

SECURE HARDWARE RESOURCE MONITORING, USAGE

OPTIMIZATION AND AFFIRMATION FOR DATABASE

OPERATIONS IN VIRTUALIZED CLOUD ENVIRONMENT

TAN CHEE HENG

THESIS SUBMITTED IN FULFILMENT

OF THE REQUIREMENT

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2014

ii

UNIVERSITY MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: TAN CHEE HENG (I.C/Passport No: 751022-08-5517)

Registration/Matric No: WHA060001

Name of Degree: DOCTOR OF PHILOSOPHY

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): SECURE

HARDWARE RESOURCE MONITORING, USAGE OPTIMIZATION AND AFFIRMATION FOR

DATABASE OPERATIONS IN VIRTUALIZED CLOUD ENVIRONMENT

Field of Study: DATA MANAGEMENT

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction of any

copyright work has been disclosed expressly and sufficiently and the title of the Work and

its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making

of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University of

Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any

reproduction or use in any form or by any means whatsoever is prohibited without the

written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copyright

whether intentionally or otherwise, I may be subject to legal action or any other action as

may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:

Designation:

iii

ABSTRACT

Hardware resource management is an important topic in Information Technology (IT)

industry. This is due to the increasing demand of computing power by ever-evolving

applications, especially those which are Service Level Agreement (SLA)-bound.

Undeniably, hardware cost has reduced significantly in recent time. However this does

not translate into saving in capital and operational costs of businesses as the computing

resource requirement from new applications overwhelms the reduction in hardware cost.

Hence, cloud computing paradigm evolved from conventional grid and utility

computing, to provide for the aggressive computational demands. To better serve the

hosting in cloud environments, particularly in industries where data sensitivity and

privacy is of major concern, better mechanisms are needed in the resource management

arena. The proposed mechanisms in this research avoided access to real data in the

database, to meet the objectives of effective hardware resource administration.

Here, the hardware resource management in virtualized cloud environment is

scrutinized. The topics of interest are in the area of resource utilization monitoring,

optimization and affirmation. The proposed mechanisms provide alternatives to

conventional methods which are commonly adopted by the wide IT industry today. The

target is to provide more simplified approaches to these conventional tools, with faster

and more accurate attributes in sight.

In resource utilization monitoring area, metadata of the actual data is characterized to

yield an understanding of the workload in the database, which then contributes to the

decision in planning for hardware provisioning and de-provisioning activities, as well as

resource scaling arrangement.

Consequently, a mechanism is proposed to serve the resource utilization optimization

objective. In this research area, hardware fault and failure analysis are investigated, in

iv

order to provide an optimal operating environment to database transactions. The

analysis on the hardware fault and failure symptoms is performed against the output

obtained from the iterative execution of Transaction Processing Performance Council

(TPC)-H queries. Baseline is established and parameters’ values obtained from

subsequent testing on the same set of queries are compared to baseline’s values to

obtain insightful information on the hardware state.

Next, the resource utilization affirmation theme deals with the proposition to establish

stress-testing scenario in the Virtual Machine (VM). The work here strives to construct

an environment in the VM whereby validation on transactions’ response time can be

performed at the hypothetical resource constraining point in the VM. It serves this

validation purpose in 2 situations: when the VM undergoes hardware change, or during

normal operations. Verification is performed by stressing the VM to the resource

constraining point using the proposed method; subsequently SLA-bound transactions

are sent to the database and their respective response time is examined and compared to

expected response time. The proposed mechanism also incorporates technique to

determine the resource threshold from database transactions perspective.

The resource utilization monitoring utilizes metadata from representative workload,

whereas the resource utilization optimization and affirmation mechanisms utilize the

hypothetical data and queries from TPC-H benchmark, hence achieving the objective of

eluding access to real data. These deliveries focus on the consistency, stability and

accuracy attributes.

v

ABSTRAK

Pengurusan sumber perkakasan komputer merupakan satu topik penting dalam industri

Teknologi Maklumat. Ini disebabkan oleh permintaan kuasa pemprosesan maklumat

yang semakin meningkat, terutamanya daripada aplikasi yang mengalami evolusi yang

pesat and terikat kepada Perjanjian Tahap Perkhidmatan yang ketat. Tidak dapat

dinafikan, bahawa kos perkakasan komputer telah dikurangkan secara ketara dalam

masa kebelakangan ini. Walaupun sedemikian, ini tidak dapat diterjemahkan kepada

penjimatan dalam modal dan kos operasi perniagaan, kerana keperluan sumber

pengkomputeran daripada aplikasi baru mengatasi pengurangan kos perkakasan

komputer. Oleh itu, paradigma pengkomputeran awan berkembang daripada grid

konvensional dan pengkomputeran utiliti, untuk mewujudkan peruntukan kuasa

pengkomputeran demi memenuhi permintaan yang agresif ini. Dalam persekitaran

awan, terutamanya dalam industri di mana sensitiviti dan privasi data merupakan faktor

penting, mekanisme yang lebih baik diperlukan dalam arena pengurusan sumber

pegkomputeran. Mekanisme yang dicadangkan dalam kajian ini mengelakkan akses

kepada data sebenar dalam pangkalan data, sementara memenuhi objektif pentadbiran

sumber perkakasan komputer yang berkesan.

Kajian ini meneliti tentang pengurusan sumber perkakasan komputer dalam persekitaran

pengkomputeran awan. Topik-topik yang dikaji adalah dalam bidang pemantauan,

pengoptimuman dan pengesahan penggunaan sumber pemprosesan komputer.

Mekanisme yang dicadangkan menyediakan alternatif kepada kaedah konvensional

yang luas dipraktikkan oleh industri IT kini. Sasaran objektif adalah untuk memberi

pendekatan yang lebih mudah berbanding dengan kaedah-kaedahkonvensional;

sementara sifat-sifat seperti lebih cepat dan lebih tepat juga merupakan sasaran kajian

tersebut.

vi

Dalam subjek pengurusan sumber pemprosesan komputer, topik pemantauan

penggunaan meneliti metadata data sebenar untuk menghasilkan pemahaman tentang

beban kerja dalam pangkalan data. Pemahaman ini kemudiannya menyumbang kepada

keputusan dalam perancangan penambahan atau pengurangan perkakasan

pengkomputeran.

Selepas topik pemantauan dikaji, topik seterusnya adalah untuk menghasilkan satu

mekanisme untuk memenuhi objektif pengoptimuman penggunaan sumber pemprosesan

komputer. Dalam kawasan kajian ini, kegagalan perkakasan pengkomputeran dan

analisis kemungkinan kegagalan disiasat. Activiti sedemikian amat penting supaya

transaksi pangkalan data dapat beroperasi dalam persekitaran yang optimum. Thesis ini

menjalankan ujikaji analisa ke atas kegagalan and kemungkinan kegagalan perkakasan

pengkomputeran dengan menggunakan output yang diperolehi daripada Institusi TPC.

Data yang digunakan adalah daripada standard TPC-H. Garis dasar diasaskan dan nilai-

nilai parameter yang diperolehi daripada ujian berikutnya pada set data yang sama

berbanding dengan nilai-nilai garis dasar, akan memberikan penjelasan mengenai

keadaan operasi perkakasan pengkomputeran.

Kajian seterusnya berobjektif untuk mengesahkan keupayaan sumber pemprosesan

komputer di persekitaran pengkomputeran awan. Eksperimen yang dilaksanakan

bertujuan untuk mengasaskan persekitaran sistem operasi yang menggunakan sumber

pemprosesan komputer secara agresif. Selepas keadaan sedemikian berlaku, transaksi

penting diperkenalkan kepada pengkalan data, supaya tempoh pemprosesan dan tindak

balas bagi transaksi berkenaan dapat dibandingkan dengan jangkaan. Keperluan

pengesahkan sedemikian boleh dilakukan dalam 2 keadaan: Apabila sistem operasi

mengalami situasi perubahan dalam kuantiti and kualiti perkakasan, atau semasa

keadaan pengoperasian biasa di mana tiada perubahan langsung dalam perkakasan

pengkomputeran. Pengesahan dilakukan dengan menekan sistem operasi ke tahap yang

vii

mengekang sumber pemprosesan komputer. Mekanisme yang dicadangkan juga

menggabungkan teknik untuk menentukan had kuasa perkakasan pengkomputeran,

daripada persepsi transaksi pangkalan data.

Pemantauan penggunaan sumber pemprosesan komputer menggunakan metadata dari

beban kerja yang berupaya mewakili keadaan sebenar, manakala mekanisme

pengoptimuman dan pengesahan penggunaan sumber pemprosesan komputer

menggunakan data hipotesis dan data daripada standard TPC-H. Sumber input

sedemikian dapat mencapai objektif untuk mengelakkan akses kepada data sebenar.

Tumpuan ujikaji tersebut memberi penekanan terhadap ketekalan, kestabilan dan

ketepatan sementara mencapai objektif yang dekehendaki.

viii

ACKNOWLEDGEMENT

First and foremost I would like to express my special appreciation to my supervisor,

Associate Professor Dr. Teh Ying Wah, you have been a tremendous mentor to me. I

would like to thank you for your patient in this lengthy journey of my pursuit, and for

improving and refining my views in many topics. Your perspectives and advices will

become my valuable assets in my life journey.

A special thanks to my family. Words cannot express how grateful I am to my wife, Lee

Choo, for her faith in me, and her incredible patience with me. Words cannot describe

my love to my daughter, Ke Ying, my boys, Yong Hung, Yong Keat and Yong Jen. You

have made my everyday life immensely joyous and fullfilling. Lastly, I would like to

express my gratitude to my parents for their relentless support. Your kindness and

confidence are critical elements for the completion of this thesis.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ABSTRAK ... v

ACKNOWLEDGEMENT ... viii

TABLE OF CONTENTS ... ix

LIST OF FIGURES .. xv

LIST OF TABLES ... xxi

LIST OF ABBREVIATIONS AND ACRONYMS ... xxiii

1. INTRODUCTION ... 1

1.1 Background: Secure Resource Management .. 1

1.2 Overview of cloud computing ... 4

1.3 Motivation ... 12

1.4 Problem statements ... 16

1.5 Current practices ... 20

1.6 Research questions .. 22

1.7 Research objectives ... 24

1.8 Scope of research .. 25

1.9 Chapter organization ... 26

2. LITERATURE REVIEW ... 28

2.1 Introduction ... 28

 SLA compliance and monitoring systems ... 16 1.4.1

 Dynamic scalability issue for Parallel Database 17 1.4.2

 Continuous fault analysis .. 17 1.4.3

 Shortcoming of benchmarks .. 18 1.4.4

 Data security issue ... 18 1.4.5

 Insufficient measurement methods .. 19 1.4.6

x

2.2 Virtualized cloud infrastructure .. 33

2.3 Data security.. 44

2.4 Resource utilization monitoring .. 57

 Proof of concept – the linear correlation ... 74 2.4.3.1

 Mathematical models .. 76 2.4.3.2

 Linear regression ... 77 2.4.3.3

 Machine learning ... 79 2.4.3.4

 Fuzzy computing ... 80 2.4.3.5

 Linear Programming and Simplex Method 82 2.4.3.6

 TPC benchmark ... 86 2.4.3.7

 Hierarchical clustering .. 90 2.4.4.1

 K-mean Clustering .. 91 2.4.4.2

 Maximum Likelihood Estimation ... 92 2.4.4.3

 Goodness of Fit ... 93 2.4.4.4

2.5 Resource utilization optimization .. 103

 Task scheduling ... 114 2.5.2.1

2.1.1 Resource utilization monitoring .. 30

2.1.2 Resource utilization optimization .. 31

2.1.3 Resource utilization affirmation .. 33

2.4.1 Monitoring models and on-demand resource scaling 57

2.4.2 Resource scalability in Parallel Database architecture 69

2.4.3 Statistical modeling and benchmarking... 74

2.4.4 Measurement methods ... 87

2.4.5 Workload characterization ... 96

2.5.1 Fault analysis and failure prediction .. 106

2.5.2 Resource utilization optimization models ... 114

xi

 Auction-based resource scheduling... 123 2.5.2.2

 Resource brokering – the essence of cloud bursting 129 2.5.2.3

2.6 Resource utilization affirmation – stress testing ... 140

2.7 Summary and discussion ... 151

3. RESEARCH METHODOLOGY ... 154

3.1 Introduction ... 154

3.2 Approaches to research ... 156

3.2.2.1 Monitoring model ... 158

3.2.2.2 Optimization model ... 159

3.2.2.3 Affirmation model ... 160

3.2.3.1 The monitoring scheme ... 162

3.2.3.2 The optimization scheme... 163

3.2.3.3 The affirmation scheme... 163

3.2.4.1 Monitoring model ... 165

3.2.4.2 Optimization model ... 167

3.2.4.3 Affirmation model ... 168

3.3 Summary and discussion ... 169

4. SYSTEM DESIGN .. 170

4.1 Introduction ... 170

4.2 Overview of proposed models .. 170

2.6.1 Conventional stress testing .. 140

2.6.2 I/O parameter ... 146

3.2.1 Definition of research objectives ... 157

3.2.2 Proposed models .. 158

3.2.3 System design .. 162

3.2.4 Analysis of methods .. 165

xii

4.3 Theme 1: monitoring scheme .. 173

4.4 Theme 2: optimization scheme ... 182

4.5 Theme 3: affirmation scheme ... 190

4.5.2.1 Creation of stress testing scenario ... 197

4.5.2.2 Threshold verification ... 198

4.6 Potential improvement .. 200

4.7 Summary and discussion ... 206

5. EXPERIMENTAL RESULTS AND ANALYSIS .. 209

5.1 Introduction ... 209

5.2 Data sets .. 210

5.3 Resource utilization monitoring .. 216

4.3.1 Workload traces ... 173

4.3.2 Graphical representation – linear regression ... 176

4.3.3 Outliers effect .. 180

4.4.1 Setup of environment .. 182

4.4.2 Linear regression and machine learning .. 186

4.4.3 Applicability to the production phase.. 188

4.5.1 Setup of stress-testing scenario ... 191

4.5.2 Application to production phase .. 196

5.2.1 Metadata from real workload .. 210

5.2.2 Synthetic workload – TPC-H benchmark.. 212

5.3.1 Environment for the experiments .. 216

5.3.2 Derivative parameters from the experiments .. 218

5.3.3 Experimental data .. 221

5.3.4 Monitoring model’s accuracy and system overhead 224

5.3.5 Workload characteristic ... 225

xiii

5.3.5.1 SQL tracking ... 225

5.3.5.2 SQL optimization .. 226

5.4 Resource utilization optimization .. 228

5.5 Resource utilization affirmation .. 233

5.6 Summary and discussion ... 237

6. CONCLUSIONS .. 239

6.1 Introduction ... 239

6.2 Summary of solutions to the objectives’ questions 239

6.3 Limitations of current study .. 246

6.4 Recommendations and future directions ... 248

References .. 251

Appendix A .. 263

Appendix B .. 267

Appendix C .. 275

Appendix D .. 285

Appendix E .. 287

Appendix F ... 289

Appendix G .. 299

Appendix H .. 310

5.4.1 Environment for the experiments .. 228

5.4.2 Experimental results .. 229

5.4.3 Potential deviation from the testing data sets .. 230

5.5.1 Future work ... 236

6.3.1 The monitoring scheme ... 246

6.3.2 The optimization scheme ... 247

6.3.3 The affirmation scheme ... 247

xiv

Appendix I ... 313

xv

LIST OF FIGURES

Figure 1.1: Cloud computing models. ... 7

Figure 1.2: The service model in cloud computing.. .. 8

Figure 1.3: VMWare Virtualized Infrastructure.. ... 9

Figure 2.1: A summary of the research. .. 28

Figure 2.2: Virtualization Infrastructure diagram. .. 36

Figure 2.3: OpenNebula virtualization management software. 38

Figure 2.4: Eucalyptus platform. ... 39

Figure 2.5: Data hosting architecture proposed for hospital systems. 45

Figure 2.6: Top threats relevance. ... 48

Figure 2.7: Secure third-party publication. ... 51

Figure 2.8: Secure cryptoprocessor. .. 53

Figure 2.9: Patient medical record categories. .. 54

Figure 2.10: ‘Patient-centric’ cloud model. .. 55

Figure 2.11: Proposal of cloud hosting for medical data. ... 57

Figure 2.12: Throughput of the system with vertical scaling of resources. 60

Figure 2.13: CPU utilization in both the web and application VM during the test of

vertical resource scaling. ... 60

Figure 2.14: Throughput keeps increasing with the addition of VM. 61

Figure 2.15: Dynamic scaling of web-based applications. ... 62

Figure 2.16: Markov Chain model.. .. 64

Figure 2.17: The utilization threshold versus SLA violation for particular workload. ... 67

xvi

Figure 2.18: Resource allocation to an application for an organization in cloud. 68

Figure 2.19: Relational Cloud architecture. .. 70

Figure 2.20: Live Database Migration. ... 72

Figure 2.21: Linear correlation between throughput and concurrent processing. 74

Figure 2.22: Linear correlation between SQL Processing Time, S and Server Load, C. 76

Figure 2.23: The application of methematical models into real world systems. 77

Figure 2.24: Linear Processing element. ... 77

Figure 2.25: A Fuzzy logic control system for resource utilization monitoring. 81

Figure 2.26: 3 membership functions in the resource utilization scale. 82

Figure 2.26: Image illustration of the 2 distance measurement method. 89

Figure 2.27: Hierarchical clustering. ... 91

Figure 2.28: K-Means Clustering. ... 91

Figure 2.29: Maximum Likelihood Estimate. ... 93

Figure 2.30: The chi-squared test of Goodness of Fit for linear regression. 94

Figure 2.31: Query plan and performance projections as the result of KCCA

computation on the ‘distance metrics’ of N training queries. ... 95

Figure 2.32: Data Diffusion model. .. 99

Figure 2.33: Throughput vs # of nodes in a cluster... 100

Figure 2.34: Throughput vs file I/O size. .. 100

Figure 2.35: The graph representation of partitioning activity. 102

Figure 2.36: Time relations in online failure prediction. .. 108

xvii

Figure 2.37: Online failure prediction method based on classification of system variable

observations. ... 110

Figure 2.38: Online failure prediction method based on pattern recognition. 110

Figure 2.39: Online failure prediction method based on system models. 111

Figure 2.40: Fault detection strategy that filters out the normal signals, and leaves the

outliers for analysis. .. 112

Figure 2.41: Task scheduling problem, with standby VM to service the ‘abstract

services’... 117

Figure 2.42: Task scheduling system.. .. 118

Figure 2.43: ESCR task allocation algorithm. .. 118

Figure 2.44: Proposed resource optimization by introducing more efficient task

scheduling in a particular VM. .. 122

Figure 2.45: Server busyness using server load limit as gauge..................................... 122

Figure 2.46: Optimization for supply and demand Auction-based resource allocation..

 ... 124

Figure 2.47: First step in the VAM optimization. ... 124

Figure 2.48: The supply of resources from provider 2 has been allocated in full to

consumer 2.. .. 125

Figure 2.49: The green colored cells indicate the resource allocation by the providers to

each consumer. .. 126

Figure 2.50: Negotiation of services and pricing between the consumer and cloud

provider. .. 127

xviii

Figure 2.51: The negotiation process for finite state of buyer’s request and provider’s

resources. ... 128

Figure 2.52: Resource brokering model envisaged by Javadi et al.. 132

Figure 2.53: Resource brokering model envisaged by Javadi et al., with cloud bursting

mechanism incorporated.. ... 134

Figure 2.54: Cloud Hosting Provider architecture envisaged by Fito et al. 138

Figure 2.55: Revenue benefit in deploying Hybrid Cloud computing compared to static

servers. .. 138

Figure 2.56: HP Loadrunner Components. .. 141

Figure 2.57: Capacity calculator. .. 142

Figure 2.58: CPU utilization on the web and database servers from sampling of load

testing carried out on a hypothetical online store.. 144

Figure 2.59: CPU utilization on the web and database servers from sampling of load

testing carried out on a hypothetical online store.. 146

Figure 2.60: Comparison of I/O performance between direct and buffered I/O in

virtualized clusters in Private Cloud. .. 148

Figure 2.61: Comparison of I/O performance between direct and buffered I/O in

virtualized clusters in Private Cloud. .. 149

Figure 2.62: Throughput as a function of time. .. 150

Figure 3.1: Resource utilization monitoring model. ... 159

Figure 3.2: Resource utilization optimization model. ... 160

Figure 3.3: Resource utilization affirmation model.. .. 161

Figure 3.4: The creation flow in the resource utilization monitoring.. 162

xix

Figure 3.5: The creation flow in the resource utilization optimization. 163

Figure 3.6: The creation flow in the resource utilization affirmation. 164

Figure 3.7: The second creation flow in the resource utilization affirmation. 165

Figure 4.1: Layered depiction of VMWare Virtualized Infrastructure for database

hosting. .. 172

Figure 4.2: The relationship between DCT, SET and CPU run queue. 177

Figure 4.3: Response time fluctuation of a transaction in the VM. 179

Figure 4.4: Steps towards achieving the proposed monitoring scheme. 180

Figure 4.5: Steps to create the baselines and their applicability in production

environment for optimization model. .. 184

Figure 4.6: Algorithm to load up the VM. .. 185

Figure 4.7: Metadata filtering to ensure stabilized condition in the VM before reliable

data is collected. .. 186

Figure 4.8: The expected output for the optimization scheme. 187

Figure 4.9: The flow of the setup and application steps of the resource utilization

affirmation model. ... 193

Figure 4.10: Array that stores the benchmark data for affirmation model. 194

Figure 4.11: Algorithm to produce the benchmark data. .. 195

Figure 4.12: Graphical result from the benchmarking experiment.. 195

Figure 4.13: Algorithm to produce the benchmark data using combination of TPC-H

queries.. ... 196

Figure 4.14: Steps to discover resource threshold in the affirmation model. 200

Figure 5.1: High level depiction of the Oracle Workload Repository engine. 211

xx

Figure 5.2: TPC-H data model. Adapted from (Kocakahin, 2010). 213

Figure 5.3: Experimental results that show relationship between S
~

i(SET), S
~

’i (DCT) and

Ci (CPU run queue size). ... 218

Figure 5.4: Membership Function for ∆S, A(u)... 222

Figure: 5.5. Membership Function for C, B(v).. 223

Figure. 5.6: Membership Function for ρ, C(w). .. 223

Figure 5.7: Runtime Variation of Particular SQL in 1 Week. 227

Figure 5.8: Parallel Database hosting using VMWare Cloud Virtualization

Infrastructure.. ... 228

Figure 5.9: The expected output from the optimization model. 229

Figure 5.10: Potential change in linear correlation between S and C. 230

Figure 5.11: Potential change in linear correlation between S and C. 232

Figure 5.12: Erratic behavior of hardware performance during backup process. 232

Figure 5.13: Testing result of the affirmation model. .. 233

Figure 5.14: Testing result with the combination of TPC-H queries. 235

xxi

LIST OF TABLES

Table 2.1: Cloud vs. Grid computing.. .. 41

Table 2.2: Summary of studied researches with critical comment on sub-themes

‘monitoring models and resource scaling’. ... 73

Table 2.3: Tableau depicts the Simplex algorithm.. 85

Table 2.4: Summary of studied researches with critical comment on sub-themes

‘statistical modeling and workload characterization’. .. 102

Table 2.5: Summary of studied researches with critical comment on sub-theme ‘fault

analysis and failure prediction’. .. 113

Table 2.6: Summary of studied researches with critical comment on sub-theme ‘task

scheduling’. ... 119

Table 2.7: Summary of studied researches with critical comment on sub-theme

‘Auction-based resource scheduling’. ... 128

Table 2.8: Summary of studied researches with critical comment on sub-theme

‘resource brokering – the essence of cloud bursting’.. 139

Table 2.9: Summary of studied researches with critical comment on sub-theme

‘conventional stress-testing and I/O parameter’. .. 150

Table 4.1: Corresponding response time, memory and disk reads of TPC-H queries.. 184

Table 4.2: Attributes of the queries potentially involve in the construction of stress-

testing scenario. ... 202

Table 4.3: Tabular representation of the dual objective function and constraints. 204

Table 4.4: The red colored cell depicts the pivot. ... 205

Table 4.5: The reduction of other cells’ values to 0, in the pivot column. 205

xxii

Table 4.6: The continuous steps to produce the final resolution by the simplex method.

 ... 206

xxiii

LIST OF ABBREVIATIONS AND ACRONYMS

ADDM Automatic Database Diagnostic Monitor

AFR Annual failure rate

AI Artificial Intelligence

API Application Programming Interface

ASM Automatic Storage Management

AWRT Average Weighted Response Time

AWS Amazon Web Services

AWS Amazon Web Services

CDA Clinical Document Architecture

CHP Cloud Hosting Provider

CRM Customer Relationship Management

CSA Cloud Security Alliance

DbaaS Database-as-a-Service

DCT DB CPU Time

DDoS Distributed Denial of Service

DICOM
Digital Imaging and Communications in

Medicine

EBS Elastic Block Storage

EMR Electronic Medical Records

ERP Enterprise Resource Planning

FIPS Federal Information Processing Standard

GFS Google File System

GOF Goodness of fit

GUI Graphical User Interfaces

HA High Availability

HER Electronic Health Record

xxiv

HIPPA
Health Insurance Portability and Accountability

Act

HIT HealthCare Information Technology

HPC High Performance Computing

HRMS Human Resource Management System

I/O Input and Output

IaaS Infrastructure as a Service

IGG InterGrid gateway

IPS Intrusion Prevention System

IT Information Technology

ITAR US International Traffic in Arms Regulations

KCCA Kernel Canonical Correlation Analysis

MDP Markovian Decision Processes

MLE Maximum Likelihood Estimation

MNM Meta-Negotiation Middleware

MOVR Monitoring and Optimizing Virtual Resources

MSE mean square error

OLTP online transaction processing

OS Operating System

OTF Overload Time Fraction

PaaS Platform as a Service

PDF probability distribution function

PHI Protected Health Information

PHR Personal Health Record

PII Personal Identity Information

QoS Quality of Service

RAC Real Application Cluster

xxv

RDBMS Relational Database Management System

SaaS Software as a Service

SCP Secure cryptoprocessor

SET SQL Elapsed Time

SLA Service Level Agreement

SOA Service Oriented Architecture

TCO Total Cost of Ownership

TPC Transaction Processing Performance Council

VAM Vogel’s Approximation Method

VIE Virtual Infrastructure engine

VM Virtual Machine

VMM Virtual Machine Manager

WAN Wide Area Network

WHP Web Hosting Provider

WSM Web Service Monitoring

1

1. INTRODUCTION

Businesses of today depend on Information Technology to gain the competitive edge.

Effective use of the technology is the main drive towards achieving growth and

profitability. To stay ahead of competitions, businesses need to roll out new and

innovative services faster, build more satisfying relationship with the customers, reduce

capital and operational expenses, and make more efficient use of human resources in the

companies. To promote the transformation to new technical methodologies, the security

aspect must be contemplated in parallel with these innovative goals.

1.1 Background: Secure Resource Management

From the infrastructure perspective, effective and intelligent computing resource

management is one way to promote such initiatives. Effective resource management has

a profound impact on the feasibility of providing software services. The cost-

effectiveness of the total application service offering is the primary barometric indicator

to the continuation and evolution of the software. In this case, computing resource

procurement and maintenance are major components in affecting the capital and

operational expenditure.

Computing resources, or often termed system resources are components available in a

computer system. They can be segregated into physical and virtual units. Processors,

memory modules and disk drives are categorized as physical components. The memory

swap area, filesystems and network connections are in the virtual category. They are

interoperable to produce the desired computing outcome. Their availability is often

limited and relatively costly for most organizations, hence accurate and careful

deployment and usage are essential.

Definition 1.1: Resource Management. Resource management can generally be

grouped into 3 phases. The first concerns with gaining visibility on the computing

2

resources in the system in order to discover abnormalities either in the end users’

transactions or hardware state. The second obtains the input from the outcome of the

monitoring mechanism, and action on the anomalies. The third involves the verification

process, which provides an assurance on the computing resource performance, in order

to guarantee consistency and optimality.

With question of “Why Resource management is important”, the potential benefits are

outlined as follows:

1) Computing resources are limited entities in a computer system. They can be

relatively costly for enterprises. Over-provisioning of resources in a system is not

cost effective, and under-provisioning could be disastrous to the business in

mission-critical situations.

2) The computing hardware cost is steadily reduced overtime, however many new

developments on new software are offsetting this benefits to the businesses, as the

demand for computing power is so voracious, that often the cost to provide

application services is increasing instead of reducing in the total cost of ownership.

3) Computing resources are failure-prone entities. They must be supervised

continuously to ensure SLA-bound transactions can complete within stipulated

durations.

4) Adequately sized computing hardware has great effect on carbon footprint in our

environment. One of the methods to promote green computing is to reduce the usage

of electricity, and this can be achieved by reducing wastage in operating the

hardware.

Definition 1.2: Secure Resource Management. From IT perspective, security

enhancement can be achieved at various levels. For instance, the existence of firewall

protects the backend system components from malicious attackers who perform the

3

intrusion from outside of the organizations. The strengthening of authentication

algorithms safeguards the applications and databases from insiders’ abuses. The

intensification of security monitoring against the software components prevents the

attacks from outsiders and insiders. Of all the technologies deployed to provide such

protections, they are all striving to protect the underlying data from the wrongful

recipients. Hence, the security aspect in this research deals with the prohibition of data

access from unnecessary personnel. In conducting the administrative works to manage

the resources, IT staffs often gain superuser access to the databases, hence the real

users’ data. This is an undesired situation as the data can be compromised easily, with

or without the knowledge of the organizations. Hence, this research aims to produce

alternative mechanisms for resource management, which are different as compared to

conventional practice, by discounting the requirement to grant access to real data for IT

personnel. The approaches in this research strive to provide an answer to the intricate

question in IT management of “How to securely perform IT administration”.

Definition 1.3: Secure Resource Management in Virtualized Cloud Environment.

Conventional resource management systems often use a centralized system and

scheduler to monitoring the whole landscape. With the advancement of hosting

technology, cloud computing paradigm has become the main architectural focus in

constructing the hosting environment. As the cloud is distributed in nature, the proposed

resource management mechanisms in this research are loosely coupled with a

centralized monitoring system, where they can either be deployed to be managed

centrally or in distributed manner. The proposed mechanisms also take the scalability

and elasticity, which are the primary attractions in cloud computing as predominant

considerations. The virtualized cloud environment is the focus in this research, as it

often deployed for Parallel Database operations. Such hosting virtual architecture

abstracts the hardware resources from physical servers, to create virtual machines which

4

provide hosting platform to various IT solutions. The following section provides a high

level view on cloud computing.

1.2 Overview of cloud computing

As cloud computing serves as the focal point where the resource management proposals

are targeted on, it is described to an introductory degree in this section. From

infrastructure perspective, Cloud computing offers very attractive solutions to reduce

cost and simplify IT management activities. Voted as Top 11 technologies of the decade

by IEEE Spectrum (Upson, 2011), it offers new level of IT capability, through scalable,

flexible and reliable models. It enables the agility required to accelerate the time to

market of new products and services while reducing the cost to design, build, deploy

and support these products and services, and is considered as generally best practice for

Enterprise Architecture (Glas & Andres, 2011). Cloud computing has revolutionized the

IT industry and is probably the most important paradigm ever modeled.

There are various perceptions in defining Cloud Computing. Zhang et al.(S. Zhang,

Zhang, Chen, & Huo, 2010) defined Cloud Computing as an evolution of grid

computing, and it comprises of thin clients, Grid Computing and Utility Computing.

Buyya et al. (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009) differentiated

between Cloud Computing and Grid Computing at the virtualization level, where Cloud

is defined as next-generation data centers with nodes “virtualized” through hypervisor

technologies, dynamically "provisioned" on demand as a personalized resource

collection. The virtualization provides the ease and flexible capability on resource

allocation, which is the key motivation for this research. Foster et al. (Foster, Zhao,

Raicu, & Lu, 2008) compared Cloud and Grid in length; and from dynamic resource

provisioning perspective, Cloud is deemed more flexible than Grid, as Cloud is

leveraging virtualization technologies more extensively. Zhang et al. (Q. Zhang, Cheng,

5

& Boutaba, 2010) defined Cloud Computing in a more end-user-friendly way, by

quoting: Cloud computing is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources that can be rapidly

provisioned and released with minimal management effort or service provider

interaction. It is this ease of effort in application hosting that makes Cloud a popular

and fascinating choice. The financial service firm Merrill Lynch estimated in 2008 that

in the next five years, the annual global market for Cloud Computing would surge to

$95 billion. In a May 2008 report, Merrill Lynch estimated that 12% of the worldwide

software market would go to the Cloud in that period (King, 2008). Public Cloud

vendors are building extremely large-scale, commodity-computer Data Centers in low

cost locations, and they uncovered factors of 5 to 7 decrease in cost of electricity,

network bandwidth, operations, software, and hardware available at these very large

economies of scale (Armbrust et al., 2009).

As cloud promotes pay-per-use model, businesses can deploy critical applications

without hampered by budgetary constraint in procurement of computing hardware and

complex configuration of IT infrastructure. Furthermore, commodity servers are often

utilized in cloud environment; hence reduce the hardware cost even further. This

distributed computing platform is able to function with either homogeneous or

heterogeneous hosts, in other words the servers that comprise the computing clusters do

not necessary need to be identical. Hence, cloud computing not only enables much

reduced total cost of ownership (TCO) during the construction phase, but it is also

economical to be managed during on-going steady state phase. Another advantage of

the pay-per-use model is that energy conservation is achieved, as electricity wastage can

be reduced to minimum by this hosting model. In conventional standalone server

hosting model, businesses generally end up using only somewhere between 8 and 20

percent of the servers’ capacity that they have purchased (Gmach et al., 2008). Energy

6

consumption in global data centers in year 2010 accounted for between 1.1% and 1.5%

of total electricity use, and 2% of global carbon footprint in year 2007. However as a

prominent user of computing power in the world, Google's data centers which mainly

serve Big Data operations via cloud paradigm only utilized less than 1% of total

electricity consumed by all the data centers (Koomey, 2011; Pettey, 2007).

From maintenance perspective, standardized hardware and software are used in cloud

environments, hence patching and other operational maintenance tasks can be

performed in uniform and organized manner with less variety and complexity of IT

components. The ease of maintenance results in significant reduction in operational

overhead particularly in large organizations. This allows IT to transform its main focus

from maintaining infrastructure services to building innovative services that connect to

business goals and drive revenue. This is a revolutionary paradigm that enables IT to

participate directly in business innovation, hence measurably fuel the business growth.

The ease of scalability in the hosting resources allows companies to react faster to

changing business needs. The cloud systems can scale-up and scale-out easily. Coupled

with its flexible characteristic, the systems can be scaled-down when resources are no

longer needed to service particular applications. Particularly in Public Cloud domain, as

storage hardware is abundant, data can be partitioned and replicated to multiple storage

locations to ensure high availability of services. Amid slower response time when the

data is hosted in separate location compared to the application tier, this feature is

beneficial for applications that have high availability requirement that overwhelms the

fractional differences in response time experienced by the end users.

The 3 most popular deployment types for cloud computing are Public, Private and

Hybrid Cloud. By the names, their architectural differences can be easily differentiated.

Figure 1.1 depicts these models.

7

Figure 1.1: Cloud computing models. These are the 3 most popular deployment models in the

industry.

There are 3 different layers of cloud services popularly adopted by the industry. They

are:

 Infrastructure as a Service (IaaS): In this model, the cloud providers offer the

clients with a set of virtual hardware environment. The providers own and

maintain the underlying storage, servers, network components and other types of

computing hardware. The operating system is managed by the clients

(subscribers). In other words, the computing resources are provided as a service

to the end users. The subscribers can either pay the services via pay-per-use

model or by having a set of resources provisioned in a cluster of VM, which is

easily scalable.

 Platform as a Service (PaaS): Cloud providers establish the hardware, virtual

machines, and setup the operating system. Furthermore, depending on the

requirement, the providers also deliver databases, web servers and other native

utilities so that developers can use these facilities directly to run their developed

software.

 Software as a Service (SaaS): In this standard, apart from installing the hardware

and operating system, cloud providers also setup and maintain the application

software for the clients. CRM vendors typically use this model to provide

8

services to their clients, as many small organizations cannot afford the high

price-tag of these ERP applications, but unavoidably need to utilize the products

in their businesses.

Figure 1.2 shows the position of each layer. IaaS is the basic and lowest layer, and the

higher layer abstracts the details from the lower layer. In Public Cloud domain, the

segregation of each layer in term of service offering is more obvious; nevertheless in

private or on-premise cloud, all 3 layers are assimilated to serve the end products’ need.

Figure 1.2: The service model in cloud computing. Each layer is preferred by different consumers,

depending on the intensity of desired abstraction.

The focus in this thesis is at this juncture, where usage optimization on hardware

resource performance in the cloud virtualized environments, which requires close

examinations on fault analysis that subsequently provides indication to hardware failure

prediction and performance degradation are studied. Together with this resource

optimization, methods to achieve more effective resource utilization monitoring and

affirmation are scrutinized. The increase in complexity and dynamics of these systems

renders any current heuristic and rule-based resource management approaches

insufficient. Hence the significance of the researches in this thesis is to provide new

insights on resource management from non-conventional perspectives, as well as

9

complementing existing tools and utilities which are commercialized to achieve the

same objectives.

One of the most popular key enablers to Cloud computing is virtualization. This type of

cloud environment comprises of multiple physical machines interconnecting together to

form VM. At high level, the virtualization layer is positioned between the physical

hardware and the operating system, and it provides management services for the popular

scalability and flexibility attributes in Cloud, via a software utility called hypervisor.

Figure 1.3 depicts at high level an implementation of Private Cloud virtualization,

powered by the VMWare Cloud Virtualization Infrastructure (VMWare, 2006). IBM

SmartCloud Application Services at the PaaS level (IBM, 2011) is another example that

enables on-premise Cloud hosting. The database populated with TPC-H data as

displayed in Figure 1.3 is not a typical implementation of virtual environment; rather it

is a proposal from this thesis, which serves as the core element in enabling the proposed

algorithms and mechanisms in subsequent sections.

Figure 1.3: VMWare Virtualized Infrastructure. The virtual machines can scale to hundreds or

thousands.

The scalability is achieved by provisioning hardware resources to the individual VM

whenever needed. The ESX server enables flexible hardware provisioning and de-

provisioning of resources for particular VM. Each VM is independent, able to host

different desired operating systems, for a great variety of functions. For instance, a

10

virtualized environment by 1 ESX server can host database operations, HR applications,

and all kinds of other front and back office applications. This diagram is illustrated as it

characterizes a common on-Premise Private Cloud configuration. This architecture is

typical for Parallel Database hosting; and the VM utilized for experiments in this thesis

is constituted of these components.

This research focuses on on-premise solution, due to data integrity and security reasons.

It is not the problem with the technology itself, as human always found ways to address

shortcomings or challenges technically. However the current perception and skepticism

of Enterprises on security and reliability will delay the Public Cloud adaptation. In this

case, Private Cloud is the easier solution. As described by Harms and Yamartino

(Harms & Yamartino, 2010), the Horseless Carriage Syndrome when automobiles were

introduced in early 20th century perhaps will slow down the embracement of SQL

Azure (Microsoft, 2011); however the economics of the Cloud could overwhelm the

constraining factors in time to come. Amazon is taking a step forward by introducing

AWS GovCloud (US), which is hosted in Amazon Web Services (Amazon, 2012). Its

compliance with US International Traffic in Arms Regulations (ITAR) and Federal

Information Processing Standard (FIPS) Publication 140-2 are hoped to prove to the

world its robustness in data hosting by Public Cloud. Google claims its strength in data

security via ten components of Google’s multi-layered security strategies incorporated

in Google Apps (Google, 2010). Oracle through its Exalogic Elastic Cloud product

provides similar offering for Public and Private Cloud, plus Hybrid Cloud that is

capable of Cloud bursting (Oracle, 2011). Even though Public Cloud computing has

been widely accepted and deployed for web-based application, its use for mission

critical database operations is still at early stage of adoption. While it is anticipated that

Public Cloud will mature and flourish, this thesis is written to detail on the resource

11

administration mainly targets the databases hosted in on-premise Private Cloud as it is

expected that database hosting on Private Cloud is going to thrive for quite a while.

Nevertheless, the proposed mechanisms are applicable for resource planning in public

or Hybrid Cloud from resource management perspective. The research is in alignment

with perception from Harms and Yamartino (Harms & Yamartino, 2010) that the full

advantage of Cloud Computing can only be properly unlocked through proper

intelligent resource management. Due to problem with current RDBMS licensing model

and the unpredictable nature of SQL queries, over-dynamic resource allocation

paradigm will take a while before it is widely adopted for database hosting in Cloud. In

the studies for this research, it is discovered that for most enterprises, unless the

allocated resource is provisioned specifically for a short timeframe of surged

transactions, the actual resource requirement has the tendency to accumulate and stay in

the VM, via static on-demand request. Furthermore, at this moment, it is not easy to

map QoS requirements to low-level resource states such as CPU and memory

requirements (Q. Zhang et al., 2010). This is especially true in database hosting that has

many variables in its operations that does not adapt well with dynamic resource

provisioning model at this time. The motivation of the resource management proposals

is developed with such scenarios in perspective.

It is noteworthy that in Cloud computing, the popularly deployed database technology is

segregated into 2 segments. The first type is the recently popularized paradigm: the

Hadoop MapReduce framework for ‘Big Data’, made popular by Google in 2003.

Initially the company kept the proprietary right to this technology, but later the Apache

Software Foundation via its global community of contributors built the Apache Hadoop

framework together with its open-source ecosystem, based on published Google's

MapReduce and Google File System (GFS) papers. The second type is the Parallel

Database, a technology widely deployed to various businesses serving numerous

12

industrial functions. This technology has stood the test of time and many today’s

mission critical operations depend on it for survival. The focus in this thesis is on

improving this Parallel Database hosting on the virtualized cloud architecture.

1.3 Motivation

This research focuses on database operations. This is the layer that is usually the most

resource intensive of all the layers in the application service offering, hence is chosen

for more effective depiction of the resource management proposals. As the target of the

researches is scrutinizing on the database layer where data integrity, security and

privacy criterions are sometimes of utmost concern, the proposals strive to refrain from

actual data access to preserve these goals. The mechanisms manipulate metadata of real

workloads, and utilize synthetic queries to synthesize artificial workloads to provide

data input to the proposed mechanisms.

The resource utilization monitoring on the hardware adequacy focuses on meeting the

computing resource requirements for the database transactions. The output from the

proposed monitoring method is subsequently channeled for resource planning and

scaling purposes. The resource utilization monitoring couples the parameters obtained

from operating system and database, and combines both perspectives to produce the

dashboarding output for resource planning and scaling decisions. The result is deemed

more insightful as end users’ experience from the database transactions is matched to

the aspect of hardware resource consumption.

Resource utilization monitoring in above cannot function as an isolated widget. It needs

to go along with performance optimization and fault analysis in the VM so that resource

or job scheduling efforts are not overshadowed by lackadaisical hardware. Hence the

resource utilization optimization topic is studied subsequently after resource monitoring

topic is examined. It is observed that workload delineation is an NP-hard problem.

13

Hence in order to arrive at the required precision, often time heuristic approach is the

best method to be employed. With this, the initial set of data for baseline is obtained,

which characterizes the behavior of transaction processing in the database.

Subsequently the output from the same test configuration is compared to the baseline to

discover if there is any change in the VM’s computing behavior. In this context, this

research leverages the TPC-H benchmark data and queries, and proposes the

optimization mechanism that is taking the hardware resources as variable instead of

rigid constant. The proposed model can also examine software aging and provide

indication if rejuvenation is required. This work is significant because in virtualized

environments, VM that comprises of a hundred machines is not uncommon. The

increase in the number of nodes, coupled with the fact that most systems are made up of

inexpensive commodity computers, the chance for hardware failure is high. For instant,

in the paper that described the architecture of Google File System (GFS), it was

mentioned that GPS is designed in the cloud with anticipation that failure will happen

regularly (Ghemawat, Gobioff, & Leung, 2003).

Apart from the significant reduction in operating cost for enterprises by having optimal

resource utilization optimization mechanisms, the living environment also benefits from

the cutback in electricity demand, hence reduces the carbon footprint. Green computing

is the paradigm that is gaining significance, primarily due to the ever-increasing

business computing requirements, the acceleration of energy cost and growing

awareness of global warming issues.

In typical traditional production environments, many of the servers are running below

optimal capacity in terms of memory, CPU and disk space resources. Virtualization is

able to pool the need of resources from these servers together, serving them as a unit

that lessens the complexity of IT management, for instance operating process

14

standardization and patching administration. Hence combined virtualization and

resource utilization optimization provide for a better sustainable environment.

With the resource utilization monitoring and optimization mechanisms put in place, the

hypothetical affirmation on resource adequacy and hardware health is established.

However, this solves only half of the puzzle. At this juncture, the effectiveness of the

proposed mechanisms needs to be practically proven. Furthermore, critical SLA-bound

transactions must be regularly verified to ensure that acceptable response time is always

preserved in the allocated set of hardware. The most accurate method to measure the

anticipated performance is to attest the VM capability with real end users’ experience.

Hence, a method is envisaged to synthesize high load conditions in the VM, and

subsequently allows transactions to be executed in such stressed scenarios. In such

cases, if these transactions can deliver the desired response time in the stressed

condition, the VM can be convincingly released for production use. Nevertheless, in

order to stress the VM appropriately, the synthetic workload employed to stress the

system will need to mimic the actual desired workload, so that comparative system state

can be obtained for the test. The challenge here is then to discover the similarity

between the synthetic and real workloads, so that real transactions can be stress-tested in

the VM that matches the real stressed situation. Of course in this sense, the best method

is to conduct load testing using convention load testing software, for example HP

LoadRunner(HP, 2007) software that iteratively executes the real workload to load the

system to the desired threshold for testing on real transactions. However, this method

commands a lot of coordination efforts. The works here involve the building of test

cases, allocation of technical personnel to standby for the lengthy test time. In view of

these, the proposed methodology in this thesis provides an alternative to reduce the time

and effort needed to create the stress-testing environment, which delivers the same

objective of transaction verification at particular host conditions. These are detailed in

15

the resource utilization affirmation section. In the case where hardware change occurs in

the VM, this proposed resource utilization affirmation model is able to determine the

new constraining threshold point in the VM, for resource planning purpose.

Scholars have defined resource management slightly differently, based on the different

approaches taken. C. J. Huang et al. (2013) employed the support vector regressions

(SVRs) method to predict the adequacy of the computing resources by baselining the

SLA response times, in order to maintain the desired performance in cloud

environments. Younge, Laszewski, Wang, Lopez, and Carithers (2010) scrutinized on

power-aware scheduling techniques, variable resource management, live migration, and

a minimal virtual machine design to produce a resource management framework which

attempt to increase the efficiency of cloud deployment. Yuan and Liu (2011) proposed a

strategy to pre-reserve the resources in anticipation of near future computing

requirements. A. Beloglazov and Buyya (2010) proposed live migration strategy to

continuously move and consolidate the VMs, based on the CPU requirement, which

takes reference from the required QoS. Such resource management strategy was

conducted in virtualized cloud data center, where a substantial amount of hardware

resources are available. Roy and Mukherjee (2011) introduced resource brokering to

manage the resource requirement of tasks sent to the grid computing environment. Such

agent-based resource management style is potentially applicable in cloud computing

environment, where it could possibly applicable for VM placement strategy. These

researches have 1 common objective: To increase the efficiency of the computing

resource utilization. This research is taking the motivation from the exact same

objective in producing the resource management mechanisms.

16

1.4 Problem statements

 SLA compliance and monitoring systems 1.4.1

In considering the 'optimized' mechanisms, SLAs for the applications running the

workloads are taken as the bottom line to ensure full compliance with business

objectives (Blagodurov et al., 2013; Garg, Gopalaiyengar, & Buyya, 2011; Sakr & Liu,

2012). Ideally these workloads benefit from abundantly provisioned hardware resources

in the VM. Nevertheless, businesses cannot allow for such configuration, as capital

expenditure on computing hardware significantly affects profitability. To operate the

database in oversized hardware to cushion the fear of impact from lack of required

processing power will not be cost effective as it incurs unnecessary wastage, and to go

down too little will be too less for the needed transactions. During the onset capacity

planning stage, the actual requirement of computational power and storage, whether it’s

designed during the startup or meant for subsequent growth of the database operations,

will be accurate only for the known initial application processing requirements. Hence a

solution needs to arrive to provide an accurate insight on the hardware resource

requirement during the production cycle of the application service offering. This stage is

also known as the runtime phase where the transactions’ characteristic will evolve from

the initial expectation during the application construction stage. Hence subsequent

scalability and performance must continue to meet the demand of the businesses. In this

context, the monitoring utilities must be up to the task to ensure clear visibility on the

resource usage. Conventionally, many monitoring utilities (Nimbus, 2013; OEM, 2013;

Sitescope, 2013) focus on silo monitoring and scanning of the database and operating

system parameters. Such tools are deemed inadequate in the sense that they cannot

provide a holistic view of the combined database and resource state in the VM. The

monitoring scheme in this research strives to produce a much clearer illustration on the

17

resource state in the VM, so that the resource scaling point can be determined more

precisely.

 Dynamic scalability issue for Parallel Database 1.4.2

It is to note that current aggressive provisioning and de-provisioning of hardware in the

cloud is not suitable for the VM that is deployed for database hosting. This is due to the

problem with the majority of current RDBMS licensing model and the unpredictable

nature of SQL queries, together with the architecture of Parallel Database which

captures the allocated hardware parameters during its initialization phase. In order for

such databases to capture the new hardware configuration, a restart of the instance is

needed (Ward, 2011), which is not practical for most applications that do not have the

luxury of frequent database bounce. Hence the over-dynamic resource allocation

paradigm will take a while before it is widely adopted for database hosting in virtualized

Cloud. In this case, resource management mechanisms which allow a semi-dynamic

approach to resource allocation are warranted. There are exceptions to such scenario, for

example Microsoft SQL Azure is capable of dynamic scaling (Azure, 2010). However

as this RDBMS is running in Public Cloud, there is another issue with skepticism on

data security.

 Continuous fault analysis 1.4.3

To ensure efficient planning of resources, the underlying hardware needs to have strict

adherence to consistent high performance criteria, with no degradation in performance

over time. To fulfill this requirement, hardware vendors can perform server health

checks which typically involve lengthy downtime, and these can only be carried out

during selective prolonged maintenance window. During normal operations, potential

performance degradation due to partial hardware failure (Salfner, Lenk, & Malek, 2010)

is usually gone unnoticed, and these hidden indicators might further evolve into total

18

failure. Apart from faulty hardware, suboptimal software performance also contributes

to wastage in resource utilization. Progressive degradation (Hanmer, 2010) of the

running software; or software aging can eventually result in hung up or crashes, and

along the way deteriorate to a level that breaches the SLA. Hence there must be a

proactive mechanism to detect these symptoms during normal operations, in other

words fault analysis is required. Such fault analysis should be easy to be conducted

periodically. Such ease of maintenance is intended in the proposed mechanism for the

resource utilization optimization theme. Leaving the VM to operate in degraded

condition is dangerous as the SLA could be breached at any time as the host or the

database can go down abruptly without warning. Moreover, promised transactions’

response time cannot be guaranteed as the host does not behave as expected.

 Shortcoming of benchmarks 1.4.4

Industrial players and scholars have proposed many benchmarks to represent different

workload types (Cole et al., 2011; Pavlo, Curino, & Zdonik, 2012; Pavlo et al., 2009), to

cater for various metrics involved in the systems. However these benchmarked data are

rigid in the sense that most of them cannot flexibly adapt to change in application and

hardware technology. Because of this reason, a lot of these benchmarks cannot produce

the same results even in proportionate response time when they are rerun in different

hardware platform. Moreover some of the benchmarks are not generic for all platforms.

Hence, the load testing instrument is still required in reality. However, the conventional

load testing utilities are relatively time consuming and cumbersome, hence a light-

weighted version of the load testing could potentially alleviates these concerns.

 Data security issue 1.4.5

From the security perspective, by conventional definition, database operations from this

aspect is generally scrutinizing on layered authentication, masking of data by

19

segregating end users' roles and functionalities, for instance by implementing Oracle

Fine Grained Access Control (FGAC) (FGAC, 2003) to control visibility to data,

enhancing network transport layer by incorporating encryption algorithms on the

network packets, and strengthening of data security at the storage layer. In this research,

the unbreakable database architecture is visualized, particularly to support industries

that have stringent requirement in protecting against leakages of sensitive data. the

masking of data from IT administrators can already be accomplished by industrial tools,

such as Oracle Vault (Tbeileh, 2009). As the real users’ data is hidden in such case, IT

personnel need alternative input of data in order to perform administrative works

particularly on performance tuning related matters. The proposals in this research are

deriving the input for the resource management algorithms from metadata and synthetic

data, however with no compromise in the delivery of the expected administrative tasks.

 Insufficient measurement methods 1.4.6

In today’s IT infrastructure, hardware resource monitoring is often conducted discretely.

Even in the frequently deployed database monitoring system such as Oracle Enterprise

Manager (OEM) (Huber, 2013), the operating system parameters are loosely coupled

with the database variables. Another inadequate monitoring condition is that the alerts

on CPU, memory, I/O and network utilization thresholds are notified individually

instead of collective aggregation and analysis on these parameters. This, to an extend

will hold the promise of service offering if many of the variables involved in supporting

the applications are static in nature. However, such monitoring mechanism is not

suitable in cloud environment where constant changing in the hardware configuration is

common. For example, if CPU threshold is determined at CPU run queue of 4 in an

initial set of hardware configuration, this value does not hold true if the number of

virtual processors is increased, or the CPU power is enhanced. In these cases, a

reevaluation on the new threshold value, by taking into account other hardware

20

parameters is required to continue serving the established transactions' response time.

The same is true even if there is no change in hardware configuration, where the same

run queue threshold value does not hold true after the application has operated in the

VM for some time. This condition is contributed by potential partial hardware failure.

Even if the run queue value in this case signifies correct CPU resource threshold, it still

cannot guarantees that the transactions will deliver the promised response time, due to

the change in execution path of the SQL involved. This scenario is primarily caused by

the increase in data volume in the tables queried or modified by the SQL. In other

words, the I/O reads and writes are different with the evolvement of the data. Even

monitoring on database logs is not capable of discovering such degradation in SQL

performance.

Oftentimes the logs from operating system do not clearly signify hardware performance

degradation, until the break point which will then incur unwanted outage that results in

the breach of SLA. This is especially undesired in VM that serve mission critical

applications. To secure the host from such disaster, enterprises often spends large

amount of money in procuring expensive hardware and software to enhance the high

availability (HA) feature of the services. This directly erodes the profitability of the

businesses. The more cost-effective and efficient method is to have a more proactive

monitoring system in place. The proposal in the resource utilization monitoring theme

strives to provide such mechanism where the aggregation of database and OS

parameters is put into perspective.

1.5 Current practices

In the topic of resource utilization monitoring, enterprises usually provision a larger

than needed hardware configuration in the VM to offset the risk of running into resource

constraint in servicing the needed transactions. This results in significant wastage in

21

capital expenditure which considerably erodes the profit margin of the companies. For

example, the list price for Oracle Exadata Database Machine Quarter Rack is USD

330K (Oracle, 2012). To upgrade from Quarter Rack to Half Rack will required the

same amount of investment. Hence exaggerated hardware planning is detrimental to the

bottom line of the businesses. To ensure wastage is kept to minimum, resource

utilization monitoring is put in place. From the infrastructure perspective, current

practices in the wide industry generally rely on monitoring and analysis at operating

system level, where dedicated monitoring on CPU, memory and I/O utilization is

common. For example the NIMBUS monitoring system(Nimbus, 2013) is often used by

enterprises to monitor the host performance.

Server and database health monitoring are normally conducted by different entities in

the IT department, where aggregation of inputs on the monitoring parameters from

operating system and database is rare. From application view point, the monitoring

often is focused on transactions' response time. One of the popular tool for this

monitoring purpose is HP SiteScope software(HP, 2012). At each instance when the

transactions' response time breaches the SLA threshold, they are flagged for all

caretakers to investigate the problem. However it cannot specifically point out the root

cause of the slowness, hence delays resolution to the problem. In the proposed model

for resource utilization monitoring in this thesis, the variables involved in monitoring

and analysis on workload processing are reduced comparatively to the conventional

tools. The novelty of the proposed monitoring method is in the aggregation of the

parameters from the operating system and database, to provide a faster and clearer

visibility to the resource state in the VM, which then hasten the problem resolution.

To ensure resource utilization optimization, hardware vendors periodically perform

health-check on the underlying hardware of the VM. Stress-tests are conducted and

hardware failure symptoms are identified from the generated logs. These activities often

22

require long outages. Moreover, the health of the host is perceived only from the

operating system perspective. On the other hand, to ensure the health-checked VM is

capable of servicing required application transactions, application load testing using

conventional load testing software is conducted. With these comprehensive tests, the

VM's ability to support the SLA-bound transactions is guaranteed. However the main

concern for these 2 methods is the lengthy outage window.

From resource utilization affirmation perspective, the conventional application load

testing is capable of achieving the objective of providing the stressed host environment

with the verification on critical transactions, practically. Nevertheless, these activities

induce the same problem of long outage window, together with large amount of effort in

coding test cases and coordination. Hence these activities are not sufficient and suitable

to accommodate the scenario of elastic resource allocation in database operations, in

virtualized cloud environment.

1.6 Research questions

In formulizing the research objectives, the questions to be answered are established as

follows. The heads-up regarding the relevant research is provided.

5) What are the appropriate methods to provide barometric indicators to determine the

host performance.

 This question is answered in every researched theme, where the monitoring,

optimization and affirmation mechanisms are utilizing the identified

indicators for input.

6) How users' experience can be matched to these indicators discovered in (1).

 The answer to this is illustrated by the optimization and affirmation themes.

23

7) What are the significant and appropriate parameters to be used to measure host

performance.

 These parameters are adequeatly revealed particularly in the optimization

theme.

8) How these parameters interact with each other, in order to provide a more solidified

output to measure the host and database performance.

 The interaction of the parameters is established in the experiments conducted

in the optimization theme.

9) How the proposed mechanisms can deliver the intended objects, in term of accuracy

and consistency.

 The accuracy and consistency criterions are achieved by combining

parameters from the OS and database. The mechanisms to prove are shown

in the experiments conducted for the monitoring and optimization schemes.

10) How the hardware in the VM performs before and after resource constraining

threshold.

 Such condition is explained in section 2.4.3.1, based on works from previous

researchers.

11) Many of the RDBMS products in the industry have not developed the capability to

be dynamically scaled, and the migration from 1 RDBMS platform to another is

quite unlikely in commercial arena, what type of resource management mechanisms

are appropriate for such semi-dynamic scalability requirement by these database

systems.

 The utilization of historical metadata in the methods proposed for the

monitoring and optimization schemes appropriately address such scenario,

24

where the mechanisms have the time and space to revisit the previous data

for analysis.

12) As fault analysis is a continuous effort, how capable is the proposed mechanisms in

accomplishing this goal.

 The mechanism proposed in the optimization scheme is meant to be

continuously and periodically executed during steady-state condition, to

detect any anomaly.

13) How to address the shortcoming of the current available benchmark, where one-

size-fit-all scenario is almost non-existent.

 In the proposal for the affirmation scheme, the creation of benchmark is

proposed, which is tailored for particular environments.

14) How security aspect is addressed in details, by the proposed mechanisms.

 All the themes are not utilizing real data in the proposals, hence avoiding

access to real data. As such, the security of the data is ensured.

1.7 Research objectives

1) Resource utilization monitoring: To produce a mechanism to monitor the resource

consumption in real workload processing, via the depiction from the associated

metadata.

2) Resource utilization optimization: To compute an algorithm that is capable of

extracting the underlying hardware performance characteristic.

3) Resource utilization affirmation: To develop a method that defies conventional load

testing mechanism, that can be utilized to load-test desired SLA-bound transactions

which need to adhere to strict response time requirement.

4) To evaluate the effectiveness and shortcomings of the above proposed mechanisms.

25

1.8 Scope of research

The scope of the research focuses on hardware resource management, with focus on

resource utilization monitoring, optimization and affirmation areas, for application

transactions carried out in Parallel Database architecture hosted in virtualized cloud

environment, in a secure manner from the data security perspective. On-premise Private

Cloud architecture is envisaged during analysis, formulation and creation of the

proposed algorithms. Nevertheless, the planning and analysis of these algorithms are

delineated such that they are extensible to Public Cloud environment if desired.

The research in the monitoring segment is targeted at discovering the behavior of the

operating system and database parameters when they are aggregated. This is often

neglected in normal practice of today's IT management. The aim is to accurately

characterize the hardware, together with associated software components, for the

purpose of achieving the most optimal condition for application service offering.

Statistical modeling method on TPC-H data and queries is employed to determine the

resource consistency and performance in the VM, together with machine learning and

linear regression analysis as the foundation to the resource utilization optimization

research. The output is subsequently compared with the baseline data using the same

data sets to compute potential failure symptom in the systems.

In the resource utilization affirmation study, queries in the TPC-H benchmark are

chosen and subsequently aggregated to synthesize a workload scenario that stresses the

VM, so that resource threshold together with transactions’ response time can be

verified.

The introduced mechanisms in this thesis are generic for all hardware platforms, in the

sense that TPC-H benchmark can be adapted by various RDBMS serving multiple types

26

of operating platforms. Most importantly, as real data is not engaged throughout the

study, secure resource management goal is achieved.

1.9 Chapter organization

This thesis consists of 6 chapters. Chapter 1 contains introduction to the research topics.

It provides information on problem statements and motivations of the research. The

high level explanation of the research topics: resource utilization monitoring,

optimization and affirmation is provided. Subsequently the current practices are

examined. Consequently the research questions and objectives are reiterated and

summarized. The boundary of the researches is then presented in ‘Scope of Research’

section.

Chapter 2 details the literature reviews on related works on cloud hosting development

particularly in resource management and optimization. Cloud security is also examined,

as this is important for database operations hosted in cloud environments. Subsequently

the feasibility of the resource management subjects scrutinized in the studies are

analyzed, by matching these to related researches.

Chapter 3 describes the research methodologies in details. In this case, all the 3

schemes: resource monitoring, optimization and affirmation are elaborated, with focus

primarily on input coming from real workload’s metadata and synthetic workload

characterized by TPC-H benchmark data and queries.

Chapter 4 details out the design of all the 3 themes. The construction details of all the 3

models are elaborated in length, with explanation on the logic and feasibility of the

choices in the design.

27

Chapter 5 features the analysis and evaluation on the conducted experiments. The

discussions touch base on the currently available tools and utilities, and compare them

to the proposed mechanisms.

Chapter 6 concludes the research and discusses on how the research objectives are

fulfilled. The contribution of the research outcome is then discussed, followed by

suggestions on potential future works.

28

2. LITERATURE REVIEW

2.1 Introduction

Figure 2.1: A summary of the research. The flow chart at the left side illustrates the contributions

to resource management for cloud environment. The yellow boxes depict the main topics centered

in this thesis. The right half details into the sub-topics which constitute the essences for the

buildups to the proposals in the thesis. Each researched component is labeled with related chapters

and sub-chapters in parentheses.

The core of the research is dealing with resource management in virtualized cloud

environments, serving Parallel Database architecture. In such system, the database

operations are executed in parallel, to take advantage of the multi-processors

framework. The majority of RDBMS running today are classified in this category. This

technology has matured since the past 2 decades, and it is powering many of today’s

mission critical applications. The wide deployment of Parallel Database has generated

vast interests in the research and development area, and created enormous employment

opportunity. In this cloud computing era, the adoption pace of this database technology

29

is relatively slow as compared to web based applications. Nevertheless, there are huge

opportunities to be harnessed by Parallel Database technology, in view of the many

benefits offered by cloud paradigm, particularly in the area that takes advantage of the

elasticity and scalability features of the computing resources. Hence, effective resource

management will be the dominant component in the evolution of this technology. This

thesis strives to improve in this area, and takes the database hosting architecture to a

greater height.

In proposing the resource management mechanisms, the security of the data is

accounted for. The proposed algorithms intend to provide as much protection to the

underlying data as possible, at the same time increase the efficiency of resource

management in the virtual hosts. As depicted in figure 2.1, the 3 main themes of this

research are the resource utilization monitoring, optimization and affirmation. The

relationship between these 3 themes is illustrated in the flow diagram in the figure. It

starts with resource utilization monitoring, where the state of resource usage is

monitored and analyzed via new proposed non-conventional mechanism. With these

data obtained from the monitoring instrument, further question is asked, if the data

fittingly represents the expected resource performance in the system. This is because if

there is hardware issue in the infrastructure, the resulted resource state or threshold

cannot appropriately depict the condition in the VM. Hence the next research theme

focuses on resource utilization optimization. The scope here is to discover abnormality

in the hardware, so that the computing capability is maximized and optimized. A

holistic view on the hardware state can be provided by the proposed mechanism. At this

point, the resource usage situation and hardware condition are understood. With the

information, there is still no guarantee that the agreed upon QoS can be delivered by the

hosting platform. For instance, if a transaction is required to complete within 2 seconds,

the business will need reassurance that the computing resources can constantly produce

30

such response time. Hence, the next theme is regarding the resource utilization

affirmation, where load testing is often deployed to verify the workload response time

and attest the capability of the VM. The proposal here strives to shorten and simplified

the load testing mechanism. The eventual objective is to arrive at a juncture, where

resource scaling decision can be made accurately and convincingly.

2.1.1 Resource utilization monitoring

To arrive at these resource management themes outlined above, a wide range of

literatures have been reviewed. In the monitoring segment, the topics surveyed are:

1) Monitoring models. The monitoring mechanisms deployed commercially, as well as

envisaged models from scholars are studied. The employed methods to produce such

models are also scrutinized. Only models that are aspired by the direction of

technical advancement in cloud computing are examined.

2) Statistical modeling and benchmarking. The underlying technology in producing the

monitoring models as in point #1 is examined here. These techniques strive to serve

the purpose of providing greater visibility on the resource utilization condition in the

VM. Even though the research focus here is on Parallel Database, the models

deployed in MapReduce framework are investigated too, as they are more

aggressively studied recently, and have great potential in incorporating into this

research area.

3) On-demand resource scaling technology. Another main contribution of scrutinizing

resource state in VM is to ensure the resource scaling algorithms are accurate in

matching the computing needs in the VM. Hence a lot of literatures have studied the

monitoring mechanisms prior to their subsequent proposals on the on-demand

scaling designs. Almost all the surveyed on-demand resource scaling methods are

applicable for the application layer, particularly for web based applications. Such

31

aggressive resource allocation and de-allocation techniques are seldom scrutinized

in database domain. Nevertheless, this topic is included in this survey, as it has great

potential to be applied for the database layer. The recent launch of Oracle 12c (Avril

& Hardie, 2013) has provided such insight of the future direction of the Parallel

Database technology, where the elasticity feature is enhanced in this new product,

in both the licensing and technology segments.

4) Workload characterization. Another purpose of resource monitoring is to ensure the

invested hardware is optimally utilized, in the sense that there will be minimal

burstiness in the real workloads. Burstiness denotes occasional spikes in resource

usage due to sudden surge in the load demand, or unoptimized scheduling of jobs.

One way to address such concern is to partition the workload into manageable

distributions. In order to do this, the workload characterization effort is essential. To

arrive at this understanding of the workload, the monitoring on its resource

utilization is the primary input to be considered. Hence resource monitoring is also

studied in a lot of literatures that cover the characterization of workloads.

2.1.2 Resource utilization optimization

The scope for the next theme, which is on resource utilization optimization, involves

following subjects:

1) Fault analysis and Failure Prediction. To guarantee that the provisioned resources

are utilized fully, the primary target is to ensure that the backend hardware performs

to its full capability, in consistent manner. To safeguard this interest, the hardware

needs to be free from partial failure or potential complete breakdown in future. This

topic is not widely studied by scholars particularly who involve in cloud

environmental studies, as it is deemed an old topic in the computing world, and it is

perceived that the hardware can be replaced quickly in the cloud. Hence the impact

32

of failed hardware in the cloud architecture is not as high. Nevertheless, when it is

coupled with the interest in resource utilization optimization topic, it becomes the

primary concern before any other software optimization mechanisms.

2) Task Scheduling. Many scholars studied this as a way to distribute the tasks in the

workload to different VM or different cloud providers, in order to take advantage of

resources available elsewhere. By studying their proposals, this thesis turns some of

the suggestions into workload partitioning effort that segregates the workloads into

chunks of smaller tasks. These tasks are scheduled to different time blocks available

in the VM, instead of to different hosts. With this, the resource utilization efficiency

in particular VM can be elevated.

3) Resource scheduling. This type of scheduling deals with resource addition or

subtraction from particular VM. It is relevant to this optimization theme, as over-

aggressive scheduling algorithm will cause significant overhead in the system,

whereas algorithms that do not respond fast enough to the scheduling requirement

will potentially breach the SLA. Vertical and horizontal resource scaling modes are

studied in this area.

4) Resource brokering. This topic is related to this optimization initiative. The studied

brokering mechanism is the Auction-based type. The providers and consumers both

achieve the objective of selling and buying at the price agreed upon by both parties.

The meeting price point from both sides is the target of the brokering mechanism.

By arriving at the prices that satisfy both parties, more optimized resource

provisioning and de-provisioning conditions are met.

The scope of the research is on database operations hosted on virtualized cloud domain.

As the applications are running at the foreground of this database layer, the term

‘applications’ is used interchangeably to also depict the database operations, unless

specified otherwise.

33

2.1.3 Resource utilization affirmation

The third theme deals with load testing in the VM. This resource utilization affirmation

is not solely applicable for cloud environment, but also in other platforms. In this

section, the conventional load testing methods are scrutinized, and the essence of them

is extracted to construct shorten and simplified version of the load testing mechanism.

In this sense, the I/O charateristic is examined, and its influence in characterizing the

desired workload is applied to build the light-weighted load testing mechanism. The

proposed construction of the shorten version of load testing mechanism is not to replace

the conventional load testing, rather it provides complement to the conventional tools to

alleviate the time constraint factor.

2.2 Virtualized cloud infrastructure

In this section, the scholarly studies on cloud infrastructure, as well as commercially

deployed systems are examined. It is to note that these virtualized environments are not

solely designed for Parallel Database architecture, but they are also applicable to host

MapReduce Framework as well as the front application layer. A comparison between

current cloud computing and older hosting technology is also carried out. In general,

cloud infrastructure can be categorized into 2 realms. Firstly, the cloud computing can

be configured by creating OS image directly on the hardware. Such method is termed as

bare metal provisioning. Such method is commonly deployed for the MapReduce

Framework. The second type involves virtualization on the underlying hardware, where

OS images are created on the virtual machines. Such practice is more widely deployed

for web and application server hosting, as well as database operations running on

Parallel Database architecture. The thesis bases its proposed resource management

approaches on this latter cloud infrastructure.

34

Zhang et al. (2010) defined Cloud Computing as: “a model for enabling convenient, on-

demand network access to a shared pool of configurable computing resources that can

be rapidly provisioned and released with minimal management effort or service

provider interaction”. It is this ease of effort in application hosting that makes Cloud a

popular and fascinating choice of hosting. Cloud Computing enables the agility required

to accelerate the time-to-market of new products and services while reducing the cost to

design, build, deploy and support these products and services (Glas & Andres, 2011).

Before advancing to other topics, it is noteworthy to mention the 2 database models

currently serving the vast industrial community. In this cloud computing world, the

database hosting architecture can be segregated into 2 main categories: The first one is

the MapReduce framework, which is popularly powered by Apache Hadoop solution.

The second category is dealing with Parallel Database hosting. The Apache Hadoop

framework predominantly targets the Big Data which currently is accommodating

unstructured data from the web-based applications. Due to the computing nature of the

Big Data processing and analysis, it has adopted cloud computing much earlier than

Parallel Database. Google is the first to pioneer this, where it introduced the

MapReduce algorithm to process and mine enormous data from the web, using nodes

that scale to thousands (Dean & Ghemawat, January 2008). The Parallel Database

essentially provides for the relational database model, where it has developed and

evolved over the past 3 decades (Codd, 1970). Relatively, Parallel Database

architecture can be termed conventional in comparison to the Hadoop MapReduce

Architecture by scholars and the industrialists. Both technologies are different from

each other, from the perspective of data storage and processing algorithms.

Nevertheless, many scholars and industrial players are exploring the opportunity to

aggregate and incorporate the advantages from one domain to each other. From the

hosting aspect, both can be adequately accommodated by cloud virtualization, which

35

provides a wide range of benefits in terms of scalability, elasticity, flexibility,

economics of scale, reduction in capital expenditure and more efficient deployment of

workforce. Nonetheless, it will be a while before these exciting researches of

technology integration make their way to the industry. Hence this research scrutinizes

the possibilities of improving the current matured technologies, focusing on virtualized

Parallel Database architecture hosting.

The predecessor to the virtualized database hosting is the standalone server architecture

in the client-server model. This hosting model has stood the test of time for the past 2

decades before the advent of cloud computing paradigm. Many mission-critical

applications were and some are still being deployed in such standalone server platform.

However, primarily due to the rapid progress in software development, it is inevitable

that the computing resources required by the database transactions need to be available

instantly and affordably to ensure viability in application service offerings. In order to

accomplish this requirement, hardware virtualization makes its way to the forefront of

the hosting technology. In 2011, Gardner predicted that virtualization will be the first in

the top 10 list of most significant future IT technology-related trends (Cooney, 2011),

and apparently this still holds true today.

In the cloud computing arena for database hosting, Private Cloud is often deployed in

today’s enterprises. There are also database deployment in the Public Cloud, for

example those that engage Microsoft SQL Azure (Microsoft, 2011) product. Oracle

through its Exalogic Elastic Cloud product provides similar offering for Public and

Private Cloud, plus Hybrid Cloud that is capable of Cloud bursting (Oracle, 2011). The

enigma in the security and privacy aspects, particularly in the data storage and

transportation matters is slowing down the embracement of public hosting of database

operations. As described by Harms and Yamartino (2010), the Horseless Carriage

Syndrome when automobiles were introduced in early 20th century resembles the

36

current perception in the embracement of SQL Azure. However the economics of the

Public Cloud might overwhelm the constraining factors in time to come. Public Cloud

vendors are building extremely large-scale, commodity-computer Data Centers in low

cost locations, and they uncovered factors of 5 to 7 decrease in cost of electricity,

network bandwidth, operations, software, and hardware available at these very large

economies of scale (Armbrust et al., 2009). While the anticipation is that Public Cloud

will mature and flourish eventually, the resource management topics in this thesis focus

mainly on the immediate needs of databases hosted in on-premise Private Cloud, as the

database hosting on Private Cloud is going to thrive for quite a while.

Figure 2.2: Virtualization Infrastructure diagram. Such architecture is typical and popular for

Parallel Database hosting. Adapted from (VMWare, 2006)

Figure 2.2 denotes a typical implementation of virtualized environment for on-premise

Private Cloud. The diagram depicts a VMware Infrastructure (VMWare, 2006) which is

commonly deployed for Parallel Database architecture. The scalability is achieved by

provisioning of resources from the underlying hardware, made possible using the

hypervisor component. In VMware infrastructure, such component is called VMware

vSphere (VMWare, 2013b). It is denoted by the ESX Server layer in figure 2.2, where it

is also named VMware vSphere ESXi. It is to note that the hardware is mainly

comprised of x86 commodity servers, which significantly reduces the capital

expenditure in IT infrastructure spending. Apart from the relatively cheap hardware, the

37

clustering of these commodity servers which aggregated and interconnected by same

network and storage subsystems managed by 1 ESX server does not require identical

configuration in each of the servers, hence greatly reduces the cost and complication in

procuring additional servers in future. The experiments conducted in this thesis are

carried out using this hosting platform, where the research outcomes are produced from

this hosting technology. The task scheduling, resource scheduling, cloud bursting,

security and availability control discussed subsequently in this chapter are managed by

the virtualization program at the front end. VMWare product in this layer is named

VMware vCenter Server (VMWare, 2013a). The terminology employed to classify

virtualization products in the industry often denotes the toolkits in this layer. In the

same category, OpenNebula (OpenNebula, 2013) which is an open-source project

claims to provide wider range of virtualization support, as illustrated in figure 2.3. From

its documentation, it is said to be able to accommodate different type of hypervisors, for

instance Xen (Xen, 2013), KVM (KVM, 2013) and VMWare vSphere. It is also to note

that the vendors to these hypervisors also have their own management software; hence

there are a wide range of choices for the industry to choose from. The other frequently

deployed industrial on-premise cloud virtualized infrastructure solutions are Oracle

VM3 which originates from Xen enabled virtualization (M. Kumar, Roberts, &

Kawalek, 2011), IBM SmartCloud (S. Williams, 2011) and Microsoft Hyper-V

(Microsoft, 2007).

38

Figure 2.3: OpenNebula virtualization management software. The advantage of this software is

that it is developed by open-source community, hence it has the potential to flourish in the same

way that Linux did. Adapted from (C12G, 2010)

Another frequently deployed open source virtualization management toolkit is

Eucalyptus (Eucalyptus, 2013c). The private virtualized platform managed by this

product is often engaged by scholars as test beds to carry out experiments on cloud

related researches. From the industry perspective, it is ideal for test and QA

environments. As the development of this toolkit focuses on compliance with API

utilized in Amazon Web Services (AWS), it is almost inevitable that the eventual

production environment will be hosted by AWS. Figure 2.4 illustrates the position of

this toolkit in the virtualized Private Cloud environment. Note that its architecture is not

much different from figure 2.3, with the exception that it is only applicable for Private

Cloud deployment only. Eucalyptus is an excellent platform for researches in view of its

open source nature, feature-rich and freely downloadable.

39

Figure 2.4: Eucalyptus platform. Note the tight association with AWS which makes deployment of

applications in Public Cloud easier after the development phase. Adapted from (Eucalyptus,

2013b)

Early in this chapter, it is mentioned that the predecessor to the virtualized database

hosting architecture is the standalone server model. A more granular view is also

studied from another angle in this subject of cloud computing evolution. Zhang et al.

(2010) defines Cloud Computing as an evolution of grid computing, as it comprises of

thin clients, Grid Computing and Utility Computing. Buyya et al. (2009) differentiated

between Cloud Computing and Grid Computing at the virtualization level, where Cloud

is defined as next-generation data centers with nodes “virtualized” through hypervisor

technologies, dynamically "provisioned" on demand as a personalized resource

collection. The virtualization in cloud computing provides the ease and flexible

capability on resource allocation. The authors also define grid computing as ‘a type of

parallel and distributed system that enables the sharing, selection, and aggregation of

geographically distributed `autonomous' resources dynamically at runtime depending

on their availability, capability, performance, cost, and users' quality-of-service

requirements’.

Foster et al. (2008) compared Cloud and Grid in length; and from dynamic resource

provisioning perspective, Cloud is deemed more flexible than Grid, as Cloud is

leveraging virtualization technologies more extensively. Hashemi et al. (2012)

described how cloud computing is more superior as compared to grid computing, by

40

taking insights from various aspects. Table 2.1 provides a summary on these

comparisons.

41

Table 2.1: Cloud vs. Grid computing. Generally cloud is perceived as more advantageous than grid in serving wide range of applications.

 Comply with criterions Comments

Criterions

Cloud

Computing

Grid

Computing (Foster et al., 2008) (Hashemi & Bardsiri, 2012) (S. Zhang et al., 2010) (Buyya et al., 2009)

Reduce the cost

of computing Yes Yes

In Grid, Commodity clusters are

expensive to operate in

comparing to low-cost
virtualization offered by Cloud

Grid: Promoting sharing of
resource to other location

Cloud provides cheaper

alternative as development can

be done in public (more
economical) or Private Cloud

Grid: Reduction in cost depends
on VO management.

Massively and

easily scalable Yes Partial

Grid: Resource span across

multiple virtual organizations
(VO), harder to control different

groups.

Cloud: Resource is managed by
single vendor, easy to be

provisioned Grid is less scalable than cloud

Grid: Potential of over-

provisioning of resources

Cloud: easier to scale using

Virtual Machine

Deliver on

demand resource Yes Partial

Grid: Need to wait for arrival of

resource from VO.
Cloud: Can provision resource

within few seconds to few

minutes.

Grid: resource not provided real-

time, need to wait

Grid: Tasks need to wait if

requested resource not available
at particular point in time.

Cloud: Guarantee resource for

transaction processing

Cloud: authors propose a
resource brokerage system to

deliver resources to needed

transactions

computing

resource are

packaged as

metered services Yes Yes

Grid: Resource is provisioned

from VO

cloud: resource is provided by
single vendor

Grid: resource might be limited,

depending on the Grid

participants
Public Cloud: unlimited

Grid: Might need to wait for

available resource from VO
Cloud: instantly available

Grid: pioneer in 'computer

utilities' concept, much like
electical utility

Easy to control

computing

standard Yes Partial

Grid: as VO is control by

multiple organizations, harder to
implement uniform standard of

computing environment.

Cloud: 1 organization controls
the cloud data center, easy to

standardize.

Grid: More standards possible

from different VO -

Cloud: Cloud providers still

working to standardize
computing standard across

different providers

42

Clear visibility of

data locality
Partial Yes

Public Cloud: Data are scattered

in various locations

Grid: suitable for data intensive

operations

-

Cloud: Some cloud providers,

eg. Akamai (Su, Choffnes,
Kuzmanovic, & Bustamante,

2006) and Mirror Image

(Mirror-Image, 2013) provide
locality service for consumers to

host global application

Grid: locality of data easy to
track

Cloud: not suitable if for
operations that need a lot of IO

Private Cloud: Data is located in

own premise

Virtualization Yes Partial

Grid: Control of resources by

individual VO discourages full
virtualization

Grid: Not necessarily needed

-
Cloud: Stronger support of

virtualization Cloud: vital element in the

architecture

Audit trail on

transactions
Partial Yes

Grid: Mature workflow tracking
on transactions

- -

Cloud: Authors propose

MetaCDN that is capable of
providing logging audit tracking Public Cloud: audit tracking is an

open problem

Data security

and privacy

Grid: take advantage from many

years of evolutions in security
related matters

Grid: lower security model than

cloud due to different VO

management

-

Cloud provides flexibility in

allowing consumers to alter their

security requirements

Cloud: Relatively simpler

Generality of

usage
Yes Partial

HPC applications run better in
grid compared to cloud due to

shorter interconnect in network

and processors.

For computing intensive

operations, that does not adhere

to tight SLA response time

Grid: Provide for specific

domains, eg. biology grid,

geography grid

Grid: For collaborative scientific

and high throughput computing

applications

Cloud: Provide for more generic
application use

Cloud: able to support generic
applications

Robustness
Cloud is perceived as more

robust

43

In the following section, the challenges of migrating from either standalone server or

other platforms are briefly discussed. It is not to be elaborated in length as it is not the

core topic of this thesis, but as it is related to the choice of hosting platform chosen for

the experiments in the thesis, it is worth the mentioning here. Babar et al. (2011) studied

the migration of a customized system from standalone server to cloud. The application

and database coexist in the same server before the migration. From this paper, 3 critical

points are observed. Firstly, the system to be migrated should be able to take advantage

of the scalability feature of cloud computing. Secondly, the system should be able to

work in both Private and Public Cloud. Thirdly, if possible, the migration should be

transparent to the end users, particularly if the system supports vast community where

alteration on the login interfaces is tedious. For the first point, in order for the system to

be scaled easily, the application and database layers should be separated. This is

because the dynamic scalability works well for the application components, however the

database operations do not react well to the change of hardware resources, particularly

on the number of processors. RDBMS which is a type of Parallel Database widely used

today, hardcodes the startup parameters from the operating systems, particularly the

number of processors. In order to scale up or down the number of processors in the host,

the database services often need to be restarted. Hence, different virtual hosts are

needed for each application and database layer. The second point with regards to the

portability between Private and Public Cloud is not as rigid from hosting perpective,

however the security and budgetary concerns play a major role in deciding such hosting

decision. Thirdly, for ease of routing end users’ requests, proxy server routing can be

configured if necessary. The authors also mentioned about the disadvantage of lack of

control to the application codes if the codes are further developed using the service API

provided by the PaaS, as the portability of the application will be restricted to only the

standard provided by the cloud provider. Another disadvantage is the hardware

44

technology, whereby enhancements and changes to the hardware components are

controlled by the provider. The paper also mentioned about load testing, whereby

application performance in virtual environment cannot be guaranteed when the

resources are scaled up and down. The authors proposed frequent testing on the

application performance, which is a challenge to mission-critical transactions as there is

not much downtime allowed on the application. From this perspective, the objectives of

this thesis strive to shorten and simplify the load testing mechanism, together with a

proposed control system to gauge the virtual resource performance. In this way,

frequent testing can be carried out without incurring much downtime to the applications

and databases.

2.3 Data security

In general, security concerns in cloud computing are considered an enigma, rather than

a publicly acknowledged problem. From the literature reviewed in this topic, there is no

real technical issue discovered that should hamper the embracement of cloud hosting.

There are solutions to all the technical challenges. For instance, Amazon is taking a step

forward by introducing AWS GovCloud (US), which is hosted in Amazon Web

Services (Amazon, 2012). Its compliance with US International Traffic in Arms

Regulations (ITAR) and Federal Information Processing Standard (FIPS) Publication

140-2 is hoped to prove to the world its robustness of data hosting in Public Cloud.

Google claims its strength in data security via ten components of Google’s multi-

layered security strategy incorporated in Google Apps(Google, 2010). Oracle through

its Exalogic Elastic Cloud product provides similar offering for Public and Private

Cloud, plus Hybrid Cloud that is capable of Cloud bursting (Oracle, 2011). Rather, it is

a perception that placing data in cloud, especially the Public Cloud, will create the issue

of security and privacy breach. Such phenomenon can be equated to the Horseless

Carriage Syndrome as observed by Harms and Yamartino (2010).

45

The concern with regards to security and privacy issues for Healthcare industry is

studied in this thesis, as this industry generally has more stringent demands in

safeguarding the data as compared to other industries. Lupse et al.(2012) proposed

Private Cloud environment to host centralized patient data, where the data is

disseminated to various location via HL7 Clinical Document Architecture (CDA)

messages, via the Service Oriented Architecture (SOA). Remote access to these

Protected Health Information (PHI) and Personal Identity Information (PII) information

via this architecture is critical, in order to ensure patient data is available when patients

are transferred, or in situation when the medical personnel in charge is on vacation. The

reason provided for the preference in the choice of Private Cloud is that the medical

data can only be accessed by medical personnel in such platform. In view of the Health

Insurance Portability and Accountability Act (HIPPA) requirements, safeguarding

confidentiality and integrity of the patient data is of utmost important, hence the sharing

of Electronic Medical Records (EMR) cannot be compromised under any

circumstances. Thus, Private Cloud is proposed to avoid the perceived security risk in

Public Cloud. The ideal data dissemination model which utilizes Private Cloud

envisaged by the authors is illustrated in figure 2.5.

Figure 2.5: Data hosting architecture proposed for hospital systems. Adapted from (Lupse et al.,

2012)

46

Ahuja et al. (2012) quoted a list of security measures from Cloud Security Alliance

(Cloud-Security-Alliance, 2010) to enhance the relevance of Public and Private Cloud

to support healthcare organizations. From the observation of current trend, Private

Cloud would most likely be implemented first. Apart from setting up their own on-

premise Private Cloud, enterprises can engage commercial vendors to provision Private

Cloud instances for them. IBM provides such service in their product called IBM

SmartCloud Application Services (Saugatuck, 2011). Subsequently when the security

perception on Public Cloud has improved, these healthcare applications can make their

way to public infrastructure easily with the standard API from these established

providers (Wan, Greenway, Harris, & Alter, 2010). The suggested implementations for

healthcare industry are multi-layer of login authentication, robust administrative

capabilities to assign appropriate privileges to users and groups, strong password

creation and encryption, encrypted data exchange and federated authentication. Asides

from these security measures, the authors also suggested robust backup and disaster

recovery policies in order to comply with the strict availability requirement of medical

data. In this case, cloud providers are regarded to be more equipped as compared to

local data centers managed by individual organizations. It is also suggested that a

specialized cloud to be created solely for Healthcare organizations with tight security

architecture. Apart from the security and robustness concerns, the interoperability

among some decade-old applications with cloud standards is of concern. The

applications in the healthcare industry mostly do not evolve as rapid as common

applications deployed in other industries. Hence these applications are older and

different in term of database design, operating systems, programming languages,

platforms and data formats (Myers, 2012). The cloud providers who are able to adapt to

these standards, or provide a smooth migration strategy to these applications, couple

47

with fulfillment of the requirements outlined by HIPPA in the IaaS, PaaS and SaaS

models will command the market share in healthcare application hosting.

Kumar et al. (2012) indicated that the major element that delays the cloud adoption in

healthcare, is the issue of trust. Despite the fact that cloud providers have sophisticated

methods and utilities to maintain high level of data security, the consumers in the

Healthcare industry still stays skeptical. The authors also touched base on the surveys

carried out recently by some prominent cloud providers. In particular, IBM’s Institute

for Business Value 2010 Global IT Risks Study (Ban, Cocchiara, Lovejoy, Telford, &

Ernest, 2010) revealed that 77% of surveyed participants believed that cloud hosting

would jeopardize data security. About 50% were having more negative perception,

where they thought data loss would occur if data is hosted in cloud.

Both papers published by Kumar et al. (2012) and Ahuja et al. (2012) made reference to

Cloud Security Alliance. In the latest survey results (Gray, Los, Shackleford, &

Sullivan, 2012), 50% of the respondents were gathered from United State of America,

8.6% from India, 5.5% from UK, 4.1 from Canada and 31.8% from the rest of the

world. The new top threats ranking is much different as compared to the survey result

carried out in year 2010 (Cloud-Security-Alliance, 2010), despite the threats relevance

still stays almost the same. The new ranking in the survey is categorized as follows:

1) Data Loss/Leakage

2) Insecure API

3) Malicious Insiders

4) Account/Service and Traffic Hijacking

5) Abuse of cloud computing

6) Unknown Risk Profile

48

7) Shared Technology Vulnerabilities

8) Distributed Denial of Service (DDoS)

Figure 2.6: Top threats relevance. The security relevance is surveyed for cloud computing. Adapted

from (Gray et al., 2012)

Figure 2.6 demonstrates the relevance and significance in percentage of the threats

based on the feedback from the vast community of cloud consumers. Nevertheless, the

ranking does not rigidly represent all the industries, and the role of the ranking is served

only for general reference. For example, for applications that do not use the service API

in the PaaS model, there is no threat of the insecure API. For mission-critical services,

the DDoS could be ranked higher as connections from the end users to the system need

to adhere to strict High Availability requirement.

Data Loss/Leakage is the most significant threat in cloud hosting. The severity level

from its damage can be very high, particularly in mission-critical applications.

Especially in the case where the cloud provider does not implement robust backup and

disaster recovery standard, compromising of data can result in loss of revenue, and even

jail times in extreme cases of negligence. This threat can be originated from accidental

deletion of data, failure in the virtual hosts that support the databases or malicious

activities from unauthorized personnel. The preventive measurement to this cause is to

implement access control to the API, enforce encryption on data in storage as well as in

transit, control access to the database whereby only relevant personnel is allowed to

gain entry to the real data, undertake legally binding agreement between the consumers

and cloud providers to ensure vigorous backup and recovery strategies are in place.

49

Insecure API can happen in cloud service offering, in the case when the management

and monitoring in this layer is not proper. The APIs are provided by cloud providers to

enable the creation of application in the cloud instance. For IaaS, Infrastructure API is

serving the function of virtual resource provisioning in the VM. In PaaS, service API is

responsible in providing the capability to launch the generic database, storage,

Exchange and web portals components. Whereas application API offers the interface to

software related API, such as CRM, ERP, trading web services etc. In case if these API

are compromised by unauthorized personnel, the API can be manipulated to cause

undesired damage to the cloud consumers or public. The proposed remediation includes

stricter access control to these APIs, re-engineered the security of the APIs and clearer

understanding in the relationship between the interconnecting APIs.

Malicious Insiders threat is difficult to be solved, especially if consumers have no

visibility to the procedures and processes implemented by the cloud providers. These

individuals are hired to work for the cloud providers, and their roles sometimes allow

access into the customers’ data and transactions. The remediation to this threat is to

enforce strict hiring process, establish legally binding employment agreement with the

employees, reveal operational processes and procedures to the consumers and generate

and disseminate audit trails on security breach.

Account/Service and Traffic Hijacking is the popular intrusion method used by hackers

to gain access to the application or database. Such threat exists since the beginning of

the computing era. Via the phishing, social engineering and exploitation of application

or database vulnerabilities methods, data is manipulated, and falsified information is

returned to the clients or redirecting the clients to illegal web sites. The remediation

solutions to this mischievous act are to introduce 2-factor authentication, proactive

monitoring of abnormal users’ activities, establish auditing trails on user’s transactions

50

and to understand better the services offered by the cloud providers, by scrutinizing on

their security policies and procedures.

Unknown Risk Profile refers to the ambiguity of cloud providers in providing full

exposure of their service offering. Often time in order to secure their business interests,

cloud providers are reluctant to reveal the total architecture landscape to the consumers

or outsiders. Without the full knowledge of the hosting platform, the customers are left

with unknown risk profile, where they do not know the exact level of exposure to

danger regarding their data. In this case, before engaging the service from the cloud

providers, the customers should be equipped with knowledge on how their data and

related audit logs are stored and who have access to this information, how much details

will the providers provide in case of security breach, the level of hardening and patching

on the underlying hosting hardware and software and the frequency of auditing and

logging in the cloud instance. If these factors are overlooked, the consumers will be left

with potential disaster which they do not anticipate.

The abuse of cloud computing mainly targets the PaaS model, where fraudulent credit

card is used to purchase the cloud instance from the providers, and the temporary

platform is used to conduct malicious and even criminal activities. Apart from PaaS,

IaaS model is also targeted for similar intention. The proposed remediation to this

vulnerability is to enhance the registration process of cloud instance provisioning, more

stringent checking on fraudulent credit cards, auditing on consumers’ traffic and close

checking on blacklisted individuals.

Shared Technology Vulnerabilities threat refers to issue in multi-tenant architecture.

Often in the VM, CPU resource in particular is not isolated between different clients

hosted by the same application or database. Hence there are chances that some clients

might overuse this resource and create resource constraining situation in the VM. As

51

such, strong resource allocation and isolation mechanisms are needed, together with

effective monitoring of the resource consumption in the VM. The CSA community also

proposes regular patching and vulnerability scanning in the VM to fix and discover

abnormalities before the tenants’ transactions are impacted.

Distributed Denial of Service (DDoS) is usually the result of a Trojan horse attack. The

web sites affected will have their services interrupted and their clients will not be able to

gain legitimate access to them. This often happens in high-profile web pages, for

example the online banking, credit card payment gateways, government portals, news

portals etc. The motive to these attacks is to gain competitive advantages, either in

business, politic or social domains. It can also happen to exhibit protest on certain

disgruntle issues by certain groups of people. Remediation to this treat involves a wide

range of computing variables. Cloud providers can strengthen the rules in their

firewalls, switches and routers to prevent unauthorized access and activities, installing

robust Intrusion Prevention System (IPS) (Cisco, 2013; Fortinet, 2013; HP, 2013b) at

the network layer in their hosting landscape. This includes activities called

“blackholing” where traffic is routed to a ‘black hole’ when attacks are detected,

“sinkholing” where traffic is channeled to another IP address when abnormaly is

detected and ‘cleansing’ where the good and bad packets are monitored and filtered.

Figure 2.7: Secure third-party publication. The subscriber requests and receives data from the

publisher, and verifies the authenticity of the data using the encryption key from the data owner.

Adapted from (Hamlen, Kantarcioglu, Khan, & Thuraisingham, 2010)

52

Hamlen et al. (2010) scrutinized security in cloud environment, particularly at the

storage layer. The authors proposed security mechanisms to protect the data in storage

as well as in transit. For data in transit, the data is requested from the publisher, which

in this case is the data storage component in the cloud. Since the data is hosted in the

cloud, the machine that stores the sensitive data is assumed insecure. When the

information is requested from this cloud storage, the subscriber sends a message to the

data owner to obtain the encryption policy regarding the requested data. As soon as the

data arrives, the subscriber compares the encryption policy sent by the data owner to the

encryption key information tagged together with the delivered data. When a match is

found, the authenticity of the data can be confirmed. Figure 2.7 illustrates this sequence.

This way, the owner, or the patient in this case can control the amount of data exposed

to the subscriber. For the data in storage, the authors proposed to utilize the Secure

cryptoprocessor (SCP) (IBM, 2013a) as part of the cloud infrastructure to enhance the

robustness of the stored data. The purpose of SCP is to protect the data stored in the

publisher, by eliminating other protection requirements at other physical components in

the storage machine. The SCP does not output the decrypted output to the system bus,

hence even the authorized personnel cannot tamper into the underlying data. As the

storage of the encryption and decryption information is solely stored and confined to the

SCP, the data owner can be rest assured that the encryption key that is sent to the

publisher is correctly utilized to decrypt only the necessary data. Any attempt from

hackers to steal these encryption and decryption keys in the SCP will need the physical

possession of the device, as well as skills and tools which are beyond the technical

knowledge of most hackers. Figure 2.8 illustrates the placement of SCP in a storage

machine.

53

Figure 2.8: Secure cryptoprocessor. The SCP is a temper-resistant hardware that eliminates the

need to harden other components in the hardware layer. Adapted from (Hamlen et al., 2010)

As in figure 2.7, the data owner is required to send the encryption key to the cloud

provider in order to authenticate the legitimacy of data request. The encryption key

widely deployed nowadays is in the form of a smartcard. However, there are some

drawbacks in utilizing smartcards for authentication purpose. Karthikeyan et al. (2012)

pointed out that smartcard can be stolen or replicated easily, hence is deemed insecure.

They proposed an authentication method using palm vein pattern recognition. The

reason to use the palm for pattern recognization is that the human palm has complicated

vascular pattern, thus is able to hold many differenting characteristics for personal

identification. As the pattern of the blood vein lies under the skin, this pattern discovery

method is deemed more secure compared to thumb print recognition.

Personal Health Record (PHR) is a fairly new term used in medical record exchange

domain. It contains the personal health and medical history of individual, which can be

shared to interested parties that possess the necessary credential. PHR is initiated and

maintained by individuals. It collects its records from Electronic Medical Record

(EMR) and Electronic Health Record (EHR). EMR is the complete medical record

stored when an individual engaged inpatient or outpatient treatment in a hospital. EHR

is a subset of EMR, owned by the patient but is maintained by each hospital. The clear

difference between EMR and EHR is that EMR is not modifiable by individuals, but

54

EHR can be appended by individuals. Figure 2.9 illustrates the overlapped relationship

of these 3 types of medical records (R. Zhang & Liu, 2010).

Figure 2.9: Patient medical record categories. Overlapped in relationship of PHR, EMR and EHR

is illustrated. Adapted from (R. Zhang & Liu, 2010)

The signficance of presenting this information here, is that the current trend in cloud

hosting in Healthcare industry is focusing on the 'patient-centric' model. Figure 2.10

exhibits such model. The PHR is collected by individuals from EHR data in cloud, and

subsequently this information is filtered and disseminated to authorized personnel. In

the PHR data dissemination domain, scholars (T. S. Chen et al., 2012; M. Li, Yu,

Zheng, Ren, & Lou, 2012) employed similar model as in figure 2.7 to encrypt and

decrypt exchanged data between the individuals and the subscribers. The encryption and

decryption algorithms are not elaborated in length here as the purpose of quoting these

researches is to outline the general current trend and progression of the cloud migration

strategies that happen in the industry. Microsoft provides such PHR services in

Microsoft health Vault (Microsoft, 2013b). However it is to note that such services in

the cloud are not totally adhered to HIPPA rules, hence this is yet another foreseeable

potential development in the HIPPA regulations to encourage the healthcare players to

move to cloud.

55

Figure 2.10: ‘Patient-centric’ cloud model. Individuals retrieve their personal health and medical

data from EHR stored in cloud, and then categorize and disseminate the information to related

parties. Adapted from (R. Zhang & Liu, 2010)

Donahue (2010) revealed some exciting progress in Healthcare industry, made possible

by hosting in cloud computing environment. The authors revealed that the healthcare

information technology (HIT) is 10 years behind the development in other industries.

The reasons cited are the lack of knowledge in the healthcare industry players to fully

understand and embrace the IT technologies, together with the skepticism on security

and privacy issues on medical data. The priority at the moment is to digitize the medical

records on paper format into EMR. The author outlined few conditions for the

successful implementation of this initiative, with absolute precaution being considered

for sensitive patient data:

1) Capital expenditure spending needs to stay as efficient as possible.

2) The new cloud architecture must permit sharing of data among different remote

entities without combersome protocols.

3) Scalability criterion must be in place for future expansion.

4) High Availability feature must be incorporated into the new architecture.

56

As the perception that enterprise computing environments are not suitable for

Healthcare industry, a separate community cloud called hcloud is proposed, that solely

cater for the players in the Healthcare sector to achieve the above 4 goals.

Cardeñosa et al. (2012) also stated that the biggest challenge to migrate legacy and in-

house healthcare application to cloud is the trust issue among the industry players and

cloud providers, in hosting the medical data. The authors conducted some feasibility

analysis on the hosting of EHR in the Public Cloud using Amazon Web Services

(Amazon, 2012), and realized that another challenge with this implementation is the

bandwidth issue between the medical personnel in the hospital and the Public Cloud.

They discovered that another unsuitability reason to host data in the Public Cloud is that

most medical personnel, whether they are situated remotely or in the hospital, the WAN

connection to the Public Cloud instances is poor. As the medical data involves a lot of

Digital Imaging and Communications in Medicine (DICOM) images transfer, the

network pipeline will need major increment, which involves huge investment. Such

scenario will discourage many migration efforts in the industry. In order to remediate

this shortcoming, the authors proposed a Hybrid Cloud architecture, where text data is

stored in the Public Cloud, whereas Private Cloud is established to host the DICOM

images. Figure 2.11 exhibits their proposal. With such model, the applications will need

to be recoded to connect to proper interfaces which also command a substantial amount

of investment.

57

Figure 2.11: Proposal of cloud hosting for medical data. Due to large DICOM image transfer

requirement, Hybrid Cloud model is deemed more suitable. Adapted from (Cardeñosa et al., 2012)

From the perspective of the research in this thesis, the proposed resource management

mechanisms contribute to tighter access control in real data. It achieves one of the major

initiatives in protecting and controlling access to sensitive data either in storage or in

transit. By prohibiting such access to the IT personnel, the proposed mechanisms enable

IT services to continue serving their functions, at the same time improve the trust factor

among the cloud consumers. From the commercial perspective, there are products that

allow for the masking of customers’ data, so that IT functions can be performed without

jeopardizing the privacy and security of these real data. Oracle Database Vault (Tbeileh,

2009) is such product that promotes the compliance with security regulatory

requirement and reduces the insider threat.

2.4 Resource utilization monitoring

2.4.1 Monitoring models and on-demand resource scaling

One of the very attractive features of cloud computing is the ease of scalability in

resource provisioning and de-provisioning in the VM. Resources in cloud can be scaled

up or down easily, primarily due to the virtualization concept. Depending on the types

of software deployed in the VM, the resource allocation mechanisms can generally be

categorized into 2 classes: first, it is the dynamic on-demand resource allocation in the

58

VM, where needed resources are allocated rapidly when the resource threshold is

detected. Such method allows the VM to have its resource state altered as frequent as

needed. The second type is not as dynamic, where the additional resource is staged, and

a restart on the software is needed to take advantage of the additional resources. The

formal type is currently suitable for web applications, where dynamic scaling of

resources can be detected by the application instantly to take advantage of the additional

computing power. The latter is applicable mainly for RDBMS software and certain

CRM applications, where the software needs to recognize the additional provisioned

hardware by rebooting. Main reason to this scenario is that these software are licensed

based on the amount of provisioned hardware, and these vendors do not allow their

products to be used indefinitely without the customers paying for a premium when the

new slice of additional resources is run against their products. As this research deals

with database operations in the VM, the focus is on this latter resource allocation

mechanism. Nevertheless the proposed mechanisms are applicable for on-demand

scaling type, amid some modifications. It is also to note that the newly introduced

Oracle 12c (J. Williams, 2013) has the feature to allow their customers to enjoy the pay-

per-use licensing model. However at the time of this thesis writing, this product has just

been released and the cost feasibility of its implementation and its acceptance level by

consumers in cloud environment are still at evaluation stage.

In both the resource allocation categories, the resource allocation methods can be

performed by 3 techniques. The first technique is the horizontal scaling of the

application tier by mean of load-balancing. Web-based application can normally benefit

from this scaling method. The second approach to increase the resource allocation in the

VM is by mean of vertical scaling, where resources are added to the particular VM. The

third method is called VM placement, which is also considered in the category of

vertical scaling. However instead of adding resource into the VM, the VM is migrated

59

to another physical machine which has a larger or smaller hardware configuration

(Iqbal, Dailey, & Carrera, 2010). In order to achieve efficiency in determining the

trigger point when resources are to be allocated or de-allocated, monitoring of resource

consumption is of utmost important. A profound monitoring mechanism will need to be

able to process the collected data from the past, present and future resource utilization.

In this section, the studies examine the monitoring agents deployed in both the web

applications and databases, as the hardware monitoring parameters are similar for both

worlds.

Iqbal et al. (2010) experimented and tried to proof the advantages of horizontal scaling

in comparing to vertical scaling. The hosting platform of the experiments is on

Eucalyptus Cloud. As explained early in this chapter, Eucalyptus(Eucalyptus, 2013a) is

an open source software that provides dynamic scalability feature in building the Private

and Hybrid Cloud using Amazon Web Services API. To simulate the workloads, Httperf

utility is employed. Httperf (httperf, 2013) is a tool usually used by industrial players to

create artificial workloads in their web servers to investigate and evaluate resource

capability, as well as generating benchmark for future reference during production

operations. The authors segregated the web and database tiers into 2 VM initially. The

initial objective is to detect the bottleneck in the VM, so that the response time SLA can

be adhered to by adding resources to the VM for further transaction processing. When

the response time threshold is detected at the front-end, the suggested mechanism first

determines if the bottleneck is originated from the web tier. If it is, the resources in this

tier are scaled. If there is no constraint detected in this tier, the database tier is scaled

instead. The threshold is breached when 95 percentile of average response time of

dynamic and static content requests is above the stipulated value, based on moving

average calculation. The experiments reveal some interesting facts. For vertical scaling,

where resources are added to the VM when threshold is detected, it is observed that the

60

throughput saturated at certain CPU run queue level, as illustrated in figure 2.12. The

throughput never increases even the CPU utilization never gets saturated in both web

and database VM, as in figure 2.13.

Figure 2.12: Throughput of the system with vertical scaling of resources. It is observed that the

throughput is saturated at certain CPU run queue level even the overall CPU utilization is not

constrained. Adapted from (Iqbal et al., 2010)

Figure 2.13: CPU utilization in both the web and application VM during the test of vertical

resource scaling. Adapted from (Iqbal et al., 2010)

However, in the second experiment when the horizontal scaling of resources is

conducted, the throughput increases in tandem with the additional of extra VM into each

tier, as exhibited in figure 2.14.

61

Figure 2.14: Throughput keeps increasing with the addition of VM. Adapted from (Iqbal et al.,

2010)

Hence, apart from proposing a simple, yet perceived effective way to guarantee

response time stipulated in SLA, the authors also pointed out that certain cloud

platforms will post bottleneck in the hosting backbone, where usual resource parameter

addition in CPU, memory, storage and network cannot elevate the performance of the

VM. To alleviate this constraint, horizontal resource scaling is inevitable. Another

solution is to engage VM placement mechanism, where the VM is migrated to more

powerful cloud platforms.

Chieu et al. (2009) presented a typical illustration of dynamic resource scaling

mechanism for web-based applications. The architecture for the test bed in their

experiments is similar to the one proposed by Iqbal et al. (2010). Figure 2.15 depicts the

components in the architecture. The web servers are scaled horizontally by adding VM,

based on the resource needs. The main reason for such architecture to work for web

applications very much depends on the capability of the load-balancer. Theoretically,

the Apache HTTP Load-Balancer can be re-configured on-the-fly when there is change

in the underlying web application configuration. Thus, when the number of VM running

the web services is altered, the load-balancer can react automatically to route the traffic

to the new virtual web machine. Radware (Bercovici, 2010) is one such agent available

62

commercially to orchestrate this elastic horizontal scaling and load balancing, and it is

integrated with the cloud provider management system. It is to note that the database

tier does not have such capability due to the design of most RDBMS; hence dynamic

on-demand scaling is generally not working in this tier.

Figure 2.15: Dynamic scaling of web-based applications. Such dynamic on-demand scaling is

suitable for the application tier. Adapted from (Chieu et al., 2009)

The horizontal scaling of the virtual web machine is accomplished via “Image-based

provisioning”. This capability is not a new technology in the cloud; rather it has been

available in the industry for a while. Many operating system vendors have this feature in

their products, for example Red Hat Enterprise Linux (IBM, 2013b) and Microsoft

Windows Server (Microsoft, 2013a). This ability to have the additional VM created

automatically and instantly is made possible via the cloning of the new machine from a

‘golden’ virtual image. The authors mentioned that there are 4 criterions to determine

the threshold points of the virtual web machines. They are:

1) The number of concurrent users

2) The number of active connections

3) The number of processed requests/s

4) Average response time/request

63

However, criterions 1-3 might not be suitable to be employed in cloud environment.

The reason is that in cloud computing, commodity hardware is utilized, in contrast to

conventional hosting where web servers are normally having homogeneous hardware

configuration. In cloud, the collection of hardware that comprises a resource pool can be

heterogeneous; hence the additional provisioned virtual machine can have difference in

computing capability. Due to this reason, the scaling algorithms should not rigidly lock

in certain values of concurrent users, active connections and ‘total running processes/s’

as the threshold to gauge the VM performance. The ‘average response time/request’

parameter should be the more accurate barometric indicator in this case. It is also

important to note that in virtualized environment, the CPU and memory utilization

parameters are sometimes misleading; hence silo monitoring solely from operating

system perspective will not guarantee accurate result (V. Kumar & Garg, 2012). The

combination of monitoring techniques, by taking the response time parameter in

association with the operating system parameters is more appropriate.

The method of rigidly locking in the threshold values as input for scaling decision in a

VM is also disputed by Dutreilh et al. (2010). This threshold-based scaling policy is

deemed inaccurate, as it promotes wastage of resources, due to the mismatch between

the control system and control parameters utilized to arrive at the scaling decision.

There are 3 sources cited for this misalignment:

1) Latency in attaining the stable performance condition after the scaling output is

performed, thus incurring an unstable duration for the subsequent scaling algorithm.

2) Oscillation and instability in the input control parameters, which reduce the

accuracy of the scaling decision.

3) Too aggressive scaling algorithm, where the magnitude of resource scaling does not

represent the actual transactions’ requirement.

64

To remediate the above, the authors proposed Markovian decision processes (MDP)

model to manage the resource scaling decision. This model relies on reinforced learning

in order to produce a collection of states and actions in the VM. With this model, the

resource scaling decision inclines more towards the condition in the VM, instead of

relying solely on the fixed threshold values which commonly decided upon the state of

the VM during initial application deployment process. MDP is an extension of Markov

Chain (Bolch, Greiner, Meer, & Trivedi, 2006). The high level illustration of Markov

Chain model is as exhibited in figure 2.16.

Figure 2.16: Markov Chain model. The states (A, G, C & T) and the transition probabilities

provide input for the next course of action.

For illustration purpose, by equating figure 2.16 to the real scenarios in the VM, there

are 4 potential states in the VM. The transition probability from 1 state to another is

depicted as below:

P(xi = a | xi-1 = g) = 0.16,

P(xi = c | xi-1 = g) = 0.34,

P(xi = g | xi-1 = g) = 0.38,

P(xi = t | xi-1 = g) = 0.12.

65

By relying on the probabilities of each transition, the cloud providers or the consumers

can determine the necessary actions, whether to proceed with scaling, stay with the

status quo, or delay scaling decision for t amount of time. However, there is a caution to

be noted here, that Markov Chain model is suitable in cases where the ‘states’ are not

dependent on each other. In situations where independence of states cannot be assumed,

this model should be avoided.

As mentioned above, the over-aggressive scaling algorithm is not desired, as it induces

wastage in resources due to the reason that the state in the VM is not properly

understood before the scaling is performed. The same sentiment is echoed by

Belaglazov et al. (2012). The authors even cited that quality of VM migration and

consolidation is inversely proportional to the number of nodes in the cluster. In other

words, it is best to not encourage the scaling algorithm to reduce overhead in VM

operations. With a predefined set of Quality of Service (QoS), the algorithms proposed

by the authors strive to achieve the maximum mean time between VM migrations for

this purpose. To achieve this, they introduced a parameter called Overload Time

Fraction (OTF), which denotes the maximum timeframe where the host is allowed to

stay in overload condition. To calculate the OTF, the authors too employed the Markov

Chain Model. The states in this case correspond with the CPU utilization in the VM,

and the associated transition probabilities are the chances of the potential migration.

In many of the researches, the CPU utilization threshold is considered as the most

important parameter to be measured to determine the oversubscription of resources in

the VM. In this thesis, the CPU run queue size too is employed to serve the barometric

measurement on the resource states in the tested VM.

Khatua et al. (2010) introduced event-based scaling algorithms in their proposed

Monitoring and Optimizing Virtual Resources (MOVR) architecture. The standout

66

feature in MOVR is the ability to map each event to an action, called ‘workflow’ in the

paper. These workflows determine the appropriate actions to be carried out in the VM;

for example to scale up or down, horizontal or vertical scaling of the computing

resources. There are 4 events that guide the scaling decision. First, it is the threshold-

based event occurrence, which is similar to the resource threshold trigger as discussed

above. The second event inclines towards prediction-based, where the system will base

on the historical data, to forecast the resource scaling timeframe and duration. For

instance, the performance evaluation applications are active particularly at the end of

each financial quarter, or the payroll processing is active for few days before payment to

the employees. The scaling mechanism will base on the historical data to decide for

additional resource allocation to the VM. The third event is request-based, and the

scaling decision is made based on the length of request queue in the applications. If the

queue is hitting a certain threshold, the scaling of resource will be triggered. The fourth

event is simpler, where it is based on the scheduling decision of the administrators,

regardless of wherther or not there is resource constraint in the VM. Such event and

workflow bases can be expanded to included more criterions, which can increase the

efficiency of the on-demand scaling model.

The determination of the appropriate threshold value before the VM is deemed fully

loaded very much depends on the QoS required by the particular applications. This is

because when threshold-based system is being put in place, only the mean value of the

threshold can be utilized as the real resource usage pattern in the VM. The OS and

database parameters oscillate quite substantially during the monitoring process as

indicated by Dutreilh et al. (2010). Hence, even though the resource utilization is <

100%, there are still chances for some transactions to spike the resource usage to >

100% which cause violations in the application SLA. Beloglazov et al. (2012) and

Buyya et al. (2010) realized such condition in the host, and they conducted experiments

67

to show such behavior. The experimented results can subsequently be employed by their

recommended task or resource scheduling mechanisms to determine the best scheduling

algorithms to achieve the objective of optimizing the resource usage, at the same time

comply with the SLA requirements. Their experimental results are exhibited in figure

2.17. It is expected, and confirmed from this figure that the higher the mean value of the

utilization threshold, the higher chances for SLA violation, due to the fact that some

transactions in the workload spike the resource usage until the constraining level. The

data from this diagram is not representative for all workloads and VM; however such

experiment should be carried out in all environments to determine the most accurate

resource threshold value that maximizes the resource utilization and at the same time

confines the SLA violation to acceptable level.

Figure 2.17: The utilization threshold versus SLA violation for particular workload. The authors

were trying to map the energy consumption to these 2 parameters. Their objective here is to

produce a green cloud computing architecture by discovering the equilibrium between the 3

parameters. Adapted from (Buyya et al., 2010).

From commercial perspective, these resource monitoring and scaling tasks are

performed by the cloud virtualization toolkits, which are explained in section 2.2. In

enhancing such enterprise level products, Gulati et al (2011) studied and extended

VMware DRS solution for resource management purpose. They examined particularly

the reservation, limit and share attributes offered by DRS utility. In this case,

reservation denotes the pool of resources offered to an organization in the cloud, for

68

scaling purpose. Limit sets the boundary of amount of resources permitted to be used by

a VM. Whereas share signifies the relative importance of a unit of resources for a

particular VM, so that more important transactions can access to resources in

constraining situation. The explanation of these 3 attributes is depicted in figure 2.18.

The significance of their study is in the improvement in the DRS load balancing, where

the benefits of migration and the cost of performing the migration are calculated

automatically, to trigger automatic VM placement.

Figure 2.18: Resource allocation to an application for an organization in cloud. Each department is

allocated a resource pool, a resource usage limit and relative importance in the transactions carried

out. Adapted from (Gulati et al., 2011)

Microsoft releases similar product as VMWare DRS in System Center Virtual Machine

Manager (VMM) (Microsoft, 2013d) specifically on Windows platform. Oracle

provided an integrated enterprise cloud IT management tools in their new release of

OEM 12c (Oracle, 2013). ConVirt Enterprise Cloud (Convirture, 2013) is another

popular product in this category. Nevertheless, there is not a way to determine the

potential breach of resource utilization threshold in the VM itself based on real

transactions in the individual VM, rather a macro view is perceived by these utilities,

based on historical or current workload inputs. From this perspective, the resource usage

monitoring and planning scheme in this thesis fill in this gap, to provide an insight and

predict the resource consumption from real transactions in the individual VM.

69

2.4.2 Resource scalability in Parallel Database architecture

At this time of the writing, dynamic on-demand resource allocation is only suitable for

web-based applications, as explained above. The conventional RDBMS design does not

work well with this cloud model because since the early day of the relational database

development, the vendors always envisage the licensing model based on the

fundamental of available number of processors in the database server. As this matured

technology has been in place for so long, couple with the wide adoption and strong

reliance on them by the industry, many commercial RDBMS suppliers do not consider a

change to this model to take advantage of the elasticity and scalability features of cloud

as urgency. Hence, the database hosting in cloud is lagging behind in relative

comparison with the cloud web hosting in term of harnessing the full cloud advantages.

In realizing this shortcoming in the database tier, a group of researchers from

Massachusetts Institute of Technology (MIT) has started to develop a "database-as-a-

service" (DBaaS) model named Relational Cloud (Curino et al., 2011). The main

objective is to harness the full advantage of cloud computing for database operations.

This model is still in development stage, with the eventual promise to achieve efficiency

in multi-tenancy, elastic scalability and safeguard the data privacy. The data privacy

factor is developed via a separate project called CryptDB (Raluca Ada Popa, Redfield,

Zeldovich, & Balakrishnan, 2011). With these goals in mind, the model is hoped to be

able to convert capital expenditure cost to operational cost, by converting the traditional

licensing model from processor-based, to usage based. In this case the consumers will

need to pay only for the database services that they use, instead of the costly processor

licenses. Furthermore, the Relational Cloud’s architecture strives to save in hardware

and electricity, by consolidating multiple physical databases into a single physical

database and multiple logical databases. Figure 2.19 illustrates a high-level depiction of

the Relational Cloud architecture. The recent development in relation to resource usage

70

prediction in this model is published in (Mozafari, Curino, & Madden, 2013). As the

architecture encourages multi-tenancy hosting, the challenges as indicated, are on

predicting the resource usage pattern and transactions’ performance from each tenant,

and providing a level of adequate resource isolation so that hardware can be shared

among the tenants, but at the same time restricting resource constraint from occurring

due to overrun transactions triggered by particular tenants. It is interesting to note that

these researchers are not reinventing a whole new type of RDBMS; instead their works

extend from current RDBMS offering. For instance, the ‘backend node’ in figure 2.19 is

actually hosting a complete non-modified MySQL database. It is the mechanism on how

the transactions flow from the end-users to the backend database; couple with the

workload placement in each of the backend database that makes this model impressive.

As of today this DBaaS model has yet to make its way to the commercial arena.

Nevertheless the presented concepts that promote cost effective usage of database

services and reduction in licensing investment will become very appealing to many

industrial consumers.

Figure 2.19: Relational Cloud architecture. The model strives to achieve efficiency in resource

utilization and reduce the licensing cost. Adapted from (Curino et al., 2011)

As mentioned, the above Relational Cloud proposal strives to improve the usage of

cloud for multi-tenancy, elastic scalability and privacy. The benefits of elastic

71

scalability have been explained. The importance of privacy is also elaborated in details

in section 2.3. Many readers puzzle on the significance of the multi-tenancy feature,

particularly for IT personnel who have been supporting conventional RDBMS system.

In many Parallel Database models, 1 database is usually related to only 1 client. Even

for shared applications hosted on such databases, where many clients are sharing the

same functionalities, it is unlikely that more than 50 clients are sharing one database,

due to the resource management and segregation issues by clients.

However in cloud computing, large web-based applications normally are characterized

by having small data footprint couples with large number of tenants. As such, the need

for better sharing and isolation of resource mechanisms is compelling. This gives rise to

the desire to enable a mechanism for ease of moving consumers’ transactions around

within the available clusters for resource management purpose.

Das, Nishimura, Agrawal, and Abbadi (2010) proposed live database migration strategy

in the virtual cloud infrastructure to address the requirements for this opportunity. In

their test bed, the single virtual machine is hosting multiple databases, serving few

thousands clients. The database service is scaled up by constant addition of databases

into the VM, and the resource is scaled out by adding nodes into the hardware cluster.

The scaling of the nodes is not solely attributed to horizontal addition of hardware to the

VM. In this paper, the authors proposed a new approach to migrate the database out to

another VM, similar to the VM placement concept that happens at the infrastructure

layer. In order for this live database migration strategy to work in such multi-tenancy

architecture, the clients’ data is compartmented into cell, where each cell denotes a

group of self-contained data and metadata for particular client. This atomicity feature of

the cells enables the migration to happen. Nevertheless, the proposed migration

technique does not move the actual data residing on the SAN storage; rather the authors

suggested migrating only the data residing in the memory. In this sense it is similar to

72

the approach taken by VM migration where the in-memory data is transferred as part of

the complete VM migration procedure (Q. Zhang et al., 2010). As such, a service

interruption time of only 70ms is achieved. The migration strategy is illustrated in figure

2.20. Apart from this short interruption of service, the advantage of such database

migration strategy, compared to conventional stop and start migration method, is that

the memory residence data is not erased as the database is never rebooted. Hence the

overhead of rebuilding the database cache as part of the stop-and-start migration

technique is avoided. The authors conducted experiment on ElasTraS (Elastras, 2013), a

cloud database system that supports multi-tenancy application. The concept in figure

2.20 is articulated in this system, as the database architecture allows for ease of read

cache migration. It is to note that current development for such database migration

method can work only in ElasTraS and it has yet to be commercialized. The current

trend on RDBMS development by other prominent database vendors does not reveal

plan on such enhancement in their products. Nevertheless this proposal provides a

directive on how the constraints in existing Parallel Database architecture can be

liberated for more efficient cloud hosting.

Figure 2.20: Live Database Migration. The migration and synchronization is accomplished via

iterative copy and update on the database state between the source VM and destination VM.

Adapted from (Das et al., 2010)

73

Table 2.2: Summary of studied researches with critical comment on sub-themes ‘monitoring models

and resource scaling’.

Scholars contribution comment

(Chieu et al., 2009) Presented a typical illustration of

dynamic resource scaling mechanism

for web-based applications. Authors

mentioned that dynamic scaling is

taking the monitoring input from:

1) The number of concurrent users

2) The number of active connections

3) The number of processed requests/s

4) Average response time/request

Criterions 1-3 might not be suitable to be

employed in cloud environment as

underlying cloud hardware is composed

of heterogeneous hardware.

(V. Kumar & Garg,

2012)

Studied on monitoring models. Found

out that silo monitoring solely from

operating system perspective will not

guarantee accurate result.

Authors' discovery in tandem with the

research finding in this thesis.

(Dutreilh et al.,

2010)

Proposed MDP model to manage the

resource scaling decision. The authors

disputed rigidly locking in the

threshold values as input for scaling

decision.

The Markov Chain model is suitable in

cases where the ‘states’ are not

dependent on each other. In situations

where independence of states cannot be

assumed, this model should be avoided.

(A Beloglazov &

Buyya, 2012)

Found out that quality of VM

migration and consolidation is

inversely proportional to the number of

nodes in the cluster. The authors

proposed algorithm to achieve the

maximum mean time between VM

migrations for this purpose.

Over-aggressive scaling algorithm is not

desired. Proper monitoring models to

ensure scaling point.

(Khatua et al.,

2010)

Introduced event-based scaling

algorithms. Each 'event' is mapped to

an action, called 'workflow'.

Such event and workflow bases can be

expanded to include more criterions,

which can increase the efficiency of the

on-demand scaling model.

(Iqbal et al., 2010) Experimented and tried to proof the

advantages of horizontal scaling in

comparing to vertical scaling.

For vertical scaling, the throughput

saturated at certain CPU run queue level.

Horizontal scaling does not have such

problem.

(A. Beloglazov et

al., 2012)

(Buyya et al., 2010)

Tried to map the energy consumption

to utilization threshold versus SLA

violation. Produced a chart to show the

relationship.

Experiment result is convincing,

however each workload will demonstrate

different behavioral relationship in the

chart.

(Curino et al., 2011)

(Mozafari et al.,

2013)

Developed Relational Cloud, to take

advantage of dynamic scaling in cloud.

The presented concepts that promote cost

effective usage of database services and

reduction in licensing investment will

become very appealing to many

industrial consumers.

74

(Das et al., 2010) Proposed live database migration

strategy in the virtual cloud

infrastructure to address the

requirements for multi-tenancy.

Memory residence data is not erased as

the database is never rebooted during the

migration. Hence cache building phase is

avoided.

(Gulati, Kumar, &

Ahmad, 2009)

Studied and extended VMware DRS

solution for resource management

purpose.

The significance of the study is in the

improvement in the DRS load balancing,

where the benefits of migration and the

cost of performing the migration are

calculated automatically, to trigger

automatic VM placement.

2.4.3 Statistical modeling and benchmarking

 Proof of concept – the linear correlation 2.4.3.1

As mentioned, the strength in this research relies on the belief that the combination of

parameters from the operating system and database provides an improved monitoring

mechanism in arbitrating the resource usage condition in the VM. The 2 most studied

parameters are the SQL processing time in the database and the CPU run queue size

obtained from the operating system. To integrate these 2 parameters, a linear

relationship between them is assumed. To prove this linear correlation between SQL

processing time and CPU run queue, following studies are carried out. Such linear

relationship forms the cornerstone of all the proposed algorithms in this thesis.

Figure 2.21: Linear correlation between throughput and concurrent processing. Beyond a

threshold point, the linear relation is not conformed to. Adapted from (Banga & Druschel, 1997)

As experimented by Banga et al. (1997) and Mosberger et al. (1998), the correlation

between throughput and concurrency of processes in a server is linear before a

75

breakpoint, as illustrated in Figure 2.21. Both papers were experimenting on web

transaction processing. In all their experiments, synthetic loads are simulated in the web

servers in order to gauge the host performance. This same methodology is widely

employed by many researchers in resource management related experiments, including

the ones proposed in this thesis. Mosberger et al. (1998) pointed out a very valuable

point in their experiments. Conceptually, they assumed that the throughput

measurement is as simple as taking the total number of triggered requests, and divided

this number with the time it took to complete the test. However in their tests, they

realized that the quality of the measurement oscillated quite substantially, and

calibrations and adjustments are needed, to discover the stability point before accurate

measured readings can be taken. The same observation is true for the experiments

conducted in this thesis, where the time to stability in the VM’s operating environment,

and the quality of measurement duration are important variables. In these cases,

heuristic effort is needed to determine the most appropriate values for both before

readings can be harvested. Subsequently according to Little’s Law of queuing theory

(Allen, 1990; Little, 1961), a server’s CPU mean queue length, Q is the product of its

response time per visit, R and throughput, X, which is Q = R × X. Utilizing these

concepts, it is derived that ideally the same relationship will apply to SQL processing

time, S and server load, C as depicted in figure 2.22. In the research, the interest is to

ensure that the database transactions are processed within this linear correlation to

ensure consistency in hardware performance. If this linear relationship is not conformed

to, resource contention, hardware performance degradation, total or partial hardware

failure, undesired OS processes might have occurred in the host.

76

Figure 2.22: Linear correlation between SQL Processing Time, S and Server Load, C. The behavior

of the plot beyond the ‘saturation point’ is not of interest in this research.

 Mathematical models 2.4.3.2

In constructing the resource utilization mechanisms in this thesis, some mathematical

models are employed. The fundamental of these models are outlined in this section. The

idea of inferring the trend or characteristic from collected data can be properly and

accurately represented by mathematical reasoning. The high level depiction of this

envisaged methodology is illustrated in figure 2.23. Such method is widely deployed by

scholars in many resource management problems. The data collection phase must

adhere to following criteria in order to ensure accuracy of applicability:

1) The collected amount of data must be sufficient to describe the investigated real

world systems.

2) The data must be relevant to the fundamental principle of the examined features.

3) Noises must be filtered so as not to affect the representability of the data to the

studied problem.

77

Figure 2.23: The application of methematical models into real world systems. As long as the real

systems are measurable in some ways, the methematical models can be utilized to improve the

performance of them.

 Linear regression 2.4.3.3

The linear regression analysis (D. Kleinbaum, L. Kupper, K. Muller, & A. Nizam, 1998;

Neter, Kutner, Nachtsheim, & Wasserman, 1996; Principe, Euliano, & Lefebvre, 2000)

employed in this thesis’s proposals adopts the following simple equation:

y = wx + b.

This equation can be converted to a diagrammatic representation, as shown in figure

2.24. This diagram is called the linear processing element. It is made up from 2

multipliers and 1 adder. The multiplier w scales the input, while b is the bias.

Figure 2.24: Linear Processing element. The interest by using this diagram is to solve the problem

with linear relationship between the input xi and yi. Adapted from (Principe et al., 2000)

As mentioned in section 2.4.3.2, the collected data must be free from noises. To

categorize the data as legitimate points or outliers, a variable called residual is defined,

as ε = yi - y
~

i .

78

To find which line is the most ideal line that best fit the collected set of data, a criterion

is defined, called mean square error (MSE), J. In this case J is the squared average sum

of all the residuals, as

J =

∑

 ,

where N is the total number of data points.

It is clear that to find the best fitted regression line, the objective is to minimize the

above equation. Gaussian models(Wiesel, Eldar, & Yeredor, 2008) derived that the best

fitted regression line will have the values of the gradient, w and y-intercept, b calculated

as follows:

w=
 ∑ (∑

)(∑

)

 ∑

 (∑

)

 ,

b=
(∑

)(∑

) (∑

)(∑

)

 ∑
 (∑

)

.

The MSE is useful to determine the line that best fit the collected data. However it does

not show how good the best fitted line in representing the set of data. To address this, a

parameter called correlation coefficient, r is defined, where

r=
∑

(∑

)(∑

)

√[∑

(∑

)

][∑

 (∑

)

]

.

r has a value between -1 and 1. When r=1, all the data points are perfectly fitted on the

best fitted regression line. In this case, when xi increases, yi too increases by the same

magnitude. The same happens when r=-1, however when xi increases by a magnitude, yi

decreases by the same magnitude. When r=0, xi and yi do not have relationship with

each other.

79

 Machine learning 2.4.3.4

Machine learning (Mohri, Rostamizadeh, & Talwalkar, 2012) is a branch of Artificial

Intelligence (AI), that deals with model or prototype construction that has the interest to

understand and learn from the collected data. In the resource monitoring and

optimization proposals, the data is collected to understand the database and VM

behavior. Subsequently with this information, the resource and system states are learned

to serve 2 purposes. First, the learning mechanism translates the learning into action for

resource scaling purpose. Second, the learned information is converted into input for

hardware fault and failure analysis. There are a great variety of machine learning

algorithms. However the particular algorithm of interest in this thesis is the regression

analysis. Regression analysis is a statistical method to estimate the characteristic of the

relationship among parameters. In this case, the concern is about the discovery of

relation between the VM and the database transactions.

The proposal in the resource utilization monitoring area utilizes the semi-supervised

machine learning technique. This method of machine learning consists of labeled and

unlabeled data. In most literatures, the unlabeled data is deemed as easily to collect and

inexpensive, whereas the labeled data is perceived as scarce and expensive in

computational term. In the domain of semi-supervised learning algorithms, there are

many choices of learning algorithms. The relevant learning technique in this thesis is the

Self-Training algorithm. At high level, it consists of 4 steps (Zhu, 2007):

1) Train f from labeled data, (Xi, Yi).

 This is equivalent to conduct training on the TPC-H queries against the TPC-H

data in this thesis.

2) Predict on x ∈ Xu.

80

 This can be translated to discovering the values of w and b, from the linear

regression model in section 2.4.3.3.

3) Add (x, f(x)) to labeled data.

 This step can be deciphered as repeating the step #1 and #2 for different set of

labeled data, to obtained different values of w and b for different set of labeled

data. In this sense, the different set of labeled data can be different queries in

TPC-H benchmark, for instance, 1 set of w & b values for query 8, then another

set of result for query #21.

4) Repeat step 1 to 3 to achieve accuracy.

The obtained array of w & b values is stored as baselines. Subsequently the unlabeled

data is trained, and the result is matched to this array. Depending on the degree of

conformance between the unlabeled data and the baselines, the deviation is learned

continuously to determine the VM resource adequacy and hardware state.

There is a shortcoming in self-training algorithm, where the initial mistake in training

the labeled data can lead to subsequent inaccurate comparison between the unlabeled

data and the baselines. It is also to note that machine learning is a branch of knowledge

in AI that constantly evolves (Zhu, 2008). The studied knowledge in this discipline is

expected to be extensible and flexibly applied in various applications.

 Fuzzy computing 2.4.3.5

In the area of resource utilization management, it is inevitable in some cases to depict

the condition in the VM using arbitrary language. In such cases, fuzzy logic (Alavala,

2008; Ganesh, 2008) has been employed to handle situation of partial truth, where the

truth value can reside between the range of completely truth and completely false

values. Professor Lotfi Zadeh proposed the linguistic fuzzy concept (Zadeh, 1996) in his

81

paper titled “Fuzzy Computing with Words”. Since then the fuzzy computing has been

widely deployed into a wide range of industries. To illustrate this concept, figure 2.25 is

illustrated which takes the topic in this thesis as model. The ideal resource condition is

the state of resources in the VM where all SLA-bound transactions are adhering to the

required QoS. Such condition is inputted to the scaling mechanism, as reference to

determine the scaling need. The scaling algorithm is responsible to direct the scaling

decision based on input from the resource condition, which in this case is referenced to

the resource adequacy scale in figure 2.26.

Figure 2.25: A Fuzzy logic control system for resource utilization monitoring. Adapted and

modified from (Kaehler, 2005)

Resource utilization in a VM can be characterized as having subranges of a continuous

parameters. Figure 2.26 depicts such condition. The blue, orange and red lines each

depicts separate membership functions that represent the ranges of utilization intensity.

In order to use this in the scaling algorithm in figure 2.25, each function will map the

same utilization value to truth value of between 0 and 1. A combination of 3 values will

control the decision to either scaling the resource up or down, or it remains unchanged.

For instance, resource utilization condition in the VM is denoted by the straight line in

figure 2.26. The red arrow in this figure shows a truth value of 0 for high utilization.

The orange arrow is pointing to a value of ~0.2, which in fuzzy computing term, can be

classified as slightly moderate utilization. Then the blue arrow denotes fairly low

82

utilization in the VM at value of ~0.8. The scaling algorithm makes decision based on

these values in this fuzzy logic control system.

Figure 2.26: 3 membership functions in the resource utilization scale. These membership functions

serve the purpose as input to the fuzzy logic control system.

 Linear Programming and Simplex Method 2.4.3.6

Linear programming is a mathematical formulation that searches for the best outcome of

a problem, given a mathematical model which has a linear relationship among the

variables. To find the most optimized solution for this mathematical problem, it is

subjected to linear equality as well as linear inequality constraining factors. In the

simplest and most significant form without compromising its principle, the linear

programming problem can be written as:

To optimize (maximize or minimize)

∑ ∈ ,

Subject to

∑ ∈ ,

 ≥ 0.

When translating the above to the database transactions, n is the variety of SQL in the

workload. fi denotes the frequency of each SQL, and xi represents individual run time of

each SQL. Value of ai depicts the database parameter limits. These can be the memory

reads parameter, where the total memory reads, bk of the SQL cannot exceed certain

threshold for the optimization problem to be solved. It can also include physical reads

83

parameter, if the SQLs are doing physical I/O intensive operations. Following illustrates

the manual steps in utilizing linear programming technique.

For instance, there is a problem to maximize following equation to discover the ideal

combination of TPH-C queries to synthesize a stress-testing scenario in the VM (C. H.

Tan & Teh, 2013b):

Q = x1f1 + x2f2.

Subject to

0 ≤ P1 f1 + P2 f2 ≤P,

0 ≤ C1 f1 + C2 f2 ≤C,

f1 ≥ 0, f2 ≥ 0, because run frequency cannot be negative,

Where,

 Pi is the individual Physical Gets (PG) of SQL, Si. PG is equivalent to physical reads

in the database.

 P is the total PG, which matches the PG in the steady state during initial

conventional load testing. This value is to serve as baseline.

 Ci is the individual Consistent Gets (CG) of SQL, Si. CG is equivalent to memory

reads in the database.

 C is the total CG, which matches the CG in the steady state during initial

conventional load testing. This value is to serve as baseline.

The constraints need to be converted to slack form, in order to be solved. So,

P1 f1 + P2 f2 + s = P,

C1 f1 + C2 f2 + t = C,

84

Where, s and t are slack variables.

With the aforementioned, the problem can now be solved by Simplex method (Sinha,

2006). To illustrate this, the variables’ are assumed to have following values:

x1 = 10s, x2 = 15s, P1 = 400, P2 = 300, P=5000, C1 = 400, C2 = 600, C=12500

In real practice, values of x1, x2, P1, P2, C1, C2 can be obtained easily by running the

individual SQL in the database. P and C are the values that match the total PG and CG

during initial load testing when the application went live, which corresponds to initial

Ch. Now,

Q - 10f1 - 15f2 =0,

400 f1 + 300 f2 + s = 5000,

400 f1 + 600 f2 + t = 12500.

These data are then put into tableau format, as in Table 2.3. The italic section shows the

data processed by Simplex method. This method is a popular algorithm to solve problem

for linear programming. The discovery of this mathematical technique is very

significant, to the extent that it is ranked in one of the top 10 algorithms in 20
th

 century

(Dongarra & Sullivan, 2000).

85

Table 2.3: Tableau depicts the Simplex algorithm. The value in red font shows the pivot.

Q f1 f2 s t values

1 -10 -15 0 0 0

0 400 300 1 0 5000

0 400 600 0 1 12500

1 10 0 1/20 0 250

0 4/3 1 1/300 0 50/3

0 -400 0 -2 1 2500

With this result, the objective equation becomes

Q + 10f1 + S/20 = 250.

Hence the optimized solution is Q=250 as the rule requires the variables in the objective

function to be 0. With this value, the optimized values for f1 and f2 are obtained. So

now,

10f1 + 15f2 = 250.

If f1=10, f2 is then 10. The frequency ratio to run the combination of mixed workload S1

and S2 in the new hardware configuration is 1:1. With this ratio, the VM is loaded with

the 2 SQL to reach the new induced Ch. When the VM is stabilized at this level, the

SLA-bound transactions are executed for validation purpose to serve the objective of

meeting the SLA requirement.

If iterative calculation is needed, the simplex method can be accomplished conveniently

by the Matlab software (Hueeber, 2011). Such usage is common in cases where

continuous optimization is needed, for instance in (Vandenberghe, Boyd, &

86

Nouralishahi, 2002), minimization of distance measurement is envisaged to partition the

workload iteratively, and such software is handy in such situation.

 TPC benchmark 2.4.3.7

The 2 most widely referred TPC benchmarks are TPC-C (TPC, 2013a) and TPC-H

(TPC, 2012). TPC-C is an online transaction processing (OLTP) benchmark, whereas

TPC-H benchmark is of decision-support type. Both benchmarks are meant to provide a

foundation of measurement for hardware and software vendors to showcase their

products’ capability. In the research world, they are frequently utilized as standard

queries and data to generate output that is applicable for analysis to produce new

theorems and algorithms. TPC-C is most suitably used to measure the capability of

hardware or software, where it measures the number of orders that can be processed in a

minute. In computing term, the parameter is called tpm-C, and this parameter is

commonly understood by the wide industry. The design of TPC-C is not meant for

performance analysis as the triggered transactions are generally not consuming much

system resources.

On the other hand, TPC-H is regularly utilized in stress tests. All the 22 queries in this

benchmark are capable of stressing the hosts to their limits. Such ability is harnessed for

the resource utilization affirmation experiments in this thesis, as this benchmark is

employed to create stress-testing scenario in the VM. Furthermore, due to its design that

allows for all transaction processing system, regardless of hardware type or operating

systems, it has been deployed in the resource utilization monitoring and optimization

segments in this thesis, as the proposed algorithms can be easily proliferated to other

platforms.

This thesis intensively makes use of TPC-H queries and data in the experiments. For

future research, it is interesting to exploit TPC-C transactions to represent some

87

functional values in the proposals. With this potential enrichment, more robust resource

management algorithms can be constructed.

2.4.4 Measurement methods

In large part of the studies in this thesis, statistical models play a major contribution

towards achieving the objectives of resource management, particularly in utilization

monitoring and planning matters. With the increase in demand and complexity of the

systems through virtualization, heterogeneous and distributed components become

common elements that articulate the hosting architecture. With this development, many

heuristic and rigid rule-based approaches towards system management for better

performance and failure prediction are rendered ineffective. Because of the multiplicity

of system configuration, benchmarks and standards definition for reference is at its

nascent stage as sufficient maturity in the industry for this distributed computing

technology has not been achieved. Chen et al. (2011) explained the importance in

merging both statistical analysis and system design. The challenges are described as

identifying the statistical techniques for specific systems, how to evaluate the statistical-

driven optimizations and apprehend the statistical output for ease of human

interpretation. The characterization of the workloads is critical for better understanding

of how system configuration can be consummated and system performance can be

improved. With the statistical characterization of the system and workload established,

these models are evaluated to demonstrate their quality, as well as their significance in

system performance. The evaluations are performed via hypothetical workloads and real

workloads testing, with periodic re-training (Ganapathi et al., 2009) and testing, so that

they can keep pace with the evolving systems and workloads. Another important

element in evaluating either the workload of the system, is to enable an effective

monitoring mechanism. As replaying the full workload in the system is not viable for

mission-critical applications, a robust monitoring mechanism ensures that all aspects in

88

the critical workloads are controlled, with performance remediation or improvement set

in perspective.

In managing the data system, particular in resource management topics, integration of

effort from IT system designers and statisticians are useful. Traditionally, the IT

architects are responsible to design appropriate system to serve different varieties of

applications, while the statisticians are mainly focusing in effort to produce effective

algorithms or models for the use of the wide industries. It will be more rewarding if the

knowledge from both fields are assimilated, as explained by Chen et al. (2011). Such

combination of knowledge is also demonstrated by the proposals in this thesis.

Designing statistical models that are representative for particular IT environments is

very time-consuming and error-prone, as the characterization works are unprecedented.

Hence the ideal scenarios for workload modeling appear when there are solid academic

or industrial benchmarks for the particular workloads. However, at the point of this

writing, these benchmarks are not widely available. Chen (May 2012) detailed into

benchmarking effort currently available, and concluded that the time is yet to come for

"the big data benchmark". While the industrial players and scholars are working on

designing robust benchmarks for Big Data, at the moment, a more accurate way for

performance evaluations is using realistic workloads as the input in Hadoop Mapreduce

systems. This is illustrated by the subsequent research works by Chen et al. (March

2011). The authors analyzed and discovered that the current Big Data benchmarks do

not provide a one-size-fit-all solution for MapReduce performance evaluation. The

currently available benchmarks: Gridmix (Iosup et al., 2008), Hive Benchmark (Jia &

Shao, July 2009), Pigmix (Apache, August 2011) and Hibench (S. Huang, Huang, Dai,

Xie, & Huang, March 2010) are observed to fit certain type of workloads. However as

MapReduce system is going through enormous challenges in increasing growth,

diversity, computational volume and consolidation of the data and computing resource,

89

more dedicated benchmarks are required. Hence, the authors provide insights on how

intricate workloads can be apprehended. The objective is to enable better cluster

provisioning and management. The MapReduce framework is not the focus in this

thesis; however the works conducted in this statistical modeling and benchmarking area

are applicable to the Parallel Database arena. Some of the prominent statistical

methods employed to characterize the workloads are k-means (Elkan, 2003),

Hierarchical clustering (Manning, Raghavan, & Schütze, 2009), maximum likelihood

estimation (MLE) (Myung, 2003) and Goodness of fit (GOF) (Narsky, 2003). To

provide input to these clustering algorithms, there are 2 commonly deployed distance

measurement techniques. There are the Euclidian distance (Weisstein, 2013) and Cosine

distance (P. N. Tan, Steinbach, & Kumar, 2006). They are explained as follows:

For 2 real n-vectors, x = (x1, x2,..., xn) and y = (y1, y2,..., yn), if they are 2 points in

Euclidean n-space, the distance between these 2 points is defined as

Euclidian distance, d(x,y) = √∑ − 𝑦
 .

Cosine distance, d(x,y) =
∑

√∑

 √∑

 .

Figure 2.26: Image illustration of the 2 distance measurement method.

From workload perspective, assume the SQL processing time with logical reads as 2

parameters, they can be translated to vector form to take advantage of such

measurement for clustering purpose. The various clustering methods are explained in

following.

90

 Hierarchical clustering 2.4.4.1

If given a set of N items to be clustered, with the distance between each item computed,

the hierarchical clustering is accomplished via following 4 steps:

1) Group each item into its own cluster.

2) Find the closest or most similar pair of clusters, and group them into another cluster.

3) Compute the distance between these clusters. There are few ways to calculate the

distance between the items. The commonly utilized methods are:

 Complete linkage clustering, where the maximum distance between items in a

cluster is considered.

 Single-linkage clustering, where the minimum distance between items in a

cluster is considered.

 Average linkage clustering. The average distance between all items in a cluster

is computed.

4) Repeat step 2 and 3, with the eventual aim of a single cluster.

Such algorithms may be useful when there are multiple sets of workloads, which need

to be grouped in their similarities based on multiple criteria to deliver certain purposes,

for example, a group of SQL can be grouped by their processing time, then

subsequently by their logical reads, and then physical reads etc.

91

Figure 2.27: Hierarchical clustering. The distance between elements in a cluster determine the

clustering result. The agglometative activity increases the distance between clusters.

 K-mean Clustering 2.4.4.2

K-mean clustering aims to cluster a set of N items into k number of clusters, where each

cluster contains the items with mean distance within a stipulated limit. This clustering

method is considered as NP-Hard; hence heuristic algorithms are employed to compute

these k-clusters. Mathematically, the goal is to minimize an objective function, J as

 ∑ ∑ ‖

− ‖

 ,

where ‖

− ‖

 is a distance measure between an item, x1 and the cluster’s center

position. The end result of the clustering algorithm is depicted in figure 2.28.

Figure 2.28: K-Means Clustering. The left workflow depicts the steps to arrive at the end clusters.

The right exhibits the result from such clustering algorithm. Adapted from (Samplify, 2013)

92

In workload aspect, take SQL processing and memory reads as the parameters to be

clustered, this K-Means Clustering method can be used to segregate between OLAP or

OLTP transactions, to satisfy certain functions in workload characterization.

 Maximum Likelihood Estimation 2.4.4.3

Maximum likelihood estimation (MLE) takes the result from a smaller set of data, to

estimate the likelihood of the same occurrence in a larger set of data. Suppose there are

N sets of measurements, (x1, y1), (x2, y2), …, (xN, yN), and the relationship between x and

y is known, y =q(x, α, β, …), where α, β, … are parameters. If the y is related to x

linearly, the equation can be written as y = βx+ α. By employing MLE, the maximum

likelihood function can be obtained, by calculating α and β as:

∑

 ∑

 ∑

 ∑

 ∑

 ∑

,

 ∑ ∑

 ∑

 ∑

 ∑

.

With these 2 values, for particular x, the most probable value of y is determined. Such

method may be useful to predict the processing time of particular SQL in a workload.

Such prediction can be useful for transaction clustering in particular groups for

scheduling purpose.

93

 Figure 2.29: Maximum Likelihood Estimate. The diagram depicts a coin toss test that reveals the

highest probability of 0.454 for the likelihood of heads, in 11 attempts, with 5 heads and 6 tails as

the result of the test, using particular coin. This is a simple example where n number in occurance

of heads can be calculated in m samples. In more complex cases, the MLE algorithm strives to

achieve the same objective of meeting the highest probability for a particular parameter in a

particular set of test.

 Goodness of Fit 2.4.4.4

Another workload prediction technique is called Goodness of Fit. The Goodness of Fit

(GoF) for a statistical model measures how well this model fits into a set of real

observed data. The measurement output will show the discrepancy between the

benchmarked model and the real data. The chi-squared test statistic can be calculated by

 ∑

 ,

where,

Oi is the real observed values, and Ei denotes the expected value. For a linear regression

model, if the value of x
2
 is getting closer to 1, the real set of observed values are deemed

more fitting to the hypothetical or expected model. This is displayed in 2.30.

94

Figure 2.30: The chi-squared test of Goodness of Fit for linear regression. The value of x
2
 is

considerably high for A, B and D. However in the case of B and D, they do not clearly represent the

condition of expected and real data. In these cases, additional analysis is needed, potentially via

residual analysis.

Such prediction can be deployed to predict the stability in the computing resources, if

the workloads in the VM are processed within expected consistency and accuracy. In

such cases, if the value of x
2
 is high, the hardware performance is deemed consistent

and optimal. Such observation is part of the proposal in this thesis.

In addition to the above clustering methods, Kernel Canonical Correlation Analysis

(KCCA) has also been used to characterize a workload. Ganapathi et al. (2009) (2010)

proposed a method to predict the workload performance, by employing the KCCA

method (Bach & Jordan, 2002). This method strives to find the maximum correlation

between 2 vectors. The first step in their proposal is dealing with converting the each

query in the synthetic workload from TPC-DS benchmark (TPC, 2013b) into a vector,

where this vector contains the “query features”, for instance the type of joints in the

SQL, whether they are of hash, nested loop, inner or outer join. Each baseline query will

have a set of query features that are almost unique for the query. The second step is to

create vector that contains “performance features” for each query. The chosen

performance metrics are disk I/O, SQL processing time, number of returned rows,

number of bytes in the returned rows, the scanned tables’ records and the used tables’

records. Assume there are N training queries involved, so there are N pairs of query and

95

performance vectors. The “distance metric” between these N pairs of vectors is

computed. With this information, KCCA is employed to find associated pairs of clusters

in the performance vector and query vector space. The query plan and performance

projections are generated as the result, as in figure 2.31.

Figure 2.31: Query plan and performance projections as the result of KCCA computation on the

‘distance metrics’ of N training queries. Adapted from (Ganapathi et al., 2009)

With these 2 projections, query performance prediction can be conducted. First the

query feature vector of the new query is computed; then its coordinate in the query plan

projection is located. The same coordinate is subsequently matched to the performance

projection, to find the performance characteristics of the new query. The authors’

proposal is different from the query performance prediction from query optimizer, in the

sense that the commercial query optimizer predicts the query performance which then

generates the perceived most optimized execution path, by mean of statistical

performance data which does not involve training the queries in prior. The technique

utilized by the query optimizer has its advantage, as the application transactions in the

user database does not need to be halted to make way for machine learning to train the

training queries. The query optimizer can continuously ‘learn’ the parameters and

condition in the database online without incurring much system overhead. However, the

proposals in this thesis are employing the same methodology as in (Ganapathi et al.,

2010; Ganapathi et al., 2009), by relying on the benchmarked data as it is closer to the

actual desired values. The general probing of the database states by the optimizer is

96

sometimes deemed not comprehensive enough in certain aspects in providing input to

the control or prediction systems.

2.4.5 Workload characterization

As mentioned, the above clustering methods are meant to improve the understanding of

particular workloads. With this understanding, many improvements at the host level can

be accomplished with this new capability. Chen et al. (March 2011) (May 2012) studied

the workload characterization in MapReduce framework, and envisaged that effective

workload characterization can provides following benefits, which are also applicable for

Parallel Database architecture:

 The growth anticipation of workloads in respect to amount of data and transactions

volume can be predicted more accurately.

 The computing resource requirements can be precisely estimated.

 Resource provisioning activity can be performed accurately for specific workload

types, based on the benchmarked workloads.

 The effect of clustering multiple workloads into same groups can be forecasted.

 The superposition of clustering multiple workloads into the same cluster can be

visualized.

 The clustered workloads can be baselined and extended to future workloads, to

serve the above functions.

Furthermore, in order for the threshold-based or Markov Chain-based scaling algorithm

in section 2.4.1 to work in real environments, it is imperative that the workloads are

performing in most efficient manner. The effort to tune the workloads is the pre-

requisite to resource management in the virtual hosts. The authors provided insights on

how intricate workloads can be apprehended using live data and transactions. The

97

objective is to enable better cluster provisioning and management. Motivated by similar

approaches, In (C. H. Tan & Teh, 2013a), a statistical model is proposed from the

aggregation of metadata from real database workloads and operating system variables,

to deliver for the resource planning purpose, as this collection of data from the database

itself rightly described the real users’ experience.

To ensure efficiency in workload processing, Mateen et al. (2011) proposed autonomic

workload management that encompasses self-optimization, self-configuration, self-

inspection, self-prediction, self-organization and self-adoption. Self-optimization is the

characteristic in the database, where minimum resources are utilized to process a group

of transactions in an organized way. For instance, the query optimizer in Oracle

RDBMS inspects and parses the SQL statements, and discovers the most optimized

execution path to produce the output for the statements. Self-configuration is the

responsibility to arrange for the best possible condition in the database, so that the

database engine can have a more conducive environment to process the transactions

efficiently. For example, the SQL Tuning Advisor (Yagoub & Gongloor, 2007) tool

offered by Oracle is able to propose needed indexes and SQL profiles, so that the query

optimizer can have a greater variety of choices to produce the most efficient execution

paths. Self-inspection is the capability where the database engine is capable of

discovering and visualizing abnormalities in the database environment. Oracle RDBMS

provides such utility called Automatic Database Diagnostic Monitor (ADDM), where

the data characteristic is examined periodically to spot the need for additional memory

allocation, objects’ statistic update, indexes rebuild, details of executed queries etc.

Self-prediction anticipates the amount of resources and time needed to complete the

workload processing. The Oracle query optimizer is equipped with such capability,

where the cost and duration of the SQL processing can be estimated prior to the real

executions. Self-organization is another great feature, where the database is able to

98

position itself in the most optimized condition for SQL processing. For instance, the

Oracle Automatic Storage Management (ASM) utility can self-collect the statistic

information on the tables and indexes, or rearrange the data blocks on different disks to

alleviate I/O contention. Self-adoption is the characteristic where the database is able to

take full advantage of the condition in the host, to benefit the workload processing. For

instance, if the database detects that there are additional x number of virtual processors

provisioned to the host, it should be able to increase its processing parallelism x amount

of times. In many RDBMS system, the aggressive pattern of memory consumption in

the database is very common. However with proper adaptation strategy, this memory

exhaustive attribute should allow for co-location of other important operations in the

host, for example operating system security auditing, monitoring of overrun background

processes, backup and recovery operations etc.

In a large part of this research as well as in the literature studies, the monitoring

parameters are often mainly comprised of the CPU run queue length or memory I/O

usage. However, in data intensive operations, it is critical to take the disk I/O into

consideration, as there will always be limited memory resource to contain the whole

data sets needed for workload processing. Particularly in cloud, this parameter can

affect the transactions’ performance by a few orders of magnitude. The issue here is the

data locality. In standalone server, local disks are normally associated with the server,

hence the computing resource does not need to travel far to fetch or write to the disks.

Nevertheless, as cloud promotes distributed computing architecture, data can be relative

far from the computing resource. Particularly in Public Cloud, this phenomenon is not

favorable for data intensive application, for instance data mining in Data Warehouse.

For such data analysis work, it will be more logical to host the database in Private Cloud

where data co-locates with the other computing components. However, there are

researchers who study and remediate the issue on this data locality problem in the case

99

where data hosting in large data center is unavoidable, similar to the Public Cloud

model. Raicu et al. (2008) developed a resource provisioning and task dissemination

system called Falkon, mainly serving data intensive processing in NASA. The Falkon

architecture is depicted in figure 2.32. The task dispatcher delivers the tasks to be

processed by the executors, which in this case are the computing nodes that contain the

data, via pre-computed algorithms. These algorithms retrieve their input from a set of

indexes that hold the information of tasks and location of data for the particular tasks,

much like the key-value pairs in the states and transition probabilities of Markov Chain

diagram. The dispatcher delivers the task to the node that contains the most data to be

processed by the task.

Figure 2.32: Data Diffusion model. Task is dispatched to the node (executor) where majority of the

data resides. Adapted from (Raicu et al., 2008)

The interesting fact produced by these authors in their experiments, is the relationship

between the throughput and the number of nodes, with the I/O size remains as constant.

As demonstrated in figure 2.33, in distributed computing, the throughput is saturated at

certain number of nodes, and subsequent increment in horizontal scaling does not

improve the capability of the cluster. In another experiment, it is discovered that the

bigger the single I/O stream, the higher the throughput of the system. This can be

attributed to the fact that each I/O incurs overhead which becomes significant when

100

many smaller I/O streams are running for the distributed cluster. This is depicted in

figure 2.34.

Figure 2.33: Throughput vs # of nodes in a cluster. Local disks reads capability increases in tandem

with the horizontal scaling. However, distributed shared demonstrates a much degraded

throughput comparatively, including the limitation of hitting throughput constraint at certain

number of nodes in the same cluster. Adapted from (Raicu et al., 2008)

 Figure 2.34: Throughput vs file I/O size. Each I/O incurs overhead which becomes

significant when large number of transactions is carried out in the distributed computing cluster.

Adapted from (Raicu et al., 2008)

The above findings conclude that in distributed computing, such as cloud, the number of

nodes in a cluster should be controlled. Vertical scaling should be considered instead of

unnecessarily spanning the resource horizontally. Regardless if the nodes are hosting the

101

data or not, the throughput of distributed transactions will always be much lower than

the throughput in single server, as experimented by Curino et al. (2010). In the case for

the nodes that do not host the data, the latency in response time is caused by tables or

rows contention as multiple nodes are trying to access the same data, distributed

deadlocks and complex SQLs that need to draw the computing power from multiple

servers. To alleviate one of these drawbacks which relates to the issue with I/O

overhead in the distributed computing, Curino et al. (2010) proposed an algorithm to

partition and replicate the database so that workloads can reside in minimum number of

nodes to reduce the overhead of distributed transactions, at the same time balance the

workload across all available nodes. The rule of thumb to replicate a partition is that if

the tables in the partition are not updated frequently, then the data in the tables are

replicated to multiple nodes to take advantage of the additional computing resource, by

taking the distributed transactions overhead into consideration. Depending on the

memory size of the nodes, the partitions’ size is chosen to fit as much as possible into

the memory. The partitions are cut equally based on 2 criteria: their data size or access

frequency on the data. At high level, the workload traces are collected, and subsequently

the SQL and tables involved in the workloads are mined and analyzed. Based on the

analysis on the where clause and access frequency, the data in single or joint tables is

partitioned as shown in figure 2.35.

102

Figure 2.35: The graph representation of partitioning activity. The nodes in the diagram are the

tables, while the greyed edges denotes the transactions, with the weightage implies the frequency of

the transactions. Adapted from (Curino et al., 2010)

Even though the authors never envisaged cloud hosting in their proposal, their

suggested partitioning and replicating algorithms are very useful for hosting of large

databases with intensive I/O in cloud, particularly in Public Cloud. Furthermore, many

Parallel Database architectures already have the partitioning option built-in; hence it is

not necessary to reinventing the partitioning technology. It is believe that these

replication and partitioning mechanisms will become popular in tandem with Public

Cloud hosting for database operations.

Table 2.4: Summary of studied researches with critical comment on sub-themes ‘statistical

modeling and workload characterization’.

Scholars contribution comment

(Y. P. Chen et al., 2011)

Explained the importance in

merging both statistical analysis

and system design.

As replaying the full workload in the

system is not viable for mission-critical

applications, a robust monitoring

mechanism ensures that all aspects in

the critical workloads are controlled,

with performance remediation or

improvement set in perspective.

(Y. P. Chen, May 2012) Detailed into benchmarking effort

currently available.

A more accurate way for performance

evaluations is using realistic workloads

as the input.

103

(Mateen et al., 2011) Proposed autonomic workload

management that encompasses

self-optimization, self-

configuration, self-inspection, self-

prediction, self-organization and

self-adoption.

Workload processing involves

aggressive pattern of memory

consumption. The autonomic workload

characterization should allow for co-

location of other important non-

database operations in the host.

(Raicu et al., 2008) Developed a resource provisioning

and task dissemination system.

The paper discovered that the number

of nodes in the distributed computing

should be controlled. Vertical scaling

should be considered instead of

unnecessarily spanning the resource

horizontally.

(Curino et al., 2010) Proposed an algorithm to partition

and replicate the database so that

workloads can reside in minimum

number of nodes to reduce the

overhead of distributed

transactions.

Even though the authors never

envisaged cloud hosting in their

proposal, their suggested partitioning

and replicating algorithms are very

useful for hosting of large databases

with intensive I/O in cloud, particularly

in Public Cloud.

2.5 Resource utilization optimization

In the topic of optimization in virtualized environments, Beloglazov et al. (2012)

outlined 5 challenges which need to be overcome in order for the efficiency of resource

utilization in cloud computing to achieve the next milestone. They are:

1) Optimization of VM Placement. This is also called VM migration in some

literatures. It is the eventual outcome of resource scheduling algorithm, where the

content in a VM is migrated to another VM in order to take advantage of larger and

smaller sized hardware. The former will benefit the quest for additional resources to

process heavier and more complex workloads. The latter is beneficial in the case

where idle resources can be sent back to the resource pool, hence achieving saving

in operational cost and reducing carbon footprints. The frequency of VM Placement

should be reduced as much as possible to avoid hindrance to normal users’

operations and lower the overhead of the migration activities. Hence, the research

challenges here are:

 How to predict peak usage of the application.

104

 When and where to migrate the VM to, considering heterogeneity of the

virtualized hardware.

 How to reduce the VM migration duration across large-scale systems.

2) Optimization on the virtualized network. In cloud computing, VM and hardware

clusters are connected via a huge network topology. The storage component for a

database is usually segregated from the computing nodes. Nevertheless, both the

data and computing elements are tightly coupled in order to complete the database

transactions. When the VM migration takes place, the distance between the

computing and data nodes might differ from the original configuration, resulting in

the changes in communication latency between these 2 components. The response

time from particular transactions can greatly differ due to this factor. Hence the

challenge here is to ensure that the resource scheduling algorithm can guarantee

similar or shorter distance of network links between the SAN storage and the

computing nodes.

3) Optimization on the thermal states and cooling system in the cloud data center. The

purpose of optimization is to reduce the capital and operational costs. Overheating

of computing hardware can greatly increase the electricity usage in the data center,

hence affecting the bottom line of the business. Michael Bell, the research VP of

Gartner Inc. quoted that “Power and cooling is a pandemic in the world of the data

center”(Botelho, 2007). Such is the extent of how much the cost to control the heat

in data center is hitting the revenue. To reduce this wastage, overheated hardware

needs to be shut off. Hence, besides setting resource threshold to safeguard the VM

performance, thermal management is needed, which requires the setting of

temperature threshold coupled with robust monitoring in the underlying hardware.

When the hardware is presumed overheated, the VM placement algorithm is

105

triggered. To decide this threshold is a challenge which is not studied in length in

the literatures.

4) Optimization on workload consolidation. Multiple workloads should be

consolidated to make full use of the available VM. For instance, if the CPU and

memory utilization thresholds for a particular VM are set to 70%, it is normally

difficult to have one workload that can consume all these resources. For example,

multiple applications that serve the OLTP type of transactions can use up the CPU

cycle, but they are not I/O intensive operations. In this case, data analytical

transactions that consume a lot of I/O can be mixed into the VM so that the memory

component can be utilized. The challenge here is to identify which workload to

combine to which, in order to achieve the ideal resource usage optimization.

5) Achieving the equilibrium of conforming to SLA and maximizing resource

utilization. A lot of the past literatures dealt with the task and resource scheduling

algorithms that are focusing on achieving optimization in resource usage. However

recent papers (Fito, Goiri, & Guitart, 2010; Iqbal et al., 2010) started to realize the

importance of combining the SLA factor into these algorithms, as the business can

only profit if their clients are satisfied with the service offerings. Hence the

challenge is to discover the ideal point where both SLA conformance and saving in

operational cost are meeting the expectation.

Some of the optimization methods, particularly task and resource scheduling are

discussed in length in the earlier section. Apart from optimization in resource

utilization, this section also details into fault analysis to discover future failure. This

topic is important as optimization cannot be achieved with faulty hardware in the

systems. In fact, all the 5 challenges outlined above need the hardware to perform to its

optimal condition in order for subsequent feasible analysis and improvement to take

place.

106

2.5.1 Fault analysis and failure prediction

Future prediction of workload and resource requirements has been discussed in previous

section. In this section, the prediction on system state is of interest. This topic attempts

to find out the condition in the VM, if the environment is conducive for critical

transactions processing, by ensuring consistency and optimality on the hardware

resource performance. The hardware failure is commonly a result from hardware wear

out, deterioration in the hardware material, malfunction of the hardware components or

any combination of these 3 culprits. Such occurrence in the VM will result in failure to

achieve desired computing capacity to service the needed transactions. In cases where

mission critical applications are required to be processed, such fault and failure in the

hardware could result in the breach of SLA. Before further explanation is provided, the

terms fault and failure need to be defined to ease the interpretation of system state.

Fault is the hypothetical assumption that the system is going to fail, and it could remain

dormant for a while before it causes the failure. While Failure is the event where the

observed services in the VM do not meet the desired computing condition promised in

the initial stage of hardware provisioning.

This section discusses the researches studied by scholars in discovering the fault and

predicting failure occurrence, hence achieving minimum outages to the intended

operations in the hosts, by ensuring remediation actions are taken as soon as possible.

The fault analysis on the hardware condition usually involves following efforts:

1) To monitor the hardware performance periodically. Such monitoring involves

capturing substantiated historical data of the system performance into a repository.

2) To understand the sources and logics that lead to the undesired event/state. In order

to provide for such understanding, the undesired condition in the VM needs to be

defined.

107

3) To create a baseline state in the VM, when the performance is at expected level.

Such baseline will be compared to running condition during steady state operations.

4) Make reference on benchmarks established by scholars and industrial players, in

order to understand and compare the performance standard of similar systems in the

industry to the VM’s performance.

The caveat to the effectiveness in the many proposals and solutions to fault analysis and

failure prediction is that human error is not taken into account in composing such

mechanisms. The following describes such mechanisms.

Salfner et al. (2010) conducted detailed survey on computer system failure prediction

methods. They studied on online failure prediction, a term that describes the assessment

of current system state during runtime of the computing hosts. Such prediction allows

for decision to be made if there indeed is going to be a failure, based on short-term

assessment, which is confined to within few minutes to an hour before actual failure.

The quality and confidence level of prediction provide to the functions of the different

categories of actions to be performed. For instance, less confidence prediction outcome

may warrant just a system reboot, whereas a high confidence prediction may result in

extensive system diagnostic or part replacement. The data sets are trained, validated and

projected to estimate the useful information. In order for the proposed online failure

prediction to produce high quality outputs, the time relations of before, current and

future state of the system are planned and defined precisely. Figure 2.36 illustrates time

relations for typical online prediction methods. t is the current time. ∆td denotes the

duration when the system is accessed. From this assessment, the prediction mechanisms

anticipate that the system will have potential occurrence of a failure in ∆tl. Another

parameter, ∆tw represents the minimal warning time before failure. The prediction is

having an interval of ∆tp for it to be valid. To gauge the quality of failure prediction

algorithms, 4 metrics are defined; they are true positive (TP), false positive (FP), false

108

negative (FN) and true negative (TN). TP happens when failure occurs within the

prediction period, with warning raised in prior. FP denotes the situation where failure

does not occur, but warning is raised. If the prediction system fails to notify on a true

failure, FN flag is raised. In TN, no failure and no warning is given. These 4 metrics are

used to determine the accuracy of the predictors. The prediction system comprises of 3

types of data sets: training, validation and testing data sets. Training data sets are the

data, either from real transactions or synthetic data that is used to simulate the optimized

condition in the VM. Validation data sets are derived from the training data, where it

contains the baseline configuration regarding the desired condition in the VM. Testing

data sets are the data that is used for subsequent test in the VM, and they are compared

to the validation or training data sets to determine the hardware states.

Figure 2.36: Time relations in online failure prediction. Adapted from (Salfner et al., 2010).

As the spectrum of online failure prediction is wide, Salfner et al. (2010) created a

taxonomy to organize the structure of various approaches proposed by scholars. 4 main

categories have been identified which are related to this research; they are briefly

explained below.

 Category 1: Failure tracking. The potential failure in the future is predicted based on

past failure which occurred on the same system.

 Category 2: Symptom Monitoring. Such failure prediction draws its input from the

behavior of the system components, for example memory leaks, unusual high CPU

usage, exceptionally high I/O etc.

109

 Category 3: Detected Error Reporting. This failure prediction methods deal with

data from event-driven algorithms. For instance, the administrator can decide for a

particular transaction, if the response time breaches certain threshold for x duration,

the future failure is likely to happen.

 Category 4: Undetected Error Auditing. This is different from category 3, as the

methods employed here aggressively scan the system for potential abnormality,

instead of targeting certain parameters.

The resource optimization proposals in this thesis draw the motivation from the first 3

categories. The relevance of these structured methods in this taxonomy, to the proposals

suggested in the thesis is exhibited below.

From category 1, the Regression and Machine Learning are the 2 techniques employed

in the thesis’s proposals. Figure 2.37 illustrates the way these 2 methods are utilized to

determine the potential failure. The failure-prone and non-failure areas are determined

after discounting the outliers and illegitimate data points, which are explained in

subsequent chapters.

110

Figure 2.37: Online failure prediction method based on classification of system variable

observations. Such observations from the authors are translated by the proposals in this thesis, as

shown in the bottom figure. To arrive at the fitted regression line, both Regression and Machine

Learning techniques are utilized. Adapted from (Salfner et al., 2010).

In Category 2, the methods in the taxonomy that are relevant to the proposed

mechanism in this thesis are Fuzzy Classifiers and graph models, as in figure 2.38.

Fuzzy computing with words (Zadeh, 1996) method is employed here to segregate and

classify the observed patterns for failure prediction.

Figure 2.38: Online failure prediction method based on pattern recognition. Fuzzy Computing with

Words (Zadeh, 1996) method is employed by the proposals in the thesis to classify the different

patterns in failure prediction. Adapted from (Salfner et al., 2010).

The graph-models as illustrated in figure 2.37, is generated by the mechanisms as

depicted in figure 2.39. The measurement values are obtained from the training and

111

validation data sets, and subsequent comparisons are made between the testing data sets

with the validation data sets.

Figure 2.39: Online failure prediction method based on system models. The graph-models is

categorized in this category. Adapted from (Salfner et al., 2010).

There is a time difference between the online failure prediction topics discussed by the

authors and the proposals in this thesis. The authors envisaged that the prediction

duration to actual failure for their discussed methods should be within few minutes to an

hour. However this timeframe to predict future failure is longer for the failure prediction

mechanisms proposed in this thesis, which could range from few hours to few days.

This is because the results from the proposed graph models are sensitive to

abnormalities; hence it can detect faults much earlier and allow for longer time-to-

remediation solutions.

In the same topic, Gainaru et al. (2012) combined signal analysis concepts with data

mining techniques (Teh, 2006) for the OS event log analysis to achieve the same

objective of analyzing faults in the systems before failure. Signal analysis allows the

characterization of the events that affect the systems. In this context, the normal

behavior of a system is described and employed as baseline to subsequent collected

traces. Then, Data Mining technique is engaged to extract the patterns in the collected

data sets, search for correlations in the suspected events log and provide an adaptive

forecasting method to predict the failures. The authors’ proposal is depicted in figure

2.40. The normal signals are gathered and filtered. Instead of filtering out the outliers,

112

they are instead retained, and normal signals are gotten rid of. Subsequently the analysis

is performed in the outliers, by scrutinizing on the outliers’ pattern. In general, the

authors found out that the longer the duration between outliers, the lower the chances

for similarity, which lowers the ‘confidence’ level of the sequence of event. Such

observation is exhibited in figure 2.40. In the diagram, the initial 4 outliers are almost

having the same distance measurement. However the last outlier, which has a time lag

much greater than the earlier outliers, is measured differently in its distance, hence is

having lower confidence level of 68%.

Figure 2.40: Fault detection strategy that filters out the normal signals, and leaves the outliers for

analysis. Adapted from (Gainaru et al., 2012).

The probability of hardware component failure increases as the number of systems and

hosts grows. Hardware component failure is the norm rather than an exception in cloud

environments (Vishwanath & Nagappan, 2010). To compute the reliability level of

particular cloud data center, Vishwanath et al. (2010) studied on failure trend on

hardware components, data centers and hardware manufacturers. From hardware

perspective, they found out that the component that is most vulnerable to failure is the

hard disks. Using the data gathered and mined from 100,000 servers in a large data

center, it is discovered that the annual failure rate (AFR) of the hard disks is about

2.7%, followed by memory module at 0.1%. Thus, the disks failure is the dominant

issue in affecting hardware performance. However the type of hard disks, whether it is

of SAS or SATA type does not have effect on the failure potential. Even though the

price difference between these 2 classes of product is wide, the reliability characteristic

113

between them cannot be ascertained. The authors also uncovered that the age of the

machines or any hardware components does not have correlation to the failure

opportunity. The same is true for the configuration of the servers, location of servers in

a rack and the type of workloads run on the servers; none of these contributes to the

failure potential. However, the gathered data reveals that there is a failure correlation in

the machines that have experienced failure in the past, that the chances for failure are

higher in the machines that failed before, as compared to the machines of the same

configuration but have not encountered any breakdown in prior. In addition, the location

of the data centers and manufacturers of the hardware are having effects on the

possibility of failure.

Table 2.5: Summary of studied researches with critical comment on sub-theme ‘fault analysis and

failure prediction’.

Scholars contribution comment

(A. Beloglazov et al.,

2012)

Outlined 5 challenges to increase

efficiency of resource utilization:

1) Optimization of VM Placement

2) Optimization on the virtualized

network

3) Optimization on the thermal states

and cooling system in the cloud data

center

4) Optimization on workload

consolidation

5) Achieving the equilibrium of

conforming to SLA and maximizing

resource utilization

Optimization in hardware

performance is virtue, as with the

other optimization criterions.

(Salfner et al., 2010) Conducted detailed survey on

computer system failure prediction

methods.

The authors' focus in on short term

assessment. The studied methods

may be applied for longer term

prediction.

(Gainaru et al., 2012) Combined signal analysis concepts

with data mining techniques on the OS

event log to analyze faults.

The interesting method is that the

analysis is performed in the

outliers, by scrutinizing on the

outliers’ pattern.

(Vishwanath &

Nagappan, 2010)

Studied on failure trend on the

hardware components, data centers and

hardware manufacturers.

The research discovered that the

disks failure is the dominant issue

in affecting hardware performance.

114

2.5.2 Resource utilization optimization models

In this section, the maximization of resource usage is discussed. The resource utilization

rate in traditional servers in general is only about 8 – 10% (Gmach et al., 2008). Such

utilization percentage is deemed wasteful, and affects the bottom-line of the application

service offerings. However, this kind of server configuration is unavoidable, as the

architecture of the system needs to consider burstiness in resource requirement.

Particularly in mission critical situation, such configuration is important to ensure

critical transactions can be processed without resource constraint. However, as

mentioned earlier in the chapter, virtualization is addressing this resource optimization

issue with the capability of VM placement, workload migration together with horizontal

and vertical scaling of resources. To maximize the usage of the allocated resources,

following studies have been conducted by scholars.

 Task scheduling 2.5.2.1

To ensure optimization of resource utilization, efficient task scheduling is an important

component in cloud computing. Task scheduling is also called job scheduling by some

researchers. Here, the name of such mechanism is generalized to tasks scheduling. At

high level, task scheduling involves the process to map particular set of tasks to

available resources in the virtualized server cluster. Such mechanism is more suitable

for web applications; however it is envisaged to benefit database operations in the near

future. In RDBMS world, such scheduling mechanism is already made possible by

Oracle, where job can be executed in any node which is part of the Oracle Real

Application Cluster (RAC) (Oracle_RAC, 2013). However, such architecture is much

different than available database hosting in cloud, as Oracle RAC requires

homogeneous hardware in the RAC configuration. Nevertheless, it is believed that task

scheduling paradigm will become viable in cloud in the very near future, as the

segregation in the layers of computing and data nodes becomes more transparent. The

115

recent introduction of Oracle 12c has made available the pay-per-use licensing concept.

Such facility will encourage aggressive task scheduling for database transactions very

soon.

Jangra et al. (2013) provided a definition on tasks scheduling. Basically 3 steps are

involved:

1) The broker discovers the available resources in the provisioned pool of VM,

together with the detailed information regarding the percentile availability of these

resources.

2) Tasks are mapped to the appropriate resources. This step is the most studied area by

scholars, where efficient mapping of task-resource ensure optimization of hardware

usage.

3) Tasks are assigned to the resource slice based on decision in step #2.

The challenges of task scheduling in cloud environment are mainly due to the high

heterogeneity of computing resources, as well as high heterogeneity in the arriving jobs

(Xhafa & Abraham, 2010). In their paper, Xhafa et al. (2010) proposed heuristic and

meta-heuristic methods to address the requirement for good quality task scheduling

mechanism. Their works focused on Grid computing. As Grid computing is a type of

distributed computing, some of the discoveries in the paper can be assimilated in cloud

environment. For instance, the heuristic method to determine the utilization of resources

for particular job can be defined as

avg_exec_time(job A) =
∑

,

where n is the total execution of job A in the particular VM.

In the virtualized cluster, job A could have been scheduled to various VM. The

scheduling algorithm for new job can be of FIFO type, as typified in (Xhafa &

116

Abraham, 2010). Subsequently when the same job is run more frequently, more

sophisticated scheduling can take place. If the job had run in m number of VM in the

cluster, the execution time of job A can be arranged in an array, in the ascending order

of execution time, such that the execution time of job A, EA ={(e1,VM1),(e2,VM2),…, (

em,VMm)}. Thus, the scheduling priority will be from VM1 to VMm. There are still a

number of considerations, for example the condition in the VM at particular scheduling

time, other scheduled jobs in the VM, threshold in the VM etc. Such scheduling

mechanism for database transactions will be researched in the future works, not

included in this thesis. These research works will address the heterogeneity of the

resources and tasks.

In order to maximize profit from application service offerings, Li et al. (2010) proposed

an optimization method to choose the VM where the tasks are to be scheduled. They

applied the Grobner bases theory to solve the stochastic integer programming, which is

a type of optimization programming method similar to linear programming proposed in

this thesis. Figure 2.41 illustrates their envisaged scheme. The ‘Abstract service’

denotes a functionality that is similar to partitioned workload in a business process,

which is independent in nature and can be allocated to particular VM for processing.

The resource-i-j represents the VM slices. Each resource-i-j has certain capability that

is capable of producing x amount of throughput with y amount of latency, at the expense

of z cost. With a p probability of SLA fulfillment by each resource-i-j, the challenge is

hence to find the most cost effective resource-i-j that can meet the required SLA. The

proposal looks perfect in the ideal world. However the problems observed here are:

1) How to provision the standby resource-i-j to service the ‘abstract service’.

2) How to arrive at the probability distribution of QoS, q in the figure for each VM for

each ‘abstract service’.

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets

117

3) How to calculate the latency and throughput with the q percentile.

The above 3 questions were not detailed in the paper. The authors’ proposal is

incomplete. However the idea of employing the optimization algorithms once these

parameters can be discovered is very exciting.

Figure 2.41: Task scheduling problem, with standby VM to service the ‘abstract services’. The goal

is to find the VM that is most cost effective in serving these ‘abstract services’, at the same time

complying with the required SLA. Adapted from (Q. Li & Guo, 2010)

In the same topic of maximizing resource utilization, Hsu, Chen, and Park (2008)

proposed a task scheduling method called Extended Smallest Communication Ratio

(ESCR) for grid computing environment, which is also applicable to other distributed

systems, especially cloud. In their proposal as depicted in figure 2.42, there is a master

server serving as the “broker” to disperse tasks to various nodes in the cluster. This

broker functions similar to load balancer in conventional web service architecture.

However the difference is that this broker considers more parameters in deciding which

nodes to send the tasks to. Moreover, instead of a single node, the tasks can be sent to a

cluster of nodes.

The tasks are sent to the nodes to be processed, based on the availability of the CPU

resource, as shown in figure 2.43. The authors claimed that their proposed ESCR

resource allocation algorithm is able to optimize the CPU resource by minimizing the

‘idle’ time as much as possible. Lin, Liang, Wang, and Buyya (2012) improved the task

118

scheduling methods by incorporating network bandwidth into consideration in

determining the VM resource state. The authors claimed the novelty here, that the

resource depiction only from CPU and memory perspective is deemed insufficient.

They employed the nonlinear programming to solve the task distribution problem, via

heuristic approach. The authors also considered the scheduling problem as NP-

complete.

Figure 2.42: Task scheduling system. The C1, C2, C3 and C4 denote the nodes where tasks are to be

processed. β1, β2, β3 and β4 are the criterions that help the broker to disperse the tasks. Adapted

from (Hsu et al., 2008).

Figure 2.43: ESCR task allocation algorithm. P1, P2, P3 and P4 are the processors where tasks are

processed. The initial delays (4, 13 and 25 units of time) are caused by the communication issue due

to the distance between the broker and the nodes. In this diagram, the deadline to complete the

tasks is set to 200 units of time. Adapted from (Hsu et al., 2008).

119

Table 2.6: Summary of studied researches with critical comment on sub-theme ‘task scheduling’.

Scholars Contribution Comment

(Xhafa & Abraham,

2010)

Proposed heuristic and meta-

heuristic methods to address

the requirement for good

quality task scheduling

mechanism.

Apart from execution time criteria, there are

other considerations, for instance the

condition in the VM at particular scheduling

time, other scheduled jobs in the VM,

threshold in the VM etc.

(Q. Li & Guo, 2010) Proposed an optimization

method to choose the VM

where the tasks are to be

scheduled.

Some shortcomings not covered in the paper

are:

1) How to provision the standby resource-i-j

to service the ‘abstract service’.

2) How to arrive at the probability

distribution of QoS, q in the figure for each

VM for each ‘abstract service’.

3) How to calculate the latency and

throughput with the q percentile.

(Hsu et al., 2008) Proposed a task scheduling

method called Extended

Smallest Communication

Ratio (ESCR).

The resource allocation mechanism is

translated to resource management in 1 VM,

which is illustrated in subsequent section for

future research.

(Lin et al., 2012) Incorporated network

bandwidth in scheduling

problem.

The authors did not detail the complexity of

combining CPU, memory and network

bandwidth variables in the scheduling

problem. Potentially such aggregation of

input to depict the VM’s resource state can

boost the accuracy of the task scheduling

problem.

The above resource allocation mechanism can be translated to resource management in

1 VM. The following mechanism is envisaged for future work in optimizing the

resource utilization in particular VM, especially on CPU cycle. It will be detailed and

refined in future publication of journal paper.

Proposal to optimize resource utilization – a high level view for future research

During the steady-state database operation in a VM, the interest is to find out resource

utilization pattern by the database processes. In particular time interval, histogram is

employed to record the resource utilization. The samples of SQL processing time, S and

server load, C are gathered at 5 minutes interval. Subsequently 1 dataset is defined as

120

sample of data points collected in 3 hours timeframe, T. Hence there are 36 data points

for analysis. The choice of 3 hours duration is also due to the fact that it can

comfortably accommodate most long running data analytical processes in entirety.

However this timeframe can be varied as needed. In real world production mode, this

frequency of data collection can be adjusted to accommodate the allowable overhead in

the system, for instance, 1-minute or 2-minute interval. This increase of sample

collection frequency can produce more accurate results for analysis as the visibility into

the resource condition in the VM is increased.

Data analytical processes, unlike OLTP processes, often can be adjusted to fit into

timeframe where the processes can run best without hindrance from resource constraint

or OS noises. The activities in each time slot are presented by first defining some

parameters as follows:

Di = Day of the week when the datasets are collected. i represents values from 1 to 7,

denoting 7 days in a week.

Tj =3-hour time-block in Di. j represents values from 1 to 8, denoting 8 blocks of test

duration in a day.

dj = Dataset where samples are contained.

Ck = 1-minute average server load at particular point in time in Tj. k represents values

from 1 to 36, as there are 36 data points in 1 dataset.

Sk = total SQL Elapsed time in the database at particular point in time in Tj.

ST = Corresponding SQL Elapsed time at CT.

121

S
^

h = 70
th

 percentile SQL Processing time (C. H. Tan & Teh, 2013a), measured from 0 to

ST.

Ch = Corresponding server load at S
^

h.

Using Fuzzy Computing with Words to characterize the relationship (Zadeh, 1996):

 If a lot of data samples exceeds server load, Ch OR many occurrence of

database processes holding Sk > Total SQL Processing time, S
^

h for more than q

minutes, the test block, Tj is busy with database processes.

 If Tj is busy with database processes, additional database processes cannot be

scheduled in the timeframe.

To explain the logic, additional 3 parameters are introduced, m, n and q. So If m

percentile of data samples exceeds server load, Ch OR more than n occurrences of

database processes holding Sk > Total SQL Elapsed time, S
^

h for more than q minutes,

the test block, Tj is busy with database processes. Assume, Ch =4.4, m=20, p =0.8, n=2

and q=10 in the explanation here. If 20% of data samples exceeds Ch, OR with more

than 2 occurrences of continuous data processing hold Total SQL processing time, Sk >

S
^

h for more than 10 minutes, Tj is deemed busy and not suitable for additional

scheduling of database jobs. Else more database maintenance jobs can be added to Tj.

122

Figure 2.44: Proposed resource optimization by introducing more efficient task scheduling in a

particular VM. This proposal is to be refined in subsequent journal paper.

Figure 2.44 shows the server load status in the VM for a dataset d1 in T1. As depicted,

there are 2 continuous-10-minute high resource utilization blocks in the dataset. The

data points at C5, C6 & C7 and C25, C26 & C27 are running maintenance jobs that

constantly hitting the VM for more than 10 minutes over the boundary of Ch.

Figure 2.45: Server busyness using server load limit as gauge.

Figure 2.45 shows the ‘busyness’ of the VM in T1. 6 out of 36 data points are beyond the

red line. Hence as < 20% of data points are > Ch, the condition is also not met to deem

T1 as busy. The theory thereon allows more database maintenance jobs to be scheduled

in T1. As illustrated in Figure 2.45, the server load, C has been grouped into classes, and

the height of each bar indicates the density of the data points collected in the Workload

Repository. Values which fall on a boundary are counted in the upper class. The width

123

of the bar is the same, and they are chosen to reveal the resource utilization in that

duration.

The above task allocation proposal in a single VM is simplistic; however a successful

implementation of such mechanism can greatly increase the utilization rate of hardware

resources in the virtual environment, thus achieving great saving in capital and

operational costs.

 Auction-based resource scheduling 2.5.2.2

Optimization can be achieved from another aspect in cloud. Wang et al. (2013)

proposed a way to allocate resources to the cloud consumers, via a reverse auction

based mechanism. In such scenario, it is assumed that the providers are having limited

resources to be allocated, which is rarely the case for today’s commercial cloud

providers. However if resources are to be sourced from the smaller providers with

consumers rallying to take advantage of the cheaper offering from such providers, this

Auction-based allocation mechanism will be beneficial. The model works, starting with

the potential clients tender their resource requests to the providers. Such requests will

contain the information of needed Quality of Service (QoS) and amount of resource

blocks. These requests are delivered to multiple providers, which in return will establish

the associated cost with the tendered requests. This costing information will be

submitted to an intermediary broker (IB), who will make decision, on which clients to

get how much of the resources. The authors proposed to utilize the Vogel's

Approximation Method (VAM) (VAM, 2013) to optimize the resource allocation

problem at the stage when the allocation is to be made by the IB. They didn’t detail how

the VAM can be deployed for such allocation mechanism, however the provisioning

algorithm can be envisage as follows. In figure 2.46, the blue cells denote the cost of

providing the resources from the providers. In deriving this cost structure, the providers

124

will decide based on the QoS and amount of resources needed by the clients, plus any

other criterions deemed essential by the providers for particular clients. The green cells

contain the resource slices owned by each provider, which are readily to be sold to

potential consumers. The purple cells show the resource requirements from each client.

Figure 2.46: Optimization for supply and demand Auction-based resource allocation. The

optimization is to be conducted by an intermediary broker based on the information in this table.

The next step is to apply the VAM to the table’s information. In this algorithm, the

supply and demand amount must be added up to have the same values. If they are not

the same, then a dummy consumer or provider will need to be added to the table, as in

figure 2.47. In this case the demand is greater than the supply; hence the clients’

requirement cannot be fulfilled in total. However the consequence of such scenario is

not to be discussed here.

Figure 2.47: First step in the VAM optimization. The red cell indicates the highest value derived by

comparing the values of differentiation between the lowest 2 cells’ values in each row and column.

The yellow cell is the identified cell to have maximum resource allocation into it.

125

The VAM computation is to be carried out in following steps:

1) The difference in value between the lowest 2 cells in all columns and rows,

excluding the dummy’s, is to be computed.

2) The values in step #1 are compared, and the highest value is to be identified.

3) With the value obtained from step #2, the cell that has the lowest value in the row or

column associated with the highest value as per step #2 is to be allocated with

maximum possible resources. If there are same computed values in step #2, the row

or column can be arbitrarily chosen.

4) Step 2 and 3 are repeated. If any row or column has the supply and requirement

value maximized, the other cell in the row or column is marked ‘x’, as in figure

2.48.

5) The optimization steps are complete when all the cells contain either the allocated

resources or ‘x’ value.

Figure 2.48: The supply of resources from provider 2 has been allocated in full to consumer 2. The

other consumers will not get any more resource from this provider, hence their cells are marked

‘x’.

The rest of the optimization steps are depicted in Appendix A. The end result is an

allocation as shown in figure 2.49. With this result, the intermediary broker achieves its

objective to optimize the resource allocation based on the best pricing that can be

offered by the providers together with the quality and quantity of demand from the

clients.

126

Figure 2.49: The green colored cells indicate the resource allocation by the providers to each

consumer.

A similar Auction-based resource allocation mechanism is proposed by Buyya et al.

(2009). The authors quoted that the hurdle to universal embracement of such Auction-

based system is the non-standard interfaces which are needed by the consumers to

migrate their applications. Due to this issue, it is difficult for the consumers to interact

with each provider to discover the best pricing and services that are offered by the

providers. Realizing this shortcoming, the authors proposed Meta-Negotiation

Middleware (MNM), which is a prototype to enable global exchange of cloud services.

The objective is to ease the interpretation of services provided by each cloud provider.

As depicted in figure 2.50, the consumer sends the request for resource to the MNM, so

that the information can be ‘normalized’ to fit the interface standard of particular

provider. The provider will take the input from the received translated information from

MNM, process and submit the pricing and service offering to the potential client. In

such model, the consumer will initiate multiple negotiation sessions with many

providers, by tagging along the MNM agent. Eventually the consumer will choose the

best offer in the market based on the feedback received from various providers.

127

Figure 2.50: Negotiation of services and pricing between the consumer and cloud provider. The

Meta-Negotiation Middleware translates the information for the consumer to arrive at the best

market offer. Adapted from (Buyya et al., 2009)

An et al. (2010) considered the uncertainty in the negotiation process between the

consumers and providers. During the negotiation stage, a particular consumer can bid

for resources from multiple providers. However, the consumer can only consume a

finite number of resources offered by 1 or more providers, but it cannot take on the

amount of resource beyond what is needed for the application. At the same time, a

provider may receive multiple resource requests from consumers. The provider can only

offer resources to the potential clients with the resources it has on hand. In such

scenarios, the authors proposed a mechanism for the consumer to quickly decommit or

cancel the agreement entered with a provider, by paying a certain amount of penalty,

when a late but more favorable offer is offered by another provider. The same

mechanism is applied for the provider, where it can cancel a deal entered with a client

when a higher bid for resource is tendered by another client. An agent is envisaged to

detail out the decommitment and cancelation of such agreements. Figure 2.51 shows the

high level explanation of the prototype.

128

Figure 2.51: The negotiation process for finite state of buyer’s request and provider’s resources.

The agent is engaged to negotiate, confirm, decommit or cancel the deal. Adapted from (An et al.,

2010)

From commercial perspective, a lot of companies are engaging cloud billing company,

for example Aria Systems (Aria, 2013) to automate the billing management of rapid

changes in the resource allocation. Such systems can be altered to accommodate the

Auction-based mechanism, both from providers and consumers. With such systems in

place the focus is shifted towards generating the most efficient supply-and-demand

pricing procedure.

The Auction-based resource allocation optimizes the resource provisioning mechanism

in the Public Cloud environment. The future database operations can make use of such

model to ensure reduction in capital and operational cost, particularly from cloud

bursting. The studied literatures provide a fundamental idea how the resources can be

provisioned from the Public Cloud vendors in the most optimal manner, from the

perspective of costing and service offering.

Table 2.7: Summary of studied researches with critical comment on sub-theme ‘Auction-based

resource scheduling’.

Scholars Contribution Comment

(Wang et al., 2013) Proposed a way to allocate

resources to the cloud consumers,

via a reverse Auction-based

mechanism.

It is assumed that the providers are

having limited resources to be

allocated, which is rarely the case for

today’s commercial cloud providers.

However it is beneficial for smaller

cloud providers.

129

(Buyya et al., 2009) Quoted that the hurdle to universal

embracement of Auction-based

resource allocation system is the

non-standard interfaces which are

needed by the consumers to

migrate their applications.

Proposed Meta-Negotiation

Middleware (MNM), to enable

global exchange of cloud services.

The introduced middleware needs to be

embraced by all cloud providers in

order to serve its purpose.

(An et al., 2010) Considered the uncertainty in the

negotiation process between the

consumers and providers.

The introduced agent-based system is

attractive in perform resource

negotiation.

 Resource brokering – the essence of cloud bursting 2.5.2.3

When the number of nodes in the VM or the duration of service time breaches a

threshold, the workload is sent to be processed by Public Cloud as the resource is more

reliable. Until this point in this chapter, the determination of resource adequacy is based

on threshold limit from operating system parameters, by taking feedback from end users

or administrators. Nevertheless, these inputs are often not accurate as human

interpretation of the resource requirement tends to be overblown. Hence, scholars have

conducted studies in resource planning by analyzing the real or synthetic workloads.

The notable method frequently studied is autonomous resource brokering. Even though

Private Cloud is the focus in this survey, this resource brokering in Hybrid Cloud is also

studied as this technology has matured in Grid platform, which will eventually benefit

the cloud deployment. IT infrastructure has evolved in the way Cloud is being utilized.

Instead of application hosting solely in public or Private Cloud, IT architects have

combined the hosting in both. This is to take advantage of the massive scalability and

cost overhead reduction, couple with more stabilized hardware in Public Cloud; whereas

some classified transactions can still be preserved to run in Private Cloud.

The predecessor to above cloud bursting brokering scheme is detailed in (Javadi,

Kondo, Vincent, & Anderson, 2011). Before the topic of cloud bursting is elaborated, it

130

will be interesting to take an insight on how the research evolved from the objective of

discovering availability and unavailability services in the host to resource brokering. In

this paper, Javadi et al. (2011) first examined the problem of discovering availability

and unavailability models for hosts running in a large distributed system. In this

particular study, the CPU component's state is measured instead of the entire system as

a whole. The traces for realistic scenarios are gathered via BOINC (Anderson, 2004),

which is a middleware for publicly volunteer distributed computing. The data collection

randomly identifies subsets of hosts whose availability have similar statistical properties

and can be modeled to other larger systems with similar probability distributions. The

test runs for close to 2-year duration and captures 57,800 years of CPU time and

102,416,434 continuous intervals of CPU availability in 230,000 hosts. From the data,

probability distributions are modeled from the hosts that have truly random availability

and unavailability intervals. To group and cluster the hosts based on their similar trace

distribution, two standard clustering methods are employed; they are k-means (Elkan,

2003) and Hierarchical clustering (Manning et al., 2009). These 2 clustering methods

have been discussed earlier in this chapter. The distance metric from Cramer-von Mises

(Laio, 2004) is found to be the more suitable distance measurement algorithm for the

host clustering effort by these 2 methods. Distance measurement using Cramér–von

Mises method can be explained as follows.

Consider a group of parametric criteria to measure the CPU availability, x1, x2, …, xn,

which is arranged in ascending order. The Cramér–von Mises statistic for this group of

value is

T =

+ ∑

− 𝐹

 ,

where,

n is the total number of samples.

131

xi is the i-th order in the smallest value in the sample.

F is the perceived distribution function of the host availability.

In this case, the distance measurement is provided by value T. If T is within a tabulated

value for a cluster, the xi can be grouped in 1 cluster. Subsequently the host clusters can

be aggregated via different value of T.

It is also found that combining availability and unavailability greatly reduce the

confidence and accuracy of the clustering methods; hence they are segregated during

clustering. After the clusters of hosts are determined, parameter fitting for various

distributions is conducted via the maximum likelihood estimation (MLE) (Myung,

2003). Goodness of fit (GOF) (Narsky, 2003) of the resulting distributions for each

cluster via standard probability-probability (PP) plots using a visual method or

quantitative metrics are subsequently carried out. It is found that Gamma distribution is

more suitably representing availability distribution, while unavailability distribution in

large distribution systems can generally by represented by hyper-exponential

distribution. With these 2 distributions plotted and the mean and variance values

obtained, the authors applied them into the resource brokering mechanism as described

below.

With these establishments of the distribution models, they are applied to the resource

brokering problem. Figure 2.52 depicts the resource brokering model envisaged by the

authors.

132

Figure 2.52: Resource brokering model envisaged by Javadi et al.. Adapted from (Javadi et al.,

2011).

In this context, a broker is responsible to route a series of incoming jobs to a set of

schedulers, one for n number of clusters, in order to service the requests. The scheduler

in turn dispatches the tasks to the providers within the cluster. The broker determines

which schedulers to send the workload requests to, by the possible completion time of

the jobs. This is the part where the availability and unavailability distributions play their

roles. They employed the probability distribution function (PDF) proposed by Kleinrock

et al. (1993) for job completion time in aggressive distribution systems to compute the

hypothetical job completion time, as input to determine which scheduler to send the

workloads to. The usage of availability and unavailability distributions in PDF is

depicted below:

The PDF of time t, with workload W and M processors,

√

 −

 ,

where,

 and

 .

The mean of the PDF, f
_

=

 =

, and the variance of the PDF,

133

In these formulas, the ta, tu,
 and

 are the means and variances of the availability

and unavailability distribution proposed by Javadi et al. (2011). Such resource brokering

proposal paves the way for further enhancement. In the above model, the computed job

completion time is fed to the broker for routing decision. From figure 2.52, the Cloud

Bursting phenomenon can be visualized. In this case the provider1 represents the

internal Private Cloud, whereas provider2 depicts the cluster in Public Cloud.

The authors further extended their works to include cost and performance aware

provisioning policy in (Javadi, Abawajy, & Buyya, 2012; Javadi, Thulasiraman, &

Buyya, 2012). The InterGrid gateway (IGG) as depicted in figure 2.53 is acting as the

broker in figure 2.52. It is responsible to route the request to either the public or Private

Clouds. In this case the users submit the requests to IGG, by providing the information

regarding the duration of the workload processing, the required VM to process the

workloads and the QoS of the required computing services. In addition to the brokering

service, the IGG is also capable of performing the scheduling algorithms, by interacting

with another IGG or Virtual Infrastructure engine (VIE). The VIE component is unique

for Private Cloud, as it is capable to start or shutdown the VM in the cluster as needed.

Figure 2.53 shows how workload request is sent for processing in this Hybrid Cloud

architecture. This architecture is designed and implemented by Cloudbus research group

(Costanzo, Assunção, & Buyya, 2009). The darker greyed text boxes in this figure

indicate the route taken for Public Cloud resource provisioning, while the lighter grey

boxes denote the Private Cloud route. Resource provisioning policies are built into this

model. Their inputs are either based on the workload model known beforehand or from

failure correlations established by Failure Trace Archive (FTA) (Kondo, Javadi, Iosup,

& Epema, 2010), in order to fulfill a common QoS requirement. The measurements are

established from deadline violation rate, job slowdown, and performance–cost

efficiency. When the number of nodes in the VM or the duration of servicing time

134

breaches a threshold, the workload is sent to be processed by Public Cloud as the

resource is more reliable, hence avoid job resume or restart scenarios due to spatial (Fu

& Xu, 2010; Gallet et al., 2010) or temporal correlation (Yigitbasi, Gallet, Kondo,

Iosup, & Epema, 2010) in hardware failure events. Spatial correlation denotes multiple

failures that happen in multiple nodes in the cluster within short timeframe. This

normally is caused by environmental factor, for instance the change in temperature in

the data center. Temporal correlation is the failures that occur by not adhering to

random order, where skewness in the distribution is observed over time.

Figure 2.53: Resource brokering model envisaged by Javadi et al., with cloud bursting mechanism

incorporated. Adapted from (Javadi, Thulasiraman, et al., 2012).

The computation of routing possibility, Pi by the broker to the providers, based on cost

and performance criteria of the resource providers, is exhibited by the authors via

mathematical models. To illustrate these mathematical models, figure 2.52 is made

reference in the following explanation.

The cost influence to the broker routing decision

To explain this, following sequence will bring reader to understand how the hosting cost

is affecting the routing path:

135

1) λ = job arrival rate from the users to the broker. Given I as the distribution of job

arriving at the broker, the mean of this distribution, E[I] = and variance,

V[I]=
 .

2) Furthermore, assume distribution of service time of queue i in provider i is Si, and

this distribution has the mean value, E[Si] =
 , and variance, CSi = σSi ∙ .

3) Another assumption needs to be made for distribution of arrival time of jobs in

queue i. The mean is given by E[Ii] =
 , with variance,

V[Ii] =

 , (1)

4) Assume Ki is the cost to be paid to the provider i for the usage of resource per unit

of time.

5) E[Ti] is the expect response time of the job serviced in queue i. The authors derived

this value as

E[Ti]=

+

, (2)

where
 is the square coefficient of variance on arrival time of jobs in queue i.

From equation (1),
 is derived as

 + Pi (
 −).

6) The objective function of the broker is to minimize the cost associated with the

services provided by the providers and the expected response time, so optimization

algorithm can be applied here. In mathematical form, it is to achieve

min∑

 , (3)

7) The authors applied the Lagrange multipliers method to optimize the broker’s

objective function in equation (3). From equation (2), they derived that the

optimized routing probability of jobs by the broker to the providers,

136

Pi =

−

∑

√

∑ √

 , (4)

where ηi=λ(
 + +

 −).

8) Hence, from equation (4), the broker routing decision is taking the cost charged by

the providers as a criterion.

The performance influence to the broker routing decision

From another perspective, the routing path can be guided by the performance model.

The authors employed the “Average Weighted Response Time”(AWRT) (Grimme,

Lepping, & Papaspyrou, 2008) and “bounded slowdown” (Feitelson, Rudolph,

Schwiegelshohn, Sevcik, & Wong, 1997) parameters. They computed that for N number

of requests, the AWRT is defined as the average time that the user must wait in order

for the request to be completely processed. Mathematically it is defined as

AWRT =
∑

∑

 , (5)

where,

dj is the run time of request j

vj is the number of VM requested by the user to service request j

ctj is the completion time of request j

stj is the submission time of request j.

The job slowdown is the total response time plus other overheads, for instance the

queuing in the provider end or delay in other component involved in the job scheduling.

It is defined as

Slowdown =

∑

 , (6)

137

where,

wj is the waiting time of request j

The bound is set to 10s to prevent short requests from hindering the parameter.

Both AWRT and “bounded slowdown” parameters are computed for each workload,

which are stored in a repository. When similar workloads are routed to the broker, it can

make the routing decision based on the historical result of the workload models. Hence

the goal of using performance metric to influence and optimize the job scheduling

mechanism is achieved.

Fito et al. (2010) studied on the economics of Hybrid Cloud. Their works focused on

web applications, and the benefit of cloud elasticity is expressed in monetary unit.

Figure 2.54 illustrates the components in a typical modern web hosting architecture that

makes use of cloud computing. In this depiction, the Cloud Hosting Provider (CHP)

denotes the VM which is readily available in the Public Cloud, whereas the Web

Hosting Provider (WHP) represents the in-house web servers. When WHP is

overloaded, the resource needs is ‘burst’ to CHP. The Web Service Monitoring (WSM)

monitors the resource utilization in the whole system, and it provides input to the

Scheduler to decide the routing of further tasks from the front end clients via the proxy

server.

138

Figure 2.54: Cloud Hosting Provider architecture envisaged by Fito et al. Such system will become

typical web hosting model in the very near future. Adapted from (Fito et al., 2010)

Most of the details in the components have been discussed in literature reviews in above

sections. The novelty of this paper is the study conducted to exhibit the monetary

benefit of using cloud services, compared to web hosting in static servers. Figure 2.55

illustrates such comparison. The monetary unit in the bottom figure is formulated by

considering the SLA violation cost versus hardware cost and the maintenance cost of

the hosting systems. The authors showed that cloud hosting outperforms the static

hosting in many orders of magnitude as shown in the bottom figure.

Figure 2.55: Revenue benefit in deploying Hybrid Cloud computing compared to static servers.

Adapted from (Fito et al., 2010)

139

All the discussed Hybrid Cloud computing in above literatures are studied on web

application domain. There is not any convincing literature that discusses such ‘burst’ of

resource to the Public Cloud in the Parallel Database domain. Nevertheless, with the

overcome of hurdles in security concerns and some limitations in the RDBMS

technology, such architecture will be very beneficial to the wide industry as it promises

optimization in hardware usage, which can significantly boost the bottom line of the

business by greatly reducing the IT spending on hardware.

In the proposals in this thesis, optimization is performed using the linear regression and

machine learning methods. Synthetic TPC-H queries are utilized to load the VM into

certain resource limit in the VM, and the relationship between the SQL processing

duration versus CPU run queue size is compared to the baseline data, to determine if the

hardware is performing to its best optimized condition.

With the performance assurance on the hardware, the subsequent section can

convincingly deal with the response time verification. In the next topic, resource

utilization affirmation is scrutinized, with the target to create stress-testing scenario in

the VM in order for critical transactions’ response time to be tested.

Table 2.8: Summary of studied researches with critical comment on sub-theme ‘resource brokering

– the essence of cloud bursting’.

Scholars Contribution Comment

(Javadi, Abawajy, et al.,

2012; Javadi,

Thulasiraman, et al.,

2012)

Proposed resource brokering that

includes cost and performance

aware provisioning policy.

Cloud Bursting phenomenon is

incorporated in the brokering model. The

proposal can be extended to Hybrid

Cloud model.

(Fito et al., 2010) Studied on the economics of

Hybrid Cloud, by focusing on

web applications. The benefit of

cloud elasticity is expressed in

monetary unit.

The envisaged Hybrid Cloud architecture

may potentially become typical web

hosting model, in view of the capability

of 'bursting' to Public Cloud, which

provides different hosting benefits as

compared to in-house hosts.

140

2.6 Resource utilization affirmation – stress testing

Stress testing, also known as performance testing, is one of the very important

components in application service offerings. Problems after the applications have gone

live and started serving the wide user base are rarely due to functionality issues. This

can be understood as any functionality bug would have been identified during the

construction phase. During steady state production, the most encountered issue is

performance degradation due to sudden surge in transaction volumes, or

uncharacterized usage patterns from the end users. When these happen, stress testing is

employed to re-verify the resource adequacy to accommodate such changes. Generally,

these deviations from predicted volume of transactions and changes in application usage

patterns are a norm rather than an exception. Hence the stress testing will be needed

frequently during the tenure of the application services.

2.6.1 Conventional stress testing

Commercially available load testing software, for instance HP Load Runner (HP, 2007),

Rational Performance Tester (IBM, 2013c) and Microsoft Visual Studio Ultimate

(Microsoft, 2013c) are capable of serving the industrial application performance

verification need. Undeniably, these load testing software are essential for the

operational continuity of the applications. However the performance modeling using

these tools are time consuming, and in most cases, not suitable for applications that have

gone live, as there are very few opportunities for lengthy outages. Figure 2.56 displays

the components of the HP Load Runner utility. The load testing conducted using this

tool can last from several hours to a few days, depending on the intensity of the tests. As

such, there is great value in producing load testing mechanisms that can shorten the

testing time, as well as the effort needed to compile the test cases.

141

Figure 2.56: HP Loadrunner Components. Full-fledged load testing together with comprehensive

analysis can be delivered by the utility. Adapted from (HP, 2013a)

A typical load testing constitutes of 3 phases:

1) Ramping up phase – During this time the test is building up the loads to reach the

desired workload level.

2) Steady state phase – in this phase, the workload reaches the designated level.

Performance metrics are gathered, and the system is monitored if it can sustain the

workload for x amount of time.

3) Ramping down phase – the load generator gradually reduces the load to the system,

until the machine is completely idle with no more load injection.

Thakkar et al. (2008) detailed out the challenges of utilizing the complex load testing

tools, and proposed a method to shorten the testing timeframe. The outlined challenges

are:

1) Large number of test cases needs to be prepared and executed to cover all possible

workloads.

2) Limited allowable time for testing. Particularly for mission critical applications,

lengthy load testing is almost impossible to be conducted in production instance.

142

3) Error in creating the test cases. As test cases are manually created, there are chances

of faulty test cases which lead to re-execution that wastes precious production time.

The authors envisaged that an ideal performance model is capable of predicting the

resource condition with variable loads. Such vision is illustrated in figure 2.57. With

such capability, the amount of performance tests can be reduced significantly. The

hurdle to overcome in this case is to discover the most suitable workload samples,

which can delineate the complete set of workloads during production mode.

Figure 2.57: Capacity calculator. The idea is to perform load testing on a particular sample of

workload, which is representable for all the workloads. Adapted from (Thakkar et al., 2008)

The authors proposed static and dynamic test reduction to try to arrive at the ideal

workload samples. The static test reduction requires strong knowledge regarding the

functional transactions, where transactions that can complete within short timeframe

with less expected executions from end users are filtered out. In addition, similar

transactions can be moderated, by including only a subset of the transactions in the

representative workload. Dynamic test reduction involves the identification of large and

resource exhaustive workloads during the initial test. These transactions are

143

subsequently ranked by their impact level to the system performance. Depending on the

size of the eventual desired workload sample, the load testing will choose only certain

percentage of the ranked workload for execution.

The authors also discovered that the resource utilization metric oscillates quite

substantially, which makes the harvesting of accurate performance metrics more

difficult. The same observation is noted in the experiments which are carried out to

bolster the proposals in this thesis. The above load reduction methods are practical, but

they do not eliminate the requirement to manually create the test cases. Furthermore,

even with such reduction, it will still require few hours of testing time. The proposed

stress-testing mechanism in this thesis strives to improve these shortcomings, by setting

up the stress-testing scenario in the VM within 15 minutes in general, which

corresponds to the steady state phase mentioned above. Moreover, test cases are not

needed, but the proposal will mimic as close as possible to the actual scenario in the

database as though real transactions are executed in the database.

For the goal of prohibiting access to sensitive data, in servicing environments with

stringent data protection, synthetic workloads often need to be fabricated for load

testing purpose. Krishnamurthy et al (2006) studied on the creation of synthetic

workloads with the intention to match these workloads to the real workloads. A

collection of sessionlets, with each sessionlet represents a sequence of requests from

historical real workload traces, is served as input for the construction of the synthetic

workloads. These sessionlets are built from TPC-W benchmark queries and data which

are suitable in this case as web-based applications are in focus. The request length is

taken as the criterion to match the real workloads. These sessionlets are matched to the

desired workload by minimizing their request length difference by employing linear

programming (Vandenberghe et al., 2002) method iteratively on the workload traces.

Another discovery of their approach is that they considered the inter-request

144

dependencies, where the experimented test cases yield lower hypothetical resource

utilization compared to the real situation, hence renders the inaccurate identification of

the limit of resource threshold in the host. Thus, the conventional workload partitioning

which utilizes Markov Chain model is deemed unsuitable for this reason. The authors

implied that the Markov Chain model is rigid in relating the ‘states’ between the

workload partitions hence it is not suitable for mixed and ever-changing workloads.

Casale et al (2009) continued the work and experimented using TPC-W benchmark

queries and data, to simulate burstiness in workloads, and deliver a mechanism to size

resource adequacy in virtualized environment. In this context, CPU time is taken as

measurement criterion in this burstiness characteristic. The authors found out that by

considering the burstiness criteria, the discovered resource threshold is generally about

30% higher than the threshold value generated by experiments without burstiness

consideration.

Figure 2.58: CPU utilization on the web and database servers from sampling of load testing carried

out on a hypothetical online store. The linear correlation between the load and CPU utilization at

the beginning correspond to the observation in the experiments in this thesis. Adapted from

(Casale et al., 2009)

In this thesis’s proposal on constructing light-weighted stress testing scenarios, the

burstiness of particular workload can be accounted by incorporating this element into

the representative workload that depicts the full workload in the VM. However, such

incorporation is subjected to the SLA of the application offering, as burstiness might be

an undesired outlier that does not need to be accounted for. Instead in most cases, it

145

needs to be gotten rid of as it wastes resources in the VM as the tenure of application

service offerings is predominantly serving workloads which are processed in normal

fashion. Hence, to account for such criteria in workload partitioning is quite subjective.

In systems which do not permit lengthy outages, a full-blown load testing scenario is

not suitable. In view of this, Barna et al. (2011) proposed a framework to explore the

real workload space, and discovered the points which cause bad performance in the

software and hardware components in the hosting environment. Subsequently load

testing is conducted by taking these workload mixes as the stress vectors and starting

point for the stress cases. Subsequently these cases are exploited to stress the host to the

breakpoint for transactions’ response time verification. The interesting proposal in this

paper is that the authors strived to uncover the different ‘stress vectors’ in the

workloads, which correspond to a class of similar transactions that can be grouped

together. Each stress vector is further divided into few segments, based on number of

users or response time during the stress test. With this information, these stress vectors

can be utilized to predict and plan for additional resources for expansion of customer

base. Similar to the experiments carried out in this thesis, the CPU parameter is taken as

measurement to represent the host’s resource adequacy. In most real production

systems, as the CPU is the most expensive component, the resource constraint will

normally happen on the CPU resource. Nevertheless, the constraining factor can happen

on other hardware component, producing the scenario as in figure 2.59. In such

situation, particularly in virtualized cloud hosts, the usual remediation is to fix this

constraint until it does not post as the break point to the systems. As such, the CPU will

soon become the constraint which is desired, as it is more cost effective to utilize the

CPU cycles as much as possible.

146

Figure 2.59: CPU utilization on the web and database servers from sampling of load testing carried

out on a hypothetical online store. The linear correlation between the load and CPU utilization at

the beginning correspond to the observation in the experiments in this thesis. Adapted from (Barna

et al., 2011)

2.6.2 I/O parameter

I/O parameter is scrutinized in this section in creating the stress-testing scenario in the

VM. The perception, or rather the myth regarding database hosting in cloud in this

sense, is that cloud is not conducive in processing database transactions that involve

large physical I/O. Ghoshal et al. (2011) surveyed the I/O throughput in local clusters

and Public Cloud. To discover the I/O performance in local clusters, experiments are

carried out in readily available large clusters called Magellan from NERSC (NERSC,

2013). To simulate the Public Cloud I/O performance, Amazon EC2 instances are

employed.

Comparisons are made between filesystems in these private and public virtualized

environments, with analysis on the differences. The I/O performance is analyzed based

on benchmarked experiments from Interleaved or Random (IOR) and Timed Benchmark.

IOR generates the I/O usage patterns based on various interfaces. The block size and

transfer size for reads and writes are set to 100G and 2M respectively. The Timed

Benchmark also utilized the same block-size and transfer-size. In addition, the results

are continuously collected over a period of time with sample collection in certain

frequency interval.

147

The summary of the causes that induce the I/O variation are:

1) Direct and buffered I/O. Such difference in I/O is only observed in the NERSC

clusters. Amazon EC2 is not having the I/O buffered as according to the authors,

and only direct I/O is configured in this Public Cloud. In the NERSC clusters,

experiments are conducted on 3 types of filesystems, as depicted in figure 2.60.

Global Scratch is a high speed global shared filesystem that often deployed in High

Performance Computing (HPC) applications, which has a peak performance of

15GB/s. Local disks are attached to the nodes, without needing network connection

between the computing and data nodes. Elastic Block Storage (EBS) (Wolloch,

2013) volumes are the network attached storage (external disks) storage arrays

which are often used in traditional data center. The peak throughput for this kind of

storage varies, depending on the type of network connection between the data and

computing nodes. The properly configured EBS volumes should have peak

performance between 500 to 2000 Mbps. From the graph, it is observed that cached

I/O provides much higher throughput for Global Scratch filesystem. This condition

can be devoted to the high speed network connecting the filesystems and the

computing nodes, as it is not posing as a constraint; hence data can flow freely from

the cache in the storage node to the computing node. In the local disks and EBS

shared-storage, the throughput from buffered I/O is slightly higher than direct I/O.

The authors concluded that in this case, the buffered data is having minimal or no

effect on virtualized resources. For the EBS storage in Amazon EC2, it is observed

that the Amazon EC2 does not provide for buffered I/O capability.

148

Figure 2.60: Comparison of I/O performance between direct and buffered I/O in virtualized

clusters in Private Cloud. Global Scratch is optimized to provide high throughput when the data is

cached. The local disk and EBS shared-storage are not showing significant difference between the 2

types of I/O. Adapted from (Ghoshal et al., 2011)

2) The effect of instance type in Public Cloud - Amazon EC2 instance type architecture

is configured in such a way that for larger instance, the I/O throughput is higher.

Hence for clients that pay more to acquire bigger cloud instances from Amazon,

they are also provided with better I/O throughput rate.

3) Regional effect – Amazon EC2 instances are observed to perform better in certain

region in the United States. Such observation can be concluded for other cloud

providers where different data centers in various locations can have different

configurations, which result in dissimilar performance throughput.

Figure 2.61 is the result from the IOR tests. Surprisingly, the Amazon EC2 outperforms

the NERSC clusters in the I/O throughput. Generally local disks perform better than

EBS shared-storage, however the difference is not in order of magnitude as initially

perceived.

149

Figure 2.61: Comparison of I/O performance between direct and buffered I/O in virtualized

clusters in Private Cloud. Global Scratch is optimized to provide high throughput when the data is

cached. The local disk and EBS shared-storage are not showing significant difference between the 2

types of I/O. Adapted from (Ghoshal et al., 2011)

It is also observed that the filesystems on local disks are having a more consistent

throughout as compared to shared filesystems, both in private and Public Cloud. Figure

2.62 depicts such scenario. The experiments were carried out in a continuous 24-hour

timeframe.

150

Figure 2.62: Throughput as a function of time. Local disk is observed to perform more consistently,

as it does not depend on the network to deliver the data. Adapted from (Ghoshal et al., 2011)

Table 2.9: Summary of studied researches with critical comment on sub-theme ‘conventional stress-

testing and I/O parameter’.

Scholars Contribution Comment

(Thakkar et al., 2008) Detailed out the challenges of

utilizing the complex load

testing tools, and proposed a

method to shorten the testing

timeframe.

The authors noted that the resource

utilization metric oscillates quite

substantially, which is the same

observation as in the experiments in this

thesis.

(Krishnamurthy et al.,

2006)

Studied on the creation of

synthetic workloads with the

intention to match these

workloads to the real

workloads.

The authors utilized TPC-W benchmark in

their proof-of-concept experiments.

Similar approach is taken in this thesis.

(Barna et al., 2011) Proposed a framework to

explore the real workload

space, and discover the points

which cause bad performance

in the software and hardware

components in the hosting

environment.

The interesting proposal in this paper is

that the authors strived to uncover the

different ‘stress vectors’ in the workloads,

which correspond to a class of similar

transactions that can be grouped together.

These stress vectors can be utilized to plan

for resource requirement.

(Ghoshal et al., 2011) Surveyed the I/O throughput in

local clusters and Public Cloud.

The study on the I/O characteristic is

essential in the research proposal to

produce the affirmation model.

151

2.7 Summary and discussion

Computing hardware resource management is very critical to many organizations, in

order for them to stay relevant and profitable in their respective business domains. To

survive in the stiff competitive market, the cost of computing needs to be optimized by

employing the latest technology that allows for significant reduction in workforce and

infrastructure spending. Cloud computing is such paradigm that promises great saving

in capital and operational cost. It provides the platform for enterprises to pay only for

the resources that they use. Couple this with the flexibility in the computing resource

allocation, the consumers needlessly procure large and expensive servers to cater for the

predicted future computing requirement. The magnitude of IT saving resulted from this

is extremely significant. For instance, instead of spending few millions of dollars in

procuring top-notch enterprise-class Unix servers to host the mission critical ERP

databases, with the cloud clusters, the hardware investment can be as little as less than a

hundred thousand to deliver infrastructure that is capable of running the same databases.

Amid the skepticism in the cloud privacy and security, it is inevitable that the cloud will

flourish and become the predominant standard in all IT infrastructure hosting.

Hence, for the virtualized cloud to deliver its full potential, resource management play

the most important role. Without proper resource utilization monitoring, suboptimal

hardware resource scaling results in considerable overhead in the system which

discounts the purpose of elastic scalability benefit. If the hardware is not scrutinized on

its performance, substandard delivery of transactions’ executions result in breach of

SLA, and wastage in the computing resources. Hence, both the resource utilization

monitoring and optimization topics are studied in length in this research. Subsequently,

resource utilization affirmation which concerns with the verification of the transactions

provides a platform for swift stress-testing that is different from cumbersome

152

conventional load testing. With the convincing delivery of these 3 themes, cloud

adoption will surely be more efficient and profitable.

In this chapter, the surveys are conducted by adhering strongly to these 3 proposed

themes. The sub-themes from each are elaborated in length. In the monitoring scheme,

the surveyed sub-topics are:

1. Monitoring models deployed in current wide industry as well as those envisaged

by scholars, which have great value in propelling the cloud paradigm.

2. Resource scaling technology, which tightly coupled with the monitoring models.

The improvement in this mechanism strives to boost the level of efficiency in

cloud offering.

3. Statistical modeling and benchmarking intend to characterize a greater visibility

on transactions that occurs in the VM.

4. Workload characterization has similar aim as the studies in Statistical modeling

and benchmarking. The target workloads are from both the real and hypothetical

scenarios.

In the optimization scheme, following topics are scrutinized:

1. Fault analysis and failure prediction in the computing hardware. Such studies

ensure that sub-optimal performance in the computing hosts is avoided.

2. Task scheduling is surveyed to discover the current and potential methods to

ensure computing tasks can complete without constraint in resources.

3. Resource scheduling is reviewed next. Its objective is also to ensure that

resource constraint does not occur in the computing hosts. The difference is that

it targets the optimization at the hardware level instead.

153

4. Resource brokering. It has similar objective as resource and task scheduling.

However the target optimization area is at the cloud providers and consumers

segment.

After the above 2 schemes are studied, the affirmation scheme targets following topics

to provide for its verification objective on application transactions:

1. Stress testing. The conventional methods are reviewed, together with scholarly

proposals which are impactful in the evolution of this technology.

2. I/O influence on workloads is analyzed as the experiments that serve the

affirmation scheme largely utilize the I/O component in the VM as input to

produce the desired output.

Some of the studied literatures are not directly applicable to the prototypes developed in

this thesis. Nevertheless, their influence on the outcome of this research is significant

and relevant. From the detailed scrutiny on these literature reviews, the general trend of

resource management in the industry, particularly in cloud platform is perceived.

Subsequently the generated proposals are originated from these roots. Besides

reviewing these literatures, foreseeable future developments are also indicated in this

chapter.

154

3. RESEARCH METHODOLOGY

3.1 Introduction

There are 3 themes in this research. The first concerns the resource utilization

monitoring in the cloud virtualized environment. Subsequently, resource utilization

optimization is targeted. Following these 2, resource utilization affirmation is

scrutinized.

Firstly, the first topic is important as an effective monitoring system is required to

provide clear visibility on the resource state in the VM, for resource planning and

scaling purposes. It requires the metadata of the real workloads, particularly on the SQL

processing time, to be mapped to the corresponding CPU run queue size, to produce the

resource state depiction. The relationship between the SQL processing time and CPU

run queue size is assumed linear in nature, in order for this monitoring mechanism to

deliver its objective. The workloads in focus do not necessarily filtered; hence the

burstiness condition is also established by the monitoring mechanism, which allows for

resource planning in case burstiness situation in resource utilization is included in SLA

calculation. The research work here has been published in (C. H. Tan & Teh, 2013a).

Secondly, optimization in the hardware is targeted, as it is crucial to safeguard the

hardware performance in the VM, in order for the computing power to be reflective of

the true capability of the hardware, as well as to hinder any potential failure in the near

future. To construct the mechanism to examine the hardware state, TPC-H data and

queries are employed to load the VM gradually and steadily to the run queue threshold.

Once convincing baselines are obtained, they are recorded as benchmark. Subsequently,

the same TPC-H queries are run periodically, and the results are plotted into linear

regression graphs. The gradients and y-intercepts of these graphs are compared to the

155

baselines, to arrive at the conclusion if there is any concern with the hardware

performance in the VM.

Thirdly, a mechanism is proposed to create stress-testing scenarios in the VM, in order

for the SLA-bound transactions to be verified. In this case, the proposed mechanism is

similar to the conventional stress testing utility. However the proposed model requires

much shorter timeframe to arrive at the steady state stressed level. TPC-H queries and

data are employed to load up the VM. In doing this, the memory reads/s of the real

workload is matched with the memory reads/s of particular TPC-H query or queries.

Once this match is found, the TPC-H query or queries are executed iteratively in the

VM to reach a steady run queue level, for subsequent verification of SLA-bound

transactions. It is to note here that the caveat for the successful implementation of this

model is that the I/O must be predominantly performing memory reads in the database.

The memory writes, physical reads and physical writes are assumed not significantly

influence the real workload. Due to this presumption, the representation of the

workloads is generally applicable for OLTP transactions that do not induce significant

I/O write to the storage subsystem. This scenario is common in properly architected

production environments. As the memory modules are getting cheaper, this motivates

the utilization of memory reads/s parameter as the primary variable in the database

together with the run queue size, for the construction of the stress-testing environment.

The TPC-H queries are also utilized to discover new CPU run queue value when the

hardware change is taking place in the VM. The research works for the second and third

themes have been published in (C. H. Tan & Teh, 2013b, 2013c).

In order for the above 3 themes to deliver their objectives, the resource utilization must

only be constrained at the processor level in the operating system. Such scenario is also

common in most hosting architecture, as CPU power is generally more expensive than

156

any other component in the hosts. With this sanctioned, CPU run queue can be

comfortably applied in the linear relationship envisaged in the proposed mechanisms.

3.2 Approaches to research

In producing the resource management proposals, the caution is to avoid access to real

data, in order to protect the data privacy. Hence, metadata from real workload is mined

to produce the monitoring model. Thereafter, TPC-H is employed to formulate synthetic

workloads in the optimization and affirmation models. TPC-C was considered before;

however the queries in TPC-C are lighter, hence harder to stress the VM to the resource

limit compared to TPC-H queries. Hence even though TPC-C is established as a

common industrial standard, it is not utilized here. However it is considered for future

works in replacing performance data widely employed in this thesis with total-

transaction-capable measurement in particular VM.

The conventional silo monitoring of the resource condition in the VM is assumed

inadequate. This research combines the database parameters with the OS parameter to

deliver its resource management objectives. From the database end, the SQL processing

time is taken as the primary variable in the first 2 themes. In the first theme, this

parameter is further segregated into 2 types. The first one is called DB CPU Time

(DCT). It is the processing duration that is required solely by the database. The second

is named SQL Elapsed Time (SET). This duration constitutes of all the timing

parameters involved in delivering the result of the query. In other words, DCT is a

subset of SET. The magnitude of difference between DCT and SET is taken as the

barometric gauge to determine the resource adequacy in the VM for database

operations. The proposal in the second theme takes only SET as reference when

database parameter is combined with the OS parameter in the linear regression analysis.

Then, the suggested stress-testing scenario built for the third theme utilizes the memory

157

reads/s parameter in the database. From the operating system perspective, all the 3

themes are employing CPU run queue size as the parameter from OS to be combined

with the database variables.

From statistical modeling standpoint, linear regression analysis is employed in the first

2 themes to depict the resource utilization condition in the VM. It is to note that any

data point beyond the linear plots is not to be considered in the construction of the

monitoring and optimization mechanisms. Further to this linear regression analysis

technique, machine learning is applied to periodically learn the behavior of the

hardware system. In the third theme, linear programming and simplex method are

envisaged to discover the TPC-H query that has the closest match to the I/O throughput

and CPU run queue combination.

3.2.1 Definition of research objectives

The interest in the resource utilization monitoring is to provide a clear visibility of

resource state in the VM. Such information is subsequently relayed for resource

planning, or scaling purpose. In many of the surveyed studies, this topic is part of many

proposed resource management methodologies. It serves as the critical pre-requisite for

many resource or task scheduling proposals. The success in deployment of efficient and

autonomous monitoring system is the goal in this research.

The definition for resource utilization optimization is broader. Many scholars’

researches focus on optimizing the resource usage in the hosts, by attempting to increase

the percentile of utilization in the VM, via the popular task and resource scheduling

models. There are also suggestions to optimize from the monetary investment

perspective, by proposing supply and demand on hardware resources via Auction-based

algorithm. In this research, the optimization is viewed from the perspective of hardware

performance. This aspect is critical in complementing all the other optimization

158

approaches. Only with proper delivery of hardware performance, the other avenues can

become meaningful.

Resource utilization affirmation concerns with creating a stress-testing scenario for

verification of SLA-bound transactions. The objective for the proposal is to augment the

application service offering, where the transactions can be tested and the associated

response time verified. In a way, its function is similar to conventional load testing;

however the duration needed to create the stress-testing scenario is much shorter.

Hence, it should be viewed as a light-weighted version of load testing utility that

complement the conventional load testing tools, where comprehensive but cumbersome

load testing is undesired in some situations. Furthermore, it also serves the objective to

discover new value of CPU run queue threshold value in case there is change in the

hardware configuration in the VM.

3.2.2 Proposed models

3.2.2.1 Monitoring model

The model envisaged for resource utilization monitoring theme is depicted in figure 3.1.

The data points from the test will produce the 2 linear plots. S’ denotes the DB CPU

Time (DCT), which is a subset of S, which is the SQL Elapsed Time (SET). SET

involves all the processing time to complete the SQL, from database as well as

operating system perspectives. C’’T is the 100 percentile value of the run queue

threshold in the particular VM. Data points beyond this threshold are not guarantee to

conform to the linear relationship, hence are not serving the interest of the proposal. C’T

and CT are the 80 and 90 percentile values, and a 5% zone is visualized between these 2

edges. ∆S is the value different between the S and S’. To conceptualize these

parameters, take figure 3.1 as the ideal test result from the real workload. In this case, at

point C’’T , S’ =2S. This can be deciphered as to process the workload in the VM at

159

point C’’T, the database needs only S amount of time to process the workload, but due to

constraints internal or external to the database, the result of the workload can only be

returned after spending additional 100% of time in the VM. This 100% additional time

is taken as the near-threshold for workload processing. From this explanation, it can be

known that C’’T is not determined in prior, but obtained its value from ∆S. From C’’T,

CT and C’T are deduced. Hence, this monitoring system is also capable of inducing the

resource threshold in the VM.

The real insightful information to determine if the resource adequacy in the VM is

characterized by the data points in the 5% zone. Now, when 5% of the total data points

fall into this zone, the VM is deemed saturated in the utilization of its resources. The

burstiness condition can also be delineated by narrowing the 5% zone in the model.

Figure 3.1: Resource utilization monitoring model. It is capable of providing clear visibility on

resource usage, as well as determining the run queue threshold in the VM.

3.2.2.2 Optimization model

The resource utilization optimization model is as illustrated in figure 3.2. In this

diagram, the TPC-H query #8 is utilized to steadily load up the VM, with the

corresponding CPU run queue size recorded at each interval. Again, any data point

beyond the resource threshold, a value that can be obtained from the first and third

160

research themes, is discarded. This is because the linear relationship needs to be adhered

to in order for this model to deliver its objective. From this diagram, it can be observed

that that there are 2 directly obtained values from the linear plot: the gradient and y-

intercept of the linear graph. If the hardware performance is optimal, periodic tests

conducted will yield almost identical values for these 2 parameters. Besides these, the

correlation coefficient of the linear plot must also be taken into account during the

analysis, as it represents the relevance between the best-fitted linear plot and the testing

data points. There are 2 phases in this model. Firstly, initial test is carried out to register

the baseline values for the gradient and y-intercept. Subsequently during steady state

operations, periodic tests are executed to produce the linear plots, and the associated

gradient and y-intercept are matched to the baseline. If close match is found, the

hardware performance is deemed consistent and identical to the initial state. The tests

are to be carried out during maintenance window, where there is not any noise in the

database and operating system that hinder the accuracy of the result.

Figure 3.2: Resource utilization optimization model. The linear graph is capable of characterizing

the hardware performance in the VM.

3.2.2.3 Affirmation model

The modeling of resource utilization affirmation is similar to the optimization model,

where benchmarks are established before the actual tests are conducted. As depicted by

figure 3.3, during the initial benchmarking effort, TPC-H queries are run against the

161

VM, by maintaining the CPU run queue at a level which is close to the threshold value

in the VM. When the test is stabilized, the values for memory reads/s that correspond to

each query are recorded in an array as below:

 A[Query][memory reads/s] = {Q16, Q9, Q13, Q21, Q3, Q7, Q5, Q11, Q1, Q22, Q4,

Q10, Q14, Q6, Q18, Q19, Q20, Q12, Q15, Q17, Q2, Q8}, {7000, 11000, 10000, 10000,

11000, 11500, 12500, 12500, 13000, 14000, 14500, 14500, 15000, 16000, 16000,

16500, 16500, 17000, 17000, 19000, 22500, 16000};

Figure 3.3: Resource utilization affirmation model. Initially a set of benchmark data is needed, by

experimenting on various TPC-H queries. The goal is to discover the corresponding memory

reads/s for each TPC-H query.

Subsequently, when the stress-testing scenario is needed, the real workload traces are

analyzed, and the corresponding memory reads/s in the workload is retrieved. This

value is matched to the array A. When identical memory reads/s value is found, the

associated TPC-H query is employed to load the VM, which creates a stressed condition

similar to the effect of the workload in the VM. It is to note that the workload traces

need to be obtained during steady state, with the CPU run queue size to stay constant at

the level similar to the benchmarking stage of the TPC-H queries.

Besides the stress testing scenario creation, the TPC-H queries are also used to discover

the run queue threshold in the VM in this theme.

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets

162

3.2.3 System design

3.2.3.1 The monitoring scheme

The steps towards the build of the monitoring scheme are depicted in figure 3.4. As

shown, the monitoring process is a continuous effort that can be performed without

incurring downtime to the database operations. It strives to discover the threshold point

in the VM, as well as the visibility on the resource adequacy. The result from the

mechanism is then fed into resource planning or scaling exercises. The discovery of the

threshold point in this case is resulted from the input of metadata from the actual

workload; hence it is closer to the user experience as compared to the threshold

discovery method in the affirmation scheme which will be discussed in a while.

However it is not as proactive in comparing to the proposal in the affirmation model as

the monitoring model needs real workload to be executed before the new threshold can

be established.

Figure 3.4: The creation flow in the resource utilization monitoring. The eventual objective is to

provide for clear visibility of resource usage in the VM, to serve the planning or scaling purposes.

Dotted lines depict the monitoring and analysis tracks.

163

3.2.3.2 The optimization scheme

As illustrated in figure 3.5, the optimization scheme is built from 2 stages. First, the

TPC-H queries are executed in the VM, to produce the baseline reference.

Subsequently, the same queries are executed in the VM during production stage, and the

test results are compared to the baselines to determine the hardware consistency and

optimality. During the second phase when the VM is running in the production mode,

the tests are carried out periodically to probe the hardware condition.

Figure 3.5: The creation flow in the resource utilization optimization. There are 2 stages in the

model. The initial stage creates the baselines for subsequent reference in the production stage.

3.2.3.3 The affirmation scheme

The benchmarking phase in figure 3.6 produces an array of value pairs. The pairs

consist of TPC-H queries and associated memory reads/s. These data is obtained from

the iterative execution of the queries by maintaining the CPU run queue size at certain

level, which is close to the resource threshold in the VM. The creation of the stress-

testing scenario during production phase is carried out during maintenance window, as

the VM should be free from noises before the environment can be stress-tested. In order

to mimic the real environment, the TPC-H query chosen to load the VM is matching the

164

same memory reads/s value of the real workload, at CPU run queue level that is similar

to the benchmarks. When the stress- testing scenario is stabilized in the VM after a brief

duration of time, SLA-bound transactions can be executed to have their response time

verified.

Figure 3.6: The creation flow in the resource utilization affirmation. The objective is to build an

instant of stress-testing scenario for transactions’ response time verification. Such verification

result will subsequently be fed as input for scaling decision.

The next purpose of the affirmation scheme is to create a platform to discover the new

CPU run queue threshold when the VM undergoes hardware change. Such method is

deemed more proactive than the threshold discovery in the monitoring scheme, as this

model does not require metadata from real data. Hence it can be put in use as soon as

the hardware change takes place. Figure 3.7 illustrated the steps towards achieving the

setup. The TPC-H queries are executed gradually and discretely when loading up the

VM. For such mechanism to take place, it has to be run during maintenance window to

avoid noises from the database operations and operating system.

165

Figure 3.7: The second creation flow in the resource utilization affirmation. The goal is to discover

the CPU run queue threshold based on TPC-H query’s response time. The colored arrows depict

the iteration of the tests.

3.2.4 Analysis of methods

3.2.4.1 Monitoring model

The effectiveness in the resource utilization monitoring model very much depends on

the representability of the workload which is used as input. A general Healthcare

application, for instance a system that allows query on patients’ medical records,

typically will have the access and usage pattern recorded in a week. In this case, the

metadata collection for 1 week is sufficient to characterize the resource usage in the

VM. However certain applications, for example the performance management portal in

Human Resource Management System (HRMS) becomes active only during certain

166

duration in a year. In such cases, the workload needs to be captured in that particular

timeframe in order for the proposed monitoring model to be effective.

As the resource adequacy is determined by the accumulation of data points in the 5%

zone, such monitoring method can also account for burstiness in the workload. In this

case, the zone’s position can be adjusted and narrowed. Hence the monitoring model is

capable of catering for SLA that requires accommodation on either the normal or

burstly transactions.

The data collection and analysis efforts do not incur downtime on the database; hence

they can be performed at any instance and frequency. Furthermore, from the

experiment, it is observed that the metadata collection on the identified workload does

not induce high overheads. It is to note that the analysis on the monitoring model valid

only at the linear portion of the graph. Any data points beyond the CPU run queue

threshold are not serving the interest in this proposal.

In the above explanation of figure 3.1, ∆S = S’ – S = S. As explained, S is the

processing time required by the database to completely process the workload. It is a

subset of S’, where S’ includes all the waits in the database and VM. As mentioned, for

this model to work, the resource constraint must be on the processor component. Hence

if S’ = 2S = ∆S/2, that means on average, when the SQLs are processed at this run

queue level, it will have 1 queue at each of the processors in the VM. Generally this

would be the constraint point in the VM as queuing for computing power is often

undesired. So as in figure 3.1, the VM resource threshold is fixed at C’’T where the

value of ∆S = S corresponds to.

In producing this diagram, real data is not engaged. Hence the objective to avoid access

to private and sensitive data is achieved. Only the metadata of the workload is required

167

to produce the data points needed in the model. It is also to note that outliers in the data

points need to be gotten rid of, so that the 2 linear plots can become more accurate.

3.2.4.2 Optimization model

As explained and illustrated in figure 3.5, outage on the database is needed to compute

the baseline data. The test for each TPC-H query requires 25 minutes to complete. This

duration includes 10-minute stabilization timeframe, and 15 minutes of data collection.

The 10-minute initial stabilization wait time is crucial as the SQL processing time and

CPU run queue parameters oscillate quite substantially at the beginning of the test. This

baselining activity is normally carried out at the beginning of the VM build or

immediately after the hardware is provisioned. At any 1 time, 2 baselines will be

sufficient for reference by the subsequent testing data in production mode. Each

baseline data can consist of only 1 TPC-H query or a combination of the queries.

The baselining activity is required after each instance of hardware change. Subsequent

testing data harvesting activity in production phase will also need the same 25-minute

outage window. In view of this, such model is not suitable for VM that undergoes

aggressive on-demand resource scaling. It is primarily designed for database hosts that

experience static and staged resource scaling activity. Similar to the model in

monitoring scheme, the model is applicable only in the linear correlation in the SQL

processing time and CPU run queue plots. The gradient and y-intercept values obtained

from the testing data and baselines are compared, and uniformity between them will

indicate consistency and optimality in hardware performance. However it is to note that

due to the nature of the parameters employed to construct the graphical representation,

to obtain exactly the same values between the baselines and testing data are improbable.

Hence a close match between them will suffice. As the parameters oscillate quite

substantially, the gathered results need also be validated using the correlation

168

coefficient, r in the linear regression analysis. In addition to this, the outliers of the data

must be removed and noises blocked during the test to increase the accuracy of the

graphical output.

3.2.4.3 Affirmation model

Similar to the optimization model, a separate timeframe needs to be provisioned in order

to gather benchmarking data to be used for the construction of the stress-testing

scenario. Each TPC-H query will require 25-minutes time block in order to obtain the

consistent memory-reads/s value. A typical benchmark will contain close to 20 tests

from different individual or combination of TPC-H queries, so the length of outage

window required is quite substantial. Furthermore, such benchmarking effort is also

needed whenever the hardware configuration is changed in the VM; hence its design

will be more suitable for hosts that do not undergo too elastic and frequent resource

scaling. However the benchmarking sequences are automated, hence manual

intervention can be avoided.

The future work in this area will involve finding out the possibility of extrapolation to

reduce the benchmarking timeline. With this timeframe reduced, it is more practical for

deployment in real world applications.

The second proposal in this affirmation model involves the discovery of CPU run queue

threshold when the hardware configuration is changed in the VM. The setup here is

rather straight forward comparatively. However, the output gathering at each staggered

run queue level must allow a timeframe for the parameter oscillation to stabilize. The

threshold discovery proposal in this section serves the same purpose as in the

monitoring model, amid different methodology and input values. Here, synthetic

workload using TPC-H data and queries are employed, whereas the monitoring model is

obtaining insightful input from the metadata of the real workload.

169

3.3 Summary and discussion

This chapter provides a high level explanation on the conducted research, and the

proposed outcomes. The research is segregated into 3 themes. The first and third themes

have 2 proposals in each scheme; whereas the second theme contains 1 proposal.

The monitoring scheme strives to introduce a way to monitor the resource consumption

in the VM via metadata harvesting from real representable workload. In addition, it

allows for resource threshold to be discovered via real users’ experience. The

optimization scheme proposes a method to examine the consistency, stability and

optimality on the hardware performance. Subsequently, the affirmation scheme suggests

a way to compute a stress-testing scenario that allows for the SLA-bound transactions to

have their response time verified. Furthermore, a method to realize the CPU run queue

threshold is envisaged in this section.

In all the 3 themes, the real data access is avoided. Hence this achieves the objective of

allowing effective database and VM administration without compromising on data

privacy and security. The proposals address the shortcoming of the commercially

deployed hosting architecture, with the prospect of encouraging cloud adoption by

organizations with skepticism on cloud safety, particular on the data security issue.

The next chapter will explain the detailed designs of each scheme.

170

4. SYSTEM DESIGN

4.1 Introduction

In this chapter, the detailed design of the models is explained. As mentioned in chapter

3, there are 3 themes involved in this research. First theme strives to examine the

resource usage state in the VM, by proposing a graphical depiction of resource

utilization monitoring. The source of input to the mechanism is described in section

4.3.1. Subsequently, the construction of the model is demonstrated in section 4.3.2. The

method to remove the outliers is detailed in 4.3.3.

The second theme attempts to produce a mechanism to investigate and probe the

hardware condition in the VM, so that computing performance consistency and

optimality can be achieved with the set of hardware configuration. Section 4.4.1

describes the setup of the model, by scrutinizing the role of machine learning in the

model construction. Consequently, section 4.4.2 explains the applicability of the

mechanism in production environment.

With the design of the monitoring and optimization models explained, the third theme

dwells on the affirmation model. In this section, 2 mechanisms are described; one that

creates stress-testing scenarios in the VM, and another one which aims to discover the

resource threshold in the VM. Section 4.5.1 illustrates the configuration of the

environment. This is followed by the application of the model in production mode in

section 4.5.2. Section 4.5.2.1 describes the usage design of the stress-testing scenario,

and 4.5.2.2 outlines the threshold discovery method by using the model.

4.2 Overview of proposed models

The monitoring model is based on graphical depiction of the relationship between the

SQL processing time and CPU run queue length. The manipulation is performed against

171

this linear relationship between these parameters. With the linear plots established, the

monitoring outcome is produced by the locality of the data points which correspond to

the transaction processing condition in the representative workload. There is little

resource overhead incurred by the data collection, hence it is ideally applicable

throughout the tenure of the application offering. Furthermore, the setup of the model

does not require outage from the database operations.

The setup of the optimization and affirmation models requires a separate database in the

VM, which solely host the TPC-H data. However, the TPC-H data can also co-exist

with an existing database in the VM. Nevertheless such configuration might produce

noises in the environment as it is often difficult to control the end users’ activities even

outage is scheduled. Hence it is simpler from management perspective to create a

separate database for the construction of these models. The TPC-H data and queries are

downloaded from Transaction Processing Performance Council website (TPC-H, 2013).

The proof-of-concept environment is utilizing VMWare Virtualized Infrastructure

which has been elaborated in Chapter 2. In each database VM, a separate TPC-H

database is built in as indicated in figure 4.1. Each TPC-H database consumes

approximately 5GB of SAN space and 2GB of shared memory.

172

Figure 4.1: Layered depiction of VMWare Virtualized Infrastructure for database hosting. The

separate TPC-H database is built in each database VM.

The envisaged optimization and affirmation algorithms are run against the TPC-H

database. As the proposed models are very sensitive to noises in both the database and

operating system (OS) environment, outage windows are required during both setup and

steady state phases. During the setup phase, the optimization scheme requires 2 hours of

‘quietness’ in the VM to construct the baselines. Subsequently when it is deployed in

the steady state production phase, each test will consume 30 minutes. As it is a cyclical

probing of the VM during the production phase, it is recommended that this 30-minute

timeframe to be provisioned weekly. The affirmation scheme requires a lengthier

downtime on the VM. Its setup phase needs between 5 to 6 hours, whereas its

application for production phase calls for between 30 minutes to1 hour of outage

window.

Nevertheless, the implied ‘outages’ for both the optimization and affirmation models do

not actually require all the user databases to be shutdown in the VM. It is suffice to

ensure a state of dormancy in the databases and VM, without needing to bring down any

of the software components in the VM.

173

4.3 Theme 1: monitoring scheme

The monitoring scheme strives to produce a model that increases the visibility to the

resource consumption state in the VM. The output from it will aid in resource planning

decision as well as determining the resource scaling opportunity. This model will

complement existing commercial resource monitoring tools, and provide a different

monitoring perspective as compared to these tools. Most of the existing monitoring

utilities focus on either the database or OS, rarely a strong combination of both. Even if

there is linkage between the 2 areas in these products, the proposal here can deliver a

stronger binding to produce a more cohesive monitoring output.

4.3.1 Workload traces

To explain the design of the model, the input is elaborated in this section. The

experiment was conducted using a Sun Solaris server powered by 4 Sun Solaris

SPARC64-VII CPU with 4-core architecture, 64GB RAM and external SAN running on

ZFS File system. When this experiment was conducted, the VMWare VM had not been

available; hence the tests were not performed on a virtualized machine. Nevertheless the

experiments produced the same concept that can be proliferated to database operations

on Cloud VM without much variation. The application was running the SAP Enterprise

Resource Planning (ERP) software, on ECC6 Human Resource Management (HRM)

Module. The application is OLTP in nature, servicing HRM System for a large

organization. The database that hosts the application data and transactions is an Oracle

11g database. In a lot of organizations, it is almost impossible to send all the tables’ data

into memory, as the typical implementation of ERP application is normally having

database size which is at least 500 GB. However, a sizable shared memory of 20 GB

will ensure most frequently used tables’ data resides in the memory.

174

In chapter 2, it was mentioned that the reason for this research is to produce

mechanisms that steer away from real data access, on databases that host sensitive data

particularly in healthcare organization. The selection of HRM module here is due to the

fact that generally the databases that host this application are having quite stringent data

security requirements; hence the choice here is almost equivalent to the security demand

in Healthcare sector.

The collection of the identified workload’s metadata spans for a week. The goal here is

to find a workload that can be representative for the critical transactions in the

applications, as well as the decisive timeframes that heavily load up the server. A week

of data here is assumed adequate in delineating the nature of the resource consumption

pattern of the application. At this juncture, it is noteworthy to mention the characteristic

of different application processing, to serve as input in identifying the most appropriate

and relevant timeframes to exemplify the particular applications. From HRM

perspective, the general applications will have their busy computing duration during

normal working hours. Hence in this case, even if the data collection timeframe is to

span for a week, the daily data collection may only account for 8 hours duration when

the employees in the company are officially working. On the other hand, in typical

performance management systems, they are mostly active only during particular

timeframes in a year, for instance, at the beginning of every quarters. For such

applications, the workload data capturing activity should only focus on these busy

timeframes. Furthermore, in many human resource departments particularly in United

States, there is a period of time in a year when the systems are opened for employees to

add, change or delete their fringe benefit options. Such timeframe is generally called

Open Enrollment. Hence, the workload capturing activity should target only this

duration. The collected workload can be partitioned further if required, in case where

the resource planning aims to provision additional resources to the entire hosting

175

environment. Workload partitioning is not researched in length here, but it will become

an important topic in the case when VM expansion subject is detailed later.

The metadata required as input to the model is collected at every minute interval in the

database. When this metadata collection engine runs, the resource overhead observed is

less than 2% of the total computing capability in the server. Hence, it is considered

negligible in overall effect on the server performance. The collected data comprises of

DB CPU Time (DCT) and SQL Elapsed Time (SET) from the SQL processing in the

database, and the corresponding CPU run queue length from the OS perspective. These

data are stored in a custom table. For a SQL, SET denotes the time needed to

completely return the result queried by the SQL. It considers all variables affecting the

SQL’s runtime, i.e. time required by database engine, server condition, network latency,

memory and disk I/Os etc. The time spent by the database engine is the cumulative non-

idle CPU time to process the SQL. The server condition contains the noises which delay

the execution of the SQL. Network latency delay is caused by the transportation of

query result from the database to the application servers or end users’ terminals. The

memory and disk I/Os are the result of fetching the query outputs from data in memory

or SAN storage. DCT is a subset of SET, where it represents the non-idle duration

needed only by the database engine to process the SQLs. These 2 parameters can be

retrieved from the database dictionary.

As mentioned, these metadata can be partitioned to serve various purposes. Asides from

capacity planning, the partitioned workload can be utilized for task scheduling

algorithm if ever desired. Subsequently the monitoring model proposed here can be

employed to analyze the feasibility of moving the partitioned workloads to different

VM. In this thesis, the workload is not partitioned. The workload partitioning will be

covered in future works.

176

At this point, with the identified workload to deliver as input to the monitoring model,

there seems to be a potential possibility that it can serve as benchmark for similar

transaction processing in other environments that administer similar transactions.

However, there are distinct differences between different set of workloads. Each

workload is unique as the volume of data differs. Because the data volume is not the

same, even the same SQL with identical syntax does not yield the same DCT and SET.

This can be explained by considering the following SQL:

select department_name, sum(salary) from departments

where num_employee>100;

If this statement yields 300000 logical reads and 5s of DCT from the real data in the

memory, in another environment where the table departments has 100 row in it, the

logical reads will be much less than 300000 and the DCT could be 0.01s, as different

execution path is taken by the RDBMS engine due to the change in data values that

changes the predicate clause. With this characteristic, the workload processing pattern

obtained from 1 environment can be used the most as reference instead of treated as

benchmark in another instance.

4.3.2 Graphical representation – linear regression

Following the data capturing phase, the data is interpreted by presenting the data points

in graphical fashion. In this case, linear regression is employed to depict the

relationship between the SQL processing time, which includes DCT and SET, with

CPU run queue. This correlation is illustrated in figure 4.2. The collected data

translation to these linear plots is straightforward. However as the data is gathered

during production phase, in some cases, the outliers are significant. The ideal situation

is to have only the workload to be executed in the VM, without any other computing

tasks, or in other words, the noises incurred from the OS. For instance, the gathered data

177

must avoid the timeframe when the OS backup is taking place. In other circumstance,

there might be overrun daemon processes at the OS level which significantly affect the

CPU run queue reading. The outlier removal process must account for such condition.

The perfect linear plots will yield the correlation coefficient in linear regression

analysis, r to have value of 1. However as this is non-achievable in real situation, r

should be more than 0.7 in order to produce a convincing output for further analysis.

Figure 4.2: The relationship between DCT, SET and CPU run queue. With the 2 linear plots

obtained, further analysis produces 80%, 90% and 100% of run queue threshold values.

The calculation of r is as follows:

r=
∑

(∑

)(∑

)

√[∑

(∑

)

][∑

 (∑

)

]

,

Where,

N = Total number of legitimate data points. These points are obtained after removing

the outliers.

y = The CPU run queue size.

x = DCT or SET, which corresponds with the y.

The computation of this value r can be performed easily using MATLAB software

(MATLAB, 2013). As this calculation is non-iterative, it can also be done using regular

178

Microsoft Excel worksheet. However, as mentioned this value must be greater than 0.7

to yield any meaningful output, there is a cyclical effort to remove outliers on the

gathered data, and then recalculate the r value until the satisfactory value is obtained.

In the graph as in figure 4.2, S’ and S represent the DCT and SET of all the SQL

processing in the workload. C’T, CT and C’’T are the 80%, 90% and 100% of the run

queue thresholds in the VM. The derivation of C’T, CT and C’’T values depend on the

pre-determined ∆S value, which normally is set as S – S’ = ∆S, and ∆S is ideally set to

equate to value of S. If this is translated to the processing of a SQL, that means if the

SQL needs 5s to be processed without any resource constraint in the VM, at the point

C’’T, it needs 10s to be processed. This occurs because in this case there is always 1

queue in all the processors at C’’T. As queuing exemplifies delay in the VM, it is

undesired if there is occurrence of data points beyond C’’T. When this happens, it

should warrant replenishment of resources to the VM. In the published journal paper (C.

H. Tan & Teh, 2013a), ∆S is visualized at point C’T. This is also a valid assumption,

amid a more cautious approach to the resource threshold.

With the linear plots and threshold points identified, the imaginary 5% zone is

envisaged in the graph in figure 4.2. For a typical workload in a database, generally the

response time of a particular transaction fluctuates amid different level of resource

adequacy in the VM. Figure 4.3 illustrates such condition. This visionary 5% zone is

envisaged to cater for such expectation. As the database transactions intensify, the

resource consumption will increase. This will push the data points towards the 5% zone.

As manifested by the name, when more than 5% of the total N number of legitimate

data points accumulates in this zone, the resource scaling algorithm should be triggered.

179

Figure 4.3: Response time fluctuation of a transaction in the VM. Such behavior is expected in real

environments as it is often difficult to achieve a constant response time due to various condition in

the VM.

As mentioned in earlier chapter, this monitoring model is also capable of

accommodating burstiness in transactions processing. In this case the 5% zone can be

pushed towards higher CPU run queue values to depict the threshold of the burstiness.

In the case where the model is to be employed for resource planning purpose, which

normally requires a few months to have the capital expenditure approved in most

organizations, the 5% zone can be adjusted at lower CPU run queue length. However,

for resource scaling purpose where the computing resources are readily available in the

resource pool of the virtualized clusters, this 5% zone can be shifted as far as beyond

the point C’’T.

This data collection and monitoring process is iterative and it is to be repeated at weekly

interval for typical general purpose applications. The envisaged cyclical monitoring

mechanism is illustrated in figure 4.4.

180

Figure 4.4: Steps towards achieving the proposed monitoring scheme. The dotted lines indicate the

cyclical monitoring and analysis tracks.

4.3.3 Outliers effect

Outliers are largely unavoidable in the linear graphical plots. These are caused by noises

in the OS. As mentioned, the data collection should avoid the timeframe when the OS

undergoes maintenance, for instance the OS backup, auditing and anti-virus scanning.

However there are scenarios which are unexpected and unavoidable. An example is the

occurrence of overrun daemon processes in the OS which consume significant resources

in the VM. In other situation, the OS administrators might be doing ad-hoc OS logs

housekeeping which consumes the I/O bandwidth in case the data is sharing the same

LUN with the OS logs. As in many other industries (Amos, 2013), getting rid of outliers

is critical to protect the legitimacy of the output.

For this purpose, the Fourth-Spread (fs) method(Devore, 2008) to exclude the outliers in

the scatter plots is employed. To accomplish this, the 25th and 75th percentile quartile

boundary values in the collected data sets need to be determined, using following

sequential method:

181

Order the data set values in ascending order.

X1, X2, … , Xn,

For even sample size, find the median of the data set as

(

)

(

)

,

25th and 75th percentile boundaries of the ratios of S/C from the collected samples are

then defined as:

25th percentile boundaries, Q25 = Median of X1, X2, … ,

 ,

75th percentile boundaries, Q75 = Median of

 ,

 , … , Xn,

For odd sample size, find the median of the data set as
(

)
.

25th and 75th percentile boundaries of the ratios of S/C from the collected samples are

then defined as:

25th percentile boundaries, Q25 = Median of X1, X2, … ,

,

75th percentile boundaries, Q75 = Median of

,

, … , Xn.

With Q25 & Q75 values discovered, value of Fourth-Spread, fs = Q75 - Q25. Using this

value together with the median, M of the data set, values for Upper Outlier boundary,

UO and Lower Outlier boundary, LO are determined by following:

UO M + 1.5*(fs),

LO M - 1.5*(fs).

Using both the UO and LO, for each data point, if its S/C value is lower than LO or

higher than UO, they should be discarded from the legitimate data set.

182

4.4 Theme 2: optimization scheme

The optimization model aims at complementing the conventional hardware health check

which often requires lengthy downtime. Such thorough hardware probing effort will

discover detailed hardware state; however it normally requires a full work day of outage

window each time, with a substantial amount of manual intervention in the probing

process and outage management. This proposed mechanism strives to provide a heads-

up before thorough system checking is triggered. The suggested probing method is

closer to end users’ experience as it employs database transactions, by mean of iterative

execution of TPC-H queries to discover abnormalities. The input parameters from this

model is different from the monitoring scheme, in the way that only SET and CPU run

queue are utilized. DCT is not involved in this probing mechanism. This research work

has been published in (C. H. Tan & Teh, 2013c).

4.4.1 Setup of environment

The construction and application of the optimization model involve 2 stages. First stage

is named the baselining phase. It includes the setup of the separate TPC-H database in

dedicated VM. The hosting architecture is depicted in figure 4.1. This is a 5GB

database, with shared memory sized to 1GB, which in this case is sufficient to avoid

excessive I/O reads from SAN storage. In fact, as the TPC-H data is hosted in its own

database, this mechanism is applicable even for application VM that do not host any

database transactions. This is because the test data crunching process happens only in

the TPC-H database, without dependency on any other software components in the VM.

The TPC-H data and queries are downloaded from TPC website (TPC-H, 2013). The

build steps of the TPC-H database are illustrated in Appendix B. The main contribution

of TPC-H benchmark in the industry is to allow commercial software vendors to

showcase the capability of their products by running the standard queries against the

183

standard data. The output from the tests can then be published in the knowledgebase

pertaining to the relevant industry, so that consumers can make meaningful analysis and

comparison with products or service offerings from other vendors. In academic point of

view, this benchmark can also be employed to serve similar purpose, where it is utilized

for comparison between an envisaged proposal and another from other scholars.

Nevertheless, the purpose of engaging such benchmark in this study is not meant for

comparison with any of current available standards. This benchmark instead is used as

synthetic workload in the proposals.

There are 22 queries in TPC-H benchmark. The response time of these queries, after

they are cached, ranges between 1s to 20s, except query #21 where it takes 164s to

return the rows in the testing environment. The VM utilized as test bed is running on

Suse Linux OS, provisioned with a quad-core Intel processor, with 1GB allocated for

shared memory. The queries’ response time, memory reads and physical reads when run

in this test bed are as illustrated in table 4.1. For the selected queries executed in the

experiments, this 1GB of cache in the database incurs quite significant disk I/O reads,

however it is not posing as constraint in the VM. The disk I/O reads is required to probe

the condition in the SAN storage. The selection of queries and sizing of shared memory

in this case is made carefully so that the processor component will be the constraining

factor when the VM is stressed to its limit. Because the choice of synthetic workload is

using the TPC-H data and queries, the similar adjustment can be applied to other

hardware configuration, instead of reworking the memory sizing and selection of

queries when non-standard synthetic workload is used.

184

Table 4.1: Corresponding response time, memory and disk reads of TPC-H queries. These values

are obtained in a VM with a quad-core CPU, running on an Oracle database with 1GB of shared

memory, with the data stored on EMC SAN storage.

 Figure 4.5 illustrates the flow of the 2 phases in the setup process. Steps 1 and 2 have

been discussed in above section. In step 3, the VM is loaded up slowly and gradually

using the selected TPC-H queries. The goal here is to capture the SET that corresponds

to the increment in the CPU run queue size. The loading algorithm is depicted in figure

4.6. They are programmed and executed via Shell script in the VM environment. The

actual program is illustrated in Appendix C.

Figure 4.5: Steps to create the baselines and their applicability in production environment for

optimization model. The green arrow depicts the cyclical test in the VM, which can be performed

daily or weekly.

185

Define test time, t as 2520s

Define the set of queries to run for the duration of t

Define the stabilizing duration as 120s
While t>0,

If (t ==2520)

 Continuously maintain the execution of 6 sets of queries in the database
If (t ==2000)

 Continuously maintain the execution of 5 sets of queries in the database

If (t ==1600)
 Continuously maintain the execution of 4 sets of queries in the database

If (t ==1200)

 Continuously maintain the execution of 3 sets of queries in the database
If (t ==800)

 Continuously maintain the execution of 2 sets of queries in the database

If (t ==400)
 Continuously maintain the execution of 1 set of queries in the database

If (t ==0)

 Complete test
t=t-1

If (t ==2400)

Start capturing database snapshots to collect values of S and C every 30s
 done

Figure 4.6: Algorithm to load up the VM. The baseling and production phases are using this same

method.

The Shell program is capable of using single or multiple TPC-H queries to stress the

VM. The environment is loaded with continuous execution of the queries, and they are

varied in concurrent number of executions in order to produce the high to low resource

consumption scenarios in the VM. In parallel to this loading activity, database snapshots

are captured every 30s to provide the information regarding the state of SET, S and

corresponding CPU run queue, C at each interval of interest. This snapshots capturing

capability is provided by the database Workload Repository utility (Oracle, 2009). Each

loading activity is scheduled to complete in 42 minutes. It is noteworthy that prolonged

test time will produce better accuracy.

The CPU run queue value is taken as in 1-minute average, and it is noticed that these

values fluctuate quite substantially during the initial loading. Hence some technologists

term this parameter as simplistic and poorly defined in Unix environments. However as

demonstrate by the experiments, that if longer test duration is allocated, this parameter

can be useful in measuring the information of the queuing processes appropriately. To

remediate this oscillating symptom, the stressing exercise is allowed 2 minutes of

‘stabilizing’ timeframe, before data collection begins.

186

At the end of the test, the required metadata is extracted from the Workload Repository.

As mentioned above, the fluctuation in the values can be considerably huge at particular

instances of time. Hence the implausible data needs to be filtered out. The algorithm to

filter the metadata is illustrated in figure 4.7. As shown in this figure, in order to ensure

accurate S and C data points, the start and end values of C in the 30s snapshot intervals

are assessed so that they are less than 10% different from each other to ensure that

consistent state is achieved before data recording is performed.

Define starting snapshot of the test, s

Define ending snapshot of the test, e

Define ti as begin snapshot for 30s interval, Ci as the corresponding server load value
Define ti+1 as end snapshot for 30s interval, Ci+1 as the corresponding server load value

For s >= ti and ti < e

If (Ci does not differ from Ci+1 by 10%)

Record the corresponding SQL Elapsed Time, Si
ti = ti + 1

done

Figure 4.7: Metadata filtering to ensure stabilized condition in the VM before reliable data is

collected.

The data extraction and filtering are actually performed by a Shell script. This script is

depicted in Appendix D.

4.4.2 Linear regression and machine learning

With the availability of data, the linear plots can now be constructed. Similar to the

monitoring model, the relationship between the SET and CPU run queue is linear in

nature. The proof of this linear relation is explained in section 2.4.3.1. The linear plot is

depicted in figure 4.8. In this figure, the DCT is shown; however it does not serve as

input parameter to the optimization scheme. It is illustrated in the graph to depict the

actual non-idle CPU time needed to process the SQL. The blue dots in figure 4.8 does

not increase in tandem with the increment in the CPU run queue, because there is only 1

SQL running entirely in the database. This is different from figure 4.2, as the workload

for the monitoring scheme contains multiple SQLs. As expected, SET increases when

187

CPU run queue rises. This is due to the additional waits in the VM when the processors

are getting busier. Such characteristic has been explained in the monitoring scheme. As

the interest is confined only to the linear section of the correlation between S and C, the

limit of the run queue size should be set to <= 3x, where x is the number of processor

cores in the VM. The values of 3x is obtained judging from the experiment data using

TPC-H queries, where most testing results using this ballpark figure can still conform to

the linear correlation when the queue length in each processor is 2. The baselines of data

obtained from step #3 & #4 in figure 4.5 are called the training data sets in machine

learning, and they are executed when the VM is newly provisioned. Subsequently these

baselines are reevaluated when the hardware configuration in the VM changes.

Figure 4.8: The expected output for the optimization scheme. The linear relationship between SET

and CPU run queue is the foundation to this model.

The steps #3 to #6 in figure 4.5 can be categorized as the semi-supervised machine

learning technique. Semi-supervised machine learning’s concern is to infer a function

from labeled training data sets (Mohri et al., 2012), and subsequently the unlabeled data

is tested and compared to this induced function. In this case, the first set of data during

VM initialization is taken as the labeled training sets. Regression Analysis algorithms,

which are subset to the broader classes of semi-supervised machine learning, are

employed here to generate the labeled training data sets. By definition, a training data

188

set, V draws its samples from set X according to distribution D, which in this case are

the sets of relationship between SET, S and CPU run queue, C.

V= ((c1, s1), … , (cm, sm)) and V ∈ C×S,

where Y ⊆ ℝ and m=number of training data.

Subsequently during the production phase, the test data, which is termed unlabeled data

in machine learning, is used for testing the learning algorithms, as in figure 4.6 and 4.7.

The characteristic difference between the training and testing data sets is known as the

Loss function, L, and it is a measurement of closeness between these two data sets, and

is having following definition:

L(S, S’) = |S’−S|
P
 where P ≥ 1,

In the optimization model, input to L is characterized by the gradient of the linear

regression line and y-intercept, as illustrated in figure 4.8. More experimental results

related to the construction of baselines are displayed in Appendix E.

The outliers should be gotten rid of by employing the Fourth-Spread (fs) method

explained in section 4.3.3.

4.4.3 Applicability to the production phase

The gradient, MB of the linear line is obtained, together with the y-intercept, bB. MB and

bB are asserted as baseline for expected performance on allocated resource in the VM.

Iterative learning process is conducted to arrive at the most accurate values of MB and

bB. Subsequently in the production phase, testing data sets are collected and plotted into

linear graph, and the respective gradient, MT and y-intercept, bT are recorded.

Subsequently they are compared with MB and bB values from the training data sets, to

gauge the consistency and optimality of the hardware performance. In comparing

189

between the baselines and the testing data sets, there is another critical parameter that

needs to be accounted for. It is the correlation coefficient, r. As mentioned, the value of

r needs to be as close as possible to 1. The details of this explanation are provided in

section 4.3.2. With the information, the characteristic of the model can be represented

by Fuzzy Computing with Words(Zadeh, 1996), as follows:

 If values of MT and bT are much different as compared to MB and bB, hardware

performance in the VM is not optimal.

 If value of r is not close to 1, hardware performance in the VM is not consistent.

The above 2 conditions must be satisfied in order to guarantee fine delivery of

computing resources to the hosted databases or applications in the VM.

In converting the testing data sets to the linear plots, the cautions and approaches are

similar to the baselining phase. They are:

1. The outliers need to be gotten rid of using the Fourth-Spread (fs) method

explained in section 4.3.3.

2. The noises in the OS and potentially database need to be kept at minimum. For

instance, OS or database backup must not be running during the collection of

testing data sets, CPU run queue must start from value 0 before the loading

mechanism is triggered, OS auditing and anti-virus must not be running in the

background while the data collector is working etc.

3. To compare with the baselines, same TPC-H query must be used. The statistic in

the TPC-H database must be updated in case there is change of data in the

database.

4. The same stabilizing duration during the loading mechanism must be observed,

before data collector can start gathering the metadata information.

5. The loading mechanism ideally should be performed during outage window.

190

As per figure 4.5, the collection of the testing data sets is a cyclical process. Depending

on the available outage window, it can be performed either daily or weekly. As the

loading activities do not involve changes of data, the TPC-H database is almost

maintenance-free. There is not even a requirement to intervene with the database restart

in case the VM is rebooted, as the database can be stopped or started by the init program

in Linux. The loading mechanism can also be automated almost fully. The Shell scripts

involved can be triggered by Linux crontab scheduler. Subsequently the values of

gradient, y-intercept and correlation coefficient from the collected testing data sets can

be processed by MATLAB software easily.

The output from the comparison between the baselines and testing data sets is analyzed,

and depending on the magnitude of difference, 2 actions can be performed:

 In the case where mild discrepancy is observed, a system reboot may be

warranted. This action is taken as part of the software rejuvenation initiative

discussed in (Andrzejak & Silva, 2007; Vaidyanathan & Trivedi, 2005).

 As mentioned earlier, the intention of this optimization model is to complement

the conventional intensive hardware health checking. If serious abnormality is

observed from the result, such comprehensive testing can be triggered to identify

the actual culprit to the hardware problem.

4.5 Theme 3: affirmation scheme

The affirmation model strives to provide a speedier alternative to conventional load

testing. These commercial load testing utilities, for example the HP Load Runner, are

very comprehensive in accomplishing the objective of stressing all the components in

the application hosting architecture. In these tests, test cases are created to observe the

behavior of the web server, load balancer, application server and the database server.

However, stress testing is normally conducted prior to the production cut-over activity.

191

During steady state, particularly for mission-critical applications, to locate lengthy

downtime to perform such cumbersome tests are often impracticable. The suggested

affirmation model requires a much shorter outage window in order to stress the VM to

the level almost equivalent to the comprehensive load testing using the real workload.

The stress-testing scenario subsequently can be utilized to verify SLA-bound

transactions. It is to note that this express version of load testing serves to complement

the conventional type, as it provides a quick testing platform for stress testing.

The setup of the affirmation model is also employed to verify and confirm the resource

threshold in the VM, when the hardware configuration is changed. In accomplishing this

goal, synthetic workload is utilized. In regards to the same resource threshold boundary

identification effort explained in the monitoring model, the monitoring scheme is

utilizing the metadata of real workload to produce the outcome. The affirmation model

instead scrutinizes on the synthetic workload to gain insightful information on the

threshold boundary. The research work of this proposal is published in (C. H. Tan &

Teh, 2013c).

4.5.1 Setup of stress-testing scenario

The proposal to construct the stress-testing scenario is applicable to OLAP and OLTP

applications that are dominantly performing data read operations. With this assumption,

the suggested loading mechanism can have focus on the memory read constraint, and

treat the physical read as negligible. Such presumption can be made, because in typical

Human Resource applications, the largest table in the database seldom exceeds 20GB in

size. If the shared memory in the database can be sized considerably to > 20GB, most of

the database read operations can be cached. Hence the core of the proposal in this case,

is to determine the amount of memory reads/s in the real workload during steady state,

at particular CPU run queue size. Subsequently, synthetic workload is utilized to

192

fabricate the stress-testing scenario, by matching this memory reads/s value from the

real workload. In doing so, the CPU run queue is taken as a constant, which must be the

same as the condition in the real workload when the memory reads/s value was

harvested. Nevertheless, this memory I/O operation must not pose as the primary

resource constraint in the VM. Instead it should be dominantly larger than the disk

reads, however the leading resource constraining factor must still remain at the

processor component. As mentioned, such behavior is common in most hosting

architecture. A superior IT architectural hosting model should have resource limit

confined at the processor component, as it is generally the most expensive part in the

hardware configuration. At the same time, the application development must ensure

proper tuning of SQLs and tables’ structure. These 2 pre-requisites are not only

important and applicable for the proposal in this thesis, they are also essential to ensure

feasibility in serving the business objective of the application service offerings.

The setup of the environment is similar to the optimization scheme explained in section

4.4.1. A separate TPC-H database is created in the database VM as in figure 4.1. Figure

4.9 illustrates the steps to construct the whole proposal. There are 2 stages in the

mechanism. First, benchmarking data that contains the value pairs of TPC-H queries

and memory reads/s is discovered by mean of iterative execution of the TPC-H queries.

Ideally, the VM should be loaded to the resource threshold so that the SLA-bound

transaction verification can produce meaningful information regarding the capability of

the hardware in conforming to the response time requirement stipulated in the SLA.

193

Figure 4.9: The flow of the setup and application steps of the resource utilization affirmation model.

Similar to the optimization model, there are 2 phases involved.

In the benchmarking stage, to construe the setup algorithm for the stress-testing

mechanism, following are the high level steps.

Step 1: Each individual query in TPC-H benchmark is iteratively executed in the VM to

be tested, to obtain individual value of memory reads/s (MR) and duration of run

time.

Step 2: Step #1 is also carried out for combination of queries.

Step 3: These results are listed in ascending order, to serve as benchmark to be chosen

for individual testing scenario. They are stored in array format as in figure 4.10.

194

A[Query][MR] = {Q16, Q9, Q13, Q21, Q3, Q7, Q5, Q11, Q1, Q22, Q4, Q10, Q14, Q6,

Q18, Q19, Q20, Q12, Q15, Q17, Q2, Q8}, {7000, 11000, 10000, 10000, 11000, 11500,

12500, 12500, 13000, 14000, 14500, 14500, 15000, 16000, 16000, 16500, 16500,

17000, 17000, 19000, 22500, 16000};

Figure 4.10: Array that stores the benchmark data for affirmation model. It is a construct of value-

pairs of TPC-H queries and memory reads/s.

As mentioned, there are 22 queries in TPC-H benchmark. Each one of them is having

distinct characteristic in term of total MR and runtime in producing the results. As

depicted in figure 4.11, these queries are iteratively executed in the VM in parallel. For

example if the VM is comprised of a quad-core CPU, logically the CPU run queue

threshold, CT value is 4, so that at any time there is 1 process queuing for the CPU

resource. In this case the parallel execution of the query needs to be maintained at fT

which will have a value of 8, which produces average 4 queues at any time during the

test. Since there are 4 cores in the processor, it means at any 1 time there is 1 queue in

the virtual CPU. This explanation is similar to the description of ∆S defined in section

4.3.2. However CT can be higher, depending on the negotiated transactions’ response

time requirement by client’s SLA. The CT=4 in this case is a ballpark figure for a quad-

core VM, which should be a general guideline. This is because any higher value will

incur significant waits in the transactions processing which are detrimental to end users’

experience.

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets

195

S = set of 22 TPC-H queries, where

S = [Q1, Q2, ... , Q22]

1. Determine number of processor cores

2. Server threshold, CT is determined by value in step #1 OR predetermined CT from initial load test

3. Determine run frequency, fT of query based on step 2.
4. Determine test duration, T

while (true)
 Record the start time of test, ST

 For each query in S,

 if run frequency, f < fT and Server load, C < CT
 and test time, t < T

 Execute the query

 Record logical reads/s and average runtime

Figure 4.11: Algorithm to produce the benchmark data. In this case, value pairs of TPC-H queries

and memory reads/s are sought after. A Shell program is constructed to execute the algorithm,

which is shown in Appendix F.

The test duration, as experimented, will need to be prolonged for approximately 15

minutes in order for the VM state to be stabilized for measurement purpose. The data

collection is oscillating quite significantly, similar to the condition in the monitoring

and optimization schemes. The desired result of the benchmarking experiments is

exhibited in figure 4.12.

Figure 4.12: Graphical result from the benchmarking experiment. The exhibited result shows the

TPC-H query utilized to load the VM to the run queue threshold, CT=4. The obtained memory

reads/s in this case is approximately 16000, after the iterative execution of the query is conducted

for 13 minutes, with 8 parallel query execution.

As in figure 4.12, the fluctuation of collected data is quite significant during the first 10

minutes. Subsequently the value is stabilized and the data collector can start to work.

This loading duration must be carefully and precisely determined, as the benchmarking

stage is consuming quite a substantial amount of time in producing the benchmark

196

result. Furthermore, these experiments must be conducted during outage window to

avoid noises in the VM. As displayed in figure 4.10, there are 22 queries involved in the

benchmarked array. As each test consumes 15 minutes, 5.5 hours of total outage

window needs to be provisioned to produce the benchmark. As some queries’

executions stabilize faster, a detailed scrutiny on the required run duration for each

query can save some valuable production time. However the advantage of this proposal

in virtualized environment is that the benchmarking tests can be conducted in separate

VM with the same hardware configuration, hence the outages needlessly occur in the

real environment.

It is also to note that the combination of TPC-H queries can be utilized to enrich the

benchmark in figure 4.10. The algorithm to use multiple queries is exhibited in figure

4.13. More experimental results on generating benchmark data is exhibited in Appendix

H.

1. Determine number of processor core

2. Server threshold, CT is determined by value in step #1 OR predetermined CT from initial load test
3. Determine run frequency, fT of query based on step 2.

4. Determine test duration, T

S'= combination of TPC-H queries, where

S' = [Q8+Q9, Q2+Q16, Q3+Q6+ Q7, ...]

while (true)

Record the start time of test, ST

For each query combination in S',
 if run frequency, f < fT/n and Server load, C < CT

 and test time, t < T

 Execute the queries
 Record logical reads/s and average runtime

Figure 4.13: Algorithm to produce the benchmark data using combination of TPC-H queries. The

same value pairs of TPC-H queries and memory reads/s are produced. The Shell program to

execute the algorithm is displayed in Appendix G.

4.5.2 Application to production phase

As indicated, the setup in this affirmation phase strives to serve 2 objectives. The first is

to create the stress-testing scenario. Secondly, it is employed to discover the CPU run

queue threshold in the VM when the hardware configuration undergoes changes.

197

4.5.2.1 Creation of stress testing scenario

In figure 4.9, step #7 indicates that a representative workload is to be obtained. This

workload has to be the typical load in the database where most constraining situation in

the application is predicted. Furthermore, it must depict a timeframe of steady state at

CPU run queue threshold level, CT. In the experiment, CT is identified as 4 as the VM is

having a quad-core processor. This information regarding the workload can be mined

from Workload Repository, where it has a background daemon in the database that acts

as the metadata collector. As this mechanism is provided by the RDBMS vendor, it is

not elaborated here. The extracted metadata information will contain the memory reads

information. As mentioned, this MR from the real workload is to be matched with the

benchmark array, to discover the TPC-H query that displays similar computing

characteristic to the real workload. Once the query or queries is found, it is use to create

the stress-testing scenario in the VM. The step here is similar to step #5 in the

benchmarking phase in figure 4.9. The iterative and parallel execution of the identified

TPC-H query or queries must be performed in restricted environment, where the VM

must be safeguarded from noises. In this case, the best possible option is to provision a

maintenance window for the build phase in this stress-testing experiment.

Subsequently when the stress-testing condition is fabricated and stabilized in the VM,

SLA-bound transactions are executed in the VM. As the CPU run queue is stable in this

condition, the response times of the transactions are unlikely to exhibit the behavior as

exhibited in figure 4.3. However, even though the incurred disk or memory I/O values

are consistent, it is unlikely that the response time results will be even. Fluctuation in

the response times is expected. Hence the verification of transactions should be

performed in multiple iterations to guarantee convincing output. The outcome from the

transaction verification yields following actions, which is best interpreted using Fuzzy

Computing with Words (Zadeh, 1996):

198

 If most of the transactions’ response times that are obtained from same set of tables

do not conform to initial expected response time, data volume is changed, and more

resources are needed in the VM.

 If a subset of transactions in the pool of transactions that use the same set of tables

do not conform to initial expected response time, some indexes in the query are

corrupted and need rebuild.

 If most transactions do not exhibit consistent response time even after many rounds

of testing, the hardware performance is not consistent, and further system health

check is warranted.

4.5.2.2 Threshold verification

The same setup is employed for threshold verification in this section. Contrary to the

threshold verification exhibited in the monitoring scheme where metadata from real

workload is utilized as input, the input to the threshold boundary analysis is channeled

by synthetic workload using the TPC-H queries. Even though both methods strive to

achieve the same goal, each contributes to different interpretation. The monitoring

model provides a depiction of the VM resource boundary that is closer to end users’

experience, as real workload is derived for analysis. Meanwhile the method in the

affirmation model is more speculative, as synthetic workload is employed.

Figure 4.14 illustrates the steps to construct this mechanism. Most of the steps here have

been elaborated in above sections. The more interesting step is in step #5. It exhibits the

extrapolation to discover the theoretical CPU run queue threshold. The principle to

determine the threshold is to equate the CPU run queue to the number of virtual

processors. For instance, if the single quad-core processor in the test bed is increased

from 1 to 2, the deduced number of cores will be 8. Hence the threshold is set to 8. The

199

rationale to this has been explained in section 4.3.2 where ∆S is defined; hence it is not

repeated here.

The basis of construction to the model is similar to the stress-testing scenario described

in section 4.5.1. However the memory reads/s parameter is not important here. This is

because throughout the verification process, only particular TPC-H queries are utilized

for testing, and there is not a necessity to vary the queries. The details for steps # 6 and

7 are as follows:

1) Assume TPC-H query #8 is utilized to load the VM. The same steps to setup the

stress-testing scenario are employed here. However the parallelism of the query

execution is incremented discretely. At each increased granularity, another TPC-H

query is employed for response time verification.

2) However there is no requirement to match the memory reads/s parameter to any

benchmark. Assume TPC-H query #7 is utilized as the query where response time is

to be tested. The average response time of 6.3s for this query should be preserved

within the threshold boundary.

3) At the point when the average response time of query #7 is not adhering to initial

value of 6.3s, the CPU run queue value at that particular instance is taken as the

threshold of the resource utilization in the VM.

200

Figure 4.14: Steps to discover resource threshold in the affirmation model. Note that in this case,

the processor is the constraining point in the VM.

4.6 Potential improvement

The construction of the stress-testing scenario in section 4.5.1 assumes that the physical

reads in the database are negligible. In mission critical application where objective

function is to hasten the transaction processing as fast as possible, such assumption is

valid and considered a best practice in application hosting, particularly in virtualized

cloud environment. Nevertheless there are situations where the stress-testing scenario is

needed in the hosts, where physical reads are significant and cannot be neglected in the

model construction. In such cases, the biggest challenge is to discover the memory reads

(MR) and physical reads (PR) for the employed TPC-H queries, at particular CPU run

queue. Such challenge is complicated as it needs to take into few considerations as

follows:

201

1) The behavior of the database engine in processing the iteratively run queries,

particularly when the shared memory is not caching the entire queries needs to be

detailed.

2) Waits might be significant as SAN storage might pose as constraining factor.

3) Theoretically, if query #1 and #2 are combined and iteratively run, the total memory

and physical reads incurred should be a sum of each individual query’s memory

reads and physical reads. Nevertheless, this hypothesis will need to be proven

experimentally.

4) The data collection oscillates quite substantially. A steadier mechanism to data

loading needs to be envisaged.

The exploration and validation to the above uncertainties are to be continued in

subsequent research. Nevertheless, once the MR and PR can be determined

convincingly, the choice of TPC-H queries to be utilized to load the VM can be

computed using the linear programming and simplex method. The next section

illustrates the potential solution in choosing the queries using these 2 mathematical

algorithms.

To explain the suggested method to choose queries which are most suitable for data

loading, following 2 rules are assumed:

1) The queries’ response time should be as short as possible, so that the fluctuation of

the MR and PR parameters can be kept as small as possible. For instance, a 1 query

is capable of producing required MR and PR values of 10000/s and 20000/s

respectively, and its response time is 20s. Query 2 is also capable of producing the

same amount of MR and PR in 1 second duration, but it needs only 5s to run. In real

condition, these MR and PR values are not smoothened across the whole tenure of

the query execution. With this setback, the transaction verification process will not

202

produce desired consistent response time. To lessen the impact of such behavior,

query 2 is preferred in this case, as the shorter the processing time, the more

consistent the values of MR and PR are generated.

2) When 2 queries are run in the database, the total values of MR and PR is the sum of

individual MR and PR values. Such assumption is made here for easy depiction of

the algorithm. Future research will scrutinize on the potential improvement on this

hypothesis.

To start the mathematical depiction of the proposal, assume 3 queries are involved. In

actual scenario, there are 22 TPC-H queries to be chosen from. However to ease the

explanation, 3 queries are selected to describe the detailed steps. These queries are

having the attributes as displayed in table 4.2.

Table 4.2: Attributes of the queries potentially involve in the construction of stress-testing scenario.

In addition, assume the CPU run queue threshold is 8, which is equivalent to 2 units of

quad-core processors allocated to the VM. The arrival to this value is explained in

section 4.3.2, where ∆S is defined. With this information, it is derived that the total

parallel run of the queries should equate to 16. The objective function of the linear

programming here is to minimize the response time as per rule #1 above. So,

To minimize,

Q = x1f1 + x2f2 + x3f3.

Subject to following constraints:

MR1 f1 + MR2 f2 + MR3 f3 ≥ M,

PR1 f1 + PR2 f2 + PR3 f3 ≥ P,

f1 + f2 + f3 ≥ f,

f1 ≥ 0, f2 ≥ 0, f3 ≥ 0 because parallel execution of queries cannot be negative,

203

Where,

MRi is the individual MR of query i, Si,

PRi is the individual PR of query i, Si,

M is the desired MR to be loaded in the VM,

P is the desired PR to be loaded in the VM,

f is the parallel execution of the queries, which corresponds to the CPU run queue

threshold in the VM.

Hence, putting in the values, the objective function becomes

Q = 10f1 + 20f2 + 15f3, with following constraints:

10000f1 + 15000f2 + 25000f3 ≥ 150000,

5000f1 + 20000 f2 + 11000f3 ≥ 120000,

f1 + f2 + f3 ≥ 16,

where,

f1 ≥ 0, f2 ≥ 0, f3 ≥ 0,

The augmented matrix corresponds to the minimization problem is as below:

The matrix corresponds to the dual maximization problem (Cengage, 2013) is given by

the transpose of the above matrix.

The dual maximization problem implies that the objective value, Q of a minimization

problem in standard format has a minimum value only if the objective function of the

204

dual maximization problem, P has a maximum value. In addition, Q is equal to the

value of P. Q and P are defined as follows.

In the dual maximization format, the dual objective function, P is derived from above

transposed matrix:

P = 150000 y1+120000 y2 +16 y3 ,

Where it is subjected to following dual constraints:

10000 y1 + 5000 y2 + y3 ≤ 10,

15000 y1 + 20000 y2 + y3 ≤ 20,

25000 y1 + 11000 y2 + y3 ≤ 15.

With y1 ≥ 0, y2 ≥ 0, y3 ≥ 0,

With the above defined, Simplex method can be applied to solve the minimization

problem. The dual objective function and the dual constraints are arranged in a tabular

format, as in table 4.3. The vertical cells are interpreted as column, ci while ri represents

the horizontal cells in following explanation.

Table 4.3: Tabular representation of the dual objective function and constraints. The yellow cells

denote the objective function.

The next step is to find the pivot to table 4.3. To arrive at the pivot, the most negative

value from the row that stores values of the objective function is identified.

Subsequently, the values in column b are divided by the column’s values associated

with the negative value. The smallest value from this computational result will affiliate

with the row with the pivot. This operation is shown in table 4.4.

205

Table 4.4: The red colored cell depicts the pivot.

Subsequently, the other cells in the pivot row need to be reduced to 0. The right-most

equations in table 4.5 illustrate how this is performed.

Table 4.5: The reduction of other cells’ values to 0, in the pivot column.

To arrive at the final resolution, the operations displayed in table 4.3 and 4.4 are

iteratively executed until all the values in the dual objective function become positive.

This repeated computation is exhibited in table 4.5.

In the last table in table 4.6, s1 ≈ 8, s2 ≈ 2 and s3 = 6, while b = 44.3. s1, s2 and s3

correspond to f1, f2 and f3 respectively. The value P, as mentioned, equates to Q in the

original objective function. Hence, the minimum response time obtained is 44s. As the

total parallel run of the queries should equate to 16, query 1, 2 and 3 are run in parallel

in the VM, at the frequency of 8, 2 and 6 respectively.

206

Table 4.6: The continuous steps to produce the final resolution by the simplex method.

The above illustration only employs 3 queries. In actual situation, 22 TPC-H queries

should be involved in the objective functions and constraints. With such lengthy

computation, the discovery of the most appropriate value of parallel execution

frequency can be obtained using the simlp function in MATLAB. The above work has

been published as a journal paper in (C. H. Tan & Teh, 2013b).

4.7 Summary and discussion

The designs of the resource utilization monitoring, optimization and affirmation models

have been detailed in this chapter. The designs employ statistical computation to

produce the proposed mechanisms. In these cases, linear regression analysis, machine

learning, linear programming and simplex method have been utilized to generate the

intended and potential outcomes. Each step in the construction of the models has been

accompanied by detailed explanation with logic and feasibility, regarding the choice of

the related techniques.

207

 Future works have also been covered in the latter part of the chapter. It is hoped that the

models will be improved and feasibly applied in the commercial arena.

In the monitoring scheme, the characteristic of the workload is detailed. In this case, the

workload metadata is taken as input to the model. The relationship between this

information from the database and the CPU run queue parameter in the OS is exploited

to depict the condition of the resource utilization state in the VM. In this case, linear

regression technique is employed to describe the workload processing trend. Before the

graphical representation is established, the noises particularly at the OS level need to be

gotten rid of. In this case the Fourth-Spread (fs) method is utilized.

Thereafter, the design for the optimization scheme is elaborated. The prototyping of this

scheme requires the setup of a TPC-H database. In this research, dedicated database is

built for the TPC-H data, so that the noises can be contained to the minimum. The

algorithms to construct the model are based on the linear regression and semi-

supervised machine learning concepts. In building the prototype, 2 phases are

envisaged. In the baselining phase, the training data sets are collected, usually right after

the new hardware configuration is put in place. Subsequently the production phase

involves the collection of testing data sets. Both training and testing data sets are

compared to yield the result of hardware performance level.

Consequently, the construction of the affirmation scheme is detailed. There are 2 goals

to be achieved here. The environment setup for the 2 mechanisms is similar to the

optimization scheme. Both need the TPC-H database to be built. The first objective is to

create the stress-testing scenario, whereby the database logical reads and the CPU run

queue parameters are exploited to create the stressed condition in the VM, for

verification of SLA-bound transactions. The second target is to utilize the TPC-H

queries to discover the resource threshold in the VM. It is to note that both monitoring

208

and affirmation models are capable of recognizing the threshold value. Nevertheless the

former is taking the perspective from the end users' experience, whereas the latter is

more hypothetical in nature.

The next chapter explains the next phase after the design phase elaborated in this

chapter. The experimental results are produced and detailed analysis is conducted.

209

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Introduction

The prototyping results of the proposed models are detailed in this chapter. The results

are critically analyzed, and their advantages and shortcomings are evaluated. At this

point, the proposed resource management mechanisms can be exploited to complement

existing commercially deployed tools in the same categories. For instance, the proposed

monitoring model can depict the server resource utilization state from a new

perspective, in relative to commonly deployed utilities in the IT industry, for instance

NIMBUS, Oracle OEM, Resource Monitor by Windows and the multiple command-line

interface (CLI) tools available in Unix and Linux. The optimization model can serve as

the pre-requisite for comprehensive hardware health check, where the VM state is

probed for abnormality, and the detection of fault is reported for subsequent extensive

hardware scanning to take place. The affirmation model which relates to resource

threshold discovery is able to provide a ballpark figure on the resource limit in the VM,

before the thorough conventional stress testing is conducted using commercialized tools

in case the computing capability of the VM is in doubt, for instance the HP

LoadRunner. In the same affirmation scheme, the rapid creation of stress-testing

scenario proposal provides premeditated stress testing, before the decision to engage the

comprehensive conventional, yet cumbersome load testing is made.

The analysis on the data employed in the experiments is included. As the target of the

research is to avoid access to real data in the database, the rationale on the choice of

preferential data is circled around this security concern. In this case the choice of

employing TPC-H data and queries, together with metadata extraction from real

workload are discussed.

210

In parallel with the elaboration on the analysis for the 3 schemes, the potential future

enhancements from this development point are also envisaged. These reviews strive to

reveal the opportunities to improve the resource utilization in the virtualized

environment, for IT administration as well as monetary benefits.

5.2 Data sets

5.2.1 Metadata from real workload

2 types of data sets are employed in the experiments conducted for this research on

resource management. In the proposed monitoring scheme, the metadata in the real

workload is scrutinized. The data collector runs periodically to gather the needed

information, and stores them into a custom repository. Here, the data collector is a

build-in mechanism in the database. The collection of input data in this experiment is

carried out by the Oracle Workload Repository, where periodic snapshots can be taken

to depict the database and VM states. The high level architecture of this utility is

illustrated in figure 5.1. In this figure, it is shown that the database performance statistic

is gathered in the shared memory, and can be displayed online via the v$session view.

The rolling update of the statistic is also published in v$active_session_history view so

that a more comprehensive interpretation of the database state can be obtained. Such

information is only stored temporary in the memory, as and when the 2 views are

updated with new performance statistic, the old data is no longer available. In order to

capture the data for analysis, the MMON and MMNL background processes are

responsible to capture these statistics in snapshots, and store them onto the disk for

permanent storage. These snapshotting operations to collect and extract metadata did

not incur significant I/O in the test bed when they were run in 1-minute interval; hence

it is not a cause of concern for the experiment. For a week of collected data, the incurred

storage size in the custom table is less than 10MB in size. This figure is relatively small

211

and does not significantly affect the overhead from the cost and administrative

perspective. Other similar tools available in commercial RDBMS products are SQL

Optimizer that associates with Sybase database, and SQL Profiler which can provide the

needed information in SQL Server.

Figure 5.1: High level depiction of the Oracle Workload Repository engine. The in-memory statistic

delineates the database state, and the information can be stored by enabling snapshotting as

illustrated at the bottom half of the diagram. Adapted from (AWR, 2013).

From the database end, the collected metadata consists of DB CPU Time (DCT) and

SQL Elapsed Time (SET). DCT denotes the execution time needed to process the

particular SQL by the database engine. DCT is a subset of SET. In the experiments

carried out in this thesis, SET signifies the total time needed by the VM and database to

return query results to the terminals that initiate the queries. In other words, it is the

Round-trip time (RTT) to process a SQL from the end users to database; and from the

database back to the end users. The components of SET have been detailed in chapter 4.

As elaborated before in chapter 3 and 4, the needed pre-requisite to this monitoring

model, is to ensure that the processor component is the point of constraint. With this

assumption and assurance, DCT and SET can comfortably be deployed in the proposed

212

monitoring model. In this case, the waiting time to process the SQL in the VM will

accumulate in the SET region; however this waiting time is not included into DCT.

With such scenario, the queuing model can be easily depicted, as the magnitude of

difference between DCT and SET at particular CPU run queue denotes the number of

database processes queued in the VM. To safeguard the legitimacy of the collected

metadata, during the snapshotting phase of data collection, the noises in the VM must

not be dominantly affect the number of queuing processes. However in real situation,

even in the most scrutinizing condition, it is often unavoidably that ad-hoc and

unexpected operating system (OS) processes are triggered when the database snapshots

are taken, either intentionally or unintentionally. For instance, there could be request to

perform ad-hoc OS backup as the pre-requisite for a system change. Or in another

instance, the overrun daemon processes might incur unnecessary overhead to the VM.

To cater for such anomalies, the Fourth-Spread (fs) method is employed to remove the

outliers in the monitoring model prior to the data analysis phase. This method

segregates the graphical data points into 4 quadrants. Only the data points in the nearest

2 quadrants are deemed valid to be manipulated to serve the modeling purpose. The

implementation details of the method are illustrated in section 4.3.3. Nevertheless, the

accuracy enhancement of this monitoring model can be significantly boosted when the

noises at the OS level are reduced. Hence the careful selection of snapshotting

timeframes should be emphasized to avoid duration when OS maintenance jobs are

taking place.

5.2.2 Synthetic workload – TPC-H benchmark

The second category of the data sets is utilizing TPC-H benchmark as input into the

optimization and affirmation models. As this benchmark is not specifically fabricated

for particular RDBMS, it can be easily deported to other database platforms in case

needed. However, the main criteria for choosing this established benchmark in this

213

research is its wide adoption by multiple RDBMS products. Because it can be easily

setup and configured in a great variety of databases, the experiments carried out in this

thesis, together with the deduced analysis are applicable generically to other database

flavors. The same design methodologies elaborated in chapter 4 can be quickly and

effortlessly adapted to other non-Oracle database platforms. This benchmark comprises

of 8 tables and 22 queries. The relationship between the tables is illustrated in figure

5.2. The information on the queries can be obtained from Appendix F.

Figure 5.2: TPC-H data model. Adapted from (Kocakahin, 2010).

Furthermore, as the data and queries are standardized across all databases, relative

comparison in performance and throughput capability can be performed. Such facility is

not significant in this research. However it can provide a magnified insight to the

consumers, regarding the expectation of performance and throughput on similar

workload that is running in different RDBMS platform. For instance, if the TPC-H

214

queries are needing x amount of longer response time to be processed by database

running on RDBMS type A during the experiments as compared to RDBMS type B, the

same magnitude of slowness should be expected when the workload is running in user

database that is serviced by RDBMS type A, on the same VM configuration.

The choice of TPC-H benchmark in the experiments is also due to the fact that the

queries can adequately load the VM to the resource threshold level required by the tests.

There are other choices to synthesize this hypothetical workload, for instance, by

employing TPC-W or TPC-C benchmarks. However it is discovered that these 2

benchmarks are more suitable to be utilized for studies on measuring transactions’

throughput. They are not as appropriate relatively to be utilized to construct the

optimization and affirmation models as their queries are relatively lighter to be used to

load the VM. The same observation is revealed in the TPC website. TPC-H benchmark

is fabricated to mimic data warehouse environment where heavier queries are frequent.

On the other hand, TPC-C and TPC-W benchmarks are of OLTP type, which typify the

general nature of web-based OLTP transactions. TPC-H is also a choice here in this

research as it contains a variety of queries that produce the execution response time,

ranging from 1s to 150s. Hence, depending on the size of the VM, different queries can

be deployed according for the experiments.

The TPC-H data occupies 5GB of SAN space, which is relatively small in comparing to

the size of common commercially deployed user databases in today’s storage frame. As

one of the issues in deploying database transactions to the Public Cloud is the distance

of I/O between the data and computing node, 5GB of data can be maneuvered easily in

case the study on the effect of data-to-computing distance is to be conducted. The future

works illustrated at the tail end of chapter 4 elaborates on taking the physical I/O

parameter into the fabrication of stress-testing scenario, using linear programming and

simplex method. In this case, the influence of disk I/O will be significant. With TPC-H

215

data, the distance effect can be conveniently measured in case Public Cloud VM is to be

deployed as test bed.

In most of the TPC-H queries, execution parallelism has been built into them, which

depicts the common VM configuration of 4-8 virtual processors. Such parallelism effect

is not studied in details in this research. However it can be potentially applicable in

future work to refine the stress-testing scenario creation in the affirmation scheme. At

this point, extrapolation on the experimental results is not workable, in order to produce

the benchmarking array. However this parallelism effect is suspected to be the cause of

the irregularity in predicting the memory reads/s of the iterative execution of the queries

in the affirmation model. The default parallelism on the queries is not modified in this

research; nevertheless they should be altered in subsequent research to match with the

virtual processors’ configuration, to predict the memory reads/s parameter.

The benefit of using TPC-H benchmark as compared to customized workload is the

easy reference of this benchmark across different databases. During the initial stage of

the research, it was envisaged that potentially the real data can be scrambled in order to

achieve the objective of not allowing visibility to the real sensitive data to safeguard the

data security. However, such option has a few shortcomings as follows:

1) In order to scramble the real data, manual intervention is needed to execute the

scrambling scripts. Such effort is not beneficial as depicted in following points.

2) The scrambled data does not necessarily guarantee the same performance

characteristic when the same set of transactions is exerted against it. This can be

explained by considering the following SQL:

select department_name, sum(salary) from departments

where num_employee>100;

216

If this statement yields total 300000 memory reads for a duration from the real

data in the memory, after the data is scrambled, the logical reads could be of any

value but 300000 as different execution path is taken by the RDBMS engine due

to the change in data values that changes the predicate clause.

3) Most user databases are relatively larger than the TPC-H benchmark. Hence it is

more cumbersome in deployment and management. TPC-H benchmark data is

generally smaller and portable; hence in case the workload in the VM needs to be

migrated to another VM, the migration of the TPC-H data can be easily performed

without much constraint.

4) Customized workload cannot be easily published as benchmark to the wide industry.

However, TPC-H data and queries are already widely understood and serving

various IT functions. Hence the proposed models in this thesis can be adopted

easily, without prior understanding on the testing data.

The following sections illustrate the application of the discussed data sets into the

proposed models.

5.3 Resource utilization monitoring

5.3.1 Environment for the experiments

To outline the details of the monitoring scheme, a considerably large workload is

needed. During the development stage of this model, there was not a mission-critical

application made available with enough SQL transactions that is hosted on Cloud

environment for illustration purpose. However there was one such ideal workload

available on a single Sun Solaris server. The experiment was conducted against this

workload, where the outcome can be proliferated to database operations on Cloud VM

without much variation. The data for the experiment is gathered from a Sun Solaris

server, powered by 4 Sun Solaris SPARC64-VII CPU with 4-core architecture, 64GB

217

RAM and external SAN running on ZFS File system. The application runs on SAP ERP

software, on ECC6 HRM Module. The application is OLTP in nature, servicing Human

Resource Management System for a large organization. The backend is running on a

single instance Oracle 11g database. In this scenario, a week of data on actual

transactions is collected, with Server Load taken as average in 1-minute interval. SET

and DCT are collected in tandem with the 1-minute interval timeframe. In this case the

explanation of the proposal is simplified by having only 1 database running in the host.

The experimental result is exhibited in figure 5.3. In this graphical illustration, all 3

variables – CPU run queue (C), SET (S
~

) and DCT (S
~

’) are quantitative. When the data

points of these 3 values are mapped, the scatter graph is generated as in Figure 5.3. As

the correlation between C and S
~

, as well as C and S
~

’ are linear as explained in section

2.4.3.1, regression lines are drawn mathematically. They are extrapolated on the cluster

of scatter plot data, to statistically describe the trend of the SET and DCT.

218

Figure 5.3: Experimental results that show relationship between S
~

i(SET), S
~

’i (DCT) and Ci (CPU

run queue size).

5.3.2 Derivative parameters from the experiments

To arrive at the 2 lines mathematically, the Linear Regression methodology is

employed. Take SET as example, it is defined as Si = xCi + b + εi. However in the case

of this experiment, value b is assumed 0 as observed from the actual host itself, that

even with multiple background daemons running, the server load is close to 0 and hence

this variable is negligible. This value can be safely assumed as in this case, the server

resources are abundant. However if the hardware resources in the server or VM are

restricted, for instance if there is only a single CPU and 1 GB of physical memory,

value of b could be 1 or 2 as a result of the system overhead, and it needs to be

acknowledged in the formula. In this case the CPU run queue will be sensitive to the

constantly-running overhead processes in the server or VM. Nevertheless, such scenario

will only complicate the formulation in the algorithm, without achieving significant

desired result. The explained model will work properly in the environment with larger

219

resources, to curtail the system overhead; however if the overhead is large and

unavoidable, a workload pre-check mechanism can be incorporated, to ensure a robust

workload control plan is in place. The precaution in the monitoring model is to avoid

and disregard timeframe when the system is running non-database related overheads

before inputting the workload data into the model. In defining the legitimate workloads

for input to the model, it is assumed that IT organization has a well-designed

maintenance window to cater for unavoidable system overhead, especially the backup

operations, where business transactions during this timeframe are kept to minimum.

To explain the case for the experiment in figure 5.3, the SET is having the equation Si =

xCi + εi. The linearly fitted value, S
~

i is the value fitted exactly on the regression line,

and is denoted as S
~

i = xCi. Hence, the residuals, εi = Si – S
~

i, are the differences between

the actual and fitted values of SET. This variable is not elaborated for the discussion in

this thesis, but will serve as a critical component in subsequent work in developing an

adaptive system to reduce the noises in the system. The requirement here is only to

calculate the value of x to fulfill the requirement here. Using Least Squares Derivation

method as explained in section 2.4.3.3, with N number of data points, the value of x is

obtained as

∑ ̃

∑ ∑ ̃

∑

 ∑

 . (1)

With this, the regression line is plotted using S
~

 = xC, and similarly for DB time, S
~

’ =

yC. To measure the representability of the regression lines to the data points, we use the

correlation coefficient (r), defined as

220

∑ ̅ ̃ ̅̃

√∑ ̃ ̅̃

√∑ ̅

 . (2)

With, ̅

∑

 and ̃̅

∑

 .

r is confined to value between 0 and 1 in our case. 1 denotes that there is a perfect linear

correlation between C and S
~

, while 0 shows no correlation. Intermediate values show

partial correlations. This value of r will be utilized later to gauge the accuracy of the

graph in figure 5.3. Another parameter, ∆S = (S
~

-S
~

’) /S
~

’ *100 is also needed in the

model. The details explanation for this parameter is shown in section 4.3.2. ∆S

corresponds to C’T. This delta of S
~

 and S
~

’ can be used to gauge if the host condition is

still viable for optimal database transactions. During steady state database operations, if

S
~

 = xC becomes steeper, ∆S is then reached for Server Load < C’T. The reason could

due to the fact that the physical reads or memory reads in the database are not efficient.

This indirectly indicates that either the I/O subsystem is not functioning optimally or the

database cache is not sufficient after prolonged database operations where change in the

data volume has occurred. The noises from the operating system can also contribute to

this, for instance new auditing daemon could be running in the host, additional host

monitoring utility is running etc. The noises ideally are undesired, for a mission critical

application running stead-state operations. However in real live environment, system

overhead is inevitable. For instance, the VM and database backups will cause significant

overhead and these cannot be ignored. In this case a maintenance window is defined,

and the workload input will avoid this timeframe when feeding into the algorithm, to

preserve the model accuracy.

221

In case the ∆S is reached when Server Load < C’T, appropriate measures need to be

taken, i.e. fixing the host environment or increase database cache. If all has been done

but value of x is still steeper than before, a new C’T will need to be defined. In this case

the new C’T is the Server Load value corresponds to where ∆S is. It is to note that as

values for CT & C’’T stay as constant here, hence the C’T & CT gap is enlarged. When

this happens, the probability of transactions to fall into the 5% zone increases. The 5%

zone is a hypothesis figure, and it should be adjusted appropriately based on particular

application’s SLA.

When block of new hardware is added to existing VM, the new resource threshold point

is rediscovered via the affirmation model explained in section 4.5.2.2. Subsequently the

monitoring model is constructed again to monitor and determine for subsequent need of

hardware provisioning.

5.3.3 Experimental data

There are a total of 10621 samples (total collection of the data points as in Figure 5.3)

gathered in the 1 week period for each set of SET, S
~

 and DCT, S
~

’. As mentioned their

relationships are S
~

 = xC and S
~

’ = yC respectively, and by calculation using the data

points’ values, the gradients are x=67.25 and y=43.77. Hence as seen in Figure 5.3, 2

strong positive regression lines are drawn. There are outliers in the graph, and they are

understandably to be caused by noises in the server outside the control of the RDBMS.

These can possibly cause by the auditing processes in the OS which spike occasionally

while the application transactions are running, File System backup that incurs I/O

contention and monitoring daemon to name a few. To gauge the accuracy of the

regression lines, correlation coefficient, r, is calculated. Using equation 2, the value r =

0.72 for the regression line on SET, and r = 0.78 for the regression line on DCT. These

2 values show that the fit of the 2 linear models is fairly acceptable. In other words, it

222

can be assumed that these noises are not affecting the correlations too much. For more

accurate plots, these noises will need to be investigated and fixed at OS level, or if ever

desired, the outliers in Figure 5.3 can be excluded to increase the accuracy of the

regression lines. With these equations, the limit when the server is hitting resource

constraint can be further derived.

2 values from the output of affirmation model during pre-cutover or right after change

of hardware configuration are to be noted, before the database goes into steady-state

production mode. They are C’T & ∆S. The initial CT is set at 13 and ∆S = 55%

respectively. After about a year running into steady-state production mode, the CT value

reduced to 12 with ∆S stays at 55%, as depicted in Figure 5.3.

To represent these 2 properties properly, Fuzzy Logic is employed, as illustrated below:

Step 1: Determine when to examine the host environment and adjust CT, using Fuzzy

Computing with Words (Zadeh, 1996):

If SQL elapsed time is very much higher than SQL DB time, the host environment

is near suboptimal condition.

With Fuzzy Implication method (Alavala, 2008):

Figure 5.4: Membership Function for ∆S, A(u).

223

Figure 5.4 shows membership function for ∆S, A(u). A(u) is

A(u)={

 (3)

Figure: 5.5. Membership Function for C, B(v).

With u=55, corresponding Server Load limit, C’T is obtained, as in Figure 5.3.

Figure 5.5 shows membership function for Server Load, B(v) in the server. B(v) is

B(v)={

 (4)

Subsequently, the constraining relation, R = A(u) ⇒B(v).

Step 2: Determine if database transactions need additional hardware:

If more data points fall between C’T & CT, trigger point for hardware planning and
provisioning is near.

Figure. 5.6: Membership Function for ρ, C(w).

224

Figure 5.6 shows membership function for density of data points, ρ, between C’T & CT.

C(w)={

 (5)

The membership function A(u) is obtained from the output from the affirmation model,

or initial Load Testing as when ∆S is defined. Subsequently from the limit of A(u), B(v)

is determined during steady-state operations. Using limit of B(v), C(w) is derived.

5.3.4 Monitoring model’s accuracy and system overhead

The snapshot interval to obtain the data points is set to 1 minute in the experiment. It is

worthy to note that the smaller the interval, the more accurate the data is. Caution needs

to be taken here on the workload to collect S
~

, S
~

’ and C values, as these data computation

in the database should not incur too much overhead. In system with not as powerful

hardware, 1-minute interval could incur high overhead to the host environment. In

contrast when there is more resource available in the host, sampling interval can be

small. This can be represented by Fuzzy rule in the form of:

R: If <x is P>, then <y is Q>. This is translated to If <Server load is low>, then

<sampling granularity can be small>.

Then with Fuzzy predicates P and Q as Fuzzy sets on U = domain of x, V = domain of

y, define,

 P(x) for ‘x is P’ and Q(y) for ‘y is Q’, and define,

 T(R) = T[P(x) ⇒ Q(y)] for every x in U and every y in V.

Using Mamdani implication (Ganesh, 2008) which is appropriate in this case,

225

 T[P(x) ⇒ Q(y)] = min[P(x), Q(y)].

With this visibility, the appropriate overhead values of P (Server Load) and Q (sampling

granularity) can be brought into equilibrium.

5.3.5 Workload characteristic

5.3.5.1 SQL tracking

During the tenure of the database life cycle, it is imperative to keep the DCT of all

transactions as close as possible to the initial deployment of the application. In other

words, the line S
~

’ = yC as in Figure 5.3 should not change ideally. To do this, the SQL

must be tuned and run as optimally as possible during the development phase, before

production deployment. To explain the SQL verification mechanism, define an array, B,

which has 30-minute interval in each of its element. Depending on how long the data

capture operation is going to run to properly represent all potential SQL in the

databases, there is q samples in B, B=[u1, u2, … ui,…, uq]. Then assume there are n

numbers of databases running in the host, DB=[db1, db2,.. dbj …., dbn]. Take 1 30-

minute snapshot, u1 to represent activity in other snapshots, and define

s1 = collection of SET of top m number of SQL in all n databases, running in u1. The top

m SQLs are ranked in descending order by total elapsed time. s1 is a collection of SQL

ID.

Hence, s1 is s1 = [ss1, ss2, ss3 .. , ssk …, ssm],

where,

ssk = SQL elapsed time on a SQL k that runs in database dbj with y iterations in the 30-

minute interval, defined as ∑ (

)

 μk, where μk = mean elapsed time of the SQL.

226

Top m SQLs are defined as SQLs that exceed x duration of runtime including all their

iteration in u1. Top m SQLs are dominant resource consumer in the host.

The accurate way to gauge the effectiveness of a SQL is to compare its actual μ with the

benchmarked value, in this case the minimum of μ found in all the legitimate gathered

data points in figure 5.3. So for ssk, the minimum of μ is labeled as μk-min. For each SQL

ID in si, the minimum μ is stored in an array, U = [μ1-min, μ2-min, μ3-min .. , μk-min …, μm-

min]. Hence, data in U is to be benchmarked when SQL tuning is taking place.

5.3.5.2 SQL optimization

In real situation, there are un-optimized transactions that disguise the actual need of

computational power. SQL must not be allowed to run wildly. The un-optimized

condition can be attributed to following few problems and potential solutions:

1) The change in data volume which requires update on the tables’ statistic.

2) The change in data structure which requires reevaluation on the SQL context.

3) Accidental deletion of indexes which changes the SQL execution path entirely.

4) Introduction of new codes into the environment which was not tuned properly in

prior.

Following section further explains the situations on the behavior of these SQL,

particularly on the change on data volume as this is potentially the highest possible

occurrence in the database.

For the same SQL which runs multiple iterations, either via bind variables or literal

values, its μ, which is the average execution elapsed time, may change but the execution

plan stays the same. Few scenarios could lead to this, for instance if the data involved in

the SQL increased significantly and statistic has not been gathered in time, or if there is

skewed histogram in the data resulted from data change. Another situation that can lead

227

to this is when there is high resource contention in the VM going beyond CPU run

queue threshold. These are represented in Figure 5.7.

Figure 5.7: Runtime Variation of Particular SQL in 1 Week.

Figure 5.7 shows SET of a SQL executed in each 30-minute segment in array B. There

are 10 occurrences of the SQL execution in 1 week. SQL A was the original statement,

optimally tuned, and there is no hardware contention in the server. To explain this

further, there are few key aspects to define optimally tuned statement in this case.

During end users acceptance test, the buy-off transaction response time could be set as

benchmark. Then when the database is running in steady-state production mode, the

RDBMS engine can self-tune the SQL. There is also situation where particular SQL is

intentionally forced to run on particular execution path to maintain desired response

time.

A’ is a result of data being added to the tables involved, and it goes undetected by the

RDBMS. A’’ illustrates the scenario when data is added significantly to the tables used

by the queries before tables’ statistic is gathered, or necessary indexes have not been

considered to accommodate the new data. In another scenario there can be resource

contention in the VM that results in A’’. Another scenario which is not shown in figure

5.7, is that SQL A changes its execution plan, as a result of accidental drop of an index

5 6 7 8 9 10 11 12 110 111 112
0

20

40

60

80

100

120

140

160

o

f
e

xe
cu

ti
o

n
s

execution elapsed time (ms)

of executions with corresponding elapsed time for
particular SQL in 1 week

SQL A SQL A'

SQL A"

228

in a table or sudden surge of cache memory consumption due to sudden increment of

table data. These adversely result in excessive physical reads and the μ diverges

significantly.

Above are a few situations that affect the accuracy of the model. These SQLs need to be

tuned before resource capacity tracking model can report the resource utilization state

accurately. As defined in section 5.3.4.1, U = [μ1-min, μ2-min, μ3-min .. , μk-min …, μm-min].

The data in this array is used for the purpose of baselining and tuning the involved

SQLs.

5.4 Resource utilization optimization

5.4.1 Environment for the experiments

Figure 5.8: Parallel Database hosting using VMWare Cloud Virtualization Infrastructure. The

optimization and affirmation models are built on the TPC-H database depicted in the diagram.

The VM utilized for the experiments in this research is constituted of the components as

illustrated in figure 5.8. The proof-of-concept repository is an Oracle database. Oracle is

the RDBMS of choice here, as it offers full-fledged SQL optimizing feature, via the

matured optimizer technology. It provides the database transactions with many complete

SQL optimization technologies; hence the need for SQL tuning effort in all the testing

scenarios can be reduced. The VM is running on Suse Linux operating system. The

229

captivated CPU run queue length, or server load values obtained from ‘uptime’

command in the OS are the core input for the optimization and affirmation models.

5.4.2 Experimental results

Figure 5.9: The expected output from the optimization model. The obtained gradient and y-

intercept are the parameters to be compared between the baselining and production phase, as

explained in section 4.4.2 and 4.4.3.

The baselining experiments’ output is as illustrated in figure 5.9. Appendix E contains

the other similar baseline data, produced by different TPC-H queries. The core value of

these experiments lies in the linear relationship between SET, S in the database and the

CPU run queue size, C within the resource threshold point. As the interest is to discover

the gradients, MB and y-intercept, YB of the linear plots, these regression lines computed

during the baselining phase of VM provide the baselines for subsequent hardware

performance analysis.

Each set of test which comprises of different combination of TPC-H queries has

different values of MB and YB. This is because the SQL processing has dependency not

only on the number of CPU, but also the logical and physical I/O reads. In real

production phase, only 1 to 2 baselines are adequate for subsequent comparison. These

regression lines are equitably formulated by following equations:

The gradient of the regression line:

230

M=
 ∑ (∑

)(∑

)

 ∑

 (∑

)

 .

The y-intercept:

Y=
(∑

)(∑

) (∑

)(∑

)

 ∑
 (∑

)

.

The correlation coefficient:

 r=
∑

(∑

)(∑

)

√[∑

(∑

)

][∑

 (∑

)

]

 .

The correlation coefficient, r is used for performance evaluation purpose. Its details

have been elaborated in section 5.3.2.

5.4.3 Potential deviation from the testing data sets

Figure 5.10: Potential change in linear correlation between S and C.

Figure 5.10 shows linear regression lines of the resource state in a situation in the VM.

Correlation A is the Fitted Regression Line obtained from the training data sets of

particular set of TPC-H query, from the control system, in other word, the baseline. If

the VM shows condition A’ from the testing data sets, which are the data obtained from

the tests during the production phase, where y-intercept differs from baseline after

running operations for a while, it signals that the capability of the VM has deterioated.

231

This could be due to the persistent noises in the OS or partial hardware malfunction. For

this, ∆s=

 is defined.

Using Fuzzy Computing with Words (Zadeh, 1996) concept,

 If ∆s is large, the OS and hardware condition needs to be examined.

Correlation A” in Figure 5.11 shows another deviating condition. The fluctuation in the

gradient can signify hardware or OS issue. For instance, there are significant irregular

noises in the OS, the CPU is not able to access the second core in a dual-core machine,

memory shortage due to failure in DIMM or increased I/O time resulted from

breakdown in any of the SAN components. The gradient of the testing data set, mj is

derived from same TPC-H query sets, and it has less positive value than MB, which is

the benchmarked gradient obtained from training phase. Again, using Fuzzy Computing

with Words concept,

 If gradient and y-intercept deviate much from baseline values, the OS and

hardware need to be examined.

The above explained theories assume strong linear correlation between the SQL

Processing Time, S and server load, C. However this might not be the case in actual

production system. In this case, the correlation coefficient, r,(D. G. Kleinbaum, L. L.

Kupper, K. E. Muller, & A. Nizam, 1998) is employed. It is a barometric measurement

of the linear association between the data points and the Fitted Regression Line from the

baseline data. In this case, r will vary between 0 and 1, with value nearer to 1 denotes

stronger linear correlation.

232

Figure 5.11: Potential change in linear correlation between S and C.

Using fuzzy definition,

 If correlation coefficient, rj is less positive, the OS and hardware need to be

examined.

Figure 5.12 shows a condition where the underlying storage is going through a backup

process. In this timeframe, the host’s environment is not conducive for any transaction,

as uncharacteristic performance results are expected due to inconsistent I/O subsystem

performance during the backup snapshotting. This behavior is shown in this graph,

where erratic data points are collected from the test. Hence, the consistency criterion is

voided in this case.

Figure 5.12: Erratic behavior of hardware performance during backup process.

233

5.5 Resource utilization affirmation

The significance of the affirmation scheme lies in its ability to rapidly create the stress

testing scenario in the VM. Figure 5.13 depicts the result in the benchmarking stage

from TPC-H query #2. The complete result of the proposal in the affirmation scheme is

illustrated in Appendix H.

Figure 5.13: Testing result of the affirmation model. The output from this test is included into the

benchmark array. Sunsequently the benchmark is employed as input to the stress testing scenario.

In the experiment conducted in figure 5.13, the maximum parallel execution frequency

of the query, fT was maintained at 8, hence producing CPU run queue length of 4 in

average. These experiments are conducted in a SUSE Linux VM, provisioned with a

quad-core Intel processor, with 1GB of memory allocated to the Oracle database cache.

In ideal case, the VM should be provisioned with more shared memory, so that the

shared memory in the database can contain all the TPC-H tables. With these tables

pinned into the cache, the incurred physical reads from the queries become

insignificant; hence the proposal here becomes more accurate. This can be done if more

than 5GB of cache is available, where practically all the tables in the TPC-H benchmark

are pinned. Nevertheless, the experiments carried out in this proposal strive to illustrate

the needed components and the relationship between each. It is noteworthy that

234

regardless of the database cache size, logical reads values for the individual query

remain the same, with the difference lies in the runtime of the queries.

The experiments were conducted for all the 22 queries, producing the outcomes that are

recorded in a 2 dimensional array, A, where the memory reads/s (MR) values are

arranged in ascending order.

A[Query][logical reads/s] = {Q16, Q9, Q13, Q21, Q3, Q7, Q5, Q11, Q1, Q22, Q4, Q10,

Q14, Q6, Q18, Q19, Q20, Q12, Q15, Q17, Q2, Q8}, {7000, 11000, 10000, 10000, 11000,

11500, 12500, 12500, 13000, 14000, 14500, 14500, 15000, 16000, 16000, 16500,

16500, 17000, 17000, 19000, 22500, 16000};

Some results exhibited in Appendix G depict the testing carried out from combined

queries. The maximum run frequency, fT is maintained at 8, hence each iterative run of

queries is maintained at 4. This produces run queue length of 4 in average.

It is observed that when queries are combined in the test, MR is a function of the query

runtime. For example, Q8 was taking 63s to complete each run cycle, and Q9 took 76s

to complete. Individual result for Q8 yielded MR value of 16500, while Q9 produces

11000 of MR. So, the MR value for this combination is calculated as:

(

∑

) + (

∑

) + + (

∑

) ,

where,

ti = runtime of query i.

MRi = Individual query’s memory reads/s value.

MRT = memory reads/s value from baseline load testing OR actual production scenario.

n = number of involved queries.

Hence,

(

 +
) + (

 +
)

MR value of 13500 matches the experimental value in Figure 5.14.

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets

235

Figure 5.14: Testing result with the combination of TPC-H queries. Such output can also be

predicted from the output of individual run from each query.

So, another array, A’ can be defined as:

A’[Queries][logical reads/s] = {Q2+Q6, Q8+Q9, …}, {16500, 13500, …};

and,

A ∪ A’ = A’’ which produces a larger repository of MR. The value pairs are to be

chosen for VM loading.

To validate the practicality of the MR values in A’’, we benchmark a real production

Human Resource application, serving Employee Self-Service and Manager Self-Service

functions. The database for the application is also running on a VM with a quad-core

processor, with 3GB of database cache allocated. The average run queue length is about

4, which is taken as the CT in the test. For this database, the total logical reads in 1 hour

amounted to 27,912,822, which results in 11630 in MR value. Hence, it falls within the

boundary of MR values in A’’. The performance of the triggered transactions is

satisfactory at this level as according to the end users. Hence in order to simulate the

high load scenario in this VM, TPC-H query #7 can be employed, with maximum run

frequency, fT set to 8 that yields an average run queue of 4.

http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets
http://en.wikipedia.org/wiki/Curly_brackets

236

5.5.1 Future work

As the benchmarking stage requires quite substantial amount of time in order to produce

the benchmarking array, it will be of great value if the experimental result obtained

from a particular hardware configuration, can be extrapolated in tandem with the

resource allocation changes in the VM. From another perspective, it is also interesting

to find out if it is ever possible to derive the value of MR from 1 query to another.

Another point to note is that the server load value, CT is taken loosely as the limit when

the VM hits its resource limit, but it can be assigned any value which can be changed

variably with ease in the tests depending on the application choice, as some

transactions’ response time is relaxed and queuing on CPU resource is allowed.

Nevertheless the maximum limit on run queue size is ideal only when there is no

process queues on the CPU. Hence, as the CPU run queue value is taken as constant

during the experiments, it will add great value to this model if extrapolation can be

performed on the benchmarking stage to discover the MR values, from 1 CPU run

queue size to another.

In this thesis, only the memory reads criterion is experimented. For physical reads, there

is no benchmarked DML SQL to be used. Nevertheless these can be fabricated by

forcing repetitive reads operations on large tables’ values that cannot fit into the cache

in total. However it should be noted that in well-tuned applications, the logical reads is a

much dominant parameter in the database as compared to physical reads parameter, to

the extent that it can be negligible as it does not post as the constraining factor.

Nevertheless, it is also of great value to incorporate the option of physical reads

parameter into this affirmation model, as explained in section 4.6.

237

5.6 Summary and discussion

In this chapter, the spectrums of the resource management proposals are analyzed in

details. The type of data which is utilized for experiments is elaborated. In this case, the

extraction of metadata from real workload, together with synthetic workload using TPC-

H data are of interest. The choice of these data types is influenced by the security

requirement where access to sensitive information in the database needs to be restricted

as much as possible. The reasons for the unsuitability of scrambled data from real

workload are also explained.

Subsequently, the experimental result to derive the proof-of-concept for the resource

monitoring model is exhibited. The utilized parameters are clarified and scrutinized. In

this case Fuzzy Computing with Words method is employed to represent these

parameters for ease of interpretation. After that, the overhead and its effect on the

model’s accuracy are discussed. In order to increase the relevance and applicability of

this resource monitoring model in real environment, SQL tuning is identified as the

critical pre-requisite before the model can efficiently serve its purpose.

In the next section, the prototyping of the optimization model is detailed. The likelihood

of deviations from the baselines is elaborated. The outcome of the analysis from these

deviations will trigger various actions, for instance, a thorough hardware health check,

revisiting of the application SQL, additional resource planning or scaling etc.

After that, the output from the experiments for the affirmation model is delineated. The

extrapolation from outcome in the benchmarking stage is envisaged. In this section,

there are some potential future works that could enrich the model, so that it can

adequately applied to the real environments.

238

The analysis of these research works has also been published in the journals (C. H. Tan

& Teh, 2013a, 2013b, 2013c).

The next chapter concludes the research works conducted in this thesis. Some future

researches are also envisaged in the chapter, which will solidify these proposed resource

management models.

239

6. CONCLUSIONS

6.1 Introduction

This study demonstrates the capability of utilizing statistical modeling to achieve

resource management purposes in virtualized cloud environment. During the

conceptualization phase of the prototypes, the proposals are aspired to take the data

privacy and security concerns into consideration, as the suggested mechanisms are

targeted for database operations that have stringent security requirements. In doing so,

linear regression analysis, machine learning, fuzzy computing, linear programming and

simplex method are the mathematical techniques employed in the construction of the

models. These numerical approaches to build the models are taking the input from

metadata in real data, as well as the TPC-H benchmark. At this point of this research,

the proposed schemes can be deployed to complement current commercially available

tools and utilities. Such refinement in the resource utilization takes the resource

administration to a greater level of efficiency. The study is segregated into 3 themes,

and each is related to each other sequentially. The monitoring, optimization and

affirmation schemes, each of them targets different aspects in the resource utilization in

cloud environment. In aggregation, they provide an almost holistic solution to the

resource management domain.

6.2 Summary of solutions to the objectives’ questions

At this point, the research questions in chapter 1 can be answered conclusively, as

follows:

Question 1: What are the appropriate methods to provide barometric indicators to

determine the host performance?

240

Answer:

In the monitoring scheme, the collective response time of the SQL in a representative

workload are gathered and analyzed. By employing the linear regression and machine

learning methods, a graphical representation of the workload processing condition is

presented for resource planning and scaling purposes. A hypothetical 5% zone is

envisaged in the linear graphs. If 5% of total SQL transactions fall into this region, the

resource constraint in the VM is deemed hitting the threshold level, which warrants

subsequent resource provisioning activity.

Subsequently in the optimization scheme, the consistency of the hardware performance

is measured by mean of comparing the gradient and y-intercept of the baselined data to

the testing data. The testing data is collected periodically during the production phase of

the application service offerings. Such recurring event can be scheduled daily or

weekly, and the gradient and y-intercept must be similar to the baselines in order to

ensure optimality and consistency in the computing performance. In addition,

correlation coefficient parameter is employed to measure the relevance of the linear

plots.

After that, the affirmation scheme envisages the creation of stress testing scenario, in

order to provide a fitting environment for transactions’ response time verification.

In this case the host performance is measured based on the collection of response time

from SLA-bound transactions. The parameter of SQL response time can be

conveniently utilized to gauge the adequacy of computing resource in the VM, as the

expected values are already stipulated in the established Quality of Service requirement

in the Service Level Agreement.

From another perspective in this affirmation scheme, TPC-H queries are utilized to load

the VM to the hypothetical resource threshold point. Consequently, the response time

241

from these queries are engaged to measure and verify the threshold point. Such

constraining level in the resource may not be the same for the real workload as there

could be relaxed or stringent SLA requirements; nevertheless this threshold obtained

from the execution of TPC-H queries provides a ballpark indication on the capability of

the VM.

Question 2: How can users' experience be matched to these indicators discovered in

(1)?

Answer:

In the monitoring model, the workloads are to be obtained from the real environments.

The effort to select the workload that is delineative for the general computing

requirement in the VM must be careful so that it depicts the real transactions from the

end users. In this case, undesired noises are filtered so that only real users’ processes are

channel into the monitoring mechanism for analysis purpose. Hence, the produced

outcome from the analysis on the monitoring model will characterize the real users’

computing requirement in the VM.

In the optimization scheme, the iterative runs of the TPC-H queries in the VM to

diagnose the hardware performance consistency and optimality produce a relatively

closer depiction of the VM performance, when it is compared to hardware health check

activities that depend solely on OS parameters’ values for interpretation. This is because

the execution of TPC-H queries is running the database SQLs that mimics real database

operations. Hence, resultants from SQL executions are nearer to the real users’

experience.

The same condition is applied to the affirmation model. The determination of resource

adequacy in the VM is characterized by verification of real SLA-bound transactions,

242

when the VM is stressed to its resource limit. The combined OS and database

parameters, coupled with real execution of SQL to create the stress-testing scenario in

the VM, are a more strategic approach to verify the critical transactions as well as to

probe the VM capability.

Question 3: What are the significant and appropriate parameters to be used to measure

host performance?

Answer

Many of the current resource management utilities are practicing silo monitoring in the

computing hosts. In other words, the parameters employed are either emphasized on

operating system variables, or solely from the database end. The most appropriate

method to exhibit the resource utilization state in the VM as portrayed in this thesis, is

to combine the parameters from the operating system and database, where the condition

in the host is matched to the status in the database. Such bilateral verification

mechanism provides checks and balances, so that erroneous reporting from 1 end can be

discovered by another.

Question 4: How do these parameters interact with each other, in order to provide a

more solidified output to measure the host and database performance?

Answer

The CPU run queue and SQL processing time are the 2 main parameters employed in

the proposed resource management mechanisms. When the workload processing

requirement increases, more CPU cycles are needed. In this case the process queue on

the processors becomes longer. From the database perspective, this corresponds to the

increment in the SQL processing time. The 2 parameters are directly proportional,

before the resources utilization threshold in the VM. The interest in all the proposed

243

mechanisms is confined within this threshold point, where the linear correlation

between these 2 parameters is manipulated to describe the VM and database

performance condition.

Question 5: How can the proposed mechanisms deliver the intended objectives, in term

of accuracy and consistency?

Answer

Ideally, the models are invaluable in boosting the efficiency of currently deployed

resource management utilities. Subsequent refinements in the area of automation and

coding of the algorithms in GUI mode are essential to promote the adoption of the

models in real environments. Nevertheless, the oscillation of the parameters’ values in

the data gathering phase for all the 3 models needs to be refined further. The instability

in the parameter reporting for CPU run queue is the trickiest component in the proposed

mechanisms. Once this fluctuation symptom is steadied, the consistency and accuracy

of the models can be significantly improved.

Question 6: How the hardware in the VM performs before and after resource

constraining threshold?

Answer

Before the resource threshold, the computing resources are spent to complete the end

users’ requests. This is the most ideal condition from the perspective of providing

application service offering to the consumers. In this mode, the transactions are

processed without excessive waits either in the operating system or the database. The

proposed mechanisms strive to provide clearer visibility to the resource state in the VM

so that database operations can be performed within this limit as much as possible.

Beyond the resource threshold, there is no guarantee that the database transactions can

244

be completed within the stipulated limit of the response time. In the extreme case, the

transactions may be aborted due to excessive waiting time. Hence, the resource

threshold limit is manipulated by the proposed algorithms to delineate the resource

management proposals.

Question 7: Many of the RDBMS products in the industry have not developed the

capability to be dynamically scaled, and the migration from 1 RDBMS platform to

another is quite unlikely in commercial arena, what type of resource management

mechanisms are appropriate for such semi-dynamic scalability requirement by these

database systems?

Answer

The proposed mechanisms for resource management envisaged such condition for many

parallel databases. In the resource utilization monitoring theme, the metadata is

analyzed using linear regression method, and the outcome is obtained after a week of

data collection and analysis. Such prolonged data aggregation is more accurate as

compared to workload analysis obtained from short historical duration. In the resource

utilization optimization arena, the algorithms computed by machine learning and linear

regression are tested periodically, in recommended weekly schedule. The observatory

result from the testing is evaluated weekly in this case for fault discovery. In this case,

the hardware is not expected to change when comparing between the training and

testing data in between the week. Subsequently, the proposed light-weighted stress

testing mechanism in the resource utilization affirmation topic is carried out with the

knowledge that the historical I/O condition can be referred to in order to mimic the real

workload condition. Hence, the hardware configuration is expected to remain constant.

Question 8: As fault analysis is a continuous effort, how capable the proposed

mechanisms in accomplishing this goal?

245

Answer

The testing phases in the proposed mechanism in the resource utilization optimization

theme which is computed using the machine learning technique can be executed daily

or weekly. With such schedule, the fault in the hardware can be adequately detected,

where the output is subsequently fed for failure prediction.

Question 9: How to address the shortcoming of the current available benchmark, where

one-size-fit-all scenario is almost nonexistent?

Answer

With the dynamicity nature of the various real workloads, it is almost impossible to

produce benchmarks that can decently represent them. The proposed mechanisms in this

thesis are utilizing TPC-H benchmark, with the view that these synthetic data and

queries can be uniformly standardized across all platforms. Hence, the result of

experiments carried out from 1 platform could potentially be applied for other

platforms.

Question 10: How security aspect is addressed in details, by the proposed mechanisms?

Answer

The idea of the proposed mechanisms is to prohibit IT administrators from accessing

real users’ data, but still preserving the capability to perform resource management

tasks, with probably more superior methods. With these proposals, the real data can

comfortably be masked without the concern that the data shielding activity from IT

personnel may affect the normal administrative jobs.

246

6.3 Limitations of current study

The exhibited prototypes in this thesis can be considered as pioneer in the area of

resource management. As the knowledge is new, there are a few short-comings which

are to be further refined in subsequent research:

6.3.1 The monitoring scheme

1) The monitoring outcome is invalidated whenever the underlying hardware

configuration is changed in the VM. Each time the resource state is changed, the

resource threshold discovery mechanism is employed to identify the new CPU run

queue threshold value. This value can only serve as the ballpark figure for the

particular set of workload. This is due to the fact that each application has different

SLA requirement, where some have more stringent response time specification,

whereas some are more relaxed. Hence, a method to learn the threshold value which

is tailored to particular workload will increase the accuracy of the model.

2) The discovery of the 5% zone is the core target in this scheme. In order to identify

this segment, the metadata of the representative workload has to be sufficiently

gathered. For some applications that become active only during particular timeframe

of the year, the identification of this 5% zone location from real data will have to

wait for such timeframe to arrive. Load testing to simulate the real transactions in

the VM could be the viable solution. However it can only be done on the VM where

the hosted databases allow such outages.

3) The metadata collector illustrated in this thesis assumes the service is adequately

provided by the RDBMS vendors. Nevertheless, such facility is not guaranteed to be

available in all the RDBMS. For those databases that do not have such option on

data collection, the monitoring model cannot be deployed directly. A custom

development is required to code the data collector’s algorithms.

247

6.3.2 The optimization scheme

1) The fault analysis in this scheme is capable to predict relative long term hardware

issue in the VM. It cannot be utilized to predict the potential failure which might

happen in the short term, for instance within 1 hour. Hence conventional fault

analysis and failure prediction to discover short term problem in the hardware

cannot be complemented by this mechanism.

2) The collection of the testing data sets during the production phase is unwieldy due to

the oscillative nature of the CPU run queue parameter. However this does not

necessary signify faulty underlying hardware. Hence the tests may need to be

carried out multiple times to arrive at the state where stabilized data is obtained.

3) Manual intervention is needed to run the test and harvest the required data. Further

automation is required to hasten the tests and reduce inaccuracy due to human error.

6.3.3 The affirmation scheme

1) The benchmarking phase in producing the array of reference is taking much time.

Furthermore, the whole cycle of acquiring the array needs to be repeated each time

the hardware configuration changes. Such long outage requirement is not feasible in

mission-critical applications that do not allow long downtime on the database VM.

Hence a method needs to arrive to address the issue of long outage window,

potentially using extrapolation technique.

2) In creating the stress testing scenario, only memory reads/s parameter is employed.

It could be beneficial if combination of physical reads, memory and physical writes

parameters are taken into account in constructing the stress-testing scenario.

3) Similar to the optimization model, the execution of the mechanism is dependent on

IT administrators. The proposal can benefit from more automation steps built into

the model.

248

6.4 Recommendations and future directions

In order for the proposed mechanisms to be deployed for real production use, they must

be packaged into graphical user interface (GUI) product, in order to aid the deployment

and usage. In today’s IT industry, in order to promote wide adoption of certain products,

GUI-based functionalities are the most important pre-requisite. For instance, all the

recent development on cloud virtualization management software (SolarWinds, 2013;

Splunk, 2013; VMTurbo, 2013) are porting all the available functionalities onto GUI-

interfaces.

Apart from the above major improvement, following section discusses some important

refinements which will take the proposals to greater acceptance level by industrial users:

1) The monitoring model

 A mechanism can be developed to detect and filter unnecessary noises in the

VM, in order to preserve the purity of the metadata from the representative

workload. With such facility, the effort to remove the outliers during the

conversion of the collected data to the linear graphical representation can be

alleviated.

 A method to learn the exact threshold value which is tailored to particular

workload will increase the accuracy of the model.

 As the pre-requisite to the model is to ensure that the underlying SQL in the

workload are performing to the most optimal condition, a mechanism can be

developed to observe the run time of the repetitive transactions, so that

overrun scenarios due to missing indexes, invalidated statistic or inefficiency

in indexing operation can be detected and rectified.

249

2) The optimization model

 An automated mechanism to execute the tests during production phase, to

obtain the stabilized outcome can greatly increase the ease of usage of the

model. Furthermore, automation will also reduce administrative cost and

boost the efficiency of the model.

 One of the challenges in this proposal is to determine the right duration in

order for the CPU run queue parameter to achieve the stabilized condition.

This is an area that worth further scrutiny.

 Future work is also worth carried out to analyze the CPU run queue

parameter to discover the underlying factors that influence the oscillative

reporting of the parameter value.

3) The affirmation model

 As the current proposal focuses on memory reads parameter, it can

potentially be of great value to conduct more researches to include the

physical reads, memory and disk writes parameters into the stress testing

scenario creation. Such potential is envisaged in section 4.6. In that section,

the methods to discover the optimize values for query executions are linear

programming and simplex method. Potentially, the duality can be more

advantageous as compared to simplex method; hence it will worth the

research effort to scrutinize on the duality method in case the optimization

algorithm is to be explored further.

 Throughout the thesis, the processor is assumed to be the component that is

the dominant resource utilization factor in the VM. However, the underlying

I/O subsystem could potentially become the constraining point, if the SAN

storage is not rightly configured. Hence, a mechanism to detect the situation

250

where the I/O subsystem becomes the leading constraint in the VM is worth

the research effort.

 The benchmarking stage in this model is consuming quite a substantial

amount of time. Future work to include extrapolation on existing references

to discover the new set of benchmark will be significant, as this will greatly

reduce the benchmarking effort.

251

References

Ahuja, S., Mani, S., & Zambrano, J. (2012). A Survey of the State of Cloud Computing

in Healthcare. Network & Communication Technologies, 1(2).

Alavala, C. R. (2008). Fuzzy Logic and Neural Networks. New Delhi, India: New Age

International (P) Ltd.

Allen, A. O. (1990). Probability, Statistics, and Queuing theory with Computer Science

Applications – 2nd Edition. San Diego, CA, USA: Academic Press, Inc.

Amazon. (2012). Amazon Web Services: Risk and Compliance. Amazon.com Inc.

Amos, C. K. (Producer). (2013, Feb 13). Soft sensors win hard jobs. Chemical

Processing. Retrieved from

http://www.chemicalprocessing.com/articles/2005/606/

An, B., Lesser, V., Irwin, D., & Zink, M. (2010). Automated Negotiation with

Decommitment for Dynamic Resource Allocation in Cloud Computing. Paper

presented at the Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems.

Anderson, D. (2004). Boinc: A system for public-resource computing and storage.

Paper presented at the 5th IEEE/ACM International Workshop on Grid

Computing.

Andrzejak, A., & Silva, L. (2007). Deterministic models of software aging and optimal

rejuvenation schedules. Paper presented at the IEEE International Symposium

on Integrated Network Management.

Apache. (August 2011). PigMix. Retrieved May 2013, 2013, from

https://cwiki.apache.org/confluence/display/PIG/PigMix

Aria. (2013). An Enterprise-Grade Platform for Cloud Billing. Retrieved July, 2013,

from http://www.ariasystems.com/our-platform/leverage-cloud-freedom

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., . . .

Zaharia, M. (2009). Above the Clouds - A Berkeley View of Cloud Computing.

UC Berkeley Reliable Adaptive Distributed Systems Laboratory.

Avril, P., & Hardie, W. (2013). Plug into the Cloud with Oracle Database 12c.

Redwood Shores, CA: Oracle Corporation.

AWR. (2013). Oracle Automatic Workload Repository Survival Guide. Retrieved

Aug, 2013, from http://www.akadia.com/services/ora_awr_survival_guide.html

Azure. (2010). Windows Azure: How Four Groups at Microsoft Developed Scalable,

Efficient Applications that Unleashed Competitive Differentiators and Delivered

High Value to Customers: Microsoft Corporation.

Babar, M. A., & Chauhan, M. A. (2011). A tale of migration to cloud computing for

sharing experiences and observations. Paper presented at the Proceeding of the

2nd Internatonal Workshop on Software Engineering for Cloud Computing.

Bach, F. R., & Jordan, M., I. (2002). Kernel independent component analysis. Journal

of Machine Learning Research, 3, 1-48.

Ban, L. B., Cocchiara, R., Lovejoy, K., Telford, R., & Ernest, M. (2010). The evolving

role of IT managers and CIOs - Findings from the 2010 IBM Global IT Risk

Study: IBM Corporation.

http://www.chemicalprocessing.com/articles/2005/606/
http://www.ariasystems.com/our-platform/leverage-cloud-freedom
http://www.akadia.com/services/ora_awr_survival_guide.html

252

Banga, G., & Druschel, P. (1997). Measuring the Capacity of a Web Server. Paper

presented at the Proceeding of the USENIX Symposium on Internet

Technologies & Systems.

Barna, C., Litoiu, M., & Ghanbari, H. (2011). Autonomic Load-Testing Framework.

Paper presented at the Proc. of the 8th ACM Intl. Conf. on Autonomic Comp.

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation

heuristics for efficient management of data centers for Cloud computing. Future

Generation Computer Systems, 28(5), 755–768.

Beloglazov, A., & Buyya, R. (2010). Energy Efficient Resource Management in

Virtualized Cloud Data Centers. Paper presented at the 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing.

Beloglazov, A., & Buyya, R. (2012). Managing overloaded hosts for dynamic

consolidation of virtual machines in cloud data centers under quality of service

constraints. IEEE Transactions on Parallel and Distributed Systems.

Bercovici, S. (2010). Enabling On-Demand Dynamic Resource Allocation and

Elasticity in the Cloud with Radware’s Solutions: Radware, Ltd.

Blagodurov, S., Gmach, D., Arlitt, M., Chen, Y., Hyser, C., & Fedorova, A. (2013).

Maximizing Server Utilization while Meeting Critical SLAs via Weight-Based

Collocation Management. Paper presented at the IFIP/IEEE International

Symposium on Integrated Network Management.

Bolch, G., Greiner, S., Meer, H. D., & Trivedi, K. S. (2006). Markov Chain Model in

Queueing networks and Markov chains: modeling and performance evaluation

with computer science applications. Hoboken, NJ: Wiley.com.

Botelho, B. (2007). Gartner predicts data center power and cooling crisis. Retrieved

July, 2013, from http://searchdatacenter.techtarget.com/news/1260874/Gartner-

predicts-data-center-power-and-cooling-crisis

Brett. (2008). Setting Up TPC-H. Retrieved Aug, 2013, from

http://brettschroeder.blogspot.com/2008/09/setting-up-tpc-h-part-2.html

Buyya, R., Beloglazov, A., & Abawajy, J. (2010). Energy-Efficient Management of

Data Center Resources for Cloud Computing: A Vision, Architectural Elements,

and Open Challenges. Paper presented at the International Conference on

Parallel and Distributed Processing Techniques and Applications.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud

Computing and Emerging IT Platforms: Vision, Hype, and Reality for

Delivering Computing as the 5th Utility. Journal of Future Generation

Computer Systems, 25(6), 599-616.

C12G. (2010). OpenNebula extends support to Deltacloud APIs: virtualization.info.

Cardeñosa, G., Díez, I., Coronado, M., & Rodrigues, J. (2012). Analysis of Cloud-

Based Solutions on EHRs Systems in Different Scenarios. Journal of Medical

Systems, 2012(1).

Casale, G., Kalbasi, A., Krishnamurthy, D., & Rolia, J. (2009). Automatic stress testing

of multi-tier systems by dynamic bottleneck switch generation. Paper presented

at the Proc. of the 10th ACM/IFIP/USENIX Intl. Conf. on Middleware

Cengage. (2013). The Simplex method: minimization. Retrieved Aug, 2013, from

http://college.cengage.com/mathematics/larson/elementary_linear/4e/shared/dow

nloads/c09s4.pdf

http://searchdatacenter.techtarget.com/news/1260874/Gartner-predicts-data-center-power-and-cooling-crisis
http://searchdatacenter.techtarget.com/news/1260874/Gartner-predicts-data-center-power-and-cooling-crisis
http://brettschroeder.blogspot.com/2008/09/setting-up-tpc-h-part-2.html
http://college.cengage.com/mathematics/larson/elementary_linear/4e/shared/downloads/c09s4.pdf
http://college.cengage.com/mathematics/larson/elementary_linear/4e/shared/downloads/c09s4.pdf

253

Chen, T. S., Liu, C. H., Chen, T. L., Chen, C. S., Bau, J. G., & Lin, T. C. (2012). Secure

Dynamic Access Control Scheme of PHR in Cloud Computing. Journal of

Medical Systems, 36(6), 4005-4020.

Chen, Y. P. (May 2012). We don’t know enough to make a Big Data benchmark suite

an academia-industry view: UC Berkeley/Cloudera.

Chen, Y. P., Ganapathi, A., Griffith, R., & Katz, R. (March 2011). The case for

evaluating MapReduce performance using workload suites. Paper presented at

the Proc. of the 2011 IEEE 19th Annual Intl. Symp. on Modeling, Analysis, and

Simulation of Computer and Telecommunication Syst.

Chen, Y. P., Ganapathi, A., & Katz, R. (2011). Challenges and opportunities for

managing data systems using statistical models. IEEE Data Eng. Bull., 34, 53-

60.

Chieu, T. C., Watson, T. J., Mohindra, A., Karve, A. A., & Segal, A. (2009). Dynamic

Scaling of Web Applications in a Virtualized Cloud Computing Environment

Paper presented at the IEEE International Conference on e-Business

Engineering.

Cisco. (2013). Intrusion Prevention System (IPS). Retrieved June, 2013, from

http://www.cisco.com/en/US/products/ps5729/Products_Sub_Category_Home.h

tml

Cloud-Security-Alliance. (2010). Top Threats to Cloud Computing V1.0: Cloud

Security Alliance.

Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM, 13(6), 377-387.

Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kemper, A., Krompass, S., . . . Waas, F.

(2011). The mixed workload CH-benCHmark. Paper presented at the

Proceedings of the Fourth International Workshop on Testing Database Systems.

Convirture. (2013). ConVirt Enterprise Cloud. Retrieved May 2013, 2013, from

http://www.convirture.com/products_cloud.php

Cooney, M. (2011). Gartner: 10 key IT trends for 2012. Retrieved 19 May, 2013, from

http://www.networkworld.com/community/blog/gartner-10-key-it-trends-2012

Costanzo, A. D., Assunção, M. D. D., & Buyya, R. (2009). Harnessing cloud

technologies for a virtualized distributed computing infrastructure. IEEE

Internet Computing, 13(5), 24-33.

Curino, C., Jones, E., Popa, R. A., Malviya, N., Wu, E., Madden, S., . . . Zeldovich, N.

(2011). Relational Cloud: A Database Service for the Cloud. Paper presented at

the 5th Biennial Conference on Innovative Data Systems Research.

Curino, C., Jones, E., Zhang, Y., & Madden, S. (2010). Schism: a Workload Driven

Approach to Database Replication and Partitioning Journal of VLDB

Endowment, 3(1-2), 48-57.

Das, S., Nishimura, S., Agrawal, D., & Abbadi, A. E. (2010). Live Database Migration

for Elasticity in a Multitenant Database for Cloud Platforms: UCSB Computer

Science Technical Report.

Dean, J., & Ghemawat, S. (January 2008). MapReduce: simplified data Processing on

large clusters. Communication of the ACM 50th Anniversary Issue, 51(1), 107-

113.

http://www.cisco.com/en/US/products/ps5729/Products_Sub_Category_Home.html
http://www.cisco.com/en/US/products/ps5729/Products_Sub_Category_Home.html
http://www.convirture.com/products_cloud.php
http://www.networkworld.com/community/blog/gartner-10-key-it-trends-2012

254

Devore, J. L. (2008). Probability and Statistics for Engineering and the Sciences.

Belmont, CA, USA: Thomson Learning, Inc.

Donahue, S. (2010). Can Cloud Computing Help Fix Health Care. Cloudbook Journal,

1(6).

Dongarra, J., & Sullivan, F. (2000). Guest Editors' Introduction: The Top 10

Algorithms. Computing in Science and Engineering, 2(1).

Dutreilh, X., Rivierre, N., Moreau, A., & Malenfant, J. (2010). From Data Center

Resource Allocation to Control Theory and Back. Paper presented at the IEEE

3rd International Conference on Cloud Computing (CLOUD).

Elastras. (2013). An Elastic Transactional Data Store for the Cloud. Retrieved June,

2013, from http://code.google.com/p/elastras/

Elkan, C. (2003). Using the triangle inequality to accelerate k-means. Paper presented

at the Proceedings of the 20th International Conference on Machine Learning.

Eucalyptus. (2013a). The Eucalyptus Cloud. Retrieved June, 2013, from

http://www.eucalyptus.com/eucalyptus-cloud/iaas

Eucalyptus. (2013b). The Eucalyptus Cloud. Retrieved July, 2013, from

http://www.eucalyptus.com/eucalyptus-cloud/iaas

Eucalyptus. (2013c). Why Eucalyptus. Retrieved July, 2013, from

http://www.eucalyptus.com/why-eucalyptus

Feitelson, D. G., Rudolph, L., Schwiegelshohn, U., Sevcik, K. C., & Wong, P. (1997).

Theory and practice in parallel job scheduling. Paper presented at the

Proceedings of the Job Scheduling Strategies for Parallel Processing.

FGAC. (2003). Implementing Application Context and Fine-Grained Access Control.

Retrieved Aug, 2013, from

http://docs.oracle.com/cd/B13789_01/network.101/b10773/apdvcntx.htm

Fito, J. O., Goiri, I., & Guitart, J. (2010). SLA-driven Elastic Cloud Hosting Provider.

Paper presented at the 18th Euromicro International Conference on Parallel,

Distributed and Network-Based Processing (PDP).

Fortinet. (2013). Intrusion Prevention System (IPS). Retrieved June, 2013, from

http://www.fortinet.com/solutions/ips.html

Foster, I., Zhao, Y., Raicu, I., & Lu, S. Y. (2008). Cloud Computing and Grid

Computing 360-Degree Compared. Paper presented at the Grid Computing

Environments Workshop.

Fu, S., & Xu, C. Z. (2010). Quantifying event correlations for proactive failure

management in networked computing systems. Journal of Parallel and

Distributed Computing, 70(11), 1100-1109.

Gainaru, A., Cappello, F., Snir, M., & Kramer, W. (2012). Fault prediction under the

microscope: A closer look into HPC systems. Paper presented at the Proceedings

of the Intl. Conf. on High Perf. Comp., Networking, Storage and Analysis

Gallet, M., Yigitbasi, N., Javadi, B., Kondo, D., Iosup, A., & Epema, D. (2010). A

model for space-correlated failures in large-scale distributed systems. Paper

presented at the In Proceedings of the 16th international Euro-Par conference on

Parallel processing: Part I

http://code.google.com/p/elastras/
http://www.eucalyptus.com/eucalyptus-cloud/iaas
http://www.eucalyptus.com/eucalyptus-cloud/iaas
http://www.eucalyptus.com/why-eucalyptus
http://docs.oracle.com/cd/B13789_01/network.101/b10773/apdvcntx.htm
http://www.fortinet.com/solutions/ips.html

255

Ganapathi, A., Chen, Y. P., Fox, A., Katz, R., & Patterson, D. (2010). Statistics-driven

workload modeling for the Cloud Paper presented at the IEEE 26th International

Conference on Data Engineering Workshops (ICDEW).

Ganapathi, A., Kuno, H., Dayal, U., Wiener, J. L., Fox, A., Jordan, M., & Patterson, D.

(2009). Predicting Multiple Performance Metrics for Queries: Better Decisions

Enabled by Machine Learning. Paper presented at the Proc. of the IEEE Intl.

Conf. on Data Engineering.

Ganesh, M. (2008). Introduction to Fuzzy Sets and Fuzzy logic. Upper Saddle River,

NJ: Prentice Hall Inc.

Garg, S. K., Gopalaiyengar, S. K., & Buyya, R. (2011). SLA-Based Resource

Provisioning for Heterogeneous Workloads in a Virtualized Cloud Datacenter.

Paper presented at the Proceedings of the 11th international conference on

Algorithms and architectures for parallel processing.

Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google File System. ACM

SIGOPS Operating Systems Review, 37(5), 29-43.

Ghoshal, D., Canon, R., & Ramakrishnan, L. (2011). I/O Performance of Virtualized

Cloud Environments. Paper presented at the In Proceeding of the 2nd

International Workshop on Data Intensive Computing in the Clouds.

Glas, M., & Andres, P. (2011). Achieving the Cloud Computing Vision. Oracle

Corporation.

Gmach, D., Rolia, J., Cherkasova, L., Belrose, G., Turicchi, T., & Kemper, A. (2008).

An integrated approach to resource pool management: policies, efficiency and

quality metrics. Paper presented at the IEEE International Conference on

Dependable Systems and Networks With FTCS and DCC.

Google. (2010). Security Whitepaper: Google Apps Messaging and Collaboration

Products. Google Inc.

Gray, D., Los, R., Shackleford, D., & Sullivan, B. (2012). Top Threats to Cloud

Computing - Survey Results Update 2012: Cloud Security Alliance.

Grimme, C., Lepping, J., & Papaspyrou, A. (2008). Prospects of collaboration between

compute providers by means of job interchange. Paper presented at the

Proceedings of the 13th international conference on Job scheduling strategies for

parallel processing, Berlin, Heidelberg.

Gulati, A., Kumar, C., & Ahmad, I. (2009). Modeling Workloads and Devices for IO

Load Balancing in Virtualized Environments. ACM SIGMETRICS Performance

Evaluation Review, 37(3), 61-66.

Gulati, A., Shanmuganathan, G., Holler, A., & Ahmad, I. (2011). Cloud-scale resource

management: challenges and techniques. Paper presented at the Proc. of the 3rd

USENIX conf. on Hot topics in cloud computing

Hamlen, K., Kantarcioglu, K., Khan, L., & Thuraisingham, B. (2010). Security Issues

for Cloud Computing. International Journal of Information Security and

Privacy, 4(2), 39-51.

Hanmer, R. (2010). Software Rejuvenation. Alcatel-Lucent.

Harms, R., & Yamartino, M. (2010). The Economics of the Cloud. Microsoft

Corporation.

256

Hashemi, S. M., & Bardsiri, A. K. (2012). Cloud Computing Vs. Grid Computing.

ARPN Journal of Systems and Software, 2(5).

HP. (2007). Application performance testing in VMware environments - Identify and

control performance and capacity risks. Hewlett-Packard Development

Company: Hewlett-Packard Development Company.

HP. (2012). HP SiteScope software. Hewlett-Packard Development Company.

HP. (2013a). HP LoadRunner - Unmatched power and flexibility software testing tool

for application performance. Retrieved July, 2013, from

http://www8.hp.com/my/en/software-

solutions/software.html?compURI=1175451

HP. (2013b). HP TippingPoint Next Generation Intrusion Prevention System (NGIPS).

Retrieved June, 2013, from http://www8.hp.com/us/en/software-

solutions/software.html?compURI=1343617

Hsu, C. H., Chen, T. L., & Park, J. H. (2008). On improving resource utilization and

system throughput of master slave job scheduling in heterogeneous systems. The

Journal of Supercomputing, 45(1), 129-150.

httperf. (2013). Welcome to the httperf homepage. Retrieved June, 2013, from

http://www.hpl.hp.com/research/linux/httperf/

Huang, C. J., Guan, C. T., Chen, H. M., Wang, Y. W., Chang, S. C., Li, C. Y., & Weng,

C. H. (2013). An adaptive resource management scheme in cloud computing.

Engineering Applications of Artificial Intelligence, 26(1), 382–389.

Huang, S., Huang, J., Dai, J., Xie, T., & Huang, B. (March 2010). The HiBench

benchmark suite: Characterization of the MapReduce-based data analysis.

Paper presented at the IEEE 26th Intl. Conf. on Data Eng. Workshops.

Huber, A. (2013). Enterprise Manager 12c Cloud Control Application Performance

Management: Oracle Corporation.

Hueeber, S. (2011). Examples for Simplex Algorithm. Retrieved July, 2013, from

http://m2matlabdb.ma.tum.de/download.jsp?MC_ID=8&SC_ID=11&MP_ID=7

9

IBM. (2011). Platform-as-a-Service: What ISVs Need for World-Class Cloud Offerings.

IBM.

IBM. (2013a). IBM PCIe Cryptographic Coprocessor. Retrieved June, 2013, from

http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml

IBM. (2013b). Installing a Red Hat Enterprise Linux version 5 gold image. Retrieved

June, 2013, from

http://pic.dhe.ibm.com/infocenter/ibmfsb/v2r1/index.jsp?topic=%2Fcom.ibm.sb

solutions.doc%2FugRHELImageInstall.htm

IBM. (2013c). Rational Performance Tester Retrieved July, 2013, from http://www-

03.ibm.com/software/products/us/en/performance/

Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., & Epema, D. H. J.

(2008). The grid workloads archive. Future Generation Computer Systems,

24(7), 672–686.

Iqbal, W., Dailey, M. N., & Carrera, D. (2010). SLA-Driven Dynamic Resource

Management for Multi-tier Web Applications in a Cloud. Paper presented at the

http://www8.hp.com/my/en/software-solutions/software.html?compURI=1175451
http://www8.hp.com/my/en/software-solutions/software.html?compURI=1175451
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1343617
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1343617
http://www.hpl.hp.com/research/linux/httperf/
http://m2matlabdb.ma.tum.de/download.jsp?MC_ID=8&SC_ID=11&MP_ID=79
http://m2matlabdb.ma.tum.de/download.jsp?MC_ID=8&SC_ID=11&MP_ID=79
http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml
http://pic.dhe.ibm.com/infocenter/ibmfsb/v2r1/index.jsp?topic=%2Fcom.ibm.sbsolutions.doc%2FugRHELImageInstall.htm
http://pic.dhe.ibm.com/infocenter/ibmfsb/v2r1/index.jsp?topic=%2Fcom.ibm.sbsolutions.doc%2FugRHELImageInstall.htm
http://www-03.ibm.com/software/products/us/en/performance/
http://www-03.ibm.com/software/products/us/en/performance/

257

10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing (CCGrid).

Jangra, A., & Saini, T. (2013). Scheduling Optimization in Cloud Computing.

International Journal of Advanced Research in Computer Science and Software

Engineering, 3(4).

Javadi, B., Abawajy, J., & Buyya, R. (2012). Failure-aware resource provisioning for

hybrid cloud infrastructure. Journal of Parallel and Distributed Computing,

72(10), 1318-1331.

Javadi, B., Kondo, D., Vincent, J. M., & Anderson, D. P. (2011). Discovering statistical

models of availability in large distributed systems: An empirical study of

SETI@home. IEEE Transactions on Parallel and Distributed Systems, 22(11),

1896-1903.

Javadi, B., Thulasiraman, P., & Buyya, R. (2012). Enhancing performance of failure-

prone clusters by adaptive provisioning of cloud resources. Paper presented at

the The Journal of Supercomputing.

Jia, Y. T., & Shao, Z. (July 2009). A Benchmark for Hive, PIG and Hadoop:

Apache.org.

Kaehler, S. D. (2005). Fuzzy logic - An Introduction (Part 3): The Seattle Robotics

Society.

Karthikeyan, N., & Sukanesh, R. (2012). Cloud Based Emergency Health Care

Information Service in India. Journal of Medical Systems, 32(6), 4031-4036.

Khatua, S., Ghosh, A., & Mukherjee, N. (2010). Optimizing the utilization of virtual

resources in Cloud environment. Paper presented at the 2010 IEEE International

Conference on Virtual Environments, Human-Computer Interfaces and

Measurement Systems.

King, R. (2008). How Cloud Computing Is Changing the World. from

http://www.businessweek.com/technology/content/aug2008/tc2008082_445669.

htm

Kleinbaum, D., Kupper, L., Muller, K., & Nizam, A. (1998). Applied Regression

Analysis and Other Multivariable Methods. Pacific Grove, CA, USA: Duxbury

Press.

Kleinbaum, D. G., Kupper, L. L., Muller, K. E., & Nizam, A. (1998). Applied

Regression Analysis and Other Multivariable Methods. Pacific Grove, CA,

USA: Duxbury Press.

Kleinrock, L., & Korfhage, W. (1993). Collection unused processing capacity: An

analysis of transient distributed systems. IEEE transactions on Parallel and

Distributed Systems, 4(5).

Kocakahin. (2010). Create Your Own Oracle TPC-H Playground on Linux. Retrieved

Aug, 2013, from http://husnusensoy.wordpress.com/2010/10/22/create-your-

own-oracle-tpc-h-playground-on-linux/

Kondo, D., Javadi, B., Iosup, A., & Epema, D. (2010). The failure trace archive:

enabling comparative analysis of failures in diverse distributed systems. Paper

presented at the 10th IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing.

Koomey, J. (2011). Growth in data center electricity use 2005 to 2010. Oakland, CA:

Analytics Press.

http://www.businessweek.com/technology/content/aug2008/tc2008082_445669.htm
http://www.businessweek.com/technology/content/aug2008/tc2008082_445669.htm
http://husnusensoy.wordpress.com/2010/10/22/create-your-own-oracle-tpc-h-playground-on-linux/
http://husnusensoy.wordpress.com/2010/10/22/create-your-own-oracle-tpc-h-playground-on-linux/

258

Krishnamurthy, D., Rolia, J. A., & Majumdar, S. (2006). A Synthetic Workload

Generation Technique for Stress Testing Session-Based Systems. IEEE

Transactions on Software Engineering, 32(11), 868-882.

Kumar, M., Roberts, S., & Kawalek, C. (2011). Oracle VM 3: Application-Driven

Virtualization: Oracle Corp.

Kumar, V., & Garg, K. K. (2012). Migration of Services to the Cloud Environment:

Challenges and Best Practices. International Journal of Computer Applications,

1(6), 1-6.

Kumar, V., Swetha, M., & Muneshwara, M. P., S. (2012). Cloud Computing: Towards

case study of data security mechanism. . International Journal of Advanced

Technology and Engineering Research, 2(4).

KVM. (2013). KVM Hypervisor. Retrieved July, 2013, from

http://www.vservercenter.com/kvm-hypervisor

Laio, F. (2004). Cramer-von Mises and Anderson-Darling goodness of fit tests for

extreme value distributions with unknown parameters. Water Resources

Research, 40.

Li, M., Yu, S. C., Zheng, Y., Ren, K., & Lou, W. J. (2012). Scalable and Secure Sharing

of Personal Health Records in Cloud Computing using Attribute-based

Encryption. IEEE Transactions on Parallel and Distributed Systems.

Li, Q., & Guo, Y. (2010). Optimization of Resource Scheduling in Cloud Computing.

Paper presented at the 12th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing.

Lin, W. W., Liang, C., Wang, J. Z., & Buyya, R. (2012). Bandwidth-aware divisible

task scheduling for cloud computing. Paper presented at the Software: Practice

and Experience - Wiley Online Library.

Little, J. D. C. (1961). A Proof for the Queuing Formula: L=λW. Operations Research,

9(3), 383-387.

Lupse, O., Vida, M., & Stoicu-Tivadar, L. (2012). Cloud Computing and

Interoperability in Healthcare Information Systems. Paper presented at the The

First International Conference on Intelligent Systems and Applications.

Manning, C. D., Raghavan, P., & Schütze, H. (2009). Hierarchical clustering An

Introduction to Information Retrieval (pp. 377-400). Cambridge, England:

Cambridge University Press.

Mateen, A., Raza, B., Sher, M., Awais, M. M., & Mustapha, N. (2011). Workload

management: A technology perspective with respect to self characteristics.

International Journal of Physical Sciences, 7(9), 1482-1492.

MATLAB. (2013). Correlation coefficients. Retrieved Aug, 2013, from

http://www.mathworks.com/help/matlab/ref/corrcoef.html

Microsoft. (2007). Windows Server 2008 Hyper-V Product Overview – An Early look:

Microsoft Corp.

Microsoft. (2011). SQL Azure - Moving Business Intelligence To The Cloud. Wipro

Technologies.

Microsoft. (2013a). How to Clone a Virtual Machine. Retrieved June, 2013, from

http://technet.microsoft.com/en-us/library/bb740905.aspx

http://www.vservercenter.com/kvm-hypervisor
http://www.mathworks.com/help/matlab/ref/corrcoef.html
http://technet.microsoft.com/en-us/library/bb740905.aspx

259

Microsoft. (2013b). Microsoft health Vault. Retrieved June, 2013, from

https://www.healthvault.com/my/en

Microsoft. (2013c). Testing Performance and Stress Using Visual Studio Web

Performance and Load Tests. Retrieved July, 2013, from

http://msdn.microsoft.com/en-us/library/vstudio/dd293540.aspx

Microsoft. (2013d). Virtual Machine Manager. Retrieved May 2013, 2013, from

http://technet.microsoft.com/en-us/library/gg610610.aspx

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of Machine

Learning. MIT: MIT Press.

Mosberger, D., & Jin, T. (1998). httperfmA Tool for Measuring Web Server

Performance: HP Research Labs.

Mozafari, B., Curino, C., & Madden, S. (2013). DBSeer: Resource and Performance

Prediction for Building a Next Generation Database Cloud. Paper presented at

the 6th Biennial Conference on Innovative Data Systems Research.

Myers, J. E. (2012). Data Modeling for Healthcare Systems Integration: Use of the

MetaModel: The Metadata Company.

Myung, J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical

Psychology, 47, 90-100.

Narsky, I. (2003). Goodness of Fit: What Do We Really Want to Know? Paper presented

at the California Institute of Technology.

NERSC. (2013). National Energy Research Scientific Computing Center. Retrieved

July, 2013, from http://www.nersc.gov/

Neter, J., Kutner, M., Nachtsheim, C., & Wasserman, W. (1996). Applied Linear

Regression Models. USA: The McGraw-Hill Companies, Inc.

Nimbus. (2013). Nimbus Monitoring System. Retrieved 4 May 2013, 2013, from

http://www.nimbusproject.org/

OEM. (2013). Oracle Enterprise Manager 12c. Retrieved Aug, 2013, from

http://www.oracle.com/technetwork/oem/enterprise-

manager/overview/index.html

OpenNebula. (2013). About the OpenNebula.org Project. Retrieved July, 2013, from

http://opennebula.org/about:about

Oracle. (2009). Introduction to Automatic Workload Management. Retrieved Aug,

2013, from

http://docs.oracle.com/cd/B28359_01/rac.111/b28254/hafeats.htm#BABBBGJB

Oracle. (2011). Oracle Exalogic Elastic Cloud: A Brief Introduction. Oracle

Corporation.

Oracle. (2012). Oracle Engineered Systems Price List. Oracle Corporation.

Oracle. (2013). Oracle Cloud Management Pack for Oracle Database: Oracle Corp.

Oracle_RAC. (2013). Introduction to Oracle Real Application Clusters. Retrieved Julu,

2013, from http://docs.oracle.com/cd/B28359_01/rac.111/b28254/admcon.htm

Pavlo, A., Curino, C., & Zdonik, S. (2012). Skew-Aware Automatic Database

Partitioning in Shared-Nothing, Parallel OLTP Systems. Paper presented at the

Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data.

http://www.healthvault.com/my/en
http://msdn.microsoft.com/en-us/library/vstudio/dd293540.aspx
http://technet.microsoft.com/en-us/library/gg610610.aspx
http://www.nersc.gov/
http://www.nimbusproject.org/
http://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html
http://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html
http://opennebula.org/about:about
http://docs.oracle.com/cd/B28359_01/rac.111/b28254/hafeats.htm#BABBBGJB
http://docs.oracle.com/cd/B28359_01/rac.111/b28254/admcon.htm

260

Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J., Madden, S., &

Stonebraker, M. (2009). A Comparison of Approaches to Large-Scale Data

Analysis. Paper presented at the Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data.

Pettey, C. (2007). Gartner Estimates ICT Industry Accounts for 2 Percent of Global

CO2 Emissions. Retrieved 19 May, 2013, from

http://www.gartner.com/newsroom/id/503867

Principe, J. C., Euliano, N. R., & Lefebvre, W. C. (2000). Neural and Adaptive Systems.

New York, NY: John Wiley & Sons, Inc.

Raicu, I., Zhao, Y., Foster, I. T., & Szalay, A. (2008). Accelerating Large-Scale Data

Exploration through Data Diffusion. Paper presented at the Proceedings of the

2008 international workshop on Data-aware distributed computing.

Raluca Ada Popa, R. A., Redfield, C. M. S., Zeldovich, N., & Balakrishnan, H. (2011).

CryptDB: Protecting Confidentiality with Encrypted Query Processing. Paper

presented at the Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles

Roy, S., & Mukherjee, N. (2011). Efficient resource management for running multiple

concurrent jobs in a computational grid environment. Future Generation

Computer Systems, 27(8), 1070–1082.

Sakr, S., & Liu, A. (2012). SLA-Based and Consumer-Centric Dynamic Provisioning

for Cloud Databases. Paper presented at the IEEE 5th International Conference

on Cloud Computing.

Salfner, F., Lenk, M., & Malek, M. (2010). A survey of online failure prediction

methods. ACM Computing Surveys, 42(3).

Samplify. (2013). Big Science (HPC). Retrieved June, 2013, from

http://www.samplify.com/applications/hpc/

Saugatuck. (2011). Platform-as-a-Service: What ISVs Need for World-Class Cloud

Offerings: Saugatuck Technology Inc.

Sinha, S. M. (2006). Mathematical Programming - Theory and Methods. New Delhi,

India: Elsevier Science.

Sitescope. (2013). HP SiteScope software. Retrieved Aug, 2013, from

http://www8.hp.com/us/en/software-

solutions/software.html?compURI=1174244

SolarWinds. (2013). Virtualization Manager. Retrieved Aug, 2013, from

http://www.solarwinds.com/virtualization-manager.aspx

Splunk. (2013). Splunk App for VMware. Retrieved Aug, 2013, from

http://www.splunk.com/view/splunk-app-for-vmware/SP-CAAAHKV

Tan, C. H., & Teh, Y. W. (2013a). Harnessing Cloud Computing for Dynamic Resource

Requirement by Database Workloads. Journal of Information Science and

Engineering, 29(5).

Tan, C. H., & Teh, Y. W. (2013b). Secure Hardware Performance Analysis in

Virtualized Cloud Environment. Mathematical Problems in Engineering, 2003.

Tan, C. H., & Teh, Y. W. (2013c). Synthetic Hardware Performance Analysis in

Virtualized Cloud Environment for Healthcare Organization. Journal of Medical

Systems, 37(4).

http://www.gartner.com/newsroom/id/503867
http://www.samplify.com/applications/hpc/
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1174244
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1174244
http://www.solarwinds.com/virtualization-manager.aspx
http://www.splunk.com/view/splunk-app-for-vmware/SP-CAAAHKV

261

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining. Boston,

US: Pearson Addison Wesley.

Tbeileh, K. (2009). Oracle Database Vault with Oracle Database 11g Release 2: Oracle

Corporation.

Teh, Y. W. (2006). Introduction to data mining. Kuala Lumpur: University Malaya

Press.

Thakkar, D., Hassan, A. E., Hamann, G., & Flora, P. (2008). A Framework for

Measurement Based Performance Modeling. Paper presented at the Proc. of the

7th Intl. workshop on Software and performance.

TPC-H. (2013). TPC-H. Retrieved Aug, 2013, from http://www.tpc.org/tpch/

TPC. (2012). TPC Benchmark, revision 2.14.4: TPC.

TPC. (2013a). Overview of the TPC Benchmark C: The Order-Entry Benchmark: TPC.

TPC. (2013b). TPC-DS. TPC: TPC.

Upson, S. (2011). Cloud Computing - It's always Sunny in the Cloud. Retrieved May

2011, from http://spectrum.ieee.org/static/special-report-top-11-technologies-of-

the-decade

Vaidyanathan, K., & Trivedi, K. S. (2005). A Comprehensive Model for Software

Rejuvenation. IEEE Transactions on Dependable and Secure Computing 2(2).

VAM. (2013). Vogel's Approximation Method (VAM). Retrieved July, 2013, from

http://www.springerreference.com/docs/html/chapterdbid/6314.html

Vandenberghe, L., Boyd, S., & Nouralishahi, M. (2002). Robust Linear Programming

and Optimal Control. Paper presented at the In Proceedings of the 15th Ifac

World Congress on the International Federation of Automatic Control.

Vishwanath, K., & Nagappan, N. (2010). Characterizing Cloud Computing Hardware

Reliability. . Paper presented at the Proceedings of the 1st ACM symposium on

Cloud computing.

VMTurbo. (2013). VMTurbo. Retrieved Aug, 2013, from http://www.vmturbo.com/

VMWare. (2006). VMware Infrastructure Architecture Overview. VMWare Inc.

VMWare. (2013a). VMware vCenter Server. Retrieved July, 2013, from

http://www.vmware.com/products/vcenter-server/overview.html

VMWare. (2013b). VMware vSphere Hypervisor. Retrieved July, 2013, from

http://www.vmware.com/products/vsphere-hypervisor/overview.html

Wan, D. D., Greenway, A., Harris, J. G., & Alter, A. E. (2010). Six questions every

health industry executive should ask about cloud computing: Accenture Inc.

Wang, X. W., Sun, J. J., Li, H. X., Wu, C., & Huang, M. (2013). A Reverse Auction

Based Allocation Mechanism in the Cloud Computing Environment. Applied

Mathematics & Information Sciences, 7(1), 75-84.

Ward, M. (2011). Relational Database Management Systems in the Cloud: Microsoft

SQL Server 2008 R2: Amazon Web Services.

Weisstein, E. W. (2013). Distance. Retrieved July, 2013, from

http://mathworld.wolfram.com/Distance.html

http://www.tpc.org/tpch/
http://spectrum.ieee.org/static/special-report-top-11-technologies-of-the-decade
http://spectrum.ieee.org/static/special-report-top-11-technologies-of-the-decade
http://www.springerreference.com/docs/html/chapterdbid/6314.html
http://www.vmturbo.com/
http://www.vmware.com/products/vcenter-server/overview.html
http://www.vmware.com/products/vsphere-hypervisor/overview.html
http://mathworld.wolfram.com/Distance.html

262

Wiesel, A., Eldar, Y. C., & Yeredor, A. (2008). Linear Regression With Gaussian

Model Uncertainty: Algorithms and Bounds. IEEE Transactions on Signal

Processing, 56(6), 2194 - 2205.

Williams, J. (2013). A technical Overview of New Features for Automatic Storage

Management in Oracle Database 12c: Oracle Corporation.

Williams, S. (2011). IBM Cloud Services - Balancing compute options: How IBM

SmartCloud can be a catalyst for IT transformation: Technology Business

Research Inc.

Wolloch, U. (2013). Introduction to EBS volumes and snapshots. Retrieved July, 2013,

from http://www.n2ws.com/blog/introduction-to-ebs-volumes-and-

snapshots.html

Xen. (2013). The Hypervisor. Retrieved July, 2013, from

http://www.xenproject.org/developers/teams/hypervisor.html

Xhafa, F., & Abraham, A. (2010). Computational models and heuristic methods for

Grid scheduling problems. Future Generation Computer Systems, 26(4), 608-

621.

Yagoub, K., & Gongloor, P. (2007). SQL Performance Analyzer: Oracle Corporation.

Yigitbasi, N., Gallet, M., Kondo, D., Iosup, A., & Epema, D. (2010). Analysis and

modeling of time-correlated failures in large-scale distributed systems. Paper

presented at the 11th IEEE/ACM International Conference on Grid Computing

(GRID).

Younge, A. J., Laszewski, G. V., Wang, L. Z., Lopez, A. S., & Carithers, W. (2010).

Efficient Resource Management for Cloud Computing Environments. Paper

presented at the International Green Computing Conference.

Yuan, Y., & Liu, W. C. (2011). Efficient resource management for cloud computing.

Paper presented at the International Conference on System Science, Engineering

Design and Manufacturing Informatization (ICSEM).

Zadeh, L. (1996). Fuzzy Logic = Computing with Words. . IEEE Transactions on Fuzzy

Systems, 4(2).

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications, 1, 7-18.

Zhang, R., & Liu, L. (2010). Security Models and Requirements for Healthcare

Application Clouds. Paper presented at the IEEE 3rd International Conference

on Cloud Computing.

Zhang, S., Zhang, S. F., Chen, X. B., & Huo, X. Z. (2010). The Comparison Between

Cloud Computing and Grid Computing. Paper presented at the International

Conference on Computer Application and System Modeling.

Zhu, X. J. (2007). Semi-Supervised Learning Tutorial. Paper presented at the

International Conference on Machine Learning.

Zhu, X. J. (2008). Semi-Supervised Learning Literature Survey. USA: University of

Wisconsin, Madison.

http://www.n2ws.com/blog/introduction-to-ebs-volumes-and-snapshots.html
http://www.n2ws.com/blog/introduction-to-ebs-volumes-and-snapshots.html
http://www.xenproject.org/developers/teams/hypervisor.html

263

Appendix A

Optimization by Vogel's Approximation Method.

264

265

266

267

Appendix B

The following TPC-H database setup steps are modified from (Kocakahin, 2010) and

(Brett, 2008).

1. The high level pseudo-code to setup the TPC-H database is illustrated as follows:

2. The actual setup steps in Unix environment are as follows:

** “$>” denotes commands executed in the command prompt

$> mkdir tpch

$> mv tpch_2_12_0_b5.zip ./tpch

$> cd tpch/

$> unzip tpch_2_12_0_b5.zip

$> cp makefile.suite makefile

$> vi makefile (modify following parameters)

CC = gcc

DATABASE= ORACLE

MACHINE = LINUX

WORKLOAD = TPCH

$> make

$> ./dbgen -s 4 -S 1 -C 8 -v

$> ./dbgen -s 4 -S 2 -C 8 -v

$> ./dbgen -s 4 -S 3 -C 8 -v

$> ./dbgen -s 4 -S 4 -C 8 -v

$> ./dbgen -s 4 -S 5 -C 8 -v

$> ./dbgen -s 4 -S 6 -C 8 -v

$> ./dbgen -s 4 -S 7 -C 8 -v

$> ./dbgen -s 4 -S 8 -C 8 -v

268

$> du -ch *.tbl* | tail -1

$> gzip -4 -v *.tbl*

Setup steps in the blank Oracle database

** “SQL>” denotes commands executed in the sqlplus prompt

SQL> create tablespace TPCH

datafile '+DATA' size 100M autoextend on next 10M

maxsize 10G segment space management auto

encryption using 'AES256' default storage (encrypt);

SQL> create user tpch

identified by tpch123

default tablespace TPCH;

SQL> grant dba to tpch;

SQL> create directory tpch_dir as '/oracle/backups/TEST/tpch';

SQL> create directory zcat_dir as '/bin';

SQL> drop table region_ext;

SQL> drop table nation_ext;

SQL> drop table supplier_ext;

SQL> drop table customer_ext;

SQL> drop table order_ext;

SQL> drop table part_ext;

SQL> drop table partsupp_ext;

SQL> drop table lineitem_ext;

SQL> CREATE TABLE region_ext (r_regionkey NUMBER(10),

r_name varchar2(25),

r_comment varchar(152))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY tpch_dir

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

PREPROCESSOR zcat_dir:'zcat'

BADFILE 'bad_%a_%p.bad'

LOGFILE 'log_%a_%p.log'

FIELDS TERMINATED BY '|'

MISSING FIELD VALUES ARE NULL)

LOCATION ('region.tbl.gz'))

NOPARALLEL

REJECT LIMIT 0

NOMONITORING;

SQL> CREATE TABLE nation_ext (n_nationkey NUMBER(10),

n_name varchar2(25),

n_regionkey number(10),

n_comment varchar(152))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY tpch_dir

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

PREPROCESSOR zcat_dir:'zcat'

BADFILE 'bad_%a_%p.bad'

LOGFILE 'log_%a_%p.log'

FIELDS TERMINATED BY '|'

MISSING FIELD VALUES ARE NULL)

LOCATION ('nation.tbl.gz'))

269

NOPARALLEL

REJECT LIMIT 0

NOMONITORING;

SQL> CREATE TABLE supplier_ext (S_SUPPKEY NUMBER(10),

S_NAME VARCHAR2(25),

S_ADDRESS VARCHAR2(40),

S_NATIONKEY NUMBER(10),

S_PHONE VARCHAR2(15),

S_ACCTBAL NUMBER,

S_COMMENT VARCHAR2(101))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY tpch_dir

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

PREPROCESSOR zcat_dir:'zcat'

BADFILE 'bad_%a_%p.bad'

LOGFILE 'log_%a_%p.log'

FIELDS TERMINATED BY '|'

MISSING FIELD VALUES ARE NULL)

LOCATION ('supplier.tbl.1.gz','supplier.tbl.2.gz','supplier.tbl.3.gz','supplier.tbl.4.gz',

'supplier.tbl.5.gz','supplier.tbl.6.gz','supplier.tbl.7.gz','supplier.tbl.8.gz'))

PARALLEL 2

REJECT LIMIT 0

NOMONITORING;

SQL> CREATE TABLE customer_ext (C_CUSTKEY NUMBER(10),

C_NAME VARCHAR2(25),

C_ADDRESS VARCHAR2(40),

C_NATIONKEY NUMBER(10),

C_PHONE VARCHAR2(15),

C_ACCTBAL NUMBER,

C_MKTSEGMENT VARCHAR2(10),

C_COMMENT VARCHAR2(117))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY tpch_dir

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

PREPROCESSOR zcat_dir:'zcat'

BADFILE 'bad_%a_%p.bad'

LOGFILE 'log_%a_%p.log'

FIELDS TERMINATED BY '|'

MISSING FIELD VALUES ARE NULL)

LOCATION ('customer.tbl.1.gz','customer.tbl.2.gz','customer.tbl.3.gz','customer.tbl.4.gz',

'customer.tbl.5.gz','customer.tbl.6.gz','customer.tbl.7.gz','customer.tbl.8.gz'))

PARALLEL 2

REJECT LIMIT 0

NOMONITORING;

SQL> CREATE TABLE order_ext (O_ORDERKEY NUMBER(10),

O_CUSTKEY NUMBER(10),

O_ORDERSTATUS CHAR(1),

O_TOTALPRICE NUMBER,

O_ORDERDATE VARCHAR2(10),

O_ORDERPRIORITY VARCHAR2(15),

O_CLERK VARCHAR2(15),

O_SHIPPRIORITY NUMBER(38),

O_COMMENT VARCHAR2(79))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY tpch_dir

270

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

PREPROCESSOR zcat_dir:'zcat'

BADFILE 'bad_%a_%p.bad'

LOGFILE 'log_%a_%p.log'

FIELDS TERMINATED BY '|'

MISSING FIELD VALUES ARE NULL)

LOCATION ('orders.tbl.1.gz','orders.tbl.2.gz','orders.tbl.3.gz','orders.tbl.4.gz',

'orders.tbl.5.gz','orders.tbl.6.gz','orders.tbl.7.gz','orders.tbl.8.gz'))

PARALLEL 2

REJECT LIMIT 0

NOMONITORING;

SQL> CREATE TABLE part_ext (P_PARTKEY NUMBER(10),

P_NAME VARCHAR2(55),

P_MFGR VARCHAR2(25),

P_BRAND VARCHAR2(10),

P_TYPE VARCHAR2(25),

P_SIZE NUMBER(38),

P_CONTAINER VARCHAR2(10),

P_RETAILPRICE NUMBER,

P_COMMENT VARCHAR2(23))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY tpch_dir

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

PREPROCESSOR zcat_dir:'zcat'

BADFILE 'bad_%a_%p.bad'

LOGFILE 'log_%a_%p.log'

FIELDS TERMINATED BY '|'

MISSING FIELD VALUES ARE NULL)

LOCATION ('part.tbl.1.gz','part.tbl.2.gz','part.tbl.3.gz','part.tbl.4.gz',

'part.tbl.5.gz','part.tbl.6.gz','part.tbl.7.gz','part.tbl.8.gz'))

PARALLEL 2

REJECT LIMIT 0

NOMONITORING;

SQL> CREATE TABLE partsupp_ext (PS_PARTKEY NUMBER(10),

PS_SUPPKEY NUMBER(10),

PS_AVAILQTY NUMBER(38),

PS_SUPPLYCOST NUMBER,

PS_COMMENT VARCHAR2(199))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY tpch_dir

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

PREPROCESSOR zcat_dir:'zcat'

BADFILE 'bad_%a_%p.bad'

LOGFILE 'log_%a_%p.log'

FIELDS TERMINATED BY '|'

MISSING FIELD VALUES ARE NULL)

LOCATION ('partsupp.tbl.1.gz','partsupp.tbl.2.gz','partsupp.tbl.3.gz','partsupp.tbl.4.gz',

'partsupp.tbl.5.gz','partsupp.tbl.6.gz','partsupp.tbl.7.gz','partsupp.tbl.8.gz'))

PARALLEL 2

REJECT LIMIT 0

NOMONITORING;

SQL> CREATE TABLE lineitem_ext (L_ORDERKEY NUMBER(10),

L_PARTKEY NUMBER(10),

L_SUPPKEY NUMBER(10),

L_LINENUMBER NUMBER(38),

271

L_QUANTITY NUMBER,

L_EXTENDEDPRICE NUMBER,

L_DISCOUNT NUMBER,

L_TAX NUMBER,

L_RETURNFLAG CHAR(1),

L_LINESTATUS CHAR(1),

L_SHIPDATE VARCHAR2(10),

L_COMMITDATE VARCHAR2(10),

L_RECEIPTDATE VARCHAR2(10),

L_SHIPINSTRUCT VARCHAR2(25),

L_SHIPMODE VARCHAR2(10),

L_COMMENT VARCHAR2(44))

ORGANIZATION EXTERNAL (

TYPE oracle_loader

DEFAULT DIRECTORY tpch_dir

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

PREPROCESSOR zcat_dir:'zcat'

BADFILE 'bad_%a_%p.bad'

LOGFILE 'log_%a_%p.log'

FIELDS TERMINATED BY '|'

MISSING FIELD VALUES ARE NULL)

LOCATION ('lineitem.tbl.1.gz','lineitem.tbl.2.gz','lineitem.tbl.3.gz','lineitem.tbl.4.gz',

'lineitem.tbl.5.gz','lineitem.tbl.6.gz','lineitem.tbl.7.gz','lineitem.tbl.8.gz'))

PARALLEL 2

REJECT LIMIT 0

NOMONITORING;

SQL> DROP TABLE H_CUSTOMER CASCADE CONSTRAINTS ;

SQL> DROP TABLE H_LINEITEM CASCADE CONSTRAINTS ;

SQL> DROP TABLE H_NATION CASCADE CONSTRAINTS ;

SQL> DROP TABLE H_ORDER CASCADE CONSTRAINTS ;

SQL> DROP TABLE H_PART CASCADE CONSTRAINTS ;

SQL> DROP TABLE H_PARTSUPP CASCADE CONSTRAINTS ;

SQL> DROP TABLE H_REGION CASCADE CONSTRAINTS ;

SQL> DROP TABLE H_SUPPLIER CASCADE CONSTRAINTS ;

SQL> CREATE TABLE H_CUSTOMER (c_custkey NUMBER(10) NOT NULL,

c_name VARCHAR2(25) NOT NULL,

c_address VARCHAR2(40) NOT NULL,

c_nationkey NUMBER(10) NOT NULL ,

c_phone VARCHAR2(15) NOT NULL,

c_acctbal NUMBER NOT NULL,

c_mktsegment VARCHAR2(10) NOT NULL,

c_comment VARCHAR2(117) NOT NULL)

PARALLEL 2;

SQL> CREATE TABLE H_LINEITEM (l_orderkey NUMBER(10) NOT NULL,

l_partkey NUMBER(10) NOT NULL,

l_suppkey NUMBER(10) NOT NULL ,

l_linenumber INTEGER NOT NULL ,

l_quantity NUMBER NOT NULL,

l_extendedprice NUMBER NOT NULL,

l_discount NUMBER NOT NULL,

l_tax NUMBER NOT NULL,

l_returnflag CHAR(1) NOT NULL ,

l_linestatus CHAR(1) NOT NULL,

l_shipdate DATE NOT NULL,

l_commitdate DATE NOT NULL,

l_receiptdate DATE NOT NULL,

l_shipinstruct VARCHAR2(25) NOT NULL,

l_shipmode VARCHAR2(10) NOT NULL,

l_comment VARCHAR2(44) NOT NULL)

272

PARALLEL 2;

SQL> CREATE TABLE H_NATION (n_nationkey NUMBER(10) NOT NULL,

n_name VARCHAR2(25) NOT NULL,

n_regionkey NUMBER (10) NOT NULL,

n_comment VARCHAR2 (152) NOT NULL)

NOPARALLEL;

SQL> CREATE TABLE H_ORDER (o_orderkey NUMBER (10) NOT NULL,

o_custkey NUMBER(10) NOT NULL,

o_orderstatus CHAR(1) NOT NULL,

o_totalprice NUMBER NOT NULL,

o_orderdate DATE NOT NULL,

o_orderpriority VARCHAR2(15) NOT NULL,

o_clerk VARCHAR2(15) NOT NULL,

o_shippriority INTEGER NOT NULL,

o_comment VARCHAR2(79) NOT NULL)

PARALLEL 2;

SQL> CREATE TABLE H_PART (p_partkey NUMBER(10) NOT NULL,

p_name VARCHAR2(55) NOT NULL,

p_mfgr VARCHAR2(25) NOT NULL,

p_brand VARCHAR2(10) NOT NULL,

p_type VARCHAR2(25) NOT NULL,

p_size INTEGER NOT NULL,

p_container VARCHAR2(10) NOT NULL,

p_retailprice NUMBER NOT NULL,

p_comment VARCHAR2(23) NOT NULL)

PARALLEL 2;

SQL> CREATE TABLE H_PARTSUPP (ps_partkey NUMBER (10) NOT NULL ,

ps_suppkey NUMBER (10) NOT NULL ,

ps_availqty INTEGER NOT NULL,

ps_supplycost NUMBER NOT NULL,

ps_comment VARCHAR2 (199) NOT NULL)

PARALLEL 2;

SQL> CREATE TABLE H_REGION (r_regionkey NUMBER (10) NOT NULL ,

r_name VARCHAR2 (25) NOT NULL,

r_comment VARCHAR2 (152) NOT NULL)

NOPARALLEL;

SQL> CREATE TABLE H_SUPPLIER (s_suppkey NUMBER (10) NOT NULL ,

s_name VARCHAR2 (25) NOT NULL,

s_address VARCHAR2 (40) NOT NULL,

s_nationkey NUMBER (10) NOT NULL ,

s_phone VARCHAR2 (15) NOT NULL,

s_acctbal NUMBER NOT NULL,

s_comment VARCHAR2 (101) NOT NULL)

PARALLEL 2;

SQL> truncate table h_lineitem;

SQL> truncate table h_order;

SQL> truncate table h_part;

SQL> truncate table h_customer;

SQL> truncate table h_nation;

SQL> truncate table h_region;

SQL> truncate table h_partsupp;

SQL> truncate table h_supplier;

SQL> alter session enable parallel dml;

SQL> insert /*+append*/into h_lineitem

select L_ORDERKEY,

273

 L_PARTKEY,

 L_SUPPKEY,

 L_LINENUMBER,

 L_QUANTITY,

 L_EXTENDEDPRICE,

 L_DISCOUNT,

 L_TAX,

 L_RETURNFLAG,

 L_LINESTATUS,

 to_date(L_SHIPDATE, 'YYYY-MM-DD'),

 to_date(L_COMMITDATE, 'YYYY-MM-DD'),

 to_date(L_RECEIPTDATE, 'YYYY-MM-DD'),

 L_SHIPINSTRUCT,

 L_SHIPMODE,

 L_COMMENT

from lineitem_ext;

SQL> insert /*+append*/ into h_partsupp select * from partsupp_ext;

SQL> insert /*+append*/ into h_part select * from part_ext;

SQL> insert /*+append*/ into h_order

select o_orderkey,

 o_custkey,

 o_orderstatus,

 o_totalprice,

 to_date(o_orderdate, 'YYYY-MM-DD'),

 O_ORDERPRIORITY,

 o_clerk,

 O_SHIPPRIORITY,

 o_comment

from order_ext;

SQL> insert /*+append*/ into h_customer select * from customer_ext;

SQL> insert /*+append*/ into h_supplier select * from supplier_ext;

SQL> insert /*+append*/ into h_nation select * from nation_ext;

SQL> insert /*+append*/ into h_region select * from region_ext;

SQL> commit;

SQL> ALTER TABLE H_REGION ADD CONSTRAINT REGION_PK PRIMARY KEY

(r_regionkey);

SQL> ALTER TABLE H_NATION ADD CONSTRAINT NATION_PK PRIMARY KEY

(n_nationkey);

SQL> ALTER TABLE H_SUPPLIER ADD CONSTRAINT SUPPLIER_PK PRIMARY KEY

(s_suppkey);

SQL> create unique index partsupp_pk on h_partsupp(ps_partkey,ps_suppkey) parallel 2;

SQL> ALTER TABLE H_PARTSUPP ADD CONSTRAINT PARTSUPP_PK

PRIMARY KEY(ps_partkey,ps_suppkey) using index PARTSUPP_PK;

SQL> create unique index PART_PK on H_PART(p_partkey) parallel 2;

SQL> ALTER TABLE H_PART ADD CONSTRAINT PART_PK

PRIMARY KEY (p_partkey) using index PART_PK;

SQL> create unique index ORDERS_PK on H_ORDER(o_orderkey) parallel 2;

SQL> ALTER TABLE H_ORDER ADD CONSTRAINT ORDERS_PK

PRIMARY KEY (o_orderkey) using index ORDERS_PK;

SQL> create unique index LINEITEM_PK on H_LINEITEM(l_linenumber, l_orderkey) parallel 2;

SQL> ALTER TABLE H_LINEITEM ADD CONSTRAINT LINEITEM_PK

PRIMARY KEY (l_linenumber, l_orderkey) using index LINEITEM_PK;

274

SQL> create unique index CUSTOMER_PK on H_CUSTOMER(c_custkey) parallel 2;

SQL> ALTER TABLE H_CUSTOMER ADD CONSTRAINT CUSTOMER_PK

PRIMARY KEY (c_custkey) using index CUSTOMER_PK;

-- FK Constraints

SQL> ALTER TABLE H_LINEITEM

ADD CONSTRAINT LINEITEM_PARTSUPP_FK FOREIGN KEY (l_partkey, l_suppkey)

REFERENCES H_PARTSUPP(ps_partkey, ps_suppkey) NOT DEFERRABLE;

SQL> ALTER TABLE H_ORDER

ADD CONSTRAINT ORDER_CUSTOMER_FK FOREIGN KEY (o_custkey)

REFERENCES H_CUSTOMER (c_custkey) NOT DEFERRABLE;

SQL> ALTER TABLE H_PARTSUPP

ADD CONSTRAINT PARTSUPP_PART_FK FOREIGN KEY (ps_partkey)

REFERENCES H_PART (p_partkey) NOT DEFERRABLE;

SQL> ALTER TABLE H_PARTSUPP

ADD CONSTRAINT PARTSUPP_SUPPLIER_FK FOREIGN KEY (ps_suppkey)

REFERENCES H_SUPPLIER (s_suppkey) NOT DEFERRABLE;

SQL> ALTER TABLE H_SUPPLIER

ADD CONSTRAINT SUPPLIER_NATION_FK FOREIGN KEY (s_nationkey)

REFERENCES H_NATION (n_nationkey) NOT DEFERRABLE;

SQL> ALTER TABLE H_CUSTOMER

ADD CONSTRAINT CUSTOMER_NATION_FK FOREIGN KEY (c_nationkey)

REFERENCES H_NATION (n_nationkey) NOT DEFERRABLE;

SQL> ALTER TABLE H_NATION

ADD CONSTRAINT NATION_REGION_FK FOREIGN KEY (n_regionkey)

REFERENCES H_REGION (r_regionkey) NOT DEFERRABLE;

SQL> ALTER TABLE H_LINEITEM

ADD CONSTRAINT LINEITEM_ORDER_FK FOREIGN KEY (l_orderkey)

REFERENCES H_ORDER (o_orderkey) NOT DEFERRABLE;

SQL> exec dbms_stats.gather_schema_stats(ownname => 'TPCH',degree => 2,cascade => true);

275

Appendix C

Shell program that stresses the VM. This program is used in the optimization scheme.

#!/bin/ksh

Q1() {

q=`sqlplus -s tpch/tpch123 << END

SELECT L_RETURNFLAG,

L_LINESTATUS,

SUM(L_QUANTITY) AS SUM_QTY,

 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE*(1-

L_DISCOUNT)) AS SUM_DISC_PRICE,

 SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE,

AVG(L_QUANTITY) AS AVG_QTY,

 AVG(L_EXTENDEDPRICE) AS AVG_PRICE,

 AVG(L_DISCOUNT) AS AVG_DISC, COUNT(*) AS COUNT_ORDER

FROM H_LINEITEM

WHERE L_SHIPDATE <= to_date('1998-12-01','YYYY-MM-DD') - 90

GROUP BY L_RETURNFLAG, L_LINESTATUS

ORDER BY L_RETURNFLAG,L_LINESTATUS;

EXIT

END`

}

Q2() {

q=`sqlplus -s tpch/tpch123 << END

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY,

P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT

FROM

H_PART, H_SUPPLIER, H_PARTSUPP, H_NATION, H_REGION

WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15

AND P_TYPE LIKE '%%BRASS'

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = 'EUROPE'

AND PS_SUPPLYCOST = (SELECT MIN(PS_SUPPLYCOST)

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION, H_REGION

 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY

 AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY

 AND R_NAME = 'EUROPE')

AND rownum<101

ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY;

EXIT

END`

}

Q3() {

q=`sqlplus -s tpch/tpch123 << END

SELECT L_ORDERKEY,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,

O_ORDERDATE, O_SHIPPRIORITY

FROM H_CUSTOMER, H_ORDER, H_LINEITEM

WHERE C_MKTSEGMENT = 'BUILDING'

AND C_CUSTKEY = O_CUSTKEY

276

AND L_ORDERKEY = O_ORDERKEY

AND O_ORDERDATE < to_date('1995-03-15','YYYY-MM-DD')

AND L_SHIPDATE > to_date('1995-03-15','YYYY-MM-DD')

and rownum<10

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY

ORDER BY REVENUE DESC, O_ORDERDATE ;

EXIT

END`

}

Q4() {

q=`sqlplus -s tpch/tpch123 << END

SELECT O_ORDERPRIORITY,

COUNT(*) AS ORDER_COUNT

FROM H_ORDER

WHERE O_ORDERDATE >= to_date('1993-07-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1993-07-01','YYYY-MM-DD'),3)

AND

EXISTS (SELECT * FROM H_LINEITEM

 WHERE L_ORDERKEY = O_ORDERKEY

 AND L_COMMITDATE < L_RECEIPTDATE)

GROUP BY O_ORDERPRIORITY

ORDER BY O_ORDERPRIORITY;

EXIT

END`

}

Q5() {

q=`sqlplus -s tpch/tpch123 << END

SELECT N_NAME,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_SUPPLIER, H_NATION, H_REGION

WHERE C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND L_SUPPKEY = S_SUPPKEY

AND C_NATIONKEY = S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = 'ASIA'

AND O_ORDERDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)

GROUP BY N_NAME

ORDER BY REVENUE DESC;

EXIT

END`

}

Q6() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE

FROM H_LINEITEM

WHERE L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)

AND L_DISCOUNT BETWEEN .06 - 0.01 AND .06 + 0.01

AND L_QUANTITY < 24;

EXIT

277

END`

}

Q7() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUPP_NATION, CUST_NATION,

L_YEAR, SUM(VOLUME) AS REVENUE

FROM

 (SELECT N1.N_NAME AS SUPP_NATION,

 N2.N_NAME AS CUST_NATION,

 extract(year from L_SHIPDATE) AS L_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME

 FROM H_SUPPLIER, H_LINEITEM, H_ORDER,

 H_CUSTOMER, H_NATION N1, H_NATION N2

 WHERE S_SUPPKEY = L_SUPPKEY

 AND O_ORDERKEY = L_ORDERKEY

 AND C_CUSTKEY = O_CUSTKEY

 AND S_NATIONKEY = N1.N_NATIONKEY

 AND C_NATIONKEY = N2.N_NATIONKEY

 AND ((N1.N_NAME = 'FRANCE' AND N2.N_NAME = 'GERMANY') OR

 (N1.N_NAME = 'GERMANY' AND N2.N_NAME = 'FRANCE'))

 AND L_SHIPDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD') AND to_date('1996-12-

31','YYYY-MM-DD')) SHIPPING

GROUP BY SUPP_NATION, CUST_NATION, L_YEAR

ORDER BY SUPP_NATION, CUST_NATION, L_YEAR;

EXIT

END`

}

Q8() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

O_YEAR,

SUM(CASE WHEN NATION = 'BRAZIL' THEN VOLUME ELSE 0 END)/SUM(VOLUME) AS

MKT_SHARE

FROM

 (SELECT

 extract(year from O_ORDERDATE) AS O_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME,

 N2.N_NAME AS NATION

 FROM

 H_PART, H_SUPPLIER, H_LINEITEM, H_ORDER,

 H_CUSTOMER, H_NATION N1, H_NATION N2, H_REGION

 WHERE

 P_PARTKEY = L_PARTKEY

 AND S_SUPPKEY = L_SUPPKEY

 AND L_ORDERKEY = O_ORDERKEY

 AND O_CUSTKEY = C_CUSTKEY

 AND C_NATIONKEY = N1.N_NATIONKEY

 AND N1.N_REGIONKEY = R_REGIONKEY

 AND R_NAME = 'AMERICA'

 AND S_NATIONKEY = N2.N_NATIONKEY

 AND O_ORDERDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD')

 AND to_date('1996-12-31','YYYY-MM-DD')

 AND P_TYPE= 'ECONOMY ANODIZED STEEL') ALL_NATIONS

GROUP BY O_YEAR

ORDER BY O_YEAR;

EXIT

END`

278

}

Q9() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

NATION, O_YEAR,

SUM(AMOUNT) AS SUM_PROFIT

FROM

 (SELECT N_NAME AS NATION, extract(year from O_ORDERDATE) AS O_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT)-PS_SUPPLYCOST*L_QUANTITY AS AMOUNT

 FROM

 H_PART, H_SUPPLIER, H_LINEITEM, H_PARTSUPP, H_ORDER, H_NATION

 WHERE S_SUPPKEY = L_SUPPKEY

 AND PS_SUPPKEY= L_SUPPKEY

 AND PS_PARTKEY = L_PARTKEY

 AND P_PARTKEY= L_PARTKEY

 AND O_ORDERKEY = L_ORDERKEY

 AND S_NATIONKEY = N_NATIONKEY

 AND P_NAME LIKE '%%green%%') PROFIT

GROUP BY NATION, O_YEAR

ORDER BY NATION, O_YEAR DESC;

EXIT

END`

}

Q10() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

C_CUSTKEY, C_NAME,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,

C_ACCTBAL, N_NAME,

C_ADDRESS, C_PHONE, C_COMMENT

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_NATION

WHERE C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND O_ORDERDATE>= to_date('1993-10-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1993-10-01','YYYY-MM-DD'),3)

AND L_RETURNFLAG = 'R' AND C_NATIONKEY = N_NATIONKEY

and rownum<21

GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL, C_PHONE, N_NAME, C_ADDRESS,

C_COMMENT

ORDER BY REVENUE DESC;

EXIT

END`

}

Q11() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

PS_PARTKEY,

SUM(PS_SUPPLYCOST*PS_AVAILQTY) AS VALUE

FROM

H_PARTSUPP, H_SUPPLIER, H_NATION

WHERE

PS_SUPPKEY = S_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_NAME = 'GERMANY'

GROUP BY PS_PARTKEY

279

HAVING SUM(PS_SUPPLYCOST*PS_AVAILQTY) > (SELECT

SUM(PS_SUPPLYCOST*PS_AVAILQTY) * 0.0001000000

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION

 WHERE PS_SUPPKEY = S_SUPPKEY

 AND S_NATIONKEY = N_NATIONKEY

 AND N_NAME = 'GERMANY')

ORDER BY VALUE DESC;

EXIT

END`

}

Q12() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

L_SHIPMODE,

SUM(CASE WHEN O_ORDERPRIORITY = '1-URGENT' OR O_ORDERPRIORITY = '2-HIGH'

THEN 1 ELSE 0 END) AS HIGH_LINE_COUNT,

SUM(CASE WHEN O_ORDERPRIORITY <> '1-URGENT' AND O_ORDERPRIORITY <> '2-HIGH'

THEN 1 ELSE 0 END) AS LOW_LINE_COUNT

FROM H_ORDER, H_LINEITEM

WHERE O_ORDERKEY = L_ORDERKEY

AND L_SHIPMODE IN ('MAIL','SHIP')

AND L_COMMITDATE < L_RECEIPTDATE

AND L_SHIPDATE < L_COMMITDATE

AND L_RECEIPTDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND L_RECEIPTDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1)

GROUP BY L_SHIPMODE

ORDER BY L_SHIPMODE;

EXIT

END`

}

Q13() {

q=`sqlplus -s tpch/tpch123 << END

SELECT C_COUNT, COUNT(*) AS CUSTDIST

FROM (SELECT C_CUSTKEY, COUNT(O_ORDERKEY) as C_COUNT

 FROM H_CUSTOMER left outer join H_ORDER on C_CUSTKEY = O_CUSTKEY

 AND O_COMMENT not like '%%special%%requests%%'

 GROUP BY C_CUSTKEY) C_ORDERS

GROUP BY C_COUNT

ORDER BY CUSTDIST DESC, C_COUNT DESC;

EXIT

END`

}

Q14() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

100.00*SUM(CASE WHEN P_TYPE LIKE 'PROMO%%' THEN L_EXTENDEDPRICE*(1-

L_DISCOUNT)

ELSE 0 END) / SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS PROMO_REVENUE

FROM

H_LINEITEM, H_PART

WHERE

L_PARTKEY = P_PARTKEY

AND L_SHIPDATE >= to_date('1995-09-01','YYYY-MM-DD')

AND L_SHIPDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1);

280

EXIT

END`

}

Q15() {

q=`sqlplus -s tpch/tpch123 << END

CREATE VIEW REVENUE0 (SUPPLIER_NO, TOTAL_REVENUE) AS

SELECT L_SUPPKEY,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT))

FROM H_LINEITEM

WHERE L_SHIPDATE >= to_date('1996-01-01','YYYY-MM-DD')

AND L_SHIPDATE < add_months(to_date('1996-01-01','YYYY-MM-DD'),3)

GROUP BY L_SUPPKEY;

SELECT

S_SUPPKEY, S_NAME, S_ADDRESS, S_PHONE, TOTAL_REVENUE

FROM H_SUPPLIER, REVENUE0

WHERE

S_SUPPKEY = SUPPLIER_NO

AND TOTAL_REVENUE = (SELECT MAX(TOTAL_REVENUE) FROM REVENUE0)

ORDER BY S_SUPPKEY;

DROP VIEW REVENUE0;

EXIT

END`

}

Q16() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

P_BRAND, P_TYPE, P_SIZE,

COUNT(DISTINCT PS_SUPPKEY) AS SUPPLIER_CNT

FROM

H_PARTSUPP, H_PART

WHERE

P_PARTKEY = PS_PARTKEY

AND P_BRAND <> 'Brand#45'

AND P_TYPE NOT LIKE 'MEDIUM POLISHED%%'

AND P_SIZE IN (49, 14, 23, 45, 19, 3, 36, 9)

AND PS_SUPPKEY NOT IN (SELECT S_SUPPKEY

 FROM H_SUPPLIER

 WHERE S_COMMENT LIKE '%%Customer%%Complaints%%')

GROUP BY P_BRAND, P_TYPE, P_SIZE

ORDER BY SUPPLIER_CNT DESC, P_BRAND, P_TYPE, P_SIZE;

EXIT

END`

}

Q17() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY

FROM

H_LINEITEM, H_PART

WHERE

P_PARTKEY = L_PARTKEY

AND P_BRAND = 'Brand#23'

281

AND P_CONTAINER = 'MED BOX'

AND L_QUANTITY < (SELECT 0.2*AVG(L_QUANTITY)

FROM H_LINEITEM WHERE L_PARTKEY = P_PARTKEY);

EXIT

END`

}

Q18() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE,

SUM(L_QUANTITY)

FROM

H_CUSTOMER, H_ORDER, H_LINEITEM

WHERE O_ORDERKEY IN (SELECT

 L_ORDERKEY

 FROM H_LINEITEM

 GROUP BY L_ORDERKEY

 HAVING SUM(L_QUANTITY) > 300)

AND C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND rownum<101

GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE

ORDER BY O_TOTALPRICE DESC, O_ORDERDATE;

EXIT

END`

}

Q19() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUM(L_EXTENDEDPRICE* (1 - L_DISCOUNT)) AS REVENUE

FROM H_LINEITEM, H_PART

WHERE

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#12'

 AND P_CONTAINER IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')

 AND L_QUANTITY >= 1 AND L_QUANTITY <= 1 + 10

 AND P_SIZE BETWEEN 1 AND 5

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON')

OR

(P_PARTKEY = L_PARTKEY AND P_BRAND ='Brand#23'

 AND P_CONTAINER IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')

 AND L_QUANTITY >=10 AND L_QUANTITY <=10 + 10

 AND P_SIZE BETWEEN 1 AND 10

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON')

OR

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#34'

 AND P_CONTAINER IN ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')

 AND L_QUANTITY >=20 AND L_QUANTITY <= 20 + 10

 AND P_SIZE BETWEEN 1 AND 15

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON');

EXIT

END`

}

Q20() {

282

q=`sqlplus -s tpch/tpch123 << END

SELECT

S_NAME, S_ADDRESS

FROM

H_SUPPLIER, H_NATION

WHERE

S_SUPPKEY IN (SELECT

 PS_SUPPKEY FROM H_PARTSUPP

 WHERE PS_PARTKEY in (SELECT

 P_PARTKEY FROM H_PART

 WHERE P_NAME like 'forest%%')

 AND PS_AVAILQTY > (SELECT 0.5*sum(L_QUANTITY)

 FROM H_LINEITEM

 WHERE L_PARTKEY = PS_PARTKEY

 AND L_SUPPKEY = PS_SUPPKEY

 AND L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD')

 AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)))

AND S_NATIONKEY = N_NATIONKEY AND N_NAME = 'CANADA'

ORDER BY S_NAME;

EXIT

END`

}

Q21() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

S_NAME, COUNT(*) AS NUMWAIT

FROM

H_SUPPLIER, H_LINEITEM L1, H_ORDER, H_NATION

WHERE

S_SUPPKEY = L1.L_SUPPKEY

AND O_ORDERKEY = L1.L_ORDERKEY

AND O_ORDERSTATUS = 'F'

AND L1.L_RECEIPTDATE> L1.L_COMMITDATE

AND EXISTS (SELECT * FROM

 H_LINEITEM L2

 WHERE L2.L_ORDERKEY = L1.L_ORDERKEY

 AND L2.L_SUPPKEY <> L1.L_SUPPKEY)

AND NOT EXISTS (SELECT *

 FROM H_LINEITEM L3

 WHERE L3.L_ORDERKEY = L1.L_ORDERKEY

 AND L3.L_SUPPKEY <> L1.L_SUPPKEY

 AND L3.L_RECEIPTDATE > L3.L_COMMITDATE)

AND S_NATIONKEY = N_NATIONKEY

AND N_NAME = 'SAUDI ARABIA'

and rownum<101

GROUP BY S_NAME

ORDER BY NUMWAIT DESC, S_NAME;

EXIT

END`

}

Q22() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

CNTRYCODE,

COUNT(*) AS NUMCUST,

SUM(C_ACCTBAL) AS TOTACCTBAL

283

FROM (SELECT SUBSTR(C_PHONE,1,2) AS CNTRYCODE, C_ACCTBAL

 FROM H_CUSTOMER

 WHERE

 SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17')

 AND C_ACCTBAL > (SELECT AVG(C_ACCTBAL)

 FROM H_CUSTOMER WHERE C_ACCTBAL > 0.00

 AND SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17'))

 AND NOT EXISTS (SELECT *

 FROM H_ORDER WHERE O_CUSTKEY = C_CUSTKEY)) CUSTSALE

GROUP BY CNTRYCODE

ORDER BY CNTRYCODE;

EXIT

END`

}

SQL_ID=" \

Q3-4y7ucx9354fxy

Q22-5bks84w8ut3dy

"

Q1-b383b8ptd6m38

Q3-4y7ucx9354fxy

Q4-5rpbt92d2w4ks

Q5-8y0yasa5zjyr1

Q6-1zn3xrx01mtck

Q7-2tryzag0xbu4m

Q8-c8bp67faftkh2

Q9-bccvz740py3dv

Q10-2bkjqzpz3ubsc

Q11-9fw9rgatw0h2b

Q12-94tpbact4tt8c

Q13-9f2czfz2pm9zr

Q14-0c2bha5xd99js

Q16-9f16buakax45p

Q17-33fsxr05jhazw

Q18-ctakajmsjp98s

Q19-14yf8frfjbcry

Q20-302hwrypt1g02

Q21-3z61g4q8uhvac

Q22-5bks84w8ut3dy

a=2520

b=0

while [$a -ge 0];do

 for sql in $SQL_ID;do

 R=`echo "$sql" | awk -F'-' '{print $1}'`

 S=`echo "$sql" | awk -F'-' '{print $2}'`

 q=`sqlplus -s "tpch/tpch123" <<END

 set heading off

 set feedback off

 select status, sid from v\\$session where sql_id='${S}'

 and program like '%(TNS%'

 and schemaname='TPCH'

 ;

END`

 p=`echo "$q" | grep . | wc -l`

 if ["$a" -eq 2520];then

 r=6

284

 elif ["$a" -eq 2000];then

 r=5

 elif ["$a" -eq 1600];then

 r=4

 elif ["$a" -eq 1200];then

 r=3

 elif ["$a" -eq 800];then

 r=2

 elif ["$a" -eq 400];then

 r=1

 fi

 if ["$p" -lt "$r"];then

 $R &

 fi

 done

 sleep 1

 a=`expr $a - 1`

 b=`expr $b + 1`

 echo "$a"

 if ["$b" -eq 120];then

 ./awr &

 fi

done

a=`ps -ef |grep awr | awk '{print $2}' | sed "s/^/kill -9 /g"`

echo "$a" > kill_awr

./kill_awr

> kill_awr

285

Appendix D

Shell program that filters out the unreliable data and triggers the data extractor. This

program is used in the optimization scheme.

#!/bin/ksh

q=`sqlplus -s tpch/tpch123 << END

 set feedback off

 set heading off

 select max(snap_id) from dba_hist_osstat;

EXIT

END`

a=9876

b=`expr $a + 1`

c=`echo $q`

echo $c

while ["$a" -le "$c"];do

 p=`sqlplus -s tpch/tpch123 <<END

 set feedback off

 set heading off

 select nvl((e1.value - b1.value),-1)/1000000

 from dba_hist_sys_time_model e1

 , dba_hist_sys_time_model b1

 where b1.instance_number = e1.instance_number

 and b1.stat_name = 'sql execute elapsed time'

 and b1.stat_id = e1.stat_id

 and b1.snap_id = ${a}

 and e1.snap_id = ${b};

END`

 q=`sqlplus -s tpch/tpch123 <<END

 set feedback off

 set heading off

 select nvl((e1.value - b1.value),-1)/1000000

 from dba_hist_sys_time_model e1

 , dba_hist_sys_time_model b1

 where b1.instance_number = e1.instance_number

 and b1.stat_name = 'DB CPU'

 and b1.stat_id = e1.stat_id

 and b1.snap_id = ${a}

 and e1.snap_id = ${b};

END`

 r=`sqlplus -s tpch/tpch123 <<END

 set feedback off

 set heading off

 select value from dba_hist_osstat where stat_name='LOAD' and snap_id=${a};

END`

 s=`sqlplus -s tpch/tpch123 <<END

 set feedback off

 set heading off

 select value from dba_hist_osstat where stat_name='LOAD' and snap_id=${b};

END`

 H=1.10

286

 L=0.90

 r=`echo "$r" | grep . | sed "s/ *//g" | sed "s/ //g"`

 s=`echo "$s" | grep . | sed "s/ *//g" | sed "s/ //g"`

 s1=$(echo "scale=2; (${r} * ${H})" | bc)

 s2=$(echo "scale=2; (${r} * ${L})" | bc)

 if [["$s" -le "$s1"]] && [["$s" -ge "$s2"]];then

 t=$(echo "scale=2; (${r} + ${s}) / 2" | bc)

 echo ${t} ${q} ${p} | sed "s/ / /g" | sed "s/ */ /g"

 fi

 a=`expr $a + 1`

 b=`expr $b + 1`

done

287

Appendix E

Following figures show the constructed baselines for optimization scheme.

Testing result from iterative run of combined query #3 & 4.

Testing result from iterative run of combined query #3 & 5.

288

Testing result from iterative run of combined query #22 & 16.

Testing result from iterative run of combined query #12 & 13.

289

Appendix F

Shell program that produces the benchmark data using single TPC-H query. This

program is used in the affirmation scheme.

#!/bin/ksh

Q1() {

q=`sqlplus -s tpch/tpch123 << END

SELECT L_RETURNFLAG,

L_LINESTATUS,

SUM(L_QUANTITY) AS SUM_QTY,

 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE*(1-

L_DISCOUNT)) AS SUM_DISC_PRICE,

 SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE,

AVG(L_QUANTITY) AS AVG_QTY,

 AVG(L_EXTENDEDPRICE) AS AVG_PRICE,

 AVG(L_DISCOUNT) AS AVG_DISC, COUNT(*) AS COUNT_ORDER

FROM H_LINEITEM

WHERE L_SHIPDATE <= to_date('1998-12-01','YYYY-MM-DD') - 90

GROUP BY L_RETURNFLAG, L_LINESTATUS

ORDER BY L_RETURNFLAG,L_LINESTATUS;

EXIT

END`

}

Q2() {

q=`sqlplus -s tpch/tpch123 << END

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY,

P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT

FROM

H_PART, H_SUPPLIER, H_PARTSUPP, H_NATION, H_REGION

WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15

AND P_TYPE LIKE '%%BRASS'

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = 'EUROPE'

AND PS_SUPPLYCOST = (SELECT MIN(PS_SUPPLYCOST)

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION, H_REGION

 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY

 AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY

 AND R_NAME = 'EUROPE')

AND rownum<101

ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY;

EXIT

END`

}

Q3() {

q=`sqlplus -s tpch/tpch123 << END

SELECT L_ORDERKEY,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,

O_ORDERDATE, O_SHIPPRIORITY

FROM H_CUSTOMER, H_ORDER, H_LINEITEM

WHERE C_MKTSEGMENT = 'BUILDING'

290

AND C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND O_ORDERDATE < to_date('1995-03-15','YYYY-MM-DD')

AND L_SHIPDATE > to_date('1995-03-15','YYYY-MM-DD')

and rownum<10

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY

ORDER BY REVENUE DESC, O_ORDERDATE ;

EXIT

END`

}

Q4() {

q=`sqlplus -s tpch/tpch123 << END

SELECT O_ORDERPRIORITY,

COUNT(*) AS ORDER_COUNT

FROM H_ORDER

WHERE O_ORDERDATE >= to_date('1993-07-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1993-07-01','YYYY-MM-DD'),3)

AND

EXISTS (SELECT * FROM H_LINEITEM

 WHERE L_ORDERKEY = O_ORDERKEY

 AND L_COMMITDATE < L_RECEIPTDATE)

GROUP BY O_ORDERPRIORITY

ORDER BY O_ORDERPRIORITY;

EXIT

END`

}

Q5() {

q=`sqlplus -s tpch/tpch123 << END

SELECT N_NAME,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_SUPPLIER, H_NATION, H_REGION

WHERE C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND L_SUPPKEY = S_SUPPKEY

AND C_NATIONKEY = S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = 'ASIA'

AND O_ORDERDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)

GROUP BY N_NAME

ORDER BY REVENUE DESC;

EXIT

END`

}

Q6() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE

FROM H_LINEITEM

WHERE L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)

AND L_DISCOUNT BETWEEN .06 - 0.01 AND .06 + 0.01

AND L_QUANTITY < 24;

291

EXIT

END`

}

Q7() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUPP_NATION, CUST_NATION,

L_YEAR, SUM(VOLUME) AS REVENUE

FROM

 (SELECT N1.N_NAME AS SUPP_NATION,

 N2.N_NAME AS CUST_NATION,

 extract(year from L_SHIPDATE) AS L_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME

 FROM H_SUPPLIER, H_LINEITEM, H_ORDER,

 H_CUSTOMER, H_NATION N1, H_NATION N2

 WHERE S_SUPPKEY = L_SUPPKEY

 AND O_ORDERKEY = L_ORDERKEY

 AND C_CUSTKEY = O_CUSTKEY

 AND S_NATIONKEY = N1.N_NATIONKEY

 AND C_NATIONKEY = N2.N_NATIONKEY

 AND ((N1.N_NAME = 'FRANCE' AND N2.N_NAME = 'GERMANY') OR

 (N1.N_NAME = 'GERMANY' AND N2.N_NAME = 'FRANCE'))

 AND L_SHIPDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD') AND to_date('1996-12-

31','YYYY-MM-DD')) SHIPPING

GROUP BY SUPP_NATION, CUST_NATION, L_YEAR

ORDER BY SUPP_NATION, CUST_NATION, L_YEAR;

EXIT

END`

}

Q8() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

O_YEAR,

SUM(CASE WHEN NATION = 'BRAZIL' THEN VOLUME ELSE 0 END)/SUM(VOLUME) AS

MKT_SHARE

FROM

 (SELECT

 extract(year from O_ORDERDATE) AS O_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME,

 N2.N_NAME AS NATION

 FROM

 H_PART, H_SUPPLIER, H_LINEITEM, H_ORDER,

 H_CUSTOMER, H_NATION N1, H_NATION N2, H_REGION

 WHERE

 P_PARTKEY = L_PARTKEY

 AND S_SUPPKEY = L_SUPPKEY

 AND L_ORDERKEY = O_ORDERKEY

 AND O_CUSTKEY = C_CUSTKEY

 AND C_NATIONKEY = N1.N_NATIONKEY

 AND N1.N_REGIONKEY = R_REGIONKEY

 AND R_NAME = 'AMERICA'

 AND S_NATIONKEY = N2.N_NATIONKEY

 AND O_ORDERDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD')

 AND to_date('1996-12-31','YYYY-MM-DD')

 AND P_TYPE= 'ECONOMY ANODIZED STEEL') ALL_NATIONS

GROUP BY O_YEAR

ORDER BY O_YEAR;

EXIT

292

END`

}

Q9() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

NATION, O_YEAR,

SUM(AMOUNT) AS SUM_PROFIT

FROM

 (SELECT N_NAME AS NATION, extract(year from O_ORDERDATE) AS O_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT)-PS_SUPPLYCOST*L_QUANTITY AS AMOUNT

 FROM

 H_PART, H_SUPPLIER, H_LINEITEM, H_PARTSUPP, H_ORDER, H_NATION

 WHERE S_SUPPKEY = L_SUPPKEY

 AND PS_SUPPKEY= L_SUPPKEY

 AND PS_PARTKEY = L_PARTKEY

 AND P_PARTKEY= L_PARTKEY

 AND O_ORDERKEY = L_ORDERKEY

 AND S_NATIONKEY = N_NATIONKEY

 AND P_NAME LIKE '%%green%%') PROFIT

GROUP BY NATION, O_YEAR

ORDER BY NATION, O_YEAR DESC;

EXIT

END`

}

Q10() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

C_CUSTKEY, C_NAME,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,

C_ACCTBAL, N_NAME,

C_ADDRESS, C_PHONE, C_COMMENT

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_NATION

WHERE C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND O_ORDERDATE>= to_date('1993-10-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1993-10-01','YYYY-MM-DD'),3)

AND L_RETURNFLAG = 'R' AND C_NATIONKEY = N_NATIONKEY

and rownum<21

GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL, C_PHONE, N_NAME, C_ADDRESS,

C_COMMENT

ORDER BY REVENUE DESC;

EXIT

END`

}

Q11() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

PS_PARTKEY,

SUM(PS_SUPPLYCOST*PS_AVAILQTY) AS VALUE

FROM

H_PARTSUPP, H_SUPPLIER, H_NATION

WHERE

PS_SUPPKEY = S_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_NAME = 'GERMANY'

293

GROUP BY PS_PARTKEY

HAVING SUM(PS_SUPPLYCOST*PS_AVAILQTY) > (SELECT

SUM(PS_SUPPLYCOST*PS_AVAILQTY) * 0.0001000000

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION

 WHERE PS_SUPPKEY = S_SUPPKEY

 AND S_NATIONKEY = N_NATIONKEY

 AND N_NAME = 'GERMANY')

ORDER BY VALUE DESC;

EXIT

END`

}

Q12() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

L_SHIPMODE,

SUM(CASE WHEN O_ORDERPRIORITY = '1-URGENT' OR O_ORDERPRIORITY = '2-HIGH'

THEN 1 ELSE 0 END) AS HIGH_LINE_COUNT,

SUM(CASE WHEN O_ORDERPRIORITY <> '1-URGENT' AND O_ORDERPRIORITY <> '2-HIGH'

THEN 1 ELSE 0 END) AS LOW_LINE_COUNT

FROM H_ORDER, H_LINEITEM

WHERE O_ORDERKEY = L_ORDERKEY

AND L_SHIPMODE IN ('MAIL','SHIP')

AND L_COMMITDATE < L_RECEIPTDATE

AND L_SHIPDATE < L_COMMITDATE

AND L_RECEIPTDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND L_RECEIPTDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1)

GROUP BY L_SHIPMODE

ORDER BY L_SHIPMODE;

EXIT

END`

}

Q13() {

q=`sqlplus -s tpch/tpch123 << END

SELECT C_COUNT, COUNT(*) AS CUSTDIST

FROM (SELECT C_CUSTKEY, COUNT(O_ORDERKEY) as C_COUNT

 FROM H_CUSTOMER left outer join H_ORDER on C_CUSTKEY = O_CUSTKEY

 AND O_COMMENT not like '%%special%%requests%%'

 GROUP BY C_CUSTKEY) C_ORDERS

GROUP BY C_COUNT

ORDER BY CUSTDIST DESC, C_COUNT DESC;

EXIT

END`

}

Q14() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

100.00*SUM(CASE WHEN P_TYPE LIKE 'PROMO%%' THEN L_EXTENDEDPRICE*(1-

L_DISCOUNT)

ELSE 0 END) / SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS PROMO_REVENUE

FROM

H_LINEITEM, H_PART

WHERE

L_PARTKEY = P_PARTKEY

AND L_SHIPDATE >= to_date('1995-09-01','YYYY-MM-DD')

294

AND L_SHIPDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1);

EXIT

END`

}

Q15() {

q=`sqlplus -s tpch/tpch123 << END

-- CREATE VIEW REVENUE0 (SUPPLIER_NO, TOTAL_REVENUE) AS

-- SELECT L_SUPPKEY,

-- SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT))

-- FROM H_LINEITEM

-- WHERE L_SHIPDATE >= to_date('1996-01-01','YYYY-MM-DD')

-- AND L_SHIPDATE < add_months(to_date('1996-01-01','YYYY-MM-DD'),3)

-- GROUP BY L_SUPPKEY;

SELECT

S_SUPPKEY, S_NAME, S_ADDRESS, S_PHONE, TOTAL_REVENUE

FROM H_SUPPLIER, REVENUE0

WHERE

S_SUPPKEY = SUPPLIER_NO

AND TOTAL_REVENUE = (SELECT MAX(TOTAL_REVENUE) FROM REVENUE0)

ORDER BY S_SUPPKEY;

-- DROP VIEW REVENUE0;

EXIT

END`

}

Q16() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

P_BRAND, P_TYPE, P_SIZE,

COUNT(DISTINCT PS_SUPPKEY) AS SUPPLIER_CNT

FROM

H_PARTSUPP, H_PART

WHERE

P_PARTKEY = PS_PARTKEY

AND P_BRAND <> 'Brand#45'

AND P_TYPE NOT LIKE 'MEDIUM POLISHED%%'

AND P_SIZE IN (49, 14, 23, 45, 19, 3, 36, 9)

AND PS_SUPPKEY NOT IN (SELECT S_SUPPKEY

 FROM H_SUPPLIER

 WHERE S_COMMENT LIKE '%%Customer%%Complaints%%')

GROUP BY P_BRAND, P_TYPE, P_SIZE

ORDER BY SUPPLIER_CNT DESC, P_BRAND, P_TYPE, P_SIZE;

EXIT

END`

}

Q17() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY

FROM

H_LINEITEM, H_PART

WHERE

P_PARTKEY = L_PARTKEY

295

AND P_BRAND = 'Brand#23'

AND P_CONTAINER = 'MED BOX'

AND L_QUANTITY < (SELECT 0.2*AVG(L_QUANTITY)

FROM H_LINEITEM WHERE L_PARTKEY = P_PARTKEY);

EXIT

END`

}

Q18() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE,

SUM(L_QUANTITY)

FROM

H_CUSTOMER, H_ORDER, H_LINEITEM

WHERE O_ORDERKEY IN (SELECT

 L_ORDERKEY

 FROM H_LINEITEM

 GROUP BY L_ORDERKEY

 HAVING SUM(L_QUANTITY) > 300)

AND C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND rownum<101

GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE

ORDER BY O_TOTALPRICE DESC, O_ORDERDATE;

EXIT

END`

}

Q19() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUM(L_EXTENDEDPRICE* (1 - L_DISCOUNT)) AS REVENUE

FROM H_LINEITEM, H_PART

WHERE

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#12'

 AND P_CONTAINER IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')

 AND L_QUANTITY >= 1 AND L_QUANTITY <= 1 + 10

 AND P_SIZE BETWEEN 1 AND 5

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON')

OR

(P_PARTKEY = L_PARTKEY AND P_BRAND ='Brand#23'

 AND P_CONTAINER IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')

 AND L_QUANTITY >=10 AND L_QUANTITY <=10 + 10

 AND P_SIZE BETWEEN 1 AND 10

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON')

OR

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#34'

 AND P_CONTAINER IN ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')

 AND L_QUANTITY >=20 AND L_QUANTITY <= 20 + 10

 AND P_SIZE BETWEEN 1 AND 15

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON');

EXIT

END`

}

296

Q20() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

S_NAME, S_ADDRESS

FROM

H_SUPPLIER, H_NATION

WHERE

S_SUPPKEY IN (SELECT

 PS_SUPPKEY FROM H_PARTSUPP

 WHERE PS_PARTKEY in (SELECT

 P_PARTKEY FROM H_PART

 WHERE P_NAME like 'forest%%')

 AND PS_AVAILQTY > (SELECT 0.5*sum(L_QUANTITY)

 FROM H_LINEITEM

 WHERE L_PARTKEY = PS_PARTKEY

 AND L_SUPPKEY = PS_SUPPKEY

 AND L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD')

 AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)))

AND S_NATIONKEY = N_NATIONKEY AND N_NAME = 'CANADA'

ORDER BY S_NAME;

EXIT

END`

}

Q21() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

S_NAME, COUNT(*) AS NUMWAIT

FROM

H_SUPPLIER, H_LINEITEM L1, H_ORDER, H_NATION

WHERE

S_SUPPKEY = L1.L_SUPPKEY

AND O_ORDERKEY = L1.L_ORDERKEY

AND O_ORDERSTATUS = 'F'

AND L1.L_RECEIPTDATE> L1.L_COMMITDATE

AND EXISTS (SELECT * FROM

 H_LINEITEM L2

 WHERE L2.L_ORDERKEY = L1.L_ORDERKEY

 AND L2.L_SUPPKEY <> L1.L_SUPPKEY)

AND NOT EXISTS (SELECT *

 FROM H_LINEITEM L3

 WHERE L3.L_ORDERKEY = L1.L_ORDERKEY

 AND L3.L_SUPPKEY <> L1.L_SUPPKEY

 AND L3.L_RECEIPTDATE > L3.L_COMMITDATE)

AND S_NATIONKEY = N_NATIONKEY

AND N_NAME = 'SAUDI ARABIA'

and rownum<101

GROUP BY S_NAME

ORDER BY NUMWAIT DESC, S_NAME;

EXIT

END`

}

Q22() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

CNTRYCODE,

COUNT(*) AS NUMCUST,

297

SUM(C_ACCTBAL) AS TOTACCTBAL

FROM (SELECT SUBSTR(C_PHONE,1,2) AS CNTRYCODE, C_ACCTBAL

 FROM H_CUSTOMER

 WHERE

 SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17')

 AND C_ACCTBAL > (SELECT AVG(C_ACCTBAL)

 FROM H_CUSTOMER WHERE C_ACCTBAL > 0.00

 AND SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17'))

 AND NOT EXISTS (SELECT *

 FROM H_ORDER WHERE O_CUSTKEY = C_CUSTKEY)) CUSTSALE

GROUP BY CNTRYCODE

ORDER BY CNTRYCODE;

EXIT

END`

}

SQL_ID=" \

Q9-bccvz740py3dv

"

Q1-b383b8ptd6m38

Q2-84u9xq2p56f68

Q3-4y7ucx9354fxy

Q4-5rpbt92d2w4ks

Q5-8y0yasa5zjyr1

Q6-1zn3xrx01mtck

Q7-2tryzag0xbu4m

Q8-c8bp67faftkh2

Q9-bccvz740py3dv

Q10-2bkjqzpz3ubsc

Q11-9fw9rgatw0h2b

Q12-94tpbact4tt8c

Q13-9f2czfz2pm9zr

Q14-0c2bha5xd99js

Q15-9fj78vapy7uny

Q16-9f16buakax45p

Q17-33fsxr05jhazw

Q18-ctakajmsjp98s

Q19-14yf8frfjbcry

Q20-302hwrypt1g02

Q21-3z61g4q8uhvac

Q22-5bks84w8ut3dy

snap() {

sqlplus -s tpch/tpch123 << END

 set feedback off

 set heading off

 EXEC dbms_workload_repository.create_snapshot;

 select max(snap_id) from dba_hist_sys_time_model

 where DBID=(select dbid from v\$database);

END

}

CG_CHK() {

sqlplus -s tpch/tpch123 << END

 set heading off

 set feedback off

 select value from v\$sysstat

 where name='consistent gets';

END

}

298

b=0

baseline_ratio=40870

load_threshold=4.5

run_freq=5 # from MATLAB

begin_time=`echo $(date +%s)`

sleep 1

begin_CG=`CG_CHK`

while (true);do

 elapsed_clock_time=`expr $(date +%s) - ${begin_time}`

 CURR_CG_TOTAL=`CG_CHK`

 CURR_CG_DIFF=`echo $((${CURR_CG_TOTAL} - ${begin_CG}))`

 CG_ratio=`echo $((${CURR_CG_DIFF} / ${elapsed_clock_time}))`

 # echo "CURR_CG_DIFF=" $CURR_CG_DIFF

 echo "elapsed_clock_time=" $elapsed_clock_time

 echo "CG_ratio=" $CG_ratio

 echo "baseline_ratio=" $baseline_ratio

 R=`echo "$SQL_ID" | awk -F'-' '{print $1}'`

 S=`echo "$SQL_ID" | awk -F'-' '{print $2}'`

 echo $S

 server_load=`uptime | awk '{print $10}' | awk -F',' '{print $1}'`

 echo "server_load=" $server_load

 if [[${CG_ratio} -lt ${baseline_ratio}]] \

 && [[${server_load} -le ${load_threshold}]];then

 SQL_CNT=`sqlplus -s tpch/tpch123 << END

 set heading off

 set feedback off

 select count(*) from v\\$session

 where sql_id='\${S}';

END`

 echo $SQL_CNT

 echo $run_freq

 x=0

 while [[${run_freq} -gt 0]] && \

 [[${SQL_CNT} -eq 0]];do

 $R > /dev/null 2>&1 &

 echo "abc"

 run_freq=`expr $run_freq - 1`

 x=`expr $x + 1`

 echo "SQL_CNT=" $SQL_CNT

 echo "x=" $x

 echo "run_freq=" $run_freq

 done

 fi

 sleep 5

 run_freq=5

done

299

Appendix G

Shell program that produces the benchmark data using multiple TPC-H queries. This

program is used in the affirmation scheme.

#!/bin/ksh

Q1() {

q=`sqlplus -s tpch/tpch123 << END

SELECT L_RETURNFLAG,

L_LINESTATUS,

SUM(L_QUANTITY) AS SUM_QTY,

 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE*(1-

L_DISCOUNT)) AS SUM_DISC_PRICE,

 SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE,

AVG(L_QUANTITY) AS AVG_QTY,

 AVG(L_EXTENDEDPRICE) AS AVG_PRICE,

 AVG(L_DISCOUNT) AS AVG_DISC, COUNT(*) AS COUNT_ORDER

FROM H_LINEITEM

WHERE L_SHIPDATE <= to_date('1998-12-01','YYYY-MM-DD') - 90

GROUP BY L_RETURNFLAG, L_LINESTATUS

ORDER BY L_RETURNFLAG,L_LINESTATUS;

EXIT

END`

}

Q2() {

q=`sqlplus -s tpch/tpch123 << END

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY,

P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT

FROM

H_PART, H_SUPPLIER, H_PARTSUPP, H_NATION, H_REGION

WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15

AND P_TYPE LIKE '%%BRASS'

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = 'EUROPE'

AND PS_SUPPLYCOST = (SELECT MIN(PS_SUPPLYCOST)

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION, H_REGION

 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY

 AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY

 AND R_NAME = 'EUROPE')

AND rownum<101

ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY;

EXIT

END`

}

Q3() {

q=`sqlplus -s tpch/tpch123 << END

SELECT L_ORDERKEY,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,

O_ORDERDATE, O_SHIPPRIORITY

FROM H_CUSTOMER, H_ORDER, H_LINEITEM

WHERE C_MKTSEGMENT = 'BUILDING'

300

AND C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND O_ORDERDATE < to_date('1995-03-15','YYYY-MM-DD')

AND L_SHIPDATE > to_date('1995-03-15','YYYY-MM-DD')

and rownum<10

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY

ORDER BY REVENUE DESC, O_ORDERDATE ;

EXIT

END`

}

Q4() {

q=`sqlplus -s tpch/tpch123 << END

SELECT O_ORDERPRIORITY,

COUNT(*) AS ORDER_COUNT

FROM H_ORDER

WHERE O_ORDERDATE >= to_date('1993-07-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1993-07-01','YYYY-MM-DD'),3)

AND

EXISTS (SELECT * FROM H_LINEITEM

 WHERE L_ORDERKEY = O_ORDERKEY

 AND L_COMMITDATE < L_RECEIPTDATE)

GROUP BY O_ORDERPRIORITY

ORDER BY O_ORDERPRIORITY;

EXIT

END`

}

Q5() {

q=`sqlplus -s tpch/tpch123 << END

SELECT N_NAME,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_SUPPLIER, H_NATION, H_REGION

WHERE C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND L_SUPPKEY = S_SUPPKEY

AND C_NATIONKEY = S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = 'ASIA'

AND O_ORDERDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)

GROUP BY N_NAME

ORDER BY REVENUE DESC;

EXIT

END`

}

Q6() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE

FROM H_LINEITEM

WHERE L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)

AND L_DISCOUNT BETWEEN .06 - 0.01 AND .06 + 0.01

AND L_QUANTITY < 24;

301

EXIT

END`

}

Q7() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUPP_NATION, CUST_NATION,

L_YEAR, SUM(VOLUME) AS REVENUE

FROM

 (SELECT N1.N_NAME AS SUPP_NATION,

 N2.N_NAME AS CUST_NATION,

 extract(year from L_SHIPDATE) AS L_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME

 FROM H_SUPPLIER, H_LINEITEM, H_ORDER,

 H_CUSTOMER, H_NATION N1, H_NATION N2

 WHERE S_SUPPKEY = L_SUPPKEY

 AND O_ORDERKEY = L_ORDERKEY

 AND C_CUSTKEY = O_CUSTKEY

 AND S_NATIONKEY = N1.N_NATIONKEY

 AND C_NATIONKEY = N2.N_NATIONKEY

 AND ((N1.N_NAME = 'FRANCE' AND N2.N_NAME = 'GERMANY') OR

 (N1.N_NAME = 'GERMANY' AND N2.N_NAME = 'FRANCE'))

 AND L_SHIPDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD') AND to_date('1996-12-

31','YYYY-MM-DD')) SHIPPING

GROUP BY SUPP_NATION, CUST_NATION, L_YEAR

ORDER BY SUPP_NATION, CUST_NATION, L_YEAR;

EXIT

END`

}

Q8() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

O_YEAR,

SUM(CASE WHEN NATION = 'BRAZIL' THEN VOLUME ELSE 0 END)/SUM(VOLUME) AS

MKT_SHARE

FROM

 (SELECT

 extract(year from O_ORDERDATE) AS O_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME,

 N2.N_NAME AS NATION

 FROM

 H_PART, H_SUPPLIER, H_LINEITEM, H_ORDER,

 H_CUSTOMER, H_NATION N1, H_NATION N2, H_REGION

 WHERE

 P_PARTKEY = L_PARTKEY

 AND S_SUPPKEY = L_SUPPKEY

 AND L_ORDERKEY = O_ORDERKEY

 AND O_CUSTKEY = C_CUSTKEY

 AND C_NATIONKEY = N1.N_NATIONKEY

 AND N1.N_REGIONKEY = R_REGIONKEY

 AND R_NAME = 'AMERICA'

 AND S_NATIONKEY = N2.N_NATIONKEY

 AND O_ORDERDATE BETWEEN to_date('1995-01-01','YYYY-MM-DD')

 AND to_date('1996-12-31','YYYY-MM-DD')

 AND P_TYPE= 'ECONOMY ANODIZED STEEL') ALL_NATIONS

GROUP BY O_YEAR

ORDER BY O_YEAR;

EXIT

302

END`

}

Q9() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

NATION, O_YEAR,

SUM(AMOUNT) AS SUM_PROFIT

FROM

 (SELECT N_NAME AS NATION, extract(year from O_ORDERDATE) AS O_YEAR,

 L_EXTENDEDPRICE*(1-L_DISCOUNT)-PS_SUPPLYCOST*L_QUANTITY AS AMOUNT

 FROM

 H_PART, H_SUPPLIER, H_LINEITEM, H_PARTSUPP, H_ORDER, H_NATION

 WHERE S_SUPPKEY = L_SUPPKEY

 AND PS_SUPPKEY= L_SUPPKEY

 AND PS_PARTKEY = L_PARTKEY

 AND P_PARTKEY= L_PARTKEY

 AND O_ORDERKEY = L_ORDERKEY

 AND S_NATIONKEY = N_NATIONKEY

 AND P_NAME LIKE '%%green%%') PROFIT

GROUP BY NATION, O_YEAR

ORDER BY NATION, O_YEAR DESC;

EXIT

END`

}

Q10() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

C_CUSTKEY, C_NAME,

SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,

C_ACCTBAL, N_NAME,

C_ADDRESS, C_PHONE, C_COMMENT

FROM H_CUSTOMER, H_ORDER, H_LINEITEM, H_NATION

WHERE C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND O_ORDERDATE>= to_date('1993-10-01','YYYY-MM-DD')

AND O_ORDERDATE < add_months(to_date('1993-10-01','YYYY-MM-DD'),3)

AND L_RETURNFLAG = 'R' AND C_NATIONKEY = N_NATIONKEY

and rownum<21

GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL, C_PHONE, N_NAME, C_ADDRESS,

C_COMMENT

ORDER BY REVENUE DESC;

EXIT

END`

}

Q11() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

PS_PARTKEY,

SUM(PS_SUPPLYCOST*PS_AVAILQTY) AS VALUE

FROM

H_PARTSUPP, H_SUPPLIER, H_NATION

WHERE

PS_SUPPKEY = S_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_NAME = 'GERMANY'

303

GROUP BY PS_PARTKEY

HAVING SUM(PS_SUPPLYCOST*PS_AVAILQTY) > (SELECT

SUM(PS_SUPPLYCOST*PS_AVAILQTY) * 0.0001000000

 FROM H_PARTSUPP, H_SUPPLIER, H_NATION

 WHERE PS_SUPPKEY = S_SUPPKEY

 AND S_NATIONKEY = N_NATIONKEY

 AND N_NAME = 'GERMANY')

ORDER BY VALUE DESC;

EXIT

END`

}

Q12() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

L_SHIPMODE,

SUM(CASE WHEN O_ORDERPRIORITY = '1-URGENT' OR O_ORDERPRIORITY = '2-HIGH'

THEN 1 ELSE 0 END) AS HIGH_LINE_COUNT,

SUM(CASE WHEN O_ORDERPRIORITY <> '1-URGENT' AND O_ORDERPRIORITY <> '2-HIGH'

THEN 1 ELSE 0 END) AS LOW_LINE_COUNT

FROM H_ORDER, H_LINEITEM

WHERE O_ORDERKEY = L_ORDERKEY

AND L_SHIPMODE IN ('MAIL','SHIP')

AND L_COMMITDATE < L_RECEIPTDATE

AND L_SHIPDATE < L_COMMITDATE

AND L_RECEIPTDATE >= to_date('1994-01-01','YYYY-MM-DD')

AND L_RECEIPTDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1)

GROUP BY L_SHIPMODE

ORDER BY L_SHIPMODE;

EXIT

END`

}

Q13() {

q=`sqlplus -s tpch/tpch123 << END

SELECT C_COUNT, COUNT(*) AS CUSTDIST

FROM (SELECT C_CUSTKEY, COUNT(O_ORDERKEY) as C_COUNT

 FROM H_CUSTOMER left outer join H_ORDER on C_CUSTKEY = O_CUSTKEY

 AND O_COMMENT not like '%%special%%requests%%'

 GROUP BY C_CUSTKEY) C_ORDERS

GROUP BY C_COUNT

ORDER BY CUSTDIST DESC, C_COUNT DESC;

EXIT

END`

}

Q14() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

100.00*SUM(CASE WHEN P_TYPE LIKE 'PROMO%%' THEN L_EXTENDEDPRICE*(1-

L_DISCOUNT)

ELSE 0 END) / SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS PROMO_REVENUE

FROM

H_LINEITEM, H_PART

WHERE

L_PARTKEY = P_PARTKEY

AND L_SHIPDATE >= to_date('1995-09-01','YYYY-MM-DD')

304

AND L_SHIPDATE < add_months(to_date('1995-09-01','YYYY-MM-DD'),1);

EXIT

END`

}

Q15() {

q=`sqlplus -s tpch/tpch123 << END

-- CREATE VIEW REVENUE0 (SUPPLIER_NO, TOTAL_REVENUE) AS

-- SELECT L_SUPPKEY,

-- SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT))

-- FROM H_LINEITEM

-- WHERE L_SHIPDATE >= to_date('1996-01-01','YYYY-MM-DD')

-- AND L_SHIPDATE < add_months(to_date('1996-01-01','YYYY-MM-DD'),3)

-- GROUP BY L_SUPPKEY;

SELECT

S_SUPPKEY, S_NAME, S_ADDRESS, S_PHONE, TOTAL_REVENUE

FROM H_SUPPLIER, REVENUE0

WHERE

S_SUPPKEY = SUPPLIER_NO

AND TOTAL_REVENUE = (SELECT MAX(TOTAL_REVENUE) FROM REVENUE0)

ORDER BY S_SUPPKEY;

-- DROP VIEW REVENUE0;

EXIT

END`

}

Q16() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

P_BRAND, P_TYPE, P_SIZE,

COUNT(DISTINCT PS_SUPPKEY) AS SUPPLIER_CNT

FROM

H_PARTSUPP, H_PART

WHERE

P_PARTKEY = PS_PARTKEY

AND P_BRAND <> 'Brand#45'

AND P_TYPE NOT LIKE 'MEDIUM POLISHED%%'

AND P_SIZE IN (49, 14, 23, 45, 19, 3, 36, 9)

AND PS_SUPPKEY NOT IN (SELECT S_SUPPKEY

 FROM H_SUPPLIER

 WHERE S_COMMENT LIKE '%%Customer%%Complaints%%')

GROUP BY P_BRAND, P_TYPE, P_SIZE

ORDER BY SUPPLIER_CNT DESC, P_BRAND, P_TYPE, P_SIZE;

EXIT

END`

}

Q17() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY

FROM

H_LINEITEM, H_PART

WHERE

P_PARTKEY = L_PARTKEY

305

AND P_BRAND = 'Brand#23'

AND P_CONTAINER = 'MED BOX'

AND L_QUANTITY < (SELECT 0.2*AVG(L_QUANTITY)

FROM H_LINEITEM WHERE L_PARTKEY = P_PARTKEY);

EXIT

END`

}

Q18() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE,

SUM(L_QUANTITY)

FROM

H_CUSTOMER, H_ORDER, H_LINEITEM

WHERE O_ORDERKEY IN (SELECT

 L_ORDERKEY

 FROM H_LINEITEM

 GROUP BY L_ORDERKEY

 HAVING SUM(L_QUANTITY) > 300)

AND C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND rownum<101

GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE

ORDER BY O_TOTALPRICE DESC, O_ORDERDATE;

EXIT

END`

}

Q19() {

q=`sqlplus -s tpch/tpch123 << END

SELECT SUM(L_EXTENDEDPRICE* (1 - L_DISCOUNT)) AS REVENUE

FROM H_LINEITEM, H_PART

WHERE

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#12'

 AND P_CONTAINER IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')

 AND L_QUANTITY >= 1 AND L_QUANTITY <= 1 + 10

 AND P_SIZE BETWEEN 1 AND 5

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON')

OR

(P_PARTKEY = L_PARTKEY AND P_BRAND ='Brand#23'

 AND P_CONTAINER IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')

 AND L_QUANTITY >=10 AND L_QUANTITY <=10 + 10

 AND P_SIZE BETWEEN 1 AND 10

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON')

OR

(P_PARTKEY = L_PARTKEY AND P_BRAND = 'Brand#34'

 AND P_CONTAINER IN ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')

 AND L_QUANTITY >=20 AND L_QUANTITY <= 20 + 10

 AND P_SIZE BETWEEN 1 AND 15

 AND L_SHIPMODE IN ('AIR', 'AIR REG')

 AND L_SHIPINSTRUCT = 'DELIVER IN PERSON');

EXIT

END`

}

306

Q20() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

S_NAME, S_ADDRESS

FROM

H_SUPPLIER, H_NATION

WHERE

S_SUPPKEY IN (SELECT

 PS_SUPPKEY FROM H_PARTSUPP

 WHERE PS_PARTKEY in (SELECT

 P_PARTKEY FROM H_PART

 WHERE P_NAME like 'forest%%')

 AND PS_AVAILQTY > (SELECT 0.5*sum(L_QUANTITY)

 FROM H_LINEITEM

 WHERE L_PARTKEY = PS_PARTKEY

 AND L_SUPPKEY = PS_SUPPKEY

 AND L_SHIPDATE >= to_date('1994-01-01','YYYY-MM-DD')

 AND L_SHIPDATE < add_months(to_date('1994-01-01','YYYY-MM-DD'),1*12)))

AND S_NATIONKEY = N_NATIONKEY AND N_NAME = 'CANADA'

ORDER BY S_NAME;

EXIT

END`

}

Q21() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

S_NAME, COUNT(*) AS NUMWAIT

FROM

H_SUPPLIER, H_LINEITEM L1, H_ORDER, H_NATION

WHERE

S_SUPPKEY = L1.L_SUPPKEY

AND O_ORDERKEY = L1.L_ORDERKEY

AND O_ORDERSTATUS = 'F'

AND L1.L_RECEIPTDATE> L1.L_COMMITDATE

AND EXISTS (SELECT * FROM

 H_LINEITEM L2

 WHERE L2.L_ORDERKEY = L1.L_ORDERKEY

 AND L2.L_SUPPKEY <> L1.L_SUPPKEY)

AND NOT EXISTS (SELECT *

 FROM H_LINEITEM L3

 WHERE L3.L_ORDERKEY = L1.L_ORDERKEY

 AND L3.L_SUPPKEY <> L1.L_SUPPKEY

 AND L3.L_RECEIPTDATE > L3.L_COMMITDATE)

AND S_NATIONKEY = N_NATIONKEY

AND N_NAME = 'SAUDI ARABIA'

and rownum<101

GROUP BY S_NAME

ORDER BY NUMWAIT DESC, S_NAME;

EXIT

END`

}

Q22() {

q=`sqlplus -s tpch/tpch123 << END

SELECT

CNTRYCODE,

COUNT(*) AS NUMCUST,

307

SUM(C_ACCTBAL) AS TOTACCTBAL

FROM (SELECT SUBSTR(C_PHONE,1,2) AS CNTRYCODE, C_ACCTBAL

 FROM H_CUSTOMER

 WHERE

 SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17')

 AND C_ACCTBAL > (SELECT AVG(C_ACCTBAL)

 FROM H_CUSTOMER WHERE C_ACCTBAL > 0.00

 AND SUBSTR(C_PHONE,1,2) IN ('13', '31', '23', '29', '30', '18', '17'))

 AND NOT EXISTS (SELECT *

 FROM H_ORDER WHERE O_CUSTKEY = C_CUSTKEY)) CUSTSALE

GROUP BY CNTRYCODE

ORDER BY CNTRYCODE;

EXIT

END`

}

SQL_ID=" \

Q8-c8bp67faftkh2

"

SQL_ID2=" \

Q9-bccvz740py3dv

"

Q1-b383b8ptd6m38

Q2-84u9xq2p56f68

Q3-4y7ucx9354fxy

Q4-5rpbt92d2w4ks

Q5-8y0yasa5zjyr1

Q6-1zn3xrx01mtck

Q7-2tryzag0xbu4m

Q8-c8bp67faftkh2

Q9-bccvz740py3dv

Q10-2bkjqzpz3ubsc

Q11-9fw9rgatw0h2b

Q12-94tpbact4tt8c

Q13-9f2czfz2pm9zr

Q14-0c2bha5xd99js

Q15-9fj78vapy7uny

Q16-9f16buakax45p

Q17-33fsxr05jhazw

Q18-ctakajmsjp98s

Q19-14yf8frfjbcry

Q20-302hwrypt1g02

Q21-3z61g4q8uhvac

Q22-5bks84w8ut3dy

snap() {

sqlplus -s tpch/tpch123 << END

 set feedback off

 set heading off

 EXEC dbms_workload_repository.create_snapshot;

 select max(snap_id) from dba_hist_sys_time_model

 where DBID=(select dbid from v\$database);

END

}

CG_CHK() {

sqlplus -s tpch/tpch123 << END

 set heading off

 set feedback off

 select value from v\$sysstat

308

 where name='consistent gets';

END

}

b=0

baseline_ratio=40870

load_threshold=4.5

run_freq=3

run_freq2=3

begin_time=`echo $(date +%s)`

sleep 1

begin_CG=`CG_CHK`

while (true);do

 elapsed_clock_time=`expr $(date +%s) - ${begin_time}`

 CURR_CG_TOTAL=`CG_CHK`

 CURR_CG_DIFF=`echo $((${CURR_CG_TOTAL} - ${begin_CG}))`

 CG_ratio=`echo $((${CURR_CG_DIFF} / ${elapsed_clock_time}))`

 # echo "CURR_CG_DIFF=" $CURR_CG_DIFF

 echo "elapsed_clock_time=" $elapsed_clock_time

 echo "CG_ratio=" $CG_ratio

 echo "baseline_ratio=" $baseline_ratio

 R=`echo "$SQL_ID" | awk -F'-' '{print $1}'`

 R2=`echo "$SQL_ID2" | awk -F'-' '{print $1}'`

 S=`echo "$SQL_ID" | awk -F'-' '{print $2}'`

 S2=`echo "$SQL_ID2" | awk -F'-' '{print $2}'`

 echo $S

 echo $S2

 server_load=`uptime | awk '{print $10}' | awk -F',' '{print $1}'`

 echo "server_load=" $server_load

 if [[${CG_ratio} -lt ${baseline_ratio}]] \

 && [[${server_load} -le ${load_threshold}]];then

 SQL_CNT=`sqlplus -s tpch/tpch123 << END

 set heading off

 set feedback off

 select count(*) from v\\$session

 where sql_id='\${S}';

END`

 x=0

 while [[${run_freq} -gt 0]] && \

 [[${SQL_CNT} -eq 0]];do

 $R > /dev/null 2>&1 &

 echo "abc"

 run_freq=`expr $run_freq - 1`

 x=`expr $x + 1`

 echo "SQL_CNT=" $SQL_CNT

 echo "x=" $x

 echo "run_freq=" $run_freq

 done

 fi

 if [[${CG_ratio} -lt ${baseline_ratio}]] \

 && [[${server_load} -le ${load_threshold}]];then

 SQL_CNT2=`sqlplus -s tpch/tpch123 << END

 set heading off

 set feedback off

 select count(*) from v\\$session

309

 where sql_id='\${S2}';

END`

 y=0

 while [[${run_freq2} -gt 0]] && \

 [[${SQL_CNT2} -eq 0]];do

 $R2 > /dev/null 2>&1 &

 echo "xyz"

 run_freq2=`expr $run_freq2 - 1`

 y=`expr $y + 1`

 echo "SQL_CNT2=" $SQL_CNT2

 echo "y=" $y

 echo "run_freq2=" $run_freq2

 done

 fi

 sleep 5

 run_freq=3

 run_freq2=3

done

310

Appendix H

Following figures exhibit the generated benchmark data for affirmation scheme. The

tests were conducted with CPU run queue size kept at 4, and parallel execution of 8.

Testing result from iterative and parallel execution of TPC-H query #5.

Testing result from iterative and parallel execution of TPC-H query #12.

311

Testing result from iterative and parallel execution of TPC-H query #16.

Testing result from iterative and parallel execution of TPC-H query #17.

Testing result from iterative and parallel execution of combination of TPC-H query # 2 & 16.

Testing result from iterative and parallel execution of TPC-H query #2.

312

Testing result from iterative and parallel execution of combination of TPC-H query #8 & 9.

Testing result from iterative and parallel execution of TPC-H query #9.

313

Appendix I

Published journal papers:

Tan, C. H., & Teh, Y. W. (2013a). Harnessing Cloud Computing for Dynamic Resource Requirement by

Database Workloads. Journal of Information Science and Engineering, 29(5). (ISI-Cited

Publication)

Tan, C. H., & Teh, Y. W. (2013c). Synthetic Hardware Performance Analysis in Virtualized Cloud

Environment for Healthcare Organization. Journal of Medical Systems, 37(4). (ISI-Cited

Publication)

Tan, C. H., & Teh, Y. W. (2013b). Secure Hardware Performance Analysis in Virtualized Cloud

Environment. Mathematical Problems in Engineering. (ISI-Cited Publication)

Published conference proceedings:

Tan, C. H., & Teh, Y. W. (2013). Hardware Resource Performance Optimization and Affirmation in

Virtualized Cloud Environment for Healthcare Organization. International Conference on

Medical Innovation and Computing Services. Tainan City, Taiwan.

Tan, C. H., & Teh, Y. W. (2011). A Fuzzy way to Index Tuning. 2nd International Conference on

Management Science and Engineering. Chengdou,China.

Journal citation report (2012):

Journal name Publisher Category Name Total

Journals

in

Category

Journal

Rank in

Category

Quartile

in

Category

Impact

Factor

Journal of

Information

Science and

Engineering

Institute

Information

Science

Computer

Science,

Information

Systems

132 121 Q4 0.299

Journal of

Medical

Systems

Springer Health Care

Sciences &

Services
82 36 Q2 1.783

Mathematical

Problems in

Engineering

Hindawi

Publishing

Corporation

Mathematics,

Interdisciplinary

Applications
92 29 Q2 1.383

