REFERENCES

presence of other family members infected with *Giardia intestinalis* as a main risk factor. *Int J Parasitol* **42**: 871-880.

McMaster: three methods, one goal; highlights from north Argentina. *Parasit Vectors* **7**:271.

References

References

References

Seroepidemiological studies of the age relationships of serum antibody levels and infection status. *South east Asian J Trop Med Publ Health* **31**: 736-741.

A. Publications during candidature, directly arising from this thesis

B. Publication during candidature, but not directly arising from this thesis

C. Conference presentations made during the candidature period *(presenter)*

2. **Ahmed K. Al-Delaimy**, Al-Mekhlafi HM, Lim YAL, Mahmud R. The impact of health education in controlling soil-transmitted helminthiasis. 1st International Conference on Tropical Medicine and Infectious Diseases, Royal College of Medicine, Perak, 4-7 Dec 2012.

Epidemiology of Intestinal Polyparasitism among Orang Asli School Children in Rural Malaysia

Ahmed K. Al-Delaimy1,2, Hesham M. Al-Mekhlafi1,3,*, Nabil A. Nasr1, Hany Sady1, Wahib M. Atroosh1, Mohammed Nashiry4, Tengku S. Anuar5, Norhayati Moktar5, Yvonne A. L. Lim1, Rohela Mahmud1

1 Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
2 Department of Community Medicine, Faculty of Medicine, University of Al-Askar, Baghdad, Iraq
3 Department of Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
4 Institute of Medical Molecular Biotechnology, Faculty of Medicine, University Teknologi MARA, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
5 Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA, Selangor, Malaysia
6 Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia

Abstract

Background: This cross-sectional study aimed to investigate the current prevalence and risk factors associated with intestinal polyparasitism (the concurrent infection with multiple intestinal parasite species) among Orang Asli school children in the Lipis district of Pahang state, Malaysia.

Methods/Principal findings: Fecal samples were collected from 498 school children (50.6% boys and 49.4% girls), and examined by using direct smear, formol-ether sedimentation, trichrome stain, modified Ziehl Neelsen stain, Kato-Katz, and Harada Mori techniques. Demographic, socioeconomic, environmental, and personal hygiene information were collected by using a pre-tested questionnaire. Overall, 98.4% of the children were found to be infected by at least one parasite species. Of these, 71.4% had polyparasitism. The overall prevalence of Trichuris trichiura, Ascaris lumbricoides, hookworm, Giardia duodenalis, Entamoeba spp., and Cryptosporidium spp. infections were 95.6%, 47.8%, 28.3%, 28.3%, 14.1% and 5.2%, respectively. Univariate and multivariate analyses showed that using an unsafe water supply as a source for drinking water, presence of other family members infected with intestinal parasitic infections (IPI), not washing vegetables before consumption, absence of a toilet in the house, not wearing shoes when outside, not cutting nails periodically, and not washing hands before eating were significant risk factors associated with intestinal polyparasitism among these children.

Conclusions/Significance: Intestinal polyparasitism is highly prevalent among children in the peninsular Malaysian Aboriginal communities. Hence, effective and sustainable control measures, including school-based periodic chemotherapy, providing adequate education focused on good personal hygiene practices and proper sanitation, as well as safe drinking water supply should be implemented to reduce the prevalence and consequences of these infections in this population.

Citation: Al-Delaimy AK, Al-Mekhlafi HM, Nasr NA, Sady H, Atroosh WM, et al. (2014) Epidemiology of Intestinal Polyparasitism among Orang Asli School Children in Rural Malaysia. PLOS Negl Trop Dis 8(8): e3074. doi:10.1371/journal.pntd.0003074

Editor: Ayseul Taylan Ozkan, Hitt University, Turkey

Received January 24, 2014; Accepted June 24, 2014; Published August 21, 2014

Copyright: © 2014 Al-Delaimy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work presented in this paper was funded by the University of Malaya High Impact Research Grant UM-MOHE UM.C/625/1/HIR/MOE/18 from the Ministry of Higher Education, Malaysia, the University of Malaya Research Grant (RG436/12HTM) and P4ARTP Community Project grant (FL001/13S5). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: halmekhlaifi@yahoo.com

Introduction

Intestinal parasitic infections (IPI) are still a public health problem in many communities, particularly among children in rural areas of developing countries. It is estimated that more than 2 billion people worldwide are infected with IPI and more than half of the world’s population are at risk of infection [1,2]. These infections are caused by helminth parasites such as soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura, Strongyloides stercoralis, and hookworm), Taenia spp. and Hymenolepis nana or by protozoan such as Entamoeba histolytica, Giardia duodenalis, and Cryptosporidium spp.

IPI are associated with high morbidity particularly among young children and women of childbearing age, and have been termed as ‘the cancers of developing nations’ by Egger et al. [3]. IPI can occur in silence as chronic infections and infected individuals are either asymptomatic or suffering from mild diseases. However, acute and severe IPI, especially with pathogenic Entamoeba and Giardia, may cause fatal diarrhea especially among children and both are commonly associated with travellers’ diarrhea [4,5]. Moreover, Entamoeba can cause invasive intestinal infection or disseminate to the liver (and rarely to the lung and the brain) causing amebic liver abscess with about 100,000 deaths annually, making amebiasis the second leading cause of death from protozoal diseases, after malaria [6,7]. On the other hand, opportunistic IPI such as Cryptosporidium, Isospora belli, Microsporidia, and Strongyloides infections are commonly reported among immunocompromised individuals with significant morbidity and mortality [8,9].
Developing and evaluating health education learning package (HELP) to control soil-transmitted helminth infections among Orang Asli children in Malaysia

Ahmed K Al-Delaimy1,2, Hesham M Al-Mekhlafi3,7, Yvonne AL Lim1, Nabil A Nasr1, Hany Sady1, Wahib M Atroosh1 and Rohela Mahmud1

Abstract

Background: This study was carried out to develop a health education learning package (HELP) about soil-transmitted helminth (STH) infections, and to evaluate what impact such a package could have in terms of reducing the incidence and intensity of STH infections among Orang Asli schoolchildren in Pahang, Malaysia.

Methods: To identify the key risk factors of STH in Orang Asli communities, we applied an extensive mixed methods approach which involved an intensive literature review, as well as community-based discussions with children, their parents, teachers and health personnel, whilst also placing the children under direct observation. To evaluate the package, 317 children from two schools in Lipis, Pahang were screened for STH infections, treated by a 3-day course of albendazole and then followed up over the next 6 months. The knowledge of teachers, parents and children towards STH infections were assessed at baseline and after 3 months.

Results: The developed package consists of a half day workshop for teachers, a teacher’s guide book to STH infections, posters, a comic book, a music video, a puppet show, drawing activities and an aid kit. The package was well-received with effective contributions being made by teachers, children and their parents. The incidence rates of hookworm infection at different assessment points were significantly lower among children in the intervention school compared to those in the control school. Similarly, the intensity of trichuriasis, ascariasis and hookworm infections were found to be significantly lower among children in the HELP group compared to those in the control group \((P < 0.05) \). Moreover, the package significantly improved the knowledge, attitude and practices (KAP) of Orang Asli people and the knowledge of teachers towards STH infections.

Conclusion: A school-based health education learning package (HELP) was developed which displayed a significant impact in terms of reducing the intensity of all three main STH infections, as well as in reducing the prevalence of hookworm infections. Moreover, the knowledge levels of both teachers and the Orang Asli population regarding STH was significantly improved, a fact which greatly helped in attracting community participation and thus raising the general level of awareness regarding these forms of infections.

Keywords: Soil-transmitted helminth, Health education learning package, Neglected tropical diseases, Reinfection, Orang Asli, Children, Malaysia