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Abstract 

Owing to the distributed nature of modern attacks (e.g. denial-of-service), it is 

extremely challenging to detect such malicious behaviour using traditional intrusion 

detection systems. In this thesis, we investigate the possibility of adapting an intelligent 

system to an Intrusion Detection System (IDS) by proposing a cooperative and 

intelligent detection and prevention system using machine learning approaches, and aim 

to facilitate the detection and prevention process in a distributed environment. Firstly, 

we review the state of the art of intelligent intrusion detection and prevention system 

(IIDPS), and highlight the security requirement of cooperative based-IIDPS. Adaptive 

optimization techniques such as fuzzy logic controller (FLC), reinforcement learning 

are discussed in this thesis in order to adopt Q-leaning algorithm to FLCs. We 

investigate the detection capability based on the fuzzy Q-learning (FQL) algorithm and 

evaluate it using distribute denial of service attacks (DDoS). Later, we investigate the 

game based-FQL algorithm by combining the game theoretic approach and the fuzzy Q-

learning algorithm. This thesis evaluates the proposed solution using flooding attacks in 

wireless sensor networks (i.e. a type of DDoS attack). In order to measure the 

evaluation, several performance metrics, such as frequency of convergence of the 

detection scheme, accuracy of detection, false alarm rate, defence rate and energy 

consumption, are addressed as part of detection and prevention scheme. We perform the 

aforementioned investigations using several simulation experiments. The quantitative 

results acquired from the experiments are benchmarked with corresponding results 

acquired from the cooperative attack detection scheme. Through the result comparisons, 

we demonstrate the significance of cooperative detection mechanism, for detecting 

distributed denial of service attacks in a timely and energy-efficient manner, accuracy of 

detection and defence, as well as false alarm rate. 
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Abstrak 

Disebabkan oleh serangan moden yang bersifat teragih (cth: nafi khidmat), ianya amat 

mencabar untuk mengesan tingkah laku hasad dengan menggunakan sistem pengesanan 

pencerobohan tradisional. Dalam tesis ini, kami menyiasat kebarangkalian untuk 

menyesuaikan satu sistem pintar pada satu Sistem Pengesanan Pencerobohan (IDS) 

dengan mencadangkan satu Sistem Pengesanan dan Pencengahan bersifat kerjasama 

serta pintar menggunakan kaedah pembelajaran mesin, dan bertujuan untuk 

memudahkan proses pengesanan dan pencegahan dalam persekitaran yang teragih. 

Pertama, kami mengkaji perkembangan terkini dalam sistem pengesan dan pencegahan 

pencerobohan pintar (IIDPS), dan menggariskan keperluan keselamatan bagi IIDPS 

bersifat kerjasasama. Teknik penyesuaian optimum seperti fuzzy logic controller (FLC) 

dan reinforcement learning dibincangkan dalam tesis ini bagi tujuan penyesuaian 

algoritma Q-Learning pada FLCs. Kami menyiasat keupayaan pengesanan berasaskan 

algoritma fuzzy Q-learning (FQL) dan menilainya dengan mengunakan serangan nafi 

khidmat teragih (DDoS). Seterusnya, kami menyiast algoritma game based-FQL dengan 

menggabungkan kaedah game theory dan algoritma fuzzy Q-learning. Tesis ini menilai 

cadangan penyelesaian dengan menggunakan serangan flooding (i.e. satu jenis serangan 

nafi khidmat) dalam rangkaian sensor tanpa wayar. Untuk tujuan mengukur penilaian, 

beberapa metrik prestasi, seperti kekerapan penumpuan skim pengesanan, ketepatan 

pengesanan, kadar penggera palsu, kadar pertahanan dan penggunaan tenaga, ditangani 

sebahagian daripada skim pengesanan dan pencegahan. Kami melaksanakan menilaian 

yang dinyatakan dengan mengunakan beberapa ujikaji simulasi. Segala keputusan 

kuantitatif hasil dari ujikaji-ujikasi ditanda-araskan dengan hasil keputusan yang 

diperolehi daripada skim kerjasama pengesanan serangan yang lain. Melalui 

perbandingan hasil keputusan, kami menunjukkan kepentingan mekanisme pengesanan 

kerjasama, dalam mengesan serangan nafi khidmat teragih  di dalam waktu yang tepat 
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dan penggunaan tenaga yang berkesan, ketepatan dalam mengesan dan pertahanan, dan 

juga kadar nilai penggera palsu. 
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Chapter 1 : INTRODUCTION 

1.1 Overview 

 The level of asset in Internet is positively correlated with network security. The 

hardness of ever-changing threat environment seems far from surrounded (Anuar et al., 

2012). The recent statistics for the last three years show the battle against attacks. 

According to Kaspersky Security Network (KSN) reported, in 2013 Kaspersky 

Lab products neutralized 5188740554 cyber-attacks on user computers and mobile 

devices. In terms of the mobile operating systems that are being targeted by malware, 

Android is still the number one target, attracting a whopping 98.05% of known malware 

(Kaspersky, 2013). In order to conduct all attacks over the Internet in 2013, 

cybercriminals used 10,604,273 unique hosts, which is 60.5% more than in 2012.  

In 2013, a report by Gartner (2013) reveals that a sophisticated class of 

distributed denial of service (DDoS) attack sent an attack command to hundreds or even 

thousands of mobile agents, which then launched flooding attacks to access multiple 

websites.  

A new report from Arbor’s World-Wide Infrastructure Report (2012) shows that 

the size of distributed denial-of-service attacks have started to plateau, while 

application-layer and multi-vector attacks continue to evolve.  

1.2 Intrusion Detection Systems 

The security analysts use different approaches to analyse the threats, such as 

antivirus software, firewalls and Intrusion Detection Systems (IDSs). The use of an IDS 

or related system, such as an Intrusion Prevention System, is one of the most popular 

options in commercial due to their operation, openness and wide-acceptance as security 

http://www.securityweek.com/ddos-attack-closer-you-think
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devices (Anuar et al., 2013). An intrusion detection system (IDS) and intrusion response 

system (IPS) operate to detect suspicious activities and respond to them.  

There are hundreds of published works related to intrusion detection (Patcha et al., 

2007), which aim to improve the efficiency and reliability of detection, prevention and 

response systems. Prevailing studies have so far focused on reducing alerts (Maggi et 

al., 2009), detecting DDoS attacks (Mirkovic et al., 2004), prioritizing incidents, 

eliminating and reducing false alarms (Steinberg et al., 2005), and increasing the self-

reliance level of incident responses (Anuar et al., 2013). Artificial intelligence (AI) 

techniques attend to automate the intrusion detection and reduce human intervention. 

Intrusion detection system in artificial intelligent is categorized into three type: 

traditional artificial intelligence (TAI) and computational intelligence (CI) and multi 

agent-based CI (MCI) techniques that operate as classifiers. 

In TAI techniques, network traffic activity is captured by single classifiers (i.e. 

fuzzy set, neural network, genetic algorithm and artificial immune system), thereafter, a 

profile representing its desired behavior is coded and finally a behavior model is 

created. Network events take place, the current profile is assigned and an anomaly score 

is computed by comparing the two behaviors. The score normally indicates the degree 

of irregularity for a specific event, such that the IDS raises a flag in the event an 

anomaly occurs when the score surpasses a certain threshold. Computational 

intelligence classifiers are meant to create an iterative process of observing patterns, 

adjusting to the mathematical form, and making predictions (Alpadin, 2010). MCI 

techniques function by applying the multi agent system to computational intelligence in 

order to enhance the performance of detection and response. On the other hand, 

cooperative multi agent system uses CI methods such as self organizing map (SOM), 

support vector machine (SVM), genetic algorithm (GA), reinforcement learning (RL) 

and game theory (GT) to determine temporal behavior and respond to any deviation.  
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The main objective of MCI consists of distributing multi agent system to each 

cluster to provide a CI mechanism that makes individual and cooperative decisions 

associated, for example, the use of this approach in Intrusion Detection Systems 

(Wooldridge, 2009). MCI has been widely employed in the domain of network security 

(W. Li et al., 2012) and cloud computing-based IDS (Doelitzscher et al., 2012). The 

main issue is to improve the accuracy of attack detection, false alarm rates as well as 

energy efficiency in the Intelligent Intrusion Detection and Prevention System (IIDPS), 

upon multi agent based computational intelligent IDPS in terms of Co-IIDPS. 

1.3 Research Motivation  

There are several classical security methodologies which have focused on 

particular types of attacks to prevent the attacks. An intelligent intrusion detection and 

prevenstion can be a line of defense. It is impossible, or even infeasible, to guarantee 

perfect prevention. Not all types of attacks are known and new ones appear constantly. 

As a result, attackers can always find security holes to exploit. For confident 

environments, it makes sense to establish a line of shield: An Intelligent Intrusion 

Detection  and Prevention System (IIDPS) able to detect attacks and warn the sensors 

and the operator about it. 

Most IIDPSs have focused on local detection in network, i.e., allowing nodes to 

locally detect specific attacks which are performed in their neighborhood  

(Ponomarchuk et al., 2010). Da Silva et al. (2005) propose a similar IDS systems, where 

they are able to monitor nodes in a network and responsible to observe other neighbors. 

They listen to messages in their radio range and store in a buffer specific message fields 

that might be useful to an IDS system running within a sensor node. Wang et al. (2006) 

focus on the detection of selfish nodes to preserve their resources at the expense of 

others. Loo et al. (2006) applied the IDSs for ad hoc networks. In all the above work, 



4 
 

there is no collaboration among the sensor nodes. The only collaborative approaches we 

are aware of focus on the local detection of intrusion detection based on traditional 

artificial intelligence (Patel et al., 2013). 

More prevalent work has been done in intrusion detection for ad-hoc networks 

(Huang et al., 2013). In such networks, distributed and cooperative IDS architectures are 

also preferable. Detailed distributed designs, actual detection techniques and their 

performance have been studied in more depth. We are unaware of any work that has 

investigated the issue of distributed denial of service (DDoS) attack detection and 

response in a general collaborative way for networks. Thus, the lack of cooperative and 

disributed mechansim which utilizes computational intelligence have been our 

motivation for creating a game based cooperative IDPS to overcome the problem of 

accuracy of detection, response and false alarm rate. 

1.4 Research Methodology 

This section outlines the research methodology adopted in this thesis. The phases 

of the research methods are presented. The details of the methodology are explained in 

this section as shown in Figure 1.1. The literature review and problem statement are 

discussed in Phase 1. In Phase 2, the research objective is argued. The system designs 

are proposed in Phase 3. The evaluation and analysis are discussed in Phase 4. 
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Literature Review

Problem Extraction
Phase-I

Research Objectives

Prototype Implementation

Results Gathering and Analysis

Findings Comparison

Phase-II

Phase-III

Phase-IV

 

Figure 1.1: Research Methodologies 

Phase I: Literature Review and Problem Extraction 

The focus of this thesis is to design a cooperative intelligent intrusion detection and 

prevention security schemes. Therefore, the outline is based upon the following related 

works: 

1) Initially, the existing intrusion detection schemes designed for network 

environment are categorized as (a) data security schemes or (b) application 

security schemes. 

2) Afterwards, the existing data security schemes design for IDPSs are sub-

categorized as (a) traditional intelligence (b) computational intelligence and (c) 

multi agent based computational intelligence IDPS schemes.  

3) Thereafter, the selected real data schemes are critically analysed to identify the 

computation intensive operations and security issues that need to be addressed.  
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Phase II: Research Objectives 

The aim of this thesis is to propose a novel cooperative multi agent intelligent 

intrusion detection and prevention scheme to address the intrusions. In order to achieve 

this aim, several issues need to be thoroughly understood, analysed and evaluated, as 

follows: 

(a) To comprehensively investigate the domain of cooperative multi agent 

intelligent intrusion detection and response, and identify the key issues with 

respect to the effective defense against intrusions.  

(b) To design and implement a novel cooperative IIDPS framework to facilitate a 

practical evaluation of intrusion detection. 

(c) To evaluate the performance of a proposed framework in terms of accuracy of 

detection and false alarm rate by validating it using evaluation studies at 

different stages in order to demonstrate the progress of results.  

Phase III: Prototype Implementation  

1) The cooperative IDPS is developed in a network simulator.  

2) To generate an attack with a random function, which selects subject nodes from 

each cluster to attack, the selected nodes adjust their functions to send flooding 

packets to the cluster head. 

3) The game based IDS uses Low Energy Adaptive Clustering Hierarchy (LEACH) 

protocol in the simulation, as it closely reflects WSN in practice and is also 

capable of dealing with energy consumption concerns in WSNs. The simulations 

were run for 1000s with LEACH as the routing protocol, the initial access point 

energy was 100 joules, the effective transmission range of the wireless radio for 

the access point was 100m, the sink node transmission range was 100m, and the 

common node transmission range was 50m. 
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Phase IV: Results and Comparison  

We perform simulations to analyse the proposed scheme, for performance analysis 

using algorithmic and network-level parameters. The impact of security schemes on 

distributed denial of service attack are evaluated on the basis of accuracy of detection, 

accuracy of response, false alarm rate, time complexity, number of node alive, and 

energy consumption on network device while performing intrusion detection, intrusion 

response, and anomaly clustering operations.  

1.5 Thesis outlines  

The objectives presented above relate to the general sequence of the material presented 

in this thesis, the structure of which is discussed in five chapters.  

Chapter 2 introduces a comprehensive taxonomy along with state-of-the-art 

intelligent intrusion detection and prevention systems (IIDPS), and specifically reviews 

their response capabilities in networks. The IIDPS were assessed and categorized into 

three trends: traditional artificial intelligence, computational intelligence and multi-

agent-based computational. 

Chapter 3 provides the details of the theoretical basis and the mathematical 

techniques appropriate for adaptive optimization techniques. We introduce the basic 

concepts and design of fuzzy logic controller, reinforcement learning and game theory. 

The chapter proposes an effective cooperative multi agent architecture based on 

computational intelligence methods for detection and prevention of attacks. This chapter 

highlights the advantages of such studies and discusses how they can be combined to 

produce a more effective means of detecting of intrusions.  
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Chapter 4 presents the main contribution of this thesis: a novel collaborative 

game based IDPS. In presenting the framework, this chapter begins by presenting the 

core foundation behind the framework as well as its operational characteristics. This 

chapter comprises the study by conducting multiple experiments to validate and 

evaluate the proposed game based fuzzy Q-learning IDPS framework. In addition, 

example scenarios are provided to demonstrate how the proposed framework operates, 

and how the network simulator interfaces can be used to assist security analysts in 

making a decision.  

Chapter 5 demonstrates the progress of the results and the evaluation study 

presents the experimental results in four stages. The first stage aims to validate the 

Game based fuzzy Q-learning IDPS in terms of accuracy of detection by comparing its 

results to the existing machine learning methods such as fuzzy logic controller, Q-

learning, and fuzzy Q-learning approaches.  Based upon the initial results of the first 

experiment, the second stage aims to enhance detection rate by using collaborative 

game theory- IDPS in terms of Game based fuzzy Q-learning IDPS. The third stage 

investigates the effectiveness of the proposed Game FQL-IDPS in achieving two 

different goals: first it investigates the influence of proposed method in terms of energy 

consumption over time; and secondly it investigates the effectiveness of proposed 

method in terms of energy consumption for different deployed nodes. The fourth stage 

investigates the performance of the proposed framework by measuring the time 

complexity during detection process. This chapter also gives an in-depth discussion of 

the implications of applying the proposed framework in practice, underlining the 

advantages as well as the limitations. 

Chapter 6 presents the main conclusions drawn from this thesis, highlights the 

principle achievements and limitations of the work, and makes suggestions for potential 

of further enhancements.  
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Chapter 2 : INTELLIGENT INTRUSION DETECTION AND PREVENTION 

SYSTEM 

This chapter studies the intelligent intrusion detection and prevention system 

(IIDPS) schemes in networks and cloud computing. More specially, the categorization 

of IDPS schemes in terms of traditional artificial intelligence (TAI), computational 

intelligence (CI) and multi-agent CI (single cloud, collaborative cloud) are discussed. 

We highlight the benefits of multi-agent system based CI in terms of collaborative 

based IIDPS (Co-IIDPS) to attain high accuracy of attacks. The research areas and 

directions in developing and deploying CI based Co-IIDPSs is mentioned. 

2.1 Overview 

Unlike prevalent intrusion detection and prevention system, intelligent intrusion 

detection and prevention system not only aim to foster the supportive effectiveness of 

detection, for instance, with increased accuracy of detection and decreased false alarm 

rate, but also have cooperative intelligent approaches. An intelligent actuator help 

enhance the cooperative effort of IDPS to communicate while detecting anomalies in 

areas including health, warfare and environment monitoring (Akyildiz et al., 2002). For 

example, health monitoring models adopt IDS as extraordinary parts to continuously 

capture quantitative data from an enormous number of wearable body sensor networks 

for longer periods (Hanson et al., 2009). Hybrid Sensor Network (HSN) architecture 

employs MicaZ sensors for the battlefield, which are skilled in tracking live vocal and 

magnetic weapon signals generated by enemy forces (Bokareva et al., 2006). The most 

recent publication by Kapitanova et al. (2012) demonstrates how robust fuzzy logic is in 

event detection by monitoring smoke via temperature sensors attached throughout the 

home environment; fire ignition may thus be detected, making the relevance of sensor 

applications apparent. 
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The existing application designs for wireless networks afford greater flexibility in 

establishing communications and increase system automation, though lack in security 

and privacy (N. Li et al., 2009). The core weaknesses with these sensor nodes lie in the 

limited-resource devices, i.e. power and processing units. For this reason, vulnerability 

to various security threats is notably high. Meanwhile, an adversary possesses passive 

and active abilities. It may thus implicate sensor nodes through access to secret 

information such as keys stored in the compromised node in addition to the potential to 

eavesdrop and alter (e.g. replay, forge, modify and delete) exposed nodes behaviour 

(Schaffer et al., 2012). 

In mitigating security complications, traditional security tactics like firewall and 

cryptography are alternative options to prevent external intruders. Nevertheless, they are 

impractical in completely averting network resources from increasingly sophisticated 

internal attacks (Chen et al., 2002). A different security approach incorporates Intrusion 

Detection and Prevention Systems (IDPSs) to detect and impede intrusion by impostors. 

An Intrusion Detection System or other similar ones (e.g. Intrusion Prevention System, 

Intrusion Response System) monitor network traffic to analyse and detect attacks 

(Anuar et al., 2012). Three detection methods employed are: misuse, anomaly, and the 

hybrid model--a blend of the first two  Fuchsberger et al. (2005). A misuse-based 

system identifies known patterns by matching observed data using simple rules. For 

instance, Snort-Wireless runs its default rule settings to process all malicious events 

observed by the sensor and adopt intrusion detection techniques Lockhart et al. (2005).  

Anomaly-based detection refers to the discovery of anomalous patterns in 

measurement data that do not conform to the expected behaviour (Curiac et al., 2012). 

According to Dutkevych et al. (2007), an anomaly-based solution averts intrusion in real 

time systems by analysing protocol-based attacks and multidimensional traffic. The 

hybrid detection approach boosts the capabilities of a current Intrusion Detection and 
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Prevention System (IDPS) by joining the two intelligent methods of misuse and 

anomaly Wang et al. (2011). Aydin et al. (2009) designed a hybrid IDS by incorporating 

the Packet Header Anomaly Detection (PHAD) and Network Traffic Anomaly 

Detection (NETAD) systems, which are anomaly-based IDSs with misuse-based IDS 

Snort. The key concept behind hybrid detection is that misuse identifies known attacks 

while anomaly discovers unknown attacks. 

The traditional misuse detection approaches display high performance regarding 

correct detection of known attacks and false alarm rates but fail to detect unknown 

attacks (D. Anderson et al., 1995). Therefore, a traditional anomaly detection approach 

is considered an alternative to detect constantly changing unknown attack behaviour, 

but it may also exhibit high false positive results. 

Artificial Intelligence (AI) techniques play a role in automating the intrusion 

detection process to diminish human intermediation. The intrusion detection process 

based upon traditional artificial intelligence (TAI) entails methods such as fuzzy set, 

neural networks, and evolutionary computing, which operate as classifiers for anomaly 

detection (Idris et al., 2005). Denning (1987), with a rule-based expert system for 

Intrusion Detection Systems (IDSs), aimed to improve detection performance. Although 

these rules apply cover-known patterns, they are unable to adapt to the attacks’ pattern 

changes (e.g. attack polymorphs). To alleviate the problem of attack modifications, 

computational intelligence (CI) is considered a high-accuracy detection method to be 

used in constructing an intelligent detection model and to automatically identify 

inconsistent activities (Kulkarni et al., 2011). Agah et al. (2004) detected attacks with 

the game theory-based reinforcement learning algorithm. The result was greater safety, 

but the energy efficiency issues remain to be addressed. 



12 
 

Despite the limited agreement on the exact procedure of constructing anomaly 

classifiers based on TAI and CI to address safety, there is a broadly accepted view that 

the sections of CI are, neuro fuzzy, genetic fuzzy and machine learning. By joining the 

autonomous multi agent with the CI or TAI methods, a number of the previously 

identified weaknesses such as accuracy of detection, false alarm rate as well as energy 

efficiency may be confronted. Toosi et al. (2007) combined the following three soft 

computing algorithms: neural network, fuzzy rules and genetic algorithm to improve the 

decision result optimization.  

According to the existing reviews for anomaly resource-based monitoring, IDPS 

systems are divided into two categories: Host-based IDPS (HIDPS) and Network Based 

IDPS (NIDPS) systems (J. A. Anderson et al., 1995; Sherif et al., 2002). NIDPS 

monitors network traffic, in particular network segments or devices, after which it 

analyses network and protocol conduct to identify suspicious activities. HIDPS observes 

all, or portions of, the dynamic behaviour and state of a computer system. Unlike 

NIDPS which dynamically inspects network packets, HIDPS detects programs’ access 

and resources. HIDPS offers the advantage of being easy to deploy without affecting 

existing infrastructures as opposed to NIDS which detects attacks at the transport 

protocol layer by quick responses. 

Through this chapter, we investigate the application of TAI, CI and MCI for 

identifying present research challenges in preparing an intelligent intrusion detection 

and prevention system (IIDPS). A survey presents the state-of-the-art in the field of 

IIDPS and highlights the central issues to be addressed. 

Table 2.1 provides the number of literature works dealing with TAI, CI and MCI 

approaches. The list of articles is provided as a general overview of TAIs, CIs and MCIs 

in terms of their characteristics and current challenges encumbering intelligent IDPS 



13 
 

development in sensor networks. The table comprises 4 horizontal sections (TAI, CI, 

and MCI) and 3 vertical divisions defining detection classifier types, the authors’ work 

titles and the works’ objectives. Embedding security mechanisms such as identifying 

possible known/unknown vulnerabilities, predicting user behaviour, analysing and 

deterring individuals from violating security policies, are adopted into the network 

protocols to facilitate the development of efficient intrusion recognition and reaction 

systems. 

Table 2.1: Total number of anomaly-based classifiers in Network based- IDPS  

Type of 

classifier 

Authors Title of paper Objectives 

T
ra

d
it

io
n

a
l 

A
rt

if
ic

ia
l 

In
te

ll
ig

en
ce

(T
A

I)
 

 

Neural 

networks 

(NN) 

Debar et al. 

(1992) 

A neural network 

component for an 

intrusion detection 

system 

Prediction known user behavior –

Design an IDS structure 

Cannady et al. 

(1998) 

Artificial neural networks 

for misuse detection 

Identifying possible known 

vulnerabilities-IDS 

Zhang et al. 

(2000) 

Intrusion detection in ad-

hoc networks 

Intrusion detection and response 

mechanisms in ad-hoc networks- 

(Developing of WIDS) 

Bivens et al. 

(2002) 

Network-based intrusion 

detection using neural 

networks 

Analyzing and deterring individuals 

from violating security policies-

(Explore network based intrusion 

detection) 

Bankovic et 

al. (2011) 

Improving security in 

WMNs with reputation 

systems and self-

organizing maps 

Detect and confine unknown attacks- 

(Design framework for intrusion 

detection in Mobile Networks) 

Li et al. 

(2012) 

The method of network 

intrusion detection based 

on the neural network 

GCBP algorithm 

Analyzing and detection of unknown 

data packets- NIDS 

 Fuzzy sets 

(FS) 

Dickerson et 

al. (2001) 

Fuzzy intrusion detection  To assess malicious activity- 

(Developing of WIDS) 

Bridges et al. 

(2000) 

Fuzzy data 

mining and genetic 

algorithms 

applied to intrusion 

detection 

Developed an architecture for 

intrusion detection 

Liang et al. 

(2005) 

Event detection in 

wireless sensor networks 

using fuzzy logic system 

Identifying possible known 

vulnerabilities-WIDS 

Abraham et 

al. (2007) 

D-SCIDS: Distributed 

soft computing intrusion 

detection system 

Evaluates and models NIDS 

Jianhui et al. 

(2008) 

A Fast Fuzzy Set 

Intrusion Detection 

Model 

Deterring Intrusion- Design IDS 

Wang et al. 

(2009) 

A Detection Method for 

Routing Attacks Based 

on Fuzzy C-means 

Analyzing and detection anomaly-

WIDS 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=943772
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-research/D-mining/Anomaly-D/Fuzzy-by-GA/005slide.pdf
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Clustering  

Artificial 

Immune 

system 

(AIS) 

Jungwon et al. 

(2001) 

Towards an artificial 

immune 

system for network 

intrusion detection: 

An investigation of clona

l selection with 

a negative selection 

operator 

Investigation of IDS  

Ma et al. 

(2007) 

SAID: A Self-Adaptive 

Intrusion Detection 

System  

Designing an architecture of 

Intrusion Detection System (WIDS) 

Genetic 

algorithm 

(GA) 

Khanna et al. 

(2006) 

Self-Organization of 

Sensor Networks Using 

Genetic Algorithms 

Development of IDPS 

Sevil Sen et 

al. (2011) 

 

Evolutionary 

computation techniques 

for intrusion detection in 

mobile ad hoc networks  

Explore the use of evolutionary 

computation techniques in WIDS 

C
o

m
p

u
ta

ti
o

n
a

l 
In

te
ll

ig
en

ce
(C

I)
 

Soft 

computing 

(SC) 

Mohajerani et 

al. (2003) 

NFIDS: a neuro-fuzzy 

intrusion detection 

system 

Developed anomaly Intrusion 

Detection system 

Gomez et al. 

(2002) 

Evolving fuzzy classifiers 

for intrusion detection 

Proposes a technique of anomaly 

detection 

Chavan et al. 

(2004) 

Adaptive neuro-fuzzy 

intrusion detection 

systems 

Design an intrusion detection system 

Toosi et al. 

(2007) 

A new approach to 

intrusion detection based 

on an evolutionary soft 

computing model using 

neuro-fuzzy classifiers 

To detect and classify intrusions 

from normal behaviors based on the 

attack type in a computer network 

Abadeh et al. 

(2007) 

Intrusion detection using 

a fuzzy genetics-based 

learning algorithm 

To describe usage of fuzzy genetics 

based detect intrusion in a computer 

network 

Khan et al. 

(2012) 

Application of fuzzy 

inference systems 

to detection of faults  

Modeling of WIDS 

Machine 

learning  

(ML) 

Qiming et al. 

(2000) 

Using reinforcement 

learning for pro-active 

network fault 

management 

Developing of IDS 

Xu et al. 

(2005) 

A Reinforcement 

Learning Approach for 

HIDS Using Sequences 

of System Calls 

Prediction intrusion behavior 

Xu et al. 

(2007) 

Defending DDoS Attacks 

Using Hidden Markov 

Models and Cooperative 

RL 

Developing efficient intrusion 

detection and reaction systems 

Xu et al. 

(2010)  

Sequential anomaly 

detection based on 

temporal-difference 

learning 

Anomaly detection- designing 

method 

Andersen et 

al. (2009) 

Detecting unusual 

program behavior using 

the statistical component 

of the Next-generation 

Intrusion Detection 

Expert System (NIDES) 

To detect anomalous activity-

analysis component of NIDES to 

develop baseline profiles of 

applications 

Agah et al. Intrusion detection in Finding the most vulnerable node in 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=934333
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(2004) sensor networks: a non-

cooperative game 

approach 

a sensor network and protecting it 

Ye et al. 

(2000) 

A Markov chain model of 

temporal behavior for 

anomaly detection 

Analyzing and detection anomaly 

behavior 

Devarakonda 

et al. (2012) 

Integrated Bayes 

Network and Hidden 

Markov Model for Host 

based IDS 

Prediction intrusion behavior 

M
u

lt
i 

a
g

en
t 

b
a

se
d

 C
I 

( 
M

C
I)

 

Multi agent 

system: 

(MAS) 

Renjit et al. 

(2011) 

Multi-Agent-Based 

Anomaly Intrusion 

Detection 

Development of IDPS 

Fisch et al. 

(2012) 

Learning from others: 

Exchange of 

classification rules in 

intelligent distributed 

systems 

Proposes techniques for IDPS 

Herrero et al. 

(2009) 

MOVIH-IDS: A mobile-

visualization hybrid 

intrusion detection 

system 

Development of IDS 

León et al. 

(2011) 

Towards a Cooperative 

Intrusion Detection 

System for Cognitive 

Radio Networks 

Analyzing threats and propose 

intrusion detection modules  

Vakili et al. 

(2011) 

Coordination of 

cooperation policies in a 

peer-to-peer system using 

swarm-based RL 

Devised a self-

organized coordination mechanism 

for cooperation policy setting of 

rational peers 

Mosqueira-

Rey et al. 

(2007) 

A Misuse Detection 

Agent for Intrusion 

Detection in a Multi-

agent Architecture 

Designing a misuse detection agent 

Ramachandra

n et al. (2008) 

FORK: A novel two-

pronged strategy for an 

agent-based intrusion 

detection scheme in ad-

hoc networks 

Designing Anomaly detection 

algorithm in ad-hoc networks 

Dasgupta et 

al. (2005) 

CIDS: An agent-based 

intrusion detection 

system 

Designing administrative tool for 

intrusion detection 

Z. Zhang et al. 

(2001) 

HIDE: a hierarchical 

network intrusion 

detection system using 

statistical preprocessing 

and neural network 

classification 

Design NIDS 

Agah et al. 

(2007) 

Preventing DoS attack in 

sensor networks: a game 

theoretic approach 

Developing efficient intrusion 

detection and reaction systems 

C
ri

ti
ca

l 
r
ev

ie
w

 

Wu et al. 

(2010) 

The use of computational 

intelligence in intrusion 

detection systems: A 

review 

Review  

Kolias et al. 

(2011) 

Swarm intelligence in 

intrusion detection: A 

survey 

Systematic survey 

Garcia-

Teodoro et al. 

(2009) 

Anomaly-based network 

intrusion detection: 

Techniques, systems and 

challenges 

Critical Review 
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Tsai et al. 

(2009) 

Intrusion detection by 

machine learning: A 

review 

Review 

Davis et al. 

(2011) 

Data pre-processing for 

anomaly based 

network intrusion 

detection: A review 

Review 

Patel et al. 

(2013) 

An Intrusion Detection 

and Prevention System in 

Cloud Computing: A 

Systematic Review 

Systematic review 

 

Through this thesis, the trends of TAI, CI, and MCI used in IDPS are studied. 

Analysis is based on two key aspects concerning the evaluation and comparison of the 

alternative IIDPS approaches’ performances: i.e., the efficiency of the detection process 

and false alarm rates (i.e. false positives and negatives). The significance of the 

performance, and especially at this point, the efficiency aspect must be emphasized. As 

an example, Potyrailo et al. (2012) researched  about the influence of wireless chemical 

sensors based on Radio Frequency Identification (RFID) in the high detection of 

chemical agents. They claim that any failure in real time diagnosis may lead to harmful 

events. Wang et al. (2012) achieved a false positive ratio of less than 10% with small 

packet of buffers to identify the compromised node in wireless networks. 

2.1.1 Data Set  

Due to the extraordinary hazard of practical operational networks and systems of 

real environments, performing real time testing is very difficult and complicated. 

Therefore, most researchers validate the ideas by testing in experimental simulated 

environments depicting the real environment. There are many datasets that can be used 

for the detection of abnormal behaviour. For example, in the KDD’99 dataset, certain 

possible problems were likely to occur, such as, an enormous number of duplicate 

records have been detected (KDD, 1999).  

To examine the possibility of dropped packets by traffic collectors (i.e. TCP 

dumping) during heavy traffic, there exists different datasets such as NSL-KDD (2009) 
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which were selected to mitigate the difficulties incurred by KDD’99 datasets. NSL-

KDD is significant in that it contains fewer redundant, duplicate records in the training 

and test phases of learning-based detection. In this manner, the evaluation process of the 

learning system will not have to be dependent on frequent records. Table 2.2 shows the 

classification of the datasets based on network traffic. 

Table 2.2: Classification of the Datasets for NIDS and WIDS 

Name of 

dataset 

Type of dataset Description of Application domains 

KDD’99 

(KDD, 1999) 

Network IDS This database contains a standard set of data to be audited, 

which includes a wide variety of intrusions simulated in a 

military network environment. 

NSL-KDD 

(2009) 

Network IDS NSL-KDD is a data set suggested to solve some of the inherent 

problems of the KDD'99 data set. 

Intel Berkeley 

Research lab 

("Intel 

Berkeley 

Research lab," 

2004) 

Wireless Sensors 

IDS 

Data was collected using the TinyDB in-network query 

processing system, built on the TinyOS platform. 

CRAWDAD 

data sets 

(dataset, 2006) 

1. Sensor network 

dataset for enhancing 

CSMA MAC 

protocol. 

2.Syslog, SNMP, and 

tcpdump data 

3. Dataset of sensor 

data collected by the 

CenceMe system. 

1. This dataset contains packet transmission traces collected 

from an experimental wireless sensor network testbed, where E 

(Enhanced)-CSMA MAC protocol is implemented using 

TinyOS on Mica2 motes. 

2. This dataset includes syslog, SNMP, and tcpdump data for 5 

years or more, for over 450 access points and several thousand 

users at Dartmouth College. 

3. CenceMe uses the output of the phones' sensors and external 

data (if such is available) to infer human presence and activity 

information. This dataset contains movements and inferred 

activities of participants using CenceMe on their mobile 

phones. 

According to them, most ML-based NIDSs employ a base line (i.e. a KDD data 

set and a SVM classifier) for detection of algorithm comparison. Davis et al. (2011) 

provided a table-based review of the traffic patterns and pre-processing methods utilized 

by anomaly-based NIDSs.  (Patel et al., 2013) presented a comprehensive taxonomy of 

IDPS into cloud computing, and stipulated a list of requirements for a cloud-based 

intrusion detection and prevention system (CIDPS). Autonomic computing, ontology, 

risk management and fuzzy theory form an ideal design to meet the requirements. None, 

however, have listed or compared the detection performance of Multi agent-based CI 

(MCI) methods based on IDPS. 

http://www.intel-research.net/berkeley/index.asp
http://www.intel-research.net/berkeley/index.asp
http://webs.cs.berkeley.edu/tos/
http://crawdad.cs.dartmouth.edu/data.php#1
http://crawdad.cs.dartmouth.edu/data.php#1
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2.2 State-of-the-art TAI, CI and MCI in IDPS 

Countless studies have suggested means of increasing performance without 

affecting IDPS quality. Artificial Intelligence (AI) techniques serve to automate the 

intrusion detection process and reduce human intervention. The process of detecting 

intrusion is founded on the AI technique by applying methods such as the traditional 

artificial intelligence (TAI) and computational intelligence (CI) techniques that operate 

as classifiers. This thesis presents, in detail, the state-of-the-art of TAI, CI and Multi 

agent-based CI (MCI) systems in the field of IDPS, and additionally highlights the vital 

concerns/drawbacks to be addressed.  

2.2.1 Traditional Artificial Intelligence (TAI) 

In TAI techniques, network traffic activity is captured by single classifiers (i.e. 

fuzzy set, neural network, genetic algorithm and artificial immune system), thereafter, a 

profile representing its desired behaviour is coded and finally a behaviour model is 

created. Network events take place, the current profile is assigned and an anomaly score 

is computed by comparing the two behaviours. The score normally indicates the degree 

of irregularity for a specific event, such that the IDS raises a flag in the event an 

anomaly occurs when the score surpasses a certain threshold. 

Fuzzy set-oriented IDPSs correspond to an audit data related to a set of rules 

which identifies different attributes from the training data as a fuzzy rule base (FRB) 

(Dickerson et al., 2001). FRB is beneficial in instances of misuse but is impractical 

when dealing with unknown behaviour. To alleviate the drawbacks of unknown 

behaviour detection, hybrid fuzzy classifiers that consider dynamic fuzzy rule tuning 

were recommended for a later stage to augment detection rate by dynamically adjusting 

the rules ((Bridges et al., 2000), (Liang et al., 2005), (Abraham et al., 2007), (Lin et al., 

2008), and (Tong et al., 2009)). 
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The most remarkable advantages of hybrid fuzzy classifier-based IDPSs are 

robustness and flexibility. Among the most noticeable, disadvantages is the challenge of 

using a fuzzy set in large scale wireless computing (i.e. excessive resource 

consumption) and the additional complications imposed on alarm correlation. To 

moderate the alarm correlation, Kaptanova et al. (2012) suggested a hybrid fuzzy 

classifier that monitors a temperature value. The fuzzy logic controller performs robust 

detection, but consumes vast computing resources when performing fuzzy alarm 

correlation. Thus, to avoid the pronounced resource consumption, a neural network may 

adopt fuzzy rules by updating the weight of the neurons. 

With the intention of minimizing the misclassification of error function, the MLP, 

SOM and SVM neural networks were implemented to the anomaly-based IDPSs. Neural 

networks are prominently characterized by their flexibility and adaptability to generate 

fuzzy rules through performing weight tuning to represent the effective hidden units. 

This detection approach is frequently employed to detect individual possible misuse 

(Cannady, 1998; Debar, 1992), to determine which network traffic data clusters contain 

attacks (Alan Bivens, 2002), to identify deviations from normal behaviour Bankovic et 

al. (2011), and to judge whether a network visit is normal or not (Y. Li et al., 2012). 

A common negative characteristic shared by the proposed variants, from multi-

layer feed forward neural networks to self-organizing maps and supporting vector 

machines (Fisch et al., 2012), is that no expositive structure is provided explaining why 

a particular detection decision has been made.  

A genetic algorithm permits a population of many individuals to infer under 

distinguished selection rules to a state that maximizes the “fitness function” (i.e. 

minimizes the cost function), by evolving its operators such as selection, cross over, and 

mutation. GA contributes another type of anomaly-based IDPS, which is adept at 
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utilizing communication energy (Khanna et al., 2009) and applying a grammatical 

evolution (GE) technique with BNF grammar to identify route disruption attacks in 

mobile ad-hoc networks (Phillips et al., 2010). 

The main advantage of this subtype of TAI-oriented IDPS is the capability of a 

flexible and robust global search method that converges to a global minimum (i.e. a 

solution from multiple directions), with no prior knowledge of the system’s behaviour. 

Its main disadvantage is the enormous resource consumption involved. If the population 

is large then the mutation is too great and the system never converges towards a suitable 

solution. Due to this iteration, an immense amount of resources are consumed.  

The observed theory and functions of AIS immunization were inspired by the 

natural immune system principles; this system’s models were then employed in a wide 

and intricate range of subjects. Clonal selection and negative selection comprise 

essential shares of this system. The clonal and negative selection functions have a large 

influence on the security of wireless networks (Hofmeyr et al., 2000). 

AIS techniques have been extensively used in negative and clonal selection. They 

are normally applied as mobile memory detectors to generate several diverse detectors 

by approximation to achieve lightweight NIDS (Jungwon et al., 2001). Ma et al. (2007) 

organized WSN as a body, adversaries as pathogens and multi agents as lymphocytes 

that defend against attacks. In all cases, self-adaptability is facilitated by upgrading the 

agents’ characteristics via the creation of new antibodies. Energy efficiency is attained 

by deploying decision agents in the base station with sufficient resources and strong 

computational skills. 

AIS functions provide the configurability of driving the gene library evolution by 

using the clone selection. Also, AIS requires both additional memory and time when 
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being transferred to generate a vast detector set number. The main disadvantage is its 

high resource consumption. 

2.2.2 Computational Intelligence (CI) 

Computational intelligence (CI) classifiers rely on a soft computing (SC) or 

machine learning (ML) model that allows for the patterns analysed to be categorized. A 

distinct characteristic of these schemes is the prerequisite for labelled data to train the 

behavioural model, a procedure that places severe demands on the resources. ML based 

on SC classifiers is meant to create an iterative process of observing patterns, adjusting 

to the mathematical form, and making predictions (Alpadin, 2010). 

SC classifiers were designed to modify the classification performance of TAI 

methods by incorporating a multifold learning algorithm (Zadeh, 1994). SC classifiers 

distinguish two main approaches: Neuro Fuzzy (NF) and Genetic Fuzzy (GF) models. 

NF and GF are a combination of a fuzzy set with NN and GA, which are utilized to 

adjust the structure and parameters of a fuzzy system by neural network and genetic 

algorithm operators, respectively. The goal is an optimal, continuous membership 

function that identifies anomalous behaviour with supervised monitoring abilities, high 

detection rate and low false alarm rate (Buckley et al., 1994; Fullér, 2000). 

Neuro fuzzy is a combination of a fuzzy set and adaptive neural network that 

tunes the fuzzy membership function using neural networks. Neuro-fuzzy techniques 

are found in the milieu of NIDS, generally applied to IDS problems (Gomez et al., 

2002). The multi-layer perceptron learns the fuzzy rule, after which this neural network 

performs a fuzzy interface process to identify attacks (Chavan et al., 2004; Mohajerani 

et al., 2003). 
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In some ways associated to anomaly-based IDS methods, a revised Neuro-fuzzy 

classifier with a GA was proposed to modify the fuzzy engine for detection (Toosi et al., 

2007). At the same time, IDS employs the fuzzy genetic learning method to construct a 

primary population by using the fuzzy rule. The antecedent fuzzy part provides a 

uniform crossover for a pair of fuzzy rules, following which the antecedent fuzzy set 

randomly supersedes the fuzzy set with a mutation probability. Lastly, the fuzzy genetic 

method terminates the fuzzy classifier execution through a total number of generations 

(Abadeh et al., 2007). More recently, Khan et al. (2012) developed a fault detection 

strategy in WSN. In this system, a Recurrent Takagi-Sugeno-Kang FIS (RFIS) strategy 

decided whether or not to declare the node malicious. 

In all SC techniques fuzzy logic is optimized to enhance the detection accuracy. 

The number of false positives is reduced and only the true positive intrusion events from 

the raw audit data are increased. It is still challenging though to tune the fuzzy rules 

based on IDS into WSN to lessen the false positives and boost detection rate.  

In the expansion of IDPS, the ultimate aim is to obtain a high level of accuracy in 

the various intruder detection schemes. Several ML-based designs have been applied to 

IDPS. Some of the most important ones are cited below, and their main strengths and 

weaknesses are identified. 

Reinforcement learning (RL) appears to be a greatly significant method of 

wireless network security due to its capability to autonomously learn new attacks via 

online, unsupervised learning, as well as modify new policies without complex 

mathematical approaches (Barto., 1998). RL has been proven to be effective, especially 

in real time detection and when no prior system behaviour information is assumed. 

RL constitutes another form of computational intelligence-based techniques, 

capable of forecasting online network fault detection by Partly Observable Markov 

http://www.sciencedirect.com/science/article/pii/S0925231212002809
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Decision Procedure (POMDP), a practice which transforms a reward function into 

Markov chains (Li et al., 2014). Hence, to execute the learning prediction, a TD 

learning algorithm was employed. A value function forecasting model was constructed 

upon completion of the learning phase. 

In a non-cooperative game theory model, the system uses a Q-learning algorithm 

for any adversary recognition in sensor networks (A. Agah et al., 2004). Temporal 

difference sequential anomaly detection (TD-SAD) aided by the Markov reward model 

is used to determine data labelling and improve its detection model performance (X. Xu, 

2010). The multilayer RL framework assisted by HMM was proposed to solve real-time 

detection in a complex state space (Andersen et al., 2009). 

The primary disadvantage of reinforcement learning is the abundance of resources 

consumed, in other words, the lack of memory to sustain the agent’s data. The agent’s 

memory is stored in a look-up table, or the Q-table. The values fill the Q-table with the 

maximum positive rewards possible when executing an action from the current state to 

the next-state space. Consequently, the high values in the Q-table expend all these 

resources. RL, when compared with other soft computing methods (i.e. neuro fuzzy and 

genetic fuzzy), is highly dependent on state space. 

The Bayes Network principle provides a distribution possibility to encode 

statistical relationships among any single quantity. BN is based on Bayes' theorem 

(alternatively, Bayes' law), which imparts a means to apply quantitative reasoning. This 

model is normally used for IDS in combination with HMM and MDP, a procedure that 

yields several advantages (Ahmadabadi et al., 2001). Anomaly detection has the ability 

to represent a norm profile of temporal behaviour by shifting the observation window to 

view the last N audit event continuously and detect intrusion behaviour during window 

observation (Ye, 2000).  
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BN-based HMM techniques have been utilized in IDS, typically applied to 

compute the statistical feature of normal behaviours incoming from the IP source (Xin 

Xu et al., 2007). In a dynamic-based IDS, BN and HMM were recommended to identify 

intrusion. They reduced the KDD data set by choosing five attribute numbers for the 

training mode in TCP connection. Then, the dynamic Bayesian network was initialized 

with the Baum-Welch algorithm to classify normal and attack data (Devarakonda et al., 

2012). 

As pointed out (Patcha et al., 2007), a serious disadvantage of using BNs is that 

the accuracy of this method is dependent on certain assumptions characteristically based 

on the behavioural model of the target system; deviating from these assumptions 

decreases accuracy. Selecting an accurate model is the first step towards solving the 

problem, as a result, considerably higher computational effort is required. 

In most ML techniques, reinforcement learning (RL) utilizes HMMs and BNs to 

improve the detection operation. The main effort therefore goes to optimizing RL 

through the Fuzzy Logic Controller (FLC). 

2.2.3 Multi Agent-based Computational Intelligence (MCI) 

MCI techniques function by applying the multi agent system (MAS) to 

computational intelligence (CI) in order to enhance the performance of detection and 

response. On the other hand, cooperative MAS uses CI methods such as SOM, SVM, 

GA, RL and Game Theory to determine temporal behaviour and respond to any 

deviation. The main objective of MCI consists of distributing MAS to each cluster to 

provide a CI mechanism that makes individual and cooperative decisions associated to 

IDPS (Wooldridge, 2009). MCI has been widely employed in the domain of network 

security, especially in WIDS (W. Li et al., 2012) and cloud computing-based IDS 

(Doelitzscher et al., 2012). 



25 
 

MCI approaches correspond to hierarchical multi-agent architecture for intrusion 

detection, and modify statistical models like SRI’s NIDES statistical algorithm. The 

advantage is access to a distributed, three-layer intrusion detection. As such, each 

module negotiates with other agents from the lower to higher tiers, seeking to overcome 

detection complexity (Z. Zhang et al., 2001). 

With regards to cognitive sensors, a model was proposed in two phases, namely, 

which local agents use support vector machines in the training mode and which local 

agents use mobile agents in the decision mode to classify suspicious behaviour (León et 

al., 2011). Some methods suggest a multi-agent system where each local agent collects 

data through a mobile agent. The local agent then examines the integrity of the system 

by a SVM classifier at the time an attacker enters the system. Also, in the 

communication mode the mobile agent verifies activity; if there is no suspicious 

activity, the message is forwarded to a neighbouring node. The decision making 

component of detection is based on the Bayes theory, in which, if the probability of 

normal activity is smaller than the assumed abnormality threshold, the current activity is 

categorized as abnormal (Renjit et al., 2011). 

MCI-based algorithms are intended to classify audit data according to a set of 

fuzzy associated rules. First, a Java agent-based snort collects packets with a packet 

sniffer and then creates an input data for the rule engine. Subsequently, the rule engine 

forwards the pattern matching algorithm to a multi-agent system. The audit data is then 

classified accordingly (Mosqueira-Rey et al., 2007). Intrusion detection utilizes MAS 

along with the Fuzzy Classifier System (FCS) and Knowledge Base to detect abnormal 

activities (Dasgupta et al., 2005). 

With respect to the communication mechanisms, Vakili et al. (2011) developed a 

cooperation policy setting process. Interacting peers’ agents regard each other’s 
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reliability or reputation as an impact factor influencing the value of information 

received from the other, and hence their learning mechanisms. A broadcasting 

mechanism was proposed for knowledge acquisition in dynamic environments based on 

probabilistic modelling which was improved through other cooperative communication 

(Fisch et al., 2012). 

In some domains of WSN-based IDPS, a two-tier, MAS-based Ad-hoc intrusion 

detection mechanism was proposed. The first tier runs an auctioning-based mechanism 

for node task allocation. The second tier consists of the classification algorithm that uses 

a variation of an Ant Colony Optimization to identify the anomaly level (Ramachandran 

et al., 2008). The collaborative work of the tactical squad of agents has led to concurrent 

detections of multiple sinkhole threats from different routes in the ad-hoc network 

(Stafrace et al., 2010). Specifications of collaborative IDPS were developed by 

employing MAS characteristics. For instance, the inclusion of deliberative (CBR-BDI) 

agents -- a combination of CBR agents’ life cycles (i.e. retrieval, reuse, revision and 

retention stages) seems appropriate for packet-based detection (Herrero et al., 2009). 

For this purpose, a CBR life cycle with a cooperative version of Maximum Likelihood 

Hebbian Learning (MLHL) is reflected upon.  

Multi agent-based IDPS, in terms of CI (MCI) and non-CI methods, have emerged 

in commercial products. In recent years, a number of pioneering systems from MCI-

based IDPS, i.e. C-Sniper System, have been practically adopted by US forces. Such a 

system automatically detects and neutralizes enemy snipers (DARPA, 2012). In brief, 

this thesis attempts to highlight the possible beneficial impact of MCIs using Fuzzy 

Logic and Reinforcement Learning, as well as to point out potential pitfalls of not 

integrating MCI into Co-IDPS.  Figure 2.1 indicates a chronological list of TAI, CI and 

MCI-based IDPS events with respect to the relevant technologies. 
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Figure 2.1: Chronological order of [TAI], [CI] and [MCI] based IIDPS 

 

Figure 2.1 illustrates the chronology of those artificial intelligent techniques 

which focus on TAI (i.e. fuzzy set, neural network and evolutionary algorithm), CI (i.e. 

soft computing and machine learning) and MCI. The figure summarizes the MCI 

techniques into two clouds: collaborative and single clouds. A collaborative cloud is a 

Multi Agent System (MAS) making use of TAI methods and in most cases comprises 

CI approaches. For example, reinforcement methods utilize neural networks and a fuzzy 

set (Renjit et al., 2011). A single cloud is a multi-agent-based detection mode that does 

not use CI and TAI. As proposed in (Ramachandran et al., 2008), a MAS follows an 

auction and reputation mechanism for performing the task allocation in intrusion 
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detection. The two cloud types were compared with the TAI and CI methods. The 

summary implicates that detection and the response system based on the two MAS-

based clouds perform extremely well. 

2.3 Detection rates performance method and criteria for evaluation  

The effectiveness of an IIDPS is assessed on how capable the detection method is 

to make correct predictions. According to the real nature of a given event compared to 

an IIDPS prediction, four possible outcomes are shown in Table 2.3. The outcomes are 

known as the IIDPS reaction matrix. True negatives (TN) as well as true positives (TP) 

correspond to a correct IDS operation; that is, events are successfully labelled as normal 

and attack, respectively. False positives (FP) refer to normal events predicted as attacks, 

while false negatives (FN) are attacks incorrectly predicted as normal events ("Intel 

Berkeley Research lab," 2004). 

Table 2.3: Possible status for an IIDPS reaction 

 

Predicted 

Normal Attack 

Actual Normal True Negative(TN) False Negative(FN) 

Attack False Positive(FP) True Positive(TP) 

A high FP rate that seriously affects the system’s performance can be detected, and an 

elevated FN rate leaves the system vulnerable to intrusions. Both FP and FN rates ought 

to be minimized, together with maximizing TP and TN rates. Based on Eqs. (2.1) to 

(2.6) and the IIDPS reaction matrix, a possible status for an IIDPS reaction is shown. It 

applies the following measures to quantify IDS performance (Blasco et al., 2010): 

True negative rate (TNR) = 
𝐓𝐍

𝐓𝐍+𝐅𝐏
=

𝐧𝐨.  𝐭𝐫𝐮𝐞 𝐚𝐥𝐞𝐫𝐭𝐬

𝐧𝐨.𝐚𝐥𝐞𝐫𝐭𝐬
                                       (2.1) 

True positive rate (TPR) or Sensitivity or Recall (R) = 
TP

TP+FN
=

no.  detected attacks

no.  observables attack
     

(2.2) 

False positive rate (FPR): 
FP

TN+FP
= 1 −

TN

TN+FP
                                                     (2.3) 
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False negative rate (FNR): 
FN

TP+FN
                                                                         (2.4) 

Accuracy= 
TN+TP

TN+TP+FN+FP
                                                                              (2.5) 

Precision= 
TP

TP+FP
                                                                                                 (2.6) 

Most of the systems employed in the current research works used the same 

evaluation metrics such as the Detection Rate and False Alarm Rate. Some researchers 

have addressed the problems of IDS by proposing new DR and FAR. Table 2.4 shows 

the proposed evaluation metrics by researchers. 

Table 2.4: Evaluation metrics proposed by authors 

Authors, Paper Accuracy of 

Intrusion 

False alarm rate Description 

Intrusion detection 

through learning 

behaviour  

(Balajinath et al., 

2001) 

Accuracy = [1 −
n

N
] 100, FAR = [

n

N
] 100 

Where n is the count of 

command samples that are in 

total command set S after current 

command, N the initial size of 

total command set. 

Design and 

performance 

evaluation of a 

lightweight wireless 

early warning 

intrusion detection 

prototype. 

(Fragkiadakis et al., 

2012) 

Score=b*(c−d) Where d= √FAR2 + (1 − DP)2  
is the distance of a trade-off 

point (for a specific threshold h) 

from the optimum point (DP = 1 

and FAR = 0), and b,c ∈ R+. 

Optimization of load 

balancing using fuzzy 

Q-Learning for next 

generation wireless 

networks 

(Muñoz et al., 2013) 

U = [CBR + (1 − CBR) · CDR] · .100 Where U is a metric that 

aggregates both key performance 

indicators to provide an 

estimation of the user 

dissatisfaction. Such indicators, 

CBR and CDR, consider the total 

number of blocked and dropped 

calls in the network, 

respectively. 

Shielding wireless 

sensor network using 

Markovian intrusion 

detection system with 

attack pattern mining  

(Huang et al., 2013) 

 

U = ρ ∗ SP − β ∗ FN − θ ∗ FP Where U is a utility, SP 

Represents true positive rate of 

attack patterns. There are attacks 

and defences, FN Represents 

false negative of attack patterns, 

FP Represents false positive of 

attack patterns, ρ Represents the 

weight of successful prediction, 

β Represents the weight of failed 

prediction, and θ Represents the 

weight of failed prediction. 

Measuring Intrusion 

Detection Capability: 

An Information-

Theoretic Approach 

(Gu et al., 2006) 

𝐶𝐼𝐷 =
𝐼(𝑋; 𝑌)

𝐻(𝑋)
 

 

Let X be the random variable 

representing the IDS input and Y 

the random variable representing 

the IDS output.  
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Traditionally, intrusion detection and prevention approaches are studied from 

two major views, namely anomaly and misuse detection though no considerable 

difference in characteristics exists between them. Liao et al.  (Huang et al., 

2013)proposed a subdivision of detection approaches into five subcategories, including 

statistics-based, pattern-based, rule-based, state-based and heuristic concepts, but the 

properties of intelligent detection approaches are not defined. Due to the lack of a more 

detailed view of detection and prevention approaches using multi agent system-based 

computational intelligence, this thesis presents a classification of three subclasses with 

an in-depth perspective on the characteristics: traditional artificial intelligence-based, 

computational intelligence-based, and multi agent-based CI. Accordingly, we have 

carefully assembled the current intrusion detection approaches, especially those found 

in wireless networks (Table 2.5). 
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Table 2.5: Classifications and comparisons of various intrusion detection approaches 

  Detection approach methodology 
a 
 Technology type 

b
 Detection of 

attack 
c
 

performance 
d
 Type of 

source 
e
 

characteristics 

AD MD H/N/W K/U/B H/M/L P1/P2/N  Flexibility and 

adaptability 

T
ra

d
it

io
n

a
l 

A
rt

if
ic

ia
l 

In
te

ll
ig

en
ce

 

Neural network 

N
o

. 
o

f 
ar

ti
cl

es
:(

6
) 

Debar et al. 

(1992) 

  √ Host-based (H) Known attacks 

(K) 

Low (L) Public 

dataset(P1) 

Cannady et al. 

(1998) 

  √ Network-based (N) Known attacks 

(K) 

Low (L) Public 

dataset(P1) 

Zhang et al. 

(2000) 

√   Wireless -based (W) Known attacks 

(K) 

Moderate (M) Private 

dataset(P2) 

Bivens et al. 

(2002) 

√   Network-based (N) Known attacks 

(K) 

Moderate (M) Private 

dataset(P2) 

Bankovic et al. 

(2011) 

√   Wireless -based (W) Unknown attacks 

(U) 

Moderate (M) Public 

dataset(P1) 

(Yan Li, 2012) √   Network-based (N) Unknown attacks 

(U) 

Moderate (M) Public 

dataset(P1) 

Fuzzy Sets 

N
o

. 
o

f 
ar

ti
cl

es
:(

6
) 

(Dickerson et al., 

2001) 

  √ Network-based (N) Known attacks 

(K) 

Low (L) Public 

dataset(P1) 

Robustness and 

flexibilities 

Bridges et al. 

(2000) 

√   Network-based (N) Unknown attacks 

(U) 

Moderate (M) Private 

dataset(P2) 

(Liang et al., 

2005) 

√   Wireless -based (W) Unknown attacks 

(U) 

Moderate (M) Private 

dataset(P2) 

(Abraham et al., 

2007) 

√   Network-based (N) Both known and 

unknown attacks 

(B) 

Moderate (M) Private 

dataset(P2) 

(Jianhui et al., 

2008) 

√   Network-based (N) Unknown attacks 

(U) 

Moderate (M) Private 

dataset(P2) 

(Tong et al., 

2009) 

√   Wireless -based (W) Unknown attacks 

(U) 

High (H) Private 

dataset(P2) 

Artificial 

Immune 

system  

A
rt

ic
le

s(
2

) (Jungwon et al., 

2001) 

√   Network-based (N) Unknown attacks 

(U) 

Moderate (M) Public 

dataset(P1) 

Flexible and 

robust in global 

search methods (Ma et al., 2007) √   Wireless -based (W) Unknown attacks 

(U) 

High (H) Public 

dataset(P1) 
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Genetic 

algorithm 

A
rt

ic
le

s(
2

) (Gu et al., 2006)  √   Wireless -based (W) Unknown attacks 

(U) 

Moderate (M) Public 

dataset(P1) 

Flexible and 

robust in global 

search methods (Sevil Sen, 2011) √   Wireless -based (W) Unknown attacks 

(U) 

High (H) Public 

dataset(P1) 

Total articles: (16) 

C
o

m
p

u
ta

ti
o

n
a

l 
In

te
ll

ig
en

ce
 

Soft computing 

(SC) 

N
o

 .
ar

ti
cl

es
(6

) 

(Mohajerani et 

al., 2003) 

√   Network-based (N) Unknown attacks 

(U) 

Moderate (M) Public 

dataset(P1) 

Lower false 

positive rate, high 

accuracy (Gomez et al., 

2002) 

√   Network-based (N) Unknown attacks 

(U) 

Moderate (M) Public 

dataset(P1) 

(Chavan et al., 

2004) 

√   Network-based (N) Unknown attacks 

(U) 

Moderate (M) Public 

dataset(P1) 

(Toosi et al., 

2007) 

√   Network-based (N) Unknown attacks 

(U) 

High (H) Public 

dataset(P1) 

(Abadeh et al., 

2007) 

√   Network-based (N) Unknown attacks 

(U) 

High (H) Public 

dataset(P1) 

(Khan et al., 

2012) 

√   Wireless -based (W) Unknown attacks 

(U) 

High (H) Public 

dataset(P1) 

Machine 

learning 

N
o

 a
rt

ic
le

s(
8

) 

(Qiming et al., 

2000) 

√   Network-based (N) Unknown attacks 

(U) 

Moderate (M) unspecified 

dataset(N) 

High accuracy, 

Self-learning, 

Fault tolerant (Xin Xu et al., 

2005) 

√   Host-based (H) Unknown attacks 

(U) 

Moderate (M) unspecified 

dataset(N) 

(Xin Xu et al., 

2007) 

√   Network-based (N) Known attacks 

(K) 

Moderate (M) unspecified 

dataset(N) 

(X. Xu, 2010)  √   Network-based (N) Unknown attacks 

(U) 

Moderate (M) unspecified 

dataset(N) 

(Andersen et al., 

2009) 

√   Wireless -based (W) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(A. Agah et al., 

2004) 

√   Wireless -based (W) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

Ye et al. (Ye, 

2000) 

√   Network-based (N) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(Devarakonda et 

al., 2012) 

√    Unknown attacks 

(U) 

Moderate (M) unspecified 

dataset(N) 

Total articles: (14) 
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M
u

lt
i 

a
g

en
t 

b
a

se
d

 C
I(

M
C

I)
 

Multi agent 

system used CI 

(MAS) 

N
o

 .
ar

ti
cl

es
(1

0
) 

(Renjit et al., 

2011) 

√   Network-based (N) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

Distributed, high 

overall security, 

cooperative (Fisch et al., 

2012) 

√   Network-based (N) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(Herrero et al., 

2009) 

√   Wireless -based (W) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(León et al., 

2011) 

√   Wireless -based (W) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(Vakili et al., 

2011) 

√   Network-based (N) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(Mosqueira-Rey 

et al., 2007) 

  √ Network-based (N) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(Ramachandran 

et al., 2008) 

√   Wireless -based (W) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(Dasgupta et al., 

2005) 

√   Network-based (N) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(Z. Zhang et al., 

2001) 

√   Network-based (N) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

(Afrand Agah et 

al., 2007) 

√   Wireless -based (W) Unknown attacks 

(U) 

High (H) unspecified 

dataset(N) 

Total articles: (10) 

a.         Detection methodology: anomaly-based detection (AD), misuse-base detection (MD) 

b.         Technology type: host-based (H), network-based (N), wireless -based (W) 

c.         Detection of attacks: known attacks (K), unknown attacks (U), both known and unknown attacks (B) 

d.         Performance: high (H), moderate (M), low (L) 

e.         Type of source: Public dataset(P1), Private dataset(P2), unspecified dataset(N) 
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Table 2.5 indicates the types and subtypes of intrusion detection. The detection 

methodology is categorized into anomaly and misuse-based. It contains a host-based, 

network-based and wireless -based intrusion detection and prevention systems. The type 

of attack detection is classified into known, unknown, and both kinds of detection. The 

performance indicates detection efficiency, while the level of performance is evaluated 

by degrees of high, moderate and low. The sources comprise of a public dataset (e.g. 

KDD99), a private dataset (e.g. NSL-KDD) and an unspecified dataset, as extracted 

from previous attacks. The available data is utilized to differentiate intrusion behaviour 

from suspicious activities. The methodology of anomaly-based MAS and CI compared 

with TAI satisfies the detection, particularly in unknown attacks. Detection efficiency in 

the multi agent-based computational intelligence (MCI) method portrays superior 

performance. The most significant aspects of the MCI-based IDPS mentioned are high 

accuracy, self-learning, and robustness. 

Figure 2.2 depicts the number of manuscripts investigated over a 14 year period 

from 1998 to 2012. The amount of manuscripts regarding TAI detection methods 

reached a peak in 2002, declined gradually by 2006, then remained stable until now. It 

is not easy to apply those TAIs which mitigate IIDPS vulnerabilities, thus a new 

generation of intelligent attacks can arise. Nevertheless, CI and MCI have received 

increasing consideration recently. 
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Figure 2.2:  Year wise distribution of articles for the various types of classifier layouts 

From Figure 2.2 it can be observed that while traditional artificial intelligence, 

computational intelligence and multi agent based computational intelligence were fairly 

static from 2007 to 2009, however, CI has become more popular than TAI by the year 

2012 because CI in terms of MCI shows better performance of intrusion detection and 

false alarm rate.  

2.3.1 Traditional Artificial Intelligence 

The emergent anomaly detection applications have brought about a new trend of 

IDPS-focused research which concentrates on ways of managing alarms. Table 2.6 lists 

the most recent research attempting to deal with intrusion detection and prevention 

problems based on Traditional Artificial Intelligence approaches.  

Table 2.6: Classification of Traditional Artificial Intelligence-based IDPS 

Reference 

Method Objective Performance Technology 

category 

Type of 

attacks 

Zhang et al. 

(Z. Zhang 

et al., 2001) 

Combining data 

mining with fuzzy 

rule 

To identify 

misused 

behavior in a 

network 

Up to 50% 

increase  in DR 

Hybrid 

fuzzy(FRB) 

 

Individual 

Bridges et 

al. (2000) 

Fuzzy association 

rule 

To learn a 

normal pattern 

Reduced FAR 

by 20% 

Individual 

Liang et al. 

(2005) 

A fuzzy Logic 

approach 

To identify 

the abnormal 

Increased the d 

Detection rate to 
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combined with 

double sliding 

window detection 

behavior in 

sensor 

networks 

99.97% and 

reached to 

0.05% FAR 

Abraham et 

al. (2007) 

Fuzzy classifier 

uses a decision 

tree 

To detect 

attribute 

anomalies  

Averaged  90% 

in DR 

Public 

Lin et al. 

(2008) 

The data mining 

uses PTBA 

algorithm to 

extract rule mining 

To classify 

network 

traffic 

behavior 

More than 90% 

increase  in 

Detection rate 

(DR) 

Public 

Kapitanova 

et al. (2012) 

Combining rules 

with similar 

consequences and 

removing 

negligible rules.  

To modify the 

precision of 

event 

detection 

False positive 

rate 0% 

compares with 

0.13% decision 

tree and 1.56% 

Naïve bayes 

theory. 

 

Tong et al. 

(2009) 

Fuzzy C-mean 

clustering 

algorithm 

calculates the 

distance between 

connection record 

all the actual 

cluster through a 

non-linear 

function  

To distinguish 

the normal 

cluster and 

abnormal 

Detection rate 

of 96% can be 

reached, if false 

positive rate is  

controlled to  

less than 1.5% 

Fuzzy C-

mean(FCM) 

Individual 

Cannady et 

al. (1998) 

Multilayered feed-

forward comprise 

MLP 

To detect 

misuse 

instances such 

as SYNFlood 

Increased DR 

by 60% 

Multilayered feed-

forward (MFF) 

Individual 

Debar et al. 

(1992) 

Modular intrusion 

detection based on 

neural networks 

and expert systems  

Prediction 

error rate 

Average 30%, 

increasing DR 

Support Vector 

Machine(SVM) 

Individual 

Bivens et 

al. (2002) 

SOM was utilized 

as a clustering 

method for MLP 

neural networks 

Attack 

detection. 

Up to 98% 

increase  in 

DR,but with a 

small reduction 

of FAR 

Self- organizing 

Map(SOM) and 

Multi- layer 

perceptron(MLP) 

Public 

Bankovic et 

al. (2011) 

 Using Euclidean 

distance 

throughout the 

reputation self-

organizing map 

algorithm.  

To detect 

deviations 

from normal 

behavior. 

More than 80% 

detection rate  

SOM Individual 

Khanna et 

al. (2009) 

Four fitness 

functions used: 1. 

Monitoring node 

integrity fitness 

(MIF) 2. Battery 

Fitness (MBF) 

3.Coverage fitness 

(MFC) 4. 

Cumulative trust 

fitness (CTF) 

To maximize 

the 

performance 

of IDS 

Decrease the 

FAR,but with a 

small increase  

in DR(60%) 

Genetic 

Algorithm(GA) 

Individual 

Sen et al. 

(2010) 

Genetic 

programming 

applied a 

grammatical 

evolution (GE) 

technique that uses 

To identify 

the route 

disruption 

attacks in 

mobile ad-hoc 

networks  

More than 

99.41% increase  

in DR and 

reduced false 

positive by 

1.23% 

Genetic 

Algorithm(GA) 

Individual 
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BNF grammar  

Jungwon et 

al. (2001) 

The gene library 

evolution by using 

clone selection 

(Co-Evolution) 

To identify 

misuse 

No test Artificial Immune 

System 

 Ma et al. 

(2007) 

Inspired by 

immune system 

used WSN as a 

body, adversary as 

a pathogens and 

multi agents as 

lymphocytes 

To defend 

against  

attacks 

No test Artificial Immune 

System 

  

Generally, TAI techniques for IDPS are categorized into three technologies. The 

fuzzy set-based WIDSs consist of a fuzzy rule- based (FRB) and Fuzzy C-mean (FCM); 

the neural network-based IDPS comprises a Multi-layer Perceptron (MLP), Support 

Vector Machine (SVM) and a Self-Organizing Map (SOM). Finally, the evolutionary 

algorithm is made of a genetic algorithm (GA) and an artificial immune system (N. Li et 

al.). 

The majority of researchers working with TAI have provided some solution to 

appraise the performance of IDPS for anomaly techniques (refer to Table 2.3) since 

anomaly techniques based on hybrid TAI (i.e. using fuzzy data mining) generate more 

accuracy than single TAI techniques (i.e. self-fuzzy), as per Figure 2.3. The hybrid TAI 

approach, such as combining the data mining techniques with fuzzy set for instance, 

optimizes the system’s visibility and performance. Moreover, the false alarm correlation 

and detection rate becomes more complicated. This is why it is necessary to attract 

researchers’ awareness to attempt and provide solutions to IDPS management in the 

recently utilized hybrid TAI detection methods. 
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Figure 2.3: Comparison of TAI methods in terms of detection rate and false alarm rate 

TAI methodologies imply that SVM and fuzzy rule-based (FRB) are increasing 

the performance of detection rate (DR) and false alarm rate (FAR) in the network 

environment. On the contrary, FCM, SOM, MLP, GP and AIS do not consider IDPS 

due to their inability to provide adaptability at a time when adversary behaviour is 

changing dramatically. 

2.3.2 Computational Intelligence 

Two strategies, namely machine learning (ML) and soft computing (SC), are 

utilized for designing intelligent intrusion detection. The objective of this literature is to 

introduce SC and ML in terms of Computational Intelligence-based IDPS. 

The most recent examined works applicable to CI-based IDPS are ordered in 

terms of soft computing (SC) and machine learning (ML) taxonomy. The methods 

applied are very similar to each other. For instance, the neural network-based fuzzy 

solution replaces fuzzy-based neural network classifier to tune the fuzzy rule to achieve 
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more accurate detection. The most important features that are different between the CI 

and TAI methods are prevention capability and response. Currently conducted research 

and proposed solutions with respect to CI techniques are still a long way from an ideal 

IDPS. They not only lack the desired collaborative IIDPS characteristics, but also fail to 

reach into wireless network territory. In all circumstances, CI techniques provide high 

accuracy, self-learning, and are fault tolerant, but they are not capable of taking into 

consideration all the features addressed in IDPS such as energy efficiency, detection 

rate and false alarm rate. These inefficiencies are evidence of the lack of distributed and 

cooperative knowledge of the proper requirements identified prior to initiating any 

development. 

Table 2.7: Classification of computational intelligence in IDPS 

Reference Method Objective Performance Technology 

category  

Mohajerani et 

al. (2003) 

Decision making 

based on fuzzy and 

neural networks 

Traffic 

monitoring 

Normal pattern detection 

accuracy, 6% greater than 

attack detection accuracy. 

Meanwhile, the false 

alarm rate is around 9.4%  

Neuro fuzzy 

Gomez et al. 

(2002) 

Classification 

process using fuzzy 

and genetic 

Intrusion 

detection  

The FAR reduced to 5% 

with a correct detection 

rate of 98.5% 

Genetic fuzzy 

Chavan et al. 

(2004) 

Using rule based 

decision tree and 

neural network for 

classification 

To encounter 

vulnerabilities 

present in snort 

and classify 

anomaly 

behavior.  

No test Neuro fuzzy 

Toosi et al. 

(2007) 

A revised neuro-

fuzzy classifier with 

a GA  

To modify the 

fuzzy engine for 

detection 

Up to 95% increase in 

DR,but the incorrect 

detection rate is 1.9% 

Neuro fuzzy 

Abadeh et al. 

(2007) 

System provides the 

crossover and 

mutation by using 

fuzzy rules.  

Intrusion 

detection  

Up to 99.08% increase in 

DR, but with a small 

reduction of false alarm 

(3.85%)  

Fuzzy genetic  

Khan et al. 

(2012) 

The initial FIS is 

trained by using 

neural network  

Intrusion 

detection  

No test Neuro-fuzzy 

Qiming et al. 

(2000) 

Partly observable 

Marko decision 

procedure 

transforms a reward 

function into 

Markov chains 

To proactive 

network fault 

detection.  

No test Reinforcement 

learning(RL 

Xu et al. 

(2007) 

Cooperative RL uses 

HMM to compute 

the statistical feature 

of normal behaviors 

 DDoS detection 97% correct detection rate 

obtained with zero FAR 

HMM-RL 
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incoming from the 

IP source. 

Xu et al. 

(2005) 

Xu et al. 

(2010) 

Temporal difference 

sequential anomaly 

detection (TD-SAD) 

aided by the Markov 

reward model 

To figure out 

data labeling 

and improve 

detection model 

performance.  

More than 98% detection 

rate and very low false 

alarm rate  

Reinforcement 

learning and 

MDP 

Andersen et 

al. (2009) 

A multilayer RL 

framework uses 

Hidden Markov 

Model 

To actualize the 

detection of 

DDoS attacks 

No test Reinforcement 

learning and 

HMM 

Agah et al. 

(2004) 

A non-zero-sum 

game theoretic uses 

Q-learning algorithm 

to establish the Nash 

equilibrium.  

For adversary 

recognition in 

sensor networks.  

Average 50% in DR Reinforcement 

learning and 

game theory 

Ye et al. (Ye, 

2000) 

Moving the 

observation window 

by using Markov 

chain model 

To represent a 

norm profile of 

temporal 

behavior 

Detection rate increased 

(100%) and false alarm 

rate decreased (0%). 

Markov chain 

model  

Devarakonda 

et al. (2012) 

Dynamic Bayesian 

network was 

initialized using the 

Baum-Welch 

algorithm to 

reinforce probability 

of the partial 

observation 

sequence  

To identify 

intrusion 

The high-count attack 

value (0.624) is greater 

than low-count attack 

(0.228) 

Bayesian 

network and 

hidden Markov  

The performance evaluations imply that Reinforcement Learning and Neuro 

Fuzzy are the most perceived in CI classifiers based on IDPS. As shown in Figure 2.4, 

RL facilitates a high level of accuracy for the detection process. Alternatively, the 

process of detection may attain superior accuracy upon autonomic agent decision 

making. 
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Figure 2.4: Comparison of CI methods in terms of detection rate and false alarm rate 

2.3.3 Multi agent system-based Computational Intelligence 

In line with the progress made on launching MAS, numerous Intelligent 

Intrusion Recognition systems apply this sort of cooperative classifier into 

computational intelligence. Table 2.8 illustrates the percentage of all research articles 

implementing multi agent system techniques to the CI-based WIDS methods. The 

results indicate that MASs are becoming increasingly perceived for SC&ML classifier 

design. 

Table 2.8: Classification of multi agent computational intelligence-based IDPS 

Reference Method Objective Performance Technology category  

Zhang et al. 

(2001) 

Using distributed 

three-layer intrusion  

NIDS Average 70% in 

DR and 9% FAR 

MAS-NN 

Mohajerani et 

al. (2003) 

Decision making 

based on fuzzy and 

neural networks. 

Traffic 

monitoring 

Normal pattern 

detection accuracy, 

6% greater than 

attack detection 

accuracy. 

Meanwhile, the 

false alarm rate is 

around 9.4%  

Neuro fuzzy 

Dasgupta et al. 

(2005) 

Data mining uses 

MAS 

To detect 

abnormal 

behavior  

No test MAS along with Fuzzy 

Classifier System (FCS) 

and Knowledge Base 

(KB) 

Agah et al. Cooperative game To detect   
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(2007) theory attack 

Mosqueria-Rey 

et al. (2007) 

Rule engine uses the 

pattern matching 

algorithm  

To packet 

sniffer 

No test MAS-FRB 

Ramachandran 

et al. (2008) 

Two tires perform: an 

auctioning based 

mechanism for task 

allocation of nodes. 

The classification 

algorithm using a 

variation of Ant 

colony optimization  

To identify 

the level of 

anomalous 

Increased the 

correct attack 

detection to 79% 

and reach to 4% 

false positive 

MAS-Swarm 

Intelligence 

Herrero et al. 

(2009) 

Combines CBR life 

cycle (i.e. retrieval, 

reuse, revision and 

retention stage) with a 

cooperative version of 

Maximum Likelihood 

Hebbian Learning 

(MLHL).  

Wireless 

based IDPS 

No test MAS-probabilistic 

modeling  

Stafrace et al. 

(2010) 

Agent based adhoc-

network  

To 

concurrent 

detections of 

multiple 

sinkholes 

threat  

Obtained 86% 

correct detection 

rate and 5% false 

positive  

MAS-Collaborative 

Renjit et al. 

(2011) 

Using mobile agent  IDPS No test MAS-SVM-SOM-BN 

Leon et al. 

(2011) 

A Multi agent system 

utilized supports a 

vector machine in 

training mode 

To classify 

suspicious 

behavior  

No test MAS-SVM 

Vakili et al. 

(2011) 

A reputation 

assignment 

mechanism in the 

developed 

cooperation policy 

setting process 

IDPS No test MAS-RL 

Fisch et al. 

(2012) 

A broadcasting 

mechanism 

communication uses 

knowledge 

acquisition 

Co-IDPS No test MAS-probabilistic 

modeling  

Devarakonda 

et al. (2012) 

Dynamic Bayesian 

network was 

initialized using the 

Baum-Welch 

algorithm to reinforce 

probability of the 

partial observation 

sequence  

To identify 

intrusion 

The high-count 

attack value 

(0.624) is greater 

than low-count 

attack (0.228) 

Bayesian network and 

hidden Markov  

Figure 2.5 demonstrates the correct detection rate achieved by MCI, which 

steadily increases as the false alarm rate dramatically decreases. Without a doubt, MCI 

approaches may potentially reach enhanced flexibility, making them even more popular 

in the near future. 
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Figure 2.5: Comparison of Multi agent based CI methods in terms of detection rate and false alarm rate 

Basically, at the moment, the majority of researchers are designing multi agent-

based IIDPSs without integrating computational intelligence methods. In other words, 

CIs make use of MAS in terms of collaborative-based CI to optimize the functions of 

MAS. 

2.3.4 Comparative discussion of detection rate evaluation 

Because the environment, dataset, focus, scale, etc., in each experiment are 

totally different from scheme to scheme, detection accuracy and false alarm rate may 

not reflect the realistic performance. Therefore, these detection technique categories are 

vertically examined without the two factors. Table 2.9 shows the panoramic comparison 

of evaluations on the TAI, CI and MCI techniques.  
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Table 2.9: Panoramic comparison of evaluations on popular detection techniques. 

Techniques ACC FAR Remark 

TAI FCM (Tong et al., 2009) 

SOM (2011) 

GP (Phillips et al., 2010) 

≈ 96% 

≥ 80% 

≥ 99.41% 

≈1.5% 

≈1.23% 

No Test 

Simple and fast rule based techniques, 

performance is limited. Basically based on 

traditional artificial intelligence, good 

performance but complex. 

CI NF(Toosi et al., 2007) 

GF (Abadeh et al., 2007) 

MDP (X. Xu, 2010) 

≈ 95% 

≈ 99.08% 

≈ 98% 

≈1.9% 

≈3.85% 

≈1.2% 

Basically based on Machine learning, 

balanced performance and complexity, 

high false alarm rate 

MCI RL (Vakili et al., 2011) ≥ 98% ≈0.98% Good performance, based on 

computational intelligence, low false alarm 

rate 

TAI and CI schemes own the strongest detection generality, as long as adequate 

attributes are in use. Their formidable capabilities of dealing with multiple-dimensional 

data fully support this to be realistic but what comes along with this capability is the 

high complexity. Fortunately, computational intelligence based detection  in terms of 

using Multi agent may be implemented with the help of WSN’s distributed architecture, 

which eventually cuts the complexity down as much as do those relatively advanced 

TAI techniques-based schemes. This kind of schemes is also characterized by the great 

flexibility, as it never depends on any prior-knowledge. The vertical evaluation on the 

three technique categories is illustrated in Table 2.10, where TAI stands for traditional 

AI, CI stands for computational intelligence, and MCI stands for multi agent based CI. 

Table 2.10: Vertical evaluation of technique categories 

Tech. category Generality Speed Distributed Prior knowledge 

TAI Low  Normal   Not Assumption experience 

CI Normal t High Possible  Assumption 

MCI High Normal Necessary Not 
TAI: Traditional Artificial Intelligence; CI: computational intelligence; MCI: multi agent based computational 

intelligence 
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The computation complexity and memory use of TAI methods, such as rule-

based detection schemes are lowest, indicating the fastest detection speed. However, 

they have to suffer from the weakest detection generality, since they are not equipped 

with the ability to dispose of multi-dimensional data. Inserting the new rules that cover 

more detection attributes into the rule set is the only way to push the detection 

generality up, which results in a linear increase of the complexity. The establishment of 

these schemes often demand some prior-knowledge regarding anomaly detection, either 

assumptions or experiences. The performance of traditional artificial intelligence 

techniques essentially stands in the middle. These schemes are enabled to be deployed 

in any WSN. Learning technique, such as reinforcement learning, is allowed to tackle 

multi-dimensional data, but the complexity would climb up dramatically. For this 

reason, multi agent system adapts to mitigate the problem of complexity by providing 

distributed sharing strategy.  

Results of security evaluation metrics are compared through curves shown in 

Figure 2.6 and 2.7 respectively. The x-axis specifies the percentage of anomalous attack 

which refers to the ratio of the number of anomalous attack to the total number of 

measurements collected at the sensors. The y-axis specifies the security evaluation 

metric such as the accuracy of detection and false alarm rate. 
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Figure 2.6: General comparison of detection rate 

As seen in Figure 2.6, most of the studied algorithms successfully detect the 

anomalous attacks with a very close performance ratio up to 25% of increase in the 

anomalous data. Some of them, such as the fuzzy rule base and the self-organizing map 

rapidly deteriorate as the percentage of anomalous increase, while the superiority of the 

support vector machine intrusion detection technique, Fuzzy C-Mean clustering and 

Multi-agent based Reinforcement learning IDS, respectively, can be clearly observed 

for detection rate. They show better performance of detecting intrusions at 60% as 

shown in Figure 2.6.  
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Figure 2.7: General comparison of false alarm rate 

 

Regarding the false alarm rate, the comparison of the curves of the anomaly 

percentages is shown in Figure 2.7. Intrusion detection methods based on SVM 

classification, FCM clustering, and Multi agent refined reinforcement learning 

techniques have low false alarm rates as the percentage of anomaly increases. 

2.4 Intelligent Intrusion Detection and Prevention System (IIDPS) 

Intelligent techniques play a role in automating the intrusion detection process 

and to reduce human intervention. The process of intelligent detection applies advanced 

communication protocols based on artificial intelligence (AI) techniques such as fuzzy 

set, neural networks, and evolutionary computing, that operate as classifiers for anomaly 

detection to ensure detection accuracy along with stability (Idris et al., 2005). Denning 

(1987) used a rule-based expert system for Intrusion Detection Systems (IDSs) to 

improve detection performances. Although the rules may cover known patterns, they are 

unable to adapt in cases where attack patterns modify (e.g. attack polymorphs). In order 
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to provide high accuracy detection in anomaly detection, computational intelligence 

(CI) can serve in the construction of a model detection system by automatically iterating 

training and testing data. From our point of view, intelligent intrusion detection and 

prevention architecture for wireless networks contains four modules: (a) Matching 

stage, (b) Feature selection (c) Normalization, and (d) Decision (Figure 2.8). 
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Figure 2.8: Intelligent Intrusion Detection and Prevention architecture for networks 

In the general model of IIDPS, signature matching engine in terms of SNORT 

audit records from traffic data. The gain of matching the process includes two kinds of 

attacks: the single connection attack or known attacks detected at packet level and the 

unknown attacks. The process of detecting unknown attacks include training and testing 

algorithm and a corresponding model gets built through the feature selection module. 

The training and testing data are sampled first from the attack dataset. In addition, the 

feature selection method proposed is adopted to filter some unimportant and noise 

features to decrease the data dimension. The data are normalized through the 

normalization step, which are used to train the computational intelligence engine to 

make a model. The normalization module generates the signature of the matching 

module for inspection. In addition, the decision module is judged against the observed 
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traffic. If the deviation found exceeds (or is below in the case of abnormality models) a 

given alarm threshold, the detection stage is triggered.  

IIDPSs are assessed on their capability to protect securely in large scale 

networks; nevertheless, utilization in a variety of networks and the complexity of the 

architecture (e.g. mobility, no central points, constrained bandwidth of wireless links, 

and limited resources) pose countless difficulties  (Huang et al., 2013) .Some of the 

challenges remaining include questions as to how to reinforce the intrusion detections 

and response elements to deal with intrusion in parallel, in addition to the coordination 

and management of multiple nodes. Trust systems, like wireless network filtering 

facilities, focus on low-delay processing time, and high throughput performance. 

Many of the preceding technical studies related to Intelligent Intrusion Detection 

and Prevention (IIDPS) methods were summarized and refined here (Abraham et al., 

2007; Alan Bivens, 2002; 2011; Devarakonda et al., 2012; Ma et al., 2007; Renjit et al., 

2011; Sevil Sen, 2011; Toosi et al., 2007) to bring a new perspective of IIDPS 

classification and the development for Cooperative-based IIDPS. Figure 2.9 lays out a 

tree plan classification of the anomaly-based IDPS detection techniques, and Table 2.11 

outlines the advantages and disadvantages of detection in addition to the subtypes of 

detection-based IDPS. In the branch of IIDPS, the detection and prevention architecture 

uses Traditional Artificial Intelligence (TAI), which collects and analyses the 

information from single monitored classifiers (fuzzy sets, neural networks, genetic 

algorithms and artificial immune systems) in light of the availability of prior knowledge 

data. computational intelligence (CI) collects data from multiple monitored classifiers 

(neuro fuzzy, genetic fuzzy, Reinforcement Learning, Hidden Markov Model and Naïve 

Bayes) to detect entire, distributed and cooperative attacks, or “hybrids” of both, in 

terms of soft computing and machine learning approaches. Finally, Multi agent-based 



50 
 

CI (MCI) techniques are based on the establishment of a Multi agent model into soft 

computing and machine learning that allows the patterns analysed to be categorized. 
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Figure 2.9: Tree plan classification of the anomaly-based IIDPS detection techniques 

Table 2.11: Fundamentals of the anomaly-based IIDPS techniques 

Main Types  α. Pros ; β. Cons Type of Detection  Subtypes of detection  

TAI: 

Availability of 

prior 

knowledge 

data 

α. Robustness, flexibility and 

scalability 

β. Difficult setting for parameters 

and metric; time-consuming 

availability for high-quality data 

 Fuzzy Set: 

Approximation and 

uncertainty 

Artificial neural 

network: 

Human brain 

foundations 

Evolutionary 

computing: 

Biology inspired. 

Fuzzy Rule Base, Fuzzy 

C-Mean 

Multi-Layer Perceptron, 

Self-Organizing Map, 

Support Vector 

Machine 

Genetic algorithm: 

Intrinsically parallel 

Artificial Immune 

system: 

Ability to converge very 

quickly 

CI: 

Categorization 

of patterns 

α. Flexibility and adaptability 

β. High resource and time 

consuming in training and testing 

stage 

Soft computing: 

real-life situations 

Machine learning: 

A learner is to 

generalize from its 

experience 

Neuro fuzzy, Genetic 

fuzzy: Universal 

approximate 

Hidden Markov Model: 

Autoregressive 

Bayes Naïve: 

Probabilistic 

relationships among 

variables 

Markov Decision 

Process: Stochastic 

Markov theory 

Reinforcement 

Learning: Dynamic 

approach applied to 

stochastic problem 

http://en.wikipedia.org/wiki/Universal_approximator
http://en.wikipedia.org/wiki/Universal_approximator
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Game Theory: 

Modelling wide variety 

of situation  

MCI: 

Cooperative 

pattern 

recognition  

α. Robustness. Flexibility, 

adaptability and scalability. 

MAS based 

computational 

intelligence:  

Categorization of 

patterns 

and Cooperative 

attempts  

Clustering and outlier 

detection(Cooperative 

classification) 

 

Table 2.11 provides the fundamentals for TAI, CI and MCI-based anomaly-

IIDPS techniques, as well as the principal subtypes of detection. What is obvious from 

Table 2.11 is that the recent studies related to MCI-based IDPS concentrate on 

robustness, flexibility, adaptability and low resource consumption. For example, the 

highly accurate detection technique is one of the most favourable research areas 

regardless of other consequent challenges such as false alarm rate and response time. 

This chapter expands on the MCI based on collaborative techniques to help the 

Collaborative Intrusion Detection and Prevention (CIDPS) manager assimilate and 

synthesize false alarm rates into a well-managed set that applies to the whole 

networking environment under fully distributed collaborative management control.  

2.5 Discussion 

This thesis introduced three classes of IIDPS detection methodologies, 

approaches and technologies. Each technique has its advantages and limitations. The 

TAI-based IDPS is straightforward to implement and very effective in inspecting known 

attacks. Still, the approach hardly identifies unknown attacks, attacks concealed by 

evasion techniques and several variants of known attacks. A number of fuzzy rule-based 

approaches to detect unknown attacks were also proposed. Such techniques may 

unnecessarily result in issues with excessive computing time consumption and rapid 

updating of the knowledge base, hindering attack effectiveness.  
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A more accurate and simplified approach is still required to increase efficiency 

and effectiveness. Computational intelligence-based approaches such as Reinforcement 

Learning (RL) algorithm have the merit of possessing no prior knowledge of attacks. 

They do not work well in real-time applications due to the high computational 

complexity. A multi agent-based CI (MCI) not only mitigates high computational 

complexity such as time consumption and updating knowledge, but also enhances 

detection performance.  

Table 2.12 tabulates the most recent multi-agent-based CI works applicable to 

IDPS. These are classified in terms of management structure, advantages and 

disadvantages. MCI-based IDPSs and the three concepts of management, namely 

FRLM, KM, and MA may be of assistance in designing an efficient system that satisfies 

Collaborative-IIDPS (Co-IIDPS) performance. 

Table 2.12: Proposed Co-IIDPSs in terms of MCI methods classified according to our taxonomy 

Reference Technology 

layout 

Audit source 

location 

Management 

structure 

Advantage Disadvantage 

Zhang et al. 

(2001) 

ad-hoc 

networks 

Public Collaborative 

(MAS-CI)  

 

Overcoming 

detection 

complexity by using 

distrusted agents 

N/A 

Mohajerani et 

al. (2003) 

NIDS Private Individual 

(single) 

N/A The MLP neural 

network does 

not provide 

feedback. 

Dagupta et al. 

(2005) 

NIDS Public Collaborative 

(MAS-CI)  

The advantage of 

having an individual 

agent for each 

functional module is 

to make future 

modifications easy 

N/A 

Agah et al. 

(2007) 

CIDPS  Private Collaborative 

(MAS-CI)  

Using repeated 

decision policy 

significantly 

improve the chance 

of anomalous 

recognition  

N/A 

Mosqueira-

Rey et al. 

(2007) 

NIDS Private Individual 

(single) 

N/A N/A 

Ramachandran 

et al. (2008) 

ad-hoc  Public/Private Individual 

(single) 

N/A N/A 

Herrero et al. 

(2009) 

NIDS Private Individual 

(single) 

1. Scalability by 

adding new agents 

dynamically 

The absence of 

a mechanism 

that 
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anytime, 2.Failure 

tolerance by backup 

methods when 

working instances 

fail (proactive 

behaviour) 

automatically 

responds, with 

the final 

decision made 

by the 

administrator. 

Stafrace et al. 

(2010) 

Wireless 

Ad-hoc  

Public Individual 

(single) 

The collaborative 

work of the tactical 

squad of agents has 

led to concurrent 

detections of 

multiple threat  

N/A 

Renjit et al. 

(2011) 

 

Wireless 

sensor  

N/A Collaborative 

(MAS-CI)  

N/A N/A 

Leon et al. 

(2011) 

 

Cognitive 

Radio  

Private Collaborative 

(MAS-CI)  

Flexibility N/A 

Vakili et al. 

(2011) 

CIDS Private Collaborative 

(MAS-CI)  

Reliability as an 

impact factor hence 

learning mechanism 

N/A 

Fisch et al. 

(2012) 

CIDS Public Individual Broadcasting 

mechanism 

communication 

improved 

cooperative 

detection 

N/A 

Devarakonda 

et al. (2012) 

HIDS Public Collaborative N/A NA 

Patel et al. 

(2012) 

CIDPS Public Collaborative N/A  N/A 

 

The features employed are very similar to each other. The most important 

varying features are management capabilities in the system structure. The collaborative 

management using the multi agent system-based computational intelligence portrays the 

ability to mitigate detection problems. In other words, the individual or single 

capabilities in terms of self-cooperative techniques (without using CI methods) consider 

all the features addressed in their systems. These inefficiencies are evidence of the lack 

of cooperative knowledge regarding suitable CI methods to identify intrusion prior to 

initiating any development. 

All new solutions for developing multi agent-based CI methods consider the 

requirements (detection and false alarm rate) as being able to overcome Co-IIDPS 

complexities and meet the real operational goals of networks. As illustrated in Table 

2.13 and as per our analysis, the proposed MCI-based Co-IIDPS mentioned in the 
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references meet two well-known requirements, and it is thus realistic to place them in 

actual network environments. The heterogeneous essence of network necessitates using 

MCI and individual techniques for Co-IIDPS to meet the stated requirements.  

Table 2.13: The developed Co-IIDPSs (MCI) which met our proposed performance requirements 

References requirements True Positive False Positive False Negative 

Zhang et al. (2001) NMP MR MR 

Mohajerani et al. (2003) MR MR MR 

Dasgupta et al. (2005) MR MR MR 

Agah et al. (2007) MR N/A N/A 

Mosqueria-Rey et al. (2007) N/A N/A N/A 

Ramachandran et al. (2008) MR MR MR 

Herrero et al. (2009) N/A N/A N/A 

Stafrace et al. (2010) MR MR MR 

Renjit et al. (2011) MR MR MR 

Leon et al. (2011) P NMP NMP 

Vakili et al. (2011) P NMP NMP 

Fisch et al. (2012) P NMP NMP 

Devarakonda et al. (2012) MR NMP NMP 

Xu et al. (2010) MR MR MR 

P = Partially             NMP = not meet performance         MR = meet requirement or performance               

N/A = Not applicable 
 

Incorporating a multi- agent system (MAS) to computational intelligence (MCI) 

in terms of Co-IIDPS allows monitoring intrusion activity. Fuzzy system (FS) with 

reinforcement learning (RL) in terms of fuzzy reinforcement learning manager (FRLM) 

has merged into Co-IIDPS, resulting in high true positive and low false alarm rates. The 

policy aspect of MAS-based FRLM applies a negotiation method to improve the 

detection accuracy. The developed Co-IIDPS around MAS-based FRLM satisfies the 

detection performance.  

2.6 Chapter Summary 

In this chapter, firstly, a comprehensive taxonomy along with state-of-the-art 

intrusion detection and prevention systems was presented. The scope was to capture 

researchers’ attention into attempting to discover potential solutions to augment IDPS in 

order to minimize the impact of attacks on networks.  
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Secondly, the concept of intelligent intrusion detection and prevention system 

has been analysed in detail, showing the importance of this paradigm to enhance IDPS 

performance and reduce operational costs. In addition, within this broad concept, the 

main IIDPS were assessed and categorized into three trends: traditional artificial 

intelligence, computational intelligence and multi- agent-based computational 

intelligence.  

Thirdly, this chapter shows the ability of multi agent based CI methods in terms 

of collaborative IIDPS. The conclusion is that further efforts are needed to find more 

effective solutions, especially those based on game theoretic-computational intelligence 

methods in terms of adaptive optimization techniques with cooperative approaches. 
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Chapter 3 : ADAPTIVE OPTIMIZATION TECHNIQUES 

The first part of this chapter summarizes the principles of Fuzzy Logic, which is 

the theoretical foundation on which the techniques proposed in this thesis are based. The 

analysis focuses on FLCs which can effectively take a linguistic control technique that 

relies on expert knowledge and change it into an automatic control technique. The 

second part of the chapter is devoted to several techniques that are especially suitable 

for optimizing FLCs. Special attention is drawn to RL, which, in this thesis, is the 

method selected amongst the previously described techniques. The third part of the 

chapter encapsulates the principles of the Game Theory, which is the mathematical 

basis on which techniques proposed in this thesis are based. Special consideration is 

given to fuzzy reinforcement learning that adopts the Game Theory. In addition, a 

collaborative IIDPS based on fuzzy Q-learning is proposed.  

3.1  Overview 

In recent years, intrusion detection and prevention systems have become very 

important. To cope with security attacks on infrastructure over the last decade, security 

organizations have paid special attention to cost savings, with the concept of IDPS 

being of relevant interest (Pathan, 2014). From this perspective, self-optimization 

typically comprises network parameter tuning. Nonetheless, the set of network 

parameters that can be optimized in a network is extremely large, as there are countless 

IDPS algorithms running on it and their parameters need to be optimized. In addition, 

even if the optimization process is only done on a few relevant parameters, the 

connection among parameter settings and network performance is not clear-cut. For this 

reason, IDPS parameter optimization should be performed intelligently. As a result, the 

IDPS would be able to amend its parameters in terms of intelligence-based IDPS 

(IIDPS) in order to achieve optimum performance with no human work. However, 



57 
 

countless parameters can be changed remotely in the IIDPS system. From the operator’s 

standpoint, adjusting IIDPS parameters that do not require time scheduling is the 

preferred alternative. 

3.2  Fuzzy Logic 

This section presents the theoretical basis of the computational intelligence 

methodology known as Fuzzy Logic. This discipline was initiated by Lotfi A. Zadeh 

(1965) , professor at the University of California, Berkeley. 

Fuzzy Logic emerged as an important tool for system control and complex 

industrial processes, as well as for home and entertainment electronics, diagnostic 

systems and other expert systems. Currently, a multitude of applications based on Fuzzy 

Logic are applied in many different areas, for instance control systems, robotics, 

medicine, pattern recognition, computer vision, information and knowledge 

management systems, earthquake prediction, scheduling optimization, etc. As an 

alternative to Classical Logic, Fuzzy Logic introduces a degree of imprecision when 

items are evaluated (Precup et al., 2011). In real life, there is an abundance of 

knowledge that is ambiguous and imprecise, and human reasoning usually handles this 

kind of information. In this sense, Fuzzy Logic was designed specifically to imitate 

human behaviour. Additional benefits of Fuzzy Logic include simplicity and flexibility. 

In particular, this methodology can deal with problems with imprecise and incomplete 

data, and it can easily model non-linear functions of arbitrary complexity. 

On the one hand, classical sets arise from the need for humans to classify objects 

and concepts. Such sets can be described as well-defined sets of elements or a 

membership function μ that can take a value of 0 or 1 from a universe of discourse for 

all elements that can belong (or not) to the concerned set. Formally, let X be the 

universe of discourse and x the elements contained in X. In addition, suppose A is a set 
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that contains some elements in the universe of discourse X. Then, the element x belongs 

or does not belong to set A, as characterized by the following function: 

𝜇
𝐴(𝑥)={

1   𝑖𝑓  𝑥  ∈ 𝐴
0  𝑖𝑓  𝑥  ∉ 𝐴

 
                 (3.1)

 where 𝜇𝐴(𝑥) is the membership function corresponding to set A. Conversely, the 

necessity to work with fuzzy sets comes from the existence of concepts with no clear 

boundaries in their definition. Classical set theories categorize elements into crisp sets 

with well-defined boundaries between values. By contrast, fuzzy set theories classify 

elements into continuous sets based on an underlying theory that depends on the degree 

of membership. This means that membership functions are given a value ranging from 0 

to 1 with undefined, gradual transitions between values. Formally, suppose B is a fuzzy 

set that contains elements in the universe of discourse X. Then such fuzzy set is 

characterized by the following membership mapping function: 

μB(x):X→[0,1]                                                              (3.2) 

For all 𝑥 ∈ 𝑋, 𝜇𝐵(𝑥) indicates how strongly Element X is connected to Fuzzy Set 

B. Although the membership function for a particular fuzzy set can be of any shape or 

type, an appropriate membership function is typically determined by experts in the field. 

In this sense, some membership functions, e.g. triangular, trapezoidal and Gaussian, are 

of special interest for designers. 

As for crisp sets in Classical Logic, relations and operators can also be defined 

for fuzzy sets in Fuzzy Logic. In particular, these relations are the equality, 

containment, complement, intersection and union of fuzzy sets. Among these relations, 

the intersection of fuzzy sets plays a key role in designing rules for fuzzy controllers, as 

described in the next section. The intersection of sets A and B defines elements that 

occur in both sets. Operators that employ intersections are called t-norms. T-norms 
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results in sets that encompass all elements found in either Set A or Set B and also 

consider the degree of membership related to the t-norm. The most popular t-norms are 

defined as follows: 

Min-operator.  

𝜇𝐴∩𝐵 (𝑥) = 𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}, ∀𝑥 ∈ 𝑋.     (3.3) 

Product operator.  

𝜇𝐴∩𝐵 (𝑥) =  𝜇𝐴(𝑥)𝜇𝐵(𝑥), ∀𝑥 ∈ 𝑋.      (3.4) 

As previously stated, Fuzzy Logic imitates human behaviour. One way of doing 

this is through using the notion of linguistic variables. A linguistic variable has a value 

of a word or sentence, allowing for computation with words rather than numbers. Such 

linguistic variable can be a word, linguistic label or an adjective. For example, let us 

consider the height of people in a country. In this case, the variable ‘height’ is a 

linguistic variable. A possible value for the numeric variable ‘height’ can be tall or 

short, meaning that a fuzzy set is associated with a linguistic term or value. In addition, 

certain adverbs can also be combined with adjectives to modify fuzzy values, e.g. very 

tall would refer to an individual who is noticeably taller than his peers. In other words, 

linguistic variables can serve to create numerical or logical statements from natural 

languages, facilitating handling human reasoning at the computational level. In this 

thesis, an attack data source can be defined as a 5-tuple ADS={Pt,Dp,Tr,Bs,Co}, or 

inputs of proposed algorithms according to the vulnerability scanning information, 

where Pt denotes the type of protocol (TCP=1, UDP=2); Dp is the destination port; Tr is 

the variance of time difference between two connections during a specific time window; 

Bs is the length of the packet from source to destination; and Co denotes the number of 

connections to the same host as the current connection in the past two seconds.  
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An important feature of Fuzzy Logic is that it provides a framework for handling 

rules (for control or decision making) that have earlier been expressed in an imprecise 

form. In this context, linguistic variables are embedded in an FLC’s rules, facilitating 

the representation of human control expertise. More specifically, FLCs are composed of 

several IF-THEN rules that are easy to create. The succeeding section presents a short 

overview of FLCs, focusing on the components of such controllers and some types of 

fuzzy controllers for detecting features of distributed denial-of-service attacks. 

3.2.1 Fuzzy Logic Controller Design 

FLC design is one of the most important application areas of Fuzzy Logic 

(Engelbrecht, 2007). The main benefit of FLCs is that controlling a system (also called a 

plant) can be done using sentences rather than equations. This means that a control 

strategy can be described in terms of linguistic rules, in a more similar way to human 

language, instead of using for instance, differential equations. Since their start in 1975, 

many FLCs have been created for consumer products such as air conditioners, laundry 

appliances, audio visual equipment and industrial applications including hydro-electric 

generators, subways, and robotic controls.  Over time, FLCs have proven they can 

provide better results than conventional control algorithms. FLCs are especially useful 

for complex processes that are beyond the scope of traditional quantitative methods, or 

when information is unreliable (Lee, 1990). 

Designing an FLC includes defining the fuzzification and defuzzification 

processes, developing fuzzy control rules and generating a database. Figure 3.1 

illustrates a generic FLC comprising four fundamental elements.  The first element is 

the fuzzifier, which takes input data and changes it into linguistic variables that can also 

form labels for the fuzzy sets. Secondly, the knowledge base is a database and collection 

of linguistic statements based on expert knowledge, which is usually expressed in the 



61 
 

form of IF-THEN rules. Thirdly, the inference engine performs inference to compute a 

fuzzy output. Finally, the defuzzifier, which is the opposite of the fuzzifier, provides a 

non-fuzzy control action from an inferred fuzzy control action. The remaining 

paragraphs of this section describe each of these blocks in greater detail. 

Knowledge Base

Inference 
Engine

Fuzzification 
Interface

Defuzzification 
Interface

Input

(Crisp)

output

(Crisp)

(Fuzzy) (Fuzzy)

 

Figure 3.1: Block diagram of an FLC 

 

Fuzzification process 

The fuzzification interface begins by measuring the input variables’ values. 

Next, a scale map is created that converts all these values into corresponding values 

from the universe of discourse. Afterwards, the non-fuzzy input values for the fuzzy 

representations are revealed.  

In practice, the membership functions that correspond to each fuzzy set as 

determined in the input space are used to complete these tasks. More specifically, the 

fuzzification process is the assignment of membership values (one for each fuzzy value 

of the linguistic variable) to a numerical input value. For instance, let us consider the 

linguistic variable “time response,” which can take fuzzy values of low, medium and 

high. Each input variable’s sharp (crisp) value needs to first be fuzzified into linguistic 
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values prior to the fuzzy decision processes with the rule base. Formally, X denotes the 

universe of discourse for the three fuzzy sets. Hence, the fuzzification process receives 

the element  𝑎 ∈ 𝑋, and produces the membership degrees 𝜇𝑙𝑜𝑤(𝑎), 𝜇𝑙𝑜𝑤(𝑎) 𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑎) 

and 𝜇ℎ𝑖𝑔ℎ(𝑎). The characteristic function of a fuzzy set is assigned values between 0 and 

1, which represent the degree of membership of an element in a given set. Table 3.1 

displays the linguistic terms and their fuzzy numbers used for evaluating the attack data 

source for time response, buffer size, and count. Figure 3.2 indicates the membership 

functions for time response. 

Table 3.1: Fuzzy rating for the occurrence of attack traffic 

Linguistic 

variables 

Fuzzy number 

Tr Bs Co 

Low (L) (-inf,-inf,0,40) (-inf,0,2,3) (-

inf,0,1,1.5) 

Medium (M) (20,40,80,100) (2,3,5,6) (1,1.5,2,2.5) 

High (H) (80,120,inf,inf) (5,6,8,inf) (2,2.5,3,inf) 

 

Figure 3.2: The membership functions of linguistic variables for attack data source Tr 

Knowledge base 

The FLC knowledge base comprises a database and a set of rules. The database 

permits fuzzy rules to be characterized and the fuzzy data to be manipulated. The set of 

rules provides the dynamic behaviour of the FLC through a set of linguistic rules 

derived from expert knowledge. 
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To begin with, the database is subjective because it is created from experience 

and judgments. The following aspects are related to database construction in an FLC: 

 Discretization. Also referred to as quantization, its function is to convert a 

continuous universe into a discrete universe that contains a definite number of 

segments or quantization levels. In this case, membership values are assigned to 

generic elements found in the new discrete universe to identify a fuzzy set. In 

addition, there is a trade-off when selecting the number of quantization levels. 

On the one hand, it should be sufficiently large to provide appropriate 

granularity but on the other hand, it should be sufficiently small to save memory. 

In this sense, the corresponding mapping that transforms measured variables into 

values in the discretized universe can be linear, non-linear or both. 

 

Fuzzification 
Process

Time response 
(Tr)

Non-Fuzzy Input

(Tr): 30 ms

Low (-inf, -inf, 0,40)

Med (20,40,80,100)

High (80,120,inf,inf)

µ(Tr)

 

Figure 3.3: Example of fuzzification process 

 Normalization. A universe of discourse is normalized when a discretization 

process is used to map a finite number of segments to their corresponding 

segments in the normalized universe. The mapping can be linear, non-linear or 

both. 

 Partition of input and output spaces. A fuzzy partition determines how many 

fuzzy sets need to be defined and how granular the FLC control will be. This 
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depends on the characteristics of the system being controlled and the quality 

required for the control process. 

 Completeness. The concept of completeness is related to the fact that the FLC 

generates an appropriate action for every state in the system. Typically, 

completeness regards design experience and engineering knowledge. 

 Membership functions. A membership function determines the grade of the 

membership assigned to each fuzzy set. Decisions about these assignments are 

established using subjective criteria. For example, membership functions for 

input variables that are sensitive to noise are typically large enough to decrease 

that sensitivity. Membership functions are customarily expressed as bell, 

triangular or trapezoid-shaped functions.  

Secondly, the rule base is built using IF-THEN syntax to create control 

strategies as shown in Eq. (3.5): 

IF (a set of conditions are satisfied) THEN (a set of consequences can be inferred),                   (3.5) 

where the antecedent forms the first part of the conditional statement and the 

consequent if the second part. An antecedent is further defined as a condition of a 

domain. A consequent is a control action found in the system. The antecedents and 

consequents for a rule can contain more than one linguistic variable.  

Defining how an FLC will be characterized depends on selecting the state 

variable form the antecedent and control variables found in the consequent. An instance 

of a rule is “if pressure is very high, then open the valve.” One of the benefits of using 

these rules is that they characterize human behaviour and can be used to analyse 

decisions since they supply a framework. In this sense, according to several researchers 

domain knowledge can easily be communicated using fuzzy control rules. To formulate 

these fuzzy rules, operators and experts in this field were queried using a carefully 
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organized questionnaire.  This explains the fact that FLCs are implemented using fuzzy 

IF-THEN rules. 

Inference engine 

Once the input variable values have been converted to fuzzy values through the 

fuzzification process, the inference engine identifies which rules are triggered and 

calculates the fuzzy values of the output variables. In other words, this process connects 

the rule base to the fuzzified inputs to develop the fuzzified output for a rule. To do this, 

each output set must be assigned a degree of membership that is part of the consequents 

in the fuzzy rules. This is calculated using the degree of membership found in the input 

sets in addition to the affiliation between input sets. These connections are established 

using a logic operator, which takes sets from the antecedent and combines them. Then, 

the output fuzzy sets from the consequent are added to create one general membership 

function that will act as the output for the rule. 

To explain the inference process, assume that A and B are two input fuzzy sets 

in the universe of discourse. The X2 universe of discourse includes a fuzzy set with X1 

and C. Let us also consider that the following rule is defined: 

𝐼𝐹 (𝐴 𝑖𝑠 𝑎 𝑎𝑛𝑑 𝐵 𝑖𝑠 𝑏) 𝑇𝐻𝐸𝑁 (𝐶 𝑖𝑠 𝑐)      (3.6) 

The 𝜇𝐴(𝑎) and  𝜇𝐵(𝑏) values are available to the inference engine because a 

fuzzification process was used in their development. Thus, the inference process starts 

by taking a rule base and calculating the degree of truth for each rule. The degree of 

truth specifies the triggering strength of a particular rule. It is calculated by combining 

the antecedent sets using specific operators, among which the min-operator and product 

operator for the intersection relation as previously stated. In this example, assuming the 

min-operator, the degree of truth _k for rule k is calculated as: 
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𝛼𝑘 = 𝑚𝑖𝑛{𝜇𝐴(𝑎), 𝜇𝐵(𝑏)}.       (3.7) 

The following step in the inference process is to determine a single fuzzy value 

for each output 𝑐𝑖 ∈ 𝐶 that has been activated. In general, the final fuzzy value 

corresponding to the output, 𝑐𝑖 , denoted as  𝛽𝑖, is computed using the max-operator as 

follows: 

𝛽𝑖 = 𝑚𝑎𝑥∀𝑘{𝛼𝑘𝑖
}        (3.8) 

where 𝛼𝑘𝑖
 is the degree of truth of rule k, which activated output 𝑐𝑖. 

The final result of the inference engine is a set of fuzzified output values. In this 

case, the rules that are not activated have a degree of truth equal to zero. In addition, 

rules can include a weighting factor in the range [0, 1] to represent the degree of 

confidence in that rule. Such factors derived from expert knowledge are applied when 

the fuzzy rules are aggregated to produce a non-fuzzy value in the defuzzification 

process. 

Defuzzification process 

This method establishes a relationship between fuzzy control action spaces, the 

outputs from the universe of discourse, and crisp, non-fuzzy control action spaces. In 

the consequent, a set’s degree of membership is represented by a rule’s degree of truth.  

Given the degree of truth from a set of activated fuzzy rules, the defuzzification process 

creates non-function scalar values from the output of fuzzy rules. To calculate such 

scalar values, two different approaches can be used. Mamdani et al. (1975) developed a 

fuzzy rule that was the foundation for the first approach, where the rules lead to a 

consequent that is another fuzzy variable [see (3.6) as an example]. The second 

approach is known as the Takagi-Sugeno approach and it uses rules with consequents 

that are polynomial functions of the inputs (Takagi et al., 1985). 
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The Mamdani approach: 
  

In this method, there are several ways to find a scalar value that represents what 

actions will be taken.  

• Maximum-Minimum Approach: In this approach, rules with the highest degree of 

truth are selected. Then the membership functions of the activated consequents are 

determined. Finally, the centroid for the area covered by the membership function is 

found. The FLC’s output is the centroid’s horizontal coordinate. 

• Averaging Approach:  The averaging approach uses the average of the degrees of 

truth for all activated rules. After the average is calculated, the membership functions 

are limited to this average. Next, the horizontal coordinate of the centroid for the area is 

determined and used as the FLC output.  

• Root-sum-square method. The membership functions are rated such that the apex for 

each function is that same as the maximum and the peak of each function is equal to the 

maximum degree of truth value associated with that particular function. As in the 

averaging approach, the horizontal coordinate of the centroid for the area is calculated 

to form the FLC output.  

• Clipped Centre of Gravity Method: In this method, the membership functions are 

shortened, or “clipped” so they are equal to the degree of truth for the corresponding 

rule. The next step is to find the horizontal coordinate of the centroid for the area, which 

will also be used as FLC output.  

Calculating the centroid for a trapezoidal area depends of whether the domain of 

the membership functions is continuous or discrete. A finite amount of values,  𝑛𝑥 , are 

found in a discrete domain and the following equation is used to calculate the 

defuzzification process results: 
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𝑜𝑢𝑡𝑝𝑢𝑡 =
∑  𝑥𝑖𝜇𝐶( 𝑥𝑖)

 𝑛𝑥
𝑖=1

∑ 𝜇𝐶( 𝑥𝑖)
 𝑛𝑥
𝑖=1

           (3.9) 

where 𝑥𝑖 is each possible value. In the case of a continuous domain, the output is 

given by the following expression: 

𝑜𝑢𝑡𝑝𝑢𝑡 =
∫ 𝑥𝜇(𝑥) 𝑑𝑥𝑥∈𝑋

∫ 𝜇(𝑥) 𝑑𝑥𝑥∈𝑋

            (3.10) 

where X is the universe of discourse. 

Takagi-Sugeno approach: 

A typical rule for this approach adheres to the following generic expression 

(Takagi et al., 1985): 

IF (𝑋1 is 𝐴1 and . . . and 𝑋𝑛 is 𝐴𝑛) THEN (Y =  𝑃0  +  𝑃1𝑋1+ . . . + 𝑃𝑛𝑋𝑛).      (3.11) 

where 𝑋1,..., 𝑋𝑛 represent the  fuzzy input variables and Ai indicates one of the fuzzy 

sets for the linguistic variable 𝑋i; Y denotes the output variable; and 𝑃0,..., 𝑃𝑛 are the 

parameters. Thus, the main difference between the Takagi-Sugeno and Mamdani 

approaches is that in one of them, the consequent of the rule is a mathematical function 

instead of a fuzzy consequent. Furthermore, the Takagi-Sugeno has been extended to 

non-linear functions. When a set is composed of a set of activated rules and associated 

degrees of truth, calculating the resulting crisp value as a weighted average of the rule 

outputs can be done with the following equation: 

𝑜𝑢𝑡𝑝𝑢𝑡 =
∑  𝛼𝑖.𝑓(𝑋1,….,𝑋n)𝑁

𝑖=1

∑  𝛼𝑖
𝑁
𝑖=1

           (3.12) 

where N represents the number of rules and 𝑓(𝑋1, … . , 𝑋n) signifies a few of the 

mathematical input functions.  
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The main benefits of the Takagi-Sugeno approach are that a more dynamic 

control is provided, FLCs are computationally more efficient and best suited for 

mathematical analysis, and it works well with optimization and adaptive techniques. For 

these reasons, the FLCs proposed in this thesis are based on the Takagi-Sugeno 

approach.  

To conclude this section, an illustrative example of FLC operation is provided. 

The FLC is based on the Takagi-Sugeno approach explained previously. Suppose that 

the controller is described by the following two rules: 

IF (x is A1 and y is B1) THEN (z is f1(x, y) = K1)           (3.13) 

IF (x is A2 and y is B2) THEN (z is f2(x, y) = K2)       (3.14) 

 

from which the following elements can be identified:  

• Variables x and y represent the universe of discourse X and Y, respectively. 

• Two fuzzy sets, A1 and A2, are defined for variable x. 

• Two fuzzy sets, B1 and B2, are defined for variable y. 

• There is one output variable, z. 

• Two constant functions, 𝑓1 and𝑓2 , are defined for variable z. 

The membership functions defined for each fuzzy set of input variables are shown 

in Figure 3.4. 

 Then, the basic FLC operation is as follows: 

 Step 1. The fuzzification process calculates the membership value for each 

fuzzy set by applying the associated membership function as shown in Figure 

3.5 (a). 

 Step 2. The inference engine computes the degree of truth for each fuzzy rule 

through the combination of fuzzified inputs using the min-operator, as shown in 

Figure 3.5 (b). The expressions used to calculate the degree of truth are: 
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𝛼1 = 𝑚𝑖𝑛{𝜇𝐴1
(𝑥0), 𝜇𝐵1

(𝑦0)}                       (3.15) 

& 

𝛼2 = 𝑚𝑖𝑛{𝜇𝐴2
(𝑥0), 𝜇𝐵2

(𝑦0)}                       (3.16) 

 

 Step 3. Finally, the defuzzification process calculates the non-fuzzy output as a 

weighted average of the rule constant outputs. The equation to produce the 

output value is: 

𝑜𝑢𝑡𝑝𝑢𝑡 =
𝛼1.𝑘1+𝛼2.𝑘2

𝛼1+𝛼2
                        (3.17) 
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Figure 3.4: Membership functions of the input fuzzy sets as example 
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Figure 3.5: Basic FLC operation example 

 
Optimization of the self-tuning process 

An important area in algorithmic development to cope with complex problems is 

the design of so-called intelligent algorithms. In this context, the development of models 

based on biological and natural intelligence has played a key role in the last years. 

Artificial neural networks, reinforcement learning, evolutionary computation, and 

swarm intelligence are all examples of such algorithms. More recently, several of these 

approaches have been combined with each other or with traditional methods to solve 

challenging and complex issues. Moreover, these algorithms are part of the field of 

machine learning employed in several different areas of research, including many social 
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sciences and computer science. In principle, any of these approaches should be capable 

of yielding results in a relatively short time. 

In this thesis, the proposed auto-tuning algorithms are based on FLC design. 

Since detecting DDoS attacks in networks can be considered complex due to the 

presence of a large multitude of diverse and interacting elements, defining the controller 

usually becomes a challenging task for IIDPS. In addition, as DDoS attacks in networks 

involve unpredictable and highly variable context factors, which can also vary on 

different time scales, the FLC needs to be reconfigured throughout adjusting the 

detector engine parameters in order to identify those traffic variations. 

Thus, to cope with the dynamic variations, the lack of knowledge or, simply, to 

refine the behaviour of the controller, different strategies have been analysed in this 

thesis, namely two reinforcement learning algorithms (i.e., Sarsa and Q-learning). The 

objective of these mathematical techniques is to optimize the behaviour of the FLC 

through a learning process. In this section, after providing a general overview of RL 

techniques, a more detailed overview is devoted to the Q-learning algorithm and how 

FLC optimizes with Q-learning, which is of particular interest in scenarios such as 

wireless networks in which learning from interaction becomes essential for detecting 

DDoS attacks. In this section, an optimized IIDPS is proposed, which utilizes the fuzzy 

Q-learning algorithm with weighted strategy sharing in terms of multi-agent system-

based IIDPS. The analysis particularly stresses on the cooperative game theory-based 

fuzzy Q-Learning algorithm, which is a promising approach in the context of 

cooperative IIDPS in this thesis.  

 

 

 



73 
 

3.3 Reinforcement Learning 

In a particular environment, an agent can be encouraged to engage in a specific 

action that will lead to maximizing a cumulative reward. This type of machine learning 

is known as RL. Its two defining characteristics are a trial and error search and actions 

with consequences that can affect immediate and future rewards (Sutton et al., 1998). 

RL differs from other learning approaches, such as supervised learning that is 

typically used in Neural Networks. In the latter case, learning is done by using 

previously collected examples or sets of training data, which are not appropriate for 

interactive learning. In addition, it is difficult to find a training data set that adequately 

represents all of the situations in which an agent would be required to act. Thus, in those 

instances, an agent that can learn from its own experience remains the only answer. 

Beyond the agent and environment, the following elements can be identified in RL:  

 Policy: the policy defines how the agent must act at a given time. In other 

words, it connects perceived states from the environment and actions to be taken 

as a result of those states. 

 Reward Function: the reward function describes the goal of an RL problem. 

More specifically, it is a map between each perceived state and a scalar or 

reward that sets out the value of being in that state. However, the objective of 

the agent is to maximize the total reward rather than the immediate reward. The 

reward function signifies immediate value. 

 Value Function: the value function specifies what is good over the long term. In 

particular, the value function is a map between each perceived state and the 

rewards that an agent can expect to accumulate over time beginning with a 

particular state. 
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 Model of the Environment (optional): the model of the environment illustrates 

how the environment behaves. RL is capable of learning by trial-and-error while 

at the same time learning a model of the environment. 

To illustrate these concepts, a basic scheme of an RL problem is shown in Figure 3.6 

where a general environment responds at time t + 1 to an action taken at time t. 

A key concept in RL is the trade-off between exploration and exploitation. 

When an agent is required to act, it will select an action that has yielded rewards in the 

past. However, in the absence of former results, the only way to discover what actions 

will be profitable is to try actions that have not been previously selected. In other words, 

the trade-off between exploration and exploitation rests on an agent’s ability to take 

advantage of current knowledge but remain open to other, untried actions. In this sense, 

the agent’s primary goal is to maximize the rewards achieved over the long term, that is, 

the sum of the rewards obtained from all situations or states that will be visited in the 

future: 

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ . = ∑ 𝛾𝑘𝑟𝑡+𝑘+1,∞
𝑘=0                             (3.20) 

where 𝑟 represents the consequence of an action that leads to a numerical reward for 

each time step and Y denotes the discount rate given to indicate how important a future 

reward will be. 

The Markov property 

As indicated previously, the function of a state influences how an agent will 

make decisions. In this context, important environmental properties and state signals, 

otherwise known as the Markov Property, can be found. The state signal includes all the 

information available to the agent. However, the agent does not expect to receive any 

information that would facilitate decision making or even all the information regarding 

the environment.  
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Figure 3.6: The basic elements of an RL problem 

An appropriate state signal is one that summarizes past information compactly, 

but also maintains the relevant information parts. The Markov property is fulfilled when 

a state signal retains all relevant information. In this situation, at time step t+1, the 

response of the environment is only dependent on time t. As such, the environmental 

dynamics can be defined as:  

𝑃𝑟{𝑠𝑡+1 = 𝑠′, 𝑟𝑡+1 = 𝑟| 𝑠𝑡, 𝑎𝑡},                      (3.21) 

where 𝑃𝑟{. } denotes the probability of its argument; 𝑠 is the state of the environment; 𝑠′ 

is any state in the system; 𝑟 is the received reward; and 𝑎 denotes the action taken by 

the agent. When the environment contains the Markov property, it is possible to predict 

the next state and rewards based on current states and actions.  

A Markov decision process (MDP) is an RL task with the Markov property. A 

finite MDP has finite states and actions and is further defined by a set of actions and 

states and the dynamics of the environment. The latter is specified by transition 

prospects and how valuable the next reward is expected to be. The transition probability 
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for each probable next state (s’) for any current state (s) and any action (a) can be 

calculated using the equation below:  

𝑃𝑠𝑠′
𝑎 = 𝑃𝑟{𝑠𝑡+1 = 𝑠′| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}.          (3.33) 

Likewise, the expected value of the next rewards for any current action a, state s, 

and next state 𝑠′, is calculated as follows: 

𝑅𝑠𝑠′
𝑎 = 𝐸{𝑟𝑡+1| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′}         (3.34) 

where 𝐸{·} is the expected value of its argument. The most important factors of a 

dynamic finite MDP are its transition probabilities and expected value of the next 

reward.  

Optimal value functions 

Most RL algorithms search for value functions that assess the benefits of a given 

state available to an agent. As previously stated, the expected accumulated reward 

measures the value of the state 𝑠.  In RL, a state-value function, called 𝑉 (𝑠), is used to 

identify the benefits of obtaining state 𝑠. The value is subject to what states the agent 

has visited, which in turn depends on the what policy has been followed. A policy 

function 𝜋 is a map that shows the connection between states and actions used to govern 

how the agents will behave. In contrast, 𝜋(𝑠, 𝑎) indicates the likelihood of engaging in 

action 𝑎 from state 𝑠. In this case, the value of state 𝑠 following policy 𝜋 is defined as: 

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠}  

= 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠},                            (3.24) 

where 𝐸𝜋{·} means the expected value under policy 𝜋.  
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Similarly, in RL, the action-value function 𝑄(𝑠, 𝑎) qualifies the value of taking 

an action 𝑎 when starting from state 𝑠. If the agent follows policy 𝜋, then it is formally 

expressed as: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} 

= 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠,∞
𝑘=0 𝑎𝑡 = 𝑎}.               (3.25) 

Experience can be used to estimate functions 𝑉𝜋 and 𝑄𝜋. A fundamental 

property of these functions is that they meet the requirements of certain recursive 

relationships. In other words, the following condition holds between the value of 𝑠 and 

possible successor states for any policy 𝜋 or any state 𝑠: 

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡| 𝑠𝑡 = 𝑠}  

= 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠∞
𝑘=0 }  

= ∑ 𝜋𝑎 (𝑠, 𝑎) ∑ 𝑃𝑠𝑠′
𝑎

𝑠′ [𝑅𝑠𝑠′
𝑎 + 𝛾𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′∞

𝑘=0 }]  

= ∑ 𝜋𝑎 (𝑠, 𝑎) ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′ ,     (3.26) 

Equation 3.26 is also called the Bellman equation for 𝑉𝜋. Moreover, the solution 

to this equation is the value function 𝑉𝜋 .  

Finding a good policy that will result in long-term rewards is the same as 

solving an RL problem. An optimal policy always has an expected value greater than 

(or equal to) other policies for all states. Likewise, the best policies have equal state and 

action value functions called 𝑉∗and 𝑄∗ respectively. 𝑉∗is expressed as: 

𝑉∗(𝑠) = 𝑚𝑎𝑥𝜋𝑉𝜋(𝑠),            (3.27) 

for all 𝑠 ∈ 𝑆 when S represents the set of states. Similarly, 𝑄∗ is described as: 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋(𝑠, 𝑎),           (3.28) 
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for every s ϵ S and a ϵA(s), where 𝐴(𝑠) indicates the set of possible actions in state 𝑠. 

Function Q∗ delivers the return expected as a result of an action in state s before it 

follows an optimal policy. This process can be stated in terms of V∗ as demonstrated 

below: 

Q∗(s, a) = E{rt+1 + γV∗(st+1)|st = s, at = a}.        (3.29) 

The Bellman equation for V∗ can be rewritten without making reference to any 

specific policy. If this happens, it is known as a Bellman optimality equation. Bellman 

optimality equations state that when the best action is taken from a state, its expected 

return is the same as the value of the state under an optimal policy, as shown below:  

𝑉∗(𝑠) = 𝑚𝑎𝑥𝑎𝜖𝐴(𝑠)𝑄𝜋∗
(𝑠, 𝑎)  

= 𝑚𝑎𝑥𝑎𝐸𝜋∗{𝑅𝑡|st = s, at = a}  

= 𝑚𝑎𝑥𝑎𝐸 {𝑟𝑡+1 + γV∗(st+1)|st = s, at = a}  

= 𝑚𝑎𝑥𝑎 ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′ .           (3.30) 

The Bellman optimality equation for 𝑄∗ is: 

Q∗(s, a) = E{rt+1 + γ𝑚𝑎𝑥𝑎′γ Q∗(st+1, 𝑎′)|st = s, at = a} 

= ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑚𝑎𝑥𝑎′Q∗(s′, 𝑎′)]𝑠′ .          (3.31) 

The Bellman optimality equation is a series of equations where each state is 

represented by its own equation. In other words, 𝑁 equations will represent 𝑁 states 

with 𝑁 variables. In terms of finite MDPs, this means that the solution for the Bellman 

optimality equation is independent of policy. Furthermore, any techniques used to find 
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solutions for systems in non-linear equations can be used in cases where the dynamics 

of an environment (𝑃𝑠𝑠′
𝑎  a or 𝑅𝑠𝑠′ 

𝑎 ) are known. 

Discovering an optimal policy becomes fast and easy once the system of 

equations is solved. When the value of 𝑉∗is known, the best actions in the next step 

become optimal actions and any greedy policy becomes an optimal policy.  

𝑉∗ is significant because it considers the rewards generated from all future 

behaviours. When it is used to assess short-term consequences that result from an 

action, it establishes a greedy policy that is optimal in the long term.  

Alternatively, if the value of 𝑄∗is known, the agent is not required to find the 

actions for the next step. Instead, it only looks for actions that maximizes 𝑄∗ (𝑠, 𝑎). In 

these cases, choosing the best options becomes even easier. In other words, the optimal 

action-value function does not require information about possible successor states and 

values, or the dynamics of an environment to determine optional actions.  

Solving the Bellman optimality equation creates a method of discovering 

optimal polices and solving RL problems. Unfortunately, these solutions are not useful 

without further adjustments. In practice, three assumptions must be made: (a) accurate 

knowledge regarding the dynamics of the environment, (b) sufficient computational 

resources to find solutions, and (c) the Markov property.  

To solve problems in an approximate way, many different decision-making 

methods can be applied, for example heuristic search methods and dynamic 

programming. In this context, many RL methods are clearly viewed as approximate 

means to find solutions for Bellman optimality equations. In such instances, real, 

experienced transitions are employed rather than knowledge about expected transitions.  
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The techniques most commonly employed for solving RL problems are Monte 

Carlo, temporal different methods and dynamic programming. Each class of methods 

has advantages and disadvantages. Dynamic programming methods, which attempt to 

solve Bellman equations, are successful because they are mathematically sound, but 

they require a complete and accurate model of the environment. Monte Carlo methods 

attempt to estimate value functions and discover optimal policies. They are conceptually 

simple and a model is not required, but they do not function for calculations that require 

step-by-step processes because they use averaging sample returns and work best for 

episodic tasks. To overcome this limitation, experiences are divided into episodes. 

When an episode is completed, then the policies and value estimates are modified. 

Finally, temporal-difference methods require complex analysis but are fully incremental 

and a model is not required. These three different method types also vary in terms of 

efficiency and speed of convergence, and they can be combined in order to obtain the 

benefits of each one. 

Q-Learning algorithm 

Mechanisms for determining optimal policies follow generalized policy 

iterations based on alternating policy improvements and evaluations. Policy evaluation 

is used to make value functions resemble current policies. Policy improvements utilize 

new value functions to enhance policies in terms of expected value. This concept is 

illustrated in Figure. 3.7. The result of such an iterative process is that both policy and 

value functions approach optimality. 
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Figure 3.7: Basic scheme of generalized policy iteration 

An action-value function is used instead and is calculated by: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝜂[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)].  (3.33) 

Policy improvement is achieved by selecting actions whose current action-value 

is the greatest in that state, meaning to make the policy greedy by: 

𝑎(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑄(𝑠, 𝑘).       (3.34) 

If all state-action pairs can be visited an infinite number of times, the limit of the 

policy becomes greedy and the process converges to the optimal value function and 

policy. 

Watkins et al. (1992) defined Q-learning as a temporal-difference algorithm 

where the learned Q(s,a) is a direct approximation of the optimal Q*(s,a) regardless of 

the policy followed by the agent. In order to calculate the updated action-value function, 

the following equation is used: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝜂[𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝑘𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)].  (3.35) 

where Q is the optimal action function Q* without depending on the policy followed. 
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3.4 Q-Learning Adaptation to FLCs 

Applying RL techniques to an FLC rule base will lead to optimization. A Q-

Learning fuzzy version was developed by Glorennec (1994) to optimize the consequent 

of the fuzzy rules found in an FLC. Q-Learning permits continuous state and action 

spaces when the action-value function is discretized.  The resulting discrete q values are 

stored in a look-up table as a finite set of state-action yards. Another benefit of using 

this method is that the fuzzy rules easily accept prior knowledge and the learning 

process becomes faster. 

The agent is forced to select an action from 𝐽 for rule 𝑖 when the action space is 

discretized. In some situations, the FLC has 𝑁 fuzzy rules and 𝑎[𝑖, 𝑗] forms the 𝑗𝑡ℎ 

possible action for rule 𝑖 and 𝑞[𝑖, 𝑗]. Any associated q-values are kept in the look-up 

table. Ultimately, representations of continuous 𝑄(𝑠, 𝑎) are considered to be the same so 

that the q-value of each rule consequence can be determined before being used in the 

continuous input vector. The steps involved in the fuzzy Q-Learning algorithm are as 

follows: 

1. In the look-up table, initialize the q*values. If no prior knowledge is available, 

use the following equation: 

𝑞[𝑖, 𝑗] = 0, 1 ≤ 𝑖 ≤ 𝑁 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝐽,                (3.36) 

where 𝑞[𝑖, 𝑗] represents the q-value, 𝑁 signifies the number of rules and the number of 

actions for each rule is represented by 𝐽. 

2. Select an action for each activated rule that has a nonzero degree of truth.  

Actions can be selected using one of the following 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policies: 

𝑎𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑞[𝑖, 𝑘]  with probability 1-𝜖,                 (3.37) 
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Or, 

𝑎𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚{𝑎𝑘, 𝑘 = 1,2, … , 𝐽}  with probability 𝜖,                   (3,38) 

In Equations 3.37 and 3.38, 𝑎𝑖 represents the consequent of rule 𝑖 and 𝜖 signifies 

the parameter that establishes the trade-off between exploration and exploitation in the 

algorithm. In other words,  𝜖 = 0 indicates that the best action was selected and there 

was no exploration.   

3. Determine the global action suggested by the FLC using the equation 

recommended below: 

𝑎(𝑡) = ∑ 𝛼𝑖(𝑠(𝑡)).𝑁
𝑖=1  𝑎𝑖(𝑡),                                                                         (3.39) 

where 𝑎(𝑡) denotes the inferred action at time step t, 𝛼𝑖(𝑠(𝑡)) represents the degree of 

truth for rule 𝑖 and  𝑎𝑖(𝑡) indicates the selected action for rule 𝑖. The degree of truth is 

the distance between rule 𝑖 and input state 𝑠(𝑡) and is computed as: 

𝛼𝑖(𝑠(𝑡)) =  ∏𝑗=1
𝐿 𝜇𝑖𝑗 (𝑠𝑗(𝑡)),                                       (3.40) 

where the total amount of FLC inputs is represented by 𝐿 and the membership function 

is represented by 𝜇𝑖𝑗 (𝑠𝑗(𝑡)) for the 𝑗𝑡ℎ FLC input and rule 𝑖. 

4. The Q-function from the current q*-value and degree of truth for the rules is 

calculated as: 

  Q(s(t), a(t)) = ∑ αi(s(t)). q[i,N
i=1 αi],                                  (3.41) 

where the value of the Q-function is expressed as 𝑄(𝑠(𝑡), 𝑎(𝑡)) for state 𝑠(𝑡) and action 

𝑎(𝑡) in iteration 𝑡. 

5. The system is allowed to reach the next state, s(t + 1). 

6. After observing the reinforcement signal r(t + 1), find the value of the next 

state labelled Vt(s(t + 1)) using: 
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Vt(s(t + 1)) = ∑ αi(s(t + 1)). maxkq[i,N
i=1 αk],                                      (3.42) 

7. Calculate the error signal: 

∆𝑄 = 𝑟(𝑡 + 1) + 𝛾. 𝑉𝑡(𝑠(𝑡 + 1)) − 𝑄(𝑠(𝑡), 𝑎(𝑡)),                                        (3.43) 

8. where 𝛾 indicates the discount factor and 𝑟(𝑡 +  1) is the reinforcement signal; 

𝑉𝑡(𝑠(𝑡 + 1)) denotes the value of the new state 𝑄(𝑠(𝑡), 𝑎(𝑡)) signifying the 

value of the Q-function for the previous state and the action performed in that 

previous state. 

9. The q-values are updated using an ordinary descent method described as: 

q[i, ai] ← q[i, ai] + η. ΔQ. αi(s(t)),                                (3.44) 

where 𝜂 indicates the learning rate. 

10. Starting with Step 2, repeat the process to determine the current state. Stop when 

the algorithm reaches convergence. 

When the Q-Learning algorithm is finished, consequents with the highest q-values in 

the look-up table are used to create fuzzy rules. In summary, Algorithm 3.1 briefly 

describes the Fuzzy Q-Learning algorithm steps. 

Finally, as stated in Chapter 2, several works where both non-fuzzy and fuzzy 

Q-Learning algorithms are applied in network optimization problems are available in 

the literature, indicating the effectiveness of combining FLCs and Q-Learning in this 

context.  
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Algorithm 3.1. Fuzzy Q-learning algorithm 

Step 1: Let 𝑡 = 0, 𝑄𝑖
0(𝑠𝑖 , 𝑎𝑖) = 0 for all 𝑠𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑎𝑖 ∈ 𝐴 

Step 2:  Select an action  for each activated rule ( 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 𝑝𝑜𝑙𝑖𝑐𝑦): 
𝑎𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑞[𝑖, 𝑘]  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀, 
𝑎𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚 { 𝑎𝑖 , 𝑘 = 1,2, … . , 𝐽}    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀 

Step 3: Calculate the global action: 

𝑎(𝑡) = ∑ αi(s) ∗

N

i=1

(αk) 

Step 4: Approximate the Q-function from the current q-values and the degree of the truth of the rules: 

Q(S(t), a(t)) = ∑ αi(s) ∗N
i=1 q[i,ai] 

Step 5: Leave the system to evolve to the next state, s(t+1). 

Step 6: Observe the reinforcement signal, r(t+1), and compute the value of the new state denoted by  

Vt(S(t + 1)) = ∑ (s(t + 1)). maxk
N
i=1 Q[S(t),𝑎k] 

Step 7: Calculate the error signal:  

ΔQ=r(t+1)+γ×Vt(s(t+1))-Q(s(t),a), Where γ is a discount factor                                                       

Step 8:  Update New Q-table by an ordinary gradient descent method: 

𝑎[𝑖, 𝑎𝑖] ← 𝑞[𝑖, 𝑎𝑖] ∗ 𝜂ΔQ. 𝑖, 𝛼𝑖(s(t)) 

 

Step 9: Repeat the above-described process starting from step 2 for the new current state until 

convergence is achieved 

Some limitations of this approach are that the optimization process may be 

sensitive to reinforcement signal selection and the fact that the system states must be 

visited a sufficient number of times. However, in favour of the above described 

advantages, the method adopted in this thesis is based on RL.  

As discussed earlier, several studies have examined the effect of using both non-

fuzzy and fuzzy Q-learning algorithms when optimizing networks. These studies 

highlight the benefits of combining FLCs and Q-Learning. However, there are 

limitations as optimization processes are sensitive to reinforcement signals and the 

number of times system states must be visited. Regardless of the limitations, the method 

used in this thesis is based on RL. 

One of the advantages of the reinforcement learning techniques examined in this 

thesis is their ability to enable a single agent to use trial-and-error interactions with the 

environment to learn optimal behaviours. Several RL approaches have been created that 

permit agents to optimize their behaviour in a variety of circumstances. Though 
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traditional approaches are often unsuccessful in situations where multiple learners use 

reinforcement learning in common environments. 

3.5 Adaptation of Multi-agent based Fuzzy Reinforcement learning 

Assumptions are made in multi-agent environments to assure that convergence 

will occur. However, these assumptions are frequently violated. Complexities are 

created even in simple situations where agents share a common, stationary setting and 

are required to only learn a strategy for a single state. In situations where the agents 

have opposing goals there may be no optimal solutions and establishing equilibrium 

between agents becomes the primary goal; essentially, agents are unable to improve 

their payoffs because other agents keep their actions fixed.  

Dynamic environments not only have multiple agents, but they also have 

multiple, sequential decisions that increase their complexity. In these settings, agents 

must coordinate and consider the current state of their dynamic environment with very 

limited information. Typically, agents in dynamic environments cannot observe the 

actions of other agents or see what rewards they obtain as a consequence although the 

actions of the other agents influence their immediate environment along with the 

rewards they can obtain. In very complex environments agents may be unaware that 

other agents are present and may interpret their environment as non-stationary. Similar, 

equally complex environments allow agents to access information, but the state action 

spaces are not conducive to learning because of their complexity and the amount of 

coordination required between agents. Before an effective multi-agent approach can be 

developed, all these challenges must be addressed. A standard multi-agent 

reinforcement learning model is presented in Figure 3.8. 
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Figure 3.8: Multiple-agents acting in the same environment 

Regardless of learning complexity, the demand for multi-agent systems 

continues to increase. In cases of systems that are decentralized and single, central 

learning methods are impractical. Such systems can be found when data was subjected 

to disruptions caused by multiple, conflicting objectives or if a single centralized 

controller requires too many resources. Multi-robot setups, distributed load balancing, 

decentralized network routing, electronic auctions, and systems designed to control 

traffic are all examples of such system types. 

As a result of the demand for adaptive multi-agent systems and the complexity 

of coping with interacting learners, an increasing number of researchers have worked to 

develop multi-learning reinforcement methods. This field of study uses research on 

reinforcement learning that takes place within AI and the Game Theory. Previous 

studies on the Game Theory concentrated on competitive endeavours, but this field has 

expanded into analysing many different kinds of strategic interactions. Game Theory 

research has attracted the attention of psychologists, economists, biologists, the AI 

community, and computer scientists in general. In this thesis, the Game Theory is used 

to describe how attacks are detected using multi-agent fuzzy reinforcement learning 

techniques and approaches for analysing learning outcomes. 
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The focus of this thesis is on multi-agent systems that contain strategic 

interactions between agents. Agents are seen as autonomous entities with their own 

goals, the ability to make independent decisions, and that are affected by other agents’ 

decisions. These systems are different from systems that use distributed or parallel 

reinforcement learning methods where multiple learners work together to accomplish a 

single objective. These systems can be used in advanced exploration for standard 

reinforcement learning and they rely on the frameworks covered by single agent 

theories, such as the theory described by Tsitsiklis (1994). Examples of distributed or 

parallel systems include methods that divide the learning state space between agents, 

swarm-based methods (Dorigo et al., 2010), and systems where multiple agents work 

together to update policies (Mariano et al., 2001). In distributed and parallel 

reinforcement systems, algorithm convergence is valid if any outdated information will 

be discarded. In other words, the max operator on the right hand side of the Q-learning 

update rule is permitted to use outdated Q values.  

3.6 Game Theory  

The game theory provides a model of strategic interactions based on individuals 

competing against each other in a game. A mathematical object is used to represent the 

game as it outlines the consequences of the interactions between players in terms of the 

rewards to be obtained. AI researchers often rely on extensive game forms where 

players take turns performing an action to model classic minimax algorithms (Russell et 

al., 1995). This chapter concentrates on reinforcement learning with repeated games or 

games in which the players simultaneously perform individual actions. In addition, the 

terminology and concepts used in the Game Theory are also discussed in this chapter.  
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Normal Form Games 

Definition: 

A normal form game can be expressed as (n, A1, . . . , n, R1, . . . , n). In this 

statement, 1, . . . , 𝑛 represents the players, 𝐴𝑘 signifies the finite set of individual actions 

available to player 𝑘, expression 𝑅𝑘 ∶  𝐴1 ×. . .× 𝐴𝑛 → 𝑅 states the individual reward 

function of player 𝑘, and his expected payoff for an action is denoted by 𝒂 ∈  𝐴1 ×. . .×

𝐴𝑛.  

A game begins with each player 𝑘 independently choosing and individual action 

𝒂 from its own private set of actions 𝐴1. The combined actions from all players form a 

joint action or an action profile from a joint actin set 𝐴 = 𝐴1 ×. . .× 𝐴𝑛. The expected 

reward resulting from the joint action is described as ∈ A, 𝑅𝑘(𝑎). 

A payoff matrix can be used to characterize a normal form game. Examples of 

typical 2-player games are shown in Table 3.1. In Table 3.1, the action taken by Player 

1 is represented by a row in the matrix. The actions available to Player 2 are shown in a 

column. The corresponding entry in the matrix identifies the payoffs Player 1 and Player 

2 will receive after they complete their actions. Player 1 is sometimes called the Row 

Player and Player 2 is sometimes known as the Column Player. The use of more 

dimensional matrices in normal form player games can be demonstrated and each entry 

in the matrix records the payoff available to every agent once they complete a series of 

actions.  

Strategy 𝜎𝑘 ∶  𝐴𝑘  → [0,1] is an element of the probability distribution of action 

set 𝐴𝑘 of player 𝑘 described as 𝜇(𝐴𝑘). A pure strategy occurs when 𝜎𝑘(𝑎) = 1 for 

action 𝑎 ∈  𝐴𝑘 and 0 for any other action. If this cannot be shown, the strategy is 

considered mixed. A vector strategy has one strategy for each player and profile 
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𝜎 =  (𝜎1, . . . , 𝜎𝑛). A strategy profile will correspond to a joint action 𝑎 ∈  𝐴 if every 

strategy in 𝜎 is pure. One assumption made in normal form games is that the expected 

payoffs are linear. In other words, the expected reward in strategy profile 𝜎 for player k 

can be expressed as: 

𝑅𝑘(𝜎) = ∑ ∏ 𝜎𝑗(𝑎𝑗)𝑛
𝑗=1𝑎∈𝐴  𝑅𝑘(𝑎)      (3.45) 

where 𝑎𝑗  represents the action available to player 𝑗 in the action profile denoted 𝑎.   

Game Types 

The player reward function is used to classify a game. When all players hold a 

reward function in common, the game is classified as an identical payoff of a common 

interest game. A game is a zero-sum game when all the player rewards are equal to 0. In 

zero-sum games, some players win while others experience losses. These games are also 

known as purely competitive games. General sum games refer to games with no special 

restrictions. Examples are given in Table 3.2. 

Table 3.2: Examples of 2-player, 2-action games.  

a1

a2

a1 a2

(1,-1) (-1,1)

(-1,1) (1,-1)

a1

a2

a1 a2

(5,5) (0,10)

(10,0) (1,1)

a1

a2

a1 a2

(5,5) (0,0)

(0,0) (10,10)

a1

a2

a1 a2

(2,1) (0,0)

(0,0) (1,2)

(a) (b)

(c) (d)
 

From left to right: (a) Matching pennies, a purely competitive (zero-sum) game; 

(b) The prisoner’s dilemma, a general sum game; (c) The coordination game, a common 
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interest (identical payoff) game; (d) Battle of the sexes, a coordination game where 

agents have different preferences); Pure Nash equilibria are indicated in bold. 

The first game shown in Table 3.2 is also known as the matching pennies game. 

It is an example of a purely competitive game. In the matching pennies game either 

heads or tails is chosen. If both coins are the same Player 1 wins and is rewarded by 

Player 2. If the coins are not the same, Player 2 is the winner and is rewarded by Player 

1. Evidently, a win for one player represents a loss for the other player and meets the 

criteria of a zero-sum game. 

The second game in Table 3.2 is The Prisoner’s Dilemma. It is an example of a 

general sum game. In this game, two criminals are held by the police in separate cells 

after committing a crime. Two possible actions are available to these criminals. They 

can deny mutual participation in the crime (action a1) or they can betray the other 

criminal (action a2). If both criminals take action a1, they will receive a minimal 

sentence (payoff 5). If one criminal implicates the other while the other continues to 

deny involvement in the crime, the cooperative criminal will be released (payoff 10) and 

his partner will be held completely responsible for the crime (payoff 0). The third 

possibility is that both criminals will blame the other and will be incarcerated for several 

years (payoff 1). In this game, the choice of blaming the other criminal dominates and 

could result in the best payoff. This often leads to each criminal betraying the other even 

though they would be better off if they had cooperated. 

In the third game in Table 3.2 each player receives the same payoff if they 

participate in a joint action. Choosing the best joint action leads to the best payoff. A 

suboptimal action results in a less profitable reward and selecting the wrong cooperative 

action means that neither player will receive any reward. This third game is an example 

of a common interest game.  
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The Battle of the Sexes is an instance of the fourth game type illustrated in Table 

3.2. Here, each player will receive their own individual rewards and each prefers 

different outcomes. For example, Player 1 opts for (a1,a1) whereas Player 2 prefers 

(a2,a2). To overcome the coordination challenge presented by their preferences, the 

players must reach a compromise.  

Games are not always limited to two different actions. Table 3.2 shows common 

interest games with three possible actions. A climbing game described by Claus et al. 

(1998) is the first example in Table 3.2. This climbing game illustrates the Nash 

Equilibrium surrounded by severe penalties. In the second game, the penalties are 

shown on the left as parameter k < 0. The harder it is to learn the preferred solution 

((a1,a1) and (a3,a3)), the smaller the value of k will be.  

Table 3.3: Examples of 2-player, 3-action games.  

a1

a2

a3

a1 a2 a3

(11,11) (-30,-30) (0,0)

(7,7)

(0,0) (0,0) (5,5)

(-30,-30) (6,6)

a1

a2

a3

a1 a2 a3

(10,10) (0,0) (k,k)

(2,2)

(k,k) (0,0) (10,10)

(0,0) (0,0)

(a) (b)
 

 

From left to right: (a) Climbing game; (b) Penalty game, where k ≤ 0. Both games are of 

the common interest type. Pure Nash equilibria are indicated in bold. 

Solution Concepts in Games 

It can be difficult to pinpoint the desired outcome of a game because the players 

have different reward functions that are affected by the actions of their competitors. 

Players may not be able to maximize their payoffs as they may not be able to 
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simultaneously reach their goals. The Battle of the Sexes in Table 3.3 is a good example 

of this. 

An important notion behind games represented by The Battle of the Sexes is the 

best response. A best response allows a player to capitalize on their situation in relation 

to the strategies used by their opponents. However, the player will not be able to 

increase the reward if their opponents maintain a fixed strategy. When  𝜎 =

 (𝜎1, . . . , 𝜎𝑛) is the strategy profile, 𝜎−𝑘 represents the same strategy profile without 

strategy 𝜎𝑘 of player k. The best response for strategy 𝜎𝑘
∗ ∈  𝜇(𝐴𝐾) of player k is when:  

𝑅𝑘(𝜎−𝑘 ∪ 𝜎𝑘
∗) ≥  𝑅𝑘(𝜎−𝑘 ∪ 𝜎𝑘

′ ) ∀𝜎𝑘
′ ∈  𝜇(𝐴𝑘)    (3.46) 

where 𝜎−𝑘 ∪ 𝜎𝑘
′  is the strategy profile when all players use the same strategy they used 

in σ except for player k who uses 𝜎𝑘
′ , i.e. (𝜎1, . . . , 𝜎𝑘−1, 𝜎𝑘

′ , 𝜎𝑘+1, … , 𝜎𝑛). 

The Nash equilibrium mentioned above is an instance of a central solution. 

When using the Nash equilibrium, all players act on their mutual, best replies. Every 

normal form game has a minimum of one Nash equilibrium (Nash, 1950). The Nash 

equilibrium for each player can be expressed as a strategy profile of  (𝜎1, . . . , 𝜎𝑛) . 

Strategy 𝜎𝑘 represents the best response to the strategies a player’s opponents signified 

by 𝜎−𝑘. No player can enhance their reward or payoff if they deviate from playing the 

Nash equilibrium. As a result, a single player has no motivation to independently 

change their strategy. The only way to escape the Nash equilibrium is for several 

players to change their strategies simultaneously.  

Definition. A strategy profile 𝜎 =  (𝜎1, . . . , 𝜎𝑛)  is called the Nash equilibrium if for 

each player k, strategy 𝜎𝑘 is the best response to the strategies of the other players 𝜎−𝑘. 

Thus, when playing the Nash equilibrium, no player in the game can improve 

their payoff by unilaterally deviating from the equilibrium strategy profile. As such, no 
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player has an incentive to change their strategy, and multiple players must change their 

strategies simultaneously in order to escape the Nash equilibrium.  

Justification of the selected technique  

Amongst the techniques explained in the literature review, the game theory-

based RL was selected in this thesis. The main reasons for discarding the other 

alternatives as well as for choosing a game-based RL method is discussed subsequently. 

First, although Neural Networks have been successfully applied in many 

applications, this artificial intelligence technique has some limitations and 

disadvantages. On the one hand, neural networks are especially appropriate for 

prediction, function approximation, classification, pattern recognition, and clustering, 

which are not tackled in this thesis, and they mainly focus on developing control 

techniques. An important drawback is that neural networks require a large diversity of 

training for real-world operation, which can be a severe constraint in complex systems 

such as real-time traffic monitoring in networks. In addition, neural networks cannot be 

trained a second time, in the sense that it is very hard to add new data to an existing 

network. Finally, they require abundant computational resources and high processing 

time for large neural networks.  

Secondly, although genetic algorithms are easily understood and transferred to 

current simulations and models and do not require advanced mathematical skills, they 

also have several important limitations and disadvantages including:  

 There is no solid guarantee that a global optimum will be found by a genetic 

algorithm. Global optimums typically occur with larger populations. 

 Genetic algorithms involve the problem of genetic drift, which is a major 

problem of genetic algorithms. This means that the genetic algorithm may 

quickly lose most of its genetic diversity and the search then occurs in a way that 
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is not beneficial for recombination. This is because the random initial population 

rapidly converges. 

 Genetic algorithms face limitations with control problems that are executed in 

real-time due to convergence and random solutions.  This indicates 

improvements have been made in the entire population but those improvements 

cannot be extrapolated to an individual within the population. As a result, it is 

ineffective and impractical not to test genetic algorithms on simulation models 

prior to using them in on-line control in real systems.  

It is worth mentioning that in the context of this thesis, network operators may 

be reluctant to implement this kind of algorithms since the solutions found by genetic 

algorithms can remain at a certain distance from the optimum with higher probability, 

leading to suboptimal performance in an undetermined amount of time. In addition, the 

slow convergence of this technique can also be an issue in real systems, such as 

networks, even if an off-line control is applied. 

Third, in particle swarm optimization, there are some important limitations 

related to the optimization of an FLC in the context of networks (Gupta et al., 2005). In 

particular, particle swarm optimization involves loss of information in the global cost 

functions, since performance indicators are globally measured in the concerned network 

area. Thus, the situation at sensor nodes cannot be considered. In addition, this 

optimization method has to compare the evolution of many particles, each of which 

represents a different FLC setting. As a result, to assess the position of each particle, the 

corresponding FLC should be evaluated in many sensors, thus requiring exclusive use 

of simulation tools. The lack of flexibility and generality in defining FLC is also a 

constraint for particle swarm optimization. In this sense, when adding new inputs or 

performance indicators to the FLC, the optimization phase must be launched, although 
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certain a priori knowledge can be included at the beginning. Other disadvantages of the 

basic particle swarm optimization algorithm are covered by Gaing (2004) and Shi 

(2001). These disadvantages of the algorithm include slow convergence during the 

refined search stage, ineffective local search capabilities, and possible entrapment in the 

local minimum. Currently, there are no mathematical proofs of the convergence and 

speed of convergence for this algorithm. 

Finally, in Game-based IDPS, the combination of FLCs and fuzzy Q-Learning 

algorithm is highlighted as a powerful mechanism in the context of networks for the 

following reasons: 

 Attacks in networks are complex and variable systems, in which obtaining a 

training data set that is representative of all situations becomes a difficult task. 

Unlike other approaches (e.g. supervised learning in Neural Networks), Fuzzy Q-

learning does not require a training data set. 

 Due to the complexity of network management, operators do not usually have the 

knowledge necessary (i.e. accurate and complete) to take proper action in every 

attack situation. In this case, learning from interaction becomes a suitable solution, 

where a multi agent is able to learn from its own experience to perform the best 

actions. 

 It is possible to perform the optimization at a distributed level, so that many FQL 

agents can learn in parallel. To achieve this, measurements should be taken in the 

area of a network. In addition, the cooperative-based fuzzy Q-Learning method 

provides operators generality to easily introduce, for instance new performance 

indicators in IDPS. 
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3.7 Collaborative-IIDPS Architecture 

To design a Collaborative IIDPS (Co-IIDPS) based on a comprehensive set of 

requirements for networks, the special characteristics of a distributed framework 

structure are scrutinized in this thesis, within Smart Grid networks with Collaborative 

IIDPS as proposed by Patel et al. (2013). Figure 3.9 shows the combination of Network 

and Host-based IDPS (NIDPS, HIDPS) in a fully distributed framework structure in a 

Smart Grid networking environment with Collaborative-IDPS. This formation is readily 

applicable to any network. 

Smart IDPS (SIDPS)

Network-based  IDPS(NIDPS)

Host-based  IDPS (HIDPS)

Collaborative Smart IDPS (CSIDPS)  

Figure 3.9: Combination of NIDPS and HIDPS in a distributed Smart Grid Network (CIDPS) 

The monitored environment of an IDPS is typically specified as:  

 A network-based IDPS monitors network traffic for particular network segments or 

devices, and analyses the network and protocol behaviour to identify suspicious 

activities. 

 A host-based IDPS monitors all or parts of the dynamic behaviour and 

state of a computer system. Unlike NIDPS, which dynamically inspects network 
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packets, HIDPS detects which programs access what resources. HIDPS has the 

advantage of being easier to deploy without affecting existing infrastructure 

compared to NIDS, which detects attacks at the transport protocol layer via quick 

responses. However, a combination of both HIDPS and NIDPS solves the problem 

of assimilation and scalability through collaborative management.  

Due to the IIDPS complexity in a network, this chapter incorporates three newly 

defined concepts of detection management: Fuzzy Reinforcement Learning 

Management (FRLM), Knowledge Management (KM), and Multi-agent Management 

(MA) into the core architectural design of CIDPS (Figure 3.9). Management flows from 

the module of computational intelligence intrusion detection through an intermediate 

section are viewed as a fuzzy reinforcement learner, and knowledge and multi-agent 

managers, and are expected to respond to intrusions in WSN. The correlation flows are 

developed according to the collaborative-IDPS and desired IIDPS characteristics. The 

purpose of the thesis encompasses three concepts, namely fuzzy system, reinforcement 

learning and a multi-agent system. They are intended to design an efficient system that 

meets the Collaborative-IIDPS (Co-IIDPS) requirements. 
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Figure 3.10: Enhanced Collaborative-IIDPS functionality architecture within a network 

Figure 3.10 shows the Co-IIDPS functions. The first layer shows the traditional 

system components that monitor and collect the audit data through the sensors, analyse 

the data and detect intrusions, generate alarms and herald the proper response through 

the actuators. The advanced components seen in layer two are drawn from the four 

proposed concepts. 

The advanced components employ computational intelligence (CI) techniques 

such as soft computing (e.g. neuro-fuzzy systems) and machine learning (e.g. a 

reinforcement learning system) to detect intrusions and feed the obtained results into the 

autonomic solution mode components comprising a self-optimizer, self-learning, and 

self-configuration. Self-learning and self-optimizing are defined in autonomic 
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computing principles in real-time without human intervention. The proposed 

collaborative IIDPS system architecture is illustrated and presented as a workflow 

scenario to show the way it functions in 8 steps as numbered in brackets. The arrows 

point out the information flow between components while the dash arrows indicate the 

logical communications between the components.  

Inputs from Autonomic Wireless Environment Components: 

The processor, memory, RF radio, power source, and actuators constitute the 

wireless network components. The interactions between them generate and prepare the 

input sensor signals from the wireless environment. The signals together with the events 

or latest challenges pass through the intelligent intrusion detection and prevention 

system (IIDPS) components for analysis. The monitoring, detection, alarm generation 

and response utilize computational intelligence methods to mitigate IDPS. 

Latest IIDPS Challenges & Enterprise IIDPS Policies: 

The Intrusion Detection and Response System (IDRS) Policies and Latest 

Challenges to networks fall into the computational intelligence intrusion detection 

module of autonomic network -based IDPS, as mentioned in Step 1. An event entering 

the system is checked to determine whether it is an intrusion. If it is an intrusion, the 

Intrusion Detection Engine (IDE) takes full responsibility for analysing and identifying 

the type of attack. 

Computational Intelligence Intrusion Detection Systems (CIIDS): 

Various CIIDS techniques have been suggested in this architecture. Machine 

learning and soft computing are the main CIIDS methods. Reinforcement learning (RL) 

together with fuzzy sets (FS) serves as a feature extraction selector and classifier of 

machine learning for Co-IIDPS. The results of signal classification for intrusion 

detection are relayed to the inference engine. 
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Inference Engine (IE): 

The IE is a logical, key division of the Co-IIDPS. The IE performs based on the 

latest computational intelligence techniques, fronted and equipped with fuzzy 

reinforcement learning management.  

Fuzzy Reinforcement Learning Management: 

The fuzzy reinforcement learning (FRL) management (FRLM) of this Co-IIDPS 

architecture includes reinforcement learning (RL) and fuzzy sets (FS). Given an 

anomaly incident, FRLM is internally analysed and it updates the Q-value of the 

learner’s agent. If necessary, it automatically updates a newly discovered intrusion 

incident by applying anomaly calculator component-based computational intelligence 

and knowledge management techniques in recursive iteration of its execution cycle. 

 Knowledge Management: 

In order to share knowledge and allow collaboration between other managers 

(i.e. Fuzzy Reinforcement Learning and Multi-agent managers), the knowledge manager 

(KM) uses four types of decision mechanism: policy, ontology, anomaly profile and 

knowledge-based. The knowledge-based component directly connects to CIDPS to store 

the process of training and testing CI algorithms. The purpose of decision ontology 

(DO) is to provide a basis for representing, anomaly modelling and probing the decision 

to identify abnormal behaviour. The policy works as an action selector and uses an 

executer agent. The action policy of the KM mechanism adapts to FRL to cluster the 

incidents according to severity and raise an alarm.  

Multi-agent Management: 

A multi-agent manager prioritizes an anomaly according to a victim’s 

vulnerability. There are three possible scenarios in this state. The first case is pattern 
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collection through the data collector agent (DC). In the second case, if the incident is a 

severe intrusion or low intrusion, the analyser agent (AA) and decision agent (DA) are 

associated to the ontology and knowledge base, which comprise the computational 

intelligence techniques for intrusion identification. The third possible situation is related 

to the executor agent (EA) that is shielded from intrusions before any data loss or 

damage happens. It provides the impetus for the system to self-learn against any attacks, 

as well simultaneously purvey for protection and prevention capabilities further down 

the chain in the autonomic mode of operation. 

Self-optimizing, Self-learning, and Self-response: 

The second case in Step 7 is indicative of some parts having already been 

attacked or even infected. In the case of action selection, the penetration tracks in Co-

IIDPS activate the self-optimizing component to ensure the system protects itself. The 

third situation refers to intrusion blocked prior to any data loss taking place. Here, the 

system automatically enters a self-learning state. In both circumstances, the self-

optimizing state is triggered directly after Knowledge Management and self-learning are 

performed after Fuzzy Reinforcement Learning Management to protect the system by 

either computational intelligence fuzzy methods or reinforcement learning, or a 

combination. These methods are triggered to protect the system by updating the Co-

IIDPS as a whole. Their actions are defined by the Inference Engine component in Co-

IIDPS. Signals are then sent to activate actuators to execute prevention in the network 

environment. 

3.8 Discussion 

The discussion is expanded with the proposal of a new architecture to detect and 

prevent intrusions in a network, by combining computational intelligence and multi-

agent based computational intelligence approaches. A novel collaborative-based IIDPS 
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(Co-IIDPS) architecture was proposed and presented. It demonstrates the impact of a 

Multi-agent system-based computational intelligence (MCI) technique on enhancing 

detection efficiency and false alarm rates. This architecture portrays the clear notion of 

cooperative learning-based detection to satisfy the requirements of IIDPS. The projected 

architecture defines three detection means of management: Fuzzy Reinforcement 

Learning Management, Knowledge Management, and Multi-agent Management. In 

conclusion, the detection management techniques can be improved by minimizing the 

false alarm rates and increasing the detection rates in addition to decreasing energy 

consumption in networks. In the next chapter, with the intent of validating the proposed 

architecture, the aim is to design and develop the aforementioned detection management 

components using game theoretic approaches.  

3.9 Chapter Summary 

In the context of Co-IIDPS, adaptive game theoretic techniques are adequate for 

network parameter optimization due to network complexity and dynamism. The main 

benefits of applying such techniques are cost savings and improved network 

performance. This chapter began with a description of potential network self-tuning 

approaches. In this analysis, the use of a network model was discarded, since 

constructing a network model that is accurate and manageable is usually a complex task 

that may lead to poor performance as well.  

Thus, the schemes adopted in this thesis are based on self-tuning entities that 

interact directly with the network. In such cases, a closed-loop structure is used to find 

the optimal parameter settings. For this reason, the next part of the chapter focused on 

controllers based on the Fuzzy Logic theory, as this discipline provides a mathematical 

framework especially appropriate for designing controllers. Its potential lies in the 

capability to express knowledge in a similar way to human perception and reasoning.  
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The second topic in this chapter was devoted to mathematical approaches that 

can be used to optimize and adapt the behaviour of FLCs. The first technique is Neural 

Networks, which typically requires a training data set that can be a severe constraint in 

networks. In addition, neural networks are more suitable for other kinds of problems 

(e.g. prediction, classification, pattern recognition, and clustering), which differ from 

the control problem addressed in this thesis. Secondly, the main feature of Genetic 

Algorithms was described, showing that their application in control problems performed 

in real-time is limited owing to random solutions and convergence. Third, the basic 

concepts of the Particle Swarm approach were presented, highlighting its application to 

FLC optimization involving some important limitations, such as lack of flexibility and 

generality in defining the FLC. Finally, this chapter was devoted to RL, which is the 

method selected amongst the previously described ones. The main benefit of this 

approach is that RL algorithms learn from interaction, which becomes essential in 

complex systems such as networks. 

The third topic in this chapter dealt with the proposal of game theoretic 

approaches that can be used to optimize and adapt the behaviour of Fuzzy Q-learning. 

The reinforcement learning manager emerged as a result of applying fuzzy techniques to 

Co-IIDPS, leading to robust, fault-tolerant and easy to manage and operate WN 

architectures and deployments. Knowledge management enables the characterization of 

anomaly profile knowledge as a set of related concepts within an anomaly calculator 

domain. The policy aspect of a multi-agent manager is thus utilized to predict anomaly 

behaviour.  In summary, the scalable, fully distributed structure of our system exposes 

the risks of low accuracy detection and difficulty in synchronizing information between 

autonomous agents.  

  



105 
 

Chapter 4 : GAME THEORETIC APPROACH USING FUZZY Q-LEARNING  

The novelty of this study lies in the proposal of a game theoretic framework, 

namely the cooperative Game-based Fuzzy Q-learning (G-FQL) in order to identify 

attackers and appropriately respond to them. The aim is to facilitate an intelligent 

intrusion detection and response mode. Thus, the current evaluation study is significant 

in that the feasibility and suitability of the framework are highlighted. 

In this chapter, the game framework design is first explained in three sub-

sections: the player strategies, the player payoff function, and an analysis of the reward 

function. In addition, a utility function is employed to evaluate the effectiveness and 

performance of the model. A detailed explanation of the fuzzy Q-learning adapted to the 

game theory is also given.  

The game theory is a branch of applied mathematics that deals with the way 

rational entities or agents make decisions in the application of WSNs (Huang et al., 

2013), cognitive radio networks (Elias et al., 2011), and ad hoc networks (Naserian et 

al., 2009). It affords an array of mathematics tools for modelling and analysing the 

interactions among rational groups, whereby rationalism is founded on the profit or 

reward perceived by the entities (Shoham et al., 2009). An anomaly-based wireless 

network in the game-theoretic approach is a tremendously difficult task on account of 

the distributed nature of numerous players in WSNs. A large number of players 

additionally results in difficulty achieving equilibrium in a competitive game. To deal 

with a certain type of attack in wireless networks, Naserian et al. (2009) included an 

assortment of games, for instance non-cooperative, two-player, and non-zero-sum to 

their stratagem. In such game arrangements, better decisions are made according to the 

principles offered by payoff functions. Shen et al. (2011) took into account the 

signalling game to create an IDPS game that exhibits the interaction between an attacker 
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and cluster head in a WSN. The Bayesian Nash Equilibrium (BNE) scheme in 

conjunction with the mixed strategy for outstanding detection policies served as the 

basis for their model. Thus, an ideal, fundamental shield tactic to protect WSNs was 

achieved, while the probability of detecting attacks was simultaneously, considerably 

enhanced.  

A multi-agent system utilizes the reputation security mechanism to perform 

dynamic role assignment based on the following three parameters: reputation, bootstrap 

time and energy. The approach evicts highly non-cooperative and malicious nodes from 

the network (Misra et al., 2011). An adaptive learning routing protocol employs a 

learning automata algorithm for efficient malicious node detection (Rolla et al., 2013). 

The multilayer reinforcement learning framework assisted by the Hidden Markov 

Model (HMM) was proposed to solve real-time detection in a complex state space 

(Andersen et al., 2009). The results indicated that the network’s cost function could be 

optimized if the agents collaborated repeatedly. In our proposed scheme, the 

cooperative game is implemented into IDPS to generate the benefits of a fuzzy Q-

learning algorithm with a value function to mitigate the flooding attack issue in a WSN 

with respect to detection and defence accuracy. Resource loss, accuracy of attack 

detection via sensors, and service inaccessibility at critical times are among the 

challenges posed, and in this thesis, an effort is made to confront the security setbacks 

by applying the cooperative game-based fuzzy system and reinforcement learning 

mechanism. 

4.1  Proposed model 

4.1.1 WSN model 

In the present research study, Figure 4.1 illustrates the distributed network with 

hierarchical routing, which consists of Clusters (C), their coordinators, or Cluster Heads 
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(CHs), as well as the member Sensor Nodes (S). In the current scheme, the Cluster Head 

(CH) is assumed to be a Sink Node (SN) in each cluster. The SN monitors the behaviour 

of sensor nodes by collecting data from the member sensor nodes and transmitting the 

critical status -- the attack information of the sensor nodes, to a Base Station (BS). Each 

cluster is mapped into distributed system formation while the set of sensor nodes is 

mapped into each cluster grouping. Although only one BS is shown in Figure 4.1, there 

could practically be several implemented in a real operational WSN. 

C1

Wireless Network

Internet

WSN

BS

 : Cluster

: Base Station(BS)

: Malicious nodes

: Sensor node (S)

: Adjacent link

 : Sink node (SN)

C1C3

C2

Cn

Legend:

WSN

   

C

  

 

Figure 4.1:A distributed hierarchical system perspective of a WSN  

The route from a sensor node (S) to a base station (BS) is deemed a distributed-

hierarchical path that creates a hierarchical system with numerous routes, which is the 

main feature of cluster-based WSNs. Sensor nodes function independently to avoid the 

collapse of all sensor nodes (SNs) in case one fails. The sensor node redundancy 

approach increases the overall reliability in distributed hierarchical systems. Figure 4.1 

illustrates how SNs send data gathered from a sink node to a BS via other adjacent SNs, 

and the BS receives data only if all SNs within the routing formation are actively 

functioning. Hence, a set of clusters on a route is counted as a set of independent 

distributed-connected elements. Attacks in this scenario can target the WSN in multiple 
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ways, with DDoS attacks potentially originating either from the Internet or 

neighbouring wireless sensor sources. 

4.1.2 Methodologies and Techniques Used 

Game-based detection and the defence mechanism operate to detect DDoS 

attacks, where the sink node and base station adapt to select the best strategy of 

detecting an immediate attack and responding to it. Regardless of whether attacks are 

carried out on a regular or irregular basis, the IDPS can adjust its learning parameters 

through fuzzy Q-learning to identify future attacks. The architecture of the proposed 

game-based FQL is dual, in that it has two phases (Figure 4.2). 

Phase 1: In the primary game scenario stage, player 1 (the sink node) utilizes the 

fuzzy Q-Learning algorithm to identify the level of disruption caused by the attacking 

player to the victim node, leading to anomalies such as low access or damage. For 

attacker player detection, the sink player adopts three strategies: catch, missed, and low 

catch, as elaborated in player strategies applied to the sink node. Finally, the sink node 

transmits an alarm event that contains malicious node information to the base station 

(player 3) via an adjacent link connected to the base station (Figure 4.2). The malicious 

information is pre-processed by the sink node to travel from phase 1 to 2 based on the 

alarm event beyond the default value threshold, in order to prepare a countermeasure 

strategy against the attacker through a defence mechanism.  

Phase 2: In the second phase of the game scenario, player 2 (the base station) 

employs the fuzzy Q-learning algorithm to confirm the malicious node’s behaviour. It 

checks the memory of player 1 or looks it up in a table and compares it with its memory 

in order to defend against the attacker. The detection player (sink node) and defence 

player (base station) coordinate their defence with each other to shield the wireless 

sensor nodes against the attacker player (attack/intrusion). 
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Figure 4.2: Model of a Cooperative Game-based IDPS and an attacker 

To highlight the proposed game-based FQL, the sink node and the base station 

are allocated a corresponding reward/incentive functional value, which is retained by 

the Fuzzy Q-learning IDPS. As such, a node’s evolving fuzzy state may be recorded and 

quantified through the fuzzy reward utility function as discussed in the player payoff 

function. When a node encounters an attack or receives an anonymous message, the 

sink node sends the related severity alarm event evidence and messages to the BS, who 

then analyses the critical data to adjust the FQL parameters. Based on the sink node 

information, the base station decides which nodes are under attack or at risk and elects 

whether to safeguard them or not. The BS previously set a severity alarm event 

threshold rate, v. Once the severity alarm value acquired by a node exceeds v, the FQL 

IDPS deems the node under attack or at risk and strengthens its defences to secure the 

cluster area in which the node is detected at the associated base station. 
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4.1.3 Possible attack categories 

In this thesis, the Open System Interconnect (OSI) model is classified into five 

layers (Akyildiz et al., 2002): Physical layer, Link/MAC layer, Network layer, 

Transport layer, and Application layer. The attacks in each layer are analysed by 

focusing on the flooding attack and its potential defences. In the proposed scheme, a 

specific kind of DDoS attack is created with respect to a flooding attack that affects 

cluster heads. The generated attack sends flooding UDP packets to diminish the cluster 

head’s energy.  

Table 4.1: Classification of Denial-of-Service attacks and defence at each protocol layer 

Protocol Layer Attack Defense Mechanism 

Application Layer Overwhelming (McGregory, 2013) Sensor tuning 

Data aggregation 

Path-based DoS (B. Li et al., 2009) Authentication and anti-

replay protection 

Deluge (reprogramming) attack Authentication and anti-

replay protection 

Authentication streams 

Transport Layer SYN (synchronize) flood (Bicakci et al., 2009) SYN cookies 

De-synchronization attack (Xing et al., 2010) Packet authentication 

Network Layer Spoofing, replaying, or altering routing control 

traffic or clustering message (Qazi et al., 2013) 

“Authentication and anti-

replay protection secure 

cluster formation” 

Hello floods (Khalil et al., 2010) “Pairwise authentication” 

“Geographic routing” 

Homing, black-hole attack (Khalil et al., 2012) Header encryption 

Dummy packets 

Link/MAC (medium 

access control) 

Jamming (Law et al., 2005) Authentication and anti-

replay protection 

Denial of sleep (Law et al., 2009) Authentication and anti-

replay protection 

Detect and sleep 

Broadcast attack 

protection 

Physical Layer Jamming (Z. Li et al., 2012) Detect and sleep 

Route around jammed 

regions 

Node tampering or destruction (Xing et al., 2010) Hide or camouflage 

nodes 

Tamper-proof packaging 
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Table 4.1 indicates the impact of such attacks on WSN layers as well as the 

defence mechanism. In this thesis, a type of DDoS attack is considered. It is 

characterized by the presence of an attacker, and is known as a UDP flooding attack. In 

the proposed model, a UDP flooding attack occurs based on a random function to 

compromise the CH in each cluster. This kind of DDoS attack is aimed at exhausting 

CH energy by sending flooding packets in a fraction of time (Ghosal et al., 2013).  

4.2 The architecture of cooperative game-based FQL IDPS 

The proposed game-based defence strategy is primarily a combination of the 

cooperative game theory and fuzzy Q-learning algorithm. The game-based detection 

and defence mechanism work to detect DDoS attacks, where the sink node and base 

station adapt to select the ideal strategy of detecting an immediate attack and respond to 

it. Regardless of whether the attacks are carried out on a regular or irregular basis, the 

IDPS can adjust its learning parameters through fuzzy Q-learning to identify future 

attacks. A comprehensive description of the theoretical and practical operation of the 

game theory and Q-learning modes, mainly concerning Fuzzy Q-learning, is provided 

later. Cooperative game-based architecture in a wireless network is proposed as well 

(Figure 4.3). 
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Figure 4.3: Game-based defense system architecture 

 

In the primary stage of the game scenario, player 1 (the sink node) utilizes the 

FQL algorithm to evaluate the contents of the attacker player’s level of access (i.e. low 

access, or damage). With regard to detection, the sink node player assumes three 

strategies, namely catch, missed or low catch. Upon completing the first stage, the sink 

node transmits an alarm to the base station (player 3) when the attacker assaults the 

sensor node. In the second phase of the game scenario, player 3 (the base station) 

employs the FQL algorithm to evaluate the attack records in order to defend against the 

attacker. The detection player (the sink node) and defence player (the base station) 

participate in a game via a 3D game interface to shield the wireless sensor nodes against 

the attacker player (the attack). 

4.2.1 Game Design 

In the proposed game theory method, it is assumed that the sink node can 

identify abnormalities in view of IDS1. Accordingly, in computer-generated WSNs, the 
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sink player or cluster head diffuses the alarm to the base station (IDS2) upon perceiving 

an anomaly. When the IDS1 receives an anomaly message, it acquaints itself with this 

sort of attack using the FQL detection algorithm and archives the information in its 

attack record database. The IDS2 attempts to respond to these attack records. The 

fundamental concepts of the proposed game theory, player strategies and player payoff 

function are introduced next.  

Player strategies 

The interactions between the G-FQL and attackers are split into two main 

categories (Tables 4.2 and 4.3 respectively). The first category represents a game 

between an attacker and sink node players, while the second type denotes a game 

between an attacker and base station player. The game play strategy between a sink 

node and an attacker with respect to IDS1 comprises:  

 

1) Best choice for sink: The sink node chooses to identify the attacker, and the 

invader opts to attack. 

2) False negative: The sink node chooses not to identify the attacker, and the 

attacker strikes.  

3) Medium choice: The sink node chooses to identify the attacker with low catch, 

and the attacker attacks. 

4) False positive: The sink node elects to detect the attacker, and the attacker 

chooses not to attack. 

5) Least damage: The sink node chooses not to identify the attacker, and the 

attacker chooses not to attack. 

6) False positive: The sink node chooses to identify the attacker with low catch, 

and the attacker chooses not to attack.  

 

Table 4.2: Game play between a sink node (IDS1) and an attacker 

Game play between sink node 

and attacker 

Sink 

Catch Missed Low Catch 

Attacker 
Attack 

(a11,b11) = Best 

choice for sink 

(a12,b12) = False 

Negative 

(a13,b13) = Medium 

choice for sink node 

No attack 

(a21,b21) = False 

Positive 

(a22,b22) = Least 

Damage 
(a23,b23) = False positive 
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The game strategy between a base station and an attacker concerning IDS2 is defined 

as:  

1) Best choice for base station: BS elects to defend and the attacker decides to 

attack;  

2) False positive: BS elects to defend, and the attacker chooses not to attack; 

3) False negative: BS elects not to defend, and the attacker attacks; 

4) Least damage: BS elects not to defend, and the attacker chooses not to attack. 

Table 4.3: Game play between a base station (IDS2) and an attacker 

Game play between base station and 
attacker 

Base station 

Defend Do not defend 

Attacker 
Attack (a11,c11) = Best choice for sink (a12,c12) = False Negative 

No attack (a21,c21) = False Positive (a22,c22) = Least Damage 

 

The player payoff function 

In this thesis, a payoff value is defined as a player reward function if it protects 

the WSN. In other words, when the IDPS fails to defend the WSN in case an invader 

attacks, the player’s payoff would be different. The three player payoffs are expressed 

as A, B, and C, where 𝑎𝑖𝑗, 𝑏𝑖𝑗, and 𝑐𝑖𝑗 denote the sink node, attack and base station 

payoff, respectively. Table 4 displays the payoff matrix, utility function as well as a 

description of the utility function. 

Table 4.4: The payoff matrix and utility functions 

Payoff 
function 

Payoff 
matrix 

Utility function Description of Utility function 

Attacker’s 
payoff 
function 

A =

[𝑎𝑖𝑗]
2∗3

 

𝑎𝑖𝑗

= 𝐼𝑅
− 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  

𝐼𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑠𝑒𝑛𝑡
 

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑡𝑡𝑎𝑐𝑘 

Sink 
Node’s 
payoff 
function 

B =

[𝑏𝑖𝑗]
2∗3

 

𝑏𝑖𝑗

= 𝑃𝑑

− 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡  

𝑃𝑑= (
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
) 

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡

= 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑛𝑘’𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

Base 
station’s 
payoff 
function 

C =

[𝑐𝑖𝑗]
2∗2

 

𝐶𝑖𝑗

= 𝑃𝑘 − 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑  

𝑃𝑘 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑘𝑖𝑙𝑙𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 

𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑

= 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑠𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑒𝑓𝑒𝑛𝑠𝑒 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 
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Attacker’s payoff function 

The attacker’s payoff matrix A = [𝑎𝑖𝑗]
2∗3

 is defined as follows: 

𝐴𝑖𝑗= [
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
]

𝑖∗𝑗
 

where  a11 = IR − Costprocessing represents (
Number of malicious attacks

Total malicious attacks sent
) −

 ( processing time for attack), which is when an attacker and the sink node choose the 

same sensor nodes to attack and detect, respectively (AS1, SS1). The attacker’s original 

utility value of U(t) will be deducted from the cost of attacks. a12 = IR − Costprocessing 

represents an instance when the attacker attacks and the sink node does not detect it 

correctly. However, a13 = IR − Costprocessing, means that an attacker hits and the sink 

node detects a compromised node with a low rate of detection.  a21 = Costprocessing, 

signifies that an attacker does not attack at all, but the sink node falsely detects the 

attacker. By subtracting IR =  (
Number of malicious attacks

Total malicious attacks sent
) from the original utility 

function, a22 = Costprocessing signifies that the attacker and sink node choose two 

different strategies, neither of which causes an attack nor detects an attack correctly, 

respectively. In this case, the cost of attacking one node from the original utility is 

ignored. When a23 = Costprocessing, it signifies that the attacker does not attack and the 

sink node detects the attack with low probability/performance.  

Sink node payoff function 

By denoting the sink node’s payoff with matrix 𝐵 = [𝑏𝑖𝑗]
2∗3

we get: 

𝐵𝑖𝑗= 

[
𝑏11 = 𝑃𝑑 − 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡 𝑏12 = 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡 𝑏13 = 𝑃𝑑 − 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡

𝑏21 = 𝑃𝑑 − 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡 𝑏22 = 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡 𝑏23 = 𝑃𝑑 − 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡
]

𝑖∗𝑗

 

where: 
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𝑃𝑑 = (
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑛𝑜𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
) 

𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡:  is the cost of attack detection during sink processing 

Base station payoff function 

By describing the base station’s payoff function with matrix C= [𝑐𝑖𝑗]
2∗2

, it is defined 

as: 𝐶𝑖𝑗= [
𝐶11 𝐶12

𝐶21 𝐶22
]

2∗2

 

where 𝐶11 = 𝑃𝑘 − 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑 denotes 

(𝐶𝑜𝑠𝑡 𝑜𝑓𝑘𝑖𝑙𝑙𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘𝑠) − (𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑓𝑒𝑛𝑑𝑖𝑛𝑔 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑎𝑡𝑡𝑎𝑐𝑘), which is 

when a base station and attacker opt for the same sensor nodes to attack and defend, 

respectively. 

Reward function analysis 

According to a three-player game, two constant reward values are defined as: R1 

for the gain of the IDS1 when the sink node identifies the WSN, and reward value R2, 

or positive reward, as the gain of the IDS2 when the base station protects the WSN. If 

the sink node does not identify the WSN during the attack, the IDS1 reward would be –

R1 (a negative reward). Likewise, if the base station fails to defend the WSN during an 

attack, the IDS2 payoff would be –R2. An explanation of the correlated 

reward/incentive functions of a sensor node and base station is provided in Table 4.5. 

To detect a potential, future DDoS attack on a sensor node, Fuzzy Q-learning is applied 

to enhance the self-learning ability of the IDS1 and IDS2 processes. The Fuzzy Q-

learning supplies the IDPS with a learning mechanism, but the self-learning ability of 

the Q-learning IDS can evolve during the learning process, something that takes 

learning time, especially at the beginning. Through such self-iterative learning, IDSs are 

capable of protecting sensor nodes from recognizable potential attacks in ongoing, 

active WSNs. 
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Table 4.5: Notations associated with the reward functions of a sink node and base station 

T T = {0, 1, …, k −1} denotes the set of time in a Markov process 

S The fuzzy state space of a sensor node, where the initial state is S0, and the next state of si is 

si+1 for I ∈ T 

D1, 

D2 

The set of detection strategies  

-R1,-

R2 

The payoff incurred at a false negative incident 

Fuzzy Q-learning is a discrete-time fuzzy-based Markovian procedure. When the 

process is at time t and fuzzy state FSt, the Decision Maker may choose to perform a 

fuzzy action. The process responds with a corresponding fuzzy reward for the decision 

maker at time (t+1) and moves to fuzzy state Fst+1. The interaction details and 

information are as follows. Based on the Fuzzy Q-learning concept, a function fx(1): 

FS1 → FD1 × FA1 is defined to demonstrate the detection and attack strategies for node 

x at a specific interval in IDS1. For instance, fx(state 1) = (d1, a1) depicts (d1, a1), 

which is a combination of the detection and attack strategies when the sink node transits 

from state st to st+1, and the reward established by x is defined as R1(fx(st)), which is 

given in (Eq. 4.1): 

𝑅1(𝑓𝑥(𝑆𝑡))

= {

0          (𝑖𝑓 𝑃𝑑 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤) 𝑜𝑟 (𝑖𝑓 𝐼𝑅 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

 𝑅1      (𝑖𝑓 𝑃𝑑 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤) 𝑜𝑟 (𝑖𝑓 𝐼𝑅 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

−𝑅1        ( 𝑖𝑓 𝑃𝑑 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = ℎ𝑖𝑔ℎ)𝑜𝑟  (𝑖𝑓 𝐼𝑅 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

(4.1)  

In the first case of Eq.4, no detection and no attack are defined. Accordingly, the 

reward is fixed at 0. The second case is when the sink node detects an attack with high 

accuracy, and its reward is R1. In the last case, 

(𝑖𝑓 𝑃𝑑 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = ℎ𝑖𝑔ℎ) 𝑜𝑟 (𝑖𝑓 𝐼𝑅 =

𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤), where the sink node employs strategy 𝑃𝑑 with low 

processing cost and high detection accuracy to identify attack strategy IR with low 

attack and low processing cost, the reward is –R1. The first term, (𝑃𝑑), represents the 

gain of employing the sink node’s strategy to detect attack strategy ai, 
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and (𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ) represents the cost of using the strategy. The second term, (𝐼𝑅), 

represents the gain of utilizing the attack strategy with the processing cost for the 

attacker. 

In the IDS2 scenario, the reward function incorporates the shield policy and 

attack strategy when the BS transits from state st to st+1, and the reward received by the 

base station is defined as R2(fx(st)), as given in (Eq. 4.2): 

𝑅2(𝑓𝑥(𝑆𝑡))

= {

0       ( 𝑖𝑓 𝑃𝑘 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑 = 𝑙𝑜𝑤) 𝑜𝑟  (𝑖𝑓 𝐼𝑅 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

 𝑅2   (𝑖𝑓 𝑃𝑘 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑 = 𝑙𝑜𝑤)𝑜𝑟  (𝑖𝑓 𝐼𝑅 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

−𝑅2       (𝑖𝑓 𝑃𝑘 = 𝑙𝑜𝑤 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑑𝑒𝑓𝑒𝑛𝑑 = ℎ𝑖𝑔ℎ)𝑜𝑟  (𝑖𝑓 𝐼𝑅 = ℎ𝑖𝑔ℎ 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑙𝑜𝑤)

     (4.2)  

In Eq. 4.2, the first case signifies no defence and no attack. Therefore, the 

reward is set to 0. In case two, when the base station defends against an attack with high 

defence strategy, its reward is R2. The last case indicates that the base station uses 

strategy 𝑃𝑘 with high processing cost and low cost of defending against an attack 

strategy, therefore the reward is –R2. The first term (𝑃𝑘) represents the base station’s 

gain of using the strategy to eradicate attack strategy ai, and (𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ) signifies 

the cost of using the strategy. The second term (𝐼𝑅) denotes the gain of applying the 

attack strategy with the processing cost for the attacker. 

It is assumed that the state of node x is s0 at t = 0. If the defence and detection 

strategies d1, d2 are taken against an attack strategy a, the state of node x evolves from 

s0 to s1, and node x (with respect to the sink node and base station) receives a reward R 

(fx(s0)) and so on (Eq.6). In Q-learning, the state of node x transits from s0 to s1 and 

eventually to sp where 1 ≪p≪k −1, where k signifies the efficiency of IDS1 using the di 

strategy in detecting and defending against an aj attack strategy. Thus, the accumulated 

reward received by x is: 
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𝑅𝑥
𝑝 = ∑ 𝛾𝑝 𝑝

𝑡=0 𝑅 (𝑓𝑥(𝑠𝑝))                                       (4.3)

 where γ∈  [0, 1) is the discount rate parameter. An attack strategy, and the 

objective of IDS2, is to select a suitable defence policy against an assault to accumulate 

rewards. It is worth noting that Rx
p
 will be calculated as two sub-rewards, such as R1 for 

the base station and R2 for the sink node. An instance of the reward function given to 

the cluster head (sink node) and attacker is the total amount of positive reward signals 

received when no attack has occurred and no alarm is raised (True Negative), and the 

number of correct invasion cases detected by the system (True Positive). The game 

theory phases include: 

• Phase 1: The sink node monitors message attacks through the game-based FQL 

operation as the first step defined by IDS1 (see Table 4.2), after which it 

conveys the message to the base station for the second step function defined by 

IDS2 (Table 4.3). 

• Phase 2: Upon receiving an abnormal signal from the sink node, IDS2 applies 

its detection fitness test in conjunction with the knowledge database to assess 

attack patterns and severity. This evaluation permits IDS2 to regulate the overall 

defence strategy in order to mitigate the DDoS attack. The IDS2 function uses 

the fuzzy game theory principle to select an appropriate defence tactic to shield 

the message-consuming sensor node. The IDS2 also informs the affected sink 

node that it needs to protect itself against the offending attack pattern. 

• Phase 3: The sink node verifies the current state of IDS play with the sensor 

node. If the sink node still detects an irregularity, it is likely that the IDS2 

operation opted for the wrong defence strategy, and consequently, the sink node 

advises the IDS2 to revise its detection strategy. If the attack pattern alert count 

at the sensor node decreases in number, the sink node systematically endeavours 
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to confirm the current state of IDS play with the sensor node until the attack 

condition is resolved and returns to the correct defence strategy state. 

• Phase 4: The sink node notifies IDS2 that the attack at the sensor node has been 

successfully counteracted and the attack has ceased. 

• Phase 5: The IDS2 thus concludes defending the sensor node. 

Utility function 

To appraise the efficacy of the links determined by G-FQL and to determine the 

rule applicability at every point in time, Eq.(4.4) was utilized in this thesis, as suggested 

by Liao et al. (Huang et al., 2013). In Table 4.6 the utility function parameters are 

described. 

U = ρ ∗ SP − β ∗ FN − θ ∗ FP                                (4.4) 

Table 4.6: Utility function parameters 

Parameters Explanation 

𝑈 Is a utility 

𝜌 Symbolizes the weight of effective prediction, q = 

0.75 

𝑆𝑃 Characterizes the true confidence rate of attack 

patterns. 

𝛽 Signifies the weight of failed estimates (attack but no 

defense), b = 1 

𝐹𝑁 Represents false negative of attack patterns - there are 

attacks but no defense 

𝜃 Denotes the weight of failed predictions (defense but 

no attack), h = 1 

𝐹𝑃 Represents false positive of attack patterns - there is 

defense but no attack 

The game principle approach entails detection accuracy with low time 

complexity, which only subsequently begins to formulate a shield policy. The major 

weakness of the game theory is that if attacks recur over a short period, a considerable 

amount of time is consumed in the detection phase, something that deteriorates the 

defence. It can be said that the detection precision is low while the false alert rate is 

high. This problem is a worst-case scenario, but it can be addressed using the 
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Cooperative-FQL. Its principal contribution is identifying the probability of future 

attacks aimed at a wireless sensor node. For frequent attacks occurring over a short 

time, multi agent-based FQL was adopted to handle the excessive time spent on 

detection. The aim of the proposed FQL is to obtain high detection accuracy with a low 

false alarm rate.  

4.2.2 Fuzzy Q-learning algorithm 

To overcome the required complex detection and defence time as well as 

detection precision issues in our game theory method, the FQL algorithm is applied in 

this thesis to detect probable future points of attack beforehand. To optimize Q-learning 

algorithm performance from the action selection method and reward function 

perspectives, fuzzy min-max methods are employed. In the proposed scheme, the fuzzy 

min-max action selection and reward function with conventional Q-learning are 

evaluated. High detection accuracy performance was revealed. For this reason, FQL is 

employed to reinforce a system’s learning capability. 
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Figure 4.4:  Block diagram of the FQL optimization system 
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The FLC inputs are provided in two scenarios through the switching process. In 

the first scenario, which is a game between a sink node and attacker, we 

have 𝑃𝑑=(
𝐶𝑜𝑟𝑟𝑒𝑐𝑡  𝑎𝑡𝑡𝑎𝑐𝑘 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑛𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
), the cost of attack detection during sink 

processing (𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑒𝑡𝑒𝑐𝑡) as per the sink node utility function and 𝐼𝑅 =

 (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑠𝑒𝑛𝑡
) as well as 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑡𝑡𝑎𝑐𝑘 

with respect to the attacker utility function. These correspond to the fuzzy state of 

network S1 (t) from the first scenario 𝑆1(𝑡) = [𝑃𝑑, 𝐶𝑜𝑠𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝐼𝑅]. In the second 

scenario, the game between the base station and an attacker, 

𝑃𝑘 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑘𝑖𝑙𝑙𝑖𝑛𝑔 𝑎𝑡𝑡𝑎𝑐𝑘, Cost defend = 

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑠𝑡 𝑑𝑢𝑟𝑖𝑛𝑔 𝑑𝑒𝑓𝑒𝑛𝑐𝑒 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑎𝑡𝑡𝑎𝑐𝑘 adapts as a base station utility function 

while 𝐼𝑅 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑠𝑒𝑛𝑡
)  and 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑡𝑡𝑎𝑐𝑘, 

regarding the attacker utility function, correspond to the fuzzy state of network S2(t) 

from the first scenario: 𝑆2(𝑡) = [𝑃𝑘, 𝐶𝑜𝑠𝑡_𝑑𝑒𝑓𝑒𝑛𝑑, 𝐼𝑅]. 

The FLC output is given by the increment in states and represents the action of 

the sink node and the base station A(t). The reward signal, R (t), is built from FLC and 

is measured in both modes of adjacency to test if the sensors experience attacks in 

detection mode and the base station correctly defends against attacks. The linguistic 

variables Pd, Cost_ Process, and IR act as inputs for the first scenario, while the 

linguistic variables Pk, Cost_defend, and IR serve as inputs for the second scenario. 

The Detect Confidence (DC1) behaves as output for the first scenario and the 

Defend Confidence (DC2) acts as output for the second scenario. They are both applied 

in the experiments (Table 4.7). 
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Table 4.7: Linguistic variables for fuzzy set input and output 

Type of Scenario Variable Attribute Membership function 

Attacker and sink node 
Input 

Pd Low Med High 

Cost process Low Med High 

IR Low Med High 

Output Detection Confidence (DC1) Low Med High 

Attacker and base station 
Input 

Pk Low Med High 

Cost defence Low Med High 

IR Low Med High 

Output Defence Confidence (DC2) Low Med High 

Two fuzzy sets are identified in all inputs and outputs, whose linguistic terms are 

‘Low’ (L) and ‘High’ (H). The fuzzy reward was elaborated in Section 4.1.3. Hence, the 

objective is to determine the total reward value over time. If the defence and detect 

strategy di is used against attack strategy aj at time p and the state of node x transits 

from St to Sp+1, the Q-learning function for IDS1 is Q: S×D×A→R as in: 

 

𝑄(𝑆𝑝, 𝑑𝑖, 𝑎𝑗) ← 𝑄(𝑆𝑝, 𝑑𝑖, 𝑎𝑗) +  𝛼 [𝑅 (𝑓𝑥(𝑠𝑝)) + 𝛾𝑅𝑥
𝑝+1 − 𝑄(𝑆𝑝, 𝑑𝑖, 𝑎𝑗)]                (4.5) 

where α ∈  (0, 1] is the learning rate factor. In this scheme, the Q-function is 

applied in dual situations, such as IDS1 and IDS2. In each state, the reward function 

rewards the cluster head (sink node) using the Q-learning method and the base station 

also obtains the reward. G-FQL attains the final reward value of each player. A learning 

rate of zero means the system no longer learns anything new, but a value of 1 would 

prompt the system to adjust its accuracy strategy as it self-learns from new attacks and 

to update the information in its knowledge base. If the reward value is below the 

threshold v, FQL IDS1 deems node x secure; otherwise, it considers the node insecure 

and takes suitable detection action against the attack. Coinciding with this evaluation, 

FQL IDS2 takes appropriate defensive action against any potential attacks.  
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4.3 Chapter Summary 

In this chapter, the interaction between attackers, sink nodes and the base station 

was studied, after which a novel, Game-based FQL, cooperative game theoretic defence 

mechanism was proposed. This system combines the cooperative-based game theory 

with fuzzy Q-learning algorithmic elements. As such, the collaboration between the 

detection sink node player and response base station players is reinforced to defend 

against an incoming DDoS attack that may cause congestion and downtime in network 

communication due to flooding packets. The Game-FQL model is a triple-player game 

strategy construed as two-player, providing double defence against a single attacker. It 

adds confidence and establishes a reputation as extremely apt in tracking attackers and 

defending the system. This strategy-based cooperative game adapts to continuous self-

learning from past attacks and the fuzzy Q-learning decision making process behaviour 

to defeat attackers. By defining incentives for cooperation and disincentives for 

fraudulent behaviour, it has been determined that repeated interaction sustains 

cooperation, builds confidence and enhances reputation, another benefit of Game-FQL. 

Game theory-based Fuzzy Q-learning (Game-FQL), a mechanism in IDPS, is an 

invaluable tool for progressively securing next-generation complex heterogeneous 

computing and networking environments against sophisticated attacks and attackers, 

beyond what is encountered today. A future initiative could be to extend the proposed 

Game-FQL mechanism by incorporating data from various attack types and sources to 

further enhance its decision making capabilities in order to impede existing or new 

attacks.  
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Chapter 5 : FRAMEWORK EVALUATION 

This chapter reports on the data collection method for the evaluation of proposed 

Game based IDPS framework. It explains the tools used for testing the proposed 

framework, data generating technique and the statistical method used for the processing 

of data.  

The chapter is organized into nine sections. Section 5.2 explains the 

experimental setup and programming tools used for the implementation and testing of 

the proposed Game based FQL- IDPS framework and the statistical method used for the 

compilation of empirical data. Section 5.3 presents the data generation and analysing the 

flood attack strategy in evaluating the execution of IIDPS on network. Section 5.4 

summarizes data analysis of the game based FQL in evaluating IIDPS in terms of 

detection accuracy. 

Section 5.5 presents the analysis of game based FQL for testing the defense rate 

of G-FQL framework. Section 5.6 presents the analysis for number of live nodes during 

detection and prevention. Section 5.7 evaluates the energy consumption over time and 

Section 5.8 analyses the energy consumed by different deployed nodes in G-FQL IDPS. 

Finally, Section 5.9 extracts conclusive remarks.  



126 
 

5.1  Simulation and analysis 

5.1.1 General tools 

To carry out the experiments in the different evaluation stages, this study used 

open source simulation software, namely network simulator version 2 (NS2). The 

reason for utilising the applications was their openness and public availability, as well 

as being free to use. The descriptions of the applications are briefly explained as 

follows: 

In 1996-97, network simulator version 2 (NS2) was initiated based on a 

refactoring by Steve McCanne(Group, 2004). Use of Tcl was replaced by MIT's Object 

Tcl (OTcl), an object-oriented language of Tcl. The core of ns-2 is also written in C++, 

but the C++ simulation objects are linked to shadow objects in OTcl and variables can 

be linked between both language realms. Simulation scripts are written in the OTcl 

language, an extension of the Tcl scripting language. Presently, ns-2 consists of over 

300,000 lines of source code, and there is probably a comparable amount of contributed 

code that is not integrated directly into the main distribution (many forks of ns-2 exist, 

both maintained and unmaintained). It runs on GNU/Linux, FreeBSD, Solaris, Mac OS 

X and Windows versions that support Cygwin. It is licensed for use under version 2 of 

the GNU General Public License. 

5.1.2 Design Assumptions  

To facilitate and conduct experiments in this thesis, along with the specific 

security model in the proposed framework, specifically, given the lack of specific 

information on resources, some assumptions had to be made to the attack and game 

players’ scenario. 

The first assumption is given for players in our scenario. In this scheme, we 

assigned the player one as a base station, player two as a sink node, and player three as 

http://en.wikipedia.org/wiki/OTcl
http://en.wikipedia.org/wiki/OTcl
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Cygwin
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
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an attacker (See Chapter 4). The second assumption is to create a routing protocol. In 

this thesis, a LEACH protocol was adopted and the agents or nodes communicate 

through this protocol. Distributed Denial-of-Service (DDoS) attack is considered as a 

third assumption. Due to lack of real dataset, in this thesis, a generator function is 

defined to create flooding attacks during a period of time.  

5.1.3 Simulation Setup 

The Low Energy Adaptive Clustering Hierarchy (LEACH) protocol was utilized 

in the simulation, as it most closely reflects WSN in practice and it is also capable of 

dealing with energy consumption concerns in WSNs. The simulations were run for 

1000s with LEACH as the routing protocol, the initial access point energy was 100 

joules, the effective transmission range of the wireless radio for the access point was 

100m, the sink node transmission range was 100m, the common node transmission 

range was 50m and the transport protocol is given in Figure 5.1. In addition, the 

cooperative game-based IDPS with fuzzy Q-learning was employed to hasten the 

simulation. 
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Attack

C1 

Sink node

Attack

C2 

 
Figure 5.1: Simulated WSN environment 

Table 5.1 presents the WSN configuration along with the set of parameters 

applied in NS-2. However, in practical WSN security operation, minimizing energy 

usage to conserve energy and maximize detection accuracy as much as possible is vital 

when designing and running G-FQL IDPS. The results obtained from the proposed 

algorithm are compared with those from Fuzzy Logic Controller, Q-learning, and Fuzzy 

Q-learning as well as the Markovian Game  (Huang et al., 2013) . 

Table 5.1: Wireless sensor network parameters in NS-2 

Wireless Sensor Network Parameters  Values 

Access Point 1 

Common Nodes 200 

Sink Node in each Cluster 1 

Routing Protocol LEACH 

Scenario Size 100*100 

Simulation Time 1000s 

Transport Protocol UDP 

Access Point Initial Energy 100 joules 

Access Point Transmission Range 100 meters 

Sink Node Initial Energy 10 joules 

Sink Node Transmission Range 70 meters 

Common Node Initial Energy 10 joules 

Common Node Transmission Range  50 meters 
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5.1.4 Generating and analysing the flood attack strategy 

The purpose of this section is to analyse the quantitative behaviour of attacks in 

the UDP protocol layer. In the present experiments, normal UDP traffic was initially 

considered, after which the attack intensity under flood attacks with UDP traffic was 

explored. Subsequently, the total energy consumed before and after attack was 

examined. The accuracy of detection and defense as a result of executing the G-FQL 

algorithm was finally assessed. To generate an attack, a random function was employed, 

which selected subject nodes from each cluster to attack. The selected nodes adjusted 

their functions to send flooding packets to the cluster head. Algorithm 5.1 displays the 

attack strategy. 

Algorithm 5.1: Attack strategy 

1. Start 

2. Min(r)=0 %% Initial round simulation (Max(r)=n) 

3. While (r<>n) 

4. Decide r round's cluster head randomly 

5. Cluster head advertises schedule time to all its common nodes 

6. Generate attack node randomly 

7. Attack node receives schedule time message from its cluster head 

8. Attack node starts to compromise victims 

8.1. Attack node sends flooding packets to its cluster head in this round 

8.2. Victim (cluster head) receives data more quickly than normal state, so its energy will decrease rapidly 

9. End. 

 

In the experiment, an attack with UDP attack intensity was implemented. Figure 

5.2 indicates flooding attack intensity per packet length. Greater attack intensity 

percentage obviously occurred between 200 and 300s, at which time packet length also 

reached elevated values. In Figure 5.3 it appears that UDP attack intensity affected the 

WSN energy, besides the fact that energy was consumed in proportion to attack 

intensity. For example, for attack intensity between 100 and 150s, the most energy was 

consumed.  
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Figure 5.2: Effects of UDP attack intensity on packet size 
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Figure 5.3: Victim node’s energy level over time 

In the present research work, three sets of experiments were conducted to 

examine the effects of attack detection accuracy and defense rate against attacks based 

on the Fuzzy Logic Controller, Q-learning algorithm, Fuzzy Q-learning and Game 

theory-based Fuzzy Q-learning algorithms. The cost function was calculated according 

to Eq. 4.7.  

5.1.5 Analysis of the game-based FQL IDPS in terms of detection accuracy 

The proposed game-based Fuzzy Q-learning (G-FQL) algorithm with the cost 

function 𝑈 = 𝜌 ∗ 𝑆𝑃 − 𝛽 ∗ 𝐹𝑁 − 𝜃 ∗ 𝐹𝑃 was compared with existing soft computing 

methods (Fuzzy Logic Controller, Q-learning, and Fuzzy Q-learning) with respect to the 

attack detection precision of modeled Denial-of-Service attacks. A comparison between 

the average utility function and G-FQL with cost maximization indicates that the latter 

yielded an improvement of 3.29% with 1.86 standard deviation as opposed to the FQL 

algorithm with 0.83 (Table 5.2).    
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Table 5.2: Simulation results of the detection algorithm for DDoS attacks 

Percenta

ge of 

Attack 

(%) 

FLC Q-learning FQL Game-based FQL 

SP 

% 

FP 

% 

FN 

% 

Utility 

Function 

SP 

% 

FP 

% 

FN 

% 

Utility 

Function 

S 

P 

% 

FP  

% 

FN 

% 

Utility 

Function 

SP  

% 

FP 

% 

FN 

% 

Utility 

Function 

1 49.50 1.90 2.40 56.38 76.00 1.40 1.20 54.40 80.10 1.20 1.10 57.78 83.20 1.20 1.10 60.10 

5 49.80 1.98 2.80 56.07 76.70 1.60 1.40 54.53 81.20 1.40 1.30 58.20 83.40 1.30 1.20 60.05 

10 50.01 2.00 3.20 55.71 76.90 1.90 1.70 54.08 82.50 1.90 1.70 58.28 84.30 1.50 1.60 60.13 

15 51.20 2.04 3.60 56.56 77.80 2.10 2.00 54.25 83.70 2.10 2.00 58.68 85.60 1.70 1.80 60.70 

20 50.90 2.40 3.90 55.38 78.00 2.40 2.20 53.90 83.90 2.40 2.20 58.33 87.90 1.90 2.00 62.03 

25 51.90 2.80 4.10 55.93 78.90 3.10 2.70 53.38 84.20 2.60 2.30 58.25 88.30 2.10 2.30 61.83 

30 52.70 2.90 4.20 56.68 80.20 3.40 3.00 53.75 85.80 2.80 2.60 58.95 89.70 2.40 2.50 62.38 

35 49.40 3.00 4.70 51.70 82.80 3.90 3.20 55.00 86.40 2.90 2.70 59.30 90.50 2.60 2.70 62.58 

40 49.50 3.01 5.00 51.37 82.90 4.20 3.80 54.18 87.70 3.20 3.00 59.58 91.70 3.10 3.00 62.68 

45 50.02 3.20 5.30 51.38 83.70 4.90 4.10 53.78 88.50 3.40 3.20 59.78 92.40 3.20 3.40 62.70 

50 51.04 3.50 5.60 51.90 83.90 5.20 4.80 52.93 89.60 3.90 3.50 59.80 94.20 3.30 3.70 63.65 

55 50.30 3.70 5.80 50.48 84.90 5.60 5.10 52.98 90.40 4.10 4.00 59.70 96.50 3.50 3.80 65.08 

60 49.30 3.70 5.90 49.08 85.00 5.80 5.70 52.25 92.40 4.50 4.30 60.50 98.20 3.70 3.90 66.05 

Average 51.20 2.78 4.35 53.74 80.59 3.50 3.15 53.80 85.88 2.80 2.60 59.01 89.68 2.42 2.54 62.30 

Std. Dev.  1.03 0.66 1.15   2.76   3.37 1.50 1.47   0.75   3.71 1.01 0.98   0.83   4.86 0.87 0.98   1.86 

It is evident that G-FQL with a cooperative mechanism attained the utmost detection accuracy gain. It can also be inferred from Figure 5.4 that 

detection accuracy per percentage of attack is higher with the G-FQL algorithm than the other methods. 
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Figure 5.4: Comparison of detection accuracy values 

In Figure 5.4, the X-axis shows the percentage of malicious nodes in an attack, 

and the Y-axis indicates the accuracy rate. At higher attack frequencies, the proposed 

method (Game-based FQL) displays greater accuracy scores. 

5.1.6 Analysis of game-based FQL IDPS in terms of Defense Rate  

The proposed Game-FQL method was weighed against that of Huang et al.  

(Huang et al., 2013), who used the game theory and Markovian IDS with an attack-

pattern-mining algorithm. According to Huang et al.’s  (Huang et al., 2013)  empirical 

results, the defense rate effectiveness of non-cooperative-based Markovian IDS with an 

attack-pattern mining algorithm for 60% of malicious nodes in a network and two sink 

nodes ranged between 72% and 97% (Figure 4.9). With the proposed game-based FQL 

IDPS, the successful defense rate was between 79% and 98%, as per Figure 5.5 as well. 

It can be concluded that integrating the game theory with the Fuzzy Q-learning 

algorithm outperforms individual defense schemes. 
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Figure 5.5: Game-based FQL in terms of accuracy of defense rate under attack trends 

Figure 5.5 points out that the successful defense rate values for Huang et al.’s 

model  (Huang et al., 2013) and the proposed methods decreased from 100% to 87% 

when the anomaly percentage increased. However, the proposed method gained the 

advantage of a successful defense rate due to the higher percentage of malicious nodes 

detected compared to Huang’s lower success rate. It can thus be deduced that by 

integrating the game theory with the Fuzzy Q-training method, performance surpasses 

that of any other individual defense approach. 

5.1.7 Analysis of game-based FQL IDPS in terms of number of live nodes 

This experiment was conducted to evaluate the performance of the Game-FQL 

algorithm in terms of number of live nodes during the simulation runtime. In the current 

scheme, the number of sensor nodes was 200. Figure 5.6 displays the number of live 

nodes for different algorithms throughout simulation runtime. The simulation outcomes 

indicate the number of live nodes at the end of the simulation time (1000s), according to 

which, the number of live sensor nodes in the proposed Game-FQL method is 

0 5 10 15 20 25 30 35 40 45 50 55 60
70

75

80

85

90

95

100

Percentage of Malicious Nodes in WSN

S
u

c
c

e
s
f
u

l
 
D

e
f
e

n
s
e
 
R

a
t
e

 

 

Liao model

Game-FLQ



134 
 

significantly greater than existing algorithms. Game-FQL maintains 50 live nodes 

against an attack in comparison to 42, 32, and 21 live nodes for FQL, QL, and FLC, 

respectively. 

 
Figure 5.6: Number of live sensor nodes during simulation runtime (ms) 

 

The procedure of adjusting rules according to FLC-based DDoS attacks is more 

time-consuming, and the attacker defeats a high number of nodes during FLC detection 

(Baig et al., 2010). Q-learning-based DDoS attack detection is capable of handling 

minor-class DDoS attacks, but the multi objective procedure or major features of a 

DDoS attack consume maximum resources, especially in a real-time environment (Liu, 

2008). Fuzzy Q-learning-based DDoS attack detection utilized the min-max fuzzy 

method to enhance the classification scheme. The min-max fuzzy classifiers perform 

well with a reduced dataset, but inaccurately when the high volume of traffic increases 

further and the fuzzy IDPS may crash. In addition, prior knowledge of data distribution 

is required for the FQL algorithm. In the Fuzzy Q-learning algorithm, observation is 

limited by one single classifier. Therefore, this algorithm fails due to high volumes of 

real-time traffic. In the currently proposed method, the cooperative policy evaluates the 
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proficiency of an agent to optimize the cost function based on weight assignment 

mechanisms for real-time DDoS attack detection. The countermeasure mechanisms 

result as modules to be applied in Game-FQL architecture and system implementation 

to accelerate the detection and defense learning process in a fraction of the usual time. 

Thus, the Game-FQL preserves a greater number of sensor nodes during simulation.   

5.1.8 Analysis of game-based FQL IDPS in terms of energy consumption over time 

In this experiment, the energy consumed by the Game-FQL algorithm during 

DDoS attacks on sensor nodes in comparison to FLC, QL, and FQL is studied. Figure 

5.7 provides the comparison between the mentioned algorithms in terms of total energy 

consumed by sensor nodes. 

 

 

Figure 5.7: Total energy consumption versus number of sensor nodes under malicious attack 

In existing detection, the players (sink node and base station) partake in 

activities such as local sensing and data reporting, which consume additional energy. 
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efficiency needs to be considered in cooperative sensing schemes. To address this issue, 

the cooperative game-based FQL method enhances energy efficiency via optimization.  

5.1.9 Analysis of the energy consumed by different deployed nodes in the game-FQL  

The impact of number of deployed sensor nodes on energy consumption is 

shown in Figure 5.8. It is observed that with an increasing percentage of deployed 

nodes, the proposed Game-FQL is able to consume the total amount of energy in 

comparison with FQL, QL, and FLC.  

 
Figure 5.8:Total energy consumption versus number of sensors deployed in a network 

Finally, Figure 5.8 depicts the total energy consumed with varying numbers of 

sensor nodes deployed in the network.  The experiment was run for 40, 80, 120, 160, 

and 200 nodes. As expected, when more nodes are present in the network, the energy 

consumption rate is lower than other comparable methods. This is attributed to the fact 

that the proposed Game-based FQL agents prefer to maximize their own utility function 

by means of cooperating learning algorithm to avoid the energy consumption by sensors 

from each cluster.  However, it would be interesting for the cooperative Game-FQL 
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solution to be implemented, for instance, to “BEE-C: A bio-inspired energy efficient 

cluster-based algorithm for data continuous dissemination in Wireless Sensor 

Networks” (da Silva Rego et al., 2012), to verify the energy consumption for intrusion 

detection and prevention. 

5.1.10  Analysis of the computational time in the game-FQL  

Preprocessing time includes the time spent in feature extraction and 

normalization. The training time depends on the number of times the classifier needs 

training which in turn depends on the mean square error between iterations reaching 

goal minimum. Testing time includes the time spent in testing the unlabeled instances 

by weighted mean. Table 5.3 shows the performance comparison of the G-FQL in terms 

of consuming time obtained during the experiments. From Table 5.3, it can be realized 

that the training time of G-FQL is similar to FQL, but it consumes more testing time 

than the FLC, Q-learning, and FQL. Also, the computational time was calculated on 

Intel 3.10 GHz, Core i-5 Processor, 4 GB RAM computer. 

Table 5.3 : Performance comparison of G-FQL in terms of consuming time 

Dataset Algorithms Training time (seconds) Testing time 

(seconds) 

Real 

data 

Fuzzy Logic Controller 3.10 1.30 

Q-learning  3.14 1.36 

Fuzzy Q-learning  3.22 1.40 

G -FQL 3.22 1.42 

Testing time of the proposed G-FQL method is a little high due to the ensemble 

output combination methods such as fuzzy Q-learning and weight strategy sharing 

algorithm, but more detection accuracy was achieved in G-FQL. The speedup of G-FQL 

can be improved when a hybrid classifier is executed in parallel processors. Thus, all the 

modules can be processed in parallel by different engines in order to reduce the overall 

processing time considerably.  



138 
 

5.2 Chapter Summary 

The first stage of the evaluation study has shown the statistical analysis of 

flooding attack with generate attack algorithm. The attack model was introduced as a 

means to estimate the damage of flooding attack. Likelihood of attack intensity per 

packet length and attack intensity affected the energy. With a combination of the fuzzy 

reinforcement algorithm and the aid of game theory, the detection for attack is 

improved. 

The second stage aims to investigate the effectiveness of proposed model as a 

strategy in detection. One of the criteria to support the detection system is to consider 

the ability of agents in order to share their knowledge to identify attacks. For instance, 

intelligent detector identifies a DDoS attack with a fast ability of detection in order to 

minimise its impact. This intelligent and fast detection process is crucial to the proposed 

framework, as a good detection strategy increase the ability of model in facilitation a 

cooperative based intelligent mode. Therefore, in order to satisfy such claims, this stage 

investigates the ability of proposed frameworks to response strategy model. 

The third stage also investigates the relationship between attacked and their 

classification (e.g. accuracy of detection/ false alarm rate). With the implementation of 

collaborative security strategy in attack detection and response, some improvements 

have been made. In practical, a better cost functions for attack detection can be 

produced compared to the cost function used in the traditional methods. In addition, 

there is a reduction in terms of false alarm rate of attacks that need to be marked by 

fuzzy labelling. This fuzzy labelling allows security experts to classify number of 

attacks and type of damage of attacks in order to response only to an appreciate attacks; 

hence it could save time and responses. 
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Chapter 6 : CONCLUSION 

This chapter summarizes the major finding of the study by reviewing the 

achievements of the research. In particular, the first section of this chapter highlights its 

most important findings, as well as its limitations. The next section dedicates the main 

contributions of this thesis and how the objectives have been achieved. Finally, this 

chapter concludes with a description of possible future work in the topics covered and 

showing how the proposed framework could be enhanced in the future. 

6.1  Achievements of the study 

This thesis launched with an investigation into the different types of intelligent 

intrusion detection and response systems, exploring issues related to the IIDPSs and Co-

IIDPS in networks. The study proposed a novel collaborative game based IDPS 

framework in order to identify the distributed denial of service attacks and to show the 

ability of multi agent based computational intelligence methods in terms of 

collaborative IIDPS. The proposed model was compared with existing soft computing 

methods (fuzzy logic controller, Q-learning, and fuzzy Q-learning) with respect to the 

attack detection precision of modeled denial-of-service attacks. Several analyses were 

explored and their capabilities evaluated in order to satisfy the aims of this thesis.  

The overall goal of this thesis is to establish a novel approach to identify 

distributed denial of service attacks and response to attackers in network environments. 

Within the proposed framework, which included experiments, this thesis has been 

successful. Details are as follows:  

 A collaborative model for Intelligent Intrusion Detection and Prevention Systems.  

This thesis introduced three classes of IIDPS detection methodologies, 

approaches and technologies. Each technique has its advantages and limitations. The 
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TAI-based IDPS is straightforward to implement and very effective in inspecting known 

attacks. Still, the approach hardly identifies unknown attacks, attacks concealed by 

evasion techniques and several variants of known attacks. A number of fuzzy rule-based 

approaches to detect unknown attacks were also proposed. Such techniques may 

unnecessarily result in issues with excessive computing time consumption and rapid 

updating of the knowledge base, hindering attack effectiveness. 

A more accurate and simplified approach is still required to increase efficiency 

and effectiveness further. Computational intelligence-based approaches such as 

Reinforcement Learning (RL) algorithm have the merit of possessing with no prior 

knowledge of attacks. They do not work well in real-time applications due to the high 

computational complexity. A multi agent-based CI (MCI) not only mitigates high 

computational complexity such as time consumption and updating knowledge, but also 

enhances detection performance (See Chapter 2). 

Thus, the collaborative management using the multi agent system-based 

computational intelligence portrays the ability to mitigate detection problems. In other 

words, the individual or single capabilities in terms of self-cooperative techniques 

(without using CI methods) consider all the features addressed in their systems. These 

inefficiencies are evidence of the lack of cooperative knowledge regarding suitable CI 

methods to identify intrusion prior to initiating any development. 

All new solutions to developing multi agent-based CI methods consider the 

requirements (detection and false alarm rate) as being able to overcome Cooperative-

IIDPS complexities and meet the real operational goals of networks. 

A novel collaborative-based IIDPS (Co-IIDPS) architecture is proposed and 

presented. It demonstrates the impact of a Multi Agent System-based computational 

intelligence (MCI) technique on enhancing the efficiency of detection and false alarm 
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rates. In other words, incorporating a multi- agent system (MAS) to computational 

intelligence (MCI) in terms of Co-IIDPS allows monitoring intrusion activity. Fuzzy 

system (FS) with reinforcement learning (RL) in terms of fuzzy reinforcement learning 

manager (FRLM) has merged into Co-IIDPS, resulting in high true positive and low 

false alarm rates. The policy aspect of MAS-based FRLM applies a negotiation method 

to improving the detection accuracy. The developed Co-IIDPS architecture around 

MAS-based FRLM satisfies the detection performance (See Chapter 3).  This 

architecture portrays the clear notion of cooperative learning-based detection to satisfy 

the requirements of IIDPS. In conclusion, the detection management techniques can be 

improved by minimizing the false alarm rates and increasing the detection rates in 

addition to decreasing energy consumption in networks.  

In the context of Co-IIDPS, adaptive game theoretic techniques are adequate for 

network parameter optimization due to the complexity and dynamism of networks. The 

main benefits of applying such techniques are cost savings and improved network 

performance. The model helps the proposed framework to identify different types of 

DDoS attacks, each of which has its own unique characteristics (see Chapter 4). The 

interaction between attackers, sink nodes and the base station was studied, after which a 

novel Game-based FQL, cooperative game theoretic defense mechanism was proposed. 

This system combines the cooperative-based game theory with fuzzy Q-learning 

algorithmic elements. As such, the cooperation between the detection sink node player 

and response base station players is reinforced to defend against an incoming DDoS 

attack that may cause congestion and downtime in network communication as a result 

of flooding packets.  

The Game-FQL model is a triple-player game strategy construed as two-player, 

providing double defense against a single attacker. It adds confidence and establishes a 

reputation as extremely apt in tracking an attacker and defending the system. This 
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strategy-based cooperative game adapts to continuous self-learning of past attacks and 

the behaviour in the fuzzy Q-learning decision making process to overcome the 

attacker. By defining incentives for cooperation and disincentives for fraudulent 

behaviour, it has been determined that repeated interaction sustains cooperation, builds 

confidence and enhances reputation, something additionally offered by Game-FQL. In 

conclusion, Game theory-based Fuzzy Q-learning (Game-FQL), as a mechanism in 

IDPS, is an invaluable tool for increasingly securing next-generation complex 

heterogeneous computing and networking environments against sophisticated attacks 

and attackers, beyond what is encountered today. 

 Issues in Collaborative IDPS studies.  

In Chapter 4, this thesis established a critical analysis of different perspectives 

when addressing the significant problems of the DDoS attack detection and response, as 

well as its challenges. With an aim to establish a IIDPS framework to DDoS attacks, 

several issues were exposed. By presenting the strengths and weaknesses of these 

issues, several intelligent IDPS and cooperative-IIDPS were identified which address 

the limitations of the previous approaches, by enhancing the cooperative game based 

learning techniques; it is more systematic in the detection and response process.  

 Comprehensive evaluation stages for the proposed framework.  

In addressing the distributed denial of service attacks detection and response in 

WSNs, the proposed framework outlined several models and strategies. The objective of 

the evaluation is to examine the proposed framework and to decide whether it is 

sufficiently applicable to facilitate the detection and response action in a traffic network.  

The evaluation presented as follows:  

The first stage of the evaluation study has shown the statistical analysis of 

flooding attack with generate attack algorithm. The attack model was introduced as a 
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means to estimate the damage of flooding attack. Likelihood of attack intensity per 

packet length and attack intensity affected the energy. With a combination of the fuzzy 

reinforcement algorithm and the aid of game theory, the detection for attack is 

improved.  

The second stage aims to investigate the effectiveness of proposed model as a 

strategy in detection. One of the criteria to support the detection system is to consider 

the ability of agents in order to share their knowledge to identify attacks. For instance, 

intelligent detector identifies a DDoS attack with a fast ability of detection in order to 

minimise its impact. This intelligent and fast detection process is crucial to the proposed 

framework, as a good detection strategy increase the ability of model in facilitation a 

cooperative based intelligent mode. Therefore, in order to satisfy such claims, this stage 

investigates the ability of proposed frameworks to response strategy model. 

The third stage also investigates the relationship between attacked and their 

classification (e.g. accuracy of detection/ false alarm rate). With the implementation of 

collaborative security strategy in attack detection and response, some improvements 

have been made. In practical, a better cost functions for attack detection can be 

produced compared to the cost function used in the traditional methods. In addition, 

there is a reduction in terms of false alarm rate of attacks that need to be marked by 

fuzzy labelling. This fuzzy labelling allows security experts to classify number of 

attacks and type of damage of attacks in order to response only to an appreciate attacks; 

hence it could save time and responses. 

In conclusion, the proposed framework was analysed in terms of its detection 

accuracy and defence rate. The evaluation stage satisfied the number of live nodes, in 

particular the ability of the proposed game based IDPS to operate with reasonable 

response time and reduce false alarm response. Beside the effectiveness and 
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performances of proposed method, the energy consummation over time is evaluated. 

Finally, the percentage of energy consumed by different deployed nodes is evaluated to 

show the performance of proposed framework. 

 Simulation of the proposed framework.  

To appraise the performance and check the connection between G-FQL and the 

routing protocol, NS-2 is simulated. In this thesis only the Distributed Denial-of-Service 

(DDoS) attack is considered. DDoS is characterized by the presence of an attacker and 

is called a flooding attack, and it causes noise in wireless communication by sending 

flooding packets as well as exhausts energy.  

6.2  Limitations of the study 

The considerations of the previous chapters have revealed that this thesis has 

adequately achieved its aims and objectives: the establishment of a novel cooperative 

IIDPS to use when DDoS attack in a wireless environment. However, a number of 

limitations and challenges were encountered during the study and they are listed here 

for future reference: 

 We define a model for generating DDoS attack based upon the poison 

distribution function. This is due to lack of real DDoS attack dataset in wireless 

sensor network. The purpose of this section is to analyse the quantitative 

behaviour of attacks in the UDP protocol layer. To generate an attack, a random 

function was employed, which selected subject nodes from each cluster to 

attack. The selected nodes adjusted their functions to send flooding packets to 

the cluster head displays the attack strategy (See Algorithm 4.1). 

 The hybrid machine learning algorithm cannot be used to cope with fast network 

changes as well as attack’s behaviour fluctuations. However, as a remarkable 

advantage, the use of long-term statistical data leads to more robust methods. In 
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addition, as the temporary limitation is given by the measurement periods, there 

is plenty of time to apply complex optimization methods, which can further 

improve wireless sensor network performance. Thus, the term that refers to this 

kind of tasks is off-line tuning methods. 

 A particular agent can be nominated the task of perceiving abnormal traffic flow 

in the network. Though, the single agent’s action suffers from some weaknesses. 

The disadvantages are: 1) the attackers may be exterior the observation range of 

the detector node; 2) a large set of normal and abnormal patterns will have to be 

stored and processed by the detector node, for individually victim node of the 

network; 3) the lack of multiple decision making strategy on the detector node 

implies that the attack traffic flow may overwhelm the detector node itself, and 

thus disrupt the entire detection process. 

6.3  Future Work 

The set of compromised nodes participating in attacks may designate to send 

requests to the victim nodes at regular intervals of time by staying well below the attack 

detection threshold in WSN. In reality, the intensity of attack traffic may be constituted 

of malicious packets intending to cause damage to target nodes over a longer period of 

time. This type of an attack will lead to a gradual decline in resources of the target 

nodes in WSN. We can refer to this attack as a slow poisoning attack. A future direction 

of work can involve detection of such attacks in addition to detection of high traffic 

intensity attacks, addressed in this thesis. 

The proposed attack detection scheme does detection of attacks that culminate 

from higher orders of incoming traffic within a single time epoch (See Section 5.2.5), 

without correlating traffic behaviour from previous time epochs. This work can be 

extended to incorporate correlation between time epochs, for attack detection purposes. 
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In addition, the length of the time epoch is static post-initialization. Variable time epoch 

lengths, based on analysis of real-time network traffic, are another possible future 

direction of research. 

By defining incentives for cooperation and disincentives for fraudulent 

behaviour, it has been determined that repeated interaction sustains cooperation, builds 

confidence and enhances reputation, something additionally offered by Game-FQL. 

Game theory-based Fuzzy Q-learning (Game-FQL), as a mechanism in IDPS, is an 

invaluable tool for increasingly securing next-generation complex heterogeneous 

computing and networking environments against sophisticated attacks and attackers, 

beyond what is encountered today. A future initiative is to extend the proposed Game-

FQL mechanism by incorporating data from various attack types and sources to further 

enhance its decision making capabilities in order to thwart existing or new attacks. Also 

as part of future research work on complementing Game-FQL, studying a network 

evolutionary algorithm, such as the imperialist competitive algorithm, is considered of 

utmost importance.  
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Appendix 

 

#include"QLearning.h" 

#include <time.h> 

#include <string.h> 

#include <math.h> 

#include <windows.h> 

int Total = 0; 

int temp[10000][10000]; 

*********************** FUNCTION   Name:  Get Node Details**************************** 

int get_node_count() { 

 printf("get_node_count( )"); 

 int node_cnt; 

 printf("\n\n"); 

 printf("==================================================\n"); 

 printf(">>>>>>>>>>>>     Get the Node Details <<<<<<<<<<< \n"); 

 printf("==================================================\n"); 

 printf("\n\nEnter the Total No of Node to be Created :"); 

 scanf("%d", &node_cnt); 

 printf("\n\nEnter the Selfish Node Count      :"); 

 scanf("%d", &snode_cnt); 

 printf("\n\n"); 

 printf("==================================================\n"); 

 return node_cnt; 

} 

******************************FUNCTION   Name:  splitstr***************************** 

splitstr(char * full_str, char arr[][64], char * str) { 

 char *record = NULL; 

 int count = 0; 

 // Take the Records and store into the Array 

 record = strtok(full_str, str); 

 while (record != NULL) { 

  //fmt_str[count] = malloc( strlen( record ) + 1 ); 

  strcpy(arr[count++], record); 

  record = strtok(NULL, str); 

 } 

 return count; 

} 

*****************************         Name:  validateip ***************************** 

validateip(char * ip, char ipset[][10]) { 

 char *record = NULL; 

 int count = 0; 

 // Take the Records and store into the Array 

 record = strtok(ip, "."); 

 while (record != NULL) { 

  //fmt_str[count] = malloc( strlen( record ) + 1 ); 

  if (strcmp(record, "XXX") == 0) 

   strcpy(ipset[count++], "-1"); 

  else 

   strcpy(ipset[count++], record); 

  record = strtok(NULL, "."); 

 } 

 if (count == 4) 

  return TRUE; 

 return FALSE; 

} 
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*****************************FUNCTION        Name:  is_star***************************** 

int is_star(char * str) { 

 if (strcmp(str, "*") == 0 || strcmp(str, "XXX") == 0) 

  return -1; 

 else 

  return atoi(str); 

} 

*****************************Name:  validate_split_ip***************************** 

int validate_split_ip(char * ip, struct IP_Set * ipaddr) { 

 char arr[10][64]; 

 

 if (splitstr(ip, arr, ".") == 4) { 

  printf(" ARR : %s - %s - %s - %s \n ", arr[0], arr[1], arr[2], arr[3]); 

  ipaddr->Ip1 = is_star(arr[0]); 

  ipaddr->Ip2 = is_star(arr[1]); 

  ipaddr->Ip3 = is_star(arr[2]); 

  ipaddr->Ip4 = is_star(arr[0]); 

  return TRUE; 

 } 

 return FALSE; 

} 

*****************************FUNCTION  Name:  get_rules ***************************** 

int get_rules() { 

 printf("\n\n"); 

 /* printf( "==================================================\n"); 

 printf( ">>>>>>>>>>>>  Define the Rules        <<<<<<<<<<< \n"); 

 printf( "==================================================\n");*/ 

 printf("1.Reading the KDD dataset...."); 

 printf("\n2.Initializing Expert system....\n"); 

 // Validate TCP or UDP  

 do { 

  printf(" Enter the Protocal ( 1. TCP , 2.UDP ) : "); 

  scanf("%d", &ql_rules.protocal); 

  if (ql_rules.protocal > 0 && ql_rules.protocal < 3) 

   break; 

  else 

   printf("Error : Sorry Enter the Valid protocal\n"); 

 } while (TRUE); 

sinknode_cnt = 1; 

printf("Initializing Qstates ... "); 

} 

*****************************FUNCTION       Name:  

print_nodes***************************** 

int print_nodes() { 

 int i, j; 

 char node_type[25]; 

 int randval; 

 printf("\n\n"); 

 printf("Total No of Packets : %d \n", noofnode); 

 Total = noofnode; 

 printf("Total No of Abnormal Packets : %d \n", snode_cnt); 

  for (i = 0; i < noofnode; i++) { 

     if (node_details[i].node_type == 1) { 

    strcpy(node_type, "Normal"); 

  } else { 

   strcpy(node_type, "Selfish"); 

   randval = random_in_range(0, sinknode_cnt); 

   sink_node_vals[randval].ids[sink_node_vals[randval].count++] = i; 

  } 

 

  if ((strcmp(node_type, "Normal") == 0) 

    && ((strcmp(node_details[i].state, "d8") == 0) 

      || (strcmp(node_details[i].state, "d9") == 0) 



157 
 

      || (strcmp(node_details[i].state, "d10") == 0))) { 

   true_pos++; 

  } 

  if ((strcmp(node_type, "Normal") == 0) 

    && ((strcmp(node_details[i].state, "d8") != 0) 

      && (strcmp(node_details[i].state, "d9") != 0) 

      && (strcmp(node_details[i].state, "d10") != 0))) { 

   true_neg++; 

  } 

  if ((strcmp(node_type, "Selfish") == 0) 

    && ((strcmp(node_details[i].state, "d8") != 0) 

      && (strcmp(node_details[i].state, "d9") != 0) 

      && (strcmp(node_details[i].state, "d10") != 0))) { 

   false_neg++; 

  } 

  if ((strcmp(node_type, "Selfish") == 0) 

    && ((strcmp(node_details[i].state, "d8") == 0) 

      || (strcmp(node_details[i].state, "d9") == 0) 

      || (strcmp(node_details[i].state, "d10") == 0))) { 

   false_pos++; 

  } 

  printf( "Node Number : %d Type : %s  IP Address : %03d.%03d.%03d.%03d  Bytes 

Transfered : %d Count : %d State : %s \n" , node_details[i].Node_id , node_type , 

node_details[i].ipaddr.Ip1 ,  node_details[i].ipaddr.Ip2 ,  node_details[i].ipaddr.Ip3 ,  

node_details[i].ipaddr.Ip4  , node_details[i].src_bytes , node_details[i].count ,node_details[i].state);}*/ 

 } 

int val; 

for (i = 0; i < sinknode_cnt; i++) { 

  for (j = 0; j < sink_node_vals[i].count; j++) { 

   val = sink_node_vals[i].ids[j]; 

Transfered : %d Count : %d \n" , node_details[val].Node_id , node_type , node_details[val].ipaddr.Ip1 ,  

node_details[val].ipaddr.Ip2 ,  node_details[val].ipaddr.Ip3 ,  node_details[val].ipaddr.Ip4  , 

node_details[val].src_bytes , node_details[val].count ); 

 (strcmp(node_details[i].state,"d9")==0) || (strcmp(node_details[i].state,"d10")==0)){ 

  printf( "Node Number : %d    count_Level : %s    Buffer_level : %s     Level : %s   State : %s\n" 

, node_details[val].Node_id ,   node_details[val].count_level, 

node_details[val].buffer_level,node_details[val].level, node_details[val].state);} 

 } 

} 

int print_selfish_node() { 

 printf("3.Anomaly nodes detected ..."); 

 int val; 

 int i, j; 

 for (i = 0; i < sinknode_cnt; i++) { 

  printf("Sink Node index : %d \n", i); 

  for (j = 0; j < sink_node_vals[i].count; j++) { 

   val = sink_node_vals[i].ids[j]; 

   printf("Node Number : %d   Level : %s \n", 

     node_details[val].Node_id, node_details[val].level); 

  } 

 

 } 

 

} 

* *****************************        Name:  setipaddr ***************************** 

int setipaddr(struct IP_Set *ipaddr) { 

 ipaddr->Ip1 = random_in_range(0, 255); 

 ipaddr->Ip2 = random_in_range(0, 255); 

 ipaddr->Ip3 = random_in_range(0, 255); 

 ipaddr->Ip4 = random_in_range(0, 255); 

 return TRUE; 

} 

*****************************Name:  create_rule_ip***************************** 
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int create_rule_ip(struct IP_Set *ipaddr) { 

 //printf( " %d=%d=%d=%d \n", ql_rules.ipaddr.Ip1 , ql_rules.ipaddr.Ip2 , ql_rules.ipaddr.Ip3 , 

ql_rules.ipaddr.Ip4 ) ; 

 ipaddr->Ip2 = random_in_range(0, 255); 

 ipaddr->Ip3 = random_in_range(0, 255); 

 ipaddr->Ip4 = random_in_range(0, 255); 

 return TRUE; 

} 

*****************************Name:  create_nodes***************************** 

int create_nodes() { 

 int i; 

 printf("\n\n"); 

 /* printf( "==================================================\n"); 

  printf( ">>>>>  Going to generate the Random Details <<<<<< \n"); 

  printf( "==================================================\n");*/ 

 for (i = 0; i < noofnode; i++) { 

  node_details[i].Node_id = i; 

  create_rule_ip(&node_details[i].ipaddr); 

   

 } 

 int nodenum; 

 for (i = 0; i < snode_cnt; i++) { 

  nodenum = random_in_range(0, noofnode); 

  setipaddr(&node_details[nodenum].ipaddr); 

 } 

 

} 

*****************************Name:  random_in_range***************************** 

int random_in_range(unsigned int min, unsigned int max) { 

 int base_random = rand(); 

 if (RAND_MAX == base_random) 

  return random_in_range(min, max); 

 if (base_random < RAND_MAX - remainder) { 

  return min + base_random / bucket; 

 } else { 

  return random_in_range(min, max); 

 } 

} 

*****************************Name:  display***************************** 

display(int start, int end) { 

 int i, j; 

 for (i = start; i <= end; i++) { 

  for (j = start; j <= end; j++) 

   printf("%4d", adj[i][j]); 

    printf("\n"); 

 } 

 

} 

display_con(int start, int end) { 

 int i, j; 

 printf("Displaying connection matrix\n"); 

 for (i = start; i < end; i++) { 

  for (j = start; j < end; j++) 

   printf("%4d", con_mat[i][j]); 

  printf("\n"); 

 } 

 

} 

*****************************Name:  formated_display***************************** 

formated_display() { 

 int i, j; 

 for (i = 0; i <= n; i++) { 

  if (i == 0) { 
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   puts(""); 

   for (j = 0; j <= n; j++) 

    (j == 0) ? printf("     |") : printf(" %3d |", j); 

   puts(""); 

   while (j--) 

    printf("-----+"); 

  } else 

   for (j = 0; j <= n; j++) { 

    if (j == 0) 

     printf(" %3d |", i); 

    else 

     printf(" %3d |", adj[i][j]); 

   } 

  printf("\n"); 

 } 

 

} 

*****************************Name:  findpath***************************** 

int findpath(int s, int d, int path[MAX], int *sdist) { 

 struct node state[MAX]; 

 int i, min, count = 0, current, newdist, u, v; 

 *sdist = 0; 

 for (i = 1; i <= n; i++) { 

  state[i].predecessor = 0; 

  state[i].dist = infinity; 

  state[i].status = TEMP; 

 } 

 state[s].predecessor = 0; 

 state[s].dist = 0; 

 state[s].status = PERM; 

 current = s; 

 while (current != d) { 

  for (i = 1; i <= n; i++) { 

   if (adj[current][i] > 0 && state[i].status == TEMP) { 

    newdist = state[current].dist + adj[current][i]; 

    if (newdist < state[i].dist) { 

     state[i].predecessor = current; 

     state[i].dist = newdist; 

    } 

   } 

  } 

  min = infinity; 

  current = 0; 

  for (i = 1; i <= n; i++) { 

   if (state[i].status == TEMP && state[i].dist < min) { 

    min = state[i].dist; 

    current = i; 

   } 

  } 

  if (current == 0) 

   return 0; 

  state[current].status = PERM; 

 } 

 while (current != 0) { 

  count++; 

  path[count] = current; 

  current = state[current].predecessor; 

 } 

 for (i = count; i > 1; i--) { 

  u = path[i]; 

  v = path[i - 1]; 

  *sdist += adj[u][v]; 

 } 
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 return (count); 

} 

node_split() //Splits packets into nodes 

{ 

 int i, j, k, l, split_node[100], packet_node[100]; 

 for (i = 0; i < 10000; i++) { 

  node_sp[i].node_id = 0; 

 } 

 for (i = 0; i < n; i++) { 

  if (strcmp(node_details[i].state, "d1") == 0) { 

   node_sp[1].node_id++; 

   strcpy(node_sp[1].node_state1, "d1"); 

  } 

  if (strcmp(node_details[i].state, "d2") == 0) { 

   node_sp[2].node_id++; 

   strcpy(node_sp[2].node_state1, "d2"); 

  } 

  if (strcmp(node_details[i].state, "d3") == 0) { 

   node_sp[3].node_id++; 

   strcpy(node_sp[3].node_state1, "d3"); 

  } 

  if (strcmp(node_details[i].state, "d4") == 0) { 

   node_sp[4].node_id++; 

   strcpy(node_sp[4].node_state1, "d4"); 

  } 

  if (strcmp(node_details[i].state, "d5") == 0) { 

   node_sp[5].node_id++; 

   strcpy(node_sp[5].node_state1, "d5"); 

  } 

  if (strcmp(node_details[i].state, "d6") == 0) { 

   node_sp[6].node_id++; 

   strcpy(node_sp[6].node_state1, "d6"); 

  } 

  if (strcmp(node_details[i].state, "d7") == 0) { 

   node_sp[7].node_id++; 

   strcpy(node_sp[7].node_state1, "d7"); 

  } 

  if (strcmp(node_details[i].state, "d8") == 0) { 

   node_sp[8].node_id++; 

   strcpy(node_sp[8].node_state1, "d8"); 

  } 

  if (strcmp(node_details[i].state, "d9") == 0) { 

   node_sp[9].node_id++; 

   strcpy(node_sp[9].node_state1, "d9"); 

  } 

  if (strcmp(node_details[i].state, "d10") == 0) { 

   node_sp[10].node_id++; 

   strcpy(node_sp[10].node_state1, "d10"); 

  } 

 } 

 k = 0; 

 total_noofpack = 0; 

 goal_node_number = 0; 

 for (i = 1; i <= 10; i++) { 

 

  if (node_sp[i].node_id < 30) { 

   split_node[i] = 1; 

   k = k + 1; 

   strcpy(node_sp[k].node_state, node_sp[i].node_state1); 

  

    if (((i == 8) || (i == 9) || (i == 10)) ){total_noofpack = 

total_noofpack+1; 

    goal_node_index[goal_node_number] = i; 
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    goal_node_number = goal_node_number+1;  

   } 

  } else if (node_sp[i].node_id >= 30 && node_sp[i].node_id < 50) { 

   split_node[i] = 2; 

   k = k + 2; 

   strcpy(node_sp[k-1].node_state, node_sp[i].node_state1); 

   strcpy(node_sp[k].node_state, node_sp[i].node_state1); 

  

   if (((i == 8) || (i == 9) || (i == 10)) ){total_noofpack = total_noofpack+1; 

    goal_node_index[goal_node_number] = k-1; 

    goal_node_number = goal_node_number+1;  

    goal_node_index[goal_node_number] = k; 

    goal_node_number = goal_node_number+1;  

   } 

  } else { 

   split_node[i] = ceil(node_sp[i].node_id / 50); 

   for (l = k+1; l<=(k+split_node[i]);l++) 

   { 

    strcpy(node_sp[l].node_state, node_sp[i].node_state1); 

    if (((i == 8) || (i == 9) || (i == 10)) ){ 

    goal_node_index[goal_node_number] = l; 

    goal_node_number = goal_node_number+1; } 

   } 

   k = k + split_node[i]; 

   if (((i == 8) || (i == 9) || (i == 10)) ){total_noofpack = total_noofpack+1;} 

  } 

 

 } 

 noofpack = k; 

 for (i =1 ; i<=10; i++){ 

 printf("Printing node state \n n%d = %s ==> nodecount = 

%d\n",i,node_sp[i].node_state1,node_sp[i].node_id); 

} printf("Total No of Node Count : %d \n", noofpack); 

} 

*****************************      Name:  create_graph ***************************** 

create_graph() { 

 int i, j, max_edges, origin, destin, wt; 

 // Define Rules 

 get_rules(); 

 

 //  Read Data From Kdd set 

 find_minmax(); 

 n = read_kdd_dataset(); 

 noofnode = n; 

  print_nodes(); 

 create_nodes(); 

 max_edges = n * (n - 1); 

 node_split(); 

 for (i = 0; i < noofpack; i++) { 

  for (j = 0; j < noofpack; j++) { 

    con_mat[i][j] = (rand() % (2 - 0)) + 0; 

  } 

 } 

 for (i = 0; i < noofpack; i++) 

  for (j = 0; j < noofpack; j++) { 

   origin = i; 

   destin = j; 

   if ((i==j) || (con_mat[i][j] == 1)) 

   {if ((strcmp(node_sp[j+1].node_state1,"d8")==0) || 

(strcmp(node_sp[j+1].node_state1,"d9")==0) || (strcmp(node_sp[j+1].node_state1,"d10")==0)) 

     { 

      wt = 100; 

     } 
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     else if ((i != j) || (con_mat[i][j] == 1)) 

     { 

      wt = 0; 

     } 

     else 

     { 

      wt = -1; 

     } 

   } 

   else 

   { 

    wt = -1; 

   } 

  

 if (origin > noofpack || destin > noofpack || origin < 0 || destin < 0) { 

  printf("\nInvalid edge!\n"); 

  i--; 

 } else 

  adj[origin][destin] = wt; 

} 

} 

*****************************         Name:  find_minmax ***************************** 

find_minmax() { 

FILE *fp; 

char *filename = "kddset.data"; 

fp = fopen(filename, "r"); 

char *line; 

line = (char *) malloc(1024); 

if (fp == NULL) { 

 perror("Error : Opening kdd data set file"); 

 return 0; 

} 

char arr[1000][64]; 

while (fgets(line, 1024, fp)) { 

 splitstr(line, arr, ","); 

 if (time_min > atoi(arr[0])) 

  time_min = atoi(arr[0]); 

 if (time_max < atoi(arr[0])) 

  time_max = atoi(arr[0]); 

 if (bs_min > atoi(arr[5])) 

  bs_min = atoi(arr[5]); 

 if (bs_max < atoi(arr[5])) 

  bs_max = atoi(arr[5]); 

 if (count_min > atoi(arr[22])) 

  count_min = atoi(arr[22]); 

 if (count_max < atoi(arr[22])) 

  count_max = atoi(arr[22]); 

} 

time_avg = (time_max - (time_min)) / 3; 

bs_avg = (bs_max - (bs_min)) / 3; 

count_avg = (count_max - (count_min)) / 3; 

} 

*****************************       Name:  read_kdd_dataset ***************************** 

int read_kdd_dataset() { 

FILE *fp; 

char *filename = "kddset.data"; 

fp = fopen(filename, "r"); 

char *line; 

int count = 0; 

snode_cnt = 0; 

line = (char *) malloc(1024); 

if (fp == NULL) { 

 perror("Error : Opening kdd data set file"); 
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 return 0; 

} 

char arr[50][64]; 

while (fgets(line, 1024, fp)) { 

 splitstr(line, arr, ","); 

 node_details[count].protocal = (strcmp(arr[1], "tcp") == 0) ? 1 : 2; 

 // Check the node details 

 if (ql_rules.protocal == node_details[count].protocal) { 

  create_rule_ip(&node_details[count].ipaddr); 

  node_details[count].node_type = 1; 

 } else { 

  setipaddr(&node_details[count].ipaddr); 

  node_details[count].node_type = 2; 

  snode_cnt++; 

 } 

 node_details[count].Node_id = count; 

 node_details[count].src_bytes = atoi(arr[4]); 

 node_details[count].dst_bytes = atoi(arr[5]); 

 node_details[count].count = atoi(arr[22]); 

 node_details[count].time = atoi(arr[0]); 

 if (atoi(arr[0]) >= 0 && atoi(arr[0]) <= (time_min+time_avg)) 

  strcpy(node_details[count].level, "Low"); 

 else if (atoi(arr[0]) > time_avg && atoi(arr[0]) <= ((time_min)+(2 * time_avg))) 

  strcpy(node_details[count].level, "Medium"); 

 else if (atoi(arr[0]) > ((time_min)+(2 * time_avg))) 

  strcpy(node_details[count].level, "High"); 

 else 

  strcpy(node_details[count].level, "High"); 

 

 if (atoi(arr[22]) >= 0 && atoi(arr[22]) <= (count_min+count_avg)) 

  strcpy(node_details[count].count_level, "Low"); 

 else if (atoi(arr[22]) > count_avg && atoi(arr[22]) <= ((count_min)+(2 * count_avg))) 

  strcpy(node_details[count].count_level, "Medium"); 

 else if (atoi(arr[22]) > ((count_min)+(2 * count_avg))) 

  strcpy(node_details[count].count_level, "High"); 

 else 

  strcpy(node_details[count].count_level, "High"); 

 

 if (atoi(arr[5]) >= 0 && atoi(arr[5]) <= (bs_min+bs_avg)) 

  strcpy(node_details[count].buffer_level, "Low"); 

 else if (atoi(arr[5]) > bs_avg && atoi(arr[5]) <= ((bs_min)+(2 * bs_avg))) 

  strcpy(node_details[count].buffer_level, "Medium"); 

 else if (atoi(arr[5]) > ((bs_min)+(2 * bs_avg))) 

  strcpy(node_details[count].buffer_level, "High"); 

 else 

  strcpy(node_details[count].buffer_level, "High"); 

 if ((strcmp(node_details[count].count_level, "Low") == 0 

   && strcmp(node_details[count].buffer_level, "Medium") == 0 

   && strcmp(node_details[count].level, "High") == 0) 

   || (strcmp(node_details[count].count_level, "Low") == 0 

     && strcmp(node_details[count].buffer_level, "High") == 0 

     && strcmp(node_details[count].level, "Low") == 0) 

   || (strcmp(node_details[count].count_level, "Low") == 0 

     && strcmp(node_details[count].buffer_level, "High") == 0 

     && strcmp(node_details[count].level, "Medium") == 0)) 

  strcpy(node_details[count].state, "d1"); 

 else if ((strcmp(node_details[count].count_level, "Low") == 0 

   && strcmp(node_details[count].buffer_level, "Medium") == 0 

   && strcmp(node_details[count].level, "Low") == 0) 

   || (strcmp(node_details[count].count_level, "Low") == 0 

     && strcmp(node_details[count].buffer_level, "Medium") == 

0 

     && strcmp(node_details[count].level, "Medium") == 0) 
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   || (strcmp(node_details[count].count_level, "Low") == 0 

     && strcmp(node_details[count].buffer_level, "Low") == 0 

     && strcmp(node_details[count].level, "High") == 0)) 

  strcpy(node_details[count].state, "d2"); 

 else if ((strcmp(node_details[count].count_level, "Medium") == 0 

   && strcmp(node_details[count].buffer_level, "High") == 0 

   && strcmp(node_details[count].level, "Low") == 0) 

   || (strcmp(node_details[count].count_level, "Medium") == 0 

     && strcmp(node_details[count].buffer_level, "High") == 0 

     && strcmp(node_details[count].level, "Medium") == 0)) 

  strcpy(node_details[count].state, "d3"); 

 else if ((strcmp(node_details[count].count_level, "Low") == 0 

   && strcmp(node_details[count].buffer_level, "Low") == 0 

   && strcmp(node_details[count].level, "Medium") == 0) 

   || (strcmp(node_details[count].count_level, "Low") == 0 

     && strcmp(node_details[count].buffer_level, "Low") == 0 

     && strcmp(node_details[count].level, "Low") == 0)) 

   

  strcpy(node_details[count].state, "d4"); 

 else if ((strcmp(node_details[count].count_level, "Medium") == 0 

   && strcmp(node_details[count].buffer_level, "Low") == 0 

   && strcmp(node_details[count].level, "Medium") == 0) 

   || (strcmp(node_details[count].count_level, "Medium") == 0 

     && strcmp(node_details[count].buffer_level, "Low") == 0 

     && strcmp(node_details[count].level, "Low") == 0) 

   || (strcmp(node_details[count].count_level, "Medium") == 0 

     && strcmp(node_details[count].buffer_level, "Low") == 0 

     && strcmp(node_details[count].level, "High") == 0) 

   || (strcmp(node_details[count].count_level, "Medium") == 0 

     && strcmp(node_details[count].buffer_level, "Medium") == 

0 

     && strcmp(node_details[count].level, "Low") == 0) 

   || (strcmp(node_details[count].count_level, "Medium") == 0 

     && strcmp(node_details[count].buffer_level, "Medium") == 

0 

     && strcmp(node_details[count].level, "Medium") == 0)) 

  strcpy(node_details[count].state, "d5"); 

 else if ((strcmp(node_details[count].count_level, "High") == 0 

   && strcmp(node_details[count].buffer_level, "Medium") == 0 

   && strcmp(node_details[count].level, "Medium") == 0) 

   || (strcmp(node_details[count].count_level, "High") == 0 

     && strcmp(node_details[count].buffer_level, "Low") == 0 

     && strcmp(node_details[count].level, "Low") == 0) 

   || (strcmp(node_details[count].count_level, "High") == 0 

     && strcmp(node_details[count].buffer_level, "Low") == 0 

     && strcmp(node_details[count].level, "Medium") == 0) 

   || (strcmp(node_details[count].count_level, "High") == 0 

     && strcmp(node_details[count].buffer_level, "Medium") == 

0 

     && strcmp(node_details[count].level, "Low") == 0)) 

  strcpy(node_details[count].state, "d6"); 

 else if (strcmp(node_details[count].count_level, "Medium") == 0 

   && strcmp(node_details[count].buffer_level, "Medium") == 0 

   && strcmp(node_details[count].level, "High") == 0) 

  strcpy(node_details[count].state, "d7"); 

 else if ((strcmp(node_details[count].count_level, "High") == 0 

   && strcmp(node_details[count].buffer_level, "High") == 0 

   && strcmp(node_details[count].level, "Low") == 0) 

   || (strcmp(node_details[count].count_level, "Low") == 0 

     && strcmp(node_details[count].buffer_level, "High") == 0 

     && strcmp(node_details[count].level, "High") == 0) 

   || (strcmp(node_details[count].count_level, "High") == 0 

     && strcmp(node_details[count].buffer_level, "Low") == 0 
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     && strcmp(node_details[count].level, "High") == 0)) 

  strcpy(node_details[count].state, "d8"); 

 else if ((strcmp(node_details[count].count_level, "Medium") == 0 

   && strcmp(node_details[count].buffer_level, "High") == 0 

   && strcmp(node_details[count].level, "High") == 0) 

   || (strcmp(node_details[count].count_level, "High") == 0 

     && strcmp(node_details[count].buffer_level, "Medium") == 

0 

     && strcmp(node_details[count].level, "High") == 0) 

   || (strcmp(node_details[count].count_level, "High") == 0 

     && strcmp(node_details[count].buffer_level, "High") == 0 

     && strcmp(node_details[count].level, "Medium") == 0)) 

  strcpy(node_details[count].state, "d9"); 

 else if (strcmp(node_details[count].count_level, "High") == 0 

   && strcmp(node_details[count].buffer_level, "High") == 0 

   && strcmp(node_details[count].level, "High") == 0)    

  strcpy(node_details[count].state, "d10"); 

 

 count++; 

} 

fclose(fp); 

return count; 

} 

int isGoal(int node) { 

char myState[10]; 

strcpy(myState, node_details[node].state); 

if (strcmp(myState, "d8") == 0 || strcmp(myState, "d9") == 0 

  || strcmp(myState, "d10") == 0) 

 return 1; 

else 

 return 0; 

} 

int isGoal_1(int i,int j) { 

 

if (adj[i][j]==100) 

 return 1; 

else 

 return 0; 

} 

***************************** Name:  main ***************************** 

void d1(int start, int end) { 

int i, j; 

printf("\n"); 

for (i = start; i <= end; i++) { 

 for (j = start; j <= end; j++) 

  printf("%d\t", cur[i][j]); 

 printf("\n"); 

} 

} 

Ql(int start, int end, int sink1) { 

int sink_no, i, j, k, l, max = 0, cur_state = 2, next_state = 0, loop = 0, ini = 1, 

  isnxt_state = 1, epoc = 0, check_last,goal_count = 0,goal_check = 1,goal_node, 

 

 ac_i,ac_j,ac_reach,ac_start,ac_col,ac_find[noofpack],ac_i1,ac_notreach,ac_new,ac_oreach; 

double divide; 

int m,n,acc_count,acc_total; 

int total_acc=0; 

sink_no = sink1; 

time_t now; 

time_t now1; 

int *second_array = (int*) malloc(noofpack*sizeof(int)); 

int *goal_array = (int*) malloc(noofpack*sizeof(int)); 

int state_count = 0, initial_state = -1, second_state = -1; 
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for (i = 0; i<noofpack;i++) 

{ 

 second_array[i] = -1; 

 ac_find[i] = 0; 

}  

  { 

  for (j=1;j<=n;j++) 

 { 

 adj[i][j] = -1; 

 cur[i][j] = 0; } } 

 adj[1][5]=0; adj[2][4]=0; adj[2][6]=100; adj[3][4]=0; adj[4][2]=0; adj[4][3]=0; adj[4][5]=0; adj[5][1]=0; 

adj[5][4]=0; adj[5][6]=100; adj[6][2]=0; adj[6][5]=0; adj[6][6]=100; 

printf("\n"); 

 

if (sink_no == -1) { 

 time(&now); 

 printf(" ql starts %s\n", ctime(&now)); 

 sink_no = sinknode_cnt + 1; 

} 

FILE *f1, *f2, *f3; 

f1 = fopen("Expertness.txt", "wt"); 

//fprintf(f1, "%s,%s\n", "Epoch_number", "Expertness"); 

f2 = fopen("Accuracy.txt", "wt"); 

f3 = fopen("Time.txt", "wt"); 

//fprintf(f2, "%s,%s\n", "Epoch_number", "Accuracy"); 

fclose(f2); 

fclose(f3); 

fclose(f1); 

// initializing Q matrix(cur) 

for (i = 0; i<noofpack;i++){ 

 for (j = 0; j < noofpack; j++){ 

  cur[i][j] =0;}} 

  display_con(0, noofpack);  

printf("\nDisplaying Reward matrix\n"); 

display(0,noofpack-1); 

  if (loop = 1)  d1(0, noofpack-1);  

 for (m = 0 ; m < noofpack ; m++) 

  { 

   for (n = 0 ; n < noofpack ; n++) 

   { 

    temp[m][n]  = 0;   }   } 

 

// Epoc for starts...  

 ac_oreach = 0; 

for (loop = 1; loop < 500; loop++) { 

 goal_node = 0; 

 goal_count = 0; 

 goal_check = 1; 

 time(&now); 

  

 // Node for loop starts.... 

 for(j=0 ; j< noofpack; j++) 

 { 

  initial_state = j; 

  state_count = 0; 

  // second state for loop starts 

  for (k = 0; k < noofpack; k++) 

  { 

   //printf("j = %d \n k = %d \n con_mat[][] = %d\n",j,k,con_mat[j][k]); 

   //getch(); 

   if (con_mat[j][k] > 0) 

   { 
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    second_array[state_count] = k; 

    //printf("second array: %d\t",second_array[state_count]); 

    state_count++; 

   } 

  // if connection not available 

  if (state_count == 0) 

   continue; 

   int index = (rand() % ((state_count+1) - 0)) + 0; 

   second_state =  second_array[index]; 

   // Q Function loop starts 

   max = 0; 

   for ( l = 0 ; l < noofpack ; l++) 

   { if ( con_mat[k][l] > 0 ) 

    { 

     goal_check = 1; 

     if (cur[k][l] > max) 

     { 

     max = cur[k][l];   }  

 } 

   } 

   goal_check = 1; 

   if (adj[initial_state][second_state] == 100) 

   { 

       for (goal_node =0 ; goal_node<goal_count;goal_node++) 

    { 

    if (goal_array[goal_node] == second_state) 

    { 

     goal_check = goal_check + 1; 

    } 

   } 

   if (goal_check == 1) 

   { 

    goal_array[goal_count] = second_state; 

    goal_count++; 

   } 

  } 

   

  if (((adj[initial_state][second_state] % 2) == 1) || (adj[initial_state][second_state] == -

1)){ 

  cur[initial_state][second_state] = adj[initial_state][second_state] + (0.8 * max)+1;

 } 

  else{ 

  } 

 } 

 if (epoc != -1) { 

  expert_agent.sum_rewards[sink_no] = 0; 

  expert_agent.total_rewards[sink_no] = 0; 

  expert_agent.expertness[sink_no] = 0; 

  for (i = start; i <= end; i++) { 

   for (j = start; j <= end; j++) { 

    expert_agent.sum_rewards[sink_no] = 

      expert_agent.sum_rewards[sink_no] + cur[i][j]; 

     if (expert_agent.sum_rewards[sink_no] < 0) { 

     } 

    expert_agent.total_rewards[sink_no]++; 

   } 

  } 

  expert_agent.expertness[sink_no] = expert_agent.sum_rewards[sink_no] 

 total_acc = 0; 

 for (m = 0 ; m < noofpack ; m++) 

 { 

  for (n = 0 ; n < noofpack ; n++) 

  { 
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   if (temp[m][n] != cur[m][n]) 

   { 

    total_acc = total_acc+1;   } }  

 }  

for (m = 0 ; m < noofpack ; m++) 

 { 

  for (n = 0 ; n < noofpack ; n++) 

  { 

   temp[m][n] = cur[m][n]; }  

 }  

    ac_reach = 0; 

 ac_notreach = 0; 

 ac_start = -1; 

void main() { 

int i, j; int source, dest; int path[MAX];int energy[MAX]; int shortdist, count;int total_energy = 

0; 

double weight_sink = 0;  

create_graph(); 

int enery_val[MAX]; 

int total_time; 

printf("\n"); 

printf("3.Q Learning starts....\n"); 

printf("****** Complete QLearning ******\n"); 

Ql(1, noofpack, -1); 

int split = Total / sinknode_cnt; 

expert_agent.total_expert = 0; 

while (1) { 

 scanf("%d", &source); 

 printf("\nEnter destination node(0 to quit) : "); 

 scanf("%d", &dest);} 

 


