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ABSTRACT

The state-of-the-art Mobile Cloud Computing (MCC) paradigm has gained a mo-

mentous ground to mitigate mobile devices’ shortcomings (i.e., computing and energy) by

outsourcing resource-intensive mobile tasks to the cloud.Researchers have proposed solu-

tions for compute-intensive mobile applications by leveraging varied types of cloud-based

resources, particularly coarse, medium, and fine granular cloud resources. Coarse-grained

cloud resources feature high scalability and low locality that originates communication

latency, fine-grained resources offer low scalability and high locality that leads to com-

putation latency, and medium-grained resources provide medium scalability and locality

breeding communication and computing latency. Such communication and computation

latencies negatively impact on energy efficiency and response time of compute-intensive

mobile applications leading to mobile application performance degradation. As a result,

leveraging vertical heterogeneous granular cloud resources creates a bottleneck of limited

computing and communication capabilities which results inincreased response time and

energy consumption. Vertical heterogeneity rises within one type of granular resources,

like coarse or fine. This research is undertaken with the aim to obtain efficient computation

outsourcing for compute-intensive mobile applications using horizontally heterogeneous

granular cloud-based resource. Horizontal heterogeneityhappens across varied types of

granular resources, like coarse and fine. Using a series of benchmarking experiments we

investigate the impacts of computation and communication latencies of granular resources

on round-trip time and energy consumption of compute-intensive mobile applications and

establish the research problem. Moreover, we propose a lightweight heterogeneous hy-

brid MCC framework for compute-intensive mobile applications that aims to reduce re-

sponse time and prevent energy dissipation on mobile devices. We analyse execution
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of a compute-intensive mobile application considering twoperformance metrics, namely

Round-Trip Time (RTT) and Energy Consumption (EC) in two execution models of lo-

cal and hybrid. We evaluate performance of the proposed framework in real environment

and validate the results through statistical modelling. The results of RTT analysis advo-

cates average of 93.5% RTT saving in hybrid mode compared with local mode and the EC

analysis results testify average of 94% energy saving in hybrid mode compared with local

mode. The results express that utilizing heterogeneous hybrid cloud-based computing re-

sources can significantly reduce RTT and EC of mobile device in hybrid mode compared

with local mode execution.
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ABSTRACT

Kecanggihan paradigma Pengkomputeran Awan kembara atau Mobile Cloud Com-

puting (MCC) telah menerima satu masa yang sesuai untuk mengurangkan pemasala-

han peralatan mobil (seperti pengkomputeran dan tenaga) dengan menggunakan sum-

ber luar bagi tugas-tugas mobil secara intensif terhadap awan. Penyelidik-penyelidik

telah mencadangkan pelbagai penyelesaian untuk aplikasi-aplikasi mobil berasaskan kom-

putasi dengan mengeluarkan pelbagai jenis sumber-sumber berasaskan awan, terutamanya

sumber awan yang kasar, sederhana, dan halus. Sumber awan yang kasar memberi ciri

pengskalaan yang tinggi dan penglokaliti yang rendah yang menyebabkan latensi ko-

munikasi, sumber awan yang halus menawarkan pengskalaan yang rendah dan lokaliti

yang tinggi yang menyebabkan latensi pengkomputeran, dan sumber awan yang seder-

hana menyediakan pengskalaan yang sederhana dan komunikasi yang melahirkan lokaliti

dan latensi pengkomputeran. Komunikasi berkenaan dan latensi pengkomputeran secara

negatifnya memberi impak kepada keberkesanan tenaga dan masa maklumbalas bagi ap-

likasi mobil yang berasaskan komputasi di mana ia menyebabkan penurunan keupayaan

aplikasi mobil. Sebagai keputusannya, mengeluarkan sumber awan yang pelbagai mem-

bina satu leher botol yang sangat terhad kepada pengkomputeran dan keupayaan komu-

nikasi di mana menyebabkan penambahan masa maklumbalas danpenggunaan tenaga.

Kepelbagaian secara vertikal meningkatkan sejenis sumbergranular sahaja seperti kasar

atau halus. Penyelidikan ini mengsasarkan untuk memperolehi “outsourcing” komputasi

yang berkesan bagi aplikasi mobil yang berasaskan komputasi menggunakan sumber be-

rasaskan awan yang heterogeneous granular. Kepelbagaian secara horizontal berlaku pada

semua jenis sumber granular seperti kasar dan halus. Denganmenggunakan satu siri aras

tanda untuk eksperimen, kami menyiasat kesan-kesan komputasi dan komunikasi latensi

v



untuk sumber yang granular pada masa “round-trip” dan penggunaan masa untuk aplikasi

mobil yang berasaskan komputasi dan megisytihar masalah penyelidikan yang berkenaan.

Tambahan lagi, kami mencadangkan satu rangka kerja MCC secara hybrid heterogeneous

ringan untuk aplikasi mobil yang berasaskan komputasi di mana ia mensasarkan masa

tindak balas dan mengelak daripada pengselerakan tenaga pada alatan mobil. Kami men-

ganalisa eksekusi aplikasi berasaskan komputasi berdasarkan dua pengukuran keupayaan,

dinamakan sebagai “Round-Trip Time” (RTT) dan “Energy Consumption” (EC) dalam

dua model pelaksanaan iaitu lokal dan hibrid. Kami menilai keupayaan rangka kerja yang

dicadangkan dalam persekitaran sebenar dan mengesahkan keputusan melalui permodelan

statistik. Keputusan untuk analisa RTT menunjukkan bahawasecara purata 93.5% RTT

tersimpan dalam mod hybrid berbanding mod lokal dan analisaEC menunjukkan keputu-

san yang mengesahkan secara purata 94% tenaga tersimpan dalam mod hibrid berband-

ing mod lokal. Keputusan tersebut menunjukkan bahawa sumber komputasi berasaskan

awan heterogeneous hybrid mampu secara signifikan mengurangkan RTT dan EC pada

perkakasan mobil dalam pelaksanaan mod hibrid berbanding mod setempat.
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CHAPTER 1

INTRODUCTION

This chapter introduces a holistic view of the research undertaken in this thesis. We present

motivation for the research on Mobile Computation Outsourcing (MCO) in Mobile Cloud

Computing (MCC) and state the research problem. Moreover, the chapter specifies the

aim and objectives of this study and describes the methodology proposed to achieve the

aim and objectives.

The remainder of this chapter is as follows. In Section 1.1, we present motivation for

undertaking this research and highlight the significance ofthe work. Section 1.2 introduces

the identified research problem to be addressed in this thesis. Section 1.3 presents the aim

and objectives of this study following with proposed methodology in section 1.4. Finally,

we present the thesis layout in section 1.5.

1.1 Motivation

In the recent years, explosive growth of heterogeneous mobile and distributed com-

puting, wireless networking, and web technologies have significantly advanced ubiquitous

computing for mobile users. Mobile devices such as smartphones, tablets, and Personal

Digital Assistants (PDA) have become the essential part of modern life. Among them,

smartphones possess a likelihood of one-upmanship due to their miniature’s nature and

remarkable features, particularly, telephony, perception, multimedia, and geolocation ser-

vices (Albanesius, 2011). According to the Gartner, smartphones have been leading the

mobile device market share by more than 55% overall sale in last quarter of 2013 (Gartner,

2013). Smartphones have become enabler technology to servemankind in several critical

1



areas, particularly healthcare, education, tele-monitoring, urban management, and disaster

recovery. These smart handheld computers are expected to generate 150.6 billion dollars

benefits by the end of 2014, while devices like PDAs will bringin only 2.7 billion dollars

comparatively (“Global Markets For Smartphones and PDAs", 2009).

However, smartphones capabilities are encumbered by theirintrinsic limitations, par-

ticularly constraint battery, Central Processing Unit (CPU), and memory resources. Hence,

they fail to fulfil insatiable computing requirements of mobile users. Though, mobile hard-

ware technology leaders have gained remarkable achievements in developing high-end,

long-lasting CPU, Random Access Memory (RAM), and battery,but they fail to meet

ever-increasing user computing demands. Therefore, software approaches to outsourc-

ing resource-intensive computation and augmenting mobiledevices’ capabilities becomes

inevitable.

M. Satyanarayanan (Satyanarayanan, 2001) introduces thecyber foragingapproach

to empower computation capabilities of mobile devices by offloading the entire or part of

application to the remote computing resources. In this approach, mobile applications are

migrated, partially or entirely, to a nearby resource-richwall-connected non-mobile free

device, called surrogate. Surrogates as a normal desktops or computing devices perform

intensive computation on behalf of the resource-constraint mobile devices and return the

results back to the mobile. However, several Quality of Service (QoS) issues, especially

data safety, user security, reliability, availability, and scalability of surrogates inhibit their

adoption (Sharifi, Kafaie, & Kashefi, 2011).

Advancements of distributed and high performance computing have bred a novel

utility-based computing technology, called cloud computing that is embraced by the aca-

demic and industrial communities. The cloud is “a type of parallel and distributed system

consisting of a collection of interconnected and virtualized computers dynamically provi-
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sioned and presented as one or more unified computing resources based on service-level

agreements established through negotiation between the service provider and consumers”

(Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). These cloud resources can provide

elastic, scalable, and rich computation and storage platform for resource-intensive process-

ing (Mell & Grance, 2011; Armbrust et al., 2010) to reduce operational and maintenance

costs while increase operational safety.

Exploitation of cloud resources for augmenting mobile devices has emerged a new

research area called Mobile Cloud Computing (MCC). MCC inherits mobility of mobile

computing and rich resources of cloud computing and is capable of providing resource-

intensive computation and huge information at user fingertips anywhere, anytime via on-

demand, elastic, scalable computing infrastructure (e.g., Amazon and Google). The MCC

vision is realized by performing resource-intensive components of mobile applications

outside the mobile device inside the remote cloud-based resource (Abolfazli, Sanaei, Gani,

& Buyya, 2014) that is referred to as computation outsourcing or outsourcing in brief.

However, despite rich cloud-based computing resources, outsourcing performance is

affected by several factors, particularly resource heterogeneity and granularity. Cloud

computing incorporates highly heterogeneous computing infrastructures -as resources-

with dissimilar capabilities scattered around the globe. These heterogeneous resources

have three main granularity levels of coarse, fine, and medium. Coarse-Grained Resources

(CGRs) are highly scalable and elastic to performing computation (i.e., high scalability),

but are located in distance (i.e., low proximity) and exist in very few geographical regions

only (i.e., low multiplicity) breeding communication latency.

In contrast, Fine-Grained Resources (FGRs) feature limited computing capabilities

(i.e., low scalability), are located near the mobile end-users (i.e., high locality), and are

very large in number (i.e., high multiplicity) leading to computation latency. Medium–
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Grained Resources (MGRs) have medium capabilities. They have medium computing

power (i.e., medium scalability), are located in less proximity to users (i.e., locality), and

are moderately distributed worldwide (i.e., medium multiplicity) compared to coarse- and

fine-grained resources ending to both communication and computing latencies. Hence,

these heterogeneous granular resources feature varied computing and communication la-

tencies.

Although performance gain of utilizing heterogeneous computing resources instead

of homogeneous resources is verified (Rosenberg & Chiang, 2010; M. Guevara, 2013),

leveraging heterogeneous cloud-based resources has not become the dominant approach

in MCC yet. Such performance gain can remarkably improve user perceived interaction

experience from compute-intensive mobile applications (Huang et al., 2010) due to high

impact on energy consumption and response time of resource-intensive MCC applications.

However, majority of MCC solutions such as (Satyanarayanan, Bahl, Caceres, & Davies,

2009; Cuervo et al., 2010; B. Chun, Ihm, Maniatis, Naik, & Patti, 2011) leverage homo-

geneous type of resources which are dominantly coarse-grained resources. The results of

utilizing single type of cloud resource (coarse-, fine-, or medium-grained) is that they ei-

ther originate computing latency due to low computing poweror communication latency

because of long distance between mobile and cloud resources, or in the third case both

computing and communication latencies.

Therefore, it is essential to study the impact of utilizing heterogeneous cloud-based

resources for computation outsourcing in MCC, leverage hybrid resources, and propose

a lightweight computation outsourcing solution with convergence of heterogeneous re-

sources. This lightweight solution deemed could improve application execution time and

energy efficiency by benefiting from low computation and communication latency of con-

verged heterogeneous granular resources.
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1.2 Statement of Problem

The problem to address in this research is stemmed from varied scalability, locality,

and multiplicity characteristics of three classes (i.e., coarse, fine, and medium-grained)

of heterogeneous granular cloud-based resources in computation outsourcing. Leveraging

individual class of heterogeneous granular resources as remote computational resources

for mobile computation outsourcing with varied impact on response time and energy con-

sumption of compute-intensive mobile applications degrades efficiency of computation

outsourcing performance. Therefore, gaining an insight into the cause of the problem de-

mands investigation on heterogeneous granular cloud resources that used in mobile com-

putation outsourcing. It also demands analysis of heterogeneity genealogy in MCC. Be-

fore stating our research problem, we outline the impacts ofthree classes of heterogeneous

granular cloud resources on energy efficiency and response time of compute-intensive mo-

bile applications as following.

Coarse-grained cloud resourcesare any resource-rich computing units that are char-

acterized with high scalability and low multiplicity that are located in long distance with

mobile end-users. Figure 1.1 illustrates the schematic view of the typical coarse-grained

resources. Distant giant clouds (e.g., Amazon1 and Google Cloud Platform2) that fea-

ture rich resources and high scalability are standing in this class. Utilizing these resources

in computing outsourcing originates long Wide Area Network(WAN) latency due to their

long distance and hence, degrades mobile application performance. It is known that "WAN

delays in the critical path of user interaction can hurt usability by degrading the crispness

of system response" (Satyanarayanan et al., 2009). Response time is considered crisp

when it is less than 150 ms and is unacceptable when more than 2seconds (Tolia, An-

1http://aws.amazon.com/

2https://cloud.google.com
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Figure 1.1: Graphical illustration of the coarse-grained resources

dersen, & Satyanarayanan, 2006). This is noticeable that acceptable latency is highly

depending on the types of applications and users’ demand in the network. For instance,

for the 3D graphical applications, the network WAN latency should be less than 100 ms

(VMware View 5 with PCoIP Network Optimization Guide, n.d.), while it is not acceptable

for the users using photo editor applications (Satyanarayanan et al., 2009). Therefore, the

ultimate goal in this domain is to lower WAN latency and reachcrisp response time.

Moreover, accessing these coarse-grained resources oftenentertains passing through

very large number of intermediate hops and is usually associated with varies cellular com-

munications. Large number of intermediate hops originatesnoticeable delay in round-trip

communication between mobile and cloud resources. Also, though cellular wireless con-

nection supports a wide area connectivity and ubiquitous computing, but slow data trans-

fer and long delay increase response time of application andimpose negative impact on

mobile user experience. Cellular radio consumes more battery compared with Wireless

Fidelity (WiFi) radio (Perrucci, Fitzek, & Widmer, 2011). Therefore, leveraging coarse-

grained resources causes communication latency that leadsto increase in round-trip time

and energy consumption of Cloud-based Mobile Application (CMA).
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Figure 1.2: Graphical illustration of the fine-grained resources

Fine-grained cloud resourcesenfold cloud-based resources in close proximity pro-

viding cloud computing in mobile users’ locality with low computing capabilities. Illus-

trative view of the fine-grained resources such as smartphones, tablets, notebooks, and

personal computers is presented in Figure 1.2. The fine-grained resources are highly nu-

merous which indicates their high multiplicity. Although these type of computing devices

are placing close to the users, their resource-scarcity inhibit elastic scalability and avail-

ability of computing resources. This leads to the resource-intensive application perfor-

mance degradation due to their high computing latency. Hence, they cannot individually

play the role of a high performance computing server like coarse-grained resources to per-

form resource-intensive (e.g., CPU-, graphic-, and memory- intensive) tasks. However,

fine-grained resources can be accessed via short-hop connection instead of many-hop con-

nection that can noticeably conserve energy and enhance theperformance by decreasing

battery power consumption.

Medium-grained cloud resourcesare located in medium proximity to cloud-consumers,

feature medium computing power, and are more numerous than coarse-grained resources.

Figure 1.3 shows graphical representation of the medium-grained resources in MCC. The

main advantage of medium-grained resources compare to coarse-grained resources is their

better proximity to the users, and the major advantage of them to fine-grained resources
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Figure 1.3: Graphical illustration of the medium-grained resources

is their higher computing power. Medium-grained resource can be any computing de-

vice with medium computing power and proximity level to mobile users. For example, a

medium instance of Amazon Elastic Compute Cloud (EC2) can becalled medium-grained

resource when is located in medium proximity level (city level) to users. Performing

resource-intensive tasks in proximate cloud-based resources enhances application perfor-

mance, but fails to deliver on-demand scalability and service availability. This is inten-

sified by growth in the number of cloud consumers that leads tothe system performance

degradation due to lack of scalable, rich computing resources like giant clouds. Thus, this

kind of heterogeneous cloud resources fails to provide everincreasing scalability require-

ments of CMAs.

Deficiencies and shortcomings of each class of heterogeneous granular resources in-

hibit efficient leveraging of vertical heterogeneous granular cloud resources in mobile out-

sourcing. Vertical heterogeneity raises within one type ofgranular resources, like coarse or

fine and creates a bottleneck of limited computing and communication capabilities which

results in increased response time and energy consumption.In contrast, horizontal hetero-

geneity happens across varied types of granular resources,like coarse and fine. Horizontal

heterogeneity can increase performance gain of mobile computation outsourcing by al-

lowing computation-communication trade-off.
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Therefore, considering the limitations of vertically heterogeneous resources, we can

present the identified research problem as follows.

Coarse-grained cloud resources feature high scalability and low locality that origi-

nates communication latency, fine-grained resources offerlow scalability and high locality

that leads to computation latency, and medium-grained resources provide medium scala-

bility and locality breeding communication and computing latency. Such communication

and computation latencies negatively impact on energy efficiency and response time of

compute-intensive mobile applications leading to mobile application performance degra-

dation.

Leveraging horizontally heterogeneous granular resources creates opportunity to per-

form computing-communication trade-off and improve CMA execution performance. There-

fore, to advance mobile computation outsourcing in MCC there is a crucial necessity to

a lightweight computation outsourcing framework built on ahorizontally heterogeneous

granular resource layer that can fulfill insatiable computing resources for optimal CMAs

execution. Such horizontally heterogeneous hybrid resource aims to accumulate strengths

and benefits of each type of granular resources and develop a multi-layered cloud platform

for mobile devices which still is lacking.

1.3 Statement of Objectives

This research is undertaken with the aim to achieve efficientcomputation outsourc-

ing for compute-intensive mobile applications using horizontally heterogeneous granular

cloud-based resource. The aim is achieved by fulfilling the following objectives:

• To study the recent cloud-based mobile computation outsourcing approaches and to

gain an insightful understanding of heterogeneity and granularity in MCC that helps

us to identify the current problems in computation outsourcing domain of MCC.
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• To analyse the identified problem caused by computation andcommunication la-

tencies and unveiling the impact of leveraging heterogeneous granular resources on

Round-Trip Time (RTT) and Energy Consumption (EC) of compute-intensive mo-

bile applications.

• To propose a lightweight horizontally heterogeneous hybrid MCC framework for

compute-intensive mobile applications to achieve efficient computation outsourcing

by performing trade-off between computation and communication latency that leads

to efficient RTT and EC in CMAs.

• To evaluate and validate performance of our proposed lightweight horizontally het-

erogeneous hybrid MCC framework considering two performance metrics of round-

trip time (RTT) and energy consumption (EC) of mobile applications.

1.4 Proposed Methodology

We use the following steps in order to achieve the aim and objectives of this study.

• Comprehensive review and synthesis of the recent mobile computation outsourcing

efforts in MCC are undertaken to identify the impact of exploiting heterogeneous

granular cloud-based resources on CMAs’ performance referring to scholarly digital

libraries, particularly IEEE, ScienceDirect, and Web of Science. We also examine

the impacts of heterogeneity in MCC from two different dimensions and identify

several research issues through literature. We identify the most significant research

problems to address in this research.

• We investigate the identified problem and verify its significance through experimen-

tal analysis in real MCC environment using android-based smartphone and Amazon

EC2 cloud Virtual Machines. Using series of benchmarking experiments on local
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mobile device and real cloud computing testbeds, we evaluate the performance of

executing compute-intensive applications in MCC to verifythe severity of the iden-

tified research problem.

• To alleviate the identified problem, we implement and design a lightweight horizon-

tally heterogeneous hybrid MCC framework for efficient outsourcing of compute-

intensive applications. The proposed framework is composed of three layers of het-

erogeneous granular resources each with different scalability, locality, and multiplic-

ity degree. To achieve efficient execution of CMAs, we designour horizontally het-

erogeneous hybrid cloud in convergence of fine-grained (i.e., Mobile Network Op-

erators (MNO) dealers), medium-grained (i.e., MNOs), and coarse-grained (i.e., dis-

tant giant clouds like Amazon EC2) resources to perform computing-communication

trade-off for efficient outsourcing. Beside, we use Resource-Oriented Architecture

(ROA) design philosophy in design and development of the framework to mitigate

the system complexity and management overhead. ROA as a well-known design

philosophy independent from specific technology, vendor, and business policy is

deployed to incorporate different prefabricated servicestowards conveniently gener-

ating complex applications and services. Thus, lightweight feature of the framework

is achievable in the presence of ROA design philosophy and horizontally heteroge-

neous hybrid MCC resources.

• We evaluate performance of our proposed framework via benchmarking experi-

ments. A complex prototype application, including three heavy operations, namely

power, prime, and factorial is used in this benchmarking experiment. The perfor-

mance evaluation testbed is built using real android-basedsmartphones and cloud-

based resources in wireless environment. Application round-trip time and consumed
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energy are opted as two performance metrics in this experiment. We used 30 differ-

ent workloads with three intensity levels of low, medium, and high to carry out our

performance evaluation in the real MCC environment. The results of performance

evaluation are validated using statistical modelling. Thestatistical model is devised

using regression analysis as a predominant observation-based analysis and mod-

elling method. The dataset is created using independent replication method on the

real time environment to be used for training the regressionmodel. We validate the

devised models based on the split-sample validation approach. The valid statistical

models are used to validate the results of our performance evaluation results.

1.5 Thesis Layout

The remainder of this thesis are organized as follows and represented in Figure 1.4.

• Chapter 2 aims to review the research undertaken in the fieldof mobile compu-

tational outsourcing. The chapter provides knowledge of MCC environment, re-

views mobile computation outsourcing approaches to identify and classify granular

resources and determine the deficiencies of current solutions. We investigates het-

erogeneity and granularity features of the MCC to gain insight into the benefits

and challenges. The taxonomy of heterogeneity beside heterogeneity handling tech-

niques are presented in this chapter. Heterogeneous granular mobile computation

outsourcing approaches are presented and several researchproblems are identified

as future research directions.

• In Chapter 3, we investigate and analyse the impacts of heterogeneous granular

cloud-based resources in performance of Resource-intensive Mobile Application

(RMA). Using series of experiments on android-based mobiledevice and Amazon

cloud virtual machines, we identify the impact of scalability, locality, and multi-
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plicity on performance of mobile applications. We verify the research problem and

demonstrate its significance.

• In Chapter 4, we propose a lightweight horizontally heterogeneous MCC frame-

work in convergence of coarse-, medium-, and fine-grained cloud-based resources

for this research. The schematic presentation of the framework is demonstrated and

the functional and non-functional properties of the main system components are ex-

plained. Significance of the proposed framework is highlighted and performance

evaluation setup is described.

• Chapter 5 presents the performance evaluation methodology. We describe two eval-

uation methods, namely benchmarking and statistical modelling that have been used

to evaluate and validate the performance of the proposed framework. The bench-

marking model is explained and the methodology to devise statistical model is de-

scribed. The method to validate the statistical models is also described.

• In Chapter 6, we present the results of our performance evaluation and discuss the

findings from two main perspectives of application round-trip time and energy effi-

ciency. We compare and contrast the benchmarking results with the results of sta-

tistical modelling (which is validated) to validate the performance of the proposed

framework.

• Finally, Chapter 7 concludes the thesis by describing how the aim and objectives of

the research are fulfilled. The main contributions are summarized and significance

of the research and the framework proposed in this research are highlighted. We list

the publications including conference and journal articles that are produced from

the research undertaken in this work. The limitation and future works conclude the

chapter.
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Figure 1.4: Schematic presentation of the thesis layout
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CHAPTER 2

A REVIEW ON MOBILE COMPUTATION OUTSOURCING IN MOBILE
CLOUD COMPUTING: HETEROGENEITY AND GRANULARITY

This chapter reviews the Mobile Cloud Computing (MCC) on recent mobile computation

outsourcing efforts from heterogeneity and granularity perspectives to devise taxonomies.

The MCC domain is reviewed from heterogeneity point of view to gain insight into the

problems that diversity and inhomogeneity of mobile devices, cloud computing resources,

and communication networks impose on computation outsourcing. Taxonomy of hetero-

geneity dimensions in MCC is presented and roots of heterogeneity are identified. The

problems that are stemmed from heterogeneity are highlighted and the efforts to alleviate

the problems are critically reviewed. Four varied MCC architectures are taxonomized and

described from heterogeneity point of view. Several heterogeneity handling techniques

and open research challenges in MCC, including computationand communication laten-

cies of heterogeneous granular resources are identified.

Section 2.1 presents a brief description on mobile computing, cloud computing, and

mobile cloud computing. Section 2.2 presents MCC definitionand dimension and the

taxonomy of heterogeneity in MCC is presented in Section 2.3. Impacts of heterogeneity

in MCC are investigated in Section 2.4 and several heterogeneity handling approaches are

reviewed in Section 2.6. Several open research challenges are highlighted in Section 2.7.

The chapter is concluded in Section 2.8.

2.1 Background

In this section we present a brief introduction on mobile computing, cloud computing,

and MCC efforts.
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2.1.1 Cloud Computing

Cloud computing is a new era of computing after grid computing which is directed to

deliver varied services over the internet. The cloud services including infrastructure, plat-

form and software are provided by several cloud providers. Each service has the ability to

provision scalability according to different demands, to run complex and heavy function-

ality for users regardless of dealing with underlying technologies, to leverage vast verity

of physical infrastructure for using pool of rich resourcesby help of virtualization tech-

nology, and pay as you use principle.

Cloud computing is the state of the art technology to delivera scalable, reliable,

secure and sustainable varied infrastructure for hosting various Web-based applications

services. Infrastructure as a Services (IaaS), Platform asa Service (PaaS), and Software as

a Service (SaaS) are those services that are offered by cloudproviders (Buyya et al., 2009;

Mell & Grance, 2011; Armbrust et al., 2010). To benefit from economies these services

stated as a computing utility (Armbrust et al., 2009) like traditional utility services e.g. gas,

water and electricity. Clouds mainly aim to increase the power of data warehouses which

scattered as a pool of resources, and to provide a virtual services like hardware, database

and user interface by leveraging virtualization technology (Barham et al., 2003). There-

fore, applications can take the benefit of parallel and distributed algorithms supported by

cloud servers and run in an isolated environment in top of virtualization layer independent

from beneath layers’ architecture.

Cloud users also may cross the channel of internet and use hardware, platform and

software services on requirement which is provided as a subscription-based in model of

pay as the customer use service. Hence, in the cloud computing ecosystem users have the

ability to access and deploy the application and data anywhere with availability of syn-

chronization across several devices that use and pay the costs depending on Quality of
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Service (QoS) metrics that required (Buyya, Chee Shin, & Venugopal, n.d.). Developers

for developing new idea that necessitates specific hardwarewith high processor, memory,

storage, and software no longer need to spend time and cost for making a large infrastruc-

ture to deploy their services or user investment to operate it (Armbrust et al., 2009). For

example Amazon Elastic Compute Cloud (EC2) (Amazon Elastic Compute Cloud (EC2),

n.d.) is one of the well-known cloud computing platforms that offers distributed IaaS for

users to run their varied Operating Systems (OS), whereas Amazon S3 (Amazon Web Ser-

vices,Amazon Simple Storage Service (Amazon S3), n.d.) supports storage and provides

highly scalable, secure, fast and reliable. Eucalyptus is asoftware platform which em-

powers cloud users to have a private cloud infrastructure asa service. Eucalyptus as an

open source cloud computing platform, compatible with Amazon web Service (AWS) can

create scalable cloud resources for computing (like EC2) , network and storage (like Sim-

ple Storage Service (S3)) for images and user data (Milojicic & Wolski, 2011;Eucalyptus

Systems, Inc.,Eucalyptus Cloud Computing Software, 2011).

Google App Engine (GAE) (Google, Inc.,Google App Engine, n.d.) also as a famous

PaaS provides hosting platform and allows clients to deployand run their specific web

applications based on what GAE can support (currently Python and Java are two program-

ming language is supported by GAE). Facebook and DropBox (DropBox, n.d.) are illus-

trious web-based cloud-based applications with “web 2.0” as the key technology behind

the realization of software as services.

In summary, cloud computing is a high performance computingtechnology which

significantly reduces costs of ownership by eliminating necessities for maintenance of

large-scale parallel and distributed servers including their power consumption and cooling

systems. While the cloud landscape has a vast opportunity toimplicate different com-

puting devices and infrastructure, it brings a heterogeneous environment featuring varied
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programming languages, hardware, architecture, and business policies. Most of cloud sys-

tems have their own proprietary policies with invisibilityof infrastructure for researchers.

Also cloud services delivered by cloud service providers are completely and tightly inte-

grated with the underlying platforms. For instance, GoogleApplication Engine and the

Apple Cloud (iCloud) support their own mobile platforms, respectively Android and iOS.

This phenomenon manifests as fragmentation and portability issues due to heterogeneity

in MCC.

2.1.2 Mobile computing

Advance technologies in mobile device have conveyed a vast variety of hard-ware,

software with data transmission technologies that have ledto proliferations of mobile de-

vices, especially smartphones whereas they surpass notebook and desktop PCs (Albane-

sius, 2011;Smartphones Will Surpass PC Shipments In Two Years, 2010). Improvements

in CPU, memory, power consumption, sensors, size and quality of screen on one hand and

growth in mobile applications because of development in mobile OSs and wireless tech-

nologies e.g. 3G and 4G that provide higher rates of data transmission on the other hand

are contributed toward delivering enhanced services to mobile users on the go.

Despite such advancement and release of modern mobile platforms such as Android

and iPhone, still current smartphones have intrinsic limitations on processing power, bat-

tery lifetime, storage capacity and display size due to miniature, lightness, and mobility.

Hence, complex functionality, heavy processing and storing huge amount of data on mo-

bile devices are non-trivial. Mobile devices with high quality of digital camera to capture

a photo and record video are suffering from low memory and battery life time, and also de-

velopers do not have the opportunity to fulfill user requirements and engage them with rich

mobile applications. Therefore, computation outsourcingthrough cloud-based resources
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is emerging to realize the vision of mobile computing.

2.1.3 Mobile Cloud Computing (MCC)

Mobile Cloud Computing is a rich mobile computing technology that leverages uni-

fied elastic resources of varied clouds and network technologies toward unrestricted func-

tionality, storage, and mobility. It serves a multitude of mobile devices anywhere, anytime

through the channel of Ethernet or Internet regardless of heterogeneous environments and

platforms based on the pay-as-you-use principle. MCC is an amalgam of three heteroge-

neous foundations, namely cloud computing, mobile computing, and networking.

The state-of-the-art mobile cloud computing (MCC) paradigm has gained a momen-

tous ground to mitigate mobile devices’ shortcomings (i.e., computing and energy) by

outsourcing resource-intensive mobile tasks to the cloud.

Vision: MCC is the state-of-the-art mobile computing technology that aims to aug-

ment a multitude of mobile devices, especially smartphonesand alleviate their resource

poverty. This futuristic accomplishment will be employed in several areas like healthcare

(e.g. telemonitoring and telesurgery), education, IT Business, rural and urban develop-

ment, and social networking. Technological advancement inmanufacturing high-end mo-

bile resources is slower than the ever-growing expectations of mobile users and application

requirements. Hence, soft resource augmentation is necessary for delivering user-centric

computing capabilities (Satyanarayanan, 2001) equal to user expectations. We advocated

that cloud computing is the predominant technology recently deployed to augment smart-

phones by reducing application resource requirements. Several efforts such as (Cuervo et

al., 2010; X. W. Zhang, Kunjithapatham, Jeong, & Gibbs, 2011; B.-G. Chun & Maniatis,

2009; March et al., 2011; Lu, Li, & Shen, 2011; Kemp, Palmer, Kielmann, & Bal, 2010)

deploy cloud computing technology to enhance the capability of smartphone.
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Moreover, cloud computing is beneficial in enhancing information safety and secu-

rity. Storing data in smartphones’ local storage is a hazardous practice due to their suscep-

tibility to theft, loss, and physical damage. Cloud data storage is envisioned to enhance

data safety and security, provide pervasive accessibility, and facilitate data portability and

synchronization among several devices (e.g. smartphones and PCs). DropBox1, Sug-

arSync2, and Box3 are examples of cloud storage services. People exploit suchhuge data

warehouses to store and retrieve their data (bulk data) which are accessible from various

devices. Users can even access their data through the Internet by utilizing public devices

and providing unique credentials.

The advent of MCC has advanced into the technological revolution providing prof-

itable opportunities for several domains such as healthcare, e-learning, and the tourism

industry. It connotes the impression to reduce developmentcost and stimulate execution

of resource-intensive mobile applications by leveraging distant rich resources to enhance

the quality of user experience.

Figure 2.1 illustrates a conceptual view of MCC and depicts its usability in several

domains such as healthcare, social networking, urban development, and vehicular tech-

nology. It shows the possibility of utilizing geographically distributed private clouds (e.g.

medical and biological research groups), public clouds (e.g. Google4 and Facebook5), and

hybrid clouds (that can be generated by converging private and public clouds) in global

roaming. Furthermore, Figure 2.1 illustrates heterogeneity in MCC among varied mobile

devices, communication networks, and clouds. Although heterogeneity has been existing

1https://www.dropbox.com/

2http://www.sugarsync.com/

3http://www.box.com/

4https://www.google.com

5http://www.facebook.com
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Figure 2.1: A conceptual view of mobile cloud computing.

in mobile and cloud computing domains, accumulated intensity and complexity make it a

unique, challenging feature within MCC that necessitates advance study.

MCC is a heterogeneous environment consists of three heterogeneous sub-domains

of mobile computing, cloud computing, and communication networks (to augment smart-

phones). This amalgam of heterogeneities deems could create benefits and challenges. In

next section, we investigate MCC from heterogeneity perspective to better gain an insight

into heterogeneity aspect of MCC and identify possible benefit and challenges that are

either stemmed or intensified by heterogeneity.

2.2 Heterogeneity in MCC

MCC consists of three heterogeneous various components (i.e., mobile devices, clouds,

and wireless networks) which these components should seamlessly cooperate and commu-
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nicate with each other to benefit mankind. In this section, wepresent a brief overview on

MCC heterogeneity and classify it into two dimensions, namely vertical and horizontal,

based on type of heterogeneity risen in mobile devices, cloud, and wireless networks.

2.2.1 Definition

Heterogeneity in MCC is the existence of differentiated hardware, architectures, in-

frastructure, and technologies of mobile devices, clouds,and wireless networks. The cut-

ting edge technologies are expected to initiate and facilitate collaboration among these

heterogeneous computing devices toward unrestricted mobile computing.

Heterogeneity in Mobile Devices:Software, hardware, and technology variation among

mobile devices cause heterogeneity in this domain. Moreover, increasing popularity of

smartphones creates a dynamic and demanding market that disperse them to different di-

mensions, e.g. brand, hardware, OS, feature, and communication medium. Consequently,

device-level collaboration becomes more challenging in MCC.

Heterogeneity in Clouds:Numerous cloud vendors provide different services with custom-

built policies, infrastructures, platforms, and APIs thatmake the cloud landscape hetero-

geneous. Such variations cause interoperability and portability (Hogan, Liu, Sokol, &

Tong, 2011) as major challenges in cloud computing. There isa notion (D.Durkee, 2010)

that business competition also diversifies cloud providerswith their heterogeneous frame-

works, exacerbating heterogeneity on the cloud side.

Heterogeneity in Wireless Networks: In MCC, the majority of communications take

place in the wireless network environment which is a heterogeneous communication medium.

Variations in wireless networks and their related technologies impact the delivery of cloud

services and affect mobility, augmentation, and usabilityof smartphones.
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Figure 2.2: Dimensions of Heterogeneity in MCC.

2.2.2 Dimensions

Heterogeneity in MCC is classified into two categories, namely vertical and horizon-

tal based on the variations in mobile, cloud, and network environments. The proposed

heterogeneity model in Figure 2.2 depicts how three underlying components of MCC are

influenced by two types of heterogeneity. Figure 2.3 shows three examples of vertical and

horizontal heterogeneity in MCC.

Vertical Heterogeneity: When differentiation is within a single type of mobile OS, cloud

service, or wireless network it is named vertical heterogeneity.

• Mobile Devices:Among mobile devices, vertical heterogeneity appears within a

similar family of products. Different flavors of the OSs offer some unique fea-

tures and services that are not compatible with other versions. The vertical oval

shape in Figure 2.3(a) shows vertical heterogeneity withindifferent flavors of An-

droid OS. Android 4.0.3 offers social, calendar, and visualvoice mail APIs which

are totally new compared to Android 3.x (Android API Levels, n.d.). Similarly, in

various BlackBerry mobile products, different features and hardware specifications

are deployed that prevent the application portability among devices from the same

manufacturer. Therefore, the application developed for one OS and deployed in one

specific product cannot be portable to the same family of products with different
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Figure 2.3: Vertical and horizontal heterogeneity in threedimensions within MCC: (a)
mobile OSs and their versions, (b) cloud services and vendors, and (c) wireless networks
and related technologies.

versions of the same OS.

• Clouds: In the cloud, vertical heterogeneity occurs within a singletype of clouds

that provides similar services, e.g. IaaS (Infrastructureas a Service) or PaaS (Plat-

form as a Service). The vertical oval shape in Figure 2.3(b) shows vertical hetero-

geneity within various IaaS service vendors. Though AmazonEC2 and Rackspace

are IaaS clouds, they are built on different pillars: internal infrastructures, technolo-

gies, and business policies. Therefore, demand for switching between these two

cloud services incurs redundant cost, even though both vendors provide IaaS. It also

creates data and application portability issues and hinders easy code and data migra-

tion within a single type of clouds. Cloud users are forced toadhere to specific cloud

service provider(s) (Sheth & Ranabahu, 2010). However, standardization efforts like

the Open Virtualization Format (OVF) (“Open Virtualization Format Specification

(OVF)", 2009) are emerging to alleviate problems and facilitate the deployment of

virtual appliances in various clouds.

• Wireless Networks:Among different wireless technologies, horizontal handoff is a
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well-known phenomenon caused due to vertical heterogeneity in mobile wireless en-

vironments including MCC. In MCC, horizontal handoff happens in the situations

when a cloud-mobile user is moving across heterogeneous access points within a

single type of wireless network to access cloud services. For instance, this hap-

pens when cloud-mobile user is moving between IEEE 802.11a and IEEE 802.11g

Wireless Local Area Network (WLAN), or between Code Division Multiple Access

(CDMA) 2000 and Wideband Code Division Multiple Access (WCDMA) 3G tech-

nologies. In majority of offloading algorithms in MCC, the network characteristics

highly influence on offloading decision (Sharifi et al., 2011). Hence, any change

in networking technologies directly impacts on efficiency and effectiveness of the

offloading decision and overall process. The vertical oval shape in Figure 2.3(c)

shows vertical heterogeneity within various cellular technologies. Data transmission

in cognitive wireless access networks (Demestichas, Stavroulaki, Boscovic, Lee, &

Strassner, 2006) which is configured with a set of different Radio Access Technolo-

gys (RATs) and Frequencys (Fs) is an illustrious example of vertical heterogeneity.

When an application or data is tended to change the environment, the transceiver

may need to change RAT and F, just change RAT and maintain F, orreverse. Ulti-

mately, the user session is maintained continuously and consistently during mobility

by leveraging horizontal handoff process (Nasser, Hasswa,& Hassanein, 2006).

Horizontal Heterogeneity: When differentiation is across different types of mobile OSs,

cloud services, or wireless networks it is named horizontalheterogeneity.

• Mobile devices:Among mobile devices, horizontal heterogeneity appears between

different platforms: two or more OSs (e.g. Android and RIM) or brands (e.g.

Samsung and Nokia). The horizontal oval shape in Figure 2.3(a) shows horizon-

25



tal heterogeneity between different OSs. For instance, theapplication developed for

BlackBerry Torch6 (RIM V6.0) is not executable in Android V3.x products.

Horizontal heterogeneity is usually more challenging compared with the vertical

heterogeneity. Portability is exacerbated when development of applications such as

Cloud-Mobile Hybrid (CMH) applications is concerned. To develop CMH appli-

cations, developers should design the application for the cloud as well as the mo-

bile side. This development process must be repeated for various platforms, which

is an exasperating effort for the developer (A.Manjunatha,A.Ranabahu, A.Sheth,

& K.Thirunarayan, 2010). Developers should consider various mobile platforms,

cloud vendors and supporting programming languages to decide how to develop the

application which is an irksome impediment.

• Clouds: In the cloud, horizontal heterogeneity occurs between different types of

clouds that provide heterogeneous services, like IaaS and PaaS. The horizontal oval

shape in Figure 2.3(b) shows horizontal heterogeneity between various types of

cloud services. In a scenario that some PaaS vendors offer free limited storage, if a

new application utilizes such storage that is incidentallycoupled with specific data

structure like Google App Engine7 (the only Google Query Language (GQL)-based

PaaS cloud), such dependency locks the application in the cloud. Hence, porting

rapidly growing data to an IaaS cloud (for less hosting cost)which is non-GQL-

based IaaS (e.g. Structured Query Language (SQL)-based cloud) is hardly possible

and imposes upfront investment.

This type of heterogeneity, similar to the mobile side, is more difficult to address

as compared with vertical heterogeneity because of switching difficulties between

6http://us.blackberry.com/smartphones/blackberrytorch/

7https://developers.google.com/appengine/
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various service providers with different patterns, architectures, APIs, and business

policies. Vertical hand of is the best

• Wireless Networks:Horizontal heterogeneity in wireless networks occurs whena

mobile client is travelling across various networks like cellular and WLAN. Chang-

ing network node and supporting mobility, termed “verticalhandoff”, highlighting

a dilemma in horizontal heterogeneous wireless network, which is a more challeng-

ing task with presence of different infrastructure. In thissituation, signal handoff

processes are more difficult than vertical heterogeneity due to the switching pro-

cess between different types of network (Nasser et al., 2006). Unlike the decision

making algorithm in vertical handoff that relies on severalparameters (like energy

efficiency, Received Signal Strength (RSS), accessible bandwidth, security, finan-

cial cost, and user preference), decision in horizontal handoff is made based on the

RSS only (Yan, Ahmet Sekercioglu, & Narayanan, 2010). Such increased com-

plexity obliges vertical handoff optimization toward seamless connectivity in MCC

which will enhance on-demand services and increase the quality of user experience.

The horizontal oval shape in Figure 2.3(c) shows horizontalheterogeneity between

various types of networks.

Review of challenges in MCC highlights that heterogeneity has remarkable impacts

on mobile computation offloading, seamless connectivity, long WAN latency, mobility

management, and vendor/data lock-in which encumber resource-intensive computing on

the go and necessitate in-depth analysis. Also, managing billing systems and Service-Level

Agreements (SLAs) in MCC become more complex considering heterogeneity among var-

ied entities which demand upfront consideration on severalparameters. Hence, mitigating

the impact of heterogeneity can significantly enhance quality of MCC and extend usability
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Figure 2.4: Taxonomy of heterogeneity roots in MCC.

of mobile devices to more resource-intensive computing areas. Due to its vital influence,

we comprehensively analyze roots of heterogeneity in the following section.

2.3 Taxonomy of Heterogeneity Roots in MCC

In this section, we comprehensively study heterogeneity inMCC by analysing roots

and dimensions of heterogeneity. We identify heterogeneity roots as hardware, platform,

feature, API, and network and devise a taxonomy depicted in Figure 2.4.

2.3.1 Hardware Heterogeneity

Variety of hardware with different inward architecture between mobile devices, cloud

servers, and network infrastructures (e.g. access points,radio transceivers, and routers)

trigger hardware heterogeneity in MCC.

In the cloud environment, cloud providers maintain different infrastructures and ar-

chitectural design to enhance quality of their service. Servers use X86 CISC (Complex

Instruction Set Computer) architecture with two variations of 32-bit and 64-bit. Moreover,

cloud infrastructures gradually grow more heterogeneous due to upgrade and replacement.

The emerging growth of cloud computing will increase the number of geographically dis-

tributed cloud nodes that intensifies hardware heterogeneity among cloud providers.
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The inward architecture and resource specifications of mobile devices such as proces-

sor speed, internal memory, radio specification, and battery capacity vary widely among

different brands and models. The majority of smartphones are built based on 32-bit ARM

RISC (Reduced Instruction Set Computer) processor architecture, but there is a large vari-

ation in terms of speed, number of cores, and amount of processor cache which suits them

in specific domains. For instance, among recent Cortext series processors, Cortex-A is

ideal for computing intensive multi user applications while Cortex-R is more suitable for

real-time data processing scenarios (“The ARM Cortex-A9 Processors", 2009). In the

near future, the 64-bit ARM processors are expected to increase the heterogeneity among

smartphones (“ARM Discloses Technical Details Of The Next Version Of The ARM Archi-

tecture", 2011).

Hardware and architectural heterogeneity among mobile devices and cloud servers

hamper direct deployment of cloud resources and services inmobile devices and leads to

several problems as below.

• Imbalanced quality and performance:Variation in computing resources and their

implementations diversify performance and quality of cloud services. Therefore,

business contribution among cloud providers will be negatively affected by such

quality divergence. It also makes decision making harder for users when choos-

ing the appropriate vendor from available options. To facilitate the user’s decision

making, a comprehensive study and comparison among reputedcloud vendors is

presented in (Find the Best: Compare Cloud Computing Providers, n.d.). Users can

compare and contrast the service quality of each vendor fromvarious aspects.

• Data management and integrity:The increasing number of very large scale ge-

ographically distributed data warehouses and the non-similarity of data structures

29



complicate data management. Integrating huge distributeddata and providing vir-

tually unified storage for mobile users is becoming more complicated with the ever

increasing heterogeneity in MCC (Sakr, Liu, Batista, & Alomari, 2011).

• Interoperation:Data interoperation is the ability of connecting heterogeneous sys-

tems (based on wired or wireless), understanding geographical information resources,

and exchanging data between/across two or more heterogeneous systems (Blair,

Paolucci, Grace, & Georgantas, 2011). However, in MCC infrastructure diversity

among various clouds on one hand and dissimilarities between cloud and mobile

infrastructures with existence of wired against wireless network hardware systems

on the other hand, have created data integration and interoperation problems in the

absence of interface’s standards and uniform platforms. For example, when Alice

moves from current city to another while utilizing a nearby cloud ’A’ via her An-

droid mobile device, remote data (in part or whole) might be migrated to a nearer

cloud ’B’ for the sake of performance. In this situation, if the cloud ’B’ fails to con-

nect to the cloud ’A’, if cloud ’B’ cannot understand cloud ’A’ database information

after establishing a connection, or fail to exchange data with cloud ’A’, the Alice

computing experience will be degraded because of data interoperation problem.

• Portability: Codes are not easily movable and executable to/on heterogeneous hosts

and the privilege of “write once run anywhere” is divested from developers. For in-

stance, the application written for quad-core processor isnot executable on dual-core

processor due to architectural and hardware dissimilarities. Similarly, the applica-

tions developed for the ARM architecture cannot be executedon X86 without code

modification and re-configuration.

• Accurate energy estimation:One of the most important aims of MCC is to conserve
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mobile battery power. Thus, resource-intensive tasks are offloaded from mobile de-

vice to the cloud to deliver long-lasting online mobile services. However, before

offloading, a decision making system needs to determine whether offloading com-

putation can save energy or not (Kumar & Lu, 2010). If the remote execution can

save energy, then the offloading is performed, otherwise theapplication is either ter-

minated or executed locally. However, estimating energy efficiency of offloading is

a non-trivial task due to heterogeneity of wireless technologies and infrastructures.

Metrics such as power and bit-rate of wireless modems, activating time of interface,

activation and deactivation delay of interface, and trafficpattern complicate accu-

rate energy estimation. Also, varied hardware technologies and implementations

are different in terms of power consumption (Perrucci et al., 2011). Therefore, pre-

cise estimation of required energy for application execution is difficult in different

platforms.

• Cloud-mobile application development:Developing cross-platform components (i.e.,

cloud, mobile, and hybrid) for cloud-mobile application isa complicated task. Mo-

bile components should be able to move among various smartphones while cloud

components must be portable to all cloud infrastructures. The hybrid components

should easily travel among various smartphone and cloud platforms.

To address these problems, Stone et al. (Stone, Gohara, & Shi, 2010) propose OpenCL

as a parallel programming standard for heterogeneous computing devices. OpenCL en-

ables developers to create desktop applications executable on various types of computing

elements like multicore CPU, Graphical Processing Unit (GPU), and other accelerators.

The same approach can be maintained in the cloud which shrinks hardware heterogene-

ity. Applications developed for certain architectures using OpenCL can be ported to other
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architectures with guaranteed correct functionalities. Using multiple programming strate-

gies, the application can query hardware specifications andcapabilities of the hosting ma-

chine and choose an appropriate kernel to increase correctness and compatibility. How-

ever, developing and managing several kernels incur extra cost and encumbrance beside

occupying lots of space.

To dilute the impact of hardware variety in the cloud and smartphones, Madhavapeddy

et al. (Madhavapeddy, Mortier, Crowcroft, & Hand, 2010) propose a cloud OS called Mi-

rage, based on virtualization technology. Mirage runs on top of a hypervisor to produce

cross-platform applications that are portable to a plethora of mobile devices and cloud

servers. In the Mirage, applications are developed on normal OS like Linux and then com-

piled into a kernel that is able to run directly on mobile devices and virtual clouds. Figure

2.5 depicts the layered architecture of Mirage that links the microkernel to an application

on top of the hypervisor. Mirage microkernel leverages Xen hypervisor to lessen the im-

pact of architecture heterogeneity of mobile and PCs on mobile applications. However,

creating, maintaining, and destroying VM over a smartphoneconsume local resources and

shorten battery life.

Figure 2.5: Mirage approach with statistically-linked kernel and application.

Huerta-Canepa and Lee (Huerta-Canepa & Lee, 2010) create a virtual cloud comput-

ing platform in the absence of a real cloud to augment mobile devices using an ad-hoc
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network of mobile phones. In this approach impact of hardware heterogeneity is mitigated

by leveraging smartphones as remote servers instead of using desktop machines or cloud

servers. Similarly, Marinelli (Marinelli, 2009) propose aMCC platform composed of

Android smartphones called Hyrax to lessen the architectural impact of non-ARM (X86)

devices. However, using smartphones as cloud providers is hindered by two main chal-

lenges. Firstly, giant cloud processing resources are exchanged for limited resources of

smartphones. Secondly, the lack of appropriate security and billing mechanisms for indi-

vidual smartphone owners, discourage the sharing of scarceresources. However, mutual

benefits of individual smartphone clients will likely encourage resource sharing in this

context.

Furthermore, several application transition solutions like Marmalade and PhoneGap

aim to mitigate the impact of heterogeneity on application portability by automatically

generating compatible codes for various platforms. Thoughthese approaches reduce the

impact of heterogeneity on the application development process, is not congruous with the

definition of portability offered by the InterNational Committee for Information Technol-

ogy Standards (INCITS) (INCITS, n.d.) as portability is thecapability of transferring one

application from one device to a wide range of devices with little or no modification and

conversion.

2.3.2 Platform Heterogeneity

Platform heterogeneity is the availability of various OSs,programming languages,

and data structures in MCC. Currently, a plethora of heterogeneous mobile OSs such as

Google’s Android and Apple’s iOS, each with multiple versions, developed to provide

rich, compelling services to end-users. Each platform supports different combinations of

programming language and data structures. For instance, Android offers Java language,
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native code with JNI, and C/C++, while iOS supports Objective-C (Tarkoma & Lagerspetz,

2011).

In the context of cloud computing, the most widespread cloudproviders such as Ama-

zon Web Service (AWS)8, Google App Engine9, and Microsoft Azure10 offer different

OSs, programming languages, and data structures. Windows Azure supports a multiple

choice of languages like .NET, PHP, Ruby, Phyton, and Java (Windows Azure Developer

Center, 2012), whereas Google App Engine supports Java and its products plus Ruby and

Python. AWS supports most developing languages and offers SDK for Android and iOS

smartphones (Amazon Web Services: Mobile Developer Center, n.d.). Azure is built on

the SQL, while the App Engine datastore includes GQL, and Amazon’s Dynamo system

(DeCandia et al., 2007) has a different structural design and partitioning scheme. Cloud

providers enforce restrictions in databases to provide more flexible services.

Such non-uniformity makes an irksome impediment for cloud-mobile application de-

velopers and users. Portability and data integrity problems are also exacerbated in MCC.

Therefore, mobile users, especially corporate mobile users with bulk sensitive data face

problems in transferring a huge amount of data between heterogeneous clouds because it

is a costly, time consuming, and risky process (A.Ranabahu &A.Sheth, 2010). Millions of

records stored in a cloud database cannot be utilized in another cloud without compromis-

ing privacy and integrity when there is a difference betweenfile systems and encryption

techniques. Figure 2.6 depicts heterogeneous platforms and programming technologies in

the cloud and mobile domains, and challenges for application programmer in selection of

a suitable development environment or a programming language.

For MCC applications, we need a unified application environment similar to Aneka

8http://aws.amazon.com

9https://appengine.google.com/

10http://www.windowsazure.com
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Figure 2.6: Platform heterogeneity in MCC and challenges for application developers.

(Vecchiola, Chu, & Buyya, 2009a), which allows one to develop cloud applications and

deploy them on multiple cloud infrastructures such as AWS, Azure, and GoGrid11 in a

seamless manner. Although Aneka was developed to serve stationary clients, minor exten-

sions and modifications (depending on the needs of client applications) can be performed

to leverage Aneka in mobile environments.

2.3.3 Feature Heterogeneity

Feature heterogeneity in MCC is a result of feature variations in the mobile and cloud

domains. Feature heterogeneity in smartphones is due to variation in native features like

multimedia, sensing, and interaction tools, visualization area, and networking technolo-

gies. For instance, HTC Sensation12 possesses an 8MP camera while BlackBerry Curve

852013 provides 2MP camera. Hence, the development process and performance of ap-

11http://www.gogrid.com/

12http://www.htc.com/us/products/sensation4g-tmobile/

13http://us.blackberry.com/smartphones/blackberrycurve8500/
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plications on various devices are different. For example, the bar code reader application

whose functionality depends on the quality of captured image may not offer similar func-

tionality in HTC Sensation and BlackBerry Curve 8520.

Differentiation in sensing apparatuses and interaction features intensify application

portability and usability. Recently, sensing tools such astilting sensors have received no-

ticeable attention from academia and the industry to enhance the quality of interaction in

smartphones. In various proposals (Valberg & Christensen,2009; Jones, Alexander, An-

dreou, Irani, & Subramanian, 2010) authors exploit sensingtools such as accelerometer

to augment the interaction capabilities of smartphones towards delivering rich user expe-

rience. However, feature variation and lack of feature upgrading facility in smartphones

obscure usability of feature-dependent applications on various devices.

Moreover, variation in the data visualization area remainsa challenge for developers

to design and deliver a common user interface for all smartphones. Omitting redundant

and less important data according to the preference and context of individual users is an ap-

proach in some proposals like event-based semantic image adaptation scheme (Yin, Luo,

& Chen, 2011). Authors identify important objects in an image and collect user prefer-

ence using a simple feedback mechanism. An adaptation algorithm integrates important

objects with user preferences to produce a suitable versionfor target mobile devices. This

approach not only reduces the volume of presentation data byomitting non-important ob-

jects, but also offers a superb feeling of customization to mobile users.

Similarly, Chen et al. (Chen, Xie, Ma, & Zhang, 2005) proposea page split method

to adapt web content for mobile devices. This approach is implemented inside the mobile

browser to adapt the web page content according to the screensize and semantics of the

content. However, components like page analysis, content detection, page splitting, and

index page generation consume a high volume of local resources. Programming level
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solutions such as screen support APIs in Android 3.2 provides more control to developers

to adapt screen content for different Android devices with varied screen sizes (Android

3.2, n.d.).

Feature heterogeneity in the cloud domain arises from variations in the services (e.g.

infrastructure, platform, software and security as a service) offered by different vendors.

For example, Google App Engine (PaaS vendor) and Microsoft Windows Azure (PaaS)

provide dissimilar security features; though they offer paid backup storage service, crit-

ical data privacy is only offered by Azure (Find the Best: Compare Cloud Computing

Providers, n.d.). Therefore, users, especially corporate users, face difficulties in moving

from one vendor to another.

2.3.4 API Heterogeneity

Application Programming Interface (API) is an interface supplied by OS vendors

or service providers that allows an application written in ahigh-level language to access

specific data or functions from the API distributor. Programmers, including mobile appli-

cation developers, are usually in a hurry, while mobile users are increasingly demanding

a rich computing experience. Therefore, APIs play an important role in delivering a rich

experience to mobile users. Mobile platforms such as Android, BlackBerry, and iOS offer

a gigantic number of APIs to assist programmers with developing rich mobile applica-

tions without direct access to the kernel. However, application portability has become an

irksome practice for developers due to inward dissimilarities of APIs. Tarkoma and Lager-

spetz (Tarkoma & Lagerspetz, 2011) study the role of APIs in mobile devices and argue

that “The marketplace has a clear need for a common API that unifies network connectiv-

ity, energy awareness, and the user experience”.

Similarly, on the cloud side, the majority of cloud providers develop and deploy their
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own proprietary APIs to describe syntax of specific operations to be utilized by their

clients. A drastic growth in the number of cloud providers has created a huge silo of

different APIs that intensifies the difficulty of developingapplications due to interpreting

semantics of data and operations. This outlook, results in API variation intensifying in-

teroperability and portability issues. To mitigate the impact of API heterogeneity on the

cloud, several regulatory and research unions endeavour toprovide common cloud APIs

through, including the European Telecommunications Standards Institute Technical Com-

munity (ETSI TC Cloud)14, DMTF15, and Cloud Audit16.

2.3.5 Network Heterogeneity

The composition of various wireless technologies such as WiFi, 3G, and WiMAX

makes MCC more complicated compared to cloud computing. Unlike desktop comput-

ers, smartphones utilize wireless communication which is comparatively more intermit-

tent and unreliable while offers lower bandwidth. Client mobility among varied network

environments intensifies communication deficiencies and stems complex issues like signal

handover. Inappropriate decision making during the handover process like (i) less appro-

priate selection of network technology among available candidates and (ii) transferring the

communication link at the wrong time, increases WAN latencyand jitter which directly

degrade the quality of service, especially for delay sensitive data and functions (Yan et al.,

2010).

To tackle these challenges, the concept of seamless connectivity among heteroge-

neous wireless technologies plays a vital role that necessitates reliable intra-system and

inter-system handoff schemes (Nasser et al., 2006). Intra-system handover is a less chal-

14http://www.etsi.org/WebSite/Technologies/GRID_CLOUD.aspx

15http://www.dmtf.org

16http://cloudaudit.org/CloudAudit/Home.html
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lenging task due to inward homogeneity of engaging technologies, while addressing inter-

system handover is more complicated due to signal transmission difficulties between het-

erogeneous environments. To realize seamless connectivity across heterogeneous wireless

networks, the burgeoning concept of next generation wireless networks (Akyildiz, Jiang,

& Mohanty, 2004) with the notion of all Internet Protocol (IP)-based infrastructures is

emerging. In the absence of seamless connectivity, the quality of user experience is de-

creased because of decrements in communication quality andincrements in code execution

and application response time.

In addition, convergence of wireless and wired networks creates data bottleneck prob-

lem. The problem happens when large data streams from a wirednetwork flood the limited

bandwidth of wireless networks. This congestion not only increases packet drop ratio and

prolongs data transfer between cloud and mobile, but also rises control and maintenance

operations which demands enhancement in current network architecture and design for

mobile operators.

However, network operators are employing powerful helpingnodes like wall-connected

WiFi hotspots to relay data packets and reduce the intensiveload from congested cells. The

helping nodes’ bandwidth is not infinite because very large bandwidth cannot effectively

enhance data trafficking and is limited to a certain upper bound (Li & Fang, 2012). Hence,

a large number of such helping nodes are needed to alleviate ever increasing wireless

traffic. Although, MCC imposes overhead on operators’ network, strategies like Cisco’s

innovative Next-Generation Hotspot (NGH) (“The Future of Hotspots: Making Wi-Fi as

Secure and Easy to Use as Cellular", 2012) can reduce data traffic and hike the MNOs’

revenue by increasing market share through subscriber retention. NGH is an advance ap-

proach to provide mobile network optimization by offering WiFi as a side mechanism for

secure mobile access of data traffic, while aims to enrich theuser experience.
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2.4 Impacts of Heterogeneity in MCC

This section discuss several opportunities and challengesraised due to variations in

smartphones, clouds, and networking technologies

2.4.1 Opportunities

The opportunities arising from heterogeneity in MCC are explained as follows:

2.4.1 (a) Performance Gain

User perceived performance from online mobile applications is highly influenced by

computing performance of server and wireless networks in MCC (Huang et al., 2010).

While it is financially impossible to avoid infrastructure heterogeneity within a single

cloud (due to maintenance, update, and technological advancements), cloud service providers

use such heterogeneity as an opportunity to enhance performance and cost of their ser-

vices. Rosenberg and Chiang (Rosenberg & Chiang, 2010) study two clusters of comput-

ers with identical mean speed. In one cluster, all CPU speedsare similar while in the other

one, heterogeneous CPUs are utilized. The authors analyze execution performance of both

clusters and mathematically demonstrate that the cluster with heterogeneous CPU speed

outperforms another cluster with homogeneous CPUs.

Moreover, because varied applications have different architectural preferences, com-

bination of heterogeneous processors with dissimilar architectural features (e.g., pipeline

depth, in-order versus out-of-order execution, and superscalar width) can efficiently meet

application preferences toward better performance (M. Guevara, 2013) (further explana-

tion is out of the scope of this thesis). For instance, Amazonleverages dissimilar process-

ing entities such as Intel Xeon E5507 and AMD Opteron 2218HE for creating an instance

of VM to fulfil various computing requirements of different mobile applications with least

possible cost. Exploiting heterogeneous computing resources in creating Virtual Machine
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(VM) instances enhances execution performance of online applications in MCC (Rosen-

berg & Chiang, 2010; M. Guevara, 2013; Ou, Zhuang, Nurminen,Ylä-Jääski, & Hui,

2012).

Additionally, researchers and industrialists can leverage benefits of heterogeneous

communication and networking technologies such as 2G and 3Gtowards efficient com-

munication. In enterprise organization, running communication-intensive cloud-mobile

applications on 3G-ready devices and rest of the applications on 2G devices can reduce

capital and operational costs of buying 3G-enabled mobile device and long-lasting batter-

ies (Motorola, 2008). In academia, researchers (Rahimi, Venkatasubramanian, Mehrotra,

& Vasilakos, 2012) study execution time and cost of code offloading in MCC. They ex-

ploit heterogeneous communication technologies to accessremote computation resources

located near/far to/from the mobile users and could remarkably enhance application per-

formance and responsiveness by leveraging both 3G and WiFi.The authors propose a

2-tiered cloud infrastructure consist of distant clouds and nearby cloudlets aiming to alle-

viate effectiveness and efficiency of computation offloading process. They leverage WiFi

technology to save energy while communicating with nearby cloudlets and use 3G to ac-

cess distant giant clouds. The authors report 32% lower delay and 40% cost-reduction in

offloading computation-intensive tasks to two-tiered cloud with heterogeneous infrastruc-

ture compare to single-tiered cloud.

Thus, heterogeneous co-existence of various communication technologies can origi-

nate a performance-energy trade off which can benefit mobileclients, cloud vendors, and

network operators. Future mobile communication technologies will likely enable mobile

nodes to negotiate with network infrastructures for optimized communication technology.

Therefore, heterogeneous selection of infrastructures inmobile-cloud environment pro-

vides a higher performance and service range to MCC community.
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2.4.1 (b) Enhanced Application Response Time

Reducing cloud-mobile application response time is one of the most important re-

quirements of MCC which is likely achievable by enhanced performance of leveraging het-

erogeneous resources while outsourcing computation. Heterogeneous computation hard-

ware in the cloud datacenters, remarkably decreases computation delay in server side re-

sulting less cloud-mobile execution latency and better overall response time. Researchers

in (M. Guevara, 2013) explore that leveraging combination of three heterogeneous proces-

sor architectures can reduce response time violation by 12Xleading to crisp application

response which is critical in MCC. Therefore, leveraging heterogeneous computing re-

sources can increase application responsiveness in MCC.

2.4.1 (c) Cost Efficiency

One of the most critical metrics in successful MCC adoption is the cost of utilizing

cloud services by mobile users which includes the amount of native resources, energy,

and time used as well as monetary cost of inter-system communication and computa-

tion. Efficient match of communication requirements and available wireless technologies,

and migrating resource-intensive tasks to high-performance heterogeneous clouds, reduce

overall application execution cost.

Researchers in (Ou et al., 2012) observe heterogeneity within computing entities in

Amazon EC2 for two period in 2011-2012 and explore that Amazon EC2 leverages var-

ious processors in creating a single VM to reduce costs and achieve efficiency. For ex-

ample, in large VM instances, heterogeneous CPU models, namely Intel Xeon E5507,

E5430, E5645, and AMD Opteron 2218HE and 270 are being used. Experimental anal-

ysis of CPU, memory, and disk performance of various VM instances resulted different

performance outcomes in varied computation loads. The authors conclude that efficient
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selection of service instance from pool of heterogeneous instances, can deliver up to 30%

cost saving to Amazon end-users. Therefore, by assuming rich computing capabilities in

cloud and seamless high bandwidth connectivity between mobile and cloud, mobile appli-

cation responsiveness, local resource consumption, and utilization cost could be enhanced

towards more efficiency.

2.4.2 Challenges

Several important challenges resulting from, or intensified by, heterogeneity, are ex-

plained below.

• Interoperability: API Heterogeneity of mobile and cloud systems beside inward

variation in cloud system structure originate interoperability as a major challenge in

MCC (Hogan et al., 2011). The challenge intensifies vendor lock-in problem and

obscures data migration and code transition across a multitude of existing processing

units. In MCC, providing collaboration among various mobile and cloud processing

unites with different interfaces is a non-trivial matter. Figure 2.7 depicts mobile-

cloud interoperability across a silo of computing devices and illustrates the inter-

cloud collaboration between different cloud providers as essential requirements in

MCC.

• Portability: A lack of standards, technologies, and solutions to handle heterogene-

ity in MCC implicitly creates the portability problem. In the cloud, providers offer

various computing services with different structures and programming languages.

Similarly, smartphone vendors develop various approachesand technologies to en-

hance the quality of their products. Therefore, porting an application to various

computing devices in a the heterogeneous MCC domain has become more difficult.
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Figure 2.7: Interoperability in MCC: Collaboration of inter-cloud and mobile-cloud sys-
tems with varied interfaces provides interoperability.

Ideally, data and application should be able to cross a multitude of clouds and smart-

phones with no or little configuration and conversion (INCITS, n.d.). However, it is

almost impractical to port native codes to the cloud and transfer resource-intensive

codes from clouds to the weak smartphones. Therefore, we limit portability in MCC

to the ability of (i) migrating cloud components from one cloud to other clouds, (ii)

migrating mobile components from one smartphone to other smartphones, and (iii)

migrating data across heterogeneous clouds and smartphones. Figure 2.8 depicts

portability in MCC.

• Developing cost:Developing one application for several platforms is a costly pro-

cess that demands knowledge of several programming languages and enforces re-

dundant design and programming tasks. In the presence of heterogeneity, the mar-

ket share for a single version of an application is diminished to a fraction of total

customers that decrease revenue and demotivates individual programmers.

• Time lag: In many scenarios, although the financial cost of developinga multi-

platform application is affordable and welcomed due to its business opportunity, pro-
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Figure 2.8: Portability in MCC: Data should be portable to all cloud and mobile devices.
Cloud codes should move between clouds while mobile codes should move between a
multitude of mobile devices regardless of the inward heterogeneity of hosting machines.

longed application development process procrastinates service offering to a wider

community and leads to financial loss.

• Application maintenance:When there are multiple versions of a single application,

each for a different platform, if one application is enhanced or changed, the mod-

ifications should be reflected to all versions. Usually a single development model

cannot be employed and extended to different platforms. Hence, different modifi-

cation approaches should be undertaken for each platform which is a hectic job for

developers.

• Communication:The heterogeneity of wireless technologies in MCC has created

communication problems such as signal handover. Bandwidthvariation between

wireless and wired technologies are the source of data bottlenecks when huge amounts

of data stream from wired (cloud servers) into a wireless medium (mobile devices).

Therefore, continuous, consistent connectivity and scalable, accessible networking

services are necessary to enhance the quality of mobility and communication be-

tween a wide range of mobile devices and clouds.
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• Security and privacy:Although MCC can enhance the quality of mobile computing

and increase the usability of smartphones, a drastic rise insecurity glitches and cyber

crimes (Cachin & Schunter, 2011) is diminishing trust amongcloud users in MCC.

Storing confidential information (e.g. banking information, medical records, and

social security numbers) in cloud infrastructures and remote access to them via the

Internet and wireless mediums threatens mobile users in thepresence of numerous

hackers. Therefore, to increase trust among cloud-mobile users and a secure col-

laboration process between different cloud service providers and consumers, strong

authentication, authorization, and communication protection are required. For ex-

ample, data migration from one cloud to another (serially) or operation across mul-

tiple clouds (simultaneously) should be secured by cloud providers. During com-

munication processes, personal information and personally identifiable information

require protection by cloud providers, mobile network operators, and trusted third

parties. Identity provisioning and access management through different environ-

ments are a sample of the security keys which manifest the necessity of secure inter-

communication in MCC.

2.5 Mobile Computation Outsourcing Architectures

We review Mobile Computation Outsourcing (MCO) approachesand identify four

architectures, considering existing heterogeneity in granularity of scalability, locality, and

multiplicity. Granularity in resources has three main aspects of scalability, proximity (lo-

cation), and multiplicity. Scalability is a major aspect incloud-based resources. The higher

scalability and elasticity of the resources, the larger granular resources. Those resources

are called coarse-grained resources. Locality aspect refers to the distance from cloud-

based resources to mobile users. Lastly, multiplicity concerns the number of resources;
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the larger is the number of resources, the finer would be theirmultiplicity granularity. We

classify the existing heterogeneities in granularity intotwo classes of vertical and horizon-

tal illustrated in Figure 2.10 and described as follows.

2.5.1 Vertically Heterogeneous Mobile Computation Outsourcing

Vertically Heterogeneous Mobile Computation Outsourcing(VHMCO) referred to

those computation outsourcing approaches that have used vertically heterogeneous cloud-

based resources. As described in section 2.2.2, in vertically heterogeneous cloud-based

resources, differentiation is among one silo of cloud-based resources. For instance, in a

VHMCO solution, only heterogeneous VM instances of amazon EC2 cloud are utilized.

Researchers in recent works have leveraged three main typesof vertically heteroge-

neous cloud-based resources, including CGRs, MGRs, and FGRs that can perform hetero-

geneous computations. Therefore, we classify existing works in three classes of coarse,

medium, and fine granular approaches that are described in below.

2.5.1 (a) Coarse Granular

VHMCO approaches that leverages CGRs as computing resources to undertake com-

putation outsourcing for CMA execution are classified in this category. Coarse-grained

resources depicted in Figure 2.9(a) are those computing resources that are located in dis-

tant from majority of mobile users, feature high scalability and elasticity. CGRs are signifi-

cantly low in number and are located in very few geographicalregions, but their computing

powers are infinite. Thus, their multiplicity is low. AmazonEC2 and Google App Engine

are two example of coarse-grained resource providers. Efforts such as (B.Chun, S.Ihm,

P.Maniatis, & M.Naik, 2010; Cuervo et al., 2010) are using coarse-granular resources.

The advantages of using coarse-grained resources in MCC arehigh availability, scal-

ability, elasticity, reliability, and security that make them suitable resources for extremely
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Figure 2.9: Conceptual view of mobile cloud computing architectures.

intensive computational task. However, leveraging these resources from mobile devices is

encumbered by long WAN latency (Abolfazli, Sanaei, Alizadeh, Gani, & Xia, 2014). Due

to low multiplicity, CGRs are often far from users and accessing them via WAN through

Internet is time, energy, and money intensive. This is the best architecture for substan-

tially compute-intensive tasks which are not time-sensitive so that communication latency

does not impact much on user experience. However, this architecture is not suitable for

data-intensive and communication-intensive applications.
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Figure 2.10: Taxonomy of mobile computation outsourcing architectures

2.5.1 (b) Fine Granular

Fine granular architecture is another emerging type of MCO architecture in which

fine-grained cloud-based resources are leveraged as remoteresources. FGRs shown in Fig-

ure 2.9(c) are located in user proximity and feature low scalability and elasticity. Smart-

phones, tablets, laptops, and car-mounter computers, and desktop computers are good

examples of FGRs.

Multiplicity of FGRs is significantly higher than CGRs and isexpected to grow in the

presence of insatiably popularity of mobile devices. They are located almost everywhere,

but their computing powers is very limited. MOMCC (Abolfazli, Sanaei, Shiraz, & Gani,

2012) and Hyrax (Marinelli, 2009) are exemplary efforts that use FGRs for outsourcing in

MCC.

The advantages of using FGRs are their great multiplicity and short network latency.

However, their high proximity to mobile users make them suitable resources for extremely

time-sensitive interactive small applications. Huge number of mobile devices and rapidly

increasing shipment of mobile devices compared to desktop computers, make it feasible

to build a cloud of mobile devices and use their accumulated power for MCO.
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2.5.1 (c) Medium Granular

Medium granular architecture exploits medium-grained computational resources for

remote computation. Medium-grained resources illustrated in Figure 2.9(b) are computing

resources that are located in nearer location compared to the CGRs, but are not as near as

FGRs. They feature medium scalability and elasticity more than fine-grained resources

and less than coarse-grained resources.

Multiplicity of these resources is more than CGRs and less than FGRs. Number

of MGRs is more than CGRs, they are located in more geographical regions, and their

computing powers is medium. Cloudlet (Satyanarayanan et al., 2009) is one of the most

credible efforts that has exploited computing power of nearby desktop computers.

The advantages of using MGRs are their lower WAN latency and higher multiplicity.

These resources are numerically more available than CGRs. But their performance is

limited due to limited scalability, elasticity, reliability, and security. These resources are

suitable for compute-moderate delay-moderate tasks.

2.5.2 Horizontally Heterogeneous Mobile Computation Outsourcing

Unlike VHMCO in which cloud-based resources are selected from one type of grained

resources, in Horizontally Heterogeneous Mobile Computation Outsourcing (H2MCO)

solutions, the resources are composed of multiple classes of heterogeneous granular cloud-

based resources.

H2MCO are referred to those MCO approaches that have used horizontally hetero-

geneous cloud-based resources. In H2MCO, there is a high granularity and resource dif-

ferentiation among various utilized cloud-based resources for compute-intensive mobile

applications. For instance, in a H2MCO solution, VM instances of Amazon EC2 cloud,

cloudlets, and mobile devices are used which are placed in three separate layers with
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different functional and non-functional characteristics(e.g., computational attributes, lo-

cation granularity, and resource multiplicity). Mobile applications built based on H2MCO

can take the benefits of all three classes of granularities. In H2MCO, the computing and

communication latencies can be trade-offed to gain better performance.

2.5.2 (a) Hybrid

Hybrid MCO depicted in Figure 2.11 is a feasible MCO architecture in which com-

puting resources are composed of CGRs, MGRs, and FGRs. Hybrid resources are classi-

fied in category of H2MCO since these resources in contrast tovertically heterogeneous

cloud-based resources, use multi-tier horizontally heterogeneous resources. MapCloud

(Rahimi et al., 2012) and SAMI (Sanaei, Abolfazli, Gani, & Shiraz, 2012) are efforts using

2- and 3-tiered resources (CGRs, MGRs, and FGRs). The formerwhich is an offloading

solution aimed to reduce the time and price cost of offloadingcompute-intensive tasks to

remote outsources. However, though it can minimize the offloading overhead, it cannot

entirely omit it, and hence the offloading overhead (especially code migration) remains

partially. The latter, however, aimed to entirely dismiss the overhead of code offloading

by deploying SOA that calls already-available codes in server instead of migrating code to

the server. MOCHA (Soyata, Muraleedharan, Funai, Kwon, & Heinzelman, 2012) is an-

other effort that uses fixed and greedy partitioning algorithms; In the former algorithm, the

task is partitioned into equal sizes and distributed among all Cloudlet and cloud servers. In

the latter, the response latency of computing devices is considered for allocation. Thus, the

task is partitioned and distributed among computers based on time; the first partition is sent

to the device with shortest latency while the last partitionis sent to the device with high-

est latency. In comparison, the execution time of partitions is better in greedy than fixed,

especially when Cloudlet is utilized in outsourcing lifecycle and numerous cloud datacen-
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Figure 2.11: Conceptual view of hybrid mobile computation outsourcing architecture

ters with heterogeneous response time exist. Nevertheless, mobile devices should acquire

prior knowledge of the server’s latency which is a resource-hungry and time-consuming

task that can degrade the performance gain. Finally, hybridresources are aimed to over-

come limited scalability and locality capabilities problems caused by VHMCO resources,

and finally to decrease response time and energy consumptionof intensive applications.

Therefore, to advance cloud computing platform for mobile devices, there is a need for

a horizontally heterogeneous hybrid MCO model composed of varied types of granular

resources. This hybrid cloud-based platform deemed could accumulate strengths and ben-

efits of each granular resource class and develop a multi-layered cloud platform to achieve

high performance at the time of computing resource-intensive mobile applications.

The computation outsourcing systems based on hybrid resources, significantly gain

execution performance (discussed in section 2.4.1 (a)) of the existing heterogeneous ca-
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pabilities to better match the resources with the computingrequirements of the requested

tasks from resource-intensive mobile application. If the task is significantly compute-

intensive and requires very large resources, the hybrid system can offer coarse-grained

resources and if the task demands crisp response fine-grained resources can be allocated.

Moreover, the hybrid system can have the trade-off ability between computation and

communication to handle the scalability problem at the timeof increasing the number of

requests to the server, and long WAN latency between cloud-mobile consumer and cloud

service provider.

2.6 Heterogeneity-Handling Techniques

Due to remarkable proven benefits of heterogeneity, it is beneficial not to dilute or re-

move such differences. However, non-addressed heterogeneity can originate severe chal-

lenges that encumber success and adoption of MCC solutions.Therefore, the existing

variations should be handled for excess benefits. In this section we describe three major

techniques to handle heterogeneity in MCC.

2.6.1 Service Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) is a well-known design philosophy indepen-

dent from specific technology, vendors, and business policies that incorporates different

services towards generating complex applications and services. Web services are well-

known SOA implementation models that could successfully integrate heterogeneous ser-

vices from various service providers like Facebook, Google, and Yahoo17 and enable inter-

operability across them. For instance, Facebook delivers multimedia YouTube18 content

regardless of inward differentiations.

17http://yahoo.com

18http://youtube.com
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Service Oriented Computing (SOC) (Huhns & Singh, 2005) is a service-driven ap-

proach to generate service-based applications with least dependency to the specific plat-

form. In service-based applications, functions are defined, implemented, and combined

as services to enhance application granularity and modularity, flexibility, scalability, and

reusability. This approach encourages the development of elastic applications meaning

that users are able to extend and shrink functionality on-demand which is parallel to the

vision of cloud computing. Aneka (Vecchiola, Chu, & Buyya, 2009b) is an example of

service-oriented solution to automatically manage distributed resources (clouds and grids).

Aneka is designed to be robust against variations in application models, security solutions,

and communication protocols such that client choices can beapplied at any time without

affecting the existing system.

In summary, loosely coupled SOA-driven services have a proactive potential to inte-

grate heterogeneous resources in MCC. Loutas et al. (Loutaset al., 2010) observe interop-

erability issues between cloud systems and perceive the ability of SOA plus semantics for

a new cloud landscape. They present architecture for heterogeneous clouds, called RA-

SIC, to enable semantic interoperability among clouds. Theauthors propose a user-centric

paradigm to facilitate developing and deploying of SOA-based services in a large-scale,

resource-intensive environment hosted by different cloudproviders. It is concluded that

utilizing SOA-based design philosophy towards a common APIstandard for cloud can

eliminate vendor lock-in problem, ease content migration across heterogeneous clouds,

and reduce the cost of porting data and application from one cloud to another.

2.6.2 Middleware/Adapter

Adapter is an intermediate tool or approach to smooth out theimpact of heterogeneity

in a specific domain like software engineering and distributed computing environments. A
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’plug adapter’ is a well-known example that helps an international traveller to overcome

the incompatibility problem caused by dissimilarity of power outlets in different countries.

In software engineering, adapter is a pattern designed to address the common problems

caused by heterogeneity in many situations (Wolfgang, 1994). Distributed computing mid-

dleware such as Object Request Broker (OBR) acts as an arbiter to enable communication

between heterogeneous object systems regardless of their inward differences.

Emergent middleware as Blair and Grace (Blair & Grace, 2012)describe, is the con-

temporary approach to tackle problems caused by extreme heterogeneity. The idea is ad-

vocated by enormous accomplishments in academia and industry. Emerging efforts such

as (Chandrakant, Bijil, Shenoy, Venugopal, & Patnaik, 2012; Andriescu, Speicys Cardoso,

& Issarny, 2011; Gupta, Zeldovich, & Madden, 2011; Walraven, Truyen, & Joosen, 2011;

Bromberg, Grace, Réveillère, & Blair, 2011; Rellermeyer & Küpfer, 2011) in academy be-

side commercial products such as Oracle Fusion Middleware 11g19 and Open Middleware

Adapter (OMA)20 advocate suitability of adapters and more specifically middleware tech-

nology to tackle the heterogeneity-made problems. However, contemporary middleware

require great deal of research and development to become an appropriate heterogeneity

handling technique in MCC.

2.6.3 Virtualization

Virtualization (VMware, n.d.) is one of the cornerstone technologies of MCC promis-

ing to reduce the negative impacts of hardware, feature, andplatform heterogeneity. Using

the virtualization approach, a VM manager (hypervisor) is deployed on top of a cloud,

mobile, or both to host desired platform(s) in order to create a homogeneous execution

environment between various smartphones and clouds. Mirage is an example effort that

19http://www.oracle.com/us/products/middleware/index.html

20http://ultra-ats.com/products/open-middleware-adapter-oma-software-development-kit-sdk/
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exploits hypervisor in both the cloud and smartphone to build cross-platform applications

regardless of variations in underlying devices. However, VM deployment and manage-

ment impose excessive overhead on resource-constrained mobile devices (Shiraz & Gani,

2012).

Moreover, recent application offloading approaches like (Cuervo et al., 2010; B. Chun

et al., 2011) leverage virtualization technology to offloadmobile application (entirely or

partially) to remote cloud resources for execution. Similarly, efforts like (Lu et al., 2011)

exploit virtualization technology to separate screen rendering tasks from the presentation

layer and migrate them to the cloud. On top of a VM inside a cloud, a remote server can

render screen-related processing tasks and send the resultto the device. The authors aim

to address the feature heterogeneity (screen size) of smartphones using a virtual screen

rendering approach. However, virtualization gives rise toseveral security threats such

as VM hopping and VM escape (Owens, 2009). VM hopping is a virtualization threat

through which an attacker can exploit a VM and attack other VM(s) on the same host.

VM escapes can violate the security of VMs when an attacker accesses control over the

hypervisor. Therefore, several open challenges such as VM deployment and management

(Shiraz & Gani, 2012), and security establishment (Takabi,Joshi, & Ahn, 2010; Chen,

Paxson, & Katz, 2010) should be alleviated before virtualization technology can be fully

established as grounding technology in MCC.

2.7 Open Issues

This section presents some of the research directions in MCC, especially those which

are more complex due to the heterogeneity. Addressing theseopen issues is vital to alle-

viating the restrictions caused by heterogeneity.
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2.7.1 Architectural issues:

A reference architecture for heterogeneous MCC environment is a crucial require-

ment for unleashing the power of mobile computing towards unrestricted ubiquitous com-

puting. Employing a unified or a joint architecture composedof varied architectures

requires further studies. A generic architecture might be alittle optimistic when mar-

ket competition enforces business policies for mobile manufacturers and cloud providers.

However, it is achievable by leveraging technology-neutral design approaches such as

SOA. Several research communities like NIST (L.-J. Zhang & Zhou, 2009), HP (Bohn,

Messina, Liu, Tong, & Mao, 2011), and IBM (Behrendt et al., 2011) endeavour to address

the open challenges of cloud computing by proposing conceptual reference architectures.

In the absence of such reference architecture for MCC, ubiquity of mobile computing is

diminished. Several open challenges can be alleviated in the presence of the reference

architecture to release the power of mobile devices.

2.7.2 Mobile Computation Offloading Issues:

Leveraging varied cloud resources to augment computing limitations of multitude

of mobile devices towards realizing the vision of unrestricted functionality, storage, and

mobility in current diverse communication environment is anon-trivial task. Realizing

cloud-based augmentation vision is impeded by multi-dimensional overhead of identify-

ing and efficiently partitioning resource intensive components, VM (Virtual Machine) cre-

ation and migration, and monitoring the overall outsourcing process (Shiraz, Gani, Hafeez,

& Buyya, 2012). Moreover, a plethora of hurdles in utilizingcloud resources such as

communication latency, heterogeneity, security (both offloaded code and cloud permanent

software), code portability, and cloud-mobile interoperability intensifies the situation.
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2.7.3 Communication and Computation Latency Issues:

Latency adversely impacts on the energy efficiency (Miettinen & Nurminen, 2010)

and interactive response (Lagar-Cavilla, Tolia, Lara, Satyanarayanan, & Hallaron, 2007)

of cloud-mobile applications by consuming excessive mobile resources and raising trans-

mission and computation delays. In cellular communication, distance from the base station

(near or far) and variation in bandwidth and speed of variouswireless technologies affect

the energy efficiency and usability of MCC devices. For example, data transfer bit-rate

consumes comparatively more energy in cellular networks than WLAN. The higher the

transmission bit-rate, the more energy efficient the transmission (Miettinen & Nurminen,

2010). Moreover, leveraging wireless Internet networks tooffload mobile intensive appli-

cations to distant cloud resources creates a bottleneck. Consequently, when the long WAN

latency is increased, the quality of user experience is decreased due to communication

delays.

Moreover, computation latency is challenging issue raisedthrough research works

leveraging fine- and medium-grained cloud-based resources. This type of resources such

as desktops in coffee shops or laptop computers are closer tomobile users, but feature low

scalability and hence utilizing their resources originatecomputing latency that impacts on

computation outsourcing performance in MCC. Although, they can provide services with

low communication overhead because of their vicinity to themobile users, this kind of

resources impose computation overhead due to their medium or low scalability based on

computing, processing, and storage capabilities of devices. Thus, addressing the commu-

nication and computation latencies remains a challenging task in MCC. Future efforts are

deemed to leverage heterogeneous hybrid granular resources utilizing optimized schedul-

ing algorithms (Javanmardi et al., 2014) to address the resource deficiencies of mobile

devices by remotely performing intensive components of cloud-based mobile applications
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via computation outsourcing.

2.7.4 Energy Constraint Issues:

Energy is the only unreplenishable resource in mobile devices that cannot be restored

spontaneously and requires external resources to be renewed (Satyanarayanan, 2005). Cur-

rent technologies can increase battery capacity by only 5% per annum (Robinson, 2009).

Several energy harvesting efforts have been in progress since the 1990s to replenish energy

from external resources like human movement (Flinn & Satyanarayanan, 1999) and wire-

less radiation (R.Avro, 2009), but these intermittent resources are not available on-demand

(Pickard & Abbott, 2012). Alternatively, application offloading (Satyanarayanan, 2001;

Xia et al., 2014) and fidelity adaptation (Rajesh Krishna, 2004) approaches are proposed

to conserve local mobile resources, especially energy. However, application offloading

is a risky, resource-intensive approach that needs furtherresearch and development to be

deployed in real scenarios (Sharifi et al., 2011). Fidelity adaptation solutions compromise

quality to conserve local resources which impoverish quality of user experience in MCC.

Researchers (Cuervo et al., 2010; B. Chun et al., 2011; X. W. Zhang et al., 2011) endeav-

oured to mitigate application offloading challenges by exploiting secure, reliable, elastic

cloud resources instead of insecure, limited surrogate’s resources. However, cloud-based

application offloading cannot always save energy with current developments which de-

mands further efforts (Kumar, Liu, Lu, & Bhargava, 2012; Kumar & Lu, 2010; Sharifi et

al., 2011). Therefore, the energy constraint of mobile nodes remains a problem in MCC.

2.7.5 Elasticity Issues:

Cloud providers confront situations in which there are moredemands than available

resources. Adverse impact of cloud-resource unavailability and service interruption for

MCC clients is more severe than stationary clients connected to the wall power and fixed
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network. Frequent suspension of energy-constraint mobileclients due to resource scarcity,

not only shrinks usefulness of cloud outsourcing for MCC end-users, but also divests

privilege of intensive computation anytime, anywhere frommobile users.

Therefore, several challenging tasks (e.g. resource provisioning without service inter-

ruption, quick disaster recovery, and high service availability) need to be realized since ser-

vice unavailability and interruption prolong execution time, increase monitoring overhead,

and deplete smartphones’ local resources, especially battery. Solutions such as Reservoir

(Rochwerger et al., 2011) and using different kind of resources can be employed to expand

cloud resources on demand with main focus on mobile clients.

2.7.6 Mobile Communication Congestion Issues:

Mobile data traffic is tremendously hiking by increasing user demands for exploiting

cloud resources which impact on MNOs. Data storage/retrieval, application offloading,

and live video streaming are examples of cloud-mobile operations that drastically increase

traffic, leads to excessive congestion and packet loss.

Furthermore, employing MCC in several domains such as VANET, wireless sensor

networks, and M2M communications lead to new research domains such as vehicular

cloud computing (Whaiduzzaman, Sookhak, Gani, & Buyya, 2014) and further increase

data volume across the network. Hence, managing such huge data becomes challenging,

especially when offloading mobile data are distributed among helping nodes to commute

to/from the cloud.

Although utilizing heterogeneous wireless spectrum (Min,Zhang, Choi, & Shin,

2012) and leveraging regional hotspots as helping nodes (torelay traffic at peak hours)

can contribute to smooth traffic, several decisions need to be made like how efficient is re-

laying offloading data packets? How secure are helping nodesand in what extend security
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of shifted MCC data would be protected? How latency of data migration to other node

impacts on interactive applications’ responsiveness? Such kinds of questions, not only ne-

cessitate intelligent systems to manage offloaded MCC data,but also might alter systems’

overall architecture and network structure. Because, sharp MCC data hike, necessitates

cost-effective, efficient deployment of infrastructures (e.g. hotspots) and innovative strate-

gies with least overhead and latency.

Therefore, a cognitive system within MCC that likely pre-identifies congestion is-

sues and considers factors like MCC application types (e.g.data-intensive, computation-

intensive, and communication-intensive) to determine thebest action(s) to relay traffic, is

imperative as the future research direction.

2.7.7 Trust, Security, and Privacy Issues:

Trust is an essential factor for the success of the burgeoning MCC paradigm. Con-

structing a trustable, secure environment is an open issue which is exacerbated when the

Internet is utilized as the bridge between front-end and back-end devices (over wireless

and wired networks). Provisioning security and providing data integrity and reliability

beside delivering essential services (e.g. always on connectivity and cloud services) over

the heterogeneous distributed systems, wireless networks, and the Internet require novel

lightweight methods. Trust establishment based on the service provider’s reputation (i.e.

cloud, mobile, and Internet provider) and aggregation of trust from each service node

would be a valuable approach that requires future research.

Privacy is exclusively a big issue in the vast convergence ofseveral network technolo-

gies, which is exacerbated when cloud users trust the cloud providers and store sensitive

information on public data warehouses. Hence, absorbing user trust is an important cri-

terion leading to yet another challenge, that of how cloud service providers can ensure
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confidentiality of user information.

2.8 Conclusions

In conclusion, mobile cloud computing (MCC) is aimed to provide rich functionality

for resource-intensive mobile applications by leveragingcloud computing. In this chapter,

we presented an overview of MCC and discussed dimensions of heterogeneity in MCC.

Also, some of the major MCC problems are described based on literature. It was argued

that MCC is a more heterogeneous domain compared to cloud computing due to amalgam

of computing (mobile computing and cloud computing) and networking technologies. Ac-

cording to the types of heterogeneity in each landscape, we categorized heterogeneity of

cloud computing, mobile computing, and wireless networks into two classes, namely ver-

tical and horizontal. The taxonomy of heterogeneity in MCC was also devised. Our

investigation results unveil that dissimilar platform performances (i.e. CPU performance

in mobile devices as well as cloud servers) beside differingpower consumption and bit-

rate of heterogeneous wireless technologies can affect theoverall performance of remote

processing approaches and mechanisms.

The literature advocates that there are several academic solutions for executing compute-

intensive mobile applications by leveraging different classes of granular cloud-based re-

sources; Coarse-grained cloud resources feature high scalability and low localization that

originates network latency, medium-grained resources provide medium scalability and lo-

cality breeding network and computing latency, and fine-grained resources offer low scal-

ability and high localization that leads to computation latency. Such network and com-

putation latencies negatively impact on energy efficiency and response time of compute-

intensive mobile applications leading to mobile application performance degradation. Con-

sidering importance of time- and energy-efficiency of compute-intensive mobile applica-
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tions like m-health and m-learning, we investigate and analyse the network and computa-

tion latency problems in-order to propose a new MCC framework to alleviate these prob-

lems.
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CHAPTER 3

PERFORMANCE ANALYSIS OF MOBILE COMPUTATION OUTSOURCING
USING VERTICALLY HETEROGENEOUS GRANULAR CLOUD RESOURCES

In this chapter, we aim to analyse the performance of compute-intensive mobile applica-

tions when outsourcing to heterogeneous granular cloud-based resources. Benchmarking

is employed to investigate the impact of latency of vertically heterogeneous cloud-based

resources in MCC. Using series of benchmarking experiments, we demonstrate the im-

pact of computing and communication latencies of performing compute-intensive mobile

applications utilizing coarse-, medium-, and fine-grainedcloud-based resources in MCC.

The results of analysis and synthesis are presented and findings of our experiment are

discussed.

The structure of this chapter is as follows. Section 3.1 presents the testbed used for

benchmarking analysis. Our benchmarking model is described in Section 3.1.1 and the

data design is presented in Section 3.1.2. The results of this experimental benchmarking

are reported in Section 3.2 and the chapter is concluded in Section 3.3.

3.1 Benchmarking

In this section,we describe experimental model, mobile client and cloud servers spec-

ification, communication infrastructure/medium, and datadesign. Data design including

performance metrics, prototype applications, workloads,data generation process, and data

collection apparatus are presented. Here, we analyze the impact and verify the severity of

computation and communication latencies in vertically heterogeneous MCC.

Considering location granularity in cloud service provider, we select three vertically

heterogeneous cloud service providers from different worldwide location featuring var-
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ied granularity levels. The computing services of Amazon Web Service (EC2) are used

for vertically computation outsourcing computing in whichthe resources placed in var-

ied level of location based on mobile node position. California, Ireland, and Singapore

instances are used for the testbed.

3.1.1 Benchmarking Model

In this analysis the two testbed modes are named as local execution mode and vertical

execution mode. We test our compute-intensive prototype application in these two modes.

In local execution mode, all the application components areexecuted locally inside mo-

bile device, whereas in vertical executions modes, the intensive component of the proto-

type mobile application are called for execution into (i) fine-grained cloud-based resource,

(ii) medium-grained cloud-based resource and (iii) coarse-grained cloud-based resource.

It is noticeable that the classification of these three granular resources is done based on

cloud-mobile user’s position. In vertical execution mode,intensive computations are per-

formed inside the vertical resources and results are returned back to the mobile client for

integration. Following we specify all components used in both modes.

Our graphical representation of the benchmarking model is depicted in Figure 3.1 and

its components are described as follow.

3.1.1 (a) Mobile Client

The mobile device used in this experiment is a HTC Nexus One featuring Qualcomm

QSD8250 Snapdragon 1 GHz Scorpion processor, 512 MB RAM, Wi-Fi 802.11 a/b/g,

running Android v2.3.4 with API level 10. The software components we deploy in our

mobile device are described as below.

Computing Outsourcing Engine: Computing Outsourcing Engine (COE) receives

the name of the required service from the user application and searches the database to
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Figure 3.1: Schematic representation of benchmarking model

determine the IP address of the outsourcing cloud VM (Amazon). The database in the

mobile device deposits the IP addresses of all available cloud VMs. When the execution of

the application reaches the compute-intensive tasks, the execution pauses and the request

is sent to the COE to determine the IP address of the cloud server. The COE marshals the

user data and corresponding IP address of the outsource server as a request and sends it to

the cloud VM (Amazon). COE monitors the remote execution till it receives the response

from the server to integrate it into the system. Upon outsourcing failure, the outsourcing

task is terminated and the error message is issued to avoid wrong data collection.

Wireless Communication Interface: Wireless Communication Interface (WLCI) is

the communication interface of our mobile client node that receives the request from COE

and forwards it to the cloud VM. Upon successful execution, the WLCI gets the response

from the cloud VM and sends it to the Synchronizer component for the integration of the

results into the client node.

Synchronizer: The Synchronizer aims to maintain integration of the memorystate

of the client node and the cloud VM. Synchronizer collects the response from the cloud

server and reintegrates it into the native application so the COE can present the results to

66



the end-user.

Time Logger: Time Logger is an internal clock that generates the round-time of the

application. The generated round-trip time data are storedin local storage for analysis of

the system performance.

Energy Profiler: Energy profiler contains PowerTutor 1.41 tools that is a predomi-

nant energy collection tool for Android-based smartphones. Before the execution of the

application, the tool runs in the mobile device and keeps collecting energy data while exe-

cution continues. After complete execution, we stop the PowerTutor application and save

the log file for future processing.

3.1.1 (b) Cloud-based Resources

In this analysis, we built our server side using the following components. On top of

the bared metal hardware and host operating system in cloud,several layers and compo-

nents exist which are explained below.

Wired Communication Interface (WCI): Wired Communication Interface (WCI)

is the communication interface of the cloud VM. The client request is delivered to the

server VM via this interface point. The request is forwardedto reach the Apache Web

server for execution. On successful execution of the compute-intensive task in the VM,

the WCI receives the results of the execution and transfer itto the client device.

Hypervisor: Hypervisor or VM manager is a cloud-side application that manages

the creation, execution, and destroying of the VMs. Maintaining cloud services is feasible

via Hypervisor only. Hypervisor builds a layer over the hostoperating system to provide

virtual processing infrastructures to the mobile service consumers.

Virtual Machine Instance In order to provide computing powers in our servers,

1http://ziyang.eecs.umich.edu/projects/powertutor/
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we utilize three heterogeneous granular VM instances featuring varied computing powers

located in dissimilar locations with different proximity levels that are described as follows.

Technical specifications of our coarse-grained, medium-grained, and fine-grained VMs are

described as follows and tabulated in Table 3.1.

The coarse-grained server located in Ireland is a m1.large VM instance of Amazon

EC2 featuring 4 Elastic Compute Units (ECU) processor (Intel Xeon) with 2 vCPU cores,

7.5 GB RAM, running Microsoft Windows Server 2008 Base 64-bit OS.

The medium-grained server is a cloud m1.medium VM instance of Amazon EC2 fea-

turing 2 ECU processor with 1 vCPU cores, 3.75 GB RAM, runningMicrosoft Windows

Server 2008 Base 64-bit OS, which is located in California.

The fine-grained server is a cloud t1.micro VM instance of Amazon EC2 featuring

variable ECU (variable*5)2 up to 2 ECUs with 1 vCPU cores, 615 MB main memory, and

low-performance I/O interface, running Microsoft WindowsServer 2008 Base 64-bit OS,

which is located in Singapore.

The actual computing in VMs is performed with the help of Virtual Processing Unit

(VPU). The operating system installed in the VM, can only seethe VPUs and allocate

them to the task for execution.

Synchronizer: This component is built to communicate with the relevant compo-

nents in the mobile side to ensure integrity of the native code and data in client and the

execution in the cloud server. Synchronizer forwards the processing data to the mobile

device for reintegration. In the absence of synchronizer component, the application and

data integrity is compromised.

Time Logger: Time Logger is a timer installed in the cloud VM to generate the time

2It allows the instance to operate at up to 2 EC2 ECUs (one ECU provides the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor)
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Table 3.1: Technical specifications of grained cloud resources used in benchmarking anal-
ysis

Device VM Instance ECU vCPU Cores RAM OS

Coarse-grained
m1.large 4 2 7.5 GB

Win Server 2008
Resource 64-bit

Medium-grained
m1.medium 2 1 3.75 GB

Win Server 2008
Resource 64-bit

Fine-grained
t1.micro up to 2 1 615 MB

Win Server 2008
Resource 64-bit

data when computations perform in the VM. This low-footprint software timer produces

the time for each successful computation in the cloud VM.

Apache Web Server: Apache web server is deployed in our remote servers to host

the web services and manage their execution. Using the web server, our servers will be

able to listen to the specified port for call from the mobile device to receive the request

and initiate its execution. The apache is being used becauseof its lightweight nature and

open source license.

Service Repository: Similar to the Universal Description Discovery and Integrity

(UDDI) in SOA-based systems that stores web services for public usage, we have deployed

a local service repository that contains core service codesand their required libraries for

successful execution inside the remote VMs.

3.1.1 (c) Wireless Communication

We perform wireless communication using a Cisco Linksys WRT45GL wireless router

feature firmware 4.30.16 build 6. The wireless link speed is 54 Mbps and indoor commu-

nications take place via 2.4 GHZ band. The router is connected to a high speed LAN

network to communicate with medium and coarse grained remote servers.
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3.1.2 Data Design

This part presents the in-detail description of our performance metrics, prototype

applications, workload values, and data collection procedures.

3.1.2 (a) Performance Metrics

Application Response Time (ART), Application ComputationTime (ACT), and Con-

sumed Energy (CE) are the most important performance metricfor typical mobile appli-

cations which are used in this experiment. The metrics are summarized in Table 3.2 and

described as follows:

Application Computing Time (ACT) is the computing time to perform the desired task

over the given workload in millisecond (ms). ACT excludes the communication time

between client and server.

Application Response Time (ART) is the total time from initiation stage to completion

stage of the prototype application for one workload in millisecond (ms). Unlike ACT,

ART covers both the ACT and Communication Latency (CL).

Consumed Energy (CE) is the total energy consumed to complete entire prototype ap-

plication for a workload that is presented as millijoule (mJ).

Table 3.2: Performance Metrics Analysed in This Experiment

Performance Metrics Unit

Application Computation Time (ACT) ms
Application Response Time (ART) ms
Consumed Energy (CE) mJ

70



3.1.2 (b) Prototype

The prototype application is a power math application that receives two values of base

and exponent to calculate the value ofbaseexponent. The prototype application is developed

using jQuery mobile 1.2.1 and PhP and runs in client-server architecture. In server side,

the Apache v2.4.4 web server is running on top of the OS and port 80 is utilized to perform

Hypertext Transfer Protocol (HTTP) client-server communication over the network. For

execution on the mobile device, PhP v6.4.11 is installed that manages communication and

execution over port 8080.

3.1.2 (c) Workloads

Benchmarking workloads include 30 different workloads in three major intensity lev-

els of low, medium, and high. The workload values are summarized in Table 3.3.

3.1.2 (d) Data Collection Tools

Data collection tools are designed carefully to minimize the man-made mistakes.

Data of time nature (ACT and ART) are collected using automatic loggers which start

before execution and ends after ending the task.

Energy data are collected using auto logging feature of the PowerTutor 1.4 tool which

is an open source tool for Android handsets.

3.2 Results and Discussion

The results of our experiment are presented in this section in two parts. Firstly, in

time results we present the results of ART and ACT. Secondly,we present the results of

energy analysis.
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Table 3.3: 30 workloads analysed in this experiment

Workload #
Request

Intensity Base Exponent

1

Low

999 3000
2 999 3111
3 999 3222
4 999 3333
5 999 3444
6 999 3555
7 999 3666
8 999 3777
9 999 3888
10 999 3999

11

Medium

999 13000
12 999 13111
13 999 13222
14 999 13333
15 999 13444
16 999 13555
17 999 13666
18 999 13777
19 999 13888
20 999 13999

21

High

999 23000
22 999 23111
23 999 23222
24 999 23333
25 999 23444
26 999 23555
27 999 23666
28 999 23777
29 999 23888
30 999 23999
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3.2.1 Time Results

Tables 3.4 and 3.5 summarize descriptive analysis of our results including minimum,

maximum, and mean values of ART and ACT, respectively. In each Table, results are

categorized in four different intensity levels of low, medium, high, and mean (mean of all

three intensity levels) for four different execution modes. As results suggest, performing

remote execution process using Singapore cloud is significantly beneficial compared to

the local execution and execution using medium- and coarse-grained cloud resources like

California and Ireland Clouds. Leveraging fine-grained Singapore cloud reduces the ART

up to 42.4% for all intensity levels. The minimum time saving using Singapore cloud for

low, medium, and high intensity workloads are 20%, 37.6%, and 47.8% respectively. The

maximum ART reduction for low, medium, and high intensity levels are 35.3%, 46.2%,

and 42.4% respectively.

Utilizing California and Ireland clouds are not beneficial due to the long WAN latency

Table 3.4: Descriptive analysis of benchmarking ART results

Workloads
Resources Minimum (ms) Maximum (ms) Mean (ms)

Exponents

3000-3999

Local ART 175.3 269.9 213.84
Singapore ART 139.1 174.6 147.96
California ART 1061.2 1138.9 1093.49
Ireland ART 1344.4 1654.7 1516.46

13000-13999

Local ART 814 1141.9 992.61
Singapore ART 507.8 614.4 542.54
California ART 1541.3 2012.2 1628.58
Ireland ART 2108.6 2227.9 2193.72

23000-23999
Local ART 2092 2303.5 2238.72
Singapore ART 1091.6 1326.3 1258.43
California ART 2225.8 2297.9 2250.27
Ireland ART 2838.5 3407.1 3051.47

Mean
Local ART 175.3 2303.5 1148.39
Singapore ART 139.1 1326.3 652.98
California ART 1061.2 2297.9 1657.45
Ireland ART 1344.4 3407.1 2253.88
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between the mobile client and cloud VM. Using California resources for low, medium in-

creases the ART about 401%, 64%, and almost no impact on ART inhigh intensity work-

loads compare to local execution. The WAN latency of using such resources is signifi-

cantly higher for low intensity workloads and this negativeimpact decreases as workloads

increase. Similarly, using Ireland resources for low, medium, and high intensity workloads

increases the ART about 609%, 121%, and 36% more than local execution which is worse

that California instance due to the excess distance. These tendencies suggest that utiliz-

ing coarse-grained resources for low intensity workloads not only does not save ART, but

also significantly increase it. Leveraging coarse-grainedcloud resources for extensively

intensive tasks is feasible to be beneficial.

In order to demonstrate the above reported ART prolonging, we have presented the

ACT in Table 3.5 and communication latency in Table 3.6. The results in Table 3.5 shows

that computation time for all workload intensities is remarkably lower when performing

Table 3.5: Descriptive analysis of benchmarking ACT results

Workloads Resources Minimum (ms) Maximum (ms) Mean (ms)
Exponents

3000-3999

Local ACT 144.4 206 168.86
Singapore ACT 35.4 54.7 44.824
California ACT 30.4 64.3 50.266
Ireland ACT 21.2 33.2 27.10

13000-13999

Local ACT 768.8 1089.7 942.633
Singapore ACT 365.7 413.9 388.910
California ACT 320 373.8 339.11
Ireland ACT 220 257.3 243.16

Local ACT 2036.6 2251.5 2183.89

23000-23999
Singapore ACT 941.2 1003.4 971.028
California ACT 814.4 864.4 840.714
Ireland ACT 570.2 597.7 586.872

Local ACT 144.4 2251.5 1098.457

Mean
Singapore ACT 35.4 1003.4 468.25
California ACT 30.4 864.4 410.03
Ireland ACT 21.2 597.7 285.714
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remote execution that are more powerful from the mobile device. However, in contrast

with ACT results, the results of Table 3.6 shows significant difference in WAN latency of

utilizing heterogeneous granular cloud VMs. Utilizing Singapore originates minimum of

102.9msoverhead for the low intensity level while it is 997msand 1317msfor California

and Ireland. In average utilizing Ireland resources yields12 and 8.7 times more WAN

latency compared to Singapore and California.

To better present the results of this study, we have plotted the ART, ACT, and com-

munication latency results of executing 30 workloads in four different execution modes

in Figure 3.2, 3.3, 3.4, and 3.5. Green checkered bars in Figure 3.2 represent the ART

of local execution mode. Blue diagonally stripped bars showART of Singapore mode,

horizontally stripped bars represent California and the red diagonally back stripped ones

show ART of Ireland cloud execution mode. As the bars in Figure 3.2 demonstrate, the

highest execution time is always when the Ireland cloud resources are utilized followed

by California. It also shows that utilizing fined-grained clouds resources (Singapore) is

beneficial in all modes. Moreover, the Figure shows more anomalies in ART when using

Table 3.6: Descriptive analysis of benchmarking communication latency results

Workloads
Resources Minimum (ms) Maximum (ms) Mean (ms)

Exponents

3000-3999

Singapore WAN Latency 102.9 124.1 113.160
California WAN Latency 997.0 1079.5 1043.230
Ireland WAN Latency 1317.7 1622.5 1489.353

13000-13999

Singapore WAN Latency 135.9 200.5 153.630
California WAN Latency 1204.4 1657.6 1289.477
Ireland WAN Latency 1888.5 1972.6 1950.560

23000-23999
Singapore WAN Latency 150.5 347.3 287.410
California WAN Latency 1390.2 1433.5 1409.557
Ireland WAN Latency 2261.8 2811.5 2464.603

Mean
Singapore WAN Latency 102.9 347.3 184.733
California ART 997.0 1657.6 1247.421
Ireland WAN Latency 1317.7 2811.5 1968.172
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Figure 3.2: Application response times of 30 workloads in 4 execution modes
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Figure 3.3: Comparison of application response time for 30 workloads in 4 execution
modes

Ireland and California while there is no visible anomaly in Singapore mode.

Figure 3.3 demonstrate the scattered diagram of ART with interpolation lines to better

compare the ART in different execution modes. For the sake ofdata collection reliabil-

ity, we have 30 times repeated the execution of each workload. Each bar in these charts

represents mean value of 30 iteration of each workload’s execution.

Results of Figure 3.4 show ACT in four execution modes. As expected the ACT is

the highest in local execution modes and is lowest in Irelandcloud due to their native

computing power. Among cloud VMs, the Ireland is the most powerful, followed by
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Figure 3.4: Application computing time of 30 workloads in 4 execution modes

California and Singapore clouds. However, utilizing Ireland resource is not yet beneficial

despite computing superiority compared to other resources. The communication latency

of utilizing varied resources are drawn in Figure 3.5. The gray chattered bars represent

the I/O delay of mobile device when running the application locally. The red diagonally

stripped, green horizontally, and purple back diagonally stripped bars are communication

latency of using Singapore, California, and Ireland VMs, respectively.

The results clearly demonstrate highest latency in Irelandcloud followed by Califor-
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Figure 3.5: Communication latency of 30 workloads in 4 execution modes
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nia. Even the WAN latency of utilizing Singapore resources is more than I/O latency of

using local resources.

In order to demonstrate the proportions of ACT and communication latency in ART,

we have drawn stacked bar charts for each intensity level in Figures 3.6, 3.7, 3.8. In

each bar, the blue chunk shows the ART for 10 workloads. The green chunks in each

bar shows the computing latency and the beige color part represents the communication

latency. Bars in Figure 3.6 show the results of low intensityworkloads. In these workloads

the computation are minimal and hence the green layer is verysmall compared to the

communication latency.
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Figure 3.6: Time comparison of ART, ACT, and CL for low intensity workloads in 4
execution modes

However, results of medium intensity workloads depicted inFigure 3.7 shows the

difference in computing capabilities of different execution modes. The least communica-

tion latency and the most computing delay belongs to the local execution mode whereas

the most communication latency and the least computing delay is for the Ireland cloud.

The graphical comparison of the green chunks in these four bars illustrates the computing
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Figure 3.7: Time comparison of ART, ACT, and CL for medium intensity workloads in 4
execution modes

performance of local, Singapore, California, and Ireland computing devices. Such infor-

mation are better visible in Figure 3.8 where the results of high intensity workloads are

plotted. As the workloads increase the application computing time also increase, which

demonstrate increasing computing complexity of workloadsand computing performance

of different servers.

Comparison of the results in Figures 3.6, 3.7, 3.8, advocates that coarse-grained re-

sources can reduce the computing latency of remote execution. However, the benefit of

ACT reduction is jeopardized in most of the cases due to the high WAN latency of send-

ing request and receiving response to the distant coarse-grained cloud VMs. Therefore,

we can conclude that despite their computing power, utilizing coarse-grained resources is

hindered by long communication latency associated with them. This analysis suggests fea-

sibility of the computing-communication trade-off when utilizing cloud-based resources

in MCC.
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Figure 3.8: Time comparison of ART, ACT, and CL for high intensity workloads in 4
execution modes

3.2.2 Consumed Energy Results

Results of our energy analysis are presented in Tables 3.7. The table summarizes de-

scriptive analysis of our results including minimum, maximum, and mean values of con-

sumed energy in four execution modes. Results are categorized in four different intensity

levels of low, medium, high, and mean (mean of all three intensity levels).

As the results suggest, performing remote execution process using Singapore cloud is

always beneficial, especially for high intensity workloadscompared to the local mode and

executing using medium- and coarse-grained cloud resources like California and Ireland

Clouds. Leveraging fine-grained Singapore cloud, reduces the CE up to 41.8% for all

intensity levels. The minimum energy saving using Singapore cloud for low, medium,

and high intensity workloads are 0.06%, 34.7%, and 49.6% respectively. The maximum

energy consumption reduction for low, medium, and high intensity levels using Singapore

cloud are 16.7%, 38.2%, and 41.8% respectively.

Utilizing California cloud is less beneficial especially inlow and medium intensity

80



Table 3.7: Descriptive analysis of consumed energy resultsof benchmarking analysis

Workloads
Resources Minimum (mJ) Maximum (mJ) Mean (mJ)

Exponents

3000-3999

Local Execution Mode 126.0 153.9 142.66
Singapore Cloud Mode 118.2 128.1 122.43
California Cloud Mode 120.9 170.3 142.62
Ireland Cloud Mode 203.1 266.8 235.87

13000-13999

Local Execution Mode 202.4 270.8 229.36
Singapore Cloud Mode 132.1 167.2 147.71
California Cloud Mode 201.7 215.0 206.53
Ireland Cloud Mode 342.1 412.5 375.78

23000-23999
Local Execution Mode 312.6 372.1 346.56
Singapore Cloud Mode 157.4 216.4 196.23
California Cloud Mode 254.3 295.8 271.03
Ireland Cloud Mode 597.0 690.6 640.16

Mean
Local Execution Mode 126.0 372.1 239.54
Singapore Cloud Mode 118.2 216.4 155.45
California Cloud Mode 120.9 295.8 206.73
Ireland Cloud Mode 203.1 690.6 417.27

levels due to the high ART discussed earlier in this study. Using California resources for

low, medium, and high intensity workloads decrease the meanCE about 0.0%, 0.1%, and

21.7% compared to local execution. Utilizing Ireland resources is not at all beneficial in

this study. Ireland cloud increases the mean CE in low, medium, and high intensity levels

as much as 65%, 63.8%, and 84.7% compared to local execution.

We have plotted the Figure 3.9 using the energy data of this experiment. The green

checkered bars in this Figure represent the CE of local execution mode. Blue diagonally

stripped bars show CE of Singapore mode, horizontally stripped bars represent California

and the red diagonally back stripped ones show CE of Ireland cloud execution mode. As

results in this chart highlight utilizing Ireland cloud is not beneficial for any workload and

is more than the amount of energy consumed for local execution. This is due to excess

communication latency of utilizing Ireland cloud that directly impacts on the ART and

consequently on CE.

81



Workloads

23
99

9

23
88

8

23
77

7

23
66

6

23
55

5

23
44

4

23
33

3

23
22

2

23
11

1

23
00

0

13
99

9

13
88

8

13
77

7

13
66

6

13
55

5

13
44

4

13
33

3

13
22

2

13
11

1

13
00

0
39

99
38

88
37

77
36

66
35

55
34

44
33

33
32

22
31

11
30

00

C
o

n
s
u

m
e
d

 E
n

e
rg

y
 (

m
J
)

700

600

500

400

300

200

100

0

Ireland Cloud Mode
California Cloud Mode
Singapore Cloud Mode
Local Execution Mode

Figure 3.9: Comparison of consumed energy for 30 workloads in four execution modes

The slightly different results are evident for California cloud. In low intensity work-

loads, the California cloud consumes more energy than local. However, this trend reverses

in medium and high latency workloads. The energy saving is atpeak when using high

intensity level workloads. However, using Singapore cloudis beneficial for all workloads

and the achievements are increasing linearly as the workloads increase.

The results of ART and CE analysis suggest a linear correlation between time and

energy. To analyze this correlation, we performed further analysis that its results are pre-

sented in Figure 3.10. Blue remarks in each chart represent the corresponding CE and

ART values of 30 workloads. The red fit line andR2 values show the correlation between

the ART and CE.

As the results testify, CE of the applications when leveraging remote resources fol-

lows identical pattern similar to the ART (due to its tight direct dependency to time).

Moreover, as the fit line slops indicate, for the local, Singapore, and California, the slops

that represents the significance of the correlation is more sharply laid on the remarks than

of Ireland cloud. Such difference in the fit line slope can interpret the implications of uti-

lizing coarse-grained resources in mobile augmentation. Therefore, the assumption that
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Figure 3.10: Correlation between the ART and Consumed Energy for 30 Workloads in
Four Execution Modes

utilizing coarse-grained cloud resources can generally increase CE of applications remains

valid. Energy results suggest that utilizing combination of fine, medium, and coarse grain

computing resources is likely more efficient and beneficial for remote execution in MCC.

3.3 Conclusions

In this chapter, we investigate the impact of utilizing fine-grained, medium-grained,

and coarse-grained cloud resources on ART, ACT, and CE of compute-intensive mobile

applications. We demonstrate how computation and communication latencies of utiliz-

ing heterogeneous granular resources can increase or decrease ART and CE of compute-

intensive mobile applications when running on cloud-basedremote resources.
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The results of this investigation confirmed that though leveraging cloud-based re-

sources can improve ART and CE of mobile applications, varied computation and com-

munication latencies of heterogeneous granular resourcesremarkably impact on the out-

sourcing performance. Our analysis unveil that utilizing fine-grained resources featuring

low scalability and high proximity originates high computing and low communication la-

tencies. Exploiting coarse-grained resources originateshigh communication latency and

lower computing latency compared to the fine-grained resources, since coarse-grained re-

sources are highly scalable located far from end-users. Lastly, we found that employing

medium-grained resources creates medium computing and computation latency due to

their lower scalability and proximity compared with coarse-grained and fine-grained re-

sources, respectively. Thus, inhomogeneous computationsand communication latencies

among vertically heterogeneous granular resources negatively impact on energy efficiency

and response time of compute-intensive mobile applications leading to mobile application

performance degradation.

Moreover, from the results of this analysis, it is deemed utilizing amalgam of hori-

zontally heterogeneous granular resources composed of three classes of fine-, medium-,

and coarse-grained cloud resources can yield high performance efficient of computation

outsourcing in MCC by providing opportunity to perform a computation-communication

tadeoff while selecting remote resources. As a result, timeand energy consumption of

performing resource-intensive mobile applications on horizontally heterogeneous granu-

lar computing infrastructures can be remarkably decreased. Therefore, exploiting combi-

nation of horizontally heterogeneous granular cloud-based resources can remarkably en-

hance performance of MCC solutions toward optimal outcome.
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CHAPTER 4

LIGHTWEIGHT HETEROGENEOUS HYBRID MOBILE CLOUD
COMPUTING FRAMEWORK FOR COMPUTE-INTENSIVE MOBILE

APPLICATIONS

This chapter presents an in-depth explanation of our proposed heterogeneous hybrid MCC

framework for compute-intensive mobile applications. Theframework is consist of three

major building blocks of service consumer, system arbitrator, and cloud-computational in-

frastructure composed of horizontally heterogeneous granular computing resources, aim-

ing to augment computation capabilities of mobile devices,especially smartphones. In

this study we assume mobile network operators (MNOs) and their dealers can play a vital

role in providing computing services to the mobile users dueto their functional and non-

functional attributes (i.e., computing and locality). Later, we express the important of this

assumption with introducing MNOs’ roles, schematic representation of layered grained

cloud-based resources and methods used in this framework. Significance and novelty of

the proposed framework is also presented. Moreover, we present the data design for eval-

uation of the proposed framework.

The remainder of this chapter is as follows. Section 4.1 presents our proposed frame-

work and describes its building blocks and components. Section 4.2 highlights the signif-

icance and novelty of the proposed framework. Data design for evaluation of the perfor-

mance of the proposed framework is presented in section 4.3 and the chapter is concluded

in section 4.4.
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4.1 Lightweight Heterogeneous Hybrid Mobile Cloud Computing Framework

We propose a lightweight heterogeneous hybrid mobile cloudcomputing framework

consists of horizontal heterogeneous cloud-based resources for compute-intensive mobile

applications to address the inefficiencies, particularly computation and communication

latency of vertical heterogeneous MCC solutions demonstrated in chapter 3.

In design and development of this framework, we have employed Resource Oriented

Architecture (ROA) and cloud computing principles to generate elastic platform-neutral

solution. Therefore, the cloud-based mobile applicationsbased on this framework feature

higher portability, scalability, and elasticity. In this MCC environment, every mobile ap-

plication is a service-based composite application that incorporates several prefabricated

services. The resource-intensive services are stored and executed outside the mobile de-

vices on computing entities of built hybrid cloud resources.

Typical ROA-based frameworks feature three main building blocks, namely service

provider, service broker, and service consumer. Service provider plays two roles of de-

veloping and delivering the services to the service consumers. However, convergence of

service development and delivery necessitates acquisition of programming and software

engineering skills by service providers. In order to address this limitation and enabling

Figure 4.1: The block diagram of hybrid mobile cloud computing framework
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Figure 4.2: Schematic presentation of heterogeneous hybrid mobile cloud computing
framework

multitudes of computing entities to host and deliver the services to the service consumers,

we have separated these two roles from each other. Hence, ourproposed framework fea-

tures four major building blocks, including service developer, mobile service requester,

system arbitrator, and horizontally heterogeneous service provider, which are depicted in

Figure 4.1. Furthermore, in order to realize the vision of this framework, we have designed

and developed several components for major building blocks. Figure 4.2 shows schematic

presentation of our heterogeneous hybrid mobile cloud computing framework, along with

its main components that are described as follows.

Figure 4.3 illustrates the sequence diagram of operations among major building blocks

in our framework to perform successful outsourcing.
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Figure 4.3: Sequence diagram of operations among main building blocks in proposed
framework

4.1.1 Service Developer

The service developer building block is responsible to develop heterogeneous granu-

lar computing ROA-based services (or services in short) andutilize them to build loosely

coupled complex applications based on pre-fabricated services. ROA-based services are

platform-independent and can be hosted and executed on any resource-rich computing de-

vice that features web service execution. Developers implement heterogeneous granular

services and contact the central arbitrating entity (called System Arbitrator) to register and

publicize their services. Moreover, service developers are responsible to update and main-

tain services to ensure consistency, integrity, and availability of services. Though service

developers are still capable of hosting and providing services to the consumers, service

provisioning is separated from the developers and they are treated as two different entities

in this framework.
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4.1.2 Horizontally Heterogeneous Service Provider

Service provider in this framework hosts pre-fabricated services that are built by ap-

plication and service developer to provisioning computingservices on-demand based on

the cloud computing principles. The separation of service development and provisioning

enables non-technical service providers to conveniently host and provision the required

services on-demand without software engineering expertise. As illustrated in Figure 4.1,

hosted services in service provider are continuously monitored by the service provider for

frequent update and maintenance.

Service providers in this framework are horizontally heterogeneous hybrid granu-

lar computing entities that feature varied computing elasticity, multiplicity, and different

proximity levels to the service consumers. Thus, efficiencyof service delivery is improved

in the presence of numerous horizontally heterogeneous service providers that can fulfil

varied quality requirements of different mobile service requesters. In the following, we

explain these heterogeneous hybrid granular computing entities.

Hybrid Cloud Resources (HCR):The Hybrid Cloud Resource (HCR) in this framework

are 3-tier complex resources that creates a horizontally heterogeneous granular computing

environment. In this research, these 3-tier resources are considered as coarse-grained,

medium-grained, and fine-grained computing resources thatare illustrated in Figure 4.4

and explained below. Resources are classified based on threeparameters of locality (low

as country-level, medium as city-level, fine as cell-level), scalability (low, medium, high),

and multiplicity (low, medium, high).

Coarse-Grained Resources (CGRs): The first type of HCRs shown in Figure 4.2 are

giant cloud service providers such as Amazon EC2. Although these resources are often

located in long distance to mobile users that causes communication latency, they offer

elastic resources with high computing power. Moreover, they are low in multiplicity since
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Figure 4.4: Graphical representation of multi-level heterogeneous computation outsourc-
ing.

number of cloud datacenters is limited. These resources arelocated in the top most part

of the Figure 4.4. CGRs feature high availability, scalability, and elasticity and typically

levy low financial cost to the service consumers compared with other resources based on

cloud computing principal. Utilizing these resources necessitates communication through

the wired networks and the channel of Internet and accessingtheir resources requires pass-

ing through large number of intermediate hops that increases communication latency and

degrades service utilization quality.

Medium-Grained Resources (MGRs): The medium-grained resources have usually

lower processing power compared to CGRs, but can provide more proximate cloud ser-

vices to mobile users. These resources have medium proximity to mobile users and hence

can be considered to be at city level. We have selected MNOs asMGRs in this research
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due to several uniquely beneficial features (we utilize computing capability of a desktop in

the absence of MNO server). MNOs are able to provide continuous services to their client

without need to access to the Internet. They are usually well-established and reputed busi-

ness stakeholder that can play important roles in our framework as follows.

• Multi-service providers:MNOs can provide elastic, on-demand computing, storage,

and network as a service to their end-users according to the negotiated service level

agreement as they have already started (e.g., Verizon and AT&T) diversifying their

services to mobile users by providing IaaS.

• Cloud brokers:MNOs can play the role of service mediators between cloud providers

such as Amazon and mobile service requester. Also, they havethe capability of be-

ing broker across other MNOs. In order to increase communication efficiency from

latency perspective, MNOs can interoperate with each otherto serve larger commu-

nity of mobile service requesters.

• Cloud consumers:MNOs can utilize giant cloud resources if their proprietaryre-

sources are not enough to serve their clients. In this situation, they leverage cloud

services like IaaS from IT giants’ cloud service providers based on a negotiated

service level agreement (SLA).

• Carrier cloud: MNOs as a carrier cloud meet the needs for connectivity, reliability,

and accountability between heterogeneous wireless networks and wired systems in

the cloud which are highlighted in mobile communication congestion issues in MCC

domain explained in chapter 2.

• Reputation trust:MNOs such as BT (since 1846 )1, Telefonica (since 1924)2, Maxis

1http://www.btplc.com/Thegroup/Ourcompany/index.htm

2http://www.telefonica.com/en/home/jsp/home.jsp
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(since 1993)3, Verizon(since 1983)4, and NTT DoCoMo (since 1991)5 have been ex-

isting since the beginning of cellular communication and could establish reputation

trust among their end-users. Leveraging such reputed entity as the system arbitrator

can remarkably enhances the system adoption.

Fine-Grained Resources (FGRs): The third resource tier in our framework is the

closest cloud-based infrastructure to the mobile service requester. In this layer MNO’s

authorized dealers can play the role of trusted surrogates which are able to serve compu-

tation to mobile service requesters in vicinity. MNO authorized dealers are those service

outlets having wall-connection and direct communication with MNOs that are scattered in

this urban or rural areas to serve and support the MNOs’ clients better.

Large number of authorized dealers are mainly scattered in different business spots

such as shopping mall, market areas, airports, and commercial buildings where plenty of

mobile users are operating. Currently Maxis, one of the largest Malaysian MNOs, has

1372 authorized dealers6 which are noticeable number of wall-connected computing en-

tities with uninterrupted power source and wired backend network connection. Utilizing

computing infrastructures of these numerous ever-increasing nearby resources is deemed

to not only decrease communication latency and execution time, but also to increase com-

puting capability of mobile devices. However, their computing resources (i.e., CPU, mem-

ory, and storage) are limited and accessing them may be limited to the operating hours and

weekdays, that necessitate a scheduling algorithm.

Utilizing horizontally heterogeneous hybrid cloud-basedresources model provides

a trade-off between computation and communication latency. Providing cloud services

3http://www.maxis.com.my

4http://www.verizon.com/home/verizonglobalhome/ghp_landing.aspx

5https://www.nttdocomo.co.jp/english/

6http://www.maxis.com.my/personal/latest/bpl%5Ffigurines/dealers.html
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closer to the mobile user, will decrease communication latency. Here, mobile users can

connect to MNO, and then MNO do the job or handle the job by its dealers or giant clouds,

and finally the response returns from MNO to the mobile devices. Therefore, horizon-

tally heterogeneous grained-resources can provide computation-communication trade-off

to achieve near-optimal energy and time consumption for compute-intensive cloud-based

mobile applications.

In order to realize functionality of service providers in our framework we have de-

signed and implemented several components that are depicted in Figure 4.2 and described

as follows. These low footprint components are installed onany computing device that is

utilized as service provider in our framework with identical functionality.

4.1.2 (a) Request Handler

The request handler component plays the role of communication interface on ser-

vice providers. The request handled by this module is prepared by system arbitrator and

includes the service name, user data, and user preferences that should be processed in

the cloud-based resources. All the communications in this framework follow the asyn-

chronous trait of the ROA where restful communications takes place. Hence, the system

can perform communication in background without interrupting their foreground transac-

tions. This feature is vital for MNO dealers so they can perform their daily routine work

without interaction disturbance.

This component in service providers is contacting its counterpart in arbitrator to han-

dle inter-communications via wired network. Each arrived request should be validated by

the handler to avoid resource wastage of the service providers. After passing thorough

request validation, the received information from the arbitrator is transferred to the execu-

tion engine for execution. The response from the execution engine is sent to the request
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handler so that the computing results of the execution can besent back to the arbitrator.

4.1.2 (b) Execution Engine

Execution engine receives valid requests from arbitrator via request handler to per-

form certain service using the given name, input value, and user preferences. The exe-

cution engine is responsible to inquire the local service directory of the hosting service

provider to identify the desired service. Upon successful identification, the input data is

sent to the desired service loaded on top of the HTTP server. Upon successful execution

of the required service the results are sent back to the execution engine to be embedded

into the response. The response from execution engine is forwarded to the arbitrator via

request handler.

4.1.2 (c) HTTP Server

The HTTP server is required at the time of service execution,because we have de-

ployed ROA for design and development of our framework and applications. HTTP server

is installed on top of the host OS in service provider machineand hosts the code and li-

braries of the loaded services. This server monitors the port number 80 (default port),

receives and validates the Unified Resource Identifier (URI)of the requested service, and

performs execution of received requests if validated. Uponsuccessful execution, the re-

sults are sent to the execution engine. We have used Apache tomcat as a lightweight

open-source HTTP server in this framework.

4.1.2 (d) Service Directory

Service directory is a local database that contains information and implementation of

all the services that are hosted by the service provider. ROAobliges to store the code and

binded library files in each service provider so that execution of requests can be started

without need to transmit the code. The same codes can be used for execution without
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limitation (based on agreement between arbitrator and developer). As the Figure 4.1 illus-

trates, the developer is communicating with the service providers to update/maintain the

codes for efficient execution.

4.1.2 (e) Synchronizer

Synchronizer is designed to be deployed in all computing entities which are employed

as service providers. The role of synchronizer in service providers is to synchronize the

memory state and produced results between the service provider and service requester via

system arbitrator. Once the execution state is saved on the persistent storage, the data is

automatically synchronized with the system arbitrator andultimately with mobile service

requester. Without synchronizer component, the application integration is violated.

4.1.2 (f) Execution Log

In order to maintain the resource utilization in our serviceproviders and adhere to

the service level agreement between the service requester and provider, the execution log

is embedded into the service provider machine. For each execution, the execution log

component stores the resource information such as time and energy. This component is

also used in our data collection task to produce the computing latency and time of the

servers.

4.1.3 Mobile Service Requester

In this framework mobile service requester can be any mobilecomputing device in-

cluding smartphone, laptop, tablet, wearable computers, car-mounted computers, and any

other nomadic computing device working on battery accessible via wireless technologies

that requires computational resources for execution of compute-intensive services. In the

testing phase, we use smartphone as a mobile service requester.

95



Service requesters host applications that are built by application and service develop-

ers to perform desired computing task on the go. The execution of applications usually

starts from the service requester device which hosted the application and execution contin-

ues on the device until it reaches a compute-intensive task.While execution continues, a

request is sent by the requester to the arbitrator to identify an appropriate service provider

capable of executing the desired compute-intensive service(s). Upon complete execution,

the results are sent back to the service requester. In the following, we describe functional-

ity of each component deployed in mobile service requester.

4.1.3 (a) Computation Outsourcing Engine

Computation outsourcing engine component is managing the entire outsourcing pro-

cess in the mobile service requester device. When the execution reaches the intensive task,

it collects data and user preferences to build a request and forward it to the arbitrator via

wireless communication handler component. Once the results of remote computation are

provided by the arbitrator, the computation outsourcing engine integrates the results into

the local application with the help of synchronizer.

4.1.3 (b) Synchronizer

The synchronizer component embedded into the mobile service requester device is

communicating with its counterpart in the arbitrator to ensure integrity of the results dur-

ing the outsourcing process. In the absence of such component, the results of remote

computation is not properly reflected into the native application.

4.1.3 (c) Wireless Communication Handler

The wireless communication handler component performs as awireless communi-

cation interface on the mobile service requester. The typical communications handled by

this component is asynchronous transmission of the requestincluding service name, user
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data, and user preferences to the arbitrator and receiving the results of remote execution.

All the communications in our proposed framework undertaken asynchronously to enable

mobile service consumer maintain seamless interaction with the rest of applications in the

device.

4.1.3 (d) Mobile HTTP Server

Similar to the service provider that is hosting HTTP server,we have designed and de-

veloped a lightweight HTTP server that can listen to the assigned ports for local execution

of services since our proposal is based on ROA. This server receives the URI of the desired

service from the client part of the application for execution and validates the request. In

case of successful validation the input values and memory state is provided to the service

for execution.

4.1.4 System Arbitrator

System arbitrator plays the roles of a central arbitrary entity that manages the en-

tire outsourcing operation. One of the roles arbitrator plays in our proposal is the UDDI

(Universal Description Discovery and Integrations) that exist in typical SOA-based frame-

works. Moreover, the overall system arbitration and supervision is taking place. Due

to several key characteristics and benefits of MNOs in mobilecomputing, we exploit

MNOs and deploy arbitrator in MNOs to arbitrate and supervise the outsourcing opera-

tions between front-end (service consumers or cloud-mobile users) and back-end (service

providers) entities.

The system arbitrator in our proposal consists of eight major components, namely

communication handler, outsourcing engine, service registry, resource scheduler, QoS

management, synchronizer, repository, and outsourcing logger that are depicted in Fig-

ure and explained as follows:
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4.1.4 (a) Communication Handler:

Communication handler in system arbitrator is the communication interface of the ar-

bitrator that enables communications between compute-intensive mobile applications and

other building blocks in this framework. Similar to the mobile service requester and ser-

vice providers, the entire communications perform asynchronously so that building blocks

can communicate with each other in background while system is usable by the users.

Communication handler is responsible to receive the requests from the mobile service re-

questers through wireless network and forwards it to the destination component. It also

receives response from the components and forwards it to themobile service requester

wirelessly.

Moreover, communication handler has a wired network interface that provides a com-

munication channel to the service provider. When arbitrator identifies an appropriate ser-

vice provider to provision computing resource for execution of the given task, the commu-

nication handler forwards the user data to the identified service provider for execution. It

receives the response from the service provider upon completion and return to the mobile

service requester after performing relevant tasks in the arbitrator.

4.1.4 (b) Service Registry:

Service registry component in this framework receives service registry requests from

service developers (who has implemented the service) and maintains relevant data in a

local repository inside arbitrator. The service registry mimics the roles of UDDI in typical

SOA-based system. However, our service registry works using lightweight asynchronous

communication style unlike heavy synchronous Simple Object Access Protocol (SOAP)

style used in UDDI.

When a new service is registered in the system, the arbitrator establishes negotiation
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with potential service providers (among horizontally heterogeneous servers) to identify an

appropriate server for its execution (similar to white pageregistration in public service

repositories). Upon successful server allocation, the service code and its associated li-

braries are transmitted to the server for future reference and the unique accessing address

of the service is registered in the service directory as URI.

4.1.4 (c) Repository:

Repository plays the role of a database that can store information about all services

and service providers in our framework. It also stores the code and libraries of all the

services that are registered with this framework. Information stored in repository is utilized

by service registry component, outsourcing engine, and QoSmanagement to maintain the

entire system.

4.1.4 (d) Resource Scheduler:

The resource scheduler in our framework plays the role of identifying appropriate

service provider based on the user need and preferences (e.g., cost and time). At runtime,

the request from mobile service requester is sent to the system arbitrator asking to iden-

tify the service providers that are capable to perform desired services considering current

user’s location and its preferences. For this component, weuse priori decision making

method in which user preferences are given to the scheduler in advance. To minimize the

communication latency and database delay, mobile device forwards the list of all services

at once asking arbitrator to provide the list of service providers that can satisfy all the

desired services. So the request is an ordered array of service names and maximum ex-

ecution cost, and the response is an ordered array of bindinginformation for all services

satisfying the total cost and is executed in least executiontime. We assume that mobile

user mobility during the application execution does not affect the server allocation deci-
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sion. The service providers are ranked using lexicographicorder method based on their

computing cost and time. The first user priority is considered to be the computing cost of

service providers and the second requirement is time (as imposed by the thesis’s aim and

objectives). The response is prepared so that the cost and time are satisfied for the entire

services, not individual services.

In order to mitigate the search delay, the scheduler assumesthat the required services

are available and hence directly contacts the repository tofetch the records that fulfil the

requested service and desired criteria (e.g., service typeand operation cost), and performs

scheduling on the fetched records. Otherwise, the arbitrator should contact the database to

validate the service name before asking scheduler to find service provider which increases

latency. Upon complete resource scheduling (either success or failure), the results (either

’service not found’ error or the binding information) are sent to the outsourcing engine

and scheduling ends. The pseudo code of resource selection is presented in Algorithm 1.

4.1.4 (e) Outsourcing Engine:

Outsourcing engine inside the system arbitrator is one of the center components of

the framework. When a mobile service requester sends a discovery request for the desired

service to the arbitrator, it passes through communicationhandler and reaches the resource

scheduler component in the system arbitrator.

Once the resource identification is completed by the resource scheduler component

and the appropriate resource is identified, the binding information is sent to the outsourcing

engine. Herein, the outsourcing engine utilizes the binding information to make an indirect

request call (on behalf of the mobile service requester) to the given resource provider

asking for remote execution or it can send the binding information to the mobile service

requester for direct contact (for evaluation purpose, we used the former approach).
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Algorithm 1: Pseudo code of Finding Service Provider
1: Begin;
2: Data: ser_names[...] = service name{s1,s2,s3, ...,sn};
3: loc= user location;
4: cost= user maximum cost;
5: Var: ser_provider_costsi = cost o f executing service i in the service provider
6: Result: The array of binding information of all the service providers
;
7: Select * from database where Ser_provider_location=locand
ser_provider_cost<cost ;
8: Select allSer_names[s1,s2,s3, ..sn] whereser_provider_costs1+
ser_provider_costs2+ser_provider_costs3+ ...ser_provider_costsn< costand
store them inServ_provider[n][s1,s2,s3...,sn],0< n< m
; // m= maximum number of alternative service provider combinations

9: Find the maximumser_provider_execution_time in each combination from
Serv_provider[n][s1,s2,s3...,sn];
10: Sort theSer_provider[n][s1,s2,s3, ..sn] using lexicography technique;
11: Select the minimum of identified maximum execution time of
Ser_provider[n][s1,s2,s3, ..sn] and store inResponse;
12: Retrieve the binding information of the service providers inResponseas the
final results;
13: Forward the array ofResponseto the outsourcing engine;
14: End.

Upon completion of the service execution in the remote servers, the results are received

by the outsourcing engine. Outsourcing engine unmarshallsthe response and uses the

inside results to build a response message for the mobile service requester and forwards it

through the wireless network using communication handler interface. The same process

is performed for failed resource discovery.

4.1.4 (f) Synchronizer:

The synchronizer component deployed in the system arbitrator communicates with

its counterpart in the mobile service requester and serviceproviders to ensure integrity of

the results during the outsourcing process. In the absence of such component, the results

of remote computation inside the service provider machine are not properly reflected into

the native application in the mobile service requester machine.
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4.1.4 (g) QoS Management:

Using QoS management component, we measure and collect QoS metrics for each

successful or failed service execution in our framework. The system arbitrator needs to

keep track of functional and QoS attributes of all resource providers including giant clouds,

MNOs, and MNO authorized dealers. These QoS information arebeneficial at the time of

resource allocation by the resource scheduling. The resource scheduler utilizes QoS values

of all available service providers to choose the near-optimal service provider for each call.

Major QoS metrics utilized in this proposal are availability (success/failed execution),

network latency to reach the service provider, and computing latency (time to execute the

service by service provider).

4.1.4 (h) Outsourcing Log:

In order to complete the tasks designed for QoS management component, the out-

sourcing log is required to log the QoS information for each outsourcing execution. The

information from this logger and execution logger in each remote service provider are used

by the QoS management component for ranking service providers.

Figure 4.5 illustrates the flow of runtime computation outsourcing from local exe-

cution initiation till the execution completion in our framework. The Figure consists of

three main building blocks, namely mobile service requester, system arbitrator, and hori-

zontally heterogeneous service providers. The flowchart starts from start state located in

top leftmost and flows towards down and right side of the chartduring runtime and it ends

at the bottom leftmost terminate state. The blue process boxes are executing in parallel;

the synchronizer executes in background and application execution in foreground.

As the service provider rectangles are depicted in the figure, there are three heteroge-

neous service providers which are called at runtime for executing the prototype application
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Figure 4.5: Flowchart diagram of runtime mobile computation outsourcing in the proposed
framework

for our performance evaluation purpose. It is noteworthy that the flow chart contains only

the states necessity for successful runtime computation outsourcing. Thus, components

such as loggers and QoS management are disregarded to avoid complexity.

4.2 Significance of The Proposed Framework

The proposed framework has several significant features that are described as follows.

• Portability: One of the most significant features of this framework is platform-

independence which is inherited from the SOA. The frameworkis both vertically
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and horizontally platform-independent. The former ensures that applications built

based on this framework can be executed on various version ofcertain OS, such

as Android. The latter means that applications built based on this framework can

be executed on and ported to varied mobile operating systemswithout considerable

reconfiguration and modification. Employing SOA in this framework not only en-

hances the portability but also omits the virtualization overhead. In the absence of

cross-platform solutions, the service providers and mobile service requesters need

to employ virtualization technology which is a costly and heavy approach.

• Lightweight Compute-intensive Mobile Application: In design and development

of this framework, we have employed Resource Oriented Architecture (ROA) and

cloud computing principles. The service-based development generates loosely cou-

pling of resource-intensive services with the rest of the application. So, overhead

of identifying, partitioning, and offloading application to remote resources are omit-

ted and hence the application execution originates less temporal and energy costs.

Therefore, the mobile applications developed based on thisframework feature higher

portability, scalability, and elasticity and are lightweight.

The term ‘Lightweight’ in our framework refers to the low temporal and energy

overheads of utilizing heterogeneous granular cloud-based resources for efficient

computation outsourcing of compute-intensive mobile applications. Furthermore,

the proposed hybrid framework imposes low burden for development of applica-

tion, maintenance of cloud services, and porting applications to different devices for

mobile users which are also considered as lightweight features.

• Adaptiveness:The proposed architecture is the premier multi-tier horizontally het-

erogeneous granular MCC architecture that employs three tiers of cloud-based re-
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sources with different granularity levels of coarse, medium, and fine. Employing

horizontally heterogeneous granular resources in this framework enhances the sys-

tem adaptiveness and flexibility by performing latency trade-off between comput-

ing and communication when leveraging remote resources. The coarse-grained re-

sources feature low computing latency but high communication latency whereas

fine-grained resources provide high computing latency beside low communication

latency. The medium-grained resources feature medium computation and communi-

cation latencies. Hence, convergence of these horizontally heterogeneous resources

can efficiently and effectively realize the computing requirements of multitudes of

inhomogeneous compute-intensive task using a computation-communication trade-

off toward a highly adaptive solution.

• Trustworthiness: Exploiting MNOs and their authorized dealer in hosting arbi-

tration operation is a novel significant feature of this framework that significantly

enhances its trustworthiness. MNOs are trustworthy mediator who has been serving

mobile end-users from the beginning of the telecommunication technology. Thus,

MNOs could develop a reputation and historical trust over the years among end-

users. Leveraging such trustful arbitrator to supervise the outsourcing operation and

its trusted dealers not only improves the reliability and availability of the framework,

but also enhances the trust among end-users. Moreover, direct and indirect benefits

of this framework for MNOs encourage its successful adoption.

• Seamlessness:Asynchronous communication technology used in this framework

enables unobtrusive distraction-free interaction between the mobile service requester,

system arbitrator, and service provider. While the execution of compute-intensive

task continues outside the device, the mobile end-user can keep interacting with the
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rest of application and also with other functions in the device. Hence, user experi-

ences a seamless interaction and outsourcing in this framework.

• Centralized Architecture: Considering implications of using ad-hoc and peer-

to-peer architectures, utilizing centralized architecture is remarkably enhancing the

complexity and management process in computation outsourcing. Utilizing central

arbitrator and transferring the complexity of interactingwith heterogeneous service

providers to arbitrator improves management and complexity of the framework and

omit the overhead from the mobile service requester. In the absence of such cen-

tralized architecture, the overhead of service provider discovery by mobile service

requester could neutralize the benefits and performance gain of outsourcing.

4.3 Performance Evaluation System Design

In this part we explain the characteristics of our performance evaluation system in-

cluding performance evaluation metrics and methods. We introduce and describe our

performance evaluation metrics. These metrics are selected to efficiently evaluate the

lightweight properties of our MCC frameworks.

Moreover, we explain the methods to evaluate and validate the performance of the

proposed framework.

4.3.1 Performance Metrics

We present round-trip time and energy consumption as our performance evaluation

metrics here. Application round-trip time and consumed energy are two commonly used

metrics in evaluating the performance of the MCC outsourcing systems that are presented

in Table 4.1 and explained as follows. We also describe toolsand methods for collecting

time and energy data in this experiment.
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• Round-Trip Time (RTT): is the total time taken from initiation stage of a compute-

intensive application to completion stage for one workloadin millisecond (ms). The

RTT for local execution mode is referred to as Local Round-Trip Time (LRTT) and

for hybrid execution mode is called Hybrid Round-Trip Time (HRTT) in this study.

• Energy Consumption (EC): is the total energy consumed to complete entire pro-

totype application for a workload that is presented as millijoule (mJ).

4.3.2 Data Collection Tools

Among different tools and methods of generating execution time, including manual

and automatic data collection we have designed and developed automatic logging timers

that start counting at the beginning of the application execution and ends when the appli-

cation successfully completes. Auto logging is beneficial in avoiding man-made mistake

and enhancing data integrity, reliability, and accuracy atanalysis and synthesis stages.

Table 4.1: Performance Metrics Analyzed in This Experiment

Performance Metrics Unit

Round-Trip Time (RTT) ms
Energy Consumption (EC) mJ

The energy data is collected using Power Tutor 1.4 which is capable of energy profil-

ing for the computing and wireless communications. The energy consumed by the other

components such as storage and LCD is disregarded in this study, because our tested proto-

type is a compute-intensive application. In order to avoid man-made mistakes, the energy

values are extracted and acquired from the log files created by the Power Tutor.

4.3.3 Evaluation Methods

The performance of this framework is evaluated via benchmarking experiments on

real android device. Using 30 synthetic workloads, the dataare collected for analysis. The
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results of our benchmarking are validated via statistical model. We produce the statistical

model using independent replication model to train the regression model. The identified

statistical model is validated using split-sample approach. The validated models are used

to generate the execution times and energy consumption data. Data analysis and synthesis

testify the performance of the proposed framework.

4.4 Conclusions

In this chapter, we have presented description of our proposed framework. We pro-

vide a schematic presentation of the proposed framework andits major components. The

functional and non-functional characteristics of each component are described as an in-

dividual entity. Overall operation of the proposed model also is described using sequen-

tial diagrams and flowchart. Several significant aspects of the proposed framework are

highlighted. Utilizing MNOs as service provider and arbitrator in this framework has

enhanced its trustworthiness, adoption, and utilizing ROAarchitecture helped us to effec-

tively achieve our lightweight feature of the proposed framework. Performance evaluation

system design that can be used to evaluate and validate performance of the proposed work

is described. We have determined the application round-trip time and energy consump-

tion as our performance evaluation metrics in this study. Benchmarking and statistical

modelling are determined for performance evaluation purpose. Benchmarking method is

used to evaluate performance of the framework and its findings are validated via statisti-

cal modelling. The apparatus for collecting round-trip time and energy consumption are

explained.
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CHAPTER 5

PERFORMANCE EVALUATION

In this chapter, we describe the approaches to evaluate the performance of the proposed

framework. For this purpose, we analyse execution of a compute-intensive mobile appli-

cation considering two performance metrics, namely Round-Trip Time (RTT) and Energy

Consumption (EC) in two execution models of local and hybrid. The hybrid execution

mode represents our proposed framework. Using series of benchmarking experiments

in real environment, we evaluate the performance of our framework. The performance

evaluation results of our framework are validated using statistical modelling. To devise

our statistical model, we leverage regression analysis andemploy independent replication

model to produce a dataset to train the regression model. In order to validate our statistical

model of our framework, we use split-sample approach. The validated statistical model is

used to validate the findings of our performance evaluation results.

Section 5.1 presents our benchmarking experiment. In Section 5.2, we describe how

the statistical model is created and validated. The chapteris concluded in Section 5.3.

5.1 Benchmarking

In this section, we describe the hardware and software used in the experiments, and

explain the methodology used to benchmark the local and hybrid execution modes when

collecting the round-trip time and profiling energy consumption.

The mobile device used in this experiment is a HTC Nexus One smartphone featur-

ing Qualcomm QSD8250 Snapdragon with 1 GHz Scorpion processor, 512 MB RAM,

512 MB ROM and standard Li-ion 1400 mAh battery that is running Android Operating
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System (OS) 2.3.4.

The wireless access point used in this study is Cisco LinksysWRT54G running

firmware Ver. 4.21.5 that compiles with 802.11g at 2.4 GHz frequency. Three hetero-

geneous servers are selected in this experiment in different granularity levels. The coarse-

grained server is a compute optimizedc1.xlargevirtual machine instance of the Amazon

EC2 located in Singapore. The server runs 64-bit Microsoft Windows Server 2008 OS

with 8 vCPU featuring 20 elastic computing unit (equal to about 24 GHz CPU speed), 7

GB RAM, 4× 420 hard disk with high performance Input/Output (I/O).

Table 5.1: Technical specifications of the client and servers used in benchmarking analysis

Device Machine Type CPU Type CPU Speed CPU Cores RAM Storage OS

Smartphone Smartphone
Qualcomm 1 GHz

1
512 512

AndroidQSD8250 Scorpion MB MB
Snapdragon 2.3.4

Coarse-grained
Cloud VM

c1.xlarge Amazon 20 ECU equals
8 vCPU 7 GB 4*420

Win 2008 server
Server EC2 VM to 24 GHz 64-bit

Medium-grained Desktop
Intel i5-2500 3.3 GHz 4 8GB 1 TB

Win 7
Server Dell 32-bit

Fine-grained Laptop Dell Intel 2450M
2.5 GHz 4 4 GB 1 TB

Win 7
server XPS14z Processor 64-bit

The medium-grained server is a DELL desktop computer featuring Intel i5-2500 quad

core processor working at 3.3 GHz speed, having 8 GB of RAM, and 1 TB storage, running

32-bit Microsoft Windows 7.

The fine-grained server, is a DELL Laptop XPS14z featuring Intel 2450M Processor

2.5GHz clock speed, 4GB RAM, 1 TB storage, and 64-bit Win 7 home. Table 5.1 presents

summary of the systems specifications.

The prototype mobile application developed for evaluationin local and hybrid mode

is a service-based client-server application consists of three utility services of factorial

(calculates the factorial of the given workload), prime (verifies if the given prime number

if prime), and power (it raises 999 as base into the given exponents).

In local execution mode, both client and server components are executed solely on
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the mobile device, whereas in hybrid execution mode, the client components are executed

locally and server components hosted on remote servers. To build the client side compo-

nents we used jQuery 1.8.0 which is low footprint language for developing cross-platform

systems. jQuery language is beneficial in resource-constraint mobile devices because it

consumes less processing time and energy to complete the task. The PHP 5.4.24 was used

to build the server side components which is predominant general-propose server side lan-

guage that suits HTTP-based applications. In the server side, Structured Query Language

(SQL) server is installed as a database management system. The webserver to host the

utility services is Apache Tomcat web server for the all remote servers.

5.1.1 Local Execution

This section describes the process of generating evaluation data when the prototype

application is running in the mobile device. In coming two sections, we discuss how the

application round-trip time and consumed energy data are collected. During data collec-

tion, all the secondary applications in the mobile device are uninstalled to avoid unpre-

dicted interruption.

5.1.1 (a) Round-Trip Time (ms)

In order to collect accurate data for running the application inside the mobile device,

we deploy internal timers that are working with mobile internal clock. The timers start

right before the under investigation code starts and ends when the codes finish. The timer

values are stored without user interpretation to avoid man-made mistakes.

5.1.1 (b) Energy Consumption

PowerTutor 1.4 is used to monitor and profile the energy values from the mobile

device. For accurate energy measurement, the CPU EC is only measured considering the

fact that in local execution mode, wireless communication transmitter is off. The LCD
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energy consumption is disregarded to more effectively analyze the energy consumption of

computing the task. In this study, we observe that battery level of the mobile device is

important in energy consumption of the device. If the battery is too low, the energy data

are unreliable. Hence, we ensure that throughout the data collection in this mode, mobile

device’s battery does not drop below 50 % according to literature and our tests. The USB

cable is disconnected and mobile device is working in room temperature between 20-22

Celsius. Also, the mobile device is fixed on the table to ensure no movement during

energy profiling. Data collection is paused every few minutes, to ensure that excess CPU

heat does not impact on the reliability of collected data.

5.1.2 Hybrid Execution

We explain the process of generating evaluation data when the prototype application

is running at hybrid execution mode. The application execution initiates from the mobile

device and ends in the mobile device by presenting the results on the screen. In coming

two sections, we discuss how the data of application round-trip time and consumed energy

are gathered. During data collection, all the secondary applications in the mobile device

are uninstalled to avoid unpredicted interruption.

5.1.2 (a) Round-Trip Time

Similar to the local execution mode, we collect data of running the application in hy-

brid execution mode using internal timers inside the mobilethat are working with mobile

internal clock. The timers start inside the mobile right before the under investigation code

starts and ends when the codes finish. The timer values are stored without user interpreta-

tion to avoid man-made mistakes.

In hybrid mode, because the communication delay is entertained, we have used timers

in server systems as well. The timers start when the server services are called for execution

112



and end when finish computation. The times are automaticallylogged. To log the arbi-

tration time, there is a counter inside the arbitrator that starts counting when the arbitrator

calls the scheduler and stops when the schedulers identifiesthe servers and return their IP

addresses to the arbitrator.

5.1.2 (b) Energy Consumption

For collecting energy data, the PowerTutor is used that monitors and profiles the

energy values from the mobile device. In hybrid execution mode, apart from energy con-

sumption of CPU, we collect energy consumed by WiFi transmitter. The LCD energy

consumption is disregarded to more effectively analyze theenergy consumption of com-

puting the task. During the data collection process, we ensure that mobile device’s battery

does not drop below 50 % -as explained in local execution mode. The USB cable is dis-

connected and mobile device is fixed on the table without movement and working in the

room temperature of between 20-22 Celsius. Data collectionis paused every few minutes,

to ensure that excess CPU heat does not impact on the reliability of collected data. Since

execution of intensive components is performed outside thedevice, the processor work in

less temperature and hence, frequency of pause during data collection is less.

5.2 Statistical Modelling

In this section, techniques that were used to provide statistical modelling of analysing

round-trip time and execution time of application are discussed in two modes of local and

hybrid. The prototype application used in this effort composed of three compute-intensive

tasks, namely factorial, power (x,y), and prime services. In local mode, the complete code

of application and web server is running inside of the smartphone, whereas in hybrid mode,

the compute-intensive part of application (factorial, power(x,y), and prime services), along

with arbitrator, scheduling algorithms, and database are running outside of the mobile
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device, in the heterogeneous hybrid cloud resources.

The statistical model is validated using split-sample model and use part of the dataset

for building the model and use the rest to validate the model.Using SPSS 21, we divide our

dataset into two random subsets whose data are randomly selected using uniform function

of the SPSS 21. The statistical model is applied to the subsets of main dataset and the

results are used to validate the model. The supporting results are validation proof of model.

5.2.1 Local Mode

5.2.1 (a) Local Round-Trip Time (LRTT)

The application’s round-trip time (RTT) in local mode called LRTT is the total time

consumed to execute all compute-intensive services in mobile devices. Therefore, for each

workloadi, theLRTT is,

LRTTi = RTTf ci +RTTpwi +RTTpri (5.1)

whereRTTf c, RTTpw, andRTTpr are execution time of factorial, power, and prime ser-

vices, respectively. Therefore, first we formulate expected time for each of them. These

three algorithms have different time complexity. So, to characterize growth rate of dif-

ferent functions according to their workloads, the Big O notation is used. However, Big

O notation can only provide upper bound estimation to the growth rate of the function

which is not accurate enough to perform evaluation. Therefore, specific equation for each

function identify the both upper and lower bounds, along with constant and coefficient

expectation values related to specific device, running the algorithm.

In order to evaluate the execution time and energy consumption of the mobile appli-

cation, we leverage observation-based prediction method using supervised regression as

the most common approach. In this approach, we produce a workload-time dataset by
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measuring the execution time of workloads in the specific execution environment. The

dataset is used to train the regression function to understand the correlation between time

and workload intensity. The result of regression training ensures us about type of correla-

tion between time and related workloads, and energy and corresponding workloads. This

is useful for determining an accurate round-trip time equation. In the following we present

the result of regression analysis and round-trip time equation for each services.

Factorial’s Algorithm: Analyzing the algorithm results the Big O notation asO( f 2)

because, the highest degree of loops in the algorithm is two.Therefore, the factorial

algorithm is classified as quadratic algorithm and its round-trip time Equation (RTTf c) is

a quadratic equation as below:

RTTf ci = A f2
i +B fi +C (5.2)

where, f is the workload andRTTf c is the total time in (ms) to execute factorial service

on mobile devices. Herein, first we show the correlation between RTT and corresponding

workloads which is depicted in Figure 5.1.

The results in this figure shows that the existing correlation is quadratic. Therefore,

it is feasible and appropriate to perform quadratic regression analysis to determine the

equation.

To identify the coefficients and constant values, we analyzethe growth rate of exe-

cution time and its correlation with workloads using curve estimation regression in SPSS.

The summary results of regression and Anova test presented in Table 5.2 advocate that the

quadratic regression model is as accurate as %99 and is fittedinto the expected equation

and time complexity ofO( f 2).

TheR Square, F andSig. values in the Table 5.2 show significant direct correlations
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Figure 5.1: Quadratic correlation between RTT and corresponding workloads of factorial
algorithm.

between the workloads and their corresponding execution times. So, by replacing the

coefficientA, B with b2, b1, respectively and the constant value ofC in Equation (5.2)

with Constant value from Table 5.2, we have,

RTTf ci = 7.09E−4 f 2
i −0.978fi +1013.97 (5.3)

Here, is noticeable that the coefficient off 2 as (7.09E−4) is a scientific notation. Later,

the results from Equation (5.3) for each workload are replaced with RTTf ci in Equation

(5.1).

Table 5.2: The summary results of quadratic regression model for factorial application in
local mode.

Model Summary Parameter Estimates

R Square F Sig. Constant b1 b2

0 .997 1776.96 0.000 1013.97 -0.978 7.09E-4

In order to validate the devised model for factorial, we perform split-sample vali-

dation model that successfully demonstrates validity of the devised model based on the
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results of the analysis reported in Table 5.3.

Table 5.3: Results of split-sample validation approach of factorial service in local mode

Metrics split = 1.00 (Selected) split = 0.00 (Selected) Non-split Sample

R 1 1 1

R2 1 1 1

AdjustedR2 1 1 1

df 15 13 29

The results show strong correlations between the factorialworkloads and the execu-

tion time in all the three cases.

In the Table, the value of R, R2, and adjustedR2 are shown beside the df. Df row

shows the number of cases used in each test. In the first case where split is 1, the df=15

shows that there are 16 cases in this sample. The correlationbetween the workloads and

RTT in this sample is full.

The second case with df=13 where the split value equals to 0 contains 14 samples

with fully supporting adjustedR2 = 1 value, and in last case with full sample size of 30

workloads (df=29), the adjusted isR2 = 1. In split-sample validation, there should be at

most 5% difference in adjustedR2 of splits and the full sample. Since the difference be-

tween theR2 values of split samples and full sample are less than 5%, it can be concluded

that the proposed model remains valid.

Power’s Algorithm: Analyzing the power algorithm results the time complexity

of O(p3) to run the big workloads specially with large exponents for power function in

resource-constrained mobile device environment. Based onthis result, we expected that

the execution round-trip time of power function (RTTpw) is calculated by a cubic equation

as follows:

RTTpwi = Ap3
i +Bp2

i +Cpi +D (5.4)

where,p is the workload’s exponent andRTTpw is the total time in (ms) to execute
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Figure 5.2: Cubic correlation between RTT and workloads of power algorithm

power service on local mode. Before performing regression,we show the correlation be-

tween RTT and corresponding workloads for the power algorithm via scatter diagram to

ensure the type of correlation between RTT and workloads. Figure 5.2 shows this cor-

relation. As it was expected, the results in this figure show that the existing relationship

between total execution time and workloads is cubic. Therefore, performing cubic regres-

sion model is feasible for this correlation.

Also, to identify the coefficients and constant values, we use curve estimation regres-

sion in cubical mode. The summary results of regression and Anova test presented in Table

5.4 advocate that the cubic regression model is as accurate as %99 and is fitted into the

expected equation and time complexity ofO(p3). TheR Square, F andSig. values in the

Table 5.4 show significant direct correlations between the workloads and their correspond-

ing execution times. Therefore, by replacing the coefficient A, B, C, and constant value of

D in Equation (5.4) with b3, b2, b1, and Constant value from Table 5.4, respectively, we

have,

RTTpwi = 3.52E−9p3
i −1.38E−4p2

i +2.080pi −6.98E3 (5.5)
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The round-trip time calculated for each workload by this formula is replaced withRTTpwi

in Equation (5.1).

Table 5.4: The summary results of cubic regression model forpower application in local
mode.

Model Summary Parameter Estimates

R Square F Sig. Constant b1 b2 b3

0.998 8351.26 0.000 -6.98E3 2.080 -1.38E-4 3.52E-9

Similar to the factorial mode, the devised statistical model of power is also validated

with the same approach. The results of the validation are reported in Table 5.5.

Table 5.5: Results of split-sample validation approach of power local RTT

Metrics split = 1.00 (Selected) split = 0.00 (Selected) Non-split Sample

R 1 1 0.999

R2 0.999 0.999 0.999

AdjustedR2 0.999 0.999 0.999

df 15 13 29

As the results of our study in the table indicate, there is a full support in correlations

between the power workload values and the RTT time in all the three cases. In the first

case where split is 1, the df=15 shows that there are 16 cases in the sample. The reported

correlation between the workload and RTT in this sample is assignificant as adjusted

R2 = 0.999. The second case where the split value equals to 0, the adjustedR2 = 0.999 for

14 samples, and in full sample size of 30 workloads (df=29), the adjusted isR2 = 0.999.

Since the difference between theR2 values of split samples and full sample are less than

5%, the proposed model is valid.

Prime’s Algorithm: For this service we select the prime workloads to have a compute-

intensive application with longer response time compare with workloads that are not

prime. Analyzing the algorithm results the time complexityof O(r) for running prime

workloads. Based on this result, the linear equation is expected for round-trip time of
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Figure 5.3: Linear correlation between RTT and corresponding workloads of prime algo-
rithm.

application asRTTpr as follows:

RTTpri = Ari +B (5.6)

where,r is the prime workload andRTTpr is the total time in (ms) to execute prime

service. To ensure the linearity correlation between RTT and corresponding workloads

for the prime algorithm we show the scatter diagram plotted in Figure 5.3. As it was

expected, the results in this figure shows that the the linearrelationship between RTT and

related workloads. Therefore, the linear regression modelis feasible for this correlation.

We use linear estimation regression to identify the correlation and constant values.

The summary results of regression and Anova test presented in Table 5.6 validate that the

linear regression model is as accurate as %98 and is fitted into the expected Equation 5.6.

Also, theR Square, F andSig. values in the Table 5.6 show significant direct correlations

between workloads and their corresponding execution time.Therefore, by replacing the

coefficientA and constant value ofB in Equation (5.6) with b1 and Constant value from
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Table 5.6, we have

RTTpri = (5.39E−3)r i +111.25 (5.7)

The round-trip time calculated for each workload by this formula is replaced withRTTpr

in Equation (5.1).

Table 5.6: The summary results of linear regression model for prime application in local
mode.

Model Summary Parameter Estimates

R Square F Sig. Constant b

0.989 1141.71 0.000 111.25 5.39E-3

The devised prime model is validated using split-sample approach. The results of the

analysis are reported in Table 5.7.

Table 5.7: Results of split-sample validation approach of local prime RTT

Metrics split = 1.00 (Selected) split = 0.00 (Selected) Non-split Sample

R 1 1 1

R2 1 1 1

AdjustedR2 1 1 1

df 15 13 29

As the results in the Table show, there is a strong correlations between the indepen-

dent and dependent variables in all three sample sizes. In the first case where split is 1, the

df=15 shows that there are 16 cases in the sample. The adjusted R2 value in table shows

perfect correlation between the RTT and prime workload value in this sample. The second

case with df=13 with split value of 0, the adjustedR2 = 1 which is an evidence on full

collaboration and support. In last group of full sample size(df=29), the adjusted isR2 = 1.

Thus, because there is no difference between the adjustedR2 values of split samples and

full sample, the criteria for split-sample validation (difference less than 5%) is met and

hence we can conclude that the proposed model is valid.
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We demonstrate that our devised models are valid and hence wecan leverage these

models to generate the total local RTT by substituting the right side of Equations (5.3),

(5.5), and (5.7) in Equation (5.1. Thus, theLRTT is:

LRTTi = RTTf ci +RTTpwi +RTTpri

= (7.09E−4 f 2
i −0.978fi +1013.97)

+(3.52E−9p3
i −1.38E−4p2

i +2.080pi −6.98E3)

+(5.39E−3r i +111.25)

(5.8)

By calculating the sum of constant values, we simplify the Equation (5.8) as below:

LRTTi = (7.09E−4 f 2
i −0.978fi)

+(3.52E−9p3
i −1.38E−4p2

i +2.080pi)

+(5.39E−3r i)+5.96E3

(5.9)

The above statistical model is used to generate round-trip times of 30 different work-

loads that will be presented in the next chapter.

5.2.1 (b) Local Energy Consumption (LEC)

The most part of local application energy consumption on mobile devices is com-

prised of the energy consumed by CPU and LCD at application run-time. In this study we

consider only CPU usage which is completely dependent to processing time of services

running on mobile devices. Therefore, to calculate the total energy consumptionLEC (mJ)

consumed for the local execution, we expect to have an equation as follows,

LECi = LRTTi × (TECcpui ) (5.10)
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Figure 5.4: Linear correlation between round-trip time andenergy consumption of appli-
cation in local mode.

Herein, we put the identified value ofLRTTi observed from Equation (5.9) in the Equation

5.10. Herein, to ensure the type of correlation between LRTTand LEC, we use scatter

diagram presented in Figure 5.4. The fit line of diagram ensures the linearity of this corre-

lation. Therefore, the linear regression model is feasiblefor this correlation and expected

energy consumption equation.

Therefore, to have the mean value of energy consumed by CPU per millisecond

TECcpu to process tasks on mobile device, we use the linear regression model for a dataset

of workloads. The summary results of regression and Anova test presented in Table 5.8

shows that the linear regression model is as accurate as %99 and is fitted into the expected

Equation (5.10) with consideringR2 equal with 0.999 form model summery. Also, theF

andSig. values in the Table 5.8 show significant direct correlationsbetween workloads and

their corresponding execution time. The 0.344 (mW) shows estimated power consumed

by CPU per millisecond to tally with the execution time unit.Replacing theb value from
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this table withTECcpu in Equation (5.10) is resulted as follows:

LECi = LRTTi ×0.344 (5.11)

where the unit ofLEC is (mJ) and shows the total energy need to execute the mobile

application at total time ofLRTT in (ms) for the ith workload.

Table 5.8: The summary results of linear regression model for local energy consumption.

Model Summary Parameter Estimates

R Square F Sig. b

0.999 13489.84 0.000 0.344

To validate the model the split-sample approach is performed on the dependent and

independent variables and the existing correlations in thesplit samples and full sample are

studied. The results of the analysis are reported in Table 5.9.

Table 5.9: Results of split-sample validation approach of local CE model

Metrics split = 1.00 (Selected) split = 0.00 (Selected) Non-split Sample

R 1 1 1

R2 1 1 1

AdjustedR2 1 1 1

df 15 13 29

As the results of our study in the table indicate, there is a strong support in correlations

between the independent and dependent variables for all thethree cases. The df row shows

the number of cases in each test. In the first case where split is 1, the df=15 shows that

there are 16 cases in the sample. The reported correlation between the RTT and energy

consumption in this sample is as significant as AdjustedR2 = 1. The second case with

df=13 where the split value equals to 0, the AdjustedR2 = 1, and in full sample size of

30 workloads (df=29), the Adjusted isR2 = 1. Since the difference between theR2 values
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of split samples and full sample are less than 5%, we can conclude that the proposed

model is valid. The trained values of energy consumption of 30 different workloads by

this statistical model will be presented in the next chapterto compare with measured value

of energy consumption in real experiment.

5.2.2 Hybrid Mode

5.2.2 (a) Hybrid Round-Trip Time (HRTT)

In hybrid mode theHRTT for executing the cloud-based mobile application (CMA)

is calculated via considering the arbitration, communication overhead, and maximum time

needs to process three services of factorial, power, and prime in remote resources. In hy-

brid mode, mobile device calls arbitrator and sends along the name of desired services

asking to find appropriate resources for remote execution; arbitrator use its scheduler com-

ponent to find the IP address(es) of the appropriate service providers able to perform mo-

bile device task; one found, the scheduler return results tothe arbitrator. Then, arbitrator

makes asynchronous calls to the identified remote resourcesalong with data asking for ex-

ecution. Once the results are completed and received to the arbitrator, it forwards them to

the mobile device. Therefore, for calculation of HRTT we need to calculate the Arbitrator

Time (AT), Remote Execution Time (RET), and the total communication time to complete

CMA.

So, theHRTT equation forithworkload is as follows:

HRTTi = ATi +RETi +CTi (5.12)

whereHRTTi is the total time to execute each workload in hybrid mode,ATi is the arbi-

trator time,RETi is the remote execution time, andCTi is the communication time forith

workload.
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The ATi is the total time taken forith workload by the mobile device to send the

request to the arbitrator for IP addresses of the remote resources, along with delay of

scheduling task and fetching data from the database. Whereas, the scheduling time is

independent of workloads, then we consider only one mean value for all workloads. Also,

its value highly depends on the wireless network and performance of computing device

that hosted the system arbitrator. Therefore, we replaceATi to AT. In order to identify the

mean value of system arbitrator, we measured the arbitratordelays. The calculated mean

value is 1041.39 (ms). For the sake of simplicity, we round the delay to 1041(ms) per

call. Therefore, we have,

AT = 1041(ms) (5.13)

RETi in the Equation (5.12) is the total round-trip time of executing all three services for

ith in multi-layered remote servers including the total time taken from the moment that

arbitrator performs remote calls until it receives the results. It includes communication

delay of transmitting workload values to the remote serversand receive their results plus

computing time in the servers. Hence, we can write theRETi equation as below:

RETi = RETf ci +RETpwi +RETpri (5.14)

whereRETf c, RETpw, andRETpr are remote execution time of factorial, power, and prime

for ith workload, respectively. Because, there are more than one remote server to per-

form remote computation, it is beneficial to perform asynchronous calls from the system

arbitrator, so that, remote executions perform in parallel. Therefore,RETi equals to the

execution time of the longest service. Hence, we have

RETi = Max(RETf ci ,RETpwi ,RETpri) (5.15)
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Figure 5.5: Cubic correlation between RTT and workloads of power algorithm.

According to the results of our independent replication, the power function is the heaviest

service that takes the longest time. So, the maximum execution time between all services

is belong to power function. Then, the equation can be rewritten as:

RETi = RETpwi (5.16)

Here, also we follow the same approach like local mode and leverage observation-based

prediction method using supervised regression model. As explained in local execution

mode, the complexity of power algorithm is cubic and the equation will be cubic. There-

fore, we will have

RETpwi = Ap3
i +Bp2

i +Cpi +D (5.17)

Figure 5.5 depicts the correlation between remote execution time of power function and

related workloads to ensure the type of correlation. As it was expected, the results show a

cubic relationship betweenRETpw and its related workloads. Therefore, the curve regres-

sion model of cubic is feasible for this correlation.
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In order to identity the coefficients, we perform the curve estimation regression. Table

5.10 shows the summary of regression analysis results.

Table 5.10: The summary results of cubic regression model for remote execution time.

Model Summary Parameter Estimates

R Square F Sig. Constant b1 b2 b3

0.996 3091.113 0.000 17.56 0 1.79E-006 -2.59E-011

TheR Square, F andSig. values in the Table 5.10 show significant direct correlations

between workloads and their corresponding remote execution time. Therefore, by replac-

ing the coefficientA and constant value ofB in Equation (5.17) with b1 and Constant value

from Table 5.10, respectively, we have,

RETpwi = (−2.59E−011)p3
i +(1.79E−006)p2

i +(0)pi +17.56

= (−2.59E−011)p3
i +(1.79E−006)p2

i +17.56

(5.18)

Therefore, based on Equation (5.16) we have,

RETi = RETpwi

= (−2.59E−011)p3
i +(1.79E−006)p2

i +17.56

(5.19)

Before we leverage the result produced using the above model, we validate the de-

vised model using split-sample approach that is used in earlier validation efforts in this

chapter. The split-sample approach is applied to identify the correlation between theRETi

and the value ofPi and compare the existing correlations in the split samples and full

sample. The results of our analysis are reported in Table 5.11 and interpreted as follows.

As the results in Table 5.11 show, the existing correlationsbetween thepi andRETi

are significant for all the three cases. In the first case wheresplit is 1 and df=15, the

reported correlation in this sample is full. The second casewith df=13 where the split
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Table 5.11: Results of split-sample validation approach for RETi in hybrid mode

Metrics split = 1.00 (Selected) split = 0.00 (Selected) Non-split Sample

R 1 1 1

R2 1 1 1

AdjustedR2 1 1 1

df 15 13 29

value equals to 0, the adjustedR2 = 1, and in full sample size of 30 workloads (df=29),

the adjusted isR2 = 1 too. Thus, due to full similarity of the adjustedR2 value for both

split samples and the full sample and different less than 5%,the proposed model is valid.

The total communication delayCTi is the existing delay caused through wireless com-

munication during the entire hybrid mode cycle. This delay includes the communication

time of sending mobile device request to the arbitrator, thedelay of arbitrator to perform

the remote calls to the remote servers, delay of taking all the results and send them back

to the mobile device.

Whereas, our prototype is compute-intensive so the communication volume in our

experiment is fixed and does not grow by workload increase. Hence, there is no correlation

between theCTi and workloads. This delay depends only on the quality of communication

medium; the medium is fixed for all workloads and executions.In order to estimate its

value, we observed communication delay of our dataset and calculated its mean value as

134.41(ms) that we round it to 134. Since our prototype application is not data-intensive,

the potential wireless fluctuations do not originate substantial impact on communication

delay. Therefore, we have,

CTi = 134(ms) (5.20)

So, by replacing the right side of Equations (5.13), (5.19),and (5.20) in Equation
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(5.12), we have,

HRTTi = 1041+(−2.59E−011)p3
i +(1.79E−006)p2

i +17.56+134

= (−2.59E−011)p3
i +(1.79E−006)p2

i +1192.56

(5.21)

The above validated statistical model is used to generate hybrid round-trip times of

30 different workloads that will be presented in the next chapter.

5.2.2 (b) Hybrid Energy Consumption (HEC)

To evaluate the energy consumption during CMA execution in hybrid mode we only

consider energy usage by CPU and WiFi data transmission without LCD consideration

like the local mode evaluation. Therefore, to calculate thetotal energy consumptionHEC

(mJ) for the hybrid execution, we have,

HECi = TECcpui +TECwi (5.22)

whereHECi is the amount of energy consumed by mobile devices to executeCMA

for ith workload through heterogeneous hybrid remote resources. TheTECcpu andTECw

are the Total Energy Consumed (TEC) by CPU and WiFi , respectively. TheTECcpui is

resulted from multiplication of CMA’s round-trip time intothe mean value of energy con-

sumed by CPU per millisecond asECcpu for theith workload. TheTECw is also calculated

by multiplication of CMA’s round-trip time into the mean value of energy consumed by

WiFi per millisecond calledECw for each workload. Therefore,

TECcpui = HRTTi ×ECcpui (5.23)
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TECwi = HRTTi ×ECwi (5.24)

Whereas, the tested application was focused on intensive computation so the uplink-bytes

and downlink-bytes are always low (at most 1163 Bytes) in this study. Thus, the WiFi state

is low and based on the literature and our investigation, theunder test mobile device con-

sumes 34 (mW/s) power as long as is connected to wireless network by WiFi. Therefore,

we put the value of 0.034 (mW/ms) forECwi in the Equation (5.24). Then,

TECwi = HRTTi ×0.034 (5.25)

Herein, to ensure the type of correlation between round-trip time and CPU energy

consumption in hybrid mode, we use scatter diagram presented in Figure 5.6. The diagram

shows linearity correlation between total time taken for remote execution and energy con-

sumed by mobile device’s CPU for each of 30 workloads. So, thelinear regression model

is feasible for this correlation and expected equation for calculating total energy consump-

tion by CPU .

Therefore, considering Equation (5.23) we are expected to have

TECcpui = HRTTi ×b+α (5.26)

Here, to find the coefficientb as the mean value of energy consumed by CPU per

millisecond asECcpu for executing CMA, we use the linear regression model for a dataset

of workloads. The summary results of regression and Anova test presented in Table 5.12

shows that the linear regression model is as accurate as %93.Also, theR2, F, andSig.

values in the Table 5.12 show significant direct correlations between workloads’ corre-
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Figure 5.6: Linear correlation between round-trip time andenergy consumption of CPU
in hybrid mode.

sponding execution time and energy usage.

Table 5.12: The summary results of linear regression model for energy consumption of
CPU in hybrid mode.

Model Summary Parameter Estimates

R Square F Sig. Constant b

0.934 398.26 0.000 -94.10 0.328

Substituting theb value and constant from this table with Equation (5.26), we have

TECcpui = (HRTTi ×0.328)−94.10 (5.27)

From Equations (5.22), (5.25), and (5.27) we derive:

HECi = (HRTTi ×0.328−94.10)+(HRTTi ×0.034)

= HRTTi ×0.362−94.10

(5.28)

where the energy calculated throughHECi (mJ) formula is the total energy needs to
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execute the CMA at total time ofHRTTi in (ms).

Now, we can put theHRTTi from Equation (5.21) in Equation (5.28) and calculate

theHECi .

To validate the devised model, we deploy split-sample approach on the dependent

and independent variables and investigate the existing correlations in the split samples and

full sample. The results of our investigation are reported in Table 5.13 and interpreted as

follows.

Table 5.13: Results of split-sample validation approach ofhybrid CE model

Metrics split = 1.00 (Selected) split = 0.00 (Selected) Non-split Sample

R 1 1 1

R2 1 1 1

AdjustedR2 1 1 1

df 15 13 29

As the results of our study in the table indicate, there is a strong support in correlations

between the independent and dependent variables for all thethree cases. The df row shows

the number of cases in each test. In the first case where split is 1, the df=15 shows that

there are 16 cases in the sample. The reported correlation between the RTT and energy

consumption in this sample is as significant as AdjustedR2 = 1. The second case with

df=13 where the split value equals to 0, the AdjustedR2 = 1, and in full sample size of 30

workloads (df=29), the Adjusted isR2 = 1. Because the difference between theR2 values

of split samples and full sample are less than 5%, we can conclude that the proposed model

is valid. The amount of energy consumption for 30 different workloads by this statistical

model will be presented in the next chapter to compare with measured value of energy

consumption in real experiment.
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5.3 Conclusions

This chapter presented the methodology used for evaluationand validation of results

collected from analysing the performance in two modes of local and hybrid. Benchmark-

ing experimentation is the method used to evaluate the RTT and EC for each mode. Also,

statistical modelling is performed to validate all the results achieved by benchmarking for

both modes. Regression analysis as the dominant observation-based method is used to

devise our statistical model. We validate the statistical model using split-sample approach

and compare the correlations between the dependent and independent variables, and advo-

cate the validity of our statistical model. In the next chapter, we present the numerical and

statistical results, along with analysis of findings that achieved from two parts of bench-

marking and statistical modelling for both local and hybridmodes.
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CHAPTER 6

RESULTS AND DISCUSSION

Evaluation results of the proposed framework prototype through benchmarking experi-

ment and statistical analysis are reported in this chapter.Round-trip time and energy

consumption data are presented, analysed and synthesized for two modes of local and hy-

brid mode in three levels of workload intensity (i.e., low, medium, and high). Finally, the

evaluation results are validated with statistical modelling using independent replication

method.

The reminder of this chapter is as follows. The results of benchmarking experiment

are presented and evaluated in section 6.1. Statistical modelling results are presented in

section 6.2 and further discussions are provided in section6.3 that compares the time and

energy results between statistical model and benchmarking. Section 6.4 concludes the

chapter.

6.1 Performance Evaluation Results

The round-trip time and energy consumption results that aregenerated using bench-

marking experiment are provided in this section. The results are presented with the help

of descriptive statistics, tables, and charts. These results are used to evaluate our proposed

heterogeneous hybrid cloud-based resources.

6.1.1 Round-Trip Time (RTT)

The RTT results of benchmarking experiment for the local andhybrid execution

modes are presented in Tables 6.1 and 6.2. To ensure reliability of our generated data,

we repeat the execution of each workload for 30 times.

135



The columns in the table summarize the mean RTT values of 30 iterations of each

workload, standard deviation (SD) in values of each workload, error estimation, and mean

RTT values of 30 iterations with 99% confidence interval for each workload (total 30

workloads).

Presenting results with 99% confidence interval ensures thereliability of the results.

For example, for the workload 7, the local RTT is 7300.9(+/-)133.2 which means that the

RTT is between 7300.9-133.2 and 7300.9+133.2. Thus, RTT for7th workload is 7300.9-

133.2 < RTT < 7300.9+133.2 or 7167.7< RTT < 7434.1. This rangemeans that with 99%

confidence, the RTT value for execution of 7th workload is between 7167.7 and 7434.1 if

repeated again.

For local execution of every workload in Table 6.1, there is acorresponding remote

execution in Table 6.2. For instance, the RTT for the workload number 7 is 7300.9 ms

and 1290.83 in local and hybrid execution modes, respectively. For each workload, the

individual time saving can be calculated. For example, the RTT saving when executing

the 7th workload in hybrid mode is as significant as 6010.07 ms which is 82.3 %.

The Table 6.3 depicts descriptive statistics of measured RTT data (ms) for 30 work-

loads in both local and hybrid execution modes. The statistical modelling results are clas-

sified in three categories of intensity level: low, medium, and high, along with minimum

and maximum RTT data for all three levels of intensity in the last row of the table. Each

category represents the measured mean values of the minimumand maximum RTT, be-

side measured RTT average for each 10 workloads as column N shows the number of

workloads.

Based on measured results reported in the Table 6.3, the hybrid execution mode can

reduce execution time of compute-intensive mobile application about 71% to 84%, 91% to

93%, and 95% to 96%, in low, medium, and high intensity levelscategories, respectively,
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Table 6.1: Round-Trip Time (RTT) values with 99% confidence interval in local execution
mode

Workloads Mean RTT (ms) SD_RTT Error Estimate RTT with 99% CI

1 4364.4 109.5 51.6 4364.4(+/-)51.6

2 4952.7 168.2 79.2 4952.7(+/-)79.2

3 5125.3 121.3 57.2 5125.3(+/-)57.2

4 5640.1 263.1 123.9 5640.1(+/-)123.9

5 6457.4 224.4 105.7 6457.4(+/-)105.7

6 6606.2 270.1 127.2 6606.2(+/-)127.2

7 7300.9 282.8 133.2 7300.9(+/-)133.2

8 7653.9 238.6 112.4 7653.9(+/-)112.4

9 7682.4 248 116.8 7682.4(+/-)116.8

10 7925.2 277.2 130.6 7925.2(+/-)130.6

11 15498.2 224.2 105.6 15498.2(+/-)105.6

12 16059.3 196.1 92.4 16059.3(+/-)92.4

13 17121.4 214.7 101.1 17121.4(+/-)101.1

14 17702.8 132.9 62.6 17702.8(+/-)62.6

15 18861.1 349.7 164.7 18861.1(+/-)164.7

16 19355.4 282.1 132.9 19355.4(+/-)132.9

17 19671.1 251.7 118.5 19671.1(+/-)118.5

18 20102 325.5 153.3 20102(+/-)153.3

19 20816.7 268.3 126.4 20816.7(+/-)126.4

20 21021.5 226.3 106.6 21021.5(+/-)106.6

21 36251.2 381.4 179.7 36251.2(+/-)179.7

22 37582.3 307.5 144.9 37582.3(+/-)144.9

23 39114.4 367.3 173 39114.4(+/-)173

24 40673.5 385.9 181.8 40673.5(+/-)181.8

25 41662.6 388.7 183.1 41662.6(+/-)183.1

26 42784.1 338.9 159.6 42784.1(+/-)159.6

27 43602.2 377.3 177.7 43602.2(+/-)177.7

28 44954.6 265.1 124.9 44954.6(+/-)124.9

29 45692.6 289.9 136.6 45692.6(+/-)136.6

30 46631.9 362.7 170.9 46631.9(+/-)170.9

137



Table 6.2: Round-Trip Time (RTT) values with 99% confidence interval in hybrid execu-
tion mode.

Workloads Mean RTT (ms) SD_RTT Error Estimation RTT with 99% CI

1 1266.2 49.4 23.3 1266.2(+/-)23.3

2 1269.63 50.9 24 1269.6(+/-)24

3 1272.33 54.7 25.8 1272.3(+/-)25.8

4 1274.3 47.4 22.3 1274.3(+/-)22.3

5 1288.67 47.7 22.5 1288.7(+/-)22.5

6 1289.1 49.1 23.1 1289.1(+/-)23.1

7 1290.83 50.4 23.8 1290.8(+/-)23.8

8 1292.27 47.3 22.3 1292.3(+/-)22.3

9 1296.83 43.8 20.6 1296.8(+/-)20.6

10 1303.3 39.2 18.5 1303.3(+/-)18.5

11 1400.7 42.8 20.2 1400.7(+/-)20.2

12 1408.13 35.4 16.7 1408.1(+/-)16.7

13 1422 11.3 5.3 1422(+/-)5.3

14 1424.77 38.8 18.3 1424.8(+/-)18.3

15 1425.87 17.9 8.4 1425.9(+/-)8.4

16 1427.07 15.8 7.4 1427.1(+/-)7.4

17 1428.3 17.9 8.4 1428.3(+/-)8.4

18 1429.03 26.7 12.6 1429(+/-)12.6

19 1430.1 16 7.5 1430.1(+/-)7.5

20 1432.53 17 8 1432.5(+/-)8

21 1852.13 41.4 19.5 1852.1(+/-)19.5

22 1854.3 41.6 19.6 1854.3(+/-)19.6

23 1859.13 42.9 20.2 1859.1(+/-)20.2

24 1860.77 48.4 22.8 1860.8(+/-)22.8

25 1862.2 46.1 21.7 1862.2(+/-)21.7

26 1864.6 45.2 21.3 1864.6(+/-)21.3

27 1867.63 48.6 22.9 1867.6(+/-)22.9

28 1870.2 52.1 24.5 1870.2(+/-)24.5

29 1876.37 50.5 23.8 1876.4(+/-)23.8

30 1878.27 50.6 23.8 1878.3(+/-)23.8
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Table 6.3: Descriptive statistics of RTT for local and hybrid mode in real environment

Intensity Mode N Min RTT (ms) Max RTT (ms) Mean RTT (ms)

Low
Local 10 4364.40 7925.20 6370.85
Hybrid 10 1266.20 1303.30 1284.35

Valid N (listwise) 10

Medium
Local 10 15498.20 21021.50 18620.95
Hybrid 10 1400.70 1432.53 1422.85

Valid N (listwise) 10

High
Local 10 36251.20 46631.90 41894.94
Hybrid 10 1852.13 1878.27 1864.56

Valid N (listwise) 10

All
Local 30 4364.40 46631.90 22295.58
Hybrid 30 1266.20 1878.27 1523.92

Valid N (listwise) 30
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Figure 6.1: Time saving average in hybrid mode from measureddata

compare with local execution mode. Therefore, these results validate that our proposed

model can execute the CMA in about 80% to 96% shorter time thanlocal mode similar to

results in statistical modelling.

The Figure 6.1 that is based on mean RTT results from benchmarking that shows

considerable achievements in RTT reduction to execute CMA like previous section. This
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is a proof to indicate that time saving achievements are increased about 16% with increase

of workloads’ intensity in hybrid mode.

Therefore, it validates that the results calculated from statistical modelling are very

close to benchmarking results in real environment. So, we can conclude that leveraging

remote computation resources for executing higher resource-intensive tasks on mobile

devices can recommended through our proposed model.

In local mode, the results in Table 6.3 show that when the workload intensity is low,

the mean RTT is equal to 6370.85 (ms) (≃ 6s). With increase of workloads in medium

and high intensity levels, the RTT significantly grows. The low-medium and low-high

RTT differences are as high as 12250.10 (ms) (≃ 12s) and 35524.09 (ms) (≃ 36s). By

contrast, in hybrid mode when the workload is low, the mean RTT is equal to 1284.35

(ms) (≃ 1s). Unlike local execution mode, in hybrid mode increase inworkload intensity,

causes insignificant rise in RTT values. Low-medium and low-high RTT differences are

as low as 138.50 (ms) (≃ 0.1s) and 580.21 (ms) (≃ 0.6s) in second and third workloads

intensity categories, receptively.

Also, Table 6.4 verifies the significant differences betweentotal time execution of

local mode and hybrid mode by extending our analysis throughperforming Paired Sample

T-Test. This test ensures that there is 98% correlation between execution time of local

and hybrid datasets as well as the test for statistical results. Also, the Sig. (2-Tailed)

value equal to zero, expresses that there is a statisticallysignificant difference between the

measured values of mean RTT for application execution in local mode and hybrid mode

environment.

Table 6.4: Paired Sample T-Test: Local RTT & Hybrid RTT from measured data

Paired Samples Correlations Paired Samples T-Test

Pair N Correlation Sig. t Sig.(2-tailed)

(Local RTT & Hybrid RTT) 30 0.986 0.000 7.626 0.000
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Figure 6.2: Comparison of application round-trip time for 30 workloads using measured
data: Local mode vs Hybrid mode

The Figure 6.2 compares the measured round-trip time for 30 different workloads

with three intensity level (i.e., low (1-10), medium (11-20), and high (21-30)) to exe-

cute compute-intensive application in two execution modesof local and hybrid. The bar

lines in this figure represent the mean value of 30 execution iterations for each workload.

The green stripped bars are showing the RTT in local execution mode, whereas the blue

plus pattern bars are related to RTT in hybrid execution modewhen the computation-

intensive part(s) of the application are running outside ofmobile device in remote com-

puting servers.

As can be seen in the Figure 6.2, in local execution mode, low-intensity workloads (1-

10) complete application execution in significantly shorter time compared to the medium-

and high-intensity workloads that take longer to finish execution in mobile device. Be-

cause, the tested application logic is CPU- and memory-bound, increasing workload in-

tensity leads to the execution time grows in local mode due toresource-poverty of mobile

devices. However, despite of scheduling engine in arbitrator and data transmission through

wireless communication, increase in workload intensity inhybrid mode has low impact(s)
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on execution time growth of the CMA, using high computing processors with large storage

and memory.

Also, the Figure 6.2 demonstrates, the hybrid MCC is a time-efficient platform for

cloud-based mobile augmentation compared with local mode application execution. More-

over, the higher compute-intensity of workloads, the greater is the time saving in hybrid

mode. Here, it is noticeable that the monetary cost of using CMA like RTT is one of the

major factors for mobile users. Therefore, affordable costprovided by mobile user as a

priority parameter for outsource service scheduling can indirectly impact on RTT based

on computing capability of the selected remote resources.

Figure 6.3 depicts average time of computation and communication of intensive ser-

vices on coarse-, medium-, and fine-grained resources for low, medium, and high in-

tensity workloads. Bars and their segmented areas clearly demonstrate computation-

communication trade-off when leveraging heterogeneous granular resources for low, medium,

and high intensity workloads. The highest communication overhead belongs to distant re-

source stated at the coarse level, while the rest of resources have very low communication

overhead (hardly seen on diagram).

This is noteworthy that factorial service is the most computing-intensive service when

executed in local execution mode, whereas in hybrid execution mode power service has

consumed the largest computing time. This is because the computing power of the coarse-

grained resource is substantially higher than medium and low. Therefore, the factor com-

puting task quickly complete while execution of power service continues in the medium-

granular service. Figure 6.3 clearly shows the existing communication-computing trade-

off in hybrid resources. By distributing computation-intensive tasks to different resources,

considering the mobile user preferences, we can significantly reduce the WAN latency in

all three services, but the computing time of the services running on medium- and fine-
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Figure 6.3: Computation-communication trade-off betweenthree classes of heterogeneous
grained resources in three level of workload intensity.

grained resources slightly increase compared to the coarse-grained resource.

In conclusion, the analysing measured results of RTT unveils that the proposed hybrid

computing infrastructure can complete compute-intensivetask execution in very shorter

time compared with local execution mode. Therefore, leveraging heterogeneous granular

hybrid cloud-based resources can enhance RTT toward optimal execution of resource-

intensive applications on mobile devices (execution starts locally and intensive tasks are

executed in remote resources).

6.1.2 Energy Consumption (EC)

The EC results of benchmarking experiment for the local and hybrid execution modes

are presented in Tables 6.5 and 6.6. To ensure reliability ofour generated data, we repeat

the execution of each workload for 30 times and presented theresults with 99% confidence

interval.

Columns in the two Tables of 6.5 and 6.6 summarize the mean EC values of 30

iterations of each workload, standard deviation (SD) in values of each workload, error
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Table 6.5: Energy consumption values with 99% confidence interval in local execution
mode.

Workloads Mean EC (mJ) SD_EC Error Estimate EC with 99% CI

1 1499.1 24.9 11.7 1499.1(+/-)11.7

2 1723.1 72.3 34 1723.1(+/-)34

3 1743.6 27.8 13.1 1743.6(+/-)13.1

4 1903.1 16.8 7.9 1903.1(+/-)7.9

5 2234.5 39.8 18.8 2234.5(+/-)18.8

6 2272.3 30.1 14.2 2272.3(+/-)14.2

7 2531.4 49 23.1 2531.4(+/-)23.1

8 2608.5 65.9 31.1 2608.5(+/-)31.1

9 2622.2 90.6 42.7 2622.2(+/-)42.7

10 2671.8 35.1 16.5 2671.8(+/-)16.5

11 5487.1 68.9 32.5 5487.1(+/-)32.5

12 5517.3 66.9 31.5 5517.3(+/-)31.5

13 5855.9 43.4 20.4 5855.9(+/-)20.4

14 5971.3 57.9 27.3 5971.3(+/-)27.3

15 6506.3 108.2 51 6506.3(+/-)51

16 6509.8 146.8 69.1 6509.8(+/-)69.1

17 6695.2 64.1 30.2 6695.2(+/-)30.2

18 6718.7 75.9 35.8 6718.7(+/-)35.8

19 6792.4 68.7 32.4 6792.4(+/-)32.4

20 6961.5 114.1 53.8 6961.5(+/-)53.8

21 11834.2 161.3 76 11834.2(+/-)76

22 12782.5 314.3 148 12782.5(+/-)148

23 12937.5 202 95.1 12937.5(+/-)95.1

24 13575.3 357.5 168.4 13575.3(+/-)168.4

25 14368.4 317.1 149.4 14368.4(+/-)149.4

26 14414.7 343.5 161.8 14414.7(+/-)161.8

27 14707.9 215 101.3 14707.9(+/-)101.3

28 15800.7 297.5 140.2 15800.7(+/-)140.2

29 16164 165 77.7 16164(+/-)77.7

30 16285.1 331.1 156 16285.1(+/-)156

estimation, and mean EC values of 30 iterations with 99% confidence interval for each

workload (total 30 workloads).

To statistically demonstrate and highlight the findings, descriptive statistics of mea-
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Table 6.6: Energy consumption values with 99% confidence interval in hybrid execution
mode.

Workloads Mean EC (mJ) SD energy Error Estimation EC with 99% CI

1 337.6 1.3 0.6 337.6(+/-)0.6

2 338 4.7 2.2 338(+/-)2.2

3 343.2 0.7 0.3 343.2(+/-)0.3

4 346.8 2.2 1 346.8(+/-)1

5 359.6 1.9 0.9 359.6(+/-)0.9

6 361 3.8 1.8 361(+/-)1.8

7 371.4 2.4 1.1 371.4(+/-)1.1

8 381.4 3.1 1.5 381.4(+/-)1.5

9 384.7 4 1.9 384.7(+/-)1.9

10 385.1 3.6 1.7 385.1(+/-)1.7

11 420.1 3.2 1.5 420.1(+/-)1.5

12 425.8 2.7 1.3 425.8(+/-)1.3

13 430 2.7 1.3 430(+/-)1.3

14 433.5 3.2 1.5 433.5(+/-)1.5

15 434.1 2.4 1.1 434.1(+/-)1.1

16 437.9 2.2 1.1 437.9(+/-)1.1

17 439 2.6 1.2 439(+/-)1.2

18 440.3 3.4 1.6 440.3(+/-)1.6

19 442.8 2.9 1.4 442.8(+/-)1.4

20 445.4 3.2 1.5 445.4(+/-)1.5

21 536.9 4.6 2.1 536.9(+/-)2.1

22 543.9 6.4 3 543.9(+/-)3

23 548.4 5.4 2.5 548.4(+/-)2.5

24 557.5 4.4 2.1 557.5(+/-)2.1

25 560.5 9.9 4.7 560.5(+/-)4.7

26 570.3 4.9 2.3 570.3(+/-)2.3

27 585.9 4.1 1.9 585.9(+/-)1.9

28 608.9 4 1.9 608.9(+/-)1.9

29 620.7 5.1 2.4 620.7(+/-)2.4

30 634.2 3.4 1.6 634.2(+/-)1.6
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Table 6.7: Descriptive statistics of energy consumption inlocal and hybrid mode in real
environment.

Intensity Mode N Min EC (mJ) Max EC (mJ) Mean EC (mJ)

Low
Local 10 1499.10 2671.80 2180.96
Hybrid 10 337.60 385.10 360.88

Valid N (listwise) 10

Medium
Local 10 5487.10 6961.50 6301.55
Hybrid 10 420.10 445.40 434.89

Valid N (listwise) 10

High
Local 10 11834.20 16285.10 14287.03
Hybrid 10 536.90 634.20 576.72

Valid N (listwise) 10

All
Local 30 1499.10 16285.10 7589.85
Hybrid 30 337.60 634.20 457.50

Valid N (listwise) 30

sured EC data (mJ) for 30 workloads in both local and hybrid execution modes are pre-

sented in Table 6.7. Results are classified in three categories of intensity level: low,

medium, and high, along with minimum and maximum EC data for all three levels of

intensity in the last row of the table. Each category represents mean values of the mini-

mum and maximum EC, beside mean EC.

The energy consumption for completing CMA in hybrid execution mode is conserved

as high as 78% (min) to 86%(max), 92%(min) to 94%(max), and 95%(min) to 96%(max),

in low, medium, and high intensity levels, respectively, compared with local execution

mode. In total, our proposed model can save the energy usage from 78% (min) to 96%

(max) for hybrid execution of compute-intensive application compared with local execu-

tion mode.

The Figure 6.4 is drawn from measured EC results in the Table 6.7 states considerable

energy usage reduction in hybrid mode. Figure 6.4 shows thatin all intensity levels the

proposed hybrid model can reduce energy usage to complete the task execution in more

than 83% compared with task execution in local mode.
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Figure 6.4: Energy saving average in hybrid mode from measured data.

Energy saving grows from low to high workload intensities asof 83%, 93%, and

96%, respectively. This indicates that energy saving is increased about 13% from the low-

est level to the highest level of workloads’ intensities in hybrid mode. So, it advocates that

maintaining hybrid execution mode for compute-intensive application can significantly

augment mobile devices and conserve their battery. Based onthese results, we can con-

clude that for the performing high computation-intensive tasks on mobile device as a native

application, more battery usage is expected that can quickly drain the battery even before

completing the application execution (in worst case).

In local mode, the mean EC results for the low workloads is equal to 2180.96 mJ (≃

2J), while with increase of workloads, the EC raises 4120.59mJ (≃ 4J) and 12106.07 mJ

(≃ 12J) in second and third workloads’ category, receptively.By contrast, in hybrid mode

when the workload is low, the mean EC is equal to 360.88 mJ (≃ 0.4J≪ 2J), while with

increase of workloads, the EC raises only 74.01 mJ (≃ 0.07J≪ 4J) and 215.84 mJ (≃

0.2J≪ 12J) in second and third workloads’ category, receptively.Finally, as can be seen,
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the energy consumption in all intensity levels is less than 1J which is more interesting

compared with local mode where energy values vary from 2 J to 14 J. Therefore, these re-

sults unveil the advantage of utilizing cloud-based remoteexecution through our proposed

hybrid model for CMA.

Also, we extend our analysis for measured EC with performingPaired Sample T-

Test whose results are shown in Table 6.8. This test verifies the significant difference of

energy usage between local and hybrid mode. The results of the test ensure that there is

99% correlation between mean energy consumption of local and hybrid datasets. Also,

based on the Sig (2-Tailed) value equal to zero, we can conclude that there is a statistically

significant difference between the mean EC of application execution for the local and

hybrid mode environment.

Table 6.8: Paired Sample T-Test for measured data: Local EC &Hybrid EC

Paired Samples Correlations Paired Samples Test

Pair N Correlation Sig. t Sig.(2-tailed)

(Local EC & Hybrid EC) 30 0.995 0.000 7.657 0.000

The Figure 6.5 demonstrates the average results of measuredenergy consumption for

30 different workloads with three intensity levels of low, medium, and high to execute

compute-intensive application in two execution modes of local and hybrid. Execution of

each workload is reiterated for 30 times to ensure data reliability and the EC value of

each workload is mean value of 30 iterations. The red checkered bars are showing the

EC related to local execution mode, whereas the green patterned bars are related to EC of

hybrid execution mode. The energy consumption in hybrid mode is include of both data

communication and CPU energy usage on mobile device.

Comparing two Figures 6.5 and 6.2 suggests a relationship between the RTT and

energy consumption. By analysing the results, we observe that in local execution mode,
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Figure 6.5: Comparison of application energy consumption for 30 workloads using mea-
sured data: Local mode vs Hybrid mode

shorter RTT executions consume less energy compared with longer RTT for medium- and

high-intensity workloads in mobile device. Since the application is compute-intensive

in this experiment, it uses noticeable processing power. Therefore, any rise in workload

intensity on mobile devices, has high impact on RTT growth, results in increase in the

energy usage.

By contrast, in hybrid mode increase in workload intensity has low impact on mobile

device’s energy usage. Although in this mode, some energy are dissipated to transfer data

through WiFi interface between client and server, the high processing power of servers

and distributing jobs between heterogeneous service providers noticeably decrease the to-

tal energy consumption in mobile device to execute CMA. Figure 6.6 depicts the average

energy consumed by WiFi and CPU of mobile device in our testedhybrid prototype for

three intensity levels of; low, medium, and high. The bars show that, although WiFi com-

munication energy usage is increased from low to high level,the higher is the computation

outsourcing rate, the higher is the WiFi energy consumption. Therefore, utilizing more

powerful cloud resources can reduce response time which leads to saving energy of mo-
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Figure 6.6: Average energy consumption of mobile device’s WiFi and CPU in hybrid
mode

bile device when transferring data and waiting for remote computation.

6.2 Validation Results

The time and energy results that are generated using statistical modelling are pre-

sented in this section. The results are presented with the help of descriptive statistics,

tables, and charts.

6.2.1 Round-Trip Time (RTT)

The RTT data are generated via statistical modelling are presented in Table 6.9.

The results advocate significant improvement in RTT when execution takes place on

our hybrid execution mode. Table 6.10 shows descriptive statistics of calculated RTT data

(ms) for 30 workloads in both local and hybrid execution modes. Results are classified

in three categories of intensity levels: low, medium, and high, along with minimum and

maximum RTT data for all three levels of intensity in the lastrow of the table. Each

category represents calculated mean values of the minimum and maximum RTT, beside

RTT average for each 10 workloads as column N shows the numberof workloads.
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Table 6.9: RTT results generated via statistical modellingwhen executing CMA in local
and hybrid modes

Workload Number Local RTT (ms) Hybrid RTT (ms)
1 4615.54 1251.41
2 4955.8 1253.5
3 5325.5 1255.62
4 5689.51 1257.77
5 6085.13 1259.96
6 6472.81 1262.18
7 6894.53 1264.43
8 7306.07 1266.71
9 7754.05 1269.02
10 8156.95 1271.37
11 15956.85 1405.56
12 16512.99 1409.1
13 17122.77 1412.66
14 17705.59 1416.24
15 18344.37 1419.84
16 18954.15 1423.46
17 19622.17 1427.1
18 20258.87 1430.76
19 20956.32 1434.44
20 21620.14 1438.13
21 37993.85 1865.56
22 38962.49 1870.13
23 40010.64 1874.69
24 41012.33 1879.26
25 42095.79 1883.82
26 43130.5 1888.38
27 44249.43 1892.93
28 45317.38 1897.49
29 46471.95 1902.04
30 47573.21 1906.58

The hybrid execution mode can save the time to complete the CMA about 73% to

84%, 91% to 93%, and 95% to 96%, in low, medium, and high intensity levels, respec-

tively compared with local execution mode. In total, the proposed model can execute the

compute-intensive tasks at least about 73%, at most 96% and in average 93% quicker than

local mode.

The Figure 6.7 figured from mean RTT results in the Table 6.10 states considerable

achievements in RTT reduction to execute CMA. Figure 6.7 shows that in all intensity
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Table 6.10: Descriptive statistics of RTT in local and hybrid mode via statistical model

Intensity Mode N Min RTT (ms) Max RTT (ms) Mean RTT (ms)

Low
Local 10 4615.54 8156.95 6325.59
Hybrid 10 1251.41 1271.37 1261.20

Valid N (listwise) 10

Medium
Local 10 15956.85 21620.14 18705.42
Hybrid 10 1405.56 1438.13 1421.73

Valid N (listwise) 10

High
Local 10 37993.85 47573.21 42681.76
Hybrid 10 1865.56 1906.58 1886.10

Valid N (listwise) 10

All
Local 30 4615.54 47573.21 22570.92
Hybrid 30 1251.41 1906.58 1523.00

Valid N (listwise) 30

levels the proposed hybrid model can save the time about 80 % compared with task execu-

tion in local mode. Time saving grown up from low level to highlevel workload intensity

as 80%, 92%, and 96%, respectively. This indicates that timesaving achievements are

increased about 16% with increase of workloads’ intensity in hybrid mode, which is a

positive point to leverage remote execution for executing higher resource-intensive tasks

on mobile devices.

In local mode, the results in Table 6.10 show that when the workload intensity is low,

the mean RTT is equal to 6325.59(ms) (≃ 6s). With increase of workloads in medium and

high intensity levels, the RTT significantly grows. The low-medium and medium-high

RTT differences are as high as 12379.83(ms) (≃ 12s) and 36356.17(ms) (≃ 36s).

By contrast, in hybrid mode when the workload intensity is low, the mean RTT is

equal to 1261.20(ms) (≃ 1s). Unlike local execution mode, in hybrid mode increase in

workload intensity, causes insignificant rise in RTT values. Low-medium and medium-

high RTT differences are as low as 160.53(ms) (≃ 0.2s) and 624.9(ms) (≃ 0.6s) in second

and third workloads’ intensity groups, receptively. Therefore, these results signify the

advantages of utilizing cloud-based remote execution through our proposed hybrid model
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Figure 6.7: Time saving average in hybrid mode with statistical modelling

for mobile cloud applications.

In conclusion, based on these results, it can be concluded that for performing high

computation-intensive tasks on mobile device (as a native application), there should be

significantly higher execution time, if processing of request does not fail due to insufficient

resources (CPU and RAM). From comparing Figure 6.7 with Figure 6.1 it is observed that

in all intensity levels the proposed hybrid model can save the time 80 % more compared

with task execution in local mode.

However, in order to better demonstrate the significance of time achievement, we

extend our analysis to Paired Sample T-Test. The results of Paired Sample T-Test are

presented in Table 6.11 verify this significant RTT differences. The test reports 99% cor-

relation between execution time of local and hybrid datasets. Also, based on the Sig

(2-Tailed) value equal to zero, we can conclude that there isa statistically significant dif-

ference between the mean RTT of application execution for the local mode and hybrid

mode environment.
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Table 6.11: Paired Sample T-Test: Local RTT & Hybrid RTT fromstatistical modelling

Paired Samples Correlations Paired Samples Test

Pair N Correlation Sig. t Sig.(2-tailed)

(RTT_Local & RTT_Hybrid) 30 0.990 0 7.565 0

Workloads

302928272625242322212019181716151413121110987654321

R
ou

nd
-t

rip
 T

im
e 

(m
s)

50000

40000

30000

20000

10000

0

Hybrid Execution Mode
Local Execution Mode

Figure 6.8: Comparison of application round-trip time for 30 workloads generated using
statistical modeling: Local mode vs Hybrid mode

The Figure 6.8 compares the calculated round-trip time for 30 different workloads

with three intensity levels (i.e., low, medium, and high) toexecute compute-intensive ap-

plication in two execution modes of local and hybrid. The bars in this figure represent

the mean value of 30 execution iterations for each workload.The green stripped bars

are showing the RTT related to local execution mode, whereasthe blue plus-marked bars

are related to hybrid execution mode’s RTT when the computation-intensive part(s) of the

application are running outside of the mobile device in remote computing servers.

In local execution mode, low-intensity workloads completeapplication execution in

significantly shorter time compared to the medium- and high-intensity workloads that take

longer to finish execution in mobile device. In local execution mode, increase in workload

intensity has high impact(s) on RTT growth due to CPU and memory constraint of mobile

devices. By contrast, increase in workload intensity in hybrid mode has low impact(s) on
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RTT growth of the CMA, using high computing processors with large storage.

It is interesting to note that though the chart 6.8 -for theseworkloads- demonstrates

that hybrid MCC is always beneficial, but when the compute-intensity of workloads is

high, the time saving is more. Therefore, considering implications of executing CMA in

hybrid mode (e.g., cloud service and wireless communication cost, security and privacy),

using this platform is not recommended for very low level compute-intensive mobile ap-

plications.

In conclusion, results validate that the proposed hybrid mode can complete compute-

intensive task execution in very shorter time compared withlocal execution mode. There-

fore, leveraging heterogeneous granular cloud-based resources leads to RTT reduction of

outsourcing resource-intensive tasks on mobile devices.

6.2.2 Energy Consumption (EC)

The results of EC of workloads generated via statistical modelling related to local

and hybrid execution mode are presented in Table 6.12. The results highlight signifi-

cant achievements in conserving energy which is supportingthe results of benchmarking.

Descriptive statistics of energy consumption (EC) data in (mJ) for 30 workloads are sum-

marized in Table 6.13 in both local and hybrid execution modes. Results are classified in

three categories of intensity level: low, medium, and high along with minimum and max-

imum EC data for all three levels of intensity in the last row of the Table. Each category

represents calculated mean values of the minimum and maximum EC, beside EC average

for each 10 workloads as column N shows the number of workloads.

The results of Table 6.13 shows that hybrid execution mode can reduce the energy

consumption for performing CMA about 76% (min) to 86% (max),92% (min) to 94%

(max), and 95% (min) to 96%(max), in low, medium, and high intensity levels, respec-
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Table 6.12: EC results generated via statistical modellingwhen executing CMA in local
and hybrid modes

Workload Number Local EC (mJ) Hybrid EC (mJ)
1 1501.35 364.27
2 1703.73 365.51
3 1763.1 366.48
4 1940.19 367.2
5 2221.35 372.4
6 2272.53 372.56
7 2511.51 373.18
8 2632.94 373.7
9 2642.75 375.35
10 2726.27 377.7
11 5331.38 412.95
12 5524.4 415.64
13 5889.76 420.67
14 6089.76 421.67
15 6488.22 422.07
16 6658.26 422.5
17 6766.86 422.95
18 6915.09 423.21
19 7160.94 423.6
20 7231.4 424.48
21 12470.41 576.37
22 12928.31 577.16
23 13455.35 578.91
24 13991.68 579.5
25 14331.93 580.02
26 14717.73 580.89
27 14999.16 581.98
28 15464.38 582.91
29 15718.25 585.15
30 16041.37 585.83

tively compared with local execution mode. In total, the proposed model can save the

energy usage at the time of executing compute-intensive applications at least about 76%,

at most 96% and in average 94% compare with local mode.

The bar chart 6.9 figured from mean EC results in the Table 6.13depicts considerable

energy usage reduction in CMA execution. Figure 6.9 shows that in all intensity levels the

proposed hybrid model can reduce energy usage to complete the task execution in more

than 83 % compare with task execution in local mode. Energy saving grows from low level
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Table 6.13: Descriptive statistics of energy consumption in local and hybrid mode for
statistical method .

Intensity Mode N Min EC (mJ) Max EC (mJ) Mean EC (mJ)

Low
Local 10 1501.35 2726.27 2191.57
Hybrid 10 364.27 377.70 370.83

Valid N (listwise) 10

Medium
Local 10 5331.38 7231.40 6405.61
Hybrid 10 412.95 424.48 420.97

Valid N (listwise) 10

High
Local 10 12470.41 16041.37 14411.86
Hybrid 10 576.37 585.83 580.87

Valid N (listwise) 10

All
Local 30 1501.35 16041.37 7669.68
Hybrid 30 364.27 585.83 457.56

Valid N (listwise) 30
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Figure 6.9: Energy saving average in hybrid mode through statistical modelling

to high level workloads’ intensity as 83%, 93%, and 96%, respectively. This indicates that

energy saving achievements are increased about 13% from lower level to upper level of

workloads’ intensity in hybrid mode, which is a positive point to leverage our proposed

horizontally heterogeneous granular servers for augmenting mobile devices. The proposed

work in this thesis realized longer lasting battery on mobile devices for executing higher
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resource-intensive tasks.

The results in Table 6.13 advocate that, in local mode, increase in workload intensity

significantly raises the energy dissipation. The mean EC forlow workload intensity is

2191.57 (mJ) (≃ 2J), whereas it is 6405.61 and 14411.86 for medium and high. The

difference between low and medium energy consumption is as high as 4214.04 (mJ) (≃

4J) and the difference between medium and high intensity workloads is as significant as

12220.29 (mJ) (≃ 12J). However, in hybrid mode when the workload is low, the mean EC

is equal to 370.83 (mJ) (≃ 0.4J≪ 2J), while with increase of workloads, the EC raises

50.14 (mJ) (≃ 0.05J≪ 4J) and 210.04 (mJ) (≃ 0.2J≪ 12J) in second and third workloads’

category, receptively. Finally, as can be seen, the energy consumption of hybrid mode

at all intensity levels are less than 1J (364.47, 585.83, and456.56 mJ) which is much

interesting compared with local mode energy usage varying from 2 J to 14 J. Therefore,

these results reveal the advantage of utilizing cloud-based remote execution through our

proposed hybrid model for CMA.

The energy results unveil that performing significantly high computation-intensive

tasks on mobile device (as a native application) substantially increases the application

energy consumption or in worst case drains the battery before the task is being completed.

Moreover, to verify the significant energy saving between local mode and hybrid

mode, we extend our analysis with performing Paired Sample T-Test whose results are

shown in Table 6.14. This test ensures that there is 98% correlation between mean energy

consumption of local and hybrid datasets. Also, based on theSig (2-Tailed) value equal to

zero, we can conclude that there is a statistically significant difference between the mean

EC of application execution for the local mode and hybrid mode environment.

The Figure 6.10 compares the calculated average energy consumption for 30 differ-

ent workloads with three intensity level (i.e., low, medium, and high) to execute compute-
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Table 6.14: Paired Sample T-Test: Local EC & Hybrid EC from statistical modelling

Paired Samples Correlations Paired Samples Test

Pair N Correlation Sig. t Sig.(2-tailed)

(EC_Local & EC_Hybrid) 30 0.986 0.000 7.704 0.000

intensive application in two execution modes of local and hybrid. The bars in this figure

represent the mean value of energy consumption of 30 execution iterations for each work-

load. The grey plus pattern bars are showing the EC related tolocal execution mode,

whereas the red checkered pattern bars are related to hybridexecution mode’s EC when

the computation-intensive part(s) of the application are running outside of mobile device

in remote computing servers.

Comparing two Figures 6.8 and 6.10 results the relationshipbetween the RTT and

energy consumption. The results in local execution mode confirm that the workload

with shorter RTT consumes less energy compared with larger RTT of medium and high-

intensity workloads in mobile device. Therefore, any rise in workload intensity on mobile

devices has high impact(s) on execution time growth, results to increased energy usage.

However, in hybrid mode increase in workload intensity has low impact(s) on mobile de-

vice’s energy usage. Although this mode consumes battery energy to transfer data through

WiFi interface between client and server, the high processing power of servers and dis-

tributing jobs between service providers noticeably decrease the total energy consumption

in mobile device to execute CMA.

Moreover, the Figure 6.10 demonstrates that the proposed hybrid mode can complete

cloud-based mobile compute-intensive task execution withless energy consumption com-

pared with local execution mode. Although wireless communication, client-server data

transmission delay, and system arbitrator consume energy,the total energy consumption

in hybrid mode is still lower than local mode.
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Figure 6.10: Comparison of application energy consumptionfor 30 workloads generated
using statistical modeling: Local mode vs Hybrid mode

6.3 Discussion

The results of benchmarking analysis and statistical modelling presented in section

6.1 and 6.2 are individually supporting the lightweight feature of our propose framework.

Significant correlations between data generated via these two evaluation methods help us

to ensure that benchmarking and statistical modelling efforts are efficiently and effectively

undertaken and the results are reliable. Comparing these two datasets, help us validate the

performance gains of the proposed framework. The results are presented in two sections

of round-trip time and energy consumption as follows.

Table 6.15: Comparison of RTT values in local and hybrid execution mode: statistical
modelling vs benchmarking

Analysis
Local RTT Hybrid RTT

RTT Saving

Method Numeric Percentage

Statistical Min 4615.54 Min 1251.4 3364.14 72.90%

Modelling Max 47573.21 Max 1906.58 45666.63 95.90%

Mean 22570.92 Mean 1523 21047.92 93.30%

Benchmarking

Min 4364.4 Min 1266.2 3098.2 70.40%

Max 46631.9 Max 1878.27 44753.63 95.90%

Mean 22295.58 Mean 1523.92 20771.66 93.10%
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Figure 6.11: Comparison of RTT results in local Mode: Statistical model vs Benchmark-
ing

6.3.1 Round-Trip Time (RTT)

The results of benchmarking and statistical modelling are analysed to verify validity

of performance evaluation. Table 6.15 presents descriptive analysis of RTT time in local

and hybrid modes collected via benchmarking and statistical modelling. The two most

right columns in the table show the numerical and percentileof time saving when using

our proposed framework. The minimum RTT saving values are asclose as 72.9% and

70.40% when generated via statistical modelling and benchmarking, respectively. The

maximum RTT saving values for statistical model and benchmarking is equally 95.90%.

The mean time saving is also approximately identical which is 93.30% and 93.10% for

statistical modelling and benchmarking respectively.

The illustration of the results of our comparison for RTT time are presented in Figures

6.11 and 6.12. The Figure 6.11, illustrates comparison of mean RTT of local execution

mode in three intensity levels when generated using statistical model and benchmarking.

The green checkered bars show the statistical data and the blue stripped bars depict the

benchmarking results. Each couple of bars clearly supportseach other and ensure that
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Figure 6.12: Comparison of RTT results in hybrid mode: Statistical model vs benchmark-
ing

data collected using these two approaches are valid. The difference between each bar in

each intensity level is negligible advocating adequacy of data collection in local execution

mode.

Similarly, the Figure 6.12, illustrates comparison of meanRTT of hybrid execution

mode in three intensity levels when generated using statistical model and benchmarking.

The blue patterned bars show the benchmarking data and the blue stripped bars depict the
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Figure 6.13: RTT Results with 95 % Confidence Interval: Benchmarking vs Statistical
Modeling
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statistical modelling results. Each couple of bars clearlysupports each other and ensure

that data collected using these two approaches are valid. The difference between each

bar in each intensity level is negligible advocating adequacy of data collection in hybrid

execution mode and testify validity of performance evaluation undertaken in this research.

Moreover, we present the Error bar charts 6.13 of data related to local and hybrid

execution time generated using benchmarking and statistical modeling. The results are

presented with 95 % confidence interval. The vertical lines in each chart highlight the

95% confidence interval range of round-trip time. The circleon each line shows the mean

RTT value. The charts 6.13(a) and 6.13(b) verify the accuracy of the RTT data collection

in our performance evaluation for local and hybrid modes. Asshown, the confidence in-

tervals range of benchmarking and statistical modelling has significant overlap that shows

negligible differences in RTT.

6.3.2 Energy Consumption (EC)

Table 6.16 presents descriptive analysis of EC in local and hybrid modes collected via

statistical modelling and benchmarking. The two most rightcolumns in the Table summa-

rize the numerical and percentile of energy saving when using the proposed framework.

The minimum EC saving values respectively generated via statistical modeling and bench-

marking are as close as 75.7% and 77.40%. The maximum EC saving values for statistical

model and benchmarking are 96.30$ and 96.10% respectively.The mean energy saving is

also approximately identical which is 93.90% and 94% for statistical and benchmarking

respectively.

The illustrative view of the comparative results for EC is presented in Figures 6.14

and 6.15. The Figure 6.14, illustrates comparison of mean ECof local execution mode

in three intensity levels when generated using statisticalmodel and benchmarking. The
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Figure 6.14: Comparison of EC results in local mode: Statistical model vs Benchmarking

purple stripped bars show the statistical data and the pink checkered bars depict the bench-

marking results. Each couple of bars clearly supports each other and ensures that data col-

lected using these two approaches are valid. The differences between each bar in each in-

tensity level is negligible advocating adequacy of data collection in local execution mode.

Similarly, the Figure 6.15, illustrates comparison of meanEC of hybrid execution

mode in three intensity levels when generated using statistical model and benchmarking.

The brown stripped bars show the statistical data and the redcheckered bars depict the

benchmarking results. Each couple of bars clearly supportseach other and ensures that

Table 6.16: Comparison of EC values in Local and Hybrid Execution Mode: Statistical
Modeling vs Benchmarking

Analysis
Local EC Hybrid EC

Energy Saving

Method Numeric Percentage

Statistical Min 1501.35 Min 364.27 1137.08 75.70%

Modeling Max 16041.37 Max 585.83 15455.54 96.30%

Mean 7669.68 Mean 457.56 7212.12 94%

Benchmarking

Min 1499.1 Min 337.6 1161.5 77.40%

Max 16285.1 Max 634.2 15650.9 96.10%

Mean 7589.85 Mean 457.5 7132.35 93.90%
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Figure 6.15: Comparison of EC results in hybrid mode: Statistical model vs Benchmark-
ing

data collected using these two approaches are valid. The differences between each bar in

each intensity level is minimal which testify adequacy of data collection in hybrid execu-

tion mode.

Figures 6.16 shows combined 3-D view of local and hybrid RTT values for three in-

tensity levels and compare the values that are generated using statistical model and bench-

marking experiments. The bars in this chart clearly advocate performance gain of the

proposed model and validity of data collection approaches in this thesis.

Figures 6.17 shows combined 3-D view of local and hybrid EC values for three in-

tensity levels and compare the values that are generated using statistical model and bench-

marking experiments. The bars in this chart clearly advocate performance gain of the

proposed model and validity of data collection approaches in this thesis.

Moreover, the error bars chart of data related to local and hybrid consumed energy

generated using benchmarking and statistical modelling are illustrated. The results are

presented with 95 % confidence interval in Figures 6.18. The vertical lines in each chart

highlight the 95% confidence interval range of consumed energy. The circle on each line
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Figure 6.17: Comparison of EC results in hybrid and local modes: Statistical model vs
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shows the mean EC value. The charts 6.18(a) and 6.18(b) verify the accuracy of the con-

sumed energy data collection in our performance evaluationfor local and hybrid modes.

As shown, the confidence intervals range of benchmarking andstatistical modelling has

significant overlap that shows negligible differences in consumed energy. Small difference

in mean values and confidence interval range testifies validity of performance evaluation.
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Figure 6.18: Mean energy consumption results with 95 % confidence interval: Bench-
marking vs Statistical modelling

6.4 Conclusions

This chapter presents the results of our performance evaluation. Data for this eval-

uation is generated using benchmarking and statistical modelling for RTT and EC per-

formance metrics. The results of RTT analysis generated viastatistical model advocate

average of 93.3% RTT saving when performing the compute-intensive applications using

our proposed framework which is significantly high. The maximum time saving is as high

as 95.90%. The RTT results of our benchmarking model which is93.10% significantly

validates the findings of statistical model. These time savings are strong evidences that

our proposed framework can significantly improve application responsiveness due to its

lightweight nature.

In terms of energy-efficiency, our performance gains are significant. The EC anal-

ysis results generated and collected via statistical modeltestify average of 94% energy

saving when performing the compute-intensive applications using our proposed frame-

work which is remarkable achievement toward green mobile computing. The maximum

energy saving is as high as 96.30%. The EC results of our benchmarking model which

is 93.90% significantly validates the findings of statistical model. These energy savings

167



are strong evidences that our proposed solution is an energy-efficient MCC solution that

can remarkably improve application energy efficiency because of lightweight design and

implementation of the work.

The results of performance evaluation advocate that in spite of arbitration and net-

working overheads in utilizing hybrid cloud-based computing resources, the responsive-

ness and energy efficiency of compute-intensive mobile applications can be significantly

enhanced.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

This chapter presents the conclusions of this thesis and identifies the future works. We

describe how the aim and objectives of this research are fulfilled. We also present the

contributions of this thesis and highlight the significanceof the work undertaken in this

study. The scholarly publications, including peer reviewed ISI journal articles, conference

papers, and other publications that are produced as the results of the work carried out

in this thesis are listed. Finally, we present limitations of this study and possible future

works.

In section 7.1, we describe how aim and objectives of this study are attained. Section

7.2 presents contributions of this thesis. Significance of this work is presented in section

7.3. The ISI articles that are produced in coarse of this study are listed in section 7.4 and

Limitations and future works are appeared in section 7.5.

7.1 Aim and Objectives

In this research, we aimed to achieve efficient computation outsourcing for compute-

intensive mobile applications using horizontally heterogeneous granular cloud-based re-

source. We explain how we could attain the research aim by realizing the following objec-

tives.

7.1.1 Investigate the Recent Cloud-based Mobile Computation Outsourcing Ap-
proaches to Identify Current Research Problems

We fulfil the objective and review the most credible works reported in articles col-

lected from scholarly digital libraries using the University Malaya access portal. Ma-
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jor mobile and cloud computing conference and journals are visited to ensure thorough

browsing of the recent literature. We analyse and synthesize the recent works in mobile

computation outsourcing and identify seven problems, including architectural, communi-

cation and computation latency, energy constraint, and elasticity problems. We specify the

communication and computation latency as the most significant problem to address in this

research.

7.1.2 Analyse the identified research problem to determine its impact on energy
efficiency and response time of cloud-mobile applications.

In fulfilling this objective, we verify the identified research problem of computation

and communication latency created by vertically heterogeneous cloud-based resources to

address in this research. In order to analyse the significance of this research problem,

an analytical analysis is carried out using real time experiment on Android-based smart-

phone using Amazon EC2 Cloud computing instances for the execution time and energy

consumption of a compute-intensive mobile application. The results of the analysis are re-

ported in chapter 3. In order to gain insight into the problem, we implemented a compute-

intensive mobile application and run it for 30 different workloads to harvest their execution

time and energy consumptions. In our experiment, executiontook place in three runtime

environments; one native runtime inside the mobile device and three Amazon EC2 virtual

machines located in three heterogeneous granular locations, namely Singapore, California,

and Ireland regions. Though analysis of the results of experimental analysis, we testify

severity and significance of the selected problem.
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7.1.3 Propose a lightweight mobile cloud computing framework to achieve effi-
ciency in response time and energy consumption of compute-intensive mobile
application.

The objective is realized by proposing a horizontally heterogeneous hybrid MCC

framework to decrease execution time and energy consumption of utilizing cloud comput-

ing resources for CMA execution. The main design principle employed in this framework

is that building a horizontally heterogeneous hybrid granular resources consists of multi-

tude of heterogeneous computing resources featuring dissimilar granularities (proximity

and computing power) creates a localized elastic resourceful cloud that offers efficient

computational services to mobile clients. The optimum resource allocation in this hybrid

heterogeneous resources is that resources can be allocatedto tasks based on their intensity,

time sensitivity, and financial cost of utilizing those services.

7.1.4 Evaluate the performance of the proposed solution.

We attain this objective by evaluating the proposed framework via benchmarking

experiment using an android-based smartphones, desktop, laptop and a cloud VM instance

from Amazon EC2. We performed 30 different workloads in two execution modes of

local and hybrid. The execution of each workload is repeated30 times for the sake of

reliability. Round-trip time and energy consumption of themobile application in both

modes are measured and analysed. Out performance analysis results unveil that utilizing

our framework to perform compute-intensive application improves the RTT by 93.1% and

energy consumption by 94% in average compared with the localexecution mode.

We validated the results of performance evaluation via statistical modelling. Re-

gression analysis is used as a common approach to derive accurate statistical models of

execution time and energy consumption of mobile application on local and hybrid execu-

tion modes. We validate the devised models using split-sample validation approach. The
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findings of benchmarking are compared with the statistical model results to validate our

framework. Validation results confirm that leveraging our framework to execute compute-

intensive mobile application reduces the RTT by 93.3% and energy consumption by 93.9%

in average compared with the local execution mode.

7.2 Contributions

In this research, we have produced several contributions tothe body of knowledge as

following.

7.2.1 Taxonomy of Heterogeneity Roots in Mobile Cloud Computing

We produced the taxonomy of heterogeneity roots in MCC. We comprehensively re-

viewed MCC from heterogeneity point of view by critically analysing articles extracted

from scholarly indices such as IEEE, ACM, and Elsevier that are presenting the state-

of-the-art researches to devise the taxonomy of the roots ofheterogeneity in MCC. The

proposed taxonomy presents five major roots of heterogeneity in MCC as hardware, plat-

form, feature, API, and network. Our study, briefly appearedin chapter 2 and published

in (Sanaei, Abolfazli, Gani, & Buyya, 2014), is the early comprehensive survey of hetero-

geneity in MCC that is published in the literature.

7.2.2 Taxonomy of Heterogeneity Dimensions

We devised the taxonomy of heterogeneity dimensions in MCC.We describe and

taxonomize heterogeneity dimensions in MCC into two categories of vertical and hori-

zontal. Analysing roots of heterogeneity in MCC results significant differentiation in silo

of mobile devices, cloud, and wireless networks. We distinguish vertical from horizon-

tal heterogeneity in mobile devices, cloud resources and networking infrastructures and

elaborate the concept with the help of real examples. The findings of this contribution are

presented in chapter 2 and published in the literature.
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7.2.3 Taxonomy of Heterogeneous Mobile Computation Outsourcing

We produce the taxonomy of recent heterogeneous granular outsourcing model by

comprehensively reviewing the most credible cloud-based mobile computation outsourc-

ing approaches in MCC. We horizontally and vertically analyse and synthesize the recent

works in MCC and taxonomized outsourcing models into two categories of horizontal and

vertical; the horizontal approaches are consists of those works that utilized vertically het-

erogeneous resources, namely coarse granular, medium granular, and fine granular. The

results of our work are appeared in chapter 2 of this thesis and published in a survey paper

listed in section 7.4.

7.2.4 Performance Evaluation of Vertically HeterogeneousMobile Computation Out-
sourcing on CMAs

We contributed to the body of knowledge by empirically analysing performance of

vertically heterogeneous granular cloud-based resourceson compute-intensive mobile ap-

plications. With the help of benchmarking experiments, we identify the computation

and communication overhead/latency of utilizing heterogeneous granular cloud-based re-

sources when are utilized for execution of compute-intensive application. The results of

this analysis are presented in chapter 3. The analysis showsnoticeable overhead when

inappropriate resources are selected regardless of the application intensity and time sen-

sitivity We found that leveraging coarse-grained cloud-based resources for a low inten-

sity time-sensitive application is not always beneficial and originates high overhead due

to the high communication latency of accessing the virtual services provided by distant

coarse-grained resources. This overhead typically jeopardizes the performance gain of

computation outsourcing, especially for low intensity workloads.

173



7.2.5 Lightweight Heterogeneous Hybrid Mobile Cloud Computing Framework

We produce a research that features horizontally heterogeneous granular cloud-based

resources. While focus in traditional solutions was on vertically heterogeneous MCC re-

sources, this is the first effort that uses horizontally heterogeneous hybrid resources in

convergence of coarse-, medium- and fine-grained cloud-based resource. Our framework

is designed based on resource-oriented architecture to builds a lightweight framework for

efficient execution of compute-intensive mobile applications by employing multitude of

varied granular computing resources. This solution meets its aim by performing compute-

intensive processing of mobile applications, remotely in multi-layer heterogeneous cloud-

based resources. The proposed hybrid MCC framework is reported in chapter 4 and pub-

lished in the literature.

7.2.6 Performance Evaluation and Validation of the Framework

The empirical and analytical evaluation of the system is produced using benchmark-

ing and statistical models. Performance evaluation using benchmarking analysis is per-

formed on android-based smartphone and three classes of horizontally heterogeneous

cloud-based resources. The statistical models are produced via observation-based mod-

elling approach in which dataset of independently replicated data are generated to train

the regression model. The models are validated using split-sample approach and the valid

model is used to validate the performance of our proposed framework. The performance

evaluation and validation models are reported in chapter 5 and the results are presented in

chapter 6. Schematic and statistical analysis of the results unveiled the functionality, feasi-

bility, lightweight nature, and high performance of our proposed framework and advocate

that objectives of this study are fulfilled and the aim is realized.
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7.3 Significance of the Work

Several key features that are considered in design and development of this framework

could enhance the significance of this work that are briefly discussed as follows.

• Cross-Platform: One significant feature of this proposal is its cross-platform fea-

ture that inherits from SOC in design and implementation. Thus, any mobile device

including smartphone, laptop, tablet with any operating system including Android,

iOS, Blackberry, and Windows mobile can leverage the benefits of this proposal with

least possible overhead. This platform-independent design philosophy enables var-

ied computing device that has capability to run the servicesto serve as cloud-based

resources, regardless of its OS and architecture.

• Horizontally Heterogeneous Hybrid Granular Resources: This model employs

horizontally heterogeneous hybrid granular computing resources in three granularity

levels of FGR, MGR, and CGR. The FGR is in proximity of mobile device with

limited scalability, while the CGR is located in distance with high scalability. The

MGR has medium proximity and scalability. Such hybrid resources provide the

opportunity of performing a computation-communication trade-off for performing

cloud-based mobile computation outsourcing method.

• Loosely Coupled Architecture: Our framework enables development of loosely

coupled compute-intensive mobile applications that can besimply separated and in-

tegrated without any partitioning overhead. Enhancing execution of service-based

mobile applications in MCC produces remarkably least overhead compared to tightly

coupled codes in non-service-based mobile applications. Loosely coupled architec-

ture mitigates development complexity and temporal cost ofapplication develop-

ment, and also characterizes the application with lightweight feature.
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• Arbitrated Architecture: One of the key features provisioned in this framework

is the deployment of arbitrator. Arbitrator is a central trustworthy entity, that is con-

cerned to be mobile network operator in this research- that arbitrates the entire out-

sourcing process. The arbitrator currently keeps track of all cloud-based resources

and arbitrates the entire outsourcing platform to ensure that remote execution takes

place with low overhead. Arbitrator’s role can be enhanced by incorporating further

services to it in future works.

• Low Communication Overhead: In this work, the system does not transmit the

service code to the cloud-based resources. The compute-intensive codes are already

installed in the cloud-based resources and can be called from any device without

transmission of the code. Only input values are sent as request and the results are

received as response. Hence, the communication overhead isremarkably shrinks. It

reduces the mobile owner’s data plan and contributes to reduce the wireless network

load.

• Enriched User Interaction: In design and development of the proposed frame-

work in this thesis, we have employed the asynchronous communication technol-

ogy where mobile-cloud communications take place in background without freezing

the application or the mobile client device. Utilizing asynchronous communication

omits interaction distraction and remarkably enhances user interaction experience.

While outsourcing process is executing in the background, mobile user can fully

utilize the features of the device and applications with no distraction.

7.4 International Scholarly Publications

The list of publications related (in whole or part) to the research undertaken in this

thesis is as follows.
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7.5 Limitation and Future Work

One of the limitations of this study is that we have not used mobile devices like

smartphones as service providers. Considering rapidly growing computing capabilities of

mobile devices and their multiplicity, it is feasible to exploit computational capabilities

of nearby mobile devices, especially smartphones to perform computation on behalf of
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nearby mobile clients. Mobility management also is not considered in this work. How-

ever, in provisioning of the system, we intentionally used mobile network operators to

facilitate deployment of mobility management strategies via the central mobile network

operator. Also, as a shortcoming of this research we can point out integration of alterna-

tive/secondary communication technologies such as cellular network.

In our future works, we will consider incorporating mobile devices as fine-grained

computing devices and will deploy appropriate mobility management strategy. It is also

possible to consider improvement in security and privacy features of the proposed frame-

work to make it trustable so that mobile users can leverage the benefits of the proposed

framework.
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