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ABSTRACT

Density-based method has emerged as a worthwhile class for clustering data streams.

It has the abilities to discover clusters of arbitrary shapes, handle noise, and cluster with-

out prior knowledge of number of clusters. The characteristics of data stream includes

infinite volume, dynamically changing, allowing only one ora small number of scans,

and demanding fast response time. Due to these characteristics the traditional density-

based clustering is not applicable.

Recently, a number of density-based algorithms have been developed for clustering

data streams. However, existing density-based data streamclustering algorithms are not

without problems. The first problem refers to the high computation time required for

the clustering process. The second problem is the dramatic decrease in the quality of

clustering when there is a range in density of data. In this research, these problems are

taken into account and a new method is proposed.

This study proposes a density-based algorithm for clustering evolving data streams.

The proposed method, which is called MuDi-Stream (Multi Density clustering algorithm

for evolving data Stream), is an online-offline algorithm with four main components.

Three of components are applied in the online phase while theother one is used in the

offline phase. The prominent tasks of these components are keeping synopsis information,

pruning these information, and forming final clusters.

In the first component, a hybrid method comprised of density grid and micro clus-

tering techniques is applied to maintain summary information in the form of core mini

clusters while mapping outlier to the grids. The data pointsinside the grid form a new core

mini cluster in case it reaches a density threshold in the second component. Furthermore,

grid and core mini clusters are pruned using a pruning technique in the last component of

online phase in order to keep the memory limited. A new multi density-based clustering
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method forms final clusters using both summarized synopsis information and statistical

information.

The quality of the algorithm is comprehensively evaluated on various synthetic and

real datasets with different characteristics using variety of quality metrics. The com-

plexity analysis shows that it uses limited time and memory which makes MuDi-Stream

applicable for data stream. Furthermore, the scalability results prove that the proposed

algorithm is scalable in terms of both dimension and number of clusters. Finally, the

experimental results show that the proposed method in this study improves clustering

quality in multi-density environments while minimizing the computation time.
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ABSTRACT

Kaedah berasaskan berkepadatan telah muncul sebagai kelasyang amat bernilai un-

tuk kelompok aliran data. Ia mempunyai kebolehan untuk menemui kelompok berbentuk

rawak, mampu mengatasi masalah gangguan (noise) dalam aliran data dan kelompok

yang asalnya tidak diketahui jumlah kelompoknya. Ciri-cirialiran data adalah termasuk

isipadunya infiniti (infinite volume), ia berubah secara dinamik, ia membolehkan hanya

satu atau sebilangan kecil imbasan, dan ia memerlukan masa tindak balas yang pantas.

Oleh kerana ciri-ciri ini, kelompok berasaskan berkepadatan tradisional tidak dapat diap-

likasikan.

Baru-baru ini, beberapa algoritma berasaskan berkepadatantelah dibangunkan un-

tuk kelompok aliran data. Walau bagaimanapun, terdapat masalah pada algoritma untuk

pengelompokan aliran data berdasarkan kepadatan (density-based data stream clustering

algorithms) sedia ada. Masalah pertama merujuk kepada masapengiraan yang tinggi

yang diperlukan untuk memproses kelompok itu. Masalah kedua adalah penurunan dra-

matik dalam kualiti kelompok apabila terdapat pelbagai kepadatan data. Dalam tesis ini,

masalah-masalah ini diambil kira dan kaedah baru adalah dicadangkan.

Kajian ini mencadangkan satu algoritma berdasarkan kepadatan bagi pengelom-

pokan aliran data yang berkembang. Kaedah yang dicadangkan, yang dipanggil Mudi-

Stream (Kelompok algoritma pelbagai ketumpatan untuk merubah aliran data) adalah al-

goritma dalam talian - luar talian (online - offline) dengan empat komponen utama. Tiga

komponen digunakan dalam fasa dalam talian manakala yang lain digunakan dalam fasa

luar talian. Tugas-tugas utama komponen ini menyimpan maklumat sinopsis, memangkas

maklumat yang disimpan dan membentuk kelompok akhir.

Dalam komponen pertama, kaedah hibrid terdiri daripada grid kepadatan dan teknik

kelompok mikro digunakan untuk mengekalkan maklumat ringkasan dalam bentuk kelom-
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pok teras mini sambil melakukan pemetaan titik terpencil kepada grid. Titik data dalam

grid akan membentuk teras kelompok mini baru apabila ia mencapai ambang ketumpatan

dalam komponen kedua. Tambahan pula, grid dan teras mini kelompok dipangkas meng-

gunakan teknik pemangkasan dalam komponen terakhir fasa dalam talian untuk meny-

impan memori yang terhad. Kaedah kelompok berasaskan pelbagai kepadatan (multi

density-based clustering) membentuk kelompok yang terakhir dengan menggunakan kedua-

dua ringkasan maklumat sinopsis dan maklumat statistik.

Kualiti algoritma dinilai secara komprehensif menggunakan pelbagai dataset sin-

tetik dan sebenar dengan ciri-ciri yang berbeza dengan menggunakan pelbagai kualiti

metrik. Analisis kerumitan(complexity analysis) menunjukkan bahawa ia menggunakan

masa dan memori yang terhad yang menjadikan Mudi-Stream dapat diaplikasikan untuk

aliran data. Tambahan pula, keputusan berskala membuktikan bahawa algoritma yang

dicadangkan itu adalah berskala(scalable) dari segi dimensi dan jumlah kelompok. Akhir

sekali, keputusan eksperimen menunjukkan bahawa kaedah yang dicadangkan dalam ka-

jian ini akan memperbaiki kualiti kelompok dalam persekitaran pelbagai kepadatan (multi

density environment) dan pada waktu yang sama akan mengurangkan masa pengiraan
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CHAPTER 1

INTRODUCTION

1.1 Background

Ever-growing volume of data production is the reality we areliving in. Social net-

works, smart cities, telephone networks are some of the examples which are the generator

of huge amount of data in the modern world. Now we face-off a new kind of data pro-

duced continuously over time called data stream (Severien,2013).

Different from traditional datasets, data stream flow in andout ceaselessly. They

are enormous, rapid changing, and potentially limitless. Due to the huge volume of data

stream, it may be impractical to record the whole data streamor to look over it multiple

times (Han, Kamber, & Pei, 2011).

Mining data stream is related to extracting knowledge structure represented in

streams information (Han & Kamber, 2006; Hahsler & Dunham, 2011). Clustering is

one of the prominent methods for mining data stream which hasdrawn lots of attention

in the last few years due to ever-growing presence of data stream. The goal of clustering

is to group the streaming data into meaningful classes. Datastream creates additional

challenges on clustering such as clustering in limited memory and limited time, examin-

ing the data only once as it arrives, and handling data in evolving manner to capture the

underlying changes in clusters.

Clustering algorithms in general have been categorized intofive types: partitioning,

hierarchical, density-based, grid-based, and model-based methods (Han et al., 2011). In

most of the clustering methods, the clusters are formed based on the distance between

objects. These methods discover only spherical-shaped clusters, and have difficulty to
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both find arbitrary shape clusters and handle noise.

In fact, many of notable clustering algorithms cannot cope well with the data in

which the actual clusters have non-spherical shapes. Furthermore, clustering data stream

needs the ability to detect and remove noise and outliers (Ester, 2013). Density-based

clustering method has the aforementioned characteristicsand yet no assumption about the

number of clusters. Density-based method has been developed based on the concept of

density. The clusters are formed as dense areas which are separated from sparse regions.

The main idea is to continuously grow a given cluster as long as the density (number of

objects or data points) in the neighborhood exceeds a threshold.

Figure 1.1 displays a comparison on a partitioning-based clustering such as k-means

(MacQueen, 1967) versus DBSCAN (Density-Based Spatial Clustering of Applications

with Noise) (Ester, Kriegel, Sander, Wimmer, & Xu, 1998), a density-based clustering

algorithm. In clustering methods such as k-means, the objective, which is to minimize

the average squared distance of points from the corresponding cluster center, leads to

form clusters regardless of the shape of the actual cluster (Ester, 2013). Density-based

clustering algorithms instinctively handle noise by preventing to put them into clusters.

It is observed that the arbitrary shape clusters and noise are detected accurately using

density-based clustering algorithm while k-means falselydetects the noise as a part of

clusters (Ester, 2013).

Therefore, density-based method (Ester et al., 1998) has come out as a valuable class

for clustering data stream.

Definition 1 (Data Stream). A data stream consists of a set of d-dimensional records

x1, . . . ,xi, . . . arriving at time stamps t1, . . . , ti, . . . ,xi = (xi
1, . . .xi

d). It is massive (e.g.,

terabytes in volume), temporally ordered, fast changing, and potentially infinite (Zhou,

Cao, Qian, & Jin, 2008; Han & Kamber, 2006; Aggarwal & Reddy, 2013).
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(a) Partitioning-based Clustering (k-means, k=3)

(b) Density-based Clustering (DBSCAN,MinPts= 5, ε = 20)

Figure 1.1: Data Stream Clustering Comparison on a Synthetic Dataset

With substantial growth in computer network during the pastfew decades, data

streams are being collected continuously, for example, an earthquake monitoring sys-

tem has up to 7,000 sensor systems to collect seismic data. These data are continuously

gathered into processing centers for further analysis. Thedata of such nature are called

data stream, which flow through computer systems at high speeds. The data stream of-

ten are too large to fit in the main memory and the time is limited to process these fast

changing data.
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Definition 2 (Evolving Data Stream).In evolving data stream, the behavior of stream is

considered as an evolving process over time, and further it is possible that in the new data

arrival, a new cluster appears that has never appeared in thestream before. Moreover, it

may happen that a class appears, which has not been in the stream for a long time.

Definition 3 (Clustering Data Stream). The process of partitioning d-dimensional

records x1, . . . ,xi, . . . arriving at time stamps t1, . . . , ti, . . . ,xi = (xi
1, . . .xi

d) into number

of groups C= {C1,C2, . . . ,Ck} such that the intra-cluster similarity is maximized, and

the inter cluster similarity is minimized. Similar recordsare categorized together as one

cluster Ci using similarity function while dissimilar objects separated in different groups

or the group of noise (noisy points).

Clustering data stream requires a process able to continuously cluster objects within

memory and time restrictions (Silva et al., 2013). Clustering data stream has to achieve

the following requirements: (i) provide timely results by performing fast and incremental

processing of data points; (ii) rapidly adapt to evolving data stream, which means algo-

rithms should detect when new clusters may appear, or othersdisappear; (iv) provide a

compact model representation which is not growing with the number of data points pro-

cessed; (v) detect the presence of outliers (Babcock, Babu, Datar, Motwani, & Widom,

2002; Babcock, Datar, & Motwani, 2002; Barbará, 2002; Tasoulis, Ross, & Adams, 2007;

Bifet, Holmes, Kirkby, & Pfahringer, 2010).

Definition 4 (Density-based Clustering).Density-based method is a prominent class in

clustering. The main advantage of density-based clustering is that it can find the arbitrary

shape of clusters and also provide natural protection against outliers. Furthermore, they

do need the number of clusters in advance. Density-based clusters are connected, dense

areas in the data space separated from each other by sparser areas. Additionally, the
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density within the areas of noise is assumed to be lower than thedensity in any of the

clusters.

Since density-based clusters are not certainly groups of points with a low pairwise within-

cluster dissimilarity as measured by a dissimilarity function, dense connected areas in the

data space can have arbitrary shapes. Sparse areas in the data space are treated as noise

and are not assigned to any cluster (Kriegel, Kröger, Sander, & Zimek, 2011; Aggarwal

& Reddy, 2013).

Definition 5 (Adaptive Density-based Clustering for Evolving Data Stream). The

density-based method is an attractive clustering algorithm for data stream since it can

find arbitrarily shaped clusters yet handle noises. Furthermore, they do not need the num-

ber of clusters in advance. Therefore, density-based method is adopted for data stream.

However, due to data stream characteristics the traditionaldensity-based clustering algo-

rithm is not applicable for them. There are some problems withthe existing density-based

algorithms: they have high computation time in clustering data streams and low quality

for multi-density data. Thus, in this thesis, we choose density-based method for clustering

data stream according to their salient features. However, we solve the problems of the

existing algorithms to be applicable for data streams.

Definition 6 (Multi-density data). In a multi-density dataset, there is a range of den-

sities for the clusters and multi-density clusters refer tothe clusters that are formed in

different densities.

1.2 Motivation

In real world applications (Cao, Ester, Qian, & Zhou, 2006; Hershberger, Shrivas-

tava, & Suri, 2009):
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• naturally occurring clusters are typically not sphericalin shape. For instance, in

habitat monitoring using wireless sensor networks, the sensors produce a steady

stream of geographic data including objects’ locations being tracked. In this kind

of applications, clusters may have arbitrary shape becauseof the restraints put by

geographic entities such as mountain and rivers.

• there are large amounts of noise or outliers in some of them,for instance, due to

the influence of different factors such as temporary failureof sensors in data stream

scenario, some random noises appear occasionally. Detecting noise is one of the

important issues specifically in evolving data stream in which the role of real data

changes to noise over time.

• there is not a priori knowledge in many real-life data to be considered as the number

of clusters.

The prototype of density-based clustering has been developed to address all of the

aforementioned requirements. However, density-based method has some drawbacks as

follows:

Firstly, it has high computation time because the process, which finds the nearest

neighbors to form clusters, is time consuming. Recently, a number of density-based clus-

terings are developed for clustering data stream. In data stream environments finding

neighbors to form clusters are performed on summarized data. Some of the algorithms

(Isaksson, Dunham, & Hahsler, 2012; Forestiero, Pizzuti, &Spezzano, 2013) try to re-

duce the number of comparisons in order to reduce the computation time but it is still

high to be applicable for data stream.

Secondly, density-based clustering fails to handle the local density variation that

exists within a cluster. Multi-density data are prevalent in some applications such as clus-

tering GPS data stream to determine the traffic accurately. There are a few number of
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density-based clustering algorithms for multi-density datasets (Carmelo, Alfredo, Ros-

alba, Giuseppe, & Alfredo, 2013; X. Chen, Liu, Chen, Zhang, & Zhang, 2012) which try

to solve this problem for static datasets. Nonetheless, these algorithms have some diffi-

culties to be used for data stream. First, they need the wholedata for their processing.

In data stream, it is impossible to have the whole data in advance since the data arrives

continuously over time. Second, they require two processesover the data to get density

distribution and then they can cluster based on the related information. However, cluster-

ing data stream has to be performed in single pass. Accordingly, there is not an effective

algorithm to get the accurate density of the data stream withmulti-density.

1.3 Problem Statement

The problem of this study is defined as follows:

Existing density-based clustering algorithms for evolvingdata stream

have high computation time and low quality in multi-density data.

Density-based clustering has two important problems. First, they have high compu-

tation time. Accordingly, some research efforts have been made to present methods for

density-based data stream clustering; however, they stillsuffer from their computation

time.

Since density-based clustering method uses global parameters, it cannot capture the

intrinsic cluster structure of data stream. The existing density-based clustering algorithms

cannot choose parameters according to the distribution of data. Using the global param-

eters leads to inaccurate clustering result of multi-density data. As it is shown in Figure

1.2, it is impossible to detect all the clusters properly. Using global parameters, the clus-

tering results consist of either C1, C2, and C3 as clusters and A and B as noise, or A, B,

and C as clusters in which C1, C2, and C3 are not separated. Therefore, the clustering

quality of existing methods is lessened remarkably if the data has various densities.
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Figure 1.2: Multi-density Data (Cassisi et al., 2013)

1.4 Research Questions

The research questions which this thesis will answer are as follows:

• Q1. Which method is more appropriate for summarizing data stream?

• Q2. How to handle evolving data stream?

• Q3. What are the reasons of high computation time?

• Q4. How to lower the computation time?

• Q5. What are the issues that impede the clustering quality inmulti-density environ-

ments?

• Q6. How to increase the clustering quality in multi-density data?

1.5 Research Objectives

The objectives of this research are as follows:

• To propose and develop a new density-based algorithm for clustering evolving

data stream.
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• To improve the quality of clustering for multi-density data. The clustering qual-

ity has to be high for normal distribution data as well as for the data with dissimilar

density distributions.

• To reduce the computation time.The computation time has to be low enough to

cope with the speed of arriving data stream.

• To evaluatethe capability of the proposed method in improving the Quality.

The first research objective answers research questions RQ1 and RQ2. Research ques-

tions RQ3, and RQ4 are answered by the third research objective. Finally, research ques-

tions RQ5, and RQ6 are answered by the second research objective.

1.6 Scope of Research

• This thesis studies in the scope of clusteringevolvingdata stream. In other words,

we present a method for which the data stream evolves over time, therefore some

clusters disappear while new clusters are formed.

• We provide a data stream clustering approach that is applicable in two perspec-

tives. It can cluster evolving data stream with various density distributions and also

uniform density distribution.

• The aim of this research is improving quality for multi-density data in which the

clusters have different densities and there is no nested cluster. Although a slight

modification of our approach (in its offline phase) can achieve nested clusters, the

focus of this thesis is not on the nested clusters.

• There are different kinds of data attributes in data streams including numerical,

categorical, and uncertain data. The focus of this thesis isonly on numerical (con-

tinuous) data. The majority of test sets have only numeric attributes.
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• The focus is not on the high dimensional data streams. In high dimensional data,

the computation time is not low since we have a lot of empty grids to process. For

clustering high dimensional data, the proposed method needs some improvements

in its online phase.

1.7 Thesis Outline

The rest of the thesis is structured as follows:

• Chapter 2 presents a brief and rather general overview on different clustering meth-

ods on data stream. Furthermore, it has a comprehensive review on the existing

density-based methods for clustering data stream. This chapter reviews the existing

multi density-based clusterings for static datasets as well.

• Chapter 3 describes the research methodology applied to achieve the research ob-

jectives. It has a general overview of Multi Density-based clustering algorithm for

evolving data Streams (MuDi-Stream) and a brief review on its components.

• Chapter 4 presents the proposed density-based clustering framework. It describes

all the new notations applies in the proposed method. The components of the new

method are explained in details. Most of the research questions are answered in this

chapter.

• Chapter 5 presents the experimental setup including: the datasets used for evalu-

ation of the proposed method, and implementation and environment are discussed

in details. Moreover, the chapter describes the experimental evaluation of the pro-

posed method on different datasets, evaluation measures, and the performance. Fi-

nally, the parameter settings are discussed, and the final results are reported.

• Chapter 6 concludes the study, reviews the main contributions of the thesis and

outlines the possibilities for future work.
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CHAPTER 2

RELATED WORK

2.1 Overview

In this chapter, we review the existing density-based clustering for data as well as

multi-density algorithms for datasets. Section 2.2 overviews main clustering methods

for data streams. Furthermore, basics in data stream clustering as well as challenges in

clustering data streams are presented in Section 2.2. Section 2.3 introduces two main cat-

egories of density-based data stream clustering algorithms. Section 2.4 elaborates in de-

tails one of the well-known density-based clustering methods called DBSCAN. The first

category is density micro-clustering algorithm and is discussed in Section 2.5. Density

grid-based clustering algorithms are introduced in Section 2.6. Density-based clustering

algorithms for multi-density dataset are explained in Section 2.7. Section 2.8 addresses

an important issue of clustering process regarding the quality assessment of the clustering

results. Section 2.9 is a comprehensive discussion on density-based data stream clustering

algorithms as well as multi-density algorithms.

2.2 Clustering Data Streams

Clustering is a key data mining task (Aggarwal, 2007; OĆallaghan, Meyerson, Mot-

wani, Mishra, & Guha, 2002; Barbará, 2002; Guha, Meyerson, Mishra, Motwani, &

O’Callaghan, 2003; Aggarwal, Han, Wang, & Yu, 2003; Ackermann et al., 2010) which

classifies a given dataset into groups (clusters) such that the data points in a cluster are

more similar to each other rather than the points in different clusters.

Unlike clustering static datasets, clustering data streams poses many new challenges.

Data stream comes continuously and the amount of data is unbounded. Therefore, it is
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Figure 2.1: Data Stream Clustering Algorithms

impossible to keep the entire data stream in main memory. Data stream passes only

once, so multiple scans are infeasible. Moreover, data stream requires fast and real time

processing to keep up with the high rate of data arrival and mining results are expected to

be available within short response time.

There is an extensive number of clustering algorithms for static datasets (Jain &

Dubes, 1988) and (Jain, 2010) where some of them have been extended for data streams.

Generally, clustering methods are classified into five majorcategories (Han & Kamber,

2006): partitioning, hierarchical, density-based, grid-based, and model-based methods

(Figure 2.1).

A partitioning-based clusteringalgorithm organizes the objects into some number

of partitions, where each partition represents a cluster. The clusters are formed based

on a distance function like k-means algorithm (MacQueen, 1967; Lloyd, 1982) which

leads to finding only spherical clusters and the clustering results are usually influenced

by noise. Two of the well-known extensions of k-means on datastreams are presented

in (Guha, Mishra, Motwani, & O’Callaghan, 2000) where k-means algorithm clusters

the entire data stream and in STREAM (OĆallaghan et al., 2002; Guha et al., 2003)

which has LOCALSERACH algorithm based on K-median for data streams. Aggarwal

et al. proposed an algorithm called CluStream (Aggarwal et al., 2003) based on k-means

for clustering evolving data streams. CluStream introducesonline-offline framework for

clustering data streams which has been adopted for the majority of data stream clustering

12



algorithms.

A hierarchical clustering method groups the given data into a tree of clusters which

is useful for data summarization and visualization. In hierarchical clustering once a step

(merge or split) is done, it can never be undone. However, methods for improving the

quality of hierarchical clustering have been proposed suchas integrating hierarchical

clustering with other clustering techniques, resulting inmultiple-phase clustering such

as BIRCH (T. Zhang, Ramakrishnan, & Livny, 1996) and Chameleon (Karypis, Han,

& Kumar, 1999). BIRCH is extended for data stream as micro-cluster in (Aggarwal et

al., 2003). Furthermore, ClusTree (Kranen, Assent, Baldauf,& Seidl, 2011) is a hier-

archical index for maintaining cluster feature. In fact, ClusTree builds a hierarchy of

micro-clusters at different levels.

Grid-based clustering is independent of distribution of data objects. In fact, it par-

titions the data space into a number of cells which forms the grids. Grid-based clustering

has fast processing time since it is not dependent on the number of data objects. Some ex-

amples of the grid-based approach include STING (Wang, Yang, & Muntz, 1997), which

explores statistical information stored in the grid cells;WaveCluster (Sheikholeslami,

Chatterjee, & Zhang, 2000), which clusters objects using a wavelet transform method;

and CLIQUE (Agrawal, Gehrke, Gunopulos, & Raghavan, 1998), which represents a

grid-based and density-based approach. Grid-based methods are integrated with density-

based methods for clustering data streams which are referred to as density grid-based.

In density grid-based clustering methods data points are mapped into the grids. Then,

the grids are clustered based on their density. Some of the density grid-based clustering

algorithms are D-Stream (Y. Chen & Tu, 2007; Tu & Chen, 2009) andMR-Stream (Wan,

Ng, Dang, Yu, & Zhang, 2009).

Model-based clusteringmethods attempt to optimize the fit between the given data

and some mathematical models like EM (Expectation Maximization) algorithm (Demp-
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ster, Laird, & Rubin, 1977). EM algorithm can be viewed as an extension of the k-means.

However, EM assigns the objects to a cluster based on a weightrepresenting the mem-

bership probability. In (Dang, Lee, Ng, Ciptadi, & Ong, 2009), SWEM (clustering data

streams in a time-based Sliding Window with Expectation Maximization technique) is

proposed which is a clustering data stream using EM algorithm.

Density-based methodshave been developed based on the notion of density. The

clusters are formed as dense areas which are separated from sparse regions. The main idea

is to continuously grow a given cluster as long as the density(number of objects or data

points) in the neighborhood exceeds some threshold. Such a method can be used to filter

out noise or outliers and to discover clusters of arbitrary shape. The main density-based

algorithms include: 1) DBSCAN (Ester, Kriegel, Sander, & Xu, 1996) which grows clus-

ters according to a density-based connectivity analysis, 2) OPTICS (Ankerst, Breunig,

Kriegel, & Sander, 1999) which extends DBSCAN to produce a cluster ordering obtained

from a wide range of parameter settings, 3) DENCLUE (Hinneburg & Keim, 1998) which

clusters objects based on a set of density distribution functions. Extensions of density-

based algorithms for data stream are proposed as well.

2.2.1 Basics in Clustering Data Streams

In clustering data streams an important issue is how to process the infinite data which

is evolving over time or how to keep the huge amount of data forlater processing. There

are some methods such as processing in one-pass, evolving and in online-offline manner

as well as different methods for summarization of data streams. A short description of

these methods is described as follows.

1. Processing

One pass: In the one-pass, data streams are clustered by scanning data streams only

once with the assumption that data objects arriving in chunks like k-means was

14



extended to be used for data streams (Charikar, O’Callaghan, &Panigrahy, 2003;

Guha et al., 2000, 2003). Another well-known algorithm is STREAM (OĆallaghan

et al., 2002; Guha et al., 2003), which partitions the input stream into chunks and

computes (for each chunk) a cluster using a local search algorithm from (Guha et

al., 2000). DUC-Stream (Gao, Li, Zhang, & Tan, 2005) is a one-pass grid-based

clustering algorithm which assumes the arrival of data in chunks.

Evolving: In the one-pass approaches the clusters are computed over the entire data

streams; however, data streams are infinite and they continuously evolve with time.

Hence, the clustering results may change considerably overtime. In the evolv-

ing approaches, the behaviors of streams are considered as an evolving process

over time and processed in different forms of window model. Different clustering

algorithms such as (Aggarwal et al., 2003; Wan et al., 2009; Zhou et al., 2008; Ag-

garwal, Han, Wang, & Yu, 2004, 2005; Babcock, Datar, Motwani,& O’Callaghan,

2003; Tu & Chen, 2009) are developed based on this approach. Inwindow model,

the data is separated into several basic windows and these basic windows are used

as updating units. Three kinds of window models are as follows (Ng & Dash, 2010):

• Landmark window model: the window is determined by a specific time point

called landmark and the present. It is used for mining over the entire history

of the data streams (Figure 2.2a).

• Sliding window model: data is considered from a certain range in the past

to a present time. The idea behind “sliding window” is to perform detailed

analysis over both the most recent data points, and the summarized version of

the old ones (Figure 2.2b).

• Fading (Damped) window model: a weight is given for each data point based

on a fading function (Aggarwal et al., 2004), and more weights are given to

15



(a) Landmark Window Model (b) Sliding Window Model (c) Fading Window Model

Figure 2.2: Window Models (Matysiak, 2012)

Table 2.1: Window Models in Clustering Data Streams

Window
Model

Definition Pros Cons Example(s)

Landmark
window
model

Analyze
the entire his-
tory
of data stream

Suitable for one-pass
clustering algorithms

All the data are equally
important and the
amount of data inside
the window would
quickly grow to unpro-
cessable sizes

(Guha et
al., 2003)

Sliding
window
model

Analyze
the most recent
data points

Suitable for applica-
tions where interest
exists only in the
most recent informa-
tion like stock mar-
keting

Ignores part of streams (Zhou et
al., 2008;
Ren, Ma,
& Ren,
2009)

Fading
(damped)
window
model

Assign
different
weights
to data points

Suitable for applica-
tions where old data
has an effect on the
mining results, the
effect decreases as
time goes on dimin-
ishes the effect of the
old data

Unbounded time win-
dow (the window cap-
tures all historical data,
its size keeps growing as
time elapses)

(Cao et
al., 2006;
Y. Chen
& Tu,
2007;
Wan et
al., 2009)

recent data compared to outdated data. The use of a damped window model

is to diminish the effect of the old data on the mining result (Figure 2.2c).

The summarization of the window models with some example of clustering algo-

rithm as well as their pros and cons are presented in Table 2.1. All the models have

been considered in clustering data streams. Choice of the window model depends

on the applications’ needs (Ng & Dash, 2010).

Online-offline: sometimes a data stream clustering algorithm needs to investigate

the clusters over different parts of stream. A different window model is used for

tracing evolving behavior of data streams. However, we cannot perform dynamic
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clustering over all possible time horizons of data streams.Therefore, online-offline

approach is introduced by Aggarwal et al. in (Aggarwal et al., 2003). The online

component keeps summary information (overcoming real-time and memory con-

straints) about fast data streams and offline component gives an understanding of

the clusters. The majority of data stream clustering developed for evolving data

streams use CluStream’s two-phase framework (Aggarwal et al., 2003; Wan et al.,

2009; Zhou et al., 2008; Aggarwal et al., 2004, 2005; Y. Chen & Tu, 2007; Tu &

Chen, 2009).

2. Summarization: The large volume of data streams put space and time constraints

on the computation process. Data streams are massive and infinite, so it is impos-

sible to record the entire data. Therefore, synopsis information can be constructed

from data items in the streams. The design and choice of a particular synopsis

method depends on the problem being solved. A brief description about different

methods of summarization is as follows (Han & Kamber, 2006; Aggarwal, 2007):

Sampling methods: instead of recording the entire data streams which seems im-

possible, we can make a sampling from data stream. Reservoir sampling (Vitter,

1985) is a technique which is used to select an unbiased random sample of data

streams and it is useful for data streams.

Histograms: histogram based methods are used for static datasets; however, their

extension for data streams is a challenging task. Some of themethods are discussed

in (M. Garofalakis, Gehrke, & Rastogi, 2002) for data streams. One of the recent

algorithms, called SWClustering (Zhou et al., 2008), keeps summary information

of data streams in the form of histogram.

Wavelets: wavelets are popular multi-resolution techniques for data streams’ sum-

marization. Wavelets are traditionally used for image and signal processing. They
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are used for multi-resolution hierarchy structures over aninput signal, in this case,

the stream data. Furthermore, wavelet-based histograms can be dynamically kept

over time (Aggarwal & Yu, 2007; M. N. Garofalakis, 2009; Gilbert, Kotidis,

Muthukrishnan, & Strauss, 2003).

Sketches: sketch is a probabilistic summary technique for analyzingdata streams.

Sketch-based methods can be considered as a randomized version of wavelets tech-

nique. While other methods emphasis on small part of data, sketches summarize

the entire dataset at multiple levels of details (Aggarwal,2007).

Micro-cluster: micro-cluster (Aggarwal et al., 2003) is a method to keep statis-

tical information about the data locality. It can adjust well with evolution of the

underlying data streams. We will elaborate on the micro-cluster further in Section

2.5.

Grid: in this method, the data space is partitioned into some small segments called

grids and the data points in streams are mapped to them. Each grid has a character-

istic vector which keeps a summary about all the data points mapped to it (Y. Chen

& Tu, 2007). More details of the grid method in Section 2.6.

According to the reviewed papers, the most applicable summarization methods for

density-based clustering algorithms are micro-clustering and grid-based. Therefore, we

categorize the reviewed algorithms based on these two summarization methods (Amini,

Ying Wah, & Saboohi, 2014; Aggarwal & Reddy, 2013).

2.2.2 Challenges in Clustering Data Streams

Considering their dynamic behavior, clustering over data streams should address the

following challenges (Guha et al., 2000; Kranen et al., 2011; Wan et al., 2009; Han &

Kamber, 2006; J. Gama & (Eds), 2007; Han et al., 2011; Aggarwal & Reddy, 2013):
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• Handling noisy data: any clustering algorithm must be able to deal with random

noises present in the data since outliers have great influence on the formation of

clusters.

• Handling evolving data: the algorithm has to consider that the data streams con-

siderably evolve over time.

• Limited time : data streams arrive continuously, which requires fast andreal-time

response. Therefore, the clustering algorithm needs to handle the speed of data

streams in the limited time.

• Limited memory : the huge amount of data streams are generated rapidly, which

needs an unlimited memory. However, the clustering algorithm must operate within

memory constraints.

• Handling high dimensional data: some of data streams are high dimensional in

their nature such as gene expression or clustering text documents. Therefore, the

clustering algorithm has to overcome this challenge in caseof its data being high

dimensional.

We will discuss how different density-based clustering algorithms over data streams

address aforementioned challenges in Section 2.9.1.

2.3 Density-based Data Stream Clustering

Based on a comprehensive review on existing density-based clustering algorithms on

data stream, these algorithms are categorized in two broad groups called density micro-

clustering algorithms and density grid-based clustering algorithms (Amini et al., 2014;

Aggarwal & Reddy, 2013) (Figure 2.3).

In density micro-clustering algorithms, micro-cluster keeps summary information

about data and clustering is performed on these synopsis information. The reviewed al-
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Figure 2.3: Density-based Data Stream Clustering Algorithms’ Categorization
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gorithms in this category include: DenStream (Cao et al., 2006), StreamOptics (Tasoulis

et al., 2007), C-DenStream (Ruiz, Menasalvas, & Spiliopoulou, 2009), r-DenStream (Li-

xiong, Jing, Yun-fei, & Hai, 2009), SDStream (Ren et al., 2009), HDenStream (Lin

& Lin, 2009), FlockStream (Forestiero et al., 2013), SOStream (Isaksson et al., 2012),

HDDStream (Ntoutsi, Zimek, Palpanas, Kröger, & Kriegel, 2012), and PreDeConStream

(Hassani, Spaus, Gaber, & Seidl, 2012).

In density-grid based clustering algorithms group, the data space is divided into

grids, data points are mapped to these grids, and the clustering are formed based of the

density of grids. The reviewed algorithms in this category include: DUC-Stream (Gao et

al., 2005), D-Stream I (Y. Chen & Tu, 2007), DD-Stream (Jia, Tan, & Yong, 2008), D-

Stream II (Tu & Chen, 2009), MR-Stream (Wan et al., 2009), PKS-Stream (Ren, Cai, &

Hu, 2011), DCUStream (Y. Yang, Liu, Zhang, & Yang, 2012), DENGRIS-Stream (Amini

& Ying Wah, 2012), and ExCC (Bhatnagar, Kaur, & Chakravarthy, 2013).

In the following sections, firstly, DBSCAN (Ester et al., 1998), a remarkable density-

based clustering algorithm, is elaborated. Furthermore, we will discuss in details about

the algorithms in each aforementioned category, and their pros and cons. Additionally,

we examine how they address the challenging issues in clustering data streams.

2.4 DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Density-based clustering has the abilities to discover arbitrary-shape clusters and to

handle noises. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

(Ester et al., 1996) is one of the density-based algorithms,which is adopted for data

stream algorithms, described in details as follows.

DBSCAN is developed for clustering large spatial databases with noise, based on

connected regions with high density. The density of each point is defined based on

the number of points close to that particular point called point’s neighborhood. The
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dense neighborhood is defined based on two user-specified parameters: the radius (ε)

of the neighborhood (ε-neighborhood), and the number of the objects in the neighbor-

hood (MinPts). The basic definitions in DBSCAN are introduced in the following. D is a

current set of data points.

• ε-neighborhood of a point: the neighborhood within a radius of ε. Neighborhood

of a pointp is denoted byNε(p):

Nε(p) = {q∈ D|dist(p,q)≤ ε}, |Nε(p)|>= MinPts (2.1)

wheredis(p,q) denotes the Euclidean distance between pointsp andq.

• MinPts: minimum number of points around a data point in theε-neighborhood

• Core Point: a point which its cardinality ofε-neighborhood is at leastMinPts

• Border Point: a point which the cardinality of itsε-neighborhood is less than

MinPtsand at least one of itsε-neighborhood is a core point

• Noise Point: a point which the cardinality of itsε-neighborhood is less thanMinPts

and no core point is in theε-neighborhood of that point

• Directly density reachable: a pointp is directly density reachable from pointq, if

p is in theε-neighborhood ofq andq is a core point

• Density reachable: a pointp is density reachable from pointq, if p is in the ε-

neighborhood ofq andq is not a core point but they are reachable through chains

of directly density reachable points

• Density-connected: if two pointsp andq are density-reachable from a core point

o, p andq are density-connected
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Border

Core

Noise

Figure 2.4: DBSCAN: Core, Border, and Noise Points

Algorithm 1 DBSCAN(D, MinPts, ε)

Input: a data setD
Output: arbitrary shape clusters

1: for each data point p in Ddo
2: if p is not mark as ’seen’then
3: mark p as ’seen’
4: Find Nε(p,D) /* find ε neighborhood of data point p */
5: if |Nε(p,D)|<= MinPtsthen
6: mark data point: ClusterId=noise
7: else
8: ClusterId=ClusterId+1
9: end if

10: for all q∈ Nε(p,D) do
11: mark data point q as ’seen’
12: find Nε(q,D)
13: if |Nε(q,D)|> MinPtsthen
14: give data point q a ClusterId
15: end if
16: end for
17: end if
18: end for

• A cluster: a maximal set of density-connected points

Core, border and noise points are shown in Figure 2.4.

DBSCAN starts by randomly selecting a point and checking whether the ε-

neighborhood of the point contains at leastMinPts points. If not, it is considered as a

noise point, otherwise the point is considered as a core point and a new cluster is cre-

ated. DBSCAN iteratively adds the data points, which do not belong to any cluster and

directly density reachable (Ester et al., 1996) from the core points of a new cluster. If
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the new cluster can no longer be expanded, the new cluster is completed. In order to find

the next cluster, DBSCAN randomly selects an unvisited data point and the clustering

process continues until all the points are visited and no newpoint is added to any cluster.

The overall architecture of DBSCAN algorithm is outlined in Algorithm 1.

Therefore, a density-based cluster is a set of density-connected data objects with

respect to density reachability. The points that are not placed in any cluster are considered

as noise. Figure 2.5 shows DBSCAN algorithm performing on a small synthetic dataset.

Figures 2.5a, 2.5b, and 2.5c are the steps of the clustering and Figure 2.5d is the final

clustering results.

(a) (b)

(c) (d)

Figure 2.5: DBSCAN algorithm on synthetic data set:ε = 20,MinPts= 5

2.5 Density Micro-Clustering Algorithms on Data Streams

Micro-clustering is a remarkable method in stream clustering to compress data

streams effectively and to record the temporal locality of data (Aggarwal, 2007). The

micro-cluster concept was first proposed in (T. Zhang et al.,1996) for large datasets,

and subsequently adapted in (Aggarwal et al., 2003) for datastreams. The micro-cluster

concept is described as follows (Figure 2.6):
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(a) (b)

Figure 2.6: Micro-Clusters in density-based clustering generated by MOA

Micro-Cluster is a temporal extension of cluster feature (CF) (T. Zhang et al., 1996),

that is a summarization triple maintained about a cluster. The triple vector comprises the

number of data points, the linear sum of data points, and their squared sum. Therefore, a

micro-cluster for a set ofd-dimensionalpointspi1 . . . pin is defined as the(2.d+3) tuple

(
−−−→
CF2x,

−−−→
CF1x,CF2t ,CF1t ,n).

•
−−−→
CF2x: for each dimension, the sum of squares of data values is maintained inCF2x.

Therefore, thep-thentry ofCF2x is equal to∑n
j=1 =

(

xi j
p
)2

.

•
−−−→
CF1x: for each dimension, the sum of the data values is maintainedin

−−−→
CF1x. There-

fore, thep-thentry ofCF1x is equal to∑n
j=1 = xi j

p.

• CF2t : sum of squares of timestampsTi1 . . .Tin.

• CF1t : sum of timestampsTi1 . . .Tin.

• n: number of data points.

The micro-cluster for a set of pointsC is denoted byCFT(C).

Micro-clustering method uses micro-cluster to save summary information about the

data streams, and performs the clustering on these micro-clusters.
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2.5.1 DenStream

Feng et al. in (Cao et al., 2006) proposed a clustering algorithm, termed as Den-

Stream, for evolving data stream, which has the ability to handle noises as well. The al-

gorithm extends the micro-cluster concept as core micro-cluster, potential micro-cluster,

and outlier micro-cluster in order to distinguish between real data and outliers. The core-

micro-cluster synopsis is designed to summarize the clusters with arbitrary shape in data

streams. Potential and outlier micro-clusters are kept in separate memories since they

need different processing. DenStream is based on the online-offline framework. In the on-

line phase it keeps micro-clusters with real data and removes micro-clusters with noises.

In the offline phase density-based clustering is performed on the potential micro-clusters

which have the real data.

DenStream extends the micro-cluster concepts to core-micro-cluster, potential-

micro-cluster, and outlier-micro-clusters (Figure 2.7) which are described for a group

of close pointspi1 . . . pin with timestampsTi1 . . .Tin, as follows:

Core-micro-cluster: is defined asCMC(w,c, r).

• w= ∑n
j=1 = f (t−Ti j), is the weight andw≥ µ

• c=
∑n

j=1 f (t−Ti j )pi j

w is the center

• r =
∑n

j=1 f (t−Ti j )dist(pi j ,c)
w , r ≤ ε is the radius.dist(pi j ,c) is Euclidean distancebe-

tween pointpi j and the centerc.

Note that the weight of a micro-cluster must be above a predefined thresholdµ in

order to be considered as a core.

Potential micro-cluster: at timet is defined as(
−−→
CF1,

−−→
CF2,w).

• w= ∑n
j=1 f (t−Ti j), is the weight andw≥ β µ. β is the parameter to determine the

threshold of the outlier relative toc-micro-clusters(0< β < 1).
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Figure 2.7: Potential and Outlier Microclusters

•
−−→
CF1 = ∑n

j=1 f (t−Ti j)pi j , is the weighted linear sum of the points.

•
−−→
CF2 = ∑n

j=1 f (t−Ti j)pi
2
j , is the weighted squared sum of the points.

The center of potential micro-cluster isc=
−−→
CF1

w . And the radius of potential micro-cluster

is r =

√

|
−−→
CF2|

w − ( |
−−→
CF1|

w )2 (r ≤ ε).

Outlier micro-cluster : is defined as(
−−→
CF1,

−−→
CF2,w, t0). The definition ofw, CF1,

CF2, center, and radius are the same as in the potential-micro-cluster. t0 = Ti1 denotes

the creation time of the outlier micro-cluster. In an outlier micro-cluster the weightw

must be below the fixed threshold, thusw< β µ. However, it could grow into a potential

micro-cluster when, by adding new points, its weight exceeds the threshold.

Weights of micro-clusters are periodically calculated anddecision about removing

or keeping them is made based on the weight threshold.

Online Phase: For initialization of the online phase, DenStream uses theDBSCAN

algorithm on the first initial points, and forms the initial potential micro-clusters. In fact,
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for each data point, if the aggregate of the weights of the data points in the neighborhood

radius is above the weight threshold, then a potential micro-cluster is created. When a

new data point arrives, it is added to either the nearest existing potential micro-cluster or

outlier micro-cluster. The Euclidean distance between thenew data point and the center

of the nearest potential or outlier micro-cluster is measured. A micro-cluster is chosen

with the distance less than or equal to the radius threshold.If it does not belong to any of

them, a new outlier micro-cluster is created and it is placedin the outlier buffer.

Offline phase: adopts DBSCAN to determine the final clusters on the recorded po-

tential micro-clusters.

DenStream has a pruning method in which it frequently checksthe weights of the

outlier-micro-clusters in the outlier buffer to guaranteethe recognition of the real outliers.

The algorithm defines a density threshold function which calculates the lower limit of

density threshold. If the outlier micro-cluster weighs below the lower limit, it is a real

outlier and it can be omitted from the outlier buffer.

Merits and limitations : DenStream handles the evolving data stream effectively by

recognizing the potential clusters from the real outliers.DenStream creates a new micro-

cluster if the arriving records are incorporated into existing micro-clusters. However,

the algorithm does not occupy any memory space for the new micro-cluster by either

deleting a micro-cluster or merging two old micro-clusters. Furthermore, the storage for

the new micro-cluster is repeatedly allocated until it is eliminated in the pruning phase.

Nevertheless, the pruning phase for removing outliers is a time consuming process in the

algorithm. The merging time is also time consuming since it uses two lists for keeping

potential and outlier micro clusters.
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2.5.2 StreamOptics

In (Tasoulis et al., 2007), Tasoulis et al. developed a streaming cluster framework

which graphically represents the cluster structure of datastream. It addresses visual-

ization challenges in clustering data streams. The algorithm is called StreamOptics that

extends the OPTICS (Ordering Points To Identify the Clustering Structure) algorithm

(Ankerst et al., 1999) for data streams using micro-clusterconcept. Core-distance and

reachability distance from OPTICS algorithm are changed in the form of micro-cluster as

follows.

Definition 7 (Micro-Cluster core-distance). Micro-Cluster core-distance is defined to

be equal to micro-cluster radius. In OPTICS, core distance for a data point is defined as

the smallest ofε (neighboring radius) that makes a data point as a core object. If data

point is not a core object, its core-distance is undefined.

Definition 8 (Reachability-distance).The reachability-distance is the same as OPTICS.

Reachability-distance of an object p1 with respect to another object p2 is chosen based

on the maximum value between Euclidean distance of p1, p2 and the core distance of

p2. If p2 is not a core object, the reachability-distance between p1 and p2 is undefined.

However, in StreamOptics the distance is calculated between the potential micro-clusters.

Reachability-distance between micro-cluster mc1 and mc2 is chosen based on the maxi-

mum value between Euclidean distance of mc1 and mc2 and the core distance of mc2. If

mc2 is not a core object, the reachability-distance between mc1 and mc2 is undefined.

StreamOptics also uses potential micro-cluster and outlier micro-cluster from Den-

Stream. StreamOptics keeps an ordered list from potential micro-clusters and discards

outlier micro-clusters. Therefore, micro-cluster neighborhood and cluster ordering is de-

fined based on the potential micro-clusters as follows.
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Definition 9 (Micro-cluster neighborhood). Micro-cluster neighborhood is defined

based on the Euclidean distance between two potential micro-clusters.

Definition 10 (Cluster Ordering). Cluster ordering orders the potential micro-clusters

based on their reachability distance.

In StreamOptics, firstly the neighborhoods of each potential micro-cluster is deter-

mined, and an ordered list of potential micro-clusters are made based on their reachabil-

ity distance. StreamOptics produces a reachability plot that represents the micro-cluster

structure using OPTICS algorithm.

Since data streams are changed by time, in StreamOptics, time is considered as the

third dimension which is added to the two dimensional plots of OPTICS. The StreamOp-

tics plot allows the user to recognize the changes in clusterstructure in terms of emerging

and fading clusters.

Merits and limitations : StreamOptics is based on micro-clustering framework,

which uses OPTICS algorithm to provide the three dimensionalplot that shows the evo-

lution of the cluster structure over the time. However, it isnot a supervised method for

cluster extraction; it needs manual checking of the generated three dimension plot.

2.5.3 C-DenStream

Ruiz et al. in (Ruiz et al., 2009) developed a density-based clustering algorithm

with constraints for data streams. The algorithm is referred to as C-DenStream, which

extends the concept of instance-level constraints from static data to stream data. Instance-

level constraints are a particular form of background knowledge, which refer to the in-

stances that must belong to the same cluster (Must-Link constraints) and those that must

be assigned to different clusters (Cannot-Link constraints) (Ruiz et al., 2009). In C-

DenStream, instance level constraints are converted to potential micro-clusters level con-
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Cluster C1

Cluster C2

Must-Link(P0,P1)
Cannot-Link(P0,P2)
------------------------
Cannot-Link(P0,P2)

(a)

MC0

MC1

MC2

Must-Link(MC0,MC1)
Cannot-Link(MC0,MC2)
------------------------
Cannot-Link(MC0,MC2)

(b)

Figure 2.8: Micro-cluster Constraint

straint (Figure 2.8) and final clusters are generated on the potential micro-clusters using

C-DBSCAN (Ruiz, Spiliopoulou, & Menasalvas, 2007).

Merits and limitations : C-DenStream includes domain information in the form of

constraints by adding the constraints to the micro-clusters. The algorithm is very useful

in the applications which have a priori knowledge on the group membership of some

records. It prevents the formation of the clusters which is included in the applications’

semantics. However, the algorithm needs an expert to define its constraints. Moreover,

the algorithm has DenStream limitations as well.

2.5.4 rDenStream (DenStream with retrospect)

In (Li-xiong et al., 2009), the authors developed a density-based clustering algorithm

for applications with a large amount of outliers. The algorithm is a three-step clustering

algorithm based on DenStream, which is referred to as rDenStream (DenStream with

retrospect). rDenStream improves the accuracy of the clustering algorithm by forming

a classifier from the clustering result. In the retrospect step of the algorithm, the mis-

interpreted discarded data points get a new chance to be re-learned and to improve the
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robustness of the clustering.

In rDenStream the potential and the outlier micro-clustersare determined like Den-

Stream. However, instead of discarding the outlier micro-cluster, which can not be con-

verted to a potential-micro-cluster or to satisfy the density requirements, they are placed in

a historical outlier buffer. In retrospect phase, final clusters from performing DBSCAN on

potential micro-clusters, are used to form a classifier. This classifier is applied to re-learn

the outlier micro-cluster in the historical outlier buffer. In this phase, the micro-clusters

which were chosen wrongly as outliers are modified to improvethe clustering accuracy.

Merits and limitations: rDenStream is useful for extracting knowledge pattern from

the initial arriving data streams. However, the memory usage and the time complexity is

high since it retains and processes the historical buffer. rDenStream is only applicable

in the applications with a large amount of outliers, which are worthwhile to spend time

and memory to gain better accuracy. The space complexity of rDenStream is similar to

DenStream; however, it needs extra memory for keeping the historical outlier buffer.

2.5.5 SDStream

The SDStreamalgorithm (Ren et al., 2009) has the ability to discover the clusters

with arbitrary shapes over sliding window (Ng & Dash, 2010).In the algorithm, the

distribution of the most recent data stream is considered and the data points that are not

accommodated in sliding window length are discarded. It uses potential and outlier micro-

clusters; however, they are stored in the form of exponential histogram. It is also an

offline-online phase algorithm.

In the online phase, the new data points are added to the nearest micro-cluster. The

nearest micro cluster is either potential-micro-cluster or outlier-micro-cluster, if the new

radius of micro-cluster is less than or equal to the threshold radius. Otherwise, a new

micro-cluster is created. Since the number of micro-clusters are limited, either a micro-
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cluster has to be deleted or two clusters be merged. For deleting a micro-cluster, the

outdated micro-cluster is chosen according to its time value: if the time value does not

belong to the length of sliding window. In merging case, the two nearest micro-clusters,

which are density-reachable (Ester et al., 1996), are merged (Zhou et al., 2008). In the

offline phase, the final clusters of arbitrary shape are generated on potential micro-clusters

using a modified DBSCAN.

Merits and limitations: SDStream uses the sliding window model, processing the

most recent data and summarizing the old data. In the real applications, users are inter-

ested in the distribution characteristics of the most recent data points. The authors did not

clarify the main usage of exponential histogram for their algorithm.

2.5.6 HDenStream

HDenStream (Lin & Lin, 2009) is a density-based clustering over evolving heteroge-

neous data stream. It adopts potential and outlier micro-cluster concepts from DenStream

algorithm and uses the method for measuring distance in caseof categorical data from

HCluStream (C. Yang & Zhou, 2006). HDenStream adds another entry to potential and

outlier micro-cluster concept which is a two dimensional array keeping the frequency of

categorical data. In fact, for measuring distance between two micro-clusters with cate-

gorical data, the distance between two categorical attributes and continuous attributes are

calculated separately. The algorithm has online and offlinephases and the pruning phase

is similar to DenStream as well.

Merits and limitations : The algorithm can cover categorical and continuous data

which makes it more useful since in the real-world applications, we may have numerical,

categorical, and continuous data. However, the algorithm does not discuss how to save

categorical features in an efficient way for data stream environment.
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2.5.7 SOStream

SOStream (Self Organizing density-based clustering over data Stream) (Isaksson et

al., 2012) detects structure within fast evolving data streams by automatically adapting

the threshold for density-based clustering. The algorithmhas only online phase in which

all mergings and updatings are performed. SOStream uses competitive learning as intro-

duced for SOMs (Self Organizing Maps) (Kohonen, 1982) wherea winner influences its

immediate neighborhood. When a new data point arrives a winner cluster is defined based

on Euclidean distance of existing micro-clusters. If the calculated distance is less than a

dynamically defined threshold, the micro-cluster is considered as a winner micro-cluster

and the new data point will be added to it. It also affects the micro-cluster neighbors of

the winner cluster. The neighbors are defined based onMinPtsparameters of DBSCAN

algorithm. The algorithm finds all the clusters overlappingwith the winner. For each

overlapping cluster its distance to the winning cluster is calculated. Any cluster with a

distance less than that of the merge-threshold will be merged with the winner. If the new

point is not added to any existing micro-cluster, a new micro-cluster is created for it.

SOStream dynamically creates, merges, and removes clusters in an online manner.

Merits and limitations : SOStream is a density-based clustering algorithm that can

adapt its threshold to the data stream. SOM is a time consuming method which is not suit-

able for clustering data streams. SOStream is a micro-cluster based algorithm; however,

it compares its result with two grid based methods.

2.5.8 HDDStream

HDDStream (Ntoutsi et al., 2012) is a density-based algorithm for clustering high

dimensional data streams. It has online and offline phases. The online phase keeps sum-

marization of both points and dimensions and the offline phase generates the final clusters

based on a projected clustering algorithm called PreDeCon (Bohm, Kailing, Kriegel, &
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Kroger, 2004). The algorithm uses DenStream concepts; however, it introduces prefer

vector for each micro-cluster which is related to prefer dimension in high dimensional

data. A prefer dimension is defined based on variance along this dimension in micro-

cluster. A micro-cluster prefers a dimension if data pointsof micro-clusters are more

dense along this dimension. The micro-cluster with preferred vector is called a projected

micro-cluster. Projected term shows that the micro-cluster is based on a subspace of fea-

ture space and not the whole feature space. Based on this concept, the algorithm changes

the potential and outlier micro-clusters to projected potential micro-clusters and projected

outlier micro-clusters respectively. HDDStream has pruning time similar to DenStream

in which the weights of the micro-clusters are periodicallychecked.

Merits and limitations : HDDStream can cluster high dimensional data stream;

however, in the pruning time it only checks micro-cluster weights. Since the micro-

cluster fades over time the prefer vector should be checked as well because it may change

over time.

2.5.9 PreDeConStream

PreDeConStream (Hassani et al., 2012) is similar to HDDStream; however, PreDe-

ConStream improves the efficiency of the HDDStream by workingon the offline phase.

This algorithm also introduces a subspace prefer vector which is defined based on the

variance of micro-clusters and their neighbors. The algorithm keeps two lists including

potential and outlier micro-clusters.

In the pruning time, the neighbors of newly inserted potential micro-clusters are

checked as well as deleted potential micro-clusters. The subspace prefer vector of these

neighboring micro-clusters are updated and put in a list as affected micro-clusters. The

affected micro-cluster list is used in the offline phase as expanding clusters to improve

the efficiency of the offline phase.
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Merits and limitations : The algorithm can cluster high-dimensional data stream

based on the density method. However, searching the affected neighboring clusters is a

time consuming process.

2.5.10 FlockStream

FlockStream (Forestiero et al., 2013) is a density-based clustering algorithm based

on a bio-inspired model. It is based on flocking model (Kennedy, Kennedy, & Eberhart,

2001) in which agents are micro-clusters and they work independently but form clusters

together. It considers an agent for each data point which is mapped in the virtual space.

Agents move in their predefined visibility range for a fixed time, if they visit another

agent, they join to form a cluster in case they are similar to each other. It merges online

and offline phases since the agents form the clusters at any time. In fact, it does not need

to perform offline clustering to get the clustering results.

Since, FlockStream only compares each new point with the other agents in its agent

visibility distance, it reduces the number of comparisons in the neighborhood of each

point. The visibility distance has a threshold which is defined by the users. The agents

have some rules in order to move in the virtual space such as cohesion, separation and

alignment (Forestiero et al., 2013). These rules are executed for each agent over the time.

FlockStream has three kinds of agents: basic representative agents for new data point and

p-representative, and o-representative agents which are based on potential- and outlier-

micro-clusters respectively. Actually, when the similar basic agents merge to each other,

they form a p-representative or an o-representative agent based on their weights.

Merits and limitations : FlockStream is a single pass clustering algorithm which

merges online and offline phases of clustering. It also reduces the number of comparisons

in clustering. FlockStream uses a flocking model which generates clustering results any

time without performing frequently offline phase. However,the flocking model is based
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on moving agent in data space which makes the execution time dependent on the number

of agents. A heuristic search on these agents is time consuming which leads to high time

complexity of FlockStream. Although, the algorithm forms an outlier agent to handle

noise, there is not any clear strategy to show when and how to remove the outliers from

the agents list.

Table 2.2 summarizes some of the main characteristics of thereviewed density

micro-clustering algorithms.
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Table 2.2: Main Characteristics of Density Micro-clustering Algorithms

Name Year Type of data Input parameters Results Objective
DenStream (Cao et al.,
2006)

2006 Continuous cluster radius, cluster weight, outlier thresh-
old, decay factor

arbitrary shape clusters clustering evolving data
streams

StreamOptics
(Tasoulis et al.,
2007)

2007 Continuous potential micro-cluster list, core distance,
reachability distance

cluster structure plot over time cluster visualization

C-DenStream (Ruiz et
al., 2009)

2009 Continuous cluster radius, minimum number of points in
the neighborhood, outlier radius, decay fac-
tor, a stream of instance level constraint

arbitrary shape clusters with
constraint

applying constraint in
clustering

rDenStream (Li-xiong
et al., 2009)

2009 Continuous cluster radius, cluster weight, outlier thresh-
old, decay factor

arbitrary shape clusters improving accuracy

SDStream (Ren et al.,
2009)

2009 Continuous sliding window size, cluster radius, cluster
weight

arbitrary shape clusters over
sliding window

clustering over sliding
window

HDenstream (Lin &
Lin, 2009)

2009 Continuous,
Categorical

cluster radius, cluster weight, outlier thresh-
old, decay factor

arbitrary shape clusters improve quality

SOSStream (Isaksson
et al., 2012)

2012 Continuous cluster radius clustering threshold Automate clustering threshold
selection

HDDStream (Ntoutsi
et al., 2012)

2012 Continuous cluster radius, cluster weight, outlier thresh-
old, decay factor

arbitrary shape clusters clustering high dimensional
data

PreDeConStream
(Hassani et al., 2012)

2012 Continuous cluster radius, cluster weight, outlier thresh-
old, decay factor

arbitrary shape clusters clustering high dimensional
data

FlockStream
(Forestiero et al.,
2013)

2013 Continuous cluster radius, cluster weight, outlier thresh-
old, decay factor

arbitrary shape clusters density-based clustering using
flocking model
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2.6 Density Grid-based Clustering Algorithms on Data Streams

Using density-based and grid-based methods, researchers developed several hybrid

clustering algorithms for data streams referred to as density grid-based clustering algo-

rithms (Y. Chen & Tu, 2007; Wan et al., 2009; Tu & Chen, 2009). In these algorithms,

data space is partitioned into small segments called grids.Each data point in data streams

is mapped into the grid and then grids are clustered based on their density. Density grid-

based algorithms not only can discover arbitrary shape clusters and detect the outliers, but

also have fast processing time which only depends on the number of cells (Figure 2.9).

According to the reviewed algorithms, there are some definitions, which form the

basis of the density grid-based algorithms. In these algorithms, the data space is parti-

tioned into density grids and each data pointx= {x1,x2, · · · ,xd} is mapped to a density

grid g(x). Based on these assumptions the following concepts are described:

• Density coefficient: for each data point, a density coefficient is considered to cap-

ture the dynamic changes of the clusters. The density of eachgrid is associated

with a decay factor, which is decreased over time. In fact, the grids are processed

in the form of fading window model.

• Grid density: the density of each grid is defined based on theaggregation of density

coefficients of all the data points in that grid (Y. Chen & Tu, 2007). However, in an

algorithm called DUC-Stream (Gao et al., 2005), the density of the grid is defined

based on its number of data points.

• Dense, sparse and transitional grid: density grid-based algorithms consider a

threshold for the density of each grid. This density threshold categorizes the grid as

dense, sparse, and transitional. A grid is considered as dense if its density is higher

than a special threshold. If the grid density is lower than another special threshold,
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Figure 2.9: Density-Grid based clustering Framework

the grid is a sparse grid. The grid with density between the dense and sparse density

thresholds is considered as a transitional grid.

• Characteristic vector: keeps some information about the data points, which are

mapped to the grid, such as grid density, update time, creation time, and grid type.

• Grid cluster: a group of dense neighboring grids, which hashigher density than the

surrounding grids, form a grid cluster (Y. Chen & Tu, 2007).

In the following sections, we explain the density grid-based algorithms in details and

we discuss their pros and cons.

2.6.1 DUC-Stream

Gao et al. (Gao et al., 2005) have proposed an incremental single pass clustering

algorithm for data streams using dense unit, which is referred to as DUC-Stream. DUC-

Stream assumes the arrival of data in chunks which contain some points. The density of

each unit is its number of points and if it is higher than a density threshold, it is considered

as a dense unit. The algorithm introduces the local dense unit in order to keep only the

units, which are most probably converted to dense unit. In DUC-Stream, the clusters are

identified as a connected component of a graph in which the vertices show the dense units

and edges show their relation. Therefore, when a dense unit is added, if there is no related
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cluster, a new cluster is created; otherwise, the new dense unit is absorbed to the existing

clusters.

Furthermore, DUC-Stream keeps the clustering results in bits, which is called clus-

tering bits, to retain little amount of memory. The clustering bit is a bit string, which

keeps the number of dense units. In fact, the clustering result is created in an incremental

manner. The time complexity and the memory space of the DUC-Stream is claimed to be

low due to utilizing the bitwise clustering.

Merits and limitations : DUC-Stream checks the density of each unit. If the unit

does not receive enough data points over time, its density isdecreased so it is not consid-

ered for clustering. Since DUC-Stream processes the data in chunks, it relies on the user

to determine the size of the chunks of data.

2.6.2 D-Stream I

Chen et al. (Y. Chen & Tu, 2007) proposed a density-based clustering framework

for clustering data streams in the real time which is termed as D-Stream I. D-Stream I has

online and offline phases. The online phase reads a new data point, maps it into the grid,

and updates the characteristic vector of the grid.

The offline phase adjusts the clusters in each time interval gap. The time interval

gap is defined based on the minimum conversion time of different kinds of grids. In the

first time interval, each dense grid is assigned to a distinctcluster. After that, in each

time interval, clusters are adjusted by determining dense and sparse grids. A threshold is

considered for the grid density. If the grid density is higher than the special threshold, it

is a dense grid otherwise is considered as a sparse grid. If the grid is dense, it is merged

with neighboring grids with higher density and forms a cluster. Otherwise, if it is sparse,

the grid is removed from the cluster. In fact, D-Stream I firstly updates the density of

the grids and then performs the clustering based on a standard method of density-based
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clustering.

An important motivation behind this framework is handling the outliers by consider-

ing them as sporadic grids. Sporadic grid is a kind of sparse grid, which has very few data

and does not have any chance to be converted to a dense grid. D-Stream I defines a lower

limit for density threshold based on density threshold function. If a sparse grid density is

less than the lower limit of density threshold, it is considered as a sporadic grid. It has

also a pruning phase which happens in each time interval gap.In this phase, the clusters

are adjusted and the sporadic grids are removed from the gridlist. D-Stream I uses a hash

table for keeping the grid list.

Merits and limitations : D-Stream I clusters data streams in real time based on the

grid and the density. It also proposes a density decaying to adjust the clusters in real time

and captures the evolving behavior of data streams and has techniques for handling the

outliers. However, for determining the time interval gap, the algorithm considers the min-

imum time for a dense grid to be converted to sparse and vice versa. Therefore, the gap

depends on many parameters. In fact, it could be better that the algorithm would define

the time gap based on only the conversion of dense to sparse grids, since the conversion of

sparse to dense grid has already been considered in the weight of the grid. Furthermore, it

cannot handle the high dimensional data because it assumes that the majority of the grids

are empty in the high-dimensional situation.

2.6.3 DD-Stream

DD-Stream algorithm (Jia et al., 2008) is an extension of D-Stream I, which im-

proves the cluster quality by detecting the border points inthe grids. The boundary points

are extracted before performing any adjustment on the grids. The online phase performs

merely like D-Stream I. The offline component runs in each time interval gap (defined

like D-Stream I) and extracts boundary points, detects dense and sparse grids and clus-
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ters the dense grids using density-based methods. DD-Stream assigns the points on the

borders based on their distance from the center of the neighboring grids. If the distances

are equal, the neighboring grid with higher density is chosen. The information about the

center of the grids is kept in the characteristic vector of the grid.

Merits and limitations : DD-Stream extracts the boundary points from the grids to

improve the quality of the clustering. However, the border points are extracted whenever

the data is mapped to the grids which is a time consuming process. It is better to detect the

border point in each time interval gap before merging the grids rather than arrival time of

the data points. Furthermore, the algorithm recognizes thesparse and dense grids based

on their density, but it does not have any clear strategy for removing the sporadic grids.

2.6.4 D-Stream II

Tu et al. (Tu & Chen, 2009) proposed an algorithm for clustering data streams

based on grid density and attraction. The algorithm is basedon the observation that many

density-based clustering algorithms do not consider the positional information of data in

the grid. The idea is based on using grid attraction for the grids. Grid attraction (Tu

& Chen, 2009) shows that to what extent the data in one neighboris closer to another

neighbor. In fact, the algorithm is an extension of D-StreamI, and we refer to it as D-

Stream II. The clustering procedure of D-Stream II is similar to D-Stream I; however, in

D-Stream II, two dense grids are merged in case that they are strongly correlated. Two

girds are called strongly correlated if their grid attractions are higher than a pre-defined

threshold. D-Stream II has pruning techniques, like D-Stream I, to adjust the clusters in

each time interval gap and to remove the sporadic grids mapped by the outliers.

Merits and limitations : D-Stream II improves the quality of clustering to some

extent by considering the position of the data in the grids for clustering. However, the

algorithm still has the problems that are already mentionedin D-Stream I. Nevertheless,
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it keeps the grid list in a tree rather than a table which makesthe processing of the grid

list faster and it reduces the memory space.

2.6.5 MR-Stream

Li Wan et al. (Wan et al., 2009) developed an algorithm for density-based clustering

of data streams at multiple resolutions, termed as MR-Stream. The algorithm improves

the performance of density-based data stream clustering algorithm by running the offline

component at constant times. The algorithm determines the right time for the users to

generate the clusters.

MR-Stream partitions the data space in cells and a tree-like data structure which

keeps the space partitioning. Each time a dimension is divided in two, a cell can be

further divided in 2d whered is the data set dimensionality. The tree data structure keeps

the data clustering in different resolutions. Each node hasthe summary information about

its parent and children.

MR-Stream has online and offline phases. In the online phase, when a new data

point is arrived, it is mapped to its related grid cell. In thetree structure, if there is not any

sub-node, a new sub-node is created for the new data point, and updates parent’s weights

up to the root of the tree. In each time interval gap, the tree is pruned in two ways: from

the root to maximum height and vise versa. In pruning from leaf to root, the sparse grids

are detected and density of dense grids are added to their parents. In the pruning from

root to the maximum height, the dense grids are detected and sparse grids are merged to

form noise clusters. The sporadic grid cell is also removed by comparing its density with

lower limit of density threshold function.

The offline phase, generates clusters at a user defined height. It determines all the

reachable dense cells at a special distance and marks them asone cluster. The noise

clusters are removed by checking their size and density withsize and density thresholds
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respectively.

The authors of MR-Stream proposed a memory sampling method torecognize the

right time to trigger the offline component. In this method, the algorithm makes a relation

between nodes in the tree and evolution of clusters.

Merits and limitations : MR-Stream introduces a memory sampling method in or-

der to define the right time for running the offline component,which improves the perfor-

mance of the clustering. However, MR-Stream keeps the sparsegrids and merges them

for consideration as a noise cluster. It is better not to let the noise cluster to be formed by

checking the density of the sparse grids. Furthermore, the algorithm cannot work properly

in high dimensional data.

2.6.6 PKS-Stream

Ren et al. in (Ren et al., 2011) proposed an algorithm for clustering data streams

based on the grid density for high dimensional data streams referred to as PKS-Stream.

The algorithm is based on the observation that in grid based clustering, there are a lot of

empty cells specially for the high dimensional data. The idea is based on using pks-tree

for recording non-empty grids and their relations as well. For keeping the non-empty

cells, PKS-Stream introduces the k-cover grid cell concept. A grid is a k-cover, if it has

the minimum density threshold and it is not covered by any other grid. In fact, k-cover

shows the non-empty grids in the neighboring of the leaf nodegrids.

PKS-Stream has online and offline phases. The online phase maps the data records

to the related grid cells in the pks-tree, if there is a grid cell for the data record. Other-

wise, a new grid cell is created. The offline phase forms the clusters based on the dense

neighboring grids. In each time interval gap, the pks-tree is adjusted and the sparse grids

are removed from the tree.

Merits and limitations : PKS-Stream is a density grid-based clustering, which han-
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dles the high dimensional data stream. However, it does not have any pruning on the tree

after adding a new data point to any of the cells of the tree. PKS-Stream depends onK,

which affects the clustering result. It also affects thek-cover, which defines the resolution

of cluster.

2.6.7 DCUStream

DCUStream (Y. Yang et al., 2012) is a density-based clustering algorithm over un-

certain data stream. For each data point in the stream a tuplewhich includes data point,

existence probability of the data point and its arrival timeare considered. Each data point

is mapped into the grid. The algorithm considers an uncertain tense weight for each data

point which is calculated based on temporal feature of data stream and its existence prob-

ability. By aggregation of uncertain tense weight, the algorithm defines the uncertain data

density. DCUStream introduces the core dense grid which is a dense grid with sparse

neighbors. By considering threshold for uncertain data density, dense and sparse grid are

defined. For clustering, DCUStream examines all the grids to find core dense grid. It

uses depth first search algorithm to find neighbor grids. The process continues for all

unlabeled dense grids. All sparse grids are considered as noise.

Merits and limitations : DCUStream algorithm improves density-based clustering

algorithm for uncertain data stream environment. However,searching the core dense grids

and finding their neighbors are time consuming processes.

2.6.8 DENGRIS-Stream

DENGRIS-Stream (Amini & Ying Wah, 2012) is a density grid-based clustering

for stream data over sliding window. The algorithm maps eachinput data into a grid,

computes the density of each grid, and clusters the grids using density concepts within

time window units. DENGRIS-Stream can capture the distribution of recent records pre-

cisely using sliding window model which is more preferable in data stream applications.
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It introduced the expired grid concept for detecting and removing the grids which their

time stamps are not in the sliding window. Furthermore, DENGRIS-Stream removes the

expired grids before any processing on the grid list which leads to save time and memory.

Merits and limitations : DENGRIS-Stream is the first density grid-based clustering

algorithm for evolving data streams over sliding window model. However, there is no

evaluation to show its effectiveness in compare to other state-of-the-art algorithms.

2.6.9 ExCC

ExCC (Exclusive and Complete Clustering) (Bhatnagar et al., 2013) is an exclusive

and complete clustering algorithm for heterogeneous data stream. It is an online-offline

algorithm. Online phase keeps synopsis in the grids and offline phase forms the final

clusters on demand. The algorithm maps the numerical attributes to the grid and the

categorical attributes are assigned granularities according to distinct values in respective

domain sets. ExCC is a complete algorithm since it uses pruning based on the speed of

data stream not a window model such as fading one. ExCC introduces fast or slow stream

based on the average arrival time of the data points in the data stream. Furthermore, it is an

exclusive clustering algorithm since it uses grid for the distribution of data. The algorithm

detects noise in the offline phase using wait and watch policy. For detecting real outliers,

it keeps the data points in the hold queue which is kept separately for each dimension.

ExCC uses a user specified threshold for detecting dense and sparse grids. ExCC can

filter out noise using cell density and cluster density threshold which is specified by user.

However, the algorithm estimates the threshold based on thegranularity of the grid, the

data dimension, and the average number of points in each grid. In order to generate the

clusters, it considers a pool for dense and recent grids. Thedense neighboring grids are

chosen from this pool by considering eight neighboring of each grid. For categorical data

the equality of the attributes are considered.
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Merits and limitations : ExCC can cover data stream with mix attributes (numeric

and categorical). Furthermore, the algorithm compares theresults with micro-clustering

methods. However, since it is a grid-based algorithm the results have to be compared

with grid-based algorithms to be fair. The hold queue strategy needs more memory and

processing time since it is defined for each dimension. Moreover, using pool for keeping

dense grids requires more memory to keep and more time to process.

We summarize the main characteristics of the density grid-based clustering algo-

rithms in Table 2.3.
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Table 2.3: Main Characteristics of Density Grid-based Clustering Algorithms

Name Year Type of data Input parameters Results Objective
DUC-Stream (Gao et
al., 2005)

2005 undefined chunks of data streams clusters as the connected com-
ponents of the graph

one-scan clustering algorithm

D-Stream I (Y. Chen
& Tu, 2007)

2007 Continuous data stream, decay factor, dense grid thresh-
old, sparse grid threshold

arbitrary shape clusters real-time clustering

DD-Stream (Jia et al.,
2008)

2008 Continuous data stream, decay factor, dense grid thresh-
old, sparse grid threshold

arbitrary shape clusters improving quality

D-Stream II (Tu &
Chen, 2009)

2009 Continuous data stream, decay factor, dense grid thresh-
old, sparse grid threshold

arbitrary shape clusters improving quality

MR-Stream (Wan et
al., 2009)

2009 Continuous data stream, decay factor, dense cell thresh-
old, sparse cell threshold

clusters in multiple
resolutions

improving performance

PKS-Stream (Ren et
al., 2011)

2011 Continuous pks-tree, density threshold arbitrary shape clusters clustering high dimensional
data

DCUStream (Y. Yang
et al., 2012)

2012 Continuous data stream dimension, density threshold arbitrary shape clusters clustering uncertain data

DENGRIS-Stream
(Amini & Ying Wah,
2012)

2012 Continuous data stream, sliding window size arbitrary shape clusters clustering over sliding
window

ExCC (Bhatnagar et
al., 2013)

2013 Continuous,
Categorical

grid granularity arbitrary shape clusters clustering heterogeneous data
streams
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2.7 Density-based Clustering Algorithms for Multi-DensityDataset

In this section, existing density-based clustering algorithms for multi density dataset

are introduced and discussed in details.

2.7.1 GMDBSCAN

GMDBSCAN (Xiaoyun, Yufang, Yan, & Ping, 2008) is a multi-density clustering

algorithm which uses a grid technique to define multi-density clusters. The algorithm de-

termines local MinPts parameters using grid-density and the grids are clustered applying

DBSCAN by related local MinPts. The clusters are integrated based on density similarity.

Furthermore, GMDBSCAN uses distance-based method to adjust boundaries. The algo-

rithm also uses a special kind of tree structure, which keepsthe positional information of

grids, and results in the faster finding of the neighborhoods. It is a two-pass clustering;

hence, not applicable for data streams.

2.7.2 MSDBSCAN

MSDBSCAN (Esfandani & Abolhassani, 2010) is a density-based clustering algo-

rithm which localizes the concept of core points in DBSCAN based on the position of

their neighbors. It introduces a new definition for core points called local core distance

(lcd) which represents the distance in which there is at least MinPts objects. MSDBSCAN

calculates the lcd for all data points and then the data pointis a core point if the values of

its lcd vector is similar. The algorithm constructs the large clusters by merging the core

points. The time complexity of MSDBSCAN is high which makes it inapplicable for data

streams.

2.7.3 Multi-DBSCAN

Multi-DBSCAN (Huang, Yu, Li, & Zeng, 2009) covers the problemsof multi-

density datasets by determining values forε. It uses “must link constraint” and “k-th”
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nearest distance to calculate theε values for different densities. Multi-DBSCAN chooses

the bestε for each density distribution using an outlier detection algorithm. After that,

DBSCAN is performed on the dataset using the calculatedε. Multi-DBSCAN improves

DBSCAN in multi-density datasets by determining differentε values for various density

distributions.

2.7.4 Multi Level

In (X. Li, Ye, Li, & Ng, 2010), a hierarchical clustering algorithm is developed to

cluster nested and multi-density clusters. It uses a multi-level approach to detect hierar-

chical clustered structures in datasets. Agglomerative k-means is used to create a cluster

tree for both nested clusters and clusters with different densities. The algorithm’s proce-

dure is as follows: firstly, the agglomerative k-means algorithm is used to discover the

number of clusters which are generated in this level. Then, acluster validation technique

is used to identify the atomic and composite clusters. The atomic clusters are the clus-

ters that do not need to be divided any more. For the other clusters, the agglomerative

k-means is applied to further partitioning. These kind of clusters are named as compos-

ite clusters. The process is repeated to generate a tree of clusters. Using agglomerative

k-means helps to determine atomic and composite clusters ineach level. The validation

metrics are based on compactness of the clusters which are measured based on the scatter-

ing of a cluster. Scattering value is determined based on thegoodness of fit for Gaussian

multi-model clusters. If the cluster scattering is large orsmall, the node in the cluster

tree is considered as a composite or an atomic cluster respectively. It is also a two-pass

clustering algorithm.

2.7.5 IS-DBSCAN

IS-DBSCAN (Carmelo et al., 2013) is a method which is proposed toimprove DB-

SCAN algorithm in terms of reduced number of parameters and the ability to cluster
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multi-density data. The method proposed a new concept namedas space ranking which

ranks the data points in the space based on density metrics. IS-DBSCAN uses Influence

Space (IS) concept which has been introduced in INFLO (INFLuenced Outlierness) (Jin,

Tung, Han, & Wang, 2006). IS gives a better estimation of the neighborhoods’ density

distribution and improves separation of clusters with different densities. IS uses both

the nearest neighbors (NNs) and reverse nearest neighbors (RNNs). Though, the rank-

ing method is based on a linear combination of INFLO and kNN (k-Nearest Neighbor)

distances. After ranking the data density, IS-DBSCAN adds onemore dimension to the

original data, whose value for each point represents the sumof distances of IS. The num-

ber of input parameters are reduced by providing a proper wayto set them. The method

establishes a cluster around a point until a border point or an outlier is reached. A bor-

der point is recognized by checking the size of IS. When the algorithm reaches a point

p whose size ofIS(p) is below a predefined threshold, the subset is not processed and

the point is detected as noise. In fact, in this method, the traditional way of findingε-

neighborhood is replaced by an approach using the advantages of influence space (IS) for

density-based clustering.

2.7.6 SCDM2

SCDM2 (X. Chen et al., 2012) is an extension of SCDM (Y.-Q. Yu, Huang, Guo,

& Li, 2008) which is a semi-supervised clustering algorithm. SCDM2 is developed for

multi-density data, and uses constraints to guide the clustering process. It improves the

SCDM by adding 2 more steps to it. In SCDM, DBSCAN’sε parameter is calculated

based on “must link constraint”. Therefore, if one cluster has no must link constraint,

this cluster may not appear in the final clustering results. SCDM2 algorithm has five

phases: 1) getting referencedε with must link sets, 2) adding referencedε, 3) selecting

representativeε by applying cannot-link sets, 4) multi-stage DBSCAN clustering by using
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illustrativeε, and 5) assigning boundary clusters. In SCDM the list of referencedε is only

made from must link constraint; however, in SCDM2 the list of cannot-link is also added

to reference and then the representativeε.

2.7.7 DBSCAN-DLP

DBSCAN-DLP (Multi-density DBSCAN based on Density Levels Partitioning)

(Xiong, Chen, Zhang, & Zhang, 2012) determines the parameters for each cluster in

order to automatically discover the clusters with various densities using density level par-

titioning. In this method, firstly, a dataset is divided intodifferent density levels based

on statistical information of its density variation. Then,theε is defined for each density

level. In the last step of the algorithm, DBSCAN is adopted to perform clustering on

each density level with its relatedε to get clustering result. Statistical information of den-

sity variation is calculated based on the k-nearest neighbor distance, which is a distance

between the data pointp and its k-th nearest neighbors. K-neighborhood density is deter-

mined based on the k-nearest neighbor distance; hence, the smaller k distance the denser

the cluster. Density Level Set (DLS) consists of points whose densities are almost sim-

ilar. DBSCAN-DLP algorithm generalizes the traditional DBSCANto find the clusters

with different densities through density level partitioning. DBSCAN-DLP is a two-pass

clustering algorithm which has high computation time to be applicable for data streams.

2.7.8 GDCLU

GDCLU (Esfandani, Sayyadi, & Namadchian, 2012) is a density-based clustering

algorithm based on the grid method. It proposed a definition for grid density based on

the density of their neighbors. The algorithm is also scale independent. The algorithm is

based on local density and neighboring density. This methodalso uses a similar radius in

forming micro clusters.

53



2.7.9 DSCLU

DSCLU (Namadchian & Esfandani, 2012) is an algorithm for density-based clus-

tering of data streams. It has online-offline phases. The algorithm improves the offline

phase to be applicable for clustering data stream in multi-density environments. The al-

gorithm uses the micro-cluster method for density-based clustering. DSCLU determines

the dominant micro-clusters based on neighbors’ weights. These micro-clusters are dense

and their densities are similar to density of their dense neighbors. In the offline phase, the

clustering is performed on these dominant micro-clusters.

2.8 Clustering Evaluation Metrics

One of the important issues in clustering algorithms is evaluating (validating) the

goodness of the clustering results that the evaluation measures. A multitude of evaluation

metrics were introduced in the literature for measuring cluster quality. Evaluation quality

metrics can be categorized into two main classes, internal and external measures. The

main difference is whether or not the external information is used for the cluster evalua-

tion (Kremer et al., 2011). Some of the internal and the external evaluation measures are:

C-index (L. J. Hubert & Levin, 1976), sum of squared distance (SSQ) (Han & Kamber,

2006), silhouette coefficient (Kaufman & Rousseeuw, 2005), Rand Index (Wu, Xiong, &

Chen, 2009; Rand, 1971), purity (Zhao & Karypis, 2004), van Dongen (Dongen & Don-

gen, 2000), B Cubed precision (Han et al., 2011), V-measure (Rosenberg & Hirschberg,

2007), variation of information (Meilǎ, 2005), F-measure (Rijsbergen, 1979), precision

(Rijsbergen, 1979), and recall (Rijsbergen, 1979). A list is available in (Milligan, 1981)

for the internal and the external measures.

When the ground truth is available, it can be compared with a clustering to evaluate

the clustering results. In this thesis, a number of externalquality metrics is used such

as Purity, Normalized Mutual Information (NMI), Entropy, Rand Index, Adjusted Rand
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Index, Fowlkes–Mallows index (FM), Jaccard Score, F-measure to evaluate the quality of

the proposed method.

However, when the ground truth is not available, the internal index is used. In this

study, silhouette coefficient is applied as an internal quality evaluation. There are different

internal quality metrics such as SSQ; however, they need cluster center which are more

applicable for spherical shapes clusters. In fact, SSQ measures how closely related are

the objects in the cluster. It defines the compactness of the spherical clusters in convex

approaches. Therefore, the silhouette coefficient is selected which is not dependent on

the clusters shapes.

The clustering evaluation metrics except Entropy have values ranging from 0 to 1,

where 1 is related to the case when ground truth and finding clusters are identical. There-

fore, the bigger criteria values are preferred. For Entropythe lower value shows better

clustering result.

Each of the mentioned evaluation criteria has its own benefitand there is no consen-

sus of which criterion is better than other criteria in the data mining community.

The most often evolution quality metrics used in the clustering data streams in the

reviewed algorithms are purity, and NMI (Amini et al., 2014). However, in this thesis, a

number of other metrics is used to get more fair results. The evaluation methods used in

this thesis are elaborated in the following sections as shown in Figure 2.10.

2.8.1 External Metrics

There are different available metrics for clustering quality. The metrics have their

own benefits and limitations. For example, purity and entropy are more towards small

clusters since they reach a maximal value in case that all clusters are of size one. Com-

bining precision and recall using balanced F-measure, on the other hand, favors coarser

clusterings, and random clusterings do not receive zero values. Finally, according to
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Figure 2.10: Quality Evaluation Metrics

Strehl’s study (Strehl, 2002), Mutual Information (Strehl& Ghosh, 2003) has the best

properties because it is unbiased and symmetric in terms of the cluster distribution. This

kind of information is very helpful to determine which metric to be used in a specific

clustering scenario (Amigó, Gonzalo, Artiles, & Verdejo, 2009).

There are several performance indices for cluster evaluation. Indices are measures

of correspondence between two partitions of the same data and are based on how pairs

of objects are classified in a contingency table. ConsiderG= {G1,G2, . . . ,Gi} as ground

truth clusters, andC =
{

C1,C2, . . . ,Cj
}

as the clusters made by a clustering algorithm

under evaluations. Table 2.4 can be formed to indicate groupoverlap betweenG andC.

In Table 2.4, an entry,ni j , represents the number of data points in the classGi and in

the clusterCj . b j is the number of points in clusterj, ai is the number of points in class

i andn is the number of data points. From the total number of possible combinations of

pairs
(n

2

)

, four different pairs(|TP|, |TN|, |FN|,and|FP|) can be represented as follows:

Let |TP| (True Positive) be the number of data points in the same classG and same

clusterC, therefore it is defined as follows:

|TP|= ∑
i j

(

ni j

2

)

(2.2)
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Table 2.4: Contingency Table

Class \ Cluster C1 C2 . . . Ck Sums
G1 n11 n12 . . . n1k a1

G2 n21 n22 . . . n2k a2
...

...
...

.. .
...

...
G j n j1 n j2 . . . n jk a j

Sums b1 b2 . . . bk n

|TN| (True Negative) is defined as the number of pairs of data points in the same

classG but not the same clusterC. It is denoted as:

|TN|= ∑
i

(

ai

2

)

−∑
i j

(

ni j

2

)

(2.3)

Similarly, |FP| (False Positive) is defined as the number of pairs of data points in the

same cluster inC but not in the same class inG. It is written as:

|FP|= ∑
j

(

b j

2

)

−∑
i j

(

ni j

2

)

(2.4)

|FN| (False Negative) is defined as the number of pairs of data points that are not in

the same class inG and not the same cluster inC. Since|TP|+ |TN|+ |FP|+ |FN|=
(n

2

)

,

therefored is calculated as follows:

|FN|=

(

n
2

)

−|TP|− |TN|− |FP| (2.5)

The external evaluation metrics are described as follows:

2.8.1 (a) Purity

The purity of each cluster is defined based on the class which is most frequent in it

by dividing by number of data points in that cluster. Purity is defined as follows:

purity(C,G) = ∑
i

ai

n
(maxj

ni j

ai
) (2.6)
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The purity in data stream is calculated only for the points arriving in a predefined

window, since the weight of points diminishes continuously. Bad clusterings have purity

values close to 0, and a perfect clustering has a purity of 1. However, high purity is easy to

achieve when the number of clusters is large. Purity is used for evaluation in data stream

clustering in various studies (Hassani et al., 2012; Y. Chen &Tu, 2007; Forestiero et al.,

2013; Bhatnagar et al., 2013).

2.8.1 (b) Normalized Mutual Information (NMI)

The normalized mutual information (NMI) (Strehl & Ghosh, 2003) is a well known

information theoretic measure that assesses how similar two clusterings are. In fact, in

order to make trade-off between the quality of the clustering against the number of clus-

ters. NMI is also applicable when the number of classes is different from clustering. The

normalized mutual informationNMI(C,G) is defined as:

NMI(C,G) =
I(C;G)

[H(C)+H(G)]/2
(2.7)

I is mutual information:

I(C,G) = ∑
i

∑
j

ni j

n
log

n∗ni j

ai ∗b j
(2.8)

H(C) =−∑
j

b j

n
log

b j

n
(2.9)

H(G) =−∑
i

ai

n
log

ai

n
(2.10)
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2.8.1 (c) Entropy

Entropy (Song & Zhang, 2008; Rohlf, 1974) measures the purityof the clusters with

respect to the given class labels. Thus, if all clusters consist of objects with only a single

class label, the entropy is 0. However, as the class labels ofobjects in a cluster become

more varied, the entropy increases.

Entropy(C,G) =−∑
i

ai

n ∑
j

ni j

ai
log

ni j

ai
(2.11)

2.8.1 (d) Rand Index

Rand index (Rand, 1971) is one of the popular indices and the most used one for

clustering evaluation (Santos & Embrechts, 2009). It is also used for evaluating density-

based data stream clustering (Ruiz, Spiliopoulou, & Menasalvas, 2010). It measures

the agreement between two partitions, that is, how the clustering results are close to the

ground truth.

RandIndex=
|TP|+ |TN|

|TP|+ |TN|+ |FP|+ |FN|
(2.12)

2.8.1 (e) Adjusted Rand Index (ARI)

ARI (L. Hubert & Arabie, 1985) is an improvement of RI. It is recommended as the

index of choice for measuring agreement between two partitions in clustering analysis

with different numbers of clusters.

Ad justedRandIndex=
index−expectedindex

maximumindex−expectedindex
(2.13)

ARI=

(n
2

)

(|TP|+ |TN|)− [(|TP|+ |FN|)(|TP|+ |FP|)+(|F p|+ |TN|)(|FN|+ |TN|)]
(n

2

)2
− [(|TP|+ |FN|)(|TP|+ |FP|)+(|FP|+ |TN|)(|FN|+ |TN|)]

(2.14)
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2.8.1 (f) Fowlkes and Mallow index (FM):

Fowlkes–Mallows index (Fowlkes & Mallows, 1983) is used to determine the simi-

larity between two clusterings (clusters obtained after a clustering algorithm). It is easily

generalized to a measure for clusterings with different numbers of clusters. A higher

value for the Fowlkes–Mallows index indicates a greater similarity between the clusters

and the ground truth.

FM =

√

|TP|
|TP|+ |FP|

.
|TP|

|TP|+ |FN|
(2.15)

2.8.1 (g) Jaccard Index

Jaccard index (Jaccard, 1901) is one of the external metricsthat has been used in

various studies as external index (Chaovalit, 2009; Papapetrou & Chen, 2011; Kremer et

al., 2011). The Jaccard score is defined as:

Jaccard(C,G) =

√

|TP|
|TP|+ |FN|+ |FP|

(2.16)

2.8.1 (h) F-Measure

F-Measure (also F-score or F1 score) (Rijsbergen, 1979) considers both the precision

and the recall to compute the score. Precision is the number of correct results divided by

the number of all returned results and recall is the number ofcorrect results divided by

the number of results that should have been returned. The F-Measure can be considered

as a weighted average of the precision and recall, where F-Measure reaches its best value

at 1 and worst score at 0 (Meesuksabai, Kangkachit, & Waiyamai, 2011).

precision(C,G) =

√

|TP|
|TP|+ |FP|

(2.17)
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Recall(C,G) =

√

|TP|
|TP|+ |TN|

(2.18)

F−measure(C,G) =
2∗ precision(C,G)∗Recall(C,G)

precision(C,G)+Recall(C,G)
(2.19)

2.8.2 Internal Metrics

2.8.2 (a) Silhouette Coefficient

Silhouette coefficient (Rousseeuw, 1987; Brun et al., 2007) isused in measuring

cluster quality when the ground truth of a dataset is not available. The silhouette coeffi-

cient is calculated as follows (Han et al., 2011):

For a data set,D, of n objects, supposeD is partitioned intok clusters,C1, . . . ,Ck.

For each objecto∈ D, we calculatea(o) as the average distance betweeno and all other

objects in the cluster to whicho belongs. Similarly,b(o) is the minimum average distance

from o to all clusters to whicho does not belong to. Formally, supposeo∈Ci(1≤ i ≤ k);

then

a(o) =
∑o′∈Ci ,o6=o′ distance(o,o′)

|Ci−1|
(2.20)

b(o) = minCj :1≤ j≤k, j 6=i

{

∑o′∈Cj
distance(o,o′)

|Cj |

}

(2.21)

According to 2.20 and 2.21, the silhouette coefficient ofo is defined as:

s(o) =
b(o)−a(o)

max{a(o),b(o)}
(2.22)

The value of the silhouette coefficient is between -1 and 1. The value ofa(o) reflects

the compactness of the cluster to whicho belongs. The smaller the value, the more com-
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pact the cluster. The value ofb(o) captures the degree to which o is separated from other

clusters. The largerb(o) is, the more separatedo is from other clusters. Therefore, when

the silhouette coefficient value ofo approaches 1, the cluster containingo is compact and

o is far away from other clusters, which is the preferable case. However, when the silhou-

ette coefficient value is negative (i.e.,b(o) < a(o)), this means that, in expectation,o is

closer to the objects in another cluster than to the objects in the same cluster aso (Han et

al., 2011).

Silhouette function is the ratio of the difference between the average inter-cluster and

the average intra-cluster distances, to the maximum of the inter-cluster and intra-cluster

distances (Kaufman & Rousseeuw, 2009). The positive Silhouette values approaching

1 indicate good cluster quality, and negative Silhouette values approaching -1 indicate

incorrect cluster assignment. The Silhouette function measures the compactness and sep-

aration of the produced clusters.

The internal validation with indices such as Sum of SQuared Error (SSQ) and Sil-

houette was employed in evaluation, especially when there was a lack of ground truth.

Among internal validity criteria, SSQ is based on the distance of every data point in a

cluster to its centroid. Despite its popular usage in the evaluation of clustering results in

the literature, SSQ favored spherical clusters, as opposedto arbitrarily-shaped clusters.

In our experiments, we found that the Silhouette function was a more appropriate mea-

sure that did not have this limitation. Therefore, it was included in the evaluation. A

Silhouette width measures the compactness of the cluster, which was more appropriate

to discover non-spherical clusters. In addition, the Silhouette measure is supported by a

comparative study on various cluster validity indices as the most appropriate measure for

internal indices (Brun et al., 2007).

62



Tools and Software: The MOA (Massive On-line Analysis) framework (Bifet, Holmes,

Pfahringer, et al., 2010) is an open source benchmarking software for data streams that

is built on the work of WEKA (Weka Group Project, 2008; Holmes,Donkin, & Witten,

1994). MOA has a set of stream clustering algorithms and a collection of evaluation

measures. MOA has considered stream classification algorithms; however, recently they

added stream clustering evaluation tool (Kranen et al., 2010). Furthermore, another eval-

uation measure called Cluster Mapping Measure (CMM) (Kremer et al., 2011) is inte-

grated to MOA for evolving data streams. CMM has a mapping component which can

handle emerging and disappearing clusters correctly. Kremer et al. (Kremer et al., 2011)

show that the proposed measure can reflect the errors in data stream context effectively.

SAMOA (Scalable Advanced Massive Online Analysis) (De Francisci Morales, 2013) is

another upcoming tool for mining big data streams. The goal of SAMOA is to provide a

framework for mining data streams using a cluster/cloud environment.

2.9 Discussion

Figure 2.11 depicts the distribution of the reviewed papersfor density-based data

stream clustering algorithms over years. There are two peaks in 2009 and 2012 for both

categories. However, it can be observed that micro-clustering methods are more popular

than grid methods.

In Figure 2.12, we show the chronological order of the reviewed algorithms as well

as how the algorithms relate to each other. It can be observedfrom the figure that the

most remarkable algorithms are DenStream and D-Stream I in micro-clustering and the

grid group respectively. Other algorithms in each of the categories try to improve two

mentioned algorithms in different aspects such as improving efficiency or quality or han-

dling different kinds of data by adding some features which are listed in Table 2.5.
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Figure 2.11: Distribution of the Reviewed Papers for Density-based Data Stream Cluster-
ing Algorithms

2.9.1 Density-based Data Stream Clustering Algorithm and Challenging Issues

In this subsection, we briefly describe how the algorithms overcome the challenges

in clustering data streams.

• Handling noisy data: in micro-clustering algorithms outlier micro-cluster is intro-

duced. The outlier and the real data are retained in different forms of micro-clusters,

which helps to distinguish between the seeds of the new clusters from the outliers.

In the grid methods, sporadic grid is introduced which has a limited number of data

points mapped by outliers.

• Handling evolving data: density-based clustering algorithms over data streams ei-

ther micro-clustering or grid based have the ability to handle evolving data streams

using different kinds of window models such as fading and sliding window models.

DUCStream does not handle evolving data because it considersthe behavior of data

streams as the data points arriving in chunks.

• Limited time: D-Stream II has the lowest time complexity which enables the pro-

cessing of data stream in a limited time. Other algorithms’ time complexity grows

linearly as data streams are generated. However, the algorithms such as rDenStream
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Figure 2.12: Chronological Order of the Reviewed Density-based Data Stream Clustering
Algorithms

and C-DenStream need more time for processing historical buffer and constraints

respectively. SOStream has the highest time complexity compared to other algo-

rithms.

• Limited memory: the aforementioned algorithms use micro-clusters or grid to keep

summary about the data stream to process data points. However, the algorithms

65



Table 2.5: Algorithms’ Relations

Name Added feature Objective
DenStream (Cao et al.,
2006)

Main algorithm density micro data stream clustering

StreamOptics
(Tasoulis et al.,
2007)

DenStream+Visualization graphically represents the cluster structure of the data stream

C-DenStream (Ruiz et
al., 2009)

DenStream+Constraint guiding clustering process using domain information

rDenStream (Li-xiong
et al., 2009)

DenStream+Retrospect phase using discarded micro-cluster to improve accuracy

SDStream (Ren et al.,
2009)

DenStream+Sliding window clustering more recent data

HDenstream (Lin &
Lin, 2009)

DenStream+Categorical data achieve higher cluster purity

SOSStream (Isaksson
et al., 2012)

automate DenStream parameters removing difficulties in choosing unsuitable parameters

HDDStream (Ntoutsi
et al., 2012)

DenStream+High dimensional data density-based projected clustering over high dimensional data streams

PreDeConStream
(Hassani et al., 2012)

DenStream+High dimensional data improve efficiency of offlinephase in density-based projected clustering
over high dimensional data streams

FlockStream
(Forestiero et al.,
2013)

DenStream+Bio model avoid the computing demanding offline cluster computation

DUC-Stream (Gao et
al., 2005)

Clustering data stream in chunks density-grid single pass clustering

D-Stream I (Y. Chen
& Tu, 2007)

Main algorithm density grid-based data stream clustering

DD-Stream (Jia et al.,
2008)

D-Stream I+Considering boundary points improve quality

D-Stream II (Tu &
Chen, 2009)

D-Stream I+Grid attraction considering positional information of the data in that grid to improve quality

MR-Stream (Wan et
al., 2009)

D-Stream I+Removing offline phase improve quality

PKS-Stream (Ren et
al., 2011)

D-Stream II+High dimensional data clustering high dimensional data streams

DCUStream (Y. Yang
et al., 2012)

D-Stream I+Uncertain data improves density-based clustering algorithm for uncertain data stream envi-
ronment

DENGRIS-Stream
(Amini & Ying Wah,
2012)

D-Stream I+Sliding window clustering more recent data streams

ExCC (Bhatnagar et
al., 2013)

D-Stream I+Categorical data exclusive and complete clustering for mix attributes data streams

such as rDenStream, C-DenStream, FlockStream and ExCC need more memory.

• Handling high dimensional data: if the algorithms are usedfor the high dimensional

data, the time complexity would be high which is not acceptable in clustering of

data streams. PKS-Stream, HDDStream, and PreDeConStream are the algorithms

with the ability to handle high dimensional data streams.

Table 2.6 summarizes how the algorithms address the mentioned challenging issues.

2.9.2 Existing Algorithms Evaluation

We compared the algorithms based on the evaluation metrics.The algorithms

with same metrics are compared together, for example, algorithms using purity (Den-

Stream, rDenstream, SDStream, PKS-Stream, MR-Stream, FlockStream, HDenStream,
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Table 2.6: Density-based Clustering Algorithms and Challenging Issues

Density-based
Clustering
Algorithms

Handling
Noisy
Data

Handling
Evolv-

ing
Data

Limited
Time

Limited
Mem-
ory

Handling
High

Dimensional
Data

DenStream ✓ ✓ ✓ ✓ -
StreamOptics ✓ ✓ - - -
C-DenStream ✓ ✓ - - -
rDenStream ✓ ✓ - - -
SDStream ✓ ✓ - ✓ -
HDenStream ✓ ✓ ✓ ✓ -
SOStream ✓ ✓ - ✓ -
HDDStream ✓ ✓ - ✓ ✓

PreDeConStream ✓ ✓ - ✓ ✓

FlockStream ✓ ✓ ✓ - -
DUCStream ✓ - ✓ ✓ -
D-Stream I ✓ ✓ - - -
DD-Stream ✓ ✓ - - -
D-Stream II ✓ ✓ ✓ ✓ -
MR-Stream ✓ ✓ - - -
PKS-Stream ✓ ✓ - - ✓

DCUStream ✓ ✓ - ✓ -
DenGRIS-Stream ✓ ✓ - ✓ -
ExCC ✓ ✓ - - -

SOStream, PreDeConStream) (Figure 2.13a) and algorithms using SSQ (D-Stream I, D-

Stream II) (Figure 2.13b). However, C-DenStream is the only algorithm which uses Rand

Index and it is compared with DenStream (Figure 2.13c). FlockStream also uses NMI

(Normalized Mutual Information) (Manning, Raghavan, & Schtze, 2008) and is com-

pared to DenStream to measure quality (Figure 2.13d). NMI ismeasured based on differ-

ent time units which is chosen by FlockStream. All the comparisons are based on the real

dataset KDD CUP99 (Rosset & Inger, 2000). Purity is measured based on the various

time units in which at least an attack exists.

The high quality of DenStream and MR-Stream benefit from theireffective prun-

ing strategies, which promptly get rid of the outliers whilekeep the potential clusters to

form final clusters. In terms of high dimensional data, PreDeConStream has better qual-
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(a) Quality Comparison-Purity (b) Quality Comparison-SSQ

(c) Quality Comparison-RI (d) Quality Comparison-NMI

(e) Execution Time Comparison-Length of Stream<
50k

(f) Execution Time Comparison-Length of Stream>
50k

Figure 2.13: Algorithm Evaluation

ity than PKS-Stream since it has a method to improve the offline phase of the algorithm.

SDStream has acceptable quality in the initial time unit; however, the quality reduces

specifically in time 375, when more attacks should be detected. The quality of rDen-

Stream gradually improves since it makes classifier from clustering result. C-DenStream

has a quality better than DenStream which shows that using the background knowledge

for guiding the clustering improves the clustering quality. Even though FlockStream uses

approximate nearest neighbor, it has higher quality compared to DenStream in terms of

purity and normalized mutual information. D-Stream II has better quality in compare to
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D-Stream I, since it considers the positional information about the data points inside the

grid. HDenStream has quality less than DenStream which shows that it cannot improve

DenStream to be used for data stream with categorical attributes.

We compared algorithms’ performance as well. Execution time is measured based

the number of data points (length of stream) with respect to the time in seconds. We

divided algorithms comparisons based on the length of stream less than 50000 (< 50k)

data points and more than 50000 (≥ 50k) (shown in Figures 2.13e and 2.13f) respectively

to make fairly comparison. The comparison is based on the real dataset KDD Cup99

Network Intrusion Detection. The algorithms which are not in Figure 2.13 used another

dataset or they are measured only on synthetic datasets or donot have any evaluation on

their execution time.

It can be observed that SOStream has the highest execution time since finding the

winner micro-cluster is time consuming. MR-Stream also has ahigh execution time even

in smaller length of streams since the pruning method is timeconsuming. D-Stream I,

DD-Stream, and D-Stream II have almost the same execution time; however, D-Stream

II has a better time performance than the others. D-Stream IIuses tree structure for

keeping grid list which makes the algorithm faster. DenStream’s execution time is similar

to PKS-stream. It shows that PKS-Stream clusters high dimensional data with acceptable

execution time.

Table 2.7 compares the quality metrics, memory usage, time complexity and ap-

plication domain of the reviewed algorithms which will be discussed in the following

subsection.

2.9.3 Discussion on Multi-Density Algorithms

A couple of clustering algorithms are developed for multi-density datasets. They use

different methods to discover clusters with various densities such as localizing MinPts,
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Table 2.7: Evaluation on Density-based Data Stream Clustering Algorithms

Name Quality Metric Memory Usage Time Complexity Application Domain
DenStream (Cao et al.,
2006)

Purity m O(m) Network Intrusion Detection
System

StreamOptics
(Tasoulis et al.,
2007)

- m O(m∗ log(m)) Environment monitoring

C-DenStream (Ruiz et
al., 2009)

Rand Index m+mc O(m+mc) Environment monitoring

rDenStream (Li-xiong
et al., 2009)

Purity m+Shb O(m)+Th Network Intrusion Detection
System

SDStream (Ren et al.,
2009)

Purity nsw N/A Network Intrusion Detection
System

HDenstream (Lin &
Lin, 2009)

Purity m O(m) Network Intrusion Detection
System

SOStream (Isaksson et
al., 2012)

Purity m O(n2logn) Network Intrusion Detection
System

HDDStream (Ntoutsi
et al., 2012)

Purity m o(m)+o(mp) Environment monitoring,
Network Intrusion Detection
System

PreDeConStream
(Hassani et al., 2012)

Purity m o(m)+o(mip)+o(mdp) Network Intrusion Detection
System

FlockStream
(Forestiero et al.,
2013)

Purity, NMI m+nagent o(m)+o(n2
agent) Network Intrusion Detection

System

DUC-Stream (Gao et
al., 2005)

SSQ nd O(cb) Network Intrusion Detection
System

D-Stream I (Y. Chen
& Tu, 2007)

SSQ g O(1)+o(g) Network Intrusion Detection
System

DD-Stream (Jia et al.,
2008)

N/A g O(g2) Network Intrusion Detection
System

D-Stream II (Tu &
Chen, 2009)

SSQ log1
λ
g O(log log1

λ
g) Network Intrusion Detection

System

MR-Stream (Wan et
al., 2009)

Purity g∗H O(g∗H)+O(2g ∗H)+O(g∗
log(N))

Network Intrusion Detection
System

PKS-Stream (Ren et
al., 2011)

Purity logg
k O(logk), O(k) Network Intrusion Detection

System

DCUStream (Y. Yang
et al., 2012)

Average quality
of clusters

g o(g) Environment monitoring

DENGRIS-Stream
(Amini & Ying Wah,
2012)

N/A g o(g) N/A

ExCC (Bhatnagar et
al., 2013)

Purity g+SPool+SHQ O(gxk) Network Intrusion Detection
System

n: number of data points,m: number of micro-clusters in main memory,mc: number of micro-cluster
constraints,Shb: size of historical buffer,Th: time for processing historical buffer,nSW: sliding window
length, nagent: number of agents,o(mp): number of potential micro-clusters,mip: number of inserted
potential micro-clusters,mdp: number of deleted potential micro-cluster ,nd: number of dense units,cb:
clustering bits,g: number of grids in grid list,λ : decay factor,H: level of clustering,k: pks-tree degree,
SPool: size of pool for dense grids,SHQ: size of hold queue for noise,xk: number of discovered clusters

localizing ε, using grid method to map the data and to determine the density of data

points, ranking the clustering density, and forming a cluster tree for multi-density data.

The algorithms are more suitable when the whole data is available or in case that the

processing should not be done in a limited time. However, in data stream environments,

these algorithms are not applicable due to the following drawbacks:
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1. They need two-pass of data such as GMDBSCAN (Xiaoyun et al., 2008), and IS-

DBSCAN (Carmelo et al., 2013). In these algorithms, they first extract useful infor-

mation about the distribution of data and then cluster the data based on the extracted

information. This situation is impossible in the data stream, since data streams ar-

rive continuously, and the clustering algorithms have to beperformed in a single

scan.

2. Some of the existing multi-density clustering algorithms need the whole data (Xi-

aoyun et al., 2008; X. Li et al., 2010; Esfandani et al., 2012).

3. Algorithms like (X. Chen et al., 2012; Esfandani & Abolhassani, 2010; Huang

et al., 2009) have high execution time which makes them not applicable for data

streams because they need fast processing time.

DSCLU (Namadchian & Esfandani, 2012), a density-based clustering for data

stream in multi-density environments, considers similar radiuses for all micro clusters

even with different data point distributions.

Table 2.8 is a comparison of the existing algorithms for multi-density data.

2.9.4 Density-based Data Stream Clustering Algorithms’ Applications

The literature on density-based clustering for data streams is usually centered around

concrete methods rather than application contexts. Nevertheless, in this section, we would

like to bring examples of several possible scenarios where density-based clustering can

be used.

The density-based method has been used for earth environments since a long time

ago (Sander, Ester, Kriegel, & Xu, 1998). Recently it has beenutilized for medical pur-

poses such as a pre-processing phase for prediction of Alzheimer disease (Plant et al.,

2010) and for skin cancer (Mete, Kockara, & Aydin, 2011).
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Table 2.8: A Comparison of Density-based Clustering Algorithms on Multi-Density data

Algorithm Name Method Data
Stream

Supported

Disadvantages for data
stream

GMDBSCAN
(Xiaoyun et al., 2008)

Grid density, local
MinPts

✖ Two scan clustering

Multi-DBSCAN
(Huang et al., 2009)

k nearest distance,
must link constraints

✖ High execution time

MSDBSCAN
(Esfandani & Abolhassani,
2010)

localizing core point
concept

✖ High execution time

(X. Li et al., 2010) Hierarchical cluster
tree, k-means

✖ Need whole data

SCDM2
(X. Chen et al., 2012)

Using constraints in
clustering

✖ Needs number of clus-
ters (semi supervised)

GDCLU
(Esfandani et al., 2012)

Grid-based clustering,
local density

✖ Need whole data

DSCLU
(Namadchian & Esfandani,
2012)

Dominant micro clus-
ter

✔ Using similar radius

DBSCAN-DLP
(Xiong et al., 2012)

Density level parti-
tioning

✖ Two scan clustering

ISDBSCAN
(Carmelo et al., 2013)

Space ranking ✖ Two scan clustering

Real world applications may have any shape clusters and generate noisy data in

some situations. Furthermore, they do not require the number of clusters in advance.

Since density-based clusterings have some abilities in their nature, they are applicable in

different applications such as:

• Network intrusion detection system: in this system, sensors capture all network

traffic and the system analyzes the content of individual packets for malicious traffic

(Cao et al., 2006).

• In environment observations: for example, in applications which are used to moni-

tor flood, hurricane, tsunami, earthquake and forest fire detection (Ruiz et al., 2009).

• Medical systems: clustering medical data streams such as anatomical and physio-

logical sensors, incidence records, health information systems, and patient moni-

toring system (Mete et al., 2011; Plant et al., 2010).

• Stock trade analysis: for example clustering one million transaction records

throughout the trading hours of a day (D. Yang, Rundensteiner, & Ward, 2011).
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• Social network analysis: clustering micro-blogging textstreams (e.g. Twitter), in

order to obtain temporal and geo-spatial features of real-world events (Lee, 2012).

• Moving objects applications: such as animal migration analysis, vehicle traffic

management (Y. Yu, Wang, Wang, Wang, & He, 2013).

Applications like patient monitoring and sensor networks in seismic studies, for ex-

ample, work in bounded data space. Therefore, it is more preferable to use grid-density

based methods. In these applications, a data point is eithera member of a cluster or an

outlier. Grid-based methods quantize the object space intoa finite number of cells that

form a grid structure. All the clustering operations are performed on the grid structure,

i.e. on the quantized space. The main advantage of this approach is its fast processing

time, which is typically independent of the number of data objects and dependent only

on the number of cells in each dimension in the quantized space. In this method if the

quality is the most important factor and time and memory are second and third factors re-

spectively, MR-Stream is the best choice. In the case of the importance of execution time

such as environmental observations, for example, for Tsunami detection the best choice

is D-stream II since it has the lowest execution time. However, the quality of grid-based

method is highly dependent on the granularity of the grid andfurther, defining the grid

granularity to get the proper result is challenging.

Another important class of density-based algorithms over data streams is the density

micro-clustering group. The quality of these algorithms isbetter than the grid-based

methods. In the grid-based method, if we want to get more accurate results we have to

fine the grids that leads to high time complexity. Density based micro-clustering has better

quality with reasonable time complexity. Micro-clustering method has limited memory

usage which depends on the number of micro-clusters. In the micro-clustering method,

when the data points arrive they are assigned to the related micro-clusters and at the same
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time the outlier micro-clusters are removed based on the density threshold. Therefore,

clustering results can be generated any time. However, it has some limitations; finding

the proper micro-cluster is time consuming. In some cases because of the limitations in

the memory usage, some real data is removed due to the appearance of an outlier.

However, choosing a proper density micro-clustering algorithm depends on the type

of the application. For example, in clustering GIS applications the best choice is C-

DenStream because it considers the real world constraints such as the city, rivers and

highway networks. If the application needs limited processing time with good quality,

FlockStream is a better choice rather than DenStream since it decreases the number of

micro-clustering comparisons. If quality is the first priority, r-DenStream is the choice;

however, it needs more memory usage and execution time compared to the other algo-

rithms. If there is any application which its thresholds’ settings (like similarity threshold

or grid size) are difficult to be manually done, SOStream is the best choice because it

automatically adapts the thresholds. For detecting clusters in the recent data such as

identifying malicious attacks (clusters) in current network traffic or recent stock trades in

stock exchange, SDStream and DENGRIS-Stream are more applicable since they cluster

within the most recent portion of the stream.

Another aspect of choosing an algorithm is the type of data generated by the appli-

cation such as uncertain, high-dimensional or heterogeneous. Most of the algorithms in

micro-cluster and grid groups only cover the continuous data. Therefore, if we have for

example biomedical data with the categorical attributes, we have only ExCC in the grid

group and HDenStream in the micro-cluster group. Furthermore, in some sensor-based

applications the output of sensor networks is uncertain because of the noise in the sen-

sor inputs or errors in wireless transmission. In this case,the algorithm has to cover the

uncertain data as well. In this situation the best choice is DCUStream. Moreover, if the

data is high-dimensional in its nature, we can choose between HDDStream and PreDe-
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ConStream in the micro-clustering group and PKS-Stream in the grid-based algorithms.

In summary, the task of choosing a proper density-based clustering algorithm de-

pends on the kind of data produced as well as the application requirements such as limited

time, high quality, high accuracy, handling high noisy dataand many other requirements

which are defined based on the application’s objectives.

2.10 Summary

Data stream are infinitive, massive and evolve over time which make the clustering

more challenging. Density-based method is one of the significant classes in clustering

which has prominent features such as detecting arbitrary shape clusters, handling noise,

and it does not require the number of clusters in advance.

Recently, a number of density-based clustering are developed for data stream. These

algorithms use different methods to address the challengesin clustering data streams.

The methods are referred to as density micro clustering and density grid-based clustering.

Micro-clustering algorithms have high computation time while grid-based methods have

low quality and neither of them have the ability to cluster multi-density data. Some al-

gorithms have been proposed for multi-density clustering.However, these algorithms are

only for static datasets and they are not applicable for datastream due to some problems

such as high execution time, two-pass clustering and the need for the whole data.

Based on the comprehensive review on the existing density-based clustering for

evolving data stream and multi-density algorithms, it is concluded that the existing

density-based data stream clustering algorithms have highcomputation time and low

quality when there is a range of densities in data. Our intention in this study is to de-

velop a density-based clustering algorithm with low time complexity and high quality

even when the data has various density distributions.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Overview

This chapter explains the research methodology used in the study. We explain in de-

tails the research methodology steps which includes an overview of the existing methods,

how to approach the problem statement, and how to achieve theobjectives. Furthermore,

the evaluation method and the analysis of evaluation results are presented.

3.2 Approaches to Research

The research methodology framework is shown in Figure 3.1. Every step of the

research methodology is described as follows.

3.2.1 Reviewing Related Works

We reviewed existing density-based clustering algorithmsas well as challenges in

clustering data stream. We defined to what extend the existing clustering algorithms can

overcome the challenges. Furthermore, we extracted the problems of existing density-

based methods for clustering data streams. The analysis of the existing approaches gives

a wider perspective of the problems in density-based clustering of data streams.

3.2.2 Problem Formulation

Reviewing the existing methods turned out that density-based clustering algorithms

have high computation time for clustering data streams. Furthermore, density-based clus-

tering cannot work well in multi-density data stream. In fact, they have low quality in the

environments with various densities.
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Figure 3.1: Research Methodology Framework

3.2.3 Defining the Research Objectives

The objectives of our research based on the problem statement are as follows:

• To propose and develop a density-based clustering algorithm for evolving data

streams. This objective needs the following methods:

– To develop a method with low computation time

– To develop a new method to save summary information about data stream in

multi-density environments

– To develop a method to prune the summary information

– To develop a method to perform macro clustering on synopsis data
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Figure 3.2: MuDi-Stream Algorithm

• To evaluate the capability of the proposed method in improving the quality of clus-

tering in multi-density environments

• To evaluate the capability of the proposed method to perform clustering in low

computation time

3.2.4 System Propose

In order to achieve the objectives, a method which we called it MuDi-Stream (Multi

Density clustering algorithm for evolving data Stream), is proposed. The algorithm,

which is illustrated in Figure 3.2, is an online-offline one and it has the following compo-

nents:
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• Merging or Mapping (MM-Component): in this component, coremini cluster is

introduced to keep summary information about arbitrary shape clusters while a grid

list is used to keep outliers. When a data point arrives, the algorithm checks to add

it to the nearest core mini cluster in case its distance is less than the core mini

cluster’s radius. However, if it cannot be added to any core mini cluster, the data

point is considered as noise and it is mapped to the density grid.

• Forming Core Mini clusters (FCM-Component): if the grid density is more than a

predefined threshold, a new core mini cluster is formed from the data points inside

the grid cell. Each core micro cluster is formed based on a different radius. The

radius is calculated according to the distribution of data inside the micro-cluster.

• Pruning Grids and Core Mini clusters (PGCM-Component): for each core mini

cluster, if no new point is added, its weight will decay gradually. Furthermore,

there are some grids which do not receive data points for a long time and become

sporadic. These kinds of core mini clusters and grid cells should be removed from

the mini clusters and the grid list respectively. The decision for removing grids

and mini clusters is made based on a comparison of their weights and a specific

threshold.

• Forming Final Clusters (FFC-Component): final clusters are formed from pruned

core mini clusters. In this phase, a modified multi-density based clustering algo-

rithm is used to perform the clustering on the core mini clusters.

In the following, the motivation of each component of the proposed multi-density

based clustering algorithm for evolving data streams is presented:

• Motivation for MM-Component :
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Data stream consists of indefinitely and possibly time-evolving sequences (Micha-

lak, DuBois, DuBois, Wiel, & Hogden, 2012; Chu et al., 2006; X. Zhang,

Furtlehner, Germain-Renaud, & Sebag, 2013; J. a. Gama, Rodrigues, & Lopes,

2011; X. Zhang et al., 2013). The omnipresence of data streamposes new chal-

lenges for clustering. Data stream are infinite and evolve over time. The challenge

is how to keep summary information from this huge amount of data generated over

time. Two prominent categories in clustering data stream isusing grid synopsis or

micro-clustering. These methods are discussed extensively in Chapter 2. In this

thesis, a hybrid method using grid and micro clusters is usedfor keeping summary

information. In real applications the data is noisy which makes detection of clusters

more challenging since data streams evolve over time. The motivation of using this

hybrid method is that the micro clusters keep the real data while grid is used for the

noise or outliers. When data points in the grid structure gainenough weight, it is

converted to micro clusters.

• Motivation for FCM-Component :

Data stream clustering is a challenging problem because of two important proper-

ties: its infinite length and evolving nature (Masud, Gao, Khan, Han, & Thurais-

ingham, 2008; Read, Bifet, Holmes, & Pfahringer, 2012). Therefore, data stream

needs a synopsis structure which is updated as its nature changes over time. For

example, as the time passes the outliers may convert to real data and vice versa.

Therefore, in evolving data stream, a method to check the density threshold is vital.

Since a hybrid method is used, outliers are mapped to the grids and real data form

core mini clusters. The main duty of this component is forming core mini clusters

by controlling the aggregation of data points’ weight inside the grid in case the

weight value is more than a threshold.
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• Motivation for PGCM-Component :

In evolving data stream, the role of the clusters and outliers frequently change. A

number of core mini clusters are formed as data stream proceeds. Nevertheless, the

problem is that the number of outliers are also growing as data stream proceeds. The

worst case happens when a lot of outliers exist. Therefore, the algorithm requires

an effective pruning strategy which quickly eliminates theoutliers while keeps the

potential core mini clusters. Instead of pruning too frequently, a pruning time is

calculated which is the minimum timestamp for a core mini cluster to be converted

to an outlier (Y. Li, Li, Wang, & Zhai, 2014).

• Motivation for FFC-Component :

In the online phase of MuDi-Stream, all core mini clusters capture the density areas

of data stream. However, a clustering algorithm is requiredto get meaningful clus-

ters. In this component, an algorithm named M-DBSCAN is developed which has

the ability to cluster core mini clusters with various densities. M-DBSCAN is an

extension of DBSCAN algorithm (Kriegel et al., 2011; Aggarwal& Reddy, 2013)

with the ability to cluster multi-density data.

3.2.5 Experimental Setup

Various datasets including real and synthetic ones are selected for evaluation pur-

poses. For all datasets, we used the following normalization technique in order to have

all the data points in the range of[0,1]:

Normalized(e) =
e−Emin

Emax−Emin

whereEmin is the minimum value of variablee, andEmax is its maximum value. IfEmax

andEmin are equal thenNormalized(e) is set to 0.5.
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MuDi-Stream has some parameters includingGridGranularity, λ , andα. For each

dataset, the range of parameters are determined.

MuDi-Stream with all its components are implemented in Java. One of our future

work is to implement it as an add-on in MOA.

3.2.6 Evaluation Method

As it is explained in Section 2.8 of Chapter 2, the quality metrics are categorized in

internal and external indices. The most common evaluation method to measure quality is

purity and NMI. However, we added some other metrics which are chosen from the data

stream clustering in the literature. The list of metrics used in this thesis include: Purity,

Normalized Mutual Information (NMI), Rand Index (RI), Adjusted Rand Index (ARI),

Jaccard index, Fowlkes and Mallow index (FM), and F-measure.

These metrics are used in order to show to what extend the quality is improved

compared to the existing methods.

The focus of this study is on improving the quality; however,the scalability, com-

plexity, and sensitivity of the proposed model are also calculated to prove its feasibility

theoretically. For scalability, time execution and memoryusage are measured. For com-

plexity, time and space complexity are discussed, and finally for sensitivity the range

of all parameters are determined and compared to the clustering quality metrics. We

evaluated the algorithm on various real and synthetic datasets. The pseudo-code for all

methods are provided separately. The results are compared with the existing well-known

and state-of-the-art algorithms.

Figure 3.3 depicts the evaluation method of MuDi-Stream algorithm.
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Figure 3.3: Evaluation Steps

3.3 Summary

The chapter explains the research methodology of the thesis. A method is developed

based on the problem statement and the research objectives.It is called MuDi-Stream

which is a density-based clustering algorithm with the ability to cluster multi-density

data stream while it has low computation time. In MuDi-Stream, a hybrid method using

grid- and micro-cluster techniques is proposed to solve high computation time problem.

In our proposed method, micro clusters keep the data for arbitrary shape clusters and grid

method is used for outliers. Compared to the existing methods, mapping to the grid is

much more faster than adding to related outlier micro clusters. For handling multi-density

data, in the online phase data stream’s summary is kept in a way to handle multi-density

data. Furthermore, a new algorithm is developed for the offline phase for multi-density

arbitrary shape clusters with noise using statistical information about data points’ densi-

ties. All the tasks are done through some components consisting MM-Component (either

merging or mapping of a new data point), FCM-Component (forming core mini cluster

from a grid cell), PGCM-Component (pruning grids and core miniclusters), and FFC-

Component (forming final clusters). More details about each component are explained

in the next chapter. Furthermore, we briefly explained the evaluation method. Different

kinds of datasets including real and synthetic datasets areused to evaluate the quality of

the proposed method using various metrics.
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CHAPTER 4

PROPOSED SYSTEM

4.1 Overview

In this chapter, the proposed model, MuDi-Stream (Multi Density-based clustering

method for evolving data streams), is explained in details.Sections 4.2 and 4.3 generally

discuss about the proposed method and Section 4.4 analyzes how the proposed algorithm

satisfies the challenges in clustering data stream. In Section 4.5, a general view of the

model is presented. The basic concepts of the proposed method are introduced in Section

4.6. The Algorithm has online and offline phases. Each phase has some components

which are elaborated in the subsequent sections. The onlinephase has three components

which are described in details in Sections 4.7.1, 4.7.2, and4.7.3 respectively. The offline

phase’s component is described in Section 4.8.1.

4.2 The Proposed Hybrid Clustering Method

One of the challenging issues in density-based clustering algorithms is how to reduce

the computation time. For this purpose, a hybrid method of density grid-based and micro

clustering is proposed. Using the hybrid method leads to decrease the computation time.

When a data point arrives, firstly, we try to find a suitable micro cluster for it. If the data

point cannot be placed in any existing micro cluster then thegrid method is used and the

data point is considered as an outlier. Despite the existingmethods which form another

micro cluster for an outlier data. In our method, it is mappedto the grid and if the grid’s

weight reaches to a specific threshold which is the micro cluster threshold’s weight, it is

converted to a micro cluster. Using the grid method significantly affects the searching

time since it replaces the search in an outlier micro clusterlist with a mapping method.

84



4.3 The Proposed Multi-Density Clustering Method

Another challenging issue is how to cluster multi-density data. In clustering data

streams, while data points of the stream arrive some summaryinformation are kept. These

summaries are incrementally updated over time. Our proposed method has online and

offline phases. A new concept called core mini clusters (cmc)is introduced to keep sum-

mary information about multi-density arbitrary shape clusters. A new multi density-based

clustering method called M-DBSCAN is also proposed in the offline phase to form final

clusters from the summary information. The proposed multi density-based method also

uses statistical information to form final arbitrary shape clusters.

4.4 The Proposed Method and Challenging Issues

There are some challenging issues regarding the solutions for the aforementioned

problems as follows.

• Evolving data stream: The data stream is evolving and so some clusters may dis-

appear and the others appear. A weight value is considered for each data point in

order to keep track of the time it appears.

• Handling noise: the noise are mapped to the grids and they are pruned frequently if

they do not have chance to be converted to core mini clusters.

• Limited time: The algorithm has bounded time to cluster data which is discussed

in Sections 5.6.2 and 5.7.1.

• Limited memory: We try to keep the required memory limited by pruning grids and

core mini clusters. We analyze memory usage later in Sections 5.6.1 and 5.7.2.

4.5 An Overall View of MuDi-Stream Algorithm

In this research, a new multi density-based clustering algorithm for evolving data

stream called MuDi-Stream (Multi Density-based clustering algorithm for evolving data
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Figure 4.1: Overall View of MuDi-Stream Algorithm

Stream) is proposed. MuDi-Stream has online and offline phases which use a proposed

hybrid method for the online phase. A proposed multi-density method is also used for

the offline phase. MuDi-Stream keeps summary information about evolving data stream

in the form of core mini clusters in its online phase. The grid-based method is used as

an outlier buffer to handle noises and multi-density data and yet is used to reduce the

merging time of clustering. Furthermore, a novel pruning strategy is designed to handle

the weights of the core mini clusters and the grids. The offline phase generates the final

clusters using a new multi-density method.

The tasks of online phase MuDi-Stream are divided into threecomponents: MM-

component, FCM-component, and PGCM-component. Moreover, the offline phase has

FFC-component. We elaborate further on the components as follows. Figure 4.1 depicts

an overall view of MuDi-Stream algorithm.

The online phase has the following components:

• Merging or Mapping (MM-component): merging data points toexisting core mini

clusters or mapping them to the grid.

• Forming Core Mini clusters (FCM-component): if the density of data points inside
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Table 4.1: MuDi-Stream Components and Algorithms

Component Algorithm(s) Input Output
MM-component MergeMap (Al-

gorithm 3)
data points of the stream, cur-
rent timestamp, and density
threshold(x, tc,α,λ ,N)

core mini clusters,
grid({cmc} ,g)

FCM-component CreateNewCMC
(Algorithm 4)

a grid cell, current timestamp
(g, tc)

a core mini cluster
(cmc)

PGCM-component Pruning (Algo-
rithm 5)

core mini clusters, grid
list, current times-
tamp, density threshold
({cmc} ,g, tc,α,λ ,N)

pruned core mini
clusters and grid list
({cmc} ,g)

FFC-component M-DBSCAN
(Algorithm 7)

core mini clusters
({cmc} ,g,MinPts)

arbitrary shape clus-
ters(C)

grid cells is higher than a predefined threshold, a new core mini cluster is formed

out of the cell with a related radius.

• Pruning Grids and Core Mini clusters (PGCM-component): the grid cells’ as well

as core mini clusters’ weights are periodically checked in adefined pruning time.

Moreover, the offline phase has one component:

• Forming Final Clusters (FFC-component): The final clusters are formed based on

the pruned core mini clusters. Each core mini cluster is considered as a virtual point

for clustring using a modified DBSCAN which we call it M-DBSCAN.

Figure 4.2 provides a detailed view of the proposed method, MuDi-Stream. Table

4.1 lists the algorithms which are related to every component. Further, the overall view of

the algorithm is outlined in Algorithm 2. MuDi-Stream algorithm parameters for online

and offline phase are listed in Table 4.2
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Figure 4.2: A Detailed View of MuDi-Stream Algorithm
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Algorithm 2 MuDi-Stream(DS,λ ,α,N)-Online Phase

Input: a data stream
Output: arbitrary shape clusters

1: tpt =
1
λ log

α
α−1+2−λ
2

2: tc← 0;
3: while not end of streamdo
4: Read a data point,x, from data stream;
5: MergeMap(x, tc,α,λ ,N);
6: if tc modtpt == 0 then
7: Pruning(cmc,g, tc,α,λ ,N);
8: end if
9: tc← tc+1;

10: end while

Table 4.2: MuDi-Stream Algorithm Parameters

Parameters Explanation
λ Density threshold
α Outlier threshold
cmc core mini cluster
g grid cell
MinPts minimum number of point
tpt pruning time
N number of grid cells
mcd mini core distance
ng Number of point inside grid
tp Last time grid update
wg grid weight
wcmc core mini cluster weight
rcmc core mini cluster radius
mcdcmc mini core distance of core mini cluster
tc current time
owt(tc, tp) density threshold function
Ng(cmc) cmc-grid-neighborhoods
Nsh(cmcq) MinPts-nearest-neighbors
Ncore core-neighboring

4.6 Basic Concepts of MuDi-Stream Algorithm

In this section, we introduce the new concepts of MuDi-Stream algorithm.

Definition 11 (Density Grids). In this research, it is presumed that the input data has d

dimensions, and each data point is defined within the space:

S= S1×S2× ...×Sd, (4.1)
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Si is the definition space for the ith dimension. The d-dimensional space S is divided

into density grids. For each dimension, its space Si , i = 1, . . . ,d is partitioned to

gridGranularity partitions as:

Si = Si,1
⋃

Si,2
⋃

. . .Si,gridGranularity (4.2)

Then, the data space S is partitioned into N= ∏d
i=1gridGranularityi density grids. Each

density grid g is comprised of S1, j1×S2, j2× . . .×Sd, jd, ji=1,...,gridGranularity, which is de-

fined as follows:

g= ( j1, j2, . . . , jd) (4.3)

A data point x=(x1,x2, . . . ,xd) is mapped to a density grid g(x) as: g(x)= ( j1, j2, . . . , jd),

xi ∈ Si, j i .

According to the discussion for clustering evolving data streams in Section 2.2.1,

there are different window models. One of the remarkable window models which is used

in a number of existing methods (Cao et al., 2006; Y. Chen & Tu, 2007; Wan et al., 2009;

Forestiero et al., 2013; Amini et al., 2014) is fading windowmodel. This thesis also uses

the fading window model since it can capture evolving natureof data stream very well.

Therefore, for each data point, a weight is considered whichdecreases exponentially with

time using a fading function. The fading function that we usein MuDi-Stream is defined

as follows:

f (t) = 2−λ t (4.4)

whereλ > 0 (Ng & Dash, 2010). We use the fading function as a weight coefficient for

each data point.

Definition 12 (Data point’s weight coefficient). For each data point x in the data
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stream, a weight coefficient, wx, is assigned which decreases over time. If x arrives at

time t, its weight coefficient at tc is (tc > t):

wx(tc, t) = 2−λ (tc−t) (4.5)

The initial value, wc, of each data point is 1.

Definition 13 (Grid weight). For a grid g at current time tc, the grid weight is defined

based on sum of the weight coefficients of data points which are mapped to it:

wg(tc) = ∑
x∈g

2−λ (tc−tx) (4.6)

Definition 14 (Grid weight update). The grid weight is updated in tc with the last

updated value tp as follows (tc > tp):

wg(tp, tc) = 2−λ (tc−tp) ∗wg(tp)+1 (4.7)

This saves the computation time. When a new data point arrives, it is only needed to

update the grid weight of the grid cell which the data is mapped to it. So, all other grids’

weights are not required to be updated.

Lemma 1 The maximum weight, wmax, of all data points is 1
1−2−λ .

Proof. Assume that all the data points of the data stream are mapped to the same grid

cell. Therefore, according to Definition 13, we havewg(t) = ∑t
t ′=02−λ (t−t ′) which can be

transformed with the sum formula for geometric series as following:

wg(t) =
t

∑
t ′=0

2−λ (t−t ′) =
1−2−λ (t+1)

1−2−λ (4.8)
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Thus, the maximum weight of a grid g is:

wmax= limt→∞
1−2−λ (t+1)

1−2−λ =
1

1−2−λ (4.9)

Average grid density: The sum of all data points’ weights has an upper bound of1
1−2−λ .

Since we have the total number ofN density grids (according to Definition 11), the aver-

age density of each grid is 1
N(1−2−λ )

.

Definition 15 (Grid synopsis). The grid synopsis of a grid g is a tuple GS(ng, tp,wg)

where,

• ng is the number of data points inside the grid,

• tp is the last updated timestamp of the grid, and

• wg is the grid weight.

Grid synopsis keeps summary information about the data points inside the grid.

When a new data point is added to a grid cell, its grid synopsis is updated. In fact,

instead of saving timestamps and all its data points’ weights, it is adequate to save the

grid synopsis.

Definition 16 (Dense grid). Grid g is dense at time t if

wg(t)>=
α

N(1−2−λ )
(4.10)

Because the overall weight cannot be more than1
N(1−2−λ )

, α is a controlling threshold.

Definition 17 (Mini core distance (mcd)).In grid g with p1, p2, . . . , pn data points, mini

core distance is the maximum distance from the mean of all thedata points in the grid as
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o to all other neighborhoods.

∀p∈
{

neighborsg(o)
}

= Maximum(distance(o, p)), (4.11)

|neighborsg(o)|>= MinPts

{

neighborsg(o)
}

is a set of all the data points inside cell boundaries of a gridg which

includes pointo.

For the data points are on a border of a grid, we assign them to the neighboring grid

with higher density.

Definition 18 (Core mini cluster (cmc)).A cmc at time t is defined as CMC(w,c, r,mcd)

for a group of very close data points pi1 . . . pin with timestamp Ti1, . . . ,Tin as follows:

• wcmc= wg,

• ccmc=
∑n

j=12−λ (t−Ti j )(pi j )

wcmc
,

• rcmc=
∑n

j=12−λ (t−Ti j )distance(ccmc,pi j )

wcmc
, rcmc≤mcdcmc,

• mcdcmc= ∀p∈
{

neighborsg(ccmc)
}

= Maximum(distance(ccmc, p)).

distance(ccmc, pi j ) is an Euclidean distance between cmc’s center and the data

points in the grid.

Assume a core mini clustercmcp(wcmcp,ccmcp, rcmcp,mcdcmcp). If a data pointp is

merged to it the core mini cluster is updated as follows:

cmcp = (2−λ (tc−tp)wcmcp(tp)+1,ccmcp + p2, rcmcp + p,mcdcmcp)
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4.7 Online Phase of MuDi-Stream Algorithm

Prior to the arrival of the very first data point, an empty gridlist is initialized.

The components that are designed for this phase are described as follows.

4.7.1 MM-Component (Merging and Mapping)

In order to discover the clusters in an evolving data stream,a set of core mini clusters

cmcs are maintained. Furthermore, all the outliers are maintained in density grids which

is in a separate memory space. In this component, two important concepts are core mini

clusters and density grids. The structures of the core mini clusters and the grids keep

sufficient information for final clustering. Merging and mapping are the major tasks in

MM-component. Based on the data attributes, the decision is made either to merge the

data points to existing core mini clusters or to map them to the grids.

In MM-component, when a new data point arrives, the component tries to add it to

a core mini cluster if there is any in which the data point can fit in. However, if the data

point cannot be added to any core mini cluster, it may be either a seed of a new core mini

cluster or an outlier. This kind of data point is mapped to thegrid in the outlier buffer and

the decision is postponed to a later time.

In the initial arrival of data points from data streams, the majority of the points

are mapped to the grids. However, when time passes, a number of core mini clusters are

formed. MM-component works with FCM-component in the sense that whenever a grid’s

density is more than a predefined threshold, FCM-component iscalled and it forms a new

core mini cluster.

The flow of the MM-component is described in details as follows. When a data point

arrives, various tasks are invoked:

Task 1: Merging

1. If there is any core mini cluster (cmc), MuDi-Stream finds the nearestcmc to the

94



new data point. The nearest core mini cluster (cmcs) is determined by the minimum

distance between data pointp and centercmc. Core mini cluster (cmc) with the

lowest distance is selected and denoted ascmcs.

∀cmci ∈ {cmc} ,distance(p,centercmcs) = Min{distance(p,centercmci)} (4.12)

2. If the new data point’s distance tocentercmcs is less than mini core distance (mcd)

of the nearest core mini cluster, it will be added to that particular core mini cluster

(cmc). When the data point is added to acmcs, its center, radius, and weight are

updated.

distance(p,centercmcs)≤mcdcmcs→ cmcs+ p (4.13)

Task 2: Mapping

3. Otherwise, the data point has to be mapped into the grid in the outlier buffer. A

data pointp= (p1, p2, . . . , pd) is mapped to a density gridg(p) as:

g(p) = ( j1, j2, . . . , jd), pi ∈ Si, j i (4.14)

4. Update the grid synopsisGS(ng, tp,wg) of a gridg with its new values as follows:

ng← ng+1; (4.15)

tp← tc; (4.16)

wg(tc)← 2−λ (tc−tp)wg(tp)+1 (4.17)
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Algorithm 3 MergeMap(x,tc,α,λ ,N)

Input: a data pointx from data stream
Input: current timestamptc
Input: density thresholdα
Input: outlier thresholdλ
Input: number of grid cellsN
Output: cmclist
Output: grid list

1: cmcs← find the nearestcmcto x in cmclist;
2: if distance(x,centercmcs)≤mcdcmcs then
3: cmcs← cmcs+x; {Merge x to thecmc}
4: else
5: mapx to the grid;
6: ng← ng+1;
7: wg← 2−λ (tc−tp)wg(tp)+1;
8: tp← tc;
9: UpdateGS(ng, tp,wg);

10: if ng > 1 andwg >= α
N(1−2−λ )

then
11: cmcnew← CreateNewCMC(g,tc);
12: remove gridg from grid list;
13: end if
14: end if

5. Check number of data points in the grid cell and the cell’s weight. If it has more

than one data point and the grid cell’s weight is more than thedensity threshold, the

CreateNewCMC algorithm in FCM-component is invoked to form a new core mini

cluster out of the grid cell.

MM-component of MuDi-Stream is shown in Algorithm 3. In the algorithm, which

is called MergeMap Algorithm, the new data point is added to the nearest core mini

cluster if it fits (Lines 1-3). Otherwise, it is mapped to the grid and the grid summary

information is updated (Lines 5-9). At the same time if the grid’s weight is more than the

weight threshold and it has more than one data point, a new core micro cluster is formed

from data points inside that grid (Lines 10-13).

The flowchart of MM-component is shown in Figure 4.3. Moreover, The procedure

of MM-component is illustrated in Figure 4.4.
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Figure 4.3: Flowchart for MM-Component and FCM-Component of MuDi-Stream

4.7.2 FCM-Component (Forming Core Mini Clusters)

Since data stream evolves over time, the number of data points inside the grids

change over time. If the grid’s weight is above a threshold, it means that it can form
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Figure 4.4: Merging to Existing Core Mini Clusters or Mapping to the Grid

a core mini cluster. Therefore, the data points are removed from the grid and a new core

mini cluster is created.

Two important tasks in this component are 1) forming core mini clusters and 2)

determining mini core distances.

In the former task, the grid weight is a main factor to make a decision regarding the

generation of a new core mini cluster. If the grid weight is more than a threshold, it is not

an outlier any more and it can form a new core mini cluster. This core mini cluster may

attend in final clustering later.

The latter task determines mini core distance. This distance is used as radius thresh-

old. For each core mini cluster, different radius thresholds are considered to have final

clusters with different densities. Mini core distancemcd is maximum distance from cen-
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Figure 4.5:mcd in different data distributions inside a grid

ter to farthest point in the grid. Figure 4.5 shows an examplein which how various values

of mcdare for different distributions inside the grids.

This component is invoked by MM-component. Whenever a data point is mapped to

the grid, if the conversion criteria is satisfied, the data points inside the grid form a core

mini cluster.

The procedure of FCM-Component is explained as follows:

1. If the number of data points inside gridng is more than one, then we check the grid

weightwg with the density threshold. If the grid weightwg is higher than the dense

grid threshold then we form a newcmcout of the data points in this grid.

ng > 1,wg >=
α

N(1−2−λ )
(4.18)

2. Thecmc is formed based on the data points inside the grid.cmcattribute values

such as radius, center, weight and itsmcdare determined as explained in Definition

18.

3. The related gridg of the newcmcis discarded from the grid list.
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Algorithm 4 CreateNewCMC(g, tc)
1: wcmc← wg;

2: ccmc←
∑n

i=1 f (tc−Ti)(pi)
wcmc

;

3: rcmc=
∑n

i=1 f (tc−Ti)distance(pi j ,ccmc)

wcmc
4: for data pointspi in the gridg do
5: mcdcmc←Maximum{distance(ccmc, pi)};
6: end for
7: returncmc(wcmc,ccmc, rcmc,mcdcmc)

Figure 4.6: FCM-component: Forming Core Mini Clusters from Data Points inside Grid

FCM-component is outlined in Algorithm 4. In CreateNewCMC Algorithm, the grid

weight is assigned as the weight for the new core mini cluster(Line 1). The center and

radius is calculated based on the data points in the grid (Lines 2-3). Mini core distance

is also calculated from the data points inside the grid. Eachcore mini cluster has its own

mini core distance.

FCM-component is shown in Figure 4.6.

4.7.3 PGCM-Component (Pruning Grid and Core Mini Clusters)

Since data stream evolves over time, the role of real data is changed to outliers and

vice versa. A technique is required to filter out outliers anddetect the real data. This

filtering should be performed on both the grid and the core mini clusters. The problem is
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that the number of outliers may increase over time as data stream proceeds. It becomes

worse when a lot of outliers are available in the data. Therefore, we need to periodically

prune the real outliers from the the outlier buffer, i.e. thegrid.

One of the challenges for the grid-based clustering method is the large number of

grids, especially for high-dimensional data. For example,if the gridGranularity equals

to 20, there will be 20d possible grids. However, most of the grids in the space are empty

or receive data very seldom. In our implementation, we allocate memory to store thegrid

synopsisfor those grids that are not empty, which form a very small subset in the grid

space. However, in practice, this is still not efficient enough since the appearance of out-

lier data which lead to continual increase of non-empty grids that will be processed during

clustering. We call such grid asscatteredgrids since they contain very few data. Since a

data stream flows in by huge volume in high speed and it could run for a very long time,

due to noises in the data stream, more and more grids will be occupied during the process

which many of them contain only very few data. If thesescatteredgrids are not checked,

the total number of grids in the grid list will keep increasing and become extremely large.

Therefore, it is critical to detect and remove such scattered grids periodically.

Once a scattered grid is deleted, its density is reset to zerosince itsgrid synopsis

is deleted. A deleted grid may be added back to grid list if there are new data records

mapped to it later, but its previous records are discarded and its density restarts from zero.

Such a dynamic mechanism maintains a moderate size of the grids in memory, saves

computing time, and prevents infinite accumulation of scattered grids in memory. We

define a Outlier Weight Threshold (OWT) function for detecting scattered grids:

Definition 19 (Outlier Weight Threshold function (OWT)).If the last updated time of

a grid g is tp then at current time tc, the Outlier Weight Threshold (OWT) is defined as
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follows (tc > tp):

OWT(tp, tc) =
α
N

tc−tp

∑
i=0

2−λ i =
α(1−2−λ (tc−tp+1))

N(1−2−λ )
(4.19)

See Appendix A for the proof.

Theorem. The size of grid list at mostL = 1
λ log α

N+α N is the total number of grid

andλ is the decay factor.

See Appendix A for the proof.

If a grid g is detected as a scattered grid, is it possible thatg can be non-scattered. If

it has not been previously deleted from grid list? It is answered in the following result.

Proposition 2. Assume the last time a grid g is deleted as scattered grid istk and the

last updated of gridg is tp. If at current timet, we havewg(t) < owt(tp, t), then we also

havewg(t)< owt(0, t)

See Appendix A for the proof.

Proposition 2 is important because it shows that deleting a scattered grid will not

cause a dense grid be falsely deleted. It shows that, if g is deleted as a scattered grid at

t sincewg(t) < owt(tp, t), then even if all the previous deletions have not happened, it is

still scattered and cannot be a dense grid.

The important issue is the length of the time interval for grid density checking. This

time which we referred as pruning time cannot be too large or too small. If pruning

time is too large, dynamical changes of data streams will notbe properly recognized. If

pruning time is too small, it will result in frequent computation by the offline component.

Therefore, the processing speed of the offline component maynot compete the speed of

the input data stream.

Furthermore, since our method gradually reduces the weightof the data points. If

a core mini cluster does not receive any data for a long time, it has to be removed form
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Algorithm 5 Pruning({cmc} ,g, tc,α,λ ,N)

Input: {cmc}
Input: {g}
Output: {cmc}

1: update the weights of all grids in grid list (wg(tc) = 2−λ (tc−tp) ∗wg(tp));
2: for all grid g do

3: OWT(tc, tp)←
α(1−2−λ (tc−tp+1))

N(1−2−λ tp)
;

4: if wg < OWT then
5: remove gridg from the grid list;
6: end if
7: end for
8: for all {cmc} do
9: if wcmc<

α
N(1−2−λ ) then

10: removecmcfrom {cmc};
11: end if
12: end for

the list. A core mini clusters is formed from a grid with density higher than α
N(1−2−λ ) ,

therefore, if the density is less than dense grid threshold it should be removed form the

list.

Therefore, the density of grid and core mini clusters shouldbe inspected after a

period of time. The pruning time is considered as the time needed for a core mini cluster

to convert to an outlier which is defined as follows:

Definition 20 (Pruning time). We check the cmc’ weight as well as grids’ in a specific

time called tpt. tpt is the minimum time for a cmc in timestamp t1 to be converted to an

outlier in t2 (t2 > t1), which is formally defined as follows:

Lemma 2

tpt =
1
λ

log
α

α−1+2−λ
2

See Appendix A for the proof.

The main tasks of PGCM-component, which are performed in pruning time, are as

follows:

1. Check the grid weight withOutlier Weight Threshold function (OWT). If it is less
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Figure 4.7: Flowchart of PGCM-Component of MuDi-Stream

than this threshold then the grid is detected as scattered grid and will be removed

from the grid list.

RemovalList{g}← wg < OWT(tp, tc) (4.20)

2. Check the weights of thecmclist, if there is anycmcwith the weight less than the

dense grid threshold, that particularcmcis removed from thecmclist.

RemovalList{cmc}← wcmc<
α

N(1−2−λ )
(4.21)
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The PGCM-component’s procedure is shown in Algorithm 5. In Algorithm 5 , the

grid weights are updated by current time in Line 1. After that, in lines 2-7, the weight

of all grid are checked to remove scattered grid. Finally, the removal list of core mini

clusters are determined in lines 8-12 of algorithm. The flowchart is depicted in Figure 4.7

as well. Figure 4.8 depicts the pruning component.

Figure 4.8: Pruning Grids and Core Mini Clusters

The online phase of MuDi-Stream with all its components are given in Algorithm 6.
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Algorithm 6 MuDi-Stream Online Phase(DS,λ ,α,N)

Input: a data stream
Output: core mini clusters

1: tpt←
1
λ log

α
α−1+2−λ
2

2: tc← 0;
3: while not end of streamdo
4: Read data pointx from Data Stream
5: cmcs← find the nearestcmcto x in cmclist;
6: if distance(x,ccmcs)≤mcdcmcs then
7: cmcs← cmcs+x; {/*Merge x to thecmc*/}
8: else
9: map the new data pointx to the grid;

10: ng← ng+1;
11: wg← 2−λ (tc−tp)wg(tp)+1;
12: tp← tc;
13: UpdateGS(ng, tp,wg);
14: if ng > 1 andwg >= α

N(1−2−λ )
then

15: wcmc← wg;

16: ccmc←
∑n

i=1 f (tc−Ti)(pi)
wcmc

;

17: rcmc←
∑n

i=1 f (tc−Ti)distance(pi j ,ccmc)

wcmc
18: for data pointspi in the gridg do
19: mcdcmc←Maximum{distance(ccmc, pi)};
20: end for
21: end if
22: end if
23: if tc modtpt == 0 then
24: update the weight of all grids in grid list (wg(tc) = 2−λ (tc−tp) ∗wg(tp));
25: for all grid g do

26: OWT(tc, tp)←
α(1−2−λ (tc−tp+1))

N(1−2−λ )
;

27: if wg < OWT(tc, tp) then
28: remove gridg from the grid list;
29: end if
30: end for
31: update the weight of all core micro clusters (wcmc(tc) = 2−λ (tc−tcmc) ∗

wcmc(tcmc));
32: for all {cmc} do
33: if wcmc<

α
N(1−2−λ then

34: removecmcfrom {cmc};
35: end if
36: end for
37: end if
38: tc← tc+1;
39: end while
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4.8 Offline Phase of MuDi-Stream Algorithm

The offline phase has one component called FFC-component. An adapted density

based algorithm is proposed in this phase to form arbitrary multi-density shape clusters

from synopsis data.

4.8.1 FFC-Component (Forming Final Cluster)

In FFC-component, a new density-based clustering, called M-DBSCAN is proposed

which needs only one parameter (MinPts) to discover final clusters. The existing density-

based data stream clustering algorithms apply DBSCAN in theiroffline phase; however,

since it uses a global set of parameters, they cannot cover multi-density data. In our

proposed algorithm, M-DBSCAN, instead of finding neighbors inconstant radiusε, the

neighboring radius is determined based on the distributionof data around the core using

mean and standard deviation values.

When a clustering request arrives, M-DBSCAN algorithm is applied on the set of

online maintained core mini clusters to get the clustering result. Each core mini cluster

cmcis considered as a virtual point located at the center ofcmc. M-DBSCAN replaces the

ε values of DBSCAN by local cluster density. In M-DBSCAN, thecore-neighboringcon-

cept is introduced in which core mini clusters are added to existing clusters if they have

similar values of mean with some acceptable difference defined by standard deviation of

the core.

Using online phase information and statistical analysis ofthe distribution of data

inside core mini clusters, M-DBSCAN is able to generate clusters with different densities.

Some new concepts are applied in this component which are described as follows:

Definition 21 (Neighboring grids(Ng)). Two density grids g1 = ( j11, j12, . . . , j1d) and

g2 = ( j21, j22, . . . , j2d) are neighbors if there exists m,1≤m≤ d such that:

• j1i = j2i , i = 1, . . . ,m−1,m+1, . . . ,d; and

107



• | j1m− j2m|= 1

Theng1 andg2 are neighboring grids in themth dimension.

Definition 22 (cmc-grid-neighborhoods (Ng(cmc))). All core mini clusters which are

placed in the neighboring grids of g.

{

Ng(cmc)
}

←∀cmcp ∈
{

Ng
}

(4.22)

Definition 23 (MinPts-nearest-neighbors (Nsh(cmc))). In order to determine MinPts-

nearest-neighbor for the cmcp, firstly the distance from cmcp to all cmcp-grid-

neighborhoods are calculated. After that, MinPts neighbors are selected with minimum

distances.

{

Nsh(cmcq)
}

←Minimum(distance(cmcp,Ng(cmcp))), |Nsh(cmcq)| ≥MinPts (4.23)

Definition 24 (Core-neighboring (Ncore)). A core mini cluster with its MinPts-nearest-

neighbors become core-neighboring if the following condition is satisfied:

{Ncore}← ∀cmcq ∈
{

Nsh(cmcp)
}

,

µ(Distcmcq) ∈ [µ(Distcore)−σ(Distcore),µ(Distcore)+σ(Distcore)] (4.24)

µ(Distcore)← µ(distance(Nsh(cmcp),cmcp))

σ(Distcore)← σ(distance(Nsh(cmcp),cmcp))

µ(Distcmcq)← µ(distance(Nsh(cmcq),cmcq))
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σ(Distcmcq)← σ(distance(Nsh(cmcq),cmcq))

The new definition of core-neighboring expresses that, in order to be in the list of

core neighbors, the values of mean of distance from core minicluster to its neighbors

should lie within a certain range from core.

FCC-componentworks as follows:

• Initially, all core mini clusters are marked as “unvisited.” M-DBSCAN randomly

chooses an unvisited object, a core mini cluster (cmcp), and marks it as “visited.”

Then, it checks whether itscmc-grid-neighborhoodcontains at leastMinPts. If

not, mark the core mini clustercmcp as noise. Otherwise, a new cluster is created

and the core mini clustercmcp is added to that cluster. After that, the algorithm

finds theMinPts-nearest-neighborhoodof core mini clustercmcp. This gives us a

shorted list of the neighbors. This technique is a kind of filtering which prevents

formation of a single cluster out of multiple close dense clusters.

• Next, the Euclidean distances from the core mini clustercmcp to all its shorted

list neighbors are calculated. Mean and standard deviationof these distances are

determined as well. A new core mini cluster with its neighbors are added to the

existing cluster if the condition of acore-neighboringis satisfied.

• The algorithm continues with the unvisited neighbors of core mini clustercmcp.

The core-neighboring list, mean and standard deviation areupdated whenever a new

core mini cluster and its neighbors are added to an existing cluster. M-DBSCAN

adds core mini clusters until the cluster cannot be expandedany more. Therefore,

the cluster is complete. To find the next cluster, M-DBSCAN randomly selects

another unvisited core mini cluster from the remaining ones. The clustering process

terminates when all core mini clusters are visited.

109



Algorithm 7 M-DBSCAN(MinPts,g, {cmc})- MuDi-Stream’s Offline Phase

1: mark allcmcs as unvisited;
2: repeat
3: randomly choose an unvisitedcmcp;
4: markcmcp as visited;
5:

{

Ng(cmcp)
}

← cmcp-grid-neighborhood
6: if |

{

Ng(cmcp)
}

| ≥MinPtsthen
7: create a new clusterC, and addcmcp to C;
8: {Ncore}← find MinPts-nearest neighbors in

{

Ng(cmcp)
}

from cmcp

9: calculateµ(Distcore), andσ(Distcore)
10: for eachcmcq in {Ncore} do
11: if cmcq is unvisitedthen
12: markcmcq as visited;
13:

{

Ng(cmcq)
}

← cmcq-grid-neighborhood
14: if |Ng(cmcq)| ≥MinPtsthen
15:

{

Nsh(cmcq)
}

← find MinPts-nearest-neighbors in
{

Ng(cmcq)
}

from
cmcq

16: calculateµ(Distcmcq), andσ(Distcmcq)
17: if µ(Distcmcq) ∈ [µ(Distcore) − σ(Distcore),µ(Distcore) + σ(Distcore)]

then
18: {Ncore}← {Ncore}

⋃

{

Nsh(cmcq)
}

;
19: updateµ(Distcore), andσ(Distcore) ;
20: end if
21: end if
22: end if
23: if cmcq is not assigned to any clusterthen
24: addcmcq to clusterC;
25: end if
26: end for
27: else
28: markcmcp as noise;
29: end if
30: until nocmcis unvisited;

The procedure is outlined in Algorithm 7 and the FCC-componentis depicted in

Figure 4.9.
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Figure 4.9: Forming Final Clusters from Pruned Core Mini Clusters
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4.9 Summary

In this chapter, we explained the proposed method, MuDi-Stream, in details. The

algorithm has online and offline phases and has the ability tocluster multi-density data

with low computation time. MuDi-Stream is using a hybrid method in its online phase

and a multi-density method in its offline phase.

The algorithm has four different components. The components of the online phase

are MM-component, FCM-component, and PGCM-component. MM-component has a

hybrid method using grid and micro clustering methods. It has a list of core mini clusters

and also a grid as the outlier buffer. If the new data point cannot be merged to any ex-

isting core mini cluster, it is mapped to the grid. FCM-component works simultaneously

with MM-component. If the density of grid in the outlier buffer is more than a density

threshold, it is converted to a core mini cluster by the FCM-component. Data stream

evolves over time, therefore some grids may not receive any data for a long time or a core

micro clusters’ weight gradually decreases over time. PGCM-component has a technique

to check the weight of these synopsis data. M-DBSCAN algorithmin FFC-component

in the offline phase is proposed to cluster synopsis data in order to get final clusters. M-

DBSCAN has the ability to cluster multi-density data using information about density

distribution of data points in the stream.

MuDi-Stream can effectively handle noise by mapping them inthe grid. These out-

liers may either be changed to core mini clusters or be removed form the grid cells. Fur-

thermore, it has the ability to handle evolving data stream by considering weight coeffi-

cient which decreases over time. Another prominent featureof MuDi-Stream is clustering

multi-density data by keeping information in the online phase and using them in a new

method in the offline phase. It has also low computation time since instead of searching

in the outlier list of micro clusters, it maps the outliers into the grids.
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CHAPTER 5

EXPERIMENTAL EVALUATION AND ANALYSIS

5.1 Overview

In this chapter, datasets which are used for evaluation purposes are introduced. Some

real datasets and further some synthetically generated datasets are used to evaluate the

proposed method. The real datasets are selected based on theliterature. These datasets

are the most applicable ones in evaluation of both data stream clustering and multi-density

data clustering. The synthetic datasets are generated withdifferent number of data points,

various clusters and densities based on existing datasets in the literature. These real and

synthetic datasets are fair benchmarks for evaluating the performance of the proposed

approach, MuDi-Stream, w.r.t. state-of-the-art methods.

Evaluation of the clustering results is one of the difficulties in data stream clustering.

As it is explained in Chapter 2, there are some evaluation metrics for measuring clustering

quality. The evaluation process of MuDi-Stream includes:

• Quality evaluation: The quality of clustering results is measured using seven qual-

ity metrics on ten different datasets. The results are explained in Sections 5.3, 5.4,

and 5.5.

• Complexity analysis: Time and space complexity of MuDi-Stream are measured

and the results are discussed in Section 5.6.

• Scalability evaluation: Section 5.7 describes the scalability results which are mea-

sured in terms of execution time and memory usage of MuDi-Stream algorithm.
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• Sensitivity evaluation: A comprehensive analysis of MuDi-Stream’s parameters

which affect the clustering results, is elaborated in Section 5.8.

5.2 Experimental Setup

5.2.1 Datasets

In this section, we introduce the datasets which are appliedto show the effective-

ness of the proposed approach for handling evolving multi-density data streams. The

evaluations of the proposed method are performed on real andsynthetic datasets.

First, the proposed method is evaluated on synthetic datasets. Different synthetic

datasets are generated with various number of data points and clusters by considering

noise. Synthetic dataset generation is based on the reviewed papers from the literature

(Xiong et al., 2012; Huang et al., 2009; Xiaoyun et al., 2008;X. Li et al., 2010; Carmelo

et al., 2013; Cao et al., 2006). Furthermore, some of them are generated based on different

distributions of multi-density datasets. Synthetic datasets are generated based on normal

and Gaussian distributions. Additionally, some of the synthetic datasets are combined to

simulate evolving data stream over time. All the synthetic datasets except the Gaussian

one are generated using a program which is written in Java. The program has the ability

to generate any kind of dataset with different numbers of data points, clusters, and density

distributions.

Furthermore, real world datasets of various characteristics are tested which are taken

from different sources (Cao et al., 2006; Forestiero et al., 2013; Y. Chen & Tu, 2007;

X. Li et al., 2010). The datasets have different number of clusters, densities, and data

points. Table 5.1 lists the applied datasets for the experiments.

5.2.1 (a) Mashaal Dataset (DS1)

This dataset is generated similar to (Forestiero et al., 2013; Cao et al., 2006) which is

applied to evaluate the quality of clustering. It contains 10000 data points with 5% noise.
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Table 5.1: List of Datasets

No Dataset Size FeaturesClasses Type Ref

1 Mashaal Dataset (DS1) 10000 2 4 Synthetic (Cao et al.,
2006)

2 Smile Dataset (DS2) 10000 2 4 Synthetic citeForestiero13

3 FourCircles Dataset
(DS3)

10000 2 4 Synthetic (Forestiero et
al., 2013)

4 Evolving Data Stream
(EDS)

30000 12 2 Synthetic -

5 Multi Density Dataset
(MDS1)

12131 5 2 Synthetic -

6 Multi Density Dataset-
House (MDS2)

1097 5 2 Synthetic (Mitra &
Nandy, 2011)

7 Multi Density Dataset-
5Cirlce (MDS3)

1360 5 2 Synthetic (X. Chen et al.,
2012)

8 Evolving Multi Density
Data Stream (EMDS)

2457 10 2 Synthetic -

9 Multi Density Cylinder-
Cube (MDS4)

10000 3 3 Synthetic -

10 Gaussian Multi Density
Dataset (GMDS5)

10000 5 2 Synthetic -

11 Network Intrusion Detec-
tion

424021 42 7 Real (Frank &
Asuncion,
2010)

12 Landsat Satellite Data 4435 36 6 Real (X. Li et al.,
2010)

13 Forest Cover Type 581012 54 7 Real (Forestiero et
al., 2013)

115



It has four classes with various shapes. The dataset is depicted in Figure 5.1.

Figure 5.1: Mashaal Dataset (DS1) - 10000 data points, 3% noise

5.2.1 (b) Smile Dataset (DS2)

The smile dataset has 10000 data points with 4% noise which ischosen from

(Forestiero et al., 2013; Cao et al., 2006). It has four arbitrary shape clusters. The dataset

is shown in Figure 5.2.

Figure 5.2: Smile Dataset (DS2) - 10000 data points, 4% noise
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5.2.1 (c) FourCircles Dataset (DS3)

Adopted from the works presented in (Ester et al., 1996; Cao etal., 2006; Forestiero

et al., 2013), the FourCircle dataset is generated. It has 10000 data points with 5% noise.

The dataset is depicted in Figure 5.3.

Figure 5.3: FourCircles Dataset (DS3) - 10000 data points, 5%noise

5.2.1 (d) Evolving Data Streams (EDS)

One of the important features of our proposed method is capturing clusters of evolv-

ing data streams. Therefore, we generated an evolving data stream (EDS) by randomly

selecting one of the datasets (DS1, DS2 and DS3) (Cao et al., 2006; Forestiero et al.,

2013). For each iteration, the chosen dataset forms a 10000 points part of the data stream,

so the total length of the evolving data stream is 30000. Figure 5.4 shows the evolving

data stream’s dataset. It is depicted how the previous clusters disappear while the new

arrival ones are the clusters which are identified using MuDi-Stream.

5.2.1 (e) Multi-density Dataset (MD1)

The aim of generating this dataset is to demonstrate how the proposed method can

handle multi-density clusters. A two-dimensional well-separated dataset with 12131 data
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Figure 5.4: Evolving Data Stream (EDS)

points is generated. It is composed of five clusters of different densities as shown in

Figure 5.5.
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Figure 5.5: Multi-density Dataset (MDS1) - 12131 data points with 3% noise

5.2.1 (f) Multi-density Dataset - House (MDS2)

In this experiment, we generated a more complicated two-dimensional dataset to

show the effectiveness of our algorithm. It has 1097 data points and five clusters with

different densities with 4% noise which is adopted from (Mitra & Nandy, 2011). The

MDS2 is depicted in Figure 5.6. The dataset consists of five clusters with different sizes,

shapes, and densities.
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Figure 5.6: Multi-density Dataset (MDS2) - 1097 data pointswith 4% noise

5.2.1 (g) Multi-density Dataset - 5Circle (MDS3)

MDS3 dataset is generated with different density distributions. It is one of the

datasets which is usually applied for the evaluation of method on multi-density datasets

(X. Chen et al., 2012; Duan, Xu, Guo, Lee, & Yan, 2007). It has 1360 data points with

2% noise with five clusters. Figure 5.7 shows the MDS3 dataset.
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Figure 5.7: Multi-density Dataset - 5Circle (MDS3) - 1360 data points with 2% noise
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Figure 5.8: Evolving Multi-density Data Stream (EMDS)

5.2.1 (h) Evolving Multi-density Data Stream (EMDS)

MD2 and MD3 datasets are also combined to simulate an evolving multi-density

data stream (EMDS) over time (Figure 5.8). Therefore, we have a dataset with 2457 data

points. This dataset is used to evaluate the clustering quality of MuDi-Stream in multi-

density data which is evolving over time. Figure 5.8a shows MD2 at time 6 while Figure

5.8b depicts core-mini-clusters at time 12, when data stream evolves and MD3 data points

arrive.

5.2.1 (i) Multi-density CylinderCube (MD4)

Multi-density CylinderCube (MD4) is another multi-density dataset with different

density distributions. It has 10000 data points with three clusters and three dimen-

sions without noise. In fact, we wanted to evaluate the ability of algorithm for a three-

dimensional multi-density data without noise. Figures 5.9a, 5.9b depict MD4 from dif-

ferent perspectives.

5.2.1 (j) Gaussian Multi-density Dataset (GMDS)

A Gaussian dataset is also generated to evaluate the proposed method. It is generated

to show the effectiveness of the proposed algorithm in Gaussian distributions. This dataset

is generated using GaussianMoving() function in R language. GaussianMoving() is used
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Figure 5.9: Multi-density CylinderCube (MD4) - 10000 Points

for simulating evolving data stream in Gaussian distributions. Figure 5.10 shows the

Gaussian dataset with 1000 data point with 3% noise and five clusters.
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Figure 5.10: Gaussian Multi-density Dataset (GMDS) - 1000 data points with 3% noise

5.2.1 (k) Network Intrusion Detection

The Network Intrusion dataset (KDD Cup’99) (Frank & Asuncion, 2010) contains

TCP connection logs from two weeks of LAN network traffic. The dataset comes from

the 1998 DARPA Intrusion Detection. It contains training data consisting of 7 weeks
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Table 5.2: List of Network Intrusion Detection features with their classes

Class Label Relevant Features

Normal 1, 6, 12, 15, 16, 17, 18, 19, 31, 32, 37
Smurf 2, 3, 5, 23, 24, 27, 28, 36, 40, 41
neptune 4, 25, 26, 29, 30, 33, 34, 35, 38, 39
Land 7
teardrop 8
f t pwrite 9
back 10,13
guesspwd 11
bu f f erover f low 14
warezclient 22

of network-based intrusions inserted in the normal data, and 2 weeks of network-based

intrusions and normal data for a total of 4,999,000 connection records described by 42

characteristics. Each record corresponds to a normal connection or an attack. The attacks

fall into 4 main categories and 22 more specific types: DOS (i.e., denial-of-service), R2L

(i.e., unauthorized access from a remote machine), U2R (i.e., unauthorized access to local

superuser privileges), and PROBING (i.e., surveillance andother probing). Three biggest

classes Normal, Neptune, and Smurf appear in chunks, whereas smaller attack classes are

scattered throughout the dataset.

All 34 continuous attributes of KDD CUP99 are used as in (Cao et al., 2006; Tu &

Chen, 2009; Ntoutsi et al., 2012; Forestiero et al., 2013). Itis converted into data stream

by taking the data input order as the order of streaming. Figure 5.11 plots the distribution

of data from KDD CUP99 for selected features. Figure 5.12 depicts class labels that

appears in “10% KDD” dataset which is adopted from (Kayacik,Zincir-Heywood, &

Heywood, 2005). Moreover, Table 5.2 shows the most discriminative class labels for

each feature.
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Figure 5.12: Class labels that appears in “10% KDD” dataset
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Figure 5.13: LandSat Dataset

5.2.1 (l) Landsat Satellite Data

Landsat Satellite Dataset from UCI Machine Learning Repository 1 is a dataset com-

posed of 4435 objects. It is obtained from remote-sensing satellite images. Each object

represents a region and each sub-region is recorded by the four measurements of intensity

taken at different wavelengthes. Therefore, each object has 36 attributes. A class label

indicating the type of the central sub-region is also given for each object. This dataset is

used in (X. Li et al., 2010) to evaluate multi-density data. Figure 5.13 shows a sample

of ten attributes of Landsat data points distribution. Furthermore, the class labels and the

number of associated objects are shown in Figure 5.14.

5.2.1 (m) Forest Cover Type

The Forest Cover Type dataset from UCI KDD Archive (Bache & Lichman, 2013)

contains data of different forest cover types. It contains forest cover type for 30x30 me-

1http://archive.ics.uci.edu/ml/
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Figure 5.14: LandSat Class Distribution

ter cells obtained from US Forest Service (USFS) Region Resource Information System

(RIS) data. It has 581,012 records and 54 attributes, out of which the 7 continuous ones,

representing seven different types of forest types are picked. It has been used in several

papers on data stream clustering (Forestiero et al., 2013; Bhatnagar et al., 2013; Zliobaite,

Bifet, Read, Pfahringer, & Holmes, 2014). However, there are in fact only 12 different

attributes. The last two are categorical and have been encoded as binary columns (4 and

40 respectively). The output is also categorical, but is encoded as a number between 1

and 7. This dataset contains 581012 observations and each observation consists of 54

attributes, including 10 numeric variables, 4 binary wilderness areas and 40 binary soil

type variables. In our evaluation, similar to (Forestiero et al., 2013), 10 numeric variable

is used. There are seven forest cover type classes. Figure 5.15 depicts the data distribution

of forest cover type dataset.

5.2.2 Implementation and Environment

We have implemented MuDi-Stream as well as the comparative method, DenStream

(Cao et al., 2006), in Java with graphical interface of R language. DenStream is one

of the remarkable algorithms which is used as a benchmark fordensity-based clustering

of data streams. DenStream has a longer chain of comparisonswith existing algorithms
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Figure 5.15: Forest Cover Type

(Forestiero et al., 2013; Ruiz et al., 2009; Lin & Lin, 2009; Hassani et al., 2012).

All experiments were conducted on a 2.5 GHz machine with 4GB memory, running

on Mac OS X.

5.3 Quality Evaluation of MuDi-Stream

In this section MuDi-Stream is evaluated on different datasets with various external

quality metrics which are introduced in Chapter 2. Since we know the class labels of

data points in datasets the external metrics are used (Cao et al., 2006). The dataset are

simulated as data streams by taking order (Forestiero et al., 2013).

Intuitively, the quality metrics evaluate the clustering results with respect to the true

cluster (class) labels that are known for our datasets. Since the weights of data points fade

out gradually, the quality metrics are measured by only the points arriving in a pre-defined

horizonh (or window) from current time with different stream speeds.The stream speed

is the number of arriving data points in each time unit (Aminiet al., 2014). By horizon (or

window) we mean, how many time steps from the current time we consider when running
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the clustering algorithms. Thus, for example, if the horizon is 10, it means that the last

10 blocks of data are clustered. The small datasets are evaluated on one horizon since we

got almost similar results for the other horizon and stream speed.

For each dataset we measured the following metrics:

• Purity

• Normalized Mutual Information (NMI)

• Rand Index (RI)

• Adjusted Rand Index (ARI)

• Jaccard Index (JI)

• Folkes and Mallow index (FM)

• F-Measure

The mentioned metrics are described in details in Chapter 2. These metrics are

selected based on metrics which have been used for evaluating data stream clustering

results in the literature (Kremer et al., 2011; Jain, 2010; Ruiz et al., 2009; Bolanos, 2014;

X. Zhang et al., 2013; Hawwash, 2013). The definition of a goodclustering is far from

being an easy task (Han et al., 2011). In this respect we used different evaluation measures

in order to perform a really accurate evaluation of our results. In this thesis, for quality

evaluation of each metrics different horizons and stream speeds are considered based on

the size of datasets, and yet the results are measured over different time units. Stream

speed, horizon, time units are determined based on the characteristic of the dataset.

5.3.1 Evolving Data Stream (EDS)

Figures 5.16a, 5.16b, and 5.16c depict the core-mini-clusters which are detected by

MuDi-Stream at different time units on EDS. In these figures,circles denote the core-
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mini-clusters. It can be seen that MuDi-Stream accurately captures the shape of each

cluster as the data stream evolves.

Purity (Figure 5.17), NMI (Figure 5.18), Rand Index (Figure 5.19), Adjusted Rand

Index (Figure 5.20), Jaccard Index (Figure 5.21), FM (Figure 5.22), and F-Measure (Fig-

ure 5.23) show the quality metrics’ results of MuDi-Stream and DenStream on EDS data

stream.

MuDi-Stream achieves higher values compared to DenStream.The results are com-

puted at time units 5, 10, 15, 20, 25, and 30 at horizon set to 2 and stream speed 1000

points per time unit. For horizon 5 with stream speed 2000, the time units are 5, 10, and

15.

MuDi-Stream’s purity values are always higher than 96% and for the other criteria

(NMI, RI, ARI, Jaccard Index, FM, and F-Measure), it has valuesmore than 0.95. In

this dataset, DenStream also gets good results for evolvingdata stream. However, in

terms of efficiency, MuDi-Stream finished the clustering process significantly faster than

DenStream.

The parameters of MuDi-Stream adopt the following settings: λ = 0.125,Minpts=

5, α = 0.2, andgridGraunality= 30. The DenStream’s parameters areλ = 0.25,ε = 16,

µ = 10, andβ = 0.2.

5.3.2 Multi-density Dataset (MDS1)

The clustering quality results on MDS1 including purity, NMI, Rand Index, Adjusted

Rand Index, Jaccard index, FM, and F-measure are shown in Figures 5.24, 5.25, 5.26,

5.27, 5.28, 5.29, and 5.30 respectively.

The results are computed at different time units (4, 6, 8, 10,and 12) with the horizon

set to 5 and stream speed 1000 points per time unit. Moreover,the results are measured

in horizon 1 with stream speed 2000 in 10, 15, 20, and 25 time units.

128



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Core Mini Clusters

X

Y

Weight
Radius

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Core Mini Clusters

X

Y

Weight
Radius

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Core Mini Clusters

X

Y

Weight
Radius

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Figure 5.16: Core-mini-clusters for evolving data stream (EDS)
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Figure 5.17: Cluster Purity of MuDi-Stream for EDS with (a) horizon = 2 and stream
speed = 1000, (b) horizon = 5 and stream speed = 2000

It can be observed that, MuDi-Stream outperforms DenStreamwhen we have variety

in densities. Purity, NMI, RI, ARI, Jaccard Index, FM and F-Measure have high quality

results.

MuDi-Stream performed extremely well in clustering with maximum value 1 while

DenStream has values below 0.7. DenStream quality decreases specifically when a sharp

129



5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

Time Unit

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

MuDi.Stream
DenStream

(a)

5 10 15

0.2

0.4

0.6

0.8

1.0

Time Unit

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

MuDi.Stream
DenStream

(b)

Figure 5.18: Cluster Normalized Mutual Information of MuDi-Stream for EDS with (a)
horizon = 2 and stream speed = 1000, (b) horizon = 5 and stream speed = 2000
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Figure 5.19: Cluster Rand Index of MuDi-Stream for EDS with (a)horizon = 2 and stream
speed = 1000, (b) horizon = 5 and stream speed = 2000
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Figure 5.20: Cluster Adjusted Rand Index of MuDi-Stream for EDS with (a) horizon = 2
and stream speed = 1000, (b) horizon = 5 and stream speed = 2000

change in density happens since it uses the same parameters for all clusters. It cannot

cluster the density variations.

The parameters of MuDi-Stream adopt the following settings: λ = 0.5, Minpts= 5,

α = 0.2,gridGraunality= 20, and DenStream’s values are chosen to be the same as (Cao

et al., 2006). Figures 5.31a, and 5.31b depict the core-mini-clusters and final clusters of
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Figure 5.21: Cluster Jaccard Index of MuDi-Stream for EDS with (a) horizon = 2 and
stream speed = 1000, (b) horizon = 5 and stream speed = 2000
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Figure 5.22: Cluster FM of MuDi-Stream for EDS with (a) horizon = 2 and stream speed
= 1000, (b) horizon = 5 and stream speed = 2000
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Figure 5.23: Cluster F-Measure of MuDi-Stream for EDS with (a) horizon = 2 and stream
speed = 1000, (b) horizon = 5 and stream speed = 2000

the dataset accordingly.

5.3.3 Multi-density Dataset - House (MDS2)

MuDi-Stream is also evaluated on a multi-density dataset called House (MDS2) at

time units 2, 4, 8, and 10 with the horizon set to 5 and stream speed 1000. MuDi-Stream
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Figure 5.24: Cluster Purity of MuDi-Stream for MDS1 with (a) horizon = 5 and stream
speed = 1000, (b) horizon = 1 and stream speed = 500
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Figure 5.25: Cluster Normalized Mutual Information of MuDi-Stream for MDS1 with (a)
horizon = 5 and stream speed = 1000, (b) horizon = 1 and stream speed = 500

4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Time Unit

R
an

d 
In

de
x

MuDi.Stream
DenStream

(a)

10 15 20 25

0.2

0.4

0.6

0.8

1.0

Time Unit

R
an

d 
In

de
x

MuDi.Stream
DenStream

(b)

Figure 5.26: Cluster Rand Index of MuDi-Stream for MDS1 with (a) horizon = 5 and
stream speed = 1000, (b) horizon = 1 and stream speed = 500

achieves high purity results for MDS2 compare to DenStream.For instance, while MuDi-

Stream has purity values 99, 100, 100, and 100, DenStream has84.1, 72.3, 79.11, and

67.4 values over different time units (Figure 5.32a).

DenStream clustering purity is high in the first time unit in which the small moon

shaped cluster is detected; however, when time passes and the other clusters appear with
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Figure 5.27: Cluster Adjusted Rand Index of MuDi-Stream for MDS1 with (a) horizon =
5 and stream speed = 1000, (b) horizon = 1 and stream speed = 500
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Figure 5.28: Cluster Jaccard Index of MuDi-Stream for MDS1 with (a) horizon = 5 and
stream speed = 1000, (b) horizon = 1 and stream speed = 500
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Figure 5.29: Cluster FM of MuDi-Stream for MDS1 with (a) horizon = 5 and stream
speed = 1000, (b) horizon = 1 and stream speed = 500

various densities, the clustering quality is decreased. Wemeasured the other metrics, NMI

(Figure 5.32b), Rand Index (Figure 5.33a), Adjusted Rand Index (Figure 5.33b), Jaccard

Index (Figure 5.34a), FM (Figure 5.34b), and F-Measure (Figure 5.35)). The results prove

that MuDi-Stream has much better quality results on a dataset with multi-density clusters.

The core-mini-clusters which are formed from MDS2 data points and final clustering
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Figure 5.30: Cluster F-Measure of MuDi-Stream for MDS1 with (a) horizon = 5 and
stream speed = 1000, (b) horizon = 1 and stream speed = 500
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Figure 5.31: (a) Core-mini-clusters, (b) Final clusters in MDS1
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Figure 5.32: Cluster (a) Purity and (b) Normalized Mutual Information of MuDi-Stream
for MDS2 with horizon = 2 and stream speed = 1000

results are shown in Figures 5.36a, and 5.36b respectively.The parameters of MuDi-

Stream adopt the following settings:λ = 0.5, Minpts= 4, α = 0.25, gridGraunality=

20, and DenStream’s values are chosen to be the same as the ones in the work presented

in (Cao et al., 2006).
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Figure 5.33: Cluster (a) Rand Index and (b) Adjusted Rand Index of MuDi-Stream for
MDS2 with horizon = 2 and stream speed = 1000
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Figure 5.34: Cluster (a) Jaccard Index and (b) FM of MuDi-Stream for MDS2 with hori-
zon = 2 and stream speed = 1000
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Figure 5.35: Cluster F-Measure of MuDi-Stream for MDS2 with (a) horizon = 2 and
stream speed = 1000

5.3.4 Multi-density Dataset - 5Circles (MDS3)

The results are computed at different time units, 6, 10, and 13 with the horizon set to

1 and stream speed 1000 points per time unit.

It can be observed from the evaluation results, which are depicted in Figures 5.37,

5.38, 5.39, and 5.40, that MuDi-Stream outperforms DenStream. MuDi-Stream has val-
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Figure 5.36: Core-mini-clusters and final clusters for MDS2
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Figure 5.37: Cluster Purity and Normalized Mutual Information of MuDi-Stream for
MDS3 with (a) horizon = 1 and stream speed = 1000

ues almost equal to 1 for most of the metrics; however, DenStream gets low quality results

with highest value 0.68%. The dataset has two sparse clusters with three dense ones for

which it is difficult to handle. DenStream quality values is low since with highε values,

it can detect the sparse grids correctly while the other three dense clusters are considered

as one. If DenStream detects the small clusters precisely, the sparse clusters are detected

as noise. Therefore, DenStream clustering results are low for this dataset.

The parameters of MuDi-Stream adopt the following settings: λ = 0.125,Minpts=

4, α = 0.04, gridGraunality= 30, and DenStream’s values are chosen to be the same

as its research paper (Cao et al., 2006). Figures 5.41a, and 5.41b depict the core-mini-

clusters and the final clusters of the dataset accordingly.
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Figure 5.38: Cluster Rand Index and Adjusted Rand Index of MuDi-Stream for MDS3
with (a) horizon = 1 and stream speed = 1000
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Figure 5.39: Cluster Jaccard Index and FM of MuDi-Stream for MDS3 with (a) horizon
= 1 and stream speed = 1000
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Figure 5.40: Cluster F-Measure of MuDi-Stream for MDS3 with (a) horizon = 1 and
stream speed = 1000

5.3.5 Evolving Multi-density Dataset (EMDS)

Evaluation with seven different metrics on EMDS shows that MuDi-Stream performs

quite well in detecting correct clusters. DenStream becomeconfused when there is a

change in the density of clusters. In Figures 5.42, 5.43, 5.44, 5.45, 5.46, 5.47, and 5.48,

the values of external validity criteria computed from clustering results on dataset EMDS
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Figure 5.41: Core-mini-clusters and final clusters for MDS3

validated the mentioned claim. MuDi-Stream achieved almost maximum values of 1

while DenStream attained values of approximately 0.6.

The final clustering results obtained by MuDi-Stream on the evolving multi density

data stream (EMDS) are shown in Figure 5.49. In Figure 5.49a points indicate the raw

data while circles in Figure 5.49b denote the core mini clusters. The results are com-

puted at different time units with horizon set to 2 at time units 4, 12, 20 and stream

speed 680, and horizon 1 with stream speed 1360 at time units 1, 4, 7, and 10. The pa-

rameters of MuDi-Stream adopt the following settings:λ = 1, Minpts= 3, α = 0.03

gridGraunality= 20, and DenStream as in (Cao et al., 2006).

DenStream has the ability to detect arbitrary shape clusters in evolving data stream;

however, when the evolving data has changes in its density, DenStream cannot detect

properly. Therefore, the quality results decrease compared to MuDi-Stream. MuDi-

Stream can adjust its parameters as data evolves and densitychanges. Thus, it outper-

forms DenStream for evolving multi-density data stream.

5.3.6 Multi-density CylinderCube (MDS4)

The clustering results of MuDi-Stream are shown for two perspectives in Figures

5.50a, 5.50b. It can be observed that, MuDi-Steam can detectclusters precisely. Since

in MDS4, the density distribution changes are not high, hence, DenStream also can get
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Figure 5.42: Cluster Purity of MuDi-Stream for EMDS with (a) horizon = 1 and stream
speed = 1360, (b) horizon = 2 and stream speed = 680
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Figure 5.43: Cluster Normalized Mutual Information of MuDi-Stream for EMDS with
(a) horizon = 1 and stream speed = 1360, (b) horizon = 2 and stream speed = 680
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Figure 5.44: Cluster Rand Index of MuDi-Stream for EMDS with (a) horizon = 1 and
stream speed = 1360, (b) horizon = 2 and stream speed = 680

good results such as purity above 87.9% while MuDi-Stream has values almost 100% in

time unit 5. The quality comparisons of the algorithms are shown in Figures 5.51, 5.52,

5.53, 5.54. The results are computed at time units 5, and 10 with horizon set to 10 at time

stream speed 1000. The parameters of MuDi-Stream adopt the following settings:λ = 1,

Minpts= 3, α = 0.03,gridGraunality= 20, and DenStream’s as in (Cao et al., 2006).
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Figure 5.45: Cluster Adjusted Rand Index of MuDi-Stream for EMDS with (a) horizon =
1 and stream speed = 1360, (b) horizon = 2 and stream speed = 680

1 4 7 10

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time Unit

Ja
cc

ar
d 

In
de

x

MuDi.Stream
DenStream

(a)

4 12 20

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time Unit

Ja
cc

ar
d 

In
de

x
MuDi.Stream
DenStream

(b)

Figure 5.46: Cluster Jaccard Index of MuDi-Stream for EMDS with (a) horizon = 1 and
stream speed = 1360, (b) horizon = 2 and stream speed = 680
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Figure 5.47: Cluster FM of MuDi-Stream for EMDS with (a) horizon = 1 and stream
speed = 1360, (b) horizon = 2 and stream speed = 680

5.3.7 Gaussian Multi-density Dataset (GMDS)

This dataset is used to evaluate the ability of MuDi-Stream in Gaussian distributions.

For GMDS, both algorithms gave close quality values in purity, NMI, RI, ARI, JI, FM,

and F-Measure. The quality values are approximately equal to 1 and for purity almost

equals to 100%. However, in term of efficiency MuDi-Stream process remarkably faster
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Figure 5.48: Cluster F-Measure of MuDi-Stream for EMDS with (a) horizon = 1 and
stream speed = 1360, (b) horizon = 2 and stream speed = 680
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Figure 5.49: EMDS dataset (a) data points at t = 6 (b) Core-mini-clusters at t = 12

than DenStream. The results are displayed in Figures 5.56, 5.57, 5.58, 5.59, 5.60, 5.61,

and 5.62. The results confirm that MuDi-Stream has the ability to cluster the data in

Gaussian distributions.

The results are computed at 1) time units 1, 2, 3,. . ., 10 at horizon set to 1 with

stream speed 1000, and 2) horizon 5 with stream speed 500 and time units 4, 8, 12, 16,

and 20.

The parameters of MuDi-Stream adopt the following settings: λ = 0.5, Minpts= 3,

α = 0.05, gridGraunality= 30, and DenStream’s values are chosen to be the same as

(Cao et al., 2006). Figures 5.55a, and 5.55b depict the core-mini-clusters and final clusters

of GMDS respectively.
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Figure 5.50: Multi-density CylinderCube - Final Clusters
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Figure 5.51: Cluster Purity and Normalized Mutual Information of MuDi-Stream for
MDS4 with horizon = 10 and stream speed = 1000

5.3.8 Network Intrusion Detection Dataset

Figures 5.63, 5.64, 5.65, 5.66, 5.67, 5.68, and 5.69 show thequality results for the

Network Intrusion Detection dataset on seven metrics. For the evaluation purposes, we

performed the measurements at time units where some attacksexist (8, 14, 19, 22 and

43, 51, 86, 100). The results have been computed by setting the horizon to 1 and 2,

whereas the stream speed is 1000. We can clearly see the high clustering quality achieved

by MuDi-Stream on this dataset. For example, Rand Index, for all the time units almost

reaches 100% when the horizon is set to 1. Analogous results are obtained when horizon
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Figure 5.52: Cluster Rand Index and Adjusted Rand Index for MDS4with horizon = 10
and stream speed = 1000
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Figure 5.53: Cluster Jaccard Index and FM for MDS4 with horizon = 10 and stream speed
= 1000
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Figure 5.54: Cluster F-Measure for MDS4 with horizon = 10 and stream speed = 1000

value 2 is used. On this dataset MuDi-Stream outperforms DenStream on others quality

metrics as well.

The parameters of MuDi-Stream adopt the following settings: λ = 0.25,Minpts= 3,

α = 0.15gridGraunality= 30, and DenStream as in (Cao et al., 2006).
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Figure 5.55: GMDS - Core-mini-clusters and final clusters
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Figure 5.56: Cluster Purity for GMDS with (a) horizon = 1 and stream speed = 1000, (b)
horizon = 5 and stream speed = 500
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Figure 5.57: Cluster Normalized Mutual Information for GMDSwith (a) horizon = 1 and
stream speed = 1000, (b) horizon = 5 and stream speed = 500
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Figure 5.58: Cluster Rand Index for GMDS with (a) horizon = 1 andstream speed =
1000, (b) horizon = 5 and stream speed = 500
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Figure 5.59: Cluster Adjusted Rand Index for GMDS with (a) horizon = 1 and stream
speed = 1000, (b) horizon = 5 and stream speed = 500
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Figure 5.60: Cluster Jaccard Index for GMDS with (a) horizon =1 and stream speed =
1000, (b) horizon = 5 and stream speed = 500
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Figure 5.61: Cluster FM for GMDS with (a) horizon = 1 and streamspeed = 1000, (b)
horizon = 5 and stream speed = 500
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Figure 5.62: Cluster F-Measure for GMDS with (a) horizon = 1 and stream speed = 1000,
(b) horizon = 5 and stream speed = 500
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Figure 5.63: Clustering Purity on Network Intrusion Detection (a) horizon = 1 and stream
speed = 1000, (b) horizon = 2 and stream speed = 1000
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Figure 5.64: Clustering Normalized Mutual Information on Network Intrusion Detection
Dataset (a) horizon = 1 and stream speed = 1000, (b) horizon = 2and stream speed = 1000
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Figure 5.65: Clustering Rand Index on Network Intrusion Detection Dataset (a) horizon
= 1 and stream speed = 1000, (b) horizon = 2 and stream speed = 1000
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Figure 5.66: Clustering Adjusted Rand Index on Network Intrusion Detection Dataset (a)
horizon = 1 and stream speed = 1000, (b) horizon = 2 and stream speed = 1000
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Figure 5.67: Clustering Jaccard Index on Network Intrusion Detection Dataset (a) horizon
= 1 and stream speed = 1000, (b) horizon = 2 and stream speed = 1000
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Figure 5.68: Clustering FM on Network Intrusion Detection Dataset (a) horizon = 1 and
stream speed = 1000, (b) horizon = 2 and stream speed = 1000

5.3.9 LandSat Satellite Data

The quality comparisons are performed on the horizons 1 and 3with stream speeds

1000 and 500 respectively. The time units in horizon 1 are 1, 3, and 5 and in horizon

3 are 3, 6, and 9. We evaluated the algorithms on different time units as it is depicted

in Figures 5.70, 5.71, 5.72, 5.73, 5.74, 5.75, and 5.76. It can be seen that MuDi-Stream
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Figure 5.69: Clustering F-Measure on Network Intrusion Detection Dataset (a) horizon =
1 and stream speed = 1000, (b) horizon = 2 and stream speed = 1000
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Figure 5.70: Clustering Purity on LandSat (a) horizon = 1 and stream speed = 1000, (b)
horizon = 3 and stream speed = 500

clearly outperforms DenStream for most of the quality metrics and the values are almost

1. For instance, when the Adjusted Rand Index values of MuDi-Stream in horizon 3

and time unit 3 is equal to 1, DenStream’s value is 0.59 which is quite low compared to

MuDi-Stream.

The reason for the difference is that MuDi-Stream detects clusters with different

densities precisely. The quality of DenStream deteriorates greatly because in DenStream

a global set of parameters is applied which is not sufficient for the data with a range

of densities and it may detect different clusters as one or sparse cluster as noise. The

parameters of MuDi-Stream adopt the following settings:λ = 0.5,Minpts= 5, α = 0.01,

gridGraunality= 20, and DenStream’s as in (Cao et al., 2006).
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Figure 5.71: Clustering Normalized Mutual Information on LandSat (a) horizon = 1 and
stream speed = 1000, (b) horizon = 3 and stream speed = 500
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Figure 5.72: Clustering Rand Index on LandSat (a) horizon = 1 and stream speed = 1000,
(b) horizon = 3 and stream speed = 500
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Figure 5.73: Clustering Adjusted Rand Index on LandSat (a) horizon = 1 and stream
speed = 1000, (b) horizon = 3 and stream speed = 500

5.3.10 Forest Cover Type

The evaluations on Forest dataset are reported in Figures 5.77, 5.78, 5.77, 5.79,

5.80, 5.81, 5.82, and 5.83, for Purity, NMI, RI, ARI, JI, FM, andF-Measure metrics

respectively. The results show that MuDi-Stream overcomesDenStream on this dataset

as well. The results are computed at 1) time units 20, 40, 80, and 100 with the horizon set
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Figure 5.74: Clustering Jaccard Index on LandSat (a) horizon= 1 and stream speed =
1000, (b) horizon = 3 and stream speed = 500
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Figure 5.75: Clustering FM on LandSat (a) horizon = 1 and stream speed = 1000, (b)
horizon = 3 and stream speed = 500
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Figure 5.76: Clustering F-Measure on LandSat (a) horizon =1 and stream speed = 1000,
(b) horizon = 3 and stream speed = 500

to 1 and stream speed 1000 and 2) horizon 5 with same stream speed in 30, 50, 70, and

90 time units. The degraded quality values during the initial clustering results were found

to be due to the presence of all seven class types during the initial portion of the data

combined with a lack of prior knowledge of cluster distributions. However, examining

the stream processing shows that this initial poor results does not happen again later with
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Figure 5.77: Clustering Purity on Forest cover type (a) horizon = 1 and stream speed =
1000, (b) horizon = 5 and stream speed = 1000
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Figure 5.78: Clustering Normalized Mutual Information on Forest cover type (a) horizon
= 1 and stream speed = 1000, (b) horizon = 5 and stream speed = 1000

the simultaneously reappearance of all seven classes. For example, as it is depicted in

Figure 5.83, F-Measure values in horizon 5 is 0.891, and 0.898 in time units 30, and 50

respectively; however, in the 70, and 90 time units the values increase to 0.979 and 0.999

in the order given.

The parameters of MuDi-Stream adopt the following settings: λ = 1, Minpts= 5,

α = 0.04,gridGraunality= 25, and DenStream’s as in (Cao et al., 2006).
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Figure 5.79: Clustering Rand Index on Forest cover type (a) horizon = 1 and stream speed
= 1000, (b) horizon = 5 and stream speed = 1000
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Figure 5.80: Clustering Adjusted Rand Index on Forest cover type (a) horizon = 1 and
stream speed = 1000, (b) horizon = 5 and stream speed = 1000
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Figure 5.81: Clustering Jaccard Index on Forest cover type (a) horizon = 1 and stream
speed = 1000, (b) horizon = 5 and stream speed = 1000
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Figure 5.82: Clustering FM on Forest cover type (a) horizon = 1and stream speed = 1000,
(b) horizon = 5 and stream speed = 1000
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Figure 5.83: Clustering F-Measure on Forest cover type (a) horizon = 1 and stream speed
= 1000, (b) horizon = 5 and stream speed = 1000
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5.4 Quality Comparison of MuDi-Stream with a Grid-based Method

In this section, we compare the clustering result of MuDi-Stream with D-Stream (Tu

& Chen, 2009). D-Stream is a grid-based method which cluster data stream in limited

time. The main reason behind the low execution time of D-Stream is its synopsis storing

method which is based on grid.

We compare the proposed algorithm with D-Stream to show thatit performs better

than D-Stream in terms of the quality of final clustering results. D-Stream forms final

clusters by merging dense grids whereas our method forms core-mini-clusters from the

grid and final clusters from the core-mini-clusters. We utilize the grid method to keep the

outliers; however, final clusters are not generated according to the grid structure.

Figure 5.84 shows the precision (cf. Equation 2.17) comparison of MuDi-Stream

versus D-Stream on Network Intrusion Detection Dataset. The values of the precision

metrics are on different time units, 100, 150, 200, 250, and 300. The figure shows that in

terms of precision MuDi-Stream outperforms D-Stream in most time units.
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Figure 5.84: Precision of MuDi-Stream Compared to D-Stream on Network Intrusion
Detection Dataset
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5.5 Quality Comparison of MuDi-Stream with a Multi-density Met hod

DSCLU (Namadchian & Esfandani, 2012) is a multi density-based clustering al-

gorithm for data streams. It has the ability to cluster multi-density data. However, the

difference between this method and MuDi-Stream is that DSCLUclusters the data in the

offline phase using a multi-density algorithm and yet it has high computation time. Our

method is faster than DSCLU since it has three list of micro clusters including dense,

transitional and sporadic. Searching in all these three lists is a time consuming task.

MuDi-Stream has only one list for searching and a grid structure which is not as time

consuming as DSCLU. Hence, the computation time is lower.

Figure 5.85 depicts the purity comparison of MuDi-Stream versus DSCLU on Net-

work Intrusion Detection Dataset. The values of the purity metrics are on different time

units, 100, 150, 350, and 470. The figure shows that in terms ofpurity MuDi-Stream is

almost better than DSCLU in most time units. The difference isnot notable; however,

MuDi-Stream is a more efficient method which finishes its online phase much faster than

DSCLU.
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Figure 5.85: Purity of MuDi-Stream Compared to DSCLU on Network Intrusion Detec-
tion Dataset
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5.6 Complexity Analysis

Streaming algorithms are required to have a fixed and small memory usage and a

short computing time for the whole process.

In this section, we discuss about time and space complexity of MuDi-Stream Algo-

rithm. The overall complexity of MuDi-Stream depends on itscomponents complexities.

5.6.1 Space Complexity

The potential data which participate in the final clusters are kept in core-mini-clusters

and the outliers are maintained in the grid list. For core-mini-clusters, we needO(mc)

space wheremc is the number of core-mini-clusters. However, the core-mini-clusters are

pruned frequently, and so the space complexity isO(rmc) in which rmc< mc. The space

complexity for the grid isN. While the process continues the scattered grids are removed.

Therefore, althoughN is exponential to the number of dimensions, the space complexity

is O(logN) (according to Appendix A on Page 177).

Our experimental results also showed that for small, and even big datasets no matter

the data is dense or scattered the memory consumption is not high. This is due to the

pruning processes that are performed regularly on the core-mini-clusters as well as the

grid list.

SpaceComplexity(MuDi−Stream) = SC(coreminiclusters)+SC(grid) =

O(rmc)+O(logN)

5.6.2 Time Complexity

In order to determine the time complexity of MuDi-Stream, wehave to measure the

time complexity of its online phase. Therefore, the complexity of each components of the

online phase is calculated.

One of the main components of the online phase of MuDi-Streamis MM-Component

which has two important tasks, i.e. merging or mapping. The first step in merging task is
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finding the nearest core-mini-cluster in core-mini-cluster list for the new arrival data point

from the data stream. In fact, the algorithm performs a linear search on core-mini-cluster

list. So, the time complexity isO(rmc) since the core mini clusters are pruned and the

number is less thanmcwheremc is the number of core-mini-clusters.

If the data point cannot be merged into an existing core-mini-cluster, it will be

mapped to the grid. In MuDi-Stream, we maintain a grid list which includes the grids

that are under consideration for clustering analysis. The grid list is implemented as a tree,

which allows for fast look up, update, and deletion. The key of the tree is the grid coordi-

nates, while the associated data for each grid entry is the grid’s synopsis. Since the space

complexity isO(logN), the time complexity to search, and update in the tree structure

is O(log logN) which is very small. The time complexity of FCM-Component is almost

zero since only a grid to core mini cluster conversion is performed.

In the PGCM-component, both grid and core mini clusters are pruned. Therefore,

the entire list of core mini clusters have to examines which lead toO(mc) as well as grid

list is O(logN).

In the existing methods such as DenStream when a new data point arrives, it takes

time to search in two lists of micro clusters including potentials and outliers in order to

find the suitable micro-cluster. However, MuDi-Stream onlysearches in potential list and

if it cannot find the suitable core-mini-cluster, the data point is mapped to the grid, which

keeps the outlier buffer. In fact, time complexity of clustering algorithm is decreased

using the grid-based clustering.

The overall time complexity of MuDi-Stream is as follows:

TimeComplexity(MuDi − Stream) = T(MM − Component) + T(PGCM −

Component) = Tsearch(cmc)+Tmap(g)+Tpruning(cmc)+Tpruning(g)

O(MuDi−Stream) = O(rmc)+O(log logN)+O(1)+O(mc)+O(logN)
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5.7 Scalability Evaluation

The following experiments are designed to evaluate the scalability of MuDi-Stream.

The first part is used to evaluate the execution time and the second part is used to study

the memory usage.

5.7.1 Execution Time

We use both Network Intrusion Detection and LandSat datasets to test the efficiency

of MuDi-Stream against DenStream. Figure 5.86a shows the execution time for the Net-

work Intrusion Detection dataset. We can see that both the execution time of MuDi-

Stream and DenStream grow linearly as the stream proceeds, and MuDi-Stream is more

efficient than DenStream. In addition, MuDi-Stream takes less than 3 seconds to process

20,000 data points. Thus, MuDi-Stream can comfortably handle high speed data streams.

Furthermore, Figure 5.86b shows that MuDi-Stream is more efficient than DenStream for

the LandSat dataset as well.

DenStream keeps two lists for micro-clusters: potential and outlier. When a new

data point arrives, DenStream searches in two lists while inMuDi-Stream we only need

to check a list of core-mini-clusters and then the grid list.Since the grid list is kept

in a tree structure it is much more faster to find a grid cell to map the new data point.

Therefore, it makes MuDi-Stream much faster than DenStream.

Then, the execution time of MuDi-Stream is evaluated on datastreams with various

dimensionality and different number of natural clusters (classes). Synthetic datasets are

used for these evaluations because any combination of the number of natural clusters and

dimensions can be obtained during the generation of datasets. Similar to the experiments

performed in (Cao et al., 2006), the data points of each synthetic dataset follows a series

of Gaussian distributions. We adopt the following notations to characterize the synthetic

datasets: “B” indicates the number of data points in the dataset (times 1000), whereas
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“C” and “D” indicate the number of natural clusters, and the dimensionality of each point,

respectively. For example, B400C5D20 means the dataset contains 400,000 data points

of 20-dimensions, belonging to 5 different clusters (classes).

1. The first series of datasets are generated by varying the number of natural clusters

from 5 to 25, while keeping the size and dimensionality of thedata streams fixed.

Figure 5.87a shows that the execution time of MuDi-Stream isnot dependent to

the number of natural clusters. The execution time does not notably change since

the search for core-micro-clusters is not dependant on the number of classes. For

example, when the number of clusters increases from 5 to 25 for dataset series

B200D40, the execution time only increases by 10 milliseconds (ms).

We repeated the experiment for three different dimensions,i.e. 10, 20, 30, and 40.

The results are similar when the number of classes are increased, i.e. increasing

the number of classes does not notably change the execution time. The difference

for the execution time of different numbers of dimensions are not high. The main

cause for the small change is that the number of tree levels increase when we have

a change in the dimensions of the dataset. So, it takes a bit longer to find map the

data points into the grid list.

2. The second series of datasets are generated by varying thedimensionality from 10

to 40, while keeping the stream size and the number of naturalclusters fixed. Figure

5.87b shows that the execution time grows linearly with respect to the dimension-

ality. Once more, this is because the time needed to map the new data point is a bit

longer because the tree structure will have higher number oflevels.

Similarly, we repeated the experiment for three different settings, i.e. number of

data points in the dataset and the number of classes. Figure 5.87b depicts that when

the number of data points are doubled the time taken to process the whole data is
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Figure 5.86: Execution Time on two different datasets
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Figure 5.87: Execution Time Changes

also doubled. So, the required time to process the same number of data points is

constant and it is independent of the number of clusters.

5.7.2 Memory Usage

One common feature for the algorithms applied to data streamis their limited upper

bounds for the memory usage. Since the memory usage may fluctuate in the progress of

data streams, the maximum memory usage is used as the measurement. The entity used

for the evaluation in MuDi-Stream is the core-mini-cluster.

For the comparison of memory usage, the stream length rangesfrom 10000 to 30000

for four datasets including Network Intrusion Detection, LandSat, EDS, and EMDS. As it

is shown in Figure 5.88, for real datasets, the memory usage of MuDi-Stream is limited.
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The number of core-mini-clusters is less than 30. Moreover,Figure 5.88 shows that the

memory usage of MuDi-Stream is bounded as the streams proceed for synthetic datasets.

For example, for EDS data stream, when the stream length changes from 15000 to 30000,

the memory usage only increases by 5.
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Figure 5.88: Memory Usage

5.8 Sensitivity Evaluation

The prominent parameters of MuDi-Stream includeλ , α, andgridGranularity. We

test clustering quality using seven different metrics overdifferent ranges of parameters on

different datasets. The results are shown for LandSat dataset.

5.8.1 Outlier Threshold: α

One of the important parameters of MuDi-Stream is the outlier threshold. Figure

5.89 depicts the clustering quality whenα varys from 0.01 to 0.3. Ifα ranges between

0.03 to 0.2, the clustering quality is very good. When the values of α are too small

it leads to small pruning times. Therefore, pruning happensmore frequently and more

core-mini-clusters are pruned. Hence, the quality is reduced.

This implies that sinceα andN has direct effect on each other. When a dimension

is so high the bigger values ofα is more preferable to decrease the effect of high values
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of N. However, in the datasets with lower dimension, better result can get using smaller

values ofα.

The important note is that theα which is used in algorithm is multiple by a coeffi-

cient. Otherwise, sinceN is a big number,α has no effect on it.
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Figure 5.89: Clustering Quality vs.α

5.8.2 Density Threshold:λ

λ is another parameter of MuDiStream. It controls the importance of historical data

to the current clusters. We test the clustering quality by varying it from 0.031 to 32. Figure

5.90 shows the results. When it is set to a relatively small or high value, the clustering

quality becomes poor. For example, whenλ = 0.031, the NMI is about 0.69. Further,

whenλ = 32, the points decay soon after their arrival and only a smallnumber of recent

points participate in the final clustering. So, the result isalso not very good. It can been

seen that ifλ ranges from 0.125 to 8, the clustering quality is quite good and stable, and

always above 90%.

5.8.3 Grid Granularity: gridGranularity

gridGranularity is a parameter which affects the clustering quality of MuDi-Stream.

We varied the value ofgridGranularity parameter of MuDi-Stream from 5 to 40 in-

creasing by 5 in order to investigate the sensitivity of the algorithm. The results on sen-
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Figure 5.90: Clustering Quality vs.λ

sitivity analysis are shown in Figure 5.91. It can be observed that the best range for

gridGranularity is between 20 to 30.

According to the sensitivity results forgridGranularity, we concluded that for the

datasets with denser clusters, highergridGranularityvalues achieve better results.

ThegridGranularity is an important parameter in MuDi-Stream in terms of the al-

gorithm’s execution time. It has a significant impact on execution time. This is due to

the change in the number of nodes of the tree structure used for the grid. Higher grid

granularity causes higher number of children for each node in the tree.
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Figure 5.91: Clustering Quality vs.gridGranularity
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5.9 Summary

In this chapter, we introduced the real and synthetic datasets which are used for

the evaluation of MuDi-Stream. The real and synthetic datasets are chosen from the

reviewed literature which are most used. They have variety in size, number of clusters,

and differences in their densities. A wide spectrum of experiments have been conducted

in this section as well.

Seven well-known evaluation metrics including Purity, Normalized Mutual Infor-

mation, Rand Index, Adjusted Rand Index, Jaccard Index, FM, F-Measure are selected to

show the high quality of the proposed algorithm. The metricsare calculated on selected

time units, stream speeds and horizons. Evaluations on several datasets using the quality

metrics show that MuDi-Stream achieves much better resultscompared to its competitive

methods.

We also measure the scalability of the proposed methods withdifferent numbers

of dimensions and clusters. The scalability results show that MuDi-Stream is scalable

with respect to the length and dimensionality of the data streams. MuDi-Stream shows

linear scalability on both the number of clusters and the number of data dimensions. In

terms of efficiency, MuDi-Stream finished the clustering process significantly faster than

DenStream.

Furthermore, by varying important parameters of MuDi-Stream, the clustering qual-

ity of MuDi-Stream is measured. The sensitivity analysis determined the best range for

prominent parameters of the proposed algorithm, thereforeit can be applicable for any

researcher who wants to perform MuDi-Stream on a new dataset.

The complexity analysis of MuDi-Stream shows that the time complexity of the

computation is less than the existing methods. It is worth tonote that, despite the lower

computation time of MuDi-Stream, the quality obtained is much higher than that obtained
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by DenStream specifically in multi-density datasets.

It is proved that using grid-based clustering in the online phase to map a new data

point while it might be noise and forming final clusters from real data using a density-

based clustering algorithm improve the quality and efficiency of the proposed algorithm.

We conclude that MuDi-Stream is an effective and efficient clustering algorithm in the

clustering evolving data stream with various densities.
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CHAPTER 6

CONCLUSION

6.1 Overview

This study proposed an adaptive density-based clustering method for evolving data

streams. The method not only can overcome the challenges to cluster evolving data stream

but also can cluster multi-density data stream. Furthermore, it has low computation time

and high quality with acceptable memory usage. The summary of finding, limitations of

the research and some recommendations are given in the following sections.

6.2 Summary of Results

We summarize the results by answering research questions from Chapter 1 as fol-

lows:

Question 1: which method is more appropriate for summarizing data stream?

In data stream, data points arrive continuously over time with high speed, and the size

of a stream is (potentially) unbounded. Therefore, there isnot enough time to process and

memory to keep. The synopsis model of data stream should not be only compact, but

also does not grow with the number of data points processed. Therefore, in this thesis

we proposed a hybrid method for data stream synopsis. A microcluster method is used

to keep summary information about arbitrary shape clusterswhile grid based method

maintains the outliers. These methods have two aforementioned characteristics. Our new

proposed core-mini-cluster concept is a vector which keepssummary information of data

points as well as some information for multi-density data. The grid-based method, also

keeps some information about data points inside each grid cell in grid synopsis. When

the data is mapped into the grid, the information related to that cell is updated and it is

167



not needed to update the whole grid. This method of updating synopsis data, makes our

computation time significantly faster.

Question 2: How to handle evolving data stream?

There are different methods for clustering evolving data stream. One of the well-

known methods is fading window model which is explained in Section 2.2.1. For han-

dling evolving data stream, a weight coefficient is considered for each data point. The

coefficient decreases exponentially over time. In this method, we have more emphasis on

the recent data. Since the coefficient is related to the arrival time of the data point, the

recent data has more weight compared to the old data.

Question 3: What are the reasons of high computation time?

According to the comprehensive review of the existing methods, the high computa-

tion time is because of searching to find suitable place to addnew arrival data to existing

synopsis data. However, in this thesis we decrease this exhaustive search with mapping

into the grids. The existing method keeps an extra list for outliers, which leads to high

computation time. However, we introduce grid-based methodin which when a new data

point arrives and it cannot be located in any existing synopsis, it is mapped to the grid.

Question 4: How to lower the computation time?

In this thesis, a hybrid method consisting of micro-clustering and grid-based tech-

nique is used to decrease the computation time. 1) Micro-clustering method is used to

form real clusters. 2) Grid-based method is used to keep outliers because of its fast pro-

cessing time. Low computational complexity of grid data structure has been the main

motivation for using it as synopsis.

Question 5: What issues impede the clustering quality in multi-densityenviron-

ments?

Based on the literature, the main reason which decreases the clustering quality in

multi-density environments is using a similar radius for different distributions of data. In
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the existing methods of density-based clustering for data stream, a small value of radius

will detect the sparse clusters as noise and a big number may not detect the dense clusters

properly. In fact, the existing methods do not adopt the clustering parameters according

to the density distribution of data.

Question 6: How to increase the clustering quality in multi-density data?

One of the well known frameworks for clustering data streamsis the online-offline

framework. In this thesis, not only we consider to improve quality in online phase but

also in the offline phase. In the online phase, we keep summaryinformation about data

as well as information for multi-density clustering. In theoffline phase, we also propose

a new multi-density clustering algorithm which uses the online synopsis information and

yet statistical analysis to form final clusters consideringdensity distribution of data. The

radius parameters of clustering are adjusted according to the density distribution of data.

This leads to high quality clustering specially in multi-density data.

6.3 Achievement of Objectives

The objectives of this research are as follows:

1. To propose and develop a new density-based algorithm for clustering evolving data

stream.

2. To improve the quality of clustering for multi-density data. The clustering quality

has to be high for normal distribution data as well as for the data with dissimilar

density distributions.

3. To reduce the computation time. The computation time has to be low enough to

cope with the speed of arriving data stream.

4. To evaluate the capability of the proposed methods in improving the quality.
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A multi-density based clustering algorithm, MuDi-Stream,is proposed to cluster

evolving data stream in order to achieve the first objective.The proposed algorithm was

designed, implemented and its improvement in quality is shown by a comprehensive eval-

uation using different datasets with different metrics.

The methods and results are summarized as follows:

• A hybrid method was introduced for the online phase consistof grid- and micro-

clustering. The method can handle multi-density data with low computation time

(cf. Section 4.7.1).

• A pruning method was proposed in the online phase to discardboth the grid cells

which are scattered and the core-mini-clusters with low density. The pruning is

performed frequently (cf. Section 4.7.3).

• A new density-based clustering algorithm is also proposedin the offline. The al-

gorithm has the ability to cluster multi-density data from synopsis information re-

ceived from the online phase (cf. Section 4.8.1).

The proposed method has high quality for multi-density datastream due to the con-

sideration of the density distribution of data. This has been proved in the experimental

evaluation explained in Chapter 5. This has answered the second objective. The radius of

clustering is updated by density distribution of data usinginformation kept in the online

phase as well as some statistical information.

The proposed method reduced the computation time to achievethe third objective.

This is discussed in Section 5.6. Three strategies caused the low computation time: 1)

Using the grid-based method which maps the outliers, 2,3) pruning the grid and the core-

mini-clusters frequently.
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An extensive evaluation was performed to show the superiority of the method to

the existing methods. This has been done to achieve the forthobjective. The proposed

method’s evaluation is not biased to any dataset, size, parameter, or quality metrics. We

claim the unbiased evaluations due to the following analysis:

• The proposed method was evaluated on various datasets withdifferent numbers of

data points, sizes and densities.

• Different synthetic datasets with different density distribution are used to measure

the quality of clustering in the multi-density environments.

• Seven well-known evaluation metrics in the literature were used to evaluate clus-

tering quality.

• The range of algorithm’s parameters were determined in thesensitivity analysis of

the method.

6.4 Contributions

There are a number of density-based clustering algorithms for data stream. How-

ever, they have high computation time due to their high merging time. Furthermore, they

do not have the ability to cluster multi-density data which leads to their low quality re-

sults. On the other hand, there are some multi-density clustering algorithms for static

datasets which are not applicable for data stream since theyhave some problems such as

requiring whole data for clustering or high execution time.Yet only a few approaches

have been proposed so far which tackle both the stream and themulti-density aspects of

the data simultaneously. Therefore, a new density-based clustering was presented in this

thesis to overcome the aforementioned problems. Furthermore, according to data stream

characteristics, the challenges in clustering data streams had to be considered in the pro-
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posed algorithm. The specific research contributions of this thesis can be summarized as

follows:

• a new multi density-based clustering for evolving data streams (MuDi-Stream)

• a new synopsis structure for multi density data

• a new hybrid method for online phase of algorithm using gridand micro clustering

method

• a new multi density-based clustering for offline phase (M-DBSCAN)

• an extensive evaluation

A new multi density-based clustering for evolving data streams (MuDi-Stream):

MuDi-Stream consists of four main components: MM-component, FCM-component,

PGCM-component and FFC-component. The first three componentsare used in online

phase while the last component is related to offline phase. They perform four important

tasks including merging or mapping, forming core mini clusters, pruning grids and core

mini clusters, and forming final clusters.

MuDi-Stream offers a novel approach for clustering data stream from a multi density

environment. The approach complies with all data streams clustering requirements. It re-

quires only one scan of data. It updates new data observations received from data sources

to the previously mined models. The system spends a small amount of processing time

per data point.

The proposed method can overcome challenges in clustering data stream as follows:

• Handling evolving data streams: using fading window model

• Handling noisy data: map them into grids, mark as scatteredgrids and pruned them
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• Clustering in limited time: using a hybrid method for clustering allow us to perform

clustering in limited time.

• Clustering in limited memory: by pruning grids and micro clusters frequently, we

try to keep the memory bounded.

A new synopsis structure for multi density data: Some new concepts are intro-

duced including mini core distance, core mini clusters, andcore-neighboring in order to

handle multi-density data stream.

A new hybrid method for online phase of algorithm using grid and micro clus-

tering method: A hybrid method based on the micro-clustering and grid-based cluster-

ing is applied to capture summary information of the data points. Grid-based method is

used for mapping outliers and forming new mini clusters withdifferent radius. This is

conducive to improve the quality in multi-density data as well as a dramatic decrease in

merging time. In fact, MuDi-Stream replaces the exhaustivesearch of assigning a point

to the appropriate outlier micro-cluster with a grid mapping task.

A new multi density-based clustering for offline phase (M-DBSCAN): A density-

based clustering algorithm called M-DBSCAN is proposed for the offline phase which

forms final clusters with various densities from the synopsis data.

An extensive evaluation:A comprehensive set of experiments were conducted on

both synthetic and real-world datasets using various kindsof evaluation metrics. The re-

sults have proved that the proposed method can clusters datastream in multi-density en-

vironments in comparison with the existing methods. Our algorithm has better clustering

quality, efficiency, and scalability than existing methods. We performed a comprehensive

evaluation on ten different dataset with various numbers ofsize, cluster, dimension and

density. Seven different metrics consist of purity, normalized mutual information, Rand

Index, Adjusted Rand Index, FM, F-measure is evaluated the quality of proposed method.
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The evaluation proved that our proposed method has higher quality compare to existing

method.

6.5 Limitations of Current Study

• We observed that, the clustering algorithms cannot deal with high dimensional data.

The number of grids will be increased as the space dimensionality grows. They

have low performance on very high dimensional data. Therefore, further research

may involve handling both the high dimensional data in density-based data stream

clustering and at the same time handling the other challenges.

• The method uses fading window model for clustering evolving data streams. The

window model is chosen based on the best and most used method in the literature.

Nevertheless, more analysis are need to check whether otherwindow models can

increase the clustering quality in case of having multi-density clusters in our data.

• In this thesis, Euclidean distance is used. However, more analysis is required to

determine if other kinds of distances such as mahalanobis distance can increase the

quality.

6.6 Recommendations and Future Directions

The researcher strongly believes that the proposed method in this thesis highly im-

proves not only the quality of density-based clustering algorithms in multi-density envi-

ronments but also has low computation time. Hopefully, the proposed method is used

by other researchers in other real applications with multi-density distributions or in ap-

plications with requirements of limited time. Apart from the above improvements, some

important refinements are discussed as follows:

• In real applications, we have other different kinds of datasuch as categorical or

uncertain. Extending the proposed method to be applicable for other types of data
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is required for clustering evolving data stream.

• Different applications produce infinite streams of data distributed from various re-

sources such as sensor networks. Therefore, data should also be processed in a

distributed fashion. So, the method can be adapted to be applicable in distributed

environments.

• High dimensional data are collected in many scientific projects, humanity research,

or business processes. This is to better understand the phenomena that the re-

searchers or managers are interested in. Therefore, extending the proposed method

to be applicable for high dimensional data is a further research topic.

• With the emergence of big data, which is evolving and changing, data stream is a

specific approach to deal with it. Therefore, extending proposed algorithms to meet

the requirements for big data is another interesting issue for research.

We hope that the research presented in this thesis will inspire more research from the

researchers and practitioners in the field.

175



Appendices

176



APPENDIX A

OUTLIER THRESHOLD FORMULA

Definition 25 (Outlier Weight Threshold function (OWT)).If the last updated time of a

grid g is tp then at current time tc, Outlier Weight Threshold (OWT) is defined as follows

(tc > tp):

OWT(tp, tc) =
α
N

tc−tp

∑
i=0

2−λ i =
α(1−2−λ (tc−tp+1))

N(1−2−λ )
(A.1)

Lemma 3 The outlier weight threshold function has the following attributes:

1. if t1≤ t2≤ t3, then

2−λ (t3−t2)owt(t1, t2)+owt(t2+1, t3) = owt(t1, t3)

2. if t1≤ t2 then

owt(t1, t)≥ owt(t2, t), t > t1, t2

Proof.

1.

2−λ (t3−t2)owt(t1, t2)+owt(t2+1, t3) =
α
N

t2−t1

∑
i=0

2−λ (t3−t2+i)+
α
N

t3−t2−1

∑
i=0

2−λ i

=
α
N
(

t3−t1

∑
i=t3−t2

2−λ i +
t3−t2−1

∑
i=0

2−λ i) =
α
N

t3−t1

∑
i=0

2−λ i = owt(t1, t3).

2. δ t = t2− t1

owt(t1, t) =
α
N

t−t1

∑
i=0

λ i =
α
N

t−t2+δ t

∑
i=0

2−λ i
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α
N
(
t−t2

∑
i=0

2−λ i +
t−t2+δ t

∑
i=t−t2+1

2−λ i) =
α
N

t−t2

∑
i=0

2−λ i +
α
N

t−t2+δ t

∑
i=t−t2+1

2−λ i

= owt(t2, t)+
α
N

t−t2+δ t

∑
i=t−t2+1

2−λ i ≥ owt(t2, t).

The design of density threshold function is explained as follows. Assume a grid

g has been deleted at time stepst1, t2, . . . , tk = t. We need to guarantee thatg cannot

become a core mini cluster even if it has not been deleted. therefore we should have:

wg(t)≤
α(1−2−λ (t+1))

N(1−2−λ )

we also have:

wg(t)≤ ∑k
i=1owt(ti−1, ti)2−λ (t−ti) therefore, we need

k

∑
i=1

owt(ti−1, ti)2
−λ (t−ti) ≤

α(1−2−λ (t+1))

N(1−2−λ )
(A.2)

α(1−2−λ (t+1))

N(1−2−λ )
=

α
N
(1+2−λ + . . .+2−λ t)

=
α
N
(1+2−λ + . . .+2−λ (ti−ti−1))2−λ (t−ti)

=
k

∑
i=1

α(1−2−λ (ti−ti−1+1))

N(1−2−λ )
2−λ (t−ti)

(A.3)

from A.2 and A.3, we have

owt(ti−1, ti) =
α(1−2−λ (ti−ti−1+1))

N(1−2−λ )

Theorem. The size of grid list at mostL = 1
λ log α

N+α N is the total number of grid

andλ is the decay factor.

Proof. t− tp = L the density of each gridg at time t equals

wg(t) = wg(t− tp)2−λ (t−tp) < wg(t− tp)2−λL < 2−λL

1−2−λ

(because the maximum density is1
1−2−λ )
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SinceN2−λL +α2−λ (t−tp+1) < N2−λL +α2−λ (t−tp+1) < N2−λL +α2−λL = α

ThenN2−λL < α−α2−λ (t−tp+1)

Therefore, we have

wg(t)≤
2−λL

1−λ
=

N2−λL

N(1−λ )
<

α−α2−λ (t−tp+1)

N(1−λ )
=

α(1−2−λ (t−tp+1))

N(1−λ )
= owt(tp, t)

Proposition 2. Assume the last time a grid g is deleted as scattered grid istk and the

last updated of gridg is tp. If at current timet, we havewg(t) < owt(tp, t), then we also

havewg(t)< owt(0, t)

Proof. Suppose the gridg has been deleted before for the periods of(0, t1),(t1+

1, t2), . . . ,(tk−1+1, tm), then the density valuewg(ti), i = 1. . .k satisfies:

wg(ti)< owt(ti−1+1, ti) (A.4)

if the previous data is not deleted, we have density threshold function as follows:

wg(t) =
k

∑
i=1

wg(ti)2
−λ (t−ti)+wg(t)<

k

∑
i=1

owt(ti−1+1, t)2−λ (t−ti)+owt(tp, t) (A.5)

Becausetp≥ tm+1, according to attribute 2 of Definition 25, we have:

The last equalities are based on the attribute 1 of Definition25.

Definition 26 (Pruning time). We check the cmc’ weight as well as grids’ in a specific

time called tpt. tpt is the minimum time for a cmc in timestamp t1 to be converted to an

outlier in t2 (t2 > t1), which is formally defined as follows:

Lemma 4

tpt =
1
λ

log
α

α−1+2−λ
2
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Proof.

wcmc(t2)< wcmc(t1) =
α

N(1−2−λ )
(A.6)

2−λ (t2−t1) ∗wcmc(t1)+1< wcmc(t1)

2−λ (t2−t1) <
wcmc(t1)−1

wcmc(t1)
, tpt = t2− t1

2−λ tpt <
wcmc(t1)−1

wcmc(t1)

tpt >
1
λ

log
wcmc(t1)

wcmc(t1)−1

2 (A.7)

From Equations A.6, and A.7 we have:

tpt =

⌈

1
λ

log
α

α−1+2−λ
2

⌉

(A.8)
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APPENDIX B

AVERGAE QUALITY COMPARISON

Since each dataset is evaluated on different horizon streamspeed. In this Section, we

also evaluated quality metrics on different dataset by measuring the average values on the

whole data stream. As it is shown in Figures B.1, B.2, B.3, B.4, B.5.MuDi-Stream is

outperform DenStream on all quality metrics on whole data stream.
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Figure B.1: Average of Quality Metrics on a) EDS and b) EMDS

181



Purity NMI RI ARI JI FM F−Measure

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Quality Metrics

A
ve

ra
ge

 V
al

ue
s

MuDi.Stream
DenStream

(a)

Purity NMI RI ARI JI FM F−Measure

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Quality Metrics

A
ve

ra
ge

 V
al

ue
s

MuDi.Stream
DenStream

(b)

Figure B.2: Average of Quality Metrics on a) Forest and b) GMDS
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Figure B.3: Average of Quality Metrics on a) KDD and b) LandSat
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Figure B.4: Average of Quality Metrics on a) MDS1 and b) MDS2
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Figure B.5: Average of Quality Metrics on a) MDS3 and b) MDS4
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APPENDIX C

INTERNAL QUALITY EVALUATION

In terms of internal quality evaluation, we have evaluated the final clustering results of

MuDi-Stream on one of the datasets, i.e. Gaussian Multi-density Dataset (GMDS). Other

results on this dataset are presented in Section 5.3.7.

Figure C.1 illustrates the silhouette plot of the clusteringresults. The dataset in-

cludes five clusters. The average Silhouette values are reported in the plot. MuDi-Stream

produced compact and well-separated clusters since Silhouette value is close to 0.9.

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = ClusterIDs, dist = distancePower2)

Average silhouette width :  0.87

n = 120 5  clusters  Cj
j :  nj | avei∈Cj  si

1 :   22  |  0.89

2 :   20  |  0.84

3 :   31  |  0.92

4 :   23  |  0.87

5 :   24  |  0.82

Figure C.1: Silhouette Plot for Gaussian Multi-density Dataset (GMDS)
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APPENDIX D

THE DETAILS OF THE EXPERIMENTAL RESULTS

D.1 House (MDS2) Dataset Results

The results of the execution of MuDi-Stream on a multi-density dataset which we

called it House (MDS2) is presented in Section 5.3.3 on page 131. The details of the

execution are presented in Table D.1.

The parameters of MuDi-Stream for this execution adopt the following settings. We

measured the quality metrics with the horizon set to 5 and stream speed 1000.

• λ = 16,

• Minpts= 5,

• α = 0.9,

• gridGraunality= 30

In Table D.1 the following values are identified:

• Point Number: It shows the number of data points arrived at this time unit.The

dataset contains 12131 points and we measured the quality metrics for each 2000

points as well as at the end of the data stream.

• CMC Count : It represents the number of core-mini-clusters generatedby the on-

line phase of MuDi-Stream.

• tonline: The time elapsed (seconds) from the execution’s commencement until this

data point arrived.
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• Quality Metrics : The values of several quality metrics including Purity, Entropy,

NMI, RI, ARI, Jaccard Score, Precision, Recall, FM, and F-Measure are measured

and reported.

Point CMC tonline Purity Entropy NMI RI ARI Jaccard Precision Recall FM F-Measure
Number Count Score

2000 642 0.04 95.794 2.225 0.961 0.861 0.658 0.77 1 0.77 0.77 0.87
4000 1009 0.08 95.837 2.197 0.971 0.967 0.911 0.935 1 0.935 0.935 0.966
6000 1129 0.12 99.734 2.205 0.996 0.998 0.996 0.997 0.999 0.998 0.997 0.998
8000 1163 0.16 99.656 2.196 0.998 0.999 0.998 0.998 0.999 0.999 0.998 0.999

10000 1184 0.2 99.747 2.188 1 1 1 1 1 1 1 1
12131 1223 0.25 94.849 2.187 0.966 0.968 0.913 0.937 1 0.937 0.937 0.967

Table D.1: The details of an execution of MuDi-Stream on MDS2dataset

The number of classes in this dataset are five. MuDi-Stream could find the correct

number of clusters. For example, in time unit 10 for which 10000 points were read,

MuDi-Stream could find all 5 classes as five clusters. These five clusters are generated

by MDBSCAN using 1184 core-mini-clusters. The details are presented in Table D.2.

The table shows that, for example, 174 core-mini-clusters which all have class ID 1 are

clustered in Cluster 3.

Class Number Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1 0 0 174 0 0
2 0 0 0 0 240
3 0 166 0 0 0
4 445 0 0 0 0
5 0 0 0 159 0

Table D.2: Number of core-mini-clusters for the classes andclusters by an execution of
MuDi-Stream on MDS2 dataset

D.2 CylinderCube (MDS4) Dataset Results

The results of the execution of MuDi-Stream on a multi-density dataset which we

called it CylinderCube (MDS4) is presented in Section 5.3.6 onpage 138. The details of

the execution are presented in Table D.3.

In Table D.3 the following values are identified:
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• ID : It is a sequential number which shows different executionsof MuDi-Stream.

• Point Number: It shows the number of data points arrived at this time unit.The

dataset contains 10000 points and we measured the quality metrics for each 5000

points.

• Parameters’ Settings: The values of MuDi-Stream’s parameters:λ , minPts, α, and

Grid Granularity.

• CMC Count : It represents the number of core-mini-clusters generatedby the on-

line phase of MuDi-Stream.

• tonline: The time elapsed (seconds) from the execution’s commencement for each

execution ID until this data point arrived.

• CMCs in each cluster: The dataset contains three classes. For each execution we

identified the number of core-mini-clusters which are put ineach cluster.

ID Point λ minPts α Grid CMC tonline CMCs
Number Granularity Count in each cluster

1 5000 0.0625 4 0.6 4 28 0.514123821 11-9-8
10000 0.0625 4 0.6 4 31 0.644977329 11-12-8

2 5000 0.0625 4 0.6 8 57 0.161896245 30-20-7
10000 0.0625 4 0.6 8 68 0.262233437 36-24-8

3 5000 0.0625 4 0.5 4 31 0.086273589 11-12-8
10000 0.0625 4 0.5 4 36 0.171721328 14-14-8

4 5000 0.0625 4 0.5 8 64 0.088338516 35-21-8
10000 0.0625 4 0.5 8 72 0.177076073 39-25-8

5 5000 0.0625 4 0.4 8 74 0.086969645 28-38-8
10000 0.0625 4 0.4 8 88 0.17596015 31-47-10

6 5000 0.0625 4 0.2 4 55 0.085826253 23-20-12
10000 0.0625 4 0.2 4 56 0.170563748 23-21-12

7 5000 0.0625 5 0.6 4 28 0.090228373 11-9-8
10000 0.0625 5 0.6 4 31 0.179543361 11-12-8

8 5000 0.0625 5 0.6 8 57 0.086583283 30-20-7
10000 0.0625 5 0.6 8 68 0.174242344 36-24-8

9 5000 0.0625 5 0.5 8 64 0.0860792 35-21-8
10000 0.0625 5 0.5 8 72 0.169994769 39-25-8

10 5000 0.0625 5 0.4 8 74 0.086496956 28-38-8
10000 0.0625 5 0.4 8 88 0.175808622 31-47-10

11 5000 0.0625 5 0.3 8 84 0.086029698 29-45-10
10000 0.0625 5 0.3 8 103 0.170605403 36-53-14

12 5000 0.0625 5 0.2 8 115 0.086670817 38-61-16
10000 0.0625 5 0.2 8 131 0.172985759 39-66-26

13 5000 0.0625 5 0.2 12 212 0.08885256 67-112-33
10000 0.0625 5 0.2 12 256 0.178885035 77-130-49

14 5000 0.0625 5 0.1 4 83 0.084934902 28-35-20
10000 0.0625 5 0.1 4 92 0.169996278 31-39-22
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15 5000 0.0625 5 0.1 8 213 0.086874564 110-69-34
10000 0.0625 5 0.1 8 239 0.174666438 117-82-40

16 5000 0.0625 6 0.6 8 57 0.086084634 30-20-7
10000 0.0625 6 0.6 8 68 0.171038554 36-24-8

17 5000 0.0625 6 0.5 8 64 0.085819915 35-21-8
10000 0.0625 6 0.5 8 72 0.169890934 39-25-8

18 5000 0.0625 6 0.4 8 74 0.085379823 28-38-8
10000 0.0625 6 0.4 8 88 0.173411362 31-47-10

19 5000 0.0625 6 0.3 8 84 0.08520928 29-45-10
10000 0.0625 6 0.3 8 103 0.17202589 36-53-14

20 5000 0.0625 6 0.2 8 115 0.086599884 38-61-16
10000 0.0625 6 0.2 8 131 0.176605797 39-66-26

21 5000 0.0625 6 0.2 12 212 0.088005882 67-112-33
10000 0.0625 6 0.2 12 256 0.178103254 77-130-49

22 5000 0.0625 6 0.1 4 83 0.085681065 28-35-20
10000 0.0625 6 0.1 4 92 0.169976054 31-39-22

23 5000 0.0625 6 0.1 8 213 0.090166797 110-69-34
10000 0.0625 6 0.1 8 239 0.177025666 117-82-40

24 5000 0.0625 6 0.1 12 393 0.09482126 110-222-61
10000 0.0625 6 0.1 12 448 0.190156867 124-243-81

25 5000 0.0625 6 0.1 16 510 0.098255964 276-175-59
10000 0.0625 6 0.1 16 638 0.20819608 328-216-94

26 5000 0.0625 7 0.5 8 64 0.091571588 35-21-8
10000 0.0625 7 0.5 8 72 0.176798376 39-25-8

27 5000 0.0625 7 0.4 8 74 0.088172501 28-38-8
10000 0.0625 7 0.4 8 88 0.173376349 31-47-10

28 5000 0.0625 7 0.3 8 84 0.084173044 29-45-10
10000 0.0625 7 0.3 8 103 0.16997696 36-53-14

29 5000 0.0625 7 0.2 8 115 0.086550685 38-61-16
10000 0.0625 7 0.2 8 131 0.173306623 39-66-26

30 5000 0.0625 7 0.2 12 212 0.088254906 67-112-33
10000 0.0625 7 0.2 12 256 0.177710553 77-130-49

31 5000 0.0625 7 0.1 8 213 0.087976906 110-69-34
10000 0.0625 7 0.1 8 239 0.176155746 117-82-40

32 5000 0.0625 7 0.1 12 393 0.09548019 110-222-61
10000 0.0625 7 0.1 12 448 0.19158158 124-243-81

33 5000 0.0625 7 0.1 16 510 0.097541495 276-175-59
10000 0.0625 7 0.1 16 638 0.196910366 328-216-94

34 5000 0.125 4 0.5 12 176 0.086638822 55-99-22
10000 0.125 4 0.5 12 219 0.176162084 64-115-40

35 5000 0.125 4 0.4 4 54 0.084928263 23-19-12
10000 0.125 4 0.4 4 54 0.168181581 23-19-12

36 5000 0.125 4 0.4 8 122 0.086144097 39-65-18
10000 0.125 4 0.4 8 134 0.171552293 41-71-22

37 5000 0.125 4 0.4 12 221 0.088466498 72-118-31
10000 0.125 4 0.4 12 252 0.1792717 83-128-41

38 5000 0.125 4 0.3 4 68 0.082977735 24-29-15
10000 0.125 4 0.3 4 74 0.167900563 24-32-18

39 5000 0.125 5 0.6 8 81 0.085724531 28-45-8
10000 0.125 5 0.6 8 95 0.170517566 33-51-11

40 5000 0.125 5 0.6 12 147 0.087834433 48-89-10
10000 0.125 5 0.6 12 175 0.175407168 51-95-29

41 5000 0.125 5 0.5 4 43 0.082415093 14-18-11
10000 0.125 5 0.5 4 47 0.167004081 16-20-11

42 5000 0.125 5 0.4 8 122 0.087056578 39-65-18
10000 0.125 5 0.4 8 134 0.172259822 41-71-22

43 5000 0.125 5 0.4 12 221 0.08904363 72-118-31
10000 0.125 5 0.4 12 252 0.178731699 83-128-41

44 5000 0.125 5 0.3 4 68 0.084240355 24-29-15
10000 0.125 5 0.3 4 74 0.1675471 24-32-18

45 5000 0.125 5 0.3 8 147 0.086107876 80-44-23
10000 0.125 5 0.3 8 162 0.171980312 89-48-25

46 5000 0.125 5 0.2 4 85 0.084114183 28-35-22
10000 0.125 5 0.2 4 91 0.167988701 30-38-23

47 5000 0.125 5 0.2 8 219 0.086269967 111-73-35
10000 0.125 5 0.2 8 243 0.174279471 118-83-42

48 5000 0.125 5 0.2 12 407 0.092426113 113-228-66
10000 0.125 5 0.2 12 459 0.189531441 129-250-80

49 5000 0.125 5 0.1 4 215 0.08728266 84-82-49
10000 0.125 5 0.1 4 228 0.174775103 90-85-53

50 5000 0.125 5 0.1 8 472 0.094939583 240-164-68
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10000 0.125 5 0.1 8 514 0.194200393 255-177-82
51 5000 0.125 6 0.6 8 81 0.087633102 28-45-8

10000 0.125 6 0.6 8 95 0.172604829 33-51-11
52 5000 0.125 6 0.5 4 43 0.083342062 14-18-11

10000 0.125 6 0.5 4 47 0.167383501 16-20-11
53 5000 0.125 6 0.5 8 89 0.086207786 47-31-11

10000 0.125 6 0.5 8 99 0.17048889 52-35-12
54 5000 0.125 6 0.4 8 122 0.086366557 39-65-18

10000 0.125 6 0.4 8 134 0.172012005 41-71-22
55 5000 0.125 6 0.4 12 221 0.090925034 72-118-31

10000 0.125 6 0.4 12 252 0.179368593 83-128-41
56 5000 0.125 6 0.3 4 68 0.083804792 24-29-15

10000 0.125 6 0.3 4 74 0.166878814 24-32-18
57 5000 0.125 6 0.3 8 147 0.08614953 80-44-23

10000 0.125 6 0.3 8 162 0.173624465 89-48-25
58 5000 0.125 6 0.2 4 85 0.084294084 28-35-22

10000 0.125 6 0.2 4 91 0.170782587 30-38-23
59 5000 0.125 6 0.2 8 219 0.086477335 111-73-35

10000 0.125 6 0.2 8 243 0.174639272 118-83-42
60 5000 0.125 6 0.2 12 407 0.092587299 113-228-66

10000 0.125 6 0.2 12 459 0.188793731 129-250-80
61 5000 0.125 6 0.2 16 531 0.097675816 290-181-60

10000 0.125 6 0.2 16 637 0.202092153 342-214-81
62 5000 0.125 6 0.1 4 215 0.087063822 84-82-49

10000 0.125 6 0.1 4 228 0.173368802 90-85-53
63 5000 0.125 6 0.1 8 472 0.09466913 240-164-68

10000 0.125 6 0.1 8 514 0.192974899 255-177-82
64 5000 0.125 6 0.1 16 1037 0.12316338 583-340-114

10000 0.125 6 0.1 16 1277 0.239770367 700-395-182
65 5000 0.125 7 0.6 8 81 0.085758338 28-45-8

10000 0.125 7 0.6 8 95 0.170241075 33-51-11
66 5000 0.125 7 0.5 4 43 0.084842538 14-18-11

10000 0.125 7 0.5 4 47 0.167008004 16-20-11
67 5000 0.125 7 0.5 8 89 0.086061996 47-31-11

10000 0.125 7 0.5 8 99 0.169859844 52-35-12
68 5000 0.125 7 0.4 8 122 0.08596148 39-65-18

10000 0.125 7 0.4 8 134 0.171417671 41-71-22
69 5000 0.125 7 0.4 12 221 0.0889736 72-118-31

10000 0.125 7 0.4 12 252 0.177928184 83-128-41
70 5000 0.125 7 0.3 4 68 0.083795736 24-29-15

10000 0.125 7 0.3 4 74 0.166523542 24-32-18
71 5000 0.125 7 0.3 8 147 0.086989869 80-44-23

10000 0.125 7 0.3 8 162 0.173320808 89-48-25
72 5000 0.125 7 0.3 12 272 0.090517542 86-142-44

10000 0.125 7 0.3 12 320 0.180516816 95-163-62
73 5000 0.125 7 0.2 8 219 0.08579154 111-73-35

10000 0.125 7 0.2 8 243 0.174158732 118-83-42
74 5000 0.125 7 0.2 12 407 0.092998715 113-228-66

10000 0.125 7 0.2 12 459 0.189975457 129-250-80
75 5000 0.125 7 0.2 16 531 0.098496233 290-181-60

10000 0.125 7 0.2 16 637 0.20413082 342-214-81
76 5000 0.125 7 0.1 4 215 0.086932519 84-82-49

10000 0.125 7 0.1 4 228 0.173107706 90-85-53
77 5000 0.125 7 0.1 8 472 0.094368189 240-164-68

10000 0.125 7 0.1 8 514 0.193562593 255-177-82
78 5000 0.125 7 0.1 12 728 0.107345752 411-206-111

10000 0.125 7 0.1 12 840 0.213078137 470-220-150
79 5000 0.125 7 0.1 16 1037 0.124592319 583-340-114

10000 0.125 7 0.1 16 1277 0.242503884 700-395-182
80 5000 0.125 7 0.1 20 1129 0.127442348 633-383-113

10000 0.125 7 0.1 20 1473 0.256610952 809-474-190
81 5000 0.25 4 0.6 4 66 0.083639984 25-27-14

10000 0.25 4 0.6 4 68 0.167997756 24-29-15
82 5000 0.25 4 0.5 4 70 0.083218909 24-30-16

10000 0.25 4 0.5 4 73 0.166723666 25-31-17
83 5000 0.25 4 0.4 8 218 0.08837655 113-70-35

10000 0.25 4 0.4 8 235 0.175340157 118-76-41
84 5000 0.25 5 0.6 4 66 0.083231284 25-27-14

10000 0.25 5 0.6 4 68 0.166730005 24-29-15
85 5000 0.25 5 0.6 8 142 0.088199064 78-43-21

10000 0.25 5 0.6 8 152 0.175111359 85-43-24
86 5000 0.25 5 0.5 4 70 0.082618838 24-30-16
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10000 0.25 5 0.5 4 73 0.167273025 25-31-17
87 5000 0.25 5 0.5 8 151 0.08530889 83-45-23

10000 0.25 5 0.5 8 164 0.173682723 89-47-28
88 5000 0.25 5 0.5 12 281 0.08975206 93-145-43

10000 0.25 5 0.5 12 324 0.179950853 105-164-55
89 5000 0.25 5 0.4 8 218 0.087789157 113-70-35

10000 0.25 5 0.4 8 235 0.174583732 118-76-41
90 5000 0.25 5 0.2 4 229 0.087224706 84-93-52

10000 0.25 5 0.2 4 253 0.172335281 90-107-56
91 5000 0.25 5 0.1 4 229 0.085602888 84-93-52

10000 0.25 5 0.1 4 253 0.170678752 90-107-56
92 5000 0.25 6 0.6 4 66 0.084344491 25-27-14

10000 0.25 6 0.6 4 68 0.16706626 24-29-15
93 5000 0.25 6 0.6 8 142 0.08727783 78-43-21

10000 0.25 6 0.6 8 152 0.172602415 85-43-24
94 5000 0.25 6 0.6 12 264 0.088137185 87-141-36

10000 0.25 6 0.6 12 287 0.181272636 88-153-46
95 5000 0.25 6 0.5 4 70 0.084939128 24-30-16

10000 0.25 6 0.5 4 73 0.169548943 25-31-17
96 5000 0.25 6 0.5 8 151 0.085908657 83-45-23

10000 0.25 6 0.5 8 164 0.173470525 89-47-28
97 5000 0.25 6 0.5 12 281 0.089629814 93-145-43

10000 0.25 6 0.5 12 324 0.181961147 105-164-55
98 5000 0.25 6 0.4 4 86 0.085087938 27-38-21

10000 0.25 6 0.4 4 90 0.17021723 28-39-23
99 5000 0.25 6 0.4 8 218 0.086478241 113-70-35

10000 0.25 6 0.4 8 235 0.176239055 118-76-41
100 5000 0.25 6 0.4 12 409 0.112061792 115-232-62

10000 0.25 6 0.4 12 447 0.221507786 128-242-77
101 5000 0.25 6 0.4 16 540 0.10134898 304-192-44

10000 0.25 6 0.4 16 622 0.208691108 336-213-73
102 5000 0.25 6 0.3 4 217 0.087731504 84-88-45

10000 0.25 6 0.3 4 222 0.17461452 85-90-47
103 5000 0.25 6 0.3 8 467 0.097380309 247-164-56

10000 0.25 6 0.3 8 483 0.194825214 251-171-61
104 5000 0.25 6 0.2 4 229 0.087470408 84-93-52

10000 0.25 6 0.2 4 253 0.174577092 90-107-56
105 5000 0.25 6 0.2 16 1115 0.124036017 632-363-120

10000 0.25 6 0.2 16 1382 0.248676029 759-433-190
106 5000 0.25 6 0.1 4 229 0.086065618 84-93-52

10000 0.25 6 0.1 4 253 0.173092916 90-107-56
107 5000 0.25 7 0.6 4 66 0.083749855 25-27-14

10000 0.25 7 0.6 4 68 0.16794765 24-29-15
108 5000 0.25 7 0.6 8 142 0.088547092 78-43-21

10000 0.25 7 0.6 8 152 0.175293673 85-43-24
109 5000 0.25 7 0.6 12 264 0.091464735 87-141-36

10000 0.25 7 0.6 12 287 0.186701938 88-153-46
110 5000 0.25 7 0.5 4 70 0.083624892 24-30-16

10000 0.25 7 0.5 4 73 0.168619258 25-31-17
111 5000 0.25 7 0.5 8 151 0.086878185 83-45-23

10000 0.25 7 0.5 8 164 0.175105924 89-47-28
112 5000 0.25 7 0.5 12 281 0.089410672 93-145-43

10000 0.25 7 0.5 12 324 0.181451328 105-164-55
113 5000 0.25 7 0.4 4 86 0.08740702 27-38-21

10000 0.25 7 0.4 4 90 0.173518216 28-39-23
114 5000 0.25 7 0.4 8 218 0.090637978 113-70-35

10000 0.25 7 0.4 8 235 0.181227661 118-76-41
115 5000 0.25 7 0.4 12 409 0.096043434 115-232-62

10000 0.25 7 0.4 12 447 0.192570728 128-242-77
116 5000 0.25 7 0.3 4 217 0.088641872 84-88-45

10000 0.25 7 0.3 4 222 0.174535437 85-90-47
117 5000 0.25 7 0.3 8 467 0.095573763 247-164-56

10000 0.25 7 0.3 8 483 0.191728879 251-171-61
118 5000 0.25 7 0.2 4 229 0.086894185 84-93-52

10000 0.25 7 0.2 4 253 0.173983663 90-107-56
119 5000 0.25 7 0.2 8 486 0.096517634 248-171-67

10000 0.25 7 0.2 8 543 0.192880119 271-195-77
120 5000 0.25 7 0.2 16 1115 0.122211058 632-363-120

10000 0.25 7 0.2 16 1382 0.245486727 759-433-190
121 5000 0.25 7 0.2 20 1207 0.127275427 678-413-116

10000 0.25 7 0.2 20 1606 0.259383407 890-520-196
122 5000 0.25 7 0.1 4 229 0.086159491 84-93-52
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10000 0.25 7 0.1 4 253 0.172653729 90-107-56
123 5000 0.25 7 0.1 8 486 0.095688162 248-171-67

10000 0.25 7 0.1 8 543 0.191626554 271-195-77
124 5000 0.25 7 0.1 20 1207 0.128119388 678-413-116

10000 0.25 7 0.1 20 1621 0.259699138 898-523-200
125 5000 0.5 5 0.6 8 234 0.087608653 119-76-39

10000 0.5 5 0.6 8 237 0.175264998 120-75-42
126 5000 0.5 5 0.6 12 430 0.094359436 123-240-67

10000 0.5 5 0.6 12 439 0.190697473 130-235-74
127 5000 0.5 5 0.4 4 241 0.087241609 89-101-51

10000 0.5 5 0.4 4 249 0.172795295 92-102-55
128 5000 0.5 5 0.3 4 243 0.086949119 89-103-51

10000 0.5 5 0.3 4 254 0.172541744 93-105-56
129 5000 0.5 5 0.2 4 243 0.101063735 89-103-51

10000 0.5 5 0.2 4 254 0.209261296 93-105-56
130 5000 0.5 5 0.1 4 243 0.085349337 89-103-51

10000 0.5 5 0.1 4 254 0.170963091 93-105-56
131 5000 0.5 6 0.6 4 90 0.08415614 28-39-23

10000 0.5 6 0.6 4 88 0.168122419 28-38-22
132 5000 0.5 6 0.6 8 234 0.087706753 119-76-39

10000 0.5 6 0.6 8 237 0.176028668 120-75-42
133 5000 0.5 6 0.6 12 430 0.094053364 123-240-67

10000 0.5 6 0.6 12 439 0.191415865 130-235-74
134 5000 0.5 6 0.6 16 589 0.10089108 335-211-43

10000 0.5 6 0.6 16 654 0.212018659 365-222-67
135 5000 0.5 6 0.5 4 218 0.086253666 83-91-44

10000 0.5 6 0.5 4 216 0.172477752 82-91-43
136 5000 0.5 6 0.5 8 482 0.095639262 255-168-59

10000 0.5 6 0.5 8 472 0.192091999 245-167-60
137 5000 0.5 6 0.4 4 241 0.086459525 89-101-51

10000 0.5 6 0.4 4 249 0.171954049 92-102-55
138 5000 0.5 6 0.3 4 243 0.086498464 89-103-51

10000 0.5 6 0.3 4 254 0.172923881 93-105-56
139 5000 0.5 6 0.2 4 243 0.092021338 89-103-51

10000 0.5 6 0.2 4 254 0.180364383 93-105-56
140 5000 0.5 6 0.1 4 243 0.087741465 89-103-51

10000 0.5 6 0.1 4 254 0.174748539 93-105-56
141 5000 0.5 7 0.6 4 90 0.095052173 28-39-23

10000 0.5 7 0.6 4 88 0.192676071 28-38-22
142 5000 0.5 7 0.6 8 234 0.098959266 119-76-39

10000 0.5 7 0.6 8 237 0.187123315 120-75-42
143 5000 0.5 7 0.6 12 430 0.098619689 123-240-67

10000 0.5 7 0.6 12 439 0.205991398 130-235-74
144 5000 0.5 7 0.6 16 589 0.136769688 335-211-43

10000 0.5 7 0.6 16 654 0.274735591 365-222-67
145 5000 0.5 7 0.5 4 218 0.08835059 83-91-44

10000 0.5 7 0.5 4 216 0.188833272 82-91-43
146 5000 0.5 7 0.5 8 482 0.097317828 255-168-59

10000 0.5 7 0.5 8 472 0.209919019 245-167-60
147 5000 0.5 7 0.5 12 734 0.109291148 415-219-100

10000 0.5 7 0.5 12 786 0.214625098 437-224-125
148 5000 0.5 7 0.4 4 241 0.086756542 89-101-51

10000 0.5 7 0.4 4 249 0.193272519 92-102-55
149 5000 0.5 7 0.4 8 530 0.098163901 278-177-75

10000 0.5 7 0.4 8 591 0.19647631 300-201-90
150 5000 0.5 7 0.4 12 840 0.124773427 468-246-126

10000 0.5 7 0.4 12 1008 0.252059117 541-288-179
151 5000 0.5 7 0.4 16 1204 0.160883854 695-394-115

10000 0.5 7 0.4 16 1542 0.324570043 866-489-187
152 5000 0.5 7 0.3 4 243 0.086897807 89-103-51

10000 0.5 7 0.3 4 254 0.173437925 93-105-56
153 5000 0.5 7 0.3 8 538 0.098195293 283-179-76

10000 0.5 7 0.3 8 611 0.204147422 310-206-95
154 5000 0.5 7 0.3 12 856 0.119006662 475-252-129

10000 0.5 7 0.3 12 1047 0.228941044 558-300-189
155 5000 0.5 7 0.3 20 1395 0.136331105 786-480-129

10000 0.5 7 0.3 20 1975 0.284011013 1078-656-241
156 5000 0.5 7 0.2 4 243 0.087295337 89-103-51

10000 0.5 7 0.2 4 254 0.173751844 93-105-56
157 5000 0.5 7 0.2 8 538 0.096786277 283-179-76

10000 0.5 7 0.2 8 611 0.195504369 310-206-95
158 5000 0.5 7 0.2 12 856 0.112944087 475-252-129
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10000 0.5 7 0.2 12 1047 0.225770152 558-300-189
159 5000 0.5 7 0.2 20 1395 0.134417705 786-480-129

10000 0.5 7 0.2 20 1975 0.280273558 1078-656-241
160 5000 0.5 7 0.1 4 243 0.088326142 89-103-51

10000 0.5 7 0.1 4 254 0.176526414 93-105-56
161 5000 0.5 7 0.1 8 538 0.097454262 283-179-76

10000 0.5 7 0.1 8 611 0.195054619 310-206-95
162 5000 0.5 7 0.1 12 856 0.109099777 475-252-129

10000 0.5 7 0.1 12 1047 0.219154897 558-300-189
163 5000 0.5 7 0.1 20 1395 0.135179865 786-480-129

10000 0.5 7 0.1 20 1975 0.279595007 1078-656-241
164 5000 1 6 0.6 4 265 0.086178809 100-113-52

10000 1 6 0.6 4 291 0.173166867 114-122-55
165 5000 1 6 0.5 4 268 0.087887258 101-115-52

10000 1 6 0.5 4 323 0.175854504 123-137-63
166 5000 1 6 0.5 12 1005 0.114629896 551-305-149

10000 1 6 0.5 12 1411 0.234505572 750-413-248
167 5000 1 6 0.4 4 268 0.086787632 101-115-52

10000 1 6 0.4 4 323 0.173510972 123-137-63
168 5000 1 6 0.4 12 1005 0.113720736 551-305-149

10000 1 6 0.4 12 1411 0.230108281 750-413-248
169 5000 1 6 0.3 4 268 0.086328524 101-115-52

10000 1 6 0.3 4 323 0.173017152 123-137-63
170 5000 1 6 0.3 12 1005 0.112880095 551-305-149

10000 1 6 0.3 12 1411 0.228113079 750-413-248
171 5000 1 6 0.2 4 268 0.085847081 101-115-52

10000 1 6 0.2 4 323 0.173421324 123-137-63
172 5000 1 6 0.2 12 1005 0.115412582 551-305-149

10000 1 6 0.2 12 1411 0.251255301 750-413-248
173 5000 1 6 0.1 4 268 0.086490314 101-115-52

10000 1 6 0.1 4 323 0.173574661 123-137-63
174 5000 1 6 0.1 12 1005 0.114358234 551-305-149

10000 1 6 0.1 12 1411 0.231115842 750-413-248
175 5000 1 7 0.6 4 265 0.086623729 100-113-52

10000 1 7 0.6 4 291 0.175897969 114-122-55
176 5000 1 7 0.6 12 991 0.113860793 547-302-142

10000 1 7 0.6 12 1261 0.23887449 673-375-213
177 5000 1 7 0.5 4 268 0.087077405 101-115-52

10000 1 7 0.5 4 323 0.174831246 123-137-63
178 5000 1 7 0.5 8 617 0.102895638 314-209-94

10000 1 7 0.5 8 792 0.210363938 385-267-140
179 5000 1 7 0.5 12 1005 0.113977306 551-305-149

10000 1 7 0.5 12 1411 0.235019013 750-413-248
180 5000 1 7 0.4 4 268 0.086415154 101-115-52

10000 1 7 0.4 4 323 0.172513672 123-137-63
181 5000 1 7 0.4 8 617 0.097513424 314-209-94

10000 1 7 0.4 8 792 0.203306479 385-267-140
182 5000 1 7 0.4 12 1005 0.112150837 551-305-149

10000 1 7 0.4 12 1411 0.229029787 750-413-248
183 5000 1 7 0.3 4 268 0.08593703 101-115-52

10000 1 7 0.3 4 323 0.172867436 123-137-63
184 5000 1 7 0.3 8 617 0.097127362 314-209-94

10000 1 7 0.3 8 792 0.201568451 385-267-140
185 5000 1 7 0.3 12 1005 0.12538225 551-305-149

10000 1 7 0.3 12 1411 0.259726606 750-413-248
186 5000 1 7 0.2 4 268 0.093274602 101-115-52

10000 1 7 0.2 4 323 0.180393661 123-137-63
187 5000 1 7 0.2 8 617 0.098552075 314-209-94

10000 1 7 0.2 8 792 0.207476782 385-267-140
188 5000 1 7 0.2 12 1005 0.114306921 551-305-149

10000 1 7 0.2 12 1411 0.232183169 750-413-248
189 5000 1 7 0.1 4 268 0.087854053 101-115-52

10000 1 7 0.1 4 323 0.175426787 123-137-63
190 5000 1 7 0.1 8 617 0.098309995 314-209-94

10000 1 7 0.1 8 792 0.200909825 385-267-140
191 5000 1 7 0.1 12 1005 0.112740342 551-305-149

10000 1 7 0.1 12 1411 0.230741855 750-413-248

Table D.3: The details of an execution of MuDi-Stream on MDS4dataset
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APPENDIX E

JAVA CODE

We have implemented our proposed method, MuDi-Stream, in Java. The method and all

its required concepts are implemented in different inter-related Java classes.

For the sake of clarity and brevity only major classes are presented here. The major

classes are as follows.

• MuDi

• CoreMiniCluster

• MDBSCAN

• Grid

• GridCharacteristicVector

• GridIndex

The Java classes are explained in the following sections.

E.1 MuDi.java

The main class is called MuDi and implemented inMuDi.java which its code listing

follows in this section. TheMuDi class receives the data stream which is implemented as

an interface calledDataGeneratorInterface. TheDataGeneratorInterfacehas the abilities

to check if it still has data and provide the data points basedon different requests. Other

than that,MuDi class receives MuDi-Stream’s parameters, i.e. GridGranularity, λ , and

α.
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When the data stream flow starts,MuDi will generate a list of core-mini-clusters

which is implemented asCoreMiniClusterclass (cf. Section E.2). Moreover, when a

clustering request arrives this list will be used to generate final clusters using MDBScan.

MDBScan is implemented inMDBSCAN class which is presented in Section E.3. MuDi-

Stream keeps the list of outliers in a grid structure. The grid structure is implemented in

Grid class. TheGrid class (cf. Section E.4) uses a tree structure to dynamicallystore

only the required grid cells which already received some data points. The indices of each

grid cell are stored in an instance ofGridIndex class and its characteristics identified as

“Grid Characteristic Vector” in an instance ofGridCharacteristicVectorclass. These two

classes are presented in Sections E.6 and E.5 respectively.

The source code forMuDi class is presented as follows:

1 package MuDi ;

3 import Common . * ;

import Data . C l u s t e r L i s t ;

5 import Data . DataGenerator Inte r f ace ;

import Data . Point . DataPoint ;

7 import Data . R_PointArray ;

import MuDi . Grid . Grid ;

9 import MuDi . Grid . GridIndex ;

11 import java . u t i l . ArrayLi s t ;

import java . u t i l . I t e r a t o r ;

13 import java . u t i l . TreeMap ;

15 /**

* User : Amineh Amini

17 */

p u b l i c c l a s s MuDi implements A l g o r i t h m s I n t e r f a c e {

19 p r i v a t e i n t MinPts_forOf f l ine ;

p r i v a t e double lambda ;

21 p r i v a t e double alpha , alphaCounter_fromOutside ;

p r i v a t e i n t g r i d G r a n u l a r i t y ;

23 p r i v a t e double pruningTime ;

p r i v a t e i n t pruningTimeInteger ;

25

p r i v a t e i n t hor i zon ;

27

p r i v a t e double N, oneP2Lambda ;

29

p r i v a t e DataGenerator Inte r f ace data ;

31

p r i v a t e ArrayList < CoreMiniCluster > c o r e M i n i C l u s t e r L i s t ;

33 p r i v a t e Grid g r i d ;
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35 p r i v a t e double Weight_of_UpgradeToMiniCluster ;

37 p r i v a t e ArrayList < Intege r > o f f l ineCluster ing_PointNumber_Lis t ;

39 p r i v a t e TreeMap< Intege r , MDBSCAN> o f f l i n e R e s u l t L i s t ;

41 p r i v a t e R_PointArray rPT ;

43 p u b l i c s t a t i c S t r i n g datasetName ;

p u b l i c s t a t i c S t r i n g executionName ;

45

p u b l i c s t a t i c S t r i n g rCode_plots_stat ic ;

47 p r i v a t e S t r i n g rCode_plots ;

49 p r i v a t e S t r i n g B u i l d e r analys i sResultCSV ;

p r i v a t e S t r i n g B u i l d e r a n a l y s i s R e s u l t T a b l e ;

51

p u b l i c T imeInte rva lPaus ib l e execut ionOnl ineTimeInterva l ,

pruningTimeInterva l ;

53

p r i v a t e double sumCumulative , countCumulative ;

55

p u b l i c s t a t i c S t r i n g outputR_path ;

57

p u b l i c MuDi( DataGenerator Inte r f ace data ,

59 ArrayList < Intege r > of f l ineCluster ing_PointNumber_List

,

double lambda ,

61 i n t g r idGranu la r i ty ,

double alpha , double alphaCounter_fromOutside ,

63 i n t minPts_forOf f l ine ,

i n t hor i zon

65 ) {

t h i s . data = data ;

67 t h i s . o f f l ineCluster ing_PointNumber_List =

of f l ineCluster ing_PointNumber_List ;

t h i s . lambda = lambda ;

69 t h i s . g r i d G r a n u l a r i t y = g r i d G r a n u l a r i t y ;

t h i s . a lpha = alpha ;

71 t h i s . alphaCounter_fromOutside = alphaCounter_fromOutside ;

73 t h i s . hor i zon = hor izon ;

75 N = Math . pow( gr idGranu la r i ty , data . getDimensionCount ( ) ) ;

oneP2Lambda = 1 - Math . pow(2 , - lambda ) ;

77

Weight_of_UpgradeToMiniCluster = alpha / (N * oneP2Lambda ) ;

79 System . out . p r i n t f ( " \nWeight_of_UpgradeToMiniCluster=%2.5 f \n" ,

Weight_of_UpgradeToMiniCluster ) ;

setPruningTime (1000 .0 *

81 ( 1 . 0 / lambda ) * Genera lFunct ions . l og2 ( alpha / ( alpha -

N * oneP2Lambda ) ) ) ;

System . out . p r i n t f ( " Pruning time : %1.3 f \n" , t h i s . pruningTime ) ;

83

t h i s . MinPts_forOf f l ine = minPts_forOf f l ine ;

85

o f f l i n e R e s u l t L i s t = new TreeMap< Intege r , MDBSCAN>() ;

87 rPT = new R_PointArray (2 , datasetName , " " ) ;

rCode_plots = MuDi . rCode_plots_stat ic . r e p l a c e ( " {DatasetName} " ,

datasetName ) ;

89 analys isResultCSV = new S t r i n g B u i l d e r ( ) ;
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a n a l y s i s R e s u l t T a b l e = new S t r i n g B u i l d e r ( ) ;

91

execut ionOnl ineTimeInte rva l = new TimeInte rva lPaus ib l e (

T imeInte rva lPaus ib l e .PAUSED) ;

93 pruningTimeInterva l = new TimeInte rva lPaus ib l e (

T imeInte rva lPaus ib l e .PAUSED) ;

95 sumCumulative = 0 ;

countCumulative = 0 ;

97 }

99 p u b l i c void setPruningTime ( double pruningTime ) {

t h i s . pruningTime = pruningTime ;

101 t h i s . pruningTimeInteger = ( i n t ) pruningTime ;

}

103

p u b l i c void s t a r t ( i n t dataRecordLimit ) {

105 gene ra t eMic roClus t e r s ( dataRecordLimit ) ;

}

107

p r i v a t e void gene ra t eMic roClus t e r s ( i n t dataRecordLimit ) {

109 CONSTANTS. execut ionID++;

111 c o r e M i n i C l u s t e r L i s t = new ArrayList < CoreMiniCluster > ( ) ;

113 g r i d = new Grid ( data . getDimensionCount ( ) , g r i d G r a n u l a r i t y ) ;

115 i n t pointsCount = 0 ;

long lastTS = 0 ;

117

data . setDataRecordLimit ( dataRecordLimit ) ;

119

execut ionOnl ineTimeInte rva l . Resume ( ) ;

121 whi le ( data . hasData ( ) ) {

DataPoint dp = data . nextDataPoint ( ) ;

123 rPT . addPoint ( dp ) ;

125 pointsCount++;

127 CoreMiniCluster mc = sea rch InCoreMin iC lus t e rL i s t ( dp ) ;

i f (mc != n u l l ) {

129 mc . addDataPoint ( dp ) ;

} e l s e {

131 GridIndex g i = g r i d . addPoint ( dp ) ;

CheckAndUpgradeGridCell ( gi , dp . getTimestamp ( ) ) ;

133 }

135 i f ( ( pruningTimeInteger > 0) && ( pointsCount %

pruningTimeInteger == 0) )

PruneCoreMiniClusterList ( dp . getTimestamp ( ) ) ;

137

lastTS = dp . getTimestamp ( ) ;

139

i f ( o f f l ineCluster ing_PointNumber_List . c on t a i n s ( pointsCount ) )

{

141 execut ionOnl ineTimeInte rva l . Pause ( ) ;

d o O f f l i n e C l u s t e r i n g ( pointsCount , Genera lFunct ions .

getTimestampArray ( lastTS , hor i zon ) ) ;

143 execut ionOnl ineTimeInte rva l . Resume ( ) ;

}

145
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}

147 execut ionOnl ineTimeInte rva l . Pause ( ) ;

i f ( o f f l ineCluster ing_PointNumber_List . c on t a i n s (CONSTANTS.

END_FILE_CLUSTERING_POINT_NUMBER) ) {

149 d o O f f l i n e C l u s t e r i n g ( pointsCount , Genera lFunct ions .

getTimestampArray ( lastTS , hor i zon ) ) ;

}

151 }

153 p u b l i c S t r i n g ge tAna lys i sResu l tTab l e ( ) {

re turn a n a l y s i s R e s u l t T a b l e . t o S t r i n g ( ) ;

155 }

157 p r i v a t e void d o O f f l i n e C l u s t e r i n g ( i n t pointNumber , ArrayList <Long>

timestampArray ) {

MDBSCAN mDBSCAN = n u l l ;

159 ArrayList < CoreMiniCluster > CMC_List = getMic roClus te r s (

timestampArray ) ;

i n t CMC_List_size = CMC_List . s i z e ( ) ;

161 countCumulative++;

i f ( CMC_List_size > 1) {

163 mDBSCAN = new MDBSCAN(CMC_List , MinPts_forOf f l ine ,

g r i d G r a n u l a r i t y ) ;

mDBSCAN. doClus te r ing ( ) ;

165

i f ( data . getDimensionCount ( ) <= 3) {

167 Logger l_execParam = new Logger ( ) ;

l_execParam . s t a r t F i l e ( S t r i n g . format ( outputR_path + " /MuDi_%

s_%d_p%d__L%s_M%d_Al%s_G%s . r " ,

169 executionName ,

CONSTANTS. executionID ,

171 pointNumber ,

Genera lFunct ions . numberLeftPadding ( ( i n t ) ( lambda *

10000) , 4) ,

173 MinPts_forOf f l ine ,

Genera lFunct ions . numberLeftPadding ( ( i n t ) (

alphaCounter_fromOutside * 10) , 2) ,

175 Genera lFunct ions . numberLeftPadding ( gr idGranu la r i ty ,

2) ) ) ;

177 R_PointArray rCMC = new R_PointArray ( data . getDimensionCount

( ) , "mc" ,

rCode_plots . r e p l a c e ( " {gGran} " , " " + g r i d G r a n u l a r i t y

) ) ;

179

S t r i n g shoa = S t r i n g . format ( " shoa < - array ( , dim=c(%d , 1 ) ) ; \ n" ,

CMC_List_size ) ;

181 S t r i n g vazn = S t r i n g . format ( " vazn < - array ( , dim=c(%d , 1 ) ) ; \ n" ,

CMC_List_size ) ;

S t r i n g clusNum = S t r i n g . format ( " clusNum < - array ( , dim=c(%d , 1 )

) ; \ n" , CMC_List_size ) ;

183 S t r i n g c l u s C o l o r = S t r i n g . format ( " c lusCol < - ar ray ( , dim=c(%d

, 1 ) ) ; \ n" , CMC_List_size ) ;

185 f o r ( i n t zx = 0 ; zx < CMC_List_size ; zx++) {

rCMC. addPoint (CMC_List . get ( zx ) ) ;

187 vazn = vazn + " vazn [ " + ( zx + 1) + " ] < - " + CMC_List . get (

zx ) . getWeight ( ) + " ; \ n" ;

shoa = shoa + " shoa [ " + ( zx + 1) + " ] < - " + CMC_List . get (

zx ) . getMCD( ) + " ; \ n" ;

189 i n t clusterID_MC = CMC_List . get ( zx ) .
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ge tCa l cu la t edClus te r ID ( ) ;

clusNum = clusNum + " clusNum [ " + ( zx + 1) + " ] < -\" " + (

clusterID_MC != C l u s t e r L i s t . NOISE ? clusterID_MC : "N"

) + " \ " ; \ n" ;

191 c l u s C o l o r = c l u s C o l o r + " c lusCo l [ " + ( zx + 1) + " ] < -\" " +

CONSTANTS. ge tC lus t e rCo lo r ( clusterID_MC ) + " \ " ; \ n" ;

}

193

l_execParam . l o g F i l e (rPT . t o S t r i n g ( ) ) ;

195 l_execParam . l o g F i l e ( vazn ) ;

l_execParam . l o g F i l e ( shoa ) ;

197 l_execParam . l o g F i l e ( clusNum ) ;

l_execParam . l o g F i l e ( c l u s C o l o r ) ;

199 l_execParam . l o g F i l e (rCMC. t o S t r i n g ( ) ) ;

l_execParam . endFi l e ( ) ;

201 }

203 Ana lyzeResu l tC lus te r s arc = new Ana lyzeResu l tC lus te r s (mDBSCAN

. getSCC_List ( ) ) ;

a rc . p r i n t R e s u l t C l u s t e r s ( /* printCircleCommand=*/ f a l s e ) ;

205 arc . dumpResults ( /* useBestActual=*/ true ) ;

S impl i f i edCont ingency aSC = arc .

c a l c u l a t e S i m p l i f i e d C o n t i n g e n c y ( ) ;

207

S t a t i s t i c s s t s = new S t a t i s t i c s ( arc . ge tCluste rPo intCountL i s t (

f a l s e ) ) ;

209

System . out . p r i n t l n ( ) ;

211

double avg =

213 Ana lyzeResu l tC lus te r s . getAverage9 (

aSC . getAverage7 ( ) ,

215 arc . getNMI_bestActual ( ) ,

a rc . getPur i tyBestActua l ( 1 . 0 ) ) ;

217 sumCumulative += avg ;

S t r i n g s = S t r i n g . format (CONSTANTS. analysisResultCSVFormat ,

219 "MuDi" , CONSTANTS. executionID , pointNumber , hor izon ,

lambda , MinPts_forOf f l ine ,

221 alpha , alphaCounter_fromOutside , g r idGranu la r i ty ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

223 pruningTimeInteger ,

CMC_List_size , arc . getNoiseCount ( ) ,

225 arc . getActualClassCount ( f a l s e , f a l s e ) , a rc .

getCalcu latedClusterCount ( f a l s e ) ,

ge tExecut ionTimeInte rva lPaus ib l e ( ) . untilNowMPT ( ) ,

getPrun ingTimeInterva lPaus ib l e ( ) . untilNowMPT ( ) ,

227 arc . getPur i tyBestActua l ( 1 0 0 . 0 ) , arc .

getPur i tyBestActua l ( 1 . 0 ) , arc . getEntropyOfClusters

( ) , a rc . getNMI_bestActual ( ) ,

aSC . ge tTruePos i t i ve ( ) , aSC . getTrueNegat ive ( ) , aSC .

g e t F a l s e P o s i t i v e ( ) , aSC . ge tFa l s eNegat ive ( ) ,

229 aSC . getRandIndex ( ) , aSC . getAdjustedRandIndex ( ) , aSC .

getJaccardScore ( ) ,

aSC . g e t P r e c i s i o n ( ) , aSC . g e t R e c a l l ( ) , aSC . getFM ( ) , aSC

. getFMeasure ( ) ,

231 arc . ge tC lus t e rPo in tCountL i s tS t r ing ( t rue ) , s t s .

getStdDev ( ) ,

Ana lyzeResu l tC lus te r s . ge tTota lQua l i ty ( CMC_List_size ,

arc . getNoiseCount ( ) ,

233 arc . getActualClassCount ( f a l s e , f a l s e ) , a rc .

getCalcu latedClusterCount ( f a l s e ) ,
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arc . getPur i tyBestActua l ( 1 . 0 ) ,

235 arc . getNMI_bestActual ( ) ) ,

avg , sumCumulative / countCumulative

237 ) ;

239 analys isResultCSV . append ( s ) ;

a n a l y s i s R e s u l t T a b l e . append ( "===================\n" )

241 . append ( s ) . append ( " \n" ) . append ( arc .

ge tC la s sC lus te rTab leBes tActua l ( ) )

. append ( " \n" ) ;

243 } e l s e {

S t r i n g s = S t r i n g . format (CONSTANTS. analysisResultCSVFormat ,

245 "MuDi" , CONSTANTS. executionID , pointNumber , hor izon ,

lambda , MinPts_forOf f l ine ,

247 alpha , alphaCounter_fromOutside , g r idGranu la r i ty ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

249 pruningTimeInteger ,

CMC_List_size , -1 ,

251 -1 , -1 ,

ge tExecut ionTimeInte rva lPaus ib l e ( ) . untilNowMPT ( ) ,

getPrun ingTimeInterva lPaus ib l e ( ) . untilNowMPT ( ) ,

253 - 1 . 0 , - 1 . 0 , - 1 . 0 , - 1 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

255 - 1 . 0 , - 1 . 0 , - 1 . 0 ,

- 1 . 0 , - 1 . 0 , - 1 . 0 , - 1 . 0 ,

257 " 0 -0 " , - 1 . 0 ,

- 1 . 0 , - 1 . 0 , sumCumulative / countCumulative

259 ) ;

261 analys isResultCSV . append ( s ) ;

}

263 o f f l i n e R e s u l t L i s t . put ( pointNumber , mDBSCAN) ;

}

265

p r i v a t e CoreMiniCluster s ea r ch InCoreMin iC lus t e rL i s t ( DataPoint p)

{

267 f o r ( CoreMiniCluster c : c o r e M i n i C l u s t e r L i s t )

i f (p . ge tDi s tance ( c . getCenter ( ) ) <= c . getMCD( ) )

269 r e turn c ;

r e turn n u l l ;

271 }

273 p r i v a t e void CheckAndUpgradeGridCell ( GridIndex gr idIndex , long

currentTimestamp ) {

i f ( g r i d . isReadyToBeUpgraded ( gr idIndex ,

Weight_of_UpgradeToMiniCluster ) ) {

275 CoreMiniCluster scc1 = g r i d . g e t C e l l ( g r id Index ) .

g e t S m a l l C i r c l e C l u s t e r ( currentTimestamp ) ;

c o r e M i n i C l u s t e r L i s t . add ( scc1 ) ;

277 g r i d . d e l e t e C e l l ( g r id Index ) ;

}

279 }

281 p r i v a t e boolean PruneCoreMiniClusterList ( long currentTimestamp ) {

boolean anyDeleted = f a l s e ;

283

pruningTimeInterva l . Resume ( ) ;

285

g r i d . updateAllWeights ( currentTimestamp ) ;

287 g r i d . removeLightCe l l s ( lambda , alpha , currentTimestamp ) ;
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289 f o r ( i n t i = c o r e M i n i C l u s t e r L i s t . s i z e ( ) - 1 ; i >= 0 ; i - - ) {

CoreMiniCluster aCMC = c o r e M i n i C l u s t e r L i s t . get ( i ) ;

291 i f (aCMC. getWeight ( ) < ( alpha / (N * oneP2Lambda ) ) ) {

c o r e M i n i C l u s t e r L i s t . remove ( i ) ;

293 anyDeleted = true ;

}

295 }

297 pruningTimeInterva l . Pause ( ) ;

299 r e turn anyDeleted ;

}

301

p u b l i c ArrayList < CoreMiniCluster > ge tMic roClus te r s ( ) {

303 r e turn c o r e M i n i C l u s t e r L i s t ;

}

305

p u b l i c ArrayList < CoreMiniCluster > ge tMic roClus te r s ( ArrayList <Long

> t imestampList ) {

307 i f ( t imestampList==n u l l )

r e turn c o r e M i n i C l u s t e r L i s t ;

309 ArrayList < CoreMiniCluster > timestampMCList = new ArrayList <

CoreMiniCluster > ( ) ;

I t e r a t o r < CoreMiniCluster > i t = c o r e M i n i C l u s t e r L i s t . i t e r a t o r ( ) ;

311 whi le ( i t . hasNext ( ) ) {

CoreMiniCluster cmc = i t . next ( ) ;

313 i f ( cmc . containsAnyTimestamp ( t imestampList ) ) {

timestampMCList . add (cmc) ;

315 }

}

317 r e turn timestampMCList ;

}

319

p u b l i c TreeMap< Intege r , MDBSCAN> g e t O f f l i n e R e s u l t L i s t ( ) {

321 r e turn o f f l i n e R e s u l t L i s t ;

}

323

p u b l i c S t r i n g getAnalys isResultCSV ( ) {

325 r e turn analys isResultCSV . t o S t r i n g ( ) ;

}

327

p u b l i c T imeInte rva lPaus ib l e ge tExecut ionTimeInte rva lPaus ib l e ( ) {

329 r e turn execut ionOnl ineTimeInte rva l ;

}

331

p u b l i c T imeInte rva lPaus ib l e getPrun ingTimeInterva lPaus ib l e ( ) {

333 r e turn pruningTimeInterva l ;

}

335 }
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E.2 CoreMiniCluster.java

CoreMiniClusterclass which is inherited from another class calledSmallCircleClus-

ter is a class which is similar to the concept of MicroCluster implemented for DenStream

algorithm (cf. Section 2.5.1).

CoreMiniClusterclass has the extra ability (in addition to other methods defined in

SmallCircleCluster) to add a data point to the core-mini-cluster if its distanceis less than

themcdof the core-mini-cluster.SmallCircleClusterclass is not represented here and it

has several methods to manage a small circle-shaped clustersuch as defining its class ID,

cluster ID, center, and radius.

The source code forCoreMiniClusterclass is presented as follows:

1 package MuDi ;

3 import Common. S m a l l C i r c l e C l u s t e r ;

import Data . Point . DataPoint ;

5

/**

7 * User : Amineh Amini

*/

9 p u b l i c c l a s s CoreMiniCluster extends S m a l l C i r c l e C l u s t e r {

p u b l i c s t a t i c double LAMBDA;

11 p r i v a t e double mcd ;

13 p u b l i c CoreMiniCluster ( ) {

super ( ) ;

15 }

17 p u b l i c double getMCD( ) {

re turn mcd ;

19 }

21 p u b l i c void setMCD( double r a d i u s ) {

t h i s . mcd = r a d i u s ;

23 }

25 @Override

p u b l i c boolean addDataPoint ( DataPoint dataPoint ) {

27 i f ( pointCanBeAdded ( dataPoint ) ) {

setWeight (1 + getWeight ( ) * Math . pow(2 , -LAMBDA * ( dataPoint .

getTimestamp ( ) - getTimestamp_of_lastPoint ( ) ) ) ) ;

29 setTimestamp_of_lastPoint ( dataPoint . getTimestamp ( ) ) ;

addClassID ( dataPoint ) ;

31

i f ( getNumber_of_points ( ) == 0)

33 setTimestamp_of_creation ( dataPoint . getTimestamp ( ) ) ;

addTimestamp ( dataPoint ) ;

35

incNumber_of_points ( ) ;
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37 r e turn t rue ;

} e l s e

39 r e turn f a l s e ;

}

41

p u b l i c void updateWeight5 ( long currentTimestamp ) {

43 setWeight ( getWeight ( ) * Math . pow(2 , -LAMBDA * ( currentTimestamp

- getTimestamp_of_creation ( ) ) ) ) ;

}

45

@Override

47 p u b l i c boolean pointCanBeAdded ( DataPoint dataPoint ) {

double d i s t = getCenter ( ) . ge tDi s tance ( dataPoint ) ;

49 r e turn ( d i s t <= mcd) ;

}

51

@Override

53 p u b l i c CoreMiniCluster c l one ( ) {

re turn new CoreMiniCluster ( ) ;

55 }

57 @Override

p u b l i c S t r i n g t o S t r i n g ( ) {

59 r e turn S t r i n g . format ( "CMC. Center : %s ; Radius=%2.2 f ; Weight=%2.2

f ; (%d) Points ’ Class=%d ( Clus te r=%d) " ,

getCenter ( ) . t o S t r i n g ( ) , getMCD( ) , getWeight ( ) ,

getNumber_of_points ( ) ,

61 getActua lClass ID ( ) , ge tCa l cu la t edClus te r ID ( ) ) ;

}

63

}
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E.3 MDBSCAN.java

MDBSCAN class is an adapted implementation of DBScan algorithm. The major

difference is that for its density-reachability checking purposes it does not use theε value.

Instead, it uses the mean and standard deviation values of the distances of the core-mini-

clusters.

The source code forMDBSCAN class is presented as follows:

package MuDi ;

2

import Common. AverageVariance ;

4 import Common. S m a l l C i r c l e C l u s t e r _ I n t e r f a c e ;

import Data . C l u s t e r L i s t ;

6

import java . u t i l . ArrayLi s t ;

8 import java . u t i l . I t e r a t o r ;

10 /**

* User : Amineh Amini

12 */

p u b l i c c l a s s MDBSCAN {

14 p r i v a t e i n t minPoints ;

16 p r i v a t e ArrayList < CoreMiniCluster > mcList ;

18 p r i v a t e double GRANULARITY;

20 p u b l i c MDBSCAN( ArrayList < CoreMiniCluster > mcList , i n t minPoints ,

i n t g r i d G r a n u l a r i t y ) {

t h i s . mcList = mcList ;

22 t h i s . minPoints = minPoints ;

t h i s .GRANULARITY = g r i d G r a n u l a r i t y ;

24 }

26 p u b l i c void doClus te r ing ( ) {

f o r ( CoreMiniCluster s cc : mcList ) {

28 s cc . s e t C a l c u l a t e d C l u s t e r I D ( C l u s t e r L i s t .NO_CLUSTER) ;

s cc . s e tAsUnv i s i t ed ( ) ;

30 }

32 byte c u r r e n t C l u s t e r I d = 1 ;

f o r ( i n t i = 0 ; i < mcList . s i z e ( ) ; i++) {

34 CoreMiniCluster p = mcList . get ( i ) ;

p . s e t A s V i s i t e d ( ) ;

36 i f (p . ge tCa l cu la t edClus te r ID ( ) == C l u s t e r L i s t .NO_CLUSTER

||

38 p . ge tCa l cu la t edClus te r ID ( ) == C l u s t e r L i s t . NOISE

) {

40 i f ( expandCluster (p , c u r r e n t C l u s t e r I d ) ) {

i f ( c u r r e n t C l u s t e r I d==C l u s t e r L i s t .MAX_CLUSTER_NUMBER) {

42 System . out . p r i n t l n ( " Exceeded number o f c l u s t e r s " ) ;

r e turn ;

44 }

e l s e
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46 c u r r e n t C l u s t e r I d++;

}

48 i f ( f a l s e ) {

System . out . p r i n t l n ( " - - - - - - - - - - - - " ) ;

50 f o r ( CoreMiniCluster ggg : mcList )

i f ( ggg . ge tCa l cu la t edClus te r ID ( ) == c u r r e n t C l u s t e r I d -

1)

52 System . out . p r i n t f ( "%s \n" , ggg . getCenter ( ) .

getCSV_ofCenter ( ) ) ;

}

54 }

}

56 }

58 p r i v a t e boolean expandCluster ( CoreMiniCluster cmc_p , byte

c u r r e n t C l u s t e r I d ) {

ArrayList < CoreMiniCluster > ne ighbors =

getNe ighborCoreMin iCluste rL i s t (cmc_p) ;

60 i f ( ne ighbors . s i z e ( ) < minPoints ) {

cmc_p . s e t C a l c u l a t e d C l u s t e r I D ( C l u s t e r L i s t . NOISE) ;

62 r e turn f a l s e ;

}

64 ArrayList < CoreMiniCluster > N_Core = getMinPtsNearestNeighbors (

cmc_p , ne ighbors ) ;

AverageVariance N_Core_AV = getAverageVar iance_ofDistance (cmc_p

, N_Core) ;

66 ArrayList < CoreMiniCluster > seeds = new ArrayList <

CoreMiniCluster > ( ) ;

s e eds . addAll (N_Core) ;

68

cmc_p . s e t C a l c u l a t e d C l u s t e r I D ( c u r r e n t C l u s t e r I d ) ;

70

s eeds . remove (cmc_p) ;

72 i n t N_Core_size = seeds . s i z e ( ) ;

whi l e ( s eeds . s i z e ( ) > 0) {

74 CoreMiniCluster cmc_q = seeds . get (0 ) ;

i f ( ! cmc_q . i s V i s i t e d ( ) ) {

76 cmc_q . s e t A s V i s i t e d ( ) ;

ArrayList < CoreMiniCluster > cmc_q_neighbors =

getNe ighborCoreMin iCluste rL i s t (cmc_q) ;

78 i f ( cmc_q_neighbors . s i z e ( ) >= minPoints ) {

ArrayList < CoreMiniCluster > N_Sh_Q =

getMinPtsNearestNeighbors (cmc_q , cmc_q_neighbors ) ;

80 AverageVariance N_Sh_Q_AV = getAverageVar iance_ofDistance

(cmc_q , N_Sh_Q) ;

i f ( (N_Sh_Q_AV. mean >= (N_Core_AV . mean - N_Core_AV .

getStdDev ( ) ) ) ||

82 (N_Sh_Q_AV. mean <= (N_Core_AV . mean + N_Core_AV .

getStdDev ( ) ) ) ) {

f o r ( CoreMiniCluster a_N_Sh_Q : N_Sh_Q) {

84 s eeds . add (a_N_Sh_Q) ;

86 N_Core_AV = updateAverageVariance (

N_Core_AV, N_Core_size ,

88 cmc_q . getCenter ( ) . ge tDi s tance (a_N_Sh_Q.

getCenter ( ) ) ) ;

N_Core_size++;

90 }

}

92 }

}
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94 i f (cmc_q . ge tCa l cu la t edClus te r ID ( ) == C l u s t e r L i s t .NO_CLUSTER)

cmc_q . s e t C a l c u l a t e d C l u s t e r I D ( c u r r e n t C l u s t e r I d ) ;

96 s eeds . remove (cmc_q) ;

}

98 r e turn t rue ;

}

100

p r i v a t e ArrayList < CoreMiniCluster > getNe ighborCoreMin iCluste rL i s t

(

102 CoreMiniCluster main ) {

ArrayList < CoreMiniCluster > r e s u l t L i s t = new ArrayList <

CoreMiniCluster > ( ) ;

104 double d i s t a n c e ;

f o r ( CoreMiniCluster c : mcList ) {

106 d i s t a n c e = main . getCenter ( ) . ge tDi s tance ( c . getCenter ( ) ) ;

i f ( d i s t a n c e > 0 &&

108 d i s t a n c e <= ( 1 . 0 / GRANULARITY + 1.0 / GRANULARITY) )

r e s u l t L i s t . add ( c ) ;

110 }

re turn r e s u l t L i s t ;

112 }

114 p r i v a t e AverageVariance getAverageVar iance_ofDistance (

CoreMiniCluster scc , ArrayList < CoreMiniCluster > ne ighbors

) {

116 double sum = 0 . 0 , sumSqr = 0 . 0 , count = 0 ;

I t e r a t o r < CoreMiniCluster > i t = ne ighbors . i t e r a t o r ( ) ;

118 CoreMiniCluster aSCC ;

double d i s t a n c e ;

120 whi le ( i t . hasNext ( ) ) {

aSCC = i t . next ( ) ;

122 d i s t a n c e = aSCC . getCenter ( ) . ge tDi s tance ( s cc . getCenter ( ) ) ;

i f ( d i s t a n c e > 0) {

124 count++;

sum += d i s t a n c e ;

126 sumSqr += d i s t a n c e * d i s t a n c e ;

}

128 }

re turn new AverageVariance (sum / count , ( sumSqr - (sum * sum) /

count ) / ( count - 1) ) ;

130 }

132 p r i v a t e ArrayList < CoreMiniCluster > getMinPtsNearestNeighbors (

CoreMiniCluster scc , ArrayList < CoreMiniCluster > ne ighbors

) {

134 ArrayList < CoreMiniCluster > minPtsNearestNeighbors =

new ArrayList < CoreMiniCluster > ( ) ;

136

double [ ] d i s t a n c e s = new double [ ne ighbors . s i z e ( ) ] ;

138 f o r ( i n t i = 0 ; i < ne ighbors . s i z e ( ) ; i++)

d i s t a n c e s [ i ] = scc . getCenter ( ) . ge tDi s tance ( ne ighbors . get ( i ) .

getCenter ( ) ) ;

140

double previousMinDistance = 0 . 0 , minDist ;

142 do {

minDist = Double .MAX_VALUE;

144 boolean minChanged = f a l s e ;

f o r ( i n t i = 0 ; i < ne ighbors . s i z e ( ) ; i++)

146 i f ( d i s t a n c e s [ i ] < minDist && d i s t a n c e s [ i ] >

previousMinDistance ) {

minDist = d i s t a n c e s [ i ] ;
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148 minChanged = true ;

}

150 i f ( ! minChanged )

break ;

152

f o r ( i n t i = 0 ; i < ne ighbors . s i z e ( ) ; i++)

154 i f ( d i s t a n c e s [ i ] - minDist < 0.0000001 f && d i s t a n c e s [ i ] >

previousMinDistance )

minPtsNearestNeighbors . add ( ne ighbors . get ( i ) ) ;

156

previousMinDistance = minDist ;

158 } whi l e ( minPtsNearestNeighbors . s i z e ( ) < minPoints ) ;

160 r e turn minPtsNearestNeighbors ;

}

162

p r i v a t e AverageVariance updateAverageVariance ( AverageVariance

l a s tVa lue s , i n t lastCount , double newDistance ) {

164 AverageVariance newValues = new AverageVariance ( ) ;

newValues . mean = l a s t V a l u e s . mean + ( newDistance - l a s t V a l u e s .

mean) / lastCount ;

166 newValues . va r i ance = l a s t V a l u e s . va r i ance + ( newDistance -

l a s t V a l u e s . mean) * ( newDistance - newValues . mean) ;

r e turn newValues ;

168 }

170 p u b l i c ArrayList < CoreMiniCluster > getMcList ( ) {

re turn mcList ;

172 }

174 p u b l i c ArrayList < S m a l l C i r c l e C l u s t e r _ I n t e r f a c e > getSCC_List ( ) {

ArrayList < S m a l l C i r c l e C l u s t e r _ I n t e r f a c e > r e s u l t = new ArrayList <

S m a l l C i r c l e C l u s t e r _ I n t e r f a c e >( mcList . s i z e ( ) ) ;

176 I t e r a t o r < CoreMiniCluster > i t = mcList . i t e r a t o r ( ) ;

whi l e ( i t . hasNext ( ) ) {

178 CoreMiniCluster aCMC = i t . next ( ) ;

r e s u l t . add (aCMC) ;

180 }

re turn r e s u l t ;

182 }

184 p r i v a t e void printPoints_CSV ( ArrayList < CoreMiniCluster > cmcs ) {

f o r ( CoreMiniCluster c : cmcs )

186 System . out . p r i n t f ( "%s \n" , c . getCenter ( ) . getCSV_ofCenter ( ) ) ;

}

188 }
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E.4 Grid.java

Grid class manages the grid structure of MuDi-Stream which is used to keep the

outliers. The class has different methods to add newly arrived data points, to check if

grid cells are ready to be converted to core-mini-clusters,to remove the grid cells which

their weights are below a specified threshold, and to update the weights of the grid cells

according to the current timestamp.

The source code forGrid class is presented as follows:

package MuDi . Grid ;

2

import Data . Point . DataPoint ;

4

import java . u t i l . ArrayLi s t ;

6 import java . u t i l . I t e r a t o r ;

import java . u t i l . TreeMap ;

8

/**

10 * User : Amineh Amini

*/

12 p u b l i c c l a s s Grid {

p r i v a t e Array_of_Array g r i d ;

14

p r i v a t e i n t g r i d G r a n u l a r i t y ;

16 p r i v a t e double l en ;

18 p r i v a t e i n t c e l l s , t o t a l P o i n t s ;

20 p r i v a t e TreeMap< GridIndex , Gr idCharac t e r i s t i cVec to r > g r i d L i s t ;

22 p u b l i c Grid ( i n t dimensionCount , i n t g r i d G r a n u l a r i t y ) {

Array_of_Array .DIMENSION_COUNT = dimensionCount ;

24 Array_of_Array . DIMENSION_SIZE = g r i d G r a n u l a r i t y ;

g r i d = new Array_of_Array (0 ) ;

26 t h i s . g r i d G r a n u l a r i t y = g r i d G r a n u l a r i t y ;

l en = 1 .0 / g r i d G r a n u l a r i t y ;

28 c e l l s = 0 ;

t o t a l P o i n t s = 0 ;

30 g r i d L i s t = new TreeMap< GridIndex , Gr idCharac t e r i s t i cVec to r > ( ) ;

}

32

p u b l i c GridIndex addPoint ( DataPoint p) {

34 i n t [ ] i n d i c e s = new i n t [ Array_of_Array .DIMENSION_COUNT ] ;

f o r ( i n t i = 0 ; i < i n d i c e s . l ength ; i++)

36 i n d i c e s [ i ] = Math . min ( g r i d G r a n u l a r i t y - 1 , ( i n t ) (p .

getDimensionValue ( i ) / l en ) ) ;

38 GridIndex gr id Index = new GridIndex ( Array_of_Array .

DIMENSION_COUNT, i n d i c e s ) ;

i f ( g r i d . ge tCe l lVa lue ( gr id Index ) == n u l l ) {

40 G r i d C h a r a c t e r i s t i c V e c t o r aGCV = new G r i d C h a r a c t e r i s t i c V e c t o r (

p) ;

g r i d . s e t C e l l V a l u e ( gr idIndex , aGCV) ;
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42 g r i d L i s t . put ( gr idIndex , aGCV) ;

c e l l s ++;

44 } e l s e

g r i d . ge tCe l lVa lue ( gr id Index ) . addPoint (p) ;

46

t o t a l P o i n t s ++;

48

r e turn gr id Index ;

50 }

52 p u b l i c G r i d C h a r a c t e r i s t i c V e c t o r g e t C e l l ( GridIndex gr id Index ) {

re turn g r i d . ge tCe l lVa lue ( gr id Index ) ;

54 }

56 p u b l i c boolean isReadyToBeUpgraded ( GridIndex gr idIndex , double

thresholdWeight ) {

re turn ( g e t C e l l ( g r id Index ) != n u l l ) && ( g e t C e l l ( g r id Index ) .

isReadyToBeUpgraded ( thresholdWeight ) ) ;

58 }

60 p u b l i c void d e l e t e C e l l ( GridIndex gr id Index ) {

G r i d C h a r a c t e r i s t i c V e c t o r aGCV = g e t C e l l ( g r id Index ) ;

62 i f (aGCV != n u l l ) {

g r i d L i s t . remove ( gr id Index ) ;

64 t o t a l P o i n t s -= aGCV. getNumberOfDataPoints ( ) ;

c e l l s - - ;

66 }

g r i d . s e t C e l l V a l u e ( gr idIndex , n u l l ) ;

68 }

70 p u b l i c void removeLightCe l l s ( double lambda , double alpha , long

currentTimestamp ) {

GridIndex g i ;

72 G r i d C h a r a c t e r i s t i c V e c t o r c e l l ;

double OWT; /* O u t l i e r Weight Threshold */

74

ArrayList < GridIndex > toBeDeleted = new ArrayList < GridIndex >( ) ;

76

I t e r a t o r < GridIndex > i tGI = g r i d L i s t . keySet ( ) . i t e r a t o r ( ) ;

78 whi le ( i tGI . hasNext ( ) ) {

g i = i tGI . next ( ) ;

80 c e l l = g r i d L i s t . get ( g i ) ;

i f ( c e l l != n u l l ) {

82 OWT = ( alpha * (1 - Math . pow(2 , - lambda * ( currentTimestamp

- c e l l . getLastTimestamp ( ) + 1) ) ) ) /

(Math . pow( gr idGranu la r i ty , Array_of_Array .

DIMENSION_COUNT) * (1 - Math . pow(2 , - lambda *

c e l l . getLastTimestamp ( ) ) ) ) ;

84 i f ( c e l l . getWeight ( ) <= OWT)

toBeDeleted . add ( g i ) ;

86 }

}

88

i tGI = toBeDeleted . i t e r a t o r ( ) ;

90 whi le ( i tGI . hasNext ( ) ) {

d e l e t e C e l l ( i tGI . next ( ) ) ;

92 }

}

94

p u b l i c void removeLightCel l s_old ( double lambda , double alpha ,

long currentTimestamp ) {
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96 G r i d C h a r a c t e r i s t i c V e c t o r c e l l ;

double OWT; /* O u t l i e r Weight Threshold */

98

i n t [ ] r = new i n t [ Array_of_Array .DIMENSION_COUNT ] ;

100

GridIndex g = new GridIndex ( Array_of_Array .DIMENSION_COUNT, r ) ;

102 do {

c e l l = g r i d . ge tCe l lVa lue ( g ) ;

104 i f ( c e l l != n u l l ) {

OWT = ( alpha * (1 - Math . pow(2 , - lambda * ( currentTimestamp

- c e l l . getLastTimestamp ( ) + 1) ) ) ) /

106 (Math . pow( gr idGranu la r i ty , Array_of_Array .

DIMENSION_COUNT) * (1 - Math . pow(2 , - lambda *

c e l l . getLastTimestamp ( ) ) ) ) ;

i f ( c e l l . getWeight ( ) <= OWT)

108 d e l e t e C e l l ( g ) ;

}

110 g = GridIndex . next ( g , g r i d G r a n u l a r i t y ) ;

} whi l e ( g != n u l l ) ;

112 }

114 p u b l i c void updateAllWeights ( long currentTimestamp ) {

GridIndex g i ;

116 G r i d C h a r a c t e r i s t i c V e c t o r c e l l ;

118 I t e r a t o r < GridIndex > i tGI = g r i d L i s t . keySet ( ) . i t e r a t o r ( ) ;

whi l e ( i tGI . hasNext ( ) ) {

120 g i = i tGI . next ( ) ;

c e l l = g r i d L i s t . get ( g i ) ;

122 i f ( c e l l != n u l l )

c e l l . updateWeight ( currentTimestamp ) ;

124 }

}

126

p u b l i c void updateAllWeights_old ( long currentTimestamp ) {

128 G r i d C h a r a c t e r i s t i c V e c t o r c e l l ;

130 i n t [ ] r = new i n t [ Array_of_Array .DIMENSION_COUNT ] ;

132 GridIndex g = new GridIndex ( Array_of_Array .DIMENSION_COUNT, r ) ;

do {

134 c e l l = g r i d . ge tCe l lVa lue ( g ) ;

i f ( c e l l != n u l l )

136 c e l l . updateWeight ( currentTimestamp ) ;

g = GridIndex . next ( g , g r i d G r a n u l a r i t y ) ;

138 } whi l e ( g != n u l l ) ;

}

140

p u b l i c S t r i n g t o S t r i n g ( ) {

142 r e turn S t r i n g . format ( " C e l l s=%d , Points=%d" , c e l l s , t o t a l P o i n t s )

;

}

144 }
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E.5 GridCharacteristicVector.java

GridCharacteristicVectorclass stores various characteristics of a grid cell. The at-

tributes are the weight, the last data point’s timestamp, and the class ID of the data points.

Moreover, the class has several methods to add a data point, calculate the grid cell’s cen-

ter, and to check if the grid cell is ready to be converted to a core-mini-cluster.

The source code forGridCharacteristicVectorclass is presented as follows:

package MuDi . Grid ;

2

import Data . C l u s t e r L i s t ;

4 import Data . Point . Center ;

import Data . Point . DataPoint ;

6 import Data . Point . Point ;

import MuDi . CoreMiniCluster ;

8

import java . u t i l . ArrayLi s t ;

10 import java . u t i l . HashMap ;

import java . u t i l . I t e r a t o r ;

12

/**

14 * User : Amineh Amini

*/

16 p u b l i c c l a s s G r i d C h a r a c t e r i s t i c V e c t o r {

p u b l i c s t a t i c double LAMBDA;

18 p u b l i c s t a t i c f i n a l i n t INITIAL_CELL_CAPACITY = 5 ;

20 protec ted ArrayList <DataPoint > po in t s ;

p ro tec t ed double weight ;

22 protec ted long lastTimestamp ;

protec t ed byte c l a s s I D ;

24 p r i v a t e HashMap<Byte , In tege r > MixedClassIDs ;

26 p u b l i c G r i d C h a r a c t e r i s t i c V e c t o r ( DataPoint p) {

po in t s = new ArrayList <DataPoint >(INITIAL_CELL_CAPACITY) ;

28 weight = 1 ;

lastTimestamp = 0 ;

30 c l a s s I D = C l u s t e r L i s t .NO_CLUSTER;

addPoint (p) ;

32 }

34 p u b l i c double getWeight ( ) {

re turn weight ;

36 }

38 p u b l i c long getLastTimestamp ( ) {

re turn lastTimestamp ;

40 }

42 p u b l i c i n t getNumberOfDataPoints ( ) {

re turn po in t s . s i z e ( ) ;

44 }

46 p u b l i c void addPoint ( DataPoint p) {
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po in t s . add (p) ;

48 i f ( getNumberOfDataPoints ( ) == 1)

weight = 1 ;

50 e l s e

weight = 1 + weight * Math . pow(2 , -LAMBDA * (p . getTimestamp ( )

- lastTimestamp ) ) ;

52 lastTimestamp = p . getTimestamp ( ) ;

addClassID (p) ;

54 }

56 p u b l i c void updateWeight ( long currentTimestamp ) {

weight = weight * Math . pow(2 , -LAMBDA * ( currentTimestamp -

lastTimestamp ) ) ;

58 }

60 p r i v a t e void addClassID ( DataPoint p) {

i f ( MixedClassIDs == n u l l )

62 MixedClassIDs = new HashMap<Byte , In tege r > ( ) ;

// e l s e p = p ;

64 i f ( c l a s s I D == C l u s t e r L i s t .NO_CLUSTER) {

c l a s s I D = p . getClass ID ( ) ;

66 MixedClassIDs . put ( c la s s ID ,

1 + ( MixedClassIDs . containsKey ( c l a s s I D ) ?

MixedClassIDs . get ( c l a s s I D ) : 0)

68 ) ;

70 } e l s e i f ( c l a s s I D != p . getClass ID ( ) ) {

MixedClassIDs . put (p . getClass ID ( ) ,

72 1 + ( MixedClassIDs . containsKey (p . getClass ID ( ) ) ?

MixedClassIDs . get (p . getClass ID ( ) ) : 0)

) ;

74 c l a s s I D = C l u s t e r L i s t .MIXED_CLUSTER;

} e l s e

76 MixedClassIDs . put ( c la s s ID ,

1 + ( MixedClassIDs . containsKey ( c l a s s I D ) ?

MixedClassIDs . get ( c l a s s I D ) : 0)

78 ) ;

}

80

p u b l i c Center c a l c u l a t e C e n t e r ( long currentTimestamp ) {

82 Center c e n t e r = new Center ( ) ;

double wSum = 0 ;

84 double [ ] d imensionValues = new double [ DataPoint .DIMENSION_COUNT

] ;

86 f o r ( DataPoint p : po in t s ) {

double w = p . getWeight ( currentTimestamp ) ;

88 f o r ( i n t i = 0 ; i < DataPoint .DIMENSION_COUNT; i++)

dimensionValues [ i ] += p . getDimensionValue ( i ) * w;

90

wSum += w;

92 }

f o r ( i n t j = 0 ; j < DataPoint .DIMENSION_COUNT; j++)

94 c e n t e r . setDimensionValue ( j , d imensionValues [ j ] / wSum) ;

96 r e turn c e n t e r ;

}

98

p u b l i c boolean isReadyToBeUpgraded ( double thresholdWeight ) {

100 r e turn ( getNumberOfDataPoints ( ) > 1) &&

( weight >= thresholdWeight ) ;
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102 }

104 p u b l i c double calculateMCD ( Point mainPoint ) {

double mcd = 0 ;

106

f o r ( DataPoint p : po in t s )

108 mcd = Math . max( mainPoint . ge tDi s tance (p) , mcd) ;

110 r e turn mcd ;

}

112

p u b l i c CoreMiniCluster g e t S m a l l C i r c l e C l u s t e r ( long

currentTimestamp ) {

114 CoreMiniCluster c = new CoreMiniCluster ( ) ;

c . setWeight ( getWeight ( ) ) ;

116 c . se tCenter ( c a l c u l a t e C e n t e r ( currentTimestamp ) ) ;

c . setMCD( calculateMCD ( c . getCenter ( ) ) ) ;

118 c . setTimestamp_of_lastPoint ( getLastTimestamp ( ) ) ;

c . setNumber_of_points ( getNumberOfDataPoints ( ) ) ;

120 c . s e tActua lC las s ID ( c l a s s I D ) ;

c . setMixedClass IDs ( MixedClassIDs ) ;

122

HashMap<Long , In tege r > t s L i s t=new HashMap<Long , In tege r > ( ) ;

124 I t e r a t o r <DataPoint > i t=po in t s . i t e r a t o r ( ) ;

whi l e ( i t . hasNext ( ) ) {

126 DataPoint dp=i t . next ( ) ;

long t s = dp . getTimestamp ( ) ;

128

i f ( t s L i s t . containsKey ( t s ) )

130 t s L i s t . put ( ts , 1 + t s L i s t . get ( t s ) ) ;

e l s e

132 t s L i s t . put ( ts , 1) ;

}

134 c . setTimestampList_of_points ( t s L i s t ) ;

136 r e turn c ;

}

138 }
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E.6 GridIndex.java

GridCharacteristicVectorclass stores the location for each grid cell according to the

data point’s dimensions.

The source code forGridIndexclass is presented as follows:

package MuDi . Grid ;

2

/**

4 * User : Amineh Amini

*/

6 p u b l i c c l a s s GridIndex implements Comparable < GridIndex > {

protec t ed i n t [ ] dimensionIndex ;

8 p r i v a t e i n t dimensionCount ;

10 p u b l i c GridIndex ( i n t dimensionCount , i n t [ ] dimensionIndex ) {

t h i s . dimensionCount = dimensionCount ;

12 t h i s . dimensionIndex = new i n t [ dimensionCount ] ;

i f ( dimensionCount != dimensionIndex . l ength )

14 throw new UnsupportedOperationException ( " I n v a l i d dimensions " )

;

f o r ( i n t i = 0 ; i < dimensionCount ; i++)

16 t h i s . dimensionIndex [ i ] = dimensionIndex [ i ] ;

}

18

p u b l i c i n t get Index ( i n t dimensionNumber ) {

20 r e turn dimensionIndex [ dimensionNumber ] ;

}

22

p u b l i c void se t Index ( i n t dimensionNumber , i n t va lue ) {

24 dimensionIndex [ dimensionNumber ] = value ;

}

26

p u b l i c i n t getDimensionCount ( ) {

28 r e turn t h i s . dimensionCount ;

}

30

p u b l i c s t a t i c GridIndex next ( GridIndex gr idIndex , i n t

maxPerDimension ) {

32 i n t d = gr id Index . getDimensionCount ( ) - 1 ;

whi l e (d >= 0) {

34 gr id Index . s e t Index (d , g r id Index . get Index (d) + 1) ;

i f ( g r id Index . get Index (d) >= maxPerDimension ) {

36 gr id Index . s e t Index (d , 0) ;

i f (d == 0)

38 r e turn n u l l ;

d - - ;

40 } e l s e

break ;

42 }

i f ( g r id Index . get Index (0 ) > maxPerDimension )

44 r e turn n u l l ;

e l s e

46 r e turn gr id Index ;

}

48
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50 p u b l i c S t r i n g t o S t r i n g ( ) {

S t r i n g B u i l d e r s = new S t r i n g B u i l d e r ( ) ;

52 f o r ( i n t i = 0 ; i < dimensionIndex . l ength ; i++)

s . append ( S t r i n g . format ( "d%d=%d%s " , i + 1 , dimensionIndex [ i ] ,

54 i == dimensionIndex . l ength - 1 ? " " : " , "

) ) ;

56 r e turn s . t o S t r i n g ( ) ;

}

58

@Override

60 p u b l i c i n t compareTo ( GridIndex o ) {

i f ( t h i s . getDimensionCount ( ) != o . getDimensionCount ( ) )

62 throw new UnsupportedOperationException ( " GridIndex : D i f f e r e n t

Dimension Count . " ) ;

64 f o r ( i n t i = 0 ; i < getDimensionCount ( ) ; i++)

i f ( t h i s . get Index ( i ) != o . get Index ( i ) )

66 r e turn t h i s . get Index ( i ) < o . get Index ( i ) ? 1 : - 1 ;

68 r e turn 0 ;

}

70 }
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