0.1866 1.6325 -0.5705 5.4230 0.9563 0.0000*** 45.8236 0.0000*** 

Colombia 0.2775 1.5953 0.0159 3.2254 0.9920 0.3163 512.6170 0.0000*** 

Mexico 0.1857 1.9417 -0.4312 5.3732 0.9547 0.0000*** 0.2574 0.8792 

Peru 0.1988 2.2124 -0.1911 3.5482 0.9881 0.0791* 65.3109 0.0000*** 

 

Note:  *, **, and *** denote significance at the 0.10, 0.05, and 0.01 levels, respectively. 

 W-statistic is the Shapiro-Wilk test statistic. 

 JB-statistic is the Jarque-Bera test statistic. 
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Table 4.2: Summary Statistics and the Normality Test Results of the Annualized Monthly Rate of Returns for Sixteen Emerging Markets 

Market Index Mean 
Standard  

Deviation 
Skewness Kurtosis W-statistic P-value JB-statistic P-value 

China 0.0828 0.9854 0.0584 4.6371 0.9370 0.0137** 3.5593 0.1687 

India 0.1447 1.2198 0.9543 4.1272 0.9351 0.0116** 8.6700 0.0131** 

Indonesia 0.2864 1.0514 0.2613 3.7228 0.9633 0.1452 1.0710 0.5854 

Malaysia 0.1738 0.5664 -0.8463 5.3450 0.9325 0.0093*** 13.2712 0.0013*** 

Pakistan 0.1851 0.8720 1.6840 9.2627 0.8417 0.0000*** 81.2604 0.0000*** 

Philippines 0.2672 0.8035 -0.2276 3.4519 0.9773 0.4860 0.5595 0.7560 

South Korea 0.1962 1.0810 0.6612 7.6678 0.8780 0.0002*** 35.7171 0.0000*** 

Sri Lanka 0.3064 1.2430 1.7048 8.2497 0.8375 0.0000*** 63.8927 0.0000*** 

Taiwan 0.2809 0.8700 0.4949 4.5790 0.9429 0.0230** 6.4547 0.0397** 

Thailand 0.1483 1.0069 -0.6382 4.3553 0.9501 0.0436** 4.2465 0.1196 

Argentina -0.0625 1.2828 -0.5605 3.3888 0.9699 0.2632 2.5590 0.2782 

Brazil 0.0942 1.1278 0.4687 4.2067 0.9566 0.0792* 3.5145 0.1725 

Chile 0.1764 0.9217 -0.5851 5.1985 0.9306 0.0080*** 9.3585 0.0093*** 

Colombia 0.2604 0.8841 0.0683 3.7929 0.9608 0.1160 0.7091 0.7015 

Mexico 0.1719 1.0710 0.0204 4.7164 0.9212 0.0037*** 3.9196 0.1409 

Peru 0.1862 1.1362 0.4317 4.0281 0.9609 0.1166 2.7032 0.2588 

 

Note:  *, **, and *** denote significance at the 0.10, 0.05, and 0.01 levels, respectively. 

 W-statistic is the Shapiro-Wilk test statistic. 

 JB-statistic is the Jarque-Bera test statistic. 



99 

 

Table 4.3: The Return Matrix R and Variance-covariance Matrix Λ of the Annualized Weekly Rate of Returns for Sixteen Emerging 

Markets 

Input 

Variable 
China India Indonesia Malaysia Pakistan Philippines South Korea Sri Lanka Taiwan Thailand Argentina Brazil Chile Colombia Mexico Peru 

 

R 0.106 0.143 0.279 0.183 0.184 0.266 0.198 0.319 0.146 0.289 -0.004 0.125 0.187 0.278 0.186 0.199 

                 

Λ                 

China 3.226 2.663 2.260 1.452 0.782 1.654 2.728 0.542 2.000 2.074 2.238 2.999 1.840 1.564 2.569 2.394 

India 2.663 4.283 2.263 1.458 0.790 1.692 2.732 1.778 1.990 2.063 2.372 3.024 1.970 1.728 2.540 2.363 

Indonesia 2.260 2.263 3.825 1.446 0.519 1.728 2.380 0.855 1.743 1.819 2.266 2.271 1.546 1.374 2.128 1.924 

Malaysia 1.452 1.458 1.446 1.187 0.571 1.123 1.489 0.467 1.068 1.152 1.469 1.539 1.015 0.890 1.247 1.217 

Pakistan 0.782 0.790 0.519 0.571 3.455 0.430 0.786 -0.293 0.807 0.434 0.365 0.653 0.298 0.273 0.546 0.425 

Philippines 1.654 1.692 1.728 1.123 0.430 2.541 1.667 0.517 1.307 1.534 1.716 1.742 1.077 1.071 1.216 1.268 

South Korea 2.728 2.732 2.380 1.489 0.786 1.667 4.238 0.876 2.366 2.003 2.388 3.205 1.964 1.649 2.625 2.117 

Sri Lanka 0.542 1.778 0.855 0.467 -0.293 0.517 0.876 5.260 0.603 0.863 0.545 0.644 0.761 0.540 0.558 0.415 

Taiwan 2.000 1.990 1.743 1.068 0.807 1.307 2.366 0.603 2.556 1.403 1.807 2.166 1.358 1.087 1.777 1.676 

Thailand 2.074 2.063 1.819 1.152 0.434 1.534 2.003 0.863 1.403 3.142 1.600 1.948 1.256 1.359 1.529 1.705 

Argentina 2.238 2.372 2.266 1.469 0.365 1.716 2.388 0.545 1.807 1.600 6.784 3.373 2.159 1.742 2.753 2.594 

Brazil 2.999 3.024 2.271 1.539 0.653 1.742 3.205 0.644 2.166 1.948 3.373 5.043 2.729 2.320 3.523 3.474 

Chile 1.840 1.970 1.546 1.015 0.298 1.077 1.964 0.761 1.358 1.256 2.159 2.729 2.665 1.512 2.276 2.007 

Colombia 1.564 1.728 1.374 0.890 0.273 1.071 1.649 0.540 1.087 1.359 1.742 2.320 1.512 2.545 1.934 1.927 

Mexico 2.569 2.540 2.128 1.247 0.546 1.216 2.625 0.558 1.777 1.529 2.753 3.523 2.276 1.934 3.770 2.942 

Peru 2.394 2.363 1.924 1.217 0.425 1.268 2.117 0.415 1.676 1.705 2.594 3.474 2.007 1.927 2.942 4.895 
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Table 4.4: The Return Matrix R and Variance-covariance Matrix Λ of the Annualized Monthly Rate of Returns for Sixteen Emerging 

Markets 

Input 

Variable 
China India Indonesia Malaysia Pakistan Philippines South Korea Sri Lanka Taiwan Thailand Argentina Brazil Chile Colombia Mexico Peru 

 

R 0.083 0.145 0.286 0.174 0.185 0.267 0.196 0.306 0.148 0.281 -0.063 0.094 0.176 0.260 0.172 0.186 

                 Λ                 

China 0.971 0.876 0.799 0.480 0.238 0.627 0.770 0.330 0.657 0.768 0.739 0.953 0.643 0.613 0.892 0.854 

India 0.876 1.488 1.013 0.462 0.300 0.713 0.969 0.901 0.811 0.951 0.919 1.115 0.787 0.800 1.006 0.875 

Indonesia 0.799 1.013 1.106 0.483 0.245 0.594 0.868 0.535 0.647 0.884 0.735 0.901 0.622 0.692 0.859 0.764 

Malaysia 0.480 0.462 0.483 0.321 0.110 0.342 0.453 0.190 0.355 0.447 0.510 0.531 0.385 0.346 0.476 0.414 

Pakistan 0.238 0.300 0.245 0.110 0.760 0.030 0.497 0.038 0.414 0.158 0.241 0.329 0.074 0.132 0.331 0.265 

Philippines 0.627 0.713 0.594 0.342 0.030 0.646 0.521 0.352 0.455 0.645 0.489 0.657 0.532 0.504 0.581 0.619 

South Korea 0.770 0.969 0.868 0.453 0.497 0.521 1.168 0.439 0.784 0.768 0.888 0.966 0.594 0.601 0.971 0.710 

Sri Lanka 0.330 0.901 0.535 0.190 0.038 0.352 0.439 1.545 0.443 0.559 0.579 0.555 0.567 0.575 0.368 0.377 

Taiwan 0.657 0.811 0.647 0.355 0.414 0.455 0.784 0.443 0.757 0.620 0.663 0.771 0.510 0.481 0.710 0.638 

Thailand 0.768 0.951 0.884 0.447 0.158 0.645 0.768 0.559 0.620 1.014 0.701 0.852 0.679 0.698 0.769 0.763 

Argentina 0.739 0.919 0.735 0.510 0.241 0.489 0.888 0.579 0.663 0.701 1.645 0.973 0.672 0.507 0.916 0.760 

Brazil 0.953 1.115 0.901 0.531 0.329 0.657 0.966 0.555 0.771 0.852 0.973 1.272 0.831 0.705 1.017 0.949 

Chile 0.643 0.787 0.622 0.385 0.074 0.532 0.594 0.567 0.510 0.679 0.672 0.831 0.849 0.555 0.650 0.605 

Colombia 0.613 0.800 0.692 0.346 0.132 0.504 0.601 0.575 0.481 0.698 0.507 0.705 0.555 0.782 0.645 0.617 

Mexico 0.892 1.006 0.859 0.476 0.331 0.581 0.971 0.368 0.710 0.769 0.916 1.017 0.650 0.645 1.147 0.901 

Peru 0.854 0.875 0.764 0.414 0.265 0.619 0.710 0.377 0.638 0.763 0.760 0.949 0.605 0.617 0.901 1.291 
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matrix Λ for weekly and monthly data are exhibited, respectively, in Table 4.3 and Table 

4.4. The skewness-coskewness matrix Ω of the weekly and monthly rates of returns are 

presented in Table B.1 and Table B.2 of APPENDIX B, respectively. 

 

4.3 MVS EFFICIENT PORTFOLIOS AND THE EFFICIENT SURFACE  

 

In this section, the characteristics of the non-dominated portfolio solutions of Prob. 1 

obtained from the NSGA-II and SPEA-II are examined. According to the parameter setting 

exhibited in Table 3.1, 200 portfolio solutions were obtained in a single run of each 

algorithm. Each algorithm was run for five times, thus 1,000 portfolio solutions were 

obtained. Then, the comparison based on the Pareto dominance relation explained in 

Section 3.3.3 was performed to these 1,000 portfolio solutions in order to screen for only 

the non-dominated portfolio solutions.  Finally, for the weekly investment horizon, the 

NSGA-II and SPEA-II yields 753 and 748 non-dominated portfolio solutions, respectively. 

For the monthly investment horizon, 688 and 729 non-dominated portfolio solutions are 

produced, respectively, by the NSGA-II and SPEA-II.
 
 

 

The non-dominated portfolio solutions or the so called “MVS efficient portfolios” are 

plotted in the 3D objective space based on the information of their corresponding objective-

value vectors and illustrated in four different points of view. In Figure 4.1(a) and Figure 

4.2(a), the efficient portfolios of weekly investment horizon obtained from the NSGA-II 

and SPEA-II, respectively, are illustrated in the MVS space. Panels (b), (c), and (d) of 
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Figure 4.1 and Figure 4.2 show the resulting MVS efficient portfolios on the mean-SD 

diagram (front view), mean-skewness diagram (side view), and skewness-SD diagram (top 

view), respectively. Figure 4.1 and Figure 4.2 reveal that the efficient surface of the 

efficient solutions seems comparatively the same for the two implemented algorithms. The 

similarity of the results accords with our expectation and ensures the robustness of our 

results. Although there are differences in the process and operation between the NSGA-II 

and SPEA-II, both algorithms are regarded as the most efficient MOEAs in the literature. 

Therefore, only slightly differences in results are generally observed when they are used to 

solve an identical problem.  

 

Figure 4.1: The MVS Efficient Solutions from NSGA-II (Weekly Data) 

  

Panel (a) Panel (b) 

  

Panel (c) Panel (d) 
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Figure 4.2: The MVS Efficient Solutions from SPEA-II (Weekly Data) 

  

Panel (a) Panel (b) 

  

  

Panel (c) Panel (d) 

 

Figure 4.3 compares the efficient portfolios obtained from both algorithms in the same 

diagram. The efficient portfolios from the NSGA-II and SPEA-II are marked by yellow and 

brown, respectively. Figure 4.3 reveals that both algorithms are able to provide good 

solutions of the efficient portfolios, evident from the solutions that reside on the efficient 

frontier.
17

 For instance, in panel (b) of Figure 4.3, the north-west boundary of the mean-SD 

diagram is the target of optimal portfolios, i.e. where expected return is maximized and SD 

is minimized. It can be seen that both algorithms found the solutions that are on the convex 

                                                           
17 As explained in Section 3.2, the efficient frontier is the boundary or frontier that is formed by the efficient portfolios.  
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curve of the mean-SD frontier. Similar results can be observed from the other panels of 

Figure 4.3. However, we can observe from Figure 4.3 that the efficient solutions of SPEA-

II are less clustered than those of NSGA-II. Technically, it can be said that SPEA-II has a 

better “diversity preservation of the solutions” than NSGA-II. Better diversity preservation 

will have solutions that cover a larger space. The diversity of preservation is widely used as 

a criterion for performance comparison of algorithms.
18

  

 

Figure 4.3: Comparative Results of the Implemented Algorithms (Weekly Data) 

  

Panel (a) Panel (b) 

  

Panel (c) Panel (d) 

 

Note: Yellow is for NSGA-II. Brown is for SPEA-II. 

 

                                                           
18 The hypervolumn (HV) measure (Zitzler & Thiele, 1998) explained in Section 3.5.3 is an example of an indicator that measures the 

diversity preservation of the solutions. 
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In Figure 4.4 and Figure 4.5, the efficient portfolios of monthly investment horizon 

obtained from the NSGA-II and SPEA-II, respectively, are displayed. Panels (a), (b), (c), 

and (d) of Figure 4.4 and Figure 4.5 show the resulting MVS efficient portfolios on the 

mean-SD-skewness diagram (aggregate view), mean-SD diagram (front view), mean-

skewness diagram (side view), and skewness-SD diagram (top view), respectively. It is 

clear from Figure 4.4 and Figure 4.5 that the efficient surface of solutions from both 

algorithms looks similar. The similarity of the results is consistent with the results of Figure 

4.1 and Figure 4.2. In Figure 4.6, the yellow and brown markers represent the efficient 

portfolios from the NSGA-II and SPEA-II, respectively, in the mean-SD-skewness 

diagram. Consistent with the weekly investment horizon, Figure 4.6 shows that the efficient 

portfolios given by both algorithms are located on the efficient frontier. For example, in 

panel (b) of Figure 4.6, the north-west surface of the mean-SD diagram is favorable. It is 

found that both algorithms provide the solutions that lie on the convex curve of the mean-

SD frontier. Similar results are observed from the other panels of Figure 4.6. In addition, 

we found from Figure 4.6 that SPEA-II has a better diversity preservation of the solutions 

than NSGA-II. Therefore, in the next section, only the results of the weekly and monthly 

efficient portfolios from the solutions of the SPEA-II are used for further analysis. 

Figure 4.4: The MVS Efficient Solutions from NSGA-II (Monthly Data) 

  

Panel (a) Panel (b) 
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Figure 4.4 (continued): The MVS Efficient Solutions from NSGA-II (Monthly Data) 

  

Panel (c) Panel (d) 

 

 

Figure 4.5: The MVS Efficient Solutions from SPEA-II (Monthly Data) 

  

Panel (a) Panel (b) 

  

  

Panel (c) Panel (d) 
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Figure 4.6: Comparative Results of the Implemented Algorithms (Monthly Data) 

  

Panel (a) Panel (b) 

  

Panel (c) Panel (d) 

 

Note: Yellow is for NSGA-II. Brown is for SPEA-II. 

 

4.4 RISK-RETURN CHARACTERISTICS OF MVS EFFICIENT PORTFOLIOS  

 

As pointed out by Levy (1972), different investment horizons can result in different 

efficient portfolio sets to investors. Both weekly and monthly datasets were employed to 

examine the risk-return characteristics of MVS efficient portfolios. We firstly plotted the 

weekly and the monthly MVS efficient portfolios in red and blue, respectively, in Figure 

4.7. It illustrates that the different investment horizons have an impact on the characteristics 

of the efficient portfolios. Figure 4.7(b) shows that the monthly MVS efficient portfolios 
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dominate the majority of the weekly ones since they possess lower SD at any given value of 

expected return. However, the maximum expected return of a monthly MVS efficient 

portfolio can achieve is 30.64 percent meanwhile a weekly one can achieve 31.87 percent. 

This surplus in expected return can be achieved by selecting a portfolio with high SD and 

skewness. For example, Figure 4.7(b) and Figure 4.7(c) show that the expected return of 

weekly MVS efficient portfolios are higher than those of the monthly ones when portfolio 

SD is higher than 1.2428 and skewness is more than 1.7043. In addition, it can be seen 

from Figure 4.7(d) that the SD of efficient portfolios becomes larger with an increase in 

portfolio skewness. 

 

Figure 4.7: Comparative Results of Different Investment Horizons 

  

Panel (a) Panel (b) 

  

Panel (c) Panel (d) 

Note: Red is for weekly data. Blue is for monthly data. 
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4.4.1 Risk-return Characteristics for Fixed Standard Deviation 

The risk-return characteristics can be examined since it is possible to plot the MVS efficient 

portfolios graphically. An investigation of the trade-off between expected return and 

skewness is conducted by searching among the efficient portfolios for those whose SD 

matches with a given value. Table 4.5 and Table 4.6 give respectively the weekly and 

monthly MVS efficient portfolios with the value of SD fixed at 1.00, 1.10, and 1.20.  

 

Table 4.5 shows the six efficient portfolios that are obtained when SD is fixed at 1.00. They 

are labelled as Port.1, Port.2 and so on in the table. The information from Table 4.5 reveals 

that, for a given value of portfolio SD, there are many MVS efficient portfolios with 

different values of expected return and skewness. These portfolios are considered efficient 

since they are non-dominated solutions, i.e. no other solutions dominate them. For example, 

with portfolio SD of 1.2, Port.1 has larger expected return than Port.2 but Port.2 has higher 

skewness than Port.1. Thus they cannot dominate each another. The same result can be 

observed when comparing Port.1 and Port.3, Port.1 and Port.4, and so on. In addition, the 

expected returns of the MVS efficient portfolios decrease with an increase in portfolio 

skewness. This result explains the expected return-skewness trade-off where the investors 

have to forgo expected return for a portfolio with larger skewness for either reducing a 

probability of experiencing a large loss or raising the chance of gaining an extreme return.  

 

Considering the portfolio composition, we found that Malaysia and Sri Lanka indices are 

the choices in which the MVS efficient portfolios mainly invest. For efficient portfolios 

with SD equal 1.0, the investment proportion allocated to Malaysia and Sri Lanka is in the 
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range of 29 to 44 percent and 19 to 25 percent, respectively. However, the investments in 

Sri Lanka rises up to between 38 and 42 percent while the allocations to Malaysia reduces 

to between 3 and 31 percent for the case that SD is set to 1.2. The result is coherent with the 

parameter values reported in Table 4.1 since Malaysia index possess the lowest SD with the 

negative skewness and moderate expected return, while Sri Lanka index offers the highest 

expected return and skewness and prominent value of SD.  

 

For the monthly investment horizon, the proposed technique is still able to provide many 

MVS efficient portfolios at a given value of SD, although the number of MVS efficient 

portfolios with the SD value of 1.1 and 1.2 reported in Table 4.6 is less than those of the 

weekly investment horizon. This result is expected because the summary statistics reported 

in Table 4.2 show that the values of SD of indices are smaller than those exhibited in Table 

4.1. Besides, the trade-off between expected return and skewness can be coherently 

observed from Table 4.6. We found that, for three different values of SD, the negative 

relation between expected return and skewness still holds. The expected return of the MVS 

efficient portfolios falls with a rise in portfolio skewness.  

 

An analysis of portfolio holding shows that majority of the MVS efficient portfolios 

reported in Table 4.6 heavily allocate the investments to Sri Lanka and Philippines indices. 

From Table 4.2, Sri Lanka index offers the highest expected return with very high value of 

SD and skewness while Philippines index has comparatively low SD with moderate 

expected return and skewness. It can be seen that investments in Sri Lanka index range 

from 68 to 72 percent for SD equal to 1.0, while these investment proportions increase up 
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to 96 percent when SD is set to 1.2. However, this larger investment proportion offers the 

efficient portfolios with higher portfolio expected return and skewness. 

 

By comparing the results from Table 4.5 and Table 4.6 in terms of portfolio holding, Sri 

Lanka index is chosen as a portfolio component for both investment horizons and govern 

the characteristics of the efficient portfolios. Besides, we notice that, at any given level of 

SD, the MVS efficient portfolios formed by using weekly data include a significantly larger 

number of assets to eliminate unsystematic risk, in contrast to those constructed based on 

monthly data which allocate the investments to only less than four assets to achieve the 

same level of risk reduction.  

 

Our finding on expected return-skewness trade-off is consistent with the previous studies 

including Lai (1991), Chunhachinda, et al. (1997), Prakash, et al. (2003), and Canela and 

Collazo (2007). However, our methodology is more robust leading to a stronger validity of 

the results.  In the previous studies, the MVS portfolios are solved by firstly setting 

portfolio variance equal to 1.0 as a problem constraint. Next a maximum expected return 

portfolio and a maximum skewness portfolio that satisfy this variance constraint are 

identified. Then another comprising a portfolio that best balances the two objectives, i.e. 

expected return and skewness, is solved. The resulting portfolios are used to examine the 

trade-off between expected return and skewness. In contrast, the methodology we adopted 

provides a few portfolios to examine this trade-off, without the need to constrain the SD 

value in the optimization problem. Besides, the variance constraint in the previous studies 

causes a DM, at best, to find only a couple members of MVS efficient portfolios but, at 
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worst, the obtained solutions are not efficient. In contrast, our technique always ensures that 

the resulting portfolios are MVS efficient.  

 

Table 4.5: The MVS Efficient Portfolios of Weekly Investment Horizon with SD Value of 

1.00, 1.10, and 1.20 

 

 

 

 

 

 

 

 

Port.1 Port.2 Port.3 Port.4 Port.5 Port.6

China - - - 0.02 - -

India - - - - - -

Indonesia - - - - 0.02 -

Malaysia 0.33 0.29 0.29 0.33 0.44 0.31

Pakistan 0.12 0.18 0.15 0.18 0.16 0.20

Philippines 0.09 0.14 0.14 0.01 - 0.03

South Korea - - - - - -

Sri Lanka 0.14 0.19 0.19 0.21 0.25 0.23

Taiwan - 0.04 0.06 0.03 - 0.08

Thailand 0.11 - - - - 0.02

Argentina - - - - - -

Brazil - - 0.01 - - -

Chile 0.01 - - - 0.01 -

Colombia 0.19 0.14 0.14 0.22 0.12 0.11

Mexico - - - - - -

Peru - 0.01 0.01 - - -

Expected Return 23.99% 23.32% 23.19% 23.03% 22.99% 22.65%

Standard Deviation 1.0 1.0 1.0 1.0 1.0 1.0

Skewness -0.026 -0.004 -0.001 0.024 0.034 0.037

Investment Allocation Proportion
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Table 4.5: (continued) The MVS Efficient Portfolios of Weekly Investment Horizon with 

SD Value of 1.00, 1.10, and 1.20 

 

Table 4.5 (continued): The MVS Efficient Portfolios of Weekly Investment Horizon with 

SD Value of 1.00, 1.10, and 1.20 

 

Port.1 Port.2 Port.3 Port.4 Port.5 Port.6 Port.7

China - - 0.02 - - - -

India - - - - - - -

Indonesia 0.03 0.01 - - - - -

Malaysia 0.26 0.20 0.21 0.21 0.28 0.28 0.28

Pakistan 0.12 0.20 0.14 0.15 0.12 0.12 0.12

Philippines - - 0.06 - 0.07 0.04 0.04

South Korea - - - - - - -

Sri Lanka 0.30 0.31 0.31 0.31 0.34 0.34 0.34

Taiwan 0.12 0.11 0.13 0.20 0.15 0.16 0.16

Thailand - 0.03 0.02 - - - -

Argentina - - - - 0.01 0.01 -

Brazil - - - - - - -

Chile 0.02 0.01 0.04 - 0.02 0.02 0.01

Colombia 0.14 0.08 0.06 0.13 - - -

Mexico - - - - - - -

Peru - 0.04 - - - 0.03 0.03

Expected Return 23.57% 23.40% 23.24% 22.99% 22.88% 22.66% 22.66%

Standard Deviation 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Skewness 0.120 0.129 0.137 0.140 0.182 0.186 0.187

Investment Allocation Proportion

Port.1 Port.2 Port.3 Port.4 Port.5 Port.6 Port.7

China - - - 0.01 0.01 - -

India - - - - - - 0.02

Indonesia 0.02 0.05 0.05 0.01 - 0.09 -

Malaysia 0.03 0.21 0.21 0.26 0.31 0.24 0.23

Pakistan 0.16 0.07 0.11 0.13 0.11 0.06 0.10

Philippines 0.15 0.12 0.13 0.05 0.06 0.01 0.01

South Korea - - - - - - -

Sri Lanka 0.40 0.38 0.39 0.42 0.41 0.39 0.41

Taiwan 0.11 0.07 0.07 0.01 0.07 0.16 0.14

Thailand - 0.06 0.03 0.01 - - -

Argentina - - - - - - -

Brazil - - - - - - -

Chile 0.02 0.02 - - 0.01 - 0.06

Colombia 0.09 - - - 0.01 0.03 0.03

Mexico - 0.01 - 0.03 - - -

Peru 0.01 - - 0.06 - 0.01 -

Expected Return 25.73% 25.38% 25.20% 24.53% 24.25% 24.22% 23.63%

Standard Deviation 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Skewness 0.247 0.249 0.252 0.266 0.271 0.289 0.294

Investment Allocation Proportion
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Table 4.6: The MVS Efficient Portfolios of Monthly Investment Horizon with SD Value of 

1.00, 1.10, and 1.20 

 

Table 4.6 (continued): The MVS Efficient Portfolios of Monthly Investment Horizon with 

SD Value of 1.00, 1.10, and 1.20 

 

Port.1 Port.2 Port.3 Port.4 Port.5 Port.6 Port.7

China - - - - - - 0.03

India - - - - - - -

Indonesia 0.16 0.12 0.06 0.02 - - -

Malaysia - - - - - - -

Pakistan - - - - - - -

Philippines 0.16 0.19 0.23 0.27 0.27 0.28 0.25

South Korea - - - - - - -

Sri Lanka 0.68 0.69 0.71 0.71 0.71 0.71 0.72

Taiwan - - - - - - -

Thailand - - - - - - -

Argentina - - - - - 0.01 -

Brazil - - - - - - -

Chile - - - - - - -

Colombia - - - - 0.01 - -

Mexico - - - - - - -

Peru - - - - 0.01 - -

Expected Return 29.68% 29.65% 29.57% 29.50% 29.39% 29.19% 28.96%

Standard Deviation 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Skewness 0.961 1.002 1.058 1.075 1.087 1.088 1.103

Investment Allocation Proportion

Port.1 Port.2 Port.3 Port.4 Port.5 Port.1 Port.2 Port.3

China - - - - - - - -

India - - - - - - - -

Indonesia 0.18 0.08 - 0.01 - 0.04 - -

Malaysia - - - - - - - -

Pakistan - - - - - - - -

Philippines - 0.04 0.12 0.13 0.15 - - 0.04

South Korea - - - - - - - -

Sri Lanka 0.82 0.81 0.85 0.86 0.85 0.96 0.95 0.96

Taiwan - - - - - - - -

Thailand - 0.06 0.03 - - - 0.04 -

Argentina - - - - - - - -

Brazil - - - - - - - -

Chile - - - - - - - -

Colombia - - - - - - - -

Mexico - - - - - - - -

Peru - - - - - - - -

Expected Return 30.24% 30.12% 30.09% 30.09% 30.02% 30.56% 30.51% 30.45%

Standard Deviation 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2

Skewness 1.200 1.237 1.373 1.379 1.380 1.574 1.597 1.607

Investment Allocation Proportion
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4.4.2 Risk-return Characteristics for Fixed Expected Return 

The risk-return characteristics are now analyzed when the rate of return is fixed at a given 

level. Table 4.7 and Table 4.8 show the weekly and monthly MVS efficient portfolios, 

respectively, when the expected return is fixed at 28.0 percent. It is revealed from Table 4.7 

and Table 4.8 that the proposed technique is able to search and identify many portfolios at a 

given value of expected return and these portfolios are efficient in the MVS framework. In 

both the tables, the MVS efficient portfolios with expected return of 28.0 percent are 

labelled as Port.1, Port.2 and so on. With portfolio return fixed at a constant, it can be 

demonstrated from the results that the value of SD of MVS efficient portfolios decreases 

with a diminishing value of skewness. This result is examined from the characteristics of 20 

and 16 MVS efficient portfolios in the case of weekly and monthly investment horizon, 

respectively. The implication of this result is that investors need to expose themselves to a 

larger return dispersion in order to increase the probability of exposure to the extreme 

expected returns. In the similar vein, they trade the chances of large positive expected 

returns for the reduction of portfolio risk measured by SD. This finding makes a significant 

contribution to the literature since it has not been addressed by the previous studies due to 

the limitation of the techniques they used. Although Simkowitz and Beedles (1978) found 

that portfolio SD increases with an increasing portfolio skewness, the trade-off was 

examined from the household accounts of a large brokerage firm but not from the 

perspective of efficient portfolios. 

 

Additionally, it is revealed from Table 4.7 that at a given level of expected return, the MVS 

efficient portfolios can be ranked in an order from the highest SD (with the highest 
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skewness), i.e. Port.1, to the lowest SD (with the lowest skewness), i.e. Port.20. In the MV 

portfolio model, an optimization will search for the portfolio with the global minimum 

variance (or SD) at a given value of expected return, while the skewness objective is not 

taken into consideration. A collection of the global minimum variance portfolios at 

different values of expected return is known as “the MV efficient frontier”.  Port.20 in 

Table 4.7 is not only an MVS efficient portfolio, but it is also MV efficient due to the fact 

that it has attained the global minimum SD with an expected return of 28.0 percent, and it is 

not dominated by any other MVS efficient portfolios. This result is also similar for Port.16 

in Table 4.8. This finding is the second contribution of this chapter that the MV efficient 

portfolios are a subset of the MVS efficient portfolios. 

 

Table 4.7: The MVS Efficient Portfolios of Weekly Investment Horizon with Expected 

Return Value of 28.0 Percent 

 

 

Port.1 Port.2 Port.3 Port.4 Port.5 Port.6 Port.7 Port.8 Port.9 Port.10

China - - - - - - - - - -

India 0.16 0.22 0.21 0.10 0.05 0.10 0.15 - - -

Indonesia - - - - - - - - 0.04 -

Malaysia - - 0.01 - - - - 0.13 0.08 -

Pakistan - - - - - - 0.05 - - -

Philippines - - - 0.01 - 0.07 - - 0.06 0.15

South Korea - - - - - - - - - -

Sri Lanka 0.80 0.78 0.78 0.76 0.77 0.75 0.73 0.75 0.69 0.67

Taiwan - - - 0.09 0.14 0.06 0.02 0.12 0.13 0.18

Thailand - - - - - - 0.04 - - -

Argentina 0.03 - - - - 0.02 - - - -

Brazil - - - - - - - - - -

Chile - - - - 0.03 - - - - -

Colombia - - - - - - - - - -

Mexico - - - - - - - - - -

Peru - - - 0.02 - - - - - -

Expected Return 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0%

Standard Deviation 2.011 2.002 1.988 1.890 1.875 1.870 1.847 1.797 1.697 1.685

Skewness 1.978 1.974 1.929 1.642 1.596 1.571 1.495 1.366 1.122 1.098

Investment Allocation Proportion
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Table 4.7 (continued): The MVS Efficient Portfolios of Weekly Investment Horizon with 

Expected Return Value of 28.0 Percent 

 

 

Table 4.8: The MVS Efficient Portfolios of Monthly Investment Horizon with Expected 

Return Value of 28.0 Percent 

 

Port.11 Port.12 Port.13 Port.14 Port.15 Port.16 Port.17 Port.18 Port.19 Port.20

China - - - - - - - - - -

India - - - - - - - - - -

Indonesia - - - - - - - - - -

Malaysia 0.04 0.14 0.22 0.05 0.01 0.03 0.02 - - 0.06

Pakistan 0.06 0.03 0.01 0.11 - 0.12 0.13 0.12 0.11 0.04

Philippines 0.12 0.02 0.12 0.07 0.19 0.10 - 0.12 0.18 0.24

South Korea - - - - - - - - - -

Sri Lanka 0.65 0.65 0.64 0.61 0.57 0.58 0.42 0.42 0.38 0.34

Taiwan 0.06 0.07 - 0.06 0.12 - 0.02 - - -

Thailand - 0.10 - 0.09 0.08 0.10 0.13 0.03 0.26 0.07

Argentina - - - - - - - - - -

Brazil - - - - - - - - - -

Chile 0.05 - - - - 0.07 - - 0.03 -

Colombia - - - - - - 0.28 0.30 0.02 0.25

Mexico - - - - - - - - - -

Peru - - - - 0.02 - - - - -

Expected Return 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0%

Standard Deviation 1.607 1.614 1.597 1.533 1.518 1.477 1.281 1.257 1.278 1.222

Skewness 0.913 0.910 0.876 0.738 0.715 0.615 0.287 0.249 0.241 0.173

Investment Allocation Proportion

Port. 1 Port.2 Port. 3 Port. 4 Port. 5 Port. 6 Port. 7 Port. 8

China 0.05 0.05 - - - - - -

India - - - - 0.01 - - -

Indonesia - - - - - - - 0.01

Malaysia - - - 0.02 0.02 0.01 0.02 -

Pakistan - - - - - 0.03 - 0.03

Philippines 0.29 0.37 0.36 0.42 0.42 0.38 0.48 0.45

South Korea - - - - - - - -

Sri Lanka 0.66 0.58 0.56 0.52 0.51 0.52 0.49 0.50

Taiwan - - 0.07 - - - - -

Thailand - - - - - 0.02 - -

Argentina - - - - - - - -

Brazil - - - - - - - -

Chile - - - - - - - -

Colombia - - - 0.01 0.01 0.04 - -

Mexico - - - - - - - -

Peru - - - - - - - -

Expected Return 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0%

Standard Deviation 0.953 0.895 0.888 0.859 0.854 0.847 0.841 0.836

Skewness 0.985 0.815 0.793 0.696 0.679 0.653 0.640 0.628

Investment Allocation Proportion
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Table 4.8 (continued): The MVS Efficient Portfolios of Monthly Investment Horizon with 

Expected Return Value of 28.0 Percent 

 

 

An additional analysis is conducted to verify the above argument. The MVS efficient 

portfolios of Prob. 1 for the weekly and monthly investment horizons generated using 

SPEA-II are plotted in the MVS space and presented in Figure 4.8(a) and Figure 4.9(a), 

respectively. Panels (b), (c), and (d) of Figure 4.8 and Figure 4.9 illustrate the resulting 

MVS efficient portfolios on mean-SD diagram, mean-skewness diagram, and skewness-SD 

diagram, respectively. The black curve represents the MV efficient frontier that is obtained 

by optimizing Prob. 1 without the skewness objective. The results suggest that the 

members of the MVS efficient portfolios with minimum SD at different levels of expected 

return are on the MV efficient frontier. Meanwhile, the rest located outside the MV 

efficient frontier are considered as inefficient portfolios under the MV portfolio model (see, 

in particular Panel (b) of Figure 4.8 and Figure 4.9). Therefore, it can be confirmed that the 

Port. 9 Port. 10 Port. 11 Port. 12 Port. 13 Port. 14 Port. 15 Port. 16

China - - - - - - - -

India - - - - - - - -

Indonesia - - - - - - 0.18 0.13

Malaysia - 0.04 - - - - 0.02 -

Pakistan 0.05 - - - - - 0.02 0.01

Philippines 0.43 0.47 0.50 0.51 0.51 0.44 0.37 0.41

South Korea - - - - - - - -

Sri Lanka 0.51 0.48 0.46 0.45 0.44 0.38 0.38 0.33

Taiwan - - - - - - 0.01 -

Thailand - - 0.02 0.02 - - - -

Argentina - - - - - - - -

Brazil - - - - - - - -

Chile - - - - - - - -

Colombia - - - - 0.04 0.18 - 0.11

Mexico - - - - - - - -

Peru - - - - - - - -

Expected Return 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0% 28.0%

Standard Deviation 0.834 0.832 0.828 0.825 0.818 0.805 0.801 0.791

Skewness 0.62 0.61 0.59 0.58 0.56 0.49 0.42 0.38

Investment Allocation Proportion
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MV efficient portfolios are a subset of the MVS efficient portfolios. In addition, we argue 

that the portfolios considered as inefficient in the MV framework are actually efficient 

when skewness is taken into portfolio decision. Although these portfolios have higher SD at 

a given level of expected return, they offer larger skewness than that of the MV efficient 

portfolios (see, in particular Panel (d) of Figure 4.8 and Figure 4.9). This finding gives an 

explanation of the phenomenon of why investors hold portfolios with larger SD although 

their expected returns may be same as the other portfolios with smaller SD. They do so 

because these portfolios are MVS efficient.  

 

Figure 4.8: Impact of Skewness on MV Efficiency – Weekly 

  

Panel (a) Panel (b) 

  

Panel (c) Panel (d) 

 

Note: Black is for MV efficient portfolios. Red is for MVS efficient portfolios. 
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Figure 4.9: Impact of Skewness on MV Efficiency – Monthly 

  

Panel (a) Panel (b) 

  

Panel (c) Panel (d) 

Note: Black is for MV efficient portfolios. Blue is for MVS efficient portfolios. 

 

For the analysis of portfolio composition, the results from Table 4.7 and Table 4.8 

demonstrate that the incorporation of skewness into portfolio selection causes a major 

change in portfolio holdings. For example, in Table 4.7, Port.20 which is also MV efficient 

mainly allocates the investment on the indices of Sri Lanka, Philippines, and Colombia 

whereas Port.1 which is the portfolio with the highest skewness invests heavily on the 

indices of Sri Lanka and India. Although, the indices of Philippines and Colombia offer 

higher levels of expected returns with a moderate value of SD, their skewness value is 

comparatively lower for Colombia and negative for Philippines. Thus, the allocations on 
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investment on the index of the Philippines are small for the first nine MVS efficient 

portfolios, while only four MVS efficient portfolios included the index of the Colombia.  

Analogous results are observed for the monthly investment horizon. Port.1 and Port.16 in 

Table 4.8 have the highest and the lowest value of skewness, respectively. Most of the 

MVS efficient portfolios in Table 4.8 mainly consist of in Sri Lanka and Philippines in the 

investment, whereas Port.16 which is also MV efficient allocates some investments to other 

indices such as Indonesia, Colombia, and Pakistan. Interestingly, it is showed in Table 4.2 

that the market of the Philippines offers high expected return but has negative skewness. 

However, the coskewness between the returns of the Sri Lanka and Philippines market as 

reported in Table 4.6 is considerably high. This evidence suggests that not only the 

skewness of individual assets but also the coskewness between assets are important for 

constructing the MVS efficient portfolios. 

 

In addition, the results from Table 4.7 and Table 4.8 show the advantage of the techniques 

used in this study for solving the MVS-POP. It can be seen that our methodology provides 

many MVS efficient solutions for a given level of expected return. In this case, the 

preferences of or other information received by an investor with a targeted level of 

expected return can be used for making portfolio decisions. For example, a fund manager 

whose target return is 28.0 percent may receive good news on the Malaysia and Thailand 

stock markets. Therefore this information can be used for selecting the investment portfolio 

among a set of MVS efficient solutions. Among the MVS efficient portfolios in Table 4.7, 

Port.12, Port.14, Port.15, Port.16, and Port.17 will be considered as the investment 

alternatives for this fund manager. In contrast, by using the other techniques adopted in the 
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previous studies, only one or limited solutions can be obtained from the optimization 

process. As a result, a DM can only choose among these limited solutions without any 

efficient alternatives for taking other preferences or information into consideration.  

 

4.5 CONCLUDING REMARKS 

 

In this chapter, we illustrated the methodology for solving the efficient portfolios based 

upon the MVS analysis. The MVS-POP is formulated for the case in which the asset returns 

are not normally distributed but skewed. The investors, whose utility can be approximated 

by a third-order Taylor’s series expansion, act to maximize their utility by choosing the 

efficient portfolios that maximize expected return and skewness, while minimizing SD 

simultaneously. We proposed and demonstrated the use of selected MOEAs for searching 

the MVS efficient portfolios in a three-dimension moment space. Then, the characteristics 

of MVS efficient portfolios were examined.  

 

The empirical investigation was conducted using the indices of sixteen emerging markets in 

Asia and Latin America. The evidences indicate that the majority of the market indices 

have significant non-zero skewness in the distributions for both annualized weekly and 

annualized monthly returns. This finding affirms that skewness should not be neglected in 

portfolio selection. Nevertheless, the results reveal that, on the majority of the annualized 

weekly returns exhibit negative skewness. In contrast, most of the distributions of the 

annualized monthly returns are positively skewed. This different in the sign of skewness 
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between the two investment horizons reaffirms the “intervalling effect” previous addressed 

by Chunhachinda et al. (1994), Chunhachinda et al. (1997), Prakash et al. (1997), and 

Prakash et al. (2003).  

 

A salient characteristic of the MVS efficient portfolios is that their expected returns are 

smaller for portfolios with larger skewness at a given level of SD. This finding is consistent 

with the previous studies including Lai (1991), Chunhachinda, et al. (1997), Prakash, et al. 

(2003), and Canela and Collazo (2007). This result implies that, among a set of MVS 

efficient portfolios, investors need to trade expected return to invest in portfolios with 

larger skewness. On the other hand, at a given value of expected return, the SD of MVS 

efficient portfolios increases with an increase in portfolio skewness. This result implies that 

investors need to expose themselves to a larger return dispersion in order to increase the 

probability of extreme positive expected returns. In another context, they are willing to 

trade the chances of receiving a large positive expected return for a reduction of portfolio 

risk measured by SD. This finding makes a significant contribution to the literature since it 

has not been addressed by the previous studies due to the limitation of the techniques 

applied.  

 

Lastly, regardless of investment horizon, the MVS efficient portfolios have the lowest SD 

for a given level of expected return and skewness. By plotting the MV and MVS efficient 

portfolios together, the result confirms that the MV efficient portfolios are a subset of the 

MVS efficient portfolios. In addition, the results suggest that some inefficient portfolios 

under the MV portfolio model are actually efficient when skewness is taken into portfolio 
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decision. This finding gives an explanation of the phenomenon of why investors hold 

portfolios that are not MV efficient. They do so because these portfolios are efficient under 

the MVS portfolio model. 
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CHAPTER 5 

THE IMPACT OF SKEWNESS PREFERENCE ON EFFICIENT PORTFOLIO 

CHOICES 

 

5.1 INTRODUCTION 

 

This chapter discusses the impact of different degree of skewness preference on portfolio 

choice and portfolio holding. The MVS-POP formulated as Prob. 1 in Section 3.2 is firstly 

solved to identify the set of MVS efficient portfolios. The resulting efficient portfolios are 

used to test the three implications of the proposed model developed in Section 3.5.1. 

Section 5.1 reports the summary statistics and the normality test results for 29 securities 

listed in the DJIA. Section 5.2 gives the results of the estimated input variables used for 

solving MVS efficient portfolios. Section 5.3 demonstrates the MVS efficient portfolios 

obtained from the SPEA-II in the three-dimension space. The impacts of different degree of 

skewness preference on efficient portfolio choices are discussed in Section 5.4. The 

conclusion of the chapter is made in Section 5.5. 
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5.2 SUMMARY STATISTICS AND THE NORMALITY TEST RESULTS  

 

Table 5.1 exhibits the summary statistics together with the Jarque-Bera normality test 

statistics for the monthly annualized rate of returns
19

 of 29 securities listed in the DJIA. The 

second column of Table 5.1 reveals that during the period of January 2004 to December 

2011, only MCD and NKE show positive average rate of return of 0.174 and 0.129, 

respectively. The lowest average rate of return is GE (-0.076), followed by PFE (-0.064) 

and CSCO (-0.050). The third column of Table 5.1 shows that CAT has the highest 

standard deviation of 1.350, followed by AXP (1.265) and GE (1.095). GE has the lowest 

standard deviation of 0.475, followed by PG (0.537) and MCD (0.557). The values of 

skewness are reported in the fourth column of the table. The majority of the DJIA listed 

stocks exhibit negative skewness during the period of the study. We found that only two 

stocks, namely, JPM and XOM, have positive skewness of 0.809 and 0.007, respectively. 

Meanwhile, IBM presents the highest negative skewness of -2.198. The other two stocks 

that have high negative skewness are CAT (-2.147) and DIS (-1.472). 

 

The result of the Jarque-Bera normality test is presented in the fifth and sixth column of 

Table 5.1. The probability value (P-value) associated with the JB-statistic indicates the 

significance level of the rejection of the null hypothesis. The majority of the DJIA listed 

stocks, i.e. 24 from 29, exhibit significant skewness. The Jarque-Bera test only fails to 

reject the null hypothesis for 5 stocks, namely, JNJ, JPM, MSFT, WMT, and XOM. This 

                                                           
19 Hereafter in this chapter, the term “rate of returns” refers to “annualized monthly rate of returns”. 
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result supports the argument that the return distributions of securities are not empirically 

normal, and violates the standard assumption of the MV portfolio model.  

 

Table 5.1: Summary Statistics and the Normality Test Results of the Monthly Annualized 

Rate of Returns of 29 Securities Listed in the DJIA 

Symbol  Mean 
 Standard 

Deviation 
 Skewness JB-statistic P-value 

U:AXP 0.012 1.265 0.809 546.328 0.000*** 

U:BA 0.072 1.003 -0.645 6.600 0.037** 

U:CAT 0.099 1.350 -2.147 442.593 0.000*** 

U:CVX 0.114 0.917 -0.825 36.558 0.000*** 

@CSCO -0.050 0.974 -1.029 49.871 0.000*** 

U:DD 0.010 0.993 -0.941 85.863 0.000*** 

U:DIS 0.058 0.915 -1.472 145.062 0.000*** 

U:GE -0.076 1.095 -1.036 55.806 0.000*** 

U:GS -0.007 1.086 -0.818 27.796 0.000*** 

U:HD 0.020 0.898 -0.571 39.116 0.000*** 

U:IBM 0.080 0.789 -2.198 631.089 0.000*** 

@INTC -0.033 1.057 -0.863 20.661 0.000*** 

U:JNJ 0.028 0.475 -0.189 1.389 0.499 

U:JPM -0.021 0.999 0.007 3.786 0.151 

U:KO 0.042 0.579 -0.901 50.209 0.000*** 

U:MCD 0.174 0.557 -0.645 12.220 0.002*** 

U:MMM 0.000 0.757 -0.440 7.118 0.028** 

U:MRK -0.024 1.017 -0.844 41.625 0.000*** 

@MSFT -0.011 0.828 -0.212 1.341 0.512 

U:NKE 0.129 0.858 -1.044 53.974 0.000*** 

U:PFE -0.064 0.789 -0.612 33.792 0.000*** 

U:PG 0.038 0.537 -0.613 10.001 0.007*** 

U:T 0.016 0.662 -0.790 15.507 0.000*** 

U:TRV 0.044 0.743 -0.308 6.326 0.042** 

U:UNH 0.069 1.075 -0.748 16.260 0.000*** 

U:UTX 0.057 0.714 -1.209 57.166 0.000*** 

U:VZ 0.022 0.737 -0.421 33.444 0.000*** 

U:WMT 0.013 0.629 -0.290 1.448 0.485 

U:XOM 0.092 0.802 -0.077 0.682 0.711 

 

Note:  **, and *** denote significance at the 0.05 and 0.01 levels, respectively. 

JB-statistic is for the Jarque-Bera test. 
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To solve the MVS-POP formulated as Prob. 1 in Section 3.2.1, the input variables 

explained in Equation (3.3) to Equation (3.5) are required. To obtain these variables, a 

computation of Equation (3.14) to Equation (3.17) is performed using the returns of the 29 

securities. The input variables, including the return matrix R and variance-covariance 

matrix Λ are reported in Table 5.2. The skewness-coskewness matrix Ω is exhibited in 

Table C.1 of APPENDIX C.  

Table 5.2: The Return Matrix R and Variance-covariance Matrix Λ of 29 Securities Listed 

in the DJIA 

Input 

Variable 
U:AXP U:BA U:CAT U:CVX @CSCO U:DD U:DIS U:GE U:GS U:HD 

R 0.012 0.072 0.099 0.114 -0.050 0.010 0.058 -0.076 -0.007 0.020 

           Λ U:AXP U:BA U:CAT U:CVX @CSCO U:DD U:DIS U:GE U:GS U:HD 

U:AXP 1.583 0.608 1.097 0.474 0.649 0.853 0.723 0.846 0.468 0.586 

U:BA 0.608 0.996 0.740 0.407 0.456 0.602 0.581 0.666 0.445 0.374 

U:CAT 1.097 0.740 1.803 0.755 0.780 0.959 0.898 0.989 0.606 0.742 

U:CVX 0.474 0.407 0.755 0.832 0.359 0.388 0.468 0.418 0.257 0.351 

@CSCO 0.649 0.456 0.780 0.359 0.939 0.488 0.497 0.552 0.438 0.432 

U:DD 0.853 0.602 0.959 0.388 0.488 0.976 0.610 0.746 0.585 0.479 

U:DIS 0.723 0.581 0.898 0.468 0.497 0.610 0.828 0.662 0.459 0.401 

U:GE 0.846 0.666 0.989 0.418 0.552 0.746 0.662 1.186 0.493 0.494 

U:GS 0.468 0.445 0.606 0.257 0.438 0.585 0.459 0.493 1.168 0.222 

U:HD 0.586 0.374 0.742 0.351 0.432 0.479 0.401 0.494 0.222 0.799 

U:IBM 0.485 0.381 0.626 0.370 0.451 0.465 0.450 0.421 0.415 0.374 

@INTC 0.633 0.467 0.735 0.351 0.641 0.483 0.484 0.586 0.510 0.361 

U:JNJ 0.198 0.177 0.232 0.149 0.161 0.193 0.196 0.231 0.172 0.096 

U:JPM 0.711 0.444 0.763 0.299 0.398 0.647 0.540 0.716 0.581 0.406 

U:KO 0.274 0.207 0.375 0.246 0.234 0.196 0.284 0.300 0.197 0.172 

U:MCD 0.244 0.207 0.340 0.225 0.187 0.207 0.264 0.233 0.159 0.206 

U:MMM 0.541 0.389 0.589 0.324 0.396 0.452 0.405 0.444 0.252 0.278 

U:MRK 0.233 0.401 0.384 0.259 0.284 0.255 0.316 0.347 0.316 0.095 

@MSFT 0.569 0.282 0.477 0.316 0.430 0.329 0.304 0.454 0.424 0.280 

U:NKE 0.665 0.377 0.703 0.380 0.468 0.509 0.475 0.526 0.374 0.410 

U:PFE 0.233 0.337 0.485 0.272 0.234 0.339 0.314 0.385 0.132 0.162 

U:PG 0.322 0.208 0.335 0.176 0.252 0.169 0.261 0.320 0.089 0.180 

U:T 0.334 0.264 0.508 0.324 0.298 0.250 0.274 0.347 0.175 0.266 

U:TRV 0.359 0.405 0.485 0.314 0.287 0.341 0.396 0.347 0.308 0.241 

U:UNH 0.321 0.466 0.427 0.227 0.135 0.354 0.305 0.389 0.167 0.176 

U:UTX 0.524 0.490 0.740 0.320 0.393 0.490 0.434 0.564 0.356 0.303 

U:VZ 0.382 0.245 0.556 0.335 0.308 0.269 0.289 0.357 0.175 0.361 

U:WMT 0.182 0.137 0.298 0.150 0.194 0.185 0.239 0.232 0.164 0.275 

U:XOM 0.306 0.349 0.556 0.604 0.236 0.304 0.371 0.329 0.266 0.193 
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Table 5.2 (continued): The Return Matrix R and Variance-covariance Matrix Λ of 29 

Securities Listed in the DJIA 

Input 

Variable 
U:IBM @INTC U:JNJ U:JPM U:KO U:MCD U:MMM U:MRK @MSFT U:NKE 

R 0.080 -0.033 0.028 -0.021 0.042 0.174 0.000 -0.024 -0.011 0.129 

           Λ U:IBM @INTC U:JNJ U:JPM U:KO U:MCD U:MMM U:MRK @MSFT U:NKE 

U:AXP 0.485 0.633 0.198 0.711 0.274 0.244 0.541 0.233 0.569 0.665 

U:BA 0.381 0.467 0.177 0.444 0.207 0.207 0.389 0.401 0.282 0.377 

U:CAT 0.626 0.735 0.232 0.763 0.375 0.340 0.589 0.384 0.477 0.703 

U:CVX 0.370 0.351 0.149 0.299 0.246 0.225 0.324 0.259 0.316 0.380 

@CSCO 0.451 0.641 0.161 0.398 0.234 0.187 0.396 0.284 0.430 0.468 

U:DD 0.465 0.483 0.193 0.647 0.196 0.207 0.452 0.255 0.329 0.509 

U:DIS 0.450 0.484 0.196 0.540 0.284 0.264 0.405 0.316 0.304 0.475 

U:GE 0.421 0.586 0.231 0.716 0.300 0.233 0.444 0.347 0.454 0.526 

U:GS 0.415 0.510 0.172 0.581 0.197 0.159 0.252 0.316 0.424 0.374 

U:HD 0.374 0.361 0.096 0.406 0.172 0.206 0.278 0.095 0.280 0.410 

U:IBM 0.616 0.494 0.155 0.315 0.224 0.199 0.315 0.195 0.267 0.361 

@INTC 0.494 1.105 0.231 0.384 0.312 0.217 0.386 0.364 0.467 0.470 

U:JNJ 0.155 0.231 0.223 0.147 0.135 0.108 0.123 0.227 0.114 0.116 

U:JPM 0.315 0.384 0.147 0.988 0.165 0.156 0.313 0.263 0.365 0.409 

U:KO 0.224 0.312 0.135 0.165 0.332 0.167 0.150 0.287 0.190 0.211 

U:MCD 0.199 0.217 0.108 0.156 0.167 0.307 0.103 0.188 0.160 0.247 

U:MMM 0.315 0.386 0.123 0.313 0.150 0.103 0.567 0.175 0.267 0.328 

U:MRK 0.195 0.364 0.227 0.263 0.287 0.188 0.175 1.022 0.260 0.205 

@MSFT 0.267 0.467 0.114 0.365 0.190 0.160 0.267 0.260 0.678 0.325 

U:NKE 0.361 0.470 0.116 0.409 0.211 0.247 0.328 0.205 0.325 0.728 

U:PFE 0.146 0.203 0.151 0.293 0.158 0.141 0.167 0.393 0.148 0.084 

U:PG 0.148 0.251 0.130 0.172 0.178 0.157 0.168 0.222 0.158 0.211 

U:T 0.240 0.271 0.114 0.275 0.202 0.164 0.200 0.292 0.215 0.275 

U:TRV 0.220 0.407 0.117 0.360 0.183 0.194 0.245 0.305 0.226 0.304 

U:UNH 0.160 0.278 0.154 0.186 0.081 0.152 0.169 0.370 0.148 0.161 

U:UTX 0.289 0.425 0.146 0.403 0.162 0.171 0.341 0.270 0.338 0.337 

U:VZ 0.271 0.306 0.116 0.205 0.213 0.201 0.217 0.295 0.255 0.313 

U:WMT 0.216 0.207 0.114 0.207 0.126 0.157 0.119 0.156 0.122 0.216 

U:XOM 0.277 0.292 0.158 0.243 0.194 0.180 0.222 0.273 0.235 0.258 
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Table 5.2 (continued): The Return Matrix R and Variance-covariance Matrix Λ of 29 

Securities Listed in the DJIA 

Input 

Variable 
U:PFE U:PG U:T U:TRV U:UNH U:UTX U:VZ U:WMT U:XOM 

R -0.064 0.038 0.016 0.044 0.069 0.057 0.022 0.013 0.092 

          Λ U:PFE U:PG U:T U:TRV U:UNH U:UTX U:VZ U:WMT U:XOM 

U:AXP 0.233 0.322 0.334 0.359 0.321 0.524 0.382 0.182 0.306 

U:BA 0.337 0.208 0.264 0.405 0.466 0.490 0.245 0.137 0.349 

U:CAT 0.485 0.335 0.508 0.485 0.427 0.740 0.556 0.298 0.556 

U:CVX 0.272 0.176 0.324 0.314 0.227 0.320 0.335 0.150 0.604 

@CSCO 0.234 0.252 0.298 0.287 0.135 0.393 0.308 0.194 0.236 

U:DD 0.339 0.169 0.250 0.341 0.354 0.490 0.269 0.185 0.304 

U:DIS 0.314 0.261 0.274 0.396 0.305 0.434 0.289 0.239 0.371 

U:GE 0.385 0.320 0.347 0.347 0.389 0.564 0.357 0.232 0.329 

U:GS 0.132 0.089 0.175 0.308 0.167 0.356 0.175 0.164 0.266 

U:HD 0.162 0.180 0.266 0.241 0.176 0.303 0.361 0.275 0.193 

U:IBM 0.146 0.148 0.240 0.220 0.160 0.289 0.271 0.216 0.277 

@INTC 0.203 0.251 0.271 0.407 0.278 0.425 0.306 0.207 0.292 

U:JNJ 0.151 0.130 0.114 0.117 0.154 0.146 0.116 0.114 0.158 

U:JPM 0.293 0.172 0.275 0.360 0.186 0.403 0.205 0.207 0.243 

U:KO 0.158 0.178 0.202 0.183 0.081 0.162 0.213 0.126 0.194 

U:MCD 0.141 0.157 0.164 0.194 0.152 0.171 0.201 0.157 0.180 

U:MMM 0.167 0.168 0.200 0.245 0.169 0.341 0.217 0.119 0.222 

U:MRK 0.393 0.222 0.292 0.305 0.370 0.270 0.295 0.156 0.273 

@MSFT 0.148 0.158 0.215 0.226 0.148 0.338 0.255 0.122 0.235 

U:NKE 0.084 0.211 0.275 0.304 0.161 0.337 0.313 0.216 0.258 

U:PFE 0.616 0.169 0.207 0.187 0.410 0.253 0.237 0.068 0.272 

U:PG 0.169 0.286 0.168 0.140 0.164 0.161 0.184 0.100 0.150 

U:T 0.207 0.168 0.433 0.182 0.181 0.231 0.388 0.131 0.202 

U:TRV 0.187 0.140 0.182 0.546 0.281 0.268 0.166 0.170 0.266 

U:UNH 0.410 0.164 0.181 0.281 1.143 0.317 0.249 0.015 0.253 

U:UTX 0.253 0.161 0.231 0.268 0.317 0.504 0.247 0.138 0.267 

U:VZ 0.237 0.184 0.388 0.166 0.249 0.247 0.537 0.168 0.233 

U:WMT 0.068 0.100 0.131 0.170 0.015 0.138 0.168 0.392 0.103 

U:XOM 0.272 0.150 0.202 0.266 0.253 0.267 0.233 0.103 0.637 
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5.3 MVS EFFICIENT PORTFOLIOS AND THE EFFICIENT SURFACE  

 

The results of performance comparison between two optimization algorithms in Chapter 4 

suggest the superiority of SPEA-II for solving the MVS-POP. Following the parameter 

setting of the SPEA-II given in Table 3.3, 200 portfolio solutions were obtained from each 

run of the algorithm. The SPEA-II was run for five times, thus 1,000 portfolio solutions 

were obtained. Then, the comparison based on the Pareto dominance relation explained in 

Section 3.3.3 was performed to these 1,000 portfolio solutions in order to identify the non-

dominated portfolio solutions or efficient portfolios.  Finally, 660 MVS efficient portfolios 

were attained from SPEA-II.  

 

In Figure 5.1, the MVS efficient portfolios obtained are displayed in four different views. 

The MVS efficient portfolios solved from using 29 DJIA listed securities (given in Table 

5.1) are plotted in the MVS space and presented in Figure 5.1(a). Panels (b), (c), and (d) of 

Figure 5.1 illustrate the resulting MVS efficient portfolios on mean-SD diagram (front 

view), mean-skewness diagram (side view), and skewness-SD diagram (top view), 

respectively. It can be seen that the shape of the MVS efficient surface is discontinuous. 

This result may be caused by the fact that the feasible portfolios located in this 

discontinuous area either do not satisfy the optimization constraints or they are dominated 

by other efficient portfolios.  
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Figure 5.1: The MVS Efficient Solutions from a Universe of DJIA Listed Securities 

  

Panel (a) Panel (b) 

 

  

Panel (c) Panel (d) 

 

5.4 THE IMPACT OF SKEWNESS PREFERENCE ON PORTFOLIO CHOICE  

 

5.4.1 Sorting of Efficient Portfolio Choices  

To investigate the pricing implications of the MVS efficient portfolios, we sorted the MVS 

efficient portfolios obtained from Section 5.3 into quintiles according to the expected 

return. Since a total of 660 MVS efficient portfolios were obtained from SPEA-II, each 
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quintile comprises of 132 efficient portfolios. Then, we computed the average value of 

expected return, SD, and skewness of the portfolios in each quintile. Table 5.3 exhibits the 

averages of these three statistics for each quintile. 

 

Table 5.3: The Average Expected Return, SD, and Skewness of MVS Efficient Portfolios 

Sorted into Quintiles by the Level of Expected Return 

Quintile 

Average 

Expected 

Return 

Average Standard 

Deviation 
Average Skewness 

Q5 (High-Expected Return) 13.50% 0.515 -0.456 

Q4 9.68% 0.540 -0.293 

Q3 5.91% 0.551 -0.196 

Q2 3.10% 0.873 0.099 

Q1 (Low-Expected Return) 1.64% 0.941 0.288 

 

In Table 5.3, Quintile 1 contains the portfolios with the bottom 20% lowest expected 

returns portfolios, while Quintile 5 includes the portfolios with the top 20% highest 

expected returns. Table 5.3 clearly indicates that the average SD and skewness of Quintile 5 

are much lower than the corresponding statistics for Quintile 1. The differences between the 

average SD and skewness of Quintile 1 and Quintile 5 are 0.426 and 0.744, respectively. 

The implication of the result is that investors in the MVS framework need to trade the 

average expected return of 11.86 percent in order to increase the average skewness of 

portfolios from -0.456 to 0.288. This trade-off is consistent with our finding discussed in 

Chapter 4.  Thus, investors can reduce their portfolio risk at the cost of having to accept 

low expected returns. The MV model has the notion that a portfolio with high expected 

return is inherited with high level of SD. Interestingly, our result in Table 5.3 reveals that 

quintile with the lowest average expected return has a larger average SD than that of the 
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quintile with the highest average expected return. This result can be explained by the fact 

that the SD is an appropriate risk measure for the MV model when the return distribution is 

symmetric. However, if the skewness is significantly non-zero as is the case of our 

empirical results, investors may consider this statistic as a better measure of risk. As a 

result, the risk-return trade-off will only be suitably characterized by considering also the 

skewness of portfolios. Table 5.3 shows that investors have to increase their average 

portfolio SD by about 0.426 for achieving an average positive skewness of 0.288 from the 

original of -0.456. 

 

Next, the MVS efficient portfolios were sorted into quintiles according to the value of 

skewness. Then, we computed the average value of expected return, SD, and skewness of 

portfolios in each quintile, as well as the average size of portfolio holding, i.e. the average 

number of securities included in a portfolio, of the portfolios in each quintile. Table 5.4 

reports the average of these four statistics for each quintile. Quintile 1 includes portfolios 

with the bottom 20% lowest skewness, while Quintile 5 has portfolios with the top 20% 

highest skewness. The result demonstrates that the average expected return of Quintile 1 is 

higher than that of Quintile 5 by about 10.04 percent. But the average SD of Quintile 1 is 

less than the corresponding statistic of Quintile 5 by 0.634. For the average portfolio size, a 

decreasing number of securities held in a portfolio can be observed from Quintile 1 to 

Quintile 5.  

 

The first implication of the results is that high-skewness portfolios generally have lower 

average expected returns than low-skewness portfolios. It affirms that the trade-off between 
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expected return and skewness has a negative relation. Secondly, high-skewness portfolios 

have larger average dispersions of returns than the low-skewness ones. This larger 

dispersion of the return distributions represents a longer right tail which implies the 

possibilities of gaining an extreme expected return. As a result, investors are willing to 

accept lower average expected returns for their preference of the right skewed return 

distributions. Finally, we found that an increase in average portfolio size reduces not only 

portfolio SD but also portfolio skewness.  

 

Table 5.4: The Average Expected Return, SD, Skewness, and Portfolio Holding of MVS 

Efficient Portfolios Sorted into Quintiles by the Value of Skewness 

Quintile 
Average 

Skewness 

Average 

Expected 

Return 

Average  

Standard 

Deviation 

Average  

Portfolio 

Holding 

Q5 (High-Skewness) 0.402 2.10% 1.104 3.2 

Q4 0.037 3.31% 0.812 4.6 

Q3 -0.162 7.18% 0.561 5.7 

Q2 -0.318 9.10% 0.473 6.1 

Q1 (Low-Skewness) -0.518 12.14% 0.470 5.2 

   

To investigate further, we sorted the MVS efficient portfolios into quintiles based on the 

number of securities included in a portfolio. Then, we computed the average expected 

return, SD, skewness, and portfolio size of the portfolios in each quintile. The averages of 

these statistics are reported in Table 5.5. The efficient portfolios in Quintile 1 are of the 

smallest portfolio holding, while those in Quintile 5 have portfolios with the largest number 

of securities. The average skewness of the portfolios in Quintile 1 is 0.269 while that in 

Quintile 5 is -0.270. This implies that investors with a greater skewness preference are 

willing to hold relatively undiversified portfolios, i.e. two to three securities. In contrast, 
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investors with greater risk aversion tend to include a larger number of securities into their 

portfolios in order to reduce risk.  This result is consistent with the third implication of our 

model which expects that investors with a greater skewness preference hold less number of 

assets in their portfolios in order to increase their exposure to positive skewness of the 

return distributions. 

 

Table 5.5: The Average Expected Return, SD, Skewness, and Portfolio of MVS Efficient 

Portfolios Sorted into Quintiles by Portfolio Holding 

Quintile 

Average  

Portfolio 

Holding 

Average 

Expected 

Return 

Average 

Standard 

Deviation 

Average 

Skewness 

Q5 (High-Portfolio Holding) 8.0 5.93% 0.460 -0.270 

Q4 5.8 9.07% 0.510 -0.315 

Q3 4.7 8.44% 0.621 -0.214 

Q2 3.7 6.48% 0.808 -0.027 

Q1 (Low-Portfolio Holding) 2.6 3.91% 1.021 0.269 

 

5.4.2 Portfolio Choices for the Different Degree of Skewness Preference 

To illustrate the impact of heterogeneous degree of absolute risk aversion (A) and skewness 

preference (P) on portfolio choices, we computed and then identified, among the MVS 

efficient portfolios, the efficient portfolio that maximizes the expected utility for given 

values of parameter A and P in the following equation. Let investor utility be a function of 

portfolio return, i.e. 𝑈(𝑅𝑝), from Equation (3.17), the maximization of utility is given as 

follows: 

 Max E[𝑈(𝑅𝑝)] = Max 𝑈(𝐶𝐸)

= Max [𝐸 (𝑅𝑝(x)) −
1

2!
𝐴. 𝑉𝑝(x) +

1

3!
𝑃. 𝑆𝑝(x) ] 

(5.1) 
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It can be seen from Equation (5.1) that each efficient portfolio x is defined by three 

statistics including expected return, variance, and skewness. The contribution of each 

efficient portfolio x to expected utility does not only depend on these statistics, but also the 

parameters A and P. Equation (5.1) implies that the expected utility increases with an 

increasing value of expected return and skewness, but decreases with an increasing value of 

variance. As explained in Section 3.5.1, larger parameter values of A and P are associated 

with greater risk aversion and greater skewness preference. A larger parameter value of A 

will bring about a greater penalty to the expected utility. Meanwhile, a larger parameter 

value of P will increase the expected utility. 

 

From the 660 efficient portfolios obtained from SPEA-II as explained in Section 5.3, we 

identified the efficient portfolio choices that maximize the expected utility expressed in 

Equation (5.1) for selected values of parameter A and P. The resulting portfolio choices are 

reported in Table 5.6. The parameters A and P were varied from the values of two to five 

and zero to five, respectively. Larger parameter values of A and P are associated with 

greater risk aversion and greater skewness preference, respectively. It can be observed from 

the results that, at a given degree of skewness preference, SD of portfolio choices tend to 

reduce with an increasing degree of risk aversion. For example, in the column three in 

which parameter A is fixed at one, SD of efficient portfolio choices decreases from 0.453 to 

0.418 when the degree of risk aversion increases from two to five. This result is consistent 

with the Arrow-Pratt’s notion of absolute risk aversion. Besides, at a given degree of risk 

aversion, we found that the skewness of portfolio choices increases with an increasing 

degree of skewness preference. For example, with the degree of risk aversion is fixed at 

four, the skewness of the efficient portfolio choices increases from -0.460 to 0.807 when 
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degree of skewness preference increases from zero to four. It can be validated from this 

result that the parameter P is a reasonable measure of the degree of skewness preference as 

argued by Modica and Scarsini (2005) and Crainich and Eeckhoudt (2008). 

 

In addition, Table 5.6 demonstrates that the average expected return of efficient portfolio 

choices tends to drop when the degree of skewness preference increases. For instance, with 

the degree of risk aversion fixed at four, the expected return of efficient portfolio choices 

decline from 6.10 percent to 0.26 percent as the degree of skewness preference increases 

from zero to three. Although the expected return increases to 1.17 percent when parameter 

value of P is equal to four and five, the general trend of decreasing expected return with 

increasing parameter values of P is obvious. This result asserts the validity of the first 

implication of our model. The general claim of this result is that investors with greater 

skewness preference are willing to accept lower average expected returns to enjoy the 

benefit of portfolios with larger skewness. 

 

Furthermore, the result reveals that the dispersion of the return distributions of efficient 

portfolio choices is larger when the degree of skewness preference increases. For instance, 

consider the results with the degree of risk aversion fixed at four. The SD of efficient 

portfolio choices increases from 0.404 up to 1.258 when the degree of skewness preference 

rises from zero to five. This result is consistent with the model’s implication that investors 

with greater degree of skewness preference are willing to expose themselves to larger 

return dispersions that will stretch the right tail of the return distributions to increase the 

possibilities of gaining. 



139 

 

Table 5.6: The Summary Statistics of Portfolio Choices that Maximize the Expected Utility 

for Given Values of Absolute Risk Aversion (A) and Degree of Skewness Preference (P) 

Parameter A,P 2,0 2,1 2,2 2,3 2,4 2,5 

Expected Return 7.44% 2.37% 1.17% 1.17% 1.17% 1.17% 

Standard deviation 0.409 0.453 1.258 1.258 1.258 1.258 

Skewness -0.460 -0.107 0.807 0.807 0.807 0.807 

Parameter A,P 3,0 3,1 3,2 3,3 3,4 3,5 

Expected Return 6.10% 3.35% 0.26% 1.17% 1.17% 1.17% 

Standard deviation 0.404 0.426 0.501 1.258 1.258 1.258 

Skewness -0.460 -0.189 -0.003 0.807 0.807 0.807 

Parameter A,P 4,0 4,1 4,2 4,3 4,4 4,5 

Expected Return 6.10% 3.35% 2.37% 0.26% 1.17% 1.17% 

Standard deviation 0.404 0.426 0.453 0.501 1.258 1.258 

Skewness -0.460 -0.189 -0.107 -0.003 0.807 0.807 

Parameter A,P 5,0 5,1 5,2 5,3 5,4 5,5 

Expected Return 6.10% 2.67% 2.37% 0.26% 0.26% 1.17% 

Standard deviation 0.404 0.418 0.453 0.501 0.501 1.258 

Skewness -0.460 -0.221 -0.107 -0.003 -0.003 0.807 

  

To examine the model implication on portfolio holding, Table 5.7 exhibits the composition 

of the efficient portfolio choices reported in Table 5.6. It is revealed from the result that, for 

all values of degree of risk aversion, the investment allocation tends to concentrate on a 

single stock (AXP) when the degree of skewness preference increases. For investors with a 

lower degree of risk aversion, i.e. A = 2, a single stock is the optimal portfolio choice if 

their degree of skewness preference reaches the value of two. In contrast, the degree of 

skewness preference at the value of five will induce investors with a higher degree of risk 

aversion, i.e. A = 5, to hold a single stock as the optimal choice. This result verifies our 

model implication that investors with a greater preference for skewness hold less number of 

assets in their portfolio i.e. underdiversified portfolio, in order to increase their exposure to 

positive skewness of the return distributions.  



140 

 

Table 5.7: The Composition of Efficient Portfolio Choices that Maximized the Expected 

Utility at a Given Value of Absolute Risk Aversion (A) and Degree of Skewness Preference 

(P) 

 

 

 

 

 

 

 

 

 

U:AXP - - 1.00 1.00 1.00 1.00 - - - 1.00 1.00 1.00

U:BA - - - - - - - - - - - -

U:CAT - - - - - - - - - - - -

U:CVX - - - - - - - - - - - -

@CSCO - - - - - - - - - - - -

U:DD - - - - - - - - - - - -

U:DIS - - - - - - - - - - - -

U:GE - - - - - - - - - - - -

U:GS - - - - - - - - - - - -

U:HD - - - - - - - - - - - -

U:IBM - - - - - - - - - - - -

@INTC - - - - - - - - - - - -

U:JNJ 0.38 0.28 - - - - 0.31 0.42 0.01 - - -

U:JPM - - - - - - - - 0.01 - - -

U:KO - - - - - - - - - - - -

U:MCD 0.31 - - - - - 0.25 0.06 - - - -

U:MMM - - - - - - - 0.03 - - - -

U:MRK - - - - - - - - - - - -

@MSFT - - - - - - - - - - - -

U:NKE - - - - - - - - - - - -

U:PFE - 0.09 - - - - - 0.07 0.25 - - -

U:PG 0.10 - - - - - 0.11 - - - - -

U:T - - - - - - - - - - - -

U:TRV - 0.18 - - - - - 0.15 0.26 - - -

U:UNH - 0.13 - - - - - 0.08 0.01 - - -

U:UTX - - - - - - - - - - - -

U:VZ - - - - - - - - - - - -

U:WMT 0.16 0.30 - - - - 0.18 0.16 0.46 - - -

U:XOM - 0.01 - - - - - 0.01 - - - -

Parameter A,P 2,0 2,1 2,2 2,3 2,4 2,5 3,0 3,1 3,2 3,3 3,4 3,5

Expected Return 7.44% 2.37% 1.17% 1.17% 1.17% 1.17% 6.10% 3.35% 0.26% 1.17% 1.17% 1.17%

Standard deviation 0.409 0.453 1.258 1.258 1.258 1.258 0.404 0.426 0.501 1.258 1.258 1.258

Skewness -0.460 -0.107 0.807 0.807 0.807 0.807 -0.460 -0.189 -0.003 0.807 0.807 0.807
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Table 5.7 (continued): The Composition of Efficient Portfolio Choices that Maximized the 

Expected Utility at a Given Value of Absolute Risk Aversion (A) and Degree of Skewness 

Preference (P) 

 

 

The analysis includes a zero degree of skewness preference for the case in which investors 

make portfolio decision without any preference for skewness of return distribution. These 

investors basically choose their portfolio choices based solely on the mean and the variance 

of the return distributions. Thus their portfolio choices are those having the lowest SD at a 

given value of expected return, i.e. the MV efficient portfolios. However, this behavior is 

theoretically unacceptable since we showed that, ceteris paribus, investors prefer return 

distributions with positive skewness. In contrast, risk-averse investors who exhibit 

U:AXP - - - - 1.00 1.00 - - - - - 1.00

U:BA - - - - - - - - - - - -

U:CAT - - - - - - - - - - - -

U:CVX - - - - - - - - - - - -

@CSCO - - - - - - - - - - - -

U:DD - - - - - - - - - - - -

U:DIS - - - - - - - - - - - -

U:GE - - - - - - - - - - - -

U:GS - - - - - - - - - - - -

U:HD - - - - - - - 0.01 - - - -

U:IBM - - - - - - - 0.01 - - - -

@INTC - - - - - - - - - - - -

U:JNJ 0.31 0.42 0.28 0.01 - - 0.31 0.31 0.28 0.01 0.01 -

U:JPM - - - 0.01 - - - - - 0.01 0.01 -

U:KO - - - - - - - - - - - -

U:MCD 0.25 0.06 - - - - 0.25 - - - - -

U:MMM 0.08 0.03 - - - - 0.08 0.03 - - - -

U:MRK - - - - - - - - - - - -

@MSFT - - - - - - - - - - - -

U:NKE - - - - - - - - - - - -

U:PFE - 0.07 0.09 0.25 - - - 0.07 0.09 0.25 0.25 -

U:PG 0.11 - - - - - 0.11 0.15 - - - -

U:T 0.05 - - - - - 0.05 - - - - -

U:TRV - 0.15 0.18 0.26 - - - 0.08 0.18 0.26 0.26 -

U:UNH - 0.08 0.13 0.01 - - - 0.09 0.13 0.01 0.01 -

U:UTX - - - - - - - - - - - -

U:VZ - - - - - - - - - - - -

U:WMT 0.18 0.16 0.30 0.46 - - 0.18 0.22 0.30 0.46 0.46 -

U:XOM 0.01 0.01 0.01 - - - 0.01 0.03 0.01 - - -

Parameter A,P 4,0 4,1 4,2 4,3 4,4 4,5 5,0 5,1 5,2 5,3 5,4 5,5

Expected Return 6.10% 3.35% 2.37% 0.26% 1.17% 1.17% 6.10% 2.67% 2.37% 0.26% 0.26% 1.17%

Standard deviation 0.404 0.426 0.453 0.501 1.258 1.258 0.404 0.418 0.453 0.501 0.501 1.258

Skewness -0.460 -0.189 -0.107 -0.003 0.807 0.807 -0.460 -0.221 -0.107 -0.003 -0.003 0.807
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preference on skewness of return distributions are willing to sacrifice MV efficiency in 

order to increase portfolio skewness.  

 

In Figure 5.2, the optimal portfolio choices exhibited in Table 5.7 are displayed together 

with all MVS efficient portfolios (green dots) and MV efficient portfolios (gray dots). The 

MV efficient portfolios were solved by optimizing Prob. 1 with the skewness objective 

omitted.  Portfolios represented by the red dots are the MVS efficient portfolio choices with 

a zero degree of skewness preference. Those represented by the blue diamonds are the 

MVS efficient portfolio choices for an investor who exhibits a preference for skewness. 

Figure 5.2 illustrates that the optimal portfolio choices for a risk-averse investor who 

exhibits a preference for skewness are not MV efficient. In contrast, the portfolio choices of 

a risk-averse investor with a zero degree of skewness preference reside on the MV efficient 

frontier. 

 

We observe from Figure 5.2 and Table 5.7 that the reason to sacrifice MV efficiency for 

investors whose utility is a function of the first three moments of return distributions is that 

they evaluate risk based not only on the dispersion but also the skewness. It can be seen that 

the efficient portfolio choices for zero skewness preference, which are MV efficient 

portfolios, have the largest negative skewness compared to those with non-zero skewness 

preference. Therefore, increasing preference for skewness comes at a cost of higher SD, 

where the larger distribution arise from a flatter right tail of the return distributions in order 

to either avoid large losses or obtain large gains. 
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Figure 5.2: Portfolio Choices for Different Degree of Risk-aversion and Skewness 

Preference 

 

Note: The degree of risk aversion and skewness preference (A,P) of portfolio choices are as 

follows: 

 A (2,0) 

B (3,0); (4,0); (5,0) 

C (5,1) 

D (3,1); (4,1) 

E (2,1); (4,2); (5,2) 

F (3,2); (4,3); (5,3); (5,4) 

G (2,2); (2,3); (2,4); (2,5); (3,3); (3,4); (3,5); (4,4); (4,5); (5,5) 

 

 

This finding sheds light on the extensive application of our proposed model for explaining 

behavior of investors. First of all, the proposed model has the property of non-increasing 

absolute risk aversion for all wealth levels, while the quadratic utility model, in the MV 

analysis, satisfies this property only in some range of random variable. Secondly, although 
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skewness preference is regarded as a common trait for rational investors, some investors 

may make a portfolio decision independently on the skewness objective. Thus, although the 

analysis of efficient portfolio choices is conducted based on the MVS model, the proposed 

model can also provide the portfolio choices that are MV efficient as different degrees of 

skewness preference, including zero degree, can be accommodated. Finally, our model does 

not require the assumption of normal distribution on the expected returns, rendering it 

suitable for real-world applications. 

 

5.5 CONCLUDING REMARKS 

 

The main objective of this chapter is to investigate the impact of different degree of 

skewness preference on efficient portfolio choices. We developed a model in which an 

investor has utility that can be approximated by the third-order Taylor’s series expansion. 

In our model, investors have homogeneous preference function for mean, variance, and 

skewness of the return distributions, but they possess heterogeneous degree of risk aversion 

and skewness preference. As a consequence, the efficient portfolios are solved using the 

MVS-POP formulated as Prob. 1. Then, the choice of investment portfolio is made among 

the MVS efficient portfolios, depending on the preferred degree of risk aversion and 

skewness preference. 

 

To test the implications of the proposed model, we computed and then identified, among 

the MVS efficient portfolios, the portfolio that maximizes the expected utility for given 
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values of degree of absolute risk aversion (A) and skewness preference (P). We validated 

the use of parameters A and P by showing that, at any given degree of skewness preference, 

SD of portfolio choices tend to reduce with an increasing degree of risk aversion which is 

consistent with the Arrow-Pratt’s notion of absolute risk aversion. We demonstrated that 

skewness of portfolio choices increases with an increasing degree of skewness preference at 

a given degree of risk aversion.  

 

The first implication of the model is verified by the result that the average expected return 

of portfolio choices tends to decrease when the degree of skewness preference increases. 

This implies that the investors with greater skewness preference accept lower average 

expected returns to enjoy the benefits of higher skewness. The benefits can be thought of as 

avoiding large losses from return distributions with negative skewness or gaining larger 

returns from return distributions with positive skewness. Next, the result reveals that the 

dispersion of return distributions of portfolio choices is larger when investors have higher 

degrees of skewness preference. This result supports the second implication of the model 

which implies that investors with greater degrees of skewness preference are willing to 

expose themselves to larger return dispersion due to a flatter right tail of the return 

distributions.  

 

For the third implication of the model, the result reveals that investment allocations tend to 

concentrate on very few securities when the degree of skewness preference increases at a 

given level of degree of risk aversion. This result suggests that investors with greater 

skewness preference tend to hold a small number of assets in their portfolio, i.e. 
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underdiversified portfolio, in order to increase their exposure to return distributions with 

positive skewness.  
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CHAPTER 6 

MVS ANALYSIS FOR SOLVING AN ELECTRICITY ALLOCATION PROBLEM  

 

6.1 INTRODUCTION 

 

This chapter demonstrates the application of MVS analysis for solving an asset allocation 

problem where the number of trading choices is limited. The application chosen is an 

electricity allocation problem of a generation company (Genco). The problem is formulated 

as Prob. 1 and solved using the NSGA-II and the SPEA-II. Then the usefulness of the 

additional objective which is proposed to enhance the benefit of diversification of the 

solution is examined. This newly proposed problem, i.e. MVS-D-POP, formulated as Prob. 

2 in Section 3.5.1 is optimized by three algorithms, namely, NSGA-II, SPEA-II, and 

COGA-II. The COGA-II is selected for the implementation since it is specifically 

developed for solving an optimization problem with more than three objectives. Finally, the 

results obtained from different algorithms are compared using the methods explained in 

Section 3.5.3. In Section 6.2, the summary statistics and the normality test results of 

historical electricity spot prices for the selected pricing zones in the PJM market are 

reported. Besides, it also provides the statistics on the returns of nine trading choices for 

two case studies. This section also gives the results of the estimated input variables used for 

solving MVS efficient portfolios. In Section 6.3, the performance of the three different 

algorithms is compared. The MVS and MVS-D efficient portfolios obtained from the 

COGA-II are plotted in the three-dimension space for further analysis. The conclusion of 

the chapter is made in Section 6.4. 
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6.2 SUMMARY STATISTICS AND THE NORMALITY TEST RESULTS  

 

As described in Section 3.6.2, the electricity spot prices of nine pricing zones, namely, 

AEGO, BGE, DPL, METED, PECO, PENELEC, PEPCO, PPL, and PSEG were quoted 

from the PJM market. In our case studies, the electricity allocation problem for the Genco 

of interest is solved for the month of August 2006. Thus the daily electricity spot prices for 

the period of August 1998 to July 2006 were collected for the analysis. 

 

Table 6.1 reports the summary statistics together with the normality test results of the daily 

electricity spot prices of nine pricing zones from the period of August 1998 to July 2006. 

Table 6.1 shows that the average spot prices of all pricing zones are slightly different. The 

highest mean price is observed in the PSEG zone, while the PENELEC zone offers the 

lowest mean price during the period of study. Besides, it indicates that the SD of the 

historical spot prices is considerably high where the coefficient of variation is more than 

50%. This result suggests that the electricity spot prices are highly volatile, as argued by 

previous studies. In addition, it is revealed that the electricity spot prices of all the pricing 

zones are not normally distributed but positively skewed. The null hypothesis of a normal 

distribution is rejected for all pricing zones according to the p-values that are smaller than 

the 0.001 level. This evidence supports our argument that skewness cannot be neglected in 

the electricity allocation problem.  
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Table 6.1: Summary Statistics and the Normality Test Results of the Historical Daily 

Electricity Spot Prices of Nine Pricing Zones 

Pricing zone AECO BGE DPL METED PECO PENELEC PEPCO PPL PSEG 

Mean 40.76 40.00 40.57 38.86 39.45 36.90 40.33 38.17 41.30 

Standard 

deviation 
27.87 28.21 27.51 26.38 26.89 22.81 28.65 25.77 27.65 

Coefficient 

of variation 
0.68 0.71 0.68 0.68 0.68 0.62 0.71 0.68 0.67 

Skewness 3.97 3.53 4.42 4.16 4.32 4.58 3.26 4.37 3.82 

JB- statistic 157,128 88,418 230,567 183,256 210,118 272,674 60,893 222,644 134,649 

P-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

According to the procedure described in Section 3.6.3, a computation of the statistics on 

returns, namely, expected return, variance, covariance, skewness, and coskewness for all 

trading choices is a prerequisite process before solving Prob. 1 and Prob. 2. As explained 

in the methodology chapter (Section 3.6.3), the expected electricity spot prices during the 

decision making period are firstly forecasted before the expected return of a trading choice 

in electricity market can be computed. Then the forecasts are used to calculate the expected 

return of the considered trading choices according to Equation (3.22) and Equation (3.25). 

This study adopted the GARCH with seasonality dummies expressed in Equation (3.33) to 

forecast the daily electricity spot prices. Meanwhile, the other statistics on returns are 

computed based on the historical electricity spot prices for the period of August 1998 to 

July 2006.  

 

Based on the parameter setting described in Section 3.6.3, it is assumed that the Genco of 

interest has a 350-MW fossil generator and therefore its cost function is (647.087 + 

14.866𝑃𝐺  + 0.0065𝑃𝐺
2)𝜆𝑡

𝑐 , where PG is the output power (MWh) and 𝜆𝑡
𝑐 is the fuel price 
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($/MBtu). Suppose that the cost of coal is constant at 1.29 $/MBtu during the decision 

making period. The expected returns of all trading choices for two case studies are reported 

in Table 6.2. Table 6.3 exhibits the variance-covariance matrix, i.e. matrix Λ, which is 

computed from Equation (3.28) and Equation (3.29). Table 6.4 illustrates the skewness-

coskewness matrix, i.e. matrix Ω, which is calculated from Equation (3.30) to Equation 

(3.32). 

Table 6.2: The Return Matrix R of the Nine Trading Choices for the Two Case Studies 

  PEPCO AECO BGE DPL METED PECO PENELEC PPL PSEG 

R - Case 1 0.684 0.002 0.286 0.339 0.156 0.086 0.333 0.407 0.018 

R - Case 2 0.684 -0.013 0.299 0.331 0.216 0.124 0.475 0.497 -0.020 

 

Table 6.3: The Variance-covariance Matrix Λ of the Nine Trading Choices 

Λ PEPCO AECO BGE DPL METED PECO PENELEC PPL PSEG 

PEPCO 1.384 0.133 0.040 0.173 0.161 0.175 0.391 0.200 0.157 

AECO 0.133 0.178 0.037 0.159 0.103 0.149 0.112 0.105 0.150 

BGE 0.040 0.037 0.037 0.043 0.036 0.040 0.037 0.039 0.037 

DPL 0.173 0.159 0.043 0.224 0.115 0.163 0.128 0.119 0.155 

METED 0.161 0.103 0.036 0.115 0.110 0.109 0.119 0.100 0.104 

PECO 0.175 0.149 0.040 0.163 0.109 0.171 0.130 0.116 0.149 

PENELEC 0.391 0.112 0.037 0.128 0.119 0.130 0.267 0.137 0.136 

PPL 0.200 0.105 0.039 0.119 0.100 0.116 0.137 0.124 0.109 

PSEG 0.157 0.150 0.037 0.155 0.104 0.149 0.136 0.109 0.206 

 

Table 6.4: The Skewness-coskewness Matrix Ω of the Nine Trading Choices 

Ω 
PEPCO 

(i=1) 

AECO 

(i=2) 

BGE 

(i=3) 

DPL 

(i=4) 

METED 

(i=5) 

PECO 

(i=6) 

PENELEC 

(i=7) 

PPL 

(i=8) 

PSEG 

(i=9) 

𝛾1,1,𝑖 5.030 0.232 0.006 0.260 0.254 0.266 0.975 0.334 0.325 

𝛾2,2,𝑖 9.677 -0.374 -0.045 -0.406 -0.123 -0.339 0.084 -0.085 -0.305 

𝛾3,3,𝑖 9.877 -0.022 -0.013 -0.027 -0.016 -0.021 0.013 -0.015 -0.018 

𝛾4,4,𝑖 9.695 -0.474 -0.076 -0.646 -0.173 -0.444 0.096 -0.133 -0.381 

𝛾5,5,𝑖 9.583 -0.031 -0.014 -0.039 0.009 -0.022 0.116 0.021 -0.010 

𝛾6,6,𝑖 9.628 -0.316 -0.041 -0.352 -0.097 -0.297 0.105 -0.063 -0.256 

𝛾7,7,𝑖 8.513 0.168 0.040 0.187 0.180 0.188 0.344 0.211 0.201 

𝛾8,8,𝑖 9.478 0.002 -0.010 -0.004 0.032 0.012 0.150 0.045 0.024 

𝛾9,9,𝑖 9.523 -0.252 -0.024 -0.272 -0.055 -0.222 0.123 -0.020 -0.229 

 



151 

 

6.3 RESULTS AND DISCUSSIONS  

 

6.3.1 Comparison of the Implemented MOEAs 

First of all, we discuss the result of performance comparison between the three 

experimented algorithms. Then the efficient solutions of Prob. 1 and Prob. 2 generated by 

the algorithm that performs the best are used for further discussions. The mean and 

standard deviation of the running time of the three MOEAs are exhibited in Table 6.5. 

Besides, the average and standard deviation of the performance criteria explained in 

Section 3.6.5 such as, M1, HV, and CRA for the three algorithms are reported in Table 6.6 to 

Table 6.8, respectively. For the parameter setting shown in Table 3.4, 60,000 efficient 

solutions were generated from 30 repeated runs. The statistics were computed from the 

results of these 60,000 solutions. 

 

From the results of running time demonstrated in Table 6.5, NSGA-II is obviously 

outstanding in terms of computation time. It only spent, on average, 2.5 seconds and 3 

seconds for solving Prob. 1 and Prob. 2, respectively. COGA-II ranked second while 

SPEA-II has an average running time almost double of that for COGA-II. For all the three 

algorithms, the running time does not vary much between the two different case studies. 

But COGA-II and SPEA-II required substantially longer running time when the number of 

optimized objectives increases from three (MVS) to four (MVS-D), whereas the running 

time of NSGA-II increased only slightly from solving Prob. 1 to Prob. 2.  However, the 

mean running time of all the three MOEAs is remarkably short, at less than 20 seconds on 

average.  
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Table 6.5: Mean and Standard Deviation (SD) of Running Time (Seconds) 

Optimized 

Problem 

Case 

Study 

COGA-II NSGA-II SPEA-II 

Mean SD  Mean SD  Mean SD  

MVS 1 7.9617 0.1272 2.5482 0.0854 14.8048 0.1404 

MVS 2 7.9690 0.1140 2.5648 0.0765 14.8444 0.1480 

MVS-D 1 10.2635 0.1458 2.9751 0.0072 19.4637 0.1370 

MVS-D 2 10.4689 0.0833 3.0071 0.0620 19.7350 0.1690 

 

Table 6.6: Mean and Standard Deviation (SD) of M1 

Optimized 

Problem 

Case 

Study 

COGA-II NSGA-II SPEA-II 

Mean SD  Mean SD  Mean SD  

MVS 1 0.008645 0.002505 0.012545 0.003550 0.016276 0.002911 

MVS 2 0.014418 0.005326 0.017278 0.003404 0.022765 0.005879 

MVS-D 1 0.007901 0.001661 0.022788 0.006305 0.016384 0.002741 

MVS-D 2 0.009622 0.001773 0.025145 0.006171 0.020339 0.003728 

 

 

Before conducting the comparison between the MOEAs based on the M1, HV, and CRA 

criteria, the set of true Pareto front needs to be identified. We conducted the standard 

method to obtain the artificial true Pareto front for the case where the true Pareto front is 

unknown. The artificial true Pareto front can be constructed by, firstly, combining all the 

portfolio solutions obtained from the three MOEAs. Then, among the combined portfolio 

solutions, we determined the non-dominated portfolio solutions by comparing them based 

on the Pareto dominance relation explained in Section 3.3.3. The artificial true Pareto front 

is given by the non-dominated portfolio solutions.  
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According to the M1 criterion, the lower the value of M1, the shorter the distance between a 

solution and the artificial true Pareto front. Thus, M1 is a minimum criterion. Table 6.6 

shows that, for both Prob. 1 and Prob. 2, the solutions obtained from COGA-II have 

shorter distance to the artificial true Pareto front compared to those from NSGA-II and 

SPEA-II. As claimed earlier, COGA-II is developed for handling a MOOP with high 

number of optimized objectives. Table 6.6 reveals that the performance of COGA-II based 

on M1 is even better when the number of optimized objectives increases from three to four.  

 

In Table 6.7, the mean and SD of the HV criterion is exhibited. As explained in Section 

3.6.5, HV is a maximum criterion whose values represent the level of diversity of the 

solutions. The higher value of diversity indicates that the solutions are well distributed 

along the artificial true Pareto front, whereas a lower HV denotes that the solutions are 

clustered in some particular areas. Table 6.7 reveals that, for both Prob. 1 and Prob. 2, 

COGA-II outperforms SPEA-II and NSGA-II in the aspect of HV criterion.  For both case 

studies of each optimization problem, the mean values of HV for COGA-II are higher than 

those of NSGA-II and SPEA-II. However, regardless of the MOEAs applied and the case 

studies, the solutions of Prob. 1 are better distributed along the artificial true Pareto front 

than those of Prob. 2.  
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Table 6.7: Mean and Standard Deviation (SD) of HV 

Optimized 

Problem 

Case 

Study 

COGA-II NSGA-II SPEA-II 

Mean SD  Mean SD  Mean SD  

MVS 1 51.02478 0.148316 50.06765 0.245983 50.68226 0.150190 

MVS 2 56.43273 0.201165 54.91343 0.334048 56.03167 0.212187 

MVS-D 1 21.36057 0.181966 20.62899 0.316303 21.05846 0.175315 

MVS-D 2 22.87187 0.190710 21.65327 0.397034 22.48699 0.192791 

 

Table 6.8: Mean and Standard Deviation (SD) of CRA  

Optimized 

Problem 

Case 

Study 

COGA-II NSGA-II SPEA-II 

Mean SD  Mean SD  Mean SD  

MVS 1 0.545333 0.045541 0.377667 0.067091 0.321667 0.055961 

MVS 2 0.494000 0.059283 0.358000 0.059504 0.305333 0.042405 

MVS-D 1 0.634000 0.046875 0.389667 0.058515 0.459000 0.053585 

MVS-D 2 0.635000 0.046665 0.385333 0.052702 0.445333 0.048971 

 

According to the results in Table 6.8, the superiority of COGA-II is more pronounced when 

the performance is compared based on the CRA criterion. As explained in Section 3.6.5, the 

values of CRA for an algorithm represent the ratio of the number of solutions obtained 

from the algorithm that are members of the artificial true Pareto front. Thus CRA is a 

maximum criterion whose maximum value is one. Table 6.8 demonstrates that, COGA-II 

outperforms both NSGA-II and SPEA-II. We found that about 50 percent of the solutions 

obtained from COGA-II are members of the artificial true Pareto front of Prob. 1 for both 

case studies. This ratio increases to about 63 percent when COGA-II is used for solving 

Prob. 2 for both case studies.     
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In addition, the results of the performance criteria from a pair of algorithms can be 

compared statistically using the paired t-test. We found that COGA-II performs 

significantly better than NSGA-II and SPEA-II in this analysis (p-value less than 0.01 for 

almost all pairs of MOEAs). Similar results hold for the CRA criterion, where COGA-II 

outperforms NSGA-II and SPEA-II statistically with p-value less than 0.001. The results 

based on HV also reveal that COGA-II has better performance than that of NSGA-II and 

SPEA-II. Furthermore, we found that the superiority of COGA-II performance is 

strengthened when dealing with the optimization problem with 4 objectives, i.e. Prob. 2 for 

the M1 and CRA criteria.  

 

The averages of M1, HV, and CRA versus the number of generated solutions from all 30 

repeated runs are plotted in Figure 6.1 to Figure 6.6. The main objective of the plots is to 

investigate the speed of convergence of the performance criterion values for each 

algorithm. The better algorithm is the one whose performance values, i.e. M1, HV, or CRA, 

converge at a low number of generations. The results are evident in Figure 6.1 to Figure 6.6 

which discloses the superiority of COGA-II compared to NSGA-II and SPEA-II. The 

figures show that the solutions of all the three experimented algorithms rapidly achieved 

convergence within about 10,000 generated solutions which is equivalent to only 100 

generations (number of generated solutions = population size × number of generations). 

Except for the two cases of MVS-D when the HV criterion is applied, the other criteria have 

a higher tendency to converge faster for COGA-II compared to NSGA-II and SPEA-II.   
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Figure 6.1: Mean M1 versus Number of Generated Solutions of Case Study 1 and 2 for 

MVS-POP (3 Optimized Objectives) 

  

(a) MVS – case study 1 (b) MVS – case study 2 

 

 

Figure 6.2: Mean M1 versus Number of Generated Solutions of Case Study 1 and 2 for 

MVS-D-POP (4 Optimized Objectives) 

  

(a) MVS-D – case study 1 (b) MVS-D – case study 2 
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Figure 6.3: Mean HV versus Number of Generated Solutions of Case Study 1 and 2 for 

MVS-POP (3 Optimized Objectives) 

  

(a) MVS – case study 1 (b) MVS – case study 2 

 

 

Figure 6.4: Mean HV versus Number of Generated Solutions of Case Study 1 and 2 for 

MVS-D-POP (4 Optimized Objectives)  

  

(a) MVS-D – case study 1 (b) MVS-D – case study 2 
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Figure 6.5: Mean CRA versus Number of Generated Solutions of Case Study 1 and 2 for 

MVS-POP (3 Optimized Objectives) 

  

(a) MVS – case study 1 (b) MVS – case study 2 

 

 

Figure 6.6: Mean CRA versus Number of Generated Solutions of Case Study 1 and 2 for 

MVS-D-POP (4 Optimized Objectives)  

  

(a) MVS-D – case study 1 (b) MVS-D – case study 2 
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6.3.2 Optimal Electricity Allocation 

The analysis in this section is based on the results from COGA-II that is found to have the 

best performance. The efficient portfolios of the MVS and MVS-D problems obtained from 

COGA-II are presented in Figure 6.7 and Figure 6.8, respectively. The results show that the 

Pareto fronts are discontinuous in shape that logically represents the nature of problem with 

completing and conflicting objectives. The fourth objective of minimizing D(x) that we 

propose to add to the MVS portfolio model is to avoid allocation proportions that are overly 

focused on very few trading choices, i.e. xi, in order to increase investment diversification. 

Figure 6.7 and Figure 6.8 reveal that MVS-D efficient portfolios achieve the diversification 

benefit since a mass of non-dominated solutions reside in the low-standard deviation space. 

It implies, from a Genco point of view, that the allocation of electricity to more trading 

choices helps to reduce trading risk measured by standard deviation. In fact, this additional 

objective poses more challenge to the use of MOEAs for the optimization problem as the 

increased objective dimension could compromise the performance of the algorithm. 

However, the results of the M1 and CRA criteria suggest that the superiority of the COGA-II 

performance over the other two algorithms is even higher for the MVS-D problem 

compared to the MVS problem. To support this finding further, the solutions from COGA-

II for the optimization of the MVS and MVS-D problems are further compared. 

 

This comparison is performed on the efficient portfolios, the so called “Pareto fronts”, 

obtained from solving the MVS and the MVS-D portfolio optimization problems. Figure 

6.9 illustrates the comparison of MVS and MVS-D Pareto fronts plotted in the MVS 
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Figure 6.7: Pareto Fronts of Case Study 1 using COGA-II for Optimization Problem of (a) 

MVS and (b) MVS-D  

  

(a) MVS (b) MVS-D 

 

 

Figure 6.8: Pareto Fronts of Case Study 2 using COGA-II for Optimization Problem of (a) 

MVS and (b) MVS-D 

  

(a) MVS (b) MVS-D 

 

objective space. It is clear that the Pareto front of MVS-D fully envelopes the MVS Pareto 

front. Given this finding, addition to the MVS efficient portfolios, the solutions for the 

MVS-D model offers more efficient portfolio choices for the consideration of the Genco. 

Theoretically, the MVS efficient portfolios should be a subset of the MVS-D efficient 
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portfolios. This suggests that the performance of COGA-II does not deteriorate when the 

number of objectives is increased because the algorithm can still retain the efficient 

solutions of the problem with a lesser number of objectives.  

 

Figure 6.9: Comparison of Pareto Fronts of MVS and MVS-D Efficient Portfolios 

Generated by COGA-II 

  

(a) Pareto fronts of MVS (black) vs MVS-D 

(red) – Case study 1 

(b) Pareto fronts of MVS (blue) vs MVS-D 

(green) – Case study 2 

 

 

Table 6.9 gives an example of electricity allocation solutions of the MVS and MVS-D 

problems for case study 1. These solutions were selected to facilitate comparison of the 

MVS efficient portfolio to the MVS-D efficient portfolio at given levels of expected return 

and SD. The choice of MVS efficient portfolios depends on the Genco’s trade-off between 

return, risk and skewness. Meanwhile, the additional objective related to the number of 

trading choices included in the portfolios, stems on the Genco’s consideration in the case of 

 

 



162 

 

Table 6.9: Selected MVS and MVS-D Efficient Portfolios  

Problem 
Electricity allocation proportion (%) Expected 

Return 

Standard 

Deviation 
Skewness 

z1 z2 z3 z4 z5 z6 z7 z8 z9 

MVS 

31.19 - - - - - - 68.81 - 0.49 0.53 12.39 

43.63 - - 56.37 - - - - - 0.49 0.68 18.75 

49.64 - 47.04 3.32 - - - - - 0.49 0.71 22.12 

49.63 - 40.99 - - - - 9.37 - 0.49 0.71 20.79 

MVS-D 

32.01 - 8.04 - - - 0.33 59.62 - 0.49 0.53 10.89 

44.62 - 20.57 - 0.08 - - 32.04 2.69 0.49 0.68 15.18 

47.45 0.18 17.85 33.66 - 0.14 0.61 0.12 - 0.49 0.71 17.72 

   

MVS-D efficient portfolios. Suppose that the return target of the Genco is 49 percent, the 

efficient portfolio choices can be screened from a vast number of non-dominated portfolios 

displayed in Figure 6.7. It is revealed from Table 6.9 that for a given level of expected 

return, portfolio skewness is enlarged by increasing portfolio SD. This result can be 

observed from both the MVS and MVS-D models. In addition, at a given value of expected 

return and SD, the MVS-D efficient portfolios allocate electricity to a higher number of 

trading choices compared to the MVS ones. However, the MVS efficient portfolios offer a 

higher level of skewness than those of MVS-D model with the same expected return and 

SD. It is obvious that the reduction of risk in the MVS-D solutions is the result of the 

additional objective in the model to promote diversification.  

 

To highlight the benefit of the proposed diversification enhancing objective, we present in 

Figure 6.10 the box plots of the allocation proportion, i.e. 𝑥𝑖, of the MVS and MVS-D 

efficient portfolios obtained from COGA-II for case study 1. The symbol ‘’ represents the 
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Figure 6.10: Box Plot of the Allocation Proportions of the MVS and MVS-D Efficient 

Portfolios Obtained from COGA-II for Case Study 1 

  

(a) MVS – Case 1 (b) MVS-D – Case 1 

Note:  is the mean of the allocation proportion 

 

mean of 𝑥𝑖. The box in the plot contains 50 percent of the data points from the 25
th

 to 75
th

 

percentile, and the line drawn across the box is the median of 𝑥𝑖. Observations outside the 

interquartile range are plotted on the whiskers of the box. Figure 6.10(a) shows that the 

MVS efficient portfolios allocate an average of 62 percent of the electricity to trading in the 

spot market (𝑥1), 23 percent to the bilateral contract with the customer located in AEGO 

zone (𝑥2), and 15 percent to the bilateral contract with the customer located in PPL zone 

(𝑥8). It can be observed that the efficient portfolios of this three-objective model 

excessively allocate the electricity to a particular trading choice. Figure 6.10(b) presents the 

MVS-D case. These portfolio solutions exhibit a reduction in the electricity allocation to 

the trading in spot market (𝑥1) to an average of 33 percent, while the allocation to the 

bilateral contract with the customers located in AEGO zone (𝑥2) increases to an average of 

27 percent and the allocation to the bilateral contract with the customers located in PPL 



164 

 

zone (𝑥8) raises to 23 percent. The remaining 17 percent is allocated to bilateral contracts 

with customers located in other zones. The inclusion of the fourth objective has not only 

allocated the generated electricity more uniformly, but it has also spread out the investment 

to more trading choices that will increase the diversification benefit. 

 

6.4 CONCLUDING REMARKS 

In this chapter, the application of the MVS portfolio model is extended to the trading of 

electricity in a deregulated market by a Genco, where the number of trading choices is 

small. To overcome the potential weakness of the MVS framework where optimized 

solutions have a tendency to limit the scope of investment, an additional objective is 

proposed to increase diversification benefits. The shift from the three-objective problem to 

one with four objectives increased the complexity of the optimization process. To deal with 

this, we experiment the use of the newly proposed COGA-II, of which the results were 

compared to the widely accepted algorithms of NSGA-II and SPEA-II. The results suggest 

the superiority of performance in COGA-II in dealing with high dimensional multi-

objective optimization problems in terms of not only proximity to the Pareto-optimal 

solutions but also diversity of its solution. In addition, COGA-II also produces solutions 

where the non-dominated front of a problem with more objectives envelopes those of a 

problem with a lesser number of objectives.  

In the context of the application, solving the electricity allocation problem based on the 

MVS framework together with the proposed additional objective (MVS-D) is particularly 

useful because COGA-II can provide solutions with Pareto fronts that also cover those 

based on the traditional MVS framework. As a result, the approach avoided over-

concentration of investment in a few trading choices. The electricity was more uniformly 
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allocated among a larger number of trading choices that promote diversification benefit for 

the power generation companies.  
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CHAPTER 7 

CONCLUSION 

 

 

7.1 INTRODUCTION  

 

This thesis is organized to achieve four objectives in order to close the research gaps 

mentioned in Section 2.7 of Chapter 2. The first objective is to demonstrate how multi-

objective evolutionary algorithms are applied for solving problems in MVS efficient 

portfolio allocation in the multi-dimension space. The second objective is to examine the 

risk-return trade-off and the characteristics of MVS efficient portfolios. The third objective 

is to investigate the impacts of skewness preference on the efficient portfolio choice. The 

fourth objective is to apply the MVS analysis in finance for solving asset allocation 

problems where the number of trading choices is small. 

 

This chapter presents the conclusion of the thesis. The next section recapitulates the 

findings from the analysis in Chapter 4, Chapter 5, and Chapter 6. The implications of the 

findings are discussed in Section 7.3. The contributions of the thesis are explained in 

Section 7.4. The last section outlines the limitations of the study and provides some 

directions for future research that could be extended from the present study. 
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7.2 SUMMARY OF FINDINGS 

 

With the ample evidences that the distribution of portfolio returns is not normal but 

skewed, portfolio selection with a consideration of skewness in addition to the mean and 

variance could yield superior results to an investor whose utility is a function of the first 

three moments of the return distributions. In our analysis, the result of normality test shows 

that the distribution of firm and market returns exhibits skewness that is significantly 

different from zero. The majority of the component securities of the DJIA have negative 

skewness. There is also strong evidence against normality when the data of emerging 

markets in Asia and Latin America were used. These results support the argument that non-

zero skewness is present. As a result, skewness should not be omitted from the decision on 

portfolio selection. 

 

To solve the MVS portfolio optimization problem in which three considered objectives are 

optimized at the same time, the NSGA-II and SPEA-II which are regarded as the most 

efficient MOEAs were applied. The algorithms firstly generated the candidate solutions that 

satisfy the problem constraints. The efficient portfolios among the candidate solutions were 

compared based on the Pareto dominance relation. The selection process of the 

implemented MOEAs ensures that the obtained solutions are Pareto efficient since these 

solutions are not dominated by any other candidate solutions in the feasible set. Regardless 

of the data set, the results demonstrated that both algorithms can provide a set of MVS 

efficient portfolios within a short computation time with slightly different algorithm 
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performance. However, SPEA-II tends to perform better than NSGA-II in terms of 

providing better diversity of the solutions. 

 

In addition to the MVS portfolio model, the four-objective optimization problem was 

formulated for searching the efficient set of MVS-D portfolios. The problem involves the 

optimization of four objectives simultaneously. The additional objective increases the 

complexity to the algorithms in searching and identifying the efficient solutions. We 

experimented with the COGA-II, which is deliberately designed for solving a problem with 

more than three objectives to be optimized, for solving the MVS-D portfolio optimization 

problem. The result suggests the superiority of performance of the COGA-II over the 

NSGA-II and SPEA-II. Despite this superiority, all the algorithms can considerably provide 

a good approximation of the efficient set of both MVS and MVS-D portfolios.  

 

To examine the risk-return characteristics of MVS efficient portfolios, the efficient 

portfolios obtained from the MOEAs were plotted graphically on the three-dimension 

mean-SD-skewness diagram. As expected, the MVS efficient surface is not continuous due 

to the competing and conflicting objectives of the problem. The investigation of the trade-

off between expected return and skewness was done by searching among the MVS efficient 

portfolios for those whose SD matches with a selected value. The result shows that, at a 

given value of SD, expected returns of the MVS efficient portfolios are smaller for those 

with larger skewness. This implies that investors have to forgo expected return for a 

portfolio with larger skewness. 
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When the rate of return of the MVS efficient portfolios is fixed at a constant, the trade-off 

between skewness and SD can be analyzed. The result reveals that, at a given value of 

expected return, SD of the MVS efficient portfolios decreases with a diminishing value of 

skewness. This implies that, on one hand, investors are required to expose themselves to a 

larger return dispersion if they need to increase the chance of gaining extreme expected 

returns. On the other hand, they have to forgo the chance for large gains if they desire to 

reduce the dispersion of returns.  

 

In addition, at a given value of expected return, MVS efficient portfolios with the lowest 

SD are also MV efficient portfolios because these MVS efficient portfolios achieve the 

global minimum SD for a given value of expected return. Further analysis was conducted 

by plotting the MV and MVS efficient portfolios together in the same mean-SD diagram. 

The result illustrated that MVS portfolios with the global minimum SD for a given value of 

expected return reside on the MV efficient frontier. This implies that the MV efficient 

portfolios are a subset of the MVS efficient portfolios. The result also reveals that some 

inefficient portfolios under the MV portfolio model are actually efficient in the MVS 

portfolio model. This explains why investors hold portfolios that are not MV efficient. The 

underlying reason of this phenomenon is that these portfolios are MVS efficient portfolios.  

 

To investigate the impacts of different degree of skewness preference on efficient portfolio 

choice, a single-period model that allows for a heterogeneous degree of risk aversion (A) 

and skewness preference (P) was developed. As stated earlier, when choosing among a 

feasible set of competing portfolio choices, rational investors who act to maximize their 
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expected utility will consider only the portfolios in the efficient set. Thus, MVS efficient 

portfolios from a universe of 29 securities of DJIA were generated by the SPEA-II and the 

results were used for further analysis. Among the MVS efficient portfolios, the portfolio 

that maximizes the expected utility for given values of degree of risk aversion (A) and 

skewness preference (P) was identified. 

 

The results suggest that the average expected return of portfolios tends to decrease when 

investors have higher degrees of skewness preference. This implies that investors with 

greater skewness preference are willing to accept lower expected returns for holding a 

portfolio with higher skewness. Besides, the dispersion of return distribution of portfolio 

choices is larger when the degree of skewness preference increases. This implies that 

investors with greater skewness preference are willing to accept larger return dispersion in 

exchange for a flatter right tail of the return distributions. 

 

For the size of portfolio choices, the result shows that investment allocations tend to 

concentrate on very few securities when the degree of skewness preference increases at a 

given level of degree of risk aversion. This result gives an explanation to why investors 

hold a small number of securities in their portfolios, i.e. underdiversified portfolios. They 

do so in order to increase their exposure to return distributions with positive skewness. 

 

The MVS portfolio model is also investigated for solving the asset allocation problem 

where the number of trading choices is small. The electricity allocation problems in the 
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electricity market were examined and it is extended to the MVS-D model to promote 

diversification in portfolio choices. The MVS and MVS-D efficient portfolios were 

obtained from the COGA-II whose performance is more superior to the NSGA-II and 

SPEA-II for solving problems with a high number of objectives. It is revealed from both 

MVS and MVS-D efficient portfolios that portfolio SD is higher when skewness increases 

at a given value of expected return. This implies that a generation company (Genco) has to 

accept larger dispersion of the return distribution if it demands higher portfolio skewness. 

 

A comparison between the MVS and MVS-D models, at given levels of expected return 

and SD shows that the portfolio solutions of MVS model allocate electricity to a smaller 

number of trading choices than those of MVS-D but their skewness are higher. This implies 

that Gencos need to forgo skewness of return distribution in order to avoid excessive 

investment in a small number of trading choices. The reduction of over-concentration of 

investment promotes diversification since electricity is more uniformly allocated among 

trading choices and eventually it helps to reduce portfolio risk. 

 

7.3 IMPLICATIONS OF THE STUDY 

 

Skewness plays an important role in explaining the distribution of returns of financial assets 

at both firm level and market level. There are ample evidences that non-zero skewness is 

present regardless of country of investigation, period of study, and investment horizon. This 

is a big challenge to the traditional financial theories such as the mean-variance analysis 
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and the CAPM model because the assumption of zero skewness is required by these 

theories.  

 

Based on the utility theory, preference for positive skewness is derived using expected 

utility functions that can be approximated by the third-order Taylor’s series expansion. The 

derivation of skewness preference allows researchers to theoretically elucidate investor 

behaviors that seem irrational in the framework of traditional theory. Some puzzles that are 

related to skewness preference are, for instance, why investors buy lottery, why investors 

hold portfolio that is not MV efficient, and why investors hold underdiversified portfolio. 

 

A plausible answer for all these three questions is associated to individual preference for 

positive skewness. Logically, rational investors prefer, among two investment alternatives, 

one with larger skewness of return distributions if the mean and variance are similar. In the 

context of financial asset pricing, there are abundant studies that support the skewness 

preference of investors. These studies showed that investors are willing to pay premium for 

securities with positive skewness. As shown in this study, skewness has an impact on 

portfolio decision making. By extension, the pricing of financial assets will also be affected 

by skewness. Asset pricing models, therefore, should cover factors beyond the second 

moment, and consider also skewness. 

 

In the MV framework where skewness is neglected, portfolio selection for rational 

investors involves maximizing mean and minimizing variance. Portfolio choices that 
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achieve global minimum variance at a given level of expected returns are MV efficient 

portfolios, while portfolio choices that reside away and under the MV efficient frontier are 

inferior investment alternatives. In reality, mutual funds, market portfolios, and/or 

investment portfolios being managed by professional fund managers may not be always 

MV efficient. These portfolios could be located away from the MV efficient frontier.  

 

This study exploits an innovative methodology from the field of engineering to provide an 

explanation to these puzzles. The ability to search for the feasible solutions in multi-

dimension space, and in parallel, evaluate the efficiency of the solutions in another multi-

dimension space allows us to construct the efficient set of MVS portfolios within a single 

run of algorithms. This make a clear understanding of why investors hold portfolios that are 

not MV efficient. Since skewness preference is a common trait for rational risk-averse 

investors, they rationally make a portfolio selection decision based not only on the mean 

and variance, but also on the skewness of return distributions. Therefore, they may discard 

MV efficiency in order to increase the skewness of their portfolios. In fact, these portfolios 

are efficient in the MVS framework. The implication is clear that portfolio choice selection 

cannot be based on the first two moments of distributions of asset returns, as suggested in 

the MV framework. Portfolio efficiency should be defined clearly, whether it refers to only 

MV efficiency, or MVS efficiency. 

 

However, the extent to which investors will forgo expected returns or expose themselves to 

larger dispersion of portfolio returns depends on the degree of skewness preference. This 

means that investors with higher degree of skewness preference are willing to trade higher 
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expected return and to accept larger SD in their investment decision to optimize for 

portfolios with a flatter right tail of the return distributions. Besides, diversification strategy 

may not be relevant to investors in the MVS framework since well-diversified portfolios 

not only have smaller SD but also distributions that are less skewed compared to 

underdiversified portfolios at a given value of expected return. Thus, investors in the MVS 

framework are willing to hold underdiversified portfolios. In general, investors with greater 

skewness preference tend to hold a smaller number of securities in their portfolios to 

increase portfolio skewness. Diversification strategies, therefore, must take preference for 

skewness into consideration.   

 

The implication for the electricity market is how Gencos should reinvent their electricity 

allocation strategies in the presence of asymmetric distribution of electricity spot prices and 

skewness preference. In deregulated electricity markets, electricity allocation strategy of 

Gencos is generally formulated based on the MV portfolio optimization model. However, 

the results suggest that better outcome could be achieved by increasing the 

skewness of portfolio since this strategy increases the chance of obtaining extreme positive 

returns and decreases the probability of large losses. It is found empirically that the 

distribution of returns of transactions in the spot market is highly skewed to the right. Other 

trading instruments such as transaction in the day-ahead market and future contracts have 

return distributions that are also highly skewed. These instruments should be considered 

in the portfolio selection decision of a Genco. In addition, the results reveal that skewness 

has an impact on electricity allocation decision. Therefore, pricing of electricity spot prices 

should consider skewness as a factor in the electricity pricing model in addition to other 

variables. 
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7.4 CONTRIBUTIONS OF THE STUDY 

 

The contributions of this thesis in closing the research gaps mentioned in Section 2.7 of 

Chapter 2 are discussed in this section. In the aspect of innovation of methodology, 

MOEAs that were successfully used to solve complex multi-objective optimization 

problems in other fields of research were applied to solve the MVS portfolio optimization 

problem, that are otherwise different because of its multi-objective nature. Unlike other 

techniques adopted in the previous studies, this proposed method allows us to 

independently optimized three competing and conflicting objectives at the same time. By 

doing so, a set of MVS efficient portfolios can be generated in a single run of algorithms 

and it can be graphically plotted in the three-dimension MVS space. Besides, search and 

evaluation processes of algorithms ensure that the resulting portfolios are MVS efficient. 

The proposed methodology allows investors to have a clear picture about MVS efficient 

surface that helps them make a portfolio selection decision in an effective way. The risk-

return characteristics of MVS efficient portfolios can be examined based on a substantial 

number of portfolios, especially in the aspect of trade-off between skewness and SD that 

has not been addressed by previous studies.  

 

In the context of theoretical contribution, a single-period model that allows for a 

heterogeneous degree of risk aversion and skewness preference was developed for 

explaining the impacts of skewness preference on efficient portfolio choices. This model 

provides the explanations to two puzzles, i.e., why investors hold portfolio that is not MV 

efficient and why investors hold underdiversified portfolio. The model reveals that 
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skewness preference is a common trait for rational risk-averse investors. Investors consider 

skewness in addition to the mean and variance of the return distributions in their portfolio 

selection. A portfolio that is not MV efficient may be efficient in the MVS framework. 

Besides, complete diversification may no longer be a favorite strategy since diversification 

reduces portfolio skewness. We also illustrated that MV efficient portfolios are actually a 

subset of MVS efficient portfolios. Among the MVS efficient set, a portfolio that attains the 

global minimum SD at a given value of expected return is an MV efficient portfolio.  

 

An extensive application of the MVS framework to solve the electricity allocation problem 

in the electricity market where the number of trading choices is small makes a contribution 

in terms of cross-discipline application. We demonstrated that the MVS portfolio model is 

suitable for an asset allocation problem in the electricity market since the distribution of 

electricity spot prices is skewed and skewness preference can be observed in this market. 

An additional objective, incorporated in the MVS portfolio model, is also proposed to 

increase the number of trading choices included in the portfolio solutions. This is necessary 

because unlike the financial market, the number of trading choices available in the 

electricity market is a lot lesser. It is shown that the MVS-D portfolio model is useful for a 

Genco since efficient solutions of the MVS model are retained in the set of MVS-D 

efficient solutions. As a result, a set of solutions with different trade-off between skewness 

and the number of trading choices in portfolios, at given levels of expected return and SD, 

are available for the Genco to make a portfolio selection decision.  
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7.5 LIMITATIONS OF THE STUDY AND DIRECTION FOR FUTURE 

RESEARCH  

 

Several limitations remain in this study. Firstly, the terms of higher moments considered in 

the study are restricted up to the third moment (skewness). The fourth moment (kurtosis) is 

not considered since theoretical explanation on its application for portfolio selection is still 

ambiguous. The derivation of kurtosis preference based on utility theory is at a developing 

stage. An investigation on the impact of kurtosis preference on portfolio choice will be 

interesting if a parameter that measures preference for kurtosis can be theoretically 

validated. By using our proposed approach, kurtosis can be incorporated in the MVS model 

as a fourth objective in the portfolio optimization problem. 

 

Secondly, the portfolio selection process is examined with in-sample approach. Application 

of our method to out-of-sample portfolio selection has not been executed. The performance 

of efficient portfolios obtained from MV and MVS framework could be compared based on 

out-of-sample data. In addition, an evaluation of the performance of MVS efficient 

portfolios across different market conditions such as the bull market, bear market, and/or 

during the crisis can be conducted. This will allow investors to evaluate how MVS efficient 

portfolios perform in different market conditions. 

 

Lastly, our approach to portfolio optimization is performed within a static asset allocation 

framework where all variables are known before running the optimization. In the last 



178 

 

decade, however, an increasing number of studies on dynamic portfolio selection have been 

conducted and this brings more challenge and complexity to the portfolio optimization 

problem. In this aspect, variables such as expected return vector and variance-covariance 

matrix are allowed to change over time. Portfolio weights as well as the efficient frontier 

will also inevitably change with the investment period. Thus, the application of the MVS 

model to dynamic portfolio selection will be another interesting direction for future 

research. 
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