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ABSTRACT 

Hardware resource management is an important topic in Information Technology (IT) 

industry. This is due to the increasing demand of computing power by ever-evolving 

applications, especially those which are Service Level Agreement (SLA)-bound. 

Undeniably, hardware cost has reduced significantly in recent time. However this does 

not translate into saving in capital and operational costs of businesses as the computing 

resource requirement from new applications overwhelms the reduction in hardware cost. 

Hence, cloud computing paradigm evolved from conventional grid and utility 

computing, to provide for the aggressive computational demands. To better serve the 

hosting in cloud environments, particularly in industries where data sensitivity and 

privacy is of major concern, better mechanisms are needed in the resource management 

arena. The proposed mechanisms in this research avoided access to real data in the 

database, to meet the objectives of effective hardware resource administration.  

Here, the hardware resource management in virtualized cloud environment is 

scrutinized. The topics of interest are in the area of resource utilization monitoring, 

optimization and affirmation. The proposed mechanisms provide alternatives to 

conventional methods which are commonly adopted by the wide IT industry today. The 

target is to provide more simplified approaches to these conventional tools, with faster 

and more accurate attributes in sight.  

In resource utilization monitoring area, metadata of the actual data is characterized to 

yield an understanding of the workload in the database, which then contributes to the 

decision in planning for hardware provisioning and de-provisioning activities, as well as 

resource scaling arrangement.  

Consequently, a mechanism is proposed to serve the resource utilization optimization 

objective. In this research area, hardware fault and failure analysis are investigated, in 
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order to provide an optimal operating environment to database transactions. The 

analysis on the hardware fault and failure symptoms is performed against the output 

obtained from the iterative execution of Transaction Processing Performance Council 

(TPC)-H queries. Baseline is established and parameters’ values obtained from 

subsequent testing on the same set of queries are compared to baseline’s values to 

obtain insightful information on the hardware state.  

Next, the resource utilization affirmation theme deals with the proposition to establish 

stress-testing scenario in the Virtual Machine (VM). The work here strives to construct 

an environment in the VM whereby validation on transactions’ response time can be 

performed at the hypothetical resource constraining point in the VM. It serves this 

validation purpose in 2 situations: when the VM undergoes hardware change, or during 

normal operations. Verification is performed by stressing the VM to the resource 

constraining point using the proposed method; subsequently SLA-bound transactions 

are sent to the database and their respective response time is examined and compared to 

expected response time. The proposed mechanism also incorporates technique to 

determine the resource threshold from database transactions perspective. 

The resource utilization monitoring utilizes metadata from representative workload, 

whereas the resource utilization optimization and affirmation mechanisms utilize the 

hypothetical data and queries from TPC-H benchmark, hence achieving the objective of 

eluding access to real data. These deliveries focus on the consistency, stability and 

accuracy attributes.  
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ABSTRAK 

Pengurusan sumber perkakasan komputer merupakan satu topik penting dalam industri 

Teknologi Maklumat. Ini disebabkan oleh permintaan kuasa pemprosesan maklumat 

yang semakin meningkat, terutamanya daripada aplikasi yang mengalami evolusi yang 

pesat and terikat kepada Perjanjian Tahap Perkhidmatan yang ketat. Tidak dapat 

dinafikan, bahawa kos perkakasan komputer telah dikurangkan secara ketara dalam 

masa kebelakangan ini. Walaupun sedemikian, ini tidak dapat diterjemahkan kepada 

penjimatan dalam modal dan kos operasi perniagaan, kerana keperluan sumber 

pengkomputeran daripada aplikasi baru mengatasi pengurangan kos perkakasan 

komputer. Oleh itu, paradigma pengkomputeran awan berkembang daripada grid 

konvensional dan pengkomputeran utiliti, untuk mewujudkan peruntukan kuasa 

pengkomputeran demi memenuhi permintaan yang agresif ini. Dalam persekitaran 

awan, terutamanya dalam industri di mana sensitiviti dan privasi data merupakan faktor 

penting, mekanisme yang lebih baik diperlukan dalam arena pengurusan sumber 

pegkomputeran. Mekanisme yang dicadangkan dalam kajian ini mengelakkan akses 

kepada data sebenar dalam pangkalan data, sementara memenuhi objektif pentadbiran 

sumber perkakasan komputer yang berkesan. 

Kajian ini meneliti tentang pengurusan sumber perkakasan komputer dalam persekitaran 

pengkomputeran awan. Topik-topik yang dikaji adalah dalam bidang pemantauan, 

pengoptimuman dan pengesahan penggunaan sumber pemprosesan komputer. 

Mekanisme yang dicadangkan menyediakan alternatif kepada kaedah konvensional 

yang luas dipraktikkan oleh industri IT kini. Sasaran objektif adalah untuk memberi 

pendekatan yang lebih mudah berbanding dengan kaedah-kaedahkonvensional; 

sementara sifat-sifat seperti lebih cepat dan lebih tepat juga merupakan sasaran kajian 

tersebut. 
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Dalam subjek pengurusan sumber pemprosesan komputer, topik pemantauan 

penggunaan meneliti metadata data sebenar untuk menghasilkan pemahaman tentang 

beban kerja dalam pangkalan data. Pemahaman ini kemudiannya menyumbang kepada 

keputusan dalam perancangan penambahan atau pengurangan perkakasan 

pengkomputeran. 

Selepas topik pemantauan dikaji, topik seterusnya adalah untuk menghasilkan satu 

mekanisme untuk memenuhi objektif pengoptimuman penggunaan sumber pemprosesan 

komputer. Dalam kawasan kajian ini, kegagalan perkakasan pengkomputeran dan 

analisis kemungkinan kegagalan disiasat. Activiti sedemikian amat penting supaya 

transaksi pangkalan data dapat beroperasi dalam persekitaran yang optimum. Thesis ini 

menjalankan ujikaji analisa ke atas kegagalan and kemungkinan kegagalan perkakasan 

pengkomputeran dengan menggunakan output yang diperolehi daripada Institusi TPC. 

Data yang digunakan adalah daripada standard TPC-H. Garis dasar diasaskan dan nilai-

nilai parameter yang diperolehi daripada ujian berikutnya pada set data yang sama 

berbanding dengan nilai-nilai garis dasar, akan memberikan penjelasan mengenai 

keadaan operasi perkakasan pengkomputeran.  

Kajian seterusnya berobjektif untuk mengesahkan keupayaan sumber pemprosesan 

komputer di persekitaran pengkomputeran awan. Eksperimen yang dilaksanakan 

bertujuan untuk mengasaskan persekitaran sistem operasi yang menggunakan sumber 

pemprosesan komputer secara agresif. Selepas keadaan sedemikian berlaku, transaksi 

penting diperkenalkan kepada pengkalan data, supaya tempoh pemprosesan dan tindak 

balas bagi transaksi berkenaan dapat dibandingkan dengan jangkaan. Keperluan 

pengesahkan sedemikian boleh dilakukan dalam 2 keadaan: Apabila sistem operasi 

mengalami situasi perubahan dalam kuantiti and kualiti perkakasan, atau semasa 

keadaan pengoperasian biasa di mana tiada perubahan langsung dalam perkakasan 

pengkomputeran. Pengesahan dilakukan dengan menekan sistem operasi ke tahap yang 
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mengekang sumber pemprosesan komputer. Mekanisme yang dicadangkan juga 

menggabungkan teknik untuk menentukan had kuasa perkakasan pengkomputeran, 

daripada persepsi transaksi pangkalan data. 

Pemantauan penggunaan sumber pemprosesan komputer menggunakan metadata dari 

beban kerja yang berupaya mewakili keadaan sebenar, manakala mekanisme 

pengoptimuman dan pengesahan penggunaan sumber pemprosesan komputer 

menggunakan data hipotesis dan data daripada standard TPC-H. Sumber input 

sedemikian dapat mencapai objektif untuk mengelakkan akses kepada data sebenar. 

Tumpuan ujikaji tersebut memberi penekanan terhadap ketekalan, kestabilan dan 

ketepatan sementara mencapai objektif yang dekehendaki. 
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1. INTRODUCTION 

Businesses of today depend on Information Technology to gain the competitive edge. 

Effective use of the technology is the main drive towards achieving growth and 

profitability. To stay ahead of competitions, businesses need to roll out new and 

innovative services faster, build more satisfying relationship with the customers, reduce 

capital and operational expenses, and make more efficient use of human resources in the 

companies. To promote the transformation to new technical methodologies, the security 

aspect must be contemplated in parallel with these innovative goals.  

1.1 Background: Secure Resource Management 

From the infrastructure perspective, effective and intelligent computing resource 

management is one way to promote such initiatives. Effective resource management has 

a profound impact on the feasibility of providing software services. The cost-

effectiveness of the total application service offering is the primary barometric indicator 

to the continuation and evolution of the software. In this case, computing resource 

procurement and maintenance are major components in affecting the capital and 

operational expenditure.  

Computing resources, or often termed system resources are components available in a 

computer system. They can be segregated into physical and virtual units. Processors, 

memory modules and disk drives are categorized as physical components. The memory 

swap area, filesystems and network connections are in the virtual category. They are 

interoperable to produce the desired computing outcome. Their availability is often 

limited and relatively costly for most organizations, hence accurate and careful 

deployment and usage are essential.  

Definition 1.1: Resource Management. Resource management can generally be 

grouped into 3 phases. The first concerns with gaining visibility on the computing 
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resources in the system in order to discover abnormalities either in the end users’ 

transactions or hardware state. The second obtains the input from the outcome of the 

monitoring mechanism, and action on the anomalies. The third involves the verification 

process, which provides an assurance on the computing resource performance, in order 

to guarantee consistency and optimality.  

With question of “Why Resource management is important”, the potential benefits are 

outlined as follows: 

1) Computing resources are limited entities in a computer system. They can be 

relatively costly for enterprises. Over-provisioning of resources in a system is not 

cost effective, and under-provisioning could be disastrous to the business in 

mission-critical situations.  

2) The computing hardware cost is steadily reduced overtime, however many new 

developments on new software are offsetting this benefits to the businesses, as the 

demand for computing power is so voracious, that often the cost to provide 

application services is increasing instead of reducing in the total cost of ownership.  

3) Computing resources are failure-prone entities. They must be supervised 

continuously to ensure SLA-bound transactions can complete within stipulated 

durations. 

4) Adequately sized computing hardware has great effect on carbon footprint in our 

environment. One of the methods to promote green computing is to reduce the usage 

of electricity, and this can be achieved by reducing wastage in operating the 

hardware. 

Definition 1.2: Secure Resource Management. From IT perspective, security 

enhancement can be achieved at various levels. For instance, the existence of firewall 

protects the backend system components from malicious attackers who perform the 
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intrusion from outside of the organizations. The strengthening of authentication 

algorithms safeguards the applications and databases from insiders’ abuses. The 

intensification of security monitoring against the software components prevents the 

attacks from outsiders and insiders. Of all the technologies deployed to provide such 

protections, they are all striving to protect the underlying data from the wrongful 

recipients. Hence, the security aspect in this research deals with the prohibition of data 

access from unnecessary personnel. In conducting the administrative works to manage 

the resources, IT staffs often gain superuser access to the databases, hence the real 

users’ data. This is an undesired situation as the data can be compromised easily, with 

or without the knowledge of the organizations. Hence, this research aims to produce 

alternative mechanisms for resource management, which are different as compared to 

conventional practice, by discounting the requirement to grant access to real data for IT 

personnel. The approaches in this research strive to provide an answer to the intricate 

question in IT management of “How to securely perform IT administration”. 

Definition 1.3: Secure Resource Management in Virtualized Cloud Environment. 

Conventional resource management systems often use a centralized system and 

scheduler to monitoring the whole landscape. With the advancement of hosting 

technology, cloud computing paradigm has become the main architectural focus in 

constructing the hosting environment. As the cloud is distributed in nature, the proposed 

resource management mechanisms in this research are loosely coupled with a 

centralized monitoring system, where they can either be deployed to be managed 

centrally or in distributed manner. The proposed mechanisms also take the scalability 

and elasticity, which are the primary attractions in cloud computing as predominant 

considerations. The virtualized cloud environment is the focus in this research, as it 

often deployed for Parallel Database operations. Such hosting virtual architecture 

abstracts the hardware resources from physical servers, to create virtual machines which 



4 

 

provide hosting platform to various IT solutions. The following section provides a high 

level view on cloud computing.  

1.2 Overview of cloud computing 

As cloud computing serves as the focal point where the resource management proposals 

are targeted on, it is described to an introductory degree in this section. From 

infrastructure perspective, Cloud computing offers very attractive solutions to reduce 

cost and simplify IT management activities. Voted as Top 11 technologies of the decade 

by IEEE Spectrum (Upson, 2011), it offers new level of IT capability, through scalable, 

flexible and reliable models. It enables the agility required to accelerate the time to 

market of new products and services while reducing the cost to design, build, deploy 

and support these products and services, and is considered as generally best practice for 

Enterprise Architecture (Glas & Andres, 2011). Cloud computing has revolutionized the 

IT industry and is probably the most important paradigm ever modeled.  

There are various perceptions in defining Cloud Computing. Zhang et al.(S. Zhang, 

Zhang, Chen, & Huo, 2010) defined Cloud Computing as an evolution of grid 

computing, and it comprises of thin clients, Grid Computing and Utility Computing. 

Buyya et al. (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009) differentiated 

between Cloud Computing and Grid Computing at the virtualization level, where Cloud 

is defined as next-generation data centers with nodes “virtualized” through hypervisor 

technologies, dynamically "provisioned" on demand as a personalized resource 

collection. The virtualization provides the ease and flexible capability on resource 

allocation, which is the key motivation for this research. Foster et al. (Foster, Zhao, 

Raicu, & Lu, 2008) compared Cloud and Grid in length; and from dynamic resource 

provisioning perspective, Cloud is deemed more flexible than Grid, as Cloud is 

leveraging virtualization technologies more extensively. Zhang et al. (Q. Zhang, Cheng, 
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& Boutaba, 2010) defined Cloud Computing in a more end-user-friendly way, by 

quoting: Cloud computing is a model for enabling convenient, on-demand network 

access to a shared pool of configurable computing resources that can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction. It is this ease of effort in application hosting that makes Cloud a popular 

and fascinating choice. The financial service firm Merrill Lynch estimated in 2008 that 

in the next five years, the annual global market for Cloud Computing would surge to 

$95 billion. In a May 2008 report, Merrill Lynch estimated that 12% of the worldwide 

software market would go to the Cloud in that period (King, 2008). Public Cloud 

vendors are building extremely large-scale, commodity-computer Data Centers in low 

cost locations, and they uncovered factors of 5 to 7 decrease in cost of electricity, 

network bandwidth, operations, software, and hardware available at these very large 

economies of scale (Armbrust et al., 2009).  

As cloud promotes pay-per-use model, businesses can deploy critical applications 

without hampered by budgetary constraint in procurement of computing hardware and 

complex configuration of IT infrastructure. Furthermore, commodity servers are often 

utilized in cloud environment; hence reduce the hardware cost even further. This 

distributed computing platform is able to function with either homogeneous or 

heterogeneous hosts, in other words the servers that comprise the computing clusters do 

not necessary need to be identical. Hence, cloud computing not only enables much 

reduced total cost of ownership (TCO) during the construction phase, but it is also 

economical to be managed during on-going steady state phase. Another advantage of 

the pay-per-use model is that energy conservation is achieved, as electricity wastage can 

be reduced to minimum by this hosting model. In conventional standalone server 

hosting model, businesses generally end up using only somewhere between 8 and 20 

percent of the servers’ capacity that they have purchased (Gmach et al., 2008). Energy 
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consumption in global data centers in year 2010 accounted for between 1.1% and 1.5% 

of total electricity use, and 2% of global carbon footprint in year 2007. However as a 

prominent user of computing power in the world, Google's data centers which mainly 

serve Big Data operations via cloud paradigm only utilized less than 1% of total 

electricity consumed by all the data centers (Koomey, 2011; Pettey, 2007). 

From maintenance perspective, standardized hardware and software are used in cloud 

environments, hence patching and other operational maintenance tasks can be 

performed in uniform and organized manner with less variety and complexity of IT 

components. The ease of maintenance results in significant reduction in operational 

overhead particularly in large organizations. This allows IT to transform its main focus 

from maintaining infrastructure services to building innovative services that connect to 

business goals and drive revenue. This is a revolutionary paradigm that enables IT to 

participate directly in business innovation, hence measurably fuel the business growth. 

The ease of scalability in the hosting resources allows companies to react faster to 

changing business needs. The cloud systems can scale-up and scale-out easily. Coupled 

with its flexible characteristic, the systems can be scaled-down when resources are no 

longer needed to service particular applications. Particularly in Public Cloud domain, as 

storage hardware is abundant, data can be partitioned and replicated to multiple storage 

locations to ensure high availability of services. Amid slower response time when the 

data is hosted in separate location compared to the application tier, this feature is 

beneficial for applications that have high availability requirement that overwhelms the 

fractional differences in response time experienced by the end users.  

The 3 most popular deployment types for cloud computing are Public, Private and 

Hybrid Cloud. By the names, their architectural differences can be easily differentiated. 

Figure 1.1 depicts these models.  
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Figure 1.1: Cloud computing models. These are the 3 most popular deployment models in the 

industry.  

There are 3 different layers of cloud services popularly adopted by the industry. They 

are: 

 Infrastructure as a Service (IaaS): In this model, the cloud providers offer the 

clients with a set of virtual hardware environment. The providers own and 

maintain the underlying storage, servers, network components and other types of 

computing hardware. The operating system is managed by the clients 

(subscribers). In other words, the computing resources are provided as a service 

to the end users. The subscribers can either pay the services via pay-per-use 

model or by having a set of resources provisioned in a cluster of VM, which is 

easily scalable.  

 Platform as a Service (PaaS): Cloud providers establish the hardware, virtual 

machines, and setup the operating system. Furthermore, depending on the 

requirement, the providers also deliver databases, web servers and other native 

utilities so that developers can use these facilities directly to run their developed 

software.  

 Software as a Service (SaaS): In this standard, apart from installing the hardware 

and operating system, cloud providers also setup and maintain the application 

software for the clients. CRM vendors typically use this model to provide 
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services to their clients, as many small organizations cannot afford the high 

price-tag of these ERP applications, but unavoidably need to utilize the products 

in their businesses.   

Figure 1.2 shows the position of each layer. IaaS is the basic and lowest layer, and the 

higher layer abstracts the details from the lower layer. In Public Cloud domain, the 

segregation of each layer in term of service offering is more obvious; nevertheless in 

private or on-premise cloud, all 3 layers are assimilated to serve the end products’ need. 

 

Figure 1.2: The service model in cloud computing. Each layer is preferred by different consumers, 

depending on the intensity of desired abstraction.  

The focus in this thesis is at this juncture, where usage optimization on hardware 

resource performance in the cloud virtualized environments, which requires close 

examinations on fault analysis that subsequently provides indication to hardware failure 

prediction and performance degradation are studied. Together with this resource 

optimization, methods to achieve more effective resource utilization monitoring and 

affirmation are scrutinized. The increase in complexity and dynamics of these systems 

renders any current heuristic and rule-based resource management approaches 

insufficient. Hence the significance of the researches in this thesis is to provide new 

insights on resource management from non-conventional perspectives, as well as 
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complementing existing tools and utilities which are commercialized to achieve the 

same objectives.  

One of the most popular key enablers to Cloud computing is virtualization. This type of 

cloud environment comprises of multiple physical machines interconnecting together to 

form VM. At high level, the virtualization layer is positioned between the physical 

hardware and the operating system, and it provides management services for the popular 

scalability and flexibility attributes in Cloud, via a software utility called hypervisor. 

Figure 1.3 depicts at high level an implementation of Private Cloud virtualization, 

powered by the VMWare Cloud Virtualization Infrastructure (VMWare, 2006). IBM 

SmartCloud Application Services at the PaaS level (IBM, 2011) is another example that 

enables on-premise Cloud hosting. The database populated with TPC-H data as 

displayed in Figure 1.3 is not a typical implementation of virtual environment; rather it 

is a proposal from this thesis, which serves as the core element in enabling the proposed 

algorithms and mechanisms in subsequent sections.  

 

Figure 1.3: VMWare Virtualized Infrastructure. The virtual machines can scale to hundreds or 

thousands.  

The scalability is achieved by provisioning hardware resources to the individual VM 

whenever needed. The ESX server enables flexible hardware provisioning and de-

provisioning of resources for particular VM. Each VM is independent, able to host 

different desired operating systems, for a great variety of functions. For instance, a 
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virtualized environment by 1 ESX server can host database operations, HR applications, 

and all kinds of other front and back office applications. This diagram is illustrated as it 

characterizes a common on-Premise Private Cloud configuration. This architecture is 

typical for Parallel Database hosting; and the VM utilized for experiments in this thesis 

is constituted of these components.  

This research focuses on on-premise solution, due to data integrity and security reasons. 

It is not the problem with the technology itself, as human always found ways to address 

shortcomings or challenges technically. However the current perception and skepticism 

of Enterprises on security and reliability will delay the Public Cloud adaptation. In this 

case, Private Cloud is the easier solution. As described by Harms and Yamartino 

(Harms & Yamartino, 2010), the Horseless Carriage Syndrome when automobiles were 

introduced in early 20th century perhaps will slow down the embracement of SQL 

Azure (Microsoft, 2011); however the economics of the Cloud could overwhelm the 

constraining factors in time to come. Amazon is taking a step forward by introducing 

AWS GovCloud (US), which is hosted in Amazon Web Services (Amazon, 2012). Its 

compliance with US International Traffic in Arms Regulations (ITAR) and Federal 

Information Processing Standard (FIPS) Publication 140-2 are hoped to prove to the 

world its robustness in data hosting by Public Cloud. Google claims its strength in data 

security via ten components of Google’s multi-layered security strategies incorporated 

in Google Apps (Google, 2010). Oracle through its Exalogic Elastic Cloud product 

provides similar offering for Public and Private Cloud, plus Hybrid Cloud that is 

capable of Cloud bursting (Oracle, 2011). Even though Public Cloud computing has 

been widely accepted and deployed for web-based application, its use for mission 

critical database operations is still at early stage of adoption. While it is anticipated that 

Public Cloud will mature and flourish, this thesis is written to detail on the resource 



11 

 

administration mainly targets the databases hosted in on-premise Private Cloud as it is 

expected that database hosting on Private Cloud is going to thrive for quite a while.  

Nevertheless, the proposed mechanisms are applicable for resource planning in public 

or Hybrid Cloud from resource management perspective. The research is in alignment 

with perception from Harms and Yamartino (Harms & Yamartino, 2010) that the full 

advantage of Cloud Computing can only be properly unlocked through proper 

intelligent resource management. Due to problem with current RDBMS licensing model 

and the unpredictable nature of SQL queries, over-dynamic resource allocation 

paradigm will take a while before it is widely adopted for database hosting in Cloud. In 

the studies for this research, it is discovered that for most enterprises, unless the 

allocated resource is provisioned specifically for a short timeframe of surged 

transactions, the actual resource requirement has the tendency to accumulate and stay in 

the VM, via static on-demand request. Furthermore, at this moment, it is not easy to 

map QoS requirements to low-level resource states such as CPU and memory 

requirements (Q. Zhang et al., 2010). This is especially true in database hosting that has 

many variables in its operations that does not adapt well with dynamic resource 

provisioning model at this time. The motivation of the resource management proposals 

is developed with such scenarios in perspective. 

It is noteworthy that in Cloud computing, the popularly deployed database technology is 

segregated into 2 segments. The first type is the recently popularized paradigm: the 

Hadoop MapReduce framework for ‘Big Data’, made popular by Google in 2003. 

Initially the company kept the proprietary right to this technology, but later the Apache 

Software Foundation via its global community of contributors built the Apache Hadoop 

framework together with its open-source ecosystem, based on published Google's 

MapReduce and Google File System (GFS) papers. The second type is the Parallel 

Database, a technology widely deployed to various businesses serving numerous 
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industrial functions. This technology has stood the test of time and many today’s 

mission critical operations depend on it for survival. The focus in this thesis is on 

improving this Parallel Database hosting on the virtualized cloud architecture.  

1.3 Motivation 

This research focuses on database operations. This is the layer that is usually the most 

resource intensive of all the layers in the application service offering, hence is chosen 

for more effective depiction of the resource management proposals. As the target of the 

researches is scrutinizing on the database layer where data integrity, security and 

privacy criterions are sometimes of utmost concern, the proposals strive to refrain from 

actual data access to preserve these goals. The mechanisms manipulate metadata of real 

workloads, and utilize synthetic queries to synthesize artificial workloads to provide 

data input to the proposed mechanisms. 

The resource utilization monitoring on the hardware adequacy focuses on meeting the 

computing resource requirements for the database transactions. The output from the 

proposed monitoring method is subsequently channeled for resource planning and 

scaling purposes. The resource utilization monitoring couples the parameters obtained 

from operating system and database, and combines both perspectives to produce the 

dashboarding output for resource planning and scaling decisions. The result is deemed 

more insightful as end users’ experience from the database transactions is matched to 

the aspect of hardware resource consumption. 

Resource utilization monitoring in above cannot function as an isolated widget. It needs 

to go along with performance optimization and fault analysis in the VM so that resource 

or job scheduling efforts are not overshadowed by lackadaisical hardware. Hence the 

resource utilization optimization topic is studied subsequently after resource monitoring 

topic is examined. It is observed that workload delineation is an NP-hard problem. 
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Hence in order to arrive at the required precision, often time heuristic approach is the 

best method to be employed. With this, the initial set of data for baseline is obtained, 

which characterizes the behavior of transaction processing in the database. 

Subsequently the output from the same test configuration is compared to the baseline to 

discover if there is any change in the VM’s computing behavior. In this context, this 

research leverages the TPC-H benchmark data and queries, and proposes the 

optimization mechanism that is taking the hardware resources as variable instead of 

rigid constant. The proposed model can also examine software aging and provide 

indication if rejuvenation is required. This work is significant because in virtualized 

environments, VM that comprises of a hundred machines is not uncommon. The 

increase in the number of nodes, coupled with the fact that most systems are made up of 

inexpensive commodity computers, the chance for hardware failure is high. For instant, 

in the paper that described the architecture of Google File System (GFS), it was 

mentioned that GPS is designed in the cloud with anticipation that failure will happen 

regularly (Ghemawat, Gobioff, & Leung, 2003).  

Apart from the significant reduction in operating cost for enterprises by having optimal 

resource utilization optimization mechanisms, the living environment also benefits from 

the cutback in electricity demand, hence reduces the carbon footprint. Green computing 

is the paradigm that is gaining significance, primarily due to the ever-increasing 

business computing requirements, the acceleration of energy cost and growing 

awareness of global warming issues.  

In typical traditional production environments, many of the servers are running below 

optimal capacity in terms of memory, CPU and disk space resources. Virtualization is 

able to pool the need of resources from these servers together, serving them as a unit 

that lessens the complexity of IT management, for instance operating process 
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standardization and patching administration. Hence combined virtualization and 

resource utilization optimization provide for a better sustainable environment. 

With the resource utilization monitoring and optimization mechanisms put in place, the 

hypothetical affirmation on resource adequacy and hardware health is established. 

However, this solves only half of the puzzle. At this juncture, the effectiveness of the 

proposed mechanisms needs to be practically proven. Furthermore, critical SLA-bound 

transactions must be regularly verified to ensure that acceptable response time is always 

preserved in the allocated set of hardware. The most accurate method to measure the 

anticipated performance is to attest the VM capability with real end users’ experience. 

Hence, a method is envisaged to synthesize high load conditions in the VM, and 

subsequently allows transactions to be executed in such stressed scenarios. In such 

cases, if these transactions can deliver the desired response time in the stressed 

condition, the VM can be convincingly released for production use. Nevertheless, in 

order to stress the VM appropriately, the synthetic workload employed to stress the 

system will need to mimic the actual desired workload, so that comparative system state 

can be obtained for the test. The challenge here is then to discover the similarity 

between the synthetic and real workloads, so that real transactions can be stress-tested in 

the VM that matches the real stressed situation. Of course in this sense, the best method 

is to conduct load testing using convention load testing software, for example HP 

LoadRunner(HP, 2007) software that iteratively executes the real workload to load the 

system to the desired threshold for testing on real transactions. However, this method 

commands a lot of coordination efforts. The works here involve the building of test 

cases, allocation of technical personnel to standby for the lengthy test time. In view of 

these, the proposed methodology in this thesis provides an alternative to reduce the time 

and effort needed to create the stress-testing environment, which delivers the same 

objective of transaction verification at particular host conditions. These are detailed in 
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the resource utilization affirmation section. In the case where hardware change occurs in 

the VM, this proposed resource utilization affirmation model is able to determine the 

new constraining threshold point in the VM, for resource planning purpose.  

Scholars have defined resource management slightly differently, based on the different 

approaches taken. C. J. Huang et al. (2013) employed the support vector regressions 

(SVRs) method to predict the adequacy of the computing resources by baselining the 

SLA response times, in order to maintain the desired performance in cloud 

environments. Younge, Laszewski, Wang, Lopez, and Carithers (2010) scrutinized on 

power-aware scheduling techniques, variable resource management, live migration, and 

a minimal virtual machine design to produce a resource management framework which 

attempt to increase the efficiency of cloud deployment. Yuan and Liu (2011) proposed a 

strategy to pre-reserve the resources in anticipation of near future computing 

requirements. A. Beloglazov and Buyya (2010) proposed live migration strategy to 

continuously move and consolidate the VMs, based on the CPU requirement, which 

takes reference from the required QoS. Such resource management strategy was 

conducted in virtualized cloud data center, where a substantial amount of hardware 

resources are available. Roy and Mukherjee (2011) introduced resource brokering to 

manage the resource requirement of tasks sent to the grid computing environment. Such 

agent-based resource management style is potentially applicable in cloud computing 

environment, where it could possibly applicable for VM placement strategy. These 

researches have 1 common objective: To increase the efficiency of the computing 

resource utilization. This research is taking the motivation from the exact same 

objective in producing the resource management mechanisms. 
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1.4 Problem statements 

 SLA compliance and monitoring systems 1.4.1

In considering the 'optimized' mechanisms, SLAs for the applications running the 

workloads are taken as the bottom line to ensure full compliance with business 

objectives (Blagodurov et al., 2013; Garg, Gopalaiyengar, & Buyya, 2011; Sakr & Liu, 

2012). Ideally these workloads benefit from abundantly provisioned hardware resources 

in the VM. Nevertheless, businesses cannot allow for such configuration, as capital 

expenditure on computing hardware significantly affects profitability.  To operate the 

database in oversized hardware to cushion the fear of impact from lack of required 

processing power will not be cost effective as it incurs unnecessary wastage, and to go 

down too little will be too less for the needed transactions. During the onset capacity 

planning stage, the actual requirement of computational power and storage, whether it’s 

designed during the startup or meant for subsequent growth of the database operations, 

will be accurate only for the known initial application processing requirements. Hence a 

solution needs to arrive to provide an accurate insight on the hardware resource 

requirement during the production cycle of the application service offering. This stage is 

also known as the runtime phase where the transactions’ characteristic will evolve from 

the initial expectation during the application construction stage. Hence subsequent 

scalability and performance must continue to meet the demand of the businesses. In this 

context, the monitoring utilities must be up to the task to ensure clear visibility on the 

resource usage. Conventionally, many monitoring utilities (Nimbus, 2013; OEM, 2013; 

Sitescope, 2013) focus on silo monitoring and scanning of the database and operating 

system parameters. Such tools are deemed inadequate in the sense that they cannot 

provide a holistic view of the combined database and resource state in the VM. The 

monitoring scheme in this research strives to produce a much clearer illustration on the 
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resource state in the VM, so that the resource scaling point can be determined more 

precisely.  

 Dynamic scalability issue for Parallel Database 1.4.2

It is to note that current aggressive provisioning and de-provisioning of hardware in the 

cloud is not suitable for the VM that is deployed for database hosting. This is due to the 

problem with the majority of current RDBMS licensing model and the unpredictable 

nature of SQL queries, together with the architecture of Parallel Database which 

captures the allocated hardware parameters during its initialization phase. In order for 

such databases to capture the new hardware configuration, a restart of the instance is 

needed (Ward, 2011), which is not practical for most applications that do not have the 

luxury of frequent database bounce. Hence the over-dynamic resource allocation 

paradigm will take a while before it is widely adopted for database hosting in virtualized 

Cloud. In this case, resource management mechanisms which allow a semi-dynamic 

approach to resource allocation are warranted. There are exceptions to such scenario, for 

example Microsoft SQL Azure is capable of dynamic scaling (Azure, 2010). However 

as this RDBMS is running in Public Cloud, there is another issue with skepticism on 

data security.  

 Continuous fault analysis 1.4.3

To ensure efficient planning of resources, the underlying hardware needs to have strict 

adherence to consistent high performance criteria, with no degradation in performance 

over time. To fulfill this requirement, hardware vendors can perform server health 

checks which typically involve lengthy downtime, and these can only be carried out 

during selective prolonged maintenance window. During normal operations, potential 

performance degradation due to partial hardware failure (Salfner, Lenk, & Malek, 2010) 

is usually gone unnoticed, and these hidden indicators might further evolve into total 
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failure. Apart from faulty hardware, suboptimal software performance also contributes 

to wastage in resource utilization. Progressive degradation (Hanmer, 2010) of the 

running software; or software aging can eventually result in hung up or crashes, and 

along the way deteriorate to a level that breaches the SLA. Hence there must be a 

proactive mechanism to detect these symptoms during normal operations, in other 

words fault analysis is required. Such fault analysis should be easy to be conducted 

periodically. Such ease of maintenance is intended in the proposed mechanism for the 

resource utilization optimization theme. Leaving the VM to operate in degraded 

condition is dangerous as the SLA could be breached at any time as the host or the 

database can go down abruptly without warning. Moreover, promised transactions’ 

response time cannot be guaranteed as the host does not behave as expected.  

 Shortcoming of benchmarks 1.4.4

Industrial players and scholars have proposed many benchmarks to represent different 

workload types (Cole et al., 2011; Pavlo, Curino, & Zdonik, 2012; Pavlo et al., 2009), to 

cater for various metrics involved in the systems. However these benchmarked data are 

rigid in the sense that most of them cannot flexibly adapt to change in application and 

hardware technology. Because of this reason, a lot of these benchmarks cannot produce 

the same results even in proportionate response time when they are rerun in different 

hardware platform. Moreover some of the benchmarks are not generic for all platforms. 

Hence, the load testing instrument is still required in reality. However, the conventional 

load testing utilities are relatively time consuming and cumbersome, hence a light-

weighted version of the load testing could potentially alleviates these concerns. 

 Data security issue 1.4.5

From the security perspective, by conventional definition, database operations from this 

aspect is generally scrutinizing on layered authentication, masking of data by 
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segregating end users' roles and functionalities, for instance by implementing Oracle 

Fine Grained Access Control (FGAC) (FGAC, 2003) to control visibility to data, 

enhancing network transport layer by incorporating encryption algorithms on the 

network packets, and strengthening of data security at the storage layer. In this research, 

the unbreakable database architecture is visualized, particularly to support industries 

that have stringent requirement in protecting against leakages of sensitive data. the 

masking of data from IT administrators can already be accomplished by industrial tools, 

such as Oracle Vault (Tbeileh, 2009). As the real users’ data is hidden in such case, IT 

personnel need alternative input of data in order to perform administrative works 

particularly on performance tuning related matters. The proposals in this research are 

deriving the input for the resource management algorithms from metadata and synthetic 

data, however with no compromise in the delivery of the expected administrative tasks. 

 Insufficient measurement methods 1.4.6

In today’s IT infrastructure, hardware resource monitoring is often conducted discretely. 

Even in the frequently deployed database monitoring system such as Oracle Enterprise 

Manager (OEM) (Huber, 2013), the operating system parameters are loosely coupled 

with the database variables. Another inadequate monitoring condition is that the alerts 

on CPU, memory, I/O and network utilization thresholds are notified individually 

instead of collective aggregation and analysis on these parameters. This, to an extend 

will hold the promise of service offering if many of the variables involved in supporting 

the applications are static in nature. However, such monitoring mechanism is not 

suitable in cloud environment where constant changing in the hardware configuration is 

common. For example, if CPU threshold is determined at CPU run queue of 4 in an 

initial set of hardware configuration, this value does not hold true if the number of 

virtual processors is increased, or the CPU power is enhanced. In these cases, a 

reevaluation on the new threshold value, by taking into account other hardware 
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parameters is required to continue serving the established transactions' response time. 

The same is true even if there is no change in hardware configuration, where the same 

run queue threshold value does not hold true after the application has operated in the 

VM for some time. This condition is contributed by potential partial hardware failure. 

Even if the run queue value in this case signifies correct CPU resource threshold, it still 

cannot guarantees that the transactions will deliver the promised response time, due to 

the change in execution path of the SQL involved. This scenario is primarily caused by 

the increase in data volume in the tables queried or modified by the SQL. In other 

words, the I/O reads and writes are different with the evolvement of the data. Even 

monitoring on database logs is not capable of discovering such degradation in SQL 

performance.  

Oftentimes the logs from operating system do not clearly signify hardware performance 

degradation, until the break point which will then incur unwanted outage that results in 

the breach of SLA. This is especially undesired in VM that serve mission critical 

applications. To secure the host from such disaster, enterprises often spends large 

amount of money in procuring expensive hardware and software to enhance the high 

availability (HA) feature of the services. This directly erodes the profitability of the 

businesses. The more cost-effective and efficient method is to have a more proactive 

monitoring system in place. The proposal in the resource utilization monitoring theme 

strives to provide such mechanism where the aggregation of database and OS 

parameters is put into perspective. 

1.5 Current practices 

In the topic of resource utilization monitoring, enterprises usually provision a larger 

than needed hardware configuration in the VM to offset the risk of running into resource 

constraint in servicing the needed transactions. This results in significant wastage in 
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capital expenditure which considerably erodes the profit margin of the companies. For 

example, the list price for Oracle Exadata Database Machine Quarter Rack is USD 

330K (Oracle, 2012). To upgrade from Quarter Rack to Half Rack will required the 

same amount of investment. Hence exaggerated hardware planning is detrimental to the 

bottom line of the businesses. To ensure wastage is kept to minimum, resource 

utilization monitoring is put in place. From the infrastructure perspective, current 

practices in the wide industry generally rely on monitoring and analysis at operating 

system level, where dedicated monitoring on CPU, memory and I/O utilization is 

common. For example the NIMBUS monitoring system(Nimbus, 2013) is often used by 

enterprises to monitor the host performance.  

Server and database health monitoring are normally conducted by different entities in 

the IT department, where aggregation of inputs on the monitoring parameters from 

operating system and database is rare. From application view point, the monitoring 

often is focused on transactions' response time. One of the popular tool for this 

monitoring purpose is HP SiteScope software(HP, 2012). At each instance when the 

transactions' response time breaches the SLA threshold, they are flagged for all 

caretakers to investigate the problem. However it cannot specifically point out the root 

cause of the slowness, hence delays resolution to the problem. In the proposed model 

for resource utilization monitoring in this thesis, the variables involved in monitoring 

and analysis on workload processing are reduced comparatively to the conventional 

tools. The novelty of the proposed monitoring method is in the aggregation of the 

parameters from the operating system and database, to provide a faster and clearer 

visibility to the resource state in the VM, which then hasten the problem resolution.  

To ensure resource utilization optimization, hardware vendors periodically perform 

health-check on the underlying hardware of the VM. Stress-tests are conducted and 

hardware failure symptoms are identified from the generated logs. These activities often 
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require long outages. Moreover, the health of the host is perceived only from the 

operating system perspective. On the other hand, to ensure the health-checked VM is 

capable of servicing required application transactions, application load testing using 

conventional load testing software is conducted. With these comprehensive tests, the 

VM's ability to support the SLA-bound transactions is guaranteed. However the main 

concern for these 2 methods is the lengthy outage window.  

From resource utilization affirmation perspective, the conventional application load 

testing is capable of achieving the objective of providing the stressed host environment 

with the verification on critical transactions, practically. Nevertheless, these activities 

induce the same problem of long outage window, together with large amount of effort in 

coding test cases and coordination. Hence these activities are not sufficient and suitable 

to accommodate the scenario of elastic resource allocation in database operations, in 

virtualized cloud environment.  

1.6 Research questions  

In formulizing the research objectives, the questions to be answered are established as 

follows. The heads-up regarding the relevant research is provided. 

5) What are the appropriate methods to provide barometric indicators to determine the 

host performance.  

 This question is answered in every researched theme, where the monitoring, 

optimization and affirmation mechanisms are utilizing the identified 

indicators for input.  

6) How users' experience can be matched to these indicators discovered in (1).  

 The answer to this is illustrated by the optimization and affirmation themes.  
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7) What are the significant and appropriate parameters to be used to measure host 

performance.  

 These parameters are adequeatly revealed particularly in the optimization 

theme.  

8) How these parameters interact with each other, in order to provide a more solidified 

output to measure the host and database performance.  

 The interaction of the parameters is established in the experiments conducted 

in the optimization theme. 

9) How the proposed mechanisms can deliver the intended objects, in term of accuracy 

and consistency.  

 The accuracy and consistency criterions are achieved by combining 

parameters from the OS and database. The mechanisms to prove are shown 

in the experiments conducted for the monitoring and optimization schemes.  

10) How the hardware in the VM performs before and after resource constraining 

threshold.  

 Such condition is explained in section 2.4.3.1, based on works from previous 

researchers. 

11) Many of the RDBMS products in the industry have not developed the capability to 

be dynamically scaled, and the migration from 1 RDBMS platform to another is 

quite unlikely in commercial arena, what type of resource management mechanisms 

are appropriate for such semi-dynamic scalability requirement by these database 

systems.  

 The utilization of historical metadata in the methods proposed for the 

monitoring and optimization schemes appropriately address such scenario, 
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where the mechanisms have the time and space to revisit the previous data 

for analysis.  

12) As fault analysis is a continuous effort, how capable is the proposed mechanisms in 

accomplishing this goal.  

 The mechanism proposed in the optimization scheme is meant to be 

continuously and periodically executed during steady-state condition, to 

detect any anomaly. 

13) How to address the shortcoming of the current available benchmark, where one-

size-fit-all scenario is almost non-existent.  

 In the proposal for the affirmation scheme, the creation of benchmark is 

proposed, which is tailored for particular environments. 

14) How security aspect is addressed in details, by the proposed mechanisms.  

 All the themes are not utilizing real data in the proposals, hence avoiding 

access to real data. As such, the security of the data is ensured.  

1.7 Research objectives 

1) Resource utilization monitoring: To produce a mechanism to monitor the resource 

consumption in real workload processing, via the depiction from the associated 

metadata.  

2) Resource utilization optimization: To compute an algorithm that is capable of 

extracting the underlying hardware performance characteristic. 

3) Resource utilization affirmation: To develop a method that defies conventional load 

testing mechanism, that can be utilized to load-test desired SLA-bound transactions 

which need to adhere to strict response time requirement.  

4) To evaluate the effectiveness and shortcomings of the above proposed mechanisms. 
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1.8 Scope of research 

The scope of the research focuses on hardware resource management, with focus on 

resource utilization monitoring, optimization and affirmation areas, for application 

transactions carried out in Parallel Database architecture hosted in virtualized cloud 

environment, in a secure manner from the data security perspective. On-premise Private 

Cloud architecture is envisaged during analysis, formulation and creation of the 

proposed algorithms. Nevertheless, the planning and analysis of these algorithms are 

delineated such that they are extensible to Public Cloud environment if desired.  

The research in the monitoring segment is targeted at discovering the behavior of the 

operating system and database parameters when they are aggregated. This is often 

neglected in normal practice of today's IT management. The aim is to accurately 

characterize the hardware, together with associated software components, for the 

purpose of achieving the most optimal condition for application service offering.   

Statistical modeling method on TPC-H data and queries is employed to determine the 

resource consistency and performance in the VM, together with machine learning and 

linear regression analysis as the foundation to the resource utilization optimization 

research. The output is subsequently compared with the baseline data using the same 

data sets to compute potential failure symptom in the systems.  

In the resource utilization affirmation study, queries in the TPC-H benchmark are 

chosen and subsequently aggregated to synthesize a workload scenario that stresses the 

VM, so that resource threshold together with transactions’ response time can be 

verified. 

The introduced mechanisms in this thesis are generic for all hardware platforms, in the 

sense that TPC-H benchmark can be adapted by various RDBMS serving multiple types 
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of operating platforms. Most importantly, as real data is not engaged throughout the 

study, secure resource management goal is achieved.  

1.9 Chapter organization 

This thesis consists of 6 chapters. Chapter 1 contains introduction to the research topics. 

It provides information on problem statements and motivations of the research. The 

high level explanation of the research topics: resource utilization monitoring, 

optimization and affirmation is provided. Subsequently the current practices are 

examined. Consequently the research questions and objectives are reiterated and 

summarized. The boundary of the researches is then presented in ‘Scope of Research’ 

section. 

Chapter 2 details the literature reviews on related works on cloud hosting development 

particularly in resource management and optimization. Cloud security is also examined, 

as this is important for database operations hosted in cloud environments. Subsequently 

the feasibility of the resource management subjects scrutinized in the studies are 

analyzed, by matching these to related researches.  

Chapter 3 describes the research methodologies in details. In this case, all the 3 

schemes: resource monitoring, optimization and affirmation are elaborated, with focus 

primarily on input coming from real workload’s metadata and synthetic workload 

characterized by TPC-H benchmark data and queries.  

Chapter 4 details out the design of all the 3 themes. The construction details of all the 3 

models are elaborated in length, with explanation on the logic and feasibility of the 

choices in the design.  



27 

 

Chapter 5 features the analysis and evaluation on the conducted experiments. The 

discussions touch base on the currently available tools and utilities, and compare them 

to the proposed mechanisms.  

Chapter 6 concludes the research and discusses on how the research objectives are 

fulfilled. The contribution of the research outcome is then discussed, followed by 

suggestions on potential future works. 
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2. LITERATURE REVIEW 

2.1 Introduction 

 

Figure 2.1: A summary of the research. The flow chart at the left side illustrates the contributions 

to resource management for cloud environment. The yellow boxes depict the main topics centered 

in this thesis. The right half details into the sub-topics which constitute the essences for the 

buildups to the proposals in the thesis. Each researched component is labeled with related chapters 

and sub-chapters in parentheses. 

The core of the research is dealing with resource management in virtualized cloud 

environments, serving Parallel Database architecture. In such system, the database 

operations are executed in parallel, to take advantage of the multi-processors 

framework. The majority of RDBMS running today are classified in this category. This 

technology has matured since the past 2 decades, and it is powering many of today’s 

mission critical applications. The wide deployment of Parallel Database has generated 

vast interests in the research and development area, and created enormous employment 

opportunity. In this cloud computing era, the adoption pace of this database technology 
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is relatively slow as compared to web based applications. Nevertheless, there are huge 

opportunities to be harnessed by Parallel Database technology, in view of the many 

benefits offered by cloud paradigm, particularly in the area that takes advantage of the 

elasticity and scalability features of the computing resources. Hence, effective resource 

management will be the dominant component in the evolution of this technology. This 

thesis strives to improve in this area, and takes the database hosting architecture to a 

greater height.  

In proposing the resource management mechanisms, the security of the data is 

accounted for. The proposed algorithms intend to provide as much protection to the 

underlying data as possible, at the same time increase the efficiency of resource 

management in the virtual hosts. As depicted in figure 2.1, the 3 main themes of this 

research are the resource utilization monitoring, optimization and affirmation. The 

relationship between these 3 themes is illustrated in the flow diagram in the figure. It 

starts with resource utilization monitoring, where the state of resource usage is 

monitored and analyzed via new proposed non-conventional mechanism. With these 

data obtained from the monitoring instrument, further question is asked, if the data 

fittingly represents the expected resource performance in the system. This is because if 

there is hardware issue in the infrastructure, the resulted resource state or threshold 

cannot appropriately depict the condition in the VM. Hence the next research theme 

focuses on resource utilization optimization. The scope here is to discover abnormality 

in the hardware, so that the computing capability is maximized and optimized. A 

holistic view on the hardware state can be provided by the proposed mechanism. At this 

point, the resource usage situation and hardware condition are understood. With the 

information, there is still no guarantee that the agreed upon QoS can be delivered by the 

hosting platform. For instance, if a transaction is required to complete within 2 seconds, 

the business will need reassurance that the computing resources can constantly produce 
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such response time. Hence, the next theme is regarding the resource utilization 

affirmation, where load testing is often deployed to verify the workload response time 

and attest the capability of the VM. The proposal here strives to shorten and simplified 

the load testing mechanism. The eventual objective is to arrive at a juncture, where 

resource scaling decision can be made accurately and convincingly.  

2.1.1 Resource utilization monitoring 

To arrive at these resource management themes outlined above, a wide range of 

literatures have been reviewed. In the monitoring segment, the topics surveyed are: 

1) Monitoring models. The monitoring mechanisms deployed commercially, as well as 

envisaged models from scholars are studied. The employed methods to produce such 

models are also scrutinized. Only models that are aspired by the direction of 

technical advancement in cloud computing are examined.  

2) Statistical modeling and benchmarking. The underlying technology in producing the 

monitoring models as in point #1 is examined here. These techniques strive to serve 

the purpose of providing greater visibility on the resource utilization condition in the 

VM. Even though the research focus here is on Parallel Database, the models 

deployed in MapReduce framework are investigated too, as they are more 

aggressively studied recently, and have great potential in incorporating into this 

research area. 

3) On-demand resource scaling technology. Another main contribution of scrutinizing 

resource state in VM is to ensure the resource scaling algorithms are accurate in 

matching the computing needs in the VM. Hence a lot of literatures have studied the 

monitoring mechanisms prior to their subsequent proposals on the on-demand 

scaling designs. Almost all the surveyed on-demand resource scaling methods are 

applicable for the application layer, particularly for web based applications. Such 



31 

 

aggressive resource allocation and de-allocation techniques are seldom scrutinized 

in database domain. Nevertheless, this topic is included in this survey, as it has great 

potential to be applied for the database layer. The recent launch of Oracle 12c (Avril 

& Hardie, 2013) has provided such insight of the future direction of the Parallel 

Database technology, where the elasticity feature is enhanced in this new product, 

in both the licensing and technology segments.  

4) Workload characterization. Another purpose of resource monitoring is to ensure the 

invested hardware is optimally utilized, in the sense that there will be minimal 

burstiness in the real workloads. Burstiness denotes occasional spikes in resource 

usage due to sudden surge in the load demand, or unoptimized scheduling of jobs. 

One way to address such concern is to partition the workload into manageable 

distributions. In order to do this, the workload characterization effort is essential. To 

arrive at this understanding of the workload, the monitoring on its resource 

utilization is the primary input to be considered. Hence resource monitoring is also 

studied in a lot of literatures that cover the characterization of workloads.  

2.1.2 Resource utilization optimization 

The scope for the next theme, which is on resource utilization optimization, involves 

following subjects: 

1) Fault analysis and Failure Prediction. To guarantee that the provisioned resources 

are utilized fully, the primary target is to ensure that the backend hardware performs 

to its full capability, in consistent manner. To safeguard this interest, the hardware 

needs to be free from partial failure or potential complete breakdown in future. This 

topic is not widely studied by scholars particularly who involve in cloud 

environmental studies, as it is deemed an old topic in the computing world, and it is 

perceived that the hardware can be replaced quickly in the cloud. Hence the impact 
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of failed hardware in the cloud architecture is not as high. Nevertheless, when it is 

coupled with the interest in resource utilization optimization topic, it becomes the 

primary concern before any other software optimization mechanisms.  

2) Task Scheduling. Many scholars studied this as a way to distribute the tasks in the 

workload to different VM or different cloud providers, in order to take advantage of 

resources available elsewhere. By studying their proposals, this thesis turns some of 

the suggestions into workload partitioning effort that segregates the workloads into 

chunks of smaller tasks. These tasks are scheduled to different time blocks available 

in the VM, instead of to different hosts. With this, the resource utilization efficiency 

in particular VM can be elevated. 

3) Resource scheduling. This type of scheduling deals with resource addition or 

subtraction from particular VM. It is relevant to this optimization theme, as over-

aggressive scheduling algorithm will cause significant overhead in the system, 

whereas algorithms that do not respond fast enough to the scheduling requirement 

will potentially breach the SLA. Vertical and horizontal resource scaling modes are 

studied in this area.  

4) Resource brokering. This topic is related to this optimization initiative. The studied 

brokering mechanism is the Auction-based type. The providers and consumers both 

achieve the objective of selling and buying at the price agreed upon by both parties. 

The meeting price point from both sides is the target of the brokering mechanism. 

By arriving at the prices that satisfy both parties, more optimized resource 

provisioning and de-provisioning conditions are met. 

The scope of the research is on database operations hosted on virtualized cloud domain. 

As the applications are running at the foreground of this database layer, the term 

‘applications’ is used interchangeably to also depict the database operations, unless 

specified otherwise.  
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2.1.3 Resource utilization affirmation 

The third theme deals with load testing in the VM. This resource utilization affirmation 

is not solely applicable for cloud environment, but also in other platforms. In this 

section, the conventional load testing methods are scrutinized, and the essence of them 

is extracted to construct shorten and simplified version of the load testing mechanism. 

In this sense,  the I/O charateristic is examined, and its influence in characterizing the 

desired workload is applied to build the light-weighted load testing mechanism. The 

proposed construction of the shorten version of load testing mechanism is not to replace 

the conventional load testing, rather it provides complement to the conventional tools to 

alleviate the time constraint factor. 

2.2 Virtualized cloud infrastructure 

In this section, the scholarly studies on cloud infrastructure, as well as commercially 

deployed systems are examined. It is to note that these virtualized environments are not 

solely designed for Parallel Database architecture, but they are also applicable to host 

MapReduce Framework as well as the front application layer. A comparison between 

current cloud computing and older hosting technology is also carried out. In general, 

cloud infrastructure can be categorized into 2 realms. Firstly, the cloud computing can 

be configured by creating OS image directly on the hardware. Such method is termed as 

bare metal provisioning. Such method is commonly deployed for the MapReduce 

Framework. The second type involves virtualization on the underlying hardware, where 

OS images are created on the virtual machines. Such practice is more widely deployed 

for web and application server hosting, as well as database operations running on 

Parallel Database architecture. The thesis bases its proposed resource management 

approaches on this latter cloud infrastructure. 
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Zhang et al. (2010) defined Cloud Computing as: “a model for enabling convenient, on-

demand network access to a shared pool of configurable computing resources that can 

be rapidly provisioned and released with minimal management effort or service 

provider interaction”. It is this ease of effort in application hosting that makes Cloud a 

popular and fascinating choice of hosting. Cloud Computing enables the agility required 

to accelerate the time-to-market of new products and services while reducing the cost to 

design, build, deploy and support these products and services (Glas & Andres, 2011). 

Before advancing to other topics, it is noteworthy to mention the 2 database models 

currently serving the vast industrial community. In this cloud computing world, the 

database hosting architecture can be segregated into 2 main categories: The first one is 

the MapReduce framework, which is popularly powered by Apache Hadoop solution. 

The second category is dealing with Parallel Database hosting. The Apache Hadoop 

framework predominantly targets the Big Data which currently is accommodating 

unstructured data from the web-based applications. Due to the computing nature of the 

Big Data processing and analysis, it has adopted cloud computing much earlier than 

Parallel Database. Google is the first to pioneer this, where it introduced the 

MapReduce algorithm to process and mine enormous data from the web, using nodes 

that scale to thousands (Dean & Ghemawat, January 2008). The Parallel Database 

essentially provides for the relational database model, where it has developed and 

evolved over the past 3 decades (Codd, 1970). Relatively, Parallel Database 

architecture can be termed conventional in comparison to the Hadoop MapReduce 

Architecture by scholars and the industrialists. Both technologies are different from 

each other, from the perspective of data storage and processing algorithms. 

Nevertheless, many scholars and industrial players are exploring the opportunity to 

aggregate and incorporate the advantages from one domain to each other. From the 

hosting aspect, both can be adequately accommodated by cloud virtualization, which 
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provides a wide range of benefits in terms of scalability, elasticity, flexibility, 

economics of scale, reduction in capital expenditure and more efficient deployment of 

workforce. Nonetheless, it will be a while before these exciting researches of 

technology integration make their way to the industry. Hence this research scrutinizes 

the possibilities of improving the current matured technologies, focusing on virtualized 

Parallel Database architecture hosting.  

The predecessor to the virtualized database hosting is the standalone server architecture 

in the client-server model. This hosting model has stood the test of time for the past 2 

decades before the advent of cloud computing paradigm. Many mission-critical 

applications were and some are still being deployed in such standalone server platform. 

However, primarily due to the rapid progress in software development, it is inevitable 

that the computing resources required by the database transactions need to be available 

instantly and affordably to ensure viability in application service offerings. In order to 

accomplish this requirement, hardware virtualization makes its way to the forefront of 

the hosting technology. In 2011, Gardner predicted that virtualization will be the first in 

the top 10 list of most significant future IT technology-related trends (Cooney, 2011), 

and apparently this still holds true today.  

In the cloud computing arena for database hosting, Private Cloud is often deployed in 

today’s enterprises. There are also database deployment in the Public Cloud, for 

example those that engage Microsoft SQL Azure (Microsoft, 2011) product. Oracle 

through its Exalogic Elastic Cloud product provides similar offering for Public and 

Private Cloud, plus Hybrid Cloud that is capable of Cloud bursting (Oracle, 2011). The 

enigma in the security and privacy aspects, particularly in the data storage and 

transportation matters is slowing down the embracement of public hosting of database 

operations. As described by Harms and Yamartino (2010), the Horseless Carriage 

Syndrome when automobiles were introduced in early 20th century resembles the 
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current perception in  the embracement of SQL Azure. However the economics of the 

Public Cloud might overwhelm the constraining factors in time to come. Public Cloud 

vendors are building extremely large-scale, commodity-computer Data Centers in low 

cost locations, and they uncovered factors of 5 to 7 decrease in cost of electricity, 

network bandwidth, operations, software, and hardware available at these very large 

economies of scale (Armbrust et al., 2009). While the anticipation is that Public Cloud 

will mature and flourish eventually, the resource management topics in this thesis focus 

mainly on the immediate needs of databases hosted in on-premise Private Cloud, as the 

database hosting on Private Cloud is going to thrive for quite a while. 

 

Figure 2.2: Virtualization Infrastructure diagram. Such architecture is typical and popular for 

Parallel Database hosting. Adapted from (VMWare, 2006) 

Figure 2.2 denotes a typical implementation of virtualized environment for on-premise 

Private Cloud. The diagram depicts a VMware Infrastructure (VMWare, 2006) which is 

commonly deployed for Parallel Database architecture. The scalability is achieved by 

provisioning of resources from the underlying hardware, made possible using the 

hypervisor component. In VMware infrastructure, such component is called VMware 

vSphere (VMWare, 2013b). It is denoted by the ESX Server layer in figure 2.2, where it 

is also named VMware vSphere ESXi. It is to note that the hardware is mainly 

comprised of x86 commodity servers, which significantly reduces the capital 

expenditure in IT infrastructure spending. Apart from the relatively cheap hardware, the 



37 

 

clustering of these commodity servers which aggregated and interconnected by same 

network and storage subsystems managed by 1 ESX server does not require identical 

configuration in each of the servers, hence greatly reduces the cost and complication in 

procuring additional servers in future. The experiments conducted in this thesis are 

carried out using this hosting platform, where the research outcomes are produced from 

this hosting technology. The task scheduling, resource scheduling, cloud bursting, 

security and availability control discussed subsequently in this chapter are managed by 

the virtualization program at the front end. VMWare product in this layer is named 

VMware vCenter Server (VMWare, 2013a). The terminology employed to classify 

virtualization products in the industry often denotes the toolkits in this layer. In the 

same category, OpenNebula (OpenNebula, 2013) which is an open-source project 

claims to provide wider range of virtualization support, as illustrated in figure 2.3. From 

its documentation, it is said to be able to accommodate different type of hypervisors, for 

instance Xen (Xen, 2013), KVM (KVM, 2013) and VMWare vSphere. It is also to note 

that the vendors to these hypervisors also have their own management software; hence 

there are a wide range of choices for the industry to choose from. The other frequently 

deployed industrial on-premise cloud virtualized infrastructure solutions are Oracle 

VM3 which originates from Xen enabled virtualization (M. Kumar, Roberts, & 

Kawalek, 2011), IBM SmartCloud (S. Williams, 2011) and Microsoft Hyper-V 

(Microsoft, 2007).  
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Figure 2.3: OpenNebula virtualization management software. The advantage of this software is 

that it is developed by open-source community, hence it has the potential to flourish in the same 

way that Linux did. Adapted from (C12G, 2010) 

Another frequently deployed open source virtualization management toolkit is 

Eucalyptus (Eucalyptus, 2013c). The private virtualized platform managed by this 

product is often engaged by scholars as test beds to carry out experiments on cloud 

related researches. From the industry perspective, it is ideal for test and QA 

environments. As the development of this toolkit focuses on compliance with API 

utilized in Amazon Web Services (AWS), it is almost inevitable that the eventual 

production environment will be hosted by AWS. Figure 2.4 illustrates the position of 

this toolkit in the virtualized Private Cloud environment. Note that its architecture is not 

much different from figure 2.3, with the exception that it is only applicable for Private 

Cloud deployment only. Eucalyptus is an excellent platform for researches in view of its 

open source nature, feature-rich and freely downloadable.  
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Figure 2.4: Eucalyptus platform. Note the tight association with AWS which makes deployment of 

applications in Public Cloud easier after the development phase. Adapted from (Eucalyptus, 

2013b) 

Early in this chapter, it is mentioned that the predecessor to the virtualized database 

hosting architecture is the standalone server model. A more granular view is also 

studied from another angle in this subject of cloud computing evolution. Zhang et al. 

(2010) defines Cloud Computing as an evolution of grid computing, as it comprises of 

thin clients, Grid Computing and Utility Computing. Buyya et al. (2009) differentiated 

between Cloud Computing and Grid Computing at the virtualization level, where Cloud 

is defined as next-generation data centers with nodes “virtualized” through hypervisor 

technologies, dynamically "provisioned" on demand as a personalized resource 

collection. The virtualization in cloud computing provides the ease and flexible 

capability on resource allocation. The authors also define grid computing as ‘a type of 

parallel and distributed system that enables the sharing, selection, and aggregation of 

geographically distributed `autonomous' resources dynamically at runtime depending 

on their availability, capability, performance, cost, and users' quality-of-service 

requirements’. 

Foster et al. (2008) compared Cloud and Grid in length; and from dynamic resource 

provisioning perspective, Cloud is deemed more flexible than Grid, as Cloud is 

leveraging virtualization technologies more extensively. Hashemi et al. (2012) 

described how cloud computing is more superior as compared to grid computing, by 
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taking insights from various aspects. Table 2.1 provides a summary on these 

comparisons.  
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Table 2.1: Cloud vs. Grid computing. Generally cloud is perceived as more advantageous than grid in serving wide range of applications. 

  Comply with criterions Comments 

Criterions 

Cloud 

Computing 

Grid 

Computing (Foster et al., 2008) (Hashemi & Bardsiri, 2012) (S. Zhang et al., 2010) (Buyya et al., 2009) 

Reduce the cost 

of computing Yes Yes 

In Grid, Commodity clusters are 

expensive  to operate in 

comparing to low-cost 
virtualization offered by Cloud 

Grid: Promoting sharing of 
resource to other location 

Cloud provides cheaper 

alternative as development can 

be done in public (more 
economical) or Private Cloud 

Grid: Reduction in cost depends 
on VO management. 

Massively and 

easily scalable Yes Partial 

Grid: Resource span across 

multiple virtual organizations 
(VO), harder to control different 

groups.  

Cloud: Resource is managed by 
single vendor, easy to be 

provisioned Grid is less scalable than cloud 

Grid: Potential of over-

provisioning of resources 

Cloud: easier to scale using 

Virtual Machine 

Deliver on 

demand resource Yes Partial 

Grid: Need to wait for arrival of 

resource from VO. 
Cloud: Can provision resource 

within few seconds to few 

minutes. 

Grid: resource not provided real-

time, need to wait 

Grid: Tasks need to wait if 

requested resource not available 
at particular point in time. 

Cloud: Guarantee resource for 

transaction processing 

Cloud: authors propose a 
resource brokerage system to 

deliver resources to needed 

transactions 

computing 

resource are 

packaged as 

metered services Yes Yes 

Grid: Resource is provisioned 

from VO 

cloud: resource is provided by 
single vendor 

Grid: resource might be limited, 

depending on the Grid 

participants 
Public Cloud: unlimited  

Grid: Might need to wait for 

available resource from VO 
Cloud: instantly available 

Grid: pioneer in 'computer 

utilities' concept, much like 
electical utility 

Easy to control 

computing 

standard  Yes Partial 

Grid: as VO is control by 

multiple organizations, harder to 
implement uniform standard of 

computing environment. 

Cloud: 1 organization controls 
the cloud data center, easy to 

standardize. 

Grid: More standards possible 

from different VO - 

Cloud: Cloud providers still 

working to standardize 
computing standard across 

different providers 
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Clear visibility of 

data locality 
Partial Yes 

Public Cloud: Data are scattered 

in various locations 

Grid: suitable for data intensive 

operations 

- 

Cloud: Some cloud providers, 

eg. Akamai (Su, Choffnes, 
Kuzmanovic, & Bustamante, 

2006) and Mirror Image 

(Mirror-Image, 2013) provide 
locality service for consumers to 

host global application 

Grid: locality of data easy to 
track 

Cloud: not suitable if for 
operations that need a lot of IO 

Private Cloud: Data is located in 

own premise 

 
Virtualization Yes Partial 

Grid: Control of resources by 

individual VO discourages full 
virtualization 

Grid: Not necessarily needed 

- 
Cloud: Stronger support of 

virtualization Cloud: vital element in the 

architecture 

Audit trail on 

transactions 
Partial Yes 

Grid: Mature workflow tracking 
on transactions 

- - 

Cloud: Authors propose 

MetaCDN that is capable of 
providing logging audit tracking Public Cloud: audit tracking is an 

open problem 

Data security 

and privacy 
    

Grid: take advantage from many 

years of evolutions in security 
related matters 

Grid: lower security model than 

cloud due to different VO 

management 

- 

Cloud provides flexibility in 

allowing consumers to alter their 

security requirements 

Cloud: Relatively simpler 

Generality of 

usage 
Yes Partial 

HPC applications run better in 
grid compared to cloud due to 

shorter interconnect in network 

and processors. 

For computing intensive 

operations, that does not adhere 

to tight SLA response time 

Grid: Provide for specific 

domains, eg. biology grid, 

geography grid 

Grid: For collaborative scientific 

and high throughput computing 

applications 

Cloud: Provide for more generic 
application use 

Cloud: able to support generic 
applications 

Robustness           
Cloud is perceived as more 

robust 
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In the following section, the challenges of migrating from either standalone server or 

other platforms are briefly discussed. It is not to be elaborated in length as it is not the 

core topic of this thesis, but as it is related to the choice of hosting platform chosen for 

the experiments in the thesis, it is worth the mentioning here. Babar et al. (2011) studied 

the migration of a customized system from standalone server to cloud. The application 

and database coexist in the same server before the migration. From this paper, 3 critical 

points are observed. Firstly, the system to be migrated should be able to take advantage 

of the scalability feature of cloud computing. Secondly, the system should be able to 

work in both Private and Public Cloud. Thirdly, if possible, the migration should be 

transparent to the end users, particularly if the system supports vast community where 

alteration on the login interfaces is tedious. For the first point, in order for the system to 

be scaled easily, the application and database layers should be separated. This is 

because the dynamic scalability works well for the application components, however the 

database operations do not react well to the change of hardware resources, particularly 

on the number of processors. RDBMS which is a type of Parallel Database widely used 

today, hardcodes the startup parameters from the operating systems, particularly the 

number of processors. In order to scale up or down the number of processors in the host, 

the database services often need to be restarted. Hence, different virtual hosts are 

needed for each application and database layer. The second point with regards to the 

portability between Private and Public Cloud is not as rigid from hosting perpective, 

however the security and budgetary concerns play a major role in deciding such hosting 

decision. Thirdly, for ease of routing end users’ requests, proxy server routing can be 

configured if necessary. The authors also mentioned about the disadvantage of lack of 

control to the application codes if the codes are further developed using the service API 

provided by the PaaS, as the portability of the application will be restricted to only the 

standard provided by the cloud provider. Another disadvantage is the hardware 
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technology, whereby enhancements and changes to the hardware components are 

controlled by the provider. The paper also mentioned about load testing, whereby 

application performance in virtual environment cannot be guaranteed when the 

resources are scaled up and down. The authors proposed frequent testing on the 

application performance, which is a challenge to mission-critical transactions as there is 

not much downtime allowed on the application. From this perspective, the objectives of 

this thesis strive to shorten and simplify the load testing mechanism, together with a 

proposed control system to gauge the virtual resource performance. In this way, 

frequent testing can be carried out without incurring much downtime to the applications 

and databases.  

2.3 Data security 

In general, security concerns in cloud computing are considered an enigma, rather than 

a publicly acknowledged problem. From the literature reviewed in this topic, there is no 

real technical issue discovered that should hamper the embracement of cloud hosting. 

There are solutions to all the technical challenges. For instance, Amazon is taking a step 

forward by introducing AWS GovCloud (US), which is hosted in Amazon Web 

Services (Amazon, 2012). Its compliance with US International Traffic in Arms 

Regulations (ITAR) and Federal Information Processing Standard (FIPS) Publication 

140-2 is hoped to prove to the world its robustness of data hosting in Public Cloud. 

Google claims its strength in data security via ten components of Google’s multi-

layered security strategy incorporated in Google Apps(Google, 2010). Oracle through 

its Exalogic Elastic Cloud product provides similar offering for Public and Private 

Cloud, plus Hybrid Cloud that is capable of Cloud bursting (Oracle, 2011). Rather, it is 

a perception that placing data in cloud, especially the Public Cloud, will create the issue 

of security and privacy breach. Such phenomenon can be equated to the Horseless 

Carriage Syndrome as observed by Harms and Yamartino (2010).  
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The concern with regards to security and privacy issues for Healthcare industry is 

studied in this thesis, as this industry generally has more stringent demands in 

safeguarding the data as compared to other industries. Lupse et al.(2012) proposed 

Private Cloud environment to host centralized patient data, where the data is 

disseminated to various location via HL7 Clinical Document Architecture (CDA) 

messages, via the Service Oriented Architecture (SOA). Remote access to these 

Protected Health Information (PHI) and Personal Identity Information (PII) information 

via this architecture is critical, in order to ensure patient data is available when patients 

are transferred, or in situation when the medical personnel in charge is on vacation. The 

reason provided for the preference in the choice of Private Cloud is that the medical 

data can only be accessed by medical personnel in such platform. In view of the Health 

Insurance Portability and Accountability Act (HIPPA) requirements, safeguarding 

confidentiality and integrity of the patient data is of utmost important, hence the sharing 

of Electronic Medical Records (EMR) cannot be compromised under any 

circumstances. Thus, Private Cloud is proposed to avoid the perceived security risk in 

Public Cloud. The ideal data dissemination model which utilizes Private Cloud 

envisaged by the authors is illustrated in figure 2.5.  

 

Figure 2.5: Data hosting architecture proposed for hospital systems. Adapted from (Lupse et al., 

2012) 
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Ahuja et al. (2012) quoted a list of security measures from Cloud Security Alliance 

(Cloud-Security-Alliance, 2010) to enhance the relevance of Public and Private Cloud 

to support healthcare organizations. From the observation of current trend, Private 

Cloud would most likely be implemented first. Apart from setting up their own on-

premise Private Cloud, enterprises can engage commercial vendors to provision Private 

Cloud instances for them. IBM provides such service in their product called IBM 

SmartCloud Application Services (Saugatuck, 2011). Subsequently when the security 

perception on Public Cloud has improved, these healthcare applications can make their 

way to public infrastructure easily with the standard API from these established 

providers (Wan, Greenway, Harris, & Alter, 2010). The suggested implementations for 

healthcare industry are multi-layer of login authentication, robust administrative 

capabilities to assign appropriate privileges to users and groups, strong password 

creation and encryption, encrypted data exchange and federated authentication. Asides 

from these security measures, the authors also suggested robust backup and disaster 

recovery policies in order to comply with the strict availability requirement of medical 

data. In this case, cloud providers are regarded to be more equipped as compared to 

local data centers managed by individual organizations. It is also suggested that a 

specialized cloud to be created solely for Healthcare organizations with tight security 

architecture. Apart from the security and robustness concerns, the interoperability 

among some decade-old applications with cloud standards is of concern. The 

applications in the healthcare industry mostly do not evolve as rapid as common 

applications deployed in other industries. Hence these applications are older and 

different in term of database design, operating systems, programming languages, 

platforms and data formats (Myers, 2012). The cloud providers who are able to adapt to 

these standards, or provide a smooth migration strategy to these applications, couple 
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with fulfillment of the requirements outlined by HIPPA in the IaaS, PaaS and SaaS 

models will command the market share in healthcare application hosting.  

Kumar et al. (2012) indicated that the major element that delays the cloud adoption in 

healthcare, is the issue of trust. Despite the fact that cloud providers have sophisticated 

methods and utilities to maintain high level of data security, the consumers in the 

Healthcare industry still stays skeptical. The authors also touched base on the surveys 

carried out recently by some prominent cloud providers. In particular, IBM’s Institute 

for Business Value 2010 Global IT Risks Study (Ban, Cocchiara, Lovejoy, Telford, & 

Ernest, 2010) revealed that 77% of surveyed participants believed that cloud hosting 

would jeopardize data security. About 50% were having more negative perception, 

where they thought data loss would occur if data is hosted in cloud.  

Both papers published by Kumar et al. (2012) and Ahuja et al. (2012) made reference to 

Cloud Security Alliance. In the latest survey results (Gray, Los, Shackleford, & 

Sullivan, 2012), 50% of the respondents were gathered from United State of America, 

8.6% from India, 5.5% from UK, 4.1 from Canada and 31.8% from the rest of the 

world. The new top threats ranking is much different as compared to the survey result 

carried out in year 2010 (Cloud-Security-Alliance, 2010), despite the threats relevance 

still stays almost the same. The new ranking in the survey is categorized as follows:  

1) Data Loss/Leakage 

2) Insecure API 

3) Malicious Insiders 

4) Account/Service and Traffic Hijacking 

5) Abuse of cloud computing 

6) Unknown Risk Profile 
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7) Shared Technology Vulnerabilities 

8) Distributed Denial of Service (DDoS) 

 

Figure 2.6: Top threats relevance. The security relevance is surveyed for cloud computing. Adapted 

from (Gray et al., 2012) 

Figure 2.6 demonstrates the relevance and significance in percentage of the threats 

based on the feedback from the vast community of cloud consumers. Nevertheless, the 

ranking does not rigidly represent all the industries, and the role of the ranking is served 

only for general reference. For example, for applications that do not use the service API 

in the PaaS model, there is no threat of the insecure API. For mission-critical services, 

the DDoS could be ranked higher as connections from the end users to the system need 

to adhere to strict High Availability requirement.  

Data Loss/Leakage is the most significant threat in cloud hosting. The severity level 

from its damage can be very high, particularly in mission-critical applications. 

Especially in the case where the cloud provider does not implement robust backup and 

disaster recovery standard, compromising of data can result in loss of revenue, and even 

jail times in extreme cases of negligence. This threat can be originated from accidental 

deletion of data, failure in the virtual hosts that support the databases or malicious 

activities from unauthorized personnel. The preventive measurement to this cause is to 

implement access control to the API, enforce encryption on data in storage as well as in 

transit, control access to the database whereby only relevant personnel is allowed to 

gain entry to the real data, undertake legally binding agreement between the consumers 

and cloud providers to ensure vigorous backup and recovery strategies are in place.  
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Insecure API can happen in cloud service offering, in the case when the management 

and monitoring in this layer is not proper. The APIs are provided by cloud providers to 

enable the creation of application in the cloud instance. For IaaS, Infrastructure API is 

serving the function of virtual resource provisioning in the VM. In PaaS, service API is 

responsible in providing the capability to launch the generic database, storage, 

Exchange and web portals components. Whereas application API offers the interface to 

software related API, such as CRM, ERP, trading web services etc. In case if these API 

are compromised by unauthorized personnel, the API can be manipulated to cause 

undesired damage to the cloud consumers or public. The proposed remediation includes 

stricter access control to these APIs, re-engineered the security of the APIs and clearer 

understanding in the relationship between the interconnecting APIs.  

Malicious Insiders threat is difficult to be solved, especially if consumers have no 

visibility to the procedures and processes implemented by the cloud providers. These 

individuals are hired to work for the cloud providers, and their roles sometimes allow 

access into the customers’ data and transactions. The remediation to this threat is to 

enforce strict hiring process, establish legally binding employment agreement with the 

employees, reveal operational processes and procedures to the consumers and generate 

and disseminate audit trails on security breach.  

Account/Service and Traffic Hijacking is the popular intrusion method used by hackers 

to gain access to the application or database. Such threat exists since the beginning of 

the computing era. Via the phishing, social engineering and exploitation of application 

or database vulnerabilities methods, data is manipulated, and falsified information is 

returned to the clients or redirecting the clients to illegal web sites. The remediation 

solutions to this mischievous act are to introduce 2-factor authentication, proactive 

monitoring of abnormal users’ activities, establish auditing trails on user’s transactions 



50 

 

and to understand better the services offered by the cloud providers, by scrutinizing on 

their security policies and procedures.  

Unknown Risk Profile refers to the ambiguity of cloud providers in providing full 

exposure of their service offering. Often time in order to secure their business interests, 

cloud providers are reluctant to reveal the total architecture landscape to the consumers 

or outsiders. Without the full knowledge of the hosting platform, the customers are left 

with unknown risk profile, where they do not know the exact level of exposure to 

danger regarding their data. In this case, before engaging the service from the cloud 

providers, the customers should be equipped with knowledge on how their data and 

related audit logs are stored and who have access to this information, how much details 

will the providers provide in case of security breach, the level of hardening and patching 

on the underlying hosting hardware and software and the frequency of auditing and 

logging in the cloud instance. If these factors are overlooked, the consumers will be left 

with potential disaster which they do not anticipate. 

The abuse of cloud computing mainly targets the PaaS model, where fraudulent credit 

card is used to purchase the cloud instance from the providers, and the temporary 

platform is used to conduct malicious and even criminal activities. Apart from PaaS, 

IaaS model is also targeted for similar intention. The proposed remediation to this 

vulnerability is to enhance the registration process of cloud instance provisioning, more 

stringent checking on fraudulent credit cards, auditing on consumers’ traffic and close 

checking on blacklisted individuals.  

Shared Technology Vulnerabilities threat refers to issue in multi-tenant architecture. 

Often in the VM, CPU resource in particular is not isolated between different clients 

hosted by the same application or database. Hence there are chances that some clients 

might overuse this resource and create resource constraining situation in the VM. As 
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such, strong resource allocation and isolation mechanisms are needed, together with 

effective monitoring of the resource consumption in the VM. The CSA community also 

proposes regular patching and vulnerability scanning in the VM to fix and discover 

abnormalities before the tenants’ transactions are impacted.  

Distributed Denial of Service (DDoS) is usually the result of a Trojan horse attack.  The 

web sites affected will have their services interrupted and their clients will not be able to 

gain legitimate access to them. This often happens in high-profile web pages, for 

example the online banking, credit card payment gateways, government portals, news 

portals etc. The motive to these attacks is to gain competitive advantages, either in 

business, politic or social domains. It can also happen to exhibit protest on certain 

disgruntle issues by certain groups of people. Remediation to this treat involves a wide 

range of computing variables. Cloud providers can strengthen the rules in their 

firewalls, switches and routers to prevent unauthorized access and activities, installing 

robust Intrusion Prevention System (IPS) (Cisco, 2013; Fortinet, 2013; HP, 2013b) at 

the network layer in their hosting landscape. This includes activities called 

“blackholing” where traffic is routed to a ‘black hole’ when attacks are detected, 

“sinkholing” where traffic is channeled to another IP address when abnormaly is 

detected and ‘cleansing’ where the good and bad packets are monitored and filtered. 

 

Figure 2.7: Secure third-party publication. The subscriber requests and receives data from the 

publisher, and verifies the authenticity of the data using the encryption key from the data owner. 

Adapted from (Hamlen, Kantarcioglu, Khan, & Thuraisingham, 2010) 
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Hamlen et al. (2010) scrutinized security in cloud environment, particularly at the 

storage layer. The authors proposed security mechanisms to protect the data in storage 

as well as in transit. For data in transit, the data is requested from the publisher, which 

in this case is the data storage component in the cloud. Since the data is hosted in the 

cloud, the machine that stores the sensitive data is assumed insecure. When the 

information is requested from this cloud storage, the subscriber sends a message to the 

data owner to obtain the encryption policy regarding the requested data. As soon as the 

data arrives, the subscriber compares the encryption policy sent by the data owner to the 

encryption key information tagged together with the delivered data. When a match is 

found, the authenticity of the data can be confirmed. Figure 2.7 illustrates this sequence. 

This way, the owner, or the patient in this case can control the amount of data exposed 

to the subscriber. For the data in storage, the authors proposed to utilize the Secure 

cryptoprocessor (SCP) (IBM, 2013a) as part of the cloud infrastructure to enhance the 

robustness of the stored data. The purpose of SCP is to protect the data stored in the 

publisher, by eliminating other protection requirements at other physical components in 

the storage machine. The SCP does not output the decrypted output to the system bus, 

hence even the authorized personnel cannot tamper into the underlying data. As the 

storage of the encryption and decryption information is solely stored and confined to the 

SCP, the data owner can be rest assured that the encryption key that is sent to the 

publisher is correctly utilized to decrypt only the necessary data. Any attempt from 

hackers to steal these encryption and decryption keys in the SCP will need the physical 

possession of the device, as well as skills and tools which are beyond the technical 

knowledge of most hackers. Figure 2.8 illustrates the placement of SCP in a storage 

machine.   
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Figure 2.8: Secure cryptoprocessor. The SCP is a temper-resistant hardware that eliminates the 

need to harden other components in the hardware layer. Adapted from (Hamlen et al., 2010) 

As in figure 2.7, the data owner is required to send the encryption key to the cloud 

provider in order to authenticate the legitimacy of data request. The encryption key 

widely deployed nowadays is in the form of a smartcard. However, there are some 

drawbacks in utilizing smartcards for authentication purpose. Karthikeyan et al. (2012) 

pointed out that smartcard can be stolen or replicated easily, hence is deemed insecure. 

They proposed an authentication method using palm vein pattern recognition. The 

reason to use the palm for pattern recognization is that the human palm has complicated 

vascular pattern, thus is able to hold many differenting characteristics for personal 

identification. As the pattern of the blood vein lies under the skin, this pattern discovery 

method is deemed more secure compared to thumb print recognition.  

Personal Health Record (PHR) is a fairly new term used in medical record exchange 

domain. It contains the personal health and medical history of individual, which can be 

shared to interested parties that possess the necessary credential. PHR is initiated and 

maintained by individuals. It collects its records from Electronic Medical Record 

(EMR) and Electronic Health Record (EHR). EMR is the complete medical record 

stored when an individual engaged inpatient or outpatient treatment in a hospital. EHR 

is a subset of EMR, owned by the patient but is maintained by each hospital. The clear 

difference between EMR and EHR is that EMR is not modifiable by individuals, but 
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EHR can be appended by individuals. Figure 2.9 illustrates the overlapped relationship 

of these 3 types of medical records (R. Zhang & Liu, 2010). 

 

Figure 2.9: Patient medical record categories. Overlapped in relationship of PHR, EMR and EHR 

is illustrated. Adapted from (R. Zhang & Liu, 2010) 

The signficance of presenting this information here, is that the current trend in cloud 

hosting in Healthcare industry is focusing on the 'patient-centric' model. Figure 2.10 

exhibits such model. The PHR is collected by individuals from EHR data in cloud, and 

subsequently this information is filtered and disseminated to authorized personnel. In 

the PHR data dissemination domain, scholars (T. S. Chen et al., 2012; M. Li, Yu, 

Zheng, Ren, & Lou, 2012) employed similar model as in figure 2.7 to encrypt and 

decrypt exchanged data between the individuals and the subscribers. The encryption and 

decryption algorithms are not elaborated in length here as the purpose of quoting these 

researches is to outline the general current trend and progression of the cloud migration 

strategies that happen in the industry. Microsoft provides such PHR services in 

Microsoft health Vault (Microsoft, 2013b). However it is to note that such services in 

the cloud are not totally adhered to HIPPA rules, hence this is yet another foreseeable 

potential development in the HIPPA regulations to encourage the healthcare players to 

move to cloud.  
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Figure 2.10: ‘Patient-centric’ cloud model. Individuals retrieve their personal health and medical 

data from EHR stored in cloud, and then categorize and disseminate the information to related 

parties. Adapted from (R. Zhang & Liu, 2010) 

Donahue (2010) revealed some exciting progress in Healthcare industry, made possible 

by hosting in cloud computing environment. The authors revealed that the healthcare 

information technology (HIT) is 10 years behind the development in other industries. 

The reasons cited are the lack of knowledge in the healthcare industry players to fully 

understand and embrace the IT technologies, together with the skepticism on security 

and privacy issues on medical data. The priority at the moment is to digitize the medical 

records on paper format into EMR. The author outlined few conditions for the 

successful implementation of this initiative, with absolute precaution being considered 

for sensitive patient data:  

1) Capital expenditure spending needs to stay as efficient as possible. 

2) The new cloud architecture must permit sharing of data among different remote 

entities without combersome protocols. 

3) Scalability criterion must be in place for future expansion.  

4) High Availability feature must be incorporated into the new architecture. 
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As the perception that enterprise computing environments are not suitable for 

Healthcare industry, a separate community cloud called hcloud is proposed, that solely 

cater for the players in the Healthcare sector to achieve the above 4 goals.  

Cardeñosa et al. (2012) also stated that the biggest challenge to migrate legacy and in-

house healthcare application to cloud is the trust issue among the industry players and 

cloud providers, in hosting the medical data. The authors conducted some feasibility 

analysis on the hosting of EHR in the Public Cloud using Amazon Web Services 

(Amazon, 2012), and realized that another challenge with this implementation is the 

bandwidth issue between the medical personnel in the hospital and the Public Cloud. 

They discovered that another unsuitability reason to host data in the Public Cloud is that 

most medical personnel, whether they are situated remotely or in the hospital, the WAN 

connection to the Public Cloud instances is poor. As the medical data involves a lot of 

Digital Imaging and Communications in Medicine (DICOM) images transfer, the 

network pipeline will need major increment, which involves huge investment. Such 

scenario will discourage many migration efforts in the industry. In order to remediate 

this shortcoming, the authors proposed a Hybrid Cloud architecture, where text data is 

stored in the Public Cloud, whereas Private Cloud is established to host the DICOM 

images. Figure 2.11 exhibits their proposal. With such model, the applications will need 

to be recoded to connect to proper interfaces which also command a substantial amount 

of investment.  
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Figure 2.11: Proposal of cloud hosting for medical data. Due to large DICOM image transfer 

requirement, Hybrid Cloud model is deemed more suitable. Adapted from (Cardeñosa et al., 2012) 

From the perspective of the research in this thesis, the proposed resource management 

mechanisms contribute to tighter access control in real data. It achieves one of the major 

initiatives in protecting and controlling access to sensitive data either in storage or in 

transit. By prohibiting such access to the IT personnel, the proposed mechanisms enable 

IT services to continue serving their functions, at the same time improve the trust factor 

among the cloud consumers. From the commercial perspective, there are products that 

allow for the masking of customers’ data, so that IT functions can be performed without 

jeopardizing the privacy and security of these real data. Oracle Database Vault (Tbeileh, 

2009) is such product that promotes the compliance with security regulatory 

requirement and reduces the insider threat.  

2.4 Resource utilization monitoring 

2.4.1 Monitoring models and on-demand resource scaling 

One of the very attractive features of cloud computing is the ease of scalability in 

resource provisioning and de-provisioning in the VM. Resources in cloud can be scaled 

up or down easily, primarily due to the virtualization concept. Depending on the types 

of software deployed in the VM, the resource allocation mechanisms can generally be 

categorized into 2 classes: first, it is the dynamic on-demand resource allocation in the 
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VM, where needed resources are allocated rapidly when the resource threshold is 

detected. Such method allows the VM to have its resource state altered as frequent as 

needed. The second type is not as dynamic, where the additional resource is staged, and 

a restart on the software is needed to take advantage of the additional resources. The 

formal type is currently suitable for web applications, where dynamic scaling of 

resources can be detected by the application instantly to take advantage of the additional 

computing power. The latter is applicable mainly for RDBMS software and certain 

CRM applications, where the software needs to recognize the additional provisioned 

hardware by rebooting. Main reason to this scenario is that these software are licensed 

based on the amount of provisioned hardware, and these vendors do not allow their 

products to be used indefinitely without the customers paying for a premium when the 

new slice of additional resources is run against their products. As this research deals 

with database operations in the VM, the focus is on this latter resource allocation 

mechanism. Nevertheless the proposed mechanisms are applicable for on-demand 

scaling type, amid some modifications. It is also to note that the newly introduced 

Oracle 12c (J. Williams, 2013) has the feature to allow their customers to enjoy the pay-

per-use licensing model. However at the time of this thesis writing, this product has just 

been released and the cost feasibility of its implementation and its acceptance level by 

consumers in cloud environment are still at evaluation stage.  

In both the resource allocation categories, the resource allocation methods can be 

performed by 3 techniques. The first technique is the horizontal scaling of the 

application tier by mean of load-balancing. Web-based application can normally benefit 

from this scaling method. The second approach to increase the resource allocation in the 

VM is by mean of vertical scaling, where resources are added to the particular VM. The 

third method is called VM placement, which is also considered in the category of 

vertical scaling. However instead of adding resource into the VM, the VM is migrated 
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to another physical machine which has a larger or smaller hardware configuration 

(Iqbal, Dailey, & Carrera, 2010). In order to achieve efficiency in determining the 

trigger point when resources are to be allocated or de-allocated, monitoring of resource 

consumption is of utmost important. A profound monitoring mechanism will need to be 

able to process the collected data from the past, present and future resource utilization. 

In this section, the studies examine the monitoring agents deployed in both the web 

applications and databases, as the hardware monitoring parameters are similar for both 

worlds.  

Iqbal et al. (2010) experimented and tried to proof the advantages of horizontal scaling 

in comparing to vertical scaling. The hosting platform of the experiments is on 

Eucalyptus Cloud. As explained early in this chapter, Eucalyptus(Eucalyptus, 2013a) is 

an open source software that provides dynamic scalability feature in building the Private 

and Hybrid Cloud using Amazon Web Services API. To simulate the workloads, Httperf 

utility is employed. Httperf (httperf, 2013) is a tool usually used by industrial players to 

create artificial workloads in their web servers to investigate and evaluate resource 

capability, as well as generating benchmark for future reference during production 

operations. The authors segregated the web and database tiers into 2 VM initially. The 

initial objective is to detect the bottleneck in the VM, so that the response time SLA can 

be adhered to by adding resources to the VM for further transaction processing. When 

the response time threshold is detected at the front-end, the suggested mechanism first 

determines if the bottleneck is originated from the web tier. If it is, the resources in this 

tier are scaled. If there is no constraint detected in this tier, the database tier is scaled 

instead. The threshold is breached when 95 percentile of average response time of 

dynamic and static content requests is above the stipulated value, based on moving 

average calculation. The experiments reveal some interesting facts. For vertical scaling, 

where resources are added to the VM when threshold is detected, it is observed that the 
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throughput saturated at certain CPU run queue level, as illustrated in figure 2.12. The 

throughput never increases even the CPU utilization never gets saturated in both web 

and database VM, as in figure 2.13. 

 

Figure 2.12: Throughput of the system with vertical scaling of resources. It is observed that the 

throughput is saturated at certain CPU run queue level even the overall CPU utilization is not 

constrained. Adapted from (Iqbal et al., 2010) 

 

Figure 2.13: CPU utilization in both the web and application VM during the test of vertical 

resource scaling. Adapted from (Iqbal et al., 2010) 

However, in the second experiment when the horizontal scaling of resources is 

conducted, the throughput increases in tandem with the additional of extra VM into each 

tier, as exhibited in figure 2.14.  
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Figure 2.14: Throughput keeps increasing with the addition of VM. Adapted from (Iqbal et al., 

2010) 

Hence, apart from proposing a simple, yet perceived effective way to guarantee 

response time stipulated in SLA, the authors also pointed out that certain cloud 

platforms will post bottleneck in the hosting backbone, where usual resource parameter 

addition in CPU, memory, storage and network cannot elevate the performance of the 

VM. To alleviate this constraint, horizontal resource scaling is inevitable. Another 

solution is to engage VM placement mechanism, where the VM is migrated to more 

powerful cloud platforms.  

Chieu et al. (2009) presented a typical illustration of dynamic resource scaling 

mechanism for web-based applications. The architecture for the test bed in their 

experiments is similar to the one proposed by Iqbal et al. (2010). Figure 2.15 depicts the 

components in the architecture. The web servers are scaled horizontally by adding VM, 

based on the resource needs. The main reason for such architecture to work for web 

applications very much depends on the capability of the load-balancer. Theoretically, 

the Apache HTTP Load-Balancer can be re-configured on-the-fly when there is change 

in the underlying web application configuration. Thus, when the number of VM running 

the web services is altered, the load-balancer can react automatically to route the traffic 

to the new virtual web machine. Radware (Bercovici, 2010) is one such agent available 
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commercially to orchestrate this elastic horizontal scaling and load balancing, and it is 

integrated with the cloud provider management system. It is to note that the database 

tier does not have such capability due to the design of most RDBMS; hence dynamic 

on-demand scaling is generally not working in this tier.  

 

Figure 2.15: Dynamic scaling of web-based applications. Such dynamic on-demand scaling is 

suitable for the application tier. Adapted from (Chieu et al., 2009) 

The horizontal scaling of the virtual web machine is accomplished via “Image-based 

provisioning”. This capability is not a new technology in the cloud; rather it has been 

available in the industry for a while. Many operating system vendors have this feature in 

their products, for example Red Hat Enterprise Linux (IBM, 2013b) and Microsoft 

Windows Server (Microsoft, 2013a). This ability to have the additional VM created 

automatically and instantly is made possible via the cloning of the new machine from a 

‘golden’ virtual image. The authors mentioned that there are 4 criterions to determine 

the threshold points of the virtual web machines. They are: 

1) The number of concurrent users  

2) The number of active connections 

3) The number of processed requests/s 

4) Average response time/request 
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However, criterions 1-3 might not be suitable to be employed in cloud environment. 

The reason is that in cloud computing, commodity hardware is utilized, in contrast to 

conventional hosting where web servers are normally having homogeneous hardware 

configuration. In cloud, the collection of hardware that comprises a resource pool can be 

heterogeneous; hence the additional provisioned virtual machine can have difference in 

computing capability. Due to this reason, the scaling algorithms should not rigidly lock 

in certain values of concurrent users, active connections and ‘total running processes/s’ 

as the threshold to gauge the VM performance. The ‘average response time/request’ 

parameter should be the more accurate barometric indicator in this case. It is also 

important to note that in virtualized environment, the CPU and memory utilization 

parameters are sometimes misleading; hence silo monitoring solely from operating 

system perspective will not guarantee accurate result (V. Kumar & Garg, 2012). The 

combination of monitoring techniques, by taking the response time parameter in 

association with the operating system parameters is more appropriate.  

The method of rigidly locking in the threshold values as input for scaling decision in a 

VM is also disputed by Dutreilh et al. (2010). This threshold-based scaling policy is 

deemed inaccurate, as it promotes wastage of resources, due to the mismatch between 

the control system and control parameters utilized to arrive at the scaling decision. 

There are 3 sources cited for this misalignment: 

1) Latency in attaining the stable performance condition after the scaling output is 

performed, thus incurring an unstable duration for the subsequent scaling algorithm. 

2) Oscillation and instability in the input control parameters, which reduce the 

accuracy of the scaling decision.  

3) Too aggressive scaling algorithm, where the magnitude of resource scaling does not 

represent the actual transactions’ requirement. 
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To remediate the above, the authors proposed Markovian decision processes (MDP) 

model to manage the resource scaling decision. This model relies on reinforced learning 

in order to produce a collection of states and actions in the VM. With this model, the 

resource scaling decision inclines more towards the condition in the VM, instead of 

relying solely on the fixed threshold values which commonly decided upon the state of 

the VM during initial application deployment process. MDP is an extension of Markov 

Chain (Bolch, Greiner, Meer, & Trivedi, 2006). The high level illustration of Markov 

Chain model is as exhibited in figure 2.16.  

 

Figure 2.16: Markov Chain model. The states (A, G, C & T) and the transition probabilities 

provide input for the next course of action. 

For illustration purpose, by equating figure 2.16 to the real scenarios in the VM, there 

are 4 potential states in the VM. The transition probability from 1 state to another is 

depicted as below:  

P(xi = a | xi-1 = g) = 0.16, 

P(xi = c | xi-1 = g) = 0.34, 

P(xi = g | xi-1 = g) = 0.38, 

P(xi = t | xi-1 = g) = 0.12. 
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By relying on the probabilities of each transition, the cloud providers or the consumers 

can determine the necessary actions, whether to proceed with scaling, stay with the 

status quo, or delay scaling decision for t amount of time. However, there is a caution to 

be noted here, that Markov Chain model is suitable in cases where the ‘states’ are not 

dependent on each other. In situations where independence of states cannot be assumed, 

this model should be avoided. 

As mentioned above, the over-aggressive scaling algorithm is not desired, as it induces 

wastage in resources due to the reason that the state in the VM is not properly 

understood before the scaling is performed. The same sentiment is echoed by 

Belaglazov et al. (2012). The authors even cited that quality of VM migration and 

consolidation is inversely proportional to the number of nodes in the cluster. In other 

words, it is best to not encourage the scaling algorithm to reduce overhead in VM 

operations. With a predefined set of Quality of Service (QoS), the algorithms proposed 

by the authors strive to achieve the maximum mean time between VM migrations for 

this purpose. To achieve this, they introduced a parameter called Overload Time 

Fraction (OTF), which denotes the maximum timeframe where the host is allowed to 

stay in overload condition. To calculate the OTF, the authors too employed the Markov 

Chain Model. The states in this case correspond with the CPU utilization in the VM, 

and the associated transition probabilities are the chances of the potential migration.  

In many of the researches, the CPU utilization threshold is considered as the most 

important parameter to be measured to determine the oversubscription of resources in 

the VM. In this thesis, the CPU run queue size too is employed to serve the barometric 

measurement on the resource states in the tested VM.  

Khatua et al. (2010) introduced event-based scaling algorithms in their proposed 

Monitoring and Optimizing Virtual Resources (MOVR) architecture. The standout 
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feature in MOVR is the ability to map each event to an action, called ‘workflow’ in the 

paper. These workflows determine the appropriate actions to be carried out in the VM; 

for example to scale up or down, horizontal or vertical scaling of the computing 

resources. There are 4 events that guide the scaling decision. First, it is the threshold-

based event occurrence, which is similar to the resource threshold trigger as discussed 

above. The second event inclines towards prediction-based, where the system will base 

on the historical data, to forecast the resource scaling timeframe and duration. For 

instance, the performance evaluation applications are active particularly at the end of 

each financial quarter, or the payroll processing is active for few days before payment to 

the employees. The scaling mechanism will base on the historical data to decide for 

additional resource allocation to the VM. The third event is request-based, and the 

scaling decision is made based on the length of request queue in the applications. If the 

queue is hitting a certain threshold, the scaling of resource will be triggered. The fourth 

event is simpler, where it is based on the scheduling decision of the administrators, 

regardless of wherther or not there is resource constraint in the VM. Such event and 

workflow bases can be expanded to included more criterions, which can increase the 

efficiency of the on-demand scaling model.  

The determination of the appropriate threshold value before the VM is deemed fully 

loaded very much depends on the QoS required by the particular applications. This is 

because when threshold-based system is being put in place, only the mean value of the 

threshold can be utilized as the real resource usage pattern in the VM. The OS and 

database parameters oscillate quite substantially during the monitoring process as 

indicated by Dutreilh et al. (2010). Hence, even though the resource utilization is < 

100%, there are still chances for some transactions to spike the resource usage to > 

100% which cause violations in the application SLA. Beloglazov et al. (2012) and 

Buyya et al. (2010) realized such condition in the host, and they conducted experiments 
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to show such behavior. The experimented results can subsequently be employed by their 

recommended task or resource scheduling mechanisms to determine the best scheduling 

algorithms to achieve the objective of optimizing the resource usage, at the same time 

comply with the SLA requirements. Their experimental results are exhibited in figure 

2.17. It is expected, and confirmed from this figure that the higher the mean value of the 

utilization threshold, the higher chances for SLA violation, due to the fact that some 

transactions in the workload spike the resource usage until the constraining level. The 

data from this diagram is not representative for all workloads and VM; however such 

experiment should be carried out in all environments to determine the most accurate 

resource threshold value that maximizes the resource utilization and at the same time 

confines the SLA violation to acceptable level.  

 

Figure 2.17: The utilization threshold versus SLA violation for particular workload. The authors 

were trying to map the energy consumption to these 2 parameters. Their objective here is to 

produce a green cloud computing architecture by discovering the equilibrium between the 3 

parameters. Adapted from (Buyya et al., 2010). 

From commercial perspective, these resource monitoring and scaling tasks are 

performed by the cloud virtualization toolkits, which are explained in section 2.2. In 

enhancing such enterprise level products, Gulati et al (2011) studied and extended 

VMware DRS solution for resource management purpose. They examined particularly 

the reservation, limit and share attributes offered by DRS utility. In this case, 

reservation denotes the pool of resources offered to an organization in the cloud, for 
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scaling purpose. Limit sets the boundary of amount of resources permitted to be used by 

a VM. Whereas share signifies the relative importance of a unit of resources for a 

particular VM, so that more important transactions can access to resources in 

constraining situation. The explanation of these 3 attributes is depicted in figure 2.18. 

The significance of their study is in the improvement in the DRS load balancing, where 

the benefits of migration and the cost of performing the migration are calculated 

automatically, to trigger automatic VM placement.  

 

Figure 2.18: Resource allocation to an application for an organization in cloud. Each department is 

allocated a resource pool, a resource usage limit and relative importance in the transactions carried 

out. Adapted from (Gulati et al., 2011) 

Microsoft releases similar product as VMWare DRS in System Center Virtual Machine 

Manager (VMM) (Microsoft, 2013d) specifically on Windows platform. Oracle 

provided an integrated enterprise cloud IT management tools in their new release of 

OEM 12c (Oracle, 2013). ConVirt Enterprise Cloud (Convirture, 2013) is another 

popular product in this category. Nevertheless, there is not a way to determine the 

potential breach of resource utilization threshold in the VM itself based on real 

transactions in the individual VM, rather a macro view is perceived by these utilities, 

based on historical or current workload inputs. From this perspective, the resource usage 

monitoring and planning scheme in this thesis fill in this gap, to provide an insight and 

predict the resource consumption from real transactions in the individual VM. 
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2.4.2 Resource scalability in Parallel Database architecture 

At this time of the writing, dynamic on-demand resource allocation is only suitable for 

web-based applications, as explained above. The conventional RDBMS design does not 

work well with this cloud model because since the early day of the relational database 

development, the vendors always envisage the licensing model based on the 

fundamental of available number of processors in the database server. As this matured 

technology has been in place for so long, couple with the wide adoption and strong 

reliance on them by the industry, many commercial RDBMS suppliers do not consider a 

change to this model to take advantage of the elasticity and scalability features of cloud 

as urgency. Hence, the database hosting in cloud is lagging behind in relative 

comparison with the cloud web hosting in term of harnessing the full cloud advantages.  

In realizing this shortcoming in the database tier, a group of researchers from 

Massachusetts Institute of Technology (MIT) has started to develop a "database-as-a-

service" (DBaaS) model named Relational Cloud (Curino et al., 2011). The main 

objective is to harness the full advantage of cloud computing for database operations. 

This model is still in development stage, with the eventual promise to achieve efficiency 

in multi-tenancy, elastic scalability and safeguard the data privacy. The data privacy 

factor is developed via a separate project called CryptDB (Raluca Ada Popa, Redfield, 

Zeldovich, & Balakrishnan, 2011). With these goals in mind, the model is hoped to be 

able to convert capital expenditure cost to operational cost, by converting the traditional 

licensing model from processor-based, to usage based. In this case the consumers will 

need to pay only for the database services that they use, instead of the costly processor 

licenses. Furthermore, the Relational Cloud’s architecture strives to save in hardware 

and electricity, by consolidating multiple physical databases into a single physical 

database and multiple logical databases. Figure 2.19 illustrates a high-level depiction of 

the Relational Cloud architecture. The recent development in relation to resource usage 
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prediction in this model is published in (Mozafari, Curino, & Madden, 2013). As the 

architecture encourages multi-tenancy hosting, the challenges as indicated, are on 

predicting the resource usage pattern and transactions’ performance from each tenant, 

and providing a level of adequate resource isolation so that hardware can be shared 

among the tenants, but at the same time restricting resource constraint from occurring 

due to overrun transactions triggered by particular tenants. It is interesting to note that 

these researchers are not reinventing a whole new type of RDBMS; instead their works 

extend from current RDBMS offering. For instance, the ‘backend node’ in figure 2.19 is 

actually hosting a complete non-modified MySQL database. It is the mechanism on how 

the transactions flow from the end-users to the backend database; couple with the 

workload placement in each of the backend database that makes this model impressive. 

As of today this DBaaS model has yet to make its way to the commercial arena. 

Nevertheless the presented concepts that promote cost effective usage of database 

services and reduction in licensing investment will become very appealing to many 

industrial consumers.  

 

Figure 2.19: Relational Cloud architecture. The model strives to achieve efficiency in resource 

utilization and reduce the licensing cost. Adapted from (Curino et al., 2011) 

As mentioned, the above Relational Cloud proposal strives to improve the usage of 

cloud for multi-tenancy, elastic scalability and privacy. The benefits of elastic 
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scalability have been explained. The importance of privacy is also elaborated in details 

in section 2.3. Many readers puzzle on the significance of the multi-tenancy feature, 

particularly for IT personnel who have been supporting conventional RDBMS system. 

In many Parallel Database models, 1 database is usually related to only 1 client. Even 

for shared applications hosted on such databases, where many clients are sharing the 

same functionalities, it is unlikely that more than 50 clients are sharing one database, 

due to the resource management and segregation issues by clients.  

However in cloud computing, large web-based applications normally are characterized 

by having small data footprint couples with large number of tenants. As such, the need 

for better sharing and isolation of resource mechanisms is compelling. This gives rise to 

the desire to enable a mechanism for ease of moving consumers’ transactions around 

within the available clusters for resource management purpose.  

Das, Nishimura, Agrawal, and Abbadi (2010) proposed live database migration strategy 

in the virtual cloud infrastructure to address the requirements for this opportunity. In 

their test bed, the single virtual machine is hosting multiple databases, serving few 

thousands clients. The database service is scaled up by constant addition of databases 

into the VM, and the resource is scaled out by adding nodes into the hardware cluster. 

The scaling of the nodes is not solely attributed to horizontal addition of hardware to the 

VM. In this paper, the authors proposed a new approach to migrate the database out to 

another VM, similar to the VM placement concept that happens at the infrastructure 

layer. In order for this live database migration strategy to work in such multi-tenancy 

architecture, the clients’ data is compartmented into cell, where each cell denotes a 

group of self-contained data and metadata for particular client. This atomicity feature of 

the cells enables the migration to happen. Nevertheless, the proposed migration 

technique does not move the actual data residing on the SAN storage; rather the authors 

suggested migrating only the data residing in the memory. In this sense it is similar to 
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the approach taken by VM migration where the in-memory data is transferred as part of 

the complete VM migration procedure (Q. Zhang et al., 2010). As such, a service 

interruption time of only 70ms is achieved. The migration strategy is illustrated in figure 

2.20. Apart from this short interruption of service, the advantage of such database 

migration strategy, compared to conventional stop and start migration method, is that 

the memory residence data is not erased as the database is never rebooted. Hence the 

overhead of rebuilding the database cache as part of the stop-and-start migration 

technique is avoided. The authors conducted experiment on ElasTraS (Elastras, 2013), a 

cloud database system that supports multi-tenancy application. The concept in figure 

2.20 is articulated in this system, as the database architecture allows for ease of read 

cache migration. It is to note that current development for such database migration 

method can work only in ElasTraS and it has yet to be commercialized. The current 

trend on RDBMS development by other prominent database vendors does not reveal 

plan on such enhancement in their products. Nevertheless this proposal provides a 

directive on how the constraints in existing Parallel Database architecture can be 

liberated for more efficient cloud hosting.   

 

Figure 2.20: Live Database Migration. The migration and synchronization is accomplished via 

iterative copy and update on the database state between the source VM and destination VM. 

Adapted from (Das et al., 2010) 
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Table 2.2: Summary of studied researches with critical comment on sub-themes ‘monitoring models 

and resource scaling’. 

Scholars contribution comment 

(Chieu et al., 2009) Presented a typical illustration of 

dynamic resource scaling mechanism 

for web-based applications. Authors 

mentioned that dynamic scaling is 

taking the monitoring input from: 

1) The number of concurrent users  

2) The number of active connections 

3) The number of processed requests/s 

4) Average response time/request 

Criterions 1-3 might not be suitable to be 

employed in cloud environment as 

underlying cloud hardware is composed 

of heterogeneous hardware. 

(V. Kumar & Garg, 

2012) 

Studied on monitoring models. Found 

out that silo monitoring solely from 

operating system perspective will not 

guarantee accurate result. 

Authors' discovery in tandem with the 

research finding in this thesis. 

(Dutreilh et al., 

2010) 

Proposed MDP model to manage the 

resource scaling decision. The authors 

disputed rigidly locking in the 

threshold values as input for scaling 

decision. 

The Markov Chain model is suitable in 

cases where the ‘states’ are not 

dependent on each other. In situations 

where independence of states cannot be 

assumed, this model should be avoided. 

(A Beloglazov & 

Buyya, 2012) 

Found out that quality of VM 

migration and consolidation is 

inversely proportional to the number of 

nodes in the cluster. The authors 

proposed algorithm to achieve the 

maximum mean time between VM 

migrations for this purpose. 

Over-aggressive scaling algorithm is not 

desired. Proper monitoring models to 

ensure scaling point. 

(Khatua et al., 

2010) 

Introduced event-based scaling 

algorithms. Each 'event' is mapped to 

an action, called 'workflow'. 

Such event and workflow bases can be 

expanded to include more criterions, 

which can increase the efficiency of the 

on-demand scaling model. 

(Iqbal et al., 2010) Experimented and tried to proof the 

advantages of horizontal scaling in 

comparing to vertical scaling. 

For vertical scaling, the throughput 

saturated at certain CPU run queue level. 

Horizontal scaling does not have such 

problem.  

(A.  Beloglazov et 

al., 2012) 

(Buyya et al., 2010) 

 

Tried to map the energy consumption 

to utilization threshold versus SLA 

violation. Produced a chart to show the 

relationship. 

Experiment result is convincing, 

however each workload will demonstrate 

different behavioral relationship in the 

chart. 

(Curino et al., 2011) 

(Mozafari et al., 

2013) 

Developed Relational Cloud, to take 

advantage of dynamic scaling in cloud. 

The presented concepts that promote cost 

effective usage of database services and 

reduction in licensing investment will 

become very appealing to many 

industrial consumers. 
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(Das et al., 2010) Proposed live database migration 

strategy in the virtual cloud 

infrastructure to address the 

requirements for multi-tenancy.  

Memory residence data is not erased as 

the database is never rebooted during the 

migration. Hence cache building phase is 

avoided. 

(Gulati, Kumar, & 

Ahmad, 2009)  

Studied and extended VMware DRS 

solution for resource management 

purpose. 

The significance of the study is in the 

improvement in the DRS load balancing, 

where the benefits of migration and the 

cost of performing the migration are 

calculated automatically, to trigger 

automatic VM placement. 

 

2.4.3 Statistical modeling and benchmarking 

 Proof of concept – the linear correlation 2.4.3.1

As mentioned, the strength in this research relies on the belief that the combination of 

parameters from the operating system and database provides an improved monitoring 

mechanism in arbitrating the resource usage condition in the VM. The 2 most studied 

parameters are the SQL processing time in the database and the CPU run queue size 

obtained from the operating system. To integrate these 2 parameters, a linear 

relationship between them is assumed. To prove this linear correlation between SQL 

processing time and CPU run queue, following studies are carried out. Such linear 

relationship forms the cornerstone of all the proposed algorithms in this thesis.  

 

Figure 2.21: Linear correlation between throughput and concurrent processing. Beyond a 

threshold point, the linear relation is not conformed to. Adapted from (Banga & Druschel, 1997) 

As experimented by Banga et al. (1997) and Mosberger et al. (1998), the correlation 

between throughput and concurrency of processes in a server is linear before a 
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breakpoint, as illustrated in Figure 2.21. Both papers were experimenting on web 

transaction processing. In all their experiments, synthetic loads are simulated in the web 

servers in order to gauge the host performance. This same methodology is widely 

employed by many researchers in resource management related experiments, including 

the ones proposed in this thesis. Mosberger et al. (1998) pointed out a very valuable 

point in their experiments. Conceptually, they assumed that the throughput 

measurement is as simple as taking the total number of triggered requests, and divided 

this number with the time it took to complete the test. However in their tests, they 

realized that the quality of the measurement oscillated quite substantially, and 

calibrations and adjustments are needed, to discover the stability point before accurate 

measured readings can be taken. The same observation is true for the experiments 

conducted in this thesis, where the time to stability in the VM’s operating environment, 

and the quality of measurement duration are important variables. In these cases, 

heuristic effort is needed to determine the most appropriate values for both before 

readings can be harvested. Subsequently according to Little’s Law of queuing theory 

(Allen, 1990; Little, 1961), a server’s CPU mean queue length, Q is the product of its 

response time per visit, R and throughput, X, which is Q = R × X. Utilizing these 

concepts, it is derived that ideally the same relationship will apply to SQL processing 

time, S and server load, C as depicted in figure 2.22. In the research, the interest is to 

ensure that the database transactions are processed within this linear correlation to 

ensure consistency in hardware performance. If this linear relationship is not conformed 

to, resource contention, hardware performance degradation, total or partial hardware 

failure, undesired OS processes might have occurred in the host. 
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Figure 2.22: Linear correlation between SQL Processing Time, S and Server Load, C. The behavior 

of the plot beyond the ‘saturation point’ is not of interest in this research. 

 Mathematical models 2.4.3.2

In constructing the resource utilization mechanisms in this thesis, some mathematical 

models are employed. The fundamental of these models are outlined in this section. The 

idea of inferring the trend or characteristic from collected data can be properly and 

accurately represented by mathematical reasoning. The high level depiction of this 

envisaged methodology is illustrated in figure 2.23. Such method is widely deployed by 

scholars in many resource management problems. The data collection phase must 

adhere to following criteria in order to ensure accuracy of applicability: 

1) The collected amount of data must be sufficient to describe the investigated real 

world systems. 

2) The data must be relevant to the fundamental principle of the examined features. 

3) Noises must be filtered so as not to affect the representability of the data to the 

studied problem.  
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Figure 2.23: The application of methematical models into real world systems. As long as the real 

systems are measurable in some ways, the methematical models can be utilized to improve the 

performance of them. 

 Linear regression 2.4.3.3

The linear regression analysis (D. Kleinbaum, L. Kupper, K. Muller, & A. Nizam, 1998; 

Neter, Kutner, Nachtsheim, & Wasserman, 1996; Principe, Euliano, & Lefebvre, 2000) 

employed in this thesis’s proposals adopts the following simple equation: 

y = wx + b. 

This equation can be converted to a diagrammatic representation, as shown in figure 

2.24. This diagram is called the linear processing element. It is made up from 2 

multipliers and 1 adder. The multiplier w scales the input, while b is the bias.  

 

Figure 2.24: Linear Processing element. The interest by using this diagram is to solve the problem 

with linear relationship between the input xi and yi. Adapted from (Principe et al., 2000) 

As mentioned in section 2.4.3.2, the collected data must be free from noises. To 

categorize the data as legitimate points or outliers, a variable called residual is defined, 

as ε = yi - y
~

i . 
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To find which line is the most ideal line that best fit the collected set of data, a criterion 

is defined, called mean square error (MSE), J. In this case J is the squared average sum 

of all the residuals, as  

J = 
 

  
∑   

  
   , 

where N is the total number of data points. 

It is clear that to find the best fitted regression line, the objective is to minimize the 

above equation. Gaussian models(Wiesel, Eldar, & Yeredor, 2008) derived that the best 

fitted regression line will have the values of the gradient, w and y-intercept, b calculated 

as follows:  
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The MSE is useful to determine the line that best fit the collected data. However it does 

not show how good the best fitted line in representing the set of data. To address this, a 

parameter called correlation coefficient, r is defined, where  
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r has a value between -1 and 1. When r=1, all the data points are perfectly fitted on the 

best fitted regression line. In this case, when xi increases, yi too increases by the same 

magnitude. The same happens when r=-1, however when xi increases by a magnitude, yi 

decreases by the same magnitude. When r=0, xi and yi do not have relationship with 

each other.  
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 Machine learning 2.4.3.4

Machine learning (Mohri, Rostamizadeh, & Talwalkar, 2012) is a branch of Artificial 

Intelligence (AI), that deals with model or prototype construction that has the interest to 

understand and learn from the collected data. In the resource monitoring and 

optimization proposals, the data is collected to understand the database and VM 

behavior. Subsequently with this information, the resource and system states are learned 

to serve 2 purposes. First, the learning mechanism translates the learning into action for 

resource scaling purpose. Second, the learned information is converted into input for 

hardware fault and failure analysis. There are a great variety of machine learning 

algorithms. However the particular algorithm of interest in this thesis is the regression 

analysis. Regression analysis is a statistical method to estimate the characteristic of the 

relationship among parameters. In this case, the concern is about the discovery of 

relation between the VM and the database transactions.  

The proposal in the resource utilization monitoring area utilizes the semi-supervised 

machine learning technique. This method of machine learning consists of labeled and 

unlabeled data. In most literatures, the unlabeled data is deemed as easily to collect and 

inexpensive, whereas the labeled data is perceived as scarce and expensive in 

computational term. In the domain of semi-supervised learning algorithms, there are 

many choices of learning algorithms. The relevant learning technique in this thesis is the 

Self-Training algorithm. At high level, it consists of 4 steps (Zhu, 2007): 

1) Train f from labeled data, (Xi, Yi). 

 This is equivalent to conduct training on the TPC-H queries against the TPC-H 

data in this thesis. 

2) Predict on x ∈ Xu. 
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 This can be translated to discovering the values of w and b, from the linear 

regression model in section 2.4.3.3.  

3) Add (x, f(x)) to labeled data. 

 This step can be deciphered as repeating the step #1 and #2 for different set of 

labeled data, to obtained different values of w and b for different set of labeled 

data. In this sense, the different set of labeled data can be different queries in 

TPC-H benchmark, for instance, 1 set of w & b values for query 8, then another 

set of result for query #21. 

4) Repeat step 1 to 3 to achieve accuracy.  

The obtained array of w & b values is stored as baselines. Subsequently the unlabeled 

data is trained, and the result is matched to this array. Depending on the degree of 

conformance between the unlabeled data and the baselines, the deviation is learned 

continuously to determine the VM resource adequacy and hardware state.  

There is a shortcoming in self-training algorithm, where the initial mistake in training 

the labeled data can lead to subsequent inaccurate comparison between the unlabeled 

data and the baselines. It is also to note that machine learning is a branch of knowledge 

in AI that constantly evolves (Zhu, 2008). The studied knowledge in this discipline is 

expected to be extensible and flexibly applied in various applications.  

 Fuzzy computing 2.4.3.5

In the area of resource utilization management, it is inevitable in some cases to depict 

the condition in the VM using arbitrary language. In such cases, fuzzy logic (Alavala, 

2008; Ganesh, 2008) has been employed to handle situation of partial truth, where the 

truth value can reside between the range of completely truth and completely false 

values. Professor Lotfi Zadeh proposed the linguistic fuzzy concept (Zadeh, 1996) in his 
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paper titled “Fuzzy Computing with Words”. Since then the fuzzy computing has been 

widely deployed into a wide range of industries. To illustrate this concept, figure 2.25 is 

illustrated which takes the topic in this thesis as model. The ideal resource condition is 

the state of resources in the VM where all SLA-bound transactions are adhering to the 

required QoS. Such condition is inputted to the scaling mechanism, as reference to 

determine the scaling need. The scaling algorithm is responsible to direct the scaling 

decision based on input from the resource condition, which in this case is referenced to 

the resource adequacy scale in figure 2.26.  

 

Figure 2.25: A Fuzzy logic control system for resource utilization monitoring. Adapted and 

modified from (Kaehler, 2005) 

 

Resource utilization in a VM can be characterized as having subranges of a continuous 

parameters. Figure 2.26 depicts such condition. The blue, orange and red lines each 

depicts separate membership functions that represent the ranges of utilization intensity. 

In order to use this in the scaling algorithm in figure 2.25, each function will map the 

same utilization value to truth value of between 0 and 1. A combination of 3 values will 

control the decision to either scaling the resource up or down, or it remains unchanged. 

For instance, resource utilization condition in the VM is denoted by the straight line in 

figure 2.26. The red arrow in this figure shows a truth value of 0 for high utilization. 

The orange arrow is pointing to a value of ~0.2, which in fuzzy computing term, can be 

classified as slightly moderate utilization. Then the blue arrow denotes fairly low 



82 

 

utilization in the VM at value of ~0.8. The scaling algorithm makes decision based on 

these values in this fuzzy logic control system. 

 

Figure 2.26: 3 membership functions in the resource utilization scale. These membership functions 

serve the purpose as input to the fuzzy logic control system.  

 Linear Programming and Simplex Method 2.4.3.6

Linear programming is a mathematical formulation that searches for the best outcome of 

a problem, given a mathematical model which has a linear relationship among the 

variables. To find the most optimized solution for this mathematical problem, it is 

subjected to linear equality as well as linear inequality constraining factors. In the 

simplest and most significant form without compromising its principle, the linear 

programming problem can be written as: 

To optimize (maximize or minimize) 

∑         ∈   , 

Subject to  

∑             ∈   , 

   ≥ 0. 

When translating the above to the database transactions, n is the variety of SQL in the 

workload. fi denotes the frequency of each SQL, and xi represents individual run time of 

each SQL. Value of ai depicts the database parameter limits. These can be the memory 

reads parameter, where the total memory reads, bk of the SQL cannot exceed certain 

threshold for the optimization problem to be solved. It can also include physical reads 



83 

 

parameter, if the SQLs are doing physical I/O intensive operations. Following illustrates 

the manual steps in utilizing linear programming technique.  

For instance, there is a problem to maximize following equation to discover the ideal 

combination of TPH-C queries to synthesize a stress-testing scenario in the VM (C. H. 

Tan & Teh, 2013b): 

Q = x1f1 + x2f2. 

Subject to  

0 ≤ P1 f1 + P2 f2 ≤P, 

0 ≤ C1 f1 + C2 f2 ≤C, 

f1 ≥ 0, f2 ≥ 0, because run frequency cannot be negative, 

Where,  

 Pi is the individual Physical Gets (PG) of SQL, Si. PG is equivalent to physical reads 

in the database.  

 P is the total PG, which matches the PG in the steady state during initial 

conventional load testing. This value is to serve as baseline. 

 Ci is the individual Consistent Gets (CG) of SQL, Si. CG is equivalent to memory 

reads in the database. 

 C is the total CG, which matches the CG in the steady state during initial 

conventional load testing. This value is to serve as baseline. 

The constraints need to be converted to slack form, in order to be solved. So, 

P1 f1 + P2 f2 + s = P, 

C1 f1 + C2 f2 + t = C, 
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Where, s and t are slack variables.  

With the aforementioned, the problem can now be solved by Simplex method (Sinha, 

2006). To illustrate this, the variables’ are assumed to have following values: 

x1 = 10s, x2 = 15s, P1 = 400, P2 = 300, P=5000, C1 = 400, C2 = 600, C=12500 

In real practice, values of x1, x2, P1, P2, C1, C2 can be obtained easily by running the 

individual SQL in the database. P and C are the values that match the total PG and CG 

during initial load testing when the application went live, which corresponds to initial 

Ch. Now,  

Q - 10f1 - 15f2 =0, 

400 f1 + 300 f2 + s = 5000, 

400 f1 + 600 f2 + t = 12500. 

These data are then put into tableau format, as in Table 2.3. The italic section shows the 

data processed by Simplex method. This method is a popular algorithm to solve problem 

for linear programming. The discovery of this mathematical technique is very 

significant, to the extent that it is ranked in one of the top 10 algorithms in 20
th

 century 

(Dongarra & Sullivan, 2000).  
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Table 2.3: Tableau depicts the Simplex algorithm. The value in red font shows the pivot. 

Q f1 f2 s t values 

1 -10 -15 0 0 0 

0 400 300 1 0 5000 

0 400 600 0 1 12500 

1 10 0 1/20 0 250 

0 4/3 1 1/300 0 50/3 

0 -400 0 -2 1 2500 

 

With this result, the objective equation becomes  

Q + 10f1 + S/20 = 250. 

Hence the optimized solution is Q=250 as the rule requires the variables in the objective 

function to be 0. With this value, the optimized values for f1 and f2 are obtained. So 

now, 

10f1 + 15f2 = 250. 

If f1=10, f2 is then 10. The frequency ratio to run the combination of mixed workload S1 

and S2 in the new hardware configuration is 1:1. With this ratio, the VM is loaded with 

the 2 SQL to reach the new induced Ch. When the VM is stabilized at this level, the 

SLA-bound transactions are executed for validation purpose to serve the objective of 

meeting the SLA requirement.  

If iterative calculation is needed, the simplex method can be accomplished conveniently 

by the Matlab software (Hueeber, 2011). Such usage is common in cases where 

continuous optimization is needed, for instance in (Vandenberghe, Boyd, & 
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Nouralishahi, 2002), minimization of distance measurement is envisaged to partition the 

workload iteratively, and such software is handy in such situation.  

 TPC benchmark 2.4.3.7

The 2 most widely referred TPC benchmarks are TPC-C (TPC, 2013a) and TPC-H 

(TPC, 2012). TPC-C is an online transaction processing (OLTP) benchmark, whereas 

TPC-H benchmark is of decision-support type. Both benchmarks are meant to provide a 

foundation of measurement for hardware and software vendors to showcase their 

products’ capability. In the research world, they are frequently utilized as standard 

queries and data to generate output that is applicable for analysis to produce new 

theorems and algorithms. TPC-C is most suitably used to measure the capability of 

hardware or software, where it measures the number of orders that can be processed in a 

minute. In computing term, the parameter is called tpm-C, and this parameter is 

commonly understood by the wide industry. The design of TPC-C is not meant for 

performance analysis as the triggered transactions are generally not consuming much 

system resources.  

On the other hand, TPC-H is regularly utilized in stress tests. All the 22 queries in this 

benchmark are capable of stressing the hosts to their limits. Such ability is harnessed for 

the resource utilization affirmation experiments in this thesis, as this benchmark is 

employed to create stress-testing scenario in the VM. Furthermore, due to its design that 

allows for all transaction processing system, regardless of hardware type or operating 

systems, it has been deployed in the resource utilization monitoring and optimization 

segments in this thesis, as the proposed algorithms can be easily proliferated to other 

platforms.  

This thesis intensively makes use of TPC-H queries and data in the experiments. For 

future research, it is interesting to exploit TPC-C transactions to represent some 
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functional values in the proposals. With this potential enrichment, more robust resource 

management algorithms can be constructed.  

2.4.4 Measurement methods 

In large part of the studies in this thesis, statistical models play a major contribution 

towards achieving the objectives of resource management, particularly in utilization 

monitoring and planning matters. With the increase in demand and complexity of the 

systems through virtualization, heterogeneous and distributed components become 

common elements that articulate the hosting architecture. With this development, many 

heuristic and rigid rule-based approaches towards system management for better 

performance and failure prediction are rendered ineffective. Because of the multiplicity 

of system configuration, benchmarks and standards definition for reference is at its 

nascent stage as sufficient maturity in the industry for this distributed computing 

technology has not been achieved. Chen et al. (2011) explained the importance in 

merging both statistical analysis and system design. The challenges are described as 

identifying the statistical techniques for specific systems, how to evaluate the statistical-

driven optimizations and apprehend the statistical output for ease of human 

interpretation. The characterization of the workloads is critical for better understanding 

of how system configuration can be consummated and system performance can be 

improved. With the statistical characterization of the system and workload established, 

these models are evaluated to demonstrate their quality, as well as their significance in 

system performance. The evaluations are performed via hypothetical workloads and real 

workloads testing, with periodic re-training (Ganapathi et al., 2009) and testing, so that 

they can keep pace with the evolving systems and workloads. Another important 

element in evaluating either the workload of the system, is to enable an effective 

monitoring mechanism. As replaying the full workload in the system is not viable for 

mission-critical applications, a robust monitoring mechanism ensures that all aspects in 
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the critical workloads are controlled, with performance remediation or improvement set 

in perspective. 

In managing the data system, particular in resource management topics, integration of 

effort from IT system designers and statisticians are useful. Traditionally, the IT 

architects are responsible to design appropriate system to serve different varieties of 

applications, while the statisticians are mainly focusing in effort to produce effective 

algorithms or models for the use of the wide industries. It will be more rewarding if the 

knowledge from both fields are assimilated, as explained by Chen et al. (2011). Such 

combination of knowledge is also demonstrated by the proposals in this thesis.  

Designing statistical models that are representative for particular IT environments is 

very time-consuming and error-prone, as the characterization works are unprecedented. 

Hence the ideal scenarios for workload modeling appear when there are solid academic 

or industrial benchmarks for the particular workloads. However, at the point of this 

writing, these benchmarks are not widely available. Chen (May 2012) detailed into 

benchmarking effort currently available, and concluded that the time is yet to come for 

"the big data benchmark". While the industrial players and scholars are working on 

designing robust benchmarks for Big Data, at the moment, a more accurate way for 

performance evaluations is using realistic workloads as the input in Hadoop Mapreduce 

systems. This is illustrated by the subsequent research works by Chen et al. (March 

2011). The authors analyzed and discovered that the current Big Data benchmarks do 

not provide a one-size-fit-all solution for MapReduce performance evaluation. The 

currently available benchmarks: Gridmix (Iosup et al., 2008), Hive Benchmark (Jia & 

Shao, July 2009), Pigmix (Apache, August 2011) and Hibench (S. Huang, Huang, Dai, 

Xie, & Huang, March 2010) are observed to fit certain type of workloads. However as 

MapReduce system is going through enormous challenges in increasing growth, 

diversity, computational volume and consolidation of the data and computing resource, 
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more dedicated benchmarks are required. Hence, the authors provide insights on how 

intricate workloads can be apprehended. The objective is to enable better cluster 

provisioning and management. The MapReduce framework is not the focus in this 

thesis; however the works conducted in this statistical modeling and benchmarking area 

are applicable to the Parallel Database arena. Some of the prominent statistical 

methods employed to characterize the workloads are k-means (Elkan, 2003), 

Hierarchical clustering (Manning, Raghavan, & Schütze, 2009), maximum likelihood 

estimation (MLE) (Myung, 2003) and Goodness of fit (GOF) (Narsky, 2003). To 

provide input to these clustering algorithms, there are 2 commonly deployed distance 

measurement techniques. There are the Euclidian distance (Weisstein, 2013) and Cosine 

distance (P. N. Tan, Steinbach, & Kumar, 2006). They are explained as follows: 

For 2 real n-vectors, x = (x1, x2,..., xn) and y = (y1, y2,..., yn), if they are 2 points in 

Euclidean n-space, the distance between these 2 points is defined as   

Euclidian distance, d(x,y) = √∑    − 𝑦    
   . 

Cosine distance, d(x,y) = 
∑      

 
   

√∑     
  

    √∑     
  

   

 . 

 

Figure 2.26: Image illustration of the 2 distance measurement method.  

From workload perspective, assume the SQL processing time with logical reads as 2 

parameters, they can be translated to vector form to take advantage of such 

measurement for clustering purpose. The various clustering methods are explained in 

following. 



90 

 

 Hierarchical clustering 2.4.4.1

If given a set of N items to be clustered, with the distance between each item computed, 

the hierarchical clustering is accomplished via following 4 steps: 

1) Group each item into its own cluster.  

2) Find the closest or most similar pair of clusters, and group them into another cluster. 

3) Compute the distance between these clusters. There are few ways to calculate the 

distance between the items. The commonly utilized methods are: 

 Complete linkage clustering, where the maximum distance between items in a 

cluster is considered. 

 Single-linkage clustering, where the minimum distance between items in a 

cluster is considered. 

 Average linkage clustering. The average distance between all items in a cluster 

is computed. 

4) Repeat step 2 and 3, with the eventual aim of a single cluster.  

Such algorithms may be useful when there are multiple sets of workloads, which need 

to be grouped in their similarities based on multiple criteria to deliver certain purposes, 

for example, a group of SQL can be grouped by their processing time, then 

subsequently by their logical reads, and then physical reads etc.  
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Figure 2.27: Hierarchical clustering. The distance between elements in a cluster determine the 

clustering result. The agglometative activity increases the distance between clusters.  

 K-mean Clustering 2.4.4.2

K-mean clustering aims to cluster a set of N items into k number of clusters, where each 

cluster contains the items with mean distance within a stipulated limit. This clustering 

method is considered as NP-Hard; hence heuristic algorithms are employed to compute 

these k-clusters. Mathematically, the goal is to minimize an objective function, J as 

  ∑ ∑ ‖  
 
−   ‖

 
 
   

 
   , 

where ‖  
 
−   ‖

 
 is a distance measure between an item, x1 and the cluster’s center 

position. The end result of the clustering algorithm is depicted in figure 2.28. 

 

Figure 2.28: K-Means Clustering. The left workflow depicts the steps to arrive at the end clusters. 

The right exhibits the result from such clustering algorithm. Adapted from (Samplify, 2013)  
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In workload aspect, take SQL processing and memory reads as the parameters to be 

clustered, this K-Means Clustering method can be used to segregate between OLAP or 

OLTP transactions, to satisfy certain functions in workload characterization.  

 Maximum Likelihood Estimation 2.4.4.3

Maximum likelihood estimation (MLE) takes the result from a smaller set of data, to 

estimate the likelihood of the same occurrence in a larger set of data. Suppose there are 

N sets of measurements, (x1, y1), (x2, y2), …, (xN, yN), and the relationship between x and 

y is known, y =q(x, α, β, …), where α, β, … are parameters. If the y is related to x 

linearly, the equation can be written as y = βx+ α. By employing MLE, the maximum 

likelihood function can be obtained, by calculating α and β as:  

  
∑   

 
   ∑   

  ∑   
 
     ∑   

 
   

 
   

 ∑   
  

     ∑   
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 ∑      ∑   
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 ∑   
  

     ∑   
 
     

. 

With these 2 values, for particular x, the most probable value of y is determined. Such 

method may be useful to predict the processing time of particular SQL in a workload. 

Such prediction can be useful for transaction clustering in particular groups for 

scheduling purpose.  
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 Figure 2.29: Maximum Likelihood Estimate. The diagram depicts a coin toss test that reveals the 

highest probability of 0.454 for the likelihood of heads, in 11 attempts, with 5 heads and 6 tails as 

the result of the test, using particular coin. This is a simple example where n number in occurance 

of heads can be calculated in m samples. In more complex cases, the MLE algorithm strives to 

achieve the same objective of meeting the highest probability for a particular parameter in a 

particular set of test.  

 Goodness of Fit 2.4.4.4

Another workload prediction technique is called Goodness of Fit. The Goodness of Fit 

(GoF) for a statistical model measures how well this model fits into a set of real 

observed data. The measurement output will show the discrepancy between the 

benchmarked model and the real data. The chi-squared test statistic can be calculated by  

   ∑
       

 

  

 
   ,  

where, 

Oi is the real observed values, and Ei denotes the expected value. For a linear regression 

model, if the value of x
2
 is getting closer to 1, the real set of observed values are deemed 

more fitting to the hypothetical or expected model. This is displayed in 2.30. 
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Figure 2.30: The chi-squared test of Goodness of Fit for linear regression. The value of x
2
 is 

considerably high for A, B and D. However in the case of B and D, they do not clearly represent the 

condition of expected and real data. In these cases, additional analysis is needed, potentially via 

residual analysis.  

Such prediction can be deployed to predict the stability in the computing resources, if 

the workloads in the VM are processed within expected consistency and accuracy. In 

such cases, if the value of x
2
 is high, the hardware performance is deemed consistent 

and optimal. Such observation is part of the proposal in this thesis.  

In addition to the above clustering methods, Kernel Canonical Correlation Analysis 

(KCCA) has also been used to characterize a workload. Ganapathi et al. (2009) (2010) 

proposed a method to predict the workload performance, by employing the KCCA 

method (Bach & Jordan, 2002). This method strives to find the maximum correlation 

between 2 vectors. The first step in their proposal is dealing with converting the each 

query in the synthetic workload from TPC-DS benchmark (TPC, 2013b) into a vector, 

where this vector contains the “query features”, for instance the type of joints in the 

SQL, whether they are of hash, nested loop, inner or outer join. Each baseline query will 

have a set of query features that are almost unique for the query. The second step is to 

create vector that contains “performance features” for each query. The chosen 

performance metrics are disk I/O, SQL processing time, number of returned rows, 

number of bytes in the returned rows, the scanned tables’ records and the used tables’ 

records. Assume there are N training queries involved, so there are N pairs of query and 
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performance vectors. The “distance metric” between these N pairs of vectors is 

computed. With this information, KCCA is employed to find associated pairs of clusters 

in the performance vector and query vector space. The query plan and performance 

projections are generated as the result, as in figure 2.31.  

 

Figure 2.31: Query plan and performance projections as the result of KCCA computation on the 

‘distance metrics’ of N training queries. Adapted from (Ganapathi et al., 2009)  

With these 2 projections, query performance prediction can be conducted. First the 

query feature vector of the new query is computed; then its coordinate in the query plan 

projection is located. The same coordinate is subsequently matched to the performance 

projection, to find the performance characteristics of the new query. The authors’ 

proposal is different from the query performance prediction from query optimizer, in the 

sense that the commercial query optimizer predicts the query performance which then 

generates the perceived most optimized execution path, by mean of statistical 

performance data which does not involve training the queries in prior. The technique 

utilized by the query optimizer has its advantage, as the application transactions in the 

user database does not need to be halted to make way for machine learning to train the 

training queries. The query optimizer can continuously ‘learn’ the parameters and 

condition in the database online without incurring much system overhead. However, the 

proposals in this thesis are employing the same methodology as in (Ganapathi et al., 

2010; Ganapathi et al., 2009), by relying on the benchmarked data as it is closer to the 

actual desired values. The general probing of the database states by the optimizer is 
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sometimes deemed not comprehensive enough in certain aspects in providing input to 

the control or prediction systems.  

2.4.5 Workload characterization 

As mentioned, the above clustering methods are meant to improve the understanding of 

particular workloads. With this understanding, many improvements at the host level can 

be accomplished with this new capability. Chen et al. (March 2011) (May 2012) studied 

the workload characterization in MapReduce framework, and envisaged that effective 

workload characterization can provides following benefits, which are also applicable for 

Parallel Database architecture: 

 The growth anticipation of workloads in respect to amount of data and transactions 

volume can be predicted more accurately. 

 The computing resource requirements can be precisely estimated. 

 Resource provisioning activity can be performed accurately for specific workload 

types, based on the benchmarked workloads. 

 The effect of clustering multiple workloads into same groups can be forecasted.  

 The superposition of clustering multiple workloads into the same cluster can be 

visualized. 

 The clustered workloads can be baselined and extended to future workloads, to 

serve the above functions.  

Furthermore, in order for the threshold-based or Markov Chain-based scaling algorithm 

in section 2.4.1 to work in real environments, it is imperative that the workloads are 

performing in most efficient manner. The effort to tune the workloads is the pre-

requisite to resource management in the virtual hosts. The authors provided insights on 

how intricate workloads can be apprehended using live data and transactions. The 
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objective is to enable better cluster provisioning and management. Motivated by similar 

approaches, In (C. H. Tan & Teh, 2013a), a statistical model is proposed from the 

aggregation of metadata from real database workloads and operating system variables, 

to deliver for the resource planning purpose, as this collection of data from the database 

itself rightly described the real users’ experience. 

To ensure efficiency in workload processing, Mateen et al. (2011) proposed autonomic 

workload management that encompasses self-optimization, self-configuration, self-

inspection, self-prediction, self-organization and self-adoption. Self-optimization is the 

characteristic in the database, where minimum resources are utilized to process a group 

of transactions in an organized way. For instance, the query optimizer in Oracle 

RDBMS inspects and parses the SQL statements, and discovers the most optimized 

execution path to produce the output for the statements. Self-configuration is the 

responsibility to arrange for the best possible condition in the database, so that the 

database engine can have a more conducive environment to process the transactions 

efficiently. For example, the SQL Tuning Advisor (Yagoub & Gongloor, 2007) tool 

offered by Oracle is able to propose needed indexes and SQL profiles, so that the query 

optimizer can have a greater variety of choices to produce the most efficient execution 

paths. Self-inspection is the capability where the database engine is capable of 

discovering and visualizing abnormalities in the database environment. Oracle RDBMS 

provides such utility called Automatic Database Diagnostic Monitor (ADDM), where 

the data characteristic is examined periodically to spot the need for additional memory 

allocation, objects’ statistic update, indexes rebuild, details of executed queries etc. 

Self-prediction anticipates the amount of resources and time needed to complete the 

workload processing. The Oracle query optimizer is equipped with such capability, 

where the cost and duration of the SQL processing can be estimated prior to the real 

executions. Self-organization is another great feature, where the database is able to 
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position itself in the most optimized condition for SQL processing. For instance, the 

Oracle Automatic Storage Management (ASM) utility can self-collect the statistic 

information on the tables and indexes, or rearrange the data blocks on different disks to 

alleviate I/O contention. Self-adoption is the characteristic where the database is able to 

take full advantage of the condition in the host, to benefit the workload processing. For 

instance, if the database detects that there are additional x number of virtual processors 

provisioned to the host, it should be able to increase its processing parallelism x amount 

of times. In many RDBMS system, the aggressive pattern of memory consumption in 

the database is very common. However with proper adaptation strategy, this memory 

exhaustive attribute should allow for co-location of other important operations in the 

host, for example operating system security auditing, monitoring of overrun background 

processes, backup and recovery operations etc.  

In a large part of this research as well as in the literature studies, the monitoring 

parameters are often mainly comprised of the CPU run queue length or memory I/O 

usage. However, in data intensive operations, it is critical to take the disk I/O into 

consideration, as there will always be limited memory resource to contain the whole 

data sets needed for workload processing. Particularly in cloud, this parameter can 

affect the transactions’ performance by a few orders of magnitude. The issue here is the 

data locality. In standalone server, local disks are normally associated with the server, 

hence the computing resource does not need to travel far to fetch or write to the disks. 

Nevertheless, as cloud promotes distributed computing architecture, data can be relative 

far from the computing resource. Particularly in Public Cloud, this phenomenon is not 

favorable for data intensive application, for instance data mining in Data Warehouse. 

For such data analysis work, it will be more logical to host the database in Private Cloud 

where data co-locates with the other computing components. However, there are 

researchers who study and remediate the issue on this data locality problem in the case 
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where data hosting in large data center is unavoidable, similar to the Public Cloud 

model. Raicu et al. (2008) developed a resource provisioning and task dissemination 

system called Falkon, mainly serving data intensive processing in NASA. The Falkon 

architecture is depicted in figure 2.32. The task dispatcher delivers the tasks to be 

processed by the executors, which in this case are the computing nodes that contain the 

data, via pre-computed algorithms. These algorithms retrieve their input from a set of 

indexes that hold the information of tasks and location of data for the particular tasks, 

much like the key-value pairs in the states and transition probabilities of Markov Chain 

diagram. The dispatcher delivers the task to the node that contains the most data to be 

processed by the task.  

 

Figure 2.32: Data Diffusion model. Task is dispatched to the node (executor) where majority of the 

data resides. Adapted from (Raicu et al., 2008) 

The interesting fact produced by these authors in their experiments, is the relationship 

between the throughput and the number of nodes, with the I/O size remains as constant. 

As demonstrated in figure 2.33, in distributed computing, the throughput is saturated at 

certain number of nodes, and subsequent increment in horizontal scaling does not 

improve the capability of the cluster. In another experiment, it is discovered that the 

bigger the single I/O stream, the higher the throughput of the system. This can be 

attributed to the fact that each I/O incurs overhead which becomes significant when 
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many smaller I/O streams are running for the distributed cluster. This is depicted in 

figure 2.34.  

 

Figure 2.33: Throughput vs # of nodes in a cluster. Local disks reads capability increases in tandem 

with the horizontal scaling. However, distributed shared demonstrates a much degraded 

throughput comparatively, including the limitation of hitting throughput constraint at certain 

number of nodes in the same cluster. Adapted from (Raicu et al., 2008) 

 

 

 Figure 2.34: Throughput vs file I/O size. Each I/O incurs overhead which becomes 

significant when large number of transactions is carried out in the distributed computing cluster. 

Adapted from (Raicu et al., 2008) 

The above findings conclude that in distributed computing, such as cloud, the number of 

nodes in a cluster should be controlled. Vertical scaling should be considered instead of 

unnecessarily spanning the resource horizontally. Regardless if the nodes are hosting the 
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data or not, the throughput of distributed transactions will always be much lower than 

the throughput in single server, as experimented by Curino et al. (2010). In the case for 

the nodes that do not host the data, the latency in response time is caused by tables or 

rows contention as multiple nodes are trying to access the same data, distributed 

deadlocks and complex SQLs that need to draw the computing power from multiple 

servers. To alleviate one of these drawbacks which relates to the issue with I/O 

overhead in the distributed computing, Curino et al. (2010) proposed an algorithm to 

partition and replicate the database so that workloads can reside in minimum number of 

nodes  to reduce the overhead of distributed transactions, at the same time balance the 

workload across all available nodes. The rule of thumb to replicate a partition is that if 

the tables in the partition are not updated frequently, then the data in the tables are 

replicated to multiple nodes to take advantage of the additional computing resource, by 

taking the distributed transactions overhead into consideration. Depending on the 

memory size of the nodes, the partitions’ size is chosen to fit as much as possible into 

the memory. The partitions are cut equally based on 2 criteria: their data size or access 

frequency on the data. At high level, the workload traces are collected, and subsequently 

the SQL and tables involved in the workloads are mined and analyzed. Based on the 

analysis on the where clause and access frequency, the data in single or joint tables is 

partitioned as shown in figure 2.35.  
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Figure 2.35: The graph representation of partitioning activity. The nodes in the diagram are the 

tables, while the greyed edges denotes the transactions, with the weightage implies the frequency of 

the transactions. Adapted from (Curino et al., 2010) 

Even though the authors never envisaged cloud hosting in their proposal, their 

suggested partitioning and replicating algorithms are very useful for hosting of large 

databases with intensive I/O in cloud, particularly in Public Cloud. Furthermore, many 

Parallel Database architectures already have the partitioning option built-in; hence it is 

not necessary to reinventing the partitioning technology. It is believe that these 

replication and partitioning mechanisms will become popular in tandem with Public 

Cloud hosting for database operations.  

Table 2.4: Summary of studied researches with critical comment on sub-themes ‘statistical 

modeling and workload characterization’. 

Scholars contribution comment 

(Y. P. Chen et al., 2011) 

 

Explained the importance in 

merging both statistical analysis 

and system design. 

As replaying the full workload in the 

system is not viable for mission-critical 

applications, a robust monitoring 

mechanism ensures that all aspects in 

the critical workloads are controlled, 

with performance remediation or 

improvement set in perspective. 

(Y. P. Chen, May 2012) Detailed into benchmarking effort 

currently available. 

A more accurate way for performance 

evaluations is using realistic workloads 

as the input. 
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(Mateen et al., 2011) Proposed autonomic workload 

management that encompasses 

self-optimization, self-

configuration, self-inspection, self-

prediction, self-organization and 

self-adoption. 

Workload processing involves 

aggressive pattern of memory 

consumption. The autonomic workload 

characterization should allow for co-

location of other important non-

database operations in the host. 

(Raicu et al., 2008) Developed a resource provisioning 

and task dissemination system. 

The paper discovered that the number 

of nodes in the distributed computing 

should be controlled. Vertical scaling 

should be considered instead of 

unnecessarily spanning the resource 

horizontally.  

(Curino et al., 2010) Proposed an algorithm to partition 

and replicate the database so that 

workloads can reside in minimum 

number of nodes to reduce the 

overhead of distributed 

transactions. 

Even though the authors never 

envisaged cloud hosting in their 

proposal, their suggested partitioning 

and replicating algorithms are very 

useful for hosting of large databases 

with intensive I/O in cloud, particularly 

in Public Cloud. 

 

2.5 Resource utilization optimization 

In the topic of optimization in virtualized environments, Beloglazov et al. (2012) 

outlined 5 challenges which need to be overcome in order for the efficiency of resource 

utilization in cloud computing to achieve the next milestone. They are: 

1) Optimization of VM Placement. This is also called VM migration in some 

literatures. It is the eventual outcome of resource scheduling algorithm, where the 

content in a VM is migrated to another VM in order to take advantage of larger and 

smaller sized hardware. The former will benefit the quest for additional resources to 

process heavier and more complex workloads. The latter is beneficial in the case 

where idle resources can be sent back to the resource pool, hence achieving saving 

in operational cost and reducing carbon footprints. The frequency of VM Placement 

should be reduced as much as possible to avoid hindrance to normal users’ 

operations and lower the overhead of the migration activities. Hence, the research 

challenges here are: 

 How to predict peak usage of the application. 
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 When and where to migrate the VM to, considering heterogeneity of the 

virtualized hardware. 

 How to reduce the VM migration duration across large-scale systems. 

2) Optimization on the virtualized network. In cloud computing, VM and hardware 

clusters are connected via a huge network topology. The storage component for a 

database is usually segregated from the computing nodes. Nevertheless, both the 

data and computing elements are tightly coupled in order to complete the database 

transactions. When the VM migration takes place, the distance between the 

computing and data nodes might differ from the original configuration, resulting in 

the changes in communication latency between these 2 components. The response 

time from particular transactions can greatly differ due to this factor. Hence the 

challenge here is to ensure that the resource scheduling algorithm can guarantee 

similar or shorter distance of network links between the SAN storage and the 

computing nodes. 

3) Optimization on the thermal states and cooling system in the cloud data center. The 

purpose of optimization is to reduce the capital and operational costs. Overheating 

of computing hardware can greatly increase the electricity usage in the data center, 

hence affecting the bottom line of the business. Michael Bell, the research VP of 

Gartner Inc. quoted that “Power and cooling is a pandemic in the world of the data 

center”(Botelho, 2007). Such is the extent of how much the cost to control the heat 

in data center is hitting the revenue. To reduce this wastage, overheated hardware 

needs to be shut off. Hence, besides setting resource threshold to safeguard the VM 

performance, thermal management is needed, which requires the setting of 

temperature threshold coupled with robust monitoring in the underlying hardware. 

When the hardware is presumed overheated, the VM placement algorithm is 
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triggered. To decide this threshold is a challenge which is not studied in length in 

the literatures.  

4) Optimization on workload consolidation. Multiple workloads should be 

consolidated to make full use of the available VM. For instance, if the CPU and 

memory utilization thresholds for a particular VM are set to 70%, it is normally 

difficult to have one workload that can consume all these resources. For example, 

multiple applications that serve the OLTP type of transactions can use up the CPU 

cycle, but they are not I/O intensive operations. In this case, data analytical 

transactions that consume a lot of I/O can be mixed into the VM so that the memory 

component can be utilized. The challenge here is to identify which workload to 

combine to which, in order to achieve the ideal resource usage optimization. 

5) Achieving the equilibrium of conforming to SLA and maximizing resource 

utilization. A lot of the past literatures dealt with the task and resource scheduling 

algorithms that are focusing on achieving optimization in resource usage. However 

recent papers (Fito, Goiri, & Guitart, 2010; Iqbal et al., 2010) started to realize the 

importance of combining the SLA factor into these algorithms, as the business can 

only profit if their clients are satisfied with the service offerings. Hence the 

challenge is to discover the ideal point where both SLA conformance and saving in 

operational cost are meeting the expectation.  

Some of the optimization methods, particularly task and resource scheduling are 

discussed in length in the earlier section. Apart from optimization in resource 

utilization, this section also details into fault analysis to discover future failure. This 

topic is important as optimization cannot be achieved with faulty hardware in the 

systems. In fact, all the 5 challenges outlined above need the hardware to perform to its 

optimal condition in order for subsequent feasible analysis and improvement to take 

place. 
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2.5.1 Fault analysis and failure prediction 

Future prediction of workload and resource requirements has been discussed in previous 

section. In this section, the prediction on system state is of interest. This topic attempts 

to find out the condition in the VM, if the environment is conducive for critical 

transactions processing, by ensuring consistency and optimality on the hardware 

resource performance. The hardware failure is commonly a result from hardware wear 

out, deterioration in the hardware material, malfunction of the hardware components or 

any combination of these 3 culprits. Such occurrence in the VM will result in failure to 

achieve desired computing capacity to service the needed transactions. In cases where 

mission critical applications are required to be processed, such fault and failure in the 

hardware could result in the breach of SLA. Before further explanation is provided, the 

terms fault and failure need to be defined to ease the interpretation of system state. 

Fault is the hypothetical assumption that the system is going to fail, and it could remain 

dormant for a while before it causes the failure. While Failure is the event where the 

observed services in the VM do not meet the desired computing condition promised in 

the initial stage of hardware provisioning.  

This section discusses the researches studied by scholars in discovering the fault and 

predicting failure occurrence, hence achieving minimum outages to the intended 

operations in the hosts, by ensuring remediation actions are taken as soon as possible. 

The fault analysis on the hardware condition usually involves following efforts: 

1) To monitor the hardware performance periodically. Such monitoring involves 

capturing substantiated historical data of the system performance into a repository.  

2) To understand the sources and logics that lead to the undesired event/state. In order 

to provide for such understanding, the undesired condition in the VM needs to be 

defined.  
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3) To create a baseline state in the VM, when the performance is at expected level. 

Such baseline will be compared to running condition during steady state operations. 

4) Make reference on benchmarks established by scholars and industrial players, in 

order to understand and compare the performance standard of similar systems in the 

industry to the VM’s performance. 

The caveat to the effectiveness in the many proposals and solutions to fault analysis and 

failure prediction is that human error is not taken into account in composing such 

mechanisms. The following describes such mechanisms.  

Salfner et al. (2010) conducted detailed survey on computer system failure prediction 

methods. They studied on online failure prediction, a term that describes the assessment 

of current system state during runtime of the computing hosts. Such prediction allows 

for decision to be made if there indeed is going to be a failure, based on short-term 

assessment, which is confined to within few minutes to an hour before actual failure. 

The quality and confidence level of prediction provide to the functions of the different 

categories of actions to be performed. For instance, less confidence prediction outcome 

may warrant just a system reboot, whereas a high confidence prediction may result in 

extensive system diagnostic or part replacement. The data sets are trained, validated and 

projected to estimate the useful information. In order for the proposed online failure 

prediction to produce high quality outputs, the time relations of before, current and 

future state of the system are planned and defined precisely. Figure 2.36 illustrates time 

relations for typical online prediction methods. t is the current time. ∆td denotes the 

duration when the system is accessed. From this assessment, the prediction mechanisms 

anticipate that the system will have potential occurrence of a failure in ∆tl. Another 

parameter, ∆tw represents the minimal warning time before failure. The prediction is 

having an interval of ∆tp for it to be valid. To gauge the quality of failure prediction 

algorithms, 4 metrics are defined; they are true positive (TP), false positive (FP), false 
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negative (FN) and true negative (TN). TP happens when failure occurs within the 

prediction period, with warning raised in prior. FP denotes the situation where failure 

does not occur, but warning is raised. If the prediction system fails to notify on a true 

failure, FN flag is raised. In TN, no failure and no warning is given. These 4 metrics are 

used to determine the accuracy of the predictors. The prediction system comprises of 3 

types of data sets: training, validation and testing data sets. Training data sets are the 

data, either from real transactions or synthetic data that is used to simulate the optimized 

condition in the VM. Validation data sets are derived from the training data, where it 

contains the baseline configuration regarding the desired condition in the VM. Testing 

data sets are the data that is used for subsequent test in the VM, and they are compared 

to the validation or training data sets to determine the hardware states. 

 

Figure 2.36: Time relations in online failure prediction. Adapted from (Salfner et al., 2010). 

As the spectrum of online failure prediction is wide, Salfner et al. (2010) created a 

taxonomy to organize the structure of various approaches proposed by scholars. 4 main 

categories have been identified which are related to this research; they are briefly 

explained below.  

 Category 1: Failure tracking. The potential failure in the future is predicted based on 

past failure which occurred on the same system. 

 Category 2: Symptom Monitoring. Such failure prediction draws its input from the 

behavior of the system components, for example memory leaks, unusual high CPU 

usage, exceptionally high I/O etc.  
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 Category 3: Detected Error Reporting. This failure prediction methods deal with 

data from event-driven algorithms. For instance, the administrator can decide for a 

particular transaction, if the response time breaches certain threshold for x duration, 

the future failure is likely to happen.  

 Category 4: Undetected Error Auditing. This is different from category 3, as the 

methods employed here aggressively scan the system for potential abnormality, 

instead of targeting certain parameters.  

The resource optimization proposals in this thesis draw the motivation from the first 3 

categories. The relevance of these structured methods in this taxonomy, to the proposals 

suggested in the thesis is exhibited below.  

From category 1, the Regression and Machine Learning are the 2 techniques employed 

in the thesis’s proposals. Figure 2.37 illustrates the way these 2 methods are utilized to 

determine the potential failure. The failure-prone and non-failure areas are determined 

after discounting the outliers and illegitimate data points, which are explained in 

subsequent chapters.  
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Figure 2.37: Online failure prediction method based on classification of system variable 

observations. Such observations from the authors are translated by the proposals in this thesis, as 

shown in the bottom figure. To arrive at the fitted regression line, both Regression and Machine 

Learning techniques are utilized. Adapted from (Salfner et al., 2010). 

In Category 2, the methods in the taxonomy that are relevant to the proposed 

mechanism in this thesis are Fuzzy Classifiers and graph models, as in figure 2.38. 

Fuzzy computing with words (Zadeh, 1996) method is employed here to segregate and 

classify the observed patterns for failure prediction.  

 

Figure 2.38: Online failure prediction method based on pattern recognition. Fuzzy Computing with 

Words (Zadeh, 1996) method is employed by the proposals in the thesis to classify the different 

patterns in failure prediction. Adapted from (Salfner et al., 2010). 

The graph-models as illustrated in figure 2.37, is generated by the mechanisms as 

depicted in figure 2.39. The measurement values are obtained from the training and 
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validation data sets, and subsequent comparisons are made between the testing data sets 

with the validation data sets.  

 

 

Figure 2.39: Online failure prediction method based on system models. The graph-models is 

categorized in this category. Adapted from (Salfner et al., 2010). 

There is a time difference between the online failure prediction topics discussed by the 

authors and the proposals in this thesis. The authors envisaged that the prediction 

duration to actual failure for their discussed methods should be within few minutes to an 

hour. However this timeframe to predict future failure is longer for the failure prediction 

mechanisms proposed in this thesis, which could range from few hours to few days. 

This is because the results from the proposed graph models are sensitive to 

abnormalities; hence it can detect faults much earlier and allow for longer time-to-

remediation solutions.  

In the same topic, Gainaru et al. (2012) combined signal analysis concepts with data 

mining techniques (Teh, 2006) for the OS event log analysis to achieve the same 

objective of analyzing faults in the systems before failure. Signal analysis allows the 

characterization of the events that affect the systems. In this context, the normal 

behavior of a system is described and employed as baseline to subsequent collected 

traces. Then, Data Mining technique is engaged to extract the patterns in the collected 

data sets, search for correlations in the suspected events log and provide an adaptive 

forecasting method to predict the failures. The authors’ proposal is depicted in figure 

2.40. The normal signals are gathered and filtered. Instead of filtering out the outliers, 
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they are instead retained, and normal signals are gotten rid of. Subsequently the analysis 

is performed in the outliers, by scrutinizing on the outliers’ pattern. In general, the 

authors found out that the longer the duration between outliers, the lower the chances 

for similarity, which lowers the ‘confidence’ level of the sequence of event. Such 

observation is exhibited in figure 2.40. In the diagram, the initial 4 outliers are almost 

having the same distance measurement. However the last outlier, which has a time lag 

much greater than the earlier outliers, is measured differently in its distance, hence is 

having lower confidence level of 68%.  

 

Figure 2.40: Fault detection strategy that filters out the normal signals, and leaves the outliers for 

analysis. Adapted from (Gainaru et al., 2012). 

The probability of hardware component failure increases as the number of systems and 

hosts grows. Hardware component failure is the norm rather than an exception in cloud 

environments (Vishwanath & Nagappan, 2010). To compute the reliability level of 

particular cloud data center, Vishwanath et al. (2010) studied on failure trend on 

hardware components, data centers and hardware manufacturers. From hardware 

perspective, they found out that the component that is most vulnerable to failure is the 

hard disks. Using the data gathered and mined from 100,000 servers in a large data 

center, it is discovered that the annual failure rate (AFR) of the hard disks is about 

2.7%, followed by memory module at 0.1%. Thus, the disks failure is the dominant 

issue in affecting hardware performance. However the type of hard disks, whether it is 

of SAS or SATA type does not have effect on the failure potential. Even though the 

price difference between these 2 classes of product is wide, the reliability characteristic 
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between them cannot be ascertained. The authors also uncovered that the age of the 

machines or any hardware components does not have correlation to the failure 

opportunity. The same is true for the configuration of the servers, location of servers in 

a rack and the type of workloads run on the servers; none of these contributes to the 

failure potential. However, the gathered data reveals that there is a failure correlation in 

the machines that have experienced failure in the past, that the chances for failure are 

higher in the machines that failed before, as compared to the machines of the same 

configuration but have not encountered any breakdown in prior. In addition, the location 

of the data centers and manufacturers of the hardware are having effects on the 

possibility of failure.  

Table 2.5: Summary of studied researches with critical comment on sub-theme ‘fault analysis and 

failure prediction’. 

Scholars contribution comment 

(A.  Beloglazov et al., 

2012) 

 

Outlined 5 challenges to increase 

efficiency of resource utilization: 

1) Optimization of VM Placement 

2) Optimization on the virtualized 

network 

3) Optimization on the thermal states 

and cooling system in the cloud data 

center 

4) Optimization on workload 

consolidation 

5) Achieving the equilibrium of 

conforming to SLA and maximizing 

resource utilization 

Optimization in hardware 

performance is virtue, as with the 

other optimization criterions.  

(Salfner et al., 2010) Conducted detailed survey on 

computer system failure prediction 

methods. 

The authors' focus in on short term 

assessment. The studied methods 

may be applied for longer term 

prediction. 

(Gainaru et al., 2012) Combined signal analysis concepts 

with data mining techniques on the OS 

event log to analyze faults. 

The interesting method is that the 

analysis is performed in the 

outliers, by scrutinizing on the 

outliers’ pattern. 

(Vishwanath & 

Nagappan, 2010) 

Studied on failure trend on the 

hardware components, data centers and 

hardware manufacturers. 

The research discovered that the 

disks failure is the dominant issue 

in affecting hardware performance. 

 



114 

 

2.5.2 Resource utilization optimization models  

In this section, the maximization of resource usage is discussed. The resource utilization 

rate in traditional servers in general is only about 8 – 10% (Gmach et al., 2008). Such 

utilization percentage is deemed wasteful, and affects the bottom-line of the application 

service offerings. However, this kind of server configuration is unavoidable, as the 

architecture of the system needs to consider burstiness in resource requirement. 

Particularly in mission critical situation, such configuration is important to ensure 

critical transactions can be processed without resource constraint. However, as 

mentioned earlier in the chapter, virtualization is addressing this resource optimization 

issue with the capability of VM placement, workload migration together with horizontal 

and vertical scaling of resources. To maximize the usage of the allocated resources, 

following studies have been conducted by scholars.  

 Task scheduling 2.5.2.1

To ensure optimization of resource utilization, efficient task scheduling is an important 

component in cloud computing. Task scheduling is also called job scheduling by some 

researchers. Here, the name of such mechanism is generalized to tasks scheduling. At 

high level, task scheduling involves the process to map particular set of tasks to 

available resources in the virtualized server cluster. Such mechanism is more suitable 

for web applications; however it is envisaged to benefit database operations in the near 

future. In RDBMS world, such scheduling mechanism is already made possible by 

Oracle, where job can be executed in any node which is part of the Oracle Real 

Application Cluster (RAC) (Oracle_RAC, 2013). However, such architecture is much 

different than available database hosting in cloud, as Oracle RAC requires 

homogeneous hardware in the RAC configuration. Nevertheless, it is believed that task 

scheduling paradigm will become viable in cloud in the very near future, as the 

segregation in the layers of computing and data nodes becomes more transparent. The 
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recent introduction of Oracle 12c has made available the pay-per-use licensing concept. 

Such facility will encourage aggressive task scheduling for database transactions very 

soon.  

Jangra et al. (2013) provided a definition on tasks scheduling. Basically 3 steps are 

involved: 

1) The broker discovers the available resources in the provisioned pool of VM, 

together with the detailed information regarding the percentile availability of these 

resources.  

2) Tasks are mapped to the appropriate resources. This step is the most studied area by 

scholars, where efficient mapping of task-resource ensure optimization of hardware 

usage.  

3) Tasks are assigned to the resource slice based on decision in step #2. 

The challenges of task scheduling in cloud environment are mainly due to the high 

heterogeneity of computing resources, as well as high heterogeneity in the arriving jobs 

(Xhafa & Abraham, 2010). In their paper, Xhafa et al. (2010) proposed heuristic and 

meta-heuristic methods to address the requirement for good quality task scheduling 

mechanism. Their works focused on Grid computing. As Grid computing is a type of 

distributed computing, some of the discoveries in the paper can be assimilated in cloud 

environment. For instance, the heuristic method to determine the utilization of resources 

for particular job can be defined as  

avg_exec_time(job A) = 
∑           

 
   

 
,  

where n is the total execution of job A in the particular VM.  

In the virtualized cluster, job A could have been scheduled to various VM. The 

scheduling algorithm for new job can be of FIFO type, as typified in (Xhafa & 
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Abraham, 2010). Subsequently when the same job is run more frequently, more 

sophisticated scheduling can take place. If the job had run in m number of VM in the 

cluster, the execution time of job A can be arranged in an array, in the ascending order 

of execution time, such that the execution time of job A,  EA ={( e1,VM1),( e2,VM2),…, ( 

em,VMm)}. Thus, the scheduling priority will be from VM1 to VMm. There are still a 

number of considerations, for example the condition in the VM at particular scheduling 

time, other scheduled jobs in the VM, threshold in the VM etc. Such scheduling 

mechanism for database transactions will be researched in the future works, not 

included in this thesis. These research works will address the heterogeneity of the 

resources and tasks.  

In order to maximize profit from application service offerings, Li et al. (2010) proposed 

an optimization method to choose the VM where the tasks are to be scheduled. They 

applied the Grobner bases theory to solve the stochastic integer programming, which is 

a type of optimization programming method similar to linear programming proposed in 

this thesis. Figure 2.41 illustrates their envisaged scheme. The ‘Abstract service’ 

denotes a functionality that is similar to partitioned workload in a business process, 

which is independent in nature and can be allocated to particular VM for processing. 

The resource-i-j represents the VM slices. Each resource-i-j has certain capability that 

is capable of producing x amount of throughput with y amount of latency, at the expense 

of z cost. With a p probability of SLA fulfillment by each resource-i-j, the challenge is 

hence to find the most cost effective resource-i-j that can meet the required SLA. The 

proposal looks perfect in the ideal world. However the problems observed here are: 

1) How to provision the standby resource-i-j to service the ‘abstract service’. 

2) How to arrive at the probability distribution of QoS, q in the figure for each VM for 

each ‘abstract service’. 

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
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3) How to calculate the latency and throughput with the q percentile.  

The above 3 questions were not detailed in the paper. The authors’ proposal is 

incomplete. However the idea of employing the optimization algorithms once these 

parameters can be discovered is very exciting.  

 

Figure 2.41: Task scheduling problem, with standby VM to service the ‘abstract services’. The goal 

is to find the VM that is most cost effective in serving these ‘abstract services’, at the same time 

complying with the required SLA. Adapted from (Q. Li & Guo, 2010) 

In the same topic of maximizing resource utilization, Hsu, Chen, and Park (2008) 

proposed a task scheduling method called Extended Smallest Communication Ratio 

(ESCR) for grid computing environment, which is also applicable to other distributed 

systems, especially cloud. In their proposal as depicted in figure 2.42, there is a master 

server serving as the “broker” to disperse tasks to various nodes in the cluster. This 

broker functions similar to load balancer in conventional web service architecture. 

However the difference is that this broker considers more parameters in deciding which 

nodes to send the tasks to. Moreover, instead of a single node, the tasks can be sent to a 

cluster of nodes.    

The tasks are sent to the nodes to be processed, based on the availability of the CPU 

resource, as shown in figure 2.43. The authors claimed that their proposed ESCR 

resource allocation algorithm is able to optimize the CPU resource by minimizing the 

‘idle’ time as much as possible. Lin, Liang, Wang, and Buyya (2012) improved the task 
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scheduling methods by incorporating network bandwidth into consideration in 

determining the VM resource state. The authors claimed the novelty here, that the 

resource depiction only from CPU and memory perspective is deemed insufficient. 

They employed the nonlinear programming to solve the task distribution problem, via 

heuristic approach. The authors also considered the scheduling problem as NP-

complete. 

 

Figure 2.42: Task scheduling system. The C1, C2, C3 and C4 denote the nodes where tasks are to be 

processed. β1, β2, β3 and β4 are the criterions that help the broker to disperse the tasks. Adapted 

from (Hsu et al., 2008).  

 

Figure 2.43: ESCR task allocation algorithm. P1, P2, P3 and P4 are the processors where tasks are 

processed. The initial delays (4, 13 and 25 units of time) are caused by the communication issue due 

to the distance between the broker and the nodes. In this diagram, the deadline to complete the 

tasks is set to 200 units of time. Adapted from (Hsu et al., 2008). 
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Table 2.6: Summary of studied researches with critical comment on sub-theme ‘task scheduling’. 

Scholars Contribution Comment 

(Xhafa & Abraham, 

2010) 

Proposed heuristic and meta-

heuristic methods to address 

the requirement for good 

quality task scheduling 

mechanism. 

Apart from execution time criteria, there are 

other considerations, for instance the 

condition in the VM at particular scheduling 

time, other scheduled jobs in the VM, 

threshold in the VM etc. 

(Q. Li & Guo, 2010) Proposed an optimization 

method to choose the VM 

where the tasks are to be 

scheduled. 

Some shortcomings not covered in the paper 

are:  

1) How to provision the standby resource-i-j 

to service the ‘abstract service’. 

2) How to arrive at the probability 

distribution of QoS, q in the figure for each 

VM for each ‘abstract service’. 

3) How to calculate the latency and 

throughput with the q percentile.  

(Hsu et al., 2008) Proposed a task scheduling 

method called Extended 

Smallest Communication 

Ratio (ESCR). 

The resource allocation mechanism is 

translated to resource management in 1 VM, 

which is illustrated in subsequent section for 

future research. 

(Lin et al., 2012) Incorporated network 

bandwidth in scheduling 

problem. 

The authors did not detail the complexity of 

combining CPU, memory and network 

bandwidth variables in the scheduling 

problem. Potentially such aggregation of 

input to depict the VM’s resource state can 

boost the accuracy of the task scheduling 

problem. 

 

 

The above resource allocation mechanism can be translated to resource management in 

1 VM. The following mechanism is envisaged for future work in optimizing the 

resource utilization in particular VM, especially on CPU cycle. It will be detailed and 

refined in future publication of journal paper.  

Proposal to optimize resource utilization – a high level view for future research 

During the steady-state database operation in a VM, the interest is to find out resource 

utilization pattern by the database processes. In particular time interval, histogram is 

employed to record the resource utilization. The samples of SQL processing time, S and 

server load, C are gathered at 5 minutes interval. Subsequently 1 dataset is defined as 
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sample of data points collected in 3 hours timeframe, T. Hence there are 36 data points 

for analysis. The choice of 3 hours duration is also due to the fact that it can 

comfortably accommodate most long running data analytical processes in entirety. 

However this timeframe can be varied as needed. In real world production mode, this 

frequency of data collection can be adjusted to accommodate the allowable overhead in 

the system, for instance, 1-minute or 2-minute interval. This increase of sample 

collection frequency can produce more accurate results for analysis as the visibility into 

the resource condition in the VM is increased.  

Data analytical processes, unlike OLTP processes, often can be adjusted to fit into 

timeframe where the processes can run best without hindrance from resource constraint 

or OS noises. The activities in each time slot are presented by first defining some 

parameters as follows: 

Di = Day of the week when the datasets are collected. i represents values from 1 to 7, 

denoting 7 days in a week. 

Tj =3-hour time-block in Di. j represents values from 1 to 8, denoting 8 blocks of test 

duration in a day. 

dj = Dataset where samples are contained.  

Ck = 1-minute average server load at particular point in time in Tj. k represents values 

from 1 to 36, as there are 36 data points in 1 dataset. 

Sk = total SQL Elapsed time in the database at particular point in time in Tj.  

ST = Corresponding SQL Elapsed time at CT.  
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S
^

h = 70
th

 percentile SQL Processing time (C. H. Tan & Teh, 2013a), measured from 0 to 

ST. 

Ch = Corresponding server load at S
^

h.  

Using Fuzzy Computing with Words to characterize the relationship (Zadeh, 1996): 

 If a lot of data samples exceeds server load, Ch OR many occurrence of 

database processes holding Sk > Total SQL Processing time, S
^

h for more than q 

minutes, the test block, Tj is busy with database processes. 

 If Tj is busy with database processes, additional database processes cannot be 

scheduled in the timeframe. 

To explain the logic, additional 3 parameters are introduced, m, n and q. So If m 

percentile of data samples exceeds server load, Ch OR more than n occurrences of 

database processes holding Sk > Total SQL Elapsed time, S
^

h for more than q minutes, 

the test block, Tj is busy with database processes. Assume, Ch =4.4, m=20, p =0.8, n=2 

and q=10 in the explanation here. If 20% of data samples exceeds Ch, OR with more 

than 2 occurrences of continuous data processing hold Total SQL processing time, Sk > 

S
^

h for more than 10 minutes, Tj is deemed busy and not suitable for additional 

scheduling of database jobs. Else more database maintenance jobs can be added to Tj. 
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Figure 2.44: Proposed resource optimization by introducing more efficient task scheduling in a 

particular VM. This proposal is to be refined in subsequent journal paper. 

Figure 2.44 shows the server load status in the VM for a dataset d1 in T1. As depicted, 

there are 2 continuous-10-minute high resource utilization blocks in the dataset.  The 

data points at C5, C6 & C7 and C25, C26 & C27 are running maintenance jobs that 

constantly hitting the VM for more than 10 minutes over the boundary of Ch.  

 

Figure 2.45: Server busyness using server load limit as gauge. 

Figure 2.45 shows the ‘busyness’ of the VM in T1. 6 out of 36 data points are beyond the 

red line. Hence as < 20% of data points are > Ch, the condition is also not met to deem 

T1 as busy. The theory thereon allows more database maintenance jobs to be scheduled 

in T1. As illustrated in Figure 2.45, the server load, C has been grouped into classes, and 

the height of each bar indicates the density of the data points collected in the Workload 

Repository. Values which fall on a boundary are counted in the upper class. The width 
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of the bar is the same, and they are chosen to reveal the resource utilization in that 

duration.  

The above task allocation proposal in a single VM is simplistic; however a successful 

implementation of such mechanism can greatly increase the utilization rate of hardware 

resources in the virtual environment, thus achieving great saving in capital and 

operational costs.  

 Auction-based resource scheduling 2.5.2.2

Optimization can be achieved from another aspect in cloud. Wang et al. (2013) 

proposed a way to allocate resources to the cloud consumers, via a reverse auction  

based mechanism. In such scenario, it is assumed that the providers are having limited 

resources to be allocated, which is rarely the case for today’s commercial cloud 

providers. However if resources are to be sourced from the smaller providers with 

consumers rallying to take advantage of the cheaper offering from such providers, this 

Auction-based  allocation mechanism will be beneficial. The model works, starting with 

the potential clients tender their resource requests to the providers. Such requests will 

contain the information of needed Quality of Service (QoS) and amount of resource 

blocks. These requests are delivered to multiple providers, which in return will establish 

the associated cost with the tendered requests. This costing information will be 

submitted to an intermediary broker (IB), who will make decision, on which clients to 

get how much of the resources. The authors proposed to utilize the Vogel's 

Approximation Method (VAM) (VAM, 2013) to optimize the resource allocation 

problem at the stage when the allocation is to be made by the IB. They didn’t detail how 

the VAM can be deployed for such allocation mechanism, however the provisioning 

algorithm can be envisage as follows. In figure 2.46, the blue cells denote the cost of 

providing the resources from the providers. In deriving this cost structure, the providers 
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will decide based on the QoS and amount of resources needed by the clients, plus any 

other criterions deemed essential by the providers for particular clients. The green cells 

contain the resource slices owned by each provider, which are readily to be sold to 

potential consumers. The purple cells show the resource requirements from each client.  

 

Figure 2.46: Optimization for supply and demand Auction-based resource allocation. The 

optimization is to be conducted by an intermediary broker based on the information in this table. 

The next step is to apply the VAM to the table’s information. In this algorithm, the 

supply and demand amount must be added up to have the same values. If they are not 

the same, then a dummy consumer or provider will need to be added to the table, as in 

figure 2.47. In this case the demand is greater than the supply; hence the clients’ 

requirement cannot be fulfilled in total. However the consequence of such scenario is 

not to be discussed here.  

 

Figure 2.47: First step in the VAM optimization. The red cell indicates the highest value derived by 

comparing the values of differentiation between the lowest 2 cells’ values in each row and column. 

The yellow cell is the identified cell to have maximum resource allocation into it. 
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The VAM computation is to be carried out in following steps: 

1) The difference in value between the lowest 2 cells in all columns and rows, 

excluding the dummy’s, is to be computed.  

2) The values in step #1 are compared, and the highest value is to be identified.  

3) With the value obtained from step #2, the cell that has the lowest value in the row or 

column associated with the highest value as per step #2 is to be allocated with 

maximum possible resources. If there are same computed values in step #2, the row 

or column can be arbitrarily chosen. 

4) Step 2 and 3 are repeated. If any row or column has the supply and requirement 

value maximized, the other cell in the row or column is marked ‘x’, as in figure 

2.48.  

5) The optimization steps are complete when all the cells contain either the allocated 

resources or ‘x’ value.  

 

 

Figure 2.48: The supply of resources from provider 2 has been allocated in full to consumer 2. The 

other consumers will not get any more resource from this provider, hence their cells are marked 

‘x’. 

The rest of the optimization steps are depicted in Appendix A. The end result is an 

allocation as shown in figure 2.49. With this result, the intermediary broker achieves its 

objective to optimize the resource allocation based on the best pricing that can be 

offered by the providers together with the quality and quantity of demand from the 

clients.  
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Figure 2.49: The green colored cells indicate the resource allocation by the providers to each 

consumer. 

A similar Auction-based  resource allocation mechanism is proposed by Buyya et al. 

(2009). The authors quoted that the hurdle to universal embracement of such Auction-

based system is the non-standard interfaces which are needed by the consumers to 

migrate their applications. Due to this issue, it is difficult for the consumers to interact 

with each provider to discover the best pricing and services that are offered by the 

providers. Realizing this shortcoming, the authors proposed Meta-Negotiation 

Middleware (MNM), which is a prototype to enable global exchange of cloud services. 

The objective is to ease the interpretation of services provided by each cloud provider. 

As depicted in figure 2.50, the consumer sends the request for resource to the MNM, so 

that the information can be ‘normalized’ to fit the interface standard of particular 

provider. The provider will take the input from the received translated information from 

MNM, process and submit the pricing and service offering to the potential client. In 

such model, the consumer will initiate multiple negotiation sessions with many 

providers, by tagging along the MNM agent. Eventually the consumer will choose the 

best offer in the market based on the feedback received from various providers. 
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Figure 2.50: Negotiation of services and pricing between the consumer and cloud provider. The 

Meta-Negotiation Middleware translates the information for the consumer to arrive at the best 

market offer. Adapted from (Buyya et al., 2009) 

An et al. (2010) considered the uncertainty in the negotiation process between the 

consumers and providers. During the negotiation stage, a particular consumer can bid 

for resources from multiple providers. However, the consumer can only consume a 

finite number of resources offered by 1 or more providers, but it cannot take on the 

amount of resource beyond what is needed for the application. At the same time, a 

provider may receive multiple resource requests from consumers. The provider can only 

offer resources to the potential clients with the resources it has on hand. In such 

scenarios, the authors proposed a mechanism for the consumer to quickly decommit or 

cancel the agreement entered with a provider, by paying a certain amount of penalty, 

when a late but more favorable offer is offered by another provider. The same 

mechanism is applied for the provider, where it can cancel a deal entered with a client 

when a higher bid for resource is tendered by another client. An agent is envisaged to 

detail out the decommitment and cancelation of such agreements. Figure 2.51 shows the 

high level explanation of the prototype.  
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Figure 2.51: The negotiation process for finite state of buyer’s request and provider’s resources. 

The agent is engaged to negotiate, confirm, decommit or cancel the deal. Adapted from (An et al., 

2010) 

From commercial perspective, a lot of companies are engaging cloud billing company, 

for example Aria Systems (Aria, 2013) to automate the billing management of rapid 

changes in the resource allocation. Such systems can be altered to accommodate the 

Auction-based mechanism, both from providers and consumers. With such systems in 

place the focus is shifted towards generating the most efficient supply-and-demand 

pricing procedure.  

The Auction-based resource allocation optimizes the resource provisioning mechanism 

in the Public Cloud environment. The future database operations can make use of such 

model to ensure reduction in capital and operational cost, particularly from cloud 

bursting. The studied literatures provide a fundamental idea how the resources can be 

provisioned from the Public Cloud vendors in the most optimal manner, from the 

perspective of costing and service offering.  

Table 2.7: Summary of studied researches with critical comment on sub-theme ‘Auction-based 

resource scheduling’. 

Scholars Contribution Comment 

(Wang et al., 2013) Proposed a way to allocate 

resources to the cloud consumers, 

via a reverse Auction-based 

mechanism.  

It is assumed that the providers are 

having limited resources to be 

allocated, which is rarely the case for 

today’s commercial cloud providers. 

However it is beneficial for smaller 

cloud providers. 
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(Buyya et al., 2009) Quoted that the hurdle to universal 

embracement of Auction-based 

resource allocation system is the 

non-standard interfaces which are 

needed by the consumers to 

migrate their applications. 

Proposed Meta-Negotiation 

Middleware (MNM), to enable 

global exchange of cloud services. 

The introduced middleware needs to be 

embraced by all cloud providers in 

order to serve its purpose. 

(An et al., 2010) Considered the uncertainty in the 

negotiation process between the 

consumers and providers. 

The introduced agent-based system is 

attractive in perform resource 

negotiation. 

 

 Resource brokering – the essence of cloud bursting  2.5.2.3

When the number of nodes in the VM or the duration of service time breaches a 

threshold, the workload is sent to be processed by Public Cloud as the resource is more 

reliable. Until this point in this chapter, the determination of resource adequacy is based 

on threshold limit from operating system parameters, by taking feedback from end users 

or administrators. Nevertheless, these inputs are often not accurate as human 

interpretation of the resource requirement tends to be overblown. Hence, scholars have 

conducted studies in resource planning by analyzing the real or synthetic workloads. 

The notable method frequently studied is autonomous resource brokering. Even though 

Private Cloud is the focus in this survey, this resource brokering in Hybrid Cloud is also 

studied as this technology has matured in Grid platform, which will eventually benefit 

the cloud deployment. IT infrastructure has evolved in the way Cloud is being utilized. 

Instead of application hosting solely in public or Private Cloud, IT architects have 

combined the hosting in both. This is to take advantage of the massive scalability and 

cost overhead reduction, couple with more stabilized hardware in Public Cloud; whereas 

some classified transactions can still be preserved to run in Private Cloud.  

The predecessor to above cloud bursting brokering scheme is detailed in (Javadi, 

Kondo, Vincent, & Anderson, 2011). Before the topic of cloud bursting is elaborated, it 
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will be interesting to take an insight on how the research evolved from the objective of 

discovering availability and unavailability services in the host to resource brokering. In 

this paper, Javadi et al. (2011) first examined the problem of discovering availability 

and unavailability models for hosts running in a large distributed system. In this 

particular study, the CPU component's state is measured instead of the entire system as 

a whole. The traces for realistic scenarios are gathered via BOINC (Anderson, 2004), 

which is a middleware for publicly volunteer distributed computing. The data collection 

randomly identifies subsets of hosts whose availability have similar statistical properties 

and can be modeled to other larger systems with similar probability distributions. The 

test runs for close to 2-year duration and captures 57,800 years of CPU time and 

102,416,434 continuous intervals of CPU availability in 230,000 hosts. From the data, 

probability distributions are modeled from the hosts that have truly random availability 

and unavailability intervals. To group and cluster the hosts based on their similar trace 

distribution, two standard clustering methods are employed; they are k-means (Elkan, 

2003) and Hierarchical clustering (Manning et al., 2009). These 2 clustering methods 

have been discussed earlier in this chapter. The distance metric from Cramer-von Mises 

(Laio, 2004) is found to be the more suitable distance measurement algorithm for the 

host clustering effort by these 2 methods. Distance measurement using Cramér–von 

Mises method can be explained as follows.  

Consider a group of parametric criteria to measure the CPU availability, x1, x2, …, xn, 

which is arranged in ascending order. The Cramér–von Mises statistic for this group of 

value is  

T = 
 

   
+ ∑  

    

  
− 𝐹     

  
   ,  

where, 

n is the total number of samples. 
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xi is the i-th order in the smallest value in the sample.  

F is the perceived distribution function of the host availability. 

In this case, the distance measurement is provided by value T. If T is within a tabulated 

value for a cluster, the xi can be grouped in 1 cluster. Subsequently the host clusters can 

be aggregated via different value of T.  

It is also found that combining availability and unavailability greatly reduce the 

confidence and accuracy of the clustering methods; hence they are segregated during 

clustering. After the clusters of hosts are determined, parameter fitting for various 

distributions is conducted via the maximum likelihood estimation (MLE) (Myung, 

2003). Goodness of fit (GOF) (Narsky, 2003) of the resulting distributions for each 

cluster via standard probability-probability (PP) plots using a visual method or 

quantitative metrics are subsequently carried out. It is found that Gamma distribution is 

more suitably representing availability distribution, while unavailability distribution in 

large distribution systems can generally by represented by hyper-exponential 

distribution. With these 2 distributions plotted and the mean and variance values 

obtained, the authors applied them into the resource brokering mechanism as described 

below. 

With these establishments of the distribution models, they are applied to the resource 

brokering problem. Figure 2.52 depicts the resource brokering model envisaged by the 

authors.  
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Figure 2.52: Resource brokering model envisaged by Javadi et al.. Adapted from (Javadi et al., 

2011). 

In this context, a broker is responsible to route a series of incoming jobs to a set of 

schedulers, one for n number of clusters, in order to service the requests. The scheduler 

in turn dispatches the tasks to the providers within the cluster. The broker determines 

which schedulers to send the workload requests to, by the possible completion time of 

the jobs. This is the part where the availability and unavailability distributions play their 

roles. They employed the probability distribution function (PDF) proposed by Kleinrock 

et al. (1993) for job completion time in aggressive distribution systems to compute the 

hypothetical job completion time, as input to determine which scheduler to send the 

workloads to. The usage of availability and unavailability distributions in PDF is 

depicted below: 

The PDF of time t, with workload W and M processors,      
 

√    
   

     −
       

   
  

 , 

where, 
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, and the variance of the PDF,   
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In these formulas, the ta, tu,   
  and   

 are the means and variances of the availability 

and unavailability distribution proposed by Javadi et al. (2011). Such resource brokering 

proposal paves the way for further enhancement. In the above model, the computed job 

completion time is fed to the broker for routing decision. From figure 2.52, the Cloud 

Bursting phenomenon can be visualized. In this case the provider1 represents the 

internal Private Cloud, whereas provider2 depicts the cluster in Public Cloud.  

The authors further extended their works to include cost and performance aware 

provisioning policy in (Javadi, Abawajy, & Buyya, 2012; Javadi, Thulasiraman, & 

Buyya, 2012). The InterGrid gateway (IGG) as depicted in figure 2.53 is acting as the 

broker in figure 2.52. It is responsible to route the request to either the public or Private 

Clouds. In this case the users submit the requests to IGG, by providing the information 

regarding the duration of the workload processing, the required VM to process the 

workloads and the QoS of the required computing services. In addition to the brokering 

service, the IGG is also capable of performing the scheduling algorithms, by interacting 

with another IGG or Virtual Infrastructure engine (VIE). The VIE component is unique 

for Private Cloud, as it is capable to start or shutdown the VM in the cluster as needed. 

Figure 2.53 shows how workload request is sent for processing in this Hybrid Cloud 

architecture. This architecture is designed and implemented by Cloudbus research group 

(Costanzo, Assunção, & Buyya, 2009). The darker greyed text boxes in this figure 

indicate the route taken for Public Cloud resource provisioning, while the lighter grey 

boxes denote the Private Cloud route. Resource provisioning policies are built into this 

model. Their inputs are either based on the workload model known beforehand or from 

failure correlations established by Failure Trace Archive (FTA) (Kondo, Javadi, Iosup, 

& Epema, 2010), in order to fulfill a common QoS requirement. The measurements are 

established from deadline violation rate, job slowdown, and performance–cost 

efficiency. When the number of nodes in the VM or the duration of servicing time 
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breaches a threshold, the workload is sent to be processed by Public Cloud as the 

resource is more reliable, hence avoid job resume or restart scenarios due to spatial (Fu 

& Xu, 2010; Gallet et al., 2010) or temporal correlation (Yigitbasi, Gallet, Kondo, 

Iosup, & Epema, 2010) in hardware failure events. Spatial correlation denotes multiple 

failures that happen in multiple nodes in the cluster within short timeframe. This 

normally is caused by environmental factor, for instance the change in temperature in 

the data center. Temporal correlation is the failures that occur by not adhering to 

random order, where skewness in the distribution is observed over time.  

 

Figure 2.53: Resource brokering model envisaged by Javadi et al., with cloud bursting mechanism 

incorporated. Adapted from (Javadi, Thulasiraman, et al., 2012). 

The computation of routing possibility, Pi by the broker to the providers, based on cost 

and performance criteria of the resource providers, is exhibited by the authors via 

mathematical models. To illustrate these mathematical models, figure 2.52 is made 

reference in the following explanation. 

The cost influence to the broker routing decision 

To explain this, following sequence will bring reader to understand how the hosting cost 

is affecting the routing path: 
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1) λ = job arrival rate from the users to the broker. Given I as the distribution of job 

arriving at the broker, the mean of this distribution, E[I] =     and variance, 

V[I]=  
 .  

2) Furthermore, assume distribution of service time of queue i in provider i is Si, and 

this distribution has the mean value, E[Si] =   
  , and variance, CSi = σSi ∙   .  

3) Another assumption needs to be made for distribution of arrival time of jobs in 

queue i. The mean is given by E[Ii] =   
  , with variance,  

V[Ii] =
  

             

  
 ,       (1) 

4) Assume Ki is the cost to be paid to the provider i for the usage of resource per unit 

of time.  

5) E[Ti] is the expect response time of the job serviced in queue i. The authors derived 

this value as  

E[Ti]=
 

  
+

   
     

 

        
,        (2) 

where    
  is the square coefficient of variance on arrival time of jobs in queue i. 

From equation (1),    
  is derived as    

   + Pi (    
 −  ). 

6) The objective function of the broker is to minimize the cost associated with the 

services provided by the providers and the expected response time, so optimization 

algorithm can be applied here. In mathematical form, it is to achieve  

min∑            
 
    ,       (3) 

7) The authors applied the Lagrange multipliers method to optimize the broker’s 

objective function in equation (3). From equation (2), they derived that the 

optimized routing probability of jobs by the broker to the providers,  
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Pi = 
  

 
−

∑      
   

 
 

√    

∑ √    
 
   

 ,      (4) 

where ηi=λ(    
 +   +    

 −    ). 

8) Hence, from equation (4), the broker routing decision is taking the cost charged by 

the providers as a criterion.  

The performance influence to the broker routing decision 

From another perspective, the routing path can be guided by the performance model. 

The authors employed the “Average Weighted Response Time”(AWRT) (Grimme, 

Lepping, & Papaspyrou, 2008)  and “bounded slowdown” (Feitelson, Rudolph, 

Schwiegelshohn, Sevcik, & Wong, 1997) parameters. They computed that for N number 

of requests, the AWRT is defined as the average time that the user must wait in order 

for the request to be completely processed. Mathematically it is defined as 

AWRT = 
∑                

 
   

∑      
 
   

 ,          (5) 

where, 

dj is the run time of request j  

vj is the number of VM requested by the user to service request j 

ctj is the completion time of request j 

stj is the submission time of request j. 

The job slowdown is the total response time plus other overheads, for instance the 

queuing in the provider end or delay in other component involved in the job scheduling. 

It is defined as  

Slowdown = 
 

 
∑

                 

              

 
    ,     (6) 
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where, 

wj is the waiting time of request j 

The bound is set to 10s to prevent short requests from hindering the parameter. 

Both AWRT and “bounded slowdown” parameters are computed for each workload, 

which are stored in a repository. When similar workloads are routed to the broker, it can 

make the routing decision based on the historical result of the workload models. Hence 

the goal of using performance metric to influence and optimize the job scheduling 

mechanism is achieved. 

Fito et al. (2010) studied on the economics of Hybrid Cloud. Their works focused on 

web applications, and the benefit of cloud elasticity is expressed in monetary unit. 

Figure 2.54 illustrates the components in a typical modern web hosting architecture that 

makes use of cloud computing. In this depiction, the Cloud Hosting Provider (CHP) 

denotes the VM which is readily available in the Public Cloud, whereas the Web 

Hosting Provider (WHP) represents the in-house web servers. When WHP is 

overloaded, the resource needs is ‘burst’ to CHP. The Web Service Monitoring (WSM) 

monitors the resource utilization in the whole system, and it provides input to the 

Scheduler to decide the routing of further tasks from the front end clients via the proxy 

server.  
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Figure 2.54: Cloud Hosting Provider architecture envisaged by Fito et al. Such system will become 

typical web hosting model in the very near future. Adapted from (Fito et al., 2010) 

Most of the details in the components have been discussed in literature reviews in above 

sections. The novelty of this paper is the study conducted to exhibit the monetary 

benefit of using cloud services, compared to web hosting in static servers. Figure 2.55 

illustrates such comparison. The monetary unit in the bottom figure is formulated by 

considering the SLA violation cost versus hardware cost and the maintenance cost of 

the hosting systems. The authors showed that cloud hosting outperforms the static 

hosting in many orders of magnitude as shown in the bottom figure. 

 

Figure 2.55: Revenue benefit in deploying Hybrid Cloud computing compared to static servers. 

Adapted from (Fito et al., 2010) 
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All the discussed Hybrid Cloud computing in above literatures are studied on web 

application domain. There is not any convincing literature that discusses such ‘burst’ of 

resource to the Public Cloud in the Parallel Database domain. Nevertheless, with the 

overcome of hurdles in security concerns and some limitations in the RDBMS 

technology, such architecture will be very beneficial to the wide industry as it promises 

optimization in hardware usage, which can significantly boost the bottom line of the 

business by greatly reducing the IT spending on hardware.  

In the proposals in this thesis, optimization is performed using the linear regression and 

machine learning methods. Synthetic TPC-H queries are utilized to load the VM into 

certain resource limit in the VM, and the relationship between the SQL processing 

duration versus CPU run queue size is compared to the baseline data, to determine if the 

hardware is performing to its best optimized condition.  

With the performance assurance on the hardware, the subsequent section can 

convincingly deal with the response time verification. In the next topic, resource 

utilization affirmation is scrutinized, with the target to create stress-testing scenario in 

the VM in order for critical transactions’ response time to be tested.  

Table 2.8: Summary of studied researches with critical comment on sub-theme ‘resource brokering 

– the essence of cloud bursting’. 

Scholars Contribution Comment 

(Javadi, Abawajy, et al., 

2012; Javadi, 

Thulasiraman, et al., 

2012) 

Proposed resource brokering that 

includes cost and performance 

aware provisioning policy. 

Cloud Bursting phenomenon is 

incorporated in the brokering model. The 

proposal can be extended to Hybrid 

Cloud model.  

(Fito et al., 2010) Studied on the economics of 

Hybrid Cloud, by focusing on 

web applications. The benefit of 

cloud elasticity is expressed in 

monetary unit. 

The envisaged Hybrid Cloud architecture 

may potentially become typical web 

hosting model, in view of the capability 

of 'bursting' to Public Cloud, which 

provides different hosting benefits as 

compared to in-house hosts.  
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2.6 Resource utilization affirmation – stress testing 

Stress testing, also known as performance testing, is one of the very important 

components in application service offerings. Problems after the applications have gone 

live and started serving the wide user base are rarely due to functionality issues. This 

can be understood as any functionality bug would have been identified during the 

construction phase. During steady state production, the most encountered issue is 

performance degradation due to sudden surge in transaction volumes, or 

uncharacterized usage patterns from the end users. When these happen, stress testing is 

employed to re-verify the resource adequacy to accommodate such changes. Generally, 

these deviations from predicted volume of transactions and changes in application usage 

patterns are a norm rather than an exception. Hence the stress testing will be needed 

frequently during the tenure of the application services.  

2.6.1 Conventional stress testing 

Commercially available load testing software, for instance HP Load Runner (HP, 2007), 

Rational Performance Tester (IBM, 2013c) and Microsoft Visual Studio Ultimate 

(Microsoft, 2013c) are capable of serving the industrial application performance 

verification need. Undeniably, these load testing software are essential for the 

operational continuity of the applications. However the performance modeling using 

these tools are time consuming, and in most cases, not suitable for applications that have 

gone live, as there are very few opportunities for lengthy outages. Figure 2.56 displays 

the components of the HP Load Runner utility. The load testing conducted using this 

tool can last from several hours to a few days, depending on the intensity of the tests. As 

such, there is great value in producing load testing mechanisms that can shorten the 

testing time, as well as the effort needed to compile the test cases.  



141 

 

 

Figure 2.56: HP Loadrunner Components. Full-fledged load testing together with comprehensive 

analysis can be delivered by the utility. Adapted from (HP, 2013a) 

A typical load testing constitutes of 3 phases: 

1) Ramping up phase – During this time the test is building up the loads to reach the 

desired workload level.  

2) Steady state phase – in this phase, the workload reaches the designated level. 

Performance metrics are gathered, and the system is monitored if it can sustain the 

workload for x amount of time.  

3) Ramping down phase – the load generator gradually reduces the load to the system, 

until the machine is completely idle with no more load injection.  

Thakkar et al. (2008) detailed out the challenges of utilizing the complex load testing 

tools, and proposed a method to shorten the testing timeframe. The outlined challenges 

are: 

1) Large number of test cases needs to be prepared and executed to cover all possible 

workloads. 

2) Limited allowable time for testing. Particularly for mission critical applications, 

lengthy load testing is almost impossible to be conducted in production instance. 
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3) Error in creating the test cases. As test cases are manually created, there are chances 

of faulty test cases which lead to re-execution that wastes precious production time.  

The authors envisaged that an ideal performance model is capable of predicting the 

resource condition with variable loads. Such vision is illustrated in figure 2.57. With 

such capability, the amount of performance tests can be reduced significantly. The 

hurdle to overcome in this case is to discover the most suitable workload samples, 

which can delineate the complete set of workloads during production mode.  

 

Figure 2.57: Capacity calculator. The idea is to perform load testing on a particular sample of 

workload, which is representable for all the workloads. Adapted from (Thakkar et al., 2008) 

The authors proposed static and dynamic test reduction to try to arrive at the ideal 

workload samples. The static test reduction requires strong knowledge regarding the 

functional transactions, where transactions that can complete within short timeframe 

with less expected executions from end users are filtered out. In addition, similar 

transactions can be moderated, by including only a subset of the transactions in the 

representative workload. Dynamic test reduction involves the identification of large and 

resource exhaustive workloads during the initial test. These transactions are 
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subsequently ranked by their impact level to the system performance. Depending on the 

size of the eventual desired workload sample, the load testing will choose only certain 

percentage of the ranked workload for execution.  

The authors also discovered that the resource utilization metric oscillates quite 

substantially, which makes the harvesting of accurate performance metrics more 

difficult. The same observation is noted in the experiments which are carried out to 

bolster the proposals in this thesis. The above load reduction methods are practical, but 

they do not eliminate the requirement to manually create the test cases. Furthermore, 

even with such reduction, it will still require few hours of testing time. The proposed 

stress-testing mechanism in this thesis strives to improve these shortcomings, by setting 

up the stress-testing scenario in the VM within 15 minutes in general, which 

corresponds to the steady state phase mentioned above. Moreover, test cases are not 

needed, but the proposal will mimic as close as possible to the actual scenario in the 

database as though real transactions are executed in the database.  

For the goal of prohibiting access to sensitive data, in servicing environments with 

stringent data protection, synthetic workloads often need to be fabricated for load 

testing purpose. Krishnamurthy et al (2006) studied on the creation of synthetic 

workloads with the intention to match these workloads to the real workloads. A 

collection of sessionlets, with each sessionlet represents a sequence of requests from 

historical real workload traces, is served as input for the construction of the synthetic 

workloads. These sessionlets are built from TPC-W benchmark queries and data which 

are suitable in this case as web-based applications are in focus. The request length is 

taken as the criterion to match the real workloads. These sessionlets are matched to the 

desired workload by minimizing their request length difference by employing linear 

programming (Vandenberghe et al., 2002) method iteratively on the workload traces. 

Another discovery of their approach is that they considered the inter-request 
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dependencies, where the experimented test cases yield lower hypothetical resource 

utilization compared to the real situation, hence renders the inaccurate identification of 

the limit of resource threshold in the host. Thus, the conventional workload partitioning 

which utilizes Markov Chain model is deemed unsuitable for this reason. The authors 

implied that the Markov Chain model is rigid in relating the ‘states’ between the 

workload partitions hence it is not suitable for mixed and ever-changing workloads. 

Casale et al (2009) continued the work and experimented using TPC-W benchmark 

queries and data, to simulate burstiness in workloads, and deliver a mechanism to size 

resource adequacy in virtualized environment. In this context, CPU time is taken as 

measurement criterion in this burstiness characteristic. The authors found out that by 

considering the burstiness criteria, the discovered resource threshold is generally about 

30% higher than the threshold value generated by experiments without burstiness 

consideration.  

 

Figure 2.58: CPU utilization on the web and database servers from sampling of load testing carried 

out on a hypothetical online store. The linear correlation between the load and CPU utilization at 

the beginning correspond to the observation in the experiments in this thesis. Adapted from 

(Casale et al., 2009) 

In this thesis’s proposal on constructing light-weighted stress testing scenarios, the 

burstiness of particular workload can be accounted by incorporating this element into 

the representative workload that depicts the full workload in the VM. However, such 

incorporation is subjected to the SLA of the application offering, as burstiness might be 

an undesired outlier that does not need to be accounted for. Instead in most cases, it 
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needs to be gotten rid of as it wastes resources in the VM as the tenure of application 

service offerings is predominantly serving workloads which are processed in normal 

fashion. Hence, to account for such criteria in workload partitioning is quite subjective.  

In systems which do not permit lengthy outages, a full-blown load testing scenario is 

not suitable. In view of this, Barna et al. (2011) proposed a framework to explore the 

real workload space, and discovered the points which cause bad performance in the 

software and hardware components in the hosting environment. Subsequently load 

testing is conducted by taking these workload mixes as the stress vectors and starting 

point for the stress cases. Subsequently these cases are exploited to stress the host to the 

breakpoint for transactions’ response time verification. The interesting proposal in this 

paper is that the authors strived to uncover the different ‘stress vectors’ in the 

workloads, which correspond to a class of similar transactions that can be grouped 

together. Each stress vector is further divided into few segments, based on number of 

users or response time during the stress test. With this information, these stress vectors 

can be utilized to predict and plan for additional resources for expansion of customer 

base. Similar to the experiments carried out in this thesis, the CPU parameter is taken as 

measurement to represent the host’s resource adequacy. In most real production 

systems, as the CPU is the most expensive component, the resource constraint will 

normally happen on the CPU resource. Nevertheless, the constraining factor can happen 

on other hardware component, producing the scenario as in figure 2.59. In such 

situation, particularly in virtualized cloud hosts, the usual remediation is to fix this 

constraint until it does not post as the break point to the systems. As such, the CPU will 

soon become the constraint which is desired, as it is more cost effective to utilize the 

CPU cycles as much as possible.  
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Figure 2.59: CPU utilization on the web and database servers from sampling of load testing carried 

out on a hypothetical online store. The linear correlation between the load and CPU utilization at 

the beginning correspond to the observation in the experiments in this thesis. Adapted from (Barna 

et al., 2011) 

2.6.2 I/O parameter 

I/O parameter is scrutinized in this section in creating the stress-testing scenario in the 

VM. The perception, or rather the myth regarding database hosting in cloud in this 

sense, is that cloud is not conducive in processing database transactions that involve 

large physical I/O. Ghoshal et al. (2011) surveyed the I/O throughput in local clusters 

and Public Cloud. To discover the I/O performance in local clusters, experiments are 

carried out in readily available large clusters called Magellan from NERSC (NERSC, 

2013). To simulate the Public Cloud I/O performance, Amazon EC2 instances are 

employed.  

Comparisons are made between filesystems in these private and public virtualized 

environments, with analysis on the differences. The I/O performance is analyzed based 

on benchmarked experiments from Interleaved or Random (IOR) and Timed Benchmark. 

IOR generates the I/O usage patterns based on various interfaces. The block size and 

transfer size for reads and writes are set to 100G and 2M respectively. The Timed 

Benchmark also utilized the same block-size and transfer-size. In addition, the results 

are continuously collected over a period of time with sample collection in certain 

frequency interval.  
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The summary of the causes that induce the I/O variation are: 

1) Direct and buffered I/O. Such difference in I/O is only observed in the NERSC 

clusters. Amazon EC2 is not having the I/O buffered as according to the authors, 

and only direct I/O is configured in this Public Cloud. In the NERSC clusters, 

experiments are conducted on 3 types of filesystems, as depicted in figure 2.60. 

Global Scratch is a high speed global shared filesystem that often deployed in High 

Performance Computing (HPC) applications, which has a peak performance of 

15GB/s. Local disks are attached to the nodes, without needing network connection 

between the computing and data nodes. Elastic Block Storage (EBS) (Wolloch, 

2013) volumes are the network attached storage (external disks) storage arrays 

which are often used in traditional data center. The peak throughput for this kind of 

storage varies, depending on the type of network connection between the data and 

computing nodes. The properly configured EBS volumes should have peak 

performance between 500 to 2000 Mbps. From the graph, it is observed that cached 

I/O provides much higher throughput for Global Scratch filesystem. This condition 

can be devoted to the high speed network connecting the filesystems and the 

computing nodes, as it is not posing as a constraint; hence data can flow freely from 

the cache in the storage node to the computing node. In the local disks and EBS 

shared-storage, the throughput from buffered I/O is slightly higher than direct I/O. 

The authors concluded that in this case, the buffered data is having minimal or no 

effect on virtualized resources. For the EBS storage in Amazon EC2, it is observed 

that the Amazon EC2 does not provide for buffered I/O capability.  
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Figure 2.60: Comparison of I/O performance between direct and buffered I/O in virtualized 

clusters in Private Cloud. Global Scratch is optimized to provide high throughput when the data is 

cached. The local disk and EBS shared-storage are not showing significant difference between the 2 

types of I/O. Adapted from (Ghoshal et al., 2011) 

2) The effect of instance type in Public Cloud - Amazon EC2 instance type architecture 

is configured in such a way that for larger instance, the I/O throughput is higher. 

Hence for clients that pay more to acquire bigger cloud instances from Amazon, 

they are also provided with better I/O throughput rate.  

3) Regional effect – Amazon EC2 instances are observed to perform better in certain 

region in the United States. Such observation can be concluded for other cloud 

providers where different data centers in various locations can have different 

configurations, which result in dissimilar performance throughput.  

Figure 2.61 is the result from the IOR tests. Surprisingly, the Amazon EC2 outperforms 

the NERSC clusters in the I/O throughput. Generally local disks perform better than 

EBS shared-storage, however the difference is not in order of magnitude as initially 

perceived.  
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Figure 2.61: Comparison of I/O performance between direct and buffered I/O in virtualized 

clusters in Private Cloud. Global Scratch is optimized to provide high throughput when the data is 

cached. The local disk and EBS shared-storage are not showing significant difference between the 2 

types of I/O. Adapted from (Ghoshal et al., 2011) 

It is also observed that the filesystems on local disks are having a more consistent 

throughout as compared to shared filesystems, both in private and Public Cloud. Figure 

2.62 depicts such scenario. The experiments were carried out in a continuous 24-hour 

timeframe.  
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Figure 2.62: Throughput as a function of time. Local disk is observed to perform more consistently, 

as it does not depend on the network to deliver the data. Adapted from (Ghoshal et al., 2011) 

Table 2.9: Summary of studied researches with critical comment on sub-theme ‘conventional stress-

testing and I/O parameter’. 

Scholars Contribution Comment 

(Thakkar et al., 2008) Detailed out the challenges of 

utilizing the complex load 

testing tools, and proposed a 

method to shorten the testing 

timeframe. 

The authors noted that the resource 

utilization metric oscillates quite 

substantially, which is the same 

observation as in the experiments in this 

thesis. 

(Krishnamurthy et al., 

2006) 

Studied on the creation of 

synthetic workloads with the 

intention to match these 

workloads to the real 

workloads.  

The authors utilized TPC-W benchmark in 

their proof-of-concept experiments. 

Similar approach is taken in this thesis. 

(Barna et al., 2011) Proposed a framework to 

explore the real workload 

space, and discover the points 

which cause bad performance 

in the software and hardware 

components in the hosting 

environment. 

The interesting proposal in this paper is 

that the authors strived to uncover the 

different ‘stress vectors’ in the workloads, 

which correspond to a class of similar 

transactions that can be grouped together. 

These stress vectors can be utilized to plan 

for resource requirement. 

(Ghoshal et al., 2011) Surveyed the I/O throughput in 

local clusters and Public Cloud. 

The study on the I/O characteristic is 

essential in the research proposal to 

produce the affirmation model. 
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2.7 Summary and discussion 

Computing hardware resource management is very critical to many organizations, in 

order for them to stay relevant and profitable in their respective business domains. To 

survive in the stiff competitive market, the cost of computing needs to be optimized by 

employing the latest technology that allows for significant reduction in workforce and 

infrastructure spending. Cloud computing is such paradigm that promises great saving 

in capital and operational cost. It provides the platform for enterprises to pay only for 

the resources that they use. Couple this with the flexibility in the computing resource 

allocation, the consumers needlessly procure large and expensive servers to cater for the 

predicted future computing requirement. The magnitude of IT saving resulted from this 

is extremely significant. For instance, instead of spending few millions of dollars in 

procuring top-notch enterprise-class Unix servers to host the mission critical ERP 

databases, with the cloud clusters, the hardware investment can be as little as less than a 

hundred thousand to deliver infrastructure that is capable of running the same databases. 

Amid the skepticism in the cloud privacy and security, it is inevitable that the cloud will 

flourish and become the predominant standard in all IT infrastructure hosting.  

Hence, for the virtualized cloud to deliver its full potential, resource management play 

the most important role. Without proper resource utilization monitoring, suboptimal 

hardware resource scaling results in considerable overhead in the system which 

discounts the purpose of elastic scalability benefit. If the hardware is not scrutinized on 

its performance, substandard delivery of transactions’ executions result in breach of 

SLA, and wastage in the computing resources. Hence, both the resource utilization 

monitoring and optimization topics are studied in length in this research. Subsequently, 

resource utilization affirmation which concerns with the verification of the transactions 

provides a platform for swift stress-testing that is different from cumbersome 
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conventional load testing. With the convincing delivery of these 3 themes, cloud 

adoption will surely be more efficient and profitable. 

In this chapter, the surveys are conducted by adhering strongly to these 3 proposed 

themes. The sub-themes from each are elaborated in length. In the monitoring scheme, 

the surveyed sub-topics are: 

1. Monitoring models deployed in current wide industry as well as those envisaged 

by scholars, which have great value in propelling the cloud paradigm. 

2. Resource scaling technology, which tightly coupled with the monitoring models. 

The improvement in this mechanism strives to boost the level of efficiency in 

cloud offering. 

3. Statistical modeling and benchmarking intend to characterize a greater visibility 

on transactions that occurs in the VM. 

4. Workload characterization has similar aim as the studies in Statistical modeling 

and benchmarking. The target workloads are from both the real and hypothetical 

scenarios.  

In the optimization scheme, following topics are scrutinized: 

1. Fault analysis and failure prediction in the computing hardware. Such studies 

ensure that sub-optimal performance in the computing hosts is avoided. 

2. Task scheduling is surveyed to discover the current and potential methods to 

ensure computing tasks can complete without constraint in resources.  

3. Resource scheduling is reviewed next. Its objective is also to ensure that 

resource constraint does not occur in the computing hosts. The difference is that 

it targets the optimization at the hardware level instead. 
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4. Resource brokering. It has similar objective as resource and task scheduling. 

However the target optimization area is at the cloud providers and consumers 

segment.  

After the above 2 schemes are studied, the affirmation scheme targets following topics 

to provide for its verification objective on application transactions: 

1. Stress testing. The conventional methods are reviewed, together with scholarly 

proposals which are impactful in the evolution of this technology.  

2. I/O influence on workloads is analyzed as the experiments that serve the 

affirmation scheme largely utilize the I/O component in the VM as input to 

produce the desired output.  

Some of the studied literatures are not directly applicable to the prototypes developed in 

this thesis. Nevertheless, their influence on the outcome of this research is significant 

and relevant. From the detailed scrutiny on these literature reviews, the general trend of 

resource management in the industry, particularly in cloud platform is perceived. 

Subsequently the generated proposals are originated from these roots. Besides 

reviewing these literatures, foreseeable future developments are also indicated in this 

chapter.   
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3. RESEARCH METHODOLOGY 

3.1 Introduction 

There are 3 themes in this research. The first concerns the resource utilization 

monitoring in the cloud virtualized environment. Subsequently, resource utilization 

optimization is targeted. Following these 2, resource utilization affirmation is 

scrutinized.  

Firstly, the first topic is important as an effective monitoring system is required to 

provide clear visibility on the resource state in the VM, for resource planning and 

scaling purposes. It requires the metadata of the real workloads, particularly on the SQL 

processing time, to be mapped to the corresponding CPU run queue size, to produce the 

resource state depiction. The relationship between the SQL processing time and CPU 

run queue size is assumed linear in nature, in order for this monitoring mechanism to 

deliver its objective. The workloads in focus do not necessarily filtered; hence the 

burstiness condition is also established by the monitoring mechanism, which allows for 

resource planning in case burstiness situation in resource utilization is included in SLA 

calculation. The research work here has been published in (C. H. Tan & Teh, 2013a). 

Secondly, optimization in the hardware is targeted, as it is crucial to safeguard the 

hardware performance in the VM, in order for the computing power to be reflective of 

the true capability of the hardware, as well as to hinder any potential failure in the near 

future. To construct the mechanism to examine the hardware state, TPC-H data and 

queries are employed to load the VM gradually and steadily to the run queue threshold. 

Once convincing baselines are obtained, they are recorded as benchmark. Subsequently, 

the same TPC-H queries are run periodically, and the results are plotted into linear 

regression graphs. The gradients and y-intercepts of these graphs are compared to the 
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baselines, to arrive at the conclusion if there is any concern with the hardware 

performance in the VM. 

Thirdly, a mechanism is proposed to create stress-testing scenarios in the VM, in order 

for the SLA-bound transactions to be verified. In this case, the proposed mechanism is 

similar to the conventional stress testing utility. However the proposed model requires 

much shorter timeframe to arrive at the steady state stressed level. TPC-H queries and 

data are employed to load up the VM. In doing this, the memory reads/s of the real 

workload is matched with the memory reads/s of particular TPC-H query or queries. 

Once this match is found, the TPC-H query or queries are executed iteratively in the 

VM to reach a steady run queue level, for subsequent verification of SLA-bound 

transactions. It is to note here that the caveat for the successful implementation of this 

model is that the I/O must be predominantly performing memory reads in the database. 

The memory writes, physical reads and physical writes are assumed not significantly 

influence the real workload. Due to this presumption, the representation of the 

workloads is generally applicable for OLTP transactions that do not induce significant 

I/O write to the storage subsystem. This scenario is common in properly architected 

production environments. As the memory modules are getting cheaper, this motivates 

the utilization of memory reads/s parameter as the primary variable in the database 

together with the run queue size, for the construction of the stress-testing environment. 

The TPC-H queries are also utilized to discover new CPU run queue value when the 

hardware change is taking place in the VM. The research works for the second and third 

themes have been published in (C. H. Tan & Teh, 2013b, 2013c).  

In order for the above 3 themes to deliver their objectives, the resource utilization must 

only be constrained at the processor level in the operating system. Such scenario is also 

common in most hosting architecture, as CPU power is generally more expensive than 
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any other component in the hosts. With this sanctioned, CPU run queue can be 

comfortably applied in the linear relationship envisaged in the proposed mechanisms. 

3.2 Approaches to research 

In producing the resource management proposals, the caution is to avoid access to real 

data, in order to protect the data privacy. Hence, metadata from real workload is mined 

to produce the monitoring model. Thereafter, TPC-H is employed to formulate synthetic 

workloads in the optimization and affirmation models. TPC-C was considered before; 

however the queries in TPC-C are lighter, hence harder to stress the VM to the resource 

limit compared to TPC-H queries. Hence even though TPC-C is established as a 

common industrial standard, it is not utilized here. However it is considered for future 

works in replacing performance data widely employed in this thesis with total-

transaction-capable measurement in particular VM. 

The conventional silo monitoring of the resource condition in the VM is assumed 

inadequate. This research combines the database parameters with the OS parameter to 

deliver its resource management objectives. From the database end, the SQL processing 

time is taken as the primary variable in the first 2 themes. In the first theme, this 

parameter is further segregated into 2 types. The first one is called DB CPU Time 

(DCT). It is the processing duration that is required solely by the database. The second 

is named SQL Elapsed Time (SET). This duration constitutes of all the timing 

parameters involved in delivering the result of the query. In other words, DCT is a 

subset of SET. The magnitude of difference between DCT and SET is taken as the 

barometric gauge to determine the resource adequacy in the VM for database 

operations. The proposal in the second theme takes only SET as reference when 

database parameter is combined with the OS parameter in the linear regression analysis. 

Then, the suggested stress-testing scenario built for the third theme utilizes the memory 
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reads/s parameter in the database. From the operating system perspective, all the 3 

themes are employing CPU run queue size as the parameter from OS to be combined 

with the database variables.  

From statistical modeling standpoint, linear regression analysis is employed in the first 

2 themes to depict the resource utilization condition in the VM. It is to note that any 

data point beyond the linear plots is not to be considered in the construction of the 

monitoring and optimization mechanisms. Further to this linear regression analysis 

technique, machine learning is applied to periodically learn the behavior of the 

hardware system. In the third theme, linear programming and simplex method are 

envisaged to discover the TPC-H query that has the closest match to the I/O throughput 

and CPU run queue combination.  

3.2.1 Definition of research objectives 

The interest in the resource utilization monitoring is to provide a clear visibility of 

resource state in the VM. Such information is subsequently relayed for resource 

planning, or scaling purpose. In many of the surveyed studies, this topic is part of many 

proposed resource management methodologies. It serves as the critical pre-requisite for 

many resource or task scheduling proposals. The success in deployment of efficient and 

autonomous monitoring system is the goal in this research. 

The definition for resource utilization optimization is broader. Many scholars’ 

researches focus on optimizing the resource usage in the hosts, by attempting to increase 

the percentile of utilization in the VM, via the popular task and resource scheduling 

models. There are also suggestions to optimize from the monetary investment 

perspective, by proposing supply and demand on hardware resources via Auction-based 

algorithm. In this research, the optimization is viewed from the perspective of hardware 

performance. This aspect is critical in complementing all the other optimization 
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approaches. Only with proper delivery of hardware performance, the other avenues can 

become meaningful. 

Resource utilization affirmation concerns with creating a stress-testing scenario for 

verification of SLA-bound transactions. The objective for the proposal is to augment the 

application service offering, where the transactions can be tested and the associated 

response time verified. In a way, its function is similar to conventional load testing; 

however the duration needed to create the stress-testing scenario is much shorter. 

Hence, it should be viewed as a light-weighted version of load testing utility that 

complement the conventional load testing tools, where comprehensive but cumbersome 

load testing is undesired in some situations. Furthermore, it also serves the objective to 

discover new value of CPU run queue threshold value in case there is change in the 

hardware configuration in the VM.   

3.2.2 Proposed models 

3.2.2.1 Monitoring model 

The model envisaged for resource utilization monitoring theme is depicted in figure 3.1. 

The data points from the test will produce the 2 linear plots. S’ denotes the DB CPU 

Time (DCT), which is a subset of S, which is the SQL Elapsed Time (SET). SET 

involves all the processing time to complete the SQL, from database as well as 

operating system perspectives. C’’T is the 100 percentile value of the run queue 

threshold in the particular VM. Data points beyond this threshold are not guarantee to 

conform to the linear relationship, hence are not serving the interest of the proposal. C’T 

and CT are the 80 and 90 percentile values, and a 5% zone is visualized between these 2 

edges. ∆S is the value different between the S and S’. To conceptualize these 

parameters, take figure 3.1 as the ideal test result from the real workload. In this case, at 

point C’’T , S’ =2S. This can be deciphered as to process the workload in the VM at 
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point C’’T, the database needs only S amount of time to process the workload, but due to 

constraints internal or external to the database, the result of the workload can only be 

returned after spending additional 100% of time in the VM. This 100% additional time 

is taken as the near-threshold for workload processing. From this explanation, it can be 

known that C’’T is not determined in prior, but obtained its value from ∆S. From C’’T, 

CT and C’T are deduced. Hence, this monitoring system is also capable of inducing the 

resource threshold in the VM.  

The real insightful information to determine if the resource adequacy in the VM is 

characterized by the data points in the 5% zone. Now, when 5% of the total data points 

fall into this zone, the VM is deemed saturated in the utilization of its resources. The 

burstiness condition can also be delineated by narrowing the 5% zone in the model.  

 

Figure 3.1: Resource utilization monitoring model. It is capable of providing clear visibility on 

resource usage, as well as determining the run queue threshold in the VM. 

3.2.2.2 Optimization model 

The resource utilization optimization model is as illustrated in figure 3.2. In this 

diagram, the TPC-H query #8 is utilized to steadily load up the VM, with the 

corresponding CPU run queue size recorded at each interval. Again, any data point 

beyond the resource threshold, a value that can be obtained from the first and third 
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research themes, is discarded. This is because the linear relationship needs to be adhered 

to in order for this model to deliver its objective. From this diagram, it can be observed 

that that there are 2 directly obtained values from the linear plot: the gradient and y-

intercept of the linear graph. If the hardware performance is optimal, periodic tests 

conducted will yield almost identical values for these 2 parameters. Besides these, the 

correlation coefficient of the linear plot must also be taken into account during the 

analysis, as it represents the relevance between the best-fitted linear plot and the testing 

data points. There are 2 phases in this model. Firstly, initial test is carried out to register 

the baseline values for the gradient and y-intercept. Subsequently during steady state 

operations, periodic tests are executed to produce the linear plots, and the associated 

gradient and y-intercept are matched to the baseline. If close match is found, the 

hardware performance is deemed consistent and identical to the initial state. The tests 

are to be carried out during maintenance window, where there is not any noise in the 

database and operating system that hinder the accuracy of the result. 

 

Figure 3.2: Resource utilization optimization model. The linear graph is capable of characterizing 

the hardware performance in the VM. 

3.2.2.3 Affirmation model 

The modeling of resource utilization affirmation is similar to the optimization model, 

where benchmarks are established before the actual tests are conducted. As depicted by 

figure 3.3, during the initial benchmarking effort, TPC-H queries are run against the 
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VM, by maintaining the CPU run queue at a level which is close to the threshold value 

in the VM. When the test is stabilized, the values for memory reads/s that correspond to 

each query are recorded in an array as below: 

 A[Query][memory reads/s] = {Q16, Q9, Q13, Q21, Q3, Q7, Q5, Q11, Q1, Q22, Q4, 

Q10, Q14, Q6, Q18, Q19, Q20, Q12, Q15, Q17, Q2, Q8}, {7000, 11000, 10000, 10000, 

11000, 11500, 12500, 12500, 13000, 14000, 14500, 14500, 15000, 16000, 16000, 

16500, 16500, 17000, 17000, 19000, 22500, 16000}; 

 

 

 

Figure 3.3: Resource utilization affirmation model. Initially a set of benchmark data is needed, by 

experimenting on various TPC-H queries. The goal is to discover the corresponding memory 

reads/s for each TPC-H query. 

Subsequently, when the stress-testing scenario is needed, the real workload traces are 

analyzed, and the corresponding memory reads/s in the workload is retrieved. This 

value is matched to the array A. When identical memory reads/s value is found, the 

associated TPC-H query is employed to load the VM, which creates a stressed condition 

similar to the effect of the workload in the VM. It is to note that the workload traces 

need to be obtained during steady state, with the CPU run queue size to stay constant at 

the level similar to the benchmarking stage of the TPC-H queries.  

Besides the stress testing scenario creation, the TPC-H queries are also used to discover 

the run queue threshold in the VM in this theme.  

 

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
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3.2.3 System design 

3.2.3.1 The monitoring scheme  

The steps towards the build of the monitoring scheme are depicted in figure 3.4. As 

shown, the monitoring process is a continuous effort that can be performed without 

incurring downtime to the database operations. It strives to discover the threshold point 

in the VM, as well as the visibility on the resource adequacy. The result from the 

mechanism is then fed into resource planning or scaling exercises. The discovery of the 

threshold point in this case is resulted from the input of metadata from the actual 

workload; hence it is closer to the user experience as compared to the threshold 

discovery method in the affirmation scheme which will be discussed in a while. 

However it is not as proactive in comparing to the proposal in the affirmation model as 

the monitoring model needs real workload to be executed before the new threshold can 

be established.  

 

Figure 3.4: The creation flow in the resource utilization monitoring. The eventual objective is to 

provide for clear visibility of resource usage in the VM, to serve the planning or scaling purposes. 

Dotted lines depict the monitoring and analysis tracks.  
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3.2.3.2 The optimization scheme 

As illustrated in figure 3.5, the optimization scheme is built from 2 stages. First, the 

TPC-H queries are executed in the VM, to produce the baseline reference. 

Subsequently, the same queries are executed in the VM during production stage, and the 

test results are compared to the baselines to determine the hardware consistency and 

optimality. During the second phase when the VM is running in the production mode, 

the tests are carried out periodically to probe the hardware condition.  

 

Figure 3.5: The creation flow in the resource utilization optimization. There are 2 stages in the 

model. The initial stage creates the baselines for subsequent reference in the production stage.  

3.2.3.3 The affirmation scheme 

The benchmarking phase in figure 3.6 produces an array of value pairs. The pairs 

consist of TPC-H queries and associated memory reads/s. These data is obtained from 

the iterative execution of the queries by maintaining the CPU run queue size at certain 

level, which is close to the resource threshold in the VM. The creation of the stress-

testing scenario during production phase is carried out during maintenance window, as 

the VM should be free from noises before the environment can be stress-tested. In order 

to mimic the real environment, the TPC-H query chosen to load the VM is matching the 
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same memory reads/s value of the real workload, at CPU run queue level that is similar 

to the benchmarks. When the stress- testing scenario is stabilized in the VM after a brief 

duration of time, SLA-bound transactions can be executed to have their response time 

verified.  

 

Figure 3.6: The creation flow in the resource utilization affirmation. The objective is to build an 

instant of stress-testing scenario for transactions’ response time verification. Such verification 

result will subsequently be fed as input for scaling decision. 

The next purpose of the affirmation scheme is to create a platform to discover the new 

CPU run queue threshold when the VM undergoes hardware change. Such method is 

deemed more proactive than the threshold discovery in the monitoring scheme, as this 

model does not require metadata from real data. Hence it can be put in use as soon as 

the hardware change takes place. Figure 3.7 illustrated the steps towards achieving the 

setup. The TPC-H queries are executed gradually and discretely when loading up the 

VM. For such mechanism to take place, it has to be run during maintenance window to 

avoid noises from the database operations and operating system. 
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Figure 3.7: The second creation flow in the resource utilization affirmation. The goal is to discover 

the CPU run queue threshold based on TPC-H query’s response time. The colored arrows depict 

the iteration of the tests. 

3.2.4 Analysis of methods 

3.2.4.1 Monitoring model 

The effectiveness in the resource utilization monitoring model very much depends on 

the representability of the workload which is used as input. A general Healthcare 

application, for instance a system that allows query on patients’ medical records, 

typically will have the access and usage pattern recorded in a week. In this case, the 

metadata collection for 1 week is sufficient to characterize the resource usage in the 

VM. However certain applications, for example the performance management portal in 

Human Resource Management System (HRMS) becomes active only during certain 
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duration in a year. In such cases, the workload needs to be captured in that particular 

timeframe in order for the proposed monitoring model to be effective.  

As the resource adequacy is determined by the accumulation of data points in the 5% 

zone, such monitoring method can also account for burstiness in the workload. In this 

case, the zone’s position can be adjusted and narrowed. Hence the monitoring model is 

capable of catering for SLA that requires accommodation on either the normal or 

burstly transactions.   

The data collection and analysis efforts do not incur downtime on the database; hence 

they can be performed at any instance and frequency. Furthermore, from the 

experiment, it is observed that the metadata collection on the identified workload does 

not induce high overheads. It is to note that the analysis on the monitoring model valid 

only at the linear portion of the graph. Any data points beyond the CPU run queue 

threshold are not serving the interest in this proposal.  

In the above explanation of figure 3.1, ∆S = S’ – S = S. As explained, S is the 

processing time required by the database to completely process the workload. It is a 

subset of S’, where S’ includes all the waits in the database and VM. As mentioned, for 

this model to work, the resource constraint must be on the processor component. Hence 

if S’ = 2S = ∆S/2, that means on average, when the SQLs are processed at this run 

queue level, it will have 1 queue at each of the processors in the VM. Generally this 

would be the constraint point in the VM as queuing for computing power is often 

undesired. So as in figure 3.1, the VM resource threshold is fixed at C’’T where the 

value of ∆S = S corresponds to.  

In producing this diagram, real data is not engaged. Hence the objective to avoid access 

to private and sensitive data is achieved. Only the metadata of the workload is required 
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to produce the data points needed in the model. It is also to note that outliers in the data 

points need to be gotten rid of, so that the 2 linear plots can become more accurate.  

3.2.4.2 Optimization model 

As explained and illustrated in figure 3.5, outage on the database is needed to compute 

the baseline data. The test for each TPC-H query requires 25 minutes to complete. This 

duration includes 10-minute stabilization timeframe, and 15 minutes of data collection. 

The 10-minute initial stabilization wait time is crucial as the SQL processing time and 

CPU run queue parameters oscillate quite substantially at the beginning of the test. This 

baselining activity is normally carried out at the beginning of the VM build or 

immediately after the hardware is provisioned. At any 1 time, 2 baselines will be 

sufficient for reference by the subsequent testing data in production mode. Each 

baseline data can consist of only 1 TPC-H query or a combination of the queries.  

The baselining activity is required after each instance of hardware change. Subsequent 

testing data harvesting activity in production phase will also need the same 25-minute 

outage window. In view of this, such model is not suitable for VM that undergoes 

aggressive on-demand resource scaling. It is primarily designed for database hosts that 

experience static and staged resource scaling activity. Similar to the model in 

monitoring scheme, the model is applicable only in the linear correlation in the SQL 

processing time and CPU run queue plots. The gradient and y-intercept values obtained 

from the testing data and baselines are compared, and uniformity between them will 

indicate consistency and optimality in hardware performance. However it is to note that 

due to the nature of the parameters employed to construct the graphical representation, 

to obtain exactly the same values between the baselines and testing data are improbable. 

Hence a close match between them will suffice. As the parameters oscillate quite 

substantially, the gathered results need also be validated using the correlation 
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coefficient, r in the linear regression analysis. In addition to this, the outliers of the data 

must be removed and noises blocked during the test to increase the accuracy of the 

graphical output.  

3.2.4.3 Affirmation model 

Similar to the optimization model, a separate timeframe needs to be provisioned in order 

to gather benchmarking data to be used for the construction of the stress-testing 

scenario. Each TPC-H query will require 25-minutes time block in order to obtain the 

consistent memory-reads/s value. A typical benchmark will contain close to 20 tests 

from different individual or combination of TPC-H queries, so the length of outage 

window required is quite substantial. Furthermore, such benchmarking effort is also 

needed whenever the hardware configuration is changed in the VM; hence its design 

will be more suitable for hosts that do not undergo too elastic and frequent resource 

scaling. However the benchmarking sequences are automated, hence manual 

intervention can be avoided.  

The future work in this area will involve finding out the possibility of extrapolation to 

reduce the benchmarking timeline. With this timeframe reduced, it is more practical for 

deployment in real world applications.  

The second proposal in this affirmation model involves the discovery of CPU run queue 

threshold when the hardware configuration is changed in the VM. The setup here is 

rather straight forward comparatively. However, the output gathering at each staggered 

run queue level must allow a timeframe for the parameter oscillation to stabilize. The 

threshold discovery proposal in this section serves the same purpose as in the 

monitoring model, amid different methodology and input values. Here, synthetic 

workload using TPC-H data and queries are employed, whereas the monitoring model is 

obtaining insightful input from the metadata of the real workload.  
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3.3 Summary and discussion 

This chapter provides a high level explanation on the conducted research, and the 

proposed outcomes. The research is segregated into 3 themes. The first and third themes 

have 2 proposals in each scheme; whereas the second theme contains 1 proposal.  

The monitoring scheme strives to introduce a way to monitor the resource consumption 

in the VM via metadata harvesting from real representable workload. In addition, it 

allows for resource threshold to be discovered via real users’ experience. The 

optimization scheme proposes a method to examine the consistency, stability and 

optimality on the hardware performance. Subsequently, the affirmation scheme suggests 

a way to compute a stress-testing scenario that allows for the SLA-bound transactions to 

have their response time verified. Furthermore, a method to realize the CPU run queue 

threshold is envisaged in this section.  

In all the 3 themes, the real data access is avoided. Hence this achieves the objective of 

allowing effective database and VM administration without compromising on data 

privacy and security. The proposals address the shortcoming of the commercially 

deployed hosting architecture, with the prospect of encouraging cloud adoption by 

organizations with skepticism on cloud safety, particular on the data security issue.  

The next chapter will explain the detailed designs of each scheme.  
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4. SYSTEM DESIGN 

4.1 Introduction 

In this chapter, the detailed design of the models is explained. As mentioned in chapter 

3, there are 3 themes involved in this research. First theme strives to examine the 

resource usage state in the VM, by proposing a graphical depiction of resource 

utilization monitoring. The source of input to the mechanism is described in section 

4.3.1. Subsequently, the construction of the model is demonstrated in section 4.3.2. The 

method to remove the outliers is detailed in 4.3.3.  

The second theme attempts to produce a mechanism to investigate and probe the 

hardware condition in the VM, so that computing performance consistency and 

optimality can be achieved with the set of hardware configuration. Section 4.4.1 

describes the setup of the model, by scrutinizing the role of machine learning in the 

model construction. Consequently, section 4.4.2 explains the applicability of the 

mechanism in production environment.  

With the design of the monitoring and optimization models explained, the third theme 

dwells on the affirmation model. In this section, 2 mechanisms are described; one that 

creates stress-testing scenarios in the VM, and another one which aims to discover the 

resource threshold in the VM. Section 4.5.1 illustrates the configuration of the 

environment. This is followed by the application of the model in production mode in 

section 4.5.2. Section 4.5.2.1 describes the usage design of the stress-testing scenario, 

and 4.5.2.2 outlines the threshold discovery method by using the model.  

4.2 Overview of proposed models 

The monitoring model is based on graphical depiction of the relationship between the 

SQL processing time and CPU run queue length. The manipulation is performed against 
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this linear relationship between these parameters. With the linear plots established, the 

monitoring outcome is produced by the locality of the data points which correspond to 

the transaction processing condition in the representative workload. There is little 

resource overhead incurred by the data collection, hence it is ideally applicable 

throughout the tenure of the application offering. Furthermore, the setup of the model 

does not require outage from the database operations.  

The setup of the optimization and affirmation models requires a separate database in the 

VM, which solely host the TPC-H data. However, the TPC-H data can also co-exist 

with an existing database in the VM. Nevertheless such configuration might produce 

noises in the environment as it is often difficult to control the end users’ activities even 

outage is scheduled. Hence it is simpler from management perspective to create a 

separate database for the construction of these models. The TPC-H data and queries are 

downloaded from Transaction Processing Performance Council website (TPC-H, 2013). 

The proof-of-concept environment is utilizing VMWare Virtualized Infrastructure 

which has been elaborated in Chapter 2. In each database VM, a separate TPC-H 

database is built in as indicated in figure 4.1. Each TPC-H database consumes 

approximately 5GB of SAN space and 2GB of shared memory.  
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Figure 4.1: Layered depiction of VMWare Virtualized Infrastructure for database hosting. The 

separate TPC-H database is built in each database VM. 

The envisaged optimization and affirmation algorithms are run against the TPC-H 

database. As the proposed models are very sensitive to noises in both the database and 

operating system (OS) environment, outage windows are required during both setup and 

steady state phases. During the setup phase, the optimization scheme requires 2 hours of 

‘quietness’ in the VM to construct the baselines. Subsequently when it is deployed in 

the steady state production phase, each test will consume 30 minutes. As it is a cyclical 

probing of the VM during the production phase, it is recommended that this 30-minute 

timeframe to be provisioned weekly. The affirmation scheme requires a lengthier 

downtime on the VM. Its setup phase needs between 5 to 6 hours, whereas its 

application for production phase calls for between 30 minutes to1 hour of outage 

window.  

Nevertheless, the implied ‘outages’ for both the optimization and affirmation models do 

not actually require all the user databases to be shutdown in the VM. It is suffice to 

ensure a state of dormancy in the databases and VM, without needing to bring down any 

of the software components in the VM.  
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4.3 Theme 1: monitoring scheme 

The monitoring scheme strives to produce a model that increases the visibility to the 

resource consumption state in the VM. The output from it will aid in resource planning 

decision as well as determining the resource scaling opportunity. This model will 

complement existing commercial resource monitoring tools, and provide a different 

monitoring perspective as compared to these tools.  Most of the existing monitoring 

utilities focus on either the database or OS, rarely a strong combination of both. Even if 

there is linkage between the 2 areas in these products, the proposal here can deliver a 

stronger binding to produce a more cohesive monitoring output.   

4.3.1 Workload traces 

To explain the design of the model, the input is elaborated in this section. The 

experiment was conducted using a Sun Solaris server powered by 4 Sun Solaris 

SPARC64-VII CPU with 4-core architecture, 64GB RAM and external SAN running on 

ZFS File system. When this experiment was conducted, the VMWare VM had not been 

available; hence the tests were not performed on a virtualized machine. Nevertheless the 

experiments produced the same concept that can be proliferated to database operations 

on Cloud VM without much variation. The application was running the SAP Enterprise 

Resource Planning (ERP) software, on ECC6 Human Resource Management (HRM) 

Module. The application is OLTP in nature, servicing HRM System for a large 

organization. The database that hosts the application data and transactions is an Oracle 

11g database. In a lot of organizations, it is almost impossible to send all the tables’ data 

into memory, as the typical implementation of ERP application is normally having 

database size which is at least 500 GB. However, a sizable shared memory of 20 GB 

will ensure most frequently used tables’ data resides in the memory.  
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In chapter 2, it was mentioned that the reason for this research is to produce 

mechanisms that steer away from real data access, on databases that host sensitive data 

particularly in healthcare organization. The selection of HRM module here is due to the 

fact that generally the databases that host this application are having quite stringent data 

security requirements; hence the choice here is almost equivalent to the security demand 

in Healthcare sector.  

The collection of the identified workload’s metadata spans for a week. The goal here is 

to find a workload that can be representative for the critical transactions in the 

applications, as well as the decisive timeframes that heavily load up the server. A week 

of data here is assumed adequate in delineating the nature of the resource consumption 

pattern of the application. At this juncture, it is noteworthy to mention the characteristic 

of different application processing, to serve as input in identifying the most appropriate 

and relevant timeframes to exemplify the particular applications. From HRM 

perspective, the general applications will have their busy computing duration during 

normal working hours. Hence in this case, even if the data collection timeframe is to 

span for a week, the daily data collection may only account for 8 hours duration when 

the employees in the company are officially working. On the other hand, in typical 

performance management systems, they are mostly active only during particular 

timeframes in a year, for instance, at the beginning of every quarters. For such 

applications, the workload data capturing activity should only focus on these busy 

timeframes. Furthermore, in many human resource departments particularly in United 

States, there is a period of time in a year when the systems are opened for employees to 

add, change or delete their fringe benefit options. Such timeframe is generally called 

Open Enrollment. Hence, the workload capturing activity should target only this 

duration. The collected workload can be partitioned further if required, in case where 

the resource planning aims to provision additional resources to the entire hosting 
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environment. Workload partitioning is not researched in length here, but it will become 

an important topic in the case when VM expansion subject is detailed later. 

The metadata required as input to the model is collected at every minute interval in the 

database. When this metadata collection engine runs, the resource overhead observed is 

less than 2% of the total computing capability in the server. Hence, it is considered 

negligible in overall effect on the server performance. The collected data comprises of 

DB CPU Time (DCT) and SQL Elapsed Time (SET) from the SQL processing in the 

database, and the corresponding CPU run queue length from the OS perspective. These 

data are stored in a custom table. For a SQL, SET denotes the time needed to 

completely return the result queried by the SQL. It considers all variables affecting the 

SQL’s runtime, i.e. time required by database engine, server condition, network latency, 

memory and disk I/Os etc. The time spent by the database engine is the cumulative non-

idle CPU time to process the SQL. The server condition contains the noises which delay 

the execution of the SQL. Network latency delay is caused by the transportation of 

query result from the database to the application servers or end users’ terminals. The 

memory and disk I/Os are the result of fetching the query outputs from data in memory 

or SAN storage. DCT is a subset of SET, where it represents the non-idle duration 

needed only by the database engine to process the SQLs. These 2 parameters can be 

retrieved from the database dictionary.  

As mentioned, these metadata can be partitioned to serve various purposes. Asides from 

capacity planning, the partitioned workload can be utilized for task scheduling 

algorithm if ever desired. Subsequently the monitoring model proposed here can be 

employed to analyze the feasibility of moving the partitioned workloads to different 

VM. In this thesis, the workload is not partitioned. The workload partitioning will be 

covered in future works. 
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At this point, with the identified workload to deliver as input to the monitoring model, 

there seems to be a potential possibility that it can serve as benchmark for similar 

transaction processing in other environments that administer similar transactions. 

However, there are distinct differences between different set of workloads. Each 

workload is unique as the volume of data differs. Because the data volume is not the 

same, even the same SQL with identical syntax does not yield the same DCT and SET. 

This can be explained by considering the following SQL: 

select department_name, sum(salary) from departments 

where num_employee>100; 

If this statement yields 300000 logical reads and 5s of DCT from the real data in the 

memory, in another environment where the table departments has 100 row in it, the 

logical reads will be much less than 300000 and the DCT could be 0.01s, as different 

execution path is taken by the RDBMS engine due to the change in data values that 

changes the predicate clause. With this characteristic, the workload processing pattern 

obtained from 1 environment can be used the most as reference instead of treated as 

benchmark in another instance.  

4.3.2 Graphical representation – linear regression 

Following the data capturing phase, the data is interpreted by presenting the data points 

in graphical fashion. In this case, linear regression is employed to depict the 

relationship between the SQL processing time, which includes DCT and SET, with 

CPU run queue. This correlation is illustrated in figure 4.2. The collected data 

translation to these linear plots is straightforward. However as the data is gathered 

during production phase, in some cases, the outliers are significant. The ideal situation 

is to have only the workload to be executed in the VM, without any other computing 

tasks, or in other words, the noises incurred from the OS. For instance, the gathered data 
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must avoid the timeframe when the OS backup is taking place. In other circumstance, 

there might be overrun daemon processes at the OS level which significantly affect the 

CPU run queue reading. The outlier removal process must account for such condition. 

The perfect linear plots will yield the correlation coefficient in linear regression 

analysis, r to have value of 1. However as this is non-achievable in real situation, r 

should be more than 0.7 in order to produce a convincing output for further analysis.  

 

Figure 4.2: The relationship between DCT, SET and CPU run queue. With the 2 linear plots 

obtained, further analysis produces 80%, 90% and 100% of run queue threshold values. 

The calculation of r is as follows: 
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Where, 

N = Total number of legitimate data points. These points are obtained after removing 

the outliers.  

y = The CPU run queue size.  

x = DCT or SET, which corresponds with the y. 

The computation of this value r can be performed easily using MATLAB software 

(MATLAB, 2013). As this calculation is non-iterative, it can also be done using regular 
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Microsoft Excel worksheet. However, as mentioned this value must be greater than 0.7 

to yield any meaningful output, there is a cyclical effort to remove outliers on the 

gathered data, and then recalculate the r value until the satisfactory value is obtained.  

In the graph as in figure 4.2, S’ and S represent the DCT and SET of all the SQL 

processing in the workload. C’T, CT and C’’T are the 80%, 90% and 100% of the run 

queue thresholds in the VM. The derivation of C’T, CT and C’’T values depend on the 

pre-determined ∆S value, which normally is set as S – S’ = ∆S, and ∆S is ideally set to 

equate to value of S. If this is translated to the processing of a SQL, that means if the 

SQL needs 5s to be processed without any resource constraint in the VM, at the point 

C’’T, it needs 10s to be processed. This occurs because in this case there is always 1 

queue in all the processors at C’’T. As queuing exemplifies delay in the VM, it is 

undesired if there is occurrence of data points beyond C’’T. When this happens, it 

should warrant replenishment of resources to the VM. In the published journal paper (C. 

H. Tan & Teh, 2013a), ∆S is visualized at point C’T. This is also a valid assumption, 

amid a more cautious approach to the resource threshold.  

With the linear plots and threshold points identified, the imaginary 5% zone is 

envisaged in the graph in figure 4.2. For a typical workload in a database, generally the 

response time of a particular transaction fluctuates amid different level of resource 

adequacy in the VM. Figure 4.3 illustrates such condition. This visionary 5% zone is 

envisaged to cater for such expectation. As the database transactions intensify, the 

resource consumption will increase. This will push the data points towards the 5% zone. 

As manifested by the name, when more than 5% of the total N number of legitimate 

data points accumulates in this zone, the resource scaling algorithm should be triggered. 
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Figure 4.3: Response time fluctuation of a transaction in the VM. Such behavior is expected in real 

environments as it is often difficult to achieve a constant response time due to various condition in 

the VM. 

As mentioned in earlier chapter, this monitoring model is also capable of 

accommodating burstiness in transactions processing. In this case the 5% zone can be 

pushed towards higher CPU run queue values to depict the threshold of the burstiness.  

In the case where the model is to be employed for resource planning purpose, which 

normally requires a few months to have the capital expenditure approved in most 

organizations, the 5% zone can be adjusted at lower CPU run queue length. However, 

for resource scaling purpose where the computing resources are readily available in the 

resource pool of the virtualized clusters, this 5% zone can be shifted as far as beyond 

the point C’’T.  

This data collection and monitoring process is iterative and it is to be repeated at weekly 

interval for typical general purpose applications. The envisaged cyclical monitoring 

mechanism is illustrated in figure 4.4. 
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Figure 4.4: Steps towards achieving the proposed monitoring scheme. The dotted lines indicate the 

cyclical monitoring and analysis tracks. 

4.3.3 Outliers effect 

Outliers are largely unavoidable in the linear graphical plots. These are caused by noises 

in the OS. As mentioned, the data collection should avoid the timeframe when the OS 

undergoes maintenance, for instance the OS backup, auditing and anti-virus scanning. 

However there are scenarios which are unexpected and unavoidable. An example is the 

occurrence of overrun daemon processes in the OS which consume significant resources 

in the VM. In other situation, the OS administrators might be doing ad-hoc OS logs 

housekeeping which consumes the I/O bandwidth in case the data is sharing the same 

LUN with the OS logs. As in many other industries (Amos, 2013), getting rid of outliers 

is critical to protect the legitimacy of the output. 

For this purpose, the Fourth-Spread (fs) method(Devore, 2008) to exclude the outliers in 

the scatter plots is employed. To accomplish this, the 25th and 75th percentile quartile 

boundary values in the collected data sets need to be determined, using following 

sequential method: 
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Order the data set values in ascending order. 

X1, X2, … , Xn, 

For even sample size, find the median of the data set as   
 

(
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, 

25th and 75th percentile boundaries of the ratios of S/C from the collected samples are 

then defined as: 

25th percentile boundaries, Q25 = Median of X1, X2, … ,   
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75th percentile boundaries, Q75 = Median of   
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   , … , Xn, 

For odd sample size, find the median of the data set as    
(
   

 
)
. 

25th and 75th percentile boundaries of the ratios of S/C from the collected samples are 

then defined as: 

25th percentile boundaries, Q25 = Median of X1, X2, … ,  
 
   

 
   

, 

75th percentile boundaries, Q75 = Median of  
 
   

 
   

,  
 
   

 
   

, … , Xn. 

With Q25 & Q75 values discovered, value of Fourth-Spread, fs = Q75 - Q25. Using this 

value together with the median, M of the data set, values for Upper Outlier boundary, 

UO and Lower Outlier boundary, LO are determined by following: 

UO M + 1.5*(fs), 

LO M - 1.5*(fs). 

Using both the UO and LO, for each data point, if its S/C value is lower than LO or 

higher than UO, they should be discarded from the legitimate data set.  
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4.4 Theme 2: optimization scheme 

The optimization model aims at complementing the conventional hardware health check 

which often requires lengthy downtime. Such thorough hardware probing effort will 

discover detailed hardware state; however it normally requires a full work day of outage 

window each time, with a substantial amount of manual intervention in the probing 

process and outage management. This proposed mechanism strives to provide a heads-

up before thorough system checking is triggered. The suggested probing method is 

closer to end users’ experience as it employs database transactions, by mean of iterative 

execution of TPC-H queries to discover abnormalities. The input parameters from this 

model is different from the monitoring scheme, in the way that only SET and CPU run 

queue are utilized. DCT is not involved in this probing mechanism. This research work 

has been published in (C. H. Tan & Teh, 2013c). 

4.4.1 Setup of environment 

The construction and application of the optimization model involve 2 stages. First stage 

is named the baselining phase. It includes the setup of the separate TPC-H database in 

dedicated VM. The hosting architecture is depicted in figure 4.1. This is a 5GB 

database, with shared memory sized to 1GB, which in this case is sufficient to avoid 

excessive I/O reads from SAN storage. In fact, as the TPC-H data is hosted in its own 

database, this mechanism is applicable even for application VM that do not host any 

database transactions. This is because the test data crunching process happens only in 

the TPC-H database, without dependency on any other software components in the VM.  

The TPC-H data and queries are downloaded from TPC website (TPC-H, 2013). The 

build steps of the TPC-H database are illustrated in Appendix B. The main contribution 

of TPC-H benchmark in the industry is to allow commercial software vendors to 

showcase the capability of their products by running the standard queries against the 
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standard data. The output from the tests can then be published in the knowledgebase 

pertaining to the relevant industry, so that consumers can make meaningful analysis and 

comparison with products or service offerings from other vendors. In academic point of 

view, this benchmark can also be employed to serve similar purpose, where it is utilized 

for comparison between an envisaged proposal and another from other scholars. 

Nevertheless, the purpose of engaging such benchmark in this study is not meant for 

comparison with any of current available standards. This benchmark instead is used as 

synthetic workload in the proposals.  

There are 22 queries in TPC-H benchmark. The response time of these queries, after 

they are cached, ranges between 1s to 20s, except query #21 where it takes 164s to 

return the rows in the testing environment. The VM utilized as test bed is running on 

Suse Linux OS, provisioned with a quad-core Intel processor, with 1GB allocated for 

shared memory. The queries’ response time, memory reads and physical reads when run 

in this test bed are as illustrated in table 4.1. For the selected queries executed in the 

experiments, this 1GB of cache in the database incurs quite significant disk I/O reads, 

however it is not posing as constraint in the VM. The disk I/O reads is required to probe 

the condition in the SAN storage. The selection of queries and sizing of shared memory 

in this case is made carefully so that the processor component will be the constraining 

factor when the VM is stressed to its limit. Because the choice of synthetic workload is 

using the TPC-H data and queries, the similar adjustment can be applied to other 

hardware configuration, instead of reworking the memory sizing and selection of 

queries when non-standard synthetic workload is used.  
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Table 4.1: Corresponding response time, memory and disk reads of TPC-H queries. These values 

are obtained in a VM with a quad-core CPU, running on an Oracle database with 1GB of shared 

memory, with the data stored on EMC SAN storage. 

 

 Figure 4.5 illustrates the flow of the 2 phases in the setup process. Steps 1 and 2 have 

been discussed in above section. In step 3, the VM is loaded up slowly and gradually 

using the selected TPC-H queries. The goal here is to capture the SET that corresponds 

to the increment in the CPU run queue size. The loading algorithm is depicted in figure 

4.6. They are programmed and executed via Shell script in the VM environment. The 

actual program is illustrated in Appendix C. 

 

Figure 4.5: Steps to create the baselines and their applicability in production environment for 

optimization model. The green arrow depicts the cyclical test in the VM, which can be performed 

daily or weekly. 
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Define test time, t as 2520s 

Define the set of queries to run for the duration of t 

Define the stabilizing duration as 120s 
While t>0, 

If (t ==2520) 

 Continuously maintain the execution of 6 sets of queries in the database 
If (t ==2000) 

 Continuously maintain the execution of 5 sets of queries in the database 

If (t ==1600) 
 Continuously maintain the execution of 4 sets of queries in the database 

If (t ==1200) 

 Continuously maintain the execution of 3 sets of queries in the database 
If (t ==800) 

 Continuously maintain the execution of 2 sets of queries in the database 

If (t ==400) 
 Continuously maintain the execution of 1 set of queries in the database 

If (t ==0) 

 Complete test 
t=t-1 

If (t ==2400) 

Start capturing database snapshots to collect values of S and C every 30s 
           done 
 

 

Figure 4.6: Algorithm to load up the VM. The baseling and production phases are using this same 

method.   

The Shell program is capable of using single or multiple TPC-H queries to stress the 

VM. The environment is loaded with continuous execution of the queries, and they are 

varied in concurrent number of executions in order to produce the high to low resource 

consumption scenarios in the VM. In parallel to this loading activity, database snapshots 

are captured every 30s to provide the information regarding the state of SET, S and 

corresponding CPU run queue, C at each interval of interest. This snapshots capturing 

capability is provided by the database Workload Repository utility (Oracle, 2009). Each 

loading activity is scheduled to complete in 42 minutes. It is noteworthy that prolonged 

test time will produce better accuracy.  

The CPU run queue value is taken as in 1-minute average, and it is noticed that these 

values fluctuate quite substantially during the initial loading. Hence some technologists 

term this parameter as simplistic and poorly defined in Unix environments. However as 

demonstrate by the experiments, that if longer test duration is allocated, this parameter 

can be useful in measuring the information of the queuing processes appropriately. To 

remediate this oscillating symptom, the stressing exercise is allowed 2 minutes of 

‘stabilizing’ timeframe, before data collection begins.  
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At the end of the test, the required metadata is extracted from the Workload Repository. 

As mentioned above, the fluctuation in the values can be considerably huge at particular 

instances of time. Hence the implausible data needs to be filtered out. The algorithm to 

filter the metadata is illustrated in figure 4.7. As shown in this figure, in order to ensure 

accurate S and C data points, the start and end values of C in the 30s snapshot intervals 

are assessed so that they are less than 10% different from each other to ensure that 

consistent state is achieved before data recording is performed.  

 
Define starting snapshot of the test, s 

Define ending snapshot of the test, e 

Define ti as begin snapshot for 30s interval, Ci as the corresponding server load value 
Define ti+1 as end snapshot for 30s interval, Ci+1 as the corresponding server load value 

 
For s >= ti and ti < e 

If (Ci does not differ from Ci+1 by 10%) 

Record the corresponding SQL Elapsed Time, Si  
ti = ti + 1 

done 
 

Figure 4.7: Metadata filtering to ensure stabilized condition in the VM before reliable data is 

collected. 

The data extraction and filtering are actually performed by a Shell script. This script is 

depicted in Appendix D.  

4.4.2 Linear regression and machine learning 

With the availability of data, the linear plots can now be constructed. Similar to the 

monitoring model, the relationship between the SET and CPU run queue is linear in 

nature. The proof of this linear relation is explained in section 2.4.3.1. The linear plot is 

depicted in figure 4.8. In this figure, the DCT is shown; however it does not serve as 

input parameter to the optimization scheme. It is illustrated in the graph to depict the 

actual non-idle CPU time needed to process the SQL. The blue dots in figure 4.8 does 

not increase in tandem with the increment in the CPU run queue, because there is only 1 

SQL running entirely in the database. This is different from figure 4.2, as the workload 

for the monitoring scheme contains multiple SQLs. As expected, SET increases when 
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CPU run queue rises. This is due to the additional waits in the VM when the processors 

are getting busier. Such characteristic has been explained in the monitoring scheme. As 

the interest is confined only to the linear section of the correlation between S and C, the 

limit of the run queue size should be set to <= 3x, where x is the number of processor 

cores in the VM. The values of 3x is obtained judging from the experiment data using 

TPC-H queries, where most testing results using this ballpark figure can still conform to 

the linear correlation when the queue length in each processor is 2. The baselines of data 

obtained from step #3 & #4 in figure 4.5 are called the training data sets in machine 

learning, and they are executed when the VM is newly provisioned. Subsequently these 

baselines are reevaluated when the hardware configuration in the VM changes. 

 

Figure 4.8: The expected output for the optimization scheme. The linear relationship between SET 

and CPU run queue is the foundation to this model. 

The steps #3 to #6 in figure 4.5 can be categorized as the semi-supervised machine 

learning technique. Semi-supervised machine learning’s concern is to infer a function 

from labeled training data sets (Mohri et al., 2012), and subsequently the unlabeled data 

is tested and compared to this induced function. In this case, the first set of data during 

VM initialization is taken as the labeled training sets. Regression Analysis algorithms, 

which are subset to the broader classes of semi-supervised machine learning, are 

employed here to generate the labeled training data sets. By definition, a training data 
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set, V draws its samples from set X according to distribution D, which in this case are 

the sets of relationship between SET, S and CPU run queue, C.  

V= ((c1, s1), … , (cm, sm)) and V ∈  C×S, 

where Y ⊆ ℝ and m=number of training data. 

Subsequently during the production phase, the test data, which is termed unlabeled data 

in machine learning, is used for testing the learning algorithms, as in figure 4.6 and 4.7. 

The characteristic difference between the training and testing data sets is known as the 

Loss function, L, and it is a measurement of closeness between these two data sets, and 

is having following definition: 

L(S, S’) = |S’−S|
P
 where P ≥ 1, 

In the optimization model, input to L is characterized by the gradient of the linear 

regression line and y-intercept, as illustrated in figure 4.8. More experimental results 

related to the construction of baselines are displayed in Appendix E. 

The outliers should be gotten rid of by employing the Fourth-Spread (fs) method 

explained in section 4.3.3. 

4.4.3 Applicability to the production phase 

The gradient, MB of the linear line is obtained, together with the y-intercept, bB. MB and 

bB are asserted as baseline for expected performance on allocated resource in the VM. 

Iterative learning process is conducted to arrive at the most accurate values of MB and 

bB. Subsequently in the production phase, testing data sets are collected and plotted into 

linear graph, and the respective gradient, MT and y-intercept, bT are recorded. 

Subsequently they are compared with MB and bB values from the training data sets, to 

gauge the consistency and optimality of the hardware performance. In comparing 
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between the baselines and the testing data sets, there is another critical parameter that 

needs to be accounted for. It is the correlation coefficient, r. As mentioned, the value of 

r needs to be as close as possible to 1. The details of this explanation are provided in 

section 4.3.2. With the information, the characteristic of the model can be represented 

by Fuzzy Computing with Words(Zadeh, 1996), as follows:  

 If values of MT and bT are much different as compared to MB and bB, hardware 

performance in the VM is not optimal. 

 If value of r is not close to 1, hardware performance in the VM is not consistent.  

The above 2 conditions must be satisfied in order to guarantee fine delivery of 

computing resources to the hosted databases or applications in the VM. 

In converting the testing data sets to the linear plots, the cautions and approaches are 

similar to the baselining phase. They are: 

1. The outliers need to be gotten rid of using the Fourth-Spread (fs) method 

explained in section 4.3.3. 

2. The noises in the OS and potentially database need to be kept at minimum. For 

instance, OS or database backup must not be running during the collection of 

testing data sets, CPU run queue must start from value 0 before the loading 

mechanism is triggered, OS auditing and anti-virus must not be running in the 

background while the data collector is working etc. 

3. To compare with the baselines, same TPC-H query must be used. The statistic in 

the TPC-H database must be updated in case there is change of data in the 

database. 

4. The same stabilizing duration during the loading mechanism must be observed, 

before data collector can start gathering the metadata information.  

5. The loading mechanism ideally should be performed during outage window. 
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As per figure 4.5, the collection of the testing data sets is a cyclical process. Depending 

on the available outage window, it can be performed either daily or weekly. As the 

loading activities do not involve changes of data, the TPC-H database is almost 

maintenance-free. There is not even a requirement to intervene with the database restart 

in case the VM is rebooted, as the database can be stopped or started by the init program 

in Linux. The loading mechanism can also be automated almost fully. The Shell scripts 

involved can be triggered by Linux crontab scheduler. Subsequently the values of 

gradient, y-intercept and correlation coefficient from the collected testing data sets can 

be processed by MATLAB software easily.  

The output from the comparison between the baselines and testing data sets is analyzed, 

and depending on the magnitude of difference, 2 actions can be performed: 

 In the case where mild discrepancy is observed, a system reboot may be 

warranted. This action is taken as part of the software rejuvenation initiative 

discussed in (Andrzejak & Silva, 2007; Vaidyanathan & Trivedi, 2005).  

 As mentioned earlier, the intention of this optimization model is to complement 

the conventional intensive hardware health checking. If serious abnormality is 

observed from the result, such comprehensive testing can be triggered to identify 

the actual culprit to the hardware problem.  

4.5 Theme 3: affirmation scheme 

The affirmation model strives to provide a speedier alternative to conventional load 

testing. These commercial load testing utilities, for example the HP Load Runner, are 

very comprehensive in accomplishing the objective of stressing all the components in 

the application hosting architecture. In these tests, test cases are created to observe the 

behavior of the web server, load balancer, application server and the database server. 

However, stress testing is normally conducted prior to the production cut-over activity. 
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During steady state, particularly for mission-critical applications, to locate lengthy 

downtime to perform such cumbersome tests are often impracticable. The suggested 

affirmation model requires a much shorter outage window in order to stress the VM to 

the level almost equivalent to the comprehensive load testing using the real workload. 

The stress-testing scenario subsequently can be utilized to verify SLA-bound 

transactions. It is to note that this express version of load testing serves to complement 

the conventional type, as it provides a quick testing platform for stress testing.  

The setup of the affirmation model is also employed to verify and confirm the resource 

threshold in the VM, when the hardware configuration is changed. In accomplishing this 

goal, synthetic workload is utilized. In regards to the same resource threshold boundary 

identification effort explained in the monitoring model, the monitoring scheme is 

utilizing the metadata of real workload to produce the outcome. The affirmation model 

instead scrutinizes on the synthetic workload to gain insightful information on the 

threshold boundary. The research work of this proposal is published in (C. H. Tan & 

Teh, 2013c).  

4.5.1 Setup of stress-testing scenario 

The proposal to construct the stress-testing scenario is applicable to OLAP and OLTP 

applications that are dominantly performing data read operations. With this assumption, 

the suggested loading mechanism can have focus on the memory read constraint, and 

treat the physical read as negligible. Such presumption can be made, because in typical 

Human Resource applications, the largest table in the database seldom exceeds 20GB in 

size. If the shared memory in the database can be sized considerably to > 20GB, most of 

the database read operations can be cached. Hence the core of the proposal in this case, 

is to determine the amount of memory reads/s in the real workload during steady state, 

at particular CPU run queue size. Subsequently, synthetic workload is utilized to 
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fabricate the stress-testing scenario, by matching this memory reads/s value from the 

real workload. In doing so, the CPU run queue is taken as a constant, which must be the 

same as the condition in the real workload when the memory reads/s value was 

harvested. Nevertheless, this memory I/O operation must not pose as the primary 

resource constraint in the VM. Instead it should be dominantly larger than the disk 

reads, however the leading resource constraining factor must still remain at the 

processor component. As mentioned, such behavior is common in most hosting 

architecture. A superior IT architectural hosting model should have resource limit 

confined at the processor component, as it is generally the most expensive part in the 

hardware configuration. At the same time, the application development must ensure 

proper tuning of SQLs and tables’ structure. These 2 pre-requisites are not only 

important and applicable for the proposal in this thesis, they are also essential to ensure 

feasibility in serving the business objective of the application service offerings.  

The setup of the environment is similar to the optimization scheme explained in section 

4.4.1. A separate TPC-H database is created in the database VM as in figure 4.1. Figure 

4.9 illustrates the steps to construct the whole proposal. There are 2 stages in the 

mechanism. First, benchmarking data that contains the value pairs of TPC-H queries 

and memory reads/s is discovered by mean of iterative execution of the TPC-H queries. 

Ideally, the VM should be loaded to the resource threshold so that the SLA-bound 

transaction verification can produce meaningful information regarding the capability of 

the hardware in conforming to the response time requirement stipulated in the SLA.  
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Figure 4.9: The flow of the setup and application steps of the resource utilization affirmation model. 

Similar to the optimization model, there are 2 phases involved.  

In the benchmarking stage, to construe the setup algorithm for the stress-testing 

mechanism, following are the high level steps. 

Step 1: Each individual query in TPC-H benchmark is iteratively executed in the VM to 

be tested, to obtain individual value of memory reads/s (MR) and duration of run 

time.  

Step 2: Step #1 is also carried out for combination of queries. 

Step 3: These results are listed in ascending order, to serve as benchmark to be chosen 

for individual testing scenario. They are stored in array format as in figure 4.10. 
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A[Query][MR] = {Q16, Q9, Q13, Q21, Q3, Q7, Q5, Q11, Q1, Q22, Q4, Q10, Q14, Q6, 

Q18, Q19, Q20, Q12, Q15, Q17, Q2, Q8}, {7000, 11000, 10000, 10000, 11000, 11500, 

12500, 12500, 13000, 14000, 14500, 14500, 15000, 16000, 16000, 16500, 16500, 

17000, 17000, 19000, 22500, 16000}; 

Figure 4.10: Array that stores the benchmark data for affirmation model. It is a construct of value-

pairs of TPC-H queries and memory reads/s. 

As mentioned, there are 22 queries in TPC-H benchmark. Each one of them is having 

distinct characteristic in term of total MR and runtime in producing the results. As 

depicted in figure 4.11, these queries are iteratively executed in the VM in parallel. For 

example if the VM is comprised of a quad-core CPU, logically the CPU run queue 

threshold, CT value is 4, so that at any time there is 1 process queuing for the CPU 

resource. In this case the parallel execution of the query needs to be maintained at fT 

which will have a value of 8, which produces average 4 queues at any time during the 

test. Since there are 4 cores in the processor, it means at any 1 time there is 1 queue in 

the virtual CPU. This explanation is similar to the description of ∆S defined in section 

4.3.2. However CT can be higher, depending on the negotiated transactions’ response 

time requirement by client’s SLA. The CT=4 in this case is a ballpark figure for a quad-

core VM, which should be a general guideline. This is because any higher value will 

incur significant waits in the transactions processing which are detrimental to end users’ 

experience.  

 

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
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S = set of 22 TPC-H queries, where 

S = [Q1, Q2, ... , Q22] 

 
1. Determine number of processor cores 

2. Server threshold, CT is determined by value in step #1 OR predetermined CT from initial load test 

3. Determine run frequency, fT of query based on step 2.  
4. Determine test duration, T 

 

while (true) 
    Record the start time of test, ST 

    For each query in S,  

    if run frequency, f < fT and Server load, C < CT  
    and test time, t < T 

        Execute the query 

        Record logical reads/s and average runtime 
 

 

Figure 4.11: Algorithm to produce the benchmark data. In this case, value pairs of TPC-H queries 

and memory reads/s are sought after. A Shell program is constructed to execute the algorithm, 

which is shown in Appendix F. 

The test duration, as experimented, will need to be prolonged for approximately 15 

minutes in order for the VM state to be stabilized for measurement purpose. The data 

collection is oscillating quite significantly, similar to the condition in the monitoring 

and optimization schemes. The desired result of the benchmarking experiments is 

exhibited in figure 4.12. 

 

Figure 4.12: Graphical result from the benchmarking experiment. The exhibited result shows the 

TPC-H query utilized to load the VM to the run queue threshold, CT=4. The obtained memory 

reads/s in this case is approximately 16000, after the iterative execution of the query is conducted 

for 13 minutes, with 8 parallel query execution. 

As in figure 4.12, the fluctuation of collected data is quite significant during the first 10 

minutes. Subsequently the value is stabilized and the data collector can start to work. 

This loading duration must be carefully and precisely determined, as the benchmarking 

stage is consuming quite a substantial amount of time in producing the benchmark 
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result. Furthermore, these experiments must be conducted during outage window to 

avoid noises in the VM. As displayed in figure 4.10, there are 22 queries involved in the 

benchmarked array. As each test consumes 15 minutes, 5.5 hours of total outage 

window needs to be provisioned to produce the benchmark. As some queries’ 

executions stabilize faster, a detailed scrutiny on the required run duration for each 

query can save some valuable production time. However the advantage of this proposal 

in virtualized environment is that the benchmarking tests can be conducted in separate 

VM with the same hardware configuration, hence the outages needlessly occur in the 

real environment.  

It is also to note that the combination of TPC-H queries can be utilized to enrich the 

benchmark in figure 4.10. The algorithm to use multiple queries is exhibited in figure 

4.13. More experimental results on generating benchmark data is exhibited in Appendix 

H. 

 

1. Determine number of processor core 

2. Server threshold, CT is determined by value in step #1 OR predetermined CT from initial load test 
3. Determine run frequency, fT of query based on step 2.  

4. Determine test duration, T 

 
S'= combination of TPC-H queries, where 

S' = [Q8+Q9, Q2+Q16, Q3+Q6+ Q7, ... ] 

 
while (true) 

Record the start time of test, ST 

For each query combination in S',  
        if run frequency, f < fT/n and Server load, C < CT  

        and test time, t < T 

            Execute the queries 
            Record logical reads/s and average runtime 

 

Figure 4.13: Algorithm to produce the benchmark data using combination of TPC-H queries. The 

same value pairs of TPC-H queries and memory reads/s are produced. The Shell program to 

execute the algorithm is displayed in Appendix G. 

4.5.2 Application to production phase 

As indicated, the setup in this affirmation phase strives to serve 2 objectives. The first is 

to create the stress-testing scenario. Secondly, it is employed to discover the CPU run 

queue threshold in the VM when the hardware configuration undergoes changes.  
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4.5.2.1 Creation of stress testing scenario 

In figure 4.9, step #7 indicates that a representative workload is to be obtained. This 

workload has to be the typical load in the database where most constraining situation in 

the application is predicted. Furthermore, it must depict a timeframe of steady state at 

CPU run queue threshold level, CT. In the experiment, CT is identified as 4 as the VM is 

having a quad-core processor. This information regarding the workload can be mined 

from Workload Repository, where it has a background daemon in the database that acts 

as the metadata collector. As this mechanism is provided by the RDBMS vendor, it is 

not elaborated here. The extracted metadata information will contain the memory reads 

information. As mentioned, this MR from the real workload is to be matched with the 

benchmark array, to discover the TPC-H query that displays similar computing 

characteristic to the real workload. Once the query or queries is found, it is use to create 

the stress-testing scenario in the VM. The step here is similar to step #5 in the 

benchmarking phase in figure 4.9. The iterative and parallel execution of the identified 

TPC-H query or queries must be performed in restricted environment, where the VM 

must be safeguarded from noises. In this case, the best possible option is to provision a 

maintenance window for the build phase in this stress-testing experiment.  

Subsequently when the stress-testing condition is fabricated and stabilized in the VM, 

SLA-bound transactions are executed in the VM. As the CPU run queue is stable in this 

condition, the response times of the transactions are unlikely to exhibit the behavior as 

exhibited in figure 4.3. However, even though the incurred disk or memory I/O values 

are consistent, it is unlikely that the response time results will be even. Fluctuation in 

the response times is expected. Hence the verification of transactions should be 

performed in multiple iterations to guarantee convincing output. The outcome from the 

transaction verification yields following actions, which is best interpreted using Fuzzy 

Computing with Words (Zadeh, 1996): 
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 If most of the transactions’ response times that are obtained from same set of tables 

do not conform to initial expected response time, data volume is changed, and more 

resources are needed in the VM. 

 If a subset of transactions in the pool of transactions that use the same set of tables 

do not conform to initial expected response time, some indexes in the query are 

corrupted and need rebuild. 

 If most transactions do not exhibit consistent response time even after many rounds 

of testing, the hardware performance is not consistent, and further system health 

check is warranted.  

4.5.2.2 Threshold verification 

The same setup is employed for threshold verification in this section. Contrary to the 

threshold verification exhibited in the monitoring scheme where metadata from real 

workload is utilized as input, the input to the threshold boundary analysis is channeled 

by synthetic workload using the TPC-H queries. Even though both methods strive to 

achieve the same goal, each contributes to different interpretation. The monitoring 

model provides a depiction of the VM resource boundary that is closer to end users’ 

experience, as real workload is derived for analysis. Meanwhile the method in the 

affirmation model is more speculative, as synthetic workload is employed. 

Figure 4.14 illustrates the steps to construct this mechanism. Most of the steps here have 

been elaborated in above sections. The more interesting step is in step #5. It exhibits the 

extrapolation to discover the theoretical CPU run queue threshold. The principle to 

determine the threshold is to equate the CPU run queue to the number of virtual 

processors. For instance, if the single quad-core processor in the test bed is increased 

from 1 to 2, the deduced number of cores will be 8. Hence the threshold is set to 8. The 
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rationale to this has been explained in section 4.3.2 where ∆S is defined; hence it is not 

repeated here.  

The basis of construction to the model is similar to the stress-testing scenario described 

in section 4.5.1. However the memory reads/s parameter is not important here. This is 

because throughout the verification process, only particular TPC-H queries are utilized 

for testing, and there is not a necessity to vary the queries. The details for steps # 6 and 

7 are as follows: 

1) Assume TPC-H query #8 is utilized to load the VM. The same steps to setup the 

stress-testing scenario are employed here. However the parallelism of the query 

execution is incremented discretely. At each increased granularity, another TPC-H 

query is employed for response time verification.  

2) However there is no requirement to match the memory reads/s parameter to any 

benchmark. Assume TPC-H query #7 is utilized as the query where response time is 

to be tested. The average response time of 6.3s for this query should be preserved 

within the threshold boundary.  

3) At the point when the average response time of query #7 is not adhering to initial 

value of 6.3s, the CPU run queue value at that particular instance is taken as the 

threshold of the resource utilization in the VM.  
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Figure 4.14: Steps to discover resource threshold in the affirmation model. Note that in this case, 

the processor is the constraining point in the VM. 

4.6 Potential improvement 

The construction of the stress-testing scenario in section 4.5.1 assumes that the physical 

reads in the database are negligible. In mission critical application where objective 

function is to hasten the transaction processing as fast as possible, such assumption is 

valid and considered a best practice in application hosting, particularly in virtualized 

cloud environment. Nevertheless there are situations where the stress-testing scenario is 

needed in the hosts, where physical reads are significant and cannot be neglected in the 

model construction. In such cases, the biggest challenge is to discover the memory reads 

(MR) and physical reads (PR) for the employed TPC-H queries, at particular CPU run 

queue. Such challenge is complicated as it needs to take into few considerations as 

follows: 
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1) The behavior of the database engine in processing the iteratively run queries, 

particularly when the shared memory is not caching the entire queries needs to be 

detailed. 

2) Waits might be significant as SAN storage might pose as constraining factor. 

3) Theoretically, if query #1 and #2 are combined and iteratively run, the total memory 

and physical reads incurred should be a sum of each individual query’s memory 

reads and physical reads. Nevertheless, this hypothesis will need to be proven 

experimentally.  

4) The data collection oscillates quite substantially. A steadier mechanism to data 

loading needs to be envisaged. 

The exploration and validation to the above uncertainties are to be continued in 

subsequent research. Nevertheless, once the MR and PR can be determined 

convincingly, the choice of TPC-H queries to be utilized to load the VM can be 

computed using the linear programming and simplex method. The next section 

illustrates the potential solution in choosing the queries using these 2 mathematical 

algorithms. 

To explain the suggested method to choose queries which are most suitable for data 

loading, following 2 rules are assumed: 

1) The queries’ response time should be as short as possible, so that the fluctuation of 

the MR and PR parameters can be kept as small as possible. For instance, a 1 query 

is capable of producing required MR and PR values of 10000/s and 20000/s 

respectively, and its response time is 20s. Query 2 is also capable of producing the 

same amount of MR and PR in 1 second duration, but it needs only 5s to run. In real 

condition, these MR and PR values are not smoothened across the whole tenure of 

the query execution. With this setback, the transaction verification process will not 
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produce desired consistent response time. To lessen the impact of such behavior, 

query 2 is preferred in this case, as the shorter the processing time, the more 

consistent the values of MR and PR are generated.  

2) When 2 queries are run in the database, the total values of MR and PR is the sum of 

individual MR and PR values. Such assumption is made here for easy depiction of 

the algorithm. Future research will scrutinize on the potential improvement on this 

hypothesis.  

To start the mathematical depiction of the proposal, assume 3 queries are involved. In 

actual scenario, there are 22 TPC-H queries to be chosen from. However to ease the 

explanation, 3 queries are selected to describe the detailed steps. These queries are 

having the attributes as displayed in table 4.2.  

Table 4.2: Attributes of the queries potentially involve in the construction of stress-testing scenario. 

 

In addition, assume the CPU run queue threshold is 8, which is equivalent to 2 units of 

quad-core processors allocated to the VM. The arrival to this value is explained in 

section 4.3.2, where ∆S is defined. With this information, it is derived that the total 

parallel run of the queries should equate to 16. The objective function of the linear 

programming here is to minimize the response time as per rule #1 above. So, 

To minimize,  

Q = x1f1 + x2f2 + x3f3. 

Subject to following constraints: 

MR1 f1 + MR2 f2 + MR3 f3 ≥ M, 

PR1 f1 + PR2 f2 + PR3 f3 ≥ P, 

f1 + f2 + f3 ≥ f, 

f1 ≥ 0, f2 ≥ 0, f3 ≥ 0 because parallel execution of queries cannot be negative, 
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Where,  

MRi is the individual MR of query i, Si, 

PRi is the individual PR of query i, Si, 

M is the desired MR to be loaded in the VM, 

P is the desired PR to be loaded in the VM, 

f is the parallel execution of the queries, which corresponds to the CPU run queue 

threshold in the VM. 

Hence, putting in the values, the objective function becomes 

Q = 10f1 + 20f2 + 15f3, with following constraints: 

10000f1 + 15000f2 + 25000f3 ≥ 150000, 

5000f1 + 20000 f2 + 11000f3 ≥ 120000, 

f1 + f2 + f3 ≥ 16, 

where, 

f1 ≥ 0, f2 ≥ 0, f3 ≥ 0, 

The augmented matrix corresponds to the minimization problem is as below: 

 

The matrix corresponds to the dual maximization problem (Cengage, 2013) is given by 

the transpose of the above matrix.  

 

The dual maximization problem implies that the objective value, Q of a minimization 

problem in standard format has a minimum value only if the objective function of the 
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dual maximization problem, P has a maximum value. In addition, Q is equal to the 

value of P. Q and P are defined as follows. 

In the dual maximization format, the dual objective function, P is derived from above 

transposed matrix: 

P = 150000 y1+120000 y2 +16 y3 , 

Where it is subjected to following dual constraints: 

10000 y1 + 5000 y2 + y3 ≤ 10, 

15000 y1 + 20000 y2 + y3 ≤ 20, 

25000 y1 + 11000 y2 + y3 ≤ 15. 

With  y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, 

With the above defined, Simplex method can be applied to solve the minimization 

problem. The dual objective function and the dual constraints are arranged in a tabular 

format, as in table 4.3. The vertical cells are interpreted as column, ci while ri represents 

the horizontal cells in following explanation.  

Table 4.3: Tabular representation of the dual objective function and constraints. The yellow cells 

denote the objective function. 

 

The next step is to find the pivot to table 4.3. To arrive at the pivot, the most negative 

value from the row that stores values of the objective function is identified. 

Subsequently, the values in column b are divided by the column’s values associated 

with the negative value. The smallest value from this computational result will affiliate 

with the row with the pivot. This operation is shown in table 4.4. 
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Table 4.4: The red colored cell depicts the pivot.  

 
 

Subsequently, the other cells in the pivot row need to be reduced to 0. The right-most 

equations in table 4.5 illustrate how this is performed.  

Table 4.5: The reduction of other cells’ values to 0, in the pivot column. 

 

To arrive at the final resolution, the operations displayed in table 4.3 and 4.4 are 

iteratively executed until all the values in the dual objective function become positive. 

This repeated computation is exhibited in table 4.5.  

In the last table in table 4.6, s1 ≈ 8, s2 ≈ 2 and s3 = 6, while b = 44.3. s1, s2 and s3 

correspond to f1, f2 and f3 respectively. The value P, as mentioned, equates to Q in the 

original objective function. Hence, the minimum response time obtained is 44s. As the 

total parallel run of the queries should equate to 16, query 1, 2 and 3 are run in parallel 

in the VM, at the frequency of 8, 2 and 6 respectively.  
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Table 4.6: The continuous steps to produce the final resolution by the simplex method.  

 

The above illustration only employs 3 queries. In actual situation, 22 TPC-H queries 

should be involved in the objective functions and constraints. With such lengthy 

computation, the discovery of the most appropriate value of parallel execution 

frequency can be obtained using the simlp function in MATLAB. The above work has 

been published as a journal paper in (C. H. Tan & Teh, 2013b). 

4.7 Summary and discussion 

The designs of the resource utilization monitoring, optimization and affirmation models 

have been detailed in this chapter. The designs employ statistical computation to 

produce the proposed mechanisms. In these cases, linear regression analysis, machine 

learning, linear programming and simplex method have been utilized to generate the 

intended and potential outcomes. Each step in the construction of the models has been 

accompanied by detailed explanation with logic and feasibility, regarding the choice of 

the related techniques.  
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 Future works have also been covered in the latter part of the chapter. It is hoped that the 

models will be improved and feasibly applied in the commercial arena.  

In the monitoring scheme, the characteristic of the workload is detailed. In this case, the 

workload metadata is taken as input to the model. The relationship between this 

information from the database and the CPU run queue parameter in the OS is exploited 

to depict the condition of the resource utilization state in the VM. In this case, linear 

regression technique is employed to describe the workload processing trend. Before the 

graphical representation is established, the noises particularly at the OS level need to be 

gotten rid of. In this case the Fourth-Spread (fs) method is utilized.  

Thereafter, the design for the optimization scheme is elaborated. The prototyping of this 

scheme requires the setup of a TPC-H database. In this research, dedicated database is 

built for the TPC-H data, so that the noises can be contained to the minimum. The 

algorithms to construct the model are based on the linear regression and semi-

supervised machine learning concepts. In building the prototype, 2 phases are 

envisaged. In the baselining phase, the training data sets are collected, usually right after 

the new hardware configuration is put in place. Subsequently the production phase 

involves the collection of testing data sets. Both training and testing data sets are 

compared to yield the result of hardware performance level. 

Consequently, the construction of the affirmation scheme is detailed. There are 2 goals 

to be achieved here. The environment setup for the 2 mechanisms is similar to the 

optimization scheme. Both need the TPC-H database to be built. The first objective is to 

create the stress-testing scenario, whereby the database logical reads and the CPU run 

queue parameters are exploited to create the stressed condition in the VM, for 

verification of SLA-bound transactions. The second target is to utilize the TPC-H 

queries to discover the resource threshold in the VM. It is to note that both monitoring 



208 

 

and affirmation models are capable of recognizing the threshold value. Nevertheless the 

former is taking the perspective from the end users' experience, whereas the latter is 

more hypothetical in nature. 

The next chapter explains the next phase after the design phase elaborated in this 

chapter. The experimental results are produced and detailed analysis is conducted. 
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

5.1 Introduction 

The prototyping results of the proposed models are detailed in this chapter. The results 

are critically analyzed, and their advantages and shortcomings are evaluated. At this 

point, the proposed resource management mechanisms can be exploited to complement 

existing commercially deployed tools in the same categories. For instance, the proposed 

monitoring model can depict the server resource utilization state from a new 

perspective, in relative to commonly deployed utilities in the IT industry, for instance 

NIMBUS, Oracle OEM, Resource Monitor by Windows and the multiple command-line 

interface (CLI) tools available in Unix and Linux. The optimization model can serve as 

the pre-requisite for comprehensive hardware health check, where the VM state is 

probed for abnormality, and the detection of fault is reported for subsequent extensive 

hardware scanning to take place. The affirmation model which relates to resource 

threshold discovery is able to provide a ballpark figure on the resource limit in the VM, 

before the thorough conventional stress testing is conducted using commercialized tools 

in case the computing capability of the VM is in doubt, for instance the HP 

LoadRunner. In the same affirmation scheme, the rapid creation of stress-testing 

scenario proposal provides premeditated stress testing, before the decision to engage the 

comprehensive conventional, yet cumbersome load testing is made.  

The analysis on the data employed in the experiments is included. As the target of the 

research is to avoid access to real data in the database, the rationale on the choice of 

preferential data is circled around this security concern. In this case the choice of 

employing TPC-H data and queries, together with metadata extraction from real 

workload are discussed.  
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In parallel with the elaboration on the analysis for the 3 schemes, the potential future 

enhancements from this development point are also envisaged. These reviews strive to 

reveal the opportunities to improve the resource utilization in the virtualized 

environment, for IT administration as well as monetary benefits.   

5.2 Data sets 

5.2.1 Metadata from real workload 

2 types of data sets are employed in the experiments conducted for this research on 

resource management. In the proposed monitoring scheme, the metadata in the real 

workload is scrutinized. The data collector runs periodically to gather the needed 

information, and stores them into a custom repository. Here, the data collector is a 

build-in mechanism in the database. The collection of input data in this experiment is 

carried out by the Oracle Workload Repository, where periodic snapshots can be taken 

to depict the database and VM states. The high level architecture of this utility is 

illustrated in figure 5.1. In this figure, it is shown that the database performance statistic 

is gathered in the shared memory, and can be displayed online via the v$session view. 

The rolling update of the statistic is also published in v$active_session_history view so 

that a more comprehensive interpretation of the database state can be obtained. Such 

information is only stored temporary in the memory, as and when the 2 views are 

updated with new performance statistic, the old data is no longer available. In order to 

capture the data for analysis, the MMON and MMNL background processes are 

responsible to capture these statistics in snapshots, and store them onto the disk for 

permanent storage. These snapshotting operations to collect and extract metadata did 

not incur significant I/O in the test bed when they were run in 1-minute interval; hence 

it is not a cause of concern for the experiment. For a week of collected data, the incurred 

storage size in the custom table is less than 10MB in size. This figure is relatively small 
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and does not significantly affect the overhead from the cost and administrative 

perspective. Other similar tools available in commercial RDBMS products are SQL 

Optimizer that associates with Sybase database, and SQL Profiler which can provide the 

needed information in SQL Server.  

 

Figure 5.1: High level depiction of the Oracle Workload Repository engine. The in-memory statistic 

delineates the database state, and the information can be stored by enabling snapshotting as 

illustrated at the bottom half of the diagram. Adapted from (AWR, 2013).  

From the database end, the collected metadata consists of DB CPU Time (DCT) and 

SQL Elapsed Time (SET). DCT denotes the execution time needed to process the 

particular SQL by the database engine. DCT is a subset of SET. In the experiments 

carried out in this thesis, SET signifies the total time needed by the VM and database to 

return query results to the terminals that initiate the queries. In other words, it is the 

Round-trip time (RTT) to process a SQL from the end users to database; and from the 

database back to the end users. The components of SET have been detailed in chapter 4. 

As elaborated before in chapter 3 and 4, the needed pre-requisite to this monitoring 

model, is to ensure that the processor component is the point of constraint. With this 

assumption and assurance, DCT and SET can comfortably be deployed in the proposed 
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monitoring model. In this case, the waiting time to process the SQL in the VM will 

accumulate in the SET region; however this waiting time is not included into DCT. 

With such scenario, the queuing model can be easily depicted, as the magnitude of 

difference between DCT and SET at particular CPU run queue denotes the number of 

database processes queued in the VM. To safeguard the legitimacy of the collected 

metadata, during the snapshotting phase of data collection, the noises in the VM must 

not be dominantly affect the number of queuing processes. However in real situation, 

even in the most scrutinizing condition, it is often unavoidably that ad-hoc and 

unexpected operating system (OS) processes are triggered when the database snapshots 

are taken, either intentionally or unintentionally. For instance, there could be request to 

perform ad-hoc OS backup as the pre-requisite for a system change. Or in another 

instance, the overrun daemon processes might incur unnecessary overhead to the VM. 

To cater for such anomalies, the Fourth-Spread (fs) method is employed to remove the 

outliers in the monitoring model prior to the data analysis phase. This method 

segregates the graphical data points into 4 quadrants. Only the data points in the nearest 

2 quadrants are deemed valid to be manipulated to serve the modeling purpose. The 

implementation details of the method are illustrated in section 4.3.3. Nevertheless, the 

accuracy enhancement of this monitoring model can be significantly boosted when the 

noises at the OS level are reduced. Hence the careful selection of snapshotting 

timeframes should be emphasized to avoid duration when OS maintenance jobs are 

taking place.  

5.2.2 Synthetic workload – TPC-H benchmark 

The second category of the data sets is utilizing TPC-H benchmark as input into the 

optimization and affirmation models. As this benchmark is not specifically fabricated 

for particular RDBMS, it can be easily deported to other database platforms in case 

needed. However, the main criteria for choosing this established benchmark in this 
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research is its wide adoption by multiple RDBMS products. Because it can be easily 

setup and configured in a great variety of databases, the experiments carried out in this 

thesis, together with the deduced analysis are applicable generically to other database 

flavors. The same design methodologies elaborated in chapter 4 can be quickly and 

effortlessly adapted to other non-Oracle database platforms. This benchmark comprises 

of 8 tables and 22 queries. The relationship between the tables is illustrated in figure 

5.2. The information on the queries can be obtained from Appendix F. 

 

Figure 5.2: TPC-H data model. Adapted from (Kocakahin, 2010). 

Furthermore, as the data and queries are standardized across all databases, relative 

comparison in performance and throughput capability can be performed. Such facility is 

not significant in this research. However it can provide a magnified insight to the 

consumers, regarding the expectation of performance and throughput on similar 

workload that is running in different RDBMS platform. For instance, if the TPC-H 
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queries are needing x amount of longer response time to be processed by database 

running on RDBMS type A during the experiments as compared to RDBMS type B, the 

same magnitude of slowness should be expected when the workload is running in user 

database that is serviced by RDBMS type A, on the same VM configuration.  

The choice of TPC-H benchmark in the experiments is also due to the fact that the 

queries can adequately load the VM to the resource threshold level required by the tests. 

There are other choices to synthesize this hypothetical workload, for instance, by 

employing TPC-W or TPC-C benchmarks. However it is discovered that these 2 

benchmarks are more suitable to be utilized for studies on measuring transactions’ 

throughput. They are not as appropriate relatively to be utilized to construct the 

optimization and affirmation models as their queries are relatively lighter to be used to 

load the VM. The same observation is revealed in the TPC website. TPC-H benchmark 

is fabricated to mimic data warehouse environment where heavier queries are frequent. 

On the other hand, TPC-C and TPC-W benchmarks are of OLTP type, which typify the 

general nature of web-based OLTP transactions. TPC-H is also a choice here in this 

research as it contains a variety of queries that produce the execution response time, 

ranging from 1s to 150s. Hence, depending on the size of the VM, different queries can 

be deployed according for the experiments.  

The TPC-H data occupies 5GB of SAN space, which is relatively small in comparing to 

the size of common commercially deployed user databases in today’s storage frame. As 

one of the issues in deploying database transactions to the Public Cloud is the distance 

of I/O between the data and computing node, 5GB of data can be maneuvered easily in 

case the study on the effect of data-to-computing distance is to be conducted. The future 

works illustrated at the tail end of chapter 4 elaborates on taking the physical I/O 

parameter into the fabrication of stress-testing scenario, using linear programming and 

simplex method. In this case, the influence of disk I/O will be significant. With TPC-H 
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data, the distance effect can be conveniently measured in case Public Cloud VM is to be 

deployed as test bed.  

In most of the TPC-H queries, execution parallelism has been built into them, which 

depicts the common VM configuration of 4-8 virtual processors. Such parallelism effect 

is not studied in details in this research. However it can be potentially applicable in 

future work to refine the stress-testing scenario creation in the affirmation scheme. At 

this point, extrapolation on the experimental results is not workable, in order to produce 

the benchmarking array. However this parallelism effect is suspected to be the cause of 

the irregularity in predicting the memory reads/s of the iterative execution of the queries 

in the affirmation model. The default parallelism on the queries is not modified in this 

research; nevertheless they should be altered in subsequent research to match with the 

virtual processors’ configuration, to predict the memory reads/s parameter. 

The benefit of using TPC-H benchmark as compared to customized workload is the 

easy reference of this benchmark across different databases. During the initial stage of 

the research, it was envisaged that potentially the real data can be scrambled in order to 

achieve the objective of not allowing visibility to the real sensitive data to safeguard the 

data security. However, such option has a few shortcomings as follows: 

1) In order to scramble the real data, manual intervention is needed to execute the 

scrambling scripts. Such effort is not beneficial as depicted in following points. 

2) The scrambled data does not necessarily guarantee the same performance 

characteristic when the same set of transactions is exerted against it. This can be 

explained by considering the following SQL: 

select department_name, sum(salary) from departments 

where num_employee>100; 
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If this statement yields total 300000 memory reads for a duration from the real 

data in the memory, after the data is scrambled, the logical reads could be of any 

value but 300000 as different execution path is taken by the RDBMS engine due 

to the change in data values that changes the predicate clause.  

3) Most user databases are relatively larger than the TPC-H benchmark. Hence it is 

more cumbersome in deployment and management. TPC-H benchmark data is 

generally smaller and portable; hence in case the workload in the VM needs to be 

migrated to another VM, the migration of the TPC-H data can be easily performed 

without much constraint.  

4) Customized workload cannot be easily published as benchmark to the wide industry. 

However, TPC-H data and queries are already widely understood and serving 

various IT functions. Hence the proposed models in this thesis can be adopted 

easily, without prior understanding on the testing data.  

The following sections illustrate the application of the discussed data sets into the 

proposed models. 

5.3 Resource utilization monitoring 

5.3.1 Environment for the experiments 

To outline the details of the monitoring scheme, a considerably large workload is 

needed. During the development stage of this model, there was not a mission-critical 

application made available with enough SQL transactions that is hosted on Cloud 

environment for illustration purpose. However there was one such ideal workload 

available on a single Sun Solaris server. The experiment was conducted against this 

workload, where the outcome can be proliferated to database operations on Cloud VM 

without much variation. The data for the experiment is gathered from a Sun Solaris 

server, powered by 4 Sun Solaris SPARC64-VII CPU with 4-core architecture, 64GB 
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RAM and external SAN running on ZFS File system. The application runs on SAP ERP 

software, on ECC6 HRM Module. The application is OLTP in nature, servicing Human 

Resource Management System for a large organization. The backend is running on a 

single instance Oracle 11g database. In this scenario, a week of data on actual 

transactions is collected, with Server Load taken as average in 1-minute interval. SET 

and DCT are collected in tandem with the 1-minute interval timeframe. In this case the 

explanation of the proposal is simplified by having only 1 database running in the host. 

The experimental result is exhibited in figure 5.3. In this graphical illustration, all 3 

variables – CPU run queue (C), SET (S
~

) and DCT (S
~

’) are quantitative. When the data 

points of these 3 values are mapped, the scatter graph is generated as in Figure 5.3. As 

the correlation between C and S
~

, as well as C and S
~

’ are linear as explained in section 

2.4.3.1, regression lines are drawn mathematically. They are extrapolated on the cluster 

of scatter plot data, to statistically describe the trend of the SET and DCT.  
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Figure 5.3: Experimental results that show relationship between S
~

i(SET), S
~

’i (DCT) and Ci (CPU 

run queue size).  

5.3.2 Derivative parameters from the experiments 

To arrive at the 2 lines mathematically, the Linear Regression methodology is 

employed. Take SET as example, it is defined as Si = xCi + b + εi. However in the case 

of this experiment, value b is assumed 0 as observed from the actual host itself, that 

even with multiple background daemons running, the server load is close to 0 and hence 

this variable is negligible. This value can be safely assumed as in this case, the server 

resources are abundant. However if the hardware resources in the server or VM are 

restricted, for instance if there is only a single CPU and 1 GB of physical memory, 

value of b could be 1 or 2 as a result of the system overhead, and it needs to be 

acknowledged in the formula. In this case the CPU run queue will be sensitive to the 

constantly-running overhead processes in the server or VM. Nevertheless, such scenario 

will only complicate the formulation in the algorithm, without achieving significant 

desired result. The explained model will work properly in the environment with larger 
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resources, to curtail the system overhead; however if the overhead is large and 

unavoidable, a workload pre-check mechanism can be incorporated, to ensure a robust 

workload control plan is in place. The precaution in the monitoring model is to avoid 

and disregard timeframe when the system is running non-database related overheads 

before inputting the workload data into the model. In defining the legitimate workloads 

for input to the model, it is assumed that IT organization has a well-designed 

maintenance window to cater for unavoidable system overhead, especially the backup 

operations, where business transactions during this timeframe are kept to minimum. 

To explain the case for the experiment in figure 5.3, the SET is having the equation Si = 

xCi + εi. The linearly fitted value, S
~

i is the value fitted exactly on the regression line, 

and is denoted as S
~

i = xCi. Hence, the residuals, εi = Si – S
~

i, are the differences between 

the actual and fitted values of SET. This variable is not elaborated for the discussion in 

this thesis, but will serve as a critical component in subsequent work in developing an 

adaptive system to reduce the noises in the system. The requirement here is only to 

calculate the value of x to fulfill the requirement here. Using Least Squares Derivation 

method as explained in section 2.4.3.3, with N number of data points, the value of x is 

obtained as 
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 .        (1) 

With this, the regression line is plotted using S
~

 = xC, and similarly for DB time, S
~

’ = 

yC. To measure the representability of the regression lines to the data points, we use the 

correlation coefficient (r), defined as 
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r is confined to value between 0 and 1 in our case. 1 denotes that there is a perfect linear 

correlation between C and S
~

, while 0 shows no correlation. Intermediate values show 

partial correlations. This value of r will be utilized later to gauge the accuracy of the 

graph in figure 5.3. Another parameter, ∆S = (S
~

-S
~

’) /S
~

’ *100 is also needed in the 

model. The details explanation for this parameter is shown in section 4.3.2. ∆S 

corresponds to C’T. This delta of S
~

 and S
~

’ can be used to gauge if the host condition is 

still viable for optimal database transactions. During steady state database operations, if 

S
~

 = xC becomes steeper, ∆S is then reached for Server Load < C’T. The reason could 

due to the fact that the physical reads or memory reads in the database are not efficient. 

This indirectly indicates that either the I/O subsystem is not functioning optimally or the 

database cache is not sufficient after prolonged database operations where change in the 

data volume has occurred. The noises from the operating system can also contribute to 

this, for instance new auditing daemon could be running in the host, additional host 

monitoring utility is running etc. The noises ideally are undesired, for a mission critical 

application running stead-state operations. However in real live environment, system 

overhead is inevitable. For instance, the VM and database backups will cause significant 

overhead and these cannot be ignored. In this case a maintenance window is defined, 

and the workload input will avoid this timeframe when feeding into the algorithm, to 

preserve the model accuracy. 
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In case the ∆S is reached when Server Load < C’T, appropriate measures need to be 

taken, i.e. fixing the host environment or increase database cache. If all has been done 

but value of x is still steeper than before, a new C’T will need to be defined. In this case 

the new C’T is the Server Load value corresponds to where ∆S is. It is to note that as 

values for CT & C’’T stay as constant here, hence the C’T & CT gap is enlarged. When 

this happens, the probability of transactions to fall into the 5% zone increases. The 5% 

zone is a hypothesis figure, and it should be adjusted appropriately based on particular 

application’s SLA. 

When block of new hardware is added to existing VM, the new resource threshold point 

is rediscovered via the affirmation model explained in section 4.5.2.2. Subsequently the 

monitoring model is constructed again to monitor and determine for subsequent need of 

hardware provisioning.  

5.3.3 Experimental data 

There are a total of 10621 samples (total collection of the data points as in Figure 5.3) 

gathered in the 1 week period for each set of SET, S
~

 and DCT, S
~

’. As mentioned their 

relationships are S
~

 = xC and S
~

’ = yC respectively, and by calculation using the data 

points’ values, the gradients are x=67.25 and y=43.77. Hence as seen in Figure 5.3, 2 

strong positive regression lines are drawn. There are outliers in the graph, and they are 

understandably to be caused by noises in the server outside the control of the RDBMS. 

These can possibly cause by the auditing processes in the OS which spike occasionally 

while the application transactions are running, File System backup that incurs I/O 

contention and monitoring daemon to name a few. To gauge the accuracy of the 

regression lines, correlation coefficient, r, is calculated. Using equation 2, the value r = 

0.72 for the regression line on SET, and r = 0.78 for the regression line on DCT. These 

2 values show that the fit of the 2 linear models is fairly acceptable. In other words, it 
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can be assumed that these noises are not affecting the correlations too much. For more 

accurate plots, these noises will need to be investigated and fixed at OS level, or if ever 

desired, the outliers in Figure 5.3 can be excluded to increase the accuracy of the 

regression lines. With these equations, the limit when the server is hitting resource 

constraint can be further derived. 

2 values from the output of affirmation model during pre-cutover or right after change 

of hardware configuration are to be noted, before the database goes into steady-state 

production mode. They are C’T & ∆S. The initial CT is set at 13 and ∆S = 55% 

respectively. After about a year running into steady-state production mode, the CT value 

reduced to 12 with ∆S stays at 55%, as depicted in Figure 5.3. 

To represent these 2 properties properly, Fuzzy Logic is employed, as illustrated below: 

Step 1: Determine when to examine the host environment and adjust CT, using Fuzzy 

Computing with Words (Zadeh, 1996): 

If SQL elapsed time is very much higher than SQL DB time, the host environment 

is near suboptimal condition. 

With Fuzzy Implication method (Alavala, 2008):  

 

Figure 5.4: Membership Function for ∆S, A(u). 
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Figure 5.4 shows membership function for ∆S, A(u). A(u) is 

A(u)={

             

       
 

  
          

                 

          (3) 

 

Figure: 5.5. Membership Function for C, B(v). 

With u=55, corresponding Server Load limit, C’T is obtained, as in Figure 5.3.  

Figure 5.5 shows membership function for Server Load, B(v) in the server. B(v) is  

B(v)={

             

       
 

  
           

                 

         (4) 

Subsequently, the constraining relation, R = A(u) ⇒B(v). 

Step 2: Determine if database transactions need additional hardware: 

If more data points fall between C’T & CT, trigger point for hardware planning and 
provisioning is near. 

 

Figure. 5.6: Membership Function for ρ, C(w). 
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Figure 5.6 shows membership function for density of data points, ρ, between C’T & CT. 

C(w)={

            

       
 

 
          

                   

          (5) 

The membership function A(u) is obtained from the output from the affirmation model, 

or initial Load Testing as when ∆S is defined. Subsequently from the limit of A(u), B(v) 

is determined during steady-state operations. Using limit of B(v), C(w) is derived. 

5.3.4 Monitoring model’s accuracy and system overhead 

The snapshot interval to obtain the data points is set to 1 minute in the experiment. It is 

worthy to note that the smaller the interval, the more accurate the data is. Caution needs 

to be taken here on the workload to collect S
~

, S
~

’ and C values, as these data computation 

in the database should not incur too much overhead. In system with not as powerful 

hardware, 1-minute interval could incur high overhead to the host environment. In 

contrast when there is more resource available in the host, sampling interval can be 

small. This can be represented by Fuzzy rule in the form of: 

R: If <x is P>, then <y is Q>. This is translated to If <Server load is low>, then 

<sampling granularity can be small>. 

Then with Fuzzy predicates P and Q as Fuzzy sets on U = domain of x, V = domain of 

y, define, 

 P(x) for ‘x is P’ and Q(y) for ‘y is Q’, and define, 

 T(R) = T[P(x) ⇒ Q(y)] for every x in U and every y in V.  

Using Mamdani implication (Ganesh, 2008) which is appropriate in this case,  
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 T[P(x) ⇒ Q(y)] = min[P(x), Q(y)]. 

With this visibility, the appropriate overhead values of P (Server Load) and Q (sampling 

granularity) can be brought into equilibrium. 

5.3.5 Workload characteristic 

5.3.5.1 SQL tracking 

During the tenure of the database life cycle, it is imperative to keep the DCT of all 

transactions as close as possible to the initial deployment of the application. In other 

words, the line S
~

’ = yC as in Figure 5.3 should not change ideally. To do this, the SQL 

must be tuned and run as optimally as possible during the development phase, before 

production deployment. To explain the SQL verification mechanism, define an array, B, 

which has 30-minute interval in each of its element. Depending on how long the data 

capture operation is going to run to properly represent all potential SQL in the 

databases, there is q samples in B, B=[ u1, u2, … ui,…, uq]. Then assume there are n 

numbers of databases running in the host, DB=[db1, db2,.. dbj …., dbn]. Take 1 30-

minute snapshot, u1 to represent activity in other snapshots, and define  

s1 = collection of SET of top m number of SQL in all n databases, running in u1. The top 

m SQLs are ranked in descending order by total elapsed time. s1 is a collection of SQL 

ID. 

Hence, s1 is s1 = [ss1, ss2, ss3 .. , ssk …, ssm],  

where, 

ssk = SQL elapsed time on a SQL k that runs in database dbj with y iterations in the 30-

minute interval, defined as ∑ ( 
 
)

 
   μk, where μk = mean elapsed time of the SQL. 
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Top m SQLs are defined as SQLs that exceed x duration of runtime including all their 

iteration in u1. Top m SQLs are dominant resource consumer in the host. 

The accurate way to gauge the effectiveness of a SQL is to compare its actual μ with the 

benchmarked value, in this case the minimum of μ found in all the legitimate gathered 

data points in figure 5.3. So for ssk, the minimum of μ is labeled as μk-min. For each SQL 

ID in si, the minimum μ is stored in an array, U = [μ1-min, μ2-min, μ3-min .. , μk-min …, μm-

min]. Hence, data in U is to be benchmarked when SQL tuning is taking place. 

5.3.5.2 SQL optimization 

In real situation, there are un-optimized transactions that disguise the actual need of 

computational power. SQL must not be allowed to run wildly. The un-optimized 

condition can be attributed to following few problems and potential solutions: 

1) The change in data volume which requires update on the tables’ statistic. 

2) The change in data structure which requires reevaluation on the SQL context.  

3) Accidental deletion of indexes which changes the SQL execution path entirely.  

4) Introduction of new codes into the environment which was not tuned properly in 

prior.  

Following section further explains the situations on the behavior of these SQL, 

particularly on the change on data volume as this is potentially the highest possible 

occurrence in the database.  

For the same SQL which runs multiple iterations, either via bind variables or literal 

values, its μ, which is the average execution elapsed time, may change but the execution 

plan stays the same. Few scenarios could lead to this, for instance if the data involved in 

the SQL increased significantly and statistic has not been gathered in time, or if there is 

skewed histogram in the data resulted from data change. Another situation that can lead 



227 

 

to this is when there is high resource contention in the VM going beyond CPU run 

queue threshold. These are represented in Figure 5.7. 

 

Figure 5.7: Runtime Variation of Particular SQL in 1 Week. 

Figure 5.7 shows SET of a SQL executed in each 30-minute segment in array B. There 

are 10 occurrences of the SQL execution in 1 week. SQL A was the original statement, 

optimally tuned, and there is no hardware contention in the server. To explain this 

further, there are few key aspects to define optimally tuned statement in this case. 

During end users acceptance test, the buy-off transaction response time could be set as 

benchmark. Then when the database is running in steady-state production mode, the 

RDBMS engine can self-tune the SQL. There is also situation where particular SQL is 

intentionally forced to run on particular execution path to maintain desired response 

time.  

A’ is a result of data being added to the tables involved, and it goes undetected by the 

RDBMS. A’’ illustrates the scenario when data is added significantly to the tables used 

by the queries before tables’ statistic is gathered, or necessary indexes have not been 

considered to accommodate the new data. In another scenario there can be resource 

contention in the VM that results in A’’. Another scenario which is not shown in figure 

5.7, is that SQL A changes its execution plan, as a result of accidental drop of an index 
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in a table or sudden surge of cache memory consumption due to sudden increment of 

table data. These adversely result in excessive physical reads and the μ diverges 

significantly.  

Above are a few situations that affect the accuracy of the model. These SQLs need to be 

tuned before resource capacity tracking model can report the resource utilization state 

accurately. As defined in section 5.3.4.1, U = [μ1-min, μ2-min, μ3-min .. , μk-min …, μm-min]. 

The data in this array is used for the purpose of baselining and tuning the involved 

SQLs. 

5.4 Resource utilization optimization 

5.4.1 Environment for the experiments 

 

Figure 5.8: Parallel Database hosting using VMWare Cloud Virtualization Infrastructure. The 

optimization and affirmation models are built on the TPC-H database depicted in the diagram. 

The VM utilized for the experiments in this research is constituted of the components as 

illustrated in figure 5.8. The proof-of-concept repository is an Oracle database. Oracle is 

the RDBMS of choice here, as it offers full-fledged SQL optimizing feature, via the 

matured optimizer technology. It provides the database transactions with many complete 

SQL optimization technologies; hence the need for SQL tuning effort in all the testing 

scenarios can be reduced. The VM is running on Suse Linux operating system. The 
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captivated CPU run queue length, or server load values obtained from ‘uptime’ 

command in the OS are the core input for the optimization and affirmation models.  

5.4.2 Experimental results 

 

Figure 5.9: The expected output from the optimization model. The obtained gradient and y-

intercept are the parameters to be compared between the baselining and production phase, as 

explained in section 4.4.2 and 4.4.3. 

The baselining experiments’ output is as illustrated in figure 5.9. Appendix E contains 

the other similar baseline data, produced by different TPC-H queries. The core value of 

these experiments lies in the linear relationship between SET, S in the database and the 

CPU run queue size, C within the resource threshold point. As the interest is to discover 

the gradients, MB and y-intercept, YB of the linear plots, these regression lines computed 

during the baselining phase of VM provide the baselines for subsequent hardware 

performance analysis.  

Each set of test which comprises of different combination of TPC-H queries has 

different values of MB and YB. This is because the SQL processing has dependency not 

only on the number of CPU, but also the logical and physical I/O reads. In real 

production phase, only 1 to 2 baselines are adequate for subsequent comparison. These 

regression lines are equitably formulated by following equations: 

The gradient of the regression line:  
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The correlation coefficient, r is used for performance evaluation purpose. Its details 

have been elaborated in section 5.3.2.  

5.4.3 Potential deviation from the testing data sets 

 

Figure 5.10: Potential change in linear correlation between S and C. 

Figure 5.10 shows linear regression lines of the resource state in a situation in the VM. 

Correlation A is the Fitted Regression Line obtained from the training data sets of 

particular set of TPC-H query, from the control system, in other word, the baseline. If 

the VM shows condition A’ from the testing data sets, which are the data obtained from 

the tests during the production phase, where y-intercept differs from baseline after 

running operations for a while, it signals that the capability of the VM has deterioated. 
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This could be due to the persistent noises in the OS or partial hardware malfunction. For 

this, ∆s= 
     

 

  
      is defined.  

Using Fuzzy Computing with Words (Zadeh, 1996) concept, 

 If ∆s is large, the OS and hardware condition needs to be examined.  

Correlation A” in Figure 5.11 shows another deviating condition. The fluctuation in the 

gradient can signify hardware or OS issue. For instance, there are significant irregular 

noises in the OS, the CPU is not able to access the second core in a dual-core machine, 

memory shortage due to failure in DIMM or increased I/O time resulted from 

breakdown in any of the SAN components. The gradient of the testing data set, mj is 

derived from same TPC-H query sets, and it has less positive value than MB, which is 

the benchmarked gradient obtained from training phase. Again, using Fuzzy Computing 

with Words concept, 

 If gradient and y-intercept deviate much from baseline values, the OS and 

hardware need to be examined. 

The above explained theories assume strong linear correlation between the SQL 

Processing Time, S and server load, C. However this might not be the case in actual 

production system. In this case, the correlation coefficient, r,(D. G. Kleinbaum, L. L. 

Kupper, K. E. Muller, & A. Nizam, 1998) is employed. It is a barometric measurement 

of the linear association between the data points and the Fitted Regression Line from the 

baseline data. In this case, r will vary between 0 and 1, with value nearer to 1 denotes 

stronger linear correlation.  
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Figure 5.11: Potential change in linear correlation between S and C. 

Using fuzzy definition,  

 If correlation coefficient, rj is less positive, the OS and hardware need to be 

examined. 

Figure 5.12 shows a condition where the underlying storage is going through a backup 

process. In this timeframe, the host’s environment is not conducive for any transaction, 

as uncharacteristic performance results are expected due to inconsistent I/O subsystem 

performance during the backup snapshotting. This behavior is shown in this graph, 

where erratic data points are collected from the test. Hence, the consistency criterion is 

voided in this case.  

 

Figure  5.12: Erratic behavior of hardware performance during backup process. 
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5.5 Resource utilization affirmation 

The significance of the affirmation scheme lies in its ability to rapidly create the stress 

testing scenario in the VM. Figure 5.13 depicts the result in the benchmarking stage 

from TPC-H query #2. The complete result of the proposal in the affirmation scheme is 

illustrated in Appendix H.  

 

Figure  5.13: Testing result of the affirmation model. The output from this test is included into the 

benchmark array. Sunsequently the benchmark is employed as input to the stress testing scenario. 

In the experiment conducted in figure 5.13, the maximum parallel execution frequency 

of the query, fT was maintained at 8, hence producing CPU run queue length of 4 in 

average. These experiments are conducted in a SUSE Linux VM, provisioned with a 

quad-core Intel processor, with 1GB of memory allocated to the Oracle database cache. 

In ideal case, the VM should be provisioned with more shared memory, so that the 

shared memory in the database can contain all the TPC-H tables. With these tables 

pinned into the cache, the incurred physical reads from the queries become 

insignificant; hence the proposal here becomes more accurate. This can be done if more 

than 5GB of cache is available, where practically all the tables in the TPC-H benchmark 

are pinned. Nevertheless, the experiments carried out in this proposal strive to illustrate 

the needed components and the relationship between each. It is noteworthy that 
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regardless of the database cache size, logical reads values for the individual query 

remain the same, with the difference lies in the runtime of the queries.  

The experiments were conducted for all the 22 queries, producing the outcomes that are 

recorded in a 2 dimensional array, A, where the memory reads/s (MR) values are 

arranged in ascending order.  

A[Query][logical reads/s] = {Q16, Q9, Q13, Q21, Q3, Q7, Q5, Q11, Q1, Q22, Q4, Q10, 

Q14, Q6, Q18, Q19, Q20, Q12, Q15, Q17, Q2, Q8}, {7000, 11000, 10000, 10000, 11000, 

11500, 12500, 12500, 13000, 14000, 14500, 14500, 15000, 16000, 16000, 16500, 

16500, 17000, 17000, 19000, 22500, 16000}; 

Some results exhibited in Appendix G depict the testing carried out from combined 

queries. The maximum run frequency, fT is maintained at 8, hence each iterative run of 

queries is maintained at 4. This produces run queue length of 4 in average. 

It is observed that when queries are combined in the test, MR is a function of the query 

runtime. For example, Q8 was taking 63s to complete each run cycle, and Q9 took 76s 

to complete. Individual result for Q8 yielded MR value of 16500, while Q9 produces 

11000 of MR. So, the MR value for this combination is calculated as: 

(
  

∑   
 
 

)   + (
    

∑   
 
 

)     +  + (
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)        ,   

where, 

ti     = runtime of query i. 

MRi = Individual query’s memory reads/s value. 

MRT = memory reads/s value from baseline load testing OR actual production scenario. 

n     = number of involved queries. 

Hence, 

(
  

  +   
)     + (

  

  +   
)             

MR value of 13500 matches the experimental value in Figure 5.14. 

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
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Figure  5.14: Testing result with the combination of TPC-H queries. Such output can also be 

predicted from the output of individual run from each query. 

So, another array, A’ can be defined as: 

A’[Queries][logical reads/s] = {Q2+Q6, Q8+Q9, …}, {16500, 13500, …}; 

and,  

A ∪ A’ = A’’ which produces a larger repository of MR. The value pairs are to be 

chosen for VM loading. 

To validate the practicality of the MR values in A’’, we benchmark a real production 

Human Resource application, serving Employee Self-Service and Manager Self-Service 

functions. The database for the application is also running on a VM with a quad-core 

processor, with 3GB of database cache allocated. The average run queue length is about 

4, which is taken as the CT in the test. For this database, the total logical reads in 1 hour 

amounted to 27,912,822, which results in 11630 in MR value. Hence, it falls within the 

boundary of MR values in A’’. The performance of the triggered transactions is 

satisfactory at this level as according to the end users. Hence in order to simulate the 

high load scenario in this VM, TPC-H query #7 can be employed, with maximum run 

frequency, fT set to 8 that yields an average run queue of 4.  

 

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
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5.5.1 Future work 

As the benchmarking stage requires quite substantial amount of time in order to produce 

the benchmarking array, it will be of great value if the experimental result obtained 

from a particular hardware configuration, can be extrapolated in tandem with the 

resource allocation changes in the VM. From another perspective, it is also interesting 

to find out if it is ever possible to derive the value of MR from 1 query to another.  

Another point to note is that the server load value, CT is taken loosely as the limit when 

the VM hits its resource limit, but it can be assigned any value which can be changed 

variably with ease in the tests depending on the application choice, as some 

transactions’ response time is relaxed and queuing on CPU resource is allowed. 

Nevertheless the maximum limit on run queue size is ideal only when there is no 

process queues on the CPU. Hence, as the CPU run queue value is taken as constant 

during the experiments, it will add great value to this model if extrapolation can be 

performed on the benchmarking stage to discover the MR values, from 1 CPU run 

queue size to another. 

In this thesis, only the memory reads criterion is experimented. For physical reads, there 

is no benchmarked DML SQL to be used. Nevertheless these can be fabricated by 

forcing repetitive reads operations on large tables’ values that cannot fit into the cache 

in total. However it should be noted that in well-tuned applications, the logical reads is a 

much dominant parameter in the database as compared to physical reads parameter, to 

the extent that it can be negligible as it does not post as the constraining factor. 

Nevertheless, it is also of great value to incorporate the option of physical reads 

parameter into this affirmation model, as explained in section 4.6. 
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5.6 Summary and discussion 

In this chapter, the spectrums of the resource management proposals are analyzed in 

details. The type of data which is utilized for experiments is elaborated. In this case, the 

extraction of metadata from real workload, together with synthetic workload using TPC-

H data are of interest. The choice of these data types is influenced by the security 

requirement where access to sensitive information in the database needs to be restricted 

as much as possible. The reasons for the unsuitability of scrambled data from real 

workload are also explained.  

Subsequently, the experimental result to derive the proof-of-concept for the resource 

monitoring model is exhibited. The utilized parameters are clarified and scrutinized. In 

this case Fuzzy Computing with Words method is employed to represent these 

parameters for ease of interpretation. After that, the overhead and its effect on the 

model’s accuracy are discussed. In order to increase the relevance and applicability of 

this resource monitoring model in real environment, SQL tuning is identified as the 

critical pre-requisite before the model can efficiently serve its purpose.   

In the next section, the prototyping of the optimization model is detailed. The likelihood 

of deviations from the baselines is elaborated. The outcome of the analysis from these 

deviations will trigger various actions, for instance, a thorough hardware health check, 

revisiting of the application SQL, additional resource planning or scaling etc.  

After that, the output from the experiments for the affirmation model is delineated. The 

extrapolation from outcome in the benchmarking stage is envisaged. In this section, 

there are some potential future works that could enrich the model, so that it can 

adequately applied to the real environments. 
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The analysis of these research works has also been published in the journals (C. H. Tan 

& Teh, 2013a, 2013b, 2013c).  

The next chapter concludes the research works conducted in this thesis. Some future 

researches are also envisaged in the chapter, which will solidify these proposed resource 

management models.  
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6. CONCLUSIONS 

6.1 Introduction 

This study demonstrates the capability of utilizing statistical modeling to achieve 

resource management purposes in virtualized cloud environment. During the 

conceptualization phase of the prototypes, the proposals are aspired to take the data 

privacy and security concerns into consideration, as the suggested mechanisms are 

targeted for database operations that have stringent security requirements. In doing so, 

linear regression analysis, machine learning, fuzzy computing, linear programming and 

simplex method are the mathematical techniques employed in the construction of the 

models. These numerical approaches to build the models are taking the input from 

metadata in real data, as well as the TPC-H benchmark. At this point of this research, 

the proposed schemes can be deployed to complement current commercially available 

tools and utilities. Such refinement in the resource utilization takes the resource 

administration to a greater level of efficiency. The study is segregated into 3 themes, 

and each is related to each other sequentially. The monitoring, optimization and 

affirmation schemes, each of them targets different aspects in the resource utilization in 

cloud environment. In aggregation, they provide an almost holistic solution to the 

resource management domain.  

6.2 Summary of solutions to the objectives’ questions 

At this point, the research questions in chapter 1 can be answered conclusively, as 

follows: 

Question 1: What are the appropriate methods to provide barometric indicators to 

determine the host performance? 
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Answer:  

In the monitoring scheme, the collective response time of the SQL in a representative 

workload are gathered and analyzed. By employing the linear regression and machine 

learning methods, a graphical representation of the workload processing condition is 

presented for resource planning and scaling purposes. A hypothetical 5% zone is 

envisaged in the linear graphs. If 5% of total SQL transactions fall into this region, the 

resource constraint in the VM is deemed hitting the threshold level, which warrants 

subsequent resource provisioning activity.  

Subsequently in the optimization scheme, the consistency of the hardware performance 

is measured by mean of comparing the gradient and y-intercept of the baselined data to 

the testing data. The testing data is collected periodically during the production phase of 

the application service offerings. Such recurring event can be scheduled daily or 

weekly, and the gradient and y-intercept must be similar to the baselines in order to 

ensure optimality and consistency in the computing performance. In addition, 

correlation coefficient parameter is employed to measure the relevance of the linear 

plots. 

After that, the affirmation scheme envisages the creation of stress testing scenario, in 

order to provide a fitting environment for transactions’ response time verification.  

In this case the host performance is measured based on the collection of response time 

from SLA-bound transactions. The parameter of SQL response time can be 

conveniently utilized to gauge the adequacy of computing resource in the VM, as the 

expected values are already stipulated in the established Quality of Service requirement 

in the Service Level Agreement. 

From another perspective in this affirmation scheme, TPC-H queries are utilized to load 

the VM to the hypothetical resource threshold point. Consequently, the response time 
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from these queries are engaged to measure and verify the threshold point. Such 

constraining level in the resource may not be the same for the real workload as there 

could be relaxed or stringent SLA requirements; nevertheless this threshold obtained 

from the execution of TPC-H queries provides a ballpark indication on the capability of 

the VM. 

Question 2: How can users' experience be matched to these indicators discovered in 

(1)? 

Answer:  

In the monitoring model, the workloads are to be obtained from the real environments. 

The effort to select the workload that is delineative for the general computing 

requirement in the VM must be careful so that it depicts the real transactions from the 

end users. In this case, undesired noises are filtered so that only real users’ processes are 

channel into the monitoring mechanism for analysis purpose. Hence, the produced 

outcome from the analysis on the monitoring model will characterize the real users’ 

computing requirement in the VM. 

In the optimization scheme, the iterative runs of the TPC-H queries in the VM to 

diagnose the hardware performance consistency and optimality produce a relatively 

closer depiction of the VM performance, when it is compared to hardware health check 

activities that depend solely on OS parameters’ values for interpretation. This is because 

the execution of TPC-H queries is running the database SQLs that mimics real database 

operations. Hence, resultants from SQL executions are nearer to the real users’ 

experience.  

The same condition is applied to the affirmation model. The determination of resource 

adequacy in the VM is characterized by verification of real SLA-bound transactions, 
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when the VM is stressed to its resource limit. The combined OS and database 

parameters, coupled with real execution of SQL to create the stress-testing scenario in 

the VM, are a more strategic approach to verify the critical transactions as well as to 

probe the VM capability.  

Question 3: What are the significant and appropriate parameters to be used to measure 

host performance? 

Answer 

Many of the current resource management utilities are practicing silo monitoring in the 

computing hosts. In other words, the parameters employed are either emphasized on 

operating system variables, or solely from the database end. The most appropriate 

method to exhibit the resource utilization state in the VM as portrayed in this thesis, is 

to combine the parameters from the operating system and database, where the condition 

in the host is matched to the status in the database. Such bilateral verification 

mechanism provides checks and balances, so that erroneous reporting from 1 end can be 

discovered by another.  

Question 4: How do these parameters interact with each other, in order to provide a 

more solidified output to measure the host and database performance? 

Answer 

The CPU run queue and SQL processing time are the 2 main parameters employed in 

the proposed resource management mechanisms. When the workload processing 

requirement increases, more CPU cycles are needed. In this case the process queue on 

the processors becomes longer. From the database perspective, this corresponds to the 

increment in the SQL processing time. The 2 parameters are directly proportional, 

before the resources utilization threshold in the VM. The interest in all the proposed 
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mechanisms is confined within this threshold point, where the linear correlation 

between these 2 parameters is manipulated to describe the VM and database 

performance condition. 

Question 5: How can the proposed mechanisms deliver the intended objectives, in term 

of accuracy and consistency? 

Answer 

Ideally, the models are invaluable in boosting the efficiency of currently deployed 

resource management utilities. Subsequent refinements in the area of automation and 

coding of the algorithms in GUI mode are essential to promote the adoption of the 

models in real environments. Nevertheless, the oscillation of the parameters’ values in 

the data gathering phase for all the 3 models needs to be refined further. The instability 

in the parameter reporting for CPU run queue is the trickiest component in the proposed 

mechanisms. Once this fluctuation symptom is steadied, the consistency and accuracy 

of the models can be significantly improved.  

Question 6: How the hardware in the VM performs before and after resource 

constraining threshold? 

Answer 

Before the resource threshold, the computing resources are spent to complete the end 

users’ requests. This is the most ideal condition from the perspective of providing 

application service offering to the consumers. In this mode, the transactions are 

processed without excessive waits either in the operating system or the database. The 

proposed mechanisms strive to provide clearer visibility to the resource state in the VM 

so that database operations can be performed within this limit as much as possible. 

Beyond the resource threshold, there is no guarantee that the database transactions can 
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be completed within the stipulated limit of the response time. In the extreme case, the 

transactions may be aborted due to excessive waiting time. Hence, the resource 

threshold limit is manipulated by the proposed algorithms to delineate the resource 

management proposals. 

Question 7: Many of the RDBMS products in the industry have not developed the 

capability to be dynamically scaled, and the migration from 1 RDBMS platform to 

another is quite unlikely in commercial arena, what type of resource management 

mechanisms are appropriate for such semi-dynamic scalability requirement by these 

database systems? 

Answer 

The proposed mechanisms for resource management envisaged such condition for many 

parallel databases. In the resource utilization monitoring theme, the metadata is 

analyzed using linear regression method, and the outcome is obtained after a week of 

data collection and analysis. Such prolonged data aggregation is more accurate as 

compared to workload analysis obtained from short historical duration. In the resource 

utilization optimization arena, the algorithms computed by machine learning and linear 

regression are tested periodically, in recommended weekly schedule. The observatory 

result from the testing is evaluated weekly in this case for fault discovery. In this case, 

the hardware is not expected to change when comparing between the training and 

testing data in between the week. Subsequently, the proposed light-weighted stress 

testing mechanism in the resource utilization affirmation topic is carried out with the 

knowledge that the historical I/O condition can be referred to in order to mimic the real 

workload condition. Hence, the hardware configuration is expected to remain constant.  

Question 8: As fault analysis is a continuous effort, how capable the proposed 

mechanisms in accomplishing this goal? 
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Answer 

The testing phases in the proposed mechanism in the resource utilization optimization 

theme which is computed using the machine learning technique can be executed daily 

or weekly. With such schedule, the fault in the hardware can be adequately detected, 

where the output is subsequently fed for failure prediction.  

Question 9: How to address the shortcoming of the current available benchmark, where 

one-size-fit-all scenario is almost nonexistent? 

Answer 

With the dynamicity nature of the various real workloads, it is almost impossible to 

produce benchmarks that can decently represent them. The proposed mechanisms in this 

thesis are utilizing TPC-H benchmark, with the view that these synthetic data and 

queries can be uniformly standardized across all platforms. Hence, the result of 

experiments carried out from 1 platform could potentially be applied for other 

platforms.  

Question 10: How security aspect is addressed in details, by the proposed mechanisms? 

Answer 

The idea of the proposed mechanisms is to prohibit IT administrators from accessing 

real users’ data, but still preserving the capability to perform resource management 

tasks, with probably more superior methods. With these proposals, the real data can 

comfortably be masked without the concern that the data shielding activity from IT 

personnel may affect the normal administrative jobs.  
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6.3 Limitations of current study 

The exhibited prototypes in this thesis can be considered as pioneer in the area of 

resource management. As the knowledge is new, there are a few short-comings which 

are to be further refined in subsequent research: 

6.3.1 The monitoring scheme 

1) The monitoring outcome is invalidated whenever the underlying hardware 

configuration is changed in the VM. Each time the resource state is changed, the 

resource threshold discovery mechanism is employed to identify the new CPU run 

queue threshold value. This value can only serve as the ballpark figure for the 

particular set of workload. This is due to the fact that each application has different 

SLA requirement, where some have more stringent response time specification, 

whereas some are more relaxed. Hence, a method to learn the threshold value which 

is tailored to particular workload will increase the accuracy of the model. 

2) The discovery of the 5% zone is the core target in this scheme. In order to identify 

this segment, the metadata of the representative workload has to be sufficiently 

gathered. For some applications that become active only during particular timeframe 

of the year, the identification of this 5% zone location from real data will have to 

wait for such timeframe to arrive. Load testing to simulate the real transactions in 

the VM could be the viable solution. However it can only be done on the VM where 

the hosted databases allow such outages. 

3) The metadata collector illustrated in this thesis assumes the service is adequately 

provided by the RDBMS vendors. Nevertheless, such facility is not guaranteed to be 

available in all the RDBMS. For those databases that do not have such option on 

data collection, the monitoring model cannot be deployed directly. A custom 

development is required to code the data collector’s algorithms.  
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6.3.2 The optimization scheme 

1) The fault analysis in this scheme is capable to predict relative long term hardware 

issue in the VM. It cannot be utilized to predict the potential failure which might 

happen in the short term, for instance within 1 hour. Hence conventional fault 

analysis and failure prediction to discover short term problem in the hardware 

cannot be complemented by this mechanism. 

2) The collection of the testing data sets during the production phase is unwieldy due to 

the oscillative nature of the CPU run queue parameter. However this does not 

necessary signify faulty underlying hardware. Hence the tests may need to be 

carried out multiple times to arrive at the state where stabilized data is obtained.  

3) Manual intervention is needed to run the test and harvest the required data. Further 

automation is required to hasten the tests and reduce inaccuracy due to human error.  

6.3.3 The affirmation scheme 

1) The benchmarking phase in producing the array of reference is taking much time. 

Furthermore, the whole cycle of acquiring the array needs to be repeated each time 

the hardware configuration changes. Such long outage requirement is not feasible in 

mission-critical applications that do not allow long downtime on the database VM. 

Hence a method needs to arrive to address the issue of long outage window, 

potentially using extrapolation technique.  

2) In creating the stress testing scenario, only memory reads/s parameter is employed. 

It could be beneficial if combination of physical reads, memory and physical writes 

parameters are taken into account in constructing the stress-testing scenario.  

3) Similar to the optimization model, the execution of the mechanism is dependent on 

IT administrators. The proposal can benefit from more automation steps built into 

the model. 
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6.4 Recommendations and future directions 

In order for the proposed mechanisms to be deployed for real production use, they must 

be packaged into graphical user interface (GUI) product, in order to aid the deployment 

and usage. In today’s IT industry, in order to promote wide adoption of certain products, 

GUI-based functionalities are the most important pre-requisite. For instance, all the 

recent development on cloud virtualization management software (SolarWinds, 2013; 

Splunk, 2013; VMTurbo, 2013) are porting all the available functionalities onto GUI-

interfaces.  

Apart from the above major improvement, following section discusses some important 

refinements which will take the proposals to greater acceptance level by industrial users: 

1) The monitoring model 

 A mechanism can be developed to detect and filter unnecessary noises in the 

VM, in order to preserve the purity of the metadata from the representative 

workload. With such facility, the effort to remove the outliers during the 

conversion of the collected data to the linear graphical representation can be 

alleviated.  

 A method to learn the exact threshold value which is tailored to particular 

workload will increase the accuracy of the model.  

 As the pre-requisite to the model is to ensure that the underlying SQL in the 

workload are performing to the most optimal condition, a mechanism can be 

developed to observe the run time of the repetitive transactions, so that 

overrun scenarios due to missing indexes, invalidated statistic or inefficiency 

in indexing operation can be detected and rectified.  
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2) The optimization model 

 An automated mechanism to execute the tests during production phase, to 

obtain the stabilized outcome can greatly increase the ease of usage of the 

model. Furthermore, automation will also reduce administrative cost and 

boost the efficiency of the model. 

 One of the challenges in this proposal is to determine the right duration in 

order for the CPU run queue parameter to achieve the stabilized condition. 

This is an area that worth further scrutiny.  

 Future work is also worth carried out to analyze the CPU run queue 

parameter to discover the underlying factors that influence the oscillative 

reporting of the parameter value. 

3) The affirmation model 

 As the current proposal focuses on memory reads parameter, it can 

potentially be of great value to conduct more researches to include the 

physical reads, memory and disk writes parameters into the stress testing 

scenario creation. Such potential is envisaged in section 4.6. In that section, 

the methods to discover the optimize values for query executions are linear 

programming and simplex method. Potentially, the duality can be more 

advantageous as compared to simplex method; hence it will worth the 

research effort to scrutinize on the duality method in case the optimization 

algorithm is to be explored further.  

 Throughout the thesis, the processor is assumed to be the component that is 

the dominant resource utilization factor in the VM. However, the underlying 

I/O subsystem could potentially become the constraining point, if the SAN 

storage is not rightly configured. Hence, a mechanism to detect the situation 
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where the I/O subsystem becomes the leading constraint in the VM is worth 

the research effort.  

 The benchmarking stage in this model is consuming quite a substantial 

amount of time. Future work to include extrapolation on existing references 

to discover the new set of benchmark will be significant, as this will greatly 

reduce the benchmarking effort.  
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Appendix A 

Optimization by Vogel's Approximation Method. 
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Appendix B 

The following TPC-H database setup steps are modified from (Kocakahin, 2010) and 

(Brett, 2008). 

1. The high level pseudo-code to setup the TPC-H database is illustrated as follows: 

 

 

2. The actual setup steps in Unix environment are as follows: 

** “$>” denotes commands executed in the command prompt 

 
$> mkdir tpch 

$> mv tpch_2_12_0_b5.zip ./tpch 

$> cd tpch/ 

$> unzip tpch_2_12_0_b5.zip 

 

$> cp makefile.suite makefile 

$> vi makefile (modify following parameters) 

 

CC      = gcc 

DATABASE= ORACLE 

MACHINE = LINUX 

WORKLOAD = TPCH 

 

$> make 

 

$> ./dbgen -s 4 -S 1 -C 8 -v 

$> ./dbgen -s 4 -S 2 -C 8 -v 

$> ./dbgen -s 4 -S 3 -C 8 -v 

$> ./dbgen -s 4 -S 4 -C 8 -v 

$> ./dbgen -s 4 -S 5 -C 8 -v 

$> ./dbgen -s 4 -S 6 -C 8 -v 

$> ./dbgen -s 4 -S 7 -C 8 -v 

$> ./dbgen -s 4 -S 8 -C 8 -v 
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$> du -ch *.tbl* | tail -1 

 

$> gzip -4 -v *.tbl* 

 

Setup steps in the blank Oracle database 

** “SQL>” denotes commands executed in the sqlplus prompt 

 

SQL> create tablespace TPCH  

datafile '+DATA' size 100M autoextend on next 10M  

maxsize 10G segment space management auto 

encryption using 'AES256' default storage (encrypt); 

 

SQL> create user tpch 

identified by tpch123 

default tablespace TPCH; 

 

SQL> grant dba to tpch; 

 

SQL> create directory tpch_dir as '/oracle/backups/TEST/tpch'; 

SQL> create directory zcat_dir as '/bin'; 

 

SQL> drop table region_ext; 

SQL> drop table nation_ext; 

SQL> drop table supplier_ext; 

SQL> drop table customer_ext; 

SQL> drop table order_ext; 

SQL> drop table part_ext; 

SQL> drop table partsupp_ext; 

SQL> drop table lineitem_ext; 

 

SQL> CREATE TABLE region_ext (r_regionkey NUMBER(10), 

r_name varchar2(25), 

r_comment varchar(152)) 

ORGANIZATION EXTERNAL ( 

TYPE oracle_loader 

DEFAULT DIRECTORY tpch_dir 

ACCESS PARAMETERS ( 

RECORDS DELIMITED BY NEWLINE 

PREPROCESSOR zcat_dir:'zcat' 

BADFILE 'bad_%a_%p.bad' 

LOGFILE 'log_%a_%p.log' 

FIELDS TERMINATED BY '|' 

MISSING FIELD VALUES ARE NULL) 

LOCATION ('region.tbl.gz')) 

NOPARALLEL 

REJECT LIMIT 0 

NOMONITORING; 

 

SQL> CREATE TABLE nation_ext (n_nationkey NUMBER(10), 

n_name varchar2(25), 

n_regionkey number(10), 

n_comment varchar(152)) 

ORGANIZATION EXTERNAL ( 

TYPE oracle_loader 

DEFAULT DIRECTORY tpch_dir 

ACCESS PARAMETERS ( 

RECORDS DELIMITED BY NEWLINE 

PREPROCESSOR zcat_dir:'zcat' 

BADFILE 'bad_%a_%p.bad' 

LOGFILE 'log_%a_%p.log' 

FIELDS TERMINATED BY '|' 

MISSING FIELD VALUES ARE NULL) 

LOCATION ('nation.tbl.gz')) 
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NOPARALLEL 

REJECT LIMIT 0 

NOMONITORING; 

 

SQL> CREATE TABLE supplier_ext (S_SUPPKEY NUMBER(10), 

S_NAME VARCHAR2(25), 

S_ADDRESS VARCHAR2(40), 

S_NATIONKEY NUMBER(10), 

S_PHONE VARCHAR2(15), 

S_ACCTBAL NUMBER, 

S_COMMENT VARCHAR2(101)) 

ORGANIZATION EXTERNAL ( 

TYPE oracle_loader 

DEFAULT DIRECTORY tpch_dir 

ACCESS PARAMETERS ( 

RECORDS DELIMITED BY NEWLINE 

PREPROCESSOR zcat_dir:'zcat' 

BADFILE 'bad_%a_%p.bad' 

LOGFILE 'log_%a_%p.log' 

FIELDS TERMINATED BY '|' 

MISSING FIELD VALUES ARE NULL) 

LOCATION ('supplier.tbl.1.gz','supplier.tbl.2.gz','supplier.tbl.3.gz','supplier.tbl.4.gz', 

'supplier.tbl.5.gz','supplier.tbl.6.gz','supplier.tbl.7.gz','supplier.tbl.8.gz') ) 

PARALLEL 2 

REJECT LIMIT 0 

NOMONITORING; 

 

SQL> CREATE TABLE customer_ext (C_CUSTKEY NUMBER(10), 

C_NAME VARCHAR2(25), 

C_ADDRESS VARCHAR2(40), 

C_NATIONKEY NUMBER(10), 

C_PHONE VARCHAR2(15), 

C_ACCTBAL NUMBER, 

C_MKTSEGMENT VARCHAR2(10), 

C_COMMENT VARCHAR2(117)) 

ORGANIZATION EXTERNAL ( 

TYPE oracle_loader 

DEFAULT DIRECTORY tpch_dir 

ACCESS PARAMETERS ( 

RECORDS DELIMITED BY NEWLINE 

PREPROCESSOR zcat_dir:'zcat' 

BADFILE 'bad_%a_%p.bad' 

LOGFILE 'log_%a_%p.log' 

FIELDS TERMINATED BY '|' 

MISSING FIELD VALUES ARE NULL) 

LOCATION ('customer.tbl.1.gz','customer.tbl.2.gz','customer.tbl.3.gz','customer.tbl.4.gz', 

'customer.tbl.5.gz','customer.tbl.6.gz','customer.tbl.7.gz','customer.tbl.8.gz') ) 

PARALLEL 2 

REJECT LIMIT 0 

NOMONITORING; 

 

SQL> CREATE TABLE order_ext (O_ORDERKEY NUMBER(10), 

O_CUSTKEY NUMBER(10), 

O_ORDERSTATUS CHAR(1), 

O_TOTALPRICE NUMBER, 

O_ORDERDATE VARCHAR2(10), 

O_ORDERPRIORITY VARCHAR2(15), 

O_CLERK VARCHAR2(15), 

O_SHIPPRIORITY NUMBER(38), 

O_COMMENT VARCHAR2(79)) 

ORGANIZATION EXTERNAL ( 

TYPE oracle_loader 

DEFAULT DIRECTORY tpch_dir 
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ACCESS PARAMETERS ( 

RECORDS DELIMITED BY NEWLINE 

PREPROCESSOR zcat_dir:'zcat' 

BADFILE 'bad_%a_%p.bad' 

LOGFILE 'log_%a_%p.log' 

FIELDS TERMINATED BY '|' 

MISSING FIELD VALUES ARE NULL) 

LOCATION ('orders.tbl.1.gz','orders.tbl.2.gz','orders.tbl.3.gz','orders.tbl.4.gz', 

'orders.tbl.5.gz','orders.tbl.6.gz','orders.tbl.7.gz','orders.tbl.8.gz')) 

PARALLEL 2 

REJECT LIMIT 0 

NOMONITORING; 

 

SQL> CREATE TABLE part_ext (P_PARTKEY NUMBER(10), 

P_NAME VARCHAR2(55), 

P_MFGR VARCHAR2(25), 

P_BRAND VARCHAR2(10), 

P_TYPE VARCHAR2(25), 

P_SIZE NUMBER(38), 

P_CONTAINER VARCHAR2(10), 

P_RETAILPRICE NUMBER, 

P_COMMENT VARCHAR2(23)) 

ORGANIZATION EXTERNAL ( 

TYPE oracle_loader 

DEFAULT DIRECTORY tpch_dir 

ACCESS PARAMETERS ( 

RECORDS DELIMITED BY NEWLINE 

PREPROCESSOR zcat_dir:'zcat' 

BADFILE 'bad_%a_%p.bad' 

LOGFILE 'log_%a_%p.log' 

FIELDS TERMINATED BY '|' 

MISSING FIELD VALUES ARE NULL) 

LOCATION ('part.tbl.1.gz','part.tbl.2.gz','part.tbl.3.gz','part.tbl.4.gz', 

'part.tbl.5.gz','part.tbl.6.gz','part.tbl.7.gz','part.tbl.8.gz') ) 

PARALLEL 2 

REJECT LIMIT 0 

NOMONITORING; 

 

SQL> CREATE TABLE partsupp_ext (PS_PARTKEY NUMBER(10), 

PS_SUPPKEY NUMBER(10), 

PS_AVAILQTY NUMBER(38), 

PS_SUPPLYCOST NUMBER, 

PS_COMMENT VARCHAR2(199)) 

ORGANIZATION EXTERNAL ( 

TYPE oracle_loader 

DEFAULT DIRECTORY tpch_dir 

ACCESS PARAMETERS ( 

RECORDS DELIMITED BY NEWLINE 

PREPROCESSOR zcat_dir:'zcat' 

BADFILE 'bad_%a_%p.bad' 

LOGFILE 'log_%a_%p.log' 

FIELDS TERMINATED BY '|' 

MISSING FIELD VALUES ARE NULL) 

LOCATION ('partsupp.tbl.1.gz','partsupp.tbl.2.gz','partsupp.tbl.3.gz','partsupp.tbl.4.gz', 

'partsupp.tbl.5.gz','partsupp.tbl.6.gz','partsupp.tbl.7.gz','partsupp.tbl.8.gz')) 

PARALLEL 2 

REJECT LIMIT 0 

NOMONITORING; 

 

SQL> CREATE TABLE lineitem_ext (L_ORDERKEY NUMBER(10), 

L_PARTKEY NUMBER(10), 

L_SUPPKEY NUMBER(10), 

L_LINENUMBER NUMBER(38), 
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L_QUANTITY NUMBER, 

L_EXTENDEDPRICE NUMBER, 

L_DISCOUNT NUMBER, 

L_TAX NUMBER, 

L_RETURNFLAG CHAR(1), 

L_LINESTATUS CHAR(1), 

L_SHIPDATE VARCHAR2(10), 

L_COMMITDATE VARCHAR2(10), 

L_RECEIPTDATE VARCHAR2(10), 

L_SHIPINSTRUCT VARCHAR2(25), 

L_SHIPMODE VARCHAR2(10), 

L_COMMENT VARCHAR2(44)) 

ORGANIZATION EXTERNAL ( 

TYPE oracle_loader 

DEFAULT DIRECTORY tpch_dir 

ACCESS PARAMETERS ( 

RECORDS DELIMITED BY NEWLINE 

PREPROCESSOR zcat_dir:'zcat' 

BADFILE 'bad_%a_%p.bad' 

LOGFILE 'log_%a_%p.log' 

FIELDS TERMINATED BY '|' 

MISSING FIELD VALUES ARE NULL) 

LOCATION ('lineitem.tbl.1.gz','lineitem.tbl.2.gz','lineitem.tbl.3.gz','lineitem.tbl.4.gz', 

'lineitem.tbl.5.gz','lineitem.tbl.6.gz','lineitem.tbl.7.gz','lineitem.tbl.8.gz')) 

PARALLEL 2 

REJECT LIMIT 0 

NOMONITORING; 

 

SQL> DROP TABLE H_CUSTOMER CASCADE CONSTRAINTS ; 

SQL> DROP TABLE H_LINEITEM CASCADE CONSTRAINTS ; 

SQL> DROP TABLE H_NATION CASCADE CONSTRAINTS ; 

SQL> DROP TABLE H_ORDER CASCADE CONSTRAINTS ; 

SQL> DROP TABLE H_PART CASCADE CONSTRAINTS ; 

SQL> DROP TABLE H_PARTSUPP CASCADE CONSTRAINTS ; 

SQL> DROP TABLE H_REGION CASCADE CONSTRAINTS ; 

SQL> DROP TABLE H_SUPPLIER CASCADE CONSTRAINTS ; 

 

SQL> CREATE TABLE H_CUSTOMER (c_custkey NUMBER(10) NOT NULL, 

c_name VARCHAR2(25) NOT NULL, 

c_address VARCHAR2(40) NOT NULL, 

c_nationkey NUMBER(10) NOT NULL , 

c_phone VARCHAR2(15) NOT NULL, 

c_acctbal NUMBER NOT NULL, 

c_mktsegment VARCHAR2(10) NOT NULL, 

c_comment VARCHAR2(117) NOT NULL) 

PARALLEL 2; 

 

SQL> CREATE TABLE H_LINEITEM (l_orderkey NUMBER(10) NOT NULL, 

l_partkey NUMBER(10) NOT NULL, 

l_suppkey NUMBER(10) NOT NULL , 

l_linenumber INTEGER  NOT NULL , 

l_quantity NUMBER NOT NULL, 

l_extendedprice NUMBER NOT NULL, 

l_discount NUMBER NOT NULL, 

l_tax NUMBER NOT NULL, 

l_returnflag CHAR(1) NOT NULL , 

l_linestatus CHAR(1) NOT NULL, 

l_shipdate DATE NOT NULL, 

l_commitdate DATE NOT NULL, 

l_receiptdate DATE NOT NULL, 

l_shipinstruct VARCHAR2(25) NOT NULL, 

l_shipmode VARCHAR2(10) NOT NULL, 

l_comment VARCHAR2(44) NOT NULL) 
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PARALLEL 2; 

 

SQL> CREATE TABLE H_NATION (n_nationkey NUMBER(10) NOT NULL, 

n_name VARCHAR2(25) NOT NULL, 

n_regionkey NUMBER (10) NOT NULL, 

n_comment VARCHAR2 (152) NOT NULL) 

NOPARALLEL; 

 

SQL> CREATE TABLE H_ORDER (o_orderkey NUMBER (10)  NOT NULL, 

o_custkey NUMBER(10)  NOT NULL, 

o_orderstatus CHAR(1) NOT NULL, 

o_totalprice NUMBER NOT NULL, 

o_orderdate DATE NOT NULL, 

o_orderpriority VARCHAR2(15) NOT NULL, 

o_clerk VARCHAR2(15) NOT NULL, 

o_shippriority INTEGER NOT NULL, 

o_comment VARCHAR2(79) NOT NULL) 

PARALLEL 2; 

 

SQL> CREATE TABLE H_PART (p_partkey NUMBER(10)  NOT NULL, 

p_name VARCHAR2(55) NOT NULL, 

p_mfgr VARCHAR2(25) NOT NULL, 

p_brand VARCHAR2(10) NOT NULL, 

p_type VARCHAR2(25) NOT NULL, 

p_size INTEGER NOT NULL, 

p_container VARCHAR2(10) NOT NULL, 

p_retailprice NUMBER NOT NULL, 

p_comment VARCHAR2(23) NOT NULL) 

PARALLEL 2; 

 

SQL> CREATE TABLE H_PARTSUPP (ps_partkey NUMBER (10)  NOT NULL , 

ps_suppkey NUMBER (10)  NOT NULL , 

ps_availqty INTEGER NOT NULL, 

ps_supplycost NUMBER NOT NULL, 

ps_comment VARCHAR2 (199) NOT NULL) 

PARALLEL 2; 

 

SQL> CREATE TABLE H_REGION (r_regionkey NUMBER (10)  NOT NULL , 

r_name VARCHAR2 (25) NOT NULL, 

r_comment VARCHAR2 (152) NOT NULL) 

NOPARALLEL; 

 

SQL> CREATE TABLE H_SUPPLIER (s_suppkey NUMBER (10)  NOT NULL , 

s_name VARCHAR2 (25) NOT NULL, 

s_address VARCHAR2 (40) NOT NULL, 

s_nationkey NUMBER (10)  NOT NULL , 

s_phone VARCHAR2 (15) NOT NULL, 

s_acctbal NUMBER NOT NULL, 

s_comment VARCHAR2 (101) NOT NULL) 

PARALLEL 2; 

 

SQL> truncate table h_lineitem; 

SQL> truncate table h_order; 

SQL> truncate table h_part; 

SQL> truncate table h_customer; 

SQL> truncate table h_nation; 

SQL> truncate table h_region; 

SQL> truncate table h_partsupp; 

SQL> truncate table h_supplier; 

SQL> alter session enable parallel dml; 

 

SQL> insert /*+append*/into h_lineitem 

select L_ORDERKEY, 
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       L_PARTKEY, 

       L_SUPPKEY, 

       L_LINENUMBER, 

       L_QUANTITY, 

       L_EXTENDEDPRICE, 

       L_DISCOUNT, 

       L_TAX, 

       L_RETURNFLAG, 

       L_LINESTATUS, 

       to_date(L_SHIPDATE, 'YYYY-MM-DD'), 

       to_date(L_COMMITDATE, 'YYYY-MM-DD'), 

       to_date(L_RECEIPTDATE, 'YYYY-MM-DD'), 

       L_SHIPINSTRUCT, 

       L_SHIPMODE, 

       L_COMMENT 

from lineitem_ext; 

 

SQL> insert /*+append*/ into h_partsupp  select * from partsupp_ext; 

SQL> insert /*+append*/ into h_part  select * from part_ext; 

SQL> insert /*+append*/ into h_order 

select o_orderkey, 

       o_custkey, 

       o_orderstatus, 

       o_totalprice, 

       to_date(o_orderdate, 'YYYY-MM-DD'), 

       O_ORDERPRIORITY, 

       o_clerk, 

       O_SHIPPRIORITY, 

       o_comment 

from order_ext; 

 

SQL> insert /*+append*/ into h_customer  select * from customer_ext; 

SQL> insert /*+append*/ into h_supplier  select * from supplier_ext; 

SQL> insert  /*+append*/ into h_nation  select * from nation_ext; 

SQL> insert /*+append*/ into h_region  select * from region_ext; 

SQL> commit; 

 

SQL> ALTER TABLE H_REGION ADD CONSTRAINT REGION_PK PRIMARY KEY 

(r_regionkey); 

SQL> ALTER TABLE H_NATION ADD CONSTRAINT NATION_PK PRIMARY KEY 

(n_nationkey); 

SQL> ALTER TABLE H_SUPPLIER ADD CONSTRAINT SUPPLIER_PK PRIMARY KEY 

(s_suppkey); 

 

SQL> create unique index partsupp_pk on h_partsupp(ps_partkey,ps_suppkey) parallel 2; 

 

SQL> ALTER TABLE H_PARTSUPP ADD CONSTRAINT PARTSUPP_PK  

PRIMARY KEY(ps_partkey,ps_suppkey) using index PARTSUPP_PK; 

 

SQL> create unique index PART_PK on H_PART(p_partkey) parallel 2; 

 

SQL> ALTER TABLE H_PART ADD CONSTRAINT PART_PK  

PRIMARY KEY (p_partkey) using index PART_PK; 

 

SQL> create unique index ORDERS_PK on H_ORDER(o_orderkey) parallel 2; 

 

SQL> ALTER TABLE H_ORDER ADD CONSTRAINT ORDERS_PK  

PRIMARY KEY (o_orderkey) using index ORDERS_PK; 

 

SQL> create unique index LINEITEM_PK on H_LINEITEM(l_linenumber, l_orderkey) parallel 2; 

 

SQL> ALTER TABLE H_LINEITEM ADD CONSTRAINT LINEITEM_PK  

PRIMARY KEY (l_linenumber, l_orderkey)  using index LINEITEM_PK; 
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SQL> create unique index CUSTOMER_PK on H_CUSTOMER(c_custkey) parallel 2; 

 

SQL> ALTER TABLE H_CUSTOMER ADD CONSTRAINT CUSTOMER_PK  

PRIMARY KEY (c_custkey) using index CUSTOMER_PK; 

 

-- FK Constraints 

SQL> ALTER TABLE H_LINEITEM 

ADD CONSTRAINT LINEITEM_PARTSUPP_FK FOREIGN KEY (l_partkey, l_suppkey) 

REFERENCES H_PARTSUPP(ps_partkey, ps_suppkey) NOT DEFERRABLE; 

 

SQL> ALTER TABLE H_ORDER 

ADD CONSTRAINT ORDER_CUSTOMER_FK FOREIGN KEY (o_custkey) 

REFERENCES H_CUSTOMER (c_custkey) NOT DEFERRABLE; 

 

SQL> ALTER TABLE H_PARTSUPP 

ADD CONSTRAINT PARTSUPP_PART_FK FOREIGN KEY (ps_partkey) 

REFERENCES H_PART (p_partkey) NOT DEFERRABLE; 

 

SQL> ALTER TABLE H_PARTSUPP 

ADD CONSTRAINT PARTSUPP_SUPPLIER_FK FOREIGN KEY (ps_suppkey) 

REFERENCES H_SUPPLIER (s_suppkey) NOT DEFERRABLE; 

 

SQL> ALTER TABLE H_SUPPLIER 

ADD CONSTRAINT SUPPLIER_NATION_FK FOREIGN KEY (s_nationkey) 

REFERENCES H_NATION (n_nationkey) NOT DEFERRABLE; 

 

SQL> ALTER TABLE H_CUSTOMER 

ADD CONSTRAINT CUSTOMER_NATION_FK FOREIGN KEY (c_nationkey) 

REFERENCES H_NATION (n_nationkey) NOT DEFERRABLE; 

 

SQL> ALTER TABLE H_NATION 

ADD CONSTRAINT NATION_REGION_FK FOREIGN KEY (n_regionkey) 

REFERENCES H_REGION (r_regionkey) NOT DEFERRABLE; 

 

SQL> ALTER TABLE H_LINEITEM 

ADD CONSTRAINT LINEITEM_ORDER_FK FOREIGN KEY (l_orderkey) 

REFERENCES H_ORDER (o_orderkey) NOT DEFERRABLE; 

 

 

SQL> exec dbms_stats.gather_schema_stats(ownname => 'TPCH',degree => 2,cascade => true); 
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Appendix C 

Shell program that stresses the VM. This program is used in the optimization scheme.   

 
#!/bin/ksh 

 

Q1() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT L_RETURNFLAG,  

L_LINESTATUS,  

SUM(L_QUANTITY) AS SUM_QTY, 

 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE*(1-

L_DISCOUNT)) AS SUM_DISC_PRICE, 

 SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE, 

AVG(L_QUANTITY) AS AVG_QTY, 

 AVG(L_EXTENDEDPRICE) AS AVG_PRICE,  

 AVG(L_DISCOUNT) AS AVG_DISC, COUNT(*) AS COUNT_ORDER 

FROM H_LINEITEM 

WHERE L_SHIPDATE <= to_date('1998-12-01','YYYY-MM-DD') - 90 

GROUP BY L_RETURNFLAG, L_LINESTATUS 

ORDER BY L_RETURNFLAG,L_LINESTATUS; 

 

EXIT 

END` 

} 

 

Q2() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY,  

P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT 

FROM  

H_PART, H_SUPPLIER, H_PARTSUPP, H_NATION, H_REGION 

WHERE P_PARTKEY = PS_PARTKEY  

AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15  

AND P_TYPE LIKE '%%BRASS'  

AND S_NATIONKEY = N_NATIONKEY  

AND N_REGIONKEY = R_REGIONKEY  

AND R_NAME = 'EUROPE'  

AND PS_SUPPLYCOST = (SELECT MIN(PS_SUPPLYCOST)  

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION, H_REGION 

 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY 

 AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY  

 AND R_NAME = 'EUROPE') 

AND rownum<101 

ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY; 

 

EXIT 

END` 

} 

 

Q3() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT L_ORDERKEY,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,  

O_ORDERDATE, O_SHIPPRIORITY 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM 

WHERE C_MKTSEGMENT = 'BUILDING'  

AND C_CUSTKEY = O_CUSTKEY  
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AND L_ORDERKEY = O_ORDERKEY  

AND O_ORDERDATE < to_date('1995-03-15','YYYY-MM-DD') 

AND L_SHIPDATE > to_date('1995-03-15','YYYY-MM-DD') 

and rownum<10 

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY 

ORDER BY REVENUE DESC, O_ORDERDATE ; 

 

EXIT 

END` 

} 

 

Q4() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT O_ORDERPRIORITY,  

COUNT(*) AS ORDER_COUNT  

FROM H_ORDER 

WHERE O_ORDERDATE >= to_date('1993-07-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1993-07-01','YYYY-MM-DD'),3) 

AND  

EXISTS (SELECT * FROM H_LINEITEM  

 WHERE L_ORDERKEY = O_ORDERKEY  

 AND L_COMMITDATE < L_RECEIPTDATE) 

GROUP BY O_ORDERPRIORITY 

ORDER BY O_ORDERPRIORITY; 

 

EXIT 

END` 

} 

 

Q5() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT N_NAME,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_SUPPLIER, H_NATION, H_REGION 

WHERE C_CUSTKEY = O_CUSTKEY  

AND L_ORDERKEY = O_ORDERKEY  

AND L_SUPPKEY = S_SUPPKEY 

AND C_NATIONKEY = S_NATIONKEY  

AND S_NATIONKEY = N_NATIONKEY  

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = 'ASIA'  

AND O_ORDERDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12) 

GROUP BY N_NAME 

ORDER BY REVENUE DESC; 

 

EXIT 

END` 

} 

 

Q6() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE 

FROM H_LINEITEM 

WHERE L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12) 

AND L_DISCOUNT BETWEEN .06 - 0.01 AND .06 + 0.01  

AND L_QUANTITY < 24; 

 

EXIT 
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END` 

} 

 

Q7() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUPP_NATION, CUST_NATION,  

L_YEAR, SUM(VOLUME) AS REVENUE 

FROM  

 (SELECT N1.N_NAME AS SUPP_NATION,  

 N2.N_NAME AS CUST_NATION,  

 extract(year from L_SHIPDATE) AS L_YEAR, 

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME 

 FROM H_SUPPLIER, H_LINEITEM, H_ORDER,  

 H_CUSTOMER, H_NATION N1, H_NATION N2 

 WHERE S_SUPPKEY = L_SUPPKEY  

 AND O_ORDERKEY = L_ORDERKEY  

 AND C_CUSTKEY = O_CUSTKEY 

 AND S_NATIONKEY = N1.N_NATIONKEY  

 AND C_NATIONKEY = N2.N_NATIONKEY  

 AND ((N1.N_NAME = 'FRANCE' AND N2.N_NAME = 'GERMANY') OR 

  (N1.N_NAME = 'GERMANY' AND N2.N_NAME = 'FRANCE')) 

 AND L_SHIPDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD') AND to_date('1996-12-

31','YYYY-MM-DD')) SHIPPING 

GROUP BY SUPP_NATION, CUST_NATION, L_YEAR 

ORDER BY SUPP_NATION, CUST_NATION, L_YEAR; 

 

EXIT 

END` 

} 

 

Q8() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

O_YEAR,  

SUM(CASE WHEN NATION = 'BRAZIL' THEN VOLUME ELSE 0 END)/SUM(VOLUME) AS 

MKT_SHARE 

FROM  

 (SELECT  

 extract(year from O_ORDERDATE) AS O_YEAR,  

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME,  

 N2.N_NAME AS NATION 

 FROM  

 H_PART, H_SUPPLIER, H_LINEITEM, H_ORDER,  

 H_CUSTOMER, H_NATION N1, H_NATION N2, H_REGION 

 WHERE  

 P_PARTKEY = L_PARTKEY  

 AND S_SUPPKEY = L_SUPPKEY  

 AND L_ORDERKEY = O_ORDERKEY 

 AND O_CUSTKEY = C_CUSTKEY  

 AND C_NATIONKEY = N1.N_NATIONKEY  

 AND N1.N_REGIONKEY = R_REGIONKEY  

 AND R_NAME = 'AMERICA'  

 AND S_NATIONKEY = N2.N_NATIONKEY 

 AND O_ORDERDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD')  

  AND to_date('1996-12-31','YYYY-MM-DD')  

 AND P_TYPE= 'ECONOMY ANODIZED STEEL') ALL_NATIONS 

GROUP BY O_YEAR 

ORDER BY O_YEAR; 

 

EXIT 

END` 
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} 

 

Q9() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

NATION, O_YEAR,  

SUM(AMOUNT) AS SUM_PROFIT 

FROM  

 (SELECT N_NAME AS NATION, extract(year from O_ORDERDATE) AS O_YEAR, 

 L_EXTENDEDPRICE*(1-L_DISCOUNT)-PS_SUPPLYCOST*L_QUANTITY AS AMOUNT 

 FROM  

 H_PART, H_SUPPLIER, H_LINEITEM, H_PARTSUPP, H_ORDER, H_NATION 

 WHERE S_SUPPKEY = L_SUPPKEY  

 AND PS_SUPPKEY= L_SUPPKEY  

 AND PS_PARTKEY = L_PARTKEY  

 AND P_PARTKEY= L_PARTKEY  

 AND O_ORDERKEY = L_ORDERKEY  

 AND S_NATIONKEY = N_NATIONKEY  

 AND P_NAME LIKE '%%green%%') PROFIT 

GROUP BY NATION, O_YEAR 

ORDER BY NATION, O_YEAR DESC; 

 

EXIT 

END` 

} 

 

Q10() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

C_CUSTKEY, C_NAME,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,  

C_ACCTBAL, N_NAME,  

C_ADDRESS, C_PHONE, C_COMMENT 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_NATION 

WHERE C_CUSTKEY = O_CUSTKEY  

AND L_ORDERKEY = O_ORDERKEY  

AND O_ORDERDATE>= to_date('1993-10-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1993-10-01','YYYY-MM-DD'),3) 

AND L_RETURNFLAG = 'R' AND C_NATIONKEY = N_NATIONKEY 

and rownum<21 

GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL, C_PHONE, N_NAME, C_ADDRESS, 

C_COMMENT 

ORDER BY REVENUE DESC; 

 

EXIT 

END` 

} 

 

Q11() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

PS_PARTKEY,  

SUM(PS_SUPPLYCOST*PS_AVAILQTY) AS VALUE 

FROM  

H_PARTSUPP, H_SUPPLIER, H_NATION 

WHERE  

PS_SUPPKEY = S_SUPPKEY  

AND S_NATIONKEY = N_NATIONKEY  

AND N_NAME = 'GERMANY' 

GROUP BY PS_PARTKEY 
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HAVING SUM(PS_SUPPLYCOST*PS_AVAILQTY) > (SELECT 

SUM(PS_SUPPLYCOST*PS_AVAILQTY) * 0.0001000000 

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION 

 WHERE PS_SUPPKEY = S_SUPPKEY  

 AND S_NATIONKEY = N_NATIONKEY  

 AND N_NAME = 'GERMANY') 

ORDER BY VALUE DESC; 

 

EXIT 

END` 

} 

 

Q12() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

L_SHIPMODE, 

SUM(CASE WHEN O_ORDERPRIORITY = '1-URGENT' OR O_ORDERPRIORITY = '2-HIGH' 

THEN 1 ELSE 0 END) AS HIGH_LINE_COUNT, 

SUM(CASE WHEN O_ORDERPRIORITY <> '1-URGENT' AND O_ORDERPRIORITY <> '2-HIGH' 

THEN 1 ELSE 0 END ) AS LOW_LINE_COUNT 

FROM H_ORDER, H_LINEITEM 

WHERE O_ORDERKEY = L_ORDERKEY  

AND L_SHIPMODE IN ('MAIL','SHIP') 

AND L_COMMITDATE < L_RECEIPTDATE  

AND L_SHIPDATE < L_COMMITDATE  

AND L_RECEIPTDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND L_RECEIPTDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1) 

GROUP BY L_SHIPMODE 

ORDER BY L_SHIPMODE; 

 

EXIT 

END` 

} 

 

Q13() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT C_COUNT, COUNT(*) AS CUSTDIST 

FROM (SELECT C_CUSTKEY, COUNT(O_ORDERKEY) as C_COUNT 

 FROM H_CUSTOMER left outer join H_ORDER on C_CUSTKEY = O_CUSTKEY 

 AND O_COMMENT not like '%%special%%requests%%' 

 GROUP BY C_CUSTKEY) C_ORDERS 

GROUP BY C_COUNT 

ORDER BY CUSTDIST DESC, C_COUNT DESC; 

 

EXIT 

END` 

} 

 

Q14() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

100.00*SUM(CASE WHEN P_TYPE LIKE 'PROMO%%' THEN L_EXTENDEDPRICE*(1-

L_DISCOUNT) 

ELSE 0 END) / SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS PROMO_REVENUE 

FROM  

H_LINEITEM, H_PART 

WHERE  

L_PARTKEY = P_PARTKEY  

AND L_SHIPDATE >= to_date('1995-09-01','YYYY-MM-DD')  

AND L_SHIPDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1); 
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EXIT 

END` 

} 

 

Q15() { 

q=`sqlplus -s tpch/tpch123 << END 

 

CREATE VIEW REVENUE0 (SUPPLIER_NO, TOTAL_REVENUE) AS 

SELECT L_SUPPKEY,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT))  

FROM H_LINEITEM 

WHERE L_SHIPDATE >= to_date('1996-01-01','YYYY-MM-DD')  

AND L_SHIPDATE < add_months(to_date('1996-01-01','YYYY-MM-DD'),3) 

GROUP BY L_SUPPKEY; 

 

SELECT  

S_SUPPKEY, S_NAME, S_ADDRESS, S_PHONE, TOTAL_REVENUE 

FROM H_SUPPLIER, REVENUE0 

WHERE  

S_SUPPKEY = SUPPLIER_NO  

AND TOTAL_REVENUE = (SELECT MAX(TOTAL_REVENUE) FROM REVENUE0) 

ORDER BY S_SUPPKEY; 

 

DROP VIEW REVENUE0; 

 

EXIT 

END` 

} 

 

Q16() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

P_BRAND, P_TYPE, P_SIZE,  

COUNT(DISTINCT PS_SUPPKEY) AS SUPPLIER_CNT 

FROM  

H_PARTSUPP, H_PART 

WHERE  

P_PARTKEY = PS_PARTKEY  

AND P_BRAND <> 'Brand#45'  

AND P_TYPE NOT LIKE 'MEDIUM POLISHED%%' 

AND P_SIZE IN (49, 14, 23, 45, 19, 3, 36, 9)  

AND PS_SUPPKEY NOT IN (SELECT S_SUPPKEY  

 FROM H_SUPPLIER 

 WHERE S_COMMENT LIKE '%%Customer%%Complaints%%') 

GROUP BY P_BRAND, P_TYPE, P_SIZE 

ORDER BY SUPPLIER_CNT DESC, P_BRAND, P_TYPE, P_SIZE; 

 

EXIT 

END` 

} 

 

Q17() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY  

FROM  

H_LINEITEM, H_PART 

WHERE  

P_PARTKEY = L_PARTKEY  

AND P_BRAND = 'Brand#23'  
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AND P_CONTAINER = 'MED BOX' 

AND L_QUANTITY < (SELECT 0.2*AVG(L_QUANTITY)  

FROM H_LINEITEM WHERE L_PARTKEY = P_PARTKEY); 

 

EXIT 

END` 

} 

 

Q18() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE, 

SUM(L_QUANTITY) 

FROM  

H_CUSTOMER, H_ORDER, H_LINEITEM 

WHERE O_ORDERKEY IN (SELECT  

 L_ORDERKEY  

 FROM H_LINEITEM  

 GROUP BY L_ORDERKEY  

 HAVING SUM(L_QUANTITY) > 300) 

AND C_CUSTKEY = O_CUSTKEY  

AND O_ORDERKEY = L_ORDERKEY 

AND rownum<101 

GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE 

ORDER BY O_TOTALPRICE DESC, O_ORDERDATE; 

 

EXIT 

END` 

} 

 

Q19() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUM(L_EXTENDEDPRICE* (1 - L_DISCOUNT)) AS REVENUE 

FROM H_LINEITEM, H_PART 

WHERE  

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#12'  

 AND P_CONTAINER IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')  

 AND L_QUANTITY >= 1 AND L_QUANTITY <= 1 + 10  

 AND P_SIZE BETWEEN 1 AND 5 

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON') 

OR  

(P_PARTKEY = L_PARTKEY AND P_BRAND ='Brand#23'  

 AND P_CONTAINER IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')  

 AND L_QUANTITY >=10 AND L_QUANTITY <=10 + 10  

 AND P_SIZE BETWEEN 1 AND 10  

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON') 

OR  

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#34' 

 AND P_CONTAINER IN ( 'LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')  

 AND L_QUANTITY >=20 AND L_QUANTITY <= 20 + 10  

 AND P_SIZE BETWEEN 1 AND 15 

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON'); 

 

EXIT 

END` 

} 

 

Q20() { 
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q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

S_NAME, S_ADDRESS  

FROM  

H_SUPPLIER, H_NATION 

WHERE  

S_SUPPKEY IN (SELECT  

 PS_SUPPKEY FROM H_PARTSUPP 

 WHERE PS_PARTKEY in (SELECT  

  P_PARTKEY FROM H_PART  

  WHERE P_NAME like 'forest%%')  

 AND PS_AVAILQTY > (SELECT 0.5*sum(L_QUANTITY)  

  FROM H_LINEITEM  

  WHERE L_PARTKEY = PS_PARTKEY  

  AND L_SUPPKEY = PS_SUPPKEY  

  AND L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD') 

  AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12))) 

AND S_NATIONKEY = N_NATIONKEY AND N_NAME = 'CANADA' 

ORDER BY S_NAME; 

 

EXIT 

END` 

} 

 

Q21() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

S_NAME, COUNT(*) AS NUMWAIT 

FROM  

H_SUPPLIER, H_LINEITEM L1, H_ORDER, H_NATION  

WHERE  

S_SUPPKEY = L1.L_SUPPKEY  

AND O_ORDERKEY = L1.L_ORDERKEY  

AND O_ORDERSTATUS = 'F'  

AND L1.L_RECEIPTDATE> L1.L_COMMITDATE 

AND EXISTS (SELECT * FROM  

 H_LINEITEM L2  

 WHERE L2.L_ORDERKEY = L1.L_ORDERKEY 

 AND L2.L_SUPPKEY <> L1.L_SUPPKEY)  

AND NOT EXISTS (SELECT *  

 FROM H_LINEITEM L3  

 WHERE L3.L_ORDERKEY = L1.L_ORDERKEY  

 AND L3.L_SUPPKEY <> L1.L_SUPPKEY  

 AND L3.L_RECEIPTDATE > L3.L_COMMITDATE)  

AND S_NATIONKEY = N_NATIONKEY  

AND N_NAME = 'SAUDI ARABIA' 

and rownum<101 

GROUP BY S_NAME 

ORDER BY NUMWAIT DESC, S_NAME; 

 

EXIT 

END` 

} 

 

Q22() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

CNTRYCODE,  

COUNT(*) AS NUMCUST,  

SUM(C_ACCTBAL) AS TOTACCTBAL 
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FROM (SELECT SUBSTR(C_PHONE,1,2) AS CNTRYCODE, C_ACCTBAL 

 FROM H_CUSTOMER  

 WHERE  

 SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17')  

 AND C_ACCTBAL > (SELECT AVG(C_ACCTBAL)  

  FROM H_CUSTOMER WHERE C_ACCTBAL > 0.00  

  AND SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17'))  

  AND NOT EXISTS (SELECT *  

   FROM H_ORDER WHERE O_CUSTKEY = C_CUSTKEY)) CUSTSALE 

GROUP BY CNTRYCODE 

ORDER BY CNTRYCODE; 

 

EXIT 

END` 

} 

 

 

SQL_ID=" \ 

Q3-4y7ucx9354fxy 

Q22-5bks84w8ut3dy 

" 

 

# Q1-b383b8ptd6m38 

# Q3-4y7ucx9354fxy 

# Q4-5rpbt92d2w4ks 

# Q5-8y0yasa5zjyr1 

# Q6-1zn3xrx01mtck 

# Q7-2tryzag0xbu4m 

# Q8-c8bp67faftkh2 

# Q9-bccvz740py3dv 

# Q10-2bkjqzpz3ubsc 

# Q11-9fw9rgatw0h2b 

# Q12-94tpbact4tt8c 

# Q13-9f2czfz2pm9zr 

# Q14-0c2bha5xd99js 

# Q16-9f16buakax45p 

# Q17-33fsxr05jhazw 

# Q18-ctakajmsjp98s 

# Q19-14yf8frfjbcry 

# Q20-302hwrypt1g02 

# Q21-3z61g4q8uhvac 

# Q22-5bks84w8ut3dy 

 

a=2520 

b=0 

 

while [ $a -ge 0 ];do 

 for sql in $SQL_ID;do 

  R=`echo "$sql" | awk -F'-' '{print $1}'` 

  S=`echo "$sql" | awk -F'-' '{print $2}'` 

 

  q=`sqlplus -s "tpch/tpch123" <<END 

  set heading off 

  set feedback off 

  select status, sid from v\\$session where sql_id='${S}'  

  and program like '%(TNS%' 

  and schemaname='TPCH' 

  ; 

END` 

  p=`echo "$q" | grep . | wc -l` 

   

  if [ "$a" -eq 2520 ];then 

   r=6 
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  elif [ "$a" -eq 2000 ];then 

   r=5 

  elif [ "$a" -eq 1600 ];then 

   r=4 

  elif [ "$a" -eq 1200 ];then 

   r=3 

  elif [ "$a" -eq 800 ];then 

   r=2 

  elif [ "$a" -eq 400 ];then 

   r=1 

  fi 

   

  if [ "$p" -lt "$r" ];then 

   $R & 

  fi 

 

 done 

 sleep 1 

 a=`expr $a - 1` 

 b=`expr $b + 1` 

 echo "$a" 

 

 if [ "$b" -eq 120 ];then 

  ./awr & 

 fi 

done 

 

a=`ps -ef  |grep awr | awk '{print $2}' | sed "s/^/kill -9 /g"` 

echo "$a" > kill_awr 

./kill_awr 

> kill_awr 
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Appendix D 

Shell program that filters out the unreliable data and triggers the data extractor. This 

program is used in the optimization scheme.   

 
#!/bin/ksh 

 

 

q=`sqlplus -s tpch/tpch123 << END 

 set feedback off 

 set heading off 

 select max(snap_id) from dba_hist_osstat; 

EXIT 

END` 

 

a=9876 

b=`expr $a + 1` 

c=`echo $q` 

 

echo $c 

 

while [ "$a" -le "$c" ];do 

 p=`sqlplus -s tpch/tpch123 <<END 

 set feedback off 

 set heading off 

 select nvl((e1.value - b1.value),-1)/1000000 

   from dba_hist_sys_time_model  e1 

   , dba_hist_sys_time_model  b1 

   where b1.instance_number        = e1.instance_number 

   and b1.stat_name             = 'sql execute elapsed time' 

   and b1.stat_id                = e1.stat_id 

    and b1.snap_id                = ${a} 

    and e1.snap_id                = ${b}; 

END` 

 

 q=`sqlplus -s tpch/tpch123 <<END 

 set feedback off 

 set heading off 

 select nvl((e1.value - b1.value),-1)/1000000 

   from dba_hist_sys_time_model  e1 

   , dba_hist_sys_time_model  b1 

   where b1.instance_number        = e1.instance_number 

   and b1.stat_name             = 'DB CPU' 

   and b1.stat_id                = e1.stat_id 

    and b1.snap_id                = ${a} 

    and e1.snap_id                = ${b}; 

END` 

  

 r=`sqlplus -s tpch/tpch123 <<END 

 set feedback off 

 set heading off    

 select value from dba_hist_osstat where stat_name='LOAD' and snap_id=${a}; 

END` 

 

 s=`sqlplus -s tpch/tpch123 <<END 

 set feedback off 

 set heading off     

 select value from dba_hist_osstat where stat_name='LOAD' and snap_id=${b}; 

END` 

 

 H=1.10 
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 L=0.90 

 

 r=`echo "$r" | grep . | sed "s/  *//g" | sed "s/ //g"` 

 s=`echo "$s" | grep . | sed "s/  *//g" | sed "s/ //g"` 

 

 s1=$( echo "scale=2; (${r} * ${H})" | bc) 

 s2=$( echo "scale=2; (${r} * ${L})" | bc) 

 

 if [[ "$s" -le "$s1" ]] && [[ "$s" -ge "$s2" ]];then 

  t=$( echo "scale=2; (${r} + ${s}) / 2" | bc) 

  echo ${t} ${q} ${p} | sed "s/ / /g" | sed "s/  */ /g" 

 fi 

 

 a=`expr $a + 1` 

 b=`expr $b + 1` 

done 
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Appendix E 

Following figures show the constructed baselines for optimization scheme.  

 

 

 

Testing result from iterative run of combined query #3 & 4. 

 

 

 

 

 

Testing result from iterative run of combined query #3 & 5. 
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Testing result from iterative run of combined query #22 & 16. 

 

 

 

 

Testing result from iterative run of combined query #12 & 13. 
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Appendix F 

Shell program that produces the benchmark data using single TPC-H query. This 

program is used in the affirmation scheme.   

 
#!/bin/ksh 

 

Q1() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT L_RETURNFLAG,  

L_LINESTATUS,  

SUM(L_QUANTITY) AS SUM_QTY, 

 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE*(1-

L_DISCOUNT)) AS SUM_DISC_PRICE, 

 SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE, 

AVG(L_QUANTITY) AS AVG_QTY, 

 AVG(L_EXTENDEDPRICE) AS AVG_PRICE,  

 AVG(L_DISCOUNT) AS AVG_DISC, COUNT(*) AS COUNT_ORDER 

FROM H_LINEITEM 

WHERE L_SHIPDATE <= to_date('1998-12-01','YYYY-MM-DD') - 90 

GROUP BY L_RETURNFLAG, L_LINESTATUS 

ORDER BY L_RETURNFLAG,L_LINESTATUS; 

 

EXIT 

END` 

} 

 

Q2() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY,  

P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT 

FROM  

H_PART, H_SUPPLIER, H_PARTSUPP, H_NATION, H_REGION 

WHERE P_PARTKEY = PS_PARTKEY  

AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15  

AND P_TYPE LIKE '%%BRASS'  

AND S_NATIONKEY = N_NATIONKEY  

AND N_REGIONKEY = R_REGIONKEY  

AND R_NAME = 'EUROPE'  

AND PS_SUPPLYCOST = (SELECT MIN(PS_SUPPLYCOST)  

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION, H_REGION 

 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY 

 AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY  

 AND R_NAME = 'EUROPE') 

AND rownum<101 

ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY; 

 

EXIT 

END` 

} 

 

Q3() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT L_ORDERKEY,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,  

O_ORDERDATE, O_SHIPPRIORITY 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM 

WHERE C_MKTSEGMENT = 'BUILDING'  
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AND C_CUSTKEY = O_CUSTKEY  

AND L_ORDERKEY = O_ORDERKEY  

AND O_ORDERDATE < to_date('1995-03-15','YYYY-MM-DD') 

AND L_SHIPDATE > to_date('1995-03-15','YYYY-MM-DD') 

and rownum<10 

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY 

ORDER BY REVENUE DESC, O_ORDERDATE ; 

 

EXIT 

END` 

} 

 

Q4() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT O_ORDERPRIORITY,  

COUNT(*) AS ORDER_COUNT  

FROM H_ORDER 

WHERE O_ORDERDATE >= to_date('1993-07-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1993-07-01','YYYY-MM-DD'),3) 

AND  

EXISTS (SELECT * FROM H_LINEITEM  

 WHERE L_ORDERKEY = O_ORDERKEY  

 AND L_COMMITDATE < L_RECEIPTDATE) 

GROUP BY O_ORDERPRIORITY 

ORDER BY O_ORDERPRIORITY; 

 

EXIT 

END` 

} 

 

Q5() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT N_NAME,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_SUPPLIER, H_NATION, H_REGION 

WHERE C_CUSTKEY = O_CUSTKEY  

AND L_ORDERKEY = O_ORDERKEY  

AND L_SUPPKEY = S_SUPPKEY 

AND C_NATIONKEY = S_NATIONKEY  

AND S_NATIONKEY = N_NATIONKEY  

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = 'ASIA'  

AND O_ORDERDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12) 

GROUP BY N_NAME 

ORDER BY REVENUE DESC; 

 

EXIT 

END` 

} 

 

Q6() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE 

FROM H_LINEITEM 

WHERE L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12) 

AND L_DISCOUNT BETWEEN .06 - 0.01 AND .06 + 0.01  

AND L_QUANTITY < 24; 
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EXIT 

END` 

} 

 

Q7() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUPP_NATION, CUST_NATION,  

L_YEAR, SUM(VOLUME) AS REVENUE 

FROM  

 (SELECT N1.N_NAME AS SUPP_NATION,  

 N2.N_NAME AS CUST_NATION,  

 extract(year from L_SHIPDATE) AS L_YEAR, 

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME 

 FROM H_SUPPLIER, H_LINEITEM, H_ORDER,  

 H_CUSTOMER, H_NATION N1, H_NATION N2 

 WHERE S_SUPPKEY = L_SUPPKEY  

 AND O_ORDERKEY = L_ORDERKEY  

 AND C_CUSTKEY = O_CUSTKEY 

 AND S_NATIONKEY = N1.N_NATIONKEY  

 AND C_NATIONKEY = N2.N_NATIONKEY  

 AND ((N1.N_NAME = 'FRANCE' AND N2.N_NAME = 'GERMANY') OR 

  (N1.N_NAME = 'GERMANY' AND N2.N_NAME = 'FRANCE')) 

 AND L_SHIPDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD') AND to_date('1996-12-

31','YYYY-MM-DD')) SHIPPING 

GROUP BY SUPP_NATION, CUST_NATION, L_YEAR 

ORDER BY SUPP_NATION, CUST_NATION, L_YEAR; 

 

EXIT 

END` 

} 

 

Q8() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

O_YEAR,  

SUM(CASE WHEN NATION = 'BRAZIL' THEN VOLUME ELSE 0 END)/SUM(VOLUME) AS 

MKT_SHARE 

FROM  

 (SELECT  

 extract(year from O_ORDERDATE) AS O_YEAR,  

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME,  

 N2.N_NAME AS NATION 

 FROM  

 H_PART, H_SUPPLIER, H_LINEITEM, H_ORDER,  

 H_CUSTOMER, H_NATION N1, H_NATION N2, H_REGION 

 WHERE  

 P_PARTKEY = L_PARTKEY  

 AND S_SUPPKEY = L_SUPPKEY  

 AND L_ORDERKEY = O_ORDERKEY 

 AND O_CUSTKEY = C_CUSTKEY  

 AND C_NATIONKEY = N1.N_NATIONKEY  

 AND N1.N_REGIONKEY = R_REGIONKEY  

 AND R_NAME = 'AMERICA'  

 AND S_NATIONKEY = N2.N_NATIONKEY 

 AND O_ORDERDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD')  

  AND to_date('1996-12-31','YYYY-MM-DD')  

 AND P_TYPE= 'ECONOMY ANODIZED STEEL') ALL_NATIONS 

GROUP BY O_YEAR 

ORDER BY O_YEAR; 

 

EXIT 
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END` 

} 

 

Q9() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

NATION, O_YEAR,  

SUM(AMOUNT) AS SUM_PROFIT 

FROM  

 (SELECT N_NAME AS NATION, extract(year from O_ORDERDATE) AS O_YEAR, 

 L_EXTENDEDPRICE*(1-L_DISCOUNT)-PS_SUPPLYCOST*L_QUANTITY AS AMOUNT 

 FROM  

 H_PART, H_SUPPLIER, H_LINEITEM, H_PARTSUPP, H_ORDER, H_NATION 

 WHERE S_SUPPKEY = L_SUPPKEY  

 AND PS_SUPPKEY= L_SUPPKEY  

 AND PS_PARTKEY = L_PARTKEY  

 AND P_PARTKEY= L_PARTKEY  

 AND O_ORDERKEY = L_ORDERKEY  

 AND S_NATIONKEY = N_NATIONKEY  

 AND P_NAME LIKE '%%green%%') PROFIT 

GROUP BY NATION, O_YEAR 

ORDER BY NATION, O_YEAR DESC; 

 

EXIT 

END` 

} 

 

Q10() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

C_CUSTKEY, C_NAME,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,  

C_ACCTBAL, N_NAME,  

C_ADDRESS, C_PHONE, C_COMMENT 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_NATION 

WHERE C_CUSTKEY = O_CUSTKEY  

AND L_ORDERKEY = O_ORDERKEY  

AND O_ORDERDATE>= to_date('1993-10-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1993-10-01','YYYY-MM-DD'),3) 

AND L_RETURNFLAG = 'R' AND C_NATIONKEY = N_NATIONKEY 

and rownum<21 

GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL, C_PHONE, N_NAME, C_ADDRESS, 

C_COMMENT 

ORDER BY REVENUE DESC; 

 

EXIT 

END` 

} 

 

Q11() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

PS_PARTKEY,  

SUM(PS_SUPPLYCOST*PS_AVAILQTY) AS VALUE 

FROM  

H_PARTSUPP, H_SUPPLIER, H_NATION 

WHERE  

PS_SUPPKEY = S_SUPPKEY  

AND S_NATIONKEY = N_NATIONKEY  

AND N_NAME = 'GERMANY' 
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GROUP BY PS_PARTKEY 

HAVING SUM(PS_SUPPLYCOST*PS_AVAILQTY) > (SELECT 

SUM(PS_SUPPLYCOST*PS_AVAILQTY) * 0.0001000000 

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION 

 WHERE PS_SUPPKEY = S_SUPPKEY  

 AND S_NATIONKEY = N_NATIONKEY  

 AND N_NAME = 'GERMANY') 

ORDER BY VALUE DESC; 

 

EXIT 

END` 

} 

 

Q12() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

L_SHIPMODE, 

SUM(CASE WHEN O_ORDERPRIORITY = '1-URGENT' OR O_ORDERPRIORITY = '2-HIGH' 

THEN 1 ELSE 0 END) AS HIGH_LINE_COUNT, 

SUM(CASE WHEN O_ORDERPRIORITY <> '1-URGENT' AND O_ORDERPRIORITY <> '2-HIGH' 

THEN 1 ELSE 0 END ) AS LOW_LINE_COUNT 

FROM H_ORDER, H_LINEITEM 

WHERE O_ORDERKEY = L_ORDERKEY  

AND L_SHIPMODE IN ('MAIL','SHIP') 

AND L_COMMITDATE < L_RECEIPTDATE  

AND L_SHIPDATE < L_COMMITDATE  

AND L_RECEIPTDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND L_RECEIPTDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1) 

GROUP BY L_SHIPMODE 

ORDER BY L_SHIPMODE; 

 

EXIT 

END` 

} 

 

Q13() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT C_COUNT, COUNT(*) AS CUSTDIST 

FROM (SELECT C_CUSTKEY, COUNT(O_ORDERKEY) as C_COUNT 

 FROM H_CUSTOMER left outer join H_ORDER on C_CUSTKEY = O_CUSTKEY 

 AND O_COMMENT not like '%%special%%requests%%' 

 GROUP BY C_CUSTKEY) C_ORDERS 

GROUP BY C_COUNT 

ORDER BY CUSTDIST DESC, C_COUNT DESC; 

 

EXIT 

END` 

} 

 

Q14() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

100.00*SUM(CASE WHEN P_TYPE LIKE 'PROMO%%' THEN L_EXTENDEDPRICE*(1-

L_DISCOUNT) 

ELSE 0 END) / SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS PROMO_REVENUE 

FROM  

H_LINEITEM, H_PART 

WHERE  

L_PARTKEY = P_PARTKEY  

AND L_SHIPDATE >= to_date('1995-09-01','YYYY-MM-DD')  
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AND L_SHIPDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1); 

 

EXIT 

END` 

} 

 

Q15() { 

q=`sqlplus -s tpch/tpch123 << END 

 

-- CREATE VIEW REVENUE0 (SUPPLIER_NO, TOTAL_REVENUE) AS 

-- SELECT L_SUPPKEY,  

-- SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT))  

-- FROM H_LINEITEM 

-- WHERE L_SHIPDATE >= to_date('1996-01-01','YYYY-MM-DD')  

-- AND L_SHIPDATE < add_months(to_date('1996-01-01','YYYY-MM-DD'),3) 

-- GROUP BY L_SUPPKEY; 

 

SELECT  

S_SUPPKEY, S_NAME, S_ADDRESS, S_PHONE, TOTAL_REVENUE 

FROM H_SUPPLIER, REVENUE0 

WHERE  

S_SUPPKEY = SUPPLIER_NO  

AND TOTAL_REVENUE = (SELECT MAX(TOTAL_REVENUE) FROM REVENUE0) 

ORDER BY S_SUPPKEY; 

 

-- DROP VIEW REVENUE0; 

 

EXIT 

END` 

} 

 

Q16() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

P_BRAND, P_TYPE, P_SIZE,  

COUNT(DISTINCT PS_SUPPKEY) AS SUPPLIER_CNT 

FROM  

H_PARTSUPP, H_PART 

WHERE  

P_PARTKEY = PS_PARTKEY  

AND P_BRAND <> 'Brand#45'  

AND P_TYPE NOT LIKE 'MEDIUM POLISHED%%' 

AND P_SIZE IN (49, 14, 23, 45, 19, 3, 36, 9)  

AND PS_SUPPKEY NOT IN (SELECT S_SUPPKEY  

 FROM H_SUPPLIER 

 WHERE S_COMMENT LIKE '%%Customer%%Complaints%%') 

GROUP BY P_BRAND, P_TYPE, P_SIZE 

ORDER BY SUPPLIER_CNT DESC, P_BRAND, P_TYPE, P_SIZE; 

 

EXIT 

END` 

} 

 

Q17() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY  

FROM  

H_LINEITEM, H_PART 

WHERE  

P_PARTKEY = L_PARTKEY  
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AND P_BRAND = 'Brand#23'  

AND P_CONTAINER = 'MED BOX' 

AND L_QUANTITY < (SELECT 0.2*AVG(L_QUANTITY)  

FROM H_LINEITEM WHERE L_PARTKEY = P_PARTKEY); 

 

EXIT 

END` 

} 

 

Q18() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE, 

SUM(L_QUANTITY) 

FROM  

H_CUSTOMER, H_ORDER, H_LINEITEM 

WHERE O_ORDERKEY IN (SELECT  

 L_ORDERKEY  

 FROM H_LINEITEM  

 GROUP BY L_ORDERKEY  

 HAVING SUM(L_QUANTITY) > 300) 

AND C_CUSTKEY = O_CUSTKEY  

AND O_ORDERKEY = L_ORDERKEY 

AND rownum<101 

GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE 

ORDER BY O_TOTALPRICE DESC, O_ORDERDATE; 

 

EXIT 

END` 

} 

 

Q19() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUM(L_EXTENDEDPRICE* (1 - L_DISCOUNT)) AS REVENUE 

FROM H_LINEITEM, H_PART 

WHERE  

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#12'  

 AND P_CONTAINER IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')  

 AND L_QUANTITY >= 1 AND L_QUANTITY <= 1 + 10  

 AND P_SIZE BETWEEN 1 AND 5 

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON') 

OR  

(P_PARTKEY = L_PARTKEY AND P_BRAND ='Brand#23'  

 AND P_CONTAINER IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')  

 AND L_QUANTITY >=10 AND L_QUANTITY <=10 + 10  

 AND P_SIZE BETWEEN 1 AND 10  

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON') 

OR  

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#34' 

 AND P_CONTAINER IN ( 'LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')  

 AND L_QUANTITY >=20 AND L_QUANTITY <= 20 + 10  

 AND P_SIZE BETWEEN 1 AND 15 

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON'); 

 

EXIT 

END` 

} 
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Q20() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

S_NAME, S_ADDRESS  

FROM  

H_SUPPLIER, H_NATION 

WHERE  

S_SUPPKEY IN (SELECT  

 PS_SUPPKEY FROM H_PARTSUPP 

 WHERE PS_PARTKEY in (SELECT  

  P_PARTKEY FROM H_PART  

  WHERE P_NAME like 'forest%%')  

 AND PS_AVAILQTY > (SELECT 0.5*sum(L_QUANTITY)  

  FROM H_LINEITEM  

  WHERE L_PARTKEY = PS_PARTKEY  

  AND L_SUPPKEY = PS_SUPPKEY  

  AND L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD') 

  AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12))) 

AND S_NATIONKEY = N_NATIONKEY AND N_NAME = 'CANADA' 

ORDER BY S_NAME; 

 

EXIT 

END` 

} 

 

Q21() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

S_NAME, COUNT(*) AS NUMWAIT 

FROM  

H_SUPPLIER, H_LINEITEM L1, H_ORDER, H_NATION  

WHERE  

S_SUPPKEY = L1.L_SUPPKEY  

AND O_ORDERKEY = L1.L_ORDERKEY  

AND O_ORDERSTATUS = 'F'  

AND L1.L_RECEIPTDATE> L1.L_COMMITDATE 

AND EXISTS (SELECT * FROM  

 H_LINEITEM L2  

 WHERE L2.L_ORDERKEY = L1.L_ORDERKEY 

 AND L2.L_SUPPKEY <> L1.L_SUPPKEY)  

AND NOT EXISTS (SELECT *  

 FROM H_LINEITEM L3  

 WHERE L3.L_ORDERKEY = L1.L_ORDERKEY  

 AND L3.L_SUPPKEY <> L1.L_SUPPKEY  

 AND L3.L_RECEIPTDATE > L3.L_COMMITDATE)  

AND S_NATIONKEY = N_NATIONKEY  

AND N_NAME = 'SAUDI ARABIA' 

and rownum<101 

GROUP BY S_NAME 

ORDER BY NUMWAIT DESC, S_NAME; 

 

EXIT 

END` 

} 

 

Q22() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

CNTRYCODE,  

COUNT(*) AS NUMCUST,  
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SUM(C_ACCTBAL) AS TOTACCTBAL 

FROM (SELECT SUBSTR(C_PHONE,1,2) AS CNTRYCODE, C_ACCTBAL 

 FROM H_CUSTOMER  

 WHERE  

 SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17')  

 AND C_ACCTBAL > (SELECT AVG(C_ACCTBAL)  

  FROM H_CUSTOMER WHERE C_ACCTBAL > 0.00  

  AND SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17'))  

  AND NOT EXISTS (SELECT *  

   FROM H_ORDER WHERE O_CUSTKEY = C_CUSTKEY)) CUSTSALE 

GROUP BY CNTRYCODE 

ORDER BY CNTRYCODE; 

 

EXIT 

END` 

} 

 

 

SQL_ID=" \ 

Q9-bccvz740py3dv 

" 

 

# Q1-b383b8ptd6m38 

# Q2-84u9xq2p56f68 

# Q3-4y7ucx9354fxy 

# Q4-5rpbt92d2w4ks 

# Q5-8y0yasa5zjyr1 

# Q6-1zn3xrx01mtck 

# Q7-2tryzag0xbu4m 

# Q8-c8bp67faftkh2 

# Q9-bccvz740py3dv 

# Q10-2bkjqzpz3ubsc 

# Q11-9fw9rgatw0h2b 

# Q12-94tpbact4tt8c 

# Q13-9f2czfz2pm9zr 

# Q14-0c2bha5xd99js 

# Q15-9fj78vapy7uny 

# Q16-9f16buakax45p 

# Q17-33fsxr05jhazw 

# Q18-ctakajmsjp98s 

# Q19-14yf8frfjbcry 

# Q20-302hwrypt1g02 

# Q21-3z61g4q8uhvac 

# Q22-5bks84w8ut3dy 

 

snap() { 

sqlplus -s tpch/tpch123 << END 

  set feedback off 

  set heading off 

  EXEC dbms_workload_repository.create_snapshot;  

  select max(snap_id) from dba_hist_sys_time_model 

  where DBID=(select dbid from v\$database); 

END 

} 

 

CG_CHK() { 

sqlplus -s tpch/tpch123 << END 

 set heading off 

 set feedback off 

 select value from v\$sysstat 

 where name='consistent gets'; 

END 

} 
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b=0 

baseline_ratio=40870 

load_threshold=4.5 

run_freq=5 # from MATLAB 

begin_time=`echo $(date +%s)` 

sleep 1 

 

begin_CG=`CG_CHK` 

 

while (true);do 

        elapsed_clock_time=`expr $(date +%s) - ${begin_time}` 

 

 

        CURR_CG_TOTAL=`CG_CHK` 

        CURR_CG_DIFF=`echo $((${CURR_CG_TOTAL} - ${begin_CG}))` 

 

        CG_ratio=`echo $((${CURR_CG_DIFF} / ${elapsed_clock_time}))` 

        # echo "CURR_CG_DIFF=" $CURR_CG_DIFF 

        echo "elapsed_clock_time=" $elapsed_clock_time 

        echo "CG_ratio=" $CG_ratio 

        echo "baseline_ratio=" $baseline_ratio 

 

        R=`echo "$SQL_ID" | awk -F'-' '{print $1}'` 

        S=`echo "$SQL_ID" | awk -F'-' '{print $2}'` 

        echo $S 

        server_load=`uptime | awk '{print $10}' | awk -F',' '{print $1}'` 

        echo "server_load=" $server_load 

 

        if [[ ${CG_ratio} -lt ${baseline_ratio} ]] \ 

                && [[ ${server_load} -le ${load_threshold} ]];then 

                SQL_CNT=`sqlplus -s tpch/tpch123 << END 

                        set heading off 

                        set feedback off 

                        select count(*) from v\\$session 

                        where sql_id='\${S}'; 

END` 

                echo $SQL_CNT 

                echo $run_freq 

                x=0 

                while [[ ${run_freq} -gt 0 ]] && \ 

                        [[ ${SQL_CNT} -eq 0 ]];do 

                        $R > /dev/null 2>&1 & 

                        echo "abc" 

                        run_freq=`expr $run_freq - 1` 

                        x=`expr $x + 1` 

                        echo "SQL_CNT=" $SQL_CNT 

                        echo "x=" $x 

                        echo "run_freq=" $run_freq 

                done 

        fi 

        sleep 5 

        run_freq=5 

done 
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Appendix G 

Shell program that produces the benchmark data using multiple TPC-H queries. This 

program is used in the affirmation scheme.   

 
#!/bin/ksh 

 

Q1() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT L_RETURNFLAG,  

L_LINESTATUS,  

SUM(L_QUANTITY) AS SUM_QTY, 

 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE*(1-

L_DISCOUNT)) AS SUM_DISC_PRICE, 

 SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE, 

AVG(L_QUANTITY) AS AVG_QTY, 

 AVG(L_EXTENDEDPRICE) AS AVG_PRICE,  

 AVG(L_DISCOUNT) AS AVG_DISC, COUNT(*) AS COUNT_ORDER 

FROM H_LINEITEM 

WHERE L_SHIPDATE <= to_date('1998-12-01','YYYY-MM-DD') - 90 

GROUP BY L_RETURNFLAG, L_LINESTATUS 

ORDER BY L_RETURNFLAG,L_LINESTATUS; 

 

EXIT 

END` 

} 

 

Q2() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY,  

P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT 

FROM  

H_PART, H_SUPPLIER, H_PARTSUPP, H_NATION, H_REGION 

WHERE P_PARTKEY = PS_PARTKEY  

AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15  

AND P_TYPE LIKE '%%BRASS'  

AND S_NATIONKEY = N_NATIONKEY  

AND N_REGIONKEY = R_REGIONKEY  

AND R_NAME = 'EUROPE'  

AND PS_SUPPLYCOST = (SELECT MIN(PS_SUPPLYCOST)  

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION, H_REGION 

 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY 

 AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY  

 AND R_NAME = 'EUROPE') 

AND rownum<101 

ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY; 

 

EXIT 

END` 

} 

 

Q3() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT L_ORDERKEY,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,  

O_ORDERDATE, O_SHIPPRIORITY 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM 

WHERE C_MKTSEGMENT = 'BUILDING'  
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AND C_CUSTKEY = O_CUSTKEY  

AND L_ORDERKEY = O_ORDERKEY  

AND O_ORDERDATE < to_date('1995-03-15','YYYY-MM-DD') 

AND L_SHIPDATE > to_date('1995-03-15','YYYY-MM-DD') 

and rownum<10 

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY 

ORDER BY REVENUE DESC, O_ORDERDATE ; 

 

EXIT 

END` 

} 

 

Q4() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT O_ORDERPRIORITY,  

COUNT(*) AS ORDER_COUNT  

FROM H_ORDER 

WHERE O_ORDERDATE >= to_date('1993-07-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1993-07-01','YYYY-MM-DD'),3) 

AND  

EXISTS (SELECT * FROM H_LINEITEM  

 WHERE L_ORDERKEY = O_ORDERKEY  

 AND L_COMMITDATE < L_RECEIPTDATE) 

GROUP BY O_ORDERPRIORITY 

ORDER BY O_ORDERPRIORITY; 

 

EXIT 

END` 

} 

 

Q5() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT N_NAME,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_SUPPLIER, H_NATION, H_REGION 

WHERE C_CUSTKEY = O_CUSTKEY  

AND L_ORDERKEY = O_ORDERKEY  

AND L_SUPPKEY = S_SUPPKEY 

AND C_NATIONKEY = S_NATIONKEY  

AND S_NATIONKEY = N_NATIONKEY  

AND N_REGIONKEY = R_REGIONKEY 

AND R_NAME = 'ASIA'  

AND O_ORDERDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12) 

GROUP BY N_NAME 

ORDER BY REVENUE DESC; 

 

EXIT 

END` 

} 

 

Q6() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE 

FROM H_LINEITEM 

WHERE L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12) 

AND L_DISCOUNT BETWEEN .06 - 0.01 AND .06 + 0.01  

AND L_QUANTITY < 24; 
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EXIT 

END` 

} 

 

Q7() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUPP_NATION, CUST_NATION,  

L_YEAR, SUM(VOLUME) AS REVENUE 

FROM  

 (SELECT N1.N_NAME AS SUPP_NATION,  

 N2.N_NAME AS CUST_NATION,  

 extract(year from L_SHIPDATE) AS L_YEAR, 

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME 

 FROM H_SUPPLIER, H_LINEITEM, H_ORDER,  

 H_CUSTOMER, H_NATION N1, H_NATION N2 

 WHERE S_SUPPKEY = L_SUPPKEY  

 AND O_ORDERKEY = L_ORDERKEY  

 AND C_CUSTKEY = O_CUSTKEY 

 AND S_NATIONKEY = N1.N_NATIONKEY  

 AND C_NATIONKEY = N2.N_NATIONKEY  

 AND ((N1.N_NAME = 'FRANCE' AND N2.N_NAME = 'GERMANY') OR 

  (N1.N_NAME = 'GERMANY' AND N2.N_NAME = 'FRANCE')) 

 AND L_SHIPDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD') AND to_date('1996-12-

31','YYYY-MM-DD')) SHIPPING 

GROUP BY SUPP_NATION, CUST_NATION, L_YEAR 

ORDER BY SUPP_NATION, CUST_NATION, L_YEAR; 

 

EXIT 

END` 

} 

 

Q8() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

O_YEAR,  

SUM(CASE WHEN NATION = 'BRAZIL' THEN VOLUME ELSE 0 END)/SUM(VOLUME) AS 

MKT_SHARE 

FROM  

 (SELECT  

 extract(year from O_ORDERDATE) AS O_YEAR,  

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME,  

 N2.N_NAME AS NATION 

 FROM  

 H_PART, H_SUPPLIER, H_LINEITEM, H_ORDER,  

 H_CUSTOMER, H_NATION N1, H_NATION N2, H_REGION 

 WHERE  

 P_PARTKEY = L_PARTKEY  

 AND S_SUPPKEY = L_SUPPKEY  

 AND L_ORDERKEY = O_ORDERKEY 

 AND O_CUSTKEY = C_CUSTKEY  

 AND C_NATIONKEY = N1.N_NATIONKEY  

 AND N1.N_REGIONKEY = R_REGIONKEY  

 AND R_NAME = 'AMERICA'  

 AND S_NATIONKEY = N2.N_NATIONKEY 

 AND O_ORDERDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD')  

  AND to_date('1996-12-31','YYYY-MM-DD')  

 AND P_TYPE= 'ECONOMY ANODIZED STEEL') ALL_NATIONS 

GROUP BY O_YEAR 

ORDER BY O_YEAR; 

 

EXIT 
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END` 

} 

 

Q9() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

NATION, O_YEAR,  

SUM(AMOUNT) AS SUM_PROFIT 

FROM  

 (SELECT N_NAME AS NATION, extract(year from O_ORDERDATE) AS O_YEAR, 

 L_EXTENDEDPRICE*(1-L_DISCOUNT)-PS_SUPPLYCOST*L_QUANTITY AS AMOUNT 

 FROM  

 H_PART, H_SUPPLIER, H_LINEITEM, H_PARTSUPP, H_ORDER, H_NATION 

 WHERE S_SUPPKEY = L_SUPPKEY  

 AND PS_SUPPKEY= L_SUPPKEY  

 AND PS_PARTKEY = L_PARTKEY  

 AND P_PARTKEY= L_PARTKEY  

 AND O_ORDERKEY = L_ORDERKEY  

 AND S_NATIONKEY = N_NATIONKEY  

 AND P_NAME LIKE '%%green%%') PROFIT 

GROUP BY NATION, O_YEAR 

ORDER BY NATION, O_YEAR DESC; 

 

EXIT 

END` 

} 

 

Q10() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

C_CUSTKEY, C_NAME,  

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,  

C_ACCTBAL, N_NAME,  

C_ADDRESS, C_PHONE, C_COMMENT 

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_NATION 

WHERE C_CUSTKEY = O_CUSTKEY  

AND L_ORDERKEY = O_ORDERKEY  

AND O_ORDERDATE>= to_date('1993-10-01','YYYY-MM-DD') 

AND O_ORDERDATE < add_months(to_date('1993-10-01','YYYY-MM-DD'),3) 

AND L_RETURNFLAG = 'R' AND C_NATIONKEY = N_NATIONKEY 

and rownum<21 

GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL, C_PHONE, N_NAME, C_ADDRESS, 

C_COMMENT 

ORDER BY REVENUE DESC; 

 

EXIT 

END` 

} 

 

Q11() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

PS_PARTKEY,  

SUM(PS_SUPPLYCOST*PS_AVAILQTY) AS VALUE 

FROM  

H_PARTSUPP, H_SUPPLIER, H_NATION 

WHERE  

PS_SUPPKEY = S_SUPPKEY  

AND S_NATIONKEY = N_NATIONKEY  

AND N_NAME = 'GERMANY' 
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GROUP BY PS_PARTKEY 

HAVING SUM(PS_SUPPLYCOST*PS_AVAILQTY) > (SELECT 

SUM(PS_SUPPLYCOST*PS_AVAILQTY) * 0.0001000000 

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION 

 WHERE PS_SUPPKEY = S_SUPPKEY  

 AND S_NATIONKEY = N_NATIONKEY  

 AND N_NAME = 'GERMANY') 

ORDER BY VALUE DESC; 

 

EXIT 

END` 

} 

 

Q12() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

L_SHIPMODE, 

SUM(CASE WHEN O_ORDERPRIORITY = '1-URGENT' OR O_ORDERPRIORITY = '2-HIGH' 

THEN 1 ELSE 0 END) AS HIGH_LINE_COUNT, 

SUM(CASE WHEN O_ORDERPRIORITY <> '1-URGENT' AND O_ORDERPRIORITY <> '2-HIGH' 

THEN 1 ELSE 0 END ) AS LOW_LINE_COUNT 

FROM H_ORDER, H_LINEITEM 

WHERE O_ORDERKEY = L_ORDERKEY  

AND L_SHIPMODE IN ('MAIL','SHIP') 

AND L_COMMITDATE < L_RECEIPTDATE  

AND L_SHIPDATE < L_COMMITDATE  

AND L_RECEIPTDATE >= to_date('1994-01-01','YYYY-MM-DD') 

AND L_RECEIPTDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1) 

GROUP BY L_SHIPMODE 

ORDER BY L_SHIPMODE; 

 

EXIT 

END` 

} 

 

Q13() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT C_COUNT, COUNT(*) AS CUSTDIST 

FROM (SELECT C_CUSTKEY, COUNT(O_ORDERKEY) as C_COUNT 

 FROM H_CUSTOMER left outer join H_ORDER on C_CUSTKEY = O_CUSTKEY 

 AND O_COMMENT not like '%%special%%requests%%' 

 GROUP BY C_CUSTKEY) C_ORDERS 

GROUP BY C_COUNT 

ORDER BY CUSTDIST DESC, C_COUNT DESC; 

 

EXIT 

END` 

} 

 

Q14() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

100.00*SUM(CASE WHEN P_TYPE LIKE 'PROMO%%' THEN L_EXTENDEDPRICE*(1-

L_DISCOUNT) 

ELSE 0 END) / SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS PROMO_REVENUE 

FROM  

H_LINEITEM, H_PART 

WHERE  

L_PARTKEY = P_PARTKEY  

AND L_SHIPDATE >= to_date('1995-09-01','YYYY-MM-DD')  
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AND L_SHIPDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1); 

 

EXIT 

END` 

} 

 

Q15() { 

q=`sqlplus -s tpch/tpch123 << END 

 

-- CREATE VIEW REVENUE0 (SUPPLIER_NO, TOTAL_REVENUE) AS 

-- SELECT L_SUPPKEY,  

-- SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT))  

-- FROM H_LINEITEM 

-- WHERE L_SHIPDATE >= to_date('1996-01-01','YYYY-MM-DD')  

-- AND L_SHIPDATE < add_months(to_date('1996-01-01','YYYY-MM-DD'),3) 

-- GROUP BY L_SUPPKEY; 

 

SELECT  

S_SUPPKEY, S_NAME, S_ADDRESS, S_PHONE, TOTAL_REVENUE 

FROM H_SUPPLIER, REVENUE0 

WHERE  

S_SUPPKEY = SUPPLIER_NO  

AND TOTAL_REVENUE = (SELECT MAX(TOTAL_REVENUE) FROM REVENUE0) 

ORDER BY S_SUPPKEY; 

 

-- DROP VIEW REVENUE0; 

 

EXIT 

END` 

} 

 

Q16() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

P_BRAND, P_TYPE, P_SIZE,  

COUNT(DISTINCT PS_SUPPKEY) AS SUPPLIER_CNT 

FROM  

H_PARTSUPP, H_PART 

WHERE  

P_PARTKEY = PS_PARTKEY  

AND P_BRAND <> 'Brand#45'  

AND P_TYPE NOT LIKE 'MEDIUM POLISHED%%' 

AND P_SIZE IN (49, 14, 23, 45, 19, 3, 36, 9)  

AND PS_SUPPKEY NOT IN (SELECT S_SUPPKEY  

 FROM H_SUPPLIER 

 WHERE S_COMMENT LIKE '%%Customer%%Complaints%%') 

GROUP BY P_BRAND, P_TYPE, P_SIZE 

ORDER BY SUPPLIER_CNT DESC, P_BRAND, P_TYPE, P_SIZE; 

 

EXIT 

END` 

} 

 

Q17() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY  

FROM  

H_LINEITEM, H_PART 

WHERE  

P_PARTKEY = L_PARTKEY  
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AND P_BRAND = 'Brand#23'  

AND P_CONTAINER = 'MED BOX' 

AND L_QUANTITY < (SELECT 0.2*AVG(L_QUANTITY)  

FROM H_LINEITEM WHERE L_PARTKEY = P_PARTKEY); 

 

EXIT 

END` 

} 

 

Q18() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE, 

SUM(L_QUANTITY) 

FROM  

H_CUSTOMER, H_ORDER, H_LINEITEM 

WHERE O_ORDERKEY IN (SELECT  

 L_ORDERKEY  

 FROM H_LINEITEM  

 GROUP BY L_ORDERKEY  

 HAVING SUM(L_QUANTITY) > 300) 

AND C_CUSTKEY = O_CUSTKEY  

AND O_ORDERKEY = L_ORDERKEY 

AND rownum<101 

GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE 

ORDER BY O_TOTALPRICE DESC, O_ORDERDATE; 

 

EXIT 

END` 

} 

 

Q19() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT SUM(L_EXTENDEDPRICE* (1 - L_DISCOUNT)) AS REVENUE 

FROM H_LINEITEM, H_PART 

WHERE  

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#12'  

 AND P_CONTAINER IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')  

 AND L_QUANTITY >= 1 AND L_QUANTITY <= 1 + 10  

 AND P_SIZE BETWEEN 1 AND 5 

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON') 

OR  

(P_PARTKEY = L_PARTKEY AND P_BRAND ='Brand#23'  

 AND P_CONTAINER IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')  

 AND L_QUANTITY >=10 AND L_QUANTITY <=10 + 10  

 AND P_SIZE BETWEEN 1 AND 10  

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON') 

OR  

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#34' 

 AND P_CONTAINER IN ( 'LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')  

 AND L_QUANTITY >=20 AND L_QUANTITY <= 20 + 10  

 AND P_SIZE BETWEEN 1 AND 15 

 AND L_SHIPMODE IN ('AIR', 'AIR REG')  

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON'); 

 

EXIT 

END` 

} 
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Q20() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

S_NAME, S_ADDRESS  

FROM  

H_SUPPLIER, H_NATION 

WHERE  

S_SUPPKEY IN (SELECT  

 PS_SUPPKEY FROM H_PARTSUPP 

 WHERE PS_PARTKEY in (SELECT  

  P_PARTKEY FROM H_PART  

  WHERE P_NAME like 'forest%%')  

 AND PS_AVAILQTY > (SELECT 0.5*sum(L_QUANTITY)  

  FROM H_LINEITEM  

  WHERE L_PARTKEY = PS_PARTKEY  

  AND L_SUPPKEY = PS_SUPPKEY  

  AND L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD') 

  AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12))) 

AND S_NATIONKEY = N_NATIONKEY AND N_NAME = 'CANADA' 

ORDER BY S_NAME; 

 

EXIT 

END` 

} 

 

Q21() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

S_NAME, COUNT(*) AS NUMWAIT 

FROM  

H_SUPPLIER, H_LINEITEM L1, H_ORDER, H_NATION  

WHERE  

S_SUPPKEY = L1.L_SUPPKEY  

AND O_ORDERKEY = L1.L_ORDERKEY  

AND O_ORDERSTATUS = 'F'  

AND L1.L_RECEIPTDATE> L1.L_COMMITDATE 

AND EXISTS (SELECT * FROM  

 H_LINEITEM L2  

 WHERE L2.L_ORDERKEY = L1.L_ORDERKEY 

 AND L2.L_SUPPKEY <> L1.L_SUPPKEY)  

AND NOT EXISTS (SELECT *  

 FROM H_LINEITEM L3  

 WHERE L3.L_ORDERKEY = L1.L_ORDERKEY  

 AND L3.L_SUPPKEY <> L1.L_SUPPKEY  

 AND L3.L_RECEIPTDATE > L3.L_COMMITDATE)  

AND S_NATIONKEY = N_NATIONKEY  

AND N_NAME = 'SAUDI ARABIA' 

and rownum<101 

GROUP BY S_NAME 

ORDER BY NUMWAIT DESC, S_NAME; 

 

EXIT 

END` 

} 

 

Q22() { 

q=`sqlplus -s tpch/tpch123 << END 

 

SELECT  

CNTRYCODE,  

COUNT(*) AS NUMCUST,  
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SUM(C_ACCTBAL) AS TOTACCTBAL 

FROM (SELECT SUBSTR(C_PHONE,1,2) AS CNTRYCODE, C_ACCTBAL 

 FROM H_CUSTOMER  

 WHERE  

 SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17')  

 AND C_ACCTBAL > (SELECT AVG(C_ACCTBAL)  

  FROM H_CUSTOMER WHERE C_ACCTBAL > 0.00  

  AND SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17'))  

  AND NOT EXISTS (SELECT *  

   FROM H_ORDER WHERE O_CUSTKEY = C_CUSTKEY)) CUSTSALE 

GROUP BY CNTRYCODE 

ORDER BY CNTRYCODE; 

 

EXIT 

END` 

} 

 

 

SQL_ID=" \ 

Q8-c8bp67faftkh2 

" 

SQL_ID2=" \ 

Q9-bccvz740py3dv 

" 

 

# Q1-b383b8ptd6m38 

# Q2-84u9xq2p56f68 

# Q3-4y7ucx9354fxy 

# Q4-5rpbt92d2w4ks 

# Q5-8y0yasa5zjyr1 

# Q6-1zn3xrx01mtck 

# Q7-2tryzag0xbu4m 

# Q8-c8bp67faftkh2 

# Q9-bccvz740py3dv 

# Q10-2bkjqzpz3ubsc 

# Q11-9fw9rgatw0h2b 

# Q12-94tpbact4tt8c 

# Q13-9f2czfz2pm9zr 

# Q14-0c2bha5xd99js 

# Q15-9fj78vapy7uny 

# Q16-9f16buakax45p 

# Q17-33fsxr05jhazw 

# Q18-ctakajmsjp98s 

# Q19-14yf8frfjbcry 

# Q20-302hwrypt1g02 

# Q21-3z61g4q8uhvac 

# Q22-5bks84w8ut3dy 

 

snap() { 

sqlplus -s tpch/tpch123 << END 

  set feedback off 

  set heading off 

  EXEC dbms_workload_repository.create_snapshot;  

  select max(snap_id) from dba_hist_sys_time_model 

  where DBID=(select dbid from v\$database); 

END 

} 

 

CG_CHK() { 

sqlplus -s tpch/tpch123 << END 

 set heading off 

 set feedback off 

 select value from v\$sysstat 
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 where name='consistent gets'; 

END 

} 

 

b=0 

baseline_ratio=40870 

load_threshold=4.5 

run_freq=3  

run_freq2=3 

begin_time=`echo $(date +%s)` 

sleep 1 

 

begin_CG=`CG_CHK` 

 

while (true);do 

        elapsed_clock_time=`expr $(date +%s) - ${begin_time}` 

 

        CURR_CG_TOTAL=`CG_CHK` 

        CURR_CG_DIFF=`echo $((${CURR_CG_TOTAL} - ${begin_CG}))` 

 

        CG_ratio=`echo $((${CURR_CG_DIFF} / ${elapsed_clock_time}))` 

        # echo "CURR_CG_DIFF=" $CURR_CG_DIFF 

        echo "elapsed_clock_time=" $elapsed_clock_time 

        echo "CG_ratio=" $CG_ratio 

        echo "baseline_ratio=" $baseline_ratio 

 

        R=`echo "$SQL_ID" | awk -F'-' '{print $1}'` 

        R2=`echo "$SQL_ID2" | awk -F'-' '{print $1}'` 

        S=`echo "$SQL_ID" | awk -F'-' '{print $2}'` 

        S2=`echo "$SQL_ID2" | awk -F'-' '{print $2}'` 

         

        echo $S 

        echo $S2       

        server_load=`uptime | awk '{print $10}' | awk -F',' '{print $1}'` 

        echo "server_load=" $server_load 

 

        if [[ ${CG_ratio} -lt ${baseline_ratio} ]] \ 

                && [[ ${server_load} -le ${load_threshold} ]];then 

                SQL_CNT=`sqlplus -s tpch/tpch123 << END 

                        set heading off 

                        set feedback off 

                        select count(*) from v\\$session 

                        where sql_id='\${S}'; 

END` 

                x=0 

                while [[ ${run_freq} -gt 0 ]] && \ 

                        [[ ${SQL_CNT} -eq 0 ]];do 

                        $R > /dev/null 2>&1 & 

                        echo "abc" 

                        run_freq=`expr $run_freq - 1` 

                        x=`expr $x + 1` 

                        echo "SQL_CNT=" $SQL_CNT 

                        echo "x=" $x 

                        echo "run_freq=" $run_freq 

                done 

        fi 

 

        if [[ ${CG_ratio} -lt ${baseline_ratio} ]] \ 

                && [[ ${server_load} -le ${load_threshold} ]];then 

                SQL_CNT2=`sqlplus -s tpch/tpch123 << END 

                        set heading off 

                        set feedback off 

                        select count(*) from v\\$session 
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                        where sql_id='\${S2}'; 

END` 

                y=0 

                while [[ ${run_freq2} -gt 0 ]] && \ 

                        [[ ${SQL_CNT2} -eq 0 ]];do 

                        $R2 > /dev/null 2>&1 & 

                        echo "xyz" 

                        run_freq2=`expr $run_freq2 - 1` 

                        y=`expr $y + 1` 

                        echo "SQL_CNT2=" $SQL_CNT2 

                        echo "y=" $y 

                        echo "run_freq2=" $run_freq2 

                done 

        fi       

        sleep 5 

        run_freq=3 

        run_freq2=3 

done 
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Appendix H 

Following figures exhibit the generated benchmark data for affirmation scheme. The 

tests were conducted with CPU run queue size kept at 4, and parallel execution of 8.  

 

 

 

Testing result from iterative and parallel execution of TPC-H query #5. 

 

 

 

 

Testing result from iterative and parallel execution of TPC-H query #12. 
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Testing result from iterative and parallel execution of TPC-H query #16. 

 

 

 

Testing result from iterative and parallel execution of TPC-H query #17. 

 

 

 

Testing result from iterative and parallel execution of combination of TPC-H query # 2 & 16. 

 

 

 

Testing result from iterative and parallel execution of TPC-H query #2. 
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Testing result from iterative and parallel execution of combination of TPC-H query #8 & 9. 

 

 

 

 

Testing result from iterative and parallel execution of TPC-H query #9. 
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