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ABSTRACT

Density-based method has emerged as a worthwhile classifteing data streams.
It has the abilities to discover clusters of arbitrary slsap@ndle noise, and cluster with-
out prior knowledge of number of clusters. The characiessif data stream includes
infinite volume, dynamically changing, allowing only one asmall number of scans,
and demanding fast response time. Due to these charactetls traditional density-
based clustering is not applicable.

Recently, a number of density-based algorithms have beesiaped for clustering
data streams. However, existing density-based data stkemtering algorithms are not
without problems. The first problem refers to the high corapah time required for
the clustering process. The second problem is the dramatiedse in the quality of
clustering when there is a range in density of data. In thseaech, these problems are
taken into account and a new method is proposed.

This study proposes a density-based algorithm for cluggesvolving data streams.
The proposed method, which is called MuDi-Stream [tMDensty clustering algorithm
for evolving data Streajn is an online-offline algorithm with four main components.
Three of components are applied in the online phase whiletier one is used in the
offline phase. The prominent tasks of these components apgrigesynopsis information,
pruning these information, and forming final clusters.

In the first component, a hybrid method comprised of dengity gnd micro clus-
tering techniques is applied to maintain summary infororatn the form of core mini
clusters while mapping outlier to the grids. The data pamg&le the grid form a new core
mini cluster in case it reaches a density threshold in thers&écomponent. Furthermore,
grid and core mini clusters are pruned using a pruning tegknin the last component of
online phase in order to keep the memory limited. A new mudtigity-based clustering



method forms final clusters using both summarized synopgsmation and statistical
information.

The quality of the algorithm is comprehensively evaluatedrarious synthetic and
real datasets with different characteristics using war@tquality metrics. The com-
plexity analysis shows that it uses limited time and memolnjctv makes MuDi-Stream
applicable for data stream. Furthermore, the scalabiéisuits prove that the proposed
algorithm is scalable in terms of both dimension and numlberlusters. Finally, the
experimental results show that the proposed method in thdyysmproves clustering

guality in multi-density environments while minimizinggltomputation time.



ABSTRACT

Kaedah berasaskan berkepadatan telah muncul sebagay&etpamat bernilai un-
tuk kelompok aliran data. la mempunyai kebolehan untuk mem&elompok berbentuk
rawak, mampu mengatasi masalah gangguan (noise) dalaan diata dan kelompok
yang asalnya tidak diketahui jumlah kelompoknya. Ciri-alitan data adalah termasuk
isipadunya infiniti (infinite volume), ia berubah secaraasimk, ia membolehkan hanya
satu atau sebilangan kecil imbasan, dan ia memerlukan nmaisk tbalas yang pantas.
Oleh kerana ciri-ciri ini, kelompok berasaskan berkepad#iadisional tidak dapat diap-
likasikan.

Baru-baru ini, beberapa algoritma berasaskan berkepatidédndibangunkan un-
tuk kelompok aliran data. Walau bagaimanapun, terdapaalatapada algoritma untuk
pengelompokan aliran data berdasarkan kepadatan (déxasied data stream clustering
algorithms) sedia ada. Masalah pertama merujuk kepada psasgraan yang tinggi
yang diperlukan untuk memproses kelompok itu. Masalah &edialah penurunan dra-
matik dalam kualiti kelompok apabila terdapat pelbagaikigtan data. Dalam tesis ini,
masalah-masalah ini diambil kira dan kaedah baru adalauddigkan.

Kajian ini mencadangkan satu algoritma berdasarkan képadzagi pengelom-
pokan aliran data yang berkembang. Kaedah yang dicadangiag dipanggil Mudi-
Stream (Kelompok algoritma pelbagai ketumpatan untuk bedraliran data) adalah al-
goritma dalam talian - luar talian (online - offline) denganpat komponen utama. Tiga
komponen digunakan dalam fasa dalam talian manakala yanditainakan dalam fasa
luar talian. Tugas-tugas utama komponen ini menyimpanumal sinopsis, memangkas
maklumat yang disimpan dan membentuk kelompok akhir.

Dalam komponen pertama, kaedah hibrid terdiri daripadhlgpadatan dan teknik
kelompok mikro digunakan untuk mengekalkan maklumat rasgk dalam bentuk kelom-
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pok teras mini sambil melakukan pemetaan titik terpengilakia grid. Titik data dalam
grid akan membentuk teras kelompok mini baru apabila ia ey@@mbang ketumpatan
dalam komponen kedua. Tambahan pula, grid dan teras momealk dipangkas meng-
gunakan teknik pemangkasan dalam komponen terakhir fdaendalian untuk meny-
impan memori yang terhad. Kaedah kelompok berasaskangaelkapadatan (multi
density-based clustering) membentuk kelompok yang térdkhgan menggunakan kedua-
dua ringkasan maklumat sinopsis dan maklumat statistik.

Kualiti algoritma dinilai secara komprehensif menggumakelbagai dataset sin-
tetik dan sebenar dengan ciri-ciri yang berbeza dengan gueragtan pelbagai kualiti
metrik. Analisis kerumitan(complexity analysis) menwian bahawa ia menggunakan
masa dan memori yang terhad yang menjadikan Mudi-Streasat dégplikasikan untuk
aliran data. Tambahan pula, keputusan berskala membolti&hawa algoritma yang
dicadangkan itu adalah berskala(scalable) dari segi dingam jumlah kelompok. Akhir
sekali, keputusan eksperimen menunjukkan bahawa kaedatyaadangkan dalam ka-
jian ini akan memperbaiki kualiti kelompok dalam perseldatapelbagai kepadatan (multi

density environment) dan pada waktu yang sama akan mergkaiamasa pengiraan

Vi
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CHAPTER 1

INTRODUCTION

1.1 Background

Ever-growing volume of data production is the reality we lareg in. Social net-
works, smatrt cities, telephone networks are some of the pbemwhich are the generator
of huge amount of data in the modern world. Now we face-off\a kimd of data pro-
duced continuously over time called data stream (Seve2igl).

Different from traditional datasets, data stream flow in antl ceaselessly. They
are enormous, rapid changing, and potentially limitlesge B the huge volume of data
stream, it may be impractical to record the whole data streata look over it multiple
times (Han, Kamber, & Pei, 2011).

Mining data stream is related to extracting knowledge $tmec represented in
streams information (Han & Kamber, 2006; Hahsler & Dunhafi ). Clustering is
one of the prominent methods for mining data stream whichdnasn lots of attention
in the last few years due to ever-growing presence of dagarstr The goal of clustering
Is to group the streaming data into meaningful classes. Bta¢éam creates additional
challenges on clustering such as clustering in limited nrgraad limited time, examin-
ing the data only once as it arrives, and handling data invevglmanner to capture the
underlying changes in clusters.

Clustering algorithms in general have been categorizedivedypes: partitioning,
hierarchical, density-based, grid-based, and modelebamghods (Han et al., 2011). In
most of the clustering methods, the clusters are formeddbasehe distance between

objects. These methods discover only spherical-shapatiecs) and have difficulty to



both find arbitrary shape clusters and handle noise.

In fact, many of notable clustering algorithms cannot com with the data in
which the actual clusters have non-spherical shapes. dérantire, clustering data stream
needs the ability to detect and remove noise and outliete(E3013). Density-based
clustering method has the aforementioned characteratidyet no assumption about the
number of clusters. Density-based method has been dedebgs®d on the concept of
density. The clusters are formed as dense areas which aeassghfrom sparse regions.
The main idea is to continuously grow a given cluster as Iatha density (humber of
objects or data points) in the neighborhood exceeds a tblicesh

Figure 1.1 displays a comparison on a partitioning-basesteting such as k-means
(MacQueen, 1967) versus DBSCAN (Density-Based Spatial Clagtef Applications
with Noise) (Ester, Kriegel, Sander, Wimmer, & Xu, 1998), endity-based clustering
algorithm. In clustering methods such as k-means, the tbgeavhich is to minimize
the average squared distance of points from the correspgradiister center, leads to
form clusters regardless of the shape of the actual cluEsel, 2013). Density-based
clustering algorithms instinctively handle noise by praugg to put them into clusters.
It is observed that the arbitrary shape clusters and nosel@tected accurately using
density-based clustering algorithm while k-means falsitects the noise as a part of
clusters (Ester, 2013).

Therefore, density-based method (Ester et al., 1998) hae oot as a valuable class

for clustering data stream.

Definition 1 (Data Stream). A data stream consists of a set of d-dimensional records
X1,...,X%,... arriving at time stampsit....t,... X = (>q1,...xid). It is massive (e.g.,
terabytes in volume), temporally ordered, fast changing) potentially infinite (Zhou,

Cao, Qian, & Jin, 2008; Han & Kamber, 2006; Aggarwal & Reddy, 2Dp13



(a) Partitioning-based Clustering (k-means, k=3)
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(b) Density-based Clustering (DBSCANIinPts= 5, € = 20)

Figure 1.1: Data Stream Clustering Comparison on a Synt

With substantial growth in computer network during the past decades, data
streams are being collected continuously, for example,aathguake monitoring sys-
tem has up to 7,000 sensor systems to collect seismic dagseTdata are continuously
gathered into processing centers for further analysis. dette of such nature are called
data stream, which flow through computer systems at highdspeEhe data stream of-

ten are too large to fit in the main memory and the time is lichite process these fast

changing data.
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Definition 2 (Evolving Data Stream).In evolving data stream, the behavior of stream is
considered as an evolving process over time, and furthepbssible that in the new data
arrival, a new cluster appears that has never appeared irstream before. Moreover, it

may happen that a class appears, which has not been in thevsfaaa long time.

Definition 3 (Clustering Data Stream). The process of partitioning d-dimensional
records X,...,X,... arriving at time stampsit....t,..., % = (xil,...xid) into number
of groups C= {Cy1,Cy,...,Ck} such that the intra-cluster similarity is maximized, and
the inter cluster similarity is minimized. Similar recordse categorized together as one
cluster G using similarity function while dissimilar objects sepadtin different groups

or the group of noise (noisy points).

Clustering data stream requires a process able to contityuduster objects within
memory and time restrictions (Silva et al., 2013). Clustpdata stream has to achieve
the following requirements: (i) provide timely results bgrforming fast and incremental
processing of data points; (ii) rapidly adapt to evolvingadstream, which means algo-
rithms should detect when new clusters may appear, or otheappear; (iv) provide a
compact model representation which is not growing with theber of data points pro-
cessed; (v) detect the presence of outliers (Babcock, Baltay,Ddotwani, & Widom,
2002; Babcock, Datar, & Motwani, 2002; Barbara, 2002; Tasp&oss, & Adams, 2007;

Bifet, Holmes, Kirkby, & Pfahringer, 2010).

Definition 4 (Density-based Clustering) Density-based method is a prominent class in
clustering. The main advantage of density-based clugjesithat it can find the arbitrary
shape of clusters and also provide natural protection agagutliers. Furthermore, they
do need the number of clusters in advance. Density-basstectuare connected, dense

areas in the data space separated from each other by sparsasa Additionally, the



density within the areas of noise is assumed to be lower thanehsity in any of the

clusters.

Since density-based clusters are not certainly groupsinfpwith a low pairwise within-
cluster dissimilarity as measured by a dissimilarity fimctdense connected areas in the
data space can have arbitrary shapes. Sparse areas indlspde¢ are treated as noise
and are not assigned to any cluster (Kriegel, Krbger, Sa&dgmek, 2011; Aggarwal

& Reddy, 2013).

Definition 5 (Adaptive Density-based Clustering for Evolving Data Stream) The
density-based method is an attractive clustering alganmitior data stream since it can
find arbitrarily shaped clusters yet handle noises. Furthere, they do not need the num-
ber of clusters in advance. Therefore, density-based rdaethadopted for data stream.
However, due to data stream characteristics the traditiateisity-based clustering algo-
rithm is not applicable for them. There are some problems thighexisting density-based
algorithms: they have high computation time in clusteriagedstreams and low quality
for multi-density data. Thus, in this thesis, we choose dgtsised method for clustering
data stream according to their salient features. However, aheesthe problems of the

existing algorithms to be applicable for data streams.

Definition 6 (Multi-density data). In a multi-density dataset, there is a range of den-
sities for the clusters and multi-density clusters refethe clusters that are formed in

different densities.

1.2 Motivation
In real world applications (Cao, Ester, Qian, & Zhou, 2006ydhéerger, Shrivas-

tava, & Suri, 2009):



* naturally occurring clusters are typically not sphericakhape. For instance, in
habitat monitoring using wireless sensor networks, thes@snproduce a steady
stream of geographic data including objects’ locationsipéiacked. In this kind
of applications, clusters may have arbitrary shape becafuthe restraints put by

geographic entities such as mountain and rivers.

* there are large amounts of noise or outliers in some of tHeminstance, due to
the influence of different factors such as temporary faibfréensors in data stream
scenario, some random noises appear occasionally. Dejantise is one of the
important issues specifically in evolving data stream inctthe role of real data

changes to noise over time.

* there is not a priori knowledge in many real-life data to besidered as the number

of clusters.

The prototype of density-based clustering has been desélapaddress all of the
aforementioned requirements. However, density-basetioddtas some drawbacks as
follows:

Firstly, it has high computation time because the processstwfinds the nearest
neighbors to form clusters, is time consuming. Recently,raber of density-based clus-
terings are developed for clustering data stream. In da¢arst environments finding
neighbors to form clusters are performed on summarized d&aae of the algorithms
(Isaksson, Dunham, & Hahsler, 2012; Forestiero, Pizzutg@ezzano, 2013) try to re-
duce the number of comparisons in order to reduce the cotnputime but it is still
high to be applicable for data stream.

Secondly, density-based clustering fails to handle thalldensity variation that
exists within a cluster. Multi-density data are prevaleraéme applications such as clus-

tering GPS data stream to determine the traffic accurateherel'are a few number of
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density-based clustering algorithms for multi-densityadats (Carmelo, Alfredo, Ros-
alba, Giuseppe, & Alfredo, 2013; X. Chen, Liu, Chen, Zhang, &ddy, 2012) which try

to solve this problem for static datasets. Nonethelessethéorithms have some diffi-
culties to be used for data stream. First, they need the wdaike for their processing.
In data stream, it is impossible to have the whole data inclva@ince the data arrives
continuously over time. Second, they require two processesthe data to get density
distribution and then they can cluster based on the relatednation. However, cluster-
ing data stream has to be performed in single pass. Accdydihgre is not an effective

algorithm to get the accurate density of the data streamwithi-density.

1.3 Problem Statement

The problem of this study is defined as follows:

Existing density-based clustering algorithms for evolvingdata stream

have high computation time and low quality in multi-density data.

Density-based clustering has two important problemst,Rhsy have high compu-
tation time. Accordingly, some research efforts have beadero present methods for
density-based data stream clustering; however, theyssiifer from their computation
time.

Since density-based clustering method uses global pagasnétcannot capture the
intrinsic cluster structure of data stream. The existingsitg-based clustering algorithms
cannot choose parameters according to the distributiomtaf. diUsing the global param-
eters leads to inaccurate clustering result of multi-dgrdata. As it is shown in Figure
1.2, itis impossible to detect all the clusters properlyingglobal parameters, the clus-
tering results consist of either C1, C2, and C3 as clusters antlAaas noise, or A, B,
and C as clusters in which C1, C2, and C3 are not separated. ®teréfe clustering

quality of existing methods is lessened remarkably if thia thas various densities.
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Figure 1.2: Multi-density Data (Cassisi et al., 2013)

1.4 Research Questions

The research questions which this thesis will answer arels\s:
* Q1. Which method is more appropriate for summarizing daitsast?
* Q2. How to handle evolving data stream?
* Q3. What are the reasons of high computation time?
* Q4. How to lower the computation time?

* Q5. What are the issues that impede the clustering qualityilti-density environ-

ments?

* Q6. How to increase the clustering quality in multi-depsiata?

1.5 Research Objectives

The objectives of this research are as follows:

» To propose and develop a new density-based algorithm for ctiering evolving

data stream.



» To improve the quality of clustering for multi-density data. The clustering qual-
ity has to be high for normal distribution data as well as far dlata with dissimilar

density distributions.

» To reduce the computation time.The computation time has to be low enough to

cope with the speed of arriving data stream.

» To evaluatethe capability of the proposed method in improving the Quali

The first research objective answers research questions RQR@2. Research ques-
tions RQ3, and RQ4 are answered by the third research objeEtivally, research ques-

tions RQ5, and RQ6 are answered by the second research objectiv

1.6 Scope of Research
* This thesis studies in the scope of clusterawplvingdata stream. In other words,
we present a method for which the data stream evolves ovet tirerefore some

clusters disappear while new clusters are formed.

* We provide a data stream clustering approach that is agipécin two perspec-
tives. It can cluster evolving data stream with various dgkstributions and also

uniform density distribution.

» The aim of this research is improving quality for multi-gég data in which the
clusters have different densities and there is no nestesecluAlthough a slight
modification of our approach (in its offline phase) can achiegsted clusters, the

focus of this thesis is not on the nested clusters.

» There are different kinds of data attributes in data stee@mluding numerical,
categorical, and uncertain data. The focus of this thesialison numerical (con-

tinuous) data. The majority of test sets have only numetiates.



» The focus is not on the high dimensional data streams. In dighensional data,
the computation time is not low since we have a lot of emptggto process. For
clustering high dimensional data, the proposed methodssethe improvements

in its online phase.

1.7 Thesis Outline

The rest of the thesis is structured as follows:

» Chapter 2 presents a brief and rather general overview tareiift clustering meth-
ods on data stream. Furthermore, it has a comprehensivawv@n the existing
density-based methods for clustering data stream. Thjgteheeviews the existing

multi density-based clusterings for static datasets ak wel

» Chapter 3 describes the research methodology applied tevactie research ob-
jectives. It has a general overview of MWD ensty-based clustering algorithm for

evolving data Stream(MuDi-Stream) and a brief review on its components.

» Chapter 4 presents the proposed density-based clusteaimgork. It describes
all the new notations applies in the proposed method. Thegooents of the new
method are explained in details. Most of the research questire answered in this

chapter.

» Chapter 5 presents the experimental setup including: tteselts used for evalu-
ation of the proposed method, and implementation and emviemt are discussed
in details. Moreover, the chapter describes the experiahentluation of the pro-
posed method on different datasets, evaluation measuneshe performance. Fi-

nally, the parameter settings are discussed, and the fsdtseare reported.

» Chapter 6 concludes the study, reviews the main contribsitaff the thesis and

outlines the possibilities for future work.
10



CHAPTER 2

RELATED WORK

2.1 Overview

In this chapter, we review the existing density-based ehirsg for data as well as
multi-density algorithms for datasets. Section 2.2 ov@&g main clustering methods
for data streams. Furthermore, basics in data stream chgptes well as challenges in
clustering data streams are presented in Section 2.2.08&t8 introduces two main cat-
egories of density-based data stream clustering algositt8action 2.4 elaborates in de-
tails one of the well-known density-based clustering méshcalled DBSCAN. The first
category is density micro-clustering algorithm and is dssed in Section 2.5. Density
grid-based clustering algorithms are introduced in Saci®. Density-based clustering
algorithms for multi-density dataset are explained in Bac2.7. Section 2.8 addresses
an important issue of clustering process regarding thatg@esessment of the clustering
results. Section 2.9 is a comprehensive discussion ontgdresed data stream clustering

algorithms as well as multi-density algorithms.

2.2 Clustering Data Streams

Clustering is a key data mining task (Aggarwal, ZOOZ';a:Daghan, Meyerson, Mot-
wani, Mishra, & Guha, 2002; Barbara, 2002; Guha, Meyersorshk&, Motwani, &
O’Callaghan, 2003; Aggarwal, Han, Wang, & Yu, 2003; Ackermatal., 2010) which
classifies a given dataset into groups (clusters) such hieaddta points in a cluster are
more similar to each other rather than the points in diffectursters.

Unlike clustering static datasets, clustering data stsgamses many new challenges.

Data stream comes continuously and the amount of data isundled. Therefore, it is

11
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Figure 2.1: Data Stream Clustering Algorithms

impossible to keep the entire data stream in main memory.a Beam passes only
once, so multiple scans are infeasible. Moreover, datarstrequires fast and real time
processing to keep up with the high rate of data arrival amdnygiresults are expected to
be available within short response time.

There is an extensive number of clustering algorithms fatictdatasets (Jain &
Dubes, 1988) and (Jain, 2010) where some of them have besmdext for data streams.
Generally, clustering methods are classified into five me@tegories (Han & Kamber,
2006): partitioning, hierarchical, density-based, grabed, and model-based methods
(Figure 2.1).

A partitioning-based clustering algorithm organizes the objects into some number
of partitions, where each partition represents a clustére dlusters are formed based
on a distance function like k-means algorithm (MacQueei671%loyd, 1982) which
leads to finding only spherical clusters and the clusteresylits are usually influenced
by noise. Two of the well-known extensions of k-means on daams are presented
in (Guha, Mishra, Motwani, & O’Callaghan, 2000) where k-meahgorithm clusters
the entire data stream and in STREAM@@Iaghan et al., 2002; Guha et al., 2003)
which has LOCALSERACH algorithm based on K-median for dataastie Aggarwal
et al. proposed an algorithm called CluStream (Aggarwal.eP@D3) based on k-means
for clustering evolving data streams. CluStream introdwcgise-offline framework for

clustering data streams which has been adopted for the itgagbdata stream clustering

12



algorithms.

A hierarchical clustering method groups the given data into a tree of clusters which
is useful for data summarization and visualization. Induiehical clustering once a step
(merge or split) is done, it can never be undone. Howeverhaouast for improving the
quality of hierarchical clustering have been proposed saglntegrating hierarchical
clustering with other clustering techniques, resultingrialtiple-phase clustering such
as BIRCH (T. Zhang, Ramakrishnan, & Livny, 1996) and Chameleomy(¥s, Han,
& Kumar, 1999). BIRCH is extended for data stream as micro-etust (Aggarwal et
al., 2003). Furthermore, ClusTree (Kranen, Assent, Bald&aBeidl, 2011) is a hier-
archical index for maintaining cluster feature. In fact, €ltee builds a hierarchy of
micro-clusters at different levels.

Grid-based clusteringis independent of distribution of data objects. In factat-p
titions the data space into a number of cells which forms tidsgGrid-based clustering
has fast processing time since it is not dependent on the ewohldata objects. Some ex-
amples of the grid-based approach include STING (Wang, Yaruntz, 1997), which
explores statistical information stored in the grid ceNgaveCluster (Sheikholeslami,
Chatterjee, & Zhang, 2000), which clusters objects using eelga transform method;
and CLIQUE (Agrawal, Gehrke, Gunopulos, & Raghavan, 1998)iclwvinepresents a
grid-based and density-based approach. Grid-based nse#nedntegrated with density-
based methods for clustering data streams which are rdfesras density grid-based.
In density grid-based clustering methods data points angpedhinto the grids. Then,
the grids are clustered based on their density. Some of th&tgegrid-based clustering
algorithms are D-Stream (Y. Chen & Tu, 2007; Tu & Chen, 2009) MiRdStream (Wan,
Ng, Dang, Yu, & Zhang, 2009).

Model-based clusteringmethods attempt to optimize the fit between the given data

and some mathematical models like EM (Expectation Maxitiong algorithm (Demp-
13



ster, Laird, & Rubin, 1977). EM algorithm can be viewed as aemrsion of the k-means.
However, EM assigns the objects to a cluster based on a weighdsenting the mem-
bership probability. In (Dang, Lee, Ng, Ciptadi, & Ong, 2008WEM (clustering data
streams in a time-based Sliding Window with Expectation Muexation technique) is
proposed which is a clustering data stream using EM algurith

Density-based method$ave been developed based on the notion of density. The
clusters are formed as dense areas which are separatedfaose segions. The main idea
is to continuously grow a given cluster as long as the derisitynber of objects or data
points) in the neighborhood exceeds some threshold. Suatteoohcan be used to filter
out noise or outliers and to discover clusters of arbitréagpe. The main density-based
algorithms include: 1) DBSCAN (Ester, Kriegel, Sander, & X8986) which grows clus-
ters according to a density-based connectivity analy9i©RTICS (Ankerst, Breunig,
Kriegel, & Sander, 1999) which extends DBSCAN to produce atehusdering obtained
from a wide range of parameter settings, 3) DENCLUE (Hinngl8uKeim, 1998) which
clusters objects based on a set of density distributiontioimge. Extensions of density-

based algorithms for data stream are proposed as well.

2.2.1 Basics in Clustering Data Streams

In clustering data streams an important issue is how to geoite infinite data which
is evolving over time or how to keep the huge amount of datdafter processing. There
are some methods such as processing in one-pass, evolvdng anline-offline manner
as well as different methods for summarization of data steeaA short description of

these methods is described as follows.

1. Processing

One passin the one-pass, data streams are clustered by scannangtozams only

once with the assumption that data objects arriving in cbuie k-means was

14



extended to be used for data streams (Charikar, O’Callaghdarégrahy, 2003;
Guha et al., 2000, 2003). Another well-known algorithm iSKRERAM (OCaIIaghan
et al., 2002; Guha et al., 2003), which partitions the inpréiasn into chunks and
computes (for each chunk) a cluster using a local searchitdgofrom (Guha et
al., 2000). DUC-Stream (Gao, Li, Zhang, & Tan, 2005) is a oasspgrid-based

clustering algorithm which assumes the arrival of data imnis.

Evolving In the one-pass approaches the clusters are computecheventire data
streams; however, data streams are infinite and they cantahyievolve with time.
Hence, the clustering results may change considerably tower In the evolv-
ing approaches, the behaviors of streams are considered @gb/ing process
over time and processed in different forms of window modeffePent clustering
algorithms such as (Aggarwal et al., 2003; Wan et al., 200@uzet al., 2008; Ag-
garwal, Han, Wang, & Yu, 2004, 2005; Babcock, Datar, Motw&Q’Callaghan,
2003; Tu & Chen, 2009) are developed based on this approaetinttow model,
the data is separated into several basic windows and thegevbadows are used

as updating units. Three kinds of window models are as falgvg & Dash, 2010):

» Landmark window model: the window is determined by a spetifne point
called landmark and the present. It is used for mining overettitire history

of the data streams (Figure 2.2a).

 Sliding window model: data is considered from a certaingeam the past
to a present time. The idea behind “sliding window” is to pemi detailed
analysis over both the most recent data points, and the stradaersion of

the old ones (Figure 2.2b).

» Fading (Damped) window model: a weight is given for eaclaghatint based

on a fading function (Aggarwal et al., 2004), and more wegire given to
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(a) Landmark Window Model

Figure 2.2: Window Models (Matysiak, 2012)

(b) Sliding Window Model

Table 2.1: Window Models in Clustering Data Streams

(c) Fading Window Model

Window Definition Pros Cons Example(s)
Model
Landmark | Analyze Suitable for one-pass All the data are equally | (Guha et
window the entire his-| clustering algorithms| important and  the al., 2003)
model tory amount of data inside
of data stream the window would
quickly grow to unpro-
cessable sizes
Sliding Analyze Suitable for applica{ Ignores part of streams| (Zhou et
window the most recent| tions where interest al., 2008;
model data points exists only in the Ren, Ma,
most recent informa & Ren,
tion like stock mar- 2009)
keting
Fading Assign Suitable for applica{ Unbounded time win{ (Cao et
(damped) | different tions where old data dow (the window cap- al., 2006;
window weights has an effect on the tures all historical data, Y. Chen
model to data points | mining results, the its size keeps growing as& Tu,
effect decreases 4gstime elapses) 2007,
time goes on dimin- Wan et
ishes the effect of the al., 2009)

old data

The summarization of the window models with some exampldustering algo-

rithm as well as their pros and cons are presented in TableAfl.the models have

is to diminish the effect of the old data on the mining reskig(re 2.2c).

recent data compared to outdated data. The use of a dampddwvinodel

been considered in clustering data streams. Choice of theowimmodel depends

on the applications’ needs (Ng & Dash, 2010).

Online-offline sometimes a data stream clustering algorithm needs tstigate

the clusters over different parts of stream. A differentaaiw model is used for

tracing evolving behavior of data streams. However, we aaparform dynamic
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clustering over all possible time horizons of data strearhgrefore, online-offline
approach is introduced by Aggarwal et al. in (Aggarwal et2003). The online
component keeps summary information (overcoming reat-tamd memory con-
straints) about fast data streams and offline componens gimeunderstanding of
the clusters. The majority of data stream clustering dgexofor evolving data
streams use CluStream’s two-phase framework (Aggarwal,e2@03; Wan et al.,
2009; Zhou et al., 2008; Aggarwal et al., 2004, 2005; Y. Chenu&2007; Tu &

Chen, 2009).

. Summarization: The large volume of data streams put space and time cortstrain
on the computation process. Data streams are massive amiteingo it is impos-
sible to record the entire data. Therefore, synopsis inftion can be constructed
from data items in the streams. The design and choice of &plart synopsis
method depends on the problem being solved. A brief desmmigtbout different

methods of summarization is as follows (Han & Kamber, 200gg&rwal, 2007):

Sampling methodsnstead of recording the entire data streams which seems im
possible, we can make a sampling from data stream. Researoplmg (Vitter,
1985) is a technique which is used to select an unbiased masdonple of data

streams and it is useful for data streams.

Histograms histogram based methods are used for static datasetsyéowieeir
extension for data streams is a challenging task. Some of¢ltleods are discussed
in (M. Garofalakis, Gehrke, & Rastogi, 2002) for data strea@ee of the recent
algorithms, called SWClustering (Zhou et al., 2008), keempsrsary information

of data streams in the form of histogram.

Wavelets wavelets are popular multi-resolution techniques foaddteams’ sum-

marization. Wavelets are traditionally used for image agda processing. They
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are used for multi-resolution hierarchy structures oveingat signal, in this case,
the stream data. Furthermore, wavelet-based histogrambecdynamically kept
over time (Aggarwal & Yu, 2007; M. N. Garofalakis, 2009; Gilt, Kotidis,

Muthukrishnan, & Strauss, 2003).

Sketchessketch is a probabilistic summary technique for analyzlata streams.
Sketch-based methods can be considered as a randomiziesh\@nsavelets tech-
nique. While other methods emphasis on small part of dataclsée summarize

the entire dataset at multiple levels of details (Aggar2807).

Micro-cluster. micro-cluster (Aggarwal et al., 2003) is a method to keegtist
tical information about the data locality. It can adjust lweith evolution of the
underlying data streams. We will elaborate on the micratelufurther in Section

2.5.

Grid: in this method, the data space is partitioned into somels®gients called
grids and the data points in streams are mapped to them. Eddineg a character-
istic vector which keeps a summary about all the data poimggpad to it (Y. Chen

& Tu, 2007). More details of the grid method in Section 2.6.

According to the reviewed papers, the most applicable sumateon methods for

density-based clustering algorithms are micro-clusteand grid-based. Therefore, we

categorize the reviewed algorithms based on these two stgatian methods (Amini,

Ying Wah, & Saboohi, 2014; Aggarwal & Reddy, 2013).

2.2.2 Challenges in Clustering Data Streams

Considering their dynamic behavior, clustering over dateshs should address the

following challenges (Guha et al., 2000; Kranen et al., 204/&n et al., 2009; Han &

Kamber, 2006; J. Gama & (Eds), 2007; Han et al., 2011; Aggasseddy, 2013):
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Handling noisy data: any clustering algorithm must be able to deal with random
noises present in the data since outliers have great inffuenche formation of

clusters.

Handling evolving data: the algorithm has to consider that the data streams con-

siderably evolve over time.

Limited time : data streams arrive continuously, which requires fastraatitime
response. Therefore, the clustering algorithm needs tdléahe speed of data

streams in the limited time.

Limited memory: the huge amount of data streams are generated rapidlyhwhic
needs an unlimited memory. However, the clustering algorinust operate within

memory constraints.

Handling high dimensional data some of data streams are high dimensional in
their nature such as gene expression or clustering textndects. Therefore, the
clustering algorithm has to overcome this challenge in cdses data being high

dimensional.

We will discuss how different density-based clusteringaltpms over data streams

address aforementioned challenges in Section 2.9.1.

2.3 Density-based Data Stream Clustering

Based on a comprehensive review on existing density-bassteding algorithms on

data stream, these algorithms are categorized in two bnaagg called density micro-

clustering algorithms and density grid-based clusteriggrghms (Amini et al., 2014,

Aggarwal & Reddy, 2013) (Figure 2.3).

In density micro-clustering algorithms, micro-clustereke summary information

about data and clustering is performed on these synopsismation. The reviewed al-
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gorithms in this category include: DenStream (Cao et al.6208treamOptics (Tasoulis
et al., 2007), C-DenStream (Ruiz, Menasalvas, & Spiliopou20@9), r-DenStream (Li-
xiong, Jing, Yun-fei, & Hai, 2009), SDStream (Ren et al., 20d9DenStream (Lin
& Lin, 2009), FlockStream (Forestiero et al., 2013), SO&mglsaksson et al., 2012),
HDDStream (Ntoutsi, Zimek, Palpanas, Kroger, & Kriegell2)) and PreDeConStream
(Hassani, Spaus, Gaber, & Seidl, 2012).

In density-grid based clustering algorithms group, theadatace is divided into
grids, data points are mapped to these grids, and the chgsi@re formed based of the
density of grids. The reviewed algorithms in this categoctude: DUC-Stream (Gao et
al., 2005), D-Stream | (Y. Chen & Tu, 2007), DD-Stream (Jiap,T& Yong, 2008), D-
Stream Il (Tu & Chen, 2009), MR-Stream (Wan et al., 2009), PKi®@8n (Ren, Cai, &
Hu, 2011), DCUStream (Y. Yang, Liu, Zhang, & Yang, 2012), DERIG-Stream (Amini
& Ying Wah, 2012), and ExCC (Bhatnagar, Kaur, & Chakravarthyl, 20

In the following sections, firstly, DBSCAN (Ester et al., 1998yemarkable density-
based clustering algorithm, is elaborated. Furthermoeeyll discuss in details about
the algorithms in each aforementioned category, and tlies @and cons. Additionally,

we examine how they address the challenging issues in dhipigata streams.

2.4 DBSCAN (Density-Based Spatial Clustering of Applicatios with Noise)
Density-based clustering has the abilities to discoveitrary-shape clusters and to
handle noises. DBSCAN (Density-Based Spatial Clustering oflidaiions with Noise)
(Ester et al., 1996) is one of the density-based algorithwisch is adopted for data
stream algorithms, described in details as follows.
DBSCAN is developed for clustering large spatial databasés moise, based on
connected regions with high density. The density of eacimtpsi defined based on

the number of points close to that particular point callethp® neighborhood. The
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dense neighborhood is defined based on two user-specifiachpters: the radius)
of the neighborhoodetneighborhood), and the number of the objects in the neighbo
hood MinPts). The basic definitions in DBSCAN are introduced in the folloguiD is a

current set of data points.

» g-neighborhood of a point: the neighborhood within a raditis.oNeighborhood

of a pointp is denoted byN¢(p):

Ng(p) = {0 € D[dist(p,q) < &}, [Ng(p)| >= MinPts (2.1)

wheredis(p,q) denotes the Euclidean distance between pgiretadg.

* MinPts minimum number of points around a data point in gaeeighborhood

» Core Point: a point which its cardinality efneighborhood is at leaMinPts

» Border Point: a point which the cardinality of iesneighborhood is less than

MinPtsand at least one of its-neighborhood is a core point

* Noise Point: a point which the cardinality of #sneighborhood is less thainPts

and no core point is in the-neighborhood of that point

 Directly density reachable: a poiptis directly density reachable from poigt if

pis in thee-neighborhood off andq is a core point

» Density reachable: a poimd is density reachable from poigt if p is in thee-
neighborhood ofj andq is not a core point but they are reachable through chains

of directly density reachable points

» Density-connected: if two pointg andq are density-reachable from a core point

0, p andq are density-connected
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Figure 2.4: DBSCAN: Core, Border, and Noise Points

Algorithm 1 DBSCAN(D, MinPts €)

Input: a data seD

Output: arbitrary shape clusters
1: for each data point p in o
2. if pis not mark as 'seerthen

3: mark p as 'seen’
4: FindNg(p,D) /* find € neighborhood of data point p */
5: if INe(p,D)| <= MinPtsthen
6: mark data point: Clusterld=noise
7 else
8: Clusterld=Clusterld+1
9: end if
10: forall g€ Ng(p,D) do
11: mark data point q as 'seen’
12: find Ng(q,D)
13: if IN¢(g,D)| > MinPtsthen
14: give data point q a Clusterld
15: end if
16: end for
17 endif
18: end for

» A cluster: a maximal set of density-connected points

Core, border and noise points are shown in Figure 2.4.

DBSCAN starts by randomly selecting a point and checking wdrethe &-
neighborhood of the point contains at led&nPts points. If not, it is considered as a
noise point, otherwise the point is considered as a coret jpoith a new cluster is cre-
ated. DBSCAN iteratively adds the data points, which do nobiglto any cluster and

directly density reachable (Ester et al., 1996) from thesquuints of a new cluster. If
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the new cluster can no longer be expanded, the new clustemipleted. In order to find
the next cluster, DBSCAN randomly selects an unvisited datat @md the clustering
process continues until all the points are visited and nopawt is added to any cluster.
The overall architecture of DBSCAN algorithm is outlined irgatithm 1.

Therefore, a density-based cluster is a set of densityexmad data objects with
respect to density reachability. The points that are natgulan any cluster are considered
as noise. Figure 2.5 shows DBSCAN algorithm performing on disyathetic dataset.
Figures 2.5a, 2.5b, and 2.5c are the steps of the clustendd-mure 2.5d is the final

clustering results.

# of vis|

# of visjts
- 250 . \:)
S

450 450

# of purcha # of purcha

(b)

# of vis|
# of visjts

450 . 450

,0) # of purcha 0,0 # of purcha

(©) (d)
Figure 2.5: DBSCAN algorithm on synthetic data set- 20, MinPts=5

2.5 Density Micro-Clustering Algorithms on Data Streams

Micro-clustering is a remarkable method in stream clustefio compress data
streams effectively and to record the temporal locality afad(Aggarwal, 2007). The
micro-cluster concept was first proposed in (T. Zhang et1#96) for large datasets,
and subsequently adapted in (Aggarwal et al., 2003) for stadé@ms. The micro-cluster
concept is described as follows (Figure 2.6):
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Figure 2.6: Micro-Clusters in density-based clusteringegated by MOA

Micro-Cluster is a temporal extension of cluster feature (CF) (T. Zhang.£1896),
that is a summarization triple maintained about a clustkee ffiple vector comprises the
number of data points, the linear sum of data points, and siggiared sum. Therefore, a
micro-cluster for a set af-dimensionapointspi; ... pi,, Is defined as th€2.d + 3) tuple

(CF2%, CF1X, CF2',CF1',n).

)

. CF2§: for each dimension, the sum of squares of data values isanagal inCF2*,

Therefore, the-th entry of CF2¥ is equal toz?zl = (Xa j p)z.

. CFli: for each dimension, the sum of the data values is maintdnir@ﬂli. There-

fore, thep-th entry of CF1* is equal toz?zl =XijP.
« CF2': sum of squares of timestamps . . . Tip..
« CF1!: sum of timestampd;; ... Tip,.
* n: number of data points.

The micro-cluster for a set of poinGis denoted bYCFT(C).
Micro-clustering method uses micro-cluster to save surgnmiormation about the

data streams, and performs the clustering on these miastecs.
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2.5.1 DenStream

Feng et al. in (Cao et al., 2006) proposed a clustering algoritermed as Den-
Stream, for evolving data stream, which has the ability todfenoises as well. The al-
gorithm extends the micro-cluster concept as core mianstel, potential micro-cluster,
and outlier micro-cluster in order to distinguish betweeal data and outliers. The core-
micro-cluster synopsis is designed to summarize the ckistgh arbitrary shape in data
streams. Potential and outlier micro-clusters are kepepaste memories since they
need different processing. DenStream is based on the eoffilnge framework. In the on-
line phase it keeps micro-clusters with real data and resoviero-clusters with noises.
In the offline phase density-based clustering is perfornrethe potential micro-clusters
which have the real data.

DenStream extends the micro-cluster concepts to coresroiaster, potential-
micro-cluster, and outlier-micro-clusters (Figure 2. Mieh are described for a group
of close pointspi; . .. pi, With timestampd; . .. Tiy, as follows:

Core-micro-cluster: is defined a€MC(w,c,r).

« w=73 4= f(t-Ti),is the weight anav > u

N ft—=Tp: .
e c= 2=t NP (fN P is the center
N, f(t—Tij)dist(pi;, . o : : :
o= 2ifl V’v) 'St(p”c), r < e is the radius.dist(pij,c) is Euclidean distancée-

tween pointp;; and the centec.

Note that the weight of a micro-cluster must be above a pneel@finreshold: in
order to be considered as a core.

Potential micro-cluster: at timet is defined a$ﬁ,(?,w).

° W= Z?:l f(t—Tij), is the weight anav > . 3 is the parameter to determine the

threshold of the outlier relative - micro-clusterg0 < 3 < 1).
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Figure 2.7: Potential and Outlier Microclusters

1|

e CF = ZT:l f(t—Tij)pij, is the weighted linear sum of the points.

2|

= Z?:l f(t— Tij)pijz, is the weighted squared sum of the points.

The center of potential micro-clusteras= % And the radius of potential micro-cluster
ol —

o JIcF?  cFY

isr = \/T_(T)z (r<e).

Outlier micro-cluster: is defined as(C?,C?,w,to). The definition ofw, CFL,

CF?2, center, and radius are the same as in the potential-migsbec. ty = T;; denotes
the creation time of the outlier micro-cluster. In an outimeicro-cluster the weighiv
must be below the fixed threshold, thus< S . However, it could grow into a potential
micro-cluster when, by adding new points, its weight exsaéé threshold.

Weights of micro-clusters are periodically calculated dedision about removing
or keeping them is made based on the weight threshold.

Online Phase For initialization of the online phase, DenStream use€XBSCAN

algorithm on the first initial points, and forms the initiatential micro-clusters. In fact,
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for each data point, if the aggregate of the weights of tha gaints in the neighborhood
radius is above the weight threshold, then a potential natwster is created. When a
new data point arrives, it is added to either the nearestiegipotential micro-cluster or
outlier micro-cluster. The Euclidean distance betweemthe data point and the center
of the nearest potential or outlier micro-cluster is meadurA micro-cluster is chosen
with the distance less than or equal to the radius thresitfatddoes not belong to any of
them, a new outlier micro-cluster is created and it is plandte outlier buffer.

Offline phase adopts DBSCAN to determine the final clusters on the recorded p
tential micro-clusters.

DenStream has a pruning method in which it frequently chéloc&sveights of the
outlier-micro-clusters in the outlier buffer to guarantiee recognition of the real outliers.
The algorithm defines a density threshold function whiclcdales the lower limit of
density threshold. If the outlier micro-cluster weighsdvelthe lower limit, it is a real
outlier and it can be omitted from the outlier buffer.

Merits and limitations : DenStream handles the evolving data stream effectively by
recognizing the potential clusters from the real outli®@enStream creates a new micro-
cluster if the arriving records are incorporated into exgstmicro-clusters. However,
the algorithm does not occupy any memory space for the neworglaster by either
deleting a micro-cluster or merging two old micro-clustdfsrthermore, the storage for
the new micro-cluster is repeatedly allocated until it isnghated in the pruning phase.
Nevertheless, the pruning phase for removing outliersiimia tonsuming process in the
algorithm. The merging time is also time consuming sincesésutwo lists for keeping

potential and outlier micro clusters.
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2.5.2 StreamOptics

In (Tasoulis et al., 2007), Tasoulis et al. developed a stieg cluster framework
which graphically represents the cluster structure of dateam. It addresses visual-
ization challenges in clustering data streams. The alguoris called StreamOptics that
extends the OPTICS (Ordering Points To Identify the Clusgeftructure) algorithm
(Ankerst et al., 1999) for data streams using micro-clustercept. Core-distance and
reachability distance from OPTICS algorithm are changeterférm of micro-cluster as

follows.

Definition 7 (Micro-Cluster core-distance). Micro-Cluster core-distance is defined to
be equal to micro-cluster radius. In OPTICS, core distanceafdata point is defined as
the smallest of (neighboring radius) that makes a data point as a core obj#atata

point is not a core object, its core-distance is undefined.

Definition 8 (Reachability-distance).The reachability-distance is the same as OPTICS.
Reachability-distance of an object with respect to another object fis chosen based
on the maximum value between Euclidean distance;pfppand the core distance of
p2. If p2 is not a core object, the reachability-distance betweérapd p is undefined.
However, in StreamOptics the distance is calculated betwepdtential micro-clusters.
Reachability-distance between micro-clusternrand me is chosen based on the maxi-
mum value between Euclidean distance of amod me and the core distance of mclf

MG iS not a core object, the reachability-distance between amel me is undefined.

StreamOptics also uses potential micro-cluster and outliero-cluster from Den-
Stream. StreamOptics keeps an ordered list from poteni@brelusters and discards
outlier micro-clusters. Therefore, micro-cluster neighitmod and cluster ordering is de-

fined based on the potential micro-clusters as follows.
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Definition 9 (Micro-cluster neighborhood). Micro-cluster neighborhood is defined

based on the Euclidean distance between two potential miosiess.

Definition 10 (Cluster Ordering). Cluster ordering orders the potential micro-clusters

based on their reachability distance.

In StreamOptics, firstly the neighborhoods of each potentiero-cluster is deter-
mined, and an ordered list of potential micro-clusters aaelenbased on their reachabil-
ity distance. StreamOptics produces a reachability plat tbpresents the micro-cluster
structure using OPTICS algorithm.

Since data streams are changed by time, in StreamOpticsjgisonsidered as the
third dimension which is added to the two dimensional pl6t®BTICS. The StreamOp-
tics plot allows the user to recognize the changes in clsstecture in terms of emerging
and fading clusters.

Merits and limitations: StreamOptics is based on micro-clustering framework,
which uses OPTICS algorithm to provide the three dimensiplwlthat shows the evo-
lution of the cluster structure over the time. However, in@ a supervised method for

cluster extraction; it needs manual checking of the geadridiree dimension plot.

2.5.3 C-DenStream

Ruiz et al. in (Ruiz et al., 2009) developed a density-basesitaling algorithm
with constraints for data streams. The algorithm is retetoeas C-DenStream, which
extends the concept of instance-level constraints froticstata to stream data. Instance-
level constraints are a particular form of background kmralgk, which refer to the in-
stances that must belong to the same cluster (Must-Linktiainss) and those that must
be assigned to different clusters (Cannot-Link constrai(Rseiiz et al., 2009). In C-

DenStream, instance level constraints are converted empal micro-clusters level con-
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Figure 2.8: Micro-cluster Constraint
straint (Figure 2.8) and final clusters are generated ondkengial micro-clusters using
C-DBSCAN (Ruiz, Spiliopoulou, & Menasalvas, 2007).

Merits and limitations : C-DenStream includes domain information in the form of
constraints by adding the constraints to the micro-clgst&he algorithm is very useful
in the applications which have a priori knowledge on the grouembership of some
records. It prevents the formation of the clusters whicmauded in the applications’
semantics. However, the algorithm needs an expert to defireonstraints. Moreover,

the algorithm has DenStream limitations as well.

2.5.4 rDenStream (DenStream with retrospect)

In (Li-xiong et al., 2009), the authors developed a densédged clustering algorithm
for applications with a large amount of outliers. The algon is a three-step clustering
algorithm based on DenStream, which is referred to as rDeat (DenStream with
retrospect). rDenStream improves the accuracy of theesingt algorithm by forming
a classifier from the clustering result. In the retrospeep sif the algorithm, the mis-
interpreted discarded data points get a new chance to leanedd and to improve the
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robustness of the clustering.

In rDenStream the potential and the outlier micro-cluséeesdetermined like Den-
Stream. However, instead of discarding the outlier miduster, which can not be con-
verted to a potential-micro-cluster or to satisfy the dgnsiquirements, they are placed in
a historical outlier buffer. In retrospect phase, final tdus from performing DBSCAN on
potential micro-clusters, are used to form a classifiers Thassifier is applied to re-learn
the outlier micro-cluster in the historical outlier buffén this phase, the micro-clusters
which were chosen wrongly as outliers are modified to imptbeeclustering accuracy.

Merits and limitations: rDenStream is useful for extracting knowledge pattern from
the initial arriving data streams. However, the memory esagd the time complexity is
high since it retains and processes the historical buffieenStream is only applicable
in the applications with a large amount of outliers, which awrthwhile to spend time
and memory to gain better accuracy. The space complexiten$tream is similar to

DenStream; however, it needs extra memory for keeping gterfigal outlier buffer.

2.5.5 SDStream

The SDStreamalgorithm (Ren et al., 2009) has the ability to discover thestrs
with arbitrary shapes over sliding window (Ng & Dash, 2010 the algorithm, the
distribution of the most recent data stream is consideredlaa data points that are not
accommodated in sliding window length are discarded. I ps¢ential and outlier micro-
clusters; however, they are stored in the form of exponehisogram. It is also an
offline-online phase algorithm.

In the online phase, the new data points are added to thest@aiero-cluster. The
nearest micro cluster is either potential-micro-clusteoutlier-micro-cluster, if the new
radius of micro-cluster is less than or equal to the threshatlius. Otherwise, a new

micro-cluster is created. Since the number of micro-chsséee limited, either a micro-
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cluster has to be deleted or two clusters be merged. Forimplatmicro-cluster, the
outdated micro-cluster is chosen according to its timeezaltithe time value does not
belong to the length of sliding window. In merging case, the hearest micro-clusters,
which are density-reachable (Ester et al., 1996), are megi@leou et al., 2008). In the
offline phase, the final clusters of arbitrary shape are ge@eion potential micro-clusters
using a modified DBSCAN.
Merits and limitations: SDStream uses the sliding window model, processing the

most recent data and summarizing the old data. In the redicappns, users are inter-
ested in the distribution characteristics of the most redata points. The authors did not

clarify the main usage of exponential histogram for thegoaithm.

2.5.6 HDenStream

HDenStream (Lin & Lin, 2009) is a density-based clusterimgravolving heteroge-
neous data stream. It adopts potential and outlier miarstet concepts from DenStream
algorithm and uses the method for measuring distance in afasategorical data from
HCluStream (C. Yang & Zhou, 2006). HDenStream adds anothey empotential and
outlier micro-cluster concept which is a two dimensionahgikeeping the frequency of
categorical data. In fact, for measuring distance betwe®nniicro-clusters with cate-
gorical data, the distance between two categorical ategand continuous attributes are
calculated separately. The algorithm has online and offimeses and the pruning phase
is similar to DenStream as well.

Merits and limitations: The algorithm can cover categorical and continuous data
which makes it more useful since in the real-world applmagi we may have numerical,
categorical, and continuous data. However, the algoritbesdot discuss how to save

categorical features in an efficient way for data streamrenuent.
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2.5.7 SOStream

SOStream (Self Organizing density-based clustering oatx 8tream) (Isaksson et
al., 2012) detects structure within fast evolving dataastre by automatically adapting
the threshold for density-based clustering. The algorittas only online phase in which
all mergings and updatings are performed. SOStream usegsatibire learning as intro-
duced for SOMs (Self Organizing Maps) (Kohonen, 1982) wizenenner influences its
immediate neighborhood. When a new data point arrives a walaster is defined based
on Euclidean distance of existing micro-clusters. If thiealated distance is less than a
dynamically defined threshold, the micro-cluster is coased as a winner micro-cluster
and the new data point will be added to it. It also affects theroacluster neighbors of
the winner cluster. The neighbors are defined basedioRts parameters of DBSCAN
algorithm. The algorithm finds all the clusters overlappwith the winner. For each
overlapping cluster its distance to the winning clusterakalated. Any cluster with a
distance less than that of the merge-threshold will be ntength the winner. If the new
point is not added to any existing micro-cluster, a new miduster is created for it.
SOStream dynamically creates, merges, and removes dust@n online manner.

Merits and limitations: SOStream is a density-based clustering algorithm that can
adapt its threshold to the data stream. SOM is a time congumé@thod which is not suit-
able for clustering data streams. SOStream is a microeslbistsed algorithm; however,

it compares its result with two grid based methods.

2.5.8 HDDStream

HDDStream (Ntoutsi et al., 2012) is a density-based allgorifor clustering high
dimensional data streams. It has online and offline phades ofiline phase keeps sum-
marization of both points and dimensions and the offline plgamerates the final clusters

based on a projected clustering algorithm called PreDeCohr{Bd&ailing, Kriegel, &
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Kroger, 2004). The algorithm uses DenStream concepts; ewi introduces prefer
vector for each micro-cluster which is related to prefer esion in high dimensional
data. A prefer dimension is defined based on variance aldeglitmension in micro-
cluster. A micro-cluster prefers a dimension if data poiitsnicro-clusters are more
dense along this dimension. The micro-cluster with prefiéxector is called a projected
micro-cluster. Projected term shows that the micro-clustbased on a subspace of fea-
ture space and not the whole feature space. Based on thisatptieealgorithm changes
the potential and outlier micro-clusters to projected pté& micro-clusters and projected
outlier micro-clusters respectively. HDDStream has pngrtime similar to DenStream
in which the weights of the micro-clusters are periodicalgcked.

Merits and limitations: HDDStream can cluster high dimensional data stream;
however, in the pruning time it only checks micro-clusterigi#s. Since the micro-
cluster fades over time the prefer vector should be checkedld because it may change

over time.

2.5.9 PreDeConStream

PreDeConStream (Hassani et al., 2012) is similar to HDDS8tydwwever, PreDe-
ConStream improves the efficiency of the HDDStream by workinghe offline phase.
This algorithm also introduces a subspace prefer vectochwisi defined based on the
variance of micro-clusters and their neighbors. The algorikeeps two lists including
potential and outlier micro-clusters.

In the pruning time, the neighbors of newly inserted potdnticro-clusters are
checked as well as deleted potential micro-clusters. Thepace prefer vector of these
neighboring micro-clusters are updated and put in a listffested micro-clusters. The
affected micro-cluster list is used in the offline phase gsaering clusters to improve

the efficiency of the offline phase.
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Merits and limitations: The algorithm can cluster high-dimensional data stream
based on the density method. However, searching the affeetighboring clusters is a

time consuming process.

2.5.10 FlockStream

FlockStream (Forestiero et al., 2013) is a density-basestaing algorithm based
on a bio-inspired model. It is based on flocking model (Keyn&@nnedy, & Eberhart,
2001) in which agents are micro-clusters and they work ieddpntly but form clusters
together. It considers an agent for each data point whichaigp®d in the virtual space.
Agents move in their predefined visibility range for a fixeohd, if they visit another
agent, they join to form a cluster in case they are similaratcheother. It merges online
and offline phases since the agents form the clusters atramy Ih fact, it does not need
to perform offline clustering to get the clustering results.

Since, FlockStream only compares each new point with ther@tgents in its agent
visibility distance, it reduces the number of comparisanshie neighborhood of each
point. The visibility distance has a threshold which is dedirby the users. The agents
have some rules in order to move in the virtual space such lassamn, separation and
alignment (Forestiero et al., 2013). These rules are ezddut each agent over the time.
FlockStream has three kinds of agents: basic represemtagents for new data point and
p-representative, and o-representative agents whichamedbon potential- and outlier-
micro-clusters respectively. Actually, when the similasiz agents merge to each other,
they form a p-representative or an o-representative ageadoon their weights.

Merits and limitations: FlockStream is a single pass clustering algorithm which
merges online and offline phases of clustering. It also resltitee number of comparisons
in clustering. FlockStream uses a flocking model which gatesrclustering results any

time without performing frequently offline phase. Howewee flocking model is based
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on moving agent in data space which makes the execution #pendlent on the number
of agents. A heuristic search on these agents is time conguriiich leads to high time
complexity of FlockStream. Although, the algorithm forms eutlier agent to handle
noise, there is not any clear strategy to show when and hoenove the outliers from
the agents list.

Table 2.2 summarizes some of the main characteristics ofehiewed density

micro-clustering algorithms.
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Table 2.2: Main Characteristics of Density Micro-clustgridlgorithms

Name Year Typeofdata Inputparameters Results Objective
DenStream (Cao et al.,2006  Continuous cluster radius, cluster weight, outlieeshr arbitrary shape clusters clustering evolving data
2006) old, decay factor streams
StreamOptics 2007  Continuous potential micro-cluster list, core dise@ncluster structure plot overtime cluster visualization
(Tasoulis et al, reachability distance
2007)
C-DenStream (Ruiz et2009  Continuous cluster radius, minimum number of pointsanbitrary shape clusters withapplying constraint in
al., 2009) the neighborhood, outlier radius, decay faconstraint clustering
tor, a stream of instance level constraint
rDenStream (Li-xiong 2009  Continuous cluster radius, cluster weight, outlieeshr arbitrary shape clusters improving accuracy
et al., 2009) old, decay factor
SDStream (Ren et al.,2009 Continuous  sliding window size, cluster radius, clustrbitrary shape clusters oveclustering  over  sliding
2009) weight sliding window window
HDenstream (Lin & 2009 Continuous, cluster radius, cluster weight, outlier thresharbitrary shape clusters improve quality
Lin, 2009) Categorical old, decay factor
SOSStream (Isakssor?2012  Continuous cluster radius clustering threshold Auterolaistering threshold
etal., 2012) selection
HDDStream (Ntoutsi 2012  Continuous cluster radius, cluster weight, outlieeshr arbitrary shape clusters clustering high dimensional
etal., 2012) old, decay factor data
PreDeConStream 2012 Continuous cluster radius, cluster weight, outlieeshr arbitrary shape clusters clustering high dimensional
(Hassani et al., 2012) old, decay factor data
FlockStream 2013 Continuous cluster radius, cluster weight, outlieeshr arbitrary shape clusters density-based clustering using

(Forestiero et al.,
2013)

old, decay factor flocking model




2.6 Density Grid-based Clustering Algorithms on Data Streans

Using density-based and grid-based methods, researobazbded several hybrid
clustering algorithms for data streams referred to as tlegsd-based clustering algo-
rithms (Y. Chen & Tu, 2007; Wan et al., 2009; Tu & Chen, 2009). Hase algorithms,
data space is partitioned into small segments called g&dsh data point in data streams
is mapped into the grid and then grids are clustered basedeamdensity. Density grid-
based algorithms not only can discover arbitrary shapeersiand detect the outliers, but
also have fast processing time which only depends on the euaileells (Figure 2.9).

According to the reviewed algorithms, there are some defirst which form the
basis of the density grid-based algorithms. In these dlyos, the data space is parti-
tioned into density grids and each data point {x,%o,- - ,Xq} IS mapped to a density

grid g(x). Based on these assumptions the following concepts areiloedcr

» Density coefficient: for each data point, a density coedfitis considered to cap-
ture the dynamic changes of the clusters. The density of gadhs associated
with a decay factor, which is decreased over time. In fag,ghds are processed

in the form of fading window model.

» Grid density: the density of each grid is defined based oadigeegation of density
coefficients of all the data points in that grid (Y. Chen & TupZ). However, in an
algorithm called DUC-Stream (Gao et al., 2005), the dendith@grid is defined

based on its number of data points.

» Dense, sparse and transitional grid: density grid-badgdrithms consider a
threshold for the density of each grid. This density thré$bategorizes the grid as
dense, sparse, and transitional. A grid is considered asedeits density is higher

than a special threshold. If the grid density is lower thaotlaer special threshold,
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Figure 2.9: Density-Grid based clustering Framework

the grid is a sparse grid. The grid with density between tmse@nd sparse density

thresholds is considered as a transitional grid.

» Characteristic vector: keeps some information about thea gaints, which are

mapped to the grid, such as grid density, update time, ore#tne, and grid type.

 Grid cluster: a group of dense neighboring grids, whichtiigker density than the

surrounding grids, form a grid cluster (Y. Chen & Tu, 2007).

In the following sections, we explain the density grid-lzhakyorithms in details and

we discuss their pros and cons.

2.6.1 DUC-Stream

Gao et al. (Gao et al., 2005) have proposed an incremenglesiass clustering
algorithm for data streams using dense unit, which is reteto as DUC-Stream. DUC-
Stream assumes the arrival of data in chunks which contane gmwints. The density of
each unitis its number of points and if it is higher than a dgnisreshold, it is considered
as a dense unit. The algorithm introduces the local dengeruaider to keep only the
units, which are most probably converted to dense unit. IIlCE®iream, the clusters are
identified as a connected component of a graph in which thegsrshow the dense units

and edges show their relation. Therefore, when a denseswadded, if there is no related
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cluster, a new cluster is created; otherwise, the new damsewabsorbed to the existing
clusters.

Furthermore, DUC-Stream keeps the clustering results &) Witich is called clus-
tering bits, to retain little amount of memory. The clusteribit is a bit string, which
keeps the number of dense units. In fact, the clusterindtrisstreated in an incremental
manner. The time complexity and the memory space of the DU€aBt is claimed to be
low due to utilizing the bitwise clustering.

Merits and limitations: DUC-Stream checks the density of each unit. If the unit
does not receive enough data points over time, its densitydeeased so it is not consid-
ered for clustering. Since DUC-Stream processes the datauinks, it relies on the user

to determine the size of the chunks of data.

2.6.2 D-Stream |

Chen et al. (Y. Chen & Tu, 2007) proposed a density-based clogtBamework
for clustering data streams in the real time which is terngeD-&tream I. D-Stream | has
online and offline phases. The online phase reads a new datapaps it into the grid,
and updates the characteristic vector of the grid.

The offline phase adjusts the clusters in each time interappl g he time interval
gap is defined based on the minimum conversion time of diftekands of grids. In the
first time interval, each dense grid is assigned to a disthatter. After that, in each
time interval, clusters are adjusted by determining denslesparse grids. A threshold is
considered for the grid density. If the grid density is higtien the special threshold, it
is a dense grid otherwise is considered as a sparse grice gritl is dense, it is merged
with neighboring grids with higher density and forms a acusOtherwise, if it is sparse,
the grid is removed from the cluster. In fact, D-Stream | ljrsfpdates the density of

the grids and then performs the clustering based on a s@naethod of density-based

41



clustering.

An important motivation behind this framework is handlihg butliers by consider-
ing them as sporadic grids. Sporadic grid is a kind of sparise\ghich has very few data
and does not have any chance to be converted to a dense ¢ggle®n | defines a lower
limit for density threshold based on density threshold fiorc If a sparse grid density is
less than the lower limit of density threshold, it is consetbas a sporadic grid. It has
also a pruning phase which happens in each time intervallgahis phase, the clusters
are adjusted and the sporadic grids are removed from thdéigiri®-Stream | uses a hash
table for keeping the grid list.

Merits and limitations : D-Stream | clusters data streams in real time based on the
grid and the density. It also proposes a density decayindjtstthe clusters in real time
and captures the evolving behavior of data streams and blasig¢eies for handling the
outliers. However, for determining the time interval gdye &lgorithm considers the min-
imum time for a dense grid to be converted to sparse and visavd herefore, the gap
depends on many parameters. In fact, it could be betterhkatlgorithm would define
the time gap based on only the conversion of dense to spadse gince the conversion of
sparse to dense grid has already been considered in thetwétbk grid. Furthermore, it
cannot handle the high dimensional data because it asshatalé majority of the grids

are empty in the high-dimensional situation.

2.6.3 DD-Stream

DD-Stream algorithm (Jia et al., 2008) is an extension ofti&#&n |, which im-
proves the cluster quality by detecting the border pointeégrids. The boundary points
are extracted before performing any adjustment on the .gfide online phase performs
merely like D-Stream |. The offline component runs in eachetimerval gap (defined

like D-Stream I) and extracts boundary points, detectselansl sparse grids and clus-
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ters the dense grids using density-based methods. DDr$@eaigns the points on the
borders based on their distance from the center of the nergighgrids. If the distances
are equal, the neighboring grid with higher density is choSéne information about the
center of the grids is kept in the characteristic vector efghd.

Merits and limitations : DD-Stream extracts the boundary points from the grids to
improve the quality of the clustering. However, the bordeinfs are extracted whenever
the data is mapped to the grids which is a time consuming psodgis better to detect the
border point in each time interval gap before merging thdsgrather than arrival time of
the data points. Furthermore, the algorithm recognizesplaese and dense grids based

on their density, but it does not have any clear strategydioraving the sporadic grids.

2.6.4 D-Stream Il

Tu et al. (Tu & Chen, 2009) proposed an algorithm for clustgriiata streams
based on grid density and attraction. The algorithm is basdtle observation that many
density-based clustering algorithms do not consider tisgtipaal information of data in
the grid. The idea is based on using grid attraction for thdsgr Grid attraction (Tu
& Chen, 2009) shows that to what extent the data in one neigisbdoser to another
neighbor. In fact, the algorithm is an extension of D-Strdaand we refer to it as D-
Stream Il. The clustering procedure of D-Stream Il is simitaD-Stream |; however, in
D-Stream I, two dense grids are merged in case that theytemegdy correlated. Two
girds are called strongly correlated if their grid attrans are higher than a pre-defined
threshold. D-Stream Il has pruning techniques, like D-&8tre, to adjust the clusters in
each time interval gap and to remove the sporadic grids nthipp¢he outliers.

Merits and limitations: D-Stream Il improves the quality of clustering to some
extent by considering the position of the data in the gridscfastering. However, the

algorithm still has the problems that are already mentianddStream I. Nevertheless,
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it keeps the grid list in a tree rather than a table which makegrocessing of the grid

list faster and it reduces the memory space.

2.6.5 MR-Stream

Li Wan et al. (Wan et al., 2009) developed an algorithm forsitgrbased clustering
of data streams at multiple resolutions, termed as MR-Stré@me algorithm improves
the performance of density-based data stream clustergogitim by running the offline
component at constant times. The algorithm determinesigi time for the users to
generate the clusters.

MR-Stream partitions the data space in cells and a tree-kita structure which
keeps the space partitioning. Each time a dimension is elivid two, a cell can be
further divided in @ whered is the data set dimensionality. The tree data structureskeep
the data clustering in different resolutions. Each noddlmasummary information about
its parent and children.

MR-Stream has online and offline phases. In the online phasenwa new data
point is arrived, it is mapped to its related grid cell. In tree structure, if there is not any
sub-node, a new sub-node is created for the new data pothtjatates parent’s weights
up to the root of the tree. In each time interval gap, the sg@uned in two ways: from
the root to maximum height and vise versa. In pruning fromhte&oot, the sparse grids
are detected and density of dense grids are added to themtparin the pruning from
root to the maximum height, the dense grids are detected@ardesgrids are merged to
form noise clusters. The sporadic grid cell is also remoweddmparing its density with
lower limit of density threshold function.

The offline phase, generates clusters at a user defined héiglgtermines all the
reachable dense cells at a special distance and marks themeaduster. The noise

clusters are removed by checking their size and density sizéh and density thresholds
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respectively.

The authors of MR-Stream proposed a memory sampling methoectgnize the
right time to trigger the offline component. In this methdtk algorithm makes a relation
between nodes in the tree and evolution of clusters.

Merits and limitations : MR-Stream introduces a memory sampling method in or-
der to define the right time for running the offline componeritich improves the perfor-
mance of the clustering. However, MR-Stream keeps the spgaide and merges them
for consideration as a noise cluster. It is better not tohletrtoise cluster to be formed by
checking the density of the sparse grids. Furthermore |fogithm cannot work properly

in high dimensional data.

2.6.6 PKS-Stream

Ren et al. in (Ren et al., 2011) proposed an algorithm for dlugjedata streams
based on the grid density for high dimensional data streafesred to as PKS-Stream.
The algorithm is based on the observation that in grid bakesdering, there are a lot of
empty cells specially for the high dimensional data. Thaidebased on using pks-tree
for recording non-empty grids and their relations as welbr keeping the non-empty
cells, PKS-Stream introduces the k-cover grid cell concépgrid is a k-cover, if it has
the minimum density threshold and it is not covered by angogrid. In fact, k-cover
shows the non-empty grids in the neighboring of the leaf rgyats.

PKS-Stream has online and offline phases. The online phags tina data records
to the related grid cells in the pks-tree, if there is a grilll foe the data record. Other-
wise, a new grid cell is created. The offline phase forms tbstets based on the dense
neighboring grids. In each time interval gap, the pks-tsesdijusted and the sparse grids
are removed from the tree.

Merits and limitations : PKS-Stream is a density grid-based clustering, which han-
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dles the high dimensional data stream. However, it doesana Any pruning on the tree
after adding a new data point to any of the cells of the treeS{ream depends df,
which affects the clustering result. It also affectsltheover, which defines the resolution

of cluster.

2.6.7 DCUStream

DCUStream (Y. Yang et al., 2012) is a density-based cluggealgorithm over un-
certain data stream. For each data point in the stream awpéd includes data point,
existence probability of the data point and its arrival tiane considered. Each data point
is mapped into the grid. The algorithm considers an uncetéaise weight for each data
point which is calculated based on temporal feature of de¢as and its existence prob-
ability. By aggregation of uncertain tense weight, the atbar defines the uncertain data
density. DCUStream introduces the core dense grid which isnsalgrid with sparse
neighbors. By considering threshold for uncertain dataitdgm®ense and sparse grid are
defined. For clustering, DCUStream examines all the gridsnitb éore dense grid. It
uses depth first search algorithm to find neighbor grids. Tioegss continues for all
unlabeled dense grids. All sparse grids are considerediss.no

Merits and limitations: DCUStream algorithm improves density-based clustering
algorithm for uncertain data stream environment. Howesgayching the core dense grids

and finding their neighbors are time consuming processes.

2.6.8 DENGRIS-Stream

DENGRIS-Stream (Amini & Ying Wah, 2012) is a density grid-bdsclustering
for stream data over sliding window. The algorithm maps dapht data into a grid,
computes the density of each grid, and clusters the griadgyusensity concepts within
time window units. DENGRIS-Stream can capture the distitloubf recent records pre-

cisely using sliding window model which is more preferalsielata stream applications.
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It introduced the expired grid concept for detecting andaeimg the grids which their
time stamps are not in the sliding window. Furthermore, DIRW& Stream removes the
expired grids before any processing on the grid list whietd$eto save time and memory.
Merits and limitations : DENGRIS-Stream is the first density grid-based clustering
algorithm for evolving data streams over sliding window rbdHowever, there is no

evaluation to show its effectiveness in compare to othéesigthe-art algorithms.

2.6.9 ExCC

ExCC (Exclusive and Complete Clustering) (Bhatnagar et al.3R®&lan exclusive
and complete clustering algorithm for heterogeneous degars. It is an online-offline
algorithm. Online phase keeps synopsis in the grids andefffhase forms the final
clusters on demand. The algorithm maps the numerical atixsbto the grid and the
categorical attributes are assigned granularities acogptd distinct values in respective
domain sets. ExCC is a complete algorithm since it uses pgumased on the speed of
data stream not a window model such as fading one. ExCC intesdfast or slow stream
based on the average arrival time of the data points in tteestisgam. Furthermore, itis an
exclusive clustering algorithm since it uses grid for thetribution of data. The algorithm
detects noise in the offline phase using wait and watch pdfoy detecting real outliers,
it keeps the data points in the hold queue which is kept seggareor each dimension.
EXCC uses a user specified threshold for detecting dense anskesgrids. ExCC can
filter out noise using cell density and cluster density thoés which is specified by user.
However, the algorithm estimates the threshold based ogrenaularity of the grid, the
data dimension, and the average number of points in each lgriokder to generate the
clusters, it considers a pool for dense and recent grids.d€hse neighboring grids are
chosen from this pool by considering eight neighboring @hegrid. For categorical data

the equality of the attributes are considered.
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Merits and limitations : EXCC can cover data stream with mix attributes (numeric
and categorical). Furthermore, the algorithm comparesdasiglts with micro-clustering
methods. However, since it is a grid-based algorithm thalte$fiave to be compared
with grid-based algorithms to be fair. The hold queue s@pateeeds more memory and
processing time since it is defined for each dimension. M@eaising pool for keeping
dense grids requires more memory to keep and more time tegsoc

We summarize the main characteristics of the density gaskt clustering algo-

rithms in Table 2.3.
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Table 2.3: Main Characteristics of Density Grid-based ChusgeAlgorithms

Name Year Type of data Input parameters Results Objective
DUC-Stream (Gao et 2005 undefined chunks of data streams clusters as the cedrgrh- one-scan clustering algorithm
al., 2005) ponents of the graph
D-Stream | (Y. Chen 2007 Continuous  data stream, decay factor, dense grid threshitrary shape clusters real-time clustering
& Tu, 2007) old, sparse grid threshold
DD-Stream (Jia et al., 2008 Continuous  data stream, decay factor, dense grid thresbitrary shape clusters improving quality
2008) old, sparse grid threshold
D-Stream Il (Tu & 2009 Continuous  data stream, decay factor, dense grid threshitrary shape clusters improving quality
Chen, 2009) old, sparse grid threshold
MR-Stream (Wan et 2009 Continuous  data stream, decay factor, dense cell thredhsters in multiple improving performance
al., 2009) old, sparse cell threshold resolutions
PKS-Stream (Ren et2011 Continuous pks-tree, density threshold arbitrary slchypsters clustering high dimensional
al., 2011) data
DCUStream (Y. Yang 2012 Continuous  data stream dimension, density threshold bitraaly shape clusters clustering uncertain data
etal., 2012)

DENGRIS-Stream 2012 Continuous  data stream, sliding window size arbitraaps clusters clustering  over  sliding
(Amini & Ying Wah, window

2012)

ExCC (Bhatnagar et2013 Continuous, grid granularity arbitrary shape clusters clustering fegeneous data
al., 2013) Categorical streams




2.7 Density-based Clustering Algorithms for Multi-Density Dataset
In this section, existing density-based clustering atgans for multi density dataset

are introduced and discussed in details.

2.7.1 GMDBSCAN
GMDBSCAN (Xiaoyun, Yufang, Yan, & Ping, 2008) is a multi-detysclustering

algorithm which uses a grid technique to define multi-dgrdiisters. The algorithm de-
termines local MinPts parameters using grid-density aedjtids are clustered applying
DBSCAN by related local MinPts. The clusters are integratesgtd@n density similarity.
Furthermore, GMDBSCAN uses distance-based method to adjusidaries. The algo-
rithm also uses a special kind of tree structure, which kéepgositional information of
grids, and results in the faster finding of the neighborhodtis a two-pass clustering;

hence, not applicable for data streams.

2.7.2 MSDBSCAN

MSDBSCAN (Esfandani & Abolhassani, 2010) is a density-badestering algo-
rithm which localizes the concept of core points in DBSCAN lobhse the position of
their neighbors. It introduces a new definition for core p®icalled local core distance
(Icd) which represents the distance in which there is at MagPts objects. MSDBSCAN
calculates the Icd for all data points and then the data etore point if the values of
its Icd vector is similar. The algorithm constructs the &gjusters by merging the core
points. The time complexity of MSDBSCAN is high which makesapplicable for data

streams.

2.7.3 Multi-DBSCAN
Multi-DBSCAN (Huang, Yu, Li, & Zeng, 2009) covers the problerag multi-

density datasets by determining values forlt uses “must link constraint” and “k-th”
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nearest distance to calculate thealues for different densities. Multi-DBSCAN chooses
the beste for each density distribution using an outlier detectiogoalthm. After that,
DBSCAN is performed on the dataset using the calculatedulti-DBSCAN improves
DBSCAN in multi-density datasets by determining differentalues for various density

distributions.

2.7.4 Multi Level

In (X. Li, Ye, Li, & Ng, 2010), a hierarchical clustering algthm is developed to
cluster nested and multi-density clusters. It uses a neuat approach to detect hierar-
chical clustered structures in datasets. Agglomeratiueelans is used to create a cluster
tree for both nested clusters and clusters with differensiies. The algorithm’s proce-
dure is as follows: firstly, the agglomerative k-means atgor is used to discover the
number of clusters which are generated in this level. Thelyster validation technique
Is used to identify the atomic and composite clusters. Thmt clusters are the clus-
ters that do not need to be divided any more. For the othetetkisthe agglomerative
k-means is applied to further partitioning. These kind ofstérs are named as compos-
ite clusters. The process is repeated to generate a treaspéid. Using agglomerative
k-means helps to determine atomic and composite clustexadh level. The validation
metrics are based on compactness of the clusters which asuneel based on the scatter-
ing of a cluster. Scattering value is determined based ogdbeness of fit for Gaussian
multi-model clusters. If the cluster scattering is largesprall, the node in the cluster
tree is considered as a composite or an atomic cluster riagggclt is also a two-pass

clustering algorithm.

2.7.5 1S-DBSCAN
IS-DBSCAN (Carmelo et al., 2013) is a method which is proposethjmove DB-

SCAN algorithm in terms of reduced number of parameters aadatility to cluster
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multi-density data. The method proposed a new concept nasisgace ranking which
ranks the data points in the space based on density met8d3BECAN uses Influence
Space (IS) concept which has been introduced in INFLO (INgfloed Outlierness) (Jin,
Tung, Han, & Wang, 2006). IS gives a better estimation of thigmborhoods’ density
distribution and improves separation of clusters withed#ht densities. 1S uses both
the nearest neighbors (NNs) and reverse nearest neigfRNids). Though, the rank-
ing method is based on a linear combination of INFLO and kNNN@arest Neighbor)
distances. After ranking the data density, IS-DBSCAN addsmaee dimension to the
original data, whose value for each point represents thedduhistances of IS. The num-
ber of input parameters are reduced by providing a propertaagt them. The method
establishes a cluster around a point until a border poinharidlier is reached. A bor-
der point is recognized by checking the size of IS. When therdlgn reaches a point
p whose size ofS(p) is below a predefined threshold, the subset is not processed a
the point is detected as noise. In fact, in this method, theitional way of findinge-
neighborhood is replaced by an approach using the advantdg#luence space (IS) for

density-based clustering.

2.7.6 SCDM2

SCDM2 (X. Chen et al., 2012) is an extension of SCDM (Y.-Q. Yu, kyaGuo,
& Li, 2008) which is a semi-supervised clustering algorith8CDM?2 is developed for
multi-density data, and uses constraints to guide theatiust process. It improves the
SCDM by adding 2 more steps to it. In SCDM, DBSCAN'parameter is calculated
based on “must link constraint”. Therefore, if one clustas mo must link constraint,
this cluster may not appear in the final clustering result€DBI2 algorithm has five
phases: 1) getting referencedvith must link sets, 2) adding referenced3) selecting

representative by applying cannot-link sets, 4) multi-stage DBSCAN clustgitby using
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illustrative e, and 5) assigning boundary clusters. In SCDM the list of esfeece is only
made from must link constraint; however, in SCDM2 the listaficot-link is also added

to reference and then the representative

2.7.7 DBSCAN-DLP

DBSCAN-DLP (Multi-density DBSCAN based on Density Levels Ranting)
(Xiong, Chen, Zhang, & Zhang, 2012) determines the parasdtegreach cluster in
order to automatically discover the clusters with varioesgities using density level par-
titioning. In this method, firstly, a dataset is divided irtifferent density levels based
on statistical information of its density variation. Theine ¢ is defined for each density
level. In the last step of the algorithm, DBSCAN is adopted tdgren clustering on
each density level with its relatedto get clustering result. Statistical information of den-
sity variation is calculated based on the k-nearest neigtiistance, which is a distance
between the data poiptand its k-th nearest neighbors. K-neighborhood densitgtere
mined based on the k-nearest neighbor distance; hencentikesk distance the denser
the cluster. Density Level Set (DLS) consists of points vehdensities are almost sim-
ilar. DBSCAN-DLP algorithm generalizes the traditional DBSCAdNfind the clusters
with different densities through density level partitiogi DBSCAN-DLP is a two-pass

clustering algorithm which has high computation time to ppl&able for data streams.

2.7.8 GDCLU

GDCLU (Esfandani, Sayyadi, & Namadchian, 2012) is a densityed clustering
algorithm based on the grid method. It proposed a definitiwrgfid density based on
the density of their neighbors. The algorithm is also saadependent. The algorithm is
based on local density and neighboring density. This mesthemluses a similar radius in

forming micro clusters.
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2.7.9 DSCLU

DSCLU (Namadchian & Esfandani, 2012) is an algorithm for dgrsased clus-
tering of data streams. It has online-offline phases. Therihgn improves the offline
phase to be applicable for clustering data stream in maltisdy environments. The al-
gorithm uses the micro-cluster method for density-basesteting. DSCLU determines
the dominant micro-clusters based on neighbors’ weighies& micro-clusters are dense
and their densities are similar to density of their densghi®ars. In the offline phase, the

clustering is performed on these dominant micro-clusters.

2.8 Clustering Evaluation Metrics

One of the important issues in clustering algorithms is wat@hg (validating) the
goodness of the clustering results that the evaluation unessA multitude of evaluation
metrics were introduced in the literature for measuringtduquality. Evaluation quality
metrics can be categorized into two main classes, intemalexternal measures. The
main difference is whether or not the external informat®used for the cluster evalua-
tion (Kremer et al., 2011). Some of the internal and the etiezvaluation measures are:
C-index (L. J. Hubert & Levin, 1976), sum of squared distar®88Q@) (Han & Kamber,
2006), silhouette coefficient (Kaufman & Rousseeuw, 2005)dRadex (Wu, Xiong, &
Chen, 2009; Rand, 1971), purity (Zhao & Karypis, 2004), van @on(Dongen & Don-
gen, 2000), B Cubed precision (Han et al., 2011), V-measursgiitzerg & Hirschberg,
2007), variation of information (Meal, 2005), F-measure (Rijsbergen, 1979), precision
(Rijsbergen, 1979), and recall (Rijsbergen, 1979). A listvailable in (Milligan, 1981)
for the internal and the external measures.

When the ground truth is available, it can be compared witlusteting to evaluate
the clustering results. In this thesis, a number of extegoality metrics is used such

as Purity, Normalized Mutual Information (NMI), Entropy, R&Index, Adjusted Rand
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Index, Fowlkes—Mallows index (FM), Jaccard Score, F-measuevaluate the quality of
the proposed method.

However, when the ground truth is not available, the inteimdex is used. In this
study, silhouette coefficient is applied as an internaligueValuation. There are different
internal quality metrics such as SSQ; however, they neesterlcenter which are more
applicable for spherical shapes clusters. In fact, SSQ unea$ow closely related are
the objects in the cluster. It defines the compactness ofpgtherigal clusters in convex
approaches. Therefore, the silhouette coefficient is lashich is not dependent on
the clusters shapes.

The clustering evaluation metrics except Entropy haveeshanging from 0 to 1,
where 1 is related to the case when ground truth and findirggestsiare identical. There-
fore, the bigger criteria values are preferred. For Entribygylower value shows better
clustering result.

Each of the mentioned evaluation criteria has its own beaedltthere is no consen-
sus of which criterion is better than other criteria in théadaining community.

The most often evolution quality metrics used in the clustgedata streams in the
reviewed algorithms are purity, and NMI (Amini et al., 201#owever, in this thesis, a
number of other metrics is used to get more fair results. Thtation methods used in

this thesis are elaborated in the following sections as shnwigure 2.10.

2.8.1 External Metrics

There are different available metrics for clustering dqyalirhe metrics have their
own benefits and limitations. For example, purity and entrage more towards small
clusters since they reach a maximal value in case that atesisiare of size one. Com-
bining precision and recall using balanced F-measure, @mtier hand, favors coarser

clusterings, and random clusterings do not receive zengesal Finally, according to
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Figure 2.10: Quality Evaluation Metrics

Strehl's study (Strehl, 2002), Mutual Information (Stré&hiGhosh, 2003) has the best
properties because it is unbiased and symmetric in ternfeeatltister distribution. This

kind of information is very helpful to determine which mettio be used in a specific
clustering scenario (Amig0d, Gonzalo, Artiles, & Verdej00®).

There are several performance indices for cluster evalualndices are measures
of correspondence between two partitions of the same datamnbased on how pairs
of objects are classified in a contingency table. Consgler{G;,G,,...,G;} as ground
truth clusters, an€ = {Cl,Cz,...7Cj} as the clusters made by a clustering algorithm
under evaluations. Table 2.4 can be formed to indicate govedap betwees andC.

In Table 2.4, an entry);j, represents the number of data points in the dassnd in
the clustelCj. bj is the number of points in clustgry g; is the number of points in class
I andn is the number of data points. From the total number of possibmbinations of
pairs (3), four different pairg|TP|,| TN|,|FN|,andFP|) can be represented as follows:

Let | TP| (True Positive) be the number of data points in the same Gamsd same

clusterC, therefore it is defined as follows:

LEEY (n;) 2.2)

]
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Table 2.4: Contingency Table

Class \ Cluster| C; (073 . Cx Sums
Gy M1 N2 ... Nk |&

Gy Moz N2 ... Nk | &

G;j Nz Nj2 ... Nk | Qj
Sums b]_ b2 ce bk n

ITN| (True Negative) is defined as the number of pairs of data pamthe same

classG but not the same clustér, It is denoted as:

TN=Y (2) -y (ng) (2.3)

1 1
Similarly, |FP| (False Positive) is defined as the number of pairs of datapuirthe

same cluster i€ but not in the same class . It is written as:

-3 (2) 5 (%) @

]
|IFN| (False Negative) is defined as the number of pairs of datagtiat are not in
the same class i6 and not the same cluster@ Since|TP|+|TN|+|FP|+|FN| = (5),

therefored is calculated as follows:

n
|FN|: (2)—]TP|—|TN|—]FP| (2.5)
The external evaluation metrics are described as follows:

2.8.1 (a) Purity
The purity of each cluster is defined based on the class whiofost frequent in it

by dividing by number of data points in that cluster. Purgygefined as follows:

purity(C,G) = z %

(may 2 (2.6)
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The purity in data stream is calculated only for the points/erg in a predefined
window, since the weight of points diminishes continuou8lgd clusterings have purity
values close to 0, and a perfect clustering has a purity oblveyer, high purity is easy to
achieve when the number of clusters is large. Purity is ugeevaluation in data stream
clustering in various studies (Hassani et al., 2012; Y. Chefug2007; Forestiero et al.,

2013; Bhatnagar et al., 2013).

2.8.1 (b) Normalized Mutual Information (NMI)

The normalized mutual information (NMI) (Strehl & Ghosh, (&) is a well known
information theoretic measure that assesses how simitacckusterings are. In fact, in
order to make trade-off between the quality of the clustgagainst the number of clus-
ters. NMl is also applicable when the number of classes fsreifit from clustering. The

normalized mutual informatioNMI(C,G) is defined as:

NMI(C.6) = i (fHG(é)] 7 2.7)
| is mutual information:
I(C,G) = Izzn—ri]jlog;*T'gjj 2.8)
HE= -3 P iog™! (2.9)
H(G) :—Z%Iog% (2.10)
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2.8.1(c) Entropy

Entropy (Song & Zhang, 2008; Rohlf, 1974) measures the pafitiie clusters with
respect to the given class labels. Thus, if all clustersisbn§objects with only a single
class label, the entropy is 0. However, as the class labaibjetts in a cluster become

more varied, the entropy increases.

Entropy(C,G) = —Z%zn—i_jlogm (2.11)

2.8.1 (d) Rand Index

Rand index (Rand, 1971) is one of the popular indices and the¢ usesl one for
clustering evaluation (Santos & Embrechts, 2009). It is alsed for evaluating density-
based data stream clustering (Ruiz, Spiliopoulou, & Menasal2010). It measures
the agreement between two partitions, that is, how theexlungt results are close to the

ground truth.

TP +|TN]|

RandIndex=
ITP|+|TN|+ |FP|+ |FN|

(2.12)

2.8.1 (e) Adjusted Rand Index (ARI)
ARI (L. Hubert & Arabie, 1985) is an improvement of RI. It is renmended as the
index of choice for measuring agreement between two parttin clustering analysis

with different numbers of clusters.

index— expectedindex

Ad justedRandIndex - . .
maximumindex expectedindex

(2.13)

(2) (ITP[+[TN]) = [(|TP|+[EN])(ITP[+[FP]) + (|F p| + [TN|)(|FN| + [T N])]
(D)%~ (TP + [EN])(ITP|+|FP]) + (IFP|+|TN|)(|FN| +|TN])]
(2.14)

ARI =
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2.8.1 (f) Fowlkes and Mallow index (FM):

Fowlkes—Mallows index (Fowlkes & Mallows, 1983) is used tetmine the simi-
larity between two clusterings (clusters obtained aftduatering algorithm). It is easily
generalized to a measure for clusterings with different loers of clusters. A higher

value for the Fowlkes—Mallows index indicates a greaterilanity between the clusters

and the ground truth.

TP TP
ITP|+ |FP| |TP|+ |FN|

FM = (2.15)

2.8.1(g) Jaccard Index
Jaccard index (Jaccard, 1901) is one of the external metratshas been used in
various studies as external index (Chaovalit, 2009; Papayét Chen, 2011; Kremer et

al., 2011). The Jaccard score is defined as:

TP

r p—
JaceardC,G) = | T o ENF FP

(2.16)

2.8.1 (h) F-Measure

F-Measure (also F-score or F1 score) (Rijsbergen, 1979)densdoth the precision
and the recall to compute the score. Precision is the nunflzareect results divided by
the number of all returned results and recall is the numbeoafect results divided by
the number of results that should have been returned. The&sie can be considered
as a weighted average of the precision and recall, where &e reaches its best value

at 1 and worst score at 0 (Meesuksabai, Kangkachit, & Waliya204.1).

. TP
precision(C,G) = 4 | % (2.17)
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[ TP
Recal(C,G) = ﬁ (2.18)

2x precisionC,G) « RecallC, G)
precision(C,G) + Recal(C,G)

F —measuréC,G) = (2.19)

2.8.2 Internal Metrics
2.8.2 (a) Silhouette Coefficient

Silhouette coefficient (Rousseeuw, 1987; Brun et al., 200Tse in measuring
cluster quality when the ground truth of a dataset is notlalvls. The silhouette coeffi-
cient is calculated as follows (Han et al., 2011):

For a data set), of n objects, supposP is partitioned intok clustersCy,...,Ck.
For each objeab € D, we calculatea(o) as the average distance betweesnd all other
objects in the cluster to whialhbelongs. Similarlyb(o) is the minimum average distance
from o to all clusters to whiclo does not belong to. Formally, suppase Ci(1 <i <Kk);

then

_ Yoec, o0 distancéo, o)

a(o) = 2.20
) G 1] (2:20)
_ Y occ; distancéo, o)
b(o) = mIan:1<j<k,j7éi{ = C (2.21)
j
According to 2.20 and 2.21, the silhouette coefficient &f defined as:
b(o) — a(o) (2.22)

S(0) = Hax(a(0).b(o)}

The value of the silhouette coefficient is between -1 and & vthue ofa(o) reflects

the compactness of the cluster to whixthelongs. The smaller the value, the more com-
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pact the cluster. The value bfo) captures the degree to which o is separated from other
clusters. The largds(o) is, the more separatexis from other clusters. Therefore, when
the silhouette coefficient value ofapproaches 1, the cluster containoig compact and
ois far away from other clusters, which is the preferable chissvever, when the silhou-
ette coefficient value is negative (i.&(0) < a(0)), this means that, in expectatiomjs
closer to the objects in another cluster than to the objeditsa same cluster as(Han et

al., 2011).

Silhouette function is the ratio of the difference betwdendverage inter-cluster and
the average intra-cluster distances, to the maximum ofritee-cluster and intra-cluster
distances (Kaufman & Rousseeuw, 2009). The positive Siltt@walues approaching
1 indicate good cluster quality, and negative Silhouetieesapproaching -1 indicate
incorrect cluster assignment. The Silhouette functionsuess the compactness and sep-
aration of the produced clusters.

The internal validation with indices such as Sum of SQuamnedrESSQ) and Sil-
houette was employed in evaluation, especially when thexe avlack of ground truth.
Among internal validity criteria, SSQ is based on the distanf every data point in a
cluster to its centroid. Despite its popular usage in théuewen of clustering results in
the literature, SSQ favored spherical clusters, as opptwsadbitrarily-shaped clusters.
In our experiments, we found that the Silhouette functiols wanore appropriate mea-
sure that did not have this limitation. Therefore, it wasluded in the evaluation. A
Silhouette width measures the compactness of the cluskechwvas more appropriate
to discover non-spherical clusters. In addition, the Qititte measure is supported by a
comparative study on various cluster validity indices &srttost appropriate measure for

internal indices (Brun et al., 2007).
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Tools and Software: The MOA (Massive On-line Analysis) framework (Bifet, Holmes
Pfahringer, et al., 2010) is an open source benchmarkirtgvad for data streams that
is built on the work of WEKA (Weka Group Project, 2008; HolmBgnkin, & Witten,
1994). MOA has a set of stream clustering algorithms and Ect@n of evaluation
measures. MOA has considered stream classification digwsijthowever, recently they
added stream clustering evaluation tool (Kranen et al.0p(Hurthermore, another eval-
uation measure called Cluster Mapping Measure (CMM) (Krenel.e2011) is inte-
grated to MOA for evolving data streams. CMM has a mapping arept which can
handle emerging and disappearing clusters correctly. Kranal. (Kremer et al., 2011)
show that the proposed measure can reflect the errors in tdedanscontext effectively.
SAMOA (Scalable Advanced Massive Online Analysis) (De [Ersei Morales, 2013) is
another upcoming tool for mining big data streams. The gb&lXdMOA is to provide a

framework for mining data streams using a cluster/cloudrenment.

2.9 Discussion

Figure 2.11 depicts the distribution of the reviewed papersdensity-based data
stream clustering algorithms over years. There are twopeaR009 and 2012 for both
categories. However, it can be observed that micro-clinstenethods are more popular
than grid methods.

In Figure 2.12, we show the chronological order of the re@@wlgorithms as well
as how the algorithms relate to each other. It can be obsdreedthe figure that the
most remarkable algorithms are DenStream and D-Stream ldrofolustering and the
grid group respectively. Other algorithms in each of theegaties try to improve two
mentioned algorithms in different aspects such as impgpefficiency or quality or han-

dling different kinds of data by adding some features whighlisted in Table 2.5.
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Figure 2.11: Distribution of the Reviewed Papers for Denbaged Data Stream Cluster-
ing Algorithms

2.9.1 Density-based Data Stream Clustering Algorithm and Gallenging Issues
In this subsection, we briefly describe how the algorithmsrocome the challenges

in clustering data streams.

» Handling noisy data: in micro-clustering algorithms @artimicro-cluster is intro-
duced. The outlier and the real data are retained in diftéoems of micro-clusters,
which helps to distinguish between the seeds of the newsskiftom the outliers.
In the grid methods, sporadic grid is introduced which has@aéd number of data

points mapped by outliers.

» Handling evolving data: density-based clustering albons over data streams ei-
ther micro-clustering or grid based have the ability to Hamdolving data streams
using different kinds of window models such as fading ardirsj window models.
DUCStream does not handle evolving data because it consiselbehavior of data

streams as the data points arriving in chunks.

 Limited time: D-Stream Il has the lowest time complexityigthenables the pro-
cessing of data stream in a limited time. Other algorithnmsetcomplexity grows

linearly as data streams are generated. However, thetllgssuch as rDenStream
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Figure 2.12: Chronological Order of the Reviewed Densityedd3ata Stream Clustering
Algorithms

and C-DenStream need more time for processing historic&hahd constraints

respectively. SOStream has the highest time complexitypeoed to other algo-

rithms.

 Limited memory: the aforementioned algorithms use midrsters or grid to keep

summary about the data stream to process data points. Howiegealgorithms
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Table 2.5: Algorithms’ Relations

Name Added feature Objective

DenStream (Cao et al.,Main algorithm density micro data stream clustering

2006)

StreamOptics DenStream+Visualization graphically represents the eludtucture of the data stream
(Tasoulis et al,

2007)

C-DenStream (Ruiz et DenStream+Constraint guiding clustering process using doimi@rmation

al., 2009)

rDenStream (Li-xiong DenStream+Retrospect phase using discarded micro-closteptove accuracy

etal., 2009)

SDStream (Ren et al.,DenStream+Sliding window clustering more recent data

2009)

HDenstream (Lin & DenStream+Categorical data achieve higher cluster purity

Lin, 2009)

SOSStream (Isakssorautomate DenStream parameters removing difficulties ingihgaunsuitable parameters

etal., 2012)

HDDStream (Ntoutsi DenStream+High dimensional data density-based projectstecing over high dimensional data streams
etal., 2012)

PreDeConStream DenStream+High dimensional data improve efficiency of offifase in density-based projected clustering
(Hassani et al., 2012) over high dimensional data streams

FlockStream DenStream+Bio model avoid the computing demanding offlinstelucomputation
(Forestiero et al,

2013)

DUC-Stream (Gao et Clustering data stream in chunks density-grid single pasgaiing

al., 2005)

D-Stream | (Y. Chen Main algorithm density grid-based data stream clustering

& Tu, 2007)

DD-Stream (Jia et al., D-Stream I+Considering boundary points  improve quality

2008)

D-Stream Il (Tu & D-Stream I+Grid attraction considering positional inforioatof the data in that grid to improve quality
Chen, 2009)

MR-Stream (Wan et D-Stream I+Removing offline phase improve quality

al., 2009)

PKS-Stream (Ren etD-Stream llI+High dimensional data clustering high dimenalatata streams

al., 2011)

DCUStream (Y. Yang D-Stream I+Uncertain data improves density-based clugtalgorithm for uncertain data stream envi-
etal., 2012) ronment

DENGRIS-Stream D-Stream I+Sliding window clustering more recent data stieam

(Amini & Ying Wah,

2012)

ExCC (Bhatnagar et D-Stream I+Categorical data exclusive and complete cluggdar mix attributes data streams
al., 2013)

such as rDenStream, C-DenStream, FlockStream and ExCC needmamory.

» Handling high dimensional data: if the algorithms are usethe high dimensional
data, the time complexity would be high which is not acceletab clustering of
data streams. PKS-Stream, HDDStream, and PreDeConStreaimeaalgorithms

with the ability to handle high dimensional data streams.

Table 2.6 summarizes how the algorithms address the meuwticimallenging issues.

2.9.2 Existing Algorithms Evaluation
We compared the algorithms based on the evaluation metridse algorithms
with same metrics are compared together, for example, ifiges using purity (Den-

Stream, rDenstream, SDStream, PKS-Stream, MR-Streamk$&ieam, HDenStream,
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Table 2.6: Density-based Clustering Algorithms and Challeptssues

Density-based | Handling Handling| Limited | Limited | Handling
Clustering Noisy Evolv- Time Mem- High
Algorithms Data ing ory Dimensional

Data Data

DenStream
StreamOptics
C-DenStream
rDenStream
SDStream
HDenStream
SOStream
HDDStream
PreDeConStream
FlockStream
DUCStream
D-Stream |
DD-Stream
D-Stream Il
MR-Stream
PKS-Stream
DCUStream
DenGRIS-Stream
ExCC

OOooOooOooogoood
O

O f e

Ogj e

OO00Oo0ooOoOgooogooogogoog o

OOogoo O .

SOStream, PreDeConStream) (Figure 2.13a) and algorithimg 8§Q (D-Stream |, D-
Stream Il) (Figure 2.13b). However, C-DenStream is the olggréthm which uses Rand
Index and it is compared with DenStream (Figure 2.13c). Edteam also uses NMI
(Normalized Mutual Information) (Manning, Raghavan, & S&ht2008) and is com-
pared to DenStream to measure quality (Figure 2.13d). NMhgasured based on differ-
ent time units which is chosen by FlockStream. All the corguans are based on the real
dataset KDD CUP99 (Rosset & Inger, 2000). Purity is measursddan the various
time units in which at least an attack exists.
The high quality of DenStream and MR-Stream benefit from te#ective prun-

ing strategies, which promptly get rid of the outliers whiksep the potential clusters to

form final clusters. In terms of high dimensional data, Pi€beStream has better qual-
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Figure 2.13: Algorithm Evaluation

ity than PKS-Stream since it has a method to improve the efffimase of the algorithm.
SDStream has acceptable quality in the initial time unitwéweer, the quality reduces
specifically in time 375, when more attacks should be detieciéhe quality of rDen-
Stream gradually improves since it makes classifier fromateling result. C-DenStream
has a quality better than DenStream which shows that use@abkground knowledge
for guiding the clustering improves the clustering qualiyen though FlockStream uses
approximate nearest neighbor, it has higher quality coethés DenStream in terms of

purity and normalized mutual information. D-Stream Il hastér quality in compare to
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D-Stream I, since it considers the positional informatibowt the data points inside the
grid. HDenStream has quality less than DenStream which shioat it cannot improve
DenStream to be used for data stream with categorical aidsb

We compared algorithms’ performance as well. Executiore tisnmmeasured based
the number of data points (length of stream) with respeché#otime in seconds. We
divided algorithms comparisons based on the length of stleas than 50000<( 50k)
data points and more than 50008 %0k) (shown in Figures 2.13e and 2.13f) respectively
to make fairly comparison. The comparison is based on thiedaaset KDD Cup99
Network Intrusion Detection. The algorithms which are moFigure 2.13 used another
dataset or they are measured only on synthetic datasetsratdh@ve any evaluation on
their execution time.

It can be observed that SOStream has the highest executienstnce finding the
winner micro-cluster is time consuming. MR-Stream also hlaiglla execution time even
in smaller length of streams since the pruning method is toresuming. D-Stream |,
DD-Stream, and D-Stream Il have almost the same executiogy thowever, D-Stream
Il has a better time performance than the others. D-Streausdk tree structure for
keeping grid list which makes the algorithm faster. Den@tris execution time is similar
to PKS-stream. It shows that PKS-Stream clusters high dsineal data with acceptable
execution time.

Table 2.7 compares the quality metrics, memory usage, tiongptexity and ap-
plication domain of the reviewed algorithms which will besclissed in the following

subsection.

2.9.3 Discussion on Multi-Density Algorithms
A couple of clustering algorithms are developed for muéindity datasets. They use

different methods to discover clusters with various déssisuch as localizing MinPts,

69



Table 2.7: Evaluation on Density-based Data Stream Clustéigorithms

Name Quality Metric ~ Memory Usage Time Complexity Application Dama

DenStream (Cao et al.,Purity m Oo(m) Network Intrusion Detection

2006) System

StreamOptics - m Q(mslog(m)) Environment monitoring

(Tasoulis et al.,

2007)

C-DenStream (Ruiz et Rand Index m-+mg O(m+m) Environment monitoring

al., 2009)

rDenStream (Li-xiong Purity m+ Sp o(m) +Th Network Intrusion Detection

etal., 2009) System

SDStream (Ren et al.,Purity Nswy N/A Network Intrusion Detection

2009) System

HDenstream (Lin & Purity m Q(m) Network Intrusion Detection

Lin, 2009) System

SOStream (Isaksson ePurity m O(nzlogn) Network Intrusion Detection

al., 2012) System

HDDStream (Ntoutsi Purity m o(m) +o(mp) Environment monitoring,

etal., 2012) Network Intrusion Detection
System

PreDeConStream Purity m o(m) +o(mip) +o(Myp) Network Intrusion Detection

(Hassani et al., 2012) System

FlockStream Purity, NMI M-+ Nagent o(m)+0(n§gen9 Network Intrusion Detection

(Forestiero et al, System

2013)

DUC-Stream (Gao et SSQ Ny O(cp) Network Intrusion Detection

al., 2005) System

D-Stream | (Y. Chen SSQ g O(1) +o(g) Network Intrusion Detection

& Tu, 2007) System

DD-Stream (Jia et al., N/A g 0(g?) Network Intrusion Detection

2008) System

D-Stream Il (Tu & SSQ log1g O(loglog. g) Network Intrusion Detection

Chen, 2009) 4§ * System

MR-Stream (Wan et Purity gxH O(g+xH)+0(29xH)+O(g* Network Intrusion Detection

al., 2009) log(N)) System

PKS-Stream (Ren etPurity logy O(logk), O(k) Network Intrusion Detection

al., 2011) System

DCUStream (Y. Yang Average quality g o(g) Environment monitoring

etal., 2012) of clusters

DENGRIS-Stream N/A g o(g) N/A

(Amini & Ying Wah,

2012)
ExCC (Bhatnagar et Purity 9+ Spool+ SHo O(g¥) Network Intrusion Detection
al., 2013) System

n: number of data pointan: number of micro-clusters in main memonmy.: number of micro-cluster
constraintsSp: size of historical bufferT,: time for processing historical buffengy: sliding window
length, nagent NUMber of agentsp(my): number of potential micro-clustersyp: number of inserted
potential micro-clustersyyp: number of deleted potential micro-clusteg:, number of dense unitgy:
clustering bitsg: number of grids in grid listA: decay factorH: level of clusteringk: pks-tree degree,
Spool: Size of pool for dense grid§.q: size of hold queue for noisgk: number of discovered clusters

localizing &, using grid method to map the data and to determine the geoSidata

points, ranking the clustering density, and forming a dustee for multi-density data.
The algorithms are more suitable when the whole data isaailor in case that the
processing should not be done in a limited time. Howeveraita dtream environments,

these algorithms are not applicable due to the followingwthecks:
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1. They need two-pass of data such as GMDBSCAN (Xiaoyun et@08) and IS-
DBSCAN (Carmelo et al., 2013). In these algorithms, they firsteex useful infor-
mation about the distribution of data and then cluster tha ldased on the extracted
information. This situation is impossible in the data stneaince data streams ar-
rive continuously, and the clustering algorithms have t@edormed in a single

scan.

2. Some of the existing multi-density clustering algorithneed the whole data (Xi-

aoyun et al., 2008; X. Li et al., 2010; Esfandani et al., 2012)

3. Algorithms like (X. Chen et al., 2012; Esfandani & Abolhass 2010; Huang
et al., 2009) have high execution time which makes them nplicgble for data

streams because they need fast processing time.

DSCLU (Namadchian & Esfandani, 2012), a density-based aedungt for data
stream in multi-density environments, considers simi&tiuses for all micro clusters
even with different data point distributions.

Table 2.8 is a comparison of the existing algorithms for irudinsity data.

2.9.4 Density-based Data Stream Clustering Algorithms’ Aplications

The literature on density-based clustering for data stedamsually centered around
concrete methods rather than application contexts. Nesleds, in this section, we would
like to bring examples of several possible scenarios whensity-based clustering can
be used.

The density-based method has been used for earth enviréssiane a long time
ago (Sander, Ester, Kriegel, & Xu, 1998). Recently it has he#ized for medical pur-
poses such as a pre-processing phase for prediction of iAiehelisease (Plant et al.,

2010) and for skin cancer (Mete, Kockara, & Aydin, 2011).
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Table 2.8: A Comparison of Density-based Clustering Algonghon Multi-Density data

Algorithm Name Method Data  Disadvantages for data
Stream stream
Supported
GMDBSCAN Grid density, local O Two scan clustering
(Xiaoyun et al., 2008) MinPts
Multi-DBSCAN k nearest distance, ad High execution time
(Huang et al., 2009) must link constraints
MSDBSCAN localizing core point O High execution time
(Esfandani & Abolhassani, concept
2010)
(X. Lietal., 2010) Hierarchical  cluster O Need whole data
tree, k-means
SCDM2 Using constraints in O Needs number of clus-
(X. Chen etal., 2012) clustering ters (semi supervised)
GDCLU Grid-based clustering, a Need whole data
(Esfandani et al., 2012)  local density
DSCLU Dominant micro clus- ad Using similar radius
(Namadchian & Esfandani, ter
2012)
DBSCAN-DLP Density level parti- O Two scan clustering
(Xiong et al., 2012) tioning
ISDBSCAN Space ranking ad Two scan clustering

(Carmelo et al., 2013)

Real world applications may have any shape clusters and @eneoisy data in

some situations. Furthermore, they do not require the numbelusters in advance.

Since density-based clusterings have some abilities inrlagure, they are applicable in

different applications such as:

* Network intrusion detection system: in this system, sensapture all network

traffic and the system analyzes the content of individuaketsdor malicious traffic

(Cao et al., 2006).

* In environment observations: for example, in applicaiaich are used to moni-

tor flood, hurricane, tsunami, earthquake and forest fireddien (Ruiz et al., 2009).

» Medical systems: clustering medical data streams suchatsmical and physio-

logical sensors, incidence records, health informatistesys, and patient moni-

toring system (Mete et al., 2011; Plant et al., 2010).

» Stock trade analysis:

for example clustering one millioansaction records

throughout the trading hours of a day (D. Yang, Rundensteghevard, 2011).
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» Social network analysis: clustering micro-blogging tetteams (e.g. Twitter), in

order to obtain temporal and geo-spatial features of realedrevents (Lee, 2012).

* Moving objects applications: such as animal migrationlysig, vehicle traffic

management (Y. Yu, Wang, Wang, Wang, & He, 2013).

Applications like patient monitoring and sensor networkseismic studies, for ex-
ample, work in bounded data space. Therefore, it is moreeabkle to use grid-density
based methods. In these applications, a data point is ethember of a cluster or an
outlier. Grid-based methods quantize the object spaceaifiitoite number of cells that
form a grid structure. All the clustering operations aref@ened on the grid structure,
i.e. on the quantized space. The main advantage of this agipiie its fast processing
time, which is typically independent of the number of datgeots and dependent only
on the number of cells in each dimension in the quantizedespbrcthis method if the
guality is the most important factor and time and memory ao®sd and third factors re-
spectively, MR-Stream is the best choice. In the case of tipelitance of execution time
such as environmental observations, for example, for Treudatection the best choice
is D-stream 1l since it has the lowest execution time. Howebe quality of grid-based
method is highly dependent on the granularity of the grid famther, defining the grid
granularity to get the proper result is challenging.

Another important class of density-based algorithms oe¢a dtreams is the density
micro-clustering group. The quality of these algorithmdetter than the grid-based
methods. In the grid-based method, if we want to get morerateuesults we have to
fine the grids that leads to high time complexity. Densitydolamicro-clustering has better
quality with reasonable time complexity. Micro-clustgrimethod has limited memory
usage which depends on the number of micro-clusters. In tberlustering method,
when the data points arrive they are assigned to the relatgd4tiusters and at the same
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time the outlier micro-clusters are removed based on thsigethreshold. Therefore,
clustering results can be generated any time. Howevergsisbane limitations; finding
the proper micro-cluster is time consuming. In some caseause of the limitations in
the memory usage, some real data is removed due to the appeafean outlier.

However, choosing a proper density micro-clustering algor depends on the type
of the application. For example, in clustering GIS applmad the best choice is C-
DenStream because it considers the real world constraists as the city, rivers and
highway networks. If the application needs limited progggdime with good quality,
FlockStream is a better choice rather than DenStream sirdecieases the number of
micro-clustering comparisons. If quality is the first pitgrr-DenStream is the choice;
however, it needs more memory usage and execution time gechpa the other algo-
rithms. If there is any application which its thresholdstisgs (like similarity threshold
or grid size) are difficult to be manually done, SOStream &slibst choice because it
automatically adapts the thresholds. For detecting aisistethe recent data such as
identifying malicious attacks (clusters) in current netkvtraffic or recent stock trades in
stock exchange, SDStream and DENGRIS-Stream are more aplplisince they cluster
within the most recent portion of the stream.

Another aspect of choosing an algorithm is the type of dategged by the appli-
cation such as uncertain, high-dimensional or heterogenedost of the algorithms in
micro-cluster and grid groups only cover the continuous.dd@terefore, if we have for
example biomedical data with the categorical attributes have only EXCC in the grid
group and HDenStream in the micro-cluster group. Furthegma some sensor-based
applications the output of sensor networks is uncertaimbee of the noise in the sen-
sor inputs or errors in wireless transmission. In this cas®algorithm has to cover the
uncertain data as well. In this situation the best choiceG&JStream. Moreover, if the

data is high-dimensional in its nature, we can choose betwiDStream and PreDe-
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ConStream in the micro-clustering group and PKS-Streamamythd-based algorithms.
In summary, the task of choosing a proper density-basedecing algorithm de-

pends on the kind of data produced as well as the applicauirements such as limited

time, high quality, high accuracy, handling high noisy data many other requirements

which are defined based on the application’s objectives.

2.10 Summary

Data stream are infinitive, massive and evolve over time whiake the clustering
more challenging. Density-based method is one of the sogmficlasses in clustering
which has prominent features such as detecting arbitrargesblusters, handling noise,
and it does not require the number of clusters in advance.

Recently, a number of density-based clustering are devéligpelata stream. These
algorithms use different methods to address the challemgekistering data streams.
The methods are referred to as density micro clustering endity grid-based clustering.
Micro-clustering algorithms have high computation timeilelgrid-based methods have
low quality and neither of them have the ability to clusterltindensity data. Some al-
gorithms have been proposed for multi-density clusterihgwever, these algorithms are
only for static datasets and they are not applicable for skatmm due to some problems
such as high execution time, two-pass clustering and the foe¢he whole data.

Based on the comprehensive review on the existing densgigebalustering for
evolving data stream and multi-density algorithms, it isxadaded that the existing
density-based data stream clustering algorithms have ¢oghputation time and low
qguality when there is a range of densities in data. Our irgann this study is to de-
velop a density-based clustering algorithm with low timenpdexity and high quality

even when the data has various density distributions.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Overview

This chapter explains the research methodology used inuldg. SNVe explain in de-
tails the research methodology steps which includes arvieveof the existing methods,
how to approach the problem statement, and how to achiewabibetives. Furthermore,

the evaluation method and the analysis of evaluation ieaundt presented.

3.2 Approaches to Research
The research methodology framework is shown in Figure 3.terjEstep of the

research methodology is described as follows.

3.2.1 Reviewing Related Works

We reviewed existing density-based clustering algorita®svell as challenges in
clustering data stream. We defined to what extend the egistirstering algorithms can
overcome the challenges. Furthermore, we extracted tHagms of existing density-
based methods for clustering data streams. The analydie eisting approaches gives

a wider perspective of the problems in density-based cingtef data streams.

3.2.2 Problem Formulation

Reviewing the existing methods turned out that density-tbaestering algorithms
have high computation time for clustering data streamstheamore, density-based clus-
tering cannot work well in multi-density data stream. Intfaloey have low quality in the

environments with various densities.
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Figure 3.1: Research Methodology Framework

3.2.3 Defining the Research Objectives

The objectives of our research based on the problem statewresas follows:

» To propose and develop a density-based clustering atgorfor evolving data
streams. This objective needs the following methods:
— To develop a method with low computation time

— To develop a new method to save summary information aboatstegam in

multi-density environments
— To develop a method to prune the summary information

— To develop a method to perform macro clustering on synode d
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Figure 3.2: MuDi-Stream

Algorithm

» To evaluate the capability of the proposed method in immgthe quality of clus-

tering in multi-density environments

» To evaluate the capability of the proposed method to perfolustering in low

computation time

3.2.4 System Propose

In order to achieve the objectives, a method which we catl®tuDi-Stream (Muti

Densty clustering algorithm for evolving data Strepms proposed. The algorithm,

which is illustrated in Figure 3.2, is an online-offline omelat has the following compo-

nents:
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* Merging or Mapping (MM-Component): in this component, can@i cluster is
introduced to keep summary information about arbitraryshausters while a grid
list is used to keep outliers. When a data point arrives, tperahm checks to add
it to the nearest core mini cluster in case its distance & tlean the core mini
cluster’s radius. However, if it cannot be added to any coir@ otuster, the data

point is considered as noise and it is mapped to the densitty gr

* Forming Core Mini clusters (FCM-Component): if the grid déynss more than a
predefined threshold, a new core mini cluster is formed frioendata points inside
the grid cell. Each core micro cluster is formed based onfereift radius. The

radius is calculated according to the distribution of datade the micro-cluster.

* Pruning Grids and Core Mini clusters (PGCM-Component): farheeore mini
cluster, if no new point is added, its weight will decay graltjy Furthermore,
there are some grids which do not receive data points for g tiome and become
sporadic. These kinds of core mini clusters and grid celtmikhbe removed from
the mini clusters and the grid list respectively. The decidior removing grids
and mini clusters is made based on a comparison of their weayid a specific

threshold.

* Forming Final Clusters (FFC-Component): final clusters arséa from pruned
core mini clusters. In this phase, a modified multi-densagdal clustering algo-

rithm is used to perform the clustering on the core mini @tsst

In the following, the motivation of each component of thegosed multi-density

based clustering algorithm for evolving data streams isqated:

» Motivation for MM-Component :

79



Data stream consists of indefinitely and possibly time@ngl sequences (Micha-
lak, DuBois, DuBois, Wiel, & Hogden, 2012; Chu et al.,, 2006; X.adQ,
Furtlehner, Germain-Renaud, & Sebag, 2013; J. a. Gama, Redrig Lopes,
2011; X. Zhang et al., 2013). The omnipresence of data stgg@sas new chal-
lenges for clustering. Data stream are infinite and evolher tine. The challenge
is how to keep summary information from this huge amount ¢é d@nerated over
time. Two prominent categories in clustering data streausiisg grid synopsis or
micro-clustering. These methods are discussed extensiv&lhapter 2. In this
thesis, a hybrid method using grid and micro clusters is fsekieeping summary
information. In real applications the data is noisy whichtkesdetection of clusters
more challenging since data streams evolve over time. Thivation of using this
hybrid method is that the micro clusters keep the real dateewhd is used for the
noise or outliers. When data points in the grid structure gaiough weight, it is

converted to micro clusters.

Motivation for FCM-Component :

Data stream clustering is a challenging problem becausewimportant proper-
ties: its infinite length and evolving nature (Masud, GaoaKhHan, & Thurais-
ingham, 2008; Read, Bifet, Holmes, & Pfahringer, 2012). Tuges data stream
needs a synopsis structure which is updated as its naturgetaver time. For
example, as the time passes the outliers may convert to atalahd vice versa.
Therefore, in evolving data stream, a method to check thsiyehreshold is vital.
Since a hybrid method is used, outliers are mapped to the grid real data form
core mini clusters. The main duty of this component is foigriore mini clusters
by controlling the aggregation of data points’ weight iresithe grid in case the

weight value is more than a threshold.
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» Motivation for PGCM-Component :

In evolving data stream, the role of the clusters and ostliexquently change. A
number of core mini clusters are formed as data stream pilecékevertheless, the
problem is that the number of outliers are also growing a& statam proceeds. The
worst case happens when a lot of outliers exist. Therefbeealgorithm requires
an effective pruning strategy which quickly eliminates tliers while keeps the
potential core mini clusters. Instead of pruning too freglye a pruning time is
calculated which is the minimum timestamp for a core minstdu to be converted

to an outlier (VY. Li, Li, Wang, & Zhai, 2014).

* Motivation for FFC-Component:

In the online phase of MuDi-Stream, all core mini clustenstaee the density areas
of data stream. However, a clustering algorithm is requioeget meaningful clus-
ters. In this component, an algorithm named M-DBSCAN is deyatiowhich has
the ability to cluster core mini clusters with various déiles. M-DBSCAN is an
extension of DBSCAN algorithm (Kriegel et al., 2011; Aggar&aReddy, 2013)

with the ability to cluster multi-density data.

3.2.5 Experimental Setup
Various datasets including real and synthetic ones aretseldor evaluation pur-
poses. For all datasets, we used the following normaliaggchnique in order to have

all the data points in the range (& 1|

. e—Emj
Normalizede) = ﬁ
max— Emin

whereEnin is the minimum value of variable, andEmax is its maximum value. 1Emax
andEn;, are equal theNormalizede) is set to 05.
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MuDi-Stream has some parameters includdwdGranularity, A, anda. For each
dataset, the range of parameters are determined.
MuDi-Stream with all its components are implemented in Ja®ae of our future

work is to implement it as an add-on in MOA.

3.2.6 Evaluation Method

As it is explained in Section 2.8 of Chapter 2, the quality mestare categorized in
internal and external indices. The most common evaluatietihad to measure quality is
purity and NMI. However, we added some other metrics whiehclosen from the data
stream clustering in the literature. The list of metricsdusethis thesis include: Purity,
Normalized Mutual Information (NMI), Rand Index (RI), Adjest Rand Index (ARI),
Jaccard index, Fowlkes and Mallow index (FM), and F-measure

These metrics are used in order to show to what extend thetygisimproved
compared to the existing methods.

The focus of this study is on improving the quality; howewle scalability, com-
plexity, and sensitivity of the proposed model are alsoudated to prove its feasibility
theoretically. For scalability, time execution and memosgage are measured. For com-
plexity, time and space complexity are discussed, and yirfal sensitivity the range
of all parameters are determined and compared to the dhugtquality metrics. We
evaluated the algorithm on various real and synthetic degas’he pseudo-code for all
methods are provided separately. The results are compattethe existing well-known
and state-of-the-art algorithms.

Figure 3.3 depicts the evaluation method of MuDi-Streanortigm.
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3.3 Summary

The chapter explains the research methodology of the th&sisethod is developed
based on the problem statement and the research objectiviescalled MuDi-Stream
which is a density-based clustering algorithm with theigbilo cluster multi-density
data stream while it has low computation time. In MuDi-Stre@a hybrid method using
grid- and micro-cluster techniques is proposed to solve b@gmputation time problem.
In our proposed method, micro clusters keep the data fotrarpishape clusters and grid
method is used for outliers. Compared to the existing methodgping to the grid is
much more faster than adding to related outlier micro chgsteor handling multi-density
data, in the online phase data stream’s summary is kept inydaonaandle multi-density
data. Furthermore, a new algorithm is developed for theneffihase for multi-density
arbitrary shape clusters with noise using statisticalrimfation about data points’ densi-
ties. All the tasks are done through some components comgsidiM-Component (either
merging or mapping of a new data point), FCM-Component (fogmare mini cluster
from a grid cell), PGCM-Component (pruning grids and core nolosters), and FFC-
Component (forming final clusters). More details about eawhpgonent are explained
in the next chapter. Furthermore, we briefly explained treuation method. Different
kinds of datasets including real and synthetic datasetas®é to evaluate the quality of

the proposed method using various metrics.
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CHAPTER 4

PROPOSED SYSTEM

4.1 Overview

In this chapter, the proposed model, MuDi-Stream (Multi Eignbased clustering
method for evolving data streams), is explained in det&iétions 4.2 and 4.3 generally
discuss about the proposed method and Section 4.4 analyzethé proposed algorithm
satisfies the challenges in clustering data stream. In@edtb, a general view of the
model is presented. The basic concepts of the proposed chatbantroduced in Section
4.6. The Algorithm has online and offline phases. Each phasesbme components
which are elaborated in the subsequent sections. The grtliase has three components
which are described in details in Sections 4.7.1, 4.7.2 4an@® respectively. The offline

phase’s component is described in Section 4.8.1.

4.2 The Proposed Hybrid Clustering Method

One of the challenging issues in density-based clustetgagithms is how to reduce
the computation time. For this purpose, a hybrid method osite grid-based and micro
clustering is proposed. Using the hybrid method leads toedese the computation time.
When a data point arrives, firstly, we try to find a suitable miduster for it. If the data
point cannot be placed in any existing micro cluster thergtiet method is used and the
data point is considered as an outlier. Despite the existiathods which form another
micro cluster for an outlier data. In our method, it is mappeethe grid and if the grid’s
weight reaches to a specific threshold which is the micratetubreshold’s weight, it is
converted to a micro cluster. Using the grid method signitigaaffects the searching

time since it replaces the search in an outlier micro clugewith a mapping method.
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4.3 The Proposed Multi-Density Clustering Method

Another challenging issue is how to cluster multi-densiagad In clustering data
streams, while data points of the stream arrive some sumimi@rynation are kept. These
summaries are incrementally updated over time. Our praposethod has online and
offline phases. A new concept called core mini clusters (dsicroduced to keep sum-
mary information about multi-density arbitrary shape téus. A new multi density-based
clustering method called M-DBSCAN is also proposed in theradflbhase to form final
clusters from the summary information. The proposed mualtisity-based method also

uses statistical information to form final arbitrary shapesters.

4.4 The Proposed Method and Challenging Issues

There are some challenging issues regarding the solutmnhdé aforementioned

problems as follows.

Evolving data stream: The data stream is evolving and sesdusters may dis-
appear and the others appear. A weight value is considerezhfd data point in

order to keep track of the time it appears.

» Handling noise: the noise are mapped to the grids and tleegraned frequently if

they do not have chance to be converted to core mini clusters.

 Limited time: The algorithm has bounded time to clusteadahich is discussed

in Sections 5.6.2 and 5.7.1.

 Limited memory: We try to keep the required memory limitgddouning grids and

core mini clusters. We analyze memory usage later in Sectdhl and 5.7.2.

4.5 An Overall View of MuDi-Stream Algorithm
In this research, a new multi density-based clusteringrdlguo for evolving data

stream called MuDi-Stream (Mt D ensty-based clustering algorithm for evolving data
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Figure 4.1: Overall View of MuDi-Stream Algorithm

Strean) is proposed. MuDi-Stream has online and offline phasesiwge a proposed
hybrid method for the online phase. A proposed multi-dgnsiethod is also used for
the offline phase. MuDi-Stream keeps summary informatia@ugabvolving data stream
in the form of core mini clusters in its online phase. The dra$ed method is used as
an outlier buffer to handle noises and multi-density data et is used to reduce the
merging time of clustering. Furthermore, a novel pruningtsgy is designed to handle
the weights of the core mini clusters and the grids. The @ffphase generates the final
clusters using a new multi-density method.

The tasks of online phase MuDi-Stream are divided into tlm@aponents: MM-
component, FCM-component, and PGCM-component. Moreovemfftine phase has
FFC-component. We elaborate further on the components las/folFigure 4.1 depicts
an overall view of MuDi-Stream algorithm.

The online phase has the following components:

* Merging or Mapping (MM-component): merging data pointexisting core mini

clusters or mapping them to the grid.

» Forming Core Mini clusters (FCM-component): if the densitylata points inside
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Table 4.1: MuDi-Stream Components and Algorithms

Component Algorithm(s) Input Output
MM-component MergeMap (Al-| data points of the stream, curcore mini clusters
gorithm 3) rent timestamp, and densitygrid({cmc},Q)

thresholdx,tc, a,A,N)
FCM-component | CreateNewCMGQG a grid cell, current timestampa core mini cluster

(Algorithm 4) (9,tc) (cmo
PGCM-component| Pruning (Algo-| core mini clusters, grid pruned core min
rithm 5) list, current times- clusters and grid list

tamp, density threshold({cmc,Q)
({Cmc},g,tc,a,/\,N)
FFC-component | M-DBSCAN core mini clusters arbitrary shape clus
(Algorithm 7) ({emd, g, MinPts) ters(C)

grid cells is higher than a predefined threshold, a new core chuster is formed

out of the cell with a related radius.

* Pruning Grids and Core Mini clusters (PGCM-component): tte cells’ as well

as core mini clusters’ weights are periodically checkeddiefined pruning time.

Moreover, the offline phase has one component:

» Forming Final Clusters (FFC-component): The final clusteesfarmed based on
the pruned core mini clusters. Each core mini cluster isidensd as a virtual point

for clustring using a modified DBSCAN which we call it M-DBSCAN.

Figure 4.2 provides a detailed view of the proposed methadDMStream. Table
4.1 lists the algorithms which are related to every compuriaurther, the overall view of
the algorithm is outlined in Algorithm 2. MuDi-Stream alggbm parameters for online

and offline phase are listed in Table 4.2
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Algorithm 2 MuDi-StreamDSA ,a,N)-Online Phase

Input: a data stream
Output: arbitrary shape clusters
a

1: tpr = +logg 12"

2: tc < 0;

3: while not end of streando

4. Read a data poink, from data stream;

5. MergeMagx,tc,a,A,N);

6: if tc modtp == Othen

7 Pruningcmcg,te, o, A, N);
8: endif

9:  te+te+1;

10: end while

Table 4.2: MuDi-Stream Algorithm Parameters
Parameters Explanation
A Density threshold
a Outlier threshold
cmc core mini cluster
g grid cell
MinPts minimum number of point
tpt pruning time
N number of grid cells
mcd mini core distance
Ng Number of point inside grid
tp Last time grid update
Wy grid weight
Weme core mini cluster weight
remc core mini cluster radius
Mcdmc mini core distance of core mini cluster
te current time
owt(te,tp) density threshold function
Ng(cmg cmc-grid-neighborhoods
Nsh(cmg) MinPts-nearest-neighbors
Neore core-neighboring

4.6 Basic Concepts of MuDi-Stream Algorithm

In this section, we introduce the new concepts of MuDi-Stredgorithm.

Definition 11 (Density Grids). In this research, it is presumed that the input data has d

dimensions, and each data point is defined within the space:

S=SxS9x...x, (4.2)
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S is the definition space for th&idimension. The d-dimensional space S is divided
into density grids. For each dimension, its spage iS= 1,...,d is partitioned to

gridGranularity partitions as:

SI = S4,1L_JS,2LJ---S,gridGranuIarity (4-2)

Then, the data space S is partitioned intod\ﬂidzlgridGranularitM density grids. Each
density grid g is comprised oh§ X S j, X ... X Syj4» Ji=1....gridGranularity» Which is de-
fined as follows:

g:(jlaj27"'7jd) (43)

A data point ¥x= (x1,X2, ..., Xq) IS mapped to a density grid®) as: gX) = (j1,j2,---, jd),

X €S j-

According to the discussion for clustering evolving dat@ams in Section 2.2.1,
there are different window models. One of the remarkablelaxwnmodels which is used
in a number of existing methods (Cao et al., 2006; Y. Chen & T0,720Van et al., 2009;
Forestiero et al., 2013; Amini et al., 2014) is fading windmwdel. This thesis also uses
the fading window model since it can capture evolving natirdata stream very well.
Therefore, for each data point, a weight is considered witétiieases exponentially with
time using a fading function. The fading function that we usBluDi-Stream is defined
as follows:

f(t) =277 (4.4)

whereA > 0 (Ng & Dash, 2010). We use the fading function as a weightfaet for

each data point.

Definition 12 (Data point’s weight coefficient). For each data point x in the data
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stream, a weight coefficient,xws assigned which decreases over time. If x arrives at

time t, its weight coefficient at ts (t; > t):
Wy (te,t) = 27A D) (4.5)

The initial value, w, of each data point is 1.

Definition 13 (Grid weight). For a grid g at current timed, the grid weight is defined

based on sum of the weight coefficients of data points which apped to it:
Wy(te) = § 27 Al (4.6)

Definition 14 (Grid weight update). The grid weight is updated in with the last

updated valuegas follows (¢ > tp):
W (tp, te) = 272 et sy (tp) + 1 (4.7)

This saves the computation time. When a new data point asihisonly needed to
update the grid weight of the grid cell which the data is malfedt. So, all other grids’

weights are not required to be updated.

Lemma 1 The maximum weight, w4y, Of all data points isl_%.

Proof. Assume that all the data points of the data stream are mappie same grid
cell. Therefore, according to Definition 13, we havgt) = S%,_,2-* (1) which can be

transformed with the sum formula for geometric series dsviohg:

t 1—2-At+1)

wg(t) = § 2721 = - (4.8)
tZO 1-2A
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Thus, the maximum weight of a grid g is:

1_271\(t+1) B 1
1—-2-2 1-2-A

(4.9)

Wmax= liMt_e

Average grid density. The sum of all data points’ weights has an upper bounfi:%.

Since we have the total numberMfdensity grids (according to Definition 11), the aver-

age density of each grid ﬁ(l—lTA)

Definition 15 (Grid synopsis). The grid synopsis of a grid g is a tuple @GR, tp, wg)

where,

* ng is the number of data points inside the grid,
* tpis the last updated timestamp of the grid, and

* Wy is the grid weight.

Grid synopsis keeps summary information about the datatpanside the grid.
When a new data point is added to a grid cell, its grid synopsispdated. In fact,
instead of saving timestamps and all its data points’ weigihtis adequate to save the

grid synopsis.
Definition 16 (Dense grid). Grid g is dense at time t if

a

Wg(t) >= m

(4.10)

Because the overall weight cannot be more tﬁﬁﬂlﬁ)' a is a controlling threshold.

Definition 17 (Mini core distance (mcd)).In grid g with py, po, ..., pn data points, mini

core distance is the maximum distance from the mean of atldkee points in the grid as
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o to all other neighborhoods.

Vp € {neighborg(o) } = Maximunidistanceo, p)), (4.11)

Ineighborg(o)| >= MinPts

{neighborg(o) } is a set of all the data points inside cell boundaries of agvitiich
includes poinb.
For the data points are on a border of a grid, we assign thehetodighboring grid

with higher density.

Definition 18 (Core mini cluster (cmc)). A cmc at time t is defined as CNW, ¢, r, mcd)

for a group of very close data points;p. . pi, with timestamp T, ..., Ti, as follows:

* Weme = Wg,

_ Z?:lZ_A(t_Tij)(pij)

Weme

* Ceme

57 2T distancécome pi )

Weme

, Feme < MCGmg

lfeme=

Mctmc=Vp € {neighborg(ccmc)} = Maximunidistancéccme, p))-

distancécemc, pij) is an Euclidean distance between cmc's center and the data

points in the grid.

Assume a core mini cluste}mqo(wcmcp,ccmcp,rcmcp,mcctmop). If a data pointp is

merged to it the core mini cluster is updated as follows:

cmay = (27217 Wemg, (tp) + 1, Cemg, + PP, Femg, + P, MCthmg,)
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4.7 Online Phase of MuDi-Stream Algorithm
Prior to the arrival of the very first data point, an empty distlis initialized.

The components that are designed for this phase are dasestellows.

4.7.1 MM-Component (Merging and Mapping)

In order to discover the clusters in an evolving data streaset of core mini clusters
cme are maintained. Furthermore, all the outliers are manathin density grids which
is in a separate memory space. In this component, two impoctancepts are core mini
clusters and density grids. The structures of the core nhuisiters and the grids keep
sufficient information for final clustering. Merging and npapg are the major tasks in
MM-component. Based on the data attributes, the decisioradeneither to merge the
data points to existing core mini clusters or to map them éogitids.

In MM-component, when a new data point arrives, the compbtmias to add it to
a core mini cluster if there is any in which the data point camfi However, if the data
point cannot be added to any core mini cluster, it may be e#tseed of a new core mini
cluster or an outlier. This kind of data point is mapped toghé in the outlier buffer and
the decision is postponed to a later time.

In the initial arrival of data points from data streams, thajonty of the points
are mapped to the grids. However, when time passes, a nurhbereomini clusters are
formed. MM-component works with FCM-component in the sehs¢whenever a grid’s
density is more than a predefined threshold, FCM-componeatled and it forms a new
core mini cluster.

The flow of the MM-component is described in details as fooWhen a data point
arrives, various tasks are invoked:

Task 1: Merging

1. If there is any core mini clustecing, MuDi-Stream finds the nearesincto the
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new data point. The nearest core mini clusteng) is determined by the minimum
distance between data poiptand centegme Core mini cluster ¢mg with the

lowest distance is selected and denotedras,.

vemg € {cmc}, distancép, centegme) = Min {distancgp,centegmg)} (4.12)

2. If the new data point’s distance t@ntegmg is less than mini core distanca¢d)
of the nearest core mini cluster, it will be added to thatipalar core mini cluster
(cmg. When the data point is added tamg, its center, radius, and weight are
updated.

distancép, centegme) < mcthmg — CMG+ P (4.13)

Task 2: Mapping

3. Otherwise, the data point has to be mapped into the griddarotitlier buffer. A

data pointp = (p1, P2, -- -, Pg) iS mapped to a density grigl p) as:

g(p>:(j17j27'-'7jd)7pi €S7ji (414)

4. Update the grid synopsdS(ng,tp, wg) of a gridg with its new values as follows:

Ng < Ng+1; (4.15)
tp ¢+ tc; (4.16)
Wy(te) < 27 A e Wy (tp) + 1 (4.17)
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Algorithm 3 MergeMapktc,a,A,N)

Input: a data poink from data stream
Input: current timestamfp
Input: density thresholar
Input: outlier threshold
Input: number of grid celldN
Output: cmclist
Output: grid list
1: cmg < find the nearestmcto x in cmclist;
2: if distance(x, centegmg) < MCtme then
3.  cmg+ cmgtx; {Merge x to thecmg
4: else
5. mapxto the grid;
6: Ng<nNg+1;
7
8
9

Wy ¢ 27 A=ty (tp) 4 1;
tp < tc;
UpdateGS(ngathg)?

10:  if ng> 1 andwyg >:m then
11: CMGew < CreateNewCMQGtc);
12: remove gridg from grid list;

13:  endif

14: end if

5. Check number of data points in the grid cell and the cell’'sgyinve If it has more
than one data point and the grid cell’s weight is more tham#resity threshold, the
CreateNewCMC algorithm in FCM-component is invoked to forma nere mini

cluster out of the grid cell.

MM-component of MuDi-Stream is shown in Algorithm 3. In thigarithm, which
is called MergeMap Algorithm, the new data point is addedhi® nearest core mini
cluster if it fits (Lines 1-3). Otherwise, it is mapped to thedgand the grid summary
information is updated (Lines 5-9). At the same time if thigl'grweight is more than the
weight threshold and it has more than one data point, a nesvra@ro cluster is formed
from data points inside that grid (Lines 10-13).

The flowchart of MM-component is shown in Figure 4.3. MorapJde procedure

of MM-component is illustrated in Figure 4.4.
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Figure 4.3: Flowchart for MM-Component and FCM-Component oM&tream

4.7.2 FCM-Component (Forming Core Mini Clusters)
Since data stream evolves over time, the number of datagaiside the grids

change over time. If the grid’s weight is above a threshdldneans that it can form
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Figure 4.4: Merging to Existing Core Mini Clusters or Mappioghe Grid

a core mini cluster. Therefore, the data points are remawsd the grid and a new core
mini cluster is created.

Two important tasks in this component are 1) forming coreirlasters and 2)
determining mini core distances.

In the former task, the grid weight is a main factor to make @gien regarding the
generation of a new core mini cluster. If the grid weight isrenthhvan a threshold, it is not
an outlier any more and it can form a new core mini clustersT™ore mini cluster may
attend in final clustering later.

The latter task determines mini core distance. This digt@ased as radius thresh-
old. For each core mini cluster, different radius threshade considered to have final

clusters with different densities. Mini core distamoedis maximum distance from cen-
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Figure 4.5:mcdin different data distributions inside a grid

ter to farthest point in the grid. Figure 4.5 shows an exanmpkehich how various values
of mcdare for different distributions inside the grids.

This component is invoked by MM-component. Whenever a daitet pomapped to
the grid, if the conversion criteria is satisfied, the datasoinside the grid form a core
mini cluster.

The procedure of FCM-Component is explained as follows:

1. If the number of data points inside gngis more than one, then we check the grid
weightwg with the density threshold. If the grid weighy, is higher than the dense

grid threshold then we form a nesmncout of the data points in this grid.

a

NIz (4.18)

2. Thecmcis formed based on the data points inside the gaihc attribute values
such as radius, center, weight anditedare determined as explained in Definition

18.

3. The related grid) of the newcmcis discarded from the grid list.
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Algorithm 4 CreateNewCMQY{, t¢)
1. Weme$— Wg,

oot Tt (=TI

2: W
n cmc |
. _ Yitq f(te—Ti)distancep;;,ceme)
3. rCmC— Wcmc
4: for data pointgp; in the gridg do
5. mMcmc«Maximum{distancéccme pi) };
6: end for
7: returncmqWemc, Ceme f'eme, MCGime)
FCM-Component
Data Points -
(Mapped into the grid) Core Mini Clusters
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Figure 4.6: FCM-component: Forming Core Mini Clusters fromafaoints inside Grid

FCM-component is outlined in Algorithm 4. In CreateNewCMC Aliglom, the grid
weight is assigned as the weight for the new core mini clystieie 1). The center and
radius is calculated based on the data points in the grice.#3). Mini core distance
is also calculated from the data points inside the grid. Each mini cluster has its own
mini core distance.

FCM-component is shown in Figure 4.6.

4.7.3 PGCM-Component (Pruning Grid and Core Mini Clusters)
Since data stream evolves over time, the role of real dataaeged to outliers and
vice versa. A technique is required to filter out outliers aedect the real data. This

filtering should be performed on both the grid and the cord otusters. The problem is
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that the number of outliers may increase over time as dagarstiproceeds. It becomes
worse when a lot of outliers are available in the data. Tleesfwe need to periodically
prune the real outliers from the the outlier buffer, i.e. dnigl.

One of the challenges for the grid-based clustering methdbe large number of
grids, especially for high-dimensional data. For examibldhe gridGranularity equals
to 20, there will be 2 possible grids. However, most of the grids in the space aptyem
or receive data very seldom. In our implementation, we all®enemory to store thgrid
synopsidor those grids that are not empty, which form a very smallsstilin the grid
space. However, in practice, this is still not efficient egiogince the appearance of out-
lier data which lead to continual increase of non-emptygtint will be processed during
clustering. We call such grid asatteredgrids since they contain very few data. Since a
data stream flows in by huge volume in high speed and it couldaua very long time,
due to noises in the data stream, more and more grids will bepded during the process
which many of them contain only very few data. If thesatteredgrids are not checked,
the total number of grids in the grid list will keep increagand become extremely large.
Therefore, it is critical to detect and remove such scattgrels periodically.

Once a scattered grid is deleted, its density is reset to siape itsgrid synopsis
is deleted. A deleted grid may be added back to grid list ifehere new data records
mapped to it later, but its previous records are discardddtanlensity restarts from zero.
Such a dynamic mechanism maintains a moderate size of te grimemory, saves
computing time, and prevents infinite accumulation of scatt grids in memory. We

define a Outlier Weight Threshold (OWT) function for detegtstattered grids:

Definition 19 (Outlier Weight Threshold function (OWT)).If the last updated time of

a grid g is t, then at current timect the Outlier Weight Threshold (OWT) is defined as
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follows (t > tp):

tc tp 1 2—A(te—tp+1)
OW T(tp, tc) = %2 A N@L=Z7) ) (4.19)

See Appendix A for the proof.

Theorem. The size of grid list at modt = % log Nf[a

N is the total number of grid
andA is the decay factor.

See Appendix A for the proof.

If a grid g is detected as a scattered grid, is it possiblegietn be non-scattered. If
it has not been previously deleted from grid list? It is an®alen the following result.

Proposition 2. Assume the last time a grid g is deleted asesedtgrid idx and the
last updated of gridj is tp. If at current timet, we havewy(t) < owt(t,,t), then we also
havewg(t) < owt(0,t)

See Appendix A for the proof.

Proposition 2 is important because it shows that deletingatteyed grid will not
cause a dense grid be falsely deleted. It shows that, if gletetbas a scattered grid at
t sincewg(t) < owt(tp,t), then even if all the previous deletions have not happenés, i
still scattered and cannot be a dense grid.

The important issue is the length of the time interval fodgtensity checking. This
time which we referred as pruning time cannot be too largeoorsmall. If pruning
time is too large, dynamical changes of data streams wilbegtroperly recognized. If
pruning time is too small, it will result in frequent comptiten by the offline component.
Therefore, the processing speed of the offline componentmogompete the speed of
the input data stream.

Furthermore, since our method gradually reduces the weigtiite data points. If

a core mini cluster does not receive any data for a long titeas to be removed form
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Algorithm 5 Pruning({cm¢},g,tc,a,A,N)

Input: {cmc
Input: {g}
Output: {cm¢
1: update the weights of all grids in grid listig(tc) = 27 (e~t) s wy(tp));
2: for all gridg do (
__9—A(tc—tp+1)
3 OWT(tc,tp) « 0(11\1(21_—2—1“5));

4. if wg < OWTthen

5: remove gridg from the grid list;
6: endif

7. end for

8: for all {cmc} do

9 if Weme< m then
10: removecmcfrom {cmd};
11:  endif
12: end for

the list. A core mini clusters is formed from a grid with degdhigher thanm,
therefore, if the density is less than dense grid threshadtdauld be removed form the
list.

Therefore, the density of grid and core mini clusters shdaddnspected after a

period of time. The pruning time is considered as the time&laddor a core mini cluster

to convert to an outlier which is defined as follows:

Definition 20 (Pruning time). We check the cmc’ weight as well as grids’ in a specific
time called ft. tpt is the minimum time for a cmc in timestampa be converted to an

outlier in tp (t2 > t1), which is formally defined as follows:

Lemma 2

a
1 a-142-4A

tot = 5 log;

See Appendix A for the proof.
The main tasks of PGCM-component, which are performed inipgutime, are as

follows:

1. Check the grid weight witlOutlier Weight Threshold function (OWTj it is less
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Figure 4.7: Flowchart of PGCM-Component of MuDi-Stream

than this threshold then the grid is detected as scatterddcagd will be removed

from the grid list.

RemovalLis{g} < wg < OWT(tp,tc) (4.20)

2. Check the weights of themclist, if there is anycmcwith the weight less than the

dense grid threshold, that particuancis removed from themclist.

a

RemovalLisfcmc «— weme << —————
femg = Weme N(1-2-%)

(4.21)
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The PGCM-component’s procedure is shown in Algorithm 5. Igdkithm 5, the
grid weights are updated by current time in Line 1. After thatlines 2-7, the weight
of all grid are checked to remove scattered grid. Finallg, iemoval list of core mini
clusters are determined in lines 8-12 of algorithm. The floavtis depicted in Figure 4.7

as well. Figure 4.8 depicts the pruning component.

PGCM-Component

Grid Core Mini Clusters

%
oY

x cmci

x| ¥y

Figure 4.8: Pruning Grids and Core Mini Clusters

The online phase of MuDi-Stream with all its components arergin Algorithm 6.
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Algorithm 6 MuDi-Stream Online PhasBS A, a,N)

Input: a data stream
Output: core mini clusters
a

1 tp + +logg 2"

2: tc < 0;

3: while not end of streardo

4: Read data point from Data Stream

5. cmg <« find the nearestmcto x in cmclist;
6: if distanceX, Ccme) < MCGmg then
7 cMeG < cmegtx; {/*Merge x to thecmct/}
8. else
9: map the new data pointto the grid;
10: Ng < Ng+1;
11 Wy« 27 M)y () + 1;
12: tp « tc;
13: UpdateGS(ng, tp, Wg);
14: if ng > 1 andwyg >:m then
15: Weme < Wg;
n - "
16: Come — =1 f\s\t/zn:j)(ﬂ);
17: Feme Sy f(tc—-ﬁ)\?vztfncépipccmc)
18: for data pointsp; in the gridg do
19: MCtme — Maximumy{distancéceme, pi) };
20: end for
21: end if
22:  endif

23:  if t modtp == Othen
24 update the weight of all grids in grid lisivg(tc) = 2= %) s wy(tp));
25: forall gridg do

a (1727)\ (tcfthrl)) .

N{1-—27)
27: if wg < OWT(tc,tp) then
28: remove gridg from the grid list;
29: end if
30: end for
31: update the weight of all core micro clustersvgfcte) = 27 e—temd 4
Wemd(temo));
32: for all {cmc do
33: if Weme < ﬁ then
34: removecmcfrom {cmc};
35: end if
36: end for
37.  endif

38  to+te+1;
39: end while
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4.8 Offline Phase of MuDi-Stream Algorithm
The offline phase has one component called FFC-component.d&ptied density
based algorithm is proposed in this phase to form arbitrauitirdensity shape clusters

from synopsis data.

4.8.1 FFC-Component (Forming Final Cluster)

In FFC-component, a new density-based clustering, callddB&CAN is proposed
which needs only one paramet&tiPts) to discover final clusters. The existing density-
based data stream clustering algorithms apply DBSCAN in tifline phase; however,
since it uses a global set of parameters, they cannot covki-aeasity data. In our
proposed algorithm, M-DBSCAN, instead of finding neighborsanstant radius, the
neighboring radius is determined based on the distribudfatata around the core using
mean and standard deviation values.

When a clustering request arrives, M-DBSCAN algorithm is aggpbn the set of
online maintained core mini clusters to get the clusterggult. Each core mini cluster
cmcis considered as a virtual point located at the centenaf M-DBSCAN replaces the
€ values of DBSCAN by local cluster density. In M-DBSCAN, tt@re-neighboringon-
cept is introduced in which core mini clusters are added istieg clusters if they have
similar values of mean with some acceptable difference eéfby standard deviation of
the core.

Using online phase information and statistical analysishef distribution of data
inside core mini clusters, M-DBSCAN is able to generate chsstgth different densities.

Some new concepts are applied in this component which aozibled as follows:

Definition 21 (Neighboring grids(Ng)). Two density grids g= (ji, j3....,j5) and

92 = (j2,j5,..., j3) are neighbors if there exists < m< d such that:

e j1=j? i=1,..., m—1m+1,....d;and
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*im— ikl =1
Theng; andg, are neighboring grids in thef" dimension.

Definition 22 (cmegrid-neighborhoods Kg(cmg)). All core mini clusters which are

placed in the neighboring grids of g.

{Ng(cmg} + Vemg € {Ng} (4.22)

Definition 23 (MinPts-nearest-neighborsNsy(cmq)). In order to determine MinPts-
nearest-neighbor for the crpg firstly the distance from crgcto all cmg,-grid-
neighborhoods are calculated. After that, MinPts neiglsbare selected with minimum

distances.

{Nsn(cmg) } - Minimum(distanc€cmc,, Ng(cmG,))), |[Nsn(cmg)| > MinPts  (4.23)

Definition 24 (Core-neighboring Neore)). A core mini cluster with its MinPts-nearest-

neighbors become core-neighboring if the following condiiis satisfied:

{Ncore} - Vemg € {Nsp(cmay) },

U(Distemg,) € [M(Disteore) — 0 (Disteore), 1 (Disteore) + 0 (Disteore) | (4.24)
H(Disteore) < p(distancéNsp(cma),cma))
0 (Distcore) +— o(distanc€Nsp(cma),cme)))

U(Distemg,) «— p(distancgNsy(cmey),cme))
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0 (Distemg,) < o(distancéNsn(cmg),cmg))

The new definition of core-neighboring expresses that, deoto be in the list of
core neighbors, the values of mean of distance from core chister to its neighbors
should lie within a certain range from core.

FCC-componentworks as follows:

* Initially, all core mini clusters are marked as “unvisifet1-DBSCAN randomly
chooses an unvisited object, a core mini clusteng,), and marks it as “visited.”
Then, it checks whether itsmc-grid-neighborhoodtontains at leasMinPts If
not, mark the core mini clustemg, as noise. Otherwise, a new cluster is created
and the core mini clusteamg, is added to that cluster. After that, the algorithm
finds theMinPts-nearest-neighborhoaaf core mini clustecmg,. This gives us a
shorted list of the neighbors. This technique is a kind oéffittg which prevents

formation of a single cluster out of multiple close densestets.

* Next, the Euclidean distances from the core mini cluster, to all its shorted
list neighbors are calculated. Mean and standard deviatidhese distances are
determined as well. A new core mini cluster with its neiglshare added to the

existing cluster if the condition of eore-neighborings satisfied.

» The algorithm continues with the unvisited neighbors afecmini clustercmg,.
The core-neighboring list, mean and standard deviationgaated whenever a new
core mini cluster and its neighbors are added to an existusger. M-DBSCAN
adds core mini clusters until the cluster cannot be expaadgdnore. Therefore,
the cluster is complete. To find the next cluster, M-DBSCAN mnly selects
another unvisited core mini cluster from the remaining ofié® clustering process

terminates when all core mini clusters are visited.
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Algorithm 7 M-DBSCAN(MinPtsg, {cmc})- MuDi-Stream’s Offline Phase

1: mark allcmcs as unvisited;
2: repeat

3:

©oNo R

10:
11:
12:
13:
14:
15:

16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

randomly choose an unvisit@mg,;
markcmg, as visited;
{Ng(cmg,) } +— cmg,-grid-neighborhood
if | {Ng(cm@y) } | > MinPtsthen
create a new clustét, and adccmg, to C;
{Ncore} « find MinPts-nearest neighbors ifiNg(cmg,) } from cmg,
calculateu (Distcore), ando(Disteore)
for eachcmg in {Ncore} do
if cmg is unvisitedthen
markcmg, as visited,;
{Ng(cmgq)} +— cmg-grid-neighborhood
if INg(cmg,)| > MinPtsthen

{Nsp(cmg)} « find MinPts-nearest-neighbors ifNg(cmg)} from

cme
calculatey (Distemg,), ando (Distemg,)

if H(DiStchJ) € [u(Disteore) — 0(Disteore), U(Disteore) + 0 (DisSteore)]

then
{Ncore} <= {Ncore} U {Nsh(cmch) };
updateu (Distcore), ando (Disteore) ;
end if
end if
end if
if cmg, is not assigned to any clustéren
addcmg to clusterC,
end if
end for
else
markcmg, as noise;
end if

30: until nocmcis unvisited;

Figure 4.9.

The procedure is outlined in Algorithm 7 and the FCC-componemtepicted in
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4.9 Summary

In this chapter, we explained the proposed method, MuDeeBtr, in details. The
algorithm has online and offline phases and has the abiligiuster multi-density data
with low computation time. MuDi-Stream is using a hybrid hned in its online phase
and a multi-density method in its offline phase.

The algorithm has four different components. The compaehthe online phase
are MM-component, FCM-component, and PGCM-component. MWanent has a
hybrid method using grid and micro clustering methods. & &dist of core mini clusters
and also a grid as the outlier buffer. If the new data poinhocame merged to any ex-
isting core mini cluster, it is mapped to the grid. FCM-comg@ainworks simultaneously
with MM-component. If the density of grid in the outlier baffis more than a density
threshold, it is converted to a core mini cluster by the FCMiponent. Data stream
evolves over time, therefore some grids may not receive atg/fdr a long time or a core
micro clusters’ weight gradually decreases over time. PG&ltjponent has a technique
to check the weight of these synopsis data. M-DBSCAN algoritifFC-component
in the offline phase is proposed to cluster synopsis dataderdo get final clusters. M-
DBSCAN has the ability to cluster multi-density data usingomfation about density
distribution of data points in the stream.

MuDi-Stream can effectively handle noise by mapping thertthégrid. These out-
liers may either be changed to core mini clusters or be rethtwen the grid cells. Fur-
thermore, it has the ability to handle evolving data stregnednsidering weight coeffi-
cient which decreases over time. Another prominent feattlkéuDi-Stream is clustering
multi-density data by keeping information in the online ghand using them in a new
method in the offline phase. It has also low computation timeesinstead of searching

in the outlier list of micro clusters, it maps the outliersoithe grids.
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CHAPTER 5

EXPERIMENTAL EVALUATION AND ANALYSIS

5.1 Overview

In this chapter, datasets which are used for evaluationgseigare introduced. Some
real datasets and further some synthetically generatedelatare used to evaluate the
proposed method. The real datasets are selected based ldartdtare. These datasets
are the most applicable ones in evaluation of both datarstobastering and multi-density
data clustering. The synthetic datasets are generatedliffehent number of data points,
various clusters and densities based on existing datas#ts literature. These real and
synthetic datasets are fair benchmarks for evaluating émpnance of the proposed
approach, MuDi-Stream, w.r.t. state-of-the-art methods.

Evaluation of the clustering results is one of the diffiesgtin data stream clustering.
Asitis explained in Chapter 2, there are some evaluationicsdtor measuring clustering

guality. The evaluation process of MuDi-Stream includes:

* Quality evaluation: The quality of clustering results is measured using seveaitq
ity metrics on ten different datasets. The results are @xgthin Sections 5.3, 5.4,

and 5.5.

» Complexity analysis Time and space complexity of MuDi-Stream are measured

and the results are discussed in Section 5.6.

» Scalability evaluation: Section 5.7 describes the scalability results which ara-me

sured in terms of execution time and memory usage of MuDeeitralgorithm.
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» Sensitivity evaluationt A comprehensive analysis of MuDi-Stream’s parameters

which affect the clustering results, is elaborated in $&ch.8.

5.2 Experimental Setup
5.2.1 Datasets

In this section, we introduce the datasets which are apptieshow the effective-
ness of the proposed approach for handling evolving meltisty data streams. The
evaluations of the proposed method are performed on read\aritletic datasets.

First, the proposed method is evaluated on synthetic datagsfferent synthetic
datasets are generated with various number of data poidtglasters by considering
noise. Synthetic dataset generation is based on the revipagers from the literature
(Xiong et al., 2012; Huang et al., 2009; Xiaoyun et al., 2008L.i et al., 2010; Carmelo
etal., 2013; Cao et al., 2006). Furthermore, some of themearergted based on different
distributions of multi-density datasets. Synthetic detasire generated based on normal
and Gaussian distributions. Additionally, some of the Bgtit datasets are combined to
simulate evolving data stream over time. All the synthetitadets except the Gaussian
one are generated using a program which is written in Java.pfégram has the ability
to generate any kind of dataset with different numbers d gatnts, clusters, and density
distributions.

Furthermore, real world datasets of various charactesistie tested which are taken
from different sources (Cao et al., 2006; Forestiero et &1,32 Y. Chen & Tu, 2007;
X. Li et al., 2010). The datasets have different number o$telts, densities, and data

points. Table 5.1 lists the applied datasets for the expaTim

5.2.1(a) Mashaal Dataset (DS1)
This dataset is generated similar to (Forestiero et al.32040 et al., 2006) which is

applied to evaluate the quality of clustering. It contai®a0 data points with 5% noise.
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Table 5.1: List of Datasets

No | Dataset | Size | FeaturesClasses Type Ref |
1 | Mashaal Dataset (DS1) | 10000 | 2 4 Synthetic | (Cao et al,
2006)

2 | Smile Dataset (DS2) 10000 | 2 4 Synthetic | citeForestiero13
3 | FourCircles Dataset 10000 | 2 4 Synthetic | (Forestiero et
(DS3) al., 2013)

4 | Evolving Data Stream 30000 | 12 2 Synthetic | -
(EDS)
5 | Multi Density Dataset 12131 |5 2 Synthetic | -
(MDS1)
6 | Multi Density Dataset{ 1097 5 2 Synthetic | (Mitra &
House (MDS2) Nandy, 2011)
7 | Multi Density Dataset{ 1360 |5 2 Synthetic | (X. Chenetal.,
5Cirlce (MDS3) 2012)
8 | Evolving Multi Density | 2457 10 2 Synthetic | -
Data Stream (EMDS)
9 | Multi Density Cylinder-| 10000 | 3 3 Synthetic | -
Cube (MDS4)
10 | Gaussian Multi Density 10000 | 5 2 Synthetic | -
Dataset (GMDS5)
11 | Network Intrusion Detec: 424021 42 7 Real (Frank &
tion Asuncion,
2010)
12 | Landsat Satellite Data | 4435 36 6 Real (X. Li et al.,
2010)
13 | Forest Cover Type 581012| 54 7 Real (Forestiero et
al., 2013)

115



It has four classes with various shapes. The dataset istddpicFigure 5.1.

Figure 5.1: Mashaal Dataset (DS1) - 10000 data points, 3%enoi

5.2.1 (b) Smile Dataset (DS2)
The smile dataset has 10000 data points with 4% noise whiadhdsen from
(Forestiero et al., 2013; Cao et al., 2006). It has four abjitshape clusters. The dataset

is shown in Figure 5.2.

Figure 5.2: Smile Dataset (DS2) - 10000 data points, 4% noise
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5.2.1 (c) FourCircles Dataset (DS3)
Adopted from the works presented in (Ester et al., 1996; Cab,62006; Forestiero
et al., 2013), the FourCircle dataset is generated. It ha@dL88ta points with 5% noise.

The dataset is depicted in Figure 5.3.

Figure 5.3: FourCircles Dataset (DS3) - 10000 data pointsnéie

5.2.1(d) Evolving Data Streams (EDS)

One of the important features of our proposed method is cagtalusters of evolv-
ing data streams. Therefore, we generated an evolving ttatns (EDS) by randomly
selecting one of the datasets (DS1, DS2 and DS3) (Cao et 86, Forestiero et al.,
2013). For each iteration, the chosen dataset forms a 108G part of the data stream,
so the total length of the evolving data stream is 30000. reigu4 shows the evolving
data stream’s dataset. It is depicted how the previousertustisappear while the new

arrival ones are the clusters which are identified using Ma8eam.

5.2.1 (e) Multi-density Dataset (MD1)
The aim of generating this dataset is to demonstrate howrthgoped method can

handle multi-density clusters. A two-dimensional welparmted dataset with 12131 data
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Figure 5.4: Evolving Data Stream (EDS)

points is generated. It is composed of five clusters of differdensities as shown in

Figure 5.5.

Data Points
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Figure 5.5: Multi-density Dataset (MDS1) - 12131 data p®inith 3% noise

5.2.1 (f) Multi-density Dataset - House (MDS2)

In this experiment, we generated a more complicated tweedsional dataset to
show the effectiveness of our algorithm. It has 1097 datatpand five clusters with
different densities with 4% noise which is adopted from {&i& Nandy, 2011). The
MDS?2 is depicted in Figure 5.6. The dataset consists of fistels with different sizes,

shapes, and densities.
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5.2.1(g) Multi-density Dataset - 5Circle (MDS3)

MDS3 dataset is generated with different density distidng. It is one of the
datasets which is usually applied for the evaluation of metbn multi-density datasets
(X. Chen et al., 2012; Duan, Xu, Guo, Lee, & Yan, 2007). It ha8(l8ata points with

2% noise with five clusters. Figure 5.7 shows the MDS3 dataset
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Figure 5.7: Multi-density Dataset - 5Circle (MDS3) - 1360alpbints with 2% noise
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Figure 5.8: Evolving Multi-density Data Stream (EMDS)
5.2.1 (h) Evolving Multi-density Data Stream (EMDS)

MD2 and MD3 datasets are also combined to simulate an egpivialti-density
data stream (EMDS) over time (Figure 5.8). Therefore, weslaatlataset with 2457 data
points. This dataset is used to evaluate the clusteringtgudlMuDi-Stream in multi-
density data which is evolving over time. Figure 5.8a shovid2\at time 6 while Figure
5.8b depicts core-mini-clusters at time 12, when datast®alves and MD3 data points

arrive.

5.2.1 (i) Multi-density CylinderCube (MD4)

Multi-density CylinderCube (MD4) is another multi-densitatdset with different
density distributions. It has 10000 data points with thrikesters and three dimen-
sions without noise. In fact, we wanted to evaluate the tghili algorithm for a three-
dimensional multi-density data without noise. Figuresa5®.9b depict MD4 from dif-

ferent perspectives.

5.2.1 () Gaussian Multi-density Dataset (GMDS)
A Gaussian dataset is also generated to evaluate the prbpatbod. It is generated
to show the effectiveness of the proposed algorithm in Ganssstributions. This dataset

Is generated using GaussianMoving() function in R langu&gaissianMoving() is used
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(a) (b)
Figure 5.9: Multi-density CylinderCube (MD4) - 10000 Points

for simulating evolving data stream in Gaussian distriimgi Figure 5.10 shows the

Gaussian dataset with 1000 data point with 3% noise and fistanis.

Data Points

Figure 5.10: Gaussian Multi-density Dataset (GMDS) - 108tgoints with 3% noise

5.2.1 (k) Network Intrusion Detection
The Network Intrusion dataset (KDD Cup’99) (Frank & Asunci@®10) contains
TCP connection logs from two weeks of LAN network traffic. Thetaket comes from

the 1998 DARPA Intrusion Detection. It contains trainingadabnsisting of 7 weeks
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Table 5.2: List of Network Intrusion Detection featureshwitheir classes

| Class Label | Relevant Features
Normal 1,6, 12,15, 16, 17, 18, 19, 31, 32, 37
Smurf 2,3,5, 23,24, 27, 28, 36, 40, 41
neptune 4,25, 26, 29, 30, 33, 34, 35, 38, 39
Land 7
teardrop 8
ftpWrite 9
back 10,13
guesgwd 11
buf fefhverfiow 14
warezclient 22

of network-based intrusions inserted in the normal datd, aweeks of network-based
intrusions and normal data for a total of 4,999,000 conpaatecords described by 42
characteristics. Each record corresponds to a normal ctioner an attack. The attacks
fall into 4 main categories and 22 more specific types: DGS, @enial-of-service), R2L
(i.e., unauthorized access from a remote machine), U2Rnauthorized access to local
superuser privileges), and PROBING (i.e., surveillanceathdr probing). Three biggest
classes Normal, Neptune, and Smurf appear in chunks, whenealler attack classes are
scattered throughout the dataset.

All 34 continuous attributes of KDD CUP99 are used as in (Cad.e2@06; Tu &
Chen, 2009; Ntoutsi et al., 2012; Forestiero et al., 2013% dbnverted into data stream
by taking the data input order as the order of streaming.rEi§uLl plots the distribution
of data from KDD CUP99 for selected features. Figure 5.12 adepilass labels that
appears in “10% KDD” dataset which is adopted from (Kayadicir-Heywood, &
Heywood, 2005). Moreover, Table 5.2 shows the most disoate class labels for

each feature.
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Figure 5.11: Data Distribution on KDD
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Figure 5.13: LandSat Dataset

5.2.1 () Landsat Satellite Data
Landsat Satellite Dataset from UCI Machine Learning Reposftis a dataset com-

posed of 4435 objects. It is obtained from remote-sensitglisa images. Each object
represents a region and each sub-region is recorded byuhmfasurements of intensity
taken at different wavelengthes. Therefore, each objexBBaattributes. A class label
indicating the type of the central sub-region is also givanelach object. This dataset is
used in (X. Li et al., 2010) to evaluate multi-density dataguife 5.13 shows a sample
of ten attributes of Landsat data points distribution. Rennore, the class labels and the

number of associated objects are shown in Figure 5.14.

5.2.1 (m) Forest Cover Type
The Forest Cover Type dataset from UCI KDD Archive (Bache & Liemn2013)

contains data of different forest cover types. It contaorest cover type for 30x30 me-

Lhttp://archive.ics.uci.edu/ml/
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Figure 5.14: LandSat Class Distribution

ter cells obtained from US Forest Service (USFS) Region Resdaformation System
(RIS) data. It has 581,012 records and 54 attributes, out afhwthe 7 continuous ones,
representing seven different types of forest types areepick has been used in several
papers on data stream clustering (Forestiero et al., 201&8nBbar et al., 2013; Zliobaite,
Bifet, Read, Pfahringer, & Holmes, 2014). However, there ariact only 12 different
attributes. The last two are categorical and have been edcaslbinary columns (4 and
40 respectively). The output is also categorical, but isoded as a number between 1
and 7. This dataset contains 581012 observations and eaehnvabon consists of 54
attributes, including 10 numeric variables, 4 binary wittess areas and 40 binary soll
type variables. In our evaluation, similar to (Forestietrale 2013), 10 numeric variable
isused. There are seven forest cover type classes. Fidureépicts the data distribution

of forest cover type dataset.

5.2.2 Implementation and Environment

We have implemented MuDi-Stream as well as the comparatetbod, DenStream
(Cao et al., 2006), in Java with graphical interface of R laaggu DenStream is one
of the remarkable algorithms which is used as a benchmariteosity-based clustering

of data streams. DenStream has a longer chain of compamgtnsxisting algorithms

125



Ll
' Gt S| [T epews | [ Cofeiter W" :
Elevation 3’1"?“«:&’1 |w’,‘ A «
BRI S B3
T
Aspect St
4

| | Slope

| a@:«| |&m
) L .::o;" 3

|§%

0y Wt e RS
H ek 2 A
Tt
L istance_To|
N
o I ot
IS

’ stancefTo<| Py

.); ] : o ‘: R 3:‘“:,:’ 3 3 7 ‘:3... ;::‘
- PR 2 —
i T
| 152 I R £ ishade_Nog | .+ 7. | [S5g5
o “‘*}k S EiE .

o

. A .| Pistance_To,
v 2 ) J

I%?‘“’“‘“I F’%

0.65

illshade_3p

Figure 5.15: Forest Cover Type

(Forestiero et al., 2013; Ruiz et al., 2009; Lin & Lin, 2009;ddani et al., 2012).
All experiments were conducted on a 2.5 GHz machine with 4@&Bory, running

on Mac OS X.

5.3 Quality Evaluation of MuDi-Stream

In this section MuDi-Stream is evaluated on different detsisvith various external
quality metrics which are introduced in Chapter 2. Since wevkithe class labels of
data points in datasets the external metrics are used (Cdo 20@6). The dataset are
simulated as data streams by taking order (Forestiero, &C4l3).

Intuitively, the quality metrics evaluate the clusterimgults with respect to the true
cluster (class) labels that are known for our datasets . eSimeweights of data points fade
out gradually, the quality metrics are measured by only thetp arriving in a pre-defined
horizonh (or window) from current time with different stream speetlke stream speed
Is the number of arriving data points in each time unit (Angtal., 2014). By horizon (or

window) we mean, how many time steps from the current timeawnsicler when running
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the clustering algorithms. Thus, for example, if the hanize 10, it means that the last
10 blocks of data are clustered. The small datasets areaggdlon one horizon since we
got almost similar results for the other horizon and strepeed.

For each dataset we measured the following metrics:

Purity

Normalized Mutual Information (NMI)

Rand Index (RI)

Adjusted Rand Index (ARI)

Jaccard Index (J1)

Folkes and Mallow index (FM)

F-Measure

The mentioned metrics are described in details in Chapter [22s@ metrics are
selected based on metrics which have been used for evauddila stream clustering
results in the literature (Kremer et al., 2011; Jain, 2010zRtal., 2009; Bolanos, 2014;
X. Zhang et al., 2013; Hawwash, 2013). The definition of a gdodtering is far from
being an easy task (Han et al., 2011). In this respect we ueckdt evaluation measures
in order to perform a really accurate evaluation of our rissuh this thesis, for quality
evaluation of each metrics different horizons and strea@edp are considered based on
the size of datasets, and yet the results are measured dfezeidi time units. Stream

speed, horizon, time units are determined based on theatbassic of the dataset.

5.3.1 Evolving Data Stream (EDS)
Figures 5.16a, 5.16b, and 5.16c depict the core-mini-etasthich are detected by

MuDi-Stream at different time units on EDS. In these figui@s;les denote the core-
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mini-clusters. It can be seen that MuDi-Stream accuratefytures the shape of each
cluster as the data stream evolves.

Purity (Figure 5.17), NMI (Figure 5.18), Rand Index (Figuré%, Adjusted Rand
Index (Figure 5.20), Jaccard Index (Figure 5.21), FM (Feghu22), and F-Measure (Fig-
ure 5.23) show the quality metrics’ results of MuDi-Streamd ®enStream on EDS data
stream.

MuDi-Stream achieves higher values compared to DenStréamresults are com-
puted at time units 5, 10, 15, 20, 25, and 30 at horizon set tod2s&ream speed 1000
points per time unit. For horizon 5 with stream speed 2008{ithe units are 5, 10, and
15.

MuDi-Stream’s purity values are always higher than 96% amdtie other criteria
(NMI, RI, ARI, Jaccard Index, FM, and F-Measure), it has valoese than 0.95. In
this dataset, DenStream also gets good results for evoblang stream. However, in
terms of efficiency, MuDi-Stream finished the clusteringgas significantly faster than
DenStream.

The parameters of MuDi-Stream adopt the following settidgs- 0.125,Minpts=
5, a = 0.2, andgridGraunality= 30. The DenStream’s parameters are 0.25,& = 16,

u =10, andB =0.2.

5.3.2 Multi-density Dataset (MDS1)

The clustering quality results on MDS1 including purity, N®and Index, Adjusted
Rand Index, Jaccard index, FM, and F-measure are shown imesSigu24, 5.25, 5.26,
5.27,5.28, 5.29, and 5.30 respectively.

The results are computed at different time units (4, 6, 8ah@,12) with the horizon
set to 5 and stream speed 1000 points per time unit. Moretheergsults are measured

in horizon 1 with stream speed 2000 in 10, 15, 20, and 25 tinits.un
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Figure 5.17: Cluster Purity of MuDi-Stream for EDS with (a)rizon = 2 and stream
speed = 1000, (b) horizon = 5 and stream speed = 2000

It can be observed that, MuDi-Stream outperforms DenStwghen we have variety
in densities. Purity, NMI, RI, ARI, Jaccard Index, FM and F-Meg have high quality
results.

MuDi-Stream performed extremely well in clustering withximaum value 1 while
DenStream has values below 0.7. DenStream quality desrepseifically when a sharp
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Figure 5.18: Cluster Normalized Mutual Information of MuBiream for EDS with (a)
horizon = 2 and stream speed = 1000, (b) horizon =5 and strpagds= 2000
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Figure 5.19: Cluster Rand Index of MuDi-Stream for EDS withh@jizon = 2 and stream
speed = 1000, (b) horizon = 5 and stream speed = 2000
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Figure 5.20: Cluster Adjusted Rand Index of MuDi-Stream foi&Emith (a) horizon = 2
and stream speed = 1000, (b) horizon =5 and stream speed = 2000

change in density happens since it uses the same paranuateds dlusters. It cannot
cluster the density variations.

The parameters of MuDi-Stream adopt the following settidgs- 0.5, Minpts= 5,
a = 0.2, gridGraunality= 20, and DenStream’s values are chosen to be the same as (Cao

et al., 2006). Figures 5.31a, and 5.31b depict the core-chisters and final clusters of
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Figure 5.21: Cluster Jaccard Index of MuDi-Stream for EDShwat) horizon = 2 and
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0.6 o

0.6 4
> >
w i

0.4

0.4

—e— MubDi.Stream

—6— MuDi.Stream 02 4 MuDI
--a-- DenStream

0.2 o
--d-- DenStream

5 10 15 20 25 30 5 10 15
Time Unit Time Unit
(a) (b)

Figure 5.22: Cluster FM of MuDi-Stream for EDS with (a) homize 2 and stream speed
= 1000, (b) horizon =5 and stream speed = 2000
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Figure 5.23: Cluster F-Measure of MuDi-Stream for EDS wifhh@rizon = 2 and stream
speed = 1000, (b) horizon = 5 and stream speed = 2000

the dataset accordingly.

5.3.3 Multi-density Dataset - House (MDS2)
MuDi-Stream is also evaluated on a multi-density dataskgd¢&louse (MDS2) at

time units 2, 4, 8, and 10 with the horizon set to 5 and streaaedA000. MuDi-Stream
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Figure 5.24: Cluster Purity of MuDi-Stream for MDS1 with (arlzon = 5 and stream
speed = 1000, (b) horizon = 1 and stream speed = 500
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Figure 5.25: Cluster Normalized Mutual Information of MuBiream for MDS1 with (a)
horizon = 5 and stream speed = 1000, (b) horizon = 1 and strpagds= 500
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Figure 5.26: Cluster Rand Index of MuDi-Stream for MDS1 with ifarizon = 5 and
stream speed = 1000, (b) horizon = 1 and stream speed = 500

achieves high purity results for MDS2 compare to DenStreeoninstance, while MuDi-
Stream has purity values 99, 100, 100, and 100, DenStrear@has72.3, 79.11, and
67.4 values over different time units (Figure 5.32a).

DenStream clustering purity is high in the first time unit ihiah the small moon

shaped cluster is detected; however, when time passes aothir clusters appear with
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Figure 5.27: Cluster Adjusted Rand Index of MuDi-Stream for Dwith (a) horizon =
5 and stream speed = 1000, (b) horizon = 1 and stream speed = 500
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Figure 5.28: Cluster Jaccard Index of MuDi-Stream for MDSihwa) horizon = 5 and
stream speed = 1000, (b) horizon = 1 and stream speed = 500
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Figure 5.29: Cluster FM of MuDi-Stream for MDS1 with (a) hatz= 5 and stream
speed = 1000, (b) horizon = 1 and stream speed = 500

various densities, the clustering quality is decreasedm@ksured the other metrics, NMI
(Figure 5.32b), Rand Index (Figure 5.33a), Adjusted RandxriBigure 5.33b), Jaccard
Index (Figure 5.34a), FM (Figure 5.34b), and F-Measureyfed.35)). The results prove
that MuDi-Stream has much better quality results on a dat@tie multi-density clusters.

The core-mini-clusters which are formed from MDS2 data so&md final clustering
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Figure 5.30: Cluster F-Measure of MuDi-Stream for MDS1 wigh) forizon = 5 and
stream speed = 1000, (b) horizon = 1 and stream speed = 500
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for MDS2 with horizon = 2 and stream speed = 1000

results are shown in Figures 5.36a, and 5.36b respectividlg parameters of MuDi-
Stream adopt the following settings:= 0.5, Minpts= 4, a = 0.25, gridGraunality =

20, and DenStream'’s values are chosen to be the same as thm dine work presented

in (Cao et al., 2006).
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Figure 5.33: Cluster (a) Rand Index and (b) Adjusted Rand IndiéAudi-Stream for
MDS2 with horizon = 2 and stream speed = 1000
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Figure 5.34: Cluster (a) Jaccard Index and (b) FM of MuDi-&mdor MDS2 with hori-
zon = 2 and stream speed = 1000
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stream speed = 1000

5.3.4 Multi-density Dataset - 5Circles (MDS3)

The results are computed at different time units, 6, 10, &ith the horizon set to
1 and stream speed 1000 points per time unit.

It can be observed from the evaluation results, which aréectexpin Figures 5.37,

5.38, 5.39, and 5.40, that MuDi-Stream outperforms Dem&treMuDi-Stream has val-
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Figure 5.37: Cluster Purity and Normalized Mutual Inforratiof MuDi-Stream for
MDS3 with (a) horizon = 1 and stream speed = 1000

ues almost equal to 1 for most of the metrics; however, DeaStrgets low quality results
with highest value 0.68%. The dataset has two sparse custtr three dense ones for
which it is difficult to handle. DenStream quality valuesasvlsince with highe values,
it can detect the sparse grids correctly while the otheetdiense clusters are considered
as one. If DenStream detects the small clusters precibel\gdarse clusters are detected
as noise. Therefore, DenStream clustering results aredothifs dataset.

The parameters of MuDi-Stream adopt the following settings- 0.125,Minpts=
4, a = 0.04, gridGraunality= 30, and DenStream’s values are chosen to be the same
as its research paper (Cao et al., 2006). Figures 5.41a, 4hd 8epict the core-mini-

clusters and the final clusters of the dataset accordingly.
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Figure 5.38: Cluster Rand Index and Adjusted Rand Index of Mbiégam for MDS3
with (a) horizon = 1 and stream speed = 1000
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Figure 5.39: Cluster Jaccard Index and FM of MuDi-Stream f@33 with (a) horizon
= 1 and stream speed = 1000
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5.3.5 Evolving Multi-density Dataset (EMDS)

Evaluation with seven different metrics on EMDS shows thafMStream performs
quite well in detecting correct clusters. DenStream becoordused when there is a
change in the density of clusters. In Figures 5.42, 5.431,%445, 5.46, 5.47, and 5.48,

the values of external validity criteria computed from ¢dusg results on dataset EMDS
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Figure 5.41: Core-mini-clusters and final clusters for MDS3
validated the mentioned claim. MubDi-Stream achieved atmneaximum values of 1
while DenStream attained values of approximately 0.6.

The final clustering results obtained by MuDi-Stream on t@eng multi density
data stream (EMDS) are shown in Figure 5.49. In Figure 5.48atp indicate the raw
data while circles in Figure 5.49b denote the core mini eltsst The results are com-
puted at different time units with horizon set to 2 at timetsif, 12, 20 and stream
speed 680, and horizon 1 with stream speed 1360 at time yndts7l and 10. The pa-
rameters of MuDi-Stream adopt the following settings= 1, Minpts= 3, a = 0.03
gridGraunality= 20, and DenStream as in (Cao et al., 2006).

DenStream has the ability to detect arbitrary shape ckigtezvolving data stream;
however, when the evolving data has changes in its denségSBeam cannot detect
properly. Therefore, the quality results decrease congptyeViuDi-Stream. MuDi-
Stream can adjust its parameters as data evolves and dehaitges. Thus, it outper-

forms DenStream for evolving multi-density data stream.

5.3.6 Multi-density CylinderCube (MDS4)
The clustering results of MuDi-Stream are shown for two pecsives in Figures
5.50a, 5.50b. It can be observed that, MuDi-Steam can delgsters precisely. Since

in MDS4, the density distribution changes are not high, eelenStream also can get
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speed = 1360, (b) horizon = 2 and stream speed = 680

1.00

0.95 | S\e—e\e
.90

085

080
75 -

.90 -
0.85 —
0.80 —

75

—e— MubDi.Stream
""" DenStream

—e— MubDi.Stream
""" DenStream

Normalized Mutual Information
ooooo0o9oo oo

Normalized Mutual Information
coooooo o

Time Unit

(@) (b)

Figure 5.43: Cluster Normalized Mutual Information of MuBiream for EMDS with
(a) horizon =1 and stream speed = 1360, (b) horizon = 2 andrstspeed = 680
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Figure 5.44: Cluster Rand Index of MuDi-Stream for EMDS with ltarizon = 1 and
stream speed = 1360, (b) horizon = 2 and stream speed = 680

good results such as purity above 87.9% while MuDi-StreasnMadues almost 100% in
time unit 5. The quality comparisons of the algorithms arenshin Figures 5.51, 5.52,
5.53, 5.54. The results are computed at time units 5, and ttOherizon set to 10 at time
stream speed 1000. The parameters of MuDi-Stream adopiltbeihg settingsA =1,

Minpts= 3, a = 0.03, gridGraunality= 20, and DenStream’s as in (Cao et al., 2006).
139



1.00 4 1.00 4
0.95 0.95
é 0.90 é 0.90
2 o085 2 o085
-g 0.80 -g 0.80
& 0.75 S 0.75
o 0.70 o 0.70
T 0.65 T 0.65 -8
£ 060 e -8 £ 060 U S
=051 T —&— MuDi.Stream 2055 e —&— MuDi.Stream
R -9~ DenStream <o ~5- DenStream
0.40 0.40
T T T T T T T
1 4 7 10 4 12 20
Time Unit Time Unit
(@) (b)

Figure 5.45: Cluster Adjusted Rand Index of MuDi-Stream for[EBAwith (a) horizon =
1 and stream speed = 1360, (b) horizon = 2 and stream speed = 680
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Figure 5.46: Cluster Jaccard Index of MuDi-Stream for EMD$wa) horizon = 1 and
stream speed = 1360, (b) horizon = 2 and stream speed = 680
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Figure 5.47: Cluster FM of MuDi-Stream for EMDS with (a) hamz= 1 and stream
speed = 1360, (b) horizon = 2 and stream speed = 680

5.3.7 Gaussian Multi-density Dataset (GMDS)

This dataset is used to evaluate the ability of MuDi-Strea@aussian distributions.
For GMDS, both algorithms gave close quality values in guitMI, RI, ARI, JI, FM,
and F-Measure. The quality values are approximately equaland for purity almost

equals to 100%. However, in term of efficiency MuDi-Strearogaiss remarkably faster
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Figure 5.48: Cluster F-Measure of MuDi-Stream for EMDS wi#f) fiorizon = 1 and
stream speed = 1360, (b) horizon = 2 and stream speed = 680

Data Points
o
8 o
™ - @° @0 © ® @

4 ] )%C@@OO g% Eo @
8 21,59 %o oo o0, BE0BSS @
A * DOQ? QQ;Q@& © 0G5 i Qg&o%

4 106~ 0 @% . %% 00
= o | @@3)%33(8@@ @9@20@9
a o (€

> . > A O%k‘o Qe 2 3 @0
g ] < |
O' o
o
g 3
B \éVei
o adiu
g T T T T T T T T T T T T T T g T T T T T T T T T
000 013 027 040 053 067 080 093 00 01 02 03 04 05 06 07 08 09 10
X X
() (b)

Figure 5.49: EMDS dataset (a) data points at t = 6 (b) Core-plusters att =12

than DenStream. The results are displayed in Figures 5.58, 5.58, 5.59, 5.60, 5.61,
and 5.62. The results confirm that MuDi-Stream has the whitcluster the data in
Gaussian distributions.

The results are computed at 1) time units 1, 2,.3, 10 at horizon set to 1 with
stream speed 1000, and 2) horizon 5 with stream speed 500naadinits 4, 8, 12, 16,
and 20.

The parameters of MuDi-Stream adopt the following settidgs- 0.5, Minpts= 3,
a = 0.05, gridGraunality= 30, and DenStream’s values are chosen to be the same as
(Caoetal., 2006). Figures 5.55a, and 5.55b depict the careatnsters and final clusters

of GMDS respectively.
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Figure 5.51: Cluster Purity and Normalized Mutual Inforroatiof MuDi-Stream for
MDS4 with horizon = 10 and stream speed = 1000

5.3.8 Network Intrusion Detection Dataset

Figures 5.63, 5.64, 5.65, 5.66, 5.67, 5.68, and 5.69 showuhéty results for the
Network Intrusion Detection dataset on seven metrics. R@retvaluation purposes, we
performed the measurements at time units where some agacks(8, 14, 19, 22 and
43, 51, 86, 100). The results have been computed by setten¢pdhizon to 1 and 2,
whereas the stream speed is 1000. We can clearly see thdimggring quality achieved
by MuDi-Stream on this dataset. For example, Rand Index,|fdéh@time units almost

reaches 100% when the horizon is set to 1. Analogous reseltsdained when horizon
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Figure 5.53: Cluster Jaccard Index and FM for MDS4 with harizd 0 and stream speed
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Figure 5.54: Cluster F-Measure for MDS4 with horizon = 10 amelasn speed = 1000

value 2 is used. On this dataset MuDi-Stream outperformsSbeam on others quality

metrics as well.

The parameters of MuDi-Stream adopt the following settiigs: 0.25,Minpts= 3,

a = 0.15gridGraunality= 30, and DenStream as in (Cao et al., 2006).
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Figure 5.65: Clustering Rand Index on Network Intrusion Ded&cDataset (a) horizon
=1 and stream speed = 1000, (b) horizon = 2 and stream spee@D= 10

147



1.0 H 1.0 H
X X I e T
é 08 | § 08 °
c 06 e c 06
¢ ¢
el — .
g o4 8 0.4
D D
= B —o— MubDi.Stream = B —o— MubDi.Stream
T 02 T 02
< --8-- DenStream < --8-- DenStream

0.0 H 0.0 H

8 14 19 22 43 51 86 100
Time Unit Time Unit
(a) (b)

Figure 5.66: Clustering Adjusted Rand Index on Network Inon®etection Dataset (a)
horizon = 1 and stream speed = 1000, (b) horizon = 2 and strpagds= 1000
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Figure 5.67: Clustering Jaccard Index on Network Intrusieteldtion Dataset (a) horizon
= 1 and stream speed = 1000, (b) horizon = 2 and stream spedaD= 10
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Figure 5.68: Clustering FM on Network Intrusion Detectiont&®t (a) horizon = 1 and
stream speed = 1000, (b) horizon = 2 and stream speed = 1000

5.3.9 LandSat Satellite Data

The quality comparisons are performed on the horizons 1 amith3stream speeds

1000 and 500 respectively. The time units in horizon 1 are, Bn8 5 and in horizon
3 are 3, 6, and 9. We evaluated the algorithms on differerg timts as it is depicted

in Figures 5.70, 5.71, 5.72, 5.73, 5.74, 5.75, and 5.76.ntbeaseen that MuDi-Stream
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Figure 5.70: Clustering Purity on LandSat (a) horizon = 1 anebsn speed = 1000, (b)
horizon = 3 and stream speed = 500

clearly outperforms DenStream for most of the quality nestend the values are almost
1. For instance, when the Adjusted Rand Index values of MuEig#n in horizon 3
and time unit 3 is equal to 1, DenStream’s value is 0.59 whsdfjuite low compared to
MuDi-Stream.

The reason for the difference is that MuDi-Stream deteaistels with different
densities precisely. The quality of DenStream deterigrgteatly because in DenStream
a global set of parameters is applied which is not sufficienttie data with a range
of densities and it may detect different clusters as one arsgpcluster as noise. The
parameters of MuDi-Stream adopt the following settifgs: 0.5, Minpts=5, a = 0.01,

gridGraunality= 20, and DenStream'’s as in (Cao et al., 2006).
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Figure 5.71: Clustering Normalized Mutual Information omd&at (a) horizon =1 and
stream speed = 1000, (b) horizon = 3 and stream speed = 500
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Figure 5.72: Clustering Rand Index on LandSat (a) horizon =distieam speed = 1000,
(b) horizon = 3 and stream speed = 500
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Figure 5.73: Clustering Adjusted Rand Index on LandSat (algbor= 1 and stream
speed = 1000, (b) horizon = 3 and stream speed = 500

5.3.10 Forest Cover Type

The evaluations on Forest dataset are reported in Figurgs 5.78, 5.77, 5.79,
5.80, 5.81, 5.82, and 5.83, for Purity, NMI, RI, ARI, JI, FM, aReéMeasure metrics
respectively. The results show that MuDi-Stream overcoBesStream on this dataset

as well. The results are computed at 1) time units 20, 40,0180 with the horizon set
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Figure 5.74: Clustering Jaccard Index on LandSat (a) horizdnand stream speed =

1000, (b) horizon = 3 and stream speed = 500
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Figure 5.75: Clustering FM on LandSat (a) horizon = 1 and strepeed = 1000, (b)
horizon = 3 and stream speed = 500
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Figure 5.76: Clustering F-Measure on LandSat (a) horizonnellstream speed = 1000,
(b) horizon = 3 and stream speed = 500

to 1 and stream speed 1000 and 2) horizon 5 with same streasd 8p80, 50, 70, and
90 time units. The degraded quality values during the irgtisstering results were found
to be due to the presence of all seven class types during itied portion of the data
combined with a lack of prior knowledge of cluster distribas. However, examining

the stream processing shows that this initial poor reswiés chot happen again later with
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Figure 5.77: Clustering Purity on Forest cover type (a) lriz 1 and stream speed =
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Figure 5.78: Clustering Normalized Mutual Information orrési cover type (a) horizon
= 1 and stream speed = 1000, (b) horizon =5 and stream spedaD= 10

the simultaneously reappearance of all seven classes.xaorpte, as it is depicted in
Figure 5.83, F-Measure values in horizon 5 is 0.891, and3i8%me units 30, and 50
respectively; however, in the 70, and 90 time units the \sinerease to 0.979 and 0.999
in the order given.

The parameters of MuDi-Stream adopt the following settilgs= 1, Minpts= 5,

a = 0.04,gridGraunality= 25, and DenStream’s as in (Cao et al., 2006).
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Figure 5.79: Clustering Rand Index on Forest cover type (aztwor= 1 and stream speed
= 1000, (b) horizon =5 and stream speed = 1000
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Figure 5.80: Clustering Adjusted Rand Index on Forest covee (@) horizon = 1 and
stream speed = 1000, (b) horizon =5 and stream speed = 1000
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Figure 5.81: Clustering Jaccard Index on Forest cover typbdazon = 1 and stream
speed = 1000, (b) horizon = 5 and stream speed = 1000
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Figure 5.83: Clustering F-Measure on Forest cover type (a2dvo= 1 and stream speed
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5.4 Quality Comparison of MuDi-Stream with a Grid-based Methad

In this section, we compare the clustering result of MuDe&m with D-Stream (Tu
& Chen, 2009). D-Stream is a grid-based method which clusi&a dtream in limited
time. The main reason behind the low execution time of D&Birés its synopsis storing
method which is based on grid.

We compare the proposed algorithm with D-Stream to showithperforms better
than D-Stream in terms of the quality of final clustering tessuD-Stream forms final
clusters by merging dense grids whereas our method fornesraoni-clusters from the
grid and final clusters from the core-mini-clusters. Weizgithe grid method to keep the
outliers; however, final clusters are not generated acagridi the grid structure.

Figure 5.84 shows the precision (cf. Equation 2.17) conspariof MuDi-Stream
versus D-Stream on Network Intrusion Detection Datasete Wdues of the precision
metrics are on different time units, 100, 150, 200, 250, & Jhe figure shows that in

terms of precision MuDi-Stream outperforms D-Stream in intio%e units.

1.2

- MuD:i.Stream
N D.Stream
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0.8

Precision
0.6

0.4
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|

0.0
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Figure 5.84: Precision of MuDi-Stream Compared to D-StreanNetwork Intrusion
Detection Dataset
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5.5 Quality Comparison of MuDi-Stream with a Multi-density Met hod

DSCLU (Namadchian & Esfandani, 2012) is a multi density-baskeistering al-
gorithm for data streams. It has the ability to cluster mdéinsity data. However, the
difference between this method and MuDi-Stream is that DSClusters the data in the
offline phase using a multi-density algorithm and yet it highltomputation time. Our
method is faster than DSCLU since it has three list of micratelts including dense,
transitional and sporadic. Searching in all these thrde issa time consuming task.
MuDi-Stream has only one list for searching and a grid stmectvhich is not as time
consuming as DSCLU. Hence, the computation time is lower.

Figure 5.85 depicts the purity comparison of MuDi-Streamsue DSCLU on Net-
work Intrusion Detection Dataset. The values of the purigtnos are on different time
units, 100, 150, 350, and 470. The figure shows that in ternpaiofy MuDi-Stream is
almost better than DSCLU in most time units. The differenceasnotable; however,

MuDi-Stream is a more efficient method which finishes itsmalphase much faster than

DSCLU.
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Figure 5.85: Purity of MuDi-Stream Compared to DSCLU on Netwiotrusion Detec-
tion Dataset
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5.6 Complexity Analysis

Streaming algorithms are required to have a fixed and smathiong usage and a
short computing time for the whole process.

In this section, we discuss about time and space complekMu®i-Stream Algo-

rithm. The overall complexity of MuDi-Stream depends orciisnponents complexities.

5.6.1 Space Complexity

The potential data which participate in the final clustees@pt in core-mini-clusters
and the outliers are maintained in the grid list. For coreirlusters, we nee®(mc)
space wherencis the number of core-mini-clusters. However, the coreHtiusters are
pruned frequently, and so the space complexi®(ignc) in whichrme < mc The space
complexity for the grid iSN. While the process continues the scattered grids are removed
Therefore, althoug is exponential to the number of dimensions, the space cotibple
is O(logN) (according to Appendix A on Page 177).

Our experimental results also showed that for small, and bigedatasets no matter
the data is dense or scattered the memory consumption isigtat fihis is due to the
pruning processes that are performed regularly on the maneelusters as well as the
grid list.

SpaceComplexitiuDi — Stream = SCcoreminiclusters+ SQgrid) =

O(rmc) +O(logN)

5.6.2 Time Complexity

In order to determine the time complexity of MuDi-Stream, lwes’e to measure the
time complexity of its online phase. Therefore, the compyexf each components of the
online phase is calculated.

One of the main components of the online phase of MuDi-StisariM-Component

which has two important tasks, i.e. merging or mapping. Tis¢ $tep in merging task is
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finding the nearest core-mini-cluster in core-mini-clusits for the new arrival data point
from the data stream. In fact, the algorithm performs a lisearch on core-mini-cluster
list. So, the time complexity i©(rmc) since the core mini clusters are pruned and the
number is less thamcwheremcis the number of core-mini-clusters.

If the data point cannot be merged into an existing core-aluster, it will be
mapped to the grid. In MuDi-Stream, we maintain a grid listickhincludes the grids
that are under consideration for clustering analysis. ThEligt is implemented as a tree,
which allows for fast look up, update, and deletion. The kiehe tree is the grid coordi-
nates, while the associated data for each grid entry is & giynopsis. Since the space
complexity isO(logN), the time complexity to search, and update in the tree strect
is O(loglogN) which is very small. The time complexity of FCM-Component isiabt
zero since only a grid to core mini cluster conversion is qenked.

In the PGCM-component, both grid and core mini clusters anegut. Therefore,
the entire list of core mini clusters have to examines wheetdltoO(mc) as well as grid
list is O(logN).

In the existing methods such as DenStream when a new dathgvaires, it takes
time to search in two lists of micro clusters including pdi@is and outliers in order to
find the suitable micro-cluster. However, MuDi-Stream os#yarches in potential list and
if it cannot find the suitable core-mini-cluster, the datanps mapped to the grid, which
keeps the outlier buffer. In fact, time complexity of clustg algorithm is decreased
using the grid-based clustering.

The overall time complexity of MuDi-Stream is as follows:

TimeComplexitMuDi — Stream = T(MM — Component + T(PGCM —
Component = Tsearc{ €MQ + Tmap(9) + Tpruning(CMQ + Tpruning(9)

O(MuDi — Streanm) = O(rmc) + O(loglogN) + O(1) + O(mc) + O(logN)
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5.7 Scalability Evaluation
The following experiments are designed to evaluate thebiday of MuDi-Stream.
The first part is used to evaluate the execution time and tbensepart is used to study

the memory usage.

5.7.1 Execution Time

We use both Network Intrusion Detection and LandSat dagdséest the efficiency
of MuDi-Stream against DenStream. Figure 5.86a shows teeution time for the Net-
work Intrusion Detection dataset. We can see that both teeution time of MuDi-
Stream and DenStream grow linearly as the stream proceed$/aDi-Stream is more
efficient than DenStream. In addition, MuDi-Stream takss khan 3 seconds to process
20,000 data points. Thus, MuDi-Stream can comfortably teahidh speed data streams.
Furthermore, Figure 5.86b shows that MuDi-Stream is mdreiefit than DenStream for
the LandSat dataset as well.

DenStream keeps two lists for micro-clusters: potentia aatlier. When a new
data point arrives, DenStream searches in two lists whiMubi-Stream we only need
to check a list of core-mini-clusters and then the grid liSince the grid list is kept
in a tree structure it is much more faster to find a grid cell @pnthe new data point.
Therefore, it makes MuDi-Stream much faster than DenStream

Then, the execution time of MuDi-Stream is evaluated on gaeams with various
dimensionality and different number of natural clustetagses). Synthetic datasets are
used for these evaluations because any combination of theewof natural clusters and
dimensions can be obtained during the generation of dataSmhilar to the experiments
performed in (Cao et al., 2006), the data points of each stintlataset follows a series
of Gaussian distributions. We adopt the following notasiém characterize the synthetic

datasets: “B” indicates the number of data points in the eatdsnes 1000), whereas
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“C” and “D” indicate the number of natural clusters, and thmeélinsionality of each point,
respectively. For example, B400C5D20 means the dataseticedt@0,000 data points

of 20-dimensions, belonging to 5 different clusters (@#a3$s

1. The first series of datasets are generated by varying tim@euof natural clusters
from 5 to 25, while keeping the size and dimensionality ofdaéa streams fixed.
Figure 5.87a shows that the execution time of MuDi-Streamoisdependent to
the number of natural clusters. The execution time does oty change since
the search for core-micro-clusters is not dependant on uh&ber of classes. For
example, when the number of clusters increases from 5 to 28dtmset series

B200D40, the execution time only increases by 10 millisesdnak).

We repeated the experiment for three different dimensioas10, 20, 30, and 40.
The results are similar when the number of classes are sedeae. increasing
the number of classes does not notably change the execuntien The difference
for the execution time of different numbers of dimensiors ot high. The main
cause for the small change is that the number of tree levelease when we have
a change in the dimensions of the dataset. So, it takes angietdo find map the

data points into the grid list.

2. The second series of datasets are generated by varyidgrbkasionality from 10
to 40, while keeping the stream size and the number of natlusters fixed. Figure
5.87b shows that the execution time grows linearly with eespo the dimension-
ality. Once more, this is because the time needed to map thelai point is a bit

longer because the tree structure will have higher numblewvefs.

Similarly, we repeated the experiment for three differesitisgs, i.e. number of
data points in the dataset and the number of classes. Figiifb 8epicts that when

the number of data points are doubled the time taken to psabeswhole data is
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Figure 5.87: Execution Time Changes

also doubled. So, the required time to process the same mwhbata points is

constant and it is independent of the number of clusters.

5.7.2 Memory Usage

One common feature for the algorithms applied to data stisdheir limited upper
bounds for the memory usage. Since the memory usage maydafledtuthe progress of
data streams, the maximum memory usage is used as the nmaastird he entity used
for the evaluation in MuDi-Stream is the core-mini-cluster

For the comparison of memory usage, the stream length rdrme<d 0000 to 30000
for four datasets including Network Intrusion DetectioandSat, EDS, and EMDS. As it

is shown in Figure 5.88, for real datasets, the memory usblyriDi-Stream is limited.
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The number of core-mini-clusters is less than 30. Moredvigiure 5.88 shows that the
memory usage of MuDi-Stream is bounded as the streams rémegynthetic datasets.
For example, for EDS data stream, when the stream lengtlgelsdrom 15000 to 30000,

the memory usage only increases by 5.
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Figure 5.88: Memory Usage

5.8 Sensitivity Evaluation
The prominent parameters of MuDi-Stream includex, andgridGranularity. We
test clustering quality using seven different metrics aliferent ranges of parameters on

different datasets. The results are shown for LandSatelatas

5.8.1 Outlier Threshold: a

One of the important parameters of MuDi-Stream is the autheeshold. Figure
5.89 depicts the clustering quality whenvarys from 0.01 to 0.3. I&x ranges between
0.03 to 0.2, the clustering quality is very good. When the eslof a are too small
it leads to small pruning times. Therefore, pruning happense frequently and more
core-mini-clusters are pruned. Hence, the quality is reduc

This implies that sincer andN has direct effect on each other. When a dimension

is so high the bigger values of is more preferable to decrease the effect of high values
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of N. However, in the datasets with lower dimension, betterltesun get using smaller

values ofa.
The important note is that thee which is used in algorithm is multiple by a coeffi-

cient. Otherwise, sincH is a big numberg has no effect on it.
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Figure 5.89: Clustering Quality ve

5.8.2 Density Threshold:A

A is another parameter of MuDiStream. It controls the imparéaof historical data
to the current clusters. We test the clustering quality ying it from 0.031 to 32. Figure
5.90 shows the results. When it is set to a relatively smalligin kalue, the clustering
quality becomes poor. For example, whenr= 0.031, the NMI is about 0.69. Further,
whenA = 32, the points decay soon after their arrival and only a smathber of recent
points participate in the final clustering. So, the resultlsd not very good. It can been
seen that ifA ranges from 0.125 to 8, the clustering quality is quite good stable, and

always above 90%.

5.8.3 Grid Granularity: gridGranularity
gridGranularityis a parameter which affects the clustering quality of Md@ieam.
We varied the value ofjridGranularity parameter of MuDi-Stream from 5 to 40 in-

creasing by 5 in order to investigate the sensitivity of tlgpathm. The results on sen-
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sitivity analysis are shown in Figure 5.91. It can be obsérireat the best range for
gridGranularityis between 20 to 30.
According to the sensitivity results fgridGranularity, we concluded that for the
datasets with denser clusters, higgad Granularity values achieve better results.
ThegridGranularity is an important parameter in MuDi-Stream in terms of the al-
gorithm’s execution time. It has a significant impact on exen time. This is due to
the change in the number of nodes of the tree structure usatidayrid. Higher grid

granularity causes higher number of children for each nodlkes tree.
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5.9 Summary

In this chapter, we introduced the real and synthetic degashich are used for
the evaluation of MuDi-Stream. The real and synthetic ddtaare chosen from the
reviewed literature which are most used. They have variesize, number of clusters,
and differences in their densities. A wide spectrum of expents have been conducted
in this section as well.

Seven well-known evaluation metrics including Purity, Matized Mutual Infor-
mation, Rand Index, Adjusted Rand Index, Jaccard Index, FMeBsure are selected to
show the high quality of the proposed algorithm. The metaiescalculated on selected
time units, stream speeds and horizons. Evaluations omade@latasets using the quality
metrics show that MuDi-Stream achieves much better resattgpared to its competitive
methods.

We also measure the scalability of the proposed methods diffierent numbers
of dimensions and clusters. The scalability results shat khuDi-Stream is scalable
with respect to the length and dimensionality of the dateastrs. MuDi-Stream shows
linear scalability on both the number of clusters and the lmemof data dimensions. In
terms of efficiency, MuDi-Stream finished the clusteringgass significantly faster than
DenStream.

Furthermore, by varying important parameters of MuDi-&tnethe clustering qual-
ity of MuDi-Stream is measured. The sensitivity analysitedained the best range for
prominent parameters of the proposed algorithm, theretaran be applicable for any
researcher who wants to perform MuDi-Stream on a new dataset

The complexity analysis of MuDi-Stream shows that the timenplexity of the
computation is less than the existing methods. It is worthdi@ that, despite the lower

computation time of MuDi-Stream, the quality obtained isambigher than that obtained
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by DenStream specifically in multi-density datasets.

It is proved that using grid-based clustering in the onlihage to map a new data
point while it might be noise and forming final clusters froeak data using a density-
based clustering algorithm improve the quality and efficyeof the proposed algorithm.
We conclude that MuDi-Stream is an effective and efficienstring algorithm in the

clustering evolving data stream with various densities.
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CHAPTER 6

CONCLUSION

6.1 Overview

This study proposed an adaptive density-based clusteretbad for evolving data
streams. The method not only can overcome the challengéssteicevolving data stream
but also can cluster multi-density data stream. Furtheembhas low computation time
and high quality with acceptable memory usage. The sumnfdigding, limitations of

the research and some recommendations are given in thevifogjsections.

6.2 Summary of Results

We summarize the results by answering research questioms@hapter 1 as fol-
lows:

Question I which method is more appropriate for summarizing dateaagtfe

In data stream, data points arrive continuously over tinth high speed, and the size
of a stream is (potentially) unbounded. Therefore, them@i®nough time to process and
memory to keep. The synopsis model of data stream shouldenonly compact, but
also does not grow with the number of data points processedreiore, in this thesis
we proposed a hybrid method for data stream synopsis. A rolaster method is used
to keep summary information about arbitrary shape clustdrite grid based method
maintains the outliers. These methods have two aforenresdioharacteristics. Our new
proposed core-mini-cluster concept is a vector which keepsmary information of data
points as well as some information for multi-density datae Grid-based method, also
keeps some information about data points inside each glighcgrid synopsis. When

the data is mapped into the grid, the information relatedh&t tell is updated and it is
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not needed to update the whole grid. This method of updatingssis data, makes our
computation time significantly faster.

Question 2 How to handle evolving data stream?

There are different methods for clustering evolving dataash. One of the well-
known methods is fading window model which is explained ictie® 2.2.1. For han-
dling evolving data stream, a weight coefficient is condeior each data point. The
coefficient decreases exponentially over time. In this w@tlwve have more emphasis on
the recent data. Since the coefficient is related to theartime of the data point, the
recent data has more weight compared to the old data.

Question 3 What are the reasons of high computation time?

According to the comprehensive review of the existing méghdhe high computa-
tion time is because of searching to find suitable place ton@sdarrival data to existing
synopsis data. However, in this thesis we decrease thisustiba search with mapping
into the grids. The existing method keeps an extra list fdliens, which leads to high
computation time. However, we introduce grid-based methadhich when a new data
point arrives and it cannot be located in any existing syisjids mapped to the grid.

Question 4 How to lower the computation time?

In this thesis, a hybrid method consisting of micro-clusigrand grid-based tech-
nigue is used to decrease the computation time. 1) Micrsteting method is used to
form real clusters. 2) Grid-based method is used to keepeosithecause of its fast pro-
cessing time. Low computational complexity of grid dataisture has been the main
motivation for using it as synopsis.

Question 5 What issues impede the clustering quality in multi-densityiron-
ments?

Based on the literature, the main reason which decreasedusterang quality in

multi-density environments is using a similar radius fdfedent distributions of data. In
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the existing methods of density-based clustering for da&as, a small value of radius
will detect the sparse clusters as noise and a big number otaletect the dense clusters
properly. In fact, the existing methods do not adopt thetehirsg parameters according
to the density distribution of data.

Question 8 How to increase the clustering quality in multi-densityafa

One of the well known frameworks for clustering data stre@rtbe online-offline
framework. In this thesis, not only we consider to improvaldy in online phase but
also in the offline phase. In the online phase, we keep summgoymation about data
as well as information for multi-density clustering. In tbi#line phase, we also propose
a new multi-density clustering algorithm which uses tharasynopsis information and
yet statistical analysis to form final clusters considedegsity distribution of data. The
radius parameters of clustering are adjusted accordingetdénsity distribution of data.

This leads to high quality clustering specially in multind@y data.

6.3 Achievement of Objectives

The objectives of this research are as follows:

1. To propose and develop a new density-based algorithmustecing evolving data

Stream.

2. To improve the quality of clustering for multi-densitytda The clustering quality
has to be high for normal distribution data as well as for ta@dvith dissimilar

density distributions.

3. To reduce the computation time. The computation time ddsetlow enough to

cope with the speed of arriving data stream.

4. To evaluate the capability of the proposed methods inawipg the quality.
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A multi-density based clustering algorithm, MuDi-Streais proposed to cluster
evolving data stream in order to achieve the first objectivge proposed algorithm was
designed, implemented and its improvement in quality isvshioy a comprehensive eval-
uation using different datasets with different metrics.

The methods and results are summarized as follows:

* A hybrid method was introduced for the online phase corigrid- and micro-
clustering. The method can handle multi-density data vatt ¢omputation time

(cf. Section 4.7.1).

» A pruning method was proposed in the online phase to didwattd the grid cells
which are scattered and the core-mini-clusters with lowstgn The pruning is

performed frequently (cf. Section 4.7.3).

* A new density-based clustering algorithm is also propaedtie offline. The al-
gorithm has the ability to cluster multi-density data froymspsis information re-

ceived from the online phase (cf. Section 4.8.1).

The proposed method has high quality for multi-density datsam due to the con-
sideration of the density distribution of data. This hasrbpeved in the experimental
evaluation explained in Chapter 5. This has answered thendexdgective. The radius of
clustering is updated by density distribution of data usirigrmation kept in the online
phase as well as some statistical information.

The proposed method reduced the computation time to acthevehird objective.
This is discussed in Section 5.6. Three strategies caugeldthcomputation time: 1)
Using the grid-based method which maps the outliers, 218)ipg the grid and the core-

mini-clusters frequently.
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An extensive evaluation was performed to show the supgriofithe method to
the existing methods. This has been done to achieve the dbjéttive. The proposed
method’s evaluation is not biased to any dataset, sizepies, or quality metrics. We

claim the unbiased evaluations due to the following analysi

The proposed method was evaluated on various datasetslvigent numbers of

data points, sizes and densities.

Different synthetic datasets with different density dizition are used to measure

the quality of clustering in the multi-density environmgnt

Seven well-known evaluation metrics in the literature evesed to evaluate clus-

tering quality.

The range of algorithm’s parameters were determined isémsitivity analysis of

the method.

6.4 Contributions

There are a number of density-based clustering algorittumsgldta stream. How-
ever, they have high computation time due to their high nmgrgjme. Furthermore, they
do not have the ability to cluster multi-density data whiehds to their low quality re-
sults. On the other hand, there are some multi-density exiast algorithms for static
datasets which are not applicable for data stream sincehidéney some problems such as
requiring whole data for clustering or high execution timét only a few approaches
have been proposed so far which tackle both the stream andutiedensity aspects of
the data simultaneously. Therefore, a new density-basestiecing was presented in this
thesis to overcome the aforementioned problems. Furthvesraocording to data stream

characteristics, the challenges in clustering data sisdwad to be considered in the pro-
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posed algorithm. The specific research contributions sfttiesis can be summarized as

follows:

» a new multi density-based clustering for evolving dataatns (MuDi-Stream)

a new synopsis structure for multi density data

a new hybrid method for online phase of algorithm using gnd micro clustering

method

* a new multi density-based clustering for offline phase (BSTAN)

¢ an extensive evaluation

A new multi density-based clustering for evolving data strams (MuDi-Stream):
MuDi-Stream consists of four main components: MM-compan&CM-component,
PGCM-component and FFC-component. The first three compoaeatssed in online
phase while the last component is related to offline phasey plerform four important
tasks including merging or mapping, forming core mini cdust pruning grids and core
mini clusters, and forming final clusters.

MuDi-Stream offers a novel approach for clustering dat@astr from a multi density
environment. The approach complies with all data streaosteling requirements. It re-
quires only one scan of data. It updates new data obsergatoeived from data sources
to the previously mined models. The system spends a smalli@inod processing time
per data point.

The proposed method can overcome challenges in clustesitagstteam as follows:

» Handling evolving data streams: using fading window model

» Handling noisy data: map them into grids, mark as scattgreld and pruned them

172



* Clustering in limited time: using a hybrid method for clustg allow us to perform

clustering in limited time.

* Clustering in limited memory: by pruning grids and microstlers frequently, we

try to keep the memory bounded.

A new synopsis structure for multi density data: Some new concepts are intro-
duced including mini core distance, core mini clusters, em@-neighboring in order to
handle multi-density data stream.

A new hybrid method for online phase of algorithm using grid and micro clus-
tering method: A hybrid method based on the micro-clustering and grid-Basester-
ing is applied to capture summary information of the datan{soi Grid-based method is
used for mapping outliers and forming new mini clusters wditfierent radius. This is
conducive to improve the quality in multi-density data adl\ae a dramatic decrease in
merging time. In fact, MuDi-Stream replaces the exhausearch of assigning a point
to the appropriate outlier micro-cluster with a grid majgpiask.

A new multi density-based clustering for offline phase (M-DBS@N): A density-
based clustering algorithm called M-DBSCAN is proposed fer dffline phase which
forms final clusters with various densities from the synsisita.

An extensive evaluation: A comprehensive set of experiments were conducted on
both synthetic and real-world datasets using various kifidsaluation metrics. The re-
sults have proved that the proposed method can clustersidessn in multi-density en-
vironments in comparison with the existing methods. Ouoailgm has better clustering
quality, efficiency, and scalability than existing method& performed a comprehensive
evaluation on ten different dataset with various numbersiz#, cluster, dimension and
density. Seven different metrics consist of purity, noimed mutual information, Rand
Index, Adjusted Rand Index, FM, F-measure is evaluated thitgof proposed method.
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The evaluation proved that our proposed method has highaityjaompare to existing

method.

6.5 Limitations of Current Study
» We observed that, the clustering algorithms cannot dealhwgh dimensional data.
The number of grids will be increased as the space dimengipgaows. They
have low performance on very high dimensional data. Theeefarther research
may involve handling both the high dimensional data in dgAsased data stream

clustering and at the same time handling the other chalkenge

* The method uses fading window model for clustering eva\ulata streams. The
window model is chosen based on the best and most used methoslliterature.
Nevertheless, more analysis are need to check whetherwthéow models can

increase the clustering quality in case of having multisigrclusters in our data.

* In this thesis, Euclidean distance is used. However, moadyais is required to
determine if other kinds of distances such as mahalanostardie can increase the

quality.

6.6 Recommendations and Future Directions

The researcher strongly believes that the proposed methibdki thesis highly im-
proves not only the quality of density-based clusteringpathms in multi-density envi-
ronments but also has low computation time. Hopefully, tr@ppsed method is used
by other researchers in other real applications with ndeétisity distributions or in ap-
plications with requirements of limited time. Apart frometabove improvements, some

important refinements are discussed as follows:

* In real applications, we have other different kinds of dsttah as categorical or

uncertain. Extending the proposed method to be applicablether types of data
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is required for clustering evolving data stream.

« Different applications produce infinite streams of dattributed from various re-
sources such as sensor networks. Therefore, data shoaldhalgrocessed in a
distributed fashion. So, the method can be adapted to b&apld in distributed

environments.

» High dimensional data are collected in many scientificgety, humanity research,
or business processes. This is to better understand themplesa that the re-
searchers or managers are interested in. Therefore, @xtethe proposed method

to be applicable for high dimensional data is a further nedetopic.

» With the emergence of big data, which is evolving and chaggilata stream is a
specific approach to deal with it. Therefore, extending psejl algorithms to meet

the requirements for big data is another interesting issusekearch.

We hope that the research presented in this thesis willi@spore research from the

researchers and practitioners in the field.
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APPENDIX A
OUTLIER THRESHOLD FORMULA

Definition 25 (Outlier Weight Threshold function (OWT)).If the last updated time of a

grid g is t then at current timect Outlier Weight Threshold (OWT) is defined as follows

(tc > tp):

tc tp 1 2—A(te—tp+1)
OW T(tp,te) = %2A': NA=27) )

(A.1)
Lemma 3 The outlier weight threshold function has the following édtiities:

1. ifty <ty <tz, then

272 2 owt(ty, t) + owt(ty + 1,t3) = OWt(ty, t3)

2. ifty <t then

OWt(ty,t) > owt(to, t),t >ty to

Proof.
1.
th—ty t3—to—1
a b, a |
27)\ (tgftg)ovvt(tl,tz) +0V\ft(t2+1,t3) — N % Z*A (t3—to+i) + N % 27)\|
i= i=
a t3—t1 o i3t tS €1
=SS 27y Z) ;2 AT = owt(ty, tg).
N i=tz3—tp i
2. 0t =tr—t1
t -t t —to+-St

Wh(t1,t) %A'— Z} 2
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q =t - t2+6t t— t2+5t _
N(Zz—)\l %Z—AI 2—AI
i= i=t— t2+1 I =t— t2+1

g ttetot _
—owt(tz, )+~ S 27N > owt(tyt).
i=t—ty+1

The design of density threshold function is explained akWd. Assume a grid
g has been deleted at time stepdo,...,tx =t. We need to guarantee thgtcannot

become a core mini cluster even if it has not been deletedefthre we should have:

a (1_27)\ (t+1))

Wo(t) < “Naany

we also have:

Wg(t) < SK ;owt(ti_1,t)2 (1) therefore, we need

k _ 1_2—/\(t+1))
owt(t;_ )2 At < 9 A2

i; (I 1, |) > N(l—Z*)‘) ( )

a(1—277tD) A —At

= —(1+2 o+ 2

NI_27%) ~NGFZEeer2

:%(1+2 4. 42 tifl))z_)‘(t_ti)
k

1 2— Ati—ti— 1+1))

2—A(t-t)
N(1—22)

M

(A.3)

from A.2 and A.3, we have

a(1—2AG-ti-1t1))

OWt('[i_l,ti) = N2

Theorem. The size of grid list at modt = + IogN“ﬁ N is the total number of grid
andA is the decay factor.
Proof. t —t, = L the density of each grid at time t equals

) vt 2 <ttt < £

(because the maximum density-is>— )
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SinceN2—AL 4 g2 Alt—tp+1)  N2-AL 4 g2 Alt—tp+]) ~ N2-AL 4 g2 AL — g
ThenN2 AL < g — @2~ A(t-tpt+1)

Therefore, we have

0 < 2—AL N2-AL o — a2 At=tp+l) a(l_zf)\(tfthrl)) Wt
W) S T X = NA—A) S Na-A) . Na—a) oMY

Proposition 2. Assume the last time a grid g is deleted asesedtgrid istx and the
last updated of gridj is tp. If at current timet, we havewy(t) < owt(t,,t), then we also
havewg(t) < owt(0,t)

Proof. Suppose the grig has been deleted before for the period§®t,), (t; +

1,t2),..., (tk—1+ 1,tm), then the density valueg(ti), i = 1.. .k satisfies:
Wg(ti) < owt(ti_1+1,t) (A.4)
if the previous data is not deleted, we have density thresstusiction as follows:
k

ng £)2 A0 fwg(t) < Zovvt ti1+1,0)27 2 Lowt(tp,t)  (A5)

Becausép > tm+ 1, according to attribute 2 of Definition 25, we have:

The last equalities are based on the attribute 1 of Definin

Definition 26 (Pruning time). We check the cmc’ weight as well as grids’ in a specific

time called ft. tpt is the minimum time for a cmc in timestampa be converted to an

outlier in tp (t2 > t1), which is formally defined as follows:

Lemma 4

a
1424
tpt = Alog" "
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Proof.

a

Nz (A.6)

Wemd(t2) < Wemd(t1) =

2—Ale—ty) Wemel(t1) + 1 < Wemc(t1)

2—)\ (to—t1) < Wcmc(t]_) -1

, tr=t—1
Weme(t1) P

o Mpt Wemd(t1) —1
Wcmc(t1>

wemdlty)

1 W -
tpt > 5 logy ™ (A.7)

From Equations A.6, and A.7 we have:

tpt = ’V/\l IOggilJrz_)\ —‘ (A8)
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APPENDIX B

AVERGAE QUALITY COMPARISON

In this Section, we

Since each dataset is evaluated on different horizon stsgsad.

also evaluated quality metrics on different dataset by mn@ag the average values on the

sanfep abelany

NMI

Pu

T 0T 80 90 ¥O <20 00

whole data stream. As it is shown in Figures B.1, B.2, B.3, B.4, BIoDi-Stream is

outperform DenStream on all quality metrics on whole datzesh.

sanfep abelany

Quality Metrics
(b)

Quality Metrics
@)

Figure B.1: Average of Quality Metrics on a) EDS and b) EMDS
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Figure B.2: Average of Quality Metrics on a) Forest and b) GMDS

T T T T T 1
. 0T 80 90 ¥0 <20 00

sanfeA abelany

T 0T 80 90 ¥0 <20 00

sanfeA abelany

NMI

Puri

Quality Metrics
(b)

Quality Metrics
@)

Figure B.3: Average of Quality Metrics on a) KDD and b) LandSat
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Figure B.4: Average of Quality Metrics on a) MDS1 and b) MDS2
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Figure B.5: Average of Quality Metrics on a) MDS3 and b) MDS4
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APPENDIX C
INTERNAL QUALITY EVALUATION

In terms of internal quality evaluation, we have evaluatesl final clustering results of
MuDi-Stream on one of the datasets, i.e. Gaussian MultsitheDataset (GMDS). Other
results on this dataset are presented in Section 5.3.7.

Figure C.1 illustrates the silhouette plot of the clusteniagults. The dataset in-
cludes five clusters. The average Silhouette values aretegbio the plot. MuDi-Stream

produced compact and well-separated clusters since @ifteovalue is close to 0.9.

Silhouette plot of (x = ClusterIDs, dist = distancePower2
n =120 5 clusters C;

| LAY | aveincj Si

= 122|089

= 20| 0.84

= ——<F092

0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width s;

Average silhouette width : 0.87
Figure C.1: Silhouette Plot for Gaussian Multi-density BatgGMDS)
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APPENDIX D

THE DETAILS OF THE EXPERIMENTAL RESULTS

D.1 House (MDS2) Dataset Results

The results of the execution of MuDi-Stream on a multi-dgndataset which we
called it House (MDS2) is presented in Section 5.3.3 on p&je T'he details of the
execution are presented in Table D.1.

The parameters of MuDi-Stream for this execution adoptdiewing settings. We

measured the quality metrics with the horizon set to 5 arehstrspeed 1000.

* A =16,
* Minpts=5,
« a=0.9,

gridGraunality= 30

In Table D.1 the following values are identified:

» Point Number: It shows the number of data points arrived at this time uhite
dataset contains 12131 points and we measured the qualiticenr each 2000

points as well as at the end of the data stream.

* CMC Count: It represents the number of core-mini-clusters generayeitie on-

line phase of MuDi-Stream.

* toniine: The time elapsed (seconds) from the execution’s commeaiceontil this

data point arrived.
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» Quality Metrics: The values of several quality metrics including Puritytriépy,

NMI, RI, ARI, Jaccard Score, Precision, Recall, FM, and F-Measue measured

and reported.

Point | CMC | toniine | Purity | Entropy | NMI RI ARI | Jaccard Precision| Recall| FM | F-Measure
Number| Count Score

2000| 642 | 0.04 | 95.794| 2.225 | 0.961| 0.861| 0.658| 0.77 1 0.77 | 0.77 0.87
4000| 1009 | 0.08 | 95.837| 2.197 | 0.971| 0.967| 0.911| 0.935 1 0.935| 0.935 0.966

6000| 1129 | 0.12 | 99.734| 2.205 | 0.996| 0.998| 0.996| 0.997 0.999 | 0.998 | 0.997 0.998

8000| 1163 | 0.16 | 99.656| 2.196 | 0.998| 0.999| 0.998| 0.998 0.999 | 0.999 | 0.998 0.999
10000| 1184 | 0.2 | 99.747| 2.188 1 1 1 1 1 1 1 1
12131| 1223 | 0.25 | 94.849| 2.187 | 0.966| 0.968| 0.913| 0.937 1 0.937 | 0.937 0.967

Table D.1: The details of an execution of MuDi-Stream on MDiafaset

The number of classes in this dataset are five. MuDi-Streartddod the correct
number of clusters. For example, in time unit 10 for which Q@@oints were read,
MuDi-Stream could find all 5 classes as five clusters. Thesedivsters are generated
by MDBSCAN using 1184 core-mini-clusters. The details arespnéed in Table D.2.
The table shows that, for example, 174 core-mini-clustdrhvall have class ID 1 are

clustered in Cluster 3.

| Class Numbet| Cluster 1| Cluster 2| Cluster 3| Cluster 4| Cluster 5|

1 0 0 174 0 0
2 0 0 0 0 240
3 0 166 0 0 0
4 445 0 0 0 0
5 0 0 0 159 0

Table D.2: Number of core-mini-clusters for the classes@usters by an execution of
MuDi-Stream on MDS2 dataset

D.2 CylinderCube (MDS4) Dataset Results

The results of the execution of MuDi-Stream on a multi-dgndataset which we
called it CylinderCube (MDS4) is presented in Section 5.3.@page 138. The details of
the execution are presented in Table D.3.

In Table D.3 the following values are identified:
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ID: It is a sequential number which shows different executmiguDi-Stream.

Point Number: It shows the number of data points arrived at this time uhite
dataset contains 10000 points and we measured the qualiticenr each 5000

points.

Parameters’ Settings: The values of MuDi-Stream’s patarsg\, minPts a, and

Grid Granularity.

CMC Count: It represents the number of core-mini-clusters generayeitie on-

line phase of MuDi-Stream.

tonline: The time elapsed (seconds) from the execution’s commeacefar each

execution ID until this data point arrived.

CMCs in each cluster The dataset contains three classes. For each execution we

identified the number of core-mini-clusters which are puwtach cluster.

ID Point A minPts | o Grid CMC tonline CMCs
Number Granularity || Count in each cluster
1 5000 0.0625 4 0.6 4 28 0.514123821 11-9-8
10000 || 0.0625 4 0.6 4 31 0.644977329 11-12-8
2 5000 0.0625 4 0.6 8 57 0.161896245 30-20-7
10000 || 0.0625 4 0.6 8 68 0.262233437 36-24-8
3 5000 0.0625 4 0.5 4 31 0.086273589 11-12-8
10000 || 0.0625 4 0.5 4 36 0.171721328 14-14-8
4 5000 0.0625 4 0.5 8 64 0.088338516 35-21-8
10000 || 0.0625 4 0.5 8 72 0.177076073 39-25-8
5 5000 0.0625 4 0.4 8 74 0.086969645 28-38-8
10000 || 0.0625 4 0.4 8 88 0.17596015 31-47-10
6 5000 0.0625 4 0.2 4 55 0.085826253 23-20-12
10000 || 0.0625 4 0.2 4 56 0.170563748 23-21-12
7 5000 0.0625 5 0.6 4 28 0.090228373 11-9-8
10000 || 0.0625 5 0.6 4 31 0.179543361 11-12-8
8 5000 0.0625 5 0.6 8 57 0.086583283 30-20-7
10000 || 0.0625 5 0.6 8 68 0.174242344 36-24-8
9 5000 0.0625 5 0.5 8 64 0.0860792 35-21-8
10000 || 0.0625 5 0.5 8 72 0.169994769 39-25-8
10 5000 0.0625 5 0.4 8 74 0.086496956 28-38-8
10000 || 0.0625 5 0.4 8 88 0.175808622 31-47-10
11 5000 0.0625 5 0.3 8 84 0.086029698 29-45-10
10000 || 0.0625 5 0.3 8 103 | 0.170605403 36-53-14
12 5000 0.0625 5 0.2 8 115 | 0.086670817 38-61-16
10000 || 0.0625 5 0.2 8 131 | 0.172985759 39-66-26
13 5000 0.0625 5 0.2 12 212 0.08885256 67-112-33
10000 || 0.0625 5 0.2 12 256 | 0.178885035 77-130-49
14 5000 0.0625 5 0.1 4 83 0.084934902 28-35-20
10000 || 0.0625 5 0.1 4 92 0.169996278 31-39-22
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15 5000 0.0625 5 0.1 8 213 | 0.086874564 110-69-34
10000 || 0.0625 5 0.1 8 239 | 0.174666438 117-82-40
16 5000 0.0625 6 0.6 8 57 0.086084634 30-20-7
10000 || 0.0625 6 0.6 8 68 0.171038554 36-24-8
17 5000 0.0625 6 0.5 8 64 0.085819915 35-21-8
10000 || 0.0625 6 0.5 8 72 0.169890934 39-25-8
18 5000 0.0625 6 0.4 8 74 0.085379823 28-38-8
10000 || 0.0625 6 0.4 8 88 0.173411362 31-47-10
19 5000 0.0625 6 0.3 8 84 0.08520928 29-45-10
10000 || 0.0625 6 0.3 8 103 0.17202589 36-53-14
20 5000 0.0625 6 0.2 8 115 | 0.086599884 38-61-16
10000 || 0.0625 6 0.2 8 131 | 0.176605797 39-66-26
21 5000 0.0625 6 0.2 12 212 | 0.088005882 67-112-33
10000 || 0.0625 6 0.2 12 256 | 0.178103254 77-130-49
22 5000 0.0625 6 0.1 4 83 0.085681065 28-35-20
10000 || 0.0625 6 0.1 4 92 0.169976054 31-39-22
23 5000 0.0625 6 0.1 8 213 | 0.090166797 110-69-34
10000 || 0.0625 6 0.1 8 239 | 0.177025666 117-82-40
24 5000 0.0625 6 0.1 12 393 0.09482126 110-222-61
10000 || 0.0625 6 0.1 12 448 | 0.190156867|| 124-243-81
25 5000 0.0625 6 0.1 16 510 | 0.098255964| 276-175-59
10000 || 0.0625 6 0.1 16 638 0.20819608 328-216-94
26 5000 0.0625 7 0.5 8 64 0.091571588 35-21-8
10000 || 0.0625 7 0.5 8 72 0.176798376 39-25-8
27 5000 0.0625 7 0.4 8 74 0.088172501 28-38-8
10000 || 0.0625 7 0.4 8 88 0.173376349 31-47-10
28 5000 0.0625 7 0.3 8 84 0.084173044 29-45-10
10000 || 0.0625 7 0.3 8 103 0.16997696 36-53-14
29 5000 0.0625 7 0.2 8 115 | 0.086550685 38-61-16
10000 || 0.0625 7 0.2 8 131 | 0.173306623 39-66-26
30 5000 0.0625 7 0.2 12 212 | 0.088254906 67-112-33
10000 || 0.0625 7 0.2 12 256 | 0.177710553 77-130-49
31 5000 0.0625 7 0.1 8 213 | 0.087976906 110-69-34
10000 || 0.0625 7 0.1 8 239 | 0.176155746 117-82-40
32 5000 0.0625 7 0.1 12 393 0.09548019 110-222-61
10000 || 0.0625 7 0.1 12 448 0.19158158 124-243-81
33 5000 0.0625 7 0.1 16 510 | 0.097541495|| 276-175-59
10000 || 0.0625 7 0.1 16 638 | 0.196910366|| 328-216-94
34 5000 0.125 4 0.5 12 176 | 0.086638822 55-99-22
10000 0.125 4 0.5 12 219 | 0.176162084 64-115-40
35 5000 0.125 4 0.4 4 54 0.084928263 23-19-12
10000 0.125 4 0.4 4 54 0.168181581 23-19-12
36 5000 0.125 4 0.4 8 122 | 0.086144097 39-65-18
10000 0.125 4 0.4 8 134 | 0.171552293 41-71-22
37 5000 0.125 4 0.4 12 221 | 0.088466498 72-118-31
10000 0.125 4 0.4 12 252 0.1792717 83-128-41
38 5000 0.125 4 0.3 4 68 0.082977735 24-29-15
10000 0.125 4 0.3 4 74 0.167900563 24-32-18
39 5000 0.125 5 0.6 8 81 0.085724531 28-45-8
10000 0.125 5 0.6 8 95 0.170517566 33-51-11
40 5000 0.125 5 0.6 12 147 | 0.087834433 48-89-10
10000 0.125 5 0.6 12 175 | 0.175407168 51-95-29
41 5000 0.125 5 0.5 4 43 0.082415093 14-18-11
10000 0.125 5 0.5 4 a7 0.167004081 16-20-11
42 5000 0.125 5 0.4 8 122 | 0.087056578 39-65-18
10000 0.125 5 0.4 8 134 | 0.172259822 41-71-22
43 5000 0.125 5 0.4 12 221 0.08904363 72-118-31
10000 0.125 5 0.4 12 252 | 0.178731699 83-128-41
44 5000 0.125 5 0.3 4 68 0.084240355 24-29-15
10000 0.125 5 0.3 4 74 0.1675471 24-32-18
45 5000 0.125 5 0.3 8 147 | 0.086107876 80-44-23
10000 0.125 5 0.3 8 162 | 0.171980312 89-48-25
46 5000 0.125 5 0.2 4 85 0.084114183 28-35-22
10000 0.125 5 0.2 4 91 0.167988701 30-38-23
47 5000 0.125 5 0.2 8 219 | 0.086269967 111-73-35
10000 0.125 5 0.2 8 243 | 0.174279471 118-83-42
48 5000 0.125 5 0.2 12 407 | 0.092426113|| 113-228-66
10000 0.125 5 0.2 12 459 | 0.189531441|| 129-250-80
49 5000 0.125 5 0.1 4 215 0.08728266 84-82-49
10000 0.125 5 0.1 4 228 | 0.174775103 90-85-53
50 5000 0.125 5 0.1 8 472 | 0.094939583|| 240-164-68
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10000 0.125 5 0.1 8 514 | 0.194200393| 255-177-82
51 5000 0.125 6 0.6 8 81 0.087633102 28-45-8
10000 0.125 6 0.6 8 95 0.172604829 33-51-11
52 5000 0.125 6 0.5 4 43 0.083342062 14-18-11
10000 0.125 6 0.5 4 a7 0.167383501 16-20-11
53 5000 0.125 6 0.5 8 89 0.086207786 47-31-11
10000 0.125 6 0.5 8 99 0.17048889 52-35-12
54 5000 0.125 6 0.4 8 122 | 0.086366557 39-65-18
10000 0.125 6 0.4 8 134 | 0.172012005 41-71-22
55 5000 0.125 6 0.4 12 221 | 0.090925034 72-118-31
10000 0.125 6 0.4 12 252 | 0.179368593 83-128-41
56 5000 0.125 6 0.3 4 68 0.083804792 24-29-15
10000 0.125 6 0.3 4 74 0.166878814 24-32-18
57 5000 0.125 6 0.3 8 147 0.08614953 80-44-23
10000 0.125 6 0.3 8 162 | 0.173624465 89-48-25
58 5000 0.125 6 0.2 4 85 0.084294084 28-35-22
10000 0.125 6 0.2 4 91 0.170782587 30-38-23
59 5000 0.125 6 0.2 8 219 | 0.086477335 111-73-35
10000 0.125 6 0.2 8 243 | 0.174639272 118-83-42
60 5000 0.125 6 0.2 12 407 | 0.092587299|| 113-228-66
10000 0.125 6 0.2 12 459 | 0.188793731|| 129-250-80
61 5000 0.125 6 0.2 16 531 | 0.097675816| 290-181-60
10000 0.125 6 0.2 16 637 | 0.202092153| 342-214-81
62 5000 0.125 6 0.1 4 215 | 0.087063822 84-82-49
10000 0.125 6 0.1 4 228 | 0.173368802 90-85-53
63 5000 0.125 6 0.1 8 472 0.09466913 240-164-68
10000 0.125 6 0.1 8 514 | 0.192974899| 255-177-82
64 5000 0.125 6 0.1 16 1037 | 0.12316338 || 583-340-114
10000 0.125 6 0.1 16 1277 | 0.239770367|| 700-395-182
65 5000 0.125 7 0.6 8 81 0.085758338 28-45-8
10000 0.125 7 0.6 8 95 0.170241075 33-51-11
66 5000 0.125 7 0.5 4 43 0.084842538 14-18-11
10000 0.125 7 0.5 4 47 0.167008004 16-20-11
67 5000 0.125 7 0.5 8 89 0.086061996 47-31-11
10000 0.125 7 0.5 8 99 0.169859844 52-35-12
68 5000 0.125 7 0.4 8 122 0.08596148 39-65-18
10000 0.125 7 0.4 8 134 | 0.171417671 41-71-22
69 5000 0.125 7 0.4 12 221 0.0889736 72-118-31
10000 0.125 7 0.4 12 252 | 0.177928184 83-128-41
70 5000 0.125 7 0.3 4 68 0.083795736 24-29-15
10000 0.125 7 0.3 4 74 0.166523542 24-32-18
71 5000 0.125 7 0.3 8 147 | 0.086989869 80-44-23
10000 0.125 7 0.3 8 162 | 0.173320808 89-48-25
72 5000 0.125 7 0.3 12 272 | 0.090517542 86-142-44
10000 0.125 7 0.3 12 320 | 0.180516816 95-163-62
73 5000 0.125 7 0.2 8 219 0.08579154 111-73-35
10000 0.125 7 0.2 8 243 | 0.174158732 118-83-42
74 5000 0.125 7 0.2 12 407 | 0.092998715|] 113-228-66
10000 0.125 7 0.2 12 459 | 0.189975457|| 129-250-80
75 5000 0.125 7 0.2 16 531 | 0.098496233|| 290-181-60
10000 0.125 7 0.2 16 637 0.20413082 342-214-81
76 5000 0.125 7 0.1 4 215 | 0.086932519 84-82-49
10000 0.125 7 0.1 4 228 | 0.173107706 90-85-53
77 5000 0.125 7 0.1 8 472 | 0.094368189|| 240-164-68
10000 0.125 7 0.1 8 514 | 0.193562593| 255-177-82
78 5000 0.125 7 0.1 12 728 | 0.107345752|| 411-206-111
10000 0.125 7 0.1 12 840 | 0.213078137| 470-220-150
79 5000 0.125 7 0.1 16 1037 | 0.124592319|| 583-340-114
10000 0.125 7 0.1 16 1277 | 0.242503884| 700-395-182
80 5000 0.125 7 0.1 20 1129 | 0.127442348|| 633-383-113
10000 0.125 7 0.1 20 1473 | 0.256610952|| 809-474-190
81 5000 0.25 4 0.6 4 66 0.083639984 25-27-14
10000 0.25 4 0.6 4 68 0.167997756 24-29-15
82 5000 0.25 4 0.5 4 70 0.083218909 24-30-16
10000 0.25 4 0.5 4 73 0.166723666 25-31-17
83 5000 0.25 4 0.4 8 218 0.08837655 113-70-35
10000 0.25 4 0.4 8 235 | 0.175340157 118-76-41
84 5000 0.25 5 0.6 4 66 0.083231284 25-27-14
10000 0.25 5 0.6 4 68 0.166730005 24-29-15
85 5000 0.25 5 0.6 8 142 | 0.088199064 78-43-21
10000 0.25 5 0.6 8 152 | 0.175111359 85-43-24
86 5000 0.25 5 0.5 4 70 0.082618838 24-30-16
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10000 0.25 5 0.5 4 73 0.167273025 25-31-17
87 5000 0.25 5 0.5 8 151 0.08530889 83-45-23
10000 0.25 5 0.5 8 164 | 0.173682723 89-47-28
88 5000 0.25 5 0.5 12 281 0.08975206 93-145-43
10000 0.25 5 0.5 12 324 | 0.179950853|| 105-164-55
89 5000 0.25 5 0.4 8 218 | 0.087789157 113-70-35
10000 0.25 5 0.4 8 235 | 0.174583732 118-76-41
90 5000 0.25 5 0.2 4 229 | 0.087224706 84-93-52
10000 0.25 5 0.2 4 253 | 0.172335281 90-107-56
91 5000 0.25 5 0.1 4 229 | 0.085602888 84-93-52
10000 0.25 5 0.1 4 253 | 0.170678752 90-107-56
92 5000 0.25 6 0.6 4 66 0.084344491 25-27-14
10000 0.25 6 0.6 4 68 0.16706626 24-29-15
93 5000 0.25 6 0.6 8 142 0.08727783 78-43-21
10000 0.25 6 0.6 8 152 | 0.172602415 85-43-24
94 5000 0.25 6 0.6 12 264 | 0.088137185 87-141-36
10000 0.25 6 0.6 12 287 | 0.181272636 88-153-46
95 5000 0.25 6 0.5 4 70 0.084939128 24-30-16
10000 0.25 6 0.5 4 73 0.169548943 25-31-17
96 5000 0.25 6 0.5 8 151 | 0.085908657 83-45-23
10000 0.25 6 0.5 8 164 | 0.173470525 89-47-28
97 5000 0.25 6 0.5 12 281 | 0.089629814 93-145-43
10000 0.25 6 0.5 12 324 | 0.181961147|| 105-164-55
98 5000 0.25 6 0.4 4 86 0.085087938 27-38-21
10000 0.25 6 0.4 4 90 0.17021723 28-39-23
99 5000 0.25 6 0.4 8 218 | 0.086478241 113-70-35
10000 0.25 6 0.4 8 235 | 0.176239055 118-76-41
100 5000 0.25 6 0.4 12 409 | 0.112061792|| 115-232-62
10000 0.25 6 0.4 12 447 | 0.221507786|| 128-242-77
101 5000 0.25 6 0.4 16 540 0.10134898 304-192-44
10000 0.25 6 0.4 16 622 | 0.208691108| 336-213-73
102 5000 0.25 6 0.3 4 217 | 0.087731504 84-88-45
10000 0.25 6 0.3 4 222 0.17461452 85-90-47
103 5000 0.25 6 0.3 8 467 | 0.097380309|| 247-164-56
10000 0.25 6 0.3 8 483 | 0.194825214| 251-171-61
104 5000 0.25 6 0.2 4 229 | 0.087470408 84-93-52
10000 0.25 6 0.2 4 253 | 0.174577092 90-107-56
105 5000 0.25 6 0.2 16 1115 | 0.124036017|] 632-363-120
10000 0.25 6 0.2 16 1382 | 0.248676029| 759-433-190
106 5000 0.25 6 0.1 4 229 | 0.086065618 84-93-52
10000 0.25 6 0.1 4 253 | 0.173092916 90-107-56
107 5000 0.25 7 0.6 4 66 0.083749855 25-27-14
10000 0.25 7 0.6 4 68 0.16794765 24-29-15
108 5000 0.25 7 0.6 8 142 | 0.088547092 78-43-21
10000 0.25 7 0.6 8 152 | 0.175293673 85-43-24
109 5000 0.25 7 0.6 12 264 | 0.091464735 87-141-36
10000 0.25 7 0.6 12 287 | 0.186701938 88-153-46
110 5000 0.25 7 0.5 4 70 0.083624892 24-30-16
10000 0.25 7 0.5 4 73 0.168619258 25-31-17
111 5000 0.25 7 0.5 8 151 | 0.086878185 83-45-23
10000 0.25 7 0.5 8 164 | 0.175105924 89-47-28
112 5000 0.25 7 0.5 12 281 | 0.089410672 93-145-43
10000 0.25 7 0.5 12 324 | 0.181451328|| 105-164-55
113 5000 0.25 7 0.4 4 86 0.08740702 27-38-21
10000 0.25 7 0.4 4 90 0.173518216 28-39-23
114 5000 0.25 7 0.4 8 218 | 0.090637978 113-70-35
10000 0.25 7 0.4 8 235 | 0.181227661 118-76-41
115 5000 0.25 7 0.4 12 409 | 0.096043434| 115-232-62
10000 0.25 7 0.4 12 447 | 0.192570728|| 128-242-77
116 5000 0.25 7 0.3 4 217 | 0.088641872 84-88-45
10000 0.25 7 0.3 4 222 | 0.174535437 85-90-47
117 5000 0.25 7 0.3 8 467 | 0.095573763|| 247-164-56
10000 0.25 7 0.3 8 483 | 0.191728879|| 251-171-61
118 5000 0.25 7 0.2 4 229 | 0.086894185 84-93-52
10000 0.25 7 0.2 4 253 | 0.173983663 90-107-56
119 5000 0.25 7 0.2 8 486 | 0.096517634|| 248-171-67
10000 0.25 7 0.2 8 543 | 0.192880119| 271-195-77
120 5000 0.25 7 0.2 16 1115 | 0.122211058|| 632-363-120
10000 0.25 7 0.2 16 1382 | 0.245486727|| 759-433-190
121 5000 0.25 7 0.2 20 1207 | 0.127275427|| 678-413-116
10000 0.25 7 0.2 20 1606 | 0.259383407| 890-520-196
122 5000 0.25 7 0.1 4 229 | 0.086159491 84-93-52
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10000 0.25 7 0.1 4 253 | 0.172653729 90-107-56
123 5000 0.25 7 0.1 8 486 | 0.095688162|| 248-171-67
10000 0.25 7 0.1 8 543 | 0.191626554| 271-195-77
124 5000 0.25 7 0.1 20 1207 | 0.128119388|| 678-413-116
10000 0.25 7 0.1 20 1621 | 0.259699138|| 898-523-200
125 5000 0.5 5 0.6 8 234 | 0.087608653 119-76-39
10000 0.5 5 0.6 8 237 | 0.175264998 120-75-42
126 5000 0.5 5 0.6 12 430 | 0.094359436|| 123-240-67
10000 0.5 5 0.6 12 439 | 0.190697473|| 130-235-74
127 5000 0.5 5 0.4 4 241 | 0.087241609 89-101-51
10000 0.5 5 0.4 4 249 | 0.172795295 92-102-55
128 5000 0.5 5 0.3 4 243 | 0.086949119 89-103-51
10000 0.5 5 0.3 4 254 | 0.172541744 93-105-56
129 5000 0.5 5 0.2 4 243 | 0.101063735 89-103-51
10000 0.5 5 0.2 4 254 | 0.209261296 93-105-56
130 5000 0.5 5 0.1 4 243 | 0.085349337 89-103-51
10000 0.5 5 0.1 4 254 | 0.170963091 93-105-56
131 5000 0.5 6 0.6 4 90 0.08415614 28-39-23
10000 0.5 6 0.6 4 88 0.168122419 28-38-22
132 5000 0.5 6 0.6 8 234 | 0.087706753 119-76-39
10000 0.5 6 0.6 8 237 | 0.176028668 120-75-42
133 5000 0.5 6 0.6 12 430 | 0.094053364| 123-240-67
10000 0.5 6 0.6 12 439 | 0.191415865|| 130-235-74
134 5000 0.5 6 0.6 16 589 0.10089108 335-211-43
10000 0.5 6 0.6 16 654 | 0.212018659| 365-222-67
135 5000 0.5 6 0.5 4 218 | 0.086253666 83-91-44
10000 0.5 6 0.5 4 216 | 0.172477752 82-91-43
136 5000 0.5 6 0.5 8 482 | 0.095639262|| 255-168-59
10000 0.5 6 0.5 8 472 | 0.192091999|| 245-167-60
137 5000 0.5 6 0.4 4 241 | 0.086459525 89-101-51
10000 0.5 6 0.4 4 249 | 0.171954049 92-102-55
138 5000 0.5 6 0.3 4 243 | 0.086498464 89-103-51
10000 0.5 6 0.3 4 254 | 0.172923881 93-105-56
139 5000 0.5 6 0.2 4 243 | 0.092021338 89-103-51
10000 0.5 6 0.2 4 254 | 0.180364383 93-105-56
140 5000 0.5 6 0.1 4 243 | 0.087741465 89-103-51
10000 0.5 6 0.1 4 254 | 0.174748539 93-105-56
141 5000 0.5 7 0.6 4 90 0.095052173 28-39-23
10000 0.5 7 0.6 4 88 0.192676071 28-38-22
142 5000 0.5 7 0.6 8 234 | 0.098959266 119-76-39
10000 0.5 7 0.6 8 237 | 0.187123315 120-75-42
143 5000 0.5 7 0.6 12 430 | 0.098619689|| 123-240-67
10000 0.5 7 0.6 12 439 | 0.205991398|| 130-235-74
144 5000 0.5 7 0.6 16 589 | 0.136769688| 335-211-43
10000 0.5 7 0.6 16 654 | 0.274735591|| 365-222-67
145 5000 0.5 7 0.5 4 218 0.08835059 83-91-44
10000 0.5 7 0.5 4 216 | 0.188833272 82-91-43
146 5000 0.5 7 0.5 8 482 | 0.097317828|| 255-168-59
10000 0.5 7 0.5 8 472 | 0.209919019|| 245-167-60
147 5000 0.5 7 0.5 12 734 | 0.109291148|| 415-219-100
10000 0.5 7 0.5 12 786 | 0.214625098|| 437-224-125
148 5000 0.5 7 0.4 4 241 | 0.086756542 89-101-51
10000 0.5 7 0.4 4 249 | 0.193272519 92-102-55
149 5000 0.5 7 0.4 8 530 | 0.098163901| 278-177-75
10000 0.5 7 0.4 8 591 0.19647631 300-201-90
150 5000 0.5 7 0.4 12 840 | 0.124773427|| 468-246-126
10000 0.5 7 0.4 12 1008 | 0.252059117| 541-288-179
151 5000 0.5 7 0.4 16 1204 | 0.160883854|| 695-394-115
10000 0.5 7 0.4 16 1542 | 0.324570043|| 866-489-187
152 5000 0.5 7 0.3 4 243 | 0.086897807 89-103-51
10000 0.5 7 0.3 4 254 | 0.173437925 93-105-56
153 5000 0.5 7 0.3 8 538 | 0.098195293| 283-179-76
10000 0.5 7 0.3 8 611 | 0.204147422|| 310-206-95
154 5000 0.5 7 0.3 12 856 | 0.119006662|| 475-252-129
10000 0.5 7 0.3 12 1047 | 0.228941044| 558-300-189
155 5000 0.5 7 0.3 20 1395 | 0.136331105|| 786-480-129
10000 0.5 7 0.3 20 1975 | 0.284011013|| 1078-656-241
156 5000 0.5 7 0.2 4 243 | 0.087295337 89-103-51
10000 0.5 7 0.2 4 254 | 0.173751844 93-105-56
157 5000 0.5 7 0.2 8 538 | 0.096786277|| 283-179-76
10000 0.5 7 0.2 8 611 | 0.195504369|| 310-206-95
158 5000 0.5 7 0.2 12 856 | 0.112944087| 475-252-129
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10000 0.5 7 0.2 12 1047 | 0.225770152|| 558-300-189
159 5000 0.5 7 0.2 20 1395 | 0.134417705|| 786-480-129
10000 0.5 7 0.2 20 1975 | 0.280273558|| 1078-656-241
160 5000 0.5 7 0.1 4 243 | 0.088326142 89-103-51
10000 0.5 7 0.1 4 254 | 0.176526414 93-105-56
161 5000 0.5 7 0.1 8 538 | 0.097454262|| 283-179-76
10000 0.5 7 0.1 8 611 | 0.195054619|| 310-206-95
162 5000 0.5 7 0.1 12 856 | 0.109099777|| 475-252-129
10000 0.5 7 0.1 12 1047 | 0.219154897|| 558-300-189
163 5000 0.5 7 0.1 20 1395 | 0.135179865|| 786-480-129
10000 0.5 7 0.1 20 1975 | 0.279595007|| 1078-656-241
164 5000 1 6 0.6 4 265 | 0.086178809| 100-113-52
10000 1 6 0.6 4 291 | 0.173166867| 114-122-55
165 5000 1 6 0.5 4 268 | 0.087887258| 101-115-52
10000 1 6 0.5 4 323 | 0.175854504| 123-137-63
166 5000 1 6 0.5 12 1005 | 0.114629896|| 551-305-149
10000 1 6 0.5 12 1411 | 0.234505572|| 750-413-248
167 5000 1 6 0.4 4 268 | 0.086787632|| 101-115-52
10000 1 6 0.4 4 323 | 0.173510972| 123-137-63
168 5000 1 6 0.4 12 1005 | 0.113720736|| 551-305-149
10000 1 6 0.4 12 1411 | 0.230108281| 750-413-248
169 5000 1 6 0.3 4 268 | 0.086328524( 101-115-52
10000 1 6 0.3 4 323 | 0.173017152|| 123-137-63
170 5000 1 6 0.3 12 1005 | 0.112880095|| 551-305-149
10000 1 6 0.3 12 1411 | 0.228113079|| 750-413-248
171 5000 1 6 0.2 4 268 | 0.085847081| 101-115-52
10000 1 6 0.2 4 323 | 0.173421324| 123-137-63
172 5000 1 6 0.2 12 1005 | 0.115412582|| 551-305-149
10000 1 6 0.2 12 1411 | 0.251255301|| 750-413-248
173 5000 1 6 0.1 4 268 | 0.086490314| 101-115-52
10000 1 6 0.1 4 323 | 0.173574661|| 123-137-63
174 5000 1 6 0.1 12 1005 | 0.114358234|| 551-305-149
10000 1 6 0.1 12 1411 | 0.231115842| 750-413-248
175 5000 1 7 0.6 4 265 | 0.086623729| 100-113-52
10000 1 7 0.6 4 291 | 0.175897969| 114-122-55
176 5000 1 7 0.6 12 991 | 0.113860793| 547-302-142
10000 1 7 0.6 12 1261 | 0.23887449|| 673-375-213
177 5000 1 7 0.5 4 268 | 0.087077405|| 101-115-52
10000 1 7 0.5 4 323 | 0.174831246| 123-137-63
178 5000 1 7 0.5 8 617 | 0.102895638|| 314-209-94
10000 1 7 0.5 8 792 | 0.210363938|| 385-267-140
179 5000 1 7 0.5 12 1005 | 0.113977306|| 551-305-149
10000 1 7 0.5 12 1411 | 0.235019013|| 750-413-248
180 5000 1 7 0.4 4 268 | 0.086415154| 101-115-52
10000 1 7 0.4 4 323 | 0.172513672| 123-137-63
181 5000 1 7 0.4 8 617 | 0.097513424| 314-209-94
10000 1 7 0.4 8 792 | 0.203306479|| 385-267-140
182 5000 1 7 0.4 12 1005 | 0.112150837|| 551-305-149
10000 1 7 0.4 12 1411 | 0.229029787|| 750-413-248
183 5000 1 7 0.3 4 268 0.08593703 101-115-52
10000 1 7 0.3 4 323 | 0.172867436| 123-137-63
184 5000 1 7 0.3 8 617 | 0.097127362| 314-209-94
10000 1 7 0.3 8 792 | 0.201568451|| 385-267-140
185 5000 1 7 0.3 12 1005 | 0.12538225 | 551-305-149
10000 1 7 0.3 12 1411 | 0.259726606|| 750-413-248
186 5000 1 7 0.2 4 268 | 0.093274602|| 101-115-52
10000 1 7 0.2 4 323 | 0.180393661| 123-137-63
187 5000 1 7 0.2 8 617 | 0.098552075| 314-209-94
10000 1 7 0.2 8 792 | 0.207476782|| 385-267-140
188 5000 1 7 0.2 12 1005 | 0.114306921|| 551-305-149
10000 1 7 0.2 12 1411 | 0.232183169|| 750-413-248
189 5000 1 7 0.1 4 268 | 0.087854053| 101-115-52
10000 1 7 0.1 4 323 | 0.175426787| 123-137-63
190 5000 1 7 0.1 8 617 | 0.098309995| 314-209-94
10000 1 7 0.1 8 792 | 0.200909825|| 385-267-140
191 5000 1 7 0.1 12 1005 | 0.112740342|| 551-305-149
10000 1 7 0.1 12 1411 | 0.230741855|| 750-413-248

Table D.3: The details of an execution of MuDi-Stream on MRiS#aset
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APPENDIX E

JAVA CODE

We have implemented our proposed method, MuDi-Stream via. JEhe method and all
its required concepts are implemented in different ingdsted Java classes.
For the sake of clarity and brevity only major classes areqeed here. The major

classes are as follows.

* MuDi

CoreMiniCluster

MDBSCAN

» Grid

GridCharacteristic\Vector

GridIlndex

The Java classes are explained in the following sections.

E.1 MubDi.java

The main class is called MuDi and implementeaMoDi.java which its code listing
follows in this section. Thé/uDi class receives the data stream which is implemented as
an interface calle®ataGeneratorinterfac@he DataGeneratorinterfadeas the abilities
to check if it still has data and provide the data points basedifferent requests. Other
than that,MuDi class receives MuDi-Stream’s parameters, i.e. GridGeaaitylA, and

a.
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When the data stream flow startguDi will generate a list of core-mini-clusters
which is implemented a€oreMiniClusterclass (cf. Section E.2). Moreover, when a
clustering request arrives this list will be used to gereefimial clusters using MDBScan.
MDBScan is implemented iMDBSCAN class which is presented in Section E.3. MuDi-
Stream keeps the list of outliers in a grid structure. Thd gtiucture is implemented in
Grid class. TheGrid class (cf. Section E.4) uses a tree structure to dynamistdiye
only the required grid cells which already received soma @aints. The indices of each
grid cell are stored in an instance Gfidindexclass and its characteristics identified as
“Grid Characteristic Vector” in an instance GlridCharacteristicVectoelass. These two
classes are presented in Sections E.6 and E.5 respectively.

The source code faviuDi class is presented as follows:

package MuDi,

import Common. *;

import Data. ClusterList;

import Data.DataGeneratorInterface;
import Data.Point.DataPoint;

import Data.R_PointArray;

import MuDi. Grid. Grid;

import MuDi. Grid. GridIndex;

import java.util.ArrayList;
import java.util.Iterator,;
import java.util.TreeMap;

/ **

* User: Amineh Amini

*/

public class MuDi implements AlgorithmsInterface {
private int MinPts_ forOffline;
private double lambda;
private double alpha, alphaCounter_fromOutside;
private int gridGranularity;
private double pruningTime,;
private int pruningTimelnteger;

private int horizon;
private double N, oneP2Lambda;
private DataGeneratorInterface data;

private ArrayList <CoreMiniCluster> coreMiniClusterList;
private Grid grid;
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37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

e

79

81

83

85

87

89

private
private
private
private

public
public

public
private

private
private

public

double Weight__of_ UpgradeToMiniCluster;

ArrayList <Integer > offlineClustering_PointNumber_ List;
TreeMap<Integer , MDBSCAN> offlineResultList;
R_PointArray rPT;

static String datasetName;
static String executionName;

static String rCode_plots_static;
String rCode_plots;

StringBuilder analysisResultCSV;
StringBuilder analysisResultTable;

TimelntervalPausible executionOnlineTimelnterval,

pruningTimelnterval,;

private

public

double sumCumulative, countCumulative;

static String outputR__path;

public MuDi(DataGeneratorInterface data,

) Ao
this .
this .

of
this
this
this
this

this

ArrayList <Integer > offlineClustering_PointNumber_ List
double lambda,

int gridGranularity ,

double alpha, double alphaCounter_fromOutside,

int minPts_ forOffline ,

int horizon

data = data;
offlineClustering_PointNumber_List =
flineClustering_PointNumber_ List;

.lambda = lambda;

.gridGranularity = gridGranularity;

.alpha = alpha;

.alphaCounter_fromOutside = alphaCounter_fromOutside;

.horizon = horizon;

N = Math.pow(gridGranularity , data.getDimensionCount());
oneP2Lambda = 1 - Math.pow (2, -lambda);

Weight_of UpgradeToMiniCluster = alpha / (N * oneP2Lambda) ;
System .out. printf("\nWeight_of_UpgradeToMiniCluster=%2.5f\n",

w

eight__of_UpgradeToMiniCluster) ;

setPruningTime (1000.0 =*

(1.0 / lambda) * GeneralFunctions.log2 (alpha / (alpha -
N * oneP2Lambda))) ;

System .out. printf("Pruning time: %1.3f\n", this.pruningTime);

this .

MinPts_forOffline = minPts_forOffline;

offlineResultList = new TreeMap<Integer , MDBSCAN>() ;

rPT =
rCode

new R_ PointArray (2, datasetName, "");
_plots = MuDi.rCode_ plots_static.replace("{DatasetNamel}",

datasetName) ;
analysisResultCSV = new StringBuilder ();
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analysisResultTable = new StringBuilder () ;

91
executionOnlineTimelnterval = new TimelntervalPausible(
TimelntervalPausible .PAUSED) ;
93 pruningTimelnterval = new TimelntervalPausible(
TimelntervalPausible .PAUSED) ;
95 sumCumulative = 0;
countCumulative = 0;
97 X
99 public void setPruningTime(double pruningTime) {
this.pruningTime = pruningTime;
101 this.pruningTimelnteger = (int) pruningTime;
}
103
public void start(int dataRecordLimit) {
105 generateMicroClusters (dataRecordLimit) ;
}
107
private void generateMicroClusters(int dataRecordLimit) {
109 CONSTANTS. executionID++;
111 coreMiniClusterList = new ArrayList<CoreMiniCluster >() ;
113 grid = new Grid(data.getDimensionCount (), gridGranularity);
115 int pointsCount = 0;
long lastTS = 0;
117
data.setDataRecordLimit (dataRecordLimit) ;
119
executionOnlineTimelnterval.Resume() ;
121 while (data.hasData()) {
DataPoint dp = data.nextDataPoint () ;
123 rPT.addPoint (dp) ;
125 pointsCount++;
127 CoreMiniCluster mc = searchInCoreMiniClusterList (dp);
if (mc !'= null) {
129 mc.addDataPoint (dp) ;
} else {
131 GridIndex gi = grid.addPoint(dp);
CheckAndUpgradeGridCell(gi, dp.getTimestamp ());
133 }
135 if ((pruningTimelnteger > 0) && (pointsCount %
pruningTimelnteger = 0))
PruneCoreMiniClusterList (dp. getTimestamp () ) ;
137
lastTS = dp.getTimestamp () ;
139
if (offlineClustering_PointNumber__List.contains(pointsCount))
{
141 executionOnlineTimelnterval.Pause() ;
doOfflineClustering (pointsCount, GeneralFunctions.
getTimestampArray (lastTS, horizon));
143 executionOnlineTimelnterval.Resume() ;
}
145
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147

149

151

153

155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

}
executionOnlineTimelnterval.Pause() ;
if (offlineClustering_PointNumber_List.contains (CONSTANTS.
END_FILE, CLUSTERING_POINT NUMBER)) {
doOfflineClustering (pointsCount, GeneralFunctions.
getTimestampArray (lastTS, horizon));

public String getAnalysisResultTable() {

return analysisResultTable.toString () ;

private void doOfflineClustering (int pointNumber, ArrayList<Long>

timestampArray) {
MDBSCAN mDBSCAN = null;
ArrayList <CoreMiniCluster > CMC_List = getMicroClusters (
timestampArray) ;
int CMC_ List_size = CMC_List.size () ;
countCumulative++;
if (CMC_List_size > 1) {
mDBSCAN = new MDBSCAN(CMC_List, MinPts_forOffline ,
gridGranularity);
mDBSCAN. doClustering () ;

if (data.getDimensionCount () <= 3) {
Logger 1_execParam = new Logger();
1_execParam.startFile (String.format (outputR_path + "/MuDi %
s_%d_p¥%d__ 1% M%d_Al%s G%s.r",
executionName ,
CONSTANTS. executionlID ,
pointNumber,
GeneralFunctions.numberLeftPadding ((int) (lambda *
10000), 4),
MinPts_ forOffline ,
GeneralFunctions . numberLeftPadding ((int) (
alphaCounter_fromOutside * 10), 2),
GeneralFunctions.numberLeftPadding (gridGranularity ,

2)));
R_PointArray rCMC = new R_ PointArray(data.getDimensionCount
() , "mC" ,
rCode_plots.replace("{gGran}", "" + gridGranularity
)5

String shoa = String.format("shoa<-array (,dim=c(%d,1));\n",
CMC__List__size) ;
String vazn = String.format("vazn<-array (,dim=c(%d,1));\n",
CMC__List__size) ;
String clusNum = String.format ("clusNum<-array (,dim=c(%d,1)
);\n", CMC_ List_size) ;
String clusColor = String.format("clusCol<-array (,dim=c(%d
,1));\n", CMC_ List_size);

for (int zx = 0; zx < CMC_List_size; zx++) {
rCMC. addPoint (CMC_List. get (zx) ) ;
vazn = vazn + "vazn[" + (zx + 1) + "]<-" + CMC_List. get (
zx).getWeight () + ";\n";
shoa = shoa + "shoal" + (zx + 1) + "]<-" 4+ CMC_List. get(
zx) .getMCD() + ";\n";
int clusterID_MC = CMC_List.get (zx) .
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193

195

197

199

201

203

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

getCalculatedClusterID () ;

clusNum = clusNum 4+ "clusNum/[" 4+ (zx + 1) + "]1<-\"" 4+ (
clusterID_ MC != ClusterList .NOISE ? clusterID_MC : "N"
) + "\";\n";

clusColor = clusColor + "clusCol[" 4+ (zx + 1) + "]<-\"" +
CONSTANTS. getClusterColor (clusterID_MC) + "\";\n";

1_execParam.logFile (rfPT.toString ());
1_execParam.logFile (vazn);
1_execParam.logFile (shoa);
1_execParam.logFile (clusNum) ;
1_execParam.logFile(clusColor);
1_execParam.logFile (tCMC. toString ());
1_execParam.endFile () ;

}

AnalyzeResultClusters arc = new AnalyzeResultClusters (mDBSCAN
.getSCC_List ());

arc.printResultClusters (/*printCircleCommand=x*/false) ;

arc.dumpResults(/*useBestActual=*/true) ;

SimplifiedContingency aSC = arc.
calculateSimplifiedContingency () ;

Statistics sts = new Statistics(arc.getClusterPointCountList (
false));

System.out.println () ;

double avg =

AnalyzeResultClusters. getAverage9 (
aSC.getAverage7 (),
arc.getNMI__bestActual (),
arc.getPurityBestActual (1.0));

sumCumulative += avg;

String s = String.format (CONSTANTS. analysisResultCSVFormat,
"MuDi" , CONSTANTS. executionID , pointNumber, horizon,
lambda, MinPts_forOffline ,
alpha, alphaCounter_fromOutside, gridGranularity,
0.0, 0.0, 0.0, 0.0,
pruningTimelnteger,

CMC_ List_size, arc.getNoiseCount (),

arc.getActualClassCount(false , false), arc.
getCalculatedClusterCount (false) ,

getExecutionTimelntervalPausible () .untilNowMPT () ,
getPruningTimelntervalPausible () . untilNowMPT () ,

arc.getPurityBestActual(100.0), arc.
getPurityBestActual(1.0), arc.getEntropyOfClusters
(), arc.getNMI_bestActual(),

aSC.getTruePositive (), aSC.getTrueNegative (), aSC.

getFalsePositive (), aSC.getFalseNegative (),
aSC.getRandIndex (), aSC.getAdjustedRandIndex (), aSC.
getJaccardScore (),

aSC.getPrecision (), aSC.getRecall (), aSC.getFM (), aSC

.getFMeasure () ,
arc.getClusterPointCountListString(true) ,sts.
getStdDev () ,

AnalyzeResultClusters.getTotalQuality (CMC_ List_ size,

arc.getNoiseCount (),
arc.getActualClassCount (false, false), arc.
getCalculatedClusterCount(false),
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237

239

241

243

245

247

249

251

253

255

257

259

261

263

265

267

269

271

273

275

277

279

281

283

285

287

arc.getPurityBestActual(1.0),
arc.getNMI_bestActual()),
avg, sumCumulative / countCumulative

)

analysisResultCSV .append(s);
analysisResultTable.append (" \n")
.append(s) .append("\n") .append(arc.
getClassClusterTableBestActual ())
.append ("\n");

} else {

String s = String.format (CONSTANTS. analysisResultCSVFormat,
"MuDi" , CONSTANTS. executionID , pointNumber, horizon,
lambda, MinPts_forOffline ,
alpha, alphaCounter_fromOutside, gridGranularity,
0.0, 0.0, 0.0, 0.0,
pruningTimelnteger,
CMC__List_size, -1,
-1, -1,
getExecutionTimelntervalPausible () .untilNowMPT () ,

getPruningTimelntervalPausible () . untilNowMPT () ,

-1.0, -1.0, -1.0, -1.0,
0.0, 0.0, 0.0, 0.0,
-1.0, -1.0, -1.0,
-1.0, -1.0, -1.0, -1.0,
"0-0",-1.0,
-1.0, -1.0, sumCumulative / countCumulative

)

analysisResultCSV .append(s);
}
offlineResultList .put(pointNumber, mDBSCAN) ;
}

private CoreMiniCluster searchInCoreMiniClusterList (DataPoint p)
{
for (CoreMiniCluster ¢ : coreMiniClusterList)
if (p.getDistance(c.getCenter()) <= c.getMCD())
return c;
return null;

}

private void CheckAndUpgradeGridCell(GridIindex gridIndex , long
currentTimestamp) {
if (grid.isReadyToBeUpgraded(gridIndex ,
Weight__of__UpgradeToMiniCluster)) {
CoreMiniCluster sccl = grid.getCell(gridindex).
getSmallCircleCluster (currentTimestamp) ;
coreMiniClusterList .add(sccl);
grid. deleteCell(gridIindex) ;
}
}

private boolean PruneCoreMiniClusterList (long currentTimestamp) {
boolean anyDeleted = false;

pruningTimelnterval . Resume () ;

grid .updateAllWeights (currentTimestamp) ;
grid .removeLightCells (lambda, alpha, currentTimestamp) ;
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291
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317
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321

323

325

327

329

331

333

335 }

for (int i = coreMiniClusterList.size() - 1; i >= 0; i--) {
CoreMiniCluster aCMC = coreMiniClusterList.get (i) ;
if (aCMC.getWeight () < (alpha / (N * oneP2Lambda))) {
coreMiniClusterList .remove(i);
anyDeleted = true;
}
}

pruningTimelnterval.Pause();

return anyDeleted;

}

public ArrayList <CoreMiniCluster > getMicroClusters () {
return coreMiniClusterList;

}

public ArrayList <CoreMiniCluster > getMicroClusters(ArrayList <Long
> timestampList) {
if (timestampList==null)
return coreMiniClusterList;
ArrayList <CoreMiniCluster > timestampMCList = new ArrayList<
CoreMiniCluster >() ;

Iterator <CoreMiniCluster> it = coreMiniClusterList.iterator ();
while (it .hasNext()) {
CoreMiniCluster cmc = it .next () ;

if (cmc.containsAnyTimestamp(timestampList)) {
timestampMCList . add (cmc) ;
}
}

return timestampMCList;

}

public TreeMap<Integer , MDBSCAN> getOfflineResultList () {
return offlineResultList;

}

public String getAnalysisResultCSV () {
return analysisResultCSV .toString();

3

public TimelntervalPausible getExecutionTimelntervalPausible() {
return executionOnlineTimelnterval;

}

public TimelntervalPausible getPruningTimelntervalPausible() {
return pruningTimelnterval;

}
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E.2 CoreMiniCluster.java

CoreMiniClusterclass which is inherited from another class calfedallCircleClus-
teris a class which is similar to the concept of MicroCluster iempénted for DenStream
algorithm (cf. Section 2.5.1).

CoreMiniClusterclass has the extra ability (in addition to other methodseefin

SmallCircleClusteyto add a data point to the core-mini-cluster if its distaisdess than

themcdof the core-mini-clusterSmallCircleClusteclass is not represented here and it

has several methods to manage a small circle-shaped ctusteas defining its class ID,
cluster ID, center, and radius.

The source code faCoreMiniClusterclass is presented as follows:

package MuDi;

import Common. SmallCircleCluster;
import Data.Point.DataPoint;

/ **

* User: Amineh Amini

*/

public class CoreMiniCluster extends SmallCircleCluster {
public static double LAMBDA,;

private double mcd;

public CoreMiniCluster () {
super () ;
}

public double getMCD() A
return mecd;

}

public void setMCD(double radius) {
this . mcd = radius;

}

@Override

public boolean addDataPoint(DataPoint dataPoint) {
if (pointCanBeAdded(dataPoint)) {
setWeight (1 + getWeight() * Math.pow (2, -LAMBDA * (dataPoint.
getTimestamp () - getTimestamp_ of_lastPoint())));
setTimestamp_ of_lastPoint (dataPoint.getTimestamp () );
addClassID (dataPoint) ;

if (getNumber_of_points() == 0)
setTimestamp_ of_creation(dataPoint.getTimestamp ());

addTimestamp(dataPoint) ;

incNumber_ of__points () ;
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return true;
} else
return false;

}

public void updateWeight5(long currentTimestamp) {
setWeight (getWeight () * Math.pow(2, -LAMBDA * (currentTimestamp
- getTimestamp_ of_creation())));

Q@Override

public boolean pointCanBeAdded(DataPoint dataPoint) {
double dist = getCenter () .getDistance(dataPoint);
return (dist <= mcd);

}

@Override
public CoreMiniCluster clone () {
return new CoreMiniCluster () ;

}

Q@Override
public String toString () {
return String.format ("CMC. Center: %s; Radius=%2.2f; Weight=%2.2
f; (%d) Points’ Class=%d (Cluster=%d)",
getCenter () .toString (), getMCD(), getWeight (),
getNumber_of__points (),
getActualClassID (), getCalculatedClusterID ());
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E.3

MDBSCAN.java

MDBSCAN class is an adapted implementation of DBScan algorithm. Tajem

difference is that for its density-reachability checkingmoses it does not use th@alue.

Instead, it uses the mean and standard deviation values dittances of the core-mini-

clusters.

The source code faIDBSCAN class is presented as follows:

package MuDi;

import Common. AverageVariance;

import Common. SmallCircleCluster__Interface;
import Data. ClusterList;

import java.util.ArrayList;
import java.util.Iterator,;

/ %%

* User: Amineh Amini

*/

public class MDBSCAN {
private int minPoints;

private ArrayList <CoreMiniCluster> mcList;

private double GRANULARITY;

public MDBSCAN( ArrayList <CoreMiniCluster > mcList, int minPoints,

}

int gridGranularity) {
this . mcList = mcList;
this . minPoints = minPoints;
this .GRANULARITY = gridGranularity;

public void doClustering () {

for (CoreMiniCluster scc : mcList) {
scc.setCalculatedClusterID (ClusterList .NO_CLUSTER) ;
scc.setAsUnvisited () ;

}

byte currentClusterld = 1;

for (int i = 0; i < mcList.size(); i++) {
CoreMiniCluster p = mcList.get (i);
p.-setAsVisited ();

if (p.getCalculatedClusterID () = ClusterList .NO_CLUSTER
Il
p.getCalculatedClusterID () == ClusterList .NOISE
) A

if (expandCluster(p, currentClusterId)) {
if (currentClusterld==ClusterList .MAX CLUSTER NUMBER) {
System .out. println ("Exceeded number of clusters");
return ;

}

else
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currentClusterId++;

}
if (false) {

System .out. println (" ------------ ")

for (CoreMiniCluster ggg : mcList)

if (ggg.getCalculatedClusterID () = currentClusterId -
1
System.out.printf("%s\n", ggg.getCenter ().
getCSV__ofCenter () ) ;

}

3

private boolean expandCluster (CoreMiniCluster cmc_p, byte

currentClusterId) {

ArrayList <CoreMiniCluster > neighbors =
getNeighborCoreMiniClusterList (cmc_p) ;

if (neighbors.size() < minPoints) {
cmc_p.setCalculatedClusterID (ClusterList .NOISE) ;

return false;

}

ArrayList <CoreMiniCluster > N_Core = getMinPtsNearestNeighbors(
cmc_p, neighbors);

AverageVariance N_Core_ AV = getAverageVariance_ofDistance (cmc_p
, N_Core);
ArrayList <CoreMiniCluster > seeds = new ArrayList<

CoreMiniCluster >() ;
seeds .addAll(N_Core) ;

cmc_p.setCalculatedClusterID (currentClusterId);

seeds .remove (cmc_p) ;
int N_Core_size = seeds.size ();
while (seeds.size () > 0) {
CoreMiniCluster cmc_q = seeds.get (0);
if (lcmc_q.isVisited ()) {
cmc_q.setAsVisited () ;
ArrayList <CoreMiniCluster > cmc__g_neighbors =
getNeighborCoreMiniClusterList (cmc_q) ;
if (cmc_qg_neighbors.size () >= minPoints) {
ArrayList <CoreMiniCluster> N_Sh Q =
getMinPtsNearestNeighbors (cmc_q, cmc_qg_neighbors);
AverageVariance N_Sh Q AV = getAverageVariance_ofDistance
(cmc_gq, N_Sh _Q);
if ((N_Sh _Q_AV.mean >= (N_Core AV .mean - N_Core_AV.
getStdDev ())) ||
(N_Sh _Q AV.mean <= (N_Core_AV .mean + N_Core_AV.
getStdDev ()))) {
for (CoreMiniCluster a_N_Sh Q : N_Sh Q) {
seeds.add(a_N_Sh Q);

N_Core_AV = updateAverageVariance (
N_Core_AV, N_ Core_size,
cmc_q.getCenter () . getDistance(a_N_Sh_Q.
getCenter ()));
N_ Core_size++;
}
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if (cmc_q.getCalculatedClusterID () = ClusterList .NO_CLUSTER)
cmc_qg.setCalculatedClusterID (currentClusterId);
seeds .remove (cmc_q) ;

}

return true;

private ArrayList <CoreMiniCluster> getNeighborCoreMiniClusterList
(
CoreMiniCluster main) {
ArrayList <CoreMiniCluster > resultList = new ArrayList<
CoreMiniCluster >() ;
double distance;
for (CoreMiniCluster c¢ : mcList) {
distance = main.getCenter () .getDistance(c.getCenter ());
if (distance > 0 &&
distance <= (1.0 / GRANULARITY + 1.0 / GRANULARITY))
resultList .add(c);
3

return resultList;

private AverageVariance getAverageVariance_ofDistance(
CoreMiniCluster scc, ArrayList<CoreMiniCluster> neighbors

) {
double sum = 0.0, sumSqr = 0.0, count = O0;
Iterator <CoreMiniCluster > it = neighbors.iterator ();

CoreMiniCluster aSCC;
double distance;
while (it.hasNext()) {
aSCC = it .next () ;
distance = aSCC.getCenter () .getDistance(scc.getCenter ());
if (distance > 0) {
count++;
sum += distance;
sumSqr += distance * distance;
}
}
return new AverageVariance(sum / count, (sumSqr - (sum * sum) /
count) / (count - 1));

}

private ArrayList <CoreMiniCluster> getMinPtsNearestNeighbors(
CoreMiniCluster scc, ArrayList<CoreMiniCluster> neighbors
) o
ArrayList <CoreMiniCluster > minPtsNearestNeighbors =
new ArrayList <CoreMiniCluster >();

double [] distances = new double[neighbors.size()];
for (int i = 0; i < neighbors.size(); i++)
distances[i] = scc.getCenter().getDistance(neighbors.get(i).

getCenter ());

double previousMinDistance = 0.0, minDist;
do {
minDist = Double.MAX VAIUE;
boolean minChanged = false;
for (int i = 0; i < neighbors.size(); i++)
if (distances[i] < minDist && distances[i] >
previousMinDistance) {
minDist = distances[i];
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minChanged = true;
}
if (!minChanged)
break;

for (int i = 0; i < neighbors.size(); i++)
if (distances[i] - minDist < 0.0000001f && distances[i] >
previousMinDistance)
minPtsNearestNeighbors.add(neighbors.get(i));

previousMinDistance = minDist;
} while (minPtsNearestNeighbors.size() < minPoints);

return minPtsNearestNeighbors;

}

private AverageVariance updateAverageVariance(AverageVariance
lastValues, int lastCount, double newDistance) {

AverageVariance newValues = new AverageVariance();

newValues.mean = lastValues.mean + (newDistance - lastValues.
mean) / lastCount;

newValues. variance = lastValues.variance + (newDistance -
lastValues .mean) * (newDistance - newValues.mean) ;

return newValues;

}

public ArrayList <CoreMiniCluster> getMcList () {
return mcList;

}
public ArrayList <SmallCircleCluster_Interface> getSCC_List() {
ArrayList <SmallCircleCluster__Interface > result = new ArraylLis
SmallCircleCluster__Interface >(mcList.size ());
Iterator <CoreMiniCluster> it = mcList.iterator ();

while (it .hasNext()) {
CoreMiniCluster aCMC = it .next () ;
result .add (aCMC) ;

}

return result;

3

private void printPoints_ CSV (ArrayList <CoreMiniCluster > cmecs) {
for (CoreMiniCluster c : cmcs)
System .out. printf("%s\n", c.getCenter () .getCSV_ofCenter());

t <
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E.4 Grid.java

Grid class manages the grid structure of MuDi-Stream which isl ise&keep the
outliers. The class has different methods to add newly edridata points, to check if
grid cells are ready to be converted to core-mini-clustersemove the grid cells which
their weights are below a specified threshold, and to uptiateveights of the grid cells
according to the current timestamp.

The source code faBrid class is presented as follows:

package MuDi. Grid;
import Data.Point.DataPoint;

import java.util. ArrayList;
import java.util.Iterator;
import java.util.TreeMap;

/ * %
* User: Amineh Amini
*/
public class Grid {
private Array_of_Array grid;

private int gridGranularity;
private double len;

private int cells, totalPoints;
private TreeMap<Gridlndex, GridCharacteristicVector> gridList;

public Grid(int dimensionCount, int gridGranularity) {

Array_ of__Array .DIMENSION_COUNT = dimensionCount;

Array_ of__Array .DIMENSION_SIZE = gridGranularity;

grid = new Array_of_Array(0);

this.gridGranularity = gridGranularity;

len = 1.0 / gridGranularity ;

cells = 0;

totalPoints = 0;

gridList = new TreeMap<GridIndex, GridCharacteristicVector >();
X

public Gridlndex addPoint(DataPoint p) {
int [] indices = new int[Array_of_Array.DIMENSION_COUNT];
for (int i = 0; i < indices.length; i++)
indices[i] = Math.min(gridGranularity - 1, (int) (p.
getDimensionValue(i) / len));

GridIndex gridIndex = new GridIlndex (Array_of_ Array.
DIMENSION_COUNT, indices);

if (grid.getCellValue(gridindex) = null) {
GridCharacteristicVector aGCV = new GridCharacteristicVector (
p);

grid .setCellValue (gridindex , aGCV) ;
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gridList .put(gridindex , aGCV) ;
cells++;
} else
grid . getCellValue (gridindex ) .addPoint(p);

totalPoints++;

return gridlndex,

}

public GridCharacteristicVector getCell(GridIindex gridIndex) {
return grid.getCellValue(gridindex);

3

public boolean isReadyToBeUpgraded(GridIindex gridIndex, double
thresholdWeight) {
return (getCell(gridindex) != null) && (getCell(gridindex) .
isReadyToBeUpgraded (thresholdWeight));
}

public void deleteCell (GridIindex gridIndex) {
GridCharacteristicVector aGCV = getCell(gridindex) ;
if (aGCV != null) {
gridList .remove(gridIndex) ;

totalPoints -= aGCV.getNumberOfDataPoints () ;
cells - -;

}

grid .setCellValue(gridindex , null);

3

public void removeLightCells(double lambda, double alpha, long
currentTimestamp) {
GridIndex gi;
GridCharacteristicVector cell;
double OWT; /* Owutlier Weight Threshold */

ArrayList <GridIndex > toBeDeleted = new ArrayList<GridIndex >();

Iterator <GridIndex> itGI = gridList.keySet().iterator ();
while (itGI.hasNext()) {
gi = itGI.next();
cell = gridList.get(gi);
if (cell !'= null) {
OWT = (alpha * (1 - Math.pow(2, -lambda * (currentTimestamp
- cell.getLastTimestamp() + 1)))) /
(Math.pow(gridGranularity , Array_of Array.
DIMENSION_COUNT) * (1 - Math.pow(2, -lambda *
cell .getLastTimestamp ())));
if (cell.getWeight () <= OWI)
toBeDeleted .add(gi);

itGI = toBeDeleted.iterator () ;
while (itGI.hasNext()) {
deleteCell (itGI.next ());
}
}

public void removeLightCells_old(double lambda, double alpha,
long currentTimestamp) {
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144 }

GridCharacteristicVector cell;
double OWT; /* Outlier Weight Threshold */

int [] r = new int[Array_of_ Array.DIMENSION_COUNT];

GridIndex g = new GridIndex (Array_of_Array.DIMENSION_COUNT, r);
do {
cell = grid.getCellValue(g);
if (cell !'= null) {
OWT = (alpha * (1 - Math.pow(2, -lambda * (currentTimestamp
- cell .getLastTimestamp() + 1)))) /
(Math.pow(gridGranularity , Array_of Array.
DIMENSION_COUNT) * (1 - Math.pow(2, -lambda *
cell .getLastTimestamp ())));
if (cell.getWeight () <= OWT)
deleteCell(g);

X
g = Gridlndex .next(g, gridGranularity);
} while (g != null);

}

public void updateAllWeights(long currentTimestamp) {
GridIndex gi;
GridCharacteristicVector cell;

Iterator <GridIndex> itGI = gridList.keySet().iterator ();
while (itGI.hasNext()) {
gi = itGI.next();
cell = gridList.get(gi);
if (cell !'= null)
cell .updateWeight (currentTimestamp) ;

}

public void updateAllWeights_old(long currentTimestamp) {
GridCharacteristicVector cell;

int [] r = new int[Array_of_Array.DIMENSION_COUNT];

GridIndex g = new GridIndex (Array_of_Array .DIMENSION_COUNT, r);
do {

cell = grid.getCellValue(g);

if (cell !'= null)

cell .updateWeight (currentTimestamp) ;

g = GridIndex.next(g, gridGranularity);

} while (g != null);
}

public String toString () {
return String.format (" Cells=%d, Points=%d", cells, totalPoints)

)
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E.5 GridCharacteristicVector.java

GridCharacteristicVectoclass stores various characteristics of a grid cell. The at-
tributes are the weight, the last data point’s timestamg the class ID of the data points.
Moreover, the class has several methods to add a data palic)ate the grid cell’s cen-
ter, and to check if the grid cell is ready to be converted tora-enini-cluster.

The source code faBridCharacteristicVectorlass is presented as follows:

package MuDi. Grid;

import Data.ClusterList;
import Data.Point.Center;
import Data.Point.DataPoint;
import Data.Point.Point;
import MuDi. CoreMiniCluster;

import java.util. ArrayList;
import java.util.HashMap;
import java.util.Iterator;

/ %%
* User: Amineh Amini
*/
public class GridCharacteristicVector {
public static double LAMBDA,;
public static final int INITIAL_CELL_CAPACITY = 5;

protected ArrayList <DataPoint> points;
protected double weight;

protected long lastTimestamp;

protected byte classID;

private HashMap<Byte, Integer > MixedClassIDs;

public GridCharacteristicVector (DataPoint p) {
points = new ArrayList<DataPoint >(INITIAL_CELL_CAPACITY) ;
weight = 1,
lastTimestamp = O0;
classID = ClusterList .NO_CLUSTER;
addPoint (p);
}

public double getWeight () {
return weight,

}

public long getLastTimestamp () {
return lastTimestamp;

b

public int getNumberOfDataPoints () {
return points.size ();

}

public void addPoint(DataPoint p) {
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points.add(p);

48 if (getNumberOfDataPoints() = 1)
weight = 1;
50 else

weight = 1 + weight * Math.pow (2, -LAMBDA * (p.getTimestamp ()
- lastTimestamp));

52 lastTimestamp = p.getTimestamp () ;
addClassID (p);
54 3
56 public void updateWeight(long currentTimestamp) {

weight = weight * Math.pow(2, -LAMBDA * (currentTimestamp -
lastTimestamp)) ;
58 X

60 private void addClassID(DataPoint p) {

if (MixedClassIDs == null)
62 MixedClassIDs = new HashMap<Byte, Integer >();
// else P =P;
64 if (classID == ClusterList .NO_CLUSTER) {
classID = p.getClassID () ;
66 MixedClassIDs . put(classID ,

1 + (MixedClassIDs.containsKey(classID) 7
MixedClassIDs. get (classID) : 0)

68 )
70 } else if (classID != p.getClassID()) {
MixedClassIDs.put(p.getClassID (),
72 1 + (MixedClassIDs.containsKey(p.getClassID()) 7
MixedClassIDs . get (p.getClassID()) : 0)
)
74 classID = ClusterList .MIXED CLUSTER;
} else
76 MixedClassIDs.put(classID ,
1 + (MixedClassIDs.containsKey (classID) ?
MixedClassIDs . get (classID) : 0)
78 )
}
80
public Center calculateCenter (long currentTimestamp) {
82 Center center = new Center();
double wSum = O0;
84 double [] dimensionValues = new double[DataPoint.DIMENSION_COUNT
1
86 for (DataPoint p : points) {
double w = p.getWeight(currentTimestamp) ;
88 for (int i = 0; i < DataPoint.DIMENSION_COUNT; i+-+)
dimensionValues[i] += p.getDimensionValue(i) * w;
90
wSum += w;
92 }
for (int j = 0; j < DataPoint.DIMENSION_COUNT; j++)
94 center .setDimensionValue(j, dimensionValues[j] / wSum);
96 return center;
}
98

public boolean isReadyToBeUpgraded(double thresholdWeight) {
100 return (getNumberOfDataPoints() > 1) &&
(weight >= thresholdWeight) ;
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102 }

104 public double calculateMCD (Point mainPoint) {
double mcd = O0;

106
for (DataPoint p : points)
108 mcd = Math.max(mainPoint. getDistance(p), mcd);
110 return mcd;
}
112

public CoreMiniCluster getSmallCircleCluster (long
currentTimestamp) {
114 CoreMiniCluster ¢ = new CoreMiniCluster () ;

c.setWeight (getWeight ());
116 c.setCenter(calculateCenter (currentTimestamp)) ;
c.setMCD{(calculateMCD (c. getCenter ()));
118 c.setTimestamp_ of_lastPoint(getLastTimestamp ());
c.setNumber_of_points(getNumberOfDataPoints ()) ;
120 c.setActualClassID (classID);
c.setMixedClassIDs(MixedClassIDs) ;
122
HashMap<Long, Integer > tsList=new HashMap<Long, Integer >();
124 Iterator <DataPoint> it=points.iterator ();
while (it.hasNext()) {
126 DataPoint dp=it .next();
long ts = dp.getTimestamp () ;
128
if (tsList.containsKey(ts))
130 tsList.put(ts, 1 + tsList.get(ts));
else
132 tsList.put(ts, 1);
}
134 c.setTimestampList_of_points(tsList);
136 return c;
¥
138 }
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E.6 Gridlndex.java
GridCharacteristicVectorlass stores the location for each grid cell according to the
data point’s dimensions.

The source code faBridindexclass is presented as follows:

package MuDi. Grid;

/ * %

* User: Amineh Amini

*/

public class Gridlndex implements Comparable<GridIndex> {
protected int[] dimensionIndex;
private int dimensionCount;

public GridIndex(int dimensionCount, int[] dimensionIndex) {

this .dimensionCount = dimensionCount;
this.dimensionlndex = new int[dimensionCount];
if (dimensionCount != dimensionIndex.length)

throw new UnsupportedOperationException("Invalid dimensions")
for (int i = 0; i < dimensionCount; i++)
this.dimensionlndex[i] = dimensionIndex|[i];

public int getlndex(int dimensionNumber) {
return dimensionIndex [dimensionNumber];

}

public void setIndex(int dimensionNumber, int value) {
dimensionIndex [dimensionNumber] = value;

}

public int getDimensionCount () {
return this.dimensionCount;

3

public static Gridlndex next(GridIndex gridIndex, int
maxPerDimension) {
int d = gridindex.getDimensionCount () - 1;
while (4 >= 0) {
gridindex .setIndex (d, gridlndex.getIlndex(d) + 1);
if (gridIndex.getIlndex(d) >= maxPerDimension) {
gridindex .setIndex (d, 0);
if (d == 0)
return null;
d--;
} else
break;
}
if (gridindex.getIndex(0) > maxPerDimension)
return null;
else
return gridlndex;
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public String toString () {
StringBuilder s = new StringBuilder ();

for (int i = 0; i < dimensionIndex.length; i++)
s.append(String . format ("d%d=%d%s", i + 1, dimensionIndex[i],
i == dimensionIndex.length - 1 7 *" . " "
D)5
return s.toString();
}
@Override
public int compareTo(GridIndex o) {
if (this.getDimensionCount() != o.getDimensionCount ())
throw new UnsupportedOperationException("GridIndex: Different
Dimension Count.");
for (int i = 0; i < getDimensionCount(); i++)
if (this.getIlndex (i) != o.getIndex(i))
return this.getIndex(i) < o.getIndex(i) ? 1 : -1;
return O;
}
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