
COOPERATIVE MULTI AGENTS FOR INTELLIGENT

INTRUSION DETECTION AND PREVENTION SYSTEMS

SHAHABODDIN SHAMSHIRBAND

THESIS SUBMITTED IN FULFILMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE & INFORMATION

TECHNOLOGY UNIVERSITY OF MALAYA

KUALA LUMPUR

2014

UNIVERSITI MALAYA

II

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Shahaboddin Shamshirband Passport No: H95621769

Registration/Matric No: WHA110016

Name of Degree: Doctor of Philosophy

Title of Thesis: COOPERATIVE MULTI AGENTS FOR INTELLIGENT INTRUSION

DETECTION AND PREVENTION SYSTEMS

Field of Study: Intrusion Detection System

I do solemnly and sincerely declare that:

I am the sole author/writer of this Work;

This Work is original;

Any use of any work in which copyright exists was done by way of fair dealing and for permitted

purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has

been disclosed expressly and sufficiently and the title of the Work and its authorship have been

acknowledged in this Work;

I do not have any actual knowledge nor do I ought reasonably to know that the making of this work

constitutes an infringement of any copyright work;

I hereby assign all and every rights in the copyright to this Work to the University of Malaya

(“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or

use in any form or by any means whatsoever is prohibited without the written consent of UM having

been first had and obtained;

I am fully aware that if in the course of making this Work I have infringed any copyright whether

intentionally or otherwise, I may be subject to legal action or any other action as may be determined

by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name: Miss Laiha Binti Mat Kiah

Designation: Associate Professor

Witness’s Signature Date

Name: Nor Badrul Anuar Bin Jumaat

Designation: Senior Lecturer

III

Abstract

Owing to the distributed nature of modern attacks (e.g. denial-of-service), it is

extremely challenging to detect such malicious behaviour using traditional intrusion

detection systems. In this thesis, we investigate the possibility of adapting an intelligent

system to an Intrusion Detection System (IDS) by proposing a cooperative and

intelligent detection and prevention system using machine learning approaches, and aim

to facilitate the detection and prevention process in a distributed environment. Firstly,

we review the state of the art of intelligent intrusion detection and prevention system

(IIDPS), and highlight the security requirement of cooperative based-IIDPS. Adaptive

optimization techniques such as fuzzy logic controller (FLC), reinforcement learning

are discussed in this thesis in order to adopt Q-leaning algorithm to FLCs. We

investigate the detection capability based on the fuzzy Q-learning (FQL) algorithm and

evaluate it using distribute denial of service attacks (DDoS). Later, we investigate the

game based-FQL algorithm by combining the game theoretic approach and the fuzzy Q-

learning algorithm. This thesis evaluates the proposed solution using flooding attacks in

wireless sensor networks (i.e. a type of DDoS attack). In order to measure the

evaluation, several performance metrics, such as frequency of convergence of the

detection scheme, accuracy of detection, false alarm rate, defence rate and energy

consumption, are addressed as part of detection and prevention scheme. We perform the

aforementioned investigations using several simulation experiments. The quantitative

results acquired from the experiments are benchmarked with corresponding results

acquired from the cooperative attack detection scheme. Through the result comparisons,

we demonstrate the significance of cooperative detection mechanism, for detecting

distributed denial of service attacks in a timely and energy-efficient manner, accuracy of

detection and defence, as well as false alarm rate.

IV

Abstrak

Disebabkan oleh serangan moden yang bersifat teragih (cth: nafi khidmat), ianya amat

mencabar untuk mengesan tingkah laku hasad dengan menggunakan sistem pengesanan

pencerobohan tradisional. Dalam tesis ini, kami menyiasat kebarangkalian untuk

menyesuaikan satu sistem pintar pada satu Sistem Pengesanan Pencerobohan (IDS)

dengan mencadangkan satu Sistem Pengesanan dan Pencengahan bersifat kerjasama

serta pintar menggunakan kaedah pembelajaran mesin, dan bertujuan untuk

memudahkan proses pengesanan dan pencegahan dalam persekitaran yang teragih.

Pertama, kami mengkaji perkembangan terkini dalam sistem pengesan dan pencegahan

pencerobohan pintar (IIDPS), dan menggariskan keperluan keselamatan bagi IIDPS

bersifat kerjasasama. Teknik penyesuaian optimum seperti fuzzy logic controller (FLC)

dan reinforcement learning dibincangkan dalam tesis ini bagi tujuan penyesuaian

algoritma Q-Learning pada FLCs. Kami menyiasat keupayaan pengesanan berasaskan

algoritma fuzzy Q-learning (FQL) dan menilainya dengan mengunakan serangan nafi

khidmat teragih (DDoS). Seterusnya, kami menyiast algoritma game based-FQL dengan

menggabungkan kaedah game theory dan algoritma fuzzy Q-learning. Tesis ini menilai

cadangan penyelesaian dengan menggunakan serangan flooding (i.e. satu jenis serangan

nafi khidmat) dalam rangkaian sensor tanpa wayar. Untuk tujuan mengukur penilaian,

beberapa metrik prestasi, seperti kekerapan penumpuan skim pengesanan, ketepatan

pengesanan, kadar penggera palsu, kadar pertahanan dan penggunaan tenaga, ditangani

sebahagian daripada skim pengesanan dan pencegahan. Kami melaksanakan menilaian

yang dinyatakan dengan mengunakan beberapa ujikaji simulasi. Segala keputusan

kuantitatif hasil dari ujikaji-ujikasi ditanda-araskan dengan hasil keputusan yang

diperolehi daripada skim kerjasama pengesanan serangan yang lain. Melalui

perbandingan hasil keputusan, kami menunjukkan kepentingan mekanisme pengesanan

kerjasama, dalam mengesan serangan nafi khidmat teragih di dalam waktu yang tepat

V

dan penggunaan tenaga yang berkesan, ketepatan dalam mengesan dan pertahanan, dan

juga kadar nilai penggera palsu.

VI

Acknowledgement

Allah is very kind, merciful and sympathetic. His benevolence and blessings

enable me to accomplish this thesis.

Firstly, I would like to express my profound gratitude to my supervisor, Prof. Dr.

Miss Laiha Binti Mat Kiah, Dr. Nor Badrul Anuar Bin Jumaat, for giving me the

opportunity to work with them, for encouraging me to be self-motivated and ambitious

about my career, for their support in crucial moments and for assisting me in writing

papers and reviews. I especially appreciate their hard-working attitude.

I must also acknowledge the financial support given by the financial support of

the Bright Sparks Program at University of Malaya, and Islamic Azad University,

Chalous Branch, Mazandaran, Iran, which have been equally important to make

possible this thesis and allowed me to present results and exchange knowledge and

skills in conferences, journals, workshops and research stays abroad.

I am grateful to the members of the Faculty of Computer Science and

Information Technology in University of Malaya for their tremendous guidance and

continuous motivational and technical support. Finally, I would like to strongly thank

my wife and parents for the support they have provided me through my entire life.

VII

Contents

ABSTRACT .. III

ABSTRAK ... IV

ACKNOWLEDGEMENT .. VI

CONTENTS .. VII

LIST OF FIGURES ... IX

LIST OF TABLES ... X

ACRONYMS AND ABBREVIATIONS .. XI

CHAPTER 1 : INTRODUCTION ... 1

1.1 OVERVIEW ... 1

1.2 INTRUSION DETECTION SYSTEMS ... 1

1.3 RESEARCH MOTIVATION .. 3

1.4 RESEARCH METHODOLOGY .. 4

1.5 THESIS OUTLINES .. 7

CHAPTER 2 : INTELLIGENT INTRUSION DETECTION AND PREVENTION SYSTEM 9

2.1 OVERVIEW ... 9

2.1.1 DATA SET .. 16

2.2 STATE-OF-THE-ART TAI, CI AND MCI IN IDPS .. 18

2.2.1 TRADITIONAL ARTIFICIAL INTELLIGENCE (TAI) ... 18

2.2.2 COMPUTATIONAL INTELLIGENCE (CI) .. 21

2.2.3 MULTI AGENT-BASED COMPUTATIONAL INTELLIGENCE (MCI) ... 24

2.3 DETECTION RATES PERFORMANCE METHOD AND CRITERIA FOR

EVALUATION .. 28

2.3.1 TRADITIONAL ARTIFICIAL INTELLIGENCE .. 35

2.3.2 COMPUTATIONAL INTELLIGENCE ... 38

2.3.3 MULTI AGENT SYSTEM-BASED COMPUTATIONAL INTELLIGENCE ... 41

2.3.4 COMPARATIVE DISCUSSION OF DETECTION RATE EVALUATION .. 43

2.4 INTELLIGENT INTRUSION DETECTION AND PREVENTION SYSTEM (IIDPS) 47

2.5 DISCUSSION ... 51

2.6 CHAPTER SUMMARY .. 54

CHAPTER 3 : ADAPTIVE OPTIMIZATION TECHNIQUES ... 56

3.1 OVERVIEW ... 56

3.2 FUZZY LOGIC .. 57

3.2.1 FUZZY LOGIC CONTROLLER DESIGN .. 60

3.3 REINFORCEMENT LEARNING.. 73

3.4 Q-LEARNING ADAPTATION TO FLCS .. 82

3.5 ADAPTATION OF MULTI-AGENT BASED FUZZY REINFORCEMENT LEARNING ... 86

3.6 GAME THEORY ... 88

3.7 COLLABORATIVE-IIDPS ARCHITECTURE ... 97

3.8 DISCUSSION ... 102

VIII

3.9 CHAPTER SUMMARY .. 103

CHAPTER 4 : GAME THEORETIC APPROACH USING FUZZY Q-LEARNING 105

4.1 PROPOSED MODEL .. 106

4.1.1 WSN MODEL .. 106

4.1.2 METHODOLOGIES AND TECHNIQUES USED ... 108

4.1.3 POSSIBLE ATTACK CATEGORIES .. 110

4.2 THE ARCHITECTURE OF COOPERATIVE GAME-BASED FQL IDPS 111

4.2.1 GAME DESIGN .. 112

4.2.2 FUZZY Q-LEARNING ALGORITHM ... 121

4.3 CHAPTER SUMMARY .. 124

CHAPTER 5 : FRAMEWORK EVALUATION ... 125

5.1 SIMULATION AND ANALYSIS ... 126

5.1.1 GENERAL TOOLS ... 126

5.1.2 DESIGN ASSUMPTIONS ... 126

5.1.3 SIMULATION SETUP .. 127

5.1.4 GENERATING AND ANALYSING THE FLOOD ATTACK STRATEGY .. 129

5.1.5 ANALYSIS OF THE GAME-BASED FQL IDPS IN TERMS OF DETECTION ACCURACY 130

5.1.6 ANALYSIS OF GAME-BASED FQL IDPS IN TERMS OF DEFENSE RATE ... 132

5.1.7 ANALYSIS OF GAME-BASED FQL IDPS IN TERMS OF NUMBER OF LIVE NODES 133

5.1.8 ANALYSIS OF GAME-BASED FQL IDPS IN TERMS OF ENERGY CONSUMPTION OVER TIME 135

5.1.9 ANALYSIS OF THE ENERGY CONSUMED BY DIFFERENT DEPLOYED NODES IN THE GAME-FQL 136

5.1.10 ANALYSIS OF THE COMPUTATIONAL TIME IN THE GAME-FQL .. 137

5.2 CHAPTER SUMMARY .. 138

CHAPTER 6 : CONCLUSION .. 139

6.1 ACHIEVEMENTS OF THE STUDY ... 139

6.2 LIMITATIONS OF THE STUDY .. 144

6.3 FUTURE WORK ... 145

IX

List of Figures

Figure 1.1: Research Methodologies .. 5
Figure 2.1: Chronological order of [TAI], [CI] and [MCI] based IIDPS ... 27
Figure 2.2: Year wise distribution of articles for the various types of classifier layouts 35
Figure 2.3: Comparison of TAI methods in terms of detection rate and false alarm rate........................... 38
Figure 2.4: Comparison of CI methods in terms of detection rate and false alarm rate 41
Figure 2.5: Comparison of Multi agent based CI methods in terms of detection rate and false alarm rate 43
Figure 2.6: General comparison of detection rate .. 46
Figure 2.7: General comparison of false alarm rate ... 47
Figure 2.8: Intelligent Intrusion Detection and Prevention architecture for networks 48
Figure 2.9: Tree plan classification of the anomaly-based IIDPS detection techniques 50
Figure 3.1: Block diagram of an FLC .. 61
Figure 3.2: The membership functions of linguistic variables for attack data source Tr 62
Figure 3.3: Example of fuzzification process ... 63
Figure 3.4: Membership functions of the input fuzzy sets as example... 70
Figure 3.5: Basic FLC operation example .. 71
Figure 3.6: The basic elements of an RL problem ... 75
Figure 3.7: Basic scheme of generalized policy iteration ... 81
Figure 3.8: Multiple-agents acting in the same environment ... 87
Figure 3.9: Combination of NIDPS and HIDPS in a distributed Smart Grid Network (CIDPS) 97
Figure 3.10: Enhanced Collaborative-IIDPS functionality architecture within a network 99
Figure 4.1:A distributed hierarchical system perspective of a WSN .. 107
Figure 4.2: Model of a Cooperative Game-based IDPS and an attacker .. 109
Figure 4.3: Game-based defense system architecture .. 112
Figure 4.4: Block diagram of the FQL optimization system ... 121
Figure 5.1: Simulated WSN environment .. 128
Figure 5.2: Effects of UDP attack intensity on packet size .. 130
Figure 5.3: Victim node’s energy level over time .. 130
Figure 5.4: Comparison of detection accuracy values .. 132
Figure 5.5: Game-based FQL in terms of accuracy of defense rate under attack trends 133
Figure 5.6: Number of live sensor nodes during simulation runtime (ms) ... 134
Figure 5.7: Total energy consumption versus number of sensor nodes under malicious attack 135
Figure 5.8:Total energy consumption versus number of sensors deployed in a network 136

X

List of Tables

Table 2.1: Total number of anomaly-based classifiers in Network based- IDPS 13
Table 2.2: Classification of the Datasets for NIDS and WIDS .. 17
Table 2.3: Possible status for an IIDPS reaction .. 28
Table 2.4: Evaluation metrics proposed by authors ... 29
Table 2.5: Classifications and comparisons of various intrusion detection approaches 31
Table 2.6: Classification of Traditional Artificial Intelligence-based IDPS .. 35
Table 2.7: Classification of computational intelligence in IDPS ... 39
Table 2.8: Classification of multi agent computational intelligence-based IDPS 41
Table 2.9: Panoramic comparison of evaluations on popular detection techniques. 44
Table 2.10: Vertical evaluation of technique categories .. 44
Table 2.11: Fundamentals of the anomaly-based IIDPS techniques .. 50
Table 2.12: Proposed Co-IIDPSs in terms of MCI methods classified according to our taxonomy 52
Table 2.13: The developed Co-IIDPSs (MCI) which met our proposed performance requirements 54
Table 3.1: Fuzzy rating for the occurrence of attack traffic ... 62
Table 3.2: Examples of 2-player, 2-action games. ... 90
Table 3.3: Examples of 2-player, 3-action games. ... 92
Table 4.1: Classification of Denial-of-Service attacks and defence at each protocol layer 110
Table 4.2: Game play between a sink node (IDS1) and an attacker ... 113
Table 4.3: Game play between a base station (IDS2) and an attacker ... 114
Table 4.4: The payoff matrix and utility functions ... 114
Table 4.5: Notations associated with the reward functions of a sink node and base station 117
Table 4.6: Utility function parameters ... 120
Table 4.7: Linguistic variables for fuzzy set input and output ... 123
Table 5.1: Wireless sensor network parameters in NS-2 .. 128
Table 5.2: Simulation results of the detection algorithm for DDoS attacks ... 131
Table 5.3 : Performance comparison of G-FQL in terms of consuming time .. 137

XI

Acronyms and Abbreviations

AA analyser agent

ACC ant colony clustering

ACO ant colony optimization

AI artificial intelligence

AIS artificial immune system

BDI beliefs–desires–intentions

BNF backus–Naurform

CBR case base reasoning

CI computational intelligence

CIDPS cloud-based intrusion detection and preventions system

CIDPS collaborative intrusion detection and prevention system

CIIDS computational intelligence intrusion detection systems

Co-IIDPS collaborative-based intelligent IDPS

DA decision agent

DC data collector

DR detection rate

EA executor agent

FAR false alarm rate

FCM fuzzy C-mean

FCS fuzzy classifier system

FN false negatives

FP false positives

FRB fuzzy rule base

FRL fuzzy reinforcement learning

FRLM fuzzy reinforcement learning management

GA genetic algorithm

GF genetic fuzzy

HIDPS host-based IDPS

HMM hidden Markov model

XII

HSN hybrid sensor network

IDE intrusion detection engine

IDRS intrusion detection and response system

IDS intrusion detection systems

IE inference engine

JCR journal citation reports

KM knowledge management

MAM multi-agent management

MANET mobile ad-hoc networks

MAS multi-agent system

MCI multi-agent-computational intelligence

MDP Marko decision process

MFF multi layered feed-forward

ML machine learning

MLP multi-layer perceptron

NF neuro-fuzzy

NIDES next-generation intrusion detection expert system

NIDPS network intrusion detection and prevention system

NSL-KDD network services location-KDD

PSO particle swarm optimization

RL reinforcement learning

SC soft computing

SGN smart grid networks

SI swarm intelligence

SOM self-organizing map

SVM support vector machine

TAI traditional artificial intelligence

TD temporal difference

TN true negatives

TP true positives

WIDPS wireless intrusion detection and prevention system

XIII

WSN wireless sensor network

GT game theory

1

Chapter 1 : INTRODUCTION

1.1 Overview

 The level of asset in Internet is positively correlated with network security. The

hardness of ever-changing threat environment seems far from surrounded (Anuar et al.,

2012). The recent statistics for the last three years show the battle against attacks.

According to Kaspersky Security Network (KSN) reported, in 2013 Kaspersky

Lab products neutralized 5188740554 cyber-attacks on user computers and mobile

devices. In terms of the mobile operating systems that are being targeted by malware,

Android is still the number one target, attracting a whopping 98.05% of known malware

(Kaspersky, 2013). In order to conduct all attacks over the Internet in 2013,

cybercriminals used 10,604,273 unique hosts, which is 60.5% more than in 2012.

In 2013, a report by Gartner (2013) reveals that a sophisticated class of

distributed denial of service (DDoS) attack sent an attack command to hundreds or even

thousands of mobile agents, which then launched flooding attacks to access multiple

websites.

A new report from Arbor’s World-Wide Infrastructure Report (2012) shows that

the size of distributed denial-of-service attacks have started to plateau, while

application-layer and multi-vector attacks continue to evolve.

1.2 Intrusion Detection Systems

The security analysts use different approaches to analyse the threats, such as

antivirus software, firewalls and Intrusion Detection Systems (IDSs). The use of an IDS

or related system, such as an Intrusion Prevention System, is one of the most popular

options in commercial due to their operation, openness and wide-acceptance as security

http://www.securityweek.com/ddos-attack-closer-you-think

2

devices (Anuar et al., 2013). An intrusion detection system (IDS) and intrusion response

system (IPS) operate to detect suspicious activities and respond to them.

There are hundreds of published works related to intrusion detection (Patcha et al.,

2007), which aim to improve the efficiency and reliability of detection, prevention and

response systems. Prevailing studies have so far focused on reducing alerts (Maggi et

al., 2009), detecting DDoS attacks (Mirkovic et al., 2004), prioritizing incidents,

eliminating and reducing false alarms (Steinberg et al., 2005), and increasing the self-

reliance level of incident responses (Anuar et al., 2013). Artificial intelligence (AI)

techniques attend to automate the intrusion detection and reduce human intervention.

Intrusion detection system in artificial intelligent is categorized into three type:

traditional artificial intelligence (TAI) and computational intelligence (CI) and multi

agent-based CI (MCI) techniques that operate as classifiers.

In TAI techniques, network traffic activity is captured by single classifiers (i.e.

fuzzy set, neural network, genetic algorithm and artificial immune system), thereafter, a

profile representing its desired behavior is coded and finally a behavior model is

created. Network events take place, the current profile is assigned and an anomaly score

is computed by comparing the two behaviors. The score normally indicates the degree

of irregularity for a specific event, such that the IDS raises a flag in the event an

anomaly occurs when the score surpasses a certain threshold. Computational

intelligence classifiers are meant to create an iterative process of observing patterns,

adjusting to the mathematical form, and making predictions (Alpadin, 2010). MCI

techniques function by applying the multi agent system to computational intelligence in

order to enhance the performance of detection and response. On the other hand,

cooperative multi agent system uses CI methods such as self organizing map (SOM),

support vector machine (SVM), genetic algorithm (GA), reinforcement learning (RL)

and game theory (GT) to determine temporal behavior and respond to any deviation.

3

The main objective of MCI consists of distributing multi agent system to each

cluster to provide a CI mechanism that makes individual and cooperative decisions

associated, for example, the use of this approach in Intrusion Detection Systems

(Wooldridge, 2009). MCI has been widely employed in the domain of network security

(W. Li et al., 2012) and cloud computing-based IDS (Doelitzscher et al., 2012). The

main issue is to improve the accuracy of attack detection, false alarm rates as well as

energy efficiency in the Intelligent Intrusion Detection and Prevention System (IIDPS),

upon multi agent based computational intelligent IDPS in terms of Co-IIDPS.

1.3 Research Motivation

There are several classical security methodologies which have focused on

particular types of attacks to prevent the attacks. An intelligent intrusion detection and

prevenstion can be a line of defense. It is impossible, or even infeasible, to guarantee

perfect prevention. Not all types of attacks are known and new ones appear constantly.

As a result, attackers can always find security holes to exploit. For confident

environments, it makes sense to establish a line of shield: An Intelligent Intrusion

Detection and Prevention System (IIDPS) able to detect attacks and warn the sensors

and the operator about it.

Most IIDPSs have focused on local detection in network, i.e., allowing nodes to

locally detect specific attacks which are performed in their neighborhood

(Ponomarchuk et al., 2010). Da Silva et al. (2005) propose a similar IDS systems, where

they are able to monitor nodes in a network and responsible to observe other neighbors.

They listen to messages in their radio range and store in a buffer specific message fields

that might be useful to an IDS system running within a sensor node. Wang et al. (2006)

focus on the detection of selfish nodes to preserve their resources at the expense of

others. Loo et al. (2006) applied the IDSs for ad hoc networks. In all the above work,

4

there is no collaboration among the sensor nodes. The only collaborative approaches we

are aware of focus on the local detection of intrusion detection based on traditional

artificial intelligence (Patel et al., 2013).

More prevalent work has been done in intrusion detection for ad-hoc networks

(Huang et al., 2013). In such networks, distributed and cooperative IDS architectures are

also preferable. Detailed distributed designs, actual detection techniques and their

performance have been studied in more depth. We are unaware of any work that has

investigated the issue of distributed denial of service (DDoS) attack detection and

response in a general collaborative way for networks. Thus, the lack of cooperative and

disributed mechansim which utilizes computational intelligence have been our

motivation for creating a game based cooperative IDPS to overcome the problem of

accuracy of detection, response and false alarm rate.

1.4 Research Methodology

This section outlines the research methodology adopted in this thesis. The phases

of the research methods are presented. The details of the methodology are explained in

this section as shown in Figure 1.1. The literature review and problem statement are

discussed in Phase 1. In Phase 2, the research objective is argued. The system designs

are proposed in Phase 3. The evaluation and analysis are discussed in Phase 4.

5

Literature Review

Problem Extraction
Phase-I

Research Objectives

Prototype Implementation

Results Gathering and Analysis

Findings Comparison

Phase-II

Phase-III

Phase-IV

Figure 1.1: Research Methodologies

Phase I: Literature Review and Problem Extraction

The focus of this thesis is to design a cooperative intelligent intrusion detection and

prevention security schemes. Therefore, the outline is based upon the following related

works:

1) Initially, the existing intrusion detection schemes designed for network

environment are categorized as (a) data security schemes or (b) application

security schemes.

2) Afterwards, the existing data security schemes design for IDPSs are sub-

categorized as (a) traditional intelligence (b) computational intelligence and (c)

multi agent based computational intelligence IDPS schemes.

3) Thereafter, the selected real data schemes are critically analysed to identify the

computation intensive operations and security issues that need to be addressed.

6

Phase II: Research Objectives

The aim of this thesis is to propose a novel cooperative multi agent intelligent

intrusion detection and prevention scheme to address the intrusions. In order to achieve

this aim, several issues need to be thoroughly understood, analysed and evaluated, as

follows:

(a) To comprehensively investigate the domain of cooperative multi agent

intelligent intrusion detection and response, and identify the key issues with

respect to the effective defense against intrusions.

(b) To design and implement a novel cooperative IIDPS framework to facilitate a

practical evaluation of intrusion detection.

(c) To evaluate the performance of a proposed framework in terms of accuracy of

detection and false alarm rate by validating it using evaluation studies at

different stages in order to demonstrate the progress of results.

Phase III: Prototype Implementation

1) The cooperative IDPS is developed in a network simulator.

2) To generate an attack with a random function, which selects subject nodes from

each cluster to attack, the selected nodes adjust their functions to send flooding

packets to the cluster head.

3) The game based IDS uses Low Energy Adaptive Clustering Hierarchy (LEACH)

protocol in the simulation, as it closely reflects WSN in practice and is also

capable of dealing with energy consumption concerns in WSNs. The simulations

were run for 1000s with LEACH as the routing protocol, the initial access point

energy was 100 joules, the effective transmission range of the wireless radio for

the access point was 100m, the sink node transmission range was 100m, and the

common node transmission range was 50m.

7

Phase IV: Results and Comparison

We perform simulations to analyse the proposed scheme, for performance analysis

using algorithmic and network-level parameters. The impact of security schemes on

distributed denial of service attack are evaluated on the basis of accuracy of detection,

accuracy of response, false alarm rate, time complexity, number of node alive, and

energy consumption on network device while performing intrusion detection, intrusion

response, and anomaly clustering operations.

1.5 Thesis outlines

The objectives presented above relate to the general sequence of the material presented

in this thesis, the structure of which is discussed in five chapters.

Chapter 2 introduces a comprehensive taxonomy along with state-of-the-art

intelligent intrusion detection and prevention systems (IIDPS), and specifically reviews

their response capabilities in networks. The IIDPS were assessed and categorized into

three trends: traditional artificial intelligence, computational intelligence and multi-

agent-based computational.

Chapter 3 provides the details of the theoretical basis and the mathematical

techniques appropriate for adaptive optimization techniques. We introduce the basic

concepts and design of fuzzy logic controller, reinforcement learning and game theory.

The chapter proposes an effective cooperative multi agent architecture based on

computational intelligence methods for detection and prevention of attacks. This chapter

highlights the advantages of such studies and discusses how they can be combined to

produce a more effective means of detecting of intrusions.

8

Chapter 4 presents the main contribution of this thesis: a novel collaborative

game based IDPS. In presenting the framework, this chapter begins by presenting the

core foundation behind the framework as well as its operational characteristics. This

chapter comprises the study by conducting multiple experiments to validate and

evaluate the proposed game based fuzzy Q-learning IDPS framework. In addition,

example scenarios are provided to demonstrate how the proposed framework operates,

and how the network simulator interfaces can be used to assist security analysts in

making a decision.

Chapter 5 demonstrates the progress of the results and the evaluation study

presents the experimental results in four stages. The first stage aims to validate the

Game based fuzzy Q-learning IDPS in terms of accuracy of detection by comparing its

results to the existing machine learning methods such as fuzzy logic controller, Q-

learning, and fuzzy Q-learning approaches. Based upon the initial results of the first

experiment, the second stage aims to enhance detection rate by using collaborative

game theory- IDPS in terms of Game based fuzzy Q-learning IDPS. The third stage

investigates the effectiveness of the proposed Game FQL-IDPS in achieving two

different goals: first it investigates the influence of proposed method in terms of energy

consumption over time; and secondly it investigates the effectiveness of proposed

method in terms of energy consumption for different deployed nodes. The fourth stage

investigates the performance of the proposed framework by measuring the time

complexity during detection process. This chapter also gives an in-depth discussion of

the implications of applying the proposed framework in practice, underlining the

advantages as well as the limitations.

Chapter 6 presents the main conclusions drawn from this thesis, highlights the

principle achievements and limitations of the work, and makes suggestions for potential

of further enhancements.

9

Chapter 2 : INTELLIGENT INTRUSION DETECTION AND PREVENTION

SYSTEM

This chapter studies the intelligent intrusion detection and prevention system

(IIDPS) schemes in networks and cloud computing. More specially, the categorization

of IDPS schemes in terms of traditional artificial intelligence (TAI), computational

intelligence (CI) and multi-agent CI (single cloud, collaborative cloud) are discussed.

We highlight the benefits of multi-agent system based CI in terms of collaborative

based IIDPS (Co-IIDPS) to attain high accuracy of attacks. The research areas and

directions in developing and deploying CI based Co-IIDPSs is mentioned.

2.1 Overview

Unlike prevalent intrusion detection and prevention system, intelligent intrusion

detection and prevention system not only aim to foster the supportive effectiveness of

detection, for instance, with increased accuracy of detection and decreased false alarm

rate, but also have cooperative intelligent approaches. An intelligent actuator help

enhance the cooperative effort of IDPS to communicate while detecting anomalies in

areas including health, warfare and environment monitoring (Akyildiz et al., 2002). For

example, health monitoring models adopt IDS as extraordinary parts to continuously

capture quantitative data from an enormous number of wearable body sensor networks

for longer periods (Hanson et al., 2009). Hybrid Sensor Network (HSN) architecture

employs MicaZ sensors for the battlefield, which are skilled in tracking live vocal and

magnetic weapon signals generated by enemy forces (Bokareva et al., 2006). The most

recent publication by Kapitanova et al. (2012) demonstrates how robust fuzzy logic is in

event detection by monitoring smoke via temperature sensors attached throughout the

home environment; fire ignition may thus be detected, making the relevance of sensor

applications apparent.

10

The existing application designs for wireless networks afford greater flexibility in

establishing communications and increase system automation, though lack in security

and privacy (N. Li et al., 2009). The core weaknesses with these sensor nodes lie in the

limited-resource devices, i.e. power and processing units. For this reason, vulnerability

to various security threats is notably high. Meanwhile, an adversary possesses passive

and active abilities. It may thus implicate sensor nodes through access to secret

information such as keys stored in the compromised node in addition to the potential to

eavesdrop and alter (e.g. replay, forge, modify and delete) exposed nodes behaviour

(Schaffer et al., 2012).

In mitigating security complications, traditional security tactics like firewall and

cryptography are alternative options to prevent external intruders. Nevertheless, they are

impractical in completely averting network resources from increasingly sophisticated

internal attacks (Chen et al., 2002). A different security approach incorporates Intrusion

Detection and Prevention Systems (IDPSs) to detect and impede intrusion by impostors.

An Intrusion Detection System or other similar ones (e.g. Intrusion Prevention System,

Intrusion Response System) monitor network traffic to analyse and detect attacks

(Anuar et al., 2012). Three detection methods employed are: misuse, anomaly, and the

hybrid model--a blend of the first two Fuchsberger et al. (2005). A misuse-based

system identifies known patterns by matching observed data using simple rules. For

instance, Snort-Wireless runs its default rule settings to process all malicious events

observed by the sensor and adopt intrusion detection techniques Lockhart et al. (2005).

Anomaly-based detection refers to the discovery of anomalous patterns in

measurement data that do not conform to the expected behaviour (Curiac et al., 2012).

According to Dutkevych et al. (2007), an anomaly-based solution averts intrusion in real

time systems by analysing protocol-based attacks and multidimensional traffic. The

hybrid detection approach boosts the capabilities of a current Intrusion Detection and

11

Prevention System (IDPS) by joining the two intelligent methods of misuse and

anomaly Wang et al. (2011). Aydin et al. (2009) designed a hybrid IDS by incorporating

the Packet Header Anomaly Detection (PHAD) and Network Traffic Anomaly

Detection (NETAD) systems, which are anomaly-based IDSs with misuse-based IDS

Snort. The key concept behind hybrid detection is that misuse identifies known attacks

while anomaly discovers unknown attacks.

The traditional misuse detection approaches display high performance regarding

correct detection of known attacks and false alarm rates but fail to detect unknown

attacks (D. Anderson et al., 1995). Therefore, a traditional anomaly detection approach

is considered an alternative to detect constantly changing unknown attack behaviour,

but it may also exhibit high false positive results.

Artificial Intelligence (AI) techniques play a role in automating the intrusion

detection process to diminish human intermediation. The intrusion detection process

based upon traditional artificial intelligence (TAI) entails methods such as fuzzy set,

neural networks, and evolutionary computing, which operate as classifiers for anomaly

detection (Idris et al., 2005). Denning (1987), with a rule-based expert system for

Intrusion Detection Systems (IDSs), aimed to improve detection performance. Although

these rules apply cover-known patterns, they are unable to adapt to the attacks’ pattern

changes (e.g. attack polymorphs). To alleviate the problem of attack modifications,

computational intelligence (CI) is considered a high-accuracy detection method to be

used in constructing an intelligent detection model and to automatically identify

inconsistent activities (Kulkarni et al., 2011). Agah et al. (2004) detected attacks with

the game theory-based reinforcement learning algorithm. The result was greater safety,

but the energy efficiency issues remain to be addressed.

12

Despite the limited agreement on the exact procedure of constructing anomaly

classifiers based on TAI and CI to address safety, there is a broadly accepted view that

the sections of CI are, neuro fuzzy, genetic fuzzy and machine learning. By joining the

autonomous multi agent with the CI or TAI methods, a number of the previously

identified weaknesses such as accuracy of detection, false alarm rate as well as energy

efficiency may be confronted. Toosi et al. (2007) combined the following three soft

computing algorithms: neural network, fuzzy rules and genetic algorithm to improve the

decision result optimization.

According to the existing reviews for anomaly resource-based monitoring, IDPS

systems are divided into two categories: Host-based IDPS (HIDPS) and Network Based

IDPS (NIDPS) systems (J. A. Anderson et al., 1995; Sherif et al., 2002). NIDPS

monitors network traffic, in particular network segments or devices, after which it

analyses network and protocol conduct to identify suspicious activities. HIDPS observes

all, or portions of, the dynamic behaviour and state of a computer system. Unlike

NIDPS which dynamically inspects network packets, HIDPS detects programs’ access

and resources. HIDPS offers the advantage of being easy to deploy without affecting

existing infrastructures as opposed to NIDS which detects attacks at the transport

protocol layer by quick responses.

Through this chapter, we investigate the application of TAI, CI and MCI for

identifying present research challenges in preparing an intelligent intrusion detection

and prevention system (IIDPS). A survey presents the state-of-the-art in the field of

IIDPS and highlights the central issues to be addressed.

Table 2.1 provides the number of literature works dealing with TAI, CI and MCI

approaches. The list of articles is provided as a general overview of TAIs, CIs and MCIs

in terms of their characteristics and current challenges encumbering intelligent IDPS

13

development in sensor networks. The table comprises 4 horizontal sections (TAI, CI,

and MCI) and 3 vertical divisions defining detection classifier types, the authors’ work

titles and the works’ objectives. Embedding security mechanisms such as identifying

possible known/unknown vulnerabilities, predicting user behaviour, analysing and

deterring individuals from violating security policies, are adopted into the network

protocols to facilitate the development of efficient intrusion recognition and reaction

systems.

Table 2.1: Total number of anomaly-based classifiers in Network based- IDPS

Type of

classifier

Authors Title of paper Objectives

T
ra

d
it

io
n

a
l

A
rt

if
ic

ia
l

In
te

ll
ig

en
ce

(T
A

I)

Neural

networks

(NN)

Debar et al.

(1992)

A neural network

component for an

intrusion detection

system

Prediction known user behavior –

Design an IDS structure

Cannady et al.

(1998)

Artificial neural networks

for misuse detection

Identifying possible known

vulnerabilities-IDS

Zhang et al.

(2000)

Intrusion detection in ad-

hoc networks

Intrusion detection and response

mechanisms in ad-hoc networks-

(Developing of WIDS)

Bivens et al.

(2002)

Network-based intrusion

detection using neural

networks

Analyzing and deterring individuals

from violating security policies-

(Explore network based intrusion

detection)

Bankovic et

al. (2011)

Improving security in

WMNs with reputation

systems and self-

organizing maps

Detect and confine unknown attacks-

(Design framework for intrusion

detection in Mobile Networks)

Li et al.

(2012)

The method of network

intrusion detection based

on the neural network

GCBP algorithm

Analyzing and detection of unknown

data packets- NIDS

 Fuzzy sets

(FS)

Dickerson et

al. (2001)

Fuzzy intrusion detection To assess malicious activity-

(Developing of WIDS)

Bridges et al.

(2000)

Fuzzy data

mining and genetic

algorithms

applied to intrusion

detection

Developed an architecture for

intrusion detection

Liang et al.

(2005)

Event detection in

wireless sensor networks

using fuzzy logic system

Identifying possible known

vulnerabilities-WIDS

Abraham et

al. (2007)

D-SCIDS: Distributed

soft computing intrusion

detection system

Evaluates and models NIDS

Jianhui et al.

(2008)

A Fast Fuzzy Set

Intrusion Detection

Model

Deterring Intrusion- Design IDS

Wang et al.

(2009)

A Detection Method for

Routing Attacks Based

on Fuzzy C-means

Analyzing and detection anomaly-

WIDS

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=943772
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf

14

Clustering

Artificial

Immune

system

(AIS)

Jungwon et al.

(2001)

Towards an artificial

immune

system for network

intrusion detection:

An investigation of clona

l selection with

a negative selection

operator

Investigation of IDS

Ma et al.

(2007)

SAID: A Self-Adaptive

Intrusion Detection

System

Designing an architecture of

Intrusion Detection System (WIDS)

Genetic

algorithm

(GA)

Khanna et al.

(2006)

Self-Organization of

Sensor Networks Using

Genetic Algorithms

Development of IDPS

Sevil Sen et

al. (2011)

Evolutionary

computation techniques

for intrusion detection in

mobile ad hoc networks

Explore the use of evolutionary

computation techniques in WIDS

C
o

m
p

u
ta

ti
o

n
a

l
In

te
ll

ig
en

ce
(C

I)

Soft

computing

(SC)

Mohajerani et

al. (2003)

NFIDS: a neuro-fuzzy

intrusion detection

system

Developed anomaly Intrusion

Detection system

Gomez et al.

(2002)

Evolving fuzzy classifiers

for intrusion detection

Proposes a technique of anomaly

detection

Chavan et al.

(2004)

Adaptive neuro-fuzzy

intrusion detection

systems

Design an intrusion detection system

Toosi et al.

(2007)

A new approach to

intrusion detection based

on an evolutionary soft

computing model using

neuro-fuzzy classifiers

To detect and classify intrusions

from normal behaviors based on the

attack type in a computer network

Abadeh et al.

(2007)

Intrusion detection using

a fuzzy genetics-based

learning algorithm

To describe usage of fuzzy genetics

based detect intrusion in a computer

network

Khan et al.

(2012)

Application of fuzzy

inference systems

to detection of faults

Modeling of WIDS

Machine

learning

(ML)

Qiming et al.

(2000)

Using reinforcement

learning for pro-active

network fault

management

Developing of IDS

Xu et al.

(2005)

A Reinforcement

Learning Approach for

HIDS Using Sequences

of System Calls

Prediction intrusion behavior

Xu et al.

(2007)

Defending DDoS Attacks

Using Hidden Markov

Models and Cooperative

RL

Developing efficient intrusion

detection and reaction systems

Xu et al.

(2010)

Sequential anomaly

detection based on

temporal-difference

learning

Anomaly detection- designing

method

Andersen et

al. (2009)

Detecting unusual

program behavior using

the statistical component

of the Next-generation

Intrusion Detection

Expert System (NIDES)

To detect anomalous activity-

analysis component of NIDES to

develop baseline profiles of

applications

Agah et al. Intrusion detection in Finding the most vulnerable node in

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=934333

15

(2004) sensor networks: a non-

cooperative game

approach

a sensor network and protecting it

Ye et al.

(2000)

A Markov chain model of

temporal behavior for

anomaly detection

Analyzing and detection anomaly

behavior

Devarakonda

et al. (2012)

Integrated Bayes

Network and Hidden

Markov Model for Host

based IDS

Prediction intrusion behavior

M
u

lt
i

a
g

en
t

b
a

se
d

 C
I

(
M

C
I)

Multi agent

system:

(MAS)

Renjit et al.

(2011)

Multi-Agent-Based

Anomaly Intrusion

Detection

Development of IDPS

Fisch et al.

(2012)

Learning from others:

Exchange of

classification rules in

intelligent distributed

systems

Proposes techniques for IDPS

Herrero et al.

(2009)

MOVIH-IDS: A mobile-

visualization hybrid

intrusion detection

system

Development of IDS

León et al.

(2011)

Towards a Cooperative

Intrusion Detection

System for Cognitive

Radio Networks

Analyzing threats and propose

intrusion detection modules

Vakili et al.

(2011)

Coordination of

cooperation policies in a

peer-to-peer system using

swarm-based RL

Devised a self-

organized coordination mechanism

for cooperation policy setting of

rational peers

Mosqueira-

Rey et al.

(2007)

A Misuse Detection

Agent for Intrusion

Detection in a Multi-

agent Architecture

Designing a misuse detection agent

Ramachandra

n et al. (2008)

FORK: A novel two-

pronged strategy for an

agent-based intrusion

detection scheme in ad-

hoc networks

Designing Anomaly detection

algorithm in ad-hoc networks

Dasgupta et

al. (2005)

CIDS: An agent-based

intrusion detection

system

Designing administrative tool for

intrusion detection

Z. Zhang et al.

(2001)

HIDE: a hierarchical

network intrusion

detection system using

statistical preprocessing

and neural network

classification

Design NIDS

Agah et al.

(2007)

Preventing DoS attack in

sensor networks: a game

theoretic approach

Developing efficient intrusion

detection and reaction systems

C
ri

ti
ca

l
r
ev

ie
w

Wu et al.

(2010)

The use of computational

intelligence in intrusion

detection systems: A

review

Review

Kolias et al.

(2011)

Swarm intelligence in

intrusion detection: A

survey

Systematic survey

Garcia-

Teodoro et al.

(2009)

Anomaly-based network

intrusion detection:

Techniques, systems and

challenges

Critical Review

16

Tsai et al.

(2009)

Intrusion detection by

machine learning: A

review

Review

Davis et al.

(2011)

Data pre-processing for

anomaly based

network intrusion

detection: A review

Review

Patel et al.

(2013)

An Intrusion Detection

and Prevention System in

Cloud Computing: A

Systematic Review

Systematic review

Through this thesis, the trends of TAI, CI, and MCI used in IDPS are studied.

Analysis is based on two key aspects concerning the evaluation and comparison of the

alternative IIDPS approaches’ performances: i.e., the efficiency of the detection process

and false alarm rates (i.e. false positives and negatives). The significance of the

performance, and especially at this point, the efficiency aspect must be emphasized. As

an example, Potyrailo et al. (2012) researched about the influence of wireless chemical

sensors based on Radio Frequency Identification (RFID) in the high detection of

chemical agents. They claim that any failure in real time diagnosis may lead to harmful

events. Wang et al. (2012) achieved a false positive ratio of less than 10% with small

packet of buffers to identify the compromised node in wireless networks.

2.1.1 Data Set

Due to the extraordinary hazard of practical operational networks and systems of

real environments, performing real time testing is very difficult and complicated.

Therefore, most researchers validate the ideas by testing in experimental simulated

environments depicting the real environment. There are many datasets that can be used

for the detection of abnormal behaviour. For example, in the KDD’99 dataset, certain

possible problems were likely to occur, such as, an enormous number of duplicate

records have been detected (KDD, 1999).

To examine the possibility of dropped packets by traffic collectors (i.e. TCP

dumping) during heavy traffic, there exists different datasets such as NSL-KDD (2009)

17

which were selected to mitigate the difficulties incurred by KDD’99 datasets. NSL-

KDD is significant in that it contains fewer redundant, duplicate records in the training

and test phases of learning-based detection. In this manner, the evaluation process of the

learning system will not have to be dependent on frequent records. Table 2.2 shows the

classification of the datasets based on network traffic.

Table 2.2: Classification of the Datasets for NIDS and WIDS

Name of

dataset

Type of dataset Description of Application domains

KDD’99

(KDD, 1999)

Network IDS This database contains a standard set of data to be audited,

which includes a wide variety of intrusions simulated in a

military network environment.

NSL-KDD

(2009)

Network IDS NSL-KDD is a data set suggested to solve some of the inherent

problems of the KDD'99 data set.

Intel Berkeley

Research lab

("Intel

Berkeley

Research lab,"

2004)

Wireless Sensors

IDS

Data was collected using the TinyDB in-network query

processing system, built on the TinyOS platform.

CRAWDAD

data sets

(dataset, 2006)

1. Sensor network

dataset for enhancing

CSMA MAC

protocol.

2.Syslog, SNMP, and

tcpdump data

3. Dataset of sensor

data collected by the

CenceMe system.

1. This dataset contains packet transmission traces collected

from an experimental wireless sensor network testbed, where E

(Enhanced)-CSMA MAC protocol is implemented using

TinyOS on Mica2 motes.

2. This dataset includes syslog, SNMP, and tcpdump data for 5

years or more, for over 450 access points and several thousand

users at Dartmouth College.

3. CenceMe uses the output of the phones' sensors and external

data (if such is available) to infer human presence and activity

information. This dataset contains movements and inferred

activities of participants using CenceMe on their mobile

phones.

According to them, most ML-based NIDSs employ a base line (i.e. a KDD data

set and a SVM classifier) for detection of algorithm comparison. Davis et al. (2011)

provided a table-based review of the traffic patterns and pre-processing methods utilized

by anomaly-based NIDSs. (Patel et al., 2013) presented a comprehensive taxonomy of

IDPS into cloud computing, and stipulated a list of requirements for a cloud-based

intrusion detection and prevention system (CIDPS). Autonomic computing, ontology,

risk management and fuzzy theory form an ideal design to meet the requirements. None,

however, have listed or compared the detection performance of Multi agent-based CI

(MCI) methods based on IDPS.

http://www.intel-research.net/berkeley/index.asp
http://www.intel-research.net/berkeley/index.asp
http://webs.cs.berkeley.edu/tos/
http://crawdad.cs.dartmouth.edu/data.php#1
http://crawdad.cs.dartmouth.edu/data.php#1

18

2.2 State-of-the-art TAI, CI and MCI in IDPS

Countless studies have suggested means of increasing performance without

affecting IDPS quality. Artificial Intelligence (AI) techniques serve to automate the

intrusion detection process and reduce human intervention. The process of detecting

intrusion is founded on the AI technique by applying methods such as the traditional

artificial intelligence (TAI) and computational intelligence (CI) techniques that operate

as classifiers. This thesis presents, in detail, the state-of-the-art of TAI, CI and Multi

agent-based CI (MCI) systems in the field of IDPS, and additionally highlights the vital

concerns/drawbacks to be addressed.

2.2.1 Traditional Artificial Intelligence (TAI)

In TAI techniques, network traffic activity is captured by single classifiers (i.e.

fuzzy set, neural network, genetic algorithm and artificial immune system), thereafter, a

profile representing its desired behaviour is coded and finally a behaviour model is

created. Network events take place, the current profile is assigned and an anomaly score

is computed by comparing the two behaviours. The score normally indicates the degree

of irregularity for a specific event, such that the IDS raises a flag in the event an

anomaly occurs when the score surpasses a certain threshold.

Fuzzy set-oriented IDPSs correspond to an audit data related to a set of rules

which identifies different attributes from the training data as a fuzzy rule base (FRB)

(Dickerson et al., 2001). FRB is beneficial in instances of misuse but is impractical

when dealing with unknown behaviour. To alleviate the drawbacks of unknown

behaviour detection, hybrid fuzzy classifiers that consider dynamic fuzzy rule tuning

were recommended for a later stage to augment detection rate by dynamically adjusting

the rules ((Bridges et al., 2000), (Liang et al., 2005), (Abraham et al., 2007), (Lin et al.,

2008), and (Tong et al., 2009)).

19

The most remarkable advantages of hybrid fuzzy classifier-based IDPSs are

robustness and flexibility. Among the most noticeable, disadvantages is the challenge of

using a fuzzy set in large scale wireless computing (i.e. excessive resource

consumption) and the additional complications imposed on alarm correlation. To

moderate the alarm correlation, Kaptanova et al. (2012) suggested a hybrid fuzzy

classifier that monitors a temperature value. The fuzzy logic controller performs robust

detection, but consumes vast computing resources when performing fuzzy alarm

correlation. Thus, to avoid the pronounced resource consumption, a neural network may

adopt fuzzy rules by updating the weight of the neurons.

With the intention of minimizing the misclassification of error function, the MLP,

SOM and SVM neural networks were implemented to the anomaly-based IDPSs. Neural

networks are prominently characterized by their flexibility and adaptability to generate

fuzzy rules through performing weight tuning to represent the effective hidden units.

This detection approach is frequently employed to detect individual possible misuse

(Cannady, 1998; Debar, 1992), to determine which network traffic data clusters contain

attacks (Alan Bivens, 2002), to identify deviations from normal behaviour Bankovic et

al. (2011), and to judge whether a network visit is normal or not (Y. Li et al., 2012).

A common negative characteristic shared by the proposed variants, from multi-

layer feed forward neural networks to self-organizing maps and supporting vector

machines (Fisch et al., 2012), is that no expositive structure is provided explaining why

a particular detection decision has been made.

A genetic algorithm permits a population of many individuals to infer under

distinguished selection rules to a state that maximizes the “fitness function” (i.e.

minimizes the cost function), by evolving its operators such as selection, cross over, and

mutation. GA contributes another type of anomaly-based IDPS, which is adept at

20

utilizing communication energy (Khanna et al., 2009) and applying a grammatical

evolution (GE) technique with BNF grammar to identify route disruption attacks in

mobile ad-hoc networks (Phillips et al., 2010).

The main advantage of this subtype of TAI-oriented IDPS is the capability of a

flexible and robust global search method that converges to a global minimum (i.e. a

solution from multiple directions), with no prior knowledge of the system’s behaviour.

Its main disadvantage is the enormous resource consumption involved. If the population

is large then the mutation is too great and the system never converges towards a suitable

solution. Due to this iteration, an immense amount of resources are consumed.

The observed theory and functions of AIS immunization were inspired by the

natural immune system principles; this system’s models were then employed in a wide

and intricate range of subjects. Clonal selection and negative selection comprise

essential shares of this system. The clonal and negative selection functions have a large

influence on the security of wireless networks (Hofmeyr et al., 2000).

AIS techniques have been extensively used in negative and clonal selection. They

are normally applied as mobile memory detectors to generate several diverse detectors

by approximation to achieve lightweight NIDS (Jungwon et al., 2001). Ma et al. (2007)

organized WSN as a body, adversaries as pathogens and multi agents as lymphocytes

that defend against attacks. In all cases, self-adaptability is facilitated by upgrading the

agents’ characteristics via the creation of new antibodies. Energy efficiency is attained

by deploying decision agents in the base station with sufficient resources and strong

computational skills.

AIS functions provide the configurability of driving the gene library evolution by

using the clone selection. Also, AIS requires both additional memory and time when

21

being transferred to generate a vast detector set number. The main disadvantage is its

high resource consumption.

2.2.2 Computational Intelligence (CI)

Computational intelligence (CI) classifiers rely on a soft computing (SC) or

machine learning (ML) model that allows for the patterns analysed to be categorized. A

distinct characteristic of these schemes is the prerequisite for labelled data to train the

behavioural model, a procedure that places severe demands on the resources. ML based

on SC classifiers is meant to create an iterative process of observing patterns, adjusting

to the mathematical form, and making predictions (Alpadin, 2010).

SC classifiers were designed to modify the classification performance of TAI

methods by incorporating a multifold learning algorithm (Zadeh, 1994). SC classifiers

distinguish two main approaches: Neuro Fuzzy (NF) and Genetic Fuzzy (GF) models.

NF and GF are a combination of a fuzzy set with NN and GA, which are utilized to

adjust the structure and parameters of a fuzzy system by neural network and genetic

algorithm operators, respectively. The goal is an optimal, continuous membership

function that identifies anomalous behaviour with supervised monitoring abilities, high

detection rate and low false alarm rate (Buckley et al., 1994; Fullér, 2000).

Neuro fuzzy is a combination of a fuzzy set and adaptive neural network that

tunes the fuzzy membership function using neural networks. Neuro-fuzzy techniques

are found in the milieu of NIDS, generally applied to IDS problems (Gomez et al.,

2002). The multi-layer perceptron learns the fuzzy rule, after which this neural network

performs a fuzzy interface process to identify attacks (Chavan et al., 2004; Mohajerani

et al., 2003).

22

In some ways associated to anomaly-based IDS methods, a revised Neuro-fuzzy

classifier with a GA was proposed to modify the fuzzy engine for detection (Toosi et al.,

2007). At the same time, IDS employs the fuzzy genetic learning method to construct a

primary population by using the fuzzy rule. The antecedent fuzzy part provides a

uniform crossover for a pair of fuzzy rules, following which the antecedent fuzzy set

randomly supersedes the fuzzy set with a mutation probability. Lastly, the fuzzy genetic

method terminates the fuzzy classifier execution through a total number of generations

(Abadeh et al., 2007). More recently, Khan et al. (2012) developed a fault detection

strategy in WSN. In this system, a Recurrent Takagi-Sugeno-Kang FIS (RFIS) strategy

decided whether or not to declare the node malicious.

In all SC techniques fuzzy logic is optimized to enhance the detection accuracy.

The number of false positives is reduced and only the true positive intrusion events from

the raw audit data are increased. It is still challenging though to tune the fuzzy rules

based on IDS into WSN to lessen the false positives and boost detection rate.

In the expansion of IDPS, the ultimate aim is to obtain a high level of accuracy in

the various intruder detection schemes. Several ML-based designs have been applied to

IDPS. Some of the most important ones are cited below, and their main strengths and

weaknesses are identified.

Reinforcement learning (RL) appears to be a greatly significant method of

wireless network security due to its capability to autonomously learn new attacks via

online, unsupervised learning, as well as modify new policies without complex

mathematical approaches (Barto., 1998). RL has been proven to be effective, especially

in real time detection and when no prior system behaviour information is assumed.

RL constitutes another form of computational intelligence-based techniques,

capable of forecasting online network fault detection by Partly Observable Markov

http://www.sciencedirect.com/science/article/pii/S0925231212002809

23

Decision Procedure (POMDP), a practice which transforms a reward function into

Markov chains (Li et al., 2014). Hence, to execute the learning prediction, a TD

learning algorithm was employed. A value function forecasting model was constructed

upon completion of the learning phase.

In a non-cooperative game theory model, the system uses a Q-learning algorithm

for any adversary recognition in sensor networks (A. Agah et al., 2004). Temporal

difference sequential anomaly detection (TD-SAD) aided by the Markov reward model

is used to determine data labelling and improve its detection model performance (X. Xu,

2010). The multilayer RL framework assisted by HMM was proposed to solve real-time

detection in a complex state space (Andersen et al., 2009).

The primary disadvantage of reinforcement learning is the abundance of resources

consumed, in other words, the lack of memory to sustain the agent’s data. The agent’s

memory is stored in a look-up table, or the Q-table. The values fill the Q-table with the

maximum positive rewards possible when executing an action from the current state to

the next-state space. Consequently, the high values in the Q-table expend all these

resources. RL, when compared with other soft computing methods (i.e. neuro fuzzy and

genetic fuzzy), is highly dependent on state space.

The Bayes Network principle provides a distribution possibility to encode

statistical relationships among any single quantity. BN is based on Bayes' theorem

(alternatively, Bayes' law), which imparts a means to apply quantitative reasoning. This

model is normally used for IDS in combination with HMM and MDP, a procedure that

yields several advantages (Ahmadabadi et al., 2001). Anomaly detection has the ability

to represent a norm profile of temporal behaviour by shifting the observation window to

view the last N audit event continuously and detect intrusion behaviour during window

observation (Ye, 2000).

24

BN-based HMM techniques have been utilized in IDS, typically applied to

compute the statistical feature of normal behaviours incoming from the IP source (Xin

Xu et al., 2007). In a dynamic-based IDS, BN and HMM were recommended to identify

intrusion. They reduced the KDD data set by choosing five attribute numbers for the

training mode in TCP connection. Then, the dynamic Bayesian network was initialized

with the Baum-Welch algorithm to classify normal and attack data (Devarakonda et al.,

2012).

As pointed out (Patcha et al., 2007), a serious disadvantage of using BNs is that

the accuracy of this method is dependent on certain assumptions characteristically based

on the behavioural model of the target system; deviating from these assumptions

decreases accuracy. Selecting an accurate model is the first step towards solving the

problem, as a result, considerably higher computational effort is required.

In most ML techniques, reinforcement learning (RL) utilizes HMMs and BNs to

improve the detection operation. The main effort therefore goes to optimizing RL

through the Fuzzy Logic Controller (FLC).

2.2.3 Multi Agent-based Computational Intelligence (MCI)

MCI techniques function by applying the multi agent system (MAS) to

computational intelligence (CI) in order to enhance the performance of detection and

response. On the other hand, cooperative MAS uses CI methods such as SOM, SVM,

GA, RL and Game Theory to determine temporal behaviour and respond to any

deviation. The main objective of MCI consists of distributing MAS to each cluster to

provide a CI mechanism that makes individual and cooperative decisions associated to

IDPS (Wooldridge, 2009). MCI has been widely employed in the domain of network

security, especially in WIDS (W. Li et al., 2012) and cloud computing-based IDS

(Doelitzscher et al., 2012).

25

MCI approaches correspond to hierarchical multi-agent architecture for intrusion

detection, and modify statistical models like SRI’s NIDES statistical algorithm. The

advantage is access to a distributed, three-layer intrusion detection. As such, each

module negotiates with other agents from the lower to higher tiers, seeking to overcome

detection complexity (Z. Zhang et al., 2001).

With regards to cognitive sensors, a model was proposed in two phases, namely,

which local agents use support vector machines in the training mode and which local

agents use mobile agents in the decision mode to classify suspicious behaviour (León et

al., 2011). Some methods suggest a multi-agent system where each local agent collects

data through a mobile agent. The local agent then examines the integrity of the system

by a SVM classifier at the time an attacker enters the system. Also, in the

communication mode the mobile agent verifies activity; if there is no suspicious

activity, the message is forwarded to a neighbouring node. The decision making

component of detection is based on the Bayes theory, in which, if the probability of

normal activity is smaller than the assumed abnormality threshold, the current activity is

categorized as abnormal (Renjit et al., 2011).

MCI-based algorithms are intended to classify audit data according to a set of

fuzzy associated rules. First, a Java agent-based snort collects packets with a packet

sniffer and then creates an input data for the rule engine. Subsequently, the rule engine

forwards the pattern matching algorithm to a multi-agent system. The audit data is then

classified accordingly (Mosqueira-Rey et al., 2007). Intrusion detection utilizes MAS

along with the Fuzzy Classifier System (FCS) and Knowledge Base to detect abnormal

activities (Dasgupta et al., 2005).

With respect to the communication mechanisms, Vakili et al. (2011) developed a

cooperation policy setting process. Interacting peers’ agents regard each other’s

26

reliability or reputation as an impact factor influencing the value of information

received from the other, and hence their learning mechanisms. A broadcasting

mechanism was proposed for knowledge acquisition in dynamic environments based on

probabilistic modelling which was improved through other cooperative communication

(Fisch et al., 2012).

In some domains of WSN-based IDPS, a two-tier, MAS-based Ad-hoc intrusion

detection mechanism was proposed. The first tier runs an auctioning-based mechanism

for node task allocation. The second tier consists of the classification algorithm that uses

a variation of an Ant Colony Optimization to identify the anomaly level (Ramachandran

et al., 2008). The collaborative work of the tactical squad of agents has led to concurrent

detections of multiple sinkhole threats from different routes in the ad-hoc network

(Stafrace et al., 2010). Specifications of collaborative IDPS were developed by

employing MAS characteristics. For instance, the inclusion of deliberative (CBR-BDI)

agents -- a combination of CBR agents’ life cycles (i.e. retrieval, reuse, revision and

retention stages) seems appropriate for packet-based detection (Herrero et al., 2009).

For this purpose, a CBR life cycle with a cooperative version of Maximum Likelihood

Hebbian Learning (MLHL) is reflected upon.

Multi agent-based IDPS, in terms of CI (MCI) and non-CI methods, have emerged

in commercial products. In recent years, a number of pioneering systems from MCI-

based IDPS, i.e. C-Sniper System, have been practically adopted by US forces. Such a

system automatically detects and neutralizes enemy snipers (DARPA, 2012). In brief,

this thesis attempts to highlight the possible beneficial impact of MCIs using Fuzzy

Logic and Reinforcement Learning, as well as to point out potential pitfalls of not

integrating MCI into Co-IDPS. Figure 2.1 indicates a chronological list of TAI, CI and

MCI-based IDPS events with respect to the relevant technologies.

27

Prior

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

Prior

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

Traditional Artificial IntelligenceTraditional Artificial Intelligence Computational IntelligenceComputational Intelligence Multi agent based
Computational Intelligence

Multi agent based
Computational Intelligence

Fuzzy Sets

Neural Networks

Genetic Algorithm

Neural Netwok+Fuzzy Sets

Genetic Algorithm+ Fuzzy Sets

Naïve Bayes

+

Reinforcement Learning

Hidden Markov Model

TAI

Dickerson Bridges

Liang et al

Abraham

Jianhuri

Kapitanova

Wang

Cannady

Debar et al

Zhang et al

Bivens

Bankovia

Ma et al

Khanna

Sen

Kim

CI

SC ML

++

+

++

++

++

Gomez

Mohajerani

Chavan

MS.Abadeh

Khan et al

Ntoosi

++

He,Q

XU

Agah

Xu
Andersen

Nong Ye

Xu

Devarakenda

MCI

Leon

Zhang

Dasgupta

Vakilil

Renjit

Hoang

Agaha

Collaborative cloud

Single cloud

Rey

Fisch

Herreo

Strafrace

Ramachandr
a

++

++

+

Legend;

Figure 2.1: Chronological order of [TAI], [CI] and [MCI] based IIDPS

Figure 2.1 illustrates the chronology of those artificial intelligent techniques

which focus on TAI (i.e. fuzzy set, neural network and evolutionary algorithm), CI (i.e.

soft computing and machine learning) and MCI. The figure summarizes the MCI

techniques into two clouds: collaborative and single clouds. A collaborative cloud is a

Multi Agent System (MAS) making use of TAI methods and in most cases comprises

CI approaches. For example, reinforcement methods utilize neural networks and a fuzzy

set (Renjit et al., 2011). A single cloud is a multi-agent-based detection mode that does

not use CI and TAI. As proposed in (Ramachandran et al., 2008), a MAS follows an

auction and reputation mechanism for performing the task allocation in intrusion

28

detection. The two cloud types were compared with the TAI and CI methods. The

summary implicates that detection and the response system based on the two MAS-

based clouds perform extremely well.

2.3 Detection rates performance method and criteria for evaluation

The effectiveness of an IIDPS is assessed on how capable the detection method is

to make correct predictions. According to the real nature of a given event compared to

an IIDPS prediction, four possible outcomes are shown in Table 2.3. The outcomes are

known as the IIDPS reaction matrix. True negatives (TN) as well as true positives (TP)

correspond to a correct IDS operation; that is, events are successfully labelled as normal

and attack, respectively. False positives (FP) refer to normal events predicted as attacks,

while false negatives (FN) are attacks incorrectly predicted as normal events ("Intel

Berkeley Research lab," 2004).

Table 2.3: Possible status for an IIDPS reaction

Predicted

Normal Attack

Actual Normal True Negative(TN) False Negative(FN)

Attack False Positive(FP) True Positive(TP)

A high FP rate that seriously affects the system’s performance can be detected, and an

elevated FN rate leaves the system vulnerable to intrusions. Both FP and FN rates ought

to be minimized, together with maximizing TP and TN rates. Based on Eqs. (2.1) to

(2.6) and the IIDPS reaction matrix, a possible status for an IIDPS reaction is shown. It

applies the following measures to quantify IDS performance (Blasco et al., 2010):

True negative rate (TNR) =
𝐓𝐍

𝐓𝐍+𝐅𝐏
=

𝐧𝐨. 𝐭𝐫𝐮𝐞 𝐚𝐥𝐞𝐫𝐭𝐬

𝐧𝐨.𝐚𝐥𝐞𝐫𝐭𝐬
 (2.1)

True positive rate (TPR) or Sensitivity or Recall (R) =
TP

TP+FN
=

no. detected attacks

no. observables attack

(2.2)

False positive rate (FPR):
FP

TN+FP
= 1 −

TN

TN+FP
 (2.3)

29

False negative rate (FNR):
FN

TP+FN
 (2.4)

Accuracy=
TN+TP

TN+TP+FN+FP
 (2.5)

Precision=
TP

TP+FP
 (2.6)

Most of the systems employed in the current research works used the same

evaluation metrics such as the Detection Rate and False Alarm Rate. Some researchers

have addressed the problems of IDS by proposing new DR and FAR. Table 2.4 shows

the proposed evaluation metrics by researchers.

Table 2.4: Evaluation metrics proposed by authors

Authors, Paper Accuracy of

Intrusion

False alarm rate Description

Intrusion detection

through learning

behaviour

(Balajinath et al.,

2001)

Accuracy = [1 −
n

N
] 100, FAR = [

n

N
] 100

Where n is the count of

command samples that are in

total command set S after current

command, N the initial size of

total command set.

Design and

performance

evaluation of a

lightweight wireless

early warning

intrusion detection

prototype.

(Fragkiadakis et al.,

2012)

Score=b*(c−d) Where d= √FAR2 + (1 − DP)2
is the distance of a trade-off

point (for a specific threshold h)

from the optimum point (DP = 1

and FAR = 0), and b,c ∈ R+.

Optimization of load

balancing using fuzzy

Q-Learning for next

generation wireless

networks

(Muñoz et al., 2013)

U = [CBR + (1 − CBR) · CDR] · .100 Where U is a metric that

aggregates both key performance

indicators to provide an

estimation of the user

dissatisfaction. Such indicators,

CBR and CDR, consider the total

number of blocked and dropped

calls in the network,

respectively.

Shielding wireless

sensor network using

Markovian intrusion

detection system with

attack pattern mining

(Huang et al., 2013)

U = ρ ∗ SP − β ∗ FN − θ ∗ FP Where U is a utility, SP

Represents true positive rate of

attack patterns. There are attacks

and defences, FN Represents

false negative of attack patterns,

FP Represents false positive of

attack patterns, ρ Represents the

weight of successful prediction,

β Represents the weight of failed

prediction, and θ Represents the

weight of failed prediction.

Measuring Intrusion

Detection Capability:

An Information-

Theoretic Approach

(Gu et al., 2006)

𝐶𝐼𝐷 =
𝐼(𝑋; 𝑌)

𝐻(𝑋)

Let X be the random variable

representing the IDS input and Y

the random variable representing

the IDS output.

30

Traditionally, intrusion detection and prevention approaches are studied from

two major views, namely anomaly and misuse detection though no considerable

difference in characteristics exists between them. Liao et al. (Huang et al.,

2013)proposed a subdivision of detection approaches into five subcategories, including

statistics-based, pattern-based, rule-based, state-based and heuristic concepts, but the

properties of intelligent detection approaches are not defined. Due to the lack of a more

detailed view of detection and prevention approaches using multi agent system-based

computational intelligence, this thesis presents a classification of three subclasses with

an in-depth perspective on the characteristics: traditional artificial intelligence-based,

computational intelligence-based, and multi agent-based CI. Accordingly, we have

carefully assembled the current intrusion detection approaches, especially those found

in wireless networks (Table 2.5).

31

Table 2.5: Classifications and comparisons of various intrusion detection approaches

 Detection approach methodology
a
 Technology type

b
 Detection of

attack
c

performance
d
 Type of

source
e

characteristics

AD MD H/N/W K/U/B H/M/L P1/P2/N Flexibility and

adaptability

T
ra

d
it

io
n

a
l

A
rt

if
ic

ia
l

In
te

ll
ig

en
ce

Neural network

N
o

.
o

f
ar

ti
cl

es
:(

6
)

Debar et al.

(1992)

 √ Host-based (H) Known attacks

(K)

Low (L) Public

dataset(P1)

Cannady et al.

(1998)

 √ Network-based (N) Known attacks

(K)

Low (L) Public

dataset(P1)

Zhang et al.

(2000)

√ Wireless -based (W) Known attacks

(K)

Moderate (M) Private

dataset(P2)

Bivens et al.

(2002)

√ Network-based (N) Known attacks

(K)

Moderate (M) Private

dataset(P2)

Bankovic et al.

(2011)

√ Wireless -based (W) Unknown attacks

(U)

Moderate (M) Public

dataset(P1)

(Yan Li, 2012) √ Network-based (N) Unknown attacks

(U)

Moderate (M) Public

dataset(P1)

Fuzzy Sets

N
o

.
o

f
ar

ti
cl

es
:(

6
)

(Dickerson et al.,

2001)

 √ Network-based (N) Known attacks

(K)

Low (L) Public

dataset(P1)

Robustness and

flexibilities

Bridges et al.

(2000)

√ Network-based (N) Unknown attacks

(U)

Moderate (M) Private

dataset(P2)

(Liang et al.,

2005)

√ Wireless -based (W) Unknown attacks

(U)

Moderate (M) Private

dataset(P2)

(Abraham et al.,

2007)

√ Network-based (N) Both known and

unknown attacks

(B)

Moderate (M) Private

dataset(P2)

(Jianhui et al.,

2008)

√ Network-based (N) Unknown attacks

(U)

Moderate (M) Private

dataset(P2)

(Tong et al.,

2009)

√ Wireless -based (W) Unknown attacks

(U)

High (H) Private

dataset(P2)

Artificial

Immune

system

A
rt

ic
le

s(
2

) (Jungwon et al.,

2001)

√ Network-based (N) Unknown attacks

(U)

Moderate (M) Public

dataset(P1)

Flexible and

robust in global

search methods (Ma et al., 2007) √ Wireless -based (W) Unknown attacks

(U)

High (H) Public

dataset(P1)

32

Genetic

algorithm

A
rt

ic
le

s(
2

) (Gu et al., 2006) √ Wireless -based (W) Unknown attacks

(U)

Moderate (M) Public

dataset(P1)

Flexible and

robust in global

search methods (Sevil Sen, 2011) √ Wireless -based (W) Unknown attacks

(U)

High (H) Public

dataset(P1)

Total articles: (16)

C
o

m
p

u
ta

ti
o

n
a

l
In

te
ll

ig
en

ce

Soft computing

(SC)

N
o

 .
ar

ti
cl

es
(6

)

(Mohajerani et

al., 2003)

√ Network-based (N) Unknown attacks

(U)

Moderate (M) Public

dataset(P1)

Lower false

positive rate, high

accuracy (Gomez et al.,

2002)

√ Network-based (N) Unknown attacks

(U)

Moderate (M) Public

dataset(P1)

(Chavan et al.,

2004)

√ Network-based (N) Unknown attacks

(U)

Moderate (M) Public

dataset(P1)

(Toosi et al.,

2007)

√ Network-based (N) Unknown attacks

(U)

High (H) Public

dataset(P1)

(Abadeh et al.,

2007)

√ Network-based (N) Unknown attacks

(U)

High (H) Public

dataset(P1)

(Khan et al.,

2012)

√ Wireless -based (W) Unknown attacks

(U)

High (H) Public

dataset(P1)

Machine

learning

N
o

 a
rt

ic
le

s(
8

)

(Qiming et al.,

2000)

√ Network-based (N) Unknown attacks

(U)

Moderate (M) unspecified

dataset(N)

High accuracy,

Self-learning,

Fault tolerant (Xin Xu et al.,

2005)

√ Host-based (H) Unknown attacks

(U)

Moderate (M) unspecified

dataset(N)

(Xin Xu et al.,

2007)

√ Network-based (N) Known attacks

(K)

Moderate (M) unspecified

dataset(N)

(X. Xu, 2010) √ Network-based (N) Unknown attacks

(U)

Moderate (M) unspecified

dataset(N)

(Andersen et al.,

2009)

√ Wireless -based (W) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(A. Agah et al.,

2004)

√ Wireless -based (W) Unknown attacks

(U)

High (H) unspecified

dataset(N)

Ye et al. (Ye,

2000)

√ Network-based (N) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(Devarakonda et

al., 2012)

√ Unknown attacks

(U)

Moderate (M) unspecified

dataset(N)

Total articles: (14)

33

M
u

lt
i

a
g

en
t

b
a

se
d

 C
I(

M
C

I)

Multi agent

system used CI

(MAS)

N
o

 .
ar

ti
cl

es
(1

0
)

(Renjit et al.,

2011)

√ Network-based (N) Unknown attacks

(U)

High (H) unspecified

dataset(N)

Distributed, high

overall security,

cooperative (Fisch et al.,

2012)

√ Network-based (N) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(Herrero et al.,

2009)

√ Wireless -based (W) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(León et al.,

2011)

√ Wireless -based (W) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(Vakili et al.,

2011)

√ Network-based (N) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(Mosqueira-Rey

et al., 2007)

 √ Network-based (N) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(Ramachandran

et al., 2008)

√ Wireless -based (W) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(Dasgupta et al.,

2005)

√ Network-based (N) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(Z. Zhang et al.,

2001)

√ Network-based (N) Unknown attacks

(U)

High (H) unspecified

dataset(N)

(Afrand Agah et

al., 2007)

√ Wireless -based (W) Unknown attacks

(U)

High (H) unspecified

dataset(N)

Total articles: (10)

a. Detection methodology: anomaly-based detection (AD), misuse-base detection (MD)

b. Technology type: host-based (H), network-based (N), wireless -based (W)

c. Detection of attacks: known attacks (K), unknown attacks (U), both known and unknown attacks (B)

d. Performance: high (H), moderate (M), low (L)

e. Type of source: Public dataset(P1), Private dataset(P2), unspecified dataset(N)

34

Table 2.5 indicates the types and subtypes of intrusion detection. The detection

methodology is categorized into anomaly and misuse-based. It contains a host-based,

network-based and wireless -based intrusion detection and prevention systems. The type

of attack detection is classified into known, unknown, and both kinds of detection. The

performance indicates detection efficiency, while the level of performance is evaluated

by degrees of high, moderate and low. The sources comprise of a public dataset (e.g.

KDD99), a private dataset (e.g. NSL-KDD) and an unspecified dataset, as extracted

from previous attacks. The available data is utilized to differentiate intrusion behaviour

from suspicious activities. The methodology of anomaly-based MAS and CI compared

with TAI satisfies the detection, particularly in unknown attacks. Detection efficiency in

the multi agent-based computational intelligence (MCI) method portrays superior

performance. The most significant aspects of the MCI-based IDPS mentioned are high

accuracy, self-learning, and robustness.

Figure 2.2 depicts the number of manuscripts investigated over a 14 year period

from 1998 to 2012. The amount of manuscripts regarding TAI detection methods

reached a peak in 2002, declined gradually by 2006, then remained stable until now. It

is not easy to apply those TAIs which mitigate IIDPS vulnerabilities, thus a new

generation of intelligent attacks can arise. Nevertheless, CI and MCI have received

increasing consideration recently.

35

Figure 2.2: Year wise distribution of articles for the various types of classifier layouts

From Figure 2.2 it can be observed that while traditional artificial intelligence,

computational intelligence and multi agent based computational intelligence were fairly

static from 2007 to 2009, however, CI has become more popular than TAI by the year

2012 because CI in terms of MCI shows better performance of intrusion detection and

false alarm rate.

2.3.1 Traditional Artificial Intelligence

The emergent anomaly detection applications have brought about a new trend of

IDPS-focused research which concentrates on ways of managing alarms. Table 2.6 lists

the most recent research attempting to deal with intrusion detection and prevention

problems based on Traditional Artificial Intelligence approaches.

Table 2.6: Classification of Traditional Artificial Intelligence-based IDPS

Reference

Method Objective Performance Technology

category

Type of

attacks

Zhang et al.

(Z. Zhang

et al., 2001)

Combining data

mining with fuzzy

rule

To identify

misused

behavior in a

network

Up to 50%

increase in DR

Hybrid

fuzzy(FRB)

Individual

Bridges et

al. (2000)

Fuzzy association

rule

To learn a

normal pattern

Reduced FAR

by 20%

Individual

Liang et al.

(2005)

A fuzzy Logic

approach

To identify

the abnormal

Increased the d

Detection rate to

0

1

2

3

4

5

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

N
u

m
b

e
r

o
f

m
e

th
o

d
s

Year

Traditional Artificial
Intelligence

Computational Intelligence

Multi agent based
Computational Intelligence

36

combined with

double sliding

window detection

behavior in

sensor

networks

99.97% and

reached to

0.05% FAR

Abraham et

al. (2007)

Fuzzy classifier

uses a decision

tree

To detect

attribute

anomalies

Averaged 90%

in DR

Public

Lin et al.

(2008)

The data mining

uses PTBA

algorithm to

extract rule mining

To classify

network

traffic

behavior

More than 90%

increase in

Detection rate

(DR)

Public

Kapitanova

et al. (2012)

Combining rules

with similar

consequences and

removing

negligible rules.

To modify the

precision of

event

detection

False positive

rate 0%

compares with

0.13% decision

tree and 1.56%

Naïve bayes

theory.

Tong et al.

(2009)

Fuzzy C-mean

clustering

algorithm

calculates the

distance between

connection record

all the actual

cluster through a

non-linear

function

To distinguish

the normal

cluster and

abnormal

Detection rate

of 96% can be

reached, if false

positive rate is

controlled to

less than 1.5%

Fuzzy C-

mean(FCM)

Individual

Cannady et

al. (1998)

Multilayered feed-

forward comprise

MLP

To detect

misuse

instances such

as SYNFlood

Increased DR

by 60%

Multilayered feed-

forward (MFF)

Individual

Debar et al.

(1992)

Modular intrusion

detection based on

neural networks

and expert systems

Prediction

error rate

Average 30%,

increasing DR

Support Vector

Machine(SVM)

Individual

Bivens et

al. (2002)

SOM was utilized

as a clustering

method for MLP

neural networks

Attack

detection.

Up to 98%

increase in

DR,but with a

small reduction

of FAR

Self- organizing

Map(SOM) and

Multi- layer

perceptron(MLP)

Public

Bankovic et

al. (2011)

 Using Euclidean

distance

throughout the

reputation self-

organizing map

algorithm.

To detect

deviations

from normal

behavior.

More than 80%

detection rate

SOM Individual

Khanna et

al. (2009)

Four fitness

functions used: 1.

Monitoring node

integrity fitness

(MIF) 2. Battery

Fitness (MBF)

3.Coverage fitness

(MFC) 4.

Cumulative trust

fitness (CTF)

To maximize

the

performance

of IDS

Decrease the

FAR,but with a

small increase

in DR(60%)

Genetic

Algorithm(GA)

Individual

Sen et al.

(2010)

Genetic

programming

applied a

grammatical

evolution (GE)

technique that uses

To identify

the route

disruption

attacks in

mobile ad-hoc

networks

More than

99.41% increase

in DR and

reduced false

positive by

1.23%

Genetic

Algorithm(GA)

Individual

37

BNF grammar

Jungwon et

al. (2001)

The gene library

evolution by using

clone selection

(Co-Evolution)

To identify

misuse

No test Artificial Immune

System

 Ma et al.

(2007)

Inspired by

immune system

used WSN as a

body, adversary as

a pathogens and

multi agents as

lymphocytes

To defend

against

attacks

No test Artificial Immune

System

Generally, TAI techniques for IDPS are categorized into three technologies. The

fuzzy set-based WIDSs consist of a fuzzy rule- based (FRB) and Fuzzy C-mean (FCM);

the neural network-based IDPS comprises a Multi-layer Perceptron (MLP), Support

Vector Machine (SVM) and a Self-Organizing Map (SOM). Finally, the evolutionary

algorithm is made of a genetic algorithm (GA) and an artificial immune system (N. Li et

al.).

The majority of researchers working with TAI have provided some solution to

appraise the performance of IDPS for anomaly techniques (refer to Table 2.3) since

anomaly techniques based on hybrid TAI (i.e. using fuzzy data mining) generate more

accuracy than single TAI techniques (i.e. self-fuzzy), as per Figure 2.3. The hybrid TAI

approach, such as combining the data mining techniques with fuzzy set for instance,

optimizes the system’s visibility and performance. Moreover, the false alarm correlation

and detection rate becomes more complicated. This is why it is necessary to attract

researchers’ awareness to attempt and provide solutions to IDPS management in the

recently utilized hybrid TAI detection methods.

38

Figure 2.3: Comparison of TAI methods in terms of detection rate and false alarm rate

TAI methodologies imply that SVM and fuzzy rule-based (FRB) are increasing

the performance of detection rate (DR) and false alarm rate (FAR) in the network

environment. On the contrary, FCM, SOM, MLP, GP and AIS do not consider IDPS

due to their inability to provide adaptability at a time when adversary behaviour is

changing dramatically.

2.3.2 Computational Intelligence

Two strategies, namely machine learning (ML) and soft computing (SC), are

utilized for designing intelligent intrusion detection. The objective of this literature is to

introduce SC and ML in terms of Computational Intelligence-based IDPS.

The most recent examined works applicable to CI-based IDPS are ordered in

terms of soft computing (SC) and machine learning (ML) taxonomy. The methods

applied are very similar to each other. For instance, the neural network-based fuzzy

solution replaces fuzzy-based neural network classifier to tune the fuzzy rule to achieve

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

an
ce

 o
f

 D
R

 a
n

d
 F

A
R

%

Traditional Artificial Methods

Detectio
n Rate

False
Alarm
Rate

39

more accurate detection. The most important features that are different between the CI

and TAI methods are prevention capability and response. Currently conducted research

and proposed solutions with respect to CI techniques are still a long way from an ideal

IDPS. They not only lack the desired collaborative IIDPS characteristics, but also fail to

reach into wireless network territory. In all circumstances, CI techniques provide high

accuracy, self-learning, and are fault tolerant, but they are not capable of taking into

consideration all the features addressed in IDPS such as energy efficiency, detection

rate and false alarm rate. These inefficiencies are evidence of the lack of distributed and

cooperative knowledge of the proper requirements identified prior to initiating any

development.

Table 2.7: Classification of computational intelligence in IDPS

Reference Method Objective Performance Technology

category

Mohajerani et

al. (2003)

Decision making

based on fuzzy and

neural networks

Traffic

monitoring

Normal pattern detection

accuracy, 6% greater than

attack detection accuracy.

Meanwhile, the false

alarm rate is around 9.4%

Neuro fuzzy

Gomez et al.

(2002)

Classification

process using fuzzy

and genetic

Intrusion

detection

The FAR reduced to 5%

with a correct detection

rate of 98.5%

Genetic fuzzy

Chavan et al.

(2004)

Using rule based

decision tree and

neural network for

classification

To encounter

vulnerabilities

present in snort

and classify

anomaly

behavior.

No test Neuro fuzzy

Toosi et al.

(2007)

A revised neuro-

fuzzy classifier with

a GA

To modify the

fuzzy engine for

detection

Up to 95% increase in

DR,but the incorrect

detection rate is 1.9%

Neuro fuzzy

Abadeh et al.

(2007)

System provides the

crossover and

mutation by using

fuzzy rules.

Intrusion

detection

Up to 99.08% increase in

DR, but with a small

reduction of false alarm

(3.85%)

Fuzzy genetic

Khan et al.

(2012)

The initial FIS is

trained by using

neural network

Intrusion

detection

No test Neuro-fuzzy

Qiming et al.

(2000)

Partly observable

Marko decision

procedure

transforms a reward

function into

Markov chains

To proactive

network fault

detection.

No test Reinforcement

learning(RL

Xu et al.

(2007)

Cooperative RL uses

HMM to compute

the statistical feature

of normal behaviors

 DDoS detection 97% correct detection rate

obtained with zero FAR

HMM-RL

40

incoming from the

IP source.

Xu et al.

(2005)

Xu et al.

(2010)

Temporal difference

sequential anomaly

detection (TD-SAD)

aided by the Markov

reward model

To figure out

data labeling

and improve

detection model

performance.

More than 98% detection

rate and very low false

alarm rate

Reinforcement

learning and

MDP

Andersen et

al. (2009)

A multilayer RL

framework uses

Hidden Markov

Model

To actualize the

detection of

DDoS attacks

No test Reinforcement

learning and

HMM

Agah et al.

(2004)

A non-zero-sum

game theoretic uses

Q-learning algorithm

to establish the Nash

equilibrium.

For adversary

recognition in

sensor networks.

Average 50% in DR Reinforcement

learning and

game theory

Ye et al. (Ye,

2000)

Moving the

observation window

by using Markov

chain model

To represent a

norm profile of

temporal

behavior

Detection rate increased

(100%) and false alarm

rate decreased (0%).

Markov chain

model

Devarakonda

et al. (2012)

Dynamic Bayesian

network was

initialized using the

Baum-Welch

algorithm to

reinforce probability

of the partial

observation

sequence

To identify

intrusion

The high-count attack

value (0.624) is greater

than low-count attack

(0.228)

Bayesian

network and

hidden Markov

The performance evaluations imply that Reinforcement Learning and Neuro

Fuzzy are the most perceived in CI classifiers based on IDPS. As shown in Figure 2.4,

RL facilitates a high level of accuracy for the detection process. Alternatively, the

process of detection may attain superior accuracy upon autonomic agent decision

making.

41

Figure 2.4: Comparison of CI methods in terms of detection rate and false alarm rate

2.3.3 Multi agent system-based Computational Intelligence

In line with the progress made on launching MAS, numerous Intelligent

Intrusion Recognition systems apply this sort of cooperative classifier into

computational intelligence. Table 2.8 illustrates the percentage of all research articles

implementing multi agent system techniques to the CI-based WIDS methods. The

results indicate that MASs are becoming increasingly perceived for SC&ML classifier

design.

Table 2.8: Classification of multi agent computational intelligence-based IDPS

Reference Method Objective Performance Technology category

Zhang et al.

(2001)

Using distributed

three-layer intrusion

NIDS Average 70% in

DR and 9% FAR

MAS-NN

Mohajerani et

al. (2003)

Decision making

based on fuzzy and

neural networks.

Traffic

monitoring

Normal pattern

detection accuracy,

6% greater than

attack detection

accuracy.

Meanwhile, the

false alarm rate is

around 9.4%

Neuro fuzzy

Dasgupta et al.

(2005)

Data mining uses

MAS

To detect

abnormal

behavior

No test MAS along with Fuzzy

Classifier System (FCS)

and Knowledge Base

(KB)

Agah et al. Cooperative game To detect

0
10
20
30
40
50
60
70
80
90

100

P
er

fo
rm

an
ce

 o
f

D
R

 a
n

d
 F

A
R

(%
)

Computational Intelligence

Detection
Rate

False Alarm
Rate

42

(2007) theory attack

Mosqueria-Rey

et al. (2007)

Rule engine uses the

pattern matching

algorithm

To packet

sniffer

No test MAS-FRB

Ramachandran

et al. (2008)

Two tires perform: an

auctioning based

mechanism for task

allocation of nodes.

The classification

algorithm using a

variation of Ant

colony optimization

To identify

the level of

anomalous

Increased the

correct attack

detection to 79%

and reach to 4%

false positive

MAS-Swarm

Intelligence

Herrero et al.

(2009)

Combines CBR life

cycle (i.e. retrieval,

reuse, revision and

retention stage) with a

cooperative version of

Maximum Likelihood

Hebbian Learning

(MLHL).

Wireless

based IDPS

No test MAS-probabilistic

modeling

Stafrace et al.

(2010)

Agent based adhoc-

network

To

concurrent

detections of

multiple

sinkholes

threat

Obtained 86%

correct detection

rate and 5% false

positive

MAS-Collaborative

Renjit et al.

(2011)

Using mobile agent IDPS No test MAS-SVM-SOM-BN

Leon et al.

(2011)

A Multi agent system

utilized supports a

vector machine in

training mode

To classify

suspicious

behavior

No test MAS-SVM

Vakili et al.

(2011)

A reputation

assignment

mechanism in the

developed

cooperation policy

setting process

IDPS No test MAS-RL

Fisch et al.

(2012)

A broadcasting

mechanism

communication uses

knowledge

acquisition

Co-IDPS No test MAS-probabilistic

modeling

Devarakonda

et al. (2012)

Dynamic Bayesian

network was

initialized using the

Baum-Welch

algorithm to reinforce

probability of the

partial observation

sequence

To identify

intrusion

The high-count

attack value

(0.624) is greater

than low-count

attack (0.228)

Bayesian network and

hidden Markov

Figure 2.5 demonstrates the correct detection rate achieved by MCI, which

steadily increases as the false alarm rate dramatically decreases. Without a doubt, MCI

approaches may potentially reach enhanced flexibility, making them even more popular

in the near future.

43

Figure 2.5: Comparison of Multi agent based CI methods in terms of detection rate and false alarm rate

Basically, at the moment, the majority of researchers are designing multi agent-

based IIDPSs without integrating computational intelligence methods. In other words,

CIs make use of MAS in terms of collaborative-based CI to optimize the functions of

MAS.

2.3.4 Comparative discussion of detection rate evaluation

Because the environment, dataset, focus, scale, etc., in each experiment are

totally different from scheme to scheme, detection accuracy and false alarm rate may

not reflect the realistic performance. Therefore, these detection technique categories are

vertically examined without the two factors. Table 2.9 shows the panoramic comparison

of evaluations on the TAI, CI and MCI techniques.

0

20

40

60

80

100

120

P
e

rc
e

n
ta

ge
 o

f
P

e
rf

o
rm

an
ce

 (
%

)

Multi agent based Computational Intelligence

Detection
Rate

False
Alarm
Rate

44

Table 2.9: Panoramic comparison of evaluations on popular detection techniques.

Techniques ACC FAR Remark

TAI FCM (Tong et al., 2009)

SOM (2011)

GP (Phillips et al., 2010)

≈ 96%

≥ 80%

≥ 99.41%

≈1.5%

≈1.23%

No Test

Simple and fast rule based techniques,

performance is limited. Basically based on

traditional artificial intelligence, good

performance but complex.

CI NF(Toosi et al., 2007)

GF (Abadeh et al., 2007)

MDP (X. Xu, 2010)

≈ 95%

≈ 99.08%

≈ 98%

≈1.9%

≈3.85%

≈1.2%

Basically based on Machine learning,

balanced performance and complexity,

high false alarm rate

MCI RL (Vakili et al., 2011) ≥ 98% ≈0.98% Good performance, based on

computational intelligence, low false alarm

rate

TAI and CI schemes own the strongest detection generality, as long as adequate

attributes are in use. Their formidable capabilities of dealing with multiple-dimensional

data fully support this to be realistic but what comes along with this capability is the

high complexity. Fortunately, computational intelligence based detection in terms of

using Multi agent may be implemented with the help of WSN’s distributed architecture,

which eventually cuts the complexity down as much as do those relatively advanced

TAI techniques-based schemes. This kind of schemes is also characterized by the great

flexibility, as it never depends on any prior-knowledge. The vertical evaluation on the

three technique categories is illustrated in Table 2.10, where TAI stands for traditional

AI, CI stands for computational intelligence, and MCI stands for multi agent based CI.

Table 2.10: Vertical evaluation of technique categories

Tech. category Generality Speed Distributed Prior knowledge

TAI Low Normal Not Assumption experience

CI Normal t High Possible Assumption

MCI High Normal Necessary Not
TAI: Traditional Artificial Intelligence; CI: computational intelligence; MCI: multi agent based computational

intelligence

45

The computation complexity and memory use of TAI methods, such as rule-

based detection schemes are lowest, indicating the fastest detection speed. However,

they have to suffer from the weakest detection generality, since they are not equipped

with the ability to dispose of multi-dimensional data. Inserting the new rules that cover

more detection attributes into the rule set is the only way to push the detection

generality up, which results in a linear increase of the complexity. The establishment of

these schemes often demand some prior-knowledge regarding anomaly detection, either

assumptions or experiences. The performance of traditional artificial intelligence

techniques essentially stands in the middle. These schemes are enabled to be deployed

in any WSN. Learning technique, such as reinforcement learning, is allowed to tackle

multi-dimensional data, but the complexity would climb up dramatically. For this

reason, multi agent system adapts to mitigate the problem of complexity by providing

distributed sharing strategy.

Results of security evaluation metrics are compared through curves shown in

Figure 2.6 and 2.7 respectively. The x-axis specifies the percentage of anomalous attack

which refers to the ratio of the number of anomalous attack to the total number of

measurements collected at the sensors. The y-axis specifies the security evaluation

metric such as the accuracy of detection and false alarm rate.

46

Figure 2.6: General comparison of detection rate

As seen in Figure 2.6, most of the studied algorithms successfully detect the

anomalous attacks with a very close performance ratio up to 25% of increase in the

anomalous data. Some of them, such as the fuzzy rule base and the self-organizing map

rapidly deteriorate as the percentage of anomalous increase, while the superiority of the

support vector machine intrusion detection technique, Fuzzy C-Mean clustering and

Multi-agent based Reinforcement learning IDS, respectively, can be clearly observed

for detection rate. They show better performance of detecting intrusions at 60% as

shown in Figure 2.6.

82

84

86

88

90

92

94

96

98

100

10 15 20 25 30 35 40 45 50 55 60

D
e

te
ct

io
n

 r
at

e
 [

(T
N

+T
P

)/
(T

N
+T

P
+F

N
+F

P
)]

 (
%

)

Percentage of intrusions (%)

Fuzzy Rule Base

Fuzzy C-mean

Self Organizing Map

Support Vector Machine

Reinforcement Learning

Neuro Fuzzy

Multi agent based Fuzzy
system

Multi agent based
Reinforcement learning

47

Figure 2.7: General comparison of false alarm rate

Regarding the false alarm rate, the comparison of the curves of the anomaly

percentages is shown in Figure 2.7. Intrusion detection methods based on SVM

classification, FCM clustering, and Multi agent refined reinforcement learning

techniques have low false alarm rates as the percentage of anomaly increases.

2.4 Intelligent Intrusion Detection and Prevention System (IIDPS)

Intelligent techniques play a role in automating the intrusion detection process

and to reduce human intervention. The process of intelligent detection applies advanced

communication protocols based on artificial intelligence (AI) techniques such as fuzzy

set, neural networks, and evolutionary computing, that operate as classifiers for anomaly

detection to ensure detection accuracy along with stability (Idris et al., 2005). Denning

(1987) used a rule-based expert system for Intrusion Detection Systems (IDSs) to

improve detection performances. Although the rules may cover known patterns, they are

unable to adapt in cases where attack patterns modify (e.g. attack polymorphs). In order

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

10 15 20 25 30 35 40 45 50 55 60

Fa
ls

e
 A

la
rm

 R
at

e
[T

P
/(

TP
+F

P
)]

 (
%

)

Percentage of anomaly(%)

Fuzzy Rule Base

Fuzzy C-mean

Self Organizing
Map

Support Vector
Machine

Reinforcement
Learning

48

to provide high accuracy detection in anomaly detection, computational intelligence

(CI) can serve in the construction of a model detection system by automatically iterating

training and testing data. From our point of view, intelligent intrusion detection and

prevention architecture for wireless networks contains four modules: (a) Matching

stage, (b) Feature selection (c) Normalization, and (d) Decision (Figure 2.8).

Attack
Signature
Databse

Matching

F
e

a
t
u

r
e

 s
e

le
c
t
io

n

NormalizationFeature Selection

Audit records from

traffic data Signature
Matching Engine
(Snort-Wireless)

Known attack

signatures from IDS

provider

Unknown

attacks

Single connection attack

detected at packet level

Training
data

Testing
data

Signature
Generator

Computational
Intelligence

Engine

Anomalies detected

over multiple

connections

New Signature from anomalies

detected

Decision

Figure 2.8: Intelligent Intrusion Detection and Prevention architecture for networks

In the general model of IIDPS, signature matching engine in terms of SNORT

audit records from traffic data. The gain of matching the process includes two kinds of

attacks: the single connection attack or known attacks detected at packet level and the

unknown attacks. The process of detecting unknown attacks include training and testing

algorithm and a corresponding model gets built through the feature selection module.

The training and testing data are sampled first from the attack dataset. In addition, the

feature selection method proposed is adopted to filter some unimportant and noise

features to decrease the data dimension. The data are normalized through the

normalization step, which are used to train the computational intelligence engine to

make a model. The normalization module generates the signature of the matching

module for inspection. In addition, the decision module is judged against the observed

49

traffic. If the deviation found exceeds (or is below in the case of abnormality models) a

given alarm threshold, the detection stage is triggered.

IIDPSs are assessed on their capability to protect securely in large scale

networks; nevertheless, utilization in a variety of networks and the complexity of the

architecture (e.g. mobility, no central points, constrained bandwidth of wireless links,

and limited resources) pose countless difficulties (Huang et al., 2013) .Some of the

challenges remaining include questions as to how to reinforce the intrusion detections

and response elements to deal with intrusion in parallel, in addition to the coordination

and management of multiple nodes. Trust systems, like wireless network filtering

facilities, focus on low-delay processing time, and high throughput performance.

Many of the preceding technical studies related to Intelligent Intrusion Detection

and Prevention (IIDPS) methods were summarized and refined here (Abraham et al.,

2007; Alan Bivens, 2002; 2011; Devarakonda et al., 2012; Ma et al., 2007; Renjit et al.,

2011; Sevil Sen, 2011; Toosi et al., 2007) to bring a new perspective of IIDPS

classification and the development for Cooperative-based IIDPS. Figure 2.9 lays out a

tree plan classification of the anomaly-based IDPS detection techniques, and Table 2.11

outlines the advantages and disadvantages of detection in addition to the subtypes of

detection-based IDPS. In the branch of IIDPS, the detection and prevention architecture

uses Traditional Artificial Intelligence (TAI), which collects and analyses the

information from single monitored classifiers (fuzzy sets, neural networks, genetic

algorithms and artificial immune systems) in light of the availability of prior knowledge

data. computational intelligence (CI) collects data from multiple monitored classifiers

(neuro fuzzy, genetic fuzzy, Reinforcement Learning, Hidden Markov Model and Naïve

Bayes) to detect entire, distributed and cooperative attacks, or “hybrids” of both, in

terms of soft computing and machine learning approaches. Finally, Multi agent-based

50

CI (MCI) techniques are based on the establishment of a Multi agent model into soft

computing and machine learning that allows the patterns analysed to be categorized.

WIDPS

Traditional Artificial
Intelligence

Computational
Intelligence

Multi Agent based
Computational

Intelligence

Fuzzy Sets

Neural Networks

Evolutionary Algorithm

Soft Computing

Machine Learning

Multi agent based ML and SC

Multi agent based Cooperative methods

Fuzzy Rule Base

Fuzzy C-Mean

Multi Layer Perceptron

Support Vector Machine

Self Organizing Map

Genetic Algorithm

Artificial Immune System

Neuro-Fuzzy

Genetic-Fuzzy

Reinforcement Learning

Hidden Markov Model

Naïve bayes

Game theory

Figure 2.9: Tree plan classification of the anomaly-based IIDPS detection techniques

Table 2.11: Fundamentals of the anomaly-based IIDPS techniques

Main Types α. Pros ; β. Cons Type of Detection Subtypes of detection

TAI:

Availability of

prior

knowledge

data

α. Robustness, flexibility and

scalability

β. Difficult setting for parameters

and metric; time-consuming

availability for high-quality data

 Fuzzy Set:

Approximation and

uncertainty

Artificial neural

network:

Human brain

foundations

Evolutionary

computing:

Biology inspired.

Fuzzy Rule Base, Fuzzy

C-Mean

Multi-Layer Perceptron,

Self-Organizing Map,

Support Vector

Machine

Genetic algorithm:

Intrinsically parallel

Artificial Immune

system:

Ability to converge very

quickly

CI:

Categorization

of patterns

α. Flexibility and adaptability

β. High resource and time

consuming in training and testing

stage

Soft computing:

real-life situations

Machine learning:

A learner is to

generalize from its

experience

Neuro fuzzy, Genetic

fuzzy: Universal

approximate

Hidden Markov Model:

Autoregressive

Bayes Naïve:

Probabilistic

relationships among

variables

Markov Decision

Process: Stochastic

Markov theory

Reinforcement

Learning: Dynamic

approach applied to

stochastic problem

http://en.wikipedia.org/wiki/Universal_approximator
http://en.wikipedia.org/wiki/Universal_approximator

51

Game Theory:

Modelling wide variety

of situation

MCI:

Cooperative

pattern

recognition

α. Robustness. Flexibility,

adaptability and scalability.

MAS based

computational

intelligence:

Categorization of

patterns

and Cooperative

attempts

Clustering and outlier

detection(Cooperative

classification)

Table 2.11 provides the fundamentals for TAI, CI and MCI-based anomaly-

IIDPS techniques, as well as the principal subtypes of detection. What is obvious from

Table 2.11 is that the recent studies related to MCI-based IDPS concentrate on

robustness, flexibility, adaptability and low resource consumption. For example, the

highly accurate detection technique is one of the most favourable research areas

regardless of other consequent challenges such as false alarm rate and response time.

This chapter expands on the MCI based on collaborative techniques to help the

Collaborative Intrusion Detection and Prevention (CIDPS) manager assimilate and

synthesize false alarm rates into a well-managed set that applies to the whole

networking environment under fully distributed collaborative management control.

2.5 Discussion

This thesis introduced three classes of IIDPS detection methodologies,

approaches and technologies. Each technique has its advantages and limitations. The

TAI-based IDPS is straightforward to implement and very effective in inspecting known

attacks. Still, the approach hardly identifies unknown attacks, attacks concealed by

evasion techniques and several variants of known attacks. A number of fuzzy rule-based

approaches to detect unknown attacks were also proposed. Such techniques may

unnecessarily result in issues with excessive computing time consumption and rapid

updating of the knowledge base, hindering attack effectiveness.

52

A more accurate and simplified approach is still required to increase efficiency

and effectiveness. Computational intelligence-based approaches such as Reinforcement

Learning (RL) algorithm have the merit of possessing no prior knowledge of attacks.

They do not work well in real-time applications due to the high computational

complexity. A multi agent-based CI (MCI) not only mitigates high computational

complexity such as time consumption and updating knowledge, but also enhances

detection performance.

Table 2.12 tabulates the most recent multi-agent-based CI works applicable to

IDPS. These are classified in terms of management structure, advantages and

disadvantages. MCI-based IDPSs and the three concepts of management, namely

FRLM, KM, and MA may be of assistance in designing an efficient system that satisfies

Collaborative-IIDPS (Co-IIDPS) performance.

Table 2.12: Proposed Co-IIDPSs in terms of MCI methods classified according to our taxonomy

Reference Technology

layout

Audit source

location

Management

structure

Advantage Disadvantage

Zhang et al.

(2001)

ad-hoc

networks

Public Collaborative

(MAS-CI)

Overcoming

detection

complexity by using

distrusted agents

N/A

Mohajerani et

al. (2003)

NIDS Private Individual

(single)

N/A The MLP neural

network does

not provide

feedback.

Dagupta et al.

(2005)

NIDS Public Collaborative

(MAS-CI)

The advantage of

having an individual

agent for each

functional module is

to make future

modifications easy

N/A

Agah et al.

(2007)

CIDPS Private Collaborative

(MAS-CI)

Using repeated

decision policy

significantly

improve the chance

of anomalous

recognition

N/A

Mosqueira-

Rey et al.

(2007)

NIDS Private Individual

(single)

N/A N/A

Ramachandran

et al. (2008)

ad-hoc Public/Private Individual

(single)

N/A N/A

Herrero et al.

(2009)

NIDS Private Individual

(single)

1. Scalability by

adding new agents

dynamically

The absence of

a mechanism

that

53

anytime, 2.Failure

tolerance by backup

methods when

working instances

fail (proactive

behaviour)

automatically

responds, with

the final

decision made

by the

administrator.

Stafrace et al.

(2010)

Wireless

Ad-hoc

Public Individual

(single)

The collaborative

work of the tactical

squad of agents has

led to concurrent

detections of

multiple threat

N/A

Renjit et al.

(2011)

Wireless

sensor

N/A Collaborative

(MAS-CI)

N/A N/A

Leon et al.

(2011)

Cognitive

Radio

Private Collaborative

(MAS-CI)

Flexibility N/A

Vakili et al.

(2011)

CIDS Private Collaborative

(MAS-CI)

Reliability as an

impact factor hence

learning mechanism

N/A

Fisch et al.

(2012)

CIDS Public Individual Broadcasting

mechanism

communication

improved

cooperative

detection

N/A

Devarakonda

et al. (2012)

HIDS Public Collaborative N/A NA

Patel et al.

(2012)

CIDPS Public Collaborative N/A N/A

The features employed are very similar to each other. The most important

varying features are management capabilities in the system structure. The collaborative

management using the multi agent system-based computational intelligence portrays the

ability to mitigate detection problems. In other words, the individual or single

capabilities in terms of self-cooperative techniques (without using CI methods) consider

all the features addressed in their systems. These inefficiencies are evidence of the lack

of cooperative knowledge regarding suitable CI methods to identify intrusion prior to

initiating any development.

All new solutions for developing multi agent-based CI methods consider the

requirements (detection and false alarm rate) as being able to overcome Co-IIDPS

complexities and meet the real operational goals of networks. As illustrated in Table

2.13 and as per our analysis, the proposed MCI-based Co-IIDPS mentioned in the

54

references meet two well-known requirements, and it is thus realistic to place them in

actual network environments. The heterogeneous essence of network necessitates using

MCI and individual techniques for Co-IIDPS to meet the stated requirements.

Table 2.13: The developed Co-IIDPSs (MCI) which met our proposed performance requirements

References requirements True Positive False Positive False Negative

Zhang et al. (2001) NMP MR MR

Mohajerani et al. (2003) MR MR MR

Dasgupta et al. (2005) MR MR MR

Agah et al. (2007) MR N/A N/A

Mosqueria-Rey et al. (2007) N/A N/A N/A

Ramachandran et al. (2008) MR MR MR

Herrero et al. (2009) N/A N/A N/A

Stafrace et al. (2010) MR MR MR

Renjit et al. (2011) MR MR MR

Leon et al. (2011) P NMP NMP

Vakili et al. (2011) P NMP NMP

Fisch et al. (2012) P NMP NMP

Devarakonda et al. (2012) MR NMP NMP

Xu et al. (2010) MR MR MR

P = Partially NMP = not meet performance MR = meet requirement or performance

N/A = Not applicable

Incorporating a multi- agent system (MAS) to computational intelligence (MCI)

in terms of Co-IIDPS allows monitoring intrusion activity. Fuzzy system (FS) with

reinforcement learning (RL) in terms of fuzzy reinforcement learning manager (FRLM)

has merged into Co-IIDPS, resulting in high true positive and low false alarm rates. The

policy aspect of MAS-based FRLM applies a negotiation method to improve the

detection accuracy. The developed Co-IIDPS around MAS-based FRLM satisfies the

detection performance.

2.6 Chapter Summary

In this chapter, firstly, a comprehensive taxonomy along with state-of-the-art

intrusion detection and prevention systems was presented. The scope was to capture

researchers’ attention into attempting to discover potential solutions to augment IDPS in

order to minimize the impact of attacks on networks.

55

Secondly, the concept of intelligent intrusion detection and prevention system

has been analysed in detail, showing the importance of this paradigm to enhance IDPS

performance and reduce operational costs. In addition, within this broad concept, the

main IIDPS were assessed and categorized into three trends: traditional artificial

intelligence, computational intelligence and multi- agent-based computational

intelligence.

Thirdly, this chapter shows the ability of multi agent based CI methods in terms

of collaborative IIDPS. The conclusion is that further efforts are needed to find more

effective solutions, especially those based on game theoretic-computational intelligence

methods in terms of adaptive optimization techniques with cooperative approaches.

56

Chapter 3 : ADAPTIVE OPTIMIZATION TECHNIQUES

The first part of this chapter summarizes the principles of Fuzzy Logic, which is

the theoretical foundation on which the techniques proposed in this thesis are based. The

analysis focuses on FLCs which can effectively take a linguistic control technique that

relies on expert knowledge and change it into an automatic control technique. The

second part of the chapter is devoted to several techniques that are especially suitable

for optimizing FLCs. Special attention is drawn to RL, which, in this thesis, is the

method selected amongst the previously described techniques. The third part of the

chapter encapsulates the principles of the Game Theory, which is the mathematical

basis on which techniques proposed in this thesis are based. Special consideration is

given to fuzzy reinforcement learning that adopts the Game Theory. In addition, a

collaborative IIDPS based on fuzzy Q-learning is proposed.

3.1 Overview

In recent years, intrusion detection and prevention systems have become very

important. To cope with security attacks on infrastructure over the last decade, security

organizations have paid special attention to cost savings, with the concept of IDPS

being of relevant interest (Pathan, 2014). From this perspective, self-optimization

typically comprises network parameter tuning. Nonetheless, the set of network

parameters that can be optimized in a network is extremely large, as there are countless

IDPS algorithms running on it and their parameters need to be optimized. In addition,

even if the optimization process is only done on a few relevant parameters, the

connection among parameter settings and network performance is not clear-cut. For this

reason, IDPS parameter optimization should be performed intelligently. As a result, the

IDPS would be able to amend its parameters in terms of intelligence-based IDPS

(IIDPS) in order to achieve optimum performance with no human work. However,

57

countless parameters can be changed remotely in the IIDPS system. From the operator’s

standpoint, adjusting IIDPS parameters that do not require time scheduling is the

preferred alternative.

3.2 Fuzzy Logic

This section presents the theoretical basis of the computational intelligence

methodology known as Fuzzy Logic. This discipline was initiated by Lotfi A. Zadeh

(1965) , professor at the University of California, Berkeley.

Fuzzy Logic emerged as an important tool for system control and complex

industrial processes, as well as for home and entertainment electronics, diagnostic

systems and other expert systems. Currently, a multitude of applications based on Fuzzy

Logic are applied in many different areas, for instance control systems, robotics,

medicine, pattern recognition, computer vision, information and knowledge

management systems, earthquake prediction, scheduling optimization, etc. As an

alternative to Classical Logic, Fuzzy Logic introduces a degree of imprecision when

items are evaluated (Precup et al., 2011). In real life, there is an abundance of

knowledge that is ambiguous and imprecise, and human reasoning usually handles this

kind of information. In this sense, Fuzzy Logic was designed specifically to imitate

human behaviour. Additional benefits of Fuzzy Logic include simplicity and flexibility.

In particular, this methodology can deal with problems with imprecise and incomplete

data, and it can easily model non-linear functions of arbitrary complexity.

On the one hand, classical sets arise from the need for humans to classify objects

and concepts. Such sets can be described as well-defined sets of elements or a

membership function μ that can take a value of 0 or 1 from a universe of discourse for

all elements that can belong (or not) to the concerned set. Formally, let X be the

universe of discourse and x the elements contained in X. In addition, suppose A is a set

58

that contains some elements in the universe of discourse X. Then, the element x belongs

or does not belong to set A, as characterized by the following function:

𝜇
𝐴(𝑥)={

1 𝑖𝑓 𝑥 ∈ 𝐴
0 𝑖𝑓 𝑥 ∉ 𝐴

 (3.1)

 where 𝜇𝐴(𝑥) is the membership function corresponding to set A. Conversely, the

necessity to work with fuzzy sets comes from the existence of concepts with no clear

boundaries in their definition. Classical set theories categorize elements into crisp sets

with well-defined boundaries between values. By contrast, fuzzy set theories classify

elements into continuous sets based on an underlying theory that depends on the degree

of membership. This means that membership functions are given a value ranging from 0

to 1 with undefined, gradual transitions between values. Formally, suppose B is a fuzzy

set that contains elements in the universe of discourse X. Then such fuzzy set is

characterized by the following membership mapping function:

μB(x):X→[0,1] (3.2)

For all 𝑥 ∈ 𝑋, 𝜇𝐵(𝑥) indicates how strongly Element X is connected to Fuzzy Set

B. Although the membership function for a particular fuzzy set can be of any shape or

type, an appropriate membership function is typically determined by experts in the field.

In this sense, some membership functions, e.g. triangular, trapezoidal and Gaussian, are

of special interest for designers.

As for crisp sets in Classical Logic, relations and operators can also be defined

for fuzzy sets in Fuzzy Logic. In particular, these relations are the equality,

containment, complement, intersection and union of fuzzy sets. Among these relations,

the intersection of fuzzy sets plays a key role in designing rules for fuzzy controllers, as

described in the next section. The intersection of sets A and B defines elements that

occur in both sets. Operators that employ intersections are called t-norms. T-norms

59

results in sets that encompass all elements found in either Set A or Set B and also

consider the degree of membership related to the t-norm. The most popular t-norms are

defined as follows:

Min-operator.

𝜇𝐴∩𝐵 (𝑥) = 𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}, ∀𝑥 ∈ 𝑋. (3.3)

Product operator.

𝜇𝐴∩𝐵 (𝑥) = 𝜇𝐴(𝑥)𝜇𝐵(𝑥), ∀𝑥 ∈ 𝑋. (3.4)

As previously stated, Fuzzy Logic imitates human behaviour. One way of doing

this is through using the notion of linguistic variables. A linguistic variable has a value

of a word or sentence, allowing for computation with words rather than numbers. Such

linguistic variable can be a word, linguistic label or an adjective. For example, let us

consider the height of people in a country. In this case, the variable ‘height’ is a

linguistic variable. A possible value for the numeric variable ‘height’ can be tall or

short, meaning that a fuzzy set is associated with a linguistic term or value. In addition,

certain adverbs can also be combined with adjectives to modify fuzzy values, e.g. very

tall would refer to an individual who is noticeably taller than his peers. In other words,

linguistic variables can serve to create numerical or logical statements from natural

languages, facilitating handling human reasoning at the computational level. In this

thesis, an attack data source can be defined as a 5-tuple ADS={Pt,Dp,Tr,Bs,Co}, or

inputs of proposed algorithms according to the vulnerability scanning information,

where Pt denotes the type of protocol (TCP=1, UDP=2); Dp is the destination port; Tr is

the variance of time difference between two connections during a specific time window;

Bs is the length of the packet from source to destination; and Co denotes the number of

connections to the same host as the current connection in the past two seconds.

60

An important feature of Fuzzy Logic is that it provides a framework for handling

rules (for control or decision making) that have earlier been expressed in an imprecise

form. In this context, linguistic variables are embedded in an FLC’s rules, facilitating

the representation of human control expertise. More specifically, FLCs are composed of

several IF-THEN rules that are easy to create. The succeeding section presents a short

overview of FLCs, focusing on the components of such controllers and some types of

fuzzy controllers for detecting features of distributed denial-of-service attacks.

3.2.1 Fuzzy Logic Controller Design

FLC design is one of the most important application areas of Fuzzy Logic

(Engelbrecht, 2007). The main benefit of FLCs is that controlling a system (also called a

plant) can be done using sentences rather than equations. This means that a control

strategy can be described in terms of linguistic rules, in a more similar way to human

language, instead of using for instance, differential equations. Since their start in 1975,

many FLCs have been created for consumer products such as air conditioners, laundry

appliances, audio visual equipment and industrial applications including hydro-electric

generators, subways, and robotic controls. Over time, FLCs have proven they can

provide better results than conventional control algorithms. FLCs are especially useful

for complex processes that are beyond the scope of traditional quantitative methods, or

when information is unreliable (Lee, 1990).

Designing an FLC includes defining the fuzzification and defuzzification

processes, developing fuzzy control rules and generating a database. Figure 3.1

illustrates a generic FLC comprising four fundamental elements. The first element is

the fuzzifier, which takes input data and changes it into linguistic variables that can also

form labels for the fuzzy sets. Secondly, the knowledge base is a database and collection

of linguistic statements based on expert knowledge, which is usually expressed in the

61

form of IF-THEN rules. Thirdly, the inference engine performs inference to compute a

fuzzy output. Finally, the defuzzifier, which is the opposite of the fuzzifier, provides a

non-fuzzy control action from an inferred fuzzy control action. The remaining

paragraphs of this section describe each of these blocks in greater detail.

Knowledge Base

Inference
Engine

Fuzzification
Interface

Defuzzification
Interface

Input

(Crisp)

output

(Crisp)

(Fuzzy) (Fuzzy)

Figure 3.1: Block diagram of an FLC

Fuzzification process

The fuzzification interface begins by measuring the input variables’ values.

Next, a scale map is created that converts all these values into corresponding values

from the universe of discourse. Afterwards, the non-fuzzy input values for the fuzzy

representations are revealed.

In practice, the membership functions that correspond to each fuzzy set as

determined in the input space are used to complete these tasks. More specifically, the

fuzzification process is the assignment of membership values (one for each fuzzy value

of the linguistic variable) to a numerical input value. For instance, let us consider the

linguistic variable “time response,” which can take fuzzy values of low, medium and

high. Each input variable’s sharp (crisp) value needs to first be fuzzified into linguistic

62

values prior to the fuzzy decision processes with the rule base. Formally, X denotes the

universe of discourse for the three fuzzy sets. Hence, the fuzzification process receives

the element 𝑎 ∈ 𝑋, and produces the membership degrees 𝜇𝑙𝑜𝑤(𝑎), 𝜇𝑙𝑜𝑤(𝑎) 𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑎)

and 𝜇ℎ𝑖𝑔ℎ(𝑎). The characteristic function of a fuzzy set is assigned values between 0 and

1, which represent the degree of membership of an element in a given set. Table 3.1

displays the linguistic terms and their fuzzy numbers used for evaluating the attack data

source for time response, buffer size, and count. Figure 3.2 indicates the membership

functions for time response.

Table 3.1: Fuzzy rating for the occurrence of attack traffic

Linguistic

variables

Fuzzy number

Tr Bs Co

Low (L) (-inf,-inf,0,40) (-inf,0,2,3) (-

inf,0,1,1.5)

Medium (M) (20,40,80,100) (2,3,5,6) (1,1.5,2,2.5)

High (H) (80,120,inf,inf) (5,6,8,inf) (2,2.5,3,inf)

Figure 3.2: The membership functions of linguistic variables for attack data source Tr

Knowledge base

The FLC knowledge base comprises a database and a set of rules. The database

permits fuzzy rules to be characterized and the fuzzy data to be manipulated. The set of

rules provides the dynamic behaviour of the FLC through a set of linguistic rules

derived from expert knowledge.

63

To begin with, the database is subjective because it is created from experience

and judgments. The following aspects are related to database construction in an FLC:

 Discretization. Also referred to as quantization, its function is to convert a

continuous universe into a discrete universe that contains a definite number of

segments or quantization levels. In this case, membership values are assigned to

generic elements found in the new discrete universe to identify a fuzzy set. In

addition, there is a trade-off when selecting the number of quantization levels.

On the one hand, it should be sufficiently large to provide appropriate

granularity but on the other hand, it should be sufficiently small to save memory.

In this sense, the corresponding mapping that transforms measured variables into

values in the discretized universe can be linear, non-linear or both.

Fuzzification
Process

Time response
(Tr)

Non-Fuzzy Input

(Tr): 30 ms

Low (-inf, -inf, 0,40)

Med (20,40,80,100)

High (80,120,inf,inf)

µ(Tr)

Figure 3.3: Example of fuzzification process

 Normalization. A universe of discourse is normalized when a discretization

process is used to map a finite number of segments to their corresponding

segments in the normalized universe. The mapping can be linear, non-linear or

both.

 Partition of input and output spaces. A fuzzy partition determines how many

fuzzy sets need to be defined and how granular the FLC control will be. This

64

depends on the characteristics of the system being controlled and the quality

required for the control process.

 Completeness. The concept of completeness is related to the fact that the FLC

generates an appropriate action for every state in the system. Typically,

completeness regards design experience and engineering knowledge.

 Membership functions. A membership function determines the grade of the

membership assigned to each fuzzy set. Decisions about these assignments are

established using subjective criteria. For example, membership functions for

input variables that are sensitive to noise are typically large enough to decrease

that sensitivity. Membership functions are customarily expressed as bell,

triangular or trapezoid-shaped functions.

Secondly, the rule base is built using IF-THEN syntax to create control

strategies as shown in Eq. (3.5):

IF (a set of conditions are satisfied) THEN (a set of consequences can be inferred), (3.5)

where the antecedent forms the first part of the conditional statement and the

consequent if the second part. An antecedent is further defined as a condition of a

domain. A consequent is a control action found in the system. The antecedents and

consequents for a rule can contain more than one linguistic variable.

Defining how an FLC will be characterized depends on selecting the state

variable form the antecedent and control variables found in the consequent. An instance

of a rule is “if pressure is very high, then open the valve.” One of the benefits of using

these rules is that they characterize human behaviour and can be used to analyse

decisions since they supply a framework. In this sense, according to several researchers

domain knowledge can easily be communicated using fuzzy control rules. To formulate

these fuzzy rules, operators and experts in this field were queried using a carefully

65

organized questionnaire. This explains the fact that FLCs are implemented using fuzzy

IF-THEN rules.

Inference engine

Once the input variable values have been converted to fuzzy values through the

fuzzification process, the inference engine identifies which rules are triggered and

calculates the fuzzy values of the output variables. In other words, this process connects

the rule base to the fuzzified inputs to develop the fuzzified output for a rule. To do this,

each output set must be assigned a degree of membership that is part of the consequents

in the fuzzy rules. This is calculated using the degree of membership found in the input

sets in addition to the affiliation between input sets. These connections are established

using a logic operator, which takes sets from the antecedent and combines them. Then,

the output fuzzy sets from the consequent are added to create one general membership

function that will act as the output for the rule.

To explain the inference process, assume that A and B are two input fuzzy sets

in the universe of discourse. The X2 universe of discourse includes a fuzzy set with X1

and C. Let us also consider that the following rule is defined:

𝐼𝐹 (𝐴 𝑖𝑠 𝑎 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑏) 𝑇𝐻𝐸𝑁 (𝐶 𝑖𝑠 𝑐) (3.6)

The 𝜇𝐴(𝑎) and 𝜇𝐵(𝑏) values are available to the inference engine because a

fuzzification process was used in their development. Thus, the inference process starts

by taking a rule base and calculating the degree of truth for each rule. The degree of

truth specifies the triggering strength of a particular rule. It is calculated by combining

the antecedent sets using specific operators, among which the min-operator and product

operator for the intersection relation as previously stated. In this example, assuming the

min-operator, the degree of truth _k for rule k is calculated as:

66

𝛼𝑘 = 𝑚𝑖𝑛{𝜇𝐴(𝑎), 𝜇𝐵(𝑏)}. (3.7)

The following step in the inference process is to determine a single fuzzy value

for each output 𝑐𝑖 ∈ 𝐶 that has been activated. In general, the final fuzzy value

corresponding to the output, 𝑐𝑖 , denoted as 𝛽𝑖, is computed using the max-operator as

follows:

𝛽𝑖 = 𝑚𝑎𝑥∀𝑘{𝛼𝑘𝑖
} (3.8)

where 𝛼𝑘𝑖
 is the degree of truth of rule k, which activated output 𝑐𝑖.

The final result of the inference engine is a set of fuzzified output values. In this

case, the rules that are not activated have a degree of truth equal to zero. In addition,

rules can include a weighting factor in the range [0, 1] to represent the degree of

confidence in that rule. Such factors derived from expert knowledge are applied when

the fuzzy rules are aggregated to produce a non-fuzzy value in the defuzzification

process.

Defuzzification process

This method establishes a relationship between fuzzy control action spaces, the

outputs from the universe of discourse, and crisp, non-fuzzy control action spaces. In

the consequent, a set’s degree of membership is represented by a rule’s degree of truth.

Given the degree of truth from a set of activated fuzzy rules, the defuzzification process

creates non-function scalar values from the output of fuzzy rules. To calculate such

scalar values, two different approaches can be used. Mamdani et al. (1975) developed a

fuzzy rule that was the foundation for the first approach, where the rules lead to a

consequent that is another fuzzy variable [see (3.6) as an example]. The second

approach is known as the Takagi-Sugeno approach and it uses rules with consequents

that are polynomial functions of the inputs (Takagi et al., 1985).

67

The Mamdani approach:

In this method, there are several ways to find a scalar value that represents what

actions will be taken.

• Maximum-Minimum Approach: In this approach, rules with the highest degree of

truth are selected. Then the membership functions of the activated consequents are

determined. Finally, the centroid for the area covered by the membership function is

found. The FLC’s output is the centroid’s horizontal coordinate.

• Averaging Approach: The averaging approach uses the average of the degrees of

truth for all activated rules. After the average is calculated, the membership functions

are limited to this average. Next, the horizontal coordinate of the centroid for the area is

determined and used as the FLC output.

• Root-sum-square method. The membership functions are rated such that the apex for

each function is that same as the maximum and the peak of each function is equal to the

maximum degree of truth value associated with that particular function. As in the

averaging approach, the horizontal coordinate of the centroid for the area is calculated

to form the FLC output.

• Clipped Centre of Gravity Method: In this method, the membership functions are

shortened, or “clipped” so they are equal to the degree of truth for the corresponding

rule. The next step is to find the horizontal coordinate of the centroid for the area, which

will also be used as FLC output.

Calculating the centroid for a trapezoidal area depends of whether the domain of

the membership functions is continuous or discrete. A finite amount of values, 𝑛𝑥 , are

found in a discrete domain and the following equation is used to calculate the

defuzzification process results:

68

𝑜𝑢𝑡𝑝𝑢𝑡 =
∑ 𝑥𝑖𝜇𝐶(𝑥𝑖)

 𝑛𝑥
𝑖=1

∑ 𝜇𝐶(𝑥𝑖)
 𝑛𝑥
𝑖=1

 (3.9)

where 𝑥𝑖 is each possible value. In the case of a continuous domain, the output is

given by the following expression:

𝑜𝑢𝑡𝑝𝑢𝑡 =
∫ 𝑥𝜇(𝑥) 𝑑𝑥𝑥∈𝑋

∫ 𝜇(𝑥) 𝑑𝑥𝑥∈𝑋

 (3.10)

where X is the universe of discourse.

Takagi-Sugeno approach:

A typical rule for this approach adheres to the following generic expression

(Takagi et al., 1985):

IF (𝑋1 is 𝐴1 and . . . and 𝑋𝑛 is 𝐴𝑛) THEN (Y = 𝑃0 + 𝑃1𝑋1+ . . . + 𝑃𝑛𝑋𝑛). (3.11)

where 𝑋1,..., 𝑋𝑛 represent the fuzzy input variables and Ai indicates one of the fuzzy

sets for the linguistic variable 𝑋i; Y denotes the output variable; and 𝑃0,..., 𝑃𝑛 are the

parameters. Thus, the main difference between the Takagi-Sugeno and Mamdani

approaches is that in one of them, the consequent of the rule is a mathematical function

instead of a fuzzy consequent. Furthermore, the Takagi-Sugeno has been extended to

non-linear functions. When a set is composed of a set of activated rules and associated

degrees of truth, calculating the resulting crisp value as a weighted average of the rule

outputs can be done with the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡 =
∑ 𝛼𝑖.𝑓(𝑋1,….,𝑋n)𝑁

𝑖=1

∑ 𝛼𝑖
𝑁
𝑖=1

 (3.12)

where N represents the number of rules and 𝑓(𝑋1, … . , 𝑋n) signifies a few of the

mathematical input functions.

69

The main benefits of the Takagi-Sugeno approach are that a more dynamic

control is provided, FLCs are computationally more efficient and best suited for

mathematical analysis, and it works well with optimization and adaptive techniques. For

these reasons, the FLCs proposed in this thesis are based on the Takagi-Sugeno

approach.

To conclude this section, an illustrative example of FLC operation is provided.

The FLC is based on the Takagi-Sugeno approach explained previously. Suppose that

the controller is described by the following two rules:

IF (x is A1 and y is B1) THEN (z is f1(x, y) = K1) (3.13)

IF (x is A2 and y is B2) THEN (z is f2(x, y) = K2) (3.14)

from which the following elements can be identified:

• Variables x and y represent the universe of discourse X and Y, respectively.

• Two fuzzy sets, A1 and A2, are defined for variable x.

• Two fuzzy sets, B1 and B2, are defined for variable y.

• There is one output variable, z.

• Two constant functions, 𝑓1 and𝑓2 , are defined for variable z.

The membership functions defined for each fuzzy set of input variables are shown

in Figure 3.4.

 Then, the basic FLC operation is as follows:

 Step 1. The fuzzification process calculates the membership value for each

fuzzy set by applying the associated membership function as shown in Figure

3.5 (a).

 Step 2. The inference engine computes the degree of truth for each fuzzy rule

through the combination of fuzzified inputs using the min-operator, as shown in

Figure 3.5 (b). The expressions used to calculate the degree of truth are:

70

𝛼1 = 𝑚𝑖𝑛{𝜇𝐴1
(𝑥0), 𝜇𝐵1

(𝑦0)} (3.15)

&

𝛼2 = 𝑚𝑖𝑛{𝜇𝐴2
(𝑥0), 𝜇𝐵2

(𝑦0)} (3.16)

 Step 3. Finally, the defuzzification process calculates the non-fuzzy output as a

weighted average of the rule constant outputs. The equation to produce the

output value is:

𝑜𝑢𝑡𝑝𝑢𝑡 =
𝛼1.𝑘1+𝛼2.𝑘2

𝛼1+𝛼2
 (3.17)

X

µ(x)

A1

A2

x Y

µ(y)

B1

B2

y

Figure 3.4: Membership functions of the input fuzzy sets as example

71

X

µ(x)

A1

A2

x0

µ(y)

B1
B2

y0

µA1(x0)

µA2(x0)

(a) Fuzzyfication process

µB2(x0)

µB1(y0)

X

µ(x)

A1

x0 Y

µ(y)

B1

y0

AND
(min)

µB1(y0)

X

µ(x)

A2

x0 Y

µ(y)

B2

y0

µB2(y0)
AND
(min)

(b) Calculation of the degree of truth for each fuzzy rule

Figure 3.5: Basic FLC operation example

Optimization of the self-tuning process

An important area in algorithmic development to cope with complex problems is

the design of so-called intelligent algorithms. In this context, the development of models

based on biological and natural intelligence has played a key role in the last years.

Artificial neural networks, reinforcement learning, evolutionary computation, and

swarm intelligence are all examples of such algorithms. More recently, several of these

approaches have been combined with each other or with traditional methods to solve

challenging and complex issues. Moreover, these algorithms are part of the field of

machine learning employed in several different areas of research, including many social

72

sciences and computer science. In principle, any of these approaches should be capable

of yielding results in a relatively short time.

In this thesis, the proposed auto-tuning algorithms are based on FLC design.

Since detecting DDoS attacks in networks can be considered complex due to the

presence of a large multitude of diverse and interacting elements, defining the controller

usually becomes a challenging task for IIDPS. In addition, as DDoS attacks in networks

involve unpredictable and highly variable context factors, which can also vary on

different time scales, the FLC needs to be reconfigured throughout adjusting the

detector engine parameters in order to identify those traffic variations.

Thus, to cope with the dynamic variations, the lack of knowledge or, simply, to

refine the behaviour of the controller, different strategies have been analysed in this

thesis, namely two reinforcement learning algorithms (i.e., Sarsa and Q-learning). The

objective of these mathematical techniques is to optimize the behaviour of the FLC

through a learning process. In this section, after providing a general overview of RL

techniques, a more detailed overview is devoted to the Q-learning algorithm and how

FLC optimizes with Q-learning, which is of particular interest in scenarios such as

wireless networks in which learning from interaction becomes essential for detecting

DDoS attacks. In this section, an optimized IIDPS is proposed, which utilizes the fuzzy

Q-learning algorithm with weighted strategy sharing in terms of multi-agent system-

based IIDPS. The analysis particularly stresses on the cooperative game theory-based

fuzzy Q-Learning algorithm, which is a promising approach in the context of

cooperative IIDPS in this thesis.

73

3.3 Reinforcement Learning

In a particular environment, an agent can be encouraged to engage in a specific

action that will lead to maximizing a cumulative reward. This type of machine learning

is known as RL. Its two defining characteristics are a trial and error search and actions

with consequences that can affect immediate and future rewards (Sutton et al., 1998).

RL differs from other learning approaches, such as supervised learning that is

typically used in Neural Networks. In the latter case, learning is done by using

previously collected examples or sets of training data, which are not appropriate for

interactive learning. In addition, it is difficult to find a training data set that adequately

represents all of the situations in which an agent would be required to act. Thus, in those

instances, an agent that can learn from its own experience remains the only answer.

Beyond the agent and environment, the following elements can be identified in RL:

 Policy: the policy defines how the agent must act at a given time. In other

words, it connects perceived states from the environment and actions to be taken

as a result of those states.

 Reward Function: the reward function describes the goal of an RL problem.

More specifically, it is a map between each perceived state and a scalar or

reward that sets out the value of being in that state. However, the objective of

the agent is to maximize the total reward rather than the immediate reward. The

reward function signifies immediate value.

 Value Function: the value function specifies what is good over the long term. In

particular, the value function is a map between each perceived state and the

rewards that an agent can expect to accumulate over time beginning with a

particular state.

74

 Model of the Environment (optional): the model of the environment illustrates

how the environment behaves. RL is capable of learning by trial-and-error while

at the same time learning a model of the environment.

To illustrate these concepts, a basic scheme of an RL problem is shown in Figure 3.6

where a general environment responds at time t + 1 to an action taken at time t.

A key concept in RL is the trade-off between exploration and exploitation.

When an agent is required to act, it will select an action that has yielded rewards in the

past. However, in the absence of former results, the only way to discover what actions

will be profitable is to try actions that have not been previously selected. In other words,

the trade-off between exploration and exploitation rests on an agent’s ability to take

advantage of current knowledge but remain open to other, untried actions. In this sense,

the agent’s primary goal is to maximize the rewards achieved over the long term, that is,

the sum of the rewards obtained from all situations or states that will be visited in the

future:

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ . = ∑ 𝛾𝑘𝑟𝑡+𝑘+1,∞
𝑘=0 (3.20)

where 𝑟 represents the consequence of an action that leads to a numerical reward for

each time step and Y denotes the discount rate given to indicate how important a future

reward will be.

The Markov property

As indicated previously, the function of a state influences how an agent will

make decisions. In this context, important environmental properties and state signals,

otherwise known as the Markov Property, can be found. The state signal includes all the

information available to the agent. However, the agent does not expect to receive any

information that would facilitate decision making or even all the information regarding

the environment.

75

Environment

Value
function

Policy

Critic

Actor

State

Reward

TD error

Figure 3.6: The basic elements of an RL problem

An appropriate state signal is one that summarizes past information compactly,

but also maintains the relevant information parts. The Markov property is fulfilled when

a state signal retains all relevant information. In this situation, at time step t+1, the

response of the environment is only dependent on time t. As such, the environmental

dynamics can be defined as:

𝑃𝑟{𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟| 𝑠𝑡, 𝑎𝑡}, (3.21)

where 𝑃𝑟{. } denotes the probability of its argument; 𝑠 is the state of the environment; 𝑠′

is any state in the system; 𝑟 is the received reward; and 𝑎 denotes the action taken by

the agent. When the environment contains the Markov property, it is possible to predict

the next state and rewards based on current states and actions.

A Markov decision process (MDP) is an RL task with the Markov property. A

finite MDP has finite states and actions and is further defined by a set of actions and

states and the dynamics of the environment. The latter is specified by transition

prospects and how valuable the next reward is expected to be. The transition probability

76

for each probable next state (s’) for any current state (s) and any action (a) can be

calculated using the equation below:

𝑃𝑠𝑠′
𝑎 = 𝑃𝑟{𝑠𝑡+1 = 𝑠′| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}. (3.33)

Likewise, the expected value of the next rewards for any current action a, state s,

and next state 𝑠′, is calculated as follows:

𝑅𝑠𝑠′
𝑎 = 𝐸{𝑟𝑡+1| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′} (3.34)

where 𝐸{·} is the expected value of its argument. The most important factors of a

dynamic finite MDP are its transition probabilities and expected value of the next

reward.

Optimal value functions

Most RL algorithms search for value functions that assess the benefits of a given

state available to an agent. As previously stated, the expected accumulated reward

measures the value of the state 𝑠. In RL, a state-value function, called 𝑉 (𝑠), is used to

identify the benefits of obtaining state 𝑠. The value is subject to what states the agent

has visited, which in turn depends on the what policy has been followed. A policy

function 𝜋 is a map that shows the connection between states and actions used to govern

how the agents will behave. In contrast, 𝜋(𝑠, 𝑎) indicates the likelihood of engaging in

action 𝑎 from state 𝑠. In this case, the value of state 𝑠 following policy 𝜋 is defined as:

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠}

= 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠}, (3.24)

where 𝐸𝜋{·} means the expected value under policy 𝜋.

77

Similarly, in RL, the action-value function 𝑄(𝑠, 𝑎) qualifies the value of taking

an action 𝑎 when starting from state 𝑠. If the agent follows policy 𝜋, then it is formally

expressed as:

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}

= 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠,∞
𝑘=0 𝑎𝑡 = 𝑎}. (3.25)

Experience can be used to estimate functions 𝑉𝜋 and 𝑄𝜋. A fundamental

property of these functions is that they meet the requirements of certain recursive

relationships. In other words, the following condition holds between the value of 𝑠 and

possible successor states for any policy 𝜋 or any state 𝑠:

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡| 𝑠𝑡 = 𝑠}

= 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠∞
𝑘=0 }

= ∑ 𝜋𝑎 (𝑠, 𝑎) ∑ 𝑃𝑠𝑠′
𝑎

𝑠′ [𝑅𝑠𝑠′
𝑎 + 𝛾𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′∞

𝑘=0 }]

= ∑ 𝜋𝑎 (𝑠, 𝑎) ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′ , (3.26)

Equation 3.26 is also called the Bellman equation for 𝑉𝜋. Moreover, the solution

to this equation is the value function 𝑉𝜋 .

Finding a good policy that will result in long-term rewards is the same as

solving an RL problem. An optimal policy always has an expected value greater than

(or equal to) other policies for all states. Likewise, the best policies have equal state and

action value functions called 𝑉∗and 𝑄∗ respectively. 𝑉∗is expressed as:

𝑉∗(𝑠) = 𝑚𝑎𝑥𝜋𝑉𝜋(𝑠), (3.27)

for all 𝑠 ∈ 𝑆 when S represents the set of states. Similarly, 𝑄∗ is described as:

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋(𝑠, 𝑎), (3.28)

78

for every s ϵ S and a ϵA(s), where 𝐴(𝑠) indicates the set of possible actions in state 𝑠.

Function Q∗ delivers the return expected as a result of an action in state s before it

follows an optimal policy. This process can be stated in terms of V∗ as demonstrated

below:

Q∗(s, a) = E{rt+1 + γV∗(st+1)|st = s, at = a}. (3.29)

The Bellman equation for V∗ can be rewritten without making reference to any

specific policy. If this happens, it is known as a Bellman optimality equation. Bellman

optimality equations state that when the best action is taken from a state, its expected

return is the same as the value of the state under an optimal policy, as shown below:

𝑉∗(𝑠) = 𝑚𝑎𝑥𝑎𝜖𝐴(𝑠)𝑄𝜋∗
(𝑠, 𝑎)

= 𝑚𝑎𝑥𝑎𝐸𝜋∗{𝑅𝑡|st = s, at = a}

= 𝑚𝑎𝑥𝑎𝐸 {𝑟𝑡+1 + γV∗(st+1)|st = s, at = a}

= 𝑚𝑎𝑥𝑎 ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′ . (3.30)

The Bellman optimality equation for 𝑄∗ is:

Q∗(s, a) = E{rt+1 + γ𝑚𝑎𝑥𝑎′γ Q∗(st+1, 𝑎′)|st = s, at = a}

= ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑚𝑎𝑥𝑎′Q∗(s′, 𝑎′)]𝑠′ . (3.31)

The Bellman optimality equation is a series of equations where each state is

represented by its own equation. In other words, 𝑁 equations will represent 𝑁 states

with 𝑁 variables. In terms of finite MDPs, this means that the solution for the Bellman

optimality equation is independent of policy. Furthermore, any techniques used to find

79

solutions for systems in non-linear equations can be used in cases where the dynamics

of an environment (𝑃𝑠𝑠′
𝑎 a or 𝑅𝑠𝑠′

𝑎) are known.

Discovering an optimal policy becomes fast and easy once the system of

equations is solved. When the value of 𝑉∗is known, the best actions in the next step

become optimal actions and any greedy policy becomes an optimal policy.

𝑉∗ is significant because it considers the rewards generated from all future

behaviours. When it is used to assess short-term consequences that result from an

action, it establishes a greedy policy that is optimal in the long term.

Alternatively, if the value of 𝑄∗is known, the agent is not required to find the

actions for the next step. Instead, it only looks for actions that maximizes 𝑄∗ (𝑠, 𝑎). In

these cases, choosing the best options becomes even easier. In other words, the optimal

action-value function does not require information about possible successor states and

values, or the dynamics of an environment to determine optional actions.

Solving the Bellman optimality equation creates a method of discovering

optimal polices and solving RL problems. Unfortunately, these solutions are not useful

without further adjustments. In practice, three assumptions must be made: (a) accurate

knowledge regarding the dynamics of the environment, (b) sufficient computational

resources to find solutions, and (c) the Markov property.

To solve problems in an approximate way, many different decision-making

methods can be applied, for example heuristic search methods and dynamic

programming. In this context, many RL methods are clearly viewed as approximate

means to find solutions for Bellman optimality equations. In such instances, real,

experienced transitions are employed rather than knowledge about expected transitions.

80

The techniques most commonly employed for solving RL problems are Monte

Carlo, temporal different methods and dynamic programming. Each class of methods

has advantages and disadvantages. Dynamic programming methods, which attempt to

solve Bellman equations, are successful because they are mathematically sound, but

they require a complete and accurate model of the environment. Monte Carlo methods

attempt to estimate value functions and discover optimal policies. They are conceptually

simple and a model is not required, but they do not function for calculations that require

step-by-step processes because they use averaging sample returns and work best for

episodic tasks. To overcome this limitation, experiences are divided into episodes.

When an episode is completed, then the policies and value estimates are modified.

Finally, temporal-difference methods require complex analysis but are fully incremental

and a model is not required. These three different method types also vary in terms of

efficiency and speed of convergence, and they can be combined in order to obtain the

benefits of each one.

Q-Learning algorithm

Mechanisms for determining optimal policies follow generalized policy

iterations based on alternating policy improvements and evaluations. Policy evaluation

is used to make value functions resemble current policies. Policy improvements utilize

new value functions to enhance policies in terms of expected value. This concept is

illustrated in Figure. 3.7. The result of such an iterative process is that both policy and

value functions approach optimality.

81

Transition Probabilities

Pπ (i,a)Vπ (i)

Policy Evaluation

Policy
π

Policy improvement

Figure 3.7: Basic scheme of generalized policy iteration

An action-value function is used instead and is calculated by:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝜂[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]. (3.33)

Policy improvement is achieved by selecting actions whose current action-value

is the greatest in that state, meaning to make the policy greedy by:

𝑎(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑄(𝑠, 𝑘). (3.34)

If all state-action pairs can be visited an infinite number of times, the limit of the

policy becomes greedy and the process converges to the optimal value function and

policy.

Watkins et al. (1992) defined Q-learning as a temporal-difference algorithm

where the learned Q(s,a) is a direct approximation of the optimal Q*(s,a) regardless of

the policy followed by the agent. In order to calculate the updated action-value function,

the following equation is used:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝜂[𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑘𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)]. (3.35)

where Q is the optimal action function Q* without depending on the policy followed.

82

3.4 Q-Learning Adaptation to FLCs

Applying RL techniques to an FLC rule base will lead to optimization. A Q-

Learning fuzzy version was developed by Glorennec (1994) to optimize the consequent

of the fuzzy rules found in an FLC. Q-Learning permits continuous state and action

spaces when the action-value function is discretized. The resulting discrete q values are

stored in a look-up table as a finite set of state-action yards. Another benefit of using

this method is that the fuzzy rules easily accept prior knowledge and the learning

process becomes faster.

The agent is forced to select an action from 𝐽 for rule 𝑖 when the action space is

discretized. In some situations, the FLC has 𝑁 fuzzy rules and 𝑎[𝑖, 𝑗] forms the 𝑗𝑡ℎ

possible action for rule 𝑖 and 𝑞[𝑖, 𝑗]. Any associated q-values are kept in the look-up

table. Ultimately, representations of continuous 𝑄(𝑠, 𝑎) are considered to be the same so

that the q-value of each rule consequence can be determined before being used in the

continuous input vector. The steps involved in the fuzzy Q-Learning algorithm are as

follows:

1. In the look-up table, initialize the q*values. If no prior knowledge is available,

use the following equation:

𝑞[𝑖, 𝑗] = 0, 1 ≤ 𝑖 ≤ 𝑁 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝐽, (3.36)

where 𝑞[𝑖, 𝑗] represents the q-value, 𝑁 signifies the number of rules and the number of

actions for each rule is represented by 𝐽.

2. Select an action for each activated rule that has a nonzero degree of truth.

Actions can be selected using one of the following 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policies:

𝑎𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑞[𝑖, 𝑘] with probability 1-𝜖, (3.37)

83

Or,

𝑎𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚{𝑎𝑘, 𝑘 = 1,2, … , 𝐽} with probability 𝜖, (3,38)

In Equations 3.37 and 3.38, 𝑎𝑖 represents the consequent of rule 𝑖 and 𝜖 signifies

the parameter that establishes the trade-off between exploration and exploitation in the

algorithm. In other words, 𝜖 = 0 indicates that the best action was selected and there

was no exploration.

3. Determine the global action suggested by the FLC using the equation

recommended below:

𝑎(𝑡) = ∑ 𝛼𝑖(𝑠(𝑡)).𝑁
𝑖=1 𝑎𝑖(𝑡), (3.39)

where 𝑎(𝑡) denotes the inferred action at time step t, 𝛼𝑖(𝑠(𝑡)) represents the degree of

truth for rule 𝑖 and 𝑎𝑖(𝑡) indicates the selected action for rule 𝑖. The degree of truth is

the distance between rule 𝑖 and input state 𝑠(𝑡) and is computed as:

𝛼𝑖(𝑠(𝑡)) = ∏𝑗=1
𝐿 𝜇𝑖𝑗 (𝑠𝑗(𝑡)), (3.40)

where the total amount of FLC inputs is represented by 𝐿 and the membership function

is represented by 𝜇𝑖𝑗 (𝑠𝑗(𝑡)) for the 𝑗𝑡ℎ FLC input and rule 𝑖.

4. The Q-function from the current q*-value and degree of truth for the rules is

calculated as:

 Q(s(t), a(t)) = ∑ αi(s(t)). q[i,N
i=1 αi], (3.41)

where the value of the Q-function is expressed as 𝑄(𝑠(𝑡), 𝑎(𝑡)) for state 𝑠(𝑡) and action

𝑎(𝑡) in iteration 𝑡.

5. The system is allowed to reach the next state, s(t + 1).

6. After observing the reinforcement signal r(t + 1), find the value of the next

state labelled Vt(s(t + 1)) using:

84

Vt(s(t + 1)) = ∑ αi(s(t + 1)). maxkq[i,N
i=1 αk], (3.42)

7. Calculate the error signal:

∆𝑄 = 𝑟(𝑡 + 1) + 𝛾. 𝑉𝑡(𝑠(𝑡 + 1)) − 𝑄(𝑠(𝑡), 𝑎(𝑡)), (3.43)

8. where 𝛾 indicates the discount factor and 𝑟(𝑡 + 1) is the reinforcement signal;

𝑉𝑡(𝑠(𝑡 + 1)) denotes the value of the new state 𝑄(𝑠(𝑡), 𝑎(𝑡)) signifying the

value of the Q-function for the previous state and the action performed in that

previous state.

9. The q-values are updated using an ordinary descent method described as:

q[i, ai] ← q[i, ai] + η. ΔQ. αi(s(t)), (3.44)

where 𝜂 indicates the learning rate.

10. Starting with Step 2, repeat the process to determine the current state. Stop when

the algorithm reaches convergence.

When the Q-Learning algorithm is finished, consequents with the highest q-values in

the look-up table are used to create fuzzy rules. In summary, Algorithm 3.1 briefly

describes the Fuzzy Q-Learning algorithm steps.

Finally, as stated in Chapter 2, several works where both non-fuzzy and fuzzy

Q-Learning algorithms are applied in network optimization problems are available in

the literature, indicating the effectiveness of combining FLCs and Q-Learning in this

context.

85

Algorithm 3.1. Fuzzy Q-learning algorithm

Step 1: Let 𝑡 = 0, 𝑄𝑖
0(𝑠𝑖 , 𝑎𝑖) = 0 for all 𝑠𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑎𝑖 ∈ 𝐴

Step 2: Select an action for each activated rule (𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 𝑝𝑜𝑙𝑖𝑐𝑦):
𝑎𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑞[𝑖, 𝑘] 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀,
𝑎𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚 { 𝑎𝑖 , 𝑘 = 1,2, … . , 𝐽} 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀

Step 3: Calculate the global action:

𝑎(𝑡) = ∑ αi(s) ∗

N

i=1

(αk)

Step 4: Approximate the Q-function from the current q-values and the degree of the truth of the rules:

Q(S(t), a(t)) = ∑ αi(s) ∗N
i=1 q[i,ai]

Step 5: Leave the system to evolve to the next state, s(t+1).

Step 6: Observe the reinforcement signal, r(t+1), and compute the value of the new state denoted by

Vt(S(t + 1)) = ∑ (s(t + 1)). maxk
N
i=1 Q[S(t),𝑎k]

Step 7: Calculate the error signal:

ΔQ=r(t+1)+γ×Vt(s(t+1))-Q(s(t),a), Where γ is a discount factor

Step 8: Update New Q-table by an ordinary gradient descent method:

𝑎[𝑖, 𝑎𝑖] ← 𝑞[𝑖, 𝑎𝑖] ∗ 𝜂ΔQ. 𝑖, 𝛼𝑖(s(t))

Step 9: Repeat the above-described process starting from step 2 for the new current state until

convergence is achieved

Some limitations of this approach are that the optimization process may be

sensitive to reinforcement signal selection and the fact that the system states must be

visited a sufficient number of times. However, in favour of the above described

advantages, the method adopted in this thesis is based on RL.

As discussed earlier, several studies have examined the effect of using both non-

fuzzy and fuzzy Q-learning algorithms when optimizing networks. These studies

highlight the benefits of combining FLCs and Q-Learning. However, there are

limitations as optimization processes are sensitive to reinforcement signals and the

number of times system states must be visited. Regardless of the limitations, the method

used in this thesis is based on RL.

One of the advantages of the reinforcement learning techniques examined in this

thesis is their ability to enable a single agent to use trial-and-error interactions with the

environment to learn optimal behaviours. Several RL approaches have been created that

permit agents to optimize their behaviour in a variety of circumstances. Though

86

traditional approaches are often unsuccessful in situations where multiple learners use

reinforcement learning in common environments.

3.5 Adaptation of Multi-agent based Fuzzy Reinforcement learning

Assumptions are made in multi-agent environments to assure that convergence

will occur. However, these assumptions are frequently violated. Complexities are

created even in simple situations where agents share a common, stationary setting and

are required to only learn a strategy for a single state. In situations where the agents

have opposing goals there may be no optimal solutions and establishing equilibrium

between agents becomes the primary goal; essentially, agents are unable to improve

their payoffs because other agents keep their actions fixed.

Dynamic environments not only have multiple agents, but they also have

multiple, sequential decisions that increase their complexity. In these settings, agents

must coordinate and consider the current state of their dynamic environment with very

limited information. Typically, agents in dynamic environments cannot observe the

actions of other agents or see what rewards they obtain as a consequence although the

actions of the other agents influence their immediate environment along with the

rewards they can obtain. In very complex environments agents may be unaware that

other agents are present and may interpret their environment as non-stationary. Similar,

equally complex environments allow agents to access information, but the state action

spaces are not conducive to learning because of their complexity and the amount of

coordination required between agents. Before an effective multi-agent approach can be

developed, all these challenges must be addressed. A standard multi-agent

reinforcement learning model is presented in Figure 3.8.

87

Environment

Agent 1

Agent 2

Agent i

Joint
action a(t)

Joint state st
Reward rt

st

r1

st

r2

st

ri

a1

a2

ai

Figure 3.8: Multiple-agents acting in the same environment

Regardless of learning complexity, the demand for multi-agent systems

continues to increase. In cases of systems that are decentralized and single, central

learning methods are impractical. Such systems can be found when data was subjected

to disruptions caused by multiple, conflicting objectives or if a single centralized

controller requires too many resources. Multi-robot setups, distributed load balancing,

decentralized network routing, electronic auctions, and systems designed to control

traffic are all examples of such system types.

As a result of the demand for adaptive multi-agent systems and the complexity

of coping with interacting learners, an increasing number of researchers have worked to

develop multi-learning reinforcement methods. This field of study uses research on

reinforcement learning that takes place within AI and the Game Theory. Previous

studies on the Game Theory concentrated on competitive endeavours, but this field has

expanded into analysing many different kinds of strategic interactions. Game Theory

research has attracted the attention of psychologists, economists, biologists, the AI

community, and computer scientists in general. In this thesis, the Game Theory is used

to describe how attacks are detected using multi-agent fuzzy reinforcement learning

techniques and approaches for analysing learning outcomes.

88

The focus of this thesis is on multi-agent systems that contain strategic

interactions between agents. Agents are seen as autonomous entities with their own

goals, the ability to make independent decisions, and that are affected by other agents’

decisions. These systems are different from systems that use distributed or parallel

reinforcement learning methods where multiple learners work together to accomplish a

single objective. These systems can be used in advanced exploration for standard

reinforcement learning and they rely on the frameworks covered by single agent

theories, such as the theory described by Tsitsiklis (1994). Examples of distributed or

parallel systems include methods that divide the learning state space between agents,

swarm-based methods (Dorigo et al., 2010), and systems where multiple agents work

together to update policies (Mariano et al., 2001). In distributed and parallel

reinforcement systems, algorithm convergence is valid if any outdated information will

be discarded. In other words, the max operator on the right hand side of the Q-learning

update rule is permitted to use outdated Q values.

3.6 Game Theory

The game theory provides a model of strategic interactions based on individuals

competing against each other in a game. A mathematical object is used to represent the

game as it outlines the consequences of the interactions between players in terms of the

rewards to be obtained. AI researchers often rely on extensive game forms where

players take turns performing an action to model classic minimax algorithms (Russell et

al., 1995). This chapter concentrates on reinforcement learning with repeated games or

games in which the players simultaneously perform individual actions. In addition, the

terminology and concepts used in the Game Theory are also discussed in this chapter.

89

Normal Form Games

Definition:

A normal form game can be expressed as (n, A1, . . . , n, R1, . . . , n). In this

statement, 1, . . . , 𝑛 represents the players, 𝐴𝑘 signifies the finite set of individual actions

available to player 𝑘, expression 𝑅𝑘 ∶ 𝐴1 ×. . .× 𝐴𝑛 → 𝑅 states the individual reward

function of player 𝑘, and his expected payoff for an action is denoted by 𝒂 ∈ 𝐴1 ×. . .×

𝐴𝑛.

A game begins with each player 𝑘 independently choosing and individual action

𝒂 from its own private set of actions 𝐴1. The combined actions from all players form a

joint action or an action profile from a joint actin set 𝐴 = 𝐴1 ×. . .× 𝐴𝑛. The expected

reward resulting from the joint action is described as ∈ A, 𝑅𝑘(𝑎).

A payoff matrix can be used to characterize a normal form game. Examples of

typical 2-player games are shown in Table 3.1. In Table 3.1, the action taken by Player

1 is represented by a row in the matrix. The actions available to Player 2 are shown in a

column. The corresponding entry in the matrix identifies the payoffs Player 1 and Player

2 will receive after they complete their actions. Player 1 is sometimes called the Row

Player and Player 2 is sometimes known as the Column Player. The use of more

dimensional matrices in normal form player games can be demonstrated and each entry

in the matrix records the payoff available to every agent once they complete a series of

actions.

Strategy 𝜎𝑘 ∶ 𝐴𝑘 → [0,1] is an element of the probability distribution of action

set 𝐴𝑘 of player 𝑘 described as 𝜇(𝐴𝑘). A pure strategy occurs when 𝜎𝑘(𝑎) = 1 for

action 𝑎 ∈ 𝐴𝑘 and 0 for any other action. If this cannot be shown, the strategy is

considered mixed. A vector strategy has one strategy for each player and profile

90

𝜎 = (𝜎1, . . . , 𝜎𝑛). A strategy profile will correspond to a joint action 𝑎 ∈ 𝐴 if every

strategy in 𝜎 is pure. One assumption made in normal form games is that the expected

payoffs are linear. In other words, the expected reward in strategy profile 𝜎 for player k

can be expressed as:

𝑅𝑘(𝜎) = ∑ ∏ 𝜎𝑗(𝑎𝑗)𝑛
𝑗=1𝑎∈𝐴 𝑅𝑘(𝑎) (3.45)

where 𝑎𝑗 represents the action available to player 𝑗 in the action profile denoted 𝑎.

Game Types

The player reward function is used to classify a game. When all players hold a

reward function in common, the game is classified as an identical payoff of a common

interest game. A game is a zero-sum game when all the player rewards are equal to 0. In

zero-sum games, some players win while others experience losses. These games are also

known as purely competitive games. General sum games refer to games with no special

restrictions. Examples are given in Table 3.2.

Table 3.2: Examples of 2-player, 2-action games.

a1

a2

a1 a2

(1,-1) (-1,1)

(-1,1) (1,-1)

a1

a2

a1 a2

(5,5) (0,10)

(10,0) (1,1)

a1

a2

a1 a2

(5,5) (0,0)

(0,0) (10,10)

a1

a2

a1 a2

(2,1) (0,0)

(0,0) (1,2)

(a) (b)

(c) (d)

From left to right: (a) Matching pennies, a purely competitive (zero-sum) game;

(b) The prisoner’s dilemma, a general sum game; (c) The coordination game, a common

91

interest (identical payoff) game; (d) Battle of the sexes, a coordination game where

agents have different preferences); Pure Nash equilibria are indicated in bold.

The first game shown in Table 3.2 is also known as the matching pennies game.

It is an example of a purely competitive game. In the matching pennies game either

heads or tails is chosen. If both coins are the same Player 1 wins and is rewarded by

Player 2. If the coins are not the same, Player 2 is the winner and is rewarded by Player

1. Evidently, a win for one player represents a loss for the other player and meets the

criteria of a zero-sum game.

The second game in Table 3.2 is The Prisoner’s Dilemma. It is an example of a

general sum game. In this game, two criminals are held by the police in separate cells

after committing a crime. Two possible actions are available to these criminals. They

can deny mutual participation in the crime (action a1) or they can betray the other

criminal (action a2). If both criminals take action a1, they will receive a minimal

sentence (payoff 5). If one criminal implicates the other while the other continues to

deny involvement in the crime, the cooperative criminal will be released (payoff 10) and

his partner will be held completely responsible for the crime (payoff 0). The third

possibility is that both criminals will blame the other and will be incarcerated for several

years (payoff 1). In this game, the choice of blaming the other criminal dominates and

could result in the best payoff. This often leads to each criminal betraying the other even

though they would be better off if they had cooperated.

In the third game in Table 3.2 each player receives the same payoff if they

participate in a joint action. Choosing the best joint action leads to the best payoff. A

suboptimal action results in a less profitable reward and selecting the wrong cooperative

action means that neither player will receive any reward. This third game is an example

of a common interest game.

92

The Battle of the Sexes is an instance of the fourth game type illustrated in Table

3.2. Here, each player will receive their own individual rewards and each prefers

different outcomes. For example, Player 1 opts for (a1,a1) whereas Player 2 prefers

(a2,a2). To overcome the coordination challenge presented by their preferences, the

players must reach a compromise.

Games are not always limited to two different actions. Table 3.2 shows common

interest games with three possible actions. A climbing game described by Claus et al.

(1998) is the first example in Table 3.2. This climbing game illustrates the Nash

Equilibrium surrounded by severe penalties. In the second game, the penalties are

shown on the left as parameter k < 0. The harder it is to learn the preferred solution

((a1,a1) and (a3,a3)), the smaller the value of k will be.

Table 3.3: Examples of 2-player, 3-action games.

a1

a2

a3

a1 a2 a3

(11,11) (-30,-30) (0,0)

(7,7)

(0,0) (0,0) (5,5)

(-30,-30) (6,6)

a1

a2

a3

a1 a2 a3

(10,10) (0,0) (k,k)

(2,2)

(k,k) (0,0) (10,10)

(0,0) (0,0)

(a) (b)

From left to right: (a) Climbing game; (b) Penalty game, where k ≤ 0. Both games are of

the common interest type. Pure Nash equilibria are indicated in bold.

Solution Concepts in Games

It can be difficult to pinpoint the desired outcome of a game because the players

have different reward functions that are affected by the actions of their competitors.

Players may not be able to maximize their payoffs as they may not be able to

93

simultaneously reach their goals. The Battle of the Sexes in Table 3.3 is a good example

of this.

An important notion behind games represented by The Battle of the Sexes is the

best response. A best response allows a player to capitalize on their situation in relation

to the strategies used by their opponents. However, the player will not be able to

increase the reward if their opponents maintain a fixed strategy. When 𝜎 =

 (𝜎1, . . . , 𝜎𝑛) is the strategy profile, 𝜎−𝑘 represents the same strategy profile without

strategy 𝜎𝑘 of player k. The best response for strategy 𝜎𝑘
∗ ∈ 𝜇(𝐴𝐾) of player k is when:

𝑅𝑘(𝜎−𝑘 ∪ 𝜎𝑘
∗) ≥ 𝑅𝑘(𝜎−𝑘 ∪ 𝜎𝑘

′) ∀𝜎𝑘
′ ∈ 𝜇(𝐴𝑘) (3.46)

where 𝜎−𝑘 ∪ 𝜎𝑘
′ is the strategy profile when all players use the same strategy they used

in σ except for player k who uses 𝜎𝑘
′ , i.e. (𝜎1, . . . , 𝜎𝑘−1, 𝜎𝑘

′ , 𝜎𝑘+1, … , 𝜎𝑛).

The Nash equilibrium mentioned above is an instance of a central solution.

When using the Nash equilibrium, all players act on their mutual, best replies. Every

normal form game has a minimum of one Nash equilibrium (Nash, 1950). The Nash

equilibrium for each player can be expressed as a strategy profile of (𝜎1, . . . , 𝜎𝑛) .

Strategy 𝜎𝑘 represents the best response to the strategies a player’s opponents signified

by 𝜎−𝑘. No player can enhance their reward or payoff if they deviate from playing the

Nash equilibrium. As a result, a single player has no motivation to independently

change their strategy. The only way to escape the Nash equilibrium is for several

players to change their strategies simultaneously.

Definition. A strategy profile 𝜎 = (𝜎1, . . . , 𝜎𝑛) is called the Nash equilibrium if for

each player k, strategy 𝜎𝑘 is the best response to the strategies of the other players 𝜎−𝑘.

Thus, when playing the Nash equilibrium, no player in the game can improve

their payoff by unilaterally deviating from the equilibrium strategy profile. As such, no

94

player has an incentive to change their strategy, and multiple players must change their

strategies simultaneously in order to escape the Nash equilibrium.

Justification of the selected technique

Amongst the techniques explained in the literature review, the game theory-

based RL was selected in this thesis. The main reasons for discarding the other

alternatives as well as for choosing a game-based RL method is discussed subsequently.

First, although Neural Networks have been successfully applied in many

applications, this artificial intelligence technique has some limitations and

disadvantages. On the one hand, neural networks are especially appropriate for

prediction, function approximation, classification, pattern recognition, and clustering,

which are not tackled in this thesis, and they mainly focus on developing control

techniques. An important drawback is that neural networks require a large diversity of

training for real-world operation, which can be a severe constraint in complex systems

such as real-time traffic monitoring in networks. In addition, neural networks cannot be

trained a second time, in the sense that it is very hard to add new data to an existing

network. Finally, they require abundant computational resources and high processing

time for large neural networks.

Secondly, although genetic algorithms are easily understood and transferred to

current simulations and models and do not require advanced mathematical skills, they

also have several important limitations and disadvantages including:

 There is no solid guarantee that a global optimum will be found by a genetic

algorithm. Global optimums typically occur with larger populations.

 Genetic algorithms involve the problem of genetic drift, which is a major

problem of genetic algorithms. This means that the genetic algorithm may

quickly lose most of its genetic diversity and the search then occurs in a way that

95

is not beneficial for recombination. This is because the random initial population

rapidly converges.

 Genetic algorithms face limitations with control problems that are executed in

real-time due to convergence and random solutions. This indicates

improvements have been made in the entire population but those improvements

cannot be extrapolated to an individual within the population. As a result, it is

ineffective and impractical not to test genetic algorithms on simulation models

prior to using them in on-line control in real systems.

It is worth mentioning that in the context of this thesis, network operators may

be reluctant to implement this kind of algorithms since the solutions found by genetic

algorithms can remain at a certain distance from the optimum with higher probability,

leading to suboptimal performance in an undetermined amount of time. In addition, the

slow convergence of this technique can also be an issue in real systems, such as

networks, even if an off-line control is applied.

Third, in particle swarm optimization, there are some important limitations

related to the optimization of an FLC in the context of networks (Gupta et al., 2005). In

particular, particle swarm optimization involves loss of information in the global cost

functions, since performance indicators are globally measured in the concerned network

area. Thus, the situation at sensor nodes cannot be considered. In addition, this

optimization method has to compare the evolution of many particles, each of which

represents a different FLC setting. As a result, to assess the position of each particle, the

corresponding FLC should be evaluated in many sensors, thus requiring exclusive use

of simulation tools. The lack of flexibility and generality in defining FLC is also a

constraint for particle swarm optimization. In this sense, when adding new inputs or

performance indicators to the FLC, the optimization phase must be launched, although

96

certain a priori knowledge can be included at the beginning. Other disadvantages of the

basic particle swarm optimization algorithm are covered by Gaing (2004) and Shi

(2001). These disadvantages of the algorithm include slow convergence during the

refined search stage, ineffective local search capabilities, and possible entrapment in the

local minimum. Currently, there are no mathematical proofs of the convergence and

speed of convergence for this algorithm.

Finally, in Game-based IDPS, the combination of FLCs and fuzzy Q-Learning

algorithm is highlighted as a powerful mechanism in the context of networks for the

following reasons:

 Attacks in networks are complex and variable systems, in which obtaining a

training data set that is representative of all situations becomes a difficult task.

Unlike other approaches (e.g. supervised learning in Neural Networks), Fuzzy Q-

learning does not require a training data set.

 Due to the complexity of network management, operators do not usually have the

knowledge necessary (i.e. accurate and complete) to take proper action in every

attack situation. In this case, learning from interaction becomes a suitable solution,

where a multi agent is able to learn from its own experience to perform the best

actions.

 It is possible to perform the optimization at a distributed level, so that many FQL

agents can learn in parallel. To achieve this, measurements should be taken in the

area of a network. In addition, the cooperative-based fuzzy Q-Learning method

provides operators generality to easily introduce, for instance new performance

indicators in IDPS.

97

3.7 Collaborative-IIDPS Architecture

To design a Collaborative IIDPS (Co-IIDPS) based on a comprehensive set of

requirements for networks, the special characteristics of a distributed framework

structure are scrutinized in this thesis, within Smart Grid networks with Collaborative

IIDPS as proposed by Patel et al. (2013). Figure 3.9 shows the combination of Network

and Host-based IDPS (NIDPS, HIDPS) in a fully distributed framework structure in a

Smart Grid networking environment with Collaborative-IDPS. This formation is readily

applicable to any network.

Smart IDPS (SIDPS)

Network-based IDPS(NIDPS)

Host-based IDPS (HIDPS)

Collaborative Smart IDPS (CSIDPS)

Figure 3.9: Combination of NIDPS and HIDPS in a distributed Smart Grid Network (CIDPS)

The monitored environment of an IDPS is typically specified as:

 A network-based IDPS monitors network traffic for particular network segments or

devices, and analyses the network and protocol behaviour to identify suspicious

activities.

 A host-based IDPS monitors all or parts of the dynamic behaviour and

state of a computer system. Unlike NIDPS, which dynamically inspects network

98

packets, HIDPS detects which programs access what resources. HIDPS has the

advantage of being easier to deploy without affecting existing infrastructure

compared to NIDS, which detects attacks at the transport protocol layer via quick

responses. However, a combination of both HIDPS and NIDPS solves the problem

of assimilation and scalability through collaborative management.

Due to the IIDPS complexity in a network, this chapter incorporates three newly

defined concepts of detection management: Fuzzy Reinforcement Learning

Management (FRLM), Knowledge Management (KM), and Multi-agent Management

(MA) into the core architectural design of CIDPS (Figure 3.9). Management flows from

the module of computational intelligence intrusion detection through an intermediate

section are viewed as a fuzzy reinforcement learner, and knowledge and multi-agent

managers, and are expected to respond to intrusions in WSN. The correlation flows are

developed according to the collaborative-IDPS and desired IIDPS characteristics. The

purpose of the thesis encompasses three concepts, namely fuzzy system, reinforcement

learning and a multi-agent system. They are intended to design an efficient system that

meets the Collaborative-IIDPS (Co-IIDPS) requirements.

99

Wireless Networks

Intelligent Intrusion Detection and Response components

Monitoring and

audit data

collection

Detection and

analysis
Alarm generation Response

Actuator

Event 1

Event 2

Event n

Executer

DecisionAnalyzer

Data collector Policy Knowledge

base

Ontology Anomaly profile
Anomaly
calculator

Action

Fuzzifier Defuzzifier

Q-value update

Membership

Function

optimizer

Rule
based

State optimization

Self optimizer Self learning Self configuring

Inference engine

Computational Intelligence Intrusion detection system

Computational Intelligence classifier

Soft computing Machine learning

Fuzzy Reinforcement learning manager
Knowledge managerMulti agent manager

System Process

Logical communication between
Monitoring and CI components

Logical communication between
detection and CI components

Logical communication between
alarm and CI components

Logical communication between
response and CI components

Information flow between
computational intelligence
components

L
a

y
e
r
 1

L
a

y
e
r
 2

Figure 3.10: Enhanced Collaborative-IIDPS functionality architecture within a network

Figure 3.10 shows the Co-IIDPS functions. The first layer shows the traditional

system components that monitor and collect the audit data through the sensors, analyse

the data and detect intrusions, generate alarms and herald the proper response through

the actuators. The advanced components seen in layer two are drawn from the four

proposed concepts.

The advanced components employ computational intelligence (CI) techniques

such as soft computing (e.g. neuro-fuzzy systems) and machine learning (e.g. a

reinforcement learning system) to detect intrusions and feed the obtained results into the

autonomic solution mode components comprising a self-optimizer, self-learning, and

self-configuration. Self-learning and self-optimizing are defined in autonomic

100

computing principles in real-time without human intervention. The proposed

collaborative IIDPS system architecture is illustrated and presented as a workflow

scenario to show the way it functions in 8 steps as numbered in brackets. The arrows

point out the information flow between components while the dash arrows indicate the

logical communications between the components.

Inputs from Autonomic Wireless Environment Components:

The processor, memory, RF radio, power source, and actuators constitute the

wireless network components. The interactions between them generate and prepare the

input sensor signals from the wireless environment. The signals together with the events

or latest challenges pass through the intelligent intrusion detection and prevention

system (IIDPS) components for analysis. The monitoring, detection, alarm generation

and response utilize computational intelligence methods to mitigate IDPS.

Latest IIDPS Challenges & Enterprise IIDPS Policies:

The Intrusion Detection and Response System (IDRS) Policies and Latest

Challenges to networks fall into the computational intelligence intrusion detection

module of autonomic network -based IDPS, as mentioned in Step 1. An event entering

the system is checked to determine whether it is an intrusion. If it is an intrusion, the

Intrusion Detection Engine (IDE) takes full responsibility for analysing and identifying

the type of attack.

Computational Intelligence Intrusion Detection Systems (CIIDS):

Various CIIDS techniques have been suggested in this architecture. Machine

learning and soft computing are the main CIIDS methods. Reinforcement learning (RL)

together with fuzzy sets (FS) serves as a feature extraction selector and classifier of

machine learning for Co-IIDPS. The results of signal classification for intrusion

detection are relayed to the inference engine.

101

Inference Engine (IE):

The IE is a logical, key division of the Co-IIDPS. The IE performs based on the

latest computational intelligence techniques, fronted and equipped with fuzzy

reinforcement learning management.

Fuzzy Reinforcement Learning Management:

The fuzzy reinforcement learning (FRL) management (FRLM) of this Co-IIDPS

architecture includes reinforcement learning (RL) and fuzzy sets (FS). Given an

anomaly incident, FRLM is internally analysed and it updates the Q-value of the

learner’s agent. If necessary, it automatically updates a newly discovered intrusion

incident by applying anomaly calculator component-based computational intelligence

and knowledge management techniques in recursive iteration of its execution cycle.

 Knowledge Management:

In order to share knowledge and allow collaboration between other managers

(i.e. Fuzzy Reinforcement Learning and Multi-agent managers), the knowledge manager

(KM) uses four types of decision mechanism: policy, ontology, anomaly profile and

knowledge-based. The knowledge-based component directly connects to CIDPS to store

the process of training and testing CI algorithms. The purpose of decision ontology

(DO) is to provide a basis for representing, anomaly modelling and probing the decision

to identify abnormal behaviour. The policy works as an action selector and uses an

executer agent. The action policy of the KM mechanism adapts to FRL to cluster the

incidents according to severity and raise an alarm.

Multi-agent Management:

A multi-agent manager prioritizes an anomaly according to a victim’s

vulnerability. There are three possible scenarios in this state. The first case is pattern

102

collection through the data collector agent (DC). In the second case, if the incident is a

severe intrusion or low intrusion, the analyser agent (AA) and decision agent (DA) are

associated to the ontology and knowledge base, which comprise the computational

intelligence techniques for intrusion identification. The third possible situation is related

to the executor agent (EA) that is shielded from intrusions before any data loss or

damage happens. It provides the impetus for the system to self-learn against any attacks,

as well simultaneously purvey for protection and prevention capabilities further down

the chain in the autonomic mode of operation.

Self-optimizing, Self-learning, and Self-response:

The second case in Step 7 is indicative of some parts having already been

attacked or even infected. In the case of action selection, the penetration tracks in Co-

IIDPS activate the self-optimizing component to ensure the system protects itself. The

third situation refers to intrusion blocked prior to any data loss taking place. Here, the

system automatically enters a self-learning state. In both circumstances, the self-

optimizing state is triggered directly after Knowledge Management and self-learning are

performed after Fuzzy Reinforcement Learning Management to protect the system by

either computational intelligence fuzzy methods or reinforcement learning, or a

combination. These methods are triggered to protect the system by updating the Co-

IIDPS as a whole. Their actions are defined by the Inference Engine component in Co-

IIDPS. Signals are then sent to activate actuators to execute prevention in the network

environment.

3.8 Discussion

The discussion is expanded with the proposal of a new architecture to detect and

prevent intrusions in a network, by combining computational intelligence and multi-

agent based computational intelligence approaches. A novel collaborative-based IIDPS

103

(Co-IIDPS) architecture was proposed and presented. It demonstrates the impact of a

Multi-agent system-based computational intelligence (MCI) technique on enhancing

detection efficiency and false alarm rates. This architecture portrays the clear notion of

cooperative learning-based detection to satisfy the requirements of IIDPS. The projected

architecture defines three detection means of management: Fuzzy Reinforcement

Learning Management, Knowledge Management, and Multi-agent Management. In

conclusion, the detection management techniques can be improved by minimizing the

false alarm rates and increasing the detection rates in addition to decreasing energy

consumption in networks. In the next chapter, with the intent of validating the proposed

architecture, the aim is to design and develop the aforementioned detection management

components using game theoretic approaches.

3.9 Chapter Summary

In the context of Co-IIDPS, adaptive game theoretic techniques are adequate for

network parameter optimization due to network complexity and dynamism. The main

benefits of applying such techniques are cost savings and improved network

performance. This chapter began with a description of potential network self-tuning

approaches. In this analysis, the use of a network model was discarded, since

constructing a network model that is accurate and manageable is usually a complex task

that may lead to poor performance as well.

Thus, the schemes adopted in this thesis are based on self-tuning entities that

interact directly with the network. In such cases, a closed-loop structure is used to find

the optimal parameter settings. For this reason, the next part of the chapter focused on

controllers based on the Fuzzy Logic theory, as this discipline provides a mathematical

framework especially appropriate for designing controllers. Its potential lies in the

capability to express knowledge in a similar way to human perception and reasoning.

104

The second topic in this chapter was devoted to mathematical approaches that

can be used to optimize and adapt the behaviour of FLCs. The first technique is Neural

Networks, which typically requires a training data set that can be a severe constraint in

networks. In addition, neural networks are more suitable for other kinds of problems

(e.g. prediction, classification, pattern recognition, and clustering), which differ from

the control problem addressed in this thesis. Secondly, the main feature of Genetic

Algorithms was described, showing that their application in control problems performed

in real-time is limited owing to random solutions and convergence. Third, the basic

concepts of the Particle Swarm approach were presented, highlighting its application to

FLC optimization involving some important limitations, such as lack of flexibility and

generality in defining the FLC. Finally, this chapter was devoted to RL, which is the

method selected amongst the previously described ones. The main benefit of this

approach is that RL algorithms learn from interaction, which becomes essential in

complex systems such as networks.

The third topic in this chapter dealt with the proposal of game theoretic

approaches that can be used to optimize and adapt the behaviour of Fuzzy Q-learning.

The reinforcement learning manager emerged as a result of applying fuzzy techniques to

Co-IIDPS, leading to robust, fault-tolerant and easy to manage and operate WN

architectures and deployments. Knowledge management enables the characterization of

anomaly profile knowledge as a set of related concepts within an anomaly calculator

domain. The policy aspect of a multi-agent manager is thus utilized to predict anomaly

behaviour. In summary, the scalable, fully distributed structure of our system exposes

the risks of low accuracy detection and difficulty in synchronizing information between

autonomous agents.

105

Chapter 4 : GAME THEORETIC APPROACH USING FUZZY Q-LEARNING

The novelty of this study lies in the proposal of a game theoretic framework,

namely the cooperative Game-based Fuzzy Q-learning (G-FQL) in order to identify

attackers and appropriately respond to them. The aim is to facilitate an intelligent

intrusion detection and response mode. Thus, the current evaluation study is significant

in that the feasibility and suitability of the framework are highlighted.

In this chapter, the game framework design is first explained in three sub-

sections: the player strategies, the player payoff function, and an analysis of the reward

function. In addition, a utility function is employed to evaluate the effectiveness and

performance of the model. A detailed explanation of the fuzzy Q-learning adapted to the

game theory is also given.

The game theory is a branch of applied mathematics that deals with the way

rational entities or agents make decisions in the application of WSNs (Huang et al.,

2013), cognitive radio networks (Elias et al., 2011), and ad hoc networks (Naserian et

al., 2009). It affords an array of mathematics tools for modelling and analysing the

interactions among rational groups, whereby rationalism is founded on the profit or

reward perceived by the entities (Shoham et al., 2009). An anomaly-based wireless

network in the game-theoretic approach is a tremendously difficult task on account of

the distributed nature of numerous players in WSNs. A large number of players

additionally results in difficulty achieving equilibrium in a competitive game. To deal

with a certain type of attack in wireless networks, Naserian et al. (2009) included an

assortment of games, for instance non-cooperative, two-player, and non-zero-sum to

their stratagem. In such game arrangements, better decisions are made according to the

principles offered by payoff functions. Shen et al. (2011) took into account the

signalling game to create an IDPS game that exhibits the interaction between an attacker

106

and cluster head in a WSN. The Bayesian Nash Equilibrium (BNE) scheme in

conjunction with the mixed strategy for outstanding detection policies served as the

basis for their model. Thus, an ideal, fundamental shield tactic to protect WSNs was

achieved, while the probability of detecting attacks was simultaneously, considerably

enhanced.

A multi-agent system utilizes the reputation security mechanism to perform

dynamic role assignment based on the following three parameters: reputation, bootstrap

time and energy. The approach evicts highly non-cooperative and malicious nodes from

the network (Misra et al., 2011). An adaptive learning routing protocol employs a

learning automata algorithm for efficient malicious node detection (Rolla et al., 2013).

The multilayer reinforcement learning framework assisted by the Hidden Markov

Model (HMM) was proposed to solve real-time detection in a complex state space

(Andersen et al., 2009). The results indicated that the network’s cost function could be

optimized if the agents collaborated repeatedly. In our proposed scheme, the

cooperative game is implemented into IDPS to generate the benefits of a fuzzy Q-

learning algorithm with a value function to mitigate the flooding attack issue in a WSN

with respect to detection and defence accuracy. Resource loss, accuracy of attack

detection via sensors, and service inaccessibility at critical times are among the

challenges posed, and in this thesis, an effort is made to confront the security setbacks

by applying the cooperative game-based fuzzy system and reinforcement learning

mechanism.

4.1 Proposed model

4.1.1 WSN model

In the present research study, Figure 4.1 illustrates the distributed network with

hierarchical routing, which consists of Clusters (C), their coordinators, or Cluster Heads

107

(CHs), as well as the member Sensor Nodes (S). In the current scheme, the Cluster Head

(CH) is assumed to be a Sink Node (SN) in each cluster. The SN monitors the behaviour

of sensor nodes by collecting data from the member sensor nodes and transmitting the

critical status -- the attack information of the sensor nodes, to a Base Station (BS). Each

cluster is mapped into distributed system formation while the set of sensor nodes is

mapped into each cluster grouping. Although only one BS is shown in Figure 4.1, there

could practically be several implemented in a real operational WSN.

C1

Wireless Network

Internet

WSN

BS

 : Cluster

: Base Station(BS)

: Malicious nodes

: Sensor node (S)

: Adjacent link

 : Sink node (SN)

C1C3

C2

Cn

Legend:

WSN

C

Figure 4.1:A distributed hierarchical system perspective of a WSN

The route from a sensor node (S) to a base station (BS) is deemed a distributed-

hierarchical path that creates a hierarchical system with numerous routes, which is the

main feature of cluster-based WSNs. Sensor nodes function independently to avoid the

collapse of all sensor nodes (SNs) in case one fails. The sensor node redundancy

approach increases the overall reliability in distributed hierarchical systems. Figure 4.1

illustrates how SNs send data gathered from a sink node to a BS via other adjacent SNs,

and the BS receives data only if all SNs within the routing formation are actively

functioning. Hence, a set of clusters on a route is counted as a set of independent

distributed-connected elements. Attacks in this scenario can target the WSN in multiple

108

ways, with DDoS attacks potentially originating either from the Internet or

neighbouring wireless sensor sources.

4.1.2 Methodologies and Techniques Used

Game-based detection and the defence mechanism operate to detect DDoS

attacks, where the sink node and base station adapt to select the best strategy of

detecting an immediate attack and responding to it. Regardless of whether attacks are

carried out on a regular or irregular basis, the IDPS can adjust its learning parameters

through fuzzy Q-learning to identify future attacks. The architecture of the proposed

game-based FQL is dual, in that it has two phases (Figure 4.2).

Phase 1: In the primary game scenario stage, player 1 (the sink node) utilizes the

fuzzy Q-Learning algorithm to identify the level of disruption caused by the attacking

player to the victim node, leading to anomalies such as low access or damage. For

attacker player detection, the sink player adopts three strategies: catch, missed, and low

catch, as elaborated in player strategies applied to the sink node. Finally, the sink node

transmits an alarm event that contains malicious node information to the base station

(player 3) via an adjacent link connected to the base station (Figure 4.2). The malicious

information is pre-processed by the sink node to travel from phase 1 to 2 based on the

alarm event beyond the default value threshold, in order to prepare a countermeasure

strategy against the attacker through a defence mechanism.

Phase 2: In the second phase of the game scenario, player 2 (the base station)

employs the fuzzy Q-learning algorithm to confirm the malicious node’s behaviour. It

checks the memory of player 1 or looks it up in a table and compares it with its memory

in order to defend against the attacker. The detection player (sink node) and defence

player (base station) coordinate their defence with each other to shield the wireless

sensor nodes against the attacker player (attack/intrusion).

109

Game Theory

Fuzzy Q-learning

Phase 1: Detection Phase 2: Defense

T
r
i
g

g
e

r

a

l
a

r
m

e

v
e

n
t

t
o

b

a
s
e

s
t
a

t
i
o

n

Sink node

Base station

Attacker Attacker

Attack

Information

Game Theory

Fuzzy Q-learning

 Is the alarm event

 above the

 default value? No Yes

C
h

e
c

k
i
n

g

a

t
t
a

c
k

Preprocessing of

Information from

Phase 1 to Phase 2

Defense mechanism

against attacker

Figure 4.2: Model of a Cooperative Game-based IDPS and an attacker

To highlight the proposed game-based FQL, the sink node and the base station

are allocated a corresponding reward/incentive functional value, which is retained by

the Fuzzy Q-learning IDPS. As such, a node’s evolving fuzzy state may be recorded and

quantified through the fuzzy reward utility function as discussed in the player payoff

function. When a node encounters an attack or receives an anonymous message, the

sink node sends the related severity alarm event evidence and messages to the BS, who

then analyses the critical data to adjust the FQL parameters. Based on the sink node

information, the base station decides which nodes are under attack or at risk and elects

whether to safeguard them or not. The BS previously set a severity alarm event

threshold rate, v. Once the severity alarm value acquired by a node exceeds v, the FQL

IDPS deems the node under attack or at risk and strengthens its defences to secure the

cluster area in which the node is detected at the associated base station.

110

4.1.3 Possible attack categories

In this thesis, the Open System Interconnect (OSI) model is classified into five

layers (Akyildiz et al., 2002): Physical layer, Link/MAC layer, Network layer,

Transport layer, and Application layer. The attacks in each layer are analysed by

focusing on the flooding attack and its potential defences. In the proposed scheme, a

specific kind of DDoS attack is created with respect to a flooding attack that affects

cluster heads. The generated attack sends flooding UDP packets to diminish the cluster

head’s energy.

Table 4.1: Classification of Denial-of-Service attacks and defence at each protocol layer

Protocol Layer Attack Defense Mechanism

Application Layer Overwhelming (McGregory, 2013) Sensor tuning

Data aggregation

Path-based DoS (B. Li et al., 2009) Authentication and anti-

replay protection

Deluge (reprogramming) attack Authentication and anti-

replay protection

Authentication streams

Transport Layer SYN (synchronize) flood (Bicakci et al., 2009) SYN cookies

De-synchronization attack (Xing et al., 2010) Packet authentication

Network Layer Spoofing, replaying, or altering routing control

traffic or clustering message (Qazi et al., 2013)

“Authentication and anti-

replay protection secure

cluster formation”

Hello floods (Khalil et al., 2010) “Pairwise authentication”

“Geographic routing”

Homing, black-hole attack (Khalil et al., 2012) Header encryption

Dummy packets

Link/MAC (medium

access control)

Jamming (Law et al., 2005) Authentication and anti-

replay protection

Denial of sleep (Law et al., 2009) Authentication and anti-

replay protection

Detect and sleep

Broadcast attack

protection

Physical Layer Jamming (Z. Li et al., 2012) Detect and sleep

Route around jammed

regions

Node tampering or destruction (Xing et al., 2010) Hide or camouflage

nodes

Tamper-proof packaging

111

Table 4.1 indicates the impact of such attacks on WSN layers as well as the

defence mechanism. In this thesis, a type of DDoS attack is considered. It is

characterized by the presence of an attacker, and is known as a UDP flooding attack. In

the proposed model, a UDP flooding attack occurs based on a random function to

compromise the CH in each cluster. This kind of DDoS attack is aimed at exhausting

CH energy by sending flooding packets in a fraction of time (Ghosal et al., 2013).

4.2 The architecture of cooperative game-based FQL IDPS

The proposed game-based defence strategy is primarily a combination of the

cooperative game theory and fuzzy Q-learning algorithm. The game-based detection

and defence mechanism work to detect DDoS attacks, where the sink node and base

station adapt to select the ideal strategy of detecting an immediate attack and respond to

it. Regardless of whether the attacks are carried out on a regular or irregular basis, the

IDPS can adjust its learning parameters through fuzzy Q-learning to identify future

attacks. A comprehensive description of the theoretical and practical operation of the

game theory and Q-learning modes, mainly concerning Fuzzy Q-learning, is provided

later. Cooperative game-based architecture in a wireless network is proposed as well

(Figure 4.3).

112

Sink node

Base station

X

Y

Z

Attacker

Best choice

for sink

False

Negative

False

Positive

Defend
Do not

defend

A
t
t
a

c
k

A
t
t
a

c
k

e
r

Least

Damage

U
n

-
a

t
t
a

c
k

Base station

False

Negative

Best choice

for sink

Medium

choice for

sink node

Sink node

A
t
t
a

c
k

e
r

Catch Missed Low catch

A
t
t
a

c
k

U
n

-
a

t
t
a

c
k

Cluster 1

Cluster 2

Game

territory

False

Positive

Least

Damage

False Positive

Figure 4.3: Game-based defense system architecture

In the primary stage of the game scenario, player 1 (the sink node) utilizes the

FQL algorithm to evaluate the contents of the attacker player’s level of access (i.e. low

access, or damage). With regard to detection, the sink node player assumes three

strategies, namely catch, missed or low catch. Upon completing the first stage, the sink

node transmits an alarm to the base station (player 3) when the attacker assaults the

sensor node. In the second phase of the game scenario, player 3 (the base station)

employs the FQL algorithm to evaluate the attack records in order to defend against the

attacker. The detection player (the sink node) and defence player (the base station)

participate in a game via a 3D game interface to shield the wireless sensor nodes against

the attacker player (the attack).

4.2.1 Game Design

In the proposed game theory method, it is assumed that the sink node can

identify abnormalities in view of IDS1. Accordingly, in computer-generated WSNs, the

113

sink player or cluster head diffuses the alarm to the base station (IDS2) upon perceiving

an anomaly. When the IDS1 receives an anomaly message, it acquaints itself with this

sort of attack using the FQL detection algorithm and archives the information in its

attack record database. The IDS2 attempts to respond to these attack records. The

fundamental concepts of the proposed game theory, player strategies and player payoff

function are introduced next.

Player strategies

The interactions between the G-FQL and attackers are split into two main

categories (Tables 4.2 and 4.3 respectively). The first category represents a game

between an attacker and sink node players, while the second type denotes a game

between an attacker and base station player. The game play strategy between a sink

node and an attacker with respect to IDS1 comprises:

1) Best choice for sink: The sink node chooses to identify the attacker, and the

invader opts to attack.

2) False negative: The sink node chooses not to identify the attacker, and the

attacker strikes.

3) Medium choice: The sink node chooses to identify the attacker with low catch,

and the attacker attacks.

4) False positive: The sink node elects to detect the attacker, and the attacker

chooses not to attack.

5) Least damage: The sink node chooses not to identify the attacker, and the

attacker chooses not to attack.

6) False positive: The sink node chooses to identify the attacker with low catch,

and the attacker chooses not to attack.

Table 4.2: Game play between a sink node (IDS1) and an attacker

Game play between sink node

and attacker

Sink

Catch Missed Low Catch

Attacker
Attack

(a11,b11) = Best

choice for sink

(a12,b12) = False

Negative

(a13,b13) = Medium

choice for sink node

No attack

(a21,b21) = False

Positive

(a22,b22) = Least

Damage
(a23,b23) = False positive

114

The game strategy between a base station and an attacker concerning IDS2 is defined

as:

1) Best choice for base station: BS elects to defend and the attacker decides to

attack;

2) False positive: BS elects to defend, and the attacker chooses not to attack;

3) False negative: BS elects not to defend, and the attacker attacks;

4) Least damage: BS elects not to defend, and the attacker chooses not to attack.

Table 4.3: Game play between a base station (IDS2) and an attacker

Game play between base station and
attacker

Base station

Defend Do not defend

Attacker
Attack (a11,c11) = Best choice for sink (a12,c12) = False Negative

No attack (a21,c21) = False Positive (a22,c22) = Least Damage

The player payoff function

In this thesis, a payoff value is defined as a player reward function if it protects

the WSN. In other words, when the IDPS fails to defend the WSN in case an invader

attacks, the player’s payoff would be different. The three player payoffs are expressed

as A, B, and C, where 𝑎𝑖𝑗, 𝑏𝑖𝑗, and 𝑐𝑖𝑗 denote the sink node, attack and base station

payoff, respectively. Table 4 displays the payoff matrix, utility function as well as a

description of the utility function.

Table 4.4: The payoff matrix and utility functions

Payoff
function

Payoff
matrix

Utility function Description of Utility function

Attacker’s
payoff
function

A =

[𝑎𝑖𝑗]
2∗3

𝑎𝑖𝑗

= 𝐼𝑅
− 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝐼𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑠𝑒𝑛𝑡

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑡𝑡𝑎𝑐𝑘

Sink
Node’s
payoff
function

B =

[𝑏𝑖𝑗]
2∗3

𝑏𝑖𝑗

= 𝑃𝑑

− 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡

𝑃𝑑= (
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
)

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡

= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑛𝑘’𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

Base
station’s
payoff
function

C =

[𝑐𝑖𝑗]
2∗2

𝐶𝑖𝑗

= 𝑃𝑘 − 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑

𝑃𝑘 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑘𝑖𝑙𝑙𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑

= 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑠𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑒𝑓𝑒𝑛𝑠𝑒 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑎𝑡𝑡𝑎𝑐𝑘

115

Attacker’s payoff function

The attacker’s payoff matrix A = [𝑎𝑖𝑗]
2∗3

 is defined as follows:

𝐴𝑖𝑗= [
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
]

𝑖∗𝑗

where a11 = IR − Costprocessing represents (
Number of malicious attacks

Total malicious attacks sent
) −

 (processing time for attack), which is when an attacker and the sink node choose the

same sensor nodes to attack and detect, respectively (AS1, SS1). The attacker’s original

utility value of U(t) will be deducted from the cost of attacks. a12 = IR − Costprocessing

represents an instance when the attacker attacks and the sink node does not detect it

correctly. However, a13 = IR − Costprocessing, means that an attacker hits and the sink

node detects a compromised node with a low rate of detection. a21 = Costprocessing,

signifies that an attacker does not attack at all, but the sink node falsely detects the

attacker. By subtracting IR = (
Number of malicious attacks

Total malicious attacks sent
) from the original utility

function, a22 = Costprocessing signifies that the attacker and sink node choose two

different strategies, neither of which causes an attack nor detects an attack correctly,

respectively. In this case, the cost of attacking one node from the original utility is

ignored. When a23 = Costprocessing, it signifies that the attacker does not attack and the

sink node detects the attack with low probability/performance.

Sink node payoff function

By denoting the sink node’s payoff with matrix 𝐵 = [𝑏𝑖𝑗]
2∗3

we get:

𝐵𝑖𝑗=

[
𝑏11 = 𝑃𝑑 − 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡 𝑏12 = 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡 𝑏13 = 𝑃𝑑 − 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡

𝑏21 = 𝑃𝑑 − 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡 𝑏22 = 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡 𝑏23 = 𝑃𝑑 − 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡
]

𝑖∗𝑗

where:

116

𝑃𝑑 = (
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
)

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡: is the cost of attack detection during sink processing

Base station payoff function

By describing the base station’s payoff function with matrix C= [𝑐𝑖𝑗]
2∗2

, it is defined

as: 𝐶𝑖𝑗= [
𝐶11 𝐶12

𝐶21 𝐶22
]

2∗2

where 𝐶11 = 𝑃𝑘 − 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑 denotes

(𝐶𝑜𝑠𝑡 𝑜𝑓𝑘𝑖𝑙𝑙𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘𝑠) − (𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑓𝑒𝑛𝑑𝑖𝑛𝑔 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑎𝑡𝑡𝑎𝑐𝑘), which is

when a base station and attacker opt for the same sensor nodes to attack and defend,

respectively.

Reward function analysis

According to a three-player game, two constant reward values are defined as: R1

for the gain of the IDS1 when the sink node identifies the WSN, and reward value R2,

or positive reward, as the gain of the IDS2 when the base station protects the WSN. If

the sink node does not identify the WSN during the attack, the IDS1 reward would be –

R1 (a negative reward). Likewise, if the base station fails to defend the WSN during an

attack, the IDS2 payoff would be –R2. An explanation of the correlated

reward/incentive functions of a sensor node and base station is provided in Table 4.5.

To detect a potential, future DDoS attack on a sensor node, Fuzzy Q-learning is applied

to enhance the self-learning ability of the IDS1 and IDS2 processes. The Fuzzy Q-

learning supplies the IDPS with a learning mechanism, but the self-learning ability of

the Q-learning IDS can evolve during the learning process, something that takes

learning time, especially at the beginning. Through such self-iterative learning, IDSs are

capable of protecting sensor nodes from recognizable potential attacks in ongoing,

active WSNs.

117

Table 4.5: Notations associated with the reward functions of a sink node and base station

T T = {0, 1, …, k −1} denotes the set of time in a Markov process

S The fuzzy state space of a sensor node, where the initial state is S0, and the next state of si is

si+1 for I ∈ T

D1,

D2

The set of detection strategies

-R1,-

R2

The payoff incurred at a false negative incident

Fuzzy Q-learning is a discrete-time fuzzy-based Markovian procedure. When the

process is at time t and fuzzy state FSt, the Decision Maker may choose to perform a

fuzzy action. The process responds with a corresponding fuzzy reward for the decision

maker at time (t+1) and moves to fuzzy state Fst+1. The interaction details and

information are as follows. Based on the Fuzzy Q-learning concept, a function fx(1):

FS1 → FD1 × FA1 is defined to demonstrate the detection and attack strategies for node

x at a specific interval in IDS1. For instance, fx(state 1) = (d1, a1) depicts (d1, a1),

which is a combination of the detection and attack strategies when the sink node transits

from state st to st+1, and the reward established by x is defined as R1(fx(st)), which is

given in (Eq. 4.1):

𝑅1(𝑓𝑥(𝑆𝑡))

= {

0 (𝑖𝑓 𝑃𝑑 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤) 𝑜𝑟 (𝑖𝑓 𝐼𝑅 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

 𝑅1 (𝑖𝑓 𝑃𝑑 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤) 𝑜𝑟 (𝑖𝑓 𝐼𝑅 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

−𝑅1 (𝑖𝑓 𝑃𝑑 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = ℎ𝑖𝑔ℎ)𝑜𝑟 (𝑖𝑓 𝐼𝑅 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

(4.1)

In the first case of Eq.4, no detection and no attack are defined. Accordingly, the

reward is fixed at 0. The second case is when the sink node detects an attack with high

accuracy, and its reward is R1. In the last case,

(𝑖𝑓 𝑃𝑑 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = ℎ𝑖𝑔ℎ) 𝑜𝑟 (𝑖𝑓 𝐼𝑅 =

𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤), where the sink node employs strategy 𝑃𝑑 with low

processing cost and high detection accuracy to identify attack strategy IR with low

attack and low processing cost, the reward is –R1. The first term, (𝑃𝑑), represents the

gain of employing the sink node’s strategy to detect attack strategy ai,

118

and (𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔) represents the cost of using the strategy. The second term, (𝐼𝑅),

represents the gain of utilizing the attack strategy with the processing cost for the

attacker.

In the IDS2 scenario, the reward function incorporates the shield policy and

attack strategy when the BS transits from state st to st+1, and the reward received by the

base station is defined as R2(fx(st)), as given in (Eq. 4.2):

𝑅2(𝑓𝑥(𝑆𝑡))

= {

0 (𝑖𝑓 𝑃𝑘 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑 = 𝑙𝑜𝑤) 𝑜𝑟 (𝑖𝑓 𝐼𝑅 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

 𝑅2 (𝑖𝑓 𝑃𝑘 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑 = 𝑙𝑜𝑤)𝑜𝑟 (𝑖𝑓 𝐼𝑅 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

−𝑅2 (𝑖𝑓 𝑃𝑘 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑 = ℎ𝑖𝑔ℎ)𝑜𝑟 (𝑖𝑓 𝐼𝑅 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

 (4.2)

In Eq. 4.2, the first case signifies no defence and no attack. Therefore, the

reward is set to 0. In case two, when the base station defends against an attack with high

defence strategy, its reward is R2. The last case indicates that the base station uses

strategy 𝑃𝑘 with high processing cost and low cost of defending against an attack

strategy, therefore the reward is –R2. The first term (𝑃𝑘) represents the base station’s

gain of using the strategy to eradicate attack strategy ai, and (𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔) signifies

the cost of using the strategy. The second term (𝐼𝑅) denotes the gain of applying the

attack strategy with the processing cost for the attacker.

It is assumed that the state of node x is s0 at t = 0. If the defence and detection

strategies d1, d2 are taken against an attack strategy a, the state of node x evolves from

s0 to s1, and node x (with respect to the sink node and base station) receives a reward R

(fx(s0)) and so on (Eq.6). In Q-learning, the state of node x transits from s0 to s1 and

eventually to sp where 1 ≪p≪k −1, where k signifies the efficiency of IDS1 using the di

strategy in detecting and defending against an aj attack strategy. Thus, the accumulated

reward received by x is:

119

𝑅𝑥
𝑝 = ∑ 𝛾𝑝 𝑝

𝑡=0 𝑅 (𝑓𝑥(𝑠𝑝)) (4.3)

 where γ∈ [0, 1) is the discount rate parameter. An attack strategy, and the

objective of IDS2, is to select a suitable defence policy against an assault to accumulate

rewards. It is worth noting that Rx
p
 will be calculated as two sub-rewards, such as R1 for

the base station and R2 for the sink node. An instance of the reward function given to

the cluster head (sink node) and attacker is the total amount of positive reward signals

received when no attack has occurred and no alarm is raised (True Negative), and the

number of correct invasion cases detected by the system (True Positive). The game

theory phases include:

• Phase 1: The sink node monitors message attacks through the game-based FQL

operation as the first step defined by IDS1 (see Table 4.2), after which it

conveys the message to the base station for the second step function defined by

IDS2 (Table 4.3).

• Phase 2: Upon receiving an abnormal signal from the sink node, IDS2 applies

its detection fitness test in conjunction with the knowledge database to assess

attack patterns and severity. This evaluation permits IDS2 to regulate the overall

defence strategy in order to mitigate the DDoS attack. The IDS2 function uses

the fuzzy game theory principle to select an appropriate defence tactic to shield

the message-consuming sensor node. The IDS2 also informs the affected sink

node that it needs to protect itself against the offending attack pattern.

• Phase 3: The sink node verifies the current state of IDS play with the sensor

node. If the sink node still detects an irregularity, it is likely that the IDS2

operation opted for the wrong defence strategy, and consequently, the sink node

advises the IDS2 to revise its detection strategy. If the attack pattern alert count

at the sensor node decreases in number, the sink node systematically endeavours

120

to confirm the current state of IDS play with the sensor node until the attack

condition is resolved and returns to the correct defence strategy state.

• Phase 4: The sink node notifies IDS2 that the attack at the sensor node has been

successfully counteracted and the attack has ceased.

• Phase 5: The IDS2 thus concludes defending the sensor node.

Utility function

To appraise the efficacy of the links determined by G-FQL and to determine the

rule applicability at every point in time, Eq.(4.4) was utilized in this thesis, as suggested

by Liao et al. (Huang et al., 2013). In Table 4.6 the utility function parameters are

described.

U = ρ ∗ SP − β ∗ FN − θ ∗ FP (4.4)

Table 4.6: Utility function parameters

Parameters Explanation

𝑈 Is a utility

𝜌 Symbolizes the weight of effective prediction, q =

0.75

𝑆𝑃 Characterizes the true confidence rate of attack

patterns.

𝛽 Signifies the weight of failed estimates (attack but no

defense), b = 1

𝐹𝑁 Represents false negative of attack patterns - there are

attacks but no defense

𝜃 Denotes the weight of failed predictions (defense but

no attack), h = 1

𝐹𝑃 Represents false positive of attack patterns - there is

defense but no attack

The game principle approach entails detection accuracy with low time

complexity, which only subsequently begins to formulate a shield policy. The major

weakness of the game theory is that if attacks recur over a short period, a considerable

amount of time is consumed in the detection phase, something that deteriorates the

defence. It can be said that the detection precision is low while the false alert rate is

high. This problem is a worst-case scenario, but it can be addressed using the

121

Cooperative-FQL. Its principal contribution is identifying the probability of future

attacks aimed at a wireless sensor node. For frequent attacks occurring over a short

time, multi agent-based FQL was adopted to handle the excessive time spent on

detection. The aim of the proposed FQL is to obtain high detection accuracy with a low

false alarm rate.

4.2.2 Fuzzy Q-learning algorithm

To overcome the required complex detection and defence time as well as

detection precision issues in our game theory method, the FQL algorithm is applied in

this thesis to detect probable future points of attack beforehand. To optimize Q-learning

algorithm performance from the action selection method and reward function

perspectives, fuzzy min-max methods are employed. In the proposed scheme, the fuzzy

min-max action selection and reward function with conventional Q-learning are

evaluated. High detection accuracy performance was revealed. For this reason, FQL is

employed to reinforce a system’s learning capability.

Environment

Fuzzy Logic

Controller

=IR

d

= _process

Min-Max Action

Selection

Q-learning Optimizer

Min-Max Action

Selection

Min-Max Action

Selection

CRITIQUE

F
u
z
z
i
f
i
e

r

Actor

Action

Defuzzifier

k

S
w

i
t
c

h

t
o

S
c
e

n
a

r
i
o

Scenario 1

Scenario 2

(Self-Learning)

Update

reward

Figure 4.4: Block diagram of the FQL optimization system

122

The FLC inputs are provided in two scenarios through the switching process. In

the first scenario, which is a game between a sink node and attacker, we

have 𝑃𝑑=(
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
), the cost of attack detection during sink

processing (𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡) as per the sink node utility function and 𝐼𝑅 =

 (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑠𝑒𝑛𝑡
) as well as 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑡𝑡𝑎𝑐𝑘

with respect to the attacker utility function. These correspond to the fuzzy state of

network S1 (t) from the first scenario 𝑆1(𝑡) = [𝑃𝑑, 𝐶𝑜𝑠𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝐼𝑅]. In the second

scenario, the game between the base station and an attacker,

𝑃𝑘 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑘𝑖𝑙𝑙𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘, Cost defend =

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑠𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑒𝑓𝑒𝑛𝑐𝑒 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 adapts as a base station utility function

while 𝐼𝑅 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑠𝑒𝑛𝑡
) and 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑡𝑡𝑎𝑐𝑘,

regarding the attacker utility function, correspond to the fuzzy state of network S2(t)

from the first scenario: 𝑆2(𝑡) = [𝑃𝑘, 𝐶𝑜𝑠𝑡_𝑑𝑒𝑓𝑒𝑛𝑑, 𝐼𝑅].

The FLC output is given by the increment in states and represents the action of

the sink node and the base station A(t). The reward signal, R (t), is built from FLC and

is measured in both modes of adjacency to test if the sensors experience attacks in

detection mode and the base station correctly defends against attacks. The linguistic

variables Pd, Cost_ Process, and IR act as inputs for the first scenario, while the

linguistic variables Pk, Cost_defend, and IR serve as inputs for the second scenario.

The Detect Confidence (DC1) behaves as output for the first scenario and the

Defend Confidence (DC2) acts as output for the second scenario. They are both applied

in the experiments (Table 4.7).

123

Table 4.7: Linguistic variables for fuzzy set input and output

Type of Scenario Variable Attribute Membership function

Attacker and sink node
Input

Pd Low Med High

Cost process Low Med High

IR Low Med High

Output Detection Confidence (DC1) Low Med High

Attacker and base station
Input

Pk Low Med High

Cost defence Low Med High

IR Low Med High

Output Defence Confidence (DC2) Low Med High

Two fuzzy sets are identified in all inputs and outputs, whose linguistic terms are

‘Low’ (L) and ‘High’ (H). The fuzzy reward was elaborated in Section 4.1.3. Hence, the

objective is to determine the total reward value over time. If the defence and detect

strategy di is used against attack strategy aj at time p and the state of node x transits

from St to Sp+1, the Q-learning function for IDS1 is Q: S×D×A→R as in:

𝑄(𝑆𝑝, 𝑑𝑖, 𝑎𝑗) ← 𝑄(𝑆𝑝, 𝑑𝑖, 𝑎𝑗) + 𝛼 [𝑅 (𝑓𝑥(𝑠𝑝)) + 𝛾𝑅𝑥
𝑝+1 − 𝑄(𝑆𝑝, 𝑑𝑖, 𝑎𝑗)] (4.5)

where α ∈ (0, 1] is the learning rate factor. In this scheme, the Q-function is

applied in dual situations, such as IDS1 and IDS2. In each state, the reward function

rewards the cluster head (sink node) using the Q-learning method and the base station

also obtains the reward. G-FQL attains the final reward value of each player. A learning

rate of zero means the system no longer learns anything new, but a value of 1 would

prompt the system to adjust its accuracy strategy as it self-learns from new attacks and

to update the information in its knowledge base. If the reward value is below the

threshold v, FQL IDS1 deems node x secure; otherwise, it considers the node insecure

and takes suitable detection action against the attack. Coinciding with this evaluation,

FQL IDS2 takes appropriate defensive action against any potential attacks.

124

4.3 Chapter Summary

In this chapter, the interaction between attackers, sink nodes and the base station

was studied, after which a novel, Game-based FQL, cooperative game theoretic defence

mechanism was proposed. This system combines the cooperative-based game theory

with fuzzy Q-learning algorithmic elements. As such, the collaboration between the

detection sink node player and response base station players is reinforced to defend

against an incoming DDoS attack that may cause congestion and downtime in network

communication due to flooding packets. The Game-FQL model is a triple-player game

strategy construed as two-player, providing double defence against a single attacker. It

adds confidence and establishes a reputation as extremely apt in tracking attackers and

defending the system. This strategy-based cooperative game adapts to continuous self-

learning from past attacks and the fuzzy Q-learning decision making process behaviour

to defeat attackers. By defining incentives for cooperation and disincentives for

fraudulent behaviour, it has been determined that repeated interaction sustains

cooperation, builds confidence and enhances reputation, another benefit of Game-FQL.

Game theory-based Fuzzy Q-learning (Game-FQL), a mechanism in IDPS, is an

invaluable tool for progressively securing next-generation complex heterogeneous

computing and networking environments against sophisticated attacks and attackers,

beyond what is encountered today. A future initiative could be to extend the proposed

Game-FQL mechanism by incorporating data from various attack types and sources to

further enhance its decision making capabilities in order to impede existing or new

attacks.

125

Chapter 5 : FRAMEWORK EVALUATION

This chapter reports on the data collection method for the evaluation of proposed

Game based IDPS framework. It explains the tools used for testing the proposed

framework, data generating technique and the statistical method used for the processing

of data.

The chapter is organized into nine sections. Section 5.2 explains the

experimental setup and programming tools used for the implementation and testing of

the proposed Game based FQL- IDPS framework and the statistical method used for the

compilation of empirical data. Section 5.3 presents the data generation and analysing the

flood attack strategy in evaluating the execution of IIDPS on network. Section 5.4

summarizes data analysis of the game based FQL in evaluating IIDPS in terms of

detection accuracy.

Section 5.5 presents the analysis of game based FQL for testing the defense rate

of G-FQL framework. Section 5.6 presents the analysis for number of live nodes during

detection and prevention. Section 5.7 evaluates the energy consumption over time and

Section 5.8 analyses the energy consumed by different deployed nodes in G-FQL IDPS.

Finally, Section 5.9 extracts conclusive remarks.

126

5.1 Simulation and analysis

5.1.1 General tools

To carry out the experiments in the different evaluation stages, this study used

open source simulation software, namely network simulator version 2 (NS2). The

reason for utilising the applications was their openness and public availability, as well

as being free to use. The descriptions of the applications are briefly explained as

follows:

In 1996-97, network simulator version 2 (NS2) was initiated based on a

refactoring by Steve McCanne(Group, 2004). Use of Tcl was replaced by MIT's Object

Tcl (OTcl), an object-oriented language of Tcl. The core of ns-2 is also written in C++,

but the C++ simulation objects are linked to shadow objects in OTcl and variables can

be linked between both language realms. Simulation scripts are written in the OTcl

language, an extension of the Tcl scripting language. Presently, ns-2 consists of over

300,000 lines of source code, and there is probably a comparable amount of contributed

code that is not integrated directly into the main distribution (many forks of ns-2 exist,

both maintained and unmaintained). It runs on GNU/Linux, FreeBSD, Solaris, Mac OS

X and Windows versions that support Cygwin. It is licensed for use under version 2 of

the GNU General Public License.

5.1.2 Design Assumptions

To facilitate and conduct experiments in this thesis, along with the specific

security model in the proposed framework, specifically, given the lack of specific

information on resources, some assumptions had to be made to the attack and game

players’ scenario.

The first assumption is given for players in our scenario. In this scheme, we

assigned the player one as a base station, player two as a sink node, and player three as

http://en.wikipedia.org/wiki/OTcl
http://en.wikipedia.org/wiki/OTcl
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Cygwin
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License

127

an attacker (See Chapter 4). The second assumption is to create a routing protocol. In

this thesis, a LEACH protocol was adopted and the agents or nodes communicate

through this protocol. Distributed Denial-of-Service (DDoS) attack is considered as a

third assumption. Due to lack of real dataset, in this thesis, a generator function is

defined to create flooding attacks during a period of time.

5.1.3 Simulation Setup

The Low Energy Adaptive Clustering Hierarchy (LEACH) protocol was utilized

in the simulation, as it most closely reflects WSN in practice and it is also capable of

dealing with energy consumption concerns in WSNs. The simulations were run for

1000s with LEACH as the routing protocol, the initial access point energy was 100

joules, the effective transmission range of the wireless radio for the access point was

100m, the sink node transmission range was 100m, the common node transmission

range was 50m and the transport protocol is given in Figure 5.1. In addition, the

cooperative game-based IDPS with fuzzy Q-learning was employed to hasten the

simulation.

128

Attack

C1

Sink node

Attack

C2

Figure 5.1: Simulated WSN environment

Table 5.1 presents the WSN configuration along with the set of parameters

applied in NS-2. However, in practical WSN security operation, minimizing energy

usage to conserve energy and maximize detection accuracy as much as possible is vital

when designing and running G-FQL IDPS. The results obtained from the proposed

algorithm are compared with those from Fuzzy Logic Controller, Q-learning, and Fuzzy

Q-learning as well as the Markovian Game (Huang et al., 2013) .

Table 5.1: Wireless sensor network parameters in NS-2

Wireless Sensor Network Parameters Values

Access Point 1

Common Nodes 200

Sink Node in each Cluster 1

Routing Protocol LEACH

Scenario Size 100*100

Simulation Time 1000s

Transport Protocol UDP

Access Point Initial Energy 100 joules

Access Point Transmission Range 100 meters

Sink Node Initial Energy 10 joules

Sink Node Transmission Range 70 meters

Common Node Initial Energy 10 joules

Common Node Transmission Range 50 meters

129

5.1.4 Generating and analysing the flood attack strategy

The purpose of this section is to analyse the quantitative behaviour of attacks in

the UDP protocol layer. In the present experiments, normal UDP traffic was initially

considered, after which the attack intensity under flood attacks with UDP traffic was

explored. Subsequently, the total energy consumed before and after attack was

examined. The accuracy of detection and defense as a result of executing the G-FQL

algorithm was finally assessed. To generate an attack, a random function was employed,

which selected subject nodes from each cluster to attack. The selected nodes adjusted

their functions to send flooding packets to the cluster head. Algorithm 5.1 displays the

attack strategy.

Algorithm 5.1: Attack strategy

1. Start

2. Min(r)=0 %% Initial round simulation (Max(r)=n)

3. While (r<>n)

4. Decide r round's cluster head randomly

5. Cluster head advertises schedule time to all its common nodes

6. Generate attack node randomly

7. Attack node receives schedule time message from its cluster head

8. Attack node starts to compromise victims

8.1. Attack node sends flooding packets to its cluster head in this round

8.2. Victim (cluster head) receives data more quickly than normal state, so its energy will decrease rapidly

9. End.

In the experiment, an attack with UDP attack intensity was implemented. Figure

5.2 indicates flooding attack intensity per packet length. Greater attack intensity

percentage obviously occurred between 200 and 300s, at which time packet length also

reached elevated values. In Figure 5.3 it appears that UDP attack intensity affected the

WSN energy, besides the fact that energy was consumed in proportion to attack

intensity. For example, for attack intensity between 100 and 150s, the most energy was

consumed.

130

150 200 300
400

% Intensity of attack

Time (S)

P
a

c
k

e
t

s
i
z
e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 5.2: Effects of UDP attack intensity on packet size

Time (S)

% Intensity of attack

E
n

e
r
g

y

c

o
n
s

u
m

p
t
i
o

n

(
j
o

u
l
e

s
)

0 50 100 150 200 250 300 350 400

0

2

1

3

4

5

6

7

8

9

10

Figure 5.3: Victim node’s energy level over time

In the present research work, three sets of experiments were conducted to

examine the effects of attack detection accuracy and defense rate against attacks based

on the Fuzzy Logic Controller, Q-learning algorithm, Fuzzy Q-learning and Game

theory-based Fuzzy Q-learning algorithms. The cost function was calculated according

to Eq. 4.7.

5.1.5 Analysis of the game-based FQL IDPS in terms of detection accuracy

The proposed game-based Fuzzy Q-learning (G-FQL) algorithm with the cost

function 𝑈 = 𝜌 ∗ 𝑆𝑃 − 𝛽 ∗ 𝐹𝑁 − 𝜃 ∗ 𝐹𝑃 was compared with existing soft computing

methods (Fuzzy Logic Controller, Q-learning, and Fuzzy Q-learning) with respect to the

attack detection precision of modeled Denial-of-Service attacks. A comparison between

the average utility function and G-FQL with cost maximization indicates that the latter

yielded an improvement of 3.29% with 1.86 standard deviation as opposed to the FQL

algorithm with 0.83 (Table 5.2).

131

Table 5.2: Simulation results of the detection algorithm for DDoS attacks

Percenta

ge of

Attack

(%)

FLC Q-learning FQL Game-based FQL

SP

%

FP

%

FN

%

Utility

Function

SP

%

FP

%

FN

%

Utility

Function

S

P

%

FP

%

FN

%

Utility

Function

SP

%

FP

%

FN

%

Utility

Function

1 49.50 1.90 2.40 56.38 76.00 1.40 1.20 54.40 80.10 1.20 1.10 57.78 83.20 1.20 1.10 60.10

5 49.80 1.98 2.80 56.07 76.70 1.60 1.40 54.53 81.20 1.40 1.30 58.20 83.40 1.30 1.20 60.05

10 50.01 2.00 3.20 55.71 76.90 1.90 1.70 54.08 82.50 1.90 1.70 58.28 84.30 1.50 1.60 60.13

15 51.20 2.04 3.60 56.56 77.80 2.10 2.00 54.25 83.70 2.10 2.00 58.68 85.60 1.70 1.80 60.70

20 50.90 2.40 3.90 55.38 78.00 2.40 2.20 53.90 83.90 2.40 2.20 58.33 87.90 1.90 2.00 62.03

25 51.90 2.80 4.10 55.93 78.90 3.10 2.70 53.38 84.20 2.60 2.30 58.25 88.30 2.10 2.30 61.83

30 52.70 2.90 4.20 56.68 80.20 3.40 3.00 53.75 85.80 2.80 2.60 58.95 89.70 2.40 2.50 62.38

35 49.40 3.00 4.70 51.70 82.80 3.90 3.20 55.00 86.40 2.90 2.70 59.30 90.50 2.60 2.70 62.58

40 49.50 3.01 5.00 51.37 82.90 4.20 3.80 54.18 87.70 3.20 3.00 59.58 91.70 3.10 3.00 62.68

45 50.02 3.20 5.30 51.38 83.70 4.90 4.10 53.78 88.50 3.40 3.20 59.78 92.40 3.20 3.40 62.70

50 51.04 3.50 5.60 51.90 83.90 5.20 4.80 52.93 89.60 3.90 3.50 59.80 94.20 3.30 3.70 63.65

55 50.30 3.70 5.80 50.48 84.90 5.60 5.10 52.98 90.40 4.10 4.00 59.70 96.50 3.50 3.80 65.08

60 49.30 3.70 5.90 49.08 85.00 5.80 5.70 52.25 92.40 4.50 4.30 60.50 98.20 3.70 3.90 66.05

Average 51.20 2.78 4.35 53.74 80.59 3.50 3.15 53.80 85.88 2.80 2.60 59.01 89.68 2.42 2.54 62.30

Std. Dev. 1.03 0.66 1.15 2.76 3.37 1.50 1.47 0.75 3.71 1.01 0.98 0.83 4.86 0.87 0.98 1.86

It is evident that G-FQL with a cooperative mechanism attained the utmost detection accuracy gain. It can also be inferred from Figure 5.4 that

detection accuracy per percentage of attack is higher with the G-FQL algorithm than the other methods.

132

Figure 5.4: Comparison of detection accuracy values

In Figure 5.4, the X-axis shows the percentage of malicious nodes in an attack,

and the Y-axis indicates the accuracy rate. At higher attack frequencies, the proposed

method (Game-based FQL) displays greater accuracy scores.

5.1.6 Analysis of game-based FQL IDPS in terms of Defense Rate

The proposed Game-FQL method was weighed against that of Huang et al.

(Huang et al., 2013), who used the game theory and Markovian IDS with an attack-

pattern-mining algorithm. According to Huang et al.’s (Huang et al., 2013) empirical

results, the defense rate effectiveness of non-cooperative-based Markovian IDS with an

attack-pattern mining algorithm for 60% of malicious nodes in a network and two sink

nodes ranged between 72% and 97% (Figure 4.9). With the proposed game-based FQL

IDPS, the successful defense rate was between 79% and 98%, as per Figure 5.5 as well.

It can be concluded that integrating the game theory with the Fuzzy Q-learning

algorithm outperforms individual defense schemes.

0 5 10 15 20 25 30 35 40 45 50 55 60
45

50

55

60

65

70

Percentage of Malicious Nodes in WSN

A
c

c
u

r
a

c
y

o

f

D

e
t
e

c
t
i
o

n

FLC

QL

FQL

Game-FQL

133

Figure 5.5: Game-based FQL in terms of accuracy of defense rate under attack trends

Figure 5.5 points out that the successful defense rate values for Huang et al.’s

model (Huang et al., 2013) and the proposed methods decreased from 100% to 87%

when the anomaly percentage increased. However, the proposed method gained the

advantage of a successful defense rate due to the higher percentage of malicious nodes

detected compared to Huang’s lower success rate. It can thus be deduced that by

integrating the game theory with the Fuzzy Q-training method, performance surpasses

that of any other individual defense approach.

5.1.7 Analysis of game-based FQL IDPS in terms of number of live nodes

This experiment was conducted to evaluate the performance of the Game-FQL

algorithm in terms of number of live nodes during the simulation runtime. In the current

scheme, the number of sensor nodes was 200. Figure 5.6 displays the number of live

nodes for different algorithms throughout simulation runtime. The simulation outcomes

indicate the number of live nodes at the end of the simulation time (1000s), according to

which, the number of live sensor nodes in the proposed Game-FQL method is

0 5 10 15 20 25 30 35 40 45 50 55 60
70

75

80

85

90

95

100

Percentage of Malicious Nodes in WSN

S
u

c
c

e
s
f
u

l

D

e
f
e

n
s
e

R

a
t
e

Liao model

Game-FLQ

134

significantly greater than existing algorithms. Game-FQL maintains 50 live nodes

against an attack in comparison to 42, 32, and 21 live nodes for FQL, QL, and FLC,

respectively.

Figure 5.6: Number of live sensor nodes during simulation runtime (ms)

The procedure of adjusting rules according to FLC-based DDoS attacks is more

time-consuming, and the attacker defeats a high number of nodes during FLC detection

(Baig et al., 2010). Q-learning-based DDoS attack detection is capable of handling

minor-class DDoS attacks, but the multi objective procedure or major features of a

DDoS attack consume maximum resources, especially in a real-time environment (Liu,

2008). Fuzzy Q-learning-based DDoS attack detection utilized the min-max fuzzy

method to enhance the classification scheme. The min-max fuzzy classifiers perform

well with a reduced dataset, but inaccurately when the high volume of traffic increases

further and the fuzzy IDPS may crash. In addition, prior knowledge of data distribution

is required for the FQL algorithm. In the Fuzzy Q-learning algorithm, observation is

limited by one single classifier. Therefore, this algorithm fails due to high volumes of

real-time traffic. In the currently proposed method, the cooperative policy evaluates the

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Time

N
u

m
b
e

r

o

f

A

l
i
v
e

N

o
d
e

s

FQL

QL

FLC

Game-FQL

135

proficiency of an agent to optimize the cost function based on weight assignment

mechanisms for real-time DDoS attack detection. The countermeasure mechanisms

result as modules to be applied in Game-FQL architecture and system implementation

to accelerate the detection and defense learning process in a fraction of the usual time.

Thus, the Game-FQL preserves a greater number of sensor nodes during simulation.

5.1.8 Analysis of game-based FQL IDPS in terms of energy consumption over time

In this experiment, the energy consumed by the Game-FQL algorithm during

DDoS attacks on sensor nodes in comparison to FLC, QL, and FQL is studied. Figure

5.7 provides the comparison between the mentioned algorithms in terms of total energy

consumed by sensor nodes.

Figure 5.7: Total energy consumption versus number of sensor nodes under malicious attack

In existing detection, the players (sink node and base station) partake in

activities such as local sensing and data reporting, which consume additional energy.

The overhead of energy consumption may be considerable if the number of cooperating

players or the amount of sensing results in the report is very large. Thus, energy

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Time

C
o

n
s
u

m
e
d

E

n
e

r
g

y

(
J

o
u

l
e

s
)

FLC

QL

FQL

Game-FQL

136

efficiency needs to be considered in cooperative sensing schemes. To address this issue,

the cooperative game-based FQL method enhances energy efficiency via optimization.

5.1.9 Analysis of the energy consumed by different deployed nodes in the game-FQL

The impact of number of deployed sensor nodes on energy consumption is

shown in Figure 5.8. It is observed that with an increasing percentage of deployed

nodes, the proposed Game-FQL is able to consume the total amount of energy in

comparison with FQL, QL, and FLC.

Figure 5.8:Total energy consumption versus number of sensors deployed in a network

Finally, Figure 5.8 depicts the total energy consumed with varying numbers of

sensor nodes deployed in the network. The experiment was run for 40, 80, 120, 160,

and 200 nodes. As expected, when more nodes are present in the network, the energy

consumption rate is lower than other comparable methods. This is attributed to the fact

that the proposed Game-based FQL agents prefer to maximize their own utility function

by means of cooperating learning algorithm to avoid the energy consumption by sensors

from each cluster. However, it would be interesting for the cooperative Game-FQL

40 80 120 160 200
0

200

400

600

800

1000

1200

1400

1600

Number of deployed nodes

T
o

t
a
l

e

n
e
r
g

y

c
o

n
s
u

m
p

t
i
o
n

(
J
o

u
l
e
s
)

FQL

QL

FLC

Game-FQL

137

solution to be implemented, for instance, to “BEE-C: A bio-inspired energy efficient

cluster-based algorithm for data continuous dissemination in Wireless Sensor

Networks” (da Silva Rego et al., 2012), to verify the energy consumption for intrusion

detection and prevention.

5.1.10 Analysis of the computational time in the game-FQL

Preprocessing time includes the time spent in feature extraction and

normalization. The training time depends on the number of times the classifier needs

training which in turn depends on the mean square error between iterations reaching

goal minimum. Testing time includes the time spent in testing the unlabeled instances

by weighted mean. Table 5.3 shows the performance comparison of the G-FQL in terms

of consuming time obtained during the experiments. From Table 5.3, it can be realized

that the training time of G-FQL is similar to FQL, but it consumes more testing time

than the FLC, Q-learning, and FQL. Also, the computational time was calculated on

Intel 3.10 GHz, Core i-5 Processor, 4 GB RAM computer.

Table 5.3 : Performance comparison of G-FQL in terms of consuming time

Dataset Algorithms Training time (seconds) Testing time

(seconds)

Real

data

Fuzzy Logic Controller 3.10 1.30

Q-learning 3.14 1.36

Fuzzy Q-learning 3.22 1.40

G -FQL 3.22 1.42

Testing time of the proposed G-FQL method is a little high due to the ensemble

output combination methods such as fuzzy Q-learning and weight strategy sharing

algorithm, but more detection accuracy was achieved in G-FQL. The speedup of G-FQL

can be improved when a hybrid classifier is executed in parallel processors. Thus, all the

modules can be processed in parallel by different engines in order to reduce the overall

processing time considerably.

138

5.2 Chapter Summary

The first stage of the evaluation study has shown the statistical analysis of

flooding attack with generate attack algorithm. The attack model was introduced as a

means to estimate the damage of flooding attack. Likelihood of attack intensity per

packet length and attack intensity affected the energy. With a combination of the fuzzy

reinforcement algorithm and the aid of game theory, the detection for attack is

improved.

The second stage aims to investigate the effectiveness of proposed model as a

strategy in detection. One of the criteria to support the detection system is to consider

the ability of agents in order to share their knowledge to identify attacks. For instance,

intelligent detector identifies a DDoS attack with a fast ability of detection in order to

minimise its impact. This intelligent and fast detection process is crucial to the proposed

framework, as a good detection strategy increase the ability of model in facilitation a

cooperative based intelligent mode. Therefore, in order to satisfy such claims, this stage

investigates the ability of proposed frameworks to response strategy model.

The third stage also investigates the relationship between attacked and their

classification (e.g. accuracy of detection/ false alarm rate). With the implementation of

collaborative security strategy in attack detection and response, some improvements

have been made. In practical, a better cost functions for attack detection can be

produced compared to the cost function used in the traditional methods. In addition,

there is a reduction in terms of false alarm rate of attacks that need to be marked by

fuzzy labelling. This fuzzy labelling allows security experts to classify number of

attacks and type of damage of attacks in order to response only to an appreciate attacks;

hence it could save time and responses.

139

Chapter 6 : CONCLUSION

This chapter summarizes the major finding of the study by reviewing the

achievements of the research. In particular, the first section of this chapter highlights its

most important findings, as well as its limitations. The next section dedicates the main

contributions of this thesis and how the objectives have been achieved. Finally, this

chapter concludes with a description of possible future work in the topics covered and

showing how the proposed framework could be enhanced in the future.

6.1 Achievements of the study

This thesis launched with an investigation into the different types of intelligent

intrusion detection and response systems, exploring issues related to the IIDPSs and Co-

IIDPS in networks. The study proposed a novel collaborative game based IDPS

framework in order to identify the distributed denial of service attacks and to show the

ability of multi agent based computational intelligence methods in terms of

collaborative IIDPS. The proposed model was compared with existing soft computing

methods (fuzzy logic controller, Q-learning, and fuzzy Q-learning) with respect to the

attack detection precision of modeled denial-of-service attacks. Several analyses were

explored and their capabilities evaluated in order to satisfy the aims of this thesis.

The overall goal of this thesis is to establish a novel approach to identify

distributed denial of service attacks and response to attackers in network environments.

Within the proposed framework, which included experiments, this thesis has been

successful. Details are as follows:

 A collaborative model for Intelligent Intrusion Detection and Prevention Systems.

This thesis introduced three classes of IIDPS detection methodologies,

approaches and technologies. Each technique has its advantages and limitations. The

140

TAI-based IDPS is straightforward to implement and very effective in inspecting known

attacks. Still, the approach hardly identifies unknown attacks, attacks concealed by

evasion techniques and several variants of known attacks. A number of fuzzy rule-based

approaches to detect unknown attacks were also proposed. Such techniques may

unnecessarily result in issues with excessive computing time consumption and rapid

updating of the knowledge base, hindering attack effectiveness.

A more accurate and simplified approach is still required to increase efficiency

and effectiveness further. Computational intelligence-based approaches such as

Reinforcement Learning (RL) algorithm have the merit of possessing with no prior

knowledge of attacks. They do not work well in real-time applications due to the high

computational complexity. A multi agent-based CI (MCI) not only mitigates high

computational complexity such as time consumption and updating knowledge, but also

enhances detection performance (See Chapter 2).

Thus, the collaborative management using the multi agent system-based

computational intelligence portrays the ability to mitigate detection problems. In other

words, the individual or single capabilities in terms of self-cooperative techniques

(without using CI methods) consider all the features addressed in their systems. These

inefficiencies are evidence of the lack of cooperative knowledge regarding suitable CI

methods to identify intrusion prior to initiating any development.

All new solutions to developing multi agent-based CI methods consider the

requirements (detection and false alarm rate) as being able to overcome Cooperative-

IIDPS complexities and meet the real operational goals of networks.

A novel collaborative-based IIDPS (Co-IIDPS) architecture is proposed and

presented. It demonstrates the impact of a Multi Agent System-based computational

intelligence (MCI) technique on enhancing the efficiency of detection and false alarm

141

rates. In other words, incorporating a multi- agent system (MAS) to computational

intelligence (MCI) in terms of Co-IIDPS allows monitoring intrusion activity. Fuzzy

system (FS) with reinforcement learning (RL) in terms of fuzzy reinforcement learning

manager (FRLM) has merged into Co-IIDPS, resulting in high true positive and low

false alarm rates. The policy aspect of MAS-based FRLM applies a negotiation method

to improving the detection accuracy. The developed Co-IIDPS architecture around

MAS-based FRLM satisfies the detection performance (See Chapter 3). This

architecture portrays the clear notion of cooperative learning-based detection to satisfy

the requirements of IIDPS. In conclusion, the detection management techniques can be

improved by minimizing the false alarm rates and increasing the detection rates in

addition to decreasing energy consumption in networks.

In the context of Co-IIDPS, adaptive game theoretic techniques are adequate for

network parameter optimization due to the complexity and dynamism of networks. The

main benefits of applying such techniques are cost savings and improved network

performance. The model helps the proposed framework to identify different types of

DDoS attacks, each of which has its own unique characteristics (see Chapter 4). The

interaction between attackers, sink nodes and the base station was studied, after which a

novel Game-based FQL, cooperative game theoretic defense mechanism was proposed.

This system combines the cooperative-based game theory with fuzzy Q-learning

algorithmic elements. As such, the cooperation between the detection sink node player

and response base station players is reinforced to defend against an incoming DDoS

attack that may cause congestion and downtime in network communication as a result

of flooding packets.

The Game-FQL model is a triple-player game strategy construed as two-player,

providing double defense against a single attacker. It adds confidence and establishes a

reputation as extremely apt in tracking an attacker and defending the system. This

142

strategy-based cooperative game adapts to continuous self-learning of past attacks and

the behaviour in the fuzzy Q-learning decision making process to overcome the

attacker. By defining incentives for cooperation and disincentives for fraudulent

behaviour, it has been determined that repeated interaction sustains cooperation, builds

confidence and enhances reputation, something additionally offered by Game-FQL. In

conclusion, Game theory-based Fuzzy Q-learning (Game-FQL), as a mechanism in

IDPS, is an invaluable tool for increasingly securing next-generation complex

heterogeneous computing and networking environments against sophisticated attacks

and attackers, beyond what is encountered today.

 Issues in Collaborative IDPS studies.

In Chapter 4, this thesis established a critical analysis of different perspectives

when addressing the significant problems of the DDoS attack detection and response, as

well as its challenges. With an aim to establish a IIDPS framework to DDoS attacks,

several issues were exposed. By presenting the strengths and weaknesses of these

issues, several intelligent IDPS and cooperative-IIDPS were identified which address

the limitations of the previous approaches, by enhancing the cooperative game based

learning techniques; it is more systematic in the detection and response process.

 Comprehensive evaluation stages for the proposed framework.

In addressing the distributed denial of service attacks detection and response in

WSNs, the proposed framework outlined several models and strategies. The objective of

the evaluation is to examine the proposed framework and to decide whether it is

sufficiently applicable to facilitate the detection and response action in a traffic network.

The evaluation presented as follows:

The first stage of the evaluation study has shown the statistical analysis of

flooding attack with generate attack algorithm. The attack model was introduced as a

143

means to estimate the damage of flooding attack. Likelihood of attack intensity per

packet length and attack intensity affected the energy. With a combination of the fuzzy

reinforcement algorithm and the aid of game theory, the detection for attack is

improved.

The second stage aims to investigate the effectiveness of proposed model as a

strategy in detection. One of the criteria to support the detection system is to consider

the ability of agents in order to share their knowledge to identify attacks. For instance,

intelligent detector identifies a DDoS attack with a fast ability of detection in order to

minimise its impact. This intelligent and fast detection process is crucial to the proposed

framework, as a good detection strategy increase the ability of model in facilitation a

cooperative based intelligent mode. Therefore, in order to satisfy such claims, this stage

investigates the ability of proposed frameworks to response strategy model.

The third stage also investigates the relationship between attacked and their

classification (e.g. accuracy of detection/ false alarm rate). With the implementation of

collaborative security strategy in attack detection and response, some improvements

have been made. In practical, a better cost functions for attack detection can be

produced compared to the cost function used in the traditional methods. In addition,

there is a reduction in terms of false alarm rate of attacks that need to be marked by

fuzzy labelling. This fuzzy labelling allows security experts to classify number of

attacks and type of damage of attacks in order to response only to an appreciate attacks;

hence it could save time and responses.

In conclusion, the proposed framework was analysed in terms of its detection

accuracy and defence rate. The evaluation stage satisfied the number of live nodes, in

particular the ability of the proposed game based IDPS to operate with reasonable

response time and reduce false alarm response. Beside the effectiveness and

144

performances of proposed method, the energy consummation over time is evaluated.

Finally, the percentage of energy consumed by different deployed nodes is evaluated to

show the performance of proposed framework.

 Simulation of the proposed framework.

To appraise the performance and check the connection between G-FQL and the

routing protocol, NS-2 is simulated. In this thesis only the Distributed Denial-of-Service

(DDoS) attack is considered. DDoS is characterized by the presence of an attacker and

is called a flooding attack, and it causes noise in wireless communication by sending

flooding packets as well as exhausts energy.

6.2 Limitations of the study

The considerations of the previous chapters have revealed that this thesis has

adequately achieved its aims and objectives: the establishment of a novel cooperative

IIDPS to use when DDoS attack in a wireless environment. However, a number of

limitations and challenges were encountered during the study and they are listed here

for future reference:

 We define a model for generating DDoS attack based upon the poison

distribution function. This is due to lack of real DDoS attack dataset in wireless

sensor network. The purpose of this section is to analyse the quantitative

behaviour of attacks in the UDP protocol layer. To generate an attack, a random

function was employed, which selected subject nodes from each cluster to

attack. The selected nodes adjusted their functions to send flooding packets to

the cluster head displays the attack strategy (See Algorithm 4.1).

 The hybrid machine learning algorithm cannot be used to cope with fast network

changes as well as attack’s behaviour fluctuations. However, as a remarkable

advantage, the use of long-term statistical data leads to more robust methods. In

145

addition, as the temporary limitation is given by the measurement periods, there

is plenty of time to apply complex optimization methods, which can further

improve wireless sensor network performance. Thus, the term that refers to this

kind of tasks is off-line tuning methods.

 A particular agent can be nominated the task of perceiving abnormal traffic flow

in the network. Though, the single agent’s action suffers from some weaknesses.

The disadvantages are: 1) the attackers may be exterior the observation range of

the detector node; 2) a large set of normal and abnormal patterns will have to be

stored and processed by the detector node, for individually victim node of the

network; 3) the lack of multiple decision making strategy on the detector node

implies that the attack traffic flow may overwhelm the detector node itself, and

thus disrupt the entire detection process.

6.3 Future Work

The set of compromised nodes participating in attacks may designate to send

requests to the victim nodes at regular intervals of time by staying well below the attack

detection threshold in WSN. In reality, the intensity of attack traffic may be constituted

of malicious packets intending to cause damage to target nodes over a longer period of

time. This type of an attack will lead to a gradual decline in resources of the target

nodes in WSN. We can refer to this attack as a slow poisoning attack. A future direction

of work can involve detection of such attacks in addition to detection of high traffic

intensity attacks, addressed in this thesis.

The proposed attack detection scheme does detection of attacks that culminate

from higher orders of incoming traffic within a single time epoch (See Section 5.2.5),

without correlating traffic behaviour from previous time epochs. This work can be

extended to incorporate correlation between time epochs, for attack detection purposes.

146

In addition, the length of the time epoch is static post-initialization. Variable time epoch

lengths, based on analysis of real-time network traffic, are another possible future

direction of research.

By defining incentives for cooperation and disincentives for fraudulent

behaviour, it has been determined that repeated interaction sustains cooperation, builds

confidence and enhances reputation, something additionally offered by Game-FQL.

Game theory-based Fuzzy Q-learning (Game-FQL), as a mechanism in IDPS, is an

invaluable tool for increasingly securing next-generation complex heterogeneous

computing and networking environments against sophisticated attacks and attackers,

beyond what is encountered today. A future initiative is to extend the proposed Game-

FQL mechanism by incorporating data from various attack types and sources to further

enhance its decision making capabilities in order to thwart existing or new attacks. Also

as part of future research work on complementing Game-FQL, studying a network

evolutionary algorithm, such as the imperialist competitive algorithm, is considered of

utmost importance.

147

References

Abadeh, M. S., et al. (2007). Intrusion detection using a fuzzy genetics-based learning

algorithm. Journal of Network and Computer Applications, 30(1), 414-428.

Abraham, A., et al. (2007). D-SCIDS: distributed soft computing intrusion detection

system. Journal of Network and Computer Applications, 30(1), 81-98.

Agah, A., et al. (2007). Preventing DoS attacks in wireless sensor networks: A repeated

game theory approach. International Journal of Network Security, 5(2), 145-153.

Agah, A., et al. (2004). Intrusion detection in sensor networks: A non-cooperative game

approach. The Proceedings of the Third IEEE International Symposium on

Network Computing and Applications (NCA’04), pp. 343 - 346.

Ahmadabadi, M. N., et al. (2001). Cooperative Q-learning: the knowledge sharing issue.

Advanced Robotics, 15(8), 815-832.

Akyildiz, I. F., et al. (2002). Wireless sensor networks: a survey. J. Comput. Netw,

38(4), 393-422.

Alpadin, E. (2010). Introduction to Machine Learning. Cambridge, Massachusetts: MIT

Press.

Andersen, K. T., et al. (2009). Experiments with online reinforcement learning in real-

time strategy games. Applied Artificial Intelligence, 23(9), 855-871.

Anderson D, Lunt TF, Javitz H, et al. (1995). Detecting unusual program behavior using

the statistical component of the Next-generation Intrusion Detection Expert

System (NIDES): Mountain View, California: SRI International, Computer

Science Laboratory.

Anderson, J. A., et al. (1995). An introduction to neural network. Cambridge,

Massachusetts:MIT Press.

Anstee, D., Bussiere, D., Sockrider, G., & Morales, C. (2012). Worldwide Infrastructure

Security Report. Infrastructure Security Report,8.

Anuar, N. B., et al. (2012). A Response Strategy Model for Intrusion Response

Systems. In Information Security and Privacy Research, Springer, 573-578.

Anuar N. B.,et al. (2014), A response selection model for intrusion response systems:

Response Strategy Model (RSM), Security Comm. Networks,7,1815–1830

Aydın, M. A., et al. (2009). A hybrid intrusion detection system design for computer

network security. Computers & Electrical Engineering, 35(3), 517-526.

Baig, Z. A., et al. (2010). Fuzzy Logic-Based Decision Making for Detecting

Distributed Node Exhaustion Attacks in Wireless Sensor Networks. Proceedings

of the Second International Conference on In Future Networks, 2010.

ICFN'10, pp. 185-189.

Balajinath, B., et al. (2001). Intrusion detection through learning behavior model.

Computer Communications, 24(12), 1202-1212.

Bankovic, Z. F., et al. (2011). Improving security in WMNs with reputation systems and

self-organizing maps. Journal of Network and Computer Applications, 34(2),

455-463.

Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge,

Massachusetts: MIT press.

Bicakci, K., et al. (2009). Denial-of-Service attacks and countermeasures in IEEE

802.11 wireless networks. Computer Standards & Interfaces, 31(5), 931-941.

Bivens, A., et al. (2002). Network-based intrusion detection using neural networks.

Intelligent Engineering Systems through Artificial Neural Networks, 12(1), 579-

584.

Blasco, J., et al. (2010). Improving Network Intrusion Detection by Means of Domain-

Aware Genetic Programming. Proceedings of the ARES'10 International

Conference on Availability, Reliability, and Security, pp. 327-332.

148

Bokareva, T., et al. (2006). Wireless sensor networks for battlefield surveillance.

Proceedings of Land Warfare Conference (LWC), Brisbane. pp. 1-11.

Bridges, S. M., et al. (2000). Fuzzy data mining and genetic algorithms applied to

intrusion detection. Proceedings of 12th Annual Canadian Information

Technology Security Symposium, pp. 109-122.

Buckley, J. J., et al. (1994). Fuzzy genetic algorithm and applications. Fuzzy Sets and

Systems, 61(2), 129-136.

Cannady, J. (1998). Artificial neural networks for misuse detection. Proceeding of the

National Information Systems Security Conference (NISSC'98), Arlington, VA.

pp. 368-381.

Chavan, S., et al. (2004). Adaptive neuro-fuzzy intrusion detection systems. The

Proceeding of International Conference on Information Technology: Coding and

Computing, ITCC 2004, 1(70-74).

Chen, B., et al. (2002). Span: An Energy-Efficient Coordination Algorithm for

Topology Maintenance in Ad Hoc Wireless Networks. J. WIREL. NETW, 8(5),

481-494.

Curiac, D.-I., et al. (2012). Ensemble based sensing anomaly detection in wireless

sensor networks. Expert Systems with Applications, 39(10), 9087-9096.

Da Silva, A. P. R., et al. (2005). Decentralized intrusion detection in wireless sensor

networks. Proceedings of the 1st ACM international workshop on Quality of

service & security in wireless and mobile networks, pp. 16-23.

DARPA. (2012). Counter-Sniper Program (C-sniper). Retrieved 19 October, 2012,

from http://www.darpa.mil/Our_Work/STO/Programs/Counter-

Sniper_Program_(C-Sniper).aspx.

Dasgupta, D., et al. (2005). CIDS: An agent-based intrusion detection system.

Computers & Security, 24(5), 387-398.

Dataset, C. (2006). Sensor network dataset for enhancing CSMA MAC protocol. from

http://crawdad.cs.dartmouth.edu/meta.php?name=columbia/ecsma

Davis, J. J., et al. (2011). Data preprocessing for anomaly based network intrusion

detection: A review. Computers & Security, 30(6), 353-375.

Debar, H., et al. (1992). A neural network component for an intrusion detection system.

In Proceedings of IEEE Computer Society on Research in Security and Privacy,

Oakland, CA. pp. 240-250.

Denning, D. E. (1987). An Intrusion-Detection Model. J. IEEE. T. Software. Eng, SE-

13(2), 222-232.

Devarakonda, N., et al. (2012). Integrated Bayes Network and Hidden Markov Model

for Host based IDS. International Journal of Computer Applications, 41(20), 45.

Dickerson, J. E., et al. (2001). Fuzzy intrusion detection. In Proceedings of the 19th

International Conference of the North American Fuzzy Information Processing

Society (NAFIPS), Atlanta,GA. pp. 1506-1510.

Doelitzscher, F., et al. (2012). An agent based business aware incident detection system

for cloud environments. Journal of Cloud Computing: Advances, Systems and

Applications, 1(1), 9.

Dorigo, M., et al. (2010). Ant colony optimization. Encyclopedia of Machine Learning

(36-39) : Heidelberg :Springer.

Dutkevych, T., et al. (2007). Real-Time Intrusion Prevention and Anomaly Analyze

System for Corporate Networks. The 4th IEEE Workshop on Intelligent Data

Acquisition and Advanced Computing Systems: Technology and Applications,

pp. 599-602.

Eik Loo, C., et al. (2006). Intrusion Detection for Routing Attacks in Sensor Networks.

International Journal of Distributed Sensor Networks, 2(4), 313-332.

http://www.darpa.mil/Our_Work/STO/Programs/Counter-Sniper_Program_(C-Sniper).aspx
http://www.darpa.mil/Our_Work/STO/Programs/Counter-Sniper_Program_(C-Sniper).aspx
http://crawdad.cs.dartmouth.edu/meta.php?name=columbia/ecsma

149

Elias, J., et al. (2011). Non-cooperative spectrum access in cognitive radio networks: A

game theoretical model. Computer Networks, 55(17), 3832-3846.

Engelbrecht, A. P. (2007). Computational intelligence: an introduction. New York:

Wiley.

Fisch, D., et al. (2012). Learning from others: Exchange of classification rules in

intelligent distributed systems. Artificial Intelligence, 187, 90-114.

Fragkiadakis, A., et al. (2012). Design and performance evaluation of a lightweight

wireless early warning intrusion detection prototype. EURASIP Journal on

Wireless Communications and Networking, 2012(1), 1-18.

Fuchsberger, A. (2005). Intrusion Detection Systems and Intrusion Prevention Systems.

J. Information Security Technical Report (ISTR), 10(3), 134-139.

Fullér, R. (2000). Introduction to neuro-fuzzy systems, Edittion 2. Heidelberg: Springer.

Gaing, Z.-L. (2004). A particle swarm optimization approach for optimum design of

PID controller in AVR system. IEEE Transactions Energy Conversion, 19(2),

384-391.

Garcia-Teodoro, P., et al. (2009). Anomaly-based network intrusion detection:

Techniques, systems and challenges. Computers & Security, 28(1-2), 18-28.

Ghosal, A., et al. (2013). Intrusion Detection in Wireless Sensor Networks: Issues,

Challenges and Approaches. Wireless Networks and Security, Heidelberg:

Springer. pp. 329-367.

Glorennec, P. Y. (1994). Fuzzy Q-learning and dynamical fuzzy Q-learning.

Proceedings of the Third IEEE Conference on Fuzzy Systems, pp. 474-479.

Gomez, J., et al. (2002). Evolving fuzzy classifiers for intrusion detection. Proceedings

of the 2002 IEEE Workshop on Information Assurance, 6 (3), 321-323. New

York: IEEE Computer Press.

Group, V. (2004). UCB/LBNL/VINT network simulator NS (version 2). Retrieved in

http://www.isi.edu/nsnam/ns.

Gu, G., et al. (2006). Measuring intrusion detection capability: an information-theoretic

approach. Proceedings of the 2006 ACM Symposium on Information, computer

and communications security, Taipei, Taiwan. pp. 90-101.

Gupta, I., et al. (2005). Cluster-head election using fuzzy logic for wireless sensor

networks. Proceedings of the 3rd Annual Conference on Communication

Networks and Services Research. pp. 255-260.

Hanson, M. A., et al. (2009). Body Area Sensor Networks: Challenges and

Opportunities. J. IEEE. Computer, 42(1), 58-65.

Herrero, Á., et al. (2009). MOVIH-IDS: A mobile-visualization hybrid intrusion

detection system. Neurocomputing, 72(13-15), 2775-2784.

Hofmeyr, S. A., et al. (2000). Architecture for an Artificial Immune System.

Evolutionary Computation, 8(4), 443-473.

Huang, J.-Y., et al. (2013). Shielding wireless sensor network using Markovian

intrusion detection system with attack pattern mining. Information Sciences,

231(1), 32-44.

Idris, N. B., et al. (2005). Artificial Intelligence Techniques Applied to Intrusion

Detection. 2005 Annual IEEE in INDICON. pp. 52-55.

Intel Berkeley Research lab. (2004). Available From

http://db.csail.mit.edu/labdata/labdata.html

Jianhui, L., et al. (2008). A fast fuzzy set intrusion detection model. International

Symposium on Knowledge Acquisition and Modeling KAM'08. pp. 601-605.

Jungwon, K., et al. (2001). Towards an artificial immune system for network intrusion

detection: an investigation of clonal selection with a negative selection operator.

Proceedings of the 2001 Congress on Evolutionary Computation, 2 (pp.1244-

1252).

http://db.csail.mit.edu/labdata/labdata.html

150

Kapitanova, K., et al. (2012). Using fuzzy logic for robust event detection in wireless

sensor networks. Ad Hoc Networks, 10(4), 709-722.

Kaspersky, E. (2013). The Cybercrime Ecosystem. Kaspersky Lab. Retrieved from

www.kaspersky.com.

KDD. (1999). KDD Cup 1999 Data. Retrieved 1st April, 2012, from

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Khalil, I., et al. (2012). CTAC: Control traffic tunneling attacks’ countermeasures in

mobile wireless networks. Computer Networks, 56(14), 3300-3317.

Khalil, I., et al. (2010). UnMask: Utilizing neighbor monitoring for attack mitigation in

multihop wireless sensor networks. Ad Hoc Networks, 8(2), 148-164.

Khan, S. A., et al. (2012). Application of fuzzy inference systems to detection of faults

in wireless sensor networks. Neurocomputing, 94(0), 111-120.

Khanna, R., et al. (2009). Reduced Complexity Intrusion Detection in Sensor Networks

Using Genetic Algorithm. IEEE International Conference on Communications,

Dresden. pp. 1 - 5.

Kolias, C., et al. (2011). Swarm intelligence in intrusion detection: A survey.

Computers & Security, 30(8), 625-642.

Kulkarni, R. V., et al. (2011). Computational intelligence in wireless sensor networks: A

survey. IEEE Communications Surveys & Tutorials, 13(1), 68-96.

Law, Y. W., et al. (2005). Energy-efficient link-layer jamming attacks against wireless

sensor network MAC protocols. Proceedings of the 3rd ACM workshop on

Security of ad hoc and sensor networks, Alexandria, VA, USA. pp. 76 - 88.

Law, Y. W., et al. (2009). Energy-efficient link-layer jamming attacks against wireless

sensor network MAC protocols. ACM Trans. Sen. Netw., 5(1), 1-38.

Lee, C.-C. (1990). Fuzzy logic in control systems: fuzzy logic controller. IEEE

Transactions on Systems, Man and Cybernetics, 20(2), 404-418.

León, O., et al. (2011). Towards a Cooperative Intrusion Detection System for

Cognitive Radio Networks Networking Workshops. Lecture Notes in Computer

Science, Heidelberg: Springer. 6827, pp. 231-242.

Li, B., et al. (2009). Using mobile agents to recover from node and database

compromise in path-based DoS attacks in wireless sensor networks. Journal of

Network and Computer Applications, 32(2), 377-387.

Li, N., et al. (2009). Privacy preservation in wireless sensor networks: A state-of-the-art

survey. Ad Hoc Networks, 7(8), 1501-1514.

Li, W., et al. (2012). Security Through Collaboration and Trust in MANETs. Mobile

Networks and Applications, 17(3), 342-352.

Li, Y., et al. (2012). An efficient intrusion detection system based on support vector

machines and gradually feature removal method. Expert Systems with

Applications, 39(1), 424-430.

Li, Z., et al. (2014). Increasing mapping based hidden Markov model for dynamic

process monitoring and diagnosis. Expert Systems with Applications, 41(2),

744-751.

Li, Z., et al. (2012). Node localization through physical layer network coding:

Bootstrap, security, and accuracy. Ad Hoc Networks, 10(7), 1267-1277.

Liang, Q., et al. (2005). Event detection in wireless sensor networks using fuzzy logic

system.Proceedings of the 2005 IEEE International Conference on

Computational Intelligence for Homeland Security and Personal Safety. pp. 52-

55.

Liu, L. (2008). System and Method for Distributed Denial of Service Identification and

Prevention: Google Patents.

Lockhart, A. (2005). Snort wireless. Retrieved from the web. 2012, from http://snort-

wireless.org

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5198563
http://snort-wireless.org/
http://snort-wireless.org/

151

Ma, J., et al. (2007). SAID: A Self-Adaptive Intrusion Detection System in Wireless

Sensor Networks Information Security Applications, Lecture Notes in Computer

Science, pp. 60-73

Maggi, F., et al. (2009). Reducing false positives in anomaly detectors through fuzzy

alert aggregation. Information Fusion, 10(4), 300-311.

Mariano, C. E., et al. (2001). DQL: A new updating strategy for reinforcement learning

based on Q-learning, Machine Learning. Lecture Notes in Computer Science.

pp 324-335

McGregory, S. (2013). Preparing for the next DDoS attack. Network Security, 2013(5),

5-6.

Mirkovic, J., et al. (2004). A taxonomy of DDoS attack and DDoS defense mechanisms.

ACM SIGCOMM Computer Communication Review, 34(2), 39-53.

Misra, S., et al. (2011). Reputation-based role assignment for role-based access control

in wireless sensor networks. Computer Communications, 34(3), 281-294.

Mohajerani, M., et al. (2003). NFIDS: a neuro-fuzzy intrusion detection system.

Proceedings of the 10th IEEE International Conference on Electronics, Circuits

and Systems. PP. 348-351.

Mona Taghavi., et al. (2012). Taxonomy and Proposed Architecture of Intrusion

Detection and Prevention Systems for Cloud Computing. The 4th International

Symposium on Cyberspace Safety and Security (CSS 2012), Deakin University,

Melbourne, Australia. pp. 441-458.

Mosqueira-Rey, E., et al. (2007). A Misuse Detection Agent for Intrusion Detection in a

Multi-agent Architecture Agent and Multi-Agent Systems:Technologies and

Applications. Lecture Notes in Computer Science, pp. 466-475.

Muñoz, P., et al. (2013). Optimization of load balancing using fuzzy Q-Learning for

next generation wireless networks. Expert Systems with Applications, 40(4),

984-994.

Naserian, M., et al. (2009). Game theoretic approach in routing protocol for wireless ad

hoc networks. Ad Hoc Networks, 7(3), 569-578.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the national

academy of sciences, 36(1), 48-49.

NSL-KDD. (2009). The NSL-KDD Data Set. 2009, from http://nsl.cs.unb.ca/NSL-KDD

Patcha, A., et al. (2007). An overview of anomaly detection techniques: Existing

solutions and latest technological trends. Computer Networks, 51(12), 3448-

3470.

Pathan, A.-S. K. (2014). The State of the Art in Intrusion Prevention and Detection.

Boca Raton, Florida: CRC Press.

Phillips, M., et al. (2010). Breath biomarkers of active pulmonary tuberculosis.

Tuberculosis, 90(2), 145-151.

Ponomarchuk, Y., et al. (2010). Intrusion detection based on traffic analysis and fuzzy

inference system in wireless sensor networks. Journal of Convergence 1(1). 35-

42.

Potyrailo, R. A., et al. (2012). Wireless sensors and sensor networks for homeland

security applications. J. Trac-Trend Anal Chem, 40(1) 133-145.

Precup, R.-E., et al. (2011). A survey on industrial applications of fuzzy control.

Computers in Industry, 62(3), 213-226.

Qazi, S., et al. (2013). Securing DSR against wormhole attacks in multirate ad hoc

networks. Journal of Network and Computer Applications, 36(2), 582-592.

Qiming, H., et al. (2000). Using reinforcement learning for pro-active network fault

management. Proceedings of the International Conference on Communication

Technology, Beijing. pp.515-521.

http://nsl.cs.unb.ca/NSL-KDD

152

Ramachandran, C., et al. (2008). FORK: A novel two-pronged strategy for an agent-

based intrusion detection scheme in ad-hoc networks. Computer

Communications, 31(16), 3855-3869.

Renjit, J. A., et al. (2011). Multi-Agent-Based Anomaly Intrusion Detection.

Information Security Journal: A Global Perspective, 20(4-5), 185-193.

Rolla, V. G., et al. (2013). A reinforcement learning-based routing for delay tolerant

networks. Engineering Applications of Artificial Intelligence, 26(10), 2243-

2250.

Russell, S. J., et al. (1995). Artificial intelligence: a modern approach. New Jersey:

Prentice hall Englewood Cliffs.

Schaffer, P., et al. (2012). Secure and reliable clustering in wireless sensor networks: A

critical survey. Computer Networks, 56(11), 2726-2741.

Sevil Sen, J. A. C. (2011). Evolutionary computation techniques for intrusion detection

in mobile ad hoc networks. Computer Networks, 55(15), 3441–3457.

Shen, S., et al. (2011). Signaling game based strategy of intrusion detection in wireless

sensor networks. Computers & Mathematics with Applications, 62(6), 2404-

2416.

Sherif, J. S., et al. (2002). Intrusion detection: systems and models. Proceedings of

Eleventh IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises. pp. 115-115.

Shi, Y. (2001). Particle swarm optimization: developments, applications and resources.

Proceedings of the 2001 Congress on Evolutionary Computation, pp. 81-86.

Shoham, Y., et al. (2009). Multiagent systems: Algorithmic, game-theoretic, and logical

foundations. England: Cambridge University Press.

Stafrace, S. K., et al. (2010). Military tactics in agent-based sinkhole attack detection for

wireless ad hoc networks. Computer Communications, 33(5), 619-638.

Steinberg, L. A., et al. (2005). Method and system for reducing false alarms in network

fault management systems: Google Patents.

Sutton, R. S., et al. (1998). Reinforcement learning: An introduction. England :

Cambridge Univ Press.

Takagi, T., et al. (1985). Fuzzy identification of systems and its applications to

modeling and control. IEEE Transactions on Systems, Man and Cybernetics,

1(116-132).

Tong, W., et al. (2009). A Detection Method for Routing Attacks of Wireless Sensor

Network Based on Fuzzy C-means Clustering. Proceeding of Sixth International

Conference on Fuzzy Systems and Knowledge Discovery, Tianjin. pp. 445-449.

Toosi, A. N., et al. (2007). A new approach to intrusion detection based on an

evolutionary soft computing model using neuro-fuzzy classifiers. Computer

Communications, 30(10), 2201-2212.

Tsai, C.-F., et al. (2009). Intrusion detection by machine learning: A review. Expert

Systems with Applications, 36(10), 11994-12000.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning.

Machine Learning, 16(3), 185-202.

Vakili, G., et al. (2011). Coordination of cooperation policies in a peer-to-peer system

using swarm-based RL. Journal of Network and Computer Applications. 35(2),

713-722.

Wang, B., et al. (2006). Local detection of selfish routing behavior in ad hoc networks.

Journal of Interconnection Networks, 7(01), 133-145.

Wang, S.-S., et al. (2011). An Integrated Intrusion Detection System for Cluster-based

Wireless Sensor Networks. Expert Systems with Applications, 38(12), 15234-

15243.

153

Wang, Y. T., et al. (2012). ComSen: A Detection System for Identifying Compromised

Nodes in Wireless Sensor Networks. The Sixth International Conference on

Emerging Security Information, Systems and Technologies. pp. 148-156.

Wooldridge, M. (2009). An introduction to multiagent systems. New York: John Wiley

& Sons.

Wu, S. X., et al. (2010). The use of computational intelligence in intrusion detection

systems: A review. Applied Soft Computing, 10(1), 1-35.

Xing, K., et al. (2010). Attacks and Countermeasures in Sensor Networks: A Survey. In

S. C. H. Huang, et al. (Eds.), Network Security, pp. 251-272.

Xu, X. (2010). Sequential anomaly detection based on temporal-difference learning:

Principles, models and case studies. Applied Soft Computing, 10(3), 859-867.

Xu, X., et al. (2007). Defending DDoS Attacks Using Hidden Markov Models and

Cooperative Reinforcement Learning Intelligence and Security Informatics.

Lecture Notes in Computer Science, pp. 196-207.

Xu, X., et al. (2005). A Reinforcement Learning Approach for Host-Based Intrusion

Detection Using Sequences of System Calls Advances in Intelligent Computing.

Lecture Notes in Computer Science, pp. 995-1003.

Yan Li, W. J. (2012). The method of network intrusion detection based on the neural

network GCBP algorithm. Processing of the International Conference on

Computer Science and Information (CSIP). pp.1082-1086.

Ye, N. (2000). A markov chain model of temporal behavior for anomaly detection.

Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information

Assurance and Security Workshop, pp. 166- 169.

 Zadeh, L. A. (1965). Fuzzy sets. Information and Control,8(3), 338-353.

Zadeh, L. A. (1994). Soft computing and fuzzy logic. IEEE Software, 11(6), 48-56.

Zhang, Y., et al. (2000). Intrusion detection in wireless ad-hoc networks. Proceedings of

the 6th annual international conference on Mobile computing and networking,

Boston, Massachusetts, United States. pp. 275-283.

Zhang, Z., et al. (2001). HIDE: a hierarchical network intrusion detection system using

statistical preprocessing and neural network classification. Proceedings of the

IEEE Workshop on Information Assurance and Security, pp. 85-90.

154

List of Publications

Published Journal Articles

1. Shahaboddin Shamshirband, Nor Badrul Anuar, Miss Laiha Mat Kiah,

Ahmed Patel, An appraisal and design of a multi-agent system based cooperative

wireless intrusion detection computational intelligence technique, Engineering

Applications of Artificial Intelligence, Volume 26, Issue 9, Pages 2105–2127,

October 2013.

2. Shahaboddin Shamshirband, Ahmed Patel, Nor Badrul Anuar, Miss Laiha

Mat Kiah, Ajith Abraham, Cooperative Game Theoretic Approach using Fuzzy

Q-learning for Detecting and Preventing Intrusions in Wireless Sensor

Networks, Engineering Applications of Artificial Intelligence. Volume 32, Pages

228–241, June 2014.

3. Shahaboddin Shamshirband, Nor Badrul Anuar, Miss Laiha Mat Kiah,

Dalibor Petković, Sanjay Misra, Co-FAIS: Cooperative Fuzzy Artificial

Immune System for Detecting Intrusion in Wireless Sensor Networks, Journal of

Network and Computer Applications. Volume 42, Pages 102–117, June 2014.

4. Shahaboddin Shamshirband, Nor Badrul Anuar, Miss Laiha Mat Kiah, Sanjay

Misra, Anomaly Detection using Fuzzy Q-learning Algorithm in Wireless

Network, Acta Polytechnica Hungarica, Volume 11, Issue 8, Pages 5-28,

November 2014.

5. Shahaboddin Shamshirband, Amineh Amini, Nor Badrul Anuar, Miss Laiha

Mat Kiah, Teh Ying Wah, Steven Furnell, D-FICCA: A Density-based Fuzzy

Imperialist Competitive Clustering Algorithm for Intrusion Detection in

Wireless Sensor Networks, Measurement, Volume 55, Pages 212–226,

September 2014.

6. Shahaboddin Shamshirband, Babak Daghighi, Nor Badrul Anuar, Miss Laiha

Mat Kiah, Ahmed Patel, Ajith Abraham. Co-FQL: Anomaly Detection Using

Cooperative Fuzzy Q-learning in Network, - Journal of Intelligent and Fuzzy

Systems, Doi: 10.3233/IFS-141419.

https://www.researchgate.net/researcher/2000549962_Dalibor_Petkovic/
http://www.sciencedirect.com/science/journal/10848045/42/supp/C
http://www.sciencedirect.com/science/journal/02632241/55/supp/C
http://iospress.metapress.com/content/300180/?p=ca093e737e884065ae57bc820795e0b7&pi=0
http://iospress.metapress.com/content/300180/?p=ca093e737e884065ae57bc820795e0b7&pi=0

155

Appendix

#include"QLearning.h"

#include <time.h>

#include <string.h>

#include <math.h>

#include <windows.h>

int Total = 0;

int temp[10000][10000];

*********************** FUNCTION Name: Get Node Details****************************

int get_node_count() {

 printf("get_node_count()");

 int node_cnt;

 printf("\n\n");

 printf("==\n");

 printf(">>>>>>>>>>>> Get the Node Details <<<<<<<<<<< \n");

 printf("==\n");

 printf("\n\nEnter the Total No of Node to be Created :");

 scanf("%d", &node_cnt);

 printf("\n\nEnter the Selfish Node Count :");

 scanf("%d", &snode_cnt);

 printf("\n\n");

 printf("==\n");

 return node_cnt;

}

******************************FUNCTION Name: splitstr*****************************

splitstr(char * full_str, char arr[][64], char * str) {

 char *record = NULL;

 int count = 0;

 // Take the Records and store into the Array

 record = strtok(full_str, str);

 while (record != NULL) {

 //fmt_str[count] = malloc(strlen(record) + 1);

 strcpy(arr[count++], record);

 record = strtok(NULL, str);

 }

 return count;

}

***************************** Name: validateip *****************************

validateip(char * ip, char ipset[][10]) {

 char *record = NULL;

 int count = 0;

 // Take the Records and store into the Array

 record = strtok(ip, ".");

 while (record != NULL) {

 //fmt_str[count] = malloc(strlen(record) + 1);

 if (strcmp(record, "XXX") == 0)

 strcpy(ipset[count++], "-1");

 else

 strcpy(ipset[count++], record);

 record = strtok(NULL, ".");

 }

 if (count == 4)

 return TRUE;

 return FALSE;

}

156

*****************************FUNCTION Name: is_star*****************************

int is_star(char * str) {

 if (strcmp(str, "*") == 0 || strcmp(str, "XXX") == 0)

 return -1;

 else

 return atoi(str);

}

*****************************Name: validate_split_ip*****************************

int validate_split_ip(char * ip, struct IP_Set * ipaddr) {

 char arr[10][64];

 if (splitstr(ip, arr, ".") == 4) {

 printf(" ARR : %s - %s - %s - %s \n ", arr[0], arr[1], arr[2], arr[3]);

 ipaddr->Ip1 = is_star(arr[0]);

 ipaddr->Ip2 = is_star(arr[1]);

 ipaddr->Ip3 = is_star(arr[2]);

 ipaddr->Ip4 = is_star(arr[0]);

 return TRUE;

 }

 return FALSE;

}

*****************************FUNCTION Name: get_rules *****************************

int get_rules() {

 printf("\n\n");

 /* printf("==\n");

 printf(">>>>>>>>>>>> Define the Rules <<<<<<<<<<< \n");

 printf("==\n");*/

 printf("1.Reading the KDD dataset....");

 printf("\n2.Initializing Expert system....\n");

 // Validate TCP or UDP

 do {

 printf(" Enter the Protocal (1. TCP , 2.UDP) : ");

 scanf("%d", &ql_rules.protocal);

 if (ql_rules.protocal > 0 && ql_rules.protocal < 3)

 break;

 else

 printf("Error : Sorry Enter the Valid protocal\n");

 } while (TRUE);

sinknode_cnt = 1;

printf("Initializing Qstates ... ");

}

*****************************FUNCTION Name:

print_nodes*****************************

int print_nodes() {

 int i, j;

 char node_type[25];

 int randval;

 printf("\n\n");

 printf("Total No of Packets : %d \n", noofnode);

 Total = noofnode;

 printf("Total No of Abnormal Packets : %d \n", snode_cnt);

 for (i = 0; i < noofnode; i++) {

 if (node_details[i].node_type == 1) {

 strcpy(node_type, "Normal");

 } else {

 strcpy(node_type, "Selfish");

 randval = random_in_range(0, sinknode_cnt);

 sink_node_vals[randval].ids[sink_node_vals[randval].count++] = i;

 }

 if ((strcmp(node_type, "Normal") == 0)

 && ((strcmp(node_details[i].state, "d8") == 0)

 || (strcmp(node_details[i].state, "d9") == 0)

157

 || (strcmp(node_details[i].state, "d10") == 0))) {

 true_pos++;

 }

 if ((strcmp(node_type, "Normal") == 0)

 && ((strcmp(node_details[i].state, "d8") != 0)

 && (strcmp(node_details[i].state, "d9") != 0)

 && (strcmp(node_details[i].state, "d10") != 0))) {

 true_neg++;

 }

 if ((strcmp(node_type, "Selfish") == 0)

 && ((strcmp(node_details[i].state, "d8") != 0)

 && (strcmp(node_details[i].state, "d9") != 0)

 && (strcmp(node_details[i].state, "d10") != 0))) {

 false_neg++;

 }

 if ((strcmp(node_type, "Selfish") == 0)

 && ((strcmp(node_details[i].state, "d8") == 0)

 || (strcmp(node_details[i].state, "d9") == 0)

 || (strcmp(node_details[i].state, "d10") == 0))) {

 false_pos++;

 }

 printf("Node Number : %d Type : %s IP Address : %03d.%03d.%03d.%03d Bytes

Transfered : %d Count : %d State : %s \n" , node_details[i].Node_id , node_type ,

node_details[i].ipaddr.Ip1 , node_details[i].ipaddr.Ip2 , node_details[i].ipaddr.Ip3 ,

node_details[i].ipaddr.Ip4 , node_details[i].src_bytes , node_details[i].count ,node_details[i].state);}*/

 }

int val;

for (i = 0; i < sinknode_cnt; i++) {

 for (j = 0; j < sink_node_vals[i].count; j++) {

 val = sink_node_vals[i].ids[j];

Transfered : %d Count : %d \n" , node_details[val].Node_id , node_type , node_details[val].ipaddr.Ip1 ,

node_details[val].ipaddr.Ip2 , node_details[val].ipaddr.Ip3 , node_details[val].ipaddr.Ip4 ,

node_details[val].src_bytes , node_details[val].count);

 (strcmp(node_details[i].state,"d9")==0) || (strcmp(node_details[i].state,"d10")==0)){

 printf("Node Number : %d count_Level : %s Buffer_level : %s Level : %s State : %s\n"

, node_details[val].Node_id , node_details[val].count_level,

node_details[val].buffer_level,node_details[val].level, node_details[val].state);}

 }

}

int print_selfish_node() {

 printf("3.Anomaly nodes detected ...");

 int val;

 int i, j;

 for (i = 0; i < sinknode_cnt; i++) {

 printf("Sink Node index : %d \n", i);

 for (j = 0; j < sink_node_vals[i].count; j++) {

 val = sink_node_vals[i].ids[j];

 printf("Node Number : %d Level : %s \n",

 node_details[val].Node_id, node_details[val].level);

 }

 }

}

* ***************************** Name: setipaddr *****************************

int setipaddr(struct IP_Set *ipaddr) {

 ipaddr->Ip1 = random_in_range(0, 255);

 ipaddr->Ip2 = random_in_range(0, 255);

 ipaddr->Ip3 = random_in_range(0, 255);

 ipaddr->Ip4 = random_in_range(0, 255);

 return TRUE;

}

*****************************Name: create_rule_ip*****************************

158

int create_rule_ip(struct IP_Set *ipaddr) {

 //printf(" %d=%d=%d=%d \n", ql_rules.ipaddr.Ip1 , ql_rules.ipaddr.Ip2 , ql_rules.ipaddr.Ip3 ,

ql_rules.ipaddr.Ip4) ;

 ipaddr->Ip2 = random_in_range(0, 255);

 ipaddr->Ip3 = random_in_range(0, 255);

 ipaddr->Ip4 = random_in_range(0, 255);

 return TRUE;

}

*****************************Name: create_nodes*****************************

int create_nodes() {

 int i;

 printf("\n\n");

 /* printf("==\n");

 printf(">>>>> Going to generate the Random Details <<<<<< \n");

 printf("==\n");*/

 for (i = 0; i < noofnode; i++) {

 node_details[i].Node_id = i;

 create_rule_ip(&node_details[i].ipaddr);

 }

 int nodenum;

 for (i = 0; i < snode_cnt; i++) {

 nodenum = random_in_range(0, noofnode);

 setipaddr(&node_details[nodenum].ipaddr);

 }

}

*****************************Name: random_in_range*****************************

int random_in_range(unsigned int min, unsigned int max) {

 int base_random = rand();

 if (RAND_MAX == base_random)

 return random_in_range(min, max);

 if (base_random < RAND_MAX - remainder) {

 return min + base_random / bucket;

 } else {

 return random_in_range(min, max);

 }

}

*****************************Name: display*****************************

display(int start, int end) {

 int i, j;

 for (i = start; i <= end; i++) {

 for (j = start; j <= end; j++)

 printf("%4d", adj[i][j]);

 printf("\n");

 }

}

display_con(int start, int end) {

 int i, j;

 printf("Displaying connection matrix\n");

 for (i = start; i < end; i++) {

 for (j = start; j < end; j++)

 printf("%4d", con_mat[i][j]);

 printf("\n");

 }

}

*****************************Name: formated_display*****************************

formated_display() {

 int i, j;

 for (i = 0; i <= n; i++) {

 if (i == 0) {

159

 puts("");

 for (j = 0; j <= n; j++)

 (j == 0) ? printf(" |") : printf(" %3d |", j);

 puts("");

 while (j--)

 printf("-----+");

 } else

 for (j = 0; j <= n; j++) {

 if (j == 0)

 printf(" %3d |", i);

 else

 printf(" %3d |", adj[i][j]);

 }

 printf("\n");

 }

}

*****************************Name: findpath*****************************

int findpath(int s, int d, int path[MAX], int *sdist) {

 struct node state[MAX];

 int i, min, count = 0, current, newdist, u, v;

 *sdist = 0;

 for (i = 1; i <= n; i++) {

 state[i].predecessor = 0;

 state[i].dist = infinity;

 state[i].status = TEMP;

 }

 state[s].predecessor = 0;

 state[s].dist = 0;

 state[s].status = PERM;

 current = s;

 while (current != d) {

 for (i = 1; i <= n; i++) {

 if (adj[current][i] > 0 && state[i].status == TEMP) {

 newdist = state[current].dist + adj[current][i];

 if (newdist < state[i].dist) {

 state[i].predecessor = current;

 state[i].dist = newdist;

 }

 }

 }

 min = infinity;

 current = 0;

 for (i = 1; i <= n; i++) {

 if (state[i].status == TEMP && state[i].dist < min) {

 min = state[i].dist;

 current = i;

 }

 }

 if (current == 0)

 return 0;

 state[current].status = PERM;

 }

 while (current != 0) {

 count++;

 path[count] = current;

 current = state[current].predecessor;

 }

 for (i = count; i > 1; i--) {

 u = path[i];

 v = path[i - 1];

 *sdist += adj[u][v];

 }

160

 return (count);

}

node_split() //Splits packets into nodes

{

 int i, j, k, l, split_node[100], packet_node[100];

 for (i = 0; i < 10000; i++) {

 node_sp[i].node_id = 0;

 }

 for (i = 0; i < n; i++) {

 if (strcmp(node_details[i].state, "d1") == 0) {

 node_sp[1].node_id++;

 strcpy(node_sp[1].node_state1, "d1");

 }

 if (strcmp(node_details[i].state, "d2") == 0) {

 node_sp[2].node_id++;

 strcpy(node_sp[2].node_state1, "d2");

 }

 if (strcmp(node_details[i].state, "d3") == 0) {

 node_sp[3].node_id++;

 strcpy(node_sp[3].node_state1, "d3");

 }

 if (strcmp(node_details[i].state, "d4") == 0) {

 node_sp[4].node_id++;

 strcpy(node_sp[4].node_state1, "d4");

 }

 if (strcmp(node_details[i].state, "d5") == 0) {

 node_sp[5].node_id++;

 strcpy(node_sp[5].node_state1, "d5");

 }

 if (strcmp(node_details[i].state, "d6") == 0) {

 node_sp[6].node_id++;

 strcpy(node_sp[6].node_state1, "d6");

 }

 if (strcmp(node_details[i].state, "d7") == 0) {

 node_sp[7].node_id++;

 strcpy(node_sp[7].node_state1, "d7");

 }

 if (strcmp(node_details[i].state, "d8") == 0) {

 node_sp[8].node_id++;

 strcpy(node_sp[8].node_state1, "d8");

 }

 if (strcmp(node_details[i].state, "d9") == 0) {

 node_sp[9].node_id++;

 strcpy(node_sp[9].node_state1, "d9");

 }

 if (strcmp(node_details[i].state, "d10") == 0) {

 node_sp[10].node_id++;

 strcpy(node_sp[10].node_state1, "d10");

 }

 }

 k = 0;

 total_noofpack = 0;

 goal_node_number = 0;

 for (i = 1; i <= 10; i++) {

 if (node_sp[i].node_id < 30) {

 split_node[i] = 1;

 k = k + 1;

 strcpy(node_sp[k].node_state, node_sp[i].node_state1);

 if (((i == 8) || (i == 9) || (i == 10))){total_noofpack =

total_noofpack+1;

 goal_node_index[goal_node_number] = i;

161

 goal_node_number = goal_node_number+1;

 }

 } else if (node_sp[i].node_id >= 30 && node_sp[i].node_id < 50) {

 split_node[i] = 2;

 k = k + 2;

 strcpy(node_sp[k-1].node_state, node_sp[i].node_state1);

 strcpy(node_sp[k].node_state, node_sp[i].node_state1);

 if (((i == 8) || (i == 9) || (i == 10))){total_noofpack = total_noofpack+1;

 goal_node_index[goal_node_number] = k-1;

 goal_node_number = goal_node_number+1;

 goal_node_index[goal_node_number] = k;

 goal_node_number = goal_node_number+1;

 }

 } else {

 split_node[i] = ceil(node_sp[i].node_id / 50);

 for (l = k+1; l<=(k+split_node[i]);l++)

 {

 strcpy(node_sp[l].node_state, node_sp[i].node_state1);

 if (((i == 8) || (i == 9) || (i == 10))){

 goal_node_index[goal_node_number] = l;

 goal_node_number = goal_node_number+1; }

 }

 k = k + split_node[i];

 if (((i == 8) || (i == 9) || (i == 10))){total_noofpack = total_noofpack+1;}

 }

 }

 noofpack = k;

 for (i =1 ; i<=10; i++){

 printf("Printing node state \n n%d = %s ==> nodecount =

%d\n",i,node_sp[i].node_state1,node_sp[i].node_id);

} printf("Total No of Node Count : %d \n", noofpack);

}

***************************** Name: create_graph *****************************

create_graph() {

 int i, j, max_edges, origin, destin, wt;

 // Define Rules

 get_rules();

 // Read Data From Kdd set

 find_minmax();

 n = read_kdd_dataset();

 noofnode = n;

 print_nodes();

 create_nodes();

 max_edges = n * (n - 1);

 node_split();

 for (i = 0; i < noofpack; i++) {

 for (j = 0; j < noofpack; j++) {

 con_mat[i][j] = (rand() % (2 - 0)) + 0;

 }

 }

 for (i = 0; i < noofpack; i++)

 for (j = 0; j < noofpack; j++) {

 origin = i;

 destin = j;

 if ((i==j) || (con_mat[i][j] == 1))

 {if ((strcmp(node_sp[j+1].node_state1,"d8")==0) ||

(strcmp(node_sp[j+1].node_state1,"d9")==0) || (strcmp(node_sp[j+1].node_state1,"d10")==0))

 {

 wt = 100;

 }

162

 else if ((i != j) || (con_mat[i][j] == 1))

 {

 wt = 0;

 }

 else

 {

 wt = -1;

 }

 }

 else

 {

 wt = -1;

 }

 if (origin > noofpack || destin > noofpack || origin < 0 || destin < 0) {

 printf("\nInvalid edge!\n");

 i--;

 } else

 adj[origin][destin] = wt;

}

}

***************************** Name: find_minmax *****************************

find_minmax() {

FILE *fp;

char *filename = "kddset.data";

fp = fopen(filename, "r");

char *line;

line = (char *) malloc(1024);

if (fp == NULL) {

 perror("Error : Opening kdd data set file");

 return 0;

}

char arr[1000][64];

while (fgets(line, 1024, fp)) {

 splitstr(line, arr, ",");

 if (time_min > atoi(arr[0]))

 time_min = atoi(arr[0]);

 if (time_max < atoi(arr[0]))

 time_max = atoi(arr[0]);

 if (bs_min > atoi(arr[5]))

 bs_min = atoi(arr[5]);

 if (bs_max < atoi(arr[5]))

 bs_max = atoi(arr[5]);

 if (count_min > atoi(arr[22]))

 count_min = atoi(arr[22]);

 if (count_max < atoi(arr[22]))

 count_max = atoi(arr[22]);

}

time_avg = (time_max - (time_min)) / 3;

bs_avg = (bs_max - (bs_min)) / 3;

count_avg = (count_max - (count_min)) / 3;

}

***************************** Name: read_kdd_dataset *****************************

int read_kdd_dataset() {

FILE *fp;

char *filename = "kddset.data";

fp = fopen(filename, "r");

char *line;

int count = 0;

snode_cnt = 0;

line = (char *) malloc(1024);

if (fp == NULL) {

 perror("Error : Opening kdd data set file");

163

 return 0;

}

char arr[50][64];

while (fgets(line, 1024, fp)) {

 splitstr(line, arr, ",");

 node_details[count].protocal = (strcmp(arr[1], "tcp") == 0) ? 1 : 2;

 // Check the node details

 if (ql_rules.protocal == node_details[count].protocal) {

 create_rule_ip(&node_details[count].ipaddr);

 node_details[count].node_type = 1;

 } else {

 setipaddr(&node_details[count].ipaddr);

 node_details[count].node_type = 2;

 snode_cnt++;

 }

 node_details[count].Node_id = count;

 node_details[count].src_bytes = atoi(arr[4]);

 node_details[count].dst_bytes = atoi(arr[5]);

 node_details[count].count = atoi(arr[22]);

 node_details[count].time = atoi(arr[0]);

 if (atoi(arr[0]) >= 0 && atoi(arr[0]) <= (time_min+time_avg))

 strcpy(node_details[count].level, "Low");

 else if (atoi(arr[0]) > time_avg && atoi(arr[0]) <= ((time_min)+(2 * time_avg)))

 strcpy(node_details[count].level, "Medium");

 else if (atoi(arr[0]) > ((time_min)+(2 * time_avg)))

 strcpy(node_details[count].level, "High");

 else

 strcpy(node_details[count].level, "High");

 if (atoi(arr[22]) >= 0 && atoi(arr[22]) <= (count_min+count_avg))

 strcpy(node_details[count].count_level, "Low");

 else if (atoi(arr[22]) > count_avg && atoi(arr[22]) <= ((count_min)+(2 * count_avg)))

 strcpy(node_details[count].count_level, "Medium");

 else if (atoi(arr[22]) > ((count_min)+(2 * count_avg)))

 strcpy(node_details[count].count_level, "High");

 else

 strcpy(node_details[count].count_level, "High");

 if (atoi(arr[5]) >= 0 && atoi(arr[5]) <= (bs_min+bs_avg))

 strcpy(node_details[count].buffer_level, "Low");

 else if (atoi(arr[5]) > bs_avg && atoi(arr[5]) <= ((bs_min)+(2 * bs_avg)))

 strcpy(node_details[count].buffer_level, "Medium");

 else if (atoi(arr[5]) > ((bs_min)+(2 * bs_avg)))

 strcpy(node_details[count].buffer_level, "High");

 else

 strcpy(node_details[count].buffer_level, "High");

 if ((strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "Medium") == 0

 && strcmp(node_details[count].level, "High") == 0)

 || (strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "Low") == 0)

 || (strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "Medium") == 0))

 strcpy(node_details[count].state, "d1");

 else if ((strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "Medium") == 0

 && strcmp(node_details[count].level, "Low") == 0)

 || (strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "Medium") ==

0

 && strcmp(node_details[count].level, "Medium") == 0)

164

 || (strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

 && strcmp(node_details[count].level, "High") == 0))

 strcpy(node_details[count].state, "d2");

 else if ((strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "Low") == 0)

 || (strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "Medium") == 0))

 strcpy(node_details[count].state, "d3");

 else if ((strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

 && strcmp(node_details[count].level, "Medium") == 0)

 || (strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

 && strcmp(node_details[count].level, "Low") == 0))

 strcpy(node_details[count].state, "d4");

 else if ((strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

 && strcmp(node_details[count].level, "Medium") == 0)

 || (strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

 && strcmp(node_details[count].level, "Low") == 0)

 || (strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

 && strcmp(node_details[count].level, "High") == 0)

 || (strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "Medium") ==

0

 && strcmp(node_details[count].level, "Low") == 0)

 || (strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "Medium") ==

0

 && strcmp(node_details[count].level, "Medium") == 0))

 strcpy(node_details[count].state, "d5");

 else if ((strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "Medium") == 0

 && strcmp(node_details[count].level, "Medium") == 0)

 || (strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

 && strcmp(node_details[count].level, "Low") == 0)

 || (strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

 && strcmp(node_details[count].level, "Medium") == 0)

 || (strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "Medium") ==

0

 && strcmp(node_details[count].level, "Low") == 0))

 strcpy(node_details[count].state, "d6");

 else if (strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "Medium") == 0

 && strcmp(node_details[count].level, "High") == 0)

 strcpy(node_details[count].state, "d7");

 else if ((strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "Low") == 0)

 || (strcmp(node_details[count].count_level, "Low") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "High") == 0)

 || (strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "Low") == 0

165

 && strcmp(node_details[count].level, "High") == 0))

 strcpy(node_details[count].state, "d8");

 else if ((strcmp(node_details[count].count_level, "Medium") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "High") == 0)

 || (strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "Medium") ==

0

 && strcmp(node_details[count].level, "High") == 0)

 || (strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "Medium") == 0))

 strcpy(node_details[count].state, "d9");

 else if (strcmp(node_details[count].count_level, "High") == 0

 && strcmp(node_details[count].buffer_level, "High") == 0

 && strcmp(node_details[count].level, "High") == 0)

 strcpy(node_details[count].state, "d10");

 count++;

}

fclose(fp);

return count;

}

int isGoal(int node) {

char myState[10];

strcpy(myState, node_details[node].state);

if (strcmp(myState, "d8") == 0 || strcmp(myState, "d9") == 0

 || strcmp(myState, "d10") == 0)

 return 1;

else

 return 0;

}

int isGoal_1(int i,int j) {

if (adj[i][j]==100)

 return 1;

else

 return 0;

}

***************************** Name: main *****************************

void d1(int start, int end) {

int i, j;

printf("\n");

for (i = start; i <= end; i++) {

 for (j = start; j <= end; j++)

 printf("%d\t", cur[i][j]);

 printf("\n");

}

}

Ql(int start, int end, int sink1) {

int sink_no, i, j, k, l, max = 0, cur_state = 2, next_state = 0, loop = 0, ini = 1,

 isnxt_state = 1, epoc = 0, check_last,goal_count = 0,goal_check = 1,goal_node,

 ac_i,ac_j,ac_reach,ac_start,ac_col,ac_find[noofpack],ac_i1,ac_notreach,ac_new,ac_oreach;

double divide;

int m,n,acc_count,acc_total;

int total_acc=0;

sink_no = sink1;

time_t now;

time_t now1;

int *second_array = (int*) malloc(noofpack*sizeof(int));

int *goal_array = (int*) malloc(noofpack*sizeof(int));

int state_count = 0, initial_state = -1, second_state = -1;

166

for (i = 0; i<noofpack;i++)

{

 second_array[i] = -1;

 ac_find[i] = 0;

}

 {

 for (j=1;j<=n;j++)

 {

 adj[i][j] = -1;

 cur[i][j] = 0; } }

 adj[1][5]=0; adj[2][4]=0; adj[2][6]=100; adj[3][4]=0; adj[4][2]=0; adj[4][3]=0; adj[4][5]=0; adj[5][1]=0;

adj[5][4]=0; adj[5][6]=100; adj[6][2]=0; adj[6][5]=0; adj[6][6]=100;

printf("\n");

if (sink_no == -1) {

 time(&now);

 printf(" ql starts %s\n", ctime(&now));

 sink_no = sinknode_cnt + 1;

}

FILE *f1, *f2, *f3;

f1 = fopen("Expertness.txt", "wt");

//fprintf(f1, "%s,%s\n", "Epoch_number", "Expertness");

f2 = fopen("Accuracy.txt", "wt");

f3 = fopen("Time.txt", "wt");

//fprintf(f2, "%s,%s\n", "Epoch_number", "Accuracy");

fclose(f2);

fclose(f3);

fclose(f1);

// initializing Q matrix(cur)

for (i = 0; i<noofpack;i++){

 for (j = 0; j < noofpack; j++){

 cur[i][j] =0;}}

 display_con(0, noofpack);

printf("\nDisplaying Reward matrix\n");

display(0,noofpack-1);

 if (loop = 1) d1(0, noofpack-1);

 for (m = 0 ; m < noofpack ; m++)

 {

 for (n = 0 ; n < noofpack ; n++)

 {

 temp[m][n] = 0; } }

// Epoc for starts...

 ac_oreach = 0;

for (loop = 1; loop < 500; loop++) {

 goal_node = 0;

 goal_count = 0;

 goal_check = 1;

 time(&now);

 // Node for loop starts....

 for(j=0 ; j< noofpack; j++)

 {

 initial_state = j;

 state_count = 0;

 // second state for loop starts

 for (k = 0; k < noofpack; k++)

 {

 //printf("j = %d \n k = %d \n con_mat[][] = %d\n",j,k,con_mat[j][k]);

 //getch();

 if (con_mat[j][k] > 0)

 {

167

 second_array[state_count] = k;

 //printf("second array: %d\t",second_array[state_count]);

 state_count++;

 }

 // if connection not available

 if (state_count == 0)

 continue;

 int index = (rand() % ((state_count+1) - 0)) + 0;

 second_state = second_array[index];

 // Q Function loop starts

 max = 0;

 for (l = 0 ; l < noofpack ; l++)

 { if (con_mat[k][l] > 0)

 {

 goal_check = 1;

 if (cur[k][l] > max)

 {

 max = cur[k][l]; }

 }

 }

 goal_check = 1;

 if (adj[initial_state][second_state] == 100)

 {

 for (goal_node =0 ; goal_node<goal_count;goal_node++)

 {

 if (goal_array[goal_node] == second_state)

 {

 goal_check = goal_check + 1;

 }

 }

 if (goal_check == 1)

 {

 goal_array[goal_count] = second_state;

 goal_count++;

 }

 }

 if (((adj[initial_state][second_state] % 2) == 1) || (adj[initial_state][second_state] == -

1)){

 cur[initial_state][second_state] = adj[initial_state][second_state] + (0.8 * max)+1;

 }

 else{

 }

 }

 if (epoc != -1) {

 expert_agent.sum_rewards[sink_no] = 0;

 expert_agent.total_rewards[sink_no] = 0;

 expert_agent.expertness[sink_no] = 0;

 for (i = start; i <= end; i++) {

 for (j = start; j <= end; j++) {

 expert_agent.sum_rewards[sink_no] =

 expert_agent.sum_rewards[sink_no] + cur[i][j];

 if (expert_agent.sum_rewards[sink_no] < 0) {

 }

 expert_agent.total_rewards[sink_no]++;

 }

 }

 expert_agent.expertness[sink_no] = expert_agent.sum_rewards[sink_no]

 total_acc = 0;

 for (m = 0 ; m < noofpack ; m++)

 {

 for (n = 0 ; n < noofpack ; n++)

 {

168

 if (temp[m][n] != cur[m][n])

 {

 total_acc = total_acc+1; } }

 }

for (m = 0 ; m < noofpack ; m++)

 {

 for (n = 0 ; n < noofpack ; n++)

 {

 temp[m][n] = cur[m][n]; }

 }

 ac_reach = 0;

 ac_notreach = 0;

 ac_start = -1;

void main() {

int i, j; int source, dest; int path[MAX];int energy[MAX]; int shortdist, count;int total_energy =

0;

double weight_sink = 0;

create_graph();

int enery_val[MAX];

int total_time;

printf("\n");

printf("3.Q Learning starts....\n");

printf("****** Complete QLearning ******\n");

Ql(1, noofpack, -1);

int split = Total / sinknode_cnt;

expert_agent.total_expert = 0;

while (1) {

 scanf("%d", &source);

 printf("\nEnter destination node(0 to quit) : ");

 scanf("%d", &dest);}

