ABSTRACT

The extant literature on technological catch-up by scholars like Nelson, Winter, Amsden, Mathews and Cho has provided lucid accounts of the critical role of institutions. However, the successful catch-up stories of latecomers like Taiwan have not been easily replicated. This study developed three analytical frameworks to examine three research questions. Firstly, the research seeks to understand how technological transitions affect latecomers' catch-up strategies, and vice versa, in a technologyintensive manufacturing industry. Second, the research seeks to examine how latecomer resource acquisition strategies vary as the industry experiences structural change. Thirdly, the study aims to understand the mechanisms of how a firm could transform from a technology follower to a technology leader, and sustain its leading technological capabilities. The study uses Taiwan's integrated circuit industry as the empirical anchor of its in-depth case studies. Critical examples are also drawn from the experience of the integrated circuit industry in other countries.

To answer the first research question, the study explains the mechanisms behind the industry's transitional process after the emergence of the world's first contract manufacturer in wafer fabrication. The study found that the relationships among technological regimes, driving forces of upstream and downstream firms in the industry, choices of organizational boundaries, and network boundaries evolve through different points in time. The dynamic forces in the industry can collectively create feedback loops to technological regime. Technological transitions provide different conditions for latecomers to catch up or to leapfrog incumbents.

In addition, the thesis provides a six-dimensional framework to analyze the dynamic value systems that latecomers face, as the industry experiences structural change. Using this framework, the analysis shows how Taiwanese foundries deployed successful

resource acquisition strategies to catch up and lead the creation of frontier technologies despite remaining as contract manufacturers. Through the incorporation of resourcebased view and open innovation concept, the findings show how latecomer firms can strategize their business model to move up the value chain as they progress from one dimension to the other.

Lastly, the findings show that a firm can skip or break away from internal path dependence through coevolutionary lock-ins with the industry to launch new technological paths to sustain its technological leadership. Through a virtuous circle of vision constructions, organizational endogenous strategies, and higher intensity of research and development, firms accumulate higher absorptive capacity for learning that is carried through to subsequent phases.

This study strengthens our understanding of technological transitions, which is fundamental to analyze innovation patterns of technology-intensive industries. Understanding the complex relationships between upstream and downstream firms and the industry's innovation patterns can help policymakers to identify industry segments that can be targeted for catch-up and to identify the types of business models that can be promoted. This study posits that the catch-up process in a technology-intensive industry like the integrated circuit industry requires innovative business models and strategic resource acquisitions as the industry progresses through different phases. Finally, this study provides managerial implications of organizational learning as the study analyzes firm-level endogenous strategies and coevolutionary lock-in with industry.

ABSTRAK

Sorotan kajian pengejaran teknologi oleh ilmuan seperti Nelson, Winter, Amsden, dan Mathews dan Cho telah memberi huraian meyakinkan terhadap peranan kritis institusi. Namun, cerita pengejaran yang berjaya pendatang lama seperti Taiwan tidak dituruti dengan mudah. Tinjauan ini membentukkan tiga kerangka analitik untuk mendekati tiga persoalan penyelidikan. Pertamanya, kajian ini cuba memahami bagaimana peralihan teknologi mempengaruhi strategi pengejaran pendatang lama dan yang sebaliknya di dalam sebuah industri pembuatan teknologi tinggi. Keduanya, kajian ini cuba meninjau bagaimana strategi pemgambilalihan sumber pendatang lama berbeza ketika ianya mengalami perubahan struktur. Ketiganya, kajian ini cuba mengetahui mekanisme firma yang boleh beralih daripada pengikut teknologi kepada peneraju teknologi, dan dapat mengekalkan keupayaan teknologinya. Kajian ini mengunakan industri litar kamilan Taiwan sebagai tiang utama penelitian terperinci kes. Contoh kritis juga diperolehi daripada industri litar kamilan di negara lain.

Untuk menjawab persoalan kajian pertama, tinjauan ini menjelaskan mekanisme dibelakang proses peralihan industri ini setelah munculnya pengilang fabrikasi wafer pertama di dunia. Tinjauan ini mendapati bahawa hubungan rejim teknologi, kuasa pengerak rantaian atasan dan bawahan firma dalam industri, pilihan sempadan organisasi dan sempadan jaringan berkembang melalui titik masa yang berlainan. Kuasa dinamik industri ini boleh secara bersama menghasilkan lengkuk maklumbalas kepada rejim teknologi. Peralihan teknologi memberi syarat-syarat berlainan demi mendokong pendatang lama untuk mengejar ataupun mendahului peneraju kini.

Tambahan pula, tesis ini mengutarakan suatu kerangka berdimensi enam untuk menganalisis sistem nilai dinamik yang di hadapi oleh pendatang lama, ketika industri mengalami perubahan struktur. Kerangka ini memunkinkan analisis yang menunjukkan bagaimana faundri Taiwan melancarkan strategi berjaya pengambilalihan sumber untuk mengejar dan menerajui ciptaan teknologi tercanggih biarpun mereka kekal sebagai pengilang kontrak. Melalui penerapan firma perkilangan rantaian bawahan, kajian ini memperlihatkan bagaimana firma pendatang lama boleh merangka strategi model perniagaannya untuk menaiki rantaian nilai apabila mereka bergerak daripada satu dimensi kepada yang lain.

Akhirkata, penemuan memperlihatkan bahawa sesebuah firma boleh melangkau ataupun bercerai keluar dari jalan pergantungan dalaman melalui penguncian coevolusi dengan industri untuk melancarkan jalan teknologi baru demi mengekalkan kepimpinan teknologinya. Menerusi satu pusingan pembinaan visi berasaskan pembinasaan, strategi organisasi dalaman, dan keamatan penyelidikan dan pembangunan yang lebih tinggi, firma mengumpul keupayaan meresap untuk belajar yang lebih tinggi yang dibawa kepada fasa seterusnya.

Kajian ini mengukuhkan pemahaman kita terhadap peralihan teknologi, yang mengasaskan analisis pola inovasi industri yang berintensif teknologi. Pemahaman hubungan kompleks antara rantaian atasan dan bawahan firma dan pola inovasi industri boleh membantu pembentuk dasar untuk mengesan lapisan industri yang boleh disasarkan untuk pengejaran dan untuk mengesan model perniagaan yang boleh digalakkan. Kajian ini menekankan bahawa proses pengambilalihan sumber dalam sistem nilai yang berubah boleh dirancang secara teratur untuk mengelakkan pengejaran yang berjaya. Akhir sekali, kajian ini memberi implikasi ke pengurusan terhadap pembelajaran organisasi kerana ianya menganalisis strategi dalaman dan penguncian coevolusi di peringkat firma.

ACKNOWLEDGEMENTS

My utmost gratitude goes to the one and only loving God, for providing me with unconditional love, despite the mistakes I have made in life. I believe God has a reason for every turn that he plans for me. I thank God for loving and taking care of my parents, and I thank God for answering my prayers every time when my father is ill. Thanks for giving me the strength to go through each obstacle in life, ever since the first day I came to you and prayed.

I would like to express my deep and sincere gratitude to my supervisor, Professor Dr. Rajah Rasiah, for his great teaching and helpful guidance since the beginning of this study. Thank you very much for your directions and patience throughout my learning process. Very importantly, thank you for believing in me still, at times when I lose confidence in myself. Your encouragements from time to time have meant tremendous to me and kept me motivated throughout the course of this study. On top of that, thank you for introducing me to research projects headed by United Nations Conference on Trade and Development (UNCTAD), Economic Research Institute for ASEAN and East Asia (ERIA) and University of Malaya High Impact Research (HIR). Not only these research projects have offered me with numerous learning opportunities, they have also funded the entire costs of my research and supported my family expenses. Meanwhile, I would like to thank you for providing me with important contacts and access into the IC industry to conduct research fieldwork. You have also given me various opportunities to gain exposure in the international research network. Thanks for making my Ph.D. journey a very enriching one.

This research would also be impossible without the former Vice Chancellor of University of Malaya (UM), Professor Tan Sri Datuk Dr. Ghauth Jasmon. I could still recall the day when I stepped into your office, not knowing much about what to do in life. Thank you very much for listening and believing in me. Thanks also for granting me the Bright Sparks scholarship to do a Ph.D. in UM and thanks for referring me to Professor Rajah.

I need to express my great gratitude to Dr. Lu Chih Yuan from Macronix, Mr. Lau Kean Cheong from Inari Amertron, Mr. BY Leong from Malaysia Northern Corridor Implementation Authority (NCIA) and Mr. Peter Halm from Infineon (Malaysia). Not only you have been very supportive in many aspects of the research, you have also taught me in tremendous ways the dynamics in the industry. Your teaching and support have been critical to my learning process.

For my research fieldwork in Taiwan, I would like to thank Datuk Pua Khein-Seng, Professor Yeo Lin and Mr. Chang Zi Ping for providing me with important contacts in the industry. As for my research fieldwork in Malaysia, I would like to thank Datuk Chris Tan from PEMANDU, Mr. BY Leong from NCIA again and Dr. John See from QAV Technologies for providing the relevant contacts. Special thanks also goes to Mr. Calvin Tan, Mr. Jesse Tan Kah Ann and Mr. Loh Choon Hong for your support and patience. On top of that, I would like to sincerely thank every other firm or organization that has supported and participated in this research.

Finally, I wish to thank those who have provided other forms of support during the course of this study. To my former employers and colleagues (Mr. Wong Chan Wah and Ms. Yaw Ai Lee), thanks for understanding that pursuing further knowledge was what I needed and thanks for your lasting friendship. Special thanks also goes to my sister and my two dear friends - Chooi Teng and Jyue Wei. Thanks for keeping me happy and thanks for your understanding when I cannot be around. Last, but certainly not least, I wish to dedicate this piece of research to my beloved parents. Thank you as

you brought me up with love, food and shelter despite all the hardships. I keep you in my prayers, everyday. You are the reason I keep learning.

All errors and shortcomings remain my own.

Yap Xiao Shan

Kuala Lumpur, Malaysia

TABLE OF CONTENTS

	Pages
ABSTRACT	iii
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	Х
LIST OF FIGURES	xiv
LIST OF TABLES	xvi
LIST OF ABBREVIATIONS	xvii

CHAPTER 1 INTRODUCTION

1.1	Statement of Problem	3
1.2	Research Aim	4
1.3	Research Questions	5
1.4	Research Objectives	6
1.5	Theoretical Considerations	7
1.6	Methodological Considerations	9
1.7	Thesis Outline	11

CHAPTER 2 LITERATURE REVIEW

2.1	Techn	ological Regimes and Industry Patterns of Innovations	12
	2.1.1	Technological Regime and its Relevant Dimensions	12
		2.1.1.1 Technological Interrelatedness	13
		2.1.1.2 Cumulativeness	14
		2.1.1.3 Path-dependency	14
		2.1.1.4 Degrees of Economies of Scale	15
		2.1.1.5 Technological Opportunities	16
		2.1.1.6 Technological Appropriability	16
	2.1.2	Organizational Boundaries	16
		2.1.2.1 Vertical Boundaries (Vertical Integration or	17
		Disintegration)	
		2.1.2.2 Virtual Vertical Integration	17
		2.1.2.3 External Linkages	18
	2.1.3	Industry's Patterns of Innovations	19
2.2	Techn	ological Studies on Latecomers' Catch-Up	21
	2.2.1	Latecomer Catch-Up Strategies	21
	2.2.2	Global Value Chains	24
	2.2.3	Latecomer Resource Acquisitions in Open Innovation Context	25
		2.2.3.1 Open Innovation	26
		2.2.3.2 Business Model and the Creation and Capture of Value	27
		2.2.3.3 Resource Acquisition to Complement Internal	29
		2.2.3.4 Resource-Based View in Open Innovation Context	30

2.3	Organizational Studies		31
	2.3.1	Path Dependence	32
	2.3.2	Absorptive Capacity	33
	2.3.3	The Sydow et al. Model	34
	2.3.4	Vision in Path Breaking and Path Creation	37
	2.3.5	Mutual Reinforcement, Coevolutionary Lock-In and Escaping	38
		from Path Dependence	
2.4	Summ	hary	39

CHAPTER 3 TECHNOLOGICAL REGIMES, ORGANIZATIONAL BOUNDARIES, AND INDUSTRY'S INNOVATION PATTERNS

3.1	Introduction			
3.2	Analy	Analytical Framework		
3.3	Resea	lesearch Method		
3.4	Findir	ngs	49	
	3.4.1	Phase I: Technological Regime and Driving Forces in Choice of Organizational Boundaries	49	
		3.4.1.1 Technological Interrelatedness and Interdependency	49	
		3.4.1.2 Technological Cumulativeness, Path-Dependency and Impact of Technological Discontinuities	49	
		3.4.1.3 Economies of Scale and Resulting Capability Gap Among Manufacturers	50	
		3.4.1.4 Technological Opportunities and Resulting Technological Capabilities	51	
		3.4.1.5 Technological Appropriability and Resulting Technological Capabilities	51	
		3.4.1.6 Organizational Choices of Vertical Boundaries and Industry's Patterns of Innovations	53	
	3.4.2	Phase I: Feedback on Industry's Technological Regime	53	
	3.4.3	Phase II: Technological Regime and Driving Forces in Choice of Organizational Boundaries	55	
		3.4.3.1 Technological Interrelatedness and Interdependency	56	
		3.4.3.2 Cumulativeness, Path-Dependency and Impact of Technological Discontinuities	58	
		3.4.3.3 Economies of Scale and Resulting Gap of Manufacturing Capabilities	59	
		3.4.3.4 Technological Opportunities and Resulting Technological Capabilities	62	
		3.4.3.5 Technological Appropriability and Resulting Technological Capabilities	64	
		3.4.3.6 Organizational Choices of Vertical Boundaries and Industry's Innovation Patterns	65	
	3.4.4	Phase II: Feedback on Industry's Technological Regime	67	
3.5 3.6	Discu Sumn	ssion nary	70 76	

CHAPTER 4 RESOURCE ACQUISITION STRATEGIES AND CATCHING UP IN DIFFERENT VALUE SYSTEMS

4.1	Introd	uction	77
4.2	Analy	tical Framework	77
4.3	Resea	rch Method	82
4.4	Resou	rce Acquisition Strategies of Taiwanese and Malaysian	85
	Latecomer Firms		
	4.4.1	Phase I: Vertical Disintegration	86
		4.4.1.1 Taiwanese Latecomers	86
		4.4.1.2 Malaysian Latecomers	88
		4.4.1.3 Changing Value Systems	91
	4.4.2	Phase II: Towards Virtual Vertical Integration	97
		4.4.2.1 Taiwanese Latecomers	97
		4.4.2.2 Limited Vertical Upgrading by Malaysian Latecomers	105
		4.4.2.3 Changing Value Systems	110
4.5	Discu	ssion	125
	4.5.1	Business Models and Resource Acquisition Strategies	126
	4.5.2	Catching Up in Changing Value Systems	127
4.6	Summ	ary	129

CHAPTER 5 ESCAPING FROM ORGANIZATIONAL PATH DEPENDENCE BY ENDOGENOUS COEVOLUTIONARY LOCK-IN WITH INDUSTRY

Introd	uction	130
Analy	tical Framework	130
Resea	rch Method	134
Organ	izational Path Dependence and Coevolutionary Lock-In	138
5.4.1	TSMC Epoch I: Catch-Up and Keep-Up	139
	5.4.1.1 Stage I: Path Creation (1987-1994)	139
	5.4.1.2 Stage II: Path Shaping (1995-1998)	141
	5.4.1.3 Stage III: Coevolutionary lock-in (1998-1999)	143
5.4.2	TSMC Epoch II: Forging Ahead	145
	5.4.2.1 Stage I: Generating Momentum (2000-2005)	145
	5.4.2.2 Stage II: Path Shaping (2006-2010)	147
	5.4.2.3 Stage III: Coevolutionary Lock-In (2011-mid 2013)	150
Discu	ssion	154
Summ	nary	159
	Introd Analy Resea Organ 5.4.1 5.4.2 Discut Summ	Introduction Analytical Framework Research Method Organizational Path Dependence and Coevolutionary Lock-In 5.4.1 TSMC Epoch I: Catch-Up and Keep-Up 5.4.1.1 Stage I: Path Creation (1987-1994) 5.4.1.2 Stage II: Path Shaping (1995-1998) 5.4.1.3 Stage III: Coevolutionary lock-in (1998-1999) 5.4.2 TSMC Epoch II: Forging Ahead 5.4.2.1 Stage I: Generating Momentum (2000-2005) 5.4.2.2 Stage II: Path Shaping (2006-2010) 5.4.2.3 Stage III: Coevolutionary Lock-In (2011-mid 2013) Discussion Summary

CHAPTER 6 – CONCLUSIONS AND IMPLICATIONS

6.1	Introduction		161
6.2	Synth	esis of Research	161
	6.2.1	Technological Transitions	162
	6.2.2	Latecomer Resource Acquisitions	163
	6.2.3	Organizational Capability Building	165
	6.2.4	Linkages between the Three Analyses	166
6.3	Theor	retical Implications	169
	6.3.1	Technological Transitions	170
	6.3.2	Latecomer Resource Acquisitions	171
	6.3.3	Organizational Capability Building	172
6.4	Mana	gerial Implications	174
	6.4.1	Technological Transitions	174
	6.4.2	Latecomer Resource Acquisitions	175
	6.4.3	Organizational Capability Building	175
6.5	Policy	y Implications	175
	6.5.1	Technological Transitions	176
	6.5.2	Latecomer Resource Acquisitions	177
	6.5.3	Organizational Capability Building	178
6.6	Limita	ations and Future Direction of Research	178
Refe	rences		182

List of Publications and Papers Presented	197
APPENDIX A: Technology Operations of IC Assembly and Test Firms	199

LIST OF FIGURES

CHAPTER 1 INTRODUCTION

Figure 1.1: Theoretical Framework	9
CHAPTER 2 LITERATURE REVIEW Figure 2.1: Organizational Path Dependence Model	36
CHAPTER 3 TECHNOLOGICAL REGIMES, ORGANIZATIONAL BOUNDARIES, AND INDUSTRY'S INNOVATION PATTERNS	
Figure 3.1: Changing Technological Regimes through Endogenous Transitions	44
Figure 3.2: IC Design Capabilities and IC Production Capabilities.	52
Figure 3.3: Design Complexity and Productivity (normalized to 2001 level)	56
Figure 3.4: Total Development Costs at Different Process Nodes	57
Figure 3.5: Breakdown of Total Development Costs at Different Process Nodes	58
Figure 3.6: Process Nodes of Foundry versus Process Nodes of ITRS (IDMs)	63
Figure 3.7: Process Development Cost by Technology Nodes	64
Figure 3.8: The Transformation of IC Designing, Phase I and Phase II	65
Figure 3.9: Number of IDMs in the IC industry at miniaturized process nodes	67

CHAPTER 4 RESOURCE ACQUISITION STRATEGIES AND CATCHING UP IN DIFFERENT VALUE SYSTEMS

Figure 4.1: Changes in Industrial Structure and Value System, IC Industry	80
Figure 4.2: Latecomer Resource Acquisitions to Catch Up in Changing	81
Value Systems	
Figure 4.3: Collective Engine that Drives the IC Industry	92
Figure 4.4: Process Development Cost Comparison	93
Figure 4.5: R&D Expenditure by Leading Pure-Play Foundries	96
Figure 4.6: Number of US Patents Granted to Leading Pure-Play Foundries	96
Figure 4.7: Segmentation of Foundry Sector	98
Figure 4.8: Virtual Vertical Integration by Advanced Pure-Play Foundries	100
Figure 4.9: Design and Pre-Production Costs	101
Figure 4.10: Costs of Photo-Masking and Testing (%)	101
Figure 4.11: Share of ASE Capital and R&D Expenditure among World's	103
Top-Four OSATs, 2005-2010 (%)	
Figure 4.12: Vertical Upgrading of Back-End Manufacturing Firms	108
Figure 4.13: Integrated Semiconductor R&D Ecosystem in IMEC	112
Figure 4.14: Critical Exposure System Cost Trend	113
Figure 4.15: Segmentation of Foundry Sector	116
Figure 4.16: Typical Pure-Play Foundry Revenue per Logic Wafer in 2013	118

Figure 4.17: Worldwide 300mm Wafer Capacity of Industry Leaders, 2013	119
(%)	
Figure 4.18: Worldwide Capital Expenditure, IC Industry, 2005 (%)	119
Figure 4.19: Foundry Market Share Breakdown by Revenue, 2011 (%)	120
Figure 4.20: Top 10 OSAT Firms, 2013 (%)	120
Figure 4.21: Process Technology Development by Leading Foundries	121
Figure 4.22: Final Market Value of Semiconductor Sales, TSMC and Intel	122

CHAPTER 5 ESCAPING FROM ORGANIZATIONAL PATH DEPENDENCE BY ENDOGENOUS COEVOLUTIONARY LOCK-IN WITH INDUSTRY

Figure 5.1: Escaping from Organizational Path Dependence through	133
Coevolutionary Lock-In with Industry	
Figure 5.2: Cost of Setting Up a Wafer Fabrication Plant, 1983-2009	147
Figure 5.3: R&D Expenditure of the Largest Pure-Play Foundries, 2000-	149
2010	
Figure 5.4: Capital Expenditure by the Largest Pure-Play Foundries, 2000	150
-2010	
Figure 5.5: Firm-level Generative Process of Endogenous Forces and the	158
Formation of Coevolutionary Lock-In with Industry	

LIST OF TABLES

CHAPTER 3 TECHNOLOGICAL REGIMES, ORGANIZATIONAL BOUNDARIES, AND INDUSTRY'S INNOVATION PATTERNS

Table 3.1: List of Interviews	47
Table 3.2: World's Top 25 Fabless Firms, 2010-2011.	62
Table 3.3: Phase I – Transition to Mark I	73
Table 3.4: Feedback Loop from Firms and the Endogenous Transition	74
Process	
Table 3.5: Phase II – Transition from Mark I to Mark II	75

CHAPTER 4 RESOURCE ACQUISITION STRATEGIES AND CATCHING UP IN DIFFERENT VALUE SYSTEMS

Table 4.1: List of Interviews	84
Table 4.2: Phase I – Catching Up in a Vertically Disintegrated Industry	90
Table 4.3: Common Platform Partners	95
Table 4.4: Phase II – Catching up in the Context of Virtual Vertical	109
Integration	
Table 4.5: ASML's Co-Investment Program for EUV and 450mm	114
Technology Migration	
Table 4.6: CNSE's Albany NanoTech Complex	117
Table 4.7: Semiconductor Capital Expenditure by Top 25 Firms, 2012-	123
2013	

CHAPTER 5 ESCAPING FROM ORGANIZATIONAL PATH DEPENDENCE BY ENDOGENOUS COEVOLUTIONARY LOCK-IN WITH INDUSTRY

Table 5.1: List of Interviews	135
Table 5.2: TSMC's Organizational Path, Inter-Path Dependence and	153
Coevolutionary Lock-In with the Industry	
Table 5.3: TSMC's Generative Process of Endogenous Forces	156
Table 5.4: The Formation Process of TSMC's Inter-Path Dependence and	157
Coevolutionary Lock-In with the Industry	

LIST OF ABBREVIATIONS

AMD	Advanced Micro Devices
ASE	Advanced Semiconductor Engineering
CEO	Chief Executive Officer
CoWoS	Chip-on-Wafer-on-Substrate
CMOS	Complementary metal-oxide-semiconductor
CNSE	College for Nanoscale and Science Engineering
CREST	Collaborative Research in Engineering, Science and Technology
	Center
EDA	Electronic Design Automation
EUV	Extreme Ultraviolet
ERSO	Electronics Research and Service Organization
GVC	Global Value Chain
IBM	International Business Machines
IC	Integrated Circuit
IDM	Integrated Device Manufacturer
IEK	Industrial Economics and Knowledge Center
IP	Intellectual Property
ITIS	Industrial Technology Information Services
ITRI	Industrial Technology Research Institute
ITRS	International Technology Roadman for Semiconductors
JV	Joint Venture
LSI	Large Scale Integration
MIDA	Malaysian Investment Development Authority
MIMOS	Malaysian Institute of Microelectronic Systems
mm	Millimetre
MNC	Multinational Corporation
NEAC	National Economic Advisory Council
NCIA	Northern Corridor Implementation Authority
NCTU	National Chiao Tung University
nm	Nanometre
NMOS	N-type metal-oxide-semiconductor
OBM	Original Brand Manufacturer
OEM	Original Fauinment Manufacturer
ODM	Original Design Manufacturer
OSAT	Outsourced Semiconductor Assembly and Test
PMOS	P-type metal-oxide-semiconductor
RCA	Radio Corporation of America
R&D	Research and Development
SFRI	Samsung Economic Research Institute
SMIC	Semiconductor Manufacturing International Corporation
Sof	System-on-a-chin
STPI	Science and Technology Policy Research and Information Center
TAC	Technical Advisory Committee
TSMC	Taiwan Semiconductor Manufacturing Company
LIDEM	Unified Design Manufacturing
UMC	United Microelectronics Corporation
	United Nations Industrial Development Organization
	United States Detent and Trademark Office
05110	United States I atent and Trademark United