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Abstract 

 

The rapid growth of Web 2.0 applications, such as blogs and social networks creates 

rich online information and provides various new sources of knowledge. The situation, 

however, leads to a great challenge in terms of information overload among social 

network users. Recommender systems (RSs) alleviate this problem with a technique that 

suggests relevant information from the abundance of Web data by considering the user’s 

previous preference. Collaborative and content-based are the recommendation 

techniques typically used in existing RSs. The content-based method is employed more 

widely though.  Similar to the collaborative, the content-based technique suffers from 

the cold-start dilemma that is caused by the incapability of RSs to make reliable 

recommendations in situations when new items or new users are involved. Such issues 

have an impact on prediction accuracy in existing algorithms, and hence, a better 

approach is required.  In this study, a new algorithm is proposed to represent an 

enhanced version of content-based recommender systems by utilizing social networking 

features. In its formulation, the algorithm considers the interests and preferences of 

users’ friends and faculty mates in addition to users’ own preferences. The algorithm 

exploits all interests and preferences in a hierarchy tree structure. Since no offline data 

on Academic Social Networks (ASNs) exists and concerning the advantages of online 

study benefits, a real runtime environment of ASN called MyExpert was built in order 

to conduct an online study to assess the four recommender algorithms. Each 

recommender system algorithm, including the enhanced version of the content-based 

recommender systems using social networking (ECSN), is later incorporated into 

MyExpert to propose to members of this online society the most relevant academic 

items including jobs, news, scholarships and conferences. By using MyExpert, the 

online study was carried out to collect real feedback from live interactions between 
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users and the system.  The assessment ran for 14 consecutive weeks from 7th September 

to 26th December, 2012. MyExpert had 920 members from 10 universities in Malaysia 

at the time of evaluation. Four metrics, namely precision, recall, fallout, and F1 were 

employed to measure the prediction accuracy of each algorithm. Although the 

experiment conducted presented some threats, the results indicated that the ECSN 

algorithm not only improves the prediction accuracy of recommendations but also 

resolves the cold start problem in the existing recommender systems algorithms. 
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CHAPTER 1 

INTRODUCTION OF THE STUDY 

 

1.1  Research Background 

 

In recent years, various types of social media sites have been created to provide users 

with a wide range of online services. Some such websites focus on sharing photos and 

tubes like Flickr1 and YouTube2, while others are classified in the blog and wiki 

categories that include Blogger3 and Wikipedia4. Social networks, for instance 

Facebook5 and MySpace6, have greatly succeeded in attracting internet users from all 

over the world. Twitter7, a micro-blogging site, has also proven precious for its users. 

The rapid progression of websites with online services and vast variety of information 

available on them, have led to novel difficulties for users regarding access to the most 

relevant information through daily transactions. Users browsing websites expect to 

conveniently find highly relevant information based on their needs, preferences and 

interests. Considering this information overload phenomenon, recommender systems are 

now vital features in online environments. They address this issue by recommending the 

most relevant items according to user preferences and previous interactions with the 

system (Afzal & Maurer, 2011; Ricci, Rokach, & Shapira, 2011). 

 

In light of the dramatic growth of online social networks, novel ways of communication 

and collaboration have emerged over the last years. More than a billion users worldwide 

                                                             
1 http://www.Flickr.com 
2 http://www.YouTube.com 
3 http://www.Blogger.com 
4 http://www.Wikipedia.com 
5 http://www.facebook.com 
6 http://www.MySpace.com 
7 https//www.Twitter.com 
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utilize these for networking and accessing information and updates according to their 

daily needs and preferences (Cheung, Chiu, & Lee, 2011).   

 

In this regard, the main goal of Social Recommender Systems is to mitigate the 

information overload experienced by social media users by recommending the most 

pertinent and attractive content. They are also aimed at raising the level of user 

engagement, adoption and participation through social media websites (Ido Guy & 

Carmel, 2011). Recommending content (Ido Guy, Zwerdling, Ronen, Carmel, & Uziel, 

2010), tags (Lipczak, Sigurbjörnsson, & Jaimes, 2012), people (Kim, et al., 2012), and 

communities (Tchuente, Canut, Baptiste-Jessel, Peninou, & Sedes, 2012) usually call 

for personalization techniques based on the interests and preferences of a given user or 

group of users. Consequently, recommender systems may play a significant role in how 

social networks successfully ensure that their users receive suggestions with the most 

relevant and attractive content based on their preferences and interests (Ido Guy & 

Carmel, 2011). 

 

1.2  Problem Statement 

 
A number of more specific social networks have developed in the last decade, catering 

to the special needs of members. Examples of academic social networks are Academia1, 

Mendely2, LinkedIn3, and Course Networking4. Members of academic social networks 

are interested in locating different types of scientific information via this online 

environment. Thus, considering the vast capacity of information in the online 

environments, automatic suggestions by embedded recommender systems are preferred 

                                                             
1 http://academia.edu 
2 http://www.mendeley.com 
3 http://www.LinkedIn.com 
4 http://www.thecn.com 
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in contrast to self-searching for academic items of interest (de Oliveira, Lopes, & Moro, 

2011; He & Chu, 2010). One means of achieving this convenience is to select the most 

relevant information and send it to each member in the academic social network through 

an academic e-newsletter (Jheng, 2011). The selection process may be accomplished by 

utilizing a recommender system. Higher recommender algorithm performance facilitates 

the suggestion of the more relevant items to target users.  

 

According to previous research works, two paradigms - collaborative and content-based 

filtering - are recognized as the most prevalent methods applied in the context of 

recommender systems (Basilico & Hofmann, 2004; Jannach, Zanker, Felfernig, & 

Friedrich, 2010; Ricci, et al., 2011). Collaborative techniques recommend items to a 

given user that other similar users have preferred in the past, while the content-based 

recommender systems suggest items similar to ones the same user was keen on in 

previous interactions with the system. In other words, content-based methods 

recommend an item to a user by matching the item’s characteristics with the user’s 

preference profile (Pazzani & Billsus, 2007; Ricci, et al., 2011).  

 

Both collaborative and content-based recommender systems have a shortcoming related 

with cold start (Ricci, et al., 2011). For optimal recommendations, collaborative 

algorithms require strict records of previous item ratings. However, in such domains 

new items exist with no previous rating records, and collaborative methods cannot 

function properly. This kind of cold start problem occurs in such conditions when new 

items are supposed to be recommended (Adomavicius & Tuzhilin, 2005). This issue has 

been mitigated to some extent by content-based recommender systems, which can 

predict item relevance even in the absence of prior ratings. Nevertheless, even content-

based recommender systems suffer from a related version of cold start. They are unable 



4 

 

to recommend items to new users in the absence of any history of previous interactions 

with the system   (Schafer, Frankowski, Herlocker, & Sen, 2007). Hence, the pure 

content-based method poses what is known as a cold-start problem concerning 

recommendations to new users. For this reason, an enhanced version of the content-

based algorithm is proposed in the current research, whereby social networking 

techniques are utilized to not only solve the cold-start problem, but to also improve the 

prediction accuracy of the recommendation process. 

 

The defining attribute of the Internet today is the abundance of information and choice. 

As Bonhard, Sasse, and Harries (2007) pointed out in their research, recommender 

systems designed to alleviate this problem, have so far not been very successful, 

especially in social networking domains. It has been argued that recommender 

algorithms could be significantly improved by drawing on features from social systems 

(Bonhard, Harries, McCarthy, & Sasse, 2006). According to (Ma, Zhou, Liu, Lyu, & 

King, 2011), although recommender systems have been briefly studied in the past 

decade, the study of social-based recommender systems has only just started. As stated 

in their research, until now the majority of recommender algorithms have focused on 

enhancing the performance of the recommendation process without considering the 

social elements of decision making and advice seeking (Ma et al., 2011). More 

specifically, traditional recommender systems ignore social relationships among users. 

In real life, for instance, when we ask friends to recommend a nice restaurant, we are 

actually requesting verbal social recommendations (Bonhard, 2005). In another research 

in this context, Bonhard, Sasse, and Harries (2007) affirmed that recommender systems 

and social networking functionality should be integrated.  Hence, in order to improve 

recommender systems and to provide more personalized recommendation results, the 

incorporation of social network information among users is necessary (Zhou, Xu, Li, 
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Josang, & Cox, 2012). Consequently, by utilizing social networking techniques, an 

enhanced version of content-based recommender systems would be generated which 

take advantage of social network-based factors to improve the performance of the 

recommendation process. 

 

1.3  Research objectives 

 

Four objectives are taken into account in this research as follows: 

 

1) To compare the existing techniques of recommender systems and elicit essential 

features of academic social networks 

 

2) To propose an enhanced content-based recommender system using social 

networking techniques (ECSN) 

 

3) To develop an academic social network as a real runtime environment for evaluating 

recommender algorithms 

 

4) To evaluate the ECSN recommender system by comparing its prediction accuracy 

with random, collaborative and content-based recommender algorithms 
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1.4  Research Methodology 

 

A suitable, well-structured method is essential to performing sound empirical research. 

Empirical research methods are a class of research methods in which empirical 

observations or data are collected in order to test a theory (Easterly & Levine, 2001). In 

the present study, a quantitative method is used to test the theory of whether utilizing 

social networking parameters can improve the performance of content-based 

recommender systems in academic social networks. Figure 1.1 illustrates the three-

phase method applied in this research. 

 

 

 

Figure 1.1: Abstract View of Research Methodology 

 

The first phase focuses on a literature review and study of preceding research works 

done on recommender systems to identify the main characteristics of recommender 

algorithms. In this context, three different paradigms are studied: academic social 

networks, recommender algorithms, and recommender system evaluation methods. The 

description of these concepts is presented in Chapter 2. 

Phase 1 • Literature    
Review

Phase 2
• Algorithm
Design & 
Development

Phase 3
• Algorithm
Testing and 
Evaluation
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The core focus of the second research phase centers on the design and development of 

three existing recommender algorithms (random, collaborative, and content-based), 

ECSN recommender system, and the required test environment for evaluating their 

performance. An ECSN recommender algorithm is designed and developed to enhance 

the pure content-based recommender system through social networking parameters. In 

this phase, MyExpert is also developed to provide an online real environment for testing 

the various recommender systems and comparing their accuracy in the recommendation 

process.  

According to previous studies (Shani & Gunawardana, 2011) three methods of 

evaluating recommender systems exist, namely offline experiments, user studies, and 

online evaluation. The majority of research works in the domain of recommender 

systems employ the offline analysis method because it is economical and simple to 

implement (Adomavicius & Tuzhilin, 2005; Herlocker, Konstan, Terveen, & Riedl, 

2004). In offline studies, offline datasets such as MoveiLens  and GroupLens  were used 

to test the recommender algorithms (Chen, Harper, Konstan, & Xin Li, 2010; Jung, 

2011; Nguyen & Dinh, 2012; Sarwar et al., 1998). Other researchers preferred the user 

studies method for model evaluation in the field of recommender systems (Bambini, 

Cremonesi, & Turrin, 2011; Ge et al., 2010). Although the online studies is the most 

expensive compared to the other two and takes much more effort to implement, there 

are two important reasons why it has been selected for the experimental design of this 

research. In the first place, there was no offline data set for academic social networks 

with information on user feedback regarding the recommended academic items. This 

research focuses on enhancing the recommending process of academic items through an 

e-Newsletter in academic social networks. Thus, a need arose for a real academic social 

network with real users who receive the recommended academic items via email. By 
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having a real online academic social network, it was possible to record the real behavior 

of users in their interactions with various recommender systems. Secondly, to develop 

the recommender algorithm in this research and compare its results with other 

recommender algorithms, it was necessary to access the code behind an academic social 

network. Consequently, a decision was made to design and develop a real academic 

social network (MyExpert) to serve as a runtime environment for this study. By creating 

MyExpert, C# programming enabled the development of random, collaborative, 

content-based, and ECSN recommender systems as well as running them in a real 

runtime environment. 

During the second stage of the construction phase, three recommender algorithms 

(random, collaborative, and content-based) are implemented prior to the design and 

development of the main recommender algorithm that is proposed in this research 

(ECSN). A concise explanation of this phase is given in Chapter 4. 

The main objective of the third research phase is to test and evaluate all four 

implemented recommender systems and compare their prediction accuracy. To achieve 

this goal, 1390 records of academic items were submitted in MyExpert, including 346 

academic jobs, 339 conferences, 355 scholarships, and 350 academic news articles. As a 

follow-up to the data gathering schedule of this research, each of the above-mentioned 

recommender systems was used to send the top 10 academic items to MyExpert 

members over 14 consecutive weeks from 7th September to 26th December 2012. After 

gathering the members’ feedback from the 14 weeks, Precision, Recall, Fallout, and F1 

assessed the prediction accuracy of all recommender algorithms applied. The details of 

the evaluation process and its results are presented in Chapter 5 of this dissertation. 
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1.5  Theoretical Framework 

 

The theoretical framework of this study covers several research areas. The first is 

Information Retrieval (IR) theory, which provides the overall context for this study 

(Adomavicius and Tuzhilin, 2005). Since the 1940s the problem of information storage 

and retrieval has attracted increasing attention (Good et. al, 1965). An IR system locates 

information that is relevant to a user’s query. It typically searches in collections of 

unstructured or semi-structured data (e.g. web pages, documents, images, video, etc.). 

The need for an IR system occurs when a collection reaches a size where traditional 

cataloguing techniques can no longer cope. Similar to Moore’s law of continual 

processor speed increase, there has been a consistent doubling in digital storage capacity 

every two years. With the growth of digitized unstructured information and, via high 

speed networks, rapid global access to enormous quantities of that information, the only 

viable solution to finding relevant items from these large text databases was search, and 

IR systems became ubiquitous (Sanderson et. al, 2012). 

 

Another theory in this context is Cognitive Science which is an interdisciplinary effort 

to uncover the relationships between brains, minds, and behavior (Rich, 1979). It is the 

study of how the brain, a biological organ, gives rise to the mind, a functional construct. 

In other words, it is an interdisciplinary field encompassing psychology, neuroscience, 

linguistics, computer science, and mathematics. Explanation is counted as a concept 

which makes a connection between cognitive science and recommender systems. 

Explanations provide us with a mechanism for handling errors that come with a 

recommendation. Consider how we as humans handle suggestions as they are given to 

us by other humans. We recognize that other humans are imperfect recommenders. In 

the process of deciding to accept a recommendation from a friend, we might consider 



10 

 

the quality of previous recommendations by the friend or we may compare how that 

friend’s general interests compare to ours in the domain of the suggestion. However, if 

there is any doubt, we will ask “why?” and let the friend explain their reasoning behind 

a suggestion. Then we can analyze the logic of the suggestion and determine for 

ourselves if the evidence is strong enough (Herlocker et. al, 2000).  

 

RSs origins can also be traced back to forecasting theory (Armstrong, 2001). A decision 

maker must inevitably consider the future, and this requires forecasts of certain 

important variables. There also exist forecasters – such as scientists or statisticians – 

who may or may not be operating independently of a decision maker. In the classical 

situation, forecasts are produced by a single forecaster, and there are several potential 

users, namely the various decision makers. In other situations, each decision maker may 

have several different forecasts to choose between (Granger & Machina, 2006).  

 

In the mid-1990’s, recommender systems emerged as an independent research area 

when researchers started focusing on recommendation problems that explicitly rely on 

the ratings structure (Goldberg, Nichols, Oki, & Terry, 1992; McSherry & Mironov, 

2009). In its most common formulation, the recommendation problem is reduced to the 

problem of estimating ratings for the items that have not been seen by a user. This 

estimation is usually based on the ratings given by this user to other items and possibly 

on some other information as well. 

 

1.6  The Significance of the Study 

 

The main contribution of this research is the improved performance of the content-based 

recommender algorithm. As such, an enhanced content-based recommender system 



11 

 

based on social networking techniques (ECSN) is proposed. More specifically, the 

ECSBN algorithm makes more accurate predictions when recommending relevant items 

to members of an academic social network (MyExpert1) compared to the random, 

collaborative, and content-based recommender algorithms. 

 

Besides, in conditions where no evidence exists of previous interaction between target 

users and the system, social networking techniques may be very useful in identifying 

and recommending the most relevant items. Studying the online behavior of friends and 

classmates of a given user would particularly enable making rather correct predictions 

about their preferences and interests.  Basically, this approach solves the cold start 

problem of the collaborative and content-based recommender systems in situations 

where the recommender engine is faced with new items and new users. 

 

The present research makes an additional contribution to the field of social networking. 

MyExpert, as developed in this study, is now the first academic social network in 

Malaysia. It acts as a real runtime environment for evaluating the accuracy of the ECSN 

recommender system and judging its performance against other recommender 

algorithms. MyExperts also provides an online environment for the collaboration and 

sharing of academic knowledge and documents among scientists in Malaysia. Currently, 

more than 920 students, lecturers and researchers from 10 universities in Malaysia have 

joined this academic social network. 

 

There are over 100,000 log records of transactions in MyExpert that also have the 

potential to be used in future research works in the recommender systems field. 

                                                             
1
 http://www.MyExpert.com 
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Numerous other studies, such as anomaly detection and knowledge-based recommender 

systems can draw on MyExpert datasets for research work assessment. 

 

1.7 Thesis Organization 

 

This dissertation is organized as follows. Subsequent to the introduction in Chapter 1, 

Chapter 2 explores literature on the concepts of academic social networks and 

recommender systems. In the first part, the reasons why academic social networks have 

emerged are described and the most popular examples are discussed.  The second 

section of the literature review focuses on recommender system description. After 

providing some information with respect to their functionalities, the three main 

techniques in recommender systems are discussed briefly – the collaborative, content-

based, and hybrid approaches. The final part of the chapter presents the methods for 

evaluating the prediction accuracy of recommender systems. In Chapter 3, the research 

methodology is discussed along with the target population used in this work, data 

collection procedure, and applied evaluation method. Chapter 4 illustrates the technical 

issues with this research. Two main sections present the design and implementation 

details of MyExpert as a runtime environment, and the recommender algorithms 

developed in this study. The experiment and study results are discussed in Chapter 5. 

Prior to the experimental design, however, the means of evaluating the recommender 

systems are introduced. Then the four measurements done (precision, recall, fallout, and 

F1), together with the results are discussed. In conclusion, Chapter 6 describes how this 

study contributes to current academic literature on this topic. Future works are also 

suggested in the final chapter. This dissertation concludes with supporting documents 

and data in the appendices.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

In the sections that follow, recommender systems and academic social networks are 

discussed. Since the main focus of this research is improving the performance of 

recommender algorithms, it is additionally essential to study the most popular 

recommender systems, their techniques, advantages, shortcomings along with methods 

of evaluating their prediction accuracy. As mentioned in the research methodology 

section of the previous chapter, the MyExpert academic social network is considered as 

runtime environment in this research for applying and evaluating recommender systems. 

Hence, to design and develop MyExpert, a comprehensive review of current academic 

social networks is first required.  

 

2.2 Recommender Systems 

 

“We have 6.2 million customers; we should have 6.2 million stores. There should be the 

optimum store for each and every customer.” 

-Jeff Bezos, CEO of Amazon.comTM (Bezos, March 16th 1999) 

 

Recommender Systems (RS) are software tools and techniques for suggesting the most 

related items to users (Burke, 2007; Mahmood & Ricci, 2009). These suggestions may 

be in terms of different usages, such as books to buy, people who can be selected as 

friends in a social network, or online news to be read. In other words, they provide 
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personalized recommendation based on information elicited from user profiles and item 

specifications (Cacheda, Carneiro, Fernández, & Formoso, 2011).  

 

The dramatic growth of online services and the vast variety of information available on 

the Web have led to a number of serious difficulties for users in making correct 

decisions through their online transactions. Considering the phenomenon of information 

overload, RSs have proved to be effective and essential facilities in online 

environments. They address this problem by recommending new and not-yet-

experienced options to users according to their current needs. To provide these coherent 

suggestions, RSs need various types of information on user preferences, lists of 

available items, and history of previous interactions between the user and the system 

stored in designated databases. When browsing the recommended items, the user can 

then provide implicit or explicit feedback that will be used to generate more relevant 

recommendations in future suggestions (Ricci, et al., 2011). 

 

Pertaining to RSs, an “item” is a typical term for what is supposed to be recommended 

to a target user. With respect to the nature and characteristics of both “items” and “user” 

is crucial to implement an optimum RS in related domains. In some websites, such as 

Amazon.com, the RS is used for personalizing the online store for each client (Hwang, 

Kuo, & Yu, 2008). Ricci, et al. (2011) pointed out that in personalized RSs, users with 

different interests and preferences receive diverse recommendations. Besides, there are 

much simpler types of RSs that are non-personalized. Online magazines and newspapers 

usually prefer to use this kind of RSs due to their simplicity in implementation. For 

example they can help suggest the top ten books or CDs in some online stores to all 

users. While these types of non-personalized recommendations may be effective in 

various general instances, they are not typically addressed in RS research fields. In 
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personalized RSs, the recommended items are presented as a ranked list. Predicting the 

most suitable items for users is based on user taste, preference and constraints. To 

accomplish this computational procedure, RSs need to generate a user profile by 

collecting their preferences. This eliciting process can be either explicit, e.g., by rating 

the products, or implicit, e.g., by analyzing user interactions. For instance, the sequence 

of browsing the web pages in an online store by each customer can be deemed an 

implicit sign of interest for items shown on visited web pages. 

 

In a review of recommender systems, Adomavicius and Tuzhilin (2005) pointed out that 

RSs origins can be traced back to information retrieval (Salton, 1989), cognitive science 

(Rich, 1979), forecasting theories (Armstrong, 2001), approximation theory (Powell, 

1981), marketing (Lilien, Kotler, & Moorthy, 1992), as well as management (Murthi & 

Sarkar, 2003). But more specifically, the concept of recommender systems has emerged 

as a novel research area in the mid-1990s when the rating structure of RSs became a 

center of attention for researchers in this field (Goldberg, Nichols, Oki, & Terry, 1992; 

McSherry & Mironov, 2009). It can be said that when user profiles came into existence 

as a new concept of making recommendations, previous techniques in information 

retrieval were improved to generate a new research field known as recommender 

systems. As the following facts indicate, in recent years, there has been an increasing 

interest in recommender systems: 

 

1. It is becoming increasingly difficult to ignore the important role of RSs in such high-

rank websites as YouTube, Yahoo, Amazon.com, Tripadvisor, Last.fm, and IMDb. 

Recommender systems have become one of the most essential services that the media 

companies are providing to their clients. For example Netflix, one of the most popular 

online movie rental websites, recently awarded a million dollar prize to programmers 
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for increasing the performance of its recommender system (Koren, Bell, & Volinsky, 

2009). 

 

2. In recent years, we can see several courses that are specifically dedicated to the RS 

research domain at universities and other academic centers around the world. Bedsides, 

workshops and tutorials on recommender systems have been very popular at computer 

science conferences, and also several books have recently been published on RS 

techniques (Jannach, et al., 2010; Tiroshi, Kuflik, Kay, & Kummerfeld, 2012). 

 

3. Recent developments in conferences and workshops related to recommender systems 

have heightened the call for this research field. We can specifically mention ACM 

recommender systems (RecSys) established in 2007 and which have currently become 

among the most important annual events on recommender systems. Even in the more 

traditional conferences in the area of information systems, databases and adaptive 

systems, we frequently see the increasing growth in sessions and discussions related to 

RSs. ACM SIGIR Special Interest Group on Information Retrieval (SIGIR), Adaptation 

and Personalization (UMAP), User Modeling, and ACM’s Special Interest Group on 

Management Of Data (SIGMOD) are some examples of such academic events. 

 

4. There have been several calls for papers with special issues in academic journals 

dedicated to recommender systems research and development. Among these kinds of 

journals are   International Journal of Web-Based Communities (2013); User Modeling 

and User-Adapted Interaction (2012); IEEE Intelligent Systems (2007); AI 

Communications (2008); International Journal of Electronic Commerce (2006); 

International Journal of Computer Science and Applications (2006); ACM Transactions 
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on Computer-Human Interaction (2005); and ACM Transactions on Information 

Systems (2004). 

 

2.2.1 Recommender Systems Functionality 

 

To expand the definition of RSs, in this section their different roles are illustrated on 

behalf of service providers and users. Ricci et al. (2011) list the reasons why service 

providers prefer to facilitate recommender systems as follows: 

 

• To increase the number of items sold:  Selling more items to customers is definitely 

one of the most important objectives for any business corporation. RSs can be effective 

in achieving this goal as they try to suggest items that are likely to suit the customers’ 

needs and interests. Improving the conversion rate can be the main reason for a service 

provider to utilize RSs. In this way, they can increase the number of customers who 

accept the recommendation and find their desired items, compared to the number of 

simple users that just browse through the information. 

 

• To sell more diverse items: Marketing, and ultimately selling new and unpopular 

items, is another functionality expected of a well-designed RS. What is interesting for 

an online merchant is to recommend items that might be hard for a customer to find 

using traditional information retrieval techniques. 

 

• To enhance user fidelity and satisfaction: User loyalty can be majorly increased 

when they receive interesting and relevant recommended items by well-tuned RSs. 

Besides, the effectiveness and accuracy of suggested items presented in a user friendly 

interface leads to higher subjective system evaluation by customers. The users’ previous 
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transactions become widely utilized by RSs to compute the most relevant 

recommendations. Hence, the longer a user interacts with the system, the more coherent 

user preferences become elicited, and ultimately the more related items are 

recommended by the designated recommender system.  

 

The previous issues are thus some important reasons why service providers are so 

interested in applying recommender systems. Considering the effective role of RSs,  

users may also find use for them. So it is essential to observe the requirements from the 

two sides and design a recommender system capable of providing appropriate 

suggestions for both. Herlocker (2004) identified eleven associated tasks that RSs 

implement concerning users’ needs and expectations.  

 

• Find some good items: Prepare a list of prioritized items and recommend them to 

target users. This prediction can be done by using previously elicited information from 

the user’s preferences. This seems to be the most important task in many recommender 

systems in commercial environments. 

 

• Find all good items: In some circumstances finding only some good items is not 

sufficient, and it is worth recommending all the items that cover user needs. Using this 

technique seems logical, especially when facing a rather small number of items or when 

the recommender system is used in a mission-critical environment, such as sensitive 

military or medical applications. In these scenarios, the user may take advantage of both 

suggestions of all related alternatives and an ordered list of items based on associated 

ranks. 
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• Annotation in context: A more specific duty of a RS is emphasizing items in a given 

existing context considering the user’s long-term interactions with the system and his or 

her preferences.  

 

• Recommend a sequence: In some special applications, the idea of recommending a 

sequence of correlated suggestions is preferred to merely suggesting a single item. 

Recommending to buy a data mining book after getting a suggestion on a database 

topic, suggesting a TV series, or providing a recommendation on a compilation of 

musical tracks are typical examples of this method in RSs (Hayes & Cunningham, 

2001; Shani, Brafman, & Heckerman, 2002). 

 

• Recommend a bundle: Here, the role of RSs is to recommend a package including 

different types of items that fit well together. In some cases, such travel plans, the item 

supposed to be suggested might consist of various parts like destinations, restaurants, 

attractions, and accommodation services located in a target area. In 2006, Ricci et al. 

demonstrated that users prefer to receive all these recommendations as a single travel 

plan.  

 

• Just browsing: Sometimes web site users prefer to window shop with no intention of 

purchasing an item. Thus, helping the user find and browse the desired items is a task 

expected of RS to carry out. The adaptive hypermedia techniques can also support these 

kinds of transactions (Brusilovsky, 1996). 

 

• Find a credible recommender: Other times, online users prefer to test a 

recommender system before trusting it. Hence, to assure them of the system’s 
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credibility, it is worth contriving a mechanism to allow users to fiddle with the RS and 

see how good it is in recommending the most related items. 

 

• Improve the profile: Later in this chapter it is mentioned that users preferences can 

be elicited from their profiles in making better recommendations in content-based RSs. 

In supporting this idea, it is important to consider a capability for users to input and 

update their profiles.  

 

• Express self: Some users mostly care about their contribution with their ratings and 

expressing their beliefs rather than receiving the recommendations. So in these special 

situations, increasing user satisfactions for this activity can be effective in improving 

user loyalty. 

 

• Help and influence others: For a number of users in online communities, the notion 

that the system benefits from their contribution is an extremely good motivator that 

inspires them to contribute with information and rate items. Actually, their main interest 

is to help and influence others in finding items they are looking for.   

 

2.2.2 Recommendation Techniques 

 

The most important objective of recommender systems is to estimate the ratings for the 

items that have not been seen by a user (Adomavicius & Tuzhilin, 2005).  Ultimately, 

after calculating the estimated rates for the yet unrated items, an ordered list of most 

related items can be prepared and suggested to the target user. Adomavicius and 

Tuzhilin (2005) represent the recommendation problem as follows: Consider � as the 

set of all users, and � as the set of all items supposed to be recommended to users. Both 
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user and item space can be very large based on the application domain. Let � stand for a 

utility function that calculates the usefulness of item � to user: 

 

� ∶ � × � → �                                                     (2.1) 

 

In this relation, � is a totally ordered set with a non-negative integer or real numbers in 

a specific range. In this space, it is supposed to choose for each user ∈ �  , such items 

�� ∈ � that maximize �: 

 

∀� ∈ �, � ∈ �, ��
� = ������ �(�, �)                                   (2.2) 

 

As such, each member of user space � can have a profile indicating the attributes of the 

user, such as age, gender, degree, etc. Similarly, the items have their own 

characteristics.  

 

However, the utility function � is not defined on the whole � × �  space. The main 

calculations in RSs based on ratings, and more specifically, it is limited to the 

previously rated items by the users. Consequently, the RS engine should predict the 

ratings of non-rated items and try to make recommendations based on this framework 

(Ricci, et al., 2011). 

 

The process for predicting unknown ratings includes two main steps: 1) applying 

specific heuristics in the utility function and validating its performance in runtime 

environments, and 2) evaluating the performance of a designated utility function in 

optimizing the recommendation results. Ultimately, after accomplishing the estimation 
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process, the highest rated items are recommended to users based on the applied 

algorithm in the previous step. 

 

Different methods, such as machine learning, approximation theory, and various 

heuristics, can be used for recommending the most related items. Considering this 

variety, RSs are mainly classified based on their approach in rating the estimations.  

 

In 2005, Adomavicius and Tuzhilin reviewed previous literature by Hill, Stead, et al. 

(1995); Rosenstein, & Furnas (1995); Resnick, et al. (1994); and Shardanand & Maes 

(1995), and classifed the recommender systems in three categories: 

 

 Collaborative recommendations: The items are predicted based on the items 

that people with similar preferences and interests preferred previously; 

 

 Content-based recommendations: The users’ own preferences through 

previous interactions are considered in predicting the new items; 

 

 Hybrid approaches: These methods are a combination of the collaborative and 

content-based methods. 

 

In another more recent and highly cited research (Ricci, et al., 2011), three other 

approaches were added into the classification of recommender systems: 

 

 Demographic recommendations: This approach follows the idea that users 

with variant demographic profiles should receive recommendations differently.  
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 Knowledge-based recommendations: In this type of recommender system, 

items are suggested based on specific domains of knowledge. 

 

 

 Social network-based recommendations: The preferences and needs of the 

user’s friends play the main role in this type of recommender system. 

 

Next, each of the previously mentioned algorithms will be presented in more detail by 

revealing their advantages and shortcomings to be considered when applying them in 

runtime environments.  

 

2.2.2.1 Collaborative Filtering 

 

As Schafer et al. demonstrated in 2001, the original implementation of the Collaborative 

Filtering (CF) approach suggests to the active user items that similar users liked in the 

past.  The similarity in the previous user ratings is considered for identifying the 

similarity in the preferences of two given users. That is why J. B. Schafer et al. (2001) 

referred to CF as “people-to-people correlation.” The prediction process in CF systems 

is almost based on evaluation rather than analysis. In other words, this method 

categorizes information by considering the user’s opinion on an item instead of the 

information itself. More specifically, the role of the community is highlighted in CF as 

it focuses on other similar users’ opinions to suggest a particular item to a target user. 

 

Hereby, we discuss the most widely used CF algorithms. A comparison study of CF 

algorithms was carried out by Cacheda et al. (2011), who argue that there are two main 

classifications for Collaborative Filtering recommender systems: memory-based (user-

based) and model-based (item-based). These are applied in different application fields.  
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Earlier research works have been using the memory-based approach that utilizes elicited 

information from items previously rated by users. This method needs all items, ratings 

and users to be collected and stored in the memory to make recommendations.  Later, to 

cover some shortcomings of this approach, a model-based method was developed that 

looks for similar items instead of making groups of similar users. In other words, it uses 

an offline pattern created periodically by summarizing item ratings. Both these methods 

will be discussed in more detail later, and their advantages and shortcomings will be 

compared. First of all, we need to become familiar with the User-Item matrix.  

 

The concept of User-Item matrix is found in both memory-based and model-based 

collaborative filtering algorithms (Wang, De Vries, & Reinders, 2006). As shown in 

Figure 2.1, the user’s profile can be considered a  � × �   user-item matrix �  for �  

number of users and �  number of items. Each element  ��,� = �  represents the value of 

rating that the user � has assigned to item �. For items rated  � ∈ {1, …,|�|} , and for 

unrated ones,  � = ∅  . 
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Figure 2.1: The User-Item Matrix in Recommender Systems 

 

The user-item matrix can be manipulated in two different ways. For one, it can be 

represented by considering its row vectors:   

 

� = [��,…,�� ],   �� = ���,�,… , ��,��,� = 1, …,�                          (2.3) 

 

where each row vector ��  represents a user profile including all ratings assigned to the 

items. The memory-based collaborative filtering is based on this type of representation. 

 

Second, it can be decomposed into column vectors: 

 

� = [��,… , �� ],   �� = ���,�,… ,��,� �, � = 1,…, �                       (2.4) 

where each column vector ��  represents all ratings assigned to a specific item. This 

viewpoint leads to model-based collaborative filtering systems. 
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2.2.2.1.1 Memory-Based Collaborative Filtering 

 

In the memory-based (user-based) approach, the recommender engine predicts the 

active user’s interest for a specific item by considering the elicited information from 

similar users’ profiles (Wang, et al., 2006).  

 

 

Figure 2.2: Using User Similarity to Predict the Ratings 

 

As depicted in Figure 2.2, each row vector which represents a user profile has been 

sorted based on its dissimilarity towards the active user’s profile. Hence, the items rated 

by more similar users have better chance of being recommended to the active user. A 

group of similar users can be generated by selecting top-N similar users ��(��)  toward 

user: 
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��(��) = �������� ��(��,��)≤ �,��,� ≠ ∅ �                         (2.5) 

 

where |��(��)|= � . 

 

In this formula the degree of similarity between users �  and  � is identified by 

��(��,��). According to Wang et al. (2006), the two most popular measures for 

calculating this kind of similarity in collaborative filtering are Cosine similarity and 

Pearson’s correlation. Some training data can also be used to generate this ranked list of 

similar users (Jin, Chai, & Si, 2004). This study adopts the cosine similarity measure: 

 

���(�,�)=  
∑ (��,����̅)(��,��� �̅)� ∈�

�∑ ���,����̅�
�

� ∈�
�∑ ���,��� �̅�

�

� ∈�

                           (2.6) 

 

where �  and �  are the users whose similarity we want to measure. ��,� represents the 

rating assigned by user � to item �  and � is the set of items rated by both user �  and � 

. The last parameter is ���, which denotes the average ratings submitted by user �. 

Finally, the measured similarity value will be between −1  and +1 . 

 

After calculating the similarity value between all pair of users, the following formula 

will be applied to calculate the predicted rating ����(�, �) of item �  by the user: 

 

����(�,�)= ��� +
∑ ��� (�,�)∗(��,��������)� ∈�

∑ ��� (�,�)
� ∈�

                               (2.7) 

 

where � is the set of all users who submitted a rating to item  �. 

 



28 

 

The simplicity and tangibility have made the memory-based collaborative filtering very 

popular in different application domains. Although they are sufficient to solve many 

problems in the real world, they still have shortcomings (Cacheda, et al., 2011): 

 

Sparsity. In real-world applications, it is undeniable that even active users rate only a 

small subset of total items. In this situation, most of the cells in the user-item matrix 

remain empty. Consequently, a memory-based CF system which needs the data of the 

user-item matrix faces a serious problem in making a coherent recommendation. 

(Hofmann, 2004; Sarwar et al. 2001). 

 

Cold Start. This problem specifically happens to new users who have not rated enough 

items yet.  In such cases, the recommendation system cannot elicit the user’s 

preferences and consequently, it is unable to predict the related items correctly for 

suggestion. To solve this problem, some RSs apply a method of forcing users to submit 

ratings for a minimum number of items. But even this solution has its own problems 

and leads to system biases. Similarly, the new items may also be affected by this kind of 

problem in memory-based CFs (Schein, Popescul, Ungar, & Pennock, 2002).  

 

Shilling. Another difficulty with this method is derived from spam attacks by users who 

plan to mislead the RS into recommending specific items (Chirita, Nejdl, & Zamfir, 

2005; S. K. Lam & Riedl, 2004). In this regard, several studies have been done in the 

past that point out some methods affecting both model-based (Sandvig, Mobasher, & 

Burke, 2008) and memory-based (Mobasher, Burke, Bhaumik, & Williams, 2007) 

algorithms. 
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Scalability. The majority of memory-based collaborative algorithms suffer from the 

scalability problem as they have to process large amounts of data for recommending a 

single item. Hence, in an online environment with a lot of items or users, these methods 

are not a suitable alternative, especially in real-time recommending systems (Sarwar et 

al. 2001).  

 

The shortcomings with user-based collaborative systems mentioned have led to the 

emergence of another approach called item-based or model-based CF systems. 

 

2.2.2.1.2 Model-Based Collaborative Filtering 

 

The model-based CF approach takes advantage of the idea that compiling a model of 

user preferences may solve some of the difficulties of memory-based algorithms. This 

model includes precompiled information of items, users and ratings, and may be 

generated in several hours or days. The built model is then used for making 

recommendations. The main difference between this model and the previous one is 

considering the items instead of users to predict the ratings. As shown in Figure 2.3, the 

prediction can be made based on average ratings of similar items rated by the active 

user (Deshpande et al. 2004; Linden et al. 2003; Sarwar et al. 2001). 

 

Similar to the memory-based method, in this algorithm sorting is done based on 

dissimilarity.  Instead of sorting by row vectors, the items (column vectors) are sorted 

toward the target item. As shown in Figure 2.3, by applying this method of sorting, the 

rating value of items with higher degrees of similarity can be weighed stronger. 
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Figure 2.3: Using Item Similarity to Predict the Ratings 

 

In item-based prediction algorithms predicting the most relevant items is based on the 

similarity between items:  

 

�������⃗ ,���⃗ � =  
∑ (��,��������)(��,��������)�∈�

�∑ ���,���������
�

�∈� �∑ ���,���������
�

�∈�

                          (2.8) 

 

where � indicates the set of all users who rated both item � and �. Accordingly, ��,� 

and ��,� are the rates that user � assigned to items � and � respectively.  
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Having similarity of available items, we can apply the following formula to predict the 

rating of active user � to item �:  

 

����(�,�)=
∑ ���(�,�)∗��,��∈���������(�)

∑ ���(�,�)�∈���������(�)
                             (2.9) 

 

where ���(�,�) denotes the degree of similarity between each member of items rated 

by user �  and the target item � , and ��,� represents the rating assigned by user � to item 

�. 

 

In this context, Bayesian networks and Bayesian clustering are two methods evaluated 

in another research (Gong, 2010). The Bayesian clustering technique groups users with 

similar interests and tastes into the same class. The retrieved information by analyzing 

the data sets identifies the number of classes and parameters in the model. Each node in 

the Bayesian network model corresponds to an item in the data set. Also, the possible 

ratings of each item identify the state of each node.  

 

In an early research study by Ungar & Foster (1998), clustering was applied as a pre-

processing step for collaborative filtering systems which classify items and users into 

groups. In this method, the probability of interest to each group of items is calculated 

for each group of users. 

 

As mentioned previously, data sparsity was one of the limitations in memory-based 

collaborative systems. Although the model-based methods deal with this to some extent, 

the need for tuning a large number of parameters causes serious restrictions to applying 

it practically. 
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We can count several advantages for model-based collaborative filtering methods 

compared to memory-based approaches. First, a model-based CF offers some added 

values. In addition to its predictive features, it can clarify the correlations in elicited 

data. Second, it needs less memory space for storing data. Third, taking advantage of the 

complied model, in the model-based approach the recommendations can be made very 

quickly. Consequently, the model-based CF systems are usually smaller, faster than, and 

definitely as coherent as memory-based methods. They are truly applicable in real world 

environments in which user profiles and interests change slowly and do not need to be 

updated frequently. 

 

2.2.2.2 Content-Based Filtering 

 

During the past thirty years, researchers have been utilizing technologies to 

automatically categorize information used for generating recommendations based on 

users’ personal preferences (Herlocker, 2000). In other words, they analyzed previously 

rated items by a user to build a user model presenting his or her interests and 

preferences (Mladenic, 1999).  To come up with a judgment representing the user’s 

level of interest to a specific item, RSs try to match up the preferences retrieved from a 

user profile against the attributes of that item. Content-based recommendation systems 

have been used in a variety of domains ranging from recommending web pages, news 

articles, restaurants, television programs, and items for sale. Although the details of 

various systems differ, content-based recommendation systems share in common a 

means for describing the items that may be recommended, a means for creating a profile 

of the user that describes the types of items the user likes, and a means of comparing 

items to the user profile to determine what to recommend. In doing so, the profile is 

often created and updated automatically in response to feedback on the desirability of 
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items that have been presented to the user (Pazzani et al. 2007). To clarify the adopted 

techniques in this approach, the architecture of content-based recommender systems is 

described in the following section.   

 

2.2.2.2.1 Architecture of Content-Based Recommender Systems 

 

Content-Based RSs need a well-structured framework supporting the techniques for 

comparing user interests with the items’ specifications, and to ultimately suggest the 

most suitable item to a target user. Lops et al. (2011) proposed a high level architecture 

for content-based recommender systems as illustrated in Figure 2.4. 

 

 

Figure 2.4: Content-Based Recommender High Level Architecture (Lops, et al., 

2011) 
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As depicted above, this architecture has three main components: 

 

• CONTENT ANALYZER –The main role of this component is to prepare the item’s 

relevant information in a format suitable to the next steps. After applying the 

information retrieval techniques, the analyzed data items will be forwarded to the 

PROFILE LEARNER and FILTERING COMPONENT for the next level of processing. 

 

• PROFILE LEARNER – This component is responsible for constructing the user 

profile. It usually generalizes the data related to user preferences and interests using 

machine learning techniques (Mitchell, 1997). For example, in a web page 

recommender system, the PROFILE LEARNER may utilize a relevance feedback 

mechanism which  combines vectors of positive and negative samples of web pages to 

shape the user model.   

  

• FILTERING COMPONENT – This component recommends the most relevant 

items by eliciting preferences from the user profile and comparing them with item 

attributes. As a result, a rank list of predicted interesting items is produced for the 

designated user. 

 

More precisely, the CONTENT ANALYZER processes the item characteristics 

retrieved from Information Sources by applying information retrieval techniques 

(Chowdhury, 2010; Davenport, 2012).  It produces a structured representation of items 

from originally unstructured formats. 
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As depicted in Figure 2.4, a storage called Feedback has been considered for collecting 

the reactions of active users (��) to the items. This collection is used to generate and 

update the profile of each ��. Besides, the users can also provide information about 

their interests and preferences through their profiles explicitly. Usually the collected 

feedback is distinguished as two different kinds: positive information (items that the 

user is interested in) and negative information (items that are disliked by the user) 

(Holte & Yan, 1996). 

 

Explicit and Implicit feedback are two methods that can be used in this context. In the 

former technique, the user is actively involved in evaluating the items, while in the latter 

the feedback is elicited from analyzing the user’s interactions with the system in a 

specific duration. Three main techniques are applicable in getting feedback in the 

explicit method: 

 

• Like/Dislike – applying a binary approach, items are rated as “relevant” or “not 

relevant, (Billsus & Pazzani, 1999); 

 

• Ratings – pointed out by Shardanand and Maes (1995), a discrete numeric scale can 

be used to rate items. Alternatively, the numeric scales can be replaced by symbolic 

ratings such as by Syskill and Webert, where users could select hot, cold, or lukewarm 

when rating a web page (Pazzani et al. 1996). 

 

• Text Comments – To assist the user in making decision, textual comments submitted 

to a specific item will be elicited and presented (Resnick, Iacovou, Suchak, Bergstrom, 

& Riedl, 1994). Amazon.com and eBay.com are two web sites which employ this 

method to clarify whether an item is inspired by other users in previous transactions. It 
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is worth mentioning that applying some advanced techniques of effective computing 

can improve the content-based RSs’ performance to carry out this process automatically 

(Picard, 2003). 

 

While explicit feedback has the advantage of simple implementation, it may increase 

the load on the user and besides, it may not be coherent enough in exploiting the user’s 

preferences of items. On the other hand, in implicit feedback techniques, a relevance 

score is assigned to a specific user action when faced with an item. These actions may 

be selected from a variant list of user interactions with the system such as clicking, 

printing, downloading, etc. Although biasing may occur in this method, it has the 

advantage that the user is not required to be involved directly in these rating 

transactions. 

 

As mentioned previously, each active user �� is assigned by a profile. To build this 

profile, the training set ��� must be defined for each ��.The  ��� is defined as a set of 

pairs (��, ��)  where ��  is rating submitted by �� on item �� . By having ��� , the 

PROFILE LEARNER generates the user profile for ��  as a predictive model which 

will be used in subsequent stages by the FILTERING COMPONENT. Faced with a new 

item, the FILTERING COMPONENT compares its attributes to those in the user’s 

profile and then predicts the degree of interest for the target active user. Finally, an 

ordered list of recommendations (��) will be generated for suggesting to ��. After 

receiving the �� by ��, the new feedback will be recorded showing the user’s feelings 

about the received recommended items. Meanwhile, the learning process is repeated to 

apply the newly gathered feedback into the user’s profile. Considering the dynamic 

nature of user interests, the feedback-learning routine should be iterated by the 

PROFILE LEARNER to keep the user profile updated. It should also be considered that 
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the user profile needs to be updated regularly by the PROFILE LEARNER as users’ 

interests are usually subject to change with time.  

 

2.2.2.2.2 Content-Based Filtering Algorithms 

 

Items that are supposed to be recommended to the user are usually stored in a database 

table. A simple database table is shown in Table 2.1. In this table, there are records that 

describe three restaurants. The columns (e.g., Cuisine or Service) represent the 

restaurant properties. Each record is recognized by a unique identifier, or ID, in 

Table 2.1, which allows items with the same name to be distinguished and it serves as a 

key to retrieve the other attributes of the record. 

 

Table 2.1: A sample of structured data  

ID Name Cuisine Service Cost 

1001 John’s Pizza Italian Couter Low 

1002 Mary’s café French Table Medium 

1003 Ali’s Pizza House Spanish Table High 

 

The database illustrated in Table 2.1 is an example of structured data with a small 

number of attributes. Each item is shown by the same set of attributes, and there is a 

known set of values that the attributes may have. In this approach, the machine learning 

algorithms may be used to create a user profile from structured data. 

 

There are also cases that need unstructured data for presenting and restoring the items. 

In this context, such as a text description of the restaurant, a restaurant review, or even a 

menu, there might be some entities that need to be represented using free text data. A 

simple example of unstructured data may occur in news articles (Table 2.2). In this 
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example of unstructured data, the entire article can be treated as a large unrestricted text 

field.  

 

Table 2.2: A sample of unstructured data  

 

 

Unrestricted texts, such as news articles are examples of unstructured data. Unlike 

structured data, there are no attribute names with well-defined values. Furthermore, the 

full complexity of natural language may be present in the text field including 

polysemous words (a word that may have several meanings) and synonyms (different 

words with the same meaning). For example, in the article in Table 2.7, “Gray” is a 

name rather than a color, and “power” and “electricity” refer to the same underlying 

concept. 

 

A common approach to dealing with free text fields is to convert the free text to a 

structured representation. For example, each word may be viewed as an attribute, with a 

Boolean value indicating whether the word is in the article or with an integer value 

showing the number of times the word appears in the article. Many personalization 

systems that deal with unrestricted text use a technique to create a structured 

representation that originated with text search systems (Salton, 1989a). In this 

Lawmakers Fine-Tuning Energy Plan 

SACRAMENTO, Calif. -- With California's energy reserves remaining all but 

depleted, lawmakers prepared to work through the weekend fine-tuning a plan Gov. 

Gray Davis says will put the state in the power business for "a long time to come." 

The proposal involves partially taking over California's two largest utilities and 

signing long-term contracts of up to 10 years to buy electricity from wholesalers. 
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formalism, rather than using words, the root forms of words are typically created 

through a process called stemming (Porter, 1980). The goal of stemming is to create a 

term that reflects the common meaning behind words such as “compute,” 

“computation,” “computer” “computes” and “computers.” The value of a variable 

associated with a term is a real number that represents the importance or relevance. 

 

From the standpoint of structured items, machine learning algorithms may be used to 

create a user profile from structured data (Pazzani et al. 2007). There are several such 

algorithms studied in previous research works. Decision trees have been used 

extensively in conjunction with structured data (Cho, Kim, & Kim, 2002; Cohen, 1995; 

Kim, Lee, Shaw, Chang, & Nelson, 2001; Kim et al., 2006). Other studies (Allan, 

Carbonell, Doddington, Yamron, & Yang, 1998; Billsus, Pazzani, & Chen, 2000; Yang, 

1999) worked with the nearest neighbor method, which stores all of its training data in 

memory. In order to classify a new unlabeled item, the algorithm compares it to all 

stored items using a similarity function and determines the "nearest neighbor" or the k 

nearest neighbors. The methods that help users to incrementally refine queries based on 

previous interactions are commonly referred to as relevance feedback algorithms. The 

main objective of this approach is to enable users to rate documents with respect to their 

information needs (Manning, Raghavan, & Schütze, 2008). Some techniques that learn 

linear decision boundaries are referred to as linear classifiers. This algorithm has been 

used in some works for text classification tasks (Kivinen & Warmuth, 1997; T. Zhang & 

Iyengar, 2002). Another algorithm in this domain recognized by researchers is the Naïve 

Bayes, an exceptionally well-performing text classification algorithm frequently 

adopted in recent works (Nigam, McCallum, Thrun, & Mitchell, 1998; Yoshii, Goto, 

Komatani, Ogata, & Okuno, 2008). Next, the details of machine learning algorithms are 

presented as applied in a structured condition. 
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Decision Trees and Rule Induction 
 
 
Decision tree learners such as ID3 (Quinlan, 1986) build a decision tree by recursively 

partitioning training data, in this case text documents, into subgroups until those 

subgroups contain only instances of a single class. Expected information gain is a 

commonly used criterion to select the most informative features for the partition tests 

(Yang & Pedersen, 1997). 

 

Decision trees have been studied extensively in use with structured data such as that 

shown in Table 2.1. Given feedback on the restaurants, a decision tree can easily 

represent and learn a profile of someone who prefers to eat in expensive French 

restaurants or inexpensive Mexican restaurants. Arguably, the decision tree bias is not 

ideal for unstructured text classification tasks (Pazzani & Billsus, 1997). As a 

consequence of the information-theoretic splitting criteria used by decision tree learners, 

the inductive bias of decision trees is a preference for small trees with few tests. 

However, it can be shown experimentally that text classification tasks frequently 

involve a large number of relevant features (Joachims, 1998). Therefore, a decision 

tree’s tendency to base classifications on as few tests as possible can lead to poor 

performance on text classification.  
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Nearest Neighbor Methods 

 

The nearest neighbor method stores all characteristics of training data in memory. In 

order to classify a new item, this technique compares it to all previously stored items 

using a similarity function and determines the "nearest neighbor" or the k nearest 

neighbors. The class label or numeric score for a new item can then be derived from the 

class labels of the nearest neighbors. The similarity function used by the nearest 

neighbor method depends on the nature of the data. In case of structured data, a 

Euclidean distance metric is usually used. When using the vector space model, the 

cosine similarity metric is often used (Salton, 1989b). The cosine similarity function 

will not have a large value if corresponding features of two examples have small values. 

In contrast, in the Euclidean distance function, the same feature having a small value in 

two examples is treated the same as that feature having a large value in both examples. 

Consequently, it is appropriate for text when we want two documents to be similar 

when they are about the same topic, but not when they are both not about a topic. 

 

The cosine similarity function and the vector space approach have been applied to 

several text classification applications (Allan, et al., 1998; Cohen & Hirsh, 1998; Yang, 

1999). The Daily Learner system adopts the nearest neighbor method to create a model 

of the user’s short term interests (Billsus, et al., 2000). 

 

Relevance Feedback and Rocchio’s Algorithm 

 

Since the success of vector space model in document retrieval depends on the user’s 

ability to run queries by selecting a set of representative keywords (Salton, 1989a), 

methods that refine queries based on previous search results have been concentrated in 
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many researches. These methods are commonly referred to as relevance feedback. The 

general principle in these approaches is to allow users to rate documents returned by the 

retrieval system based on their preferences. This form of feedback can be used to 

incrementally refine the initial query. In a manner analogous to rating items, there are 

explicit and implicit means of collecting relevance feedback data. 

 

Rocchio’s algorithm (Rocchio, 1971) is a widely used relevance feedback algorithm that 

operates in the vector space model. The algorithm is based on the modification of an 

initial query through differently weighted prototypes of relevant and non-relevant 

documents. The approach forms two document prototypes by taking the vector sum 

over all relevant and non-relevant documents. The following formula summarizes the 

algorithm formally: 

  

(2.10) 

 

Here, ��  is the user’s query at iteration �, and �, �, and � are parameters that control the 

influence of the original query and the two prototypes on the resulting modified query. 

The underlying intuition of the above formula is to incrementally move the query vector 

towards clusters of relevant documents and away from irrelevant documents. 

 

While this goal forms an intuitive justification for Rocchio’s algorithm, there is no 

theoretically motivated basis for the above formula, i.e., neither performance nor 

convergence can be guaranteed. However, empirical experiments have demonstrated 

that the approach leads to significant improvements in retrieval performance (Rocchio, 

1971). 
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Linear Classifiers 

 

Algorithms that learn linear decision boundaries, i.e., hyperplanes separating instances 

in a multi-dimensional space, are referred to as linear classifiers. There are a large 

number of algorithms that fall into this category, and many of them have been 

successfully applied to text classification tasks (Lewis, Schapire, Callan, & Papka, 

1996). All linear classifiers can be described in a common representational framework. 

In general, the outcome of the learning process is an n-dimensional weight vector �, 

whose dot product with an �dimensional instance, e.g., a text document represented in 

the vector space model, results in a numeric score prediction. Retaining the numeric 

prediction leads to a linear regression approach. However, a threshold can be used to 

convert continuous predictions to discrete class labels. While this general framework 

holds for all linear classifiers, the algorithms differ in the training methods used to 

derive the weight vector �. For example, the equation below is known as the Widrow-

Hoff rule, delta rule or gradient descent rule and derives the weight vector � by 

incremental vector movements in the direction of the negative gradient of the example's 

squared error (Widrow & Hoff, 1960). This is the direction in which the error falls most 

rapidly. 

 

(2.11) 

The equation shows how the weight vector � can be derived incrementally. The inner 

product of instance �� and weight vector �� is the algorithm’s numeric prediction for 

instance ��. The prediction error is determined by subtracting the instance’s known 

score, ��, from the predicted score. The resulting error is then multiplied by the original 

instance vector �� and the learning rate � to form a vector that, when subtracted from 

the weight vector �, moves � towards the correct prediction for instance ��. The 
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learning rate � controls the degree to which every additional instance affects the 

previous weight vector. 

 

Probabilistic Methods and Naïve Bayes 

 

In contrast to the lack of theoretical justifications for the vector space model, there has 

been much work on probabilistic text classification approaches. This section describes 

one such example, the naïve Bayesian classifier. Early work on a probabilistic classifier 

and its text classification performance was reported by Maron (Maron, 1961). Today, 

this algorithm is commonly referred to as a naïve Bayesian Classifier (Duda & Hart, 

1973).  

 

The algorithm’s popularity and performance for text classification applications have 

prompted researchers to empirically evaluate and compare different variations of naïve 

Bayes (Lewis, 1998; McCallum & Nigam, 1998). In summary, McCallum and Nigam 

(McCallum & Nigam, 1998) note that there are two frequently used formulations of 

naïve Bayes, the multivariate Bernoulli and the multinomial model. Both models share 

the following principles. It is assumed that text documents are generated by an 

underlying generative model, specifically a parameterized mixture model: 

 

(2.12) 

Here, each class � corresponds to a mixture component that is parameterized by a 

disjoint subset of �, and the sum of total probability over all mixture components 

determines the likelihood of a document. Once the parameters � have been learned from 

training data, the posterior probability of class membership given the evidence of a test 

document can be determined according to Bayes’ rule: 



45 

 

 

(2.13) 

While the above principles hold for naïve Bayes classification in general, the 

multivariate Bernoulli and multinomial models differ in the way �(��|��; ��)estimated 

from training data. 

 

In summary, after reviewing different machine learning algorithms, we can conclude 

that when facing to small number of structured attributes, the performance, simplicity 

and understandability of decision trees for content-based models are all advantages 

(Pazzani & Billsus, 2007). Kim, et al. (2006) adopted this method for personalizing 

advertisements on web pages. To provide personalized advertisements in that study, a 

hierarchical tree data structure was considered for storing the personal preference scores 

of a customer for each product category. This tree structure was implemented using a 

table consists of three columns [Customer ID (CID), Product Group ID (PGID), 

Preference Score (PS)]. Relatively, the preference scores in the preference table 

approach were defined as follows: 

 

��(�, �)= ∝�× ������� (�, �)+ ∝�× ����ℎ���(�, �)+ ∝�× �������� �����(�, �) 

                         +⋯+  ∝���× �������� �����(�, �)                                                 (2.14) 

 

where ��(�, �) is the preference score of customer i for the leaf-level product category j 

, �������(�, �) is the profile score of customer i for the product category j , which is 

specified in customer i’s initial profile. If customer i has specified product j as an 

interesting product category in his/her profile, then the values of �������(�, �) is 1, 

otherwise it is 0, ����ℎ���(�, �) is the number of purchases of products that belong to 
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product category j, �������� ����� (k = 1, . . . , n) is the number of interest expressions 

of the kth type, and ∝�  (k = 1, . . . , n + 2) isthe weight of each term.  

 

In case of unstructured approach, The term frequency/inverse document frequency  (TF-

IDF)  is one of the most popular measures for identifying keyword weights in 

recommender systems (Salton, 1989b; Mangina & Kilbride, 2008). 

 

Recalling from the formula that Adomavicius and Tuzhilin (2005) provided for 

recommendation problem, all recommender systems have a common goal to find such 

items �� ∈ � that maximizes � for each user � ∈ � : 

 

∀� ∈ �, � ∈ �, ��
� = ������ �(�, �)                         (2.15) 

 

In content-based RSs, the utility �(�, �) of item s for user c is predicted by considering 

the pairs of �(�, ��) which represent the ratings assigned previously by user � to other 

“similar” items to � called �� ∈ �. To clarify this concept, imagine a music 

recommendation system that tries to suggest the most related music files to its users. In 

this example, the content-based RS elicits the common characteristics of previously 

rated music files by user �  to predict the most relevant new ones to him (or her).   

 

For more details, item profile is defined as the set of attributes characterizing item�, 

�������(�). This is used to measure how appropriate the item � is to be selected for 

recommendation purpose. Each item may have several attributes which should be 

involved in item profile. One of the main issues is the “importance” of attribute ����in 

�����  with some weighting measures ���that can be defined in several different ways 

(Balabanović & Shoham, 1997; Pazzani & Billsus, 1997). 
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The term frequency/inverse document frequency (�� − ���) is one of the most popular 

measures for identifying keyword weights in recommender systems (Salton, 1989b). To 

define it, assume that  � is the total number of items that are eligible to be 

recommended to users and that keyword �� appears in �� of them. Furthermore, 

consider ��,� as the number of times keyword �� appears in document��. Then, ���,�, the 

term frequency (or normalized frequency) of keyword �� in item  ��, is defined as  

 

���,�=
��,�

��� ���,�
                                                     (2.16) 

 

where the maximum is the biggest value of the frequencies ��,� of all keywords ��in 

item��. Although, we shouldn’t count on the keywords that are repeated in many items 

because they will not so helpful in predicting the most relevant items. To overcome this 

problem, it’s better to use the inverse document frequency (����) in combination with 

���,�.  

 

����is defined as 

 

���� = log
�

��
                                                        (2.17) 

 

 

Hence, for each item �� we can identify the �� − ���  weight for keyword ��as 

 

 

��,�= ���,�× ����                                               (2.18) 

 

Consequently, the content of item ��is defined as 

 

 

����������� = ����, … ���,�                                       (2.19) 
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As mentioned earlier, content-based RSs suggest the alternatives which are similar to 

high rated items by the target user (Cremonesi, Turrin, & Airoldi, 2011). In other words, 

the alternated items will be compared with ones rated by the user in the past and the best 

matching items are recommended. Considering these assumptions, let  

�������������������(�) be the profile of user � including his/her preferences and 

tastes. This kind of information can be elicited by analyzing the items previously 

viewed and rated by this specific user. In more particular, �������������������(�) 

can be defined as a vector of weights(���, … ,���), where each weight ���  represents 

the significance of keyword �� to user �. 

In content-based recommender algorithms, the utility function �(�, �) is presented as: 

 

�(�, �)= ����� (�������������������(�),�������(�))           (2.20) 

 

In this context, both �������������������(�) and �������(�) can be defined as 

�� − ���  vectors ���⃗ � and ���⃗ �  of keyword weights (Adomavicius & Tuzhilin, 2005): 

 

�(�, �)= cos (���⃗ �,���⃗ �)= 
���⃗ �∙���⃗ �

‖���⃗ �‖�× ‖���⃗ �‖�
= 

∑ ��,���,�
�
���

�∑ ��,�
��

��� �∑ ��,�
��

���

                  (2.21) 

 

whereK is the total number of keywords in system. 

 

In addition to the traditional techniques mostly based on information retrieval concept, 

there are also some other heuristics for content-based RSs. Bayesian classifiers 

(Mooney, Bennett, & Roy, 1998), artificial neural networks, decision trees, and 

clustering (Pazzani & Billsus, 1997) are some other approaches in this domain. The 

adopted technique for calculating the utility predictions is the origin of differences 
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between these approaches and the others which based on information retrieval 

algorithms. Instead of applying some heuristics, the predictions are made based on a 

learned model using machine learning and statistical techniques. For example in case of 

some Web pages that were rated by the user as “relevant” or “irrelevant” (Pazzani and  

Billsus, 1997) , utilized the naive Bayesian classifier to classify unrated Web pages. 

More precisely, considering the set of keywords ��,�,… , ��,� on the page ��,  they used 

the Bayesian classifier for estimating this probability that �� belongs to a certain class �� 

(e.g., relevant or irrelevant): 

 

����│��,�& …&��,��                                             (2.22) 

 

And furthermore, assuming that the keywords are independent, the above probability is 

changed to  

 

�(��)∏� ���,�����                                            (2.23) 

 

Several studies have revealed that the native Bayesian classifiers are coherent enough in 

recommending the most relevant items, while the keyword independence idea is not 

applicable in most application domains (Pazzani & Billsus, 1997). 

 

2.2.2.2.3 Advantages and Shortcomings of Content Based Recommendations 

 

Comparing to collaborative paradigm, the Content Based recommender systems have 

some advantages that are discussed in following (Lops, et al., 2011). 
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• User Independence – To build the active user profile, content-based RSs use the 

elicited ratings submitted by his (or her). While, collaborative recommender systems 

need the ratings from similar users who called the active user “nearest neighbors”. 

Consequently, in content-based methods, it is not necessary to track the behavior of the 

neighbors for each active user. 

 

• Transparency – In this method, the description supporting how an item included in 

the recommendation list can be presented to active users. This kind of clarification may 

be effective in increasing the users’ trust on recommending mechanism. The listed 

features of recommended item can be used as an indicator for judging whether the RS 

works well. In the other side, collaborative methods work such a black box without any 

further description, except that we know just some unknown similar users liked the 

suggested item in past. 

 

• New Item - Content-based RSs are effective in case of recommending new items 

which not yet rated in past. Consequently, they do not have the first-rater problem of 

collaborative Recommendation Systems.  

 

Although the above mentioned items illustrate the bright side of content-based RSs, 

they have also several limitations that are discussed in following. 

 

• Limited Content Analysis – The Content-based methods have an a inevitable 

limitation relating to the type and number of features associated with the items they 

suggest. It means without having a comprehensive knowledge about the items domain, 

we cannot expect from this recommender to suggest suitable alternatives. Because it 
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needs enough information about the analyzed content to distinguish between the 

interested items and ones that the user doesn’t like. 

 

• Over-Specialization – This shortcoming which is also famous as serendipity 

phenomena, points to this fact that content-based systems tend to generate 

recommendations with a low level of novelty. It is derived from the nature of this 

method that it is not capable of suggesting some unexpected items as it just recommend 

items which are more relevant to the user profile. Consequently, the active user is 

usually supposed to receive just the items similar to those he (or she) rated in the past. 

 

• New User – In case of new users with a few numbers of ratings, this method cannot 

recommend properly. The roots of this problem can be traced to this fact that this 

method needs to gather enough ratings to understand the users’ interests and 

recommend in a coherent way.   

 

2.2.2.3 Hybrid Approach 

 

CF methods usually do not compete with content-based Recommendation Systems. 

Alternatively, they both integrate to build a more effective hybrid solution. Several 

successful researches in this context have been developed like MovieLens (Jung, 2011), 

Video Recommender (Verhoeyen, Vriendt, & Vleeschauwer, 2012) and GroupLens 

(Miller, Riedl, & Konstan, 2003). 

 

The hybrid recommender systems, as the combination of recommending techniques A 

and B use the advantages of A to cover the shortcomings of B. For example, as 

mentioned previously, collaborative filtering methods that suffers from new-item 
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problems cannot calculate the prediction for new items without any rating records. 

Hence, the combination of content-based and collaborative methods can be an 

alternative to overcome this shortcoming and gain better results (Ricci, et al., 2011).. 

 

The combination of content-based and collaborative recommender systems into a hybrid 

approach can be classified in following ways: 

 

1. implementing content-based and collaborative recommender systems separately 

and then combining their recommendations, 

2. applying some content-based attributes into a collaborative method, 

3. applying some collaborative characteristics into a content-based method, and 

4. Combining both collaborative and content-based method to generate a general 

unifying model. 

 

Some studied has been carried out by researchers in this context that will be described 

in following. 

 

2.2.2.3.1 Combining Separate Recommenders 

 

One solution for making a hybrid model is to implement content-based and 

collaborative systems separately, and then using the recommendations generated from 

two separate ways. In this approach, the outputs of these two method can be combined 

into one final recommendation list utilizing either a voting pattern (Pazzani, 1999) or a 

linear combination of ratings (Claypool et al., 1999). Another alternative is using one of 

them at any given situations as the “better” one based on some recommendation 

“quality” measure. 
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2.2.2.3.2 Adding Content-Based Features to Collaborative Algorithms 

 

Fab system (Balabanović & Shoham, 1997) and “collaboration via content” method 

(Pazzani, 1999) are two samples of recommender systems that typically are based on 

collaborative filtering but take advantage of the user profile idea from content-based 

approach. As Pazzani mentioned in 1999, these profiles are used for finding the 

similarity between users, instead of common rated items. Applying this change to pure 

collaborative methods, leads to overcome some problems related to sparsity. 

 

As another advantage of this method, we can mention to this fact that user are 

recommended by not only the items rated highly by similar users, but also when the 

items are highly related to user’s profile (Balabanović & Shoham, 1997). In other study 

was carried out by Melville et al.(2002), the usual ratings vector in collaborative method 

is fortified by additional ratings calculated with content-based predictor.   

 

2.2.2.3.3 Adding Collaborative Features to Content-Based Algorithms 

 

The most usual method in this approach is applying some dimensionality reduction 

technique on a group of content-based profiles. For example, the latent semantic 

indexing (LSI) is used in research was carried out by Soboroff & Nicholas (1999) to 

create a collaborative model among a group of user profiles, where the profiles are 

demonstrated by term vectors. This method comes up with some improvements in 

performance comparing to the pure content-based method. 
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2.2.2.3.4 Developing a Single Unifying Recommendation Model 

 

A considerable amount of literature has been published on this approach. (Schein, et al., 

2002) and (Popescul, Pennock, & Lawrence, 2001) introduce a unified probabilistic 

model based on the probabilistic latent semantic analysis (Hofmann, 2001) for 

combining content-based and collaborative recommender systems. Another model is 

proposed by (Ansari, Essegaier, & Kohli, 2000) which use Bayesian mixed-effects 

regression models and apply Markov chain Monte Carlo methods for calculating and 

predicting the parameters.  

 

Another way for augmenting the hybrid RSs is using knowledge-based techniques 

(Burke, 2002). In this context, case-based reasoning can make the recommenders more 

coherent and address some of their traditional shortcomings. For instance, we can 

mention to Entre´e as a knowledge-based RS that utilize some domain information 

about restaurants, cuisines, and foods to prepare a list of suggested restaurants to its 

users. 

 

As the same as most artificial intelligence applications, the knowledge-based RSs also 

face to knowledge acquisition. So, it’s advised to use them in applications where 

domain knowledge is already available in structured form (Middleton, Shadbolt, & De 

Roure, 2004). 

 

Furthermore, there are several recent papers, such as (Durao& Dolog, 2010), 

(Ghazanfar & Prugel-Bennett, 2010), and (Porcel, Tejeda-Lorente, Martínez, & Herrera-

Viedma, 2012) that carried out a comparative study on performance of the hybrid 

recommender systems, and traditional content-based and collaborative approaches. 
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2.2.2.4 Demographic Algorithms 

 

The recommendations in this type of RSs are based on demographic attributes of the 

users. It follows this idea that users with variant demographic profiles should be 

recommended differently. There are many Websites that consider demographics in 

recommending products and services to their clients. For example, they consider the 

language, country and even the age of users for grouping them into different categories. 

Although these algorithms have been quite practical and popular in the marketing 

literature, there has been relatively little suitable research into demographic methods 

(Mahmood & Ricci, 2007b; Mosayebian, Keramati, &Khatibi, 2012). 

 

2.2.2.5 Knowledge-Based Algorithms 

 

In this type of recommender systems, items are recommended based on specific 

domains of knowledge regarding how the certain features of items can meet the users’ 

preferences and needs. (Bridge, Göker, McGinty, & Smyth, 2005) and (Ricci, et al., 

2006) argued that remarkable knowledge-based RSs are case-based. In these kinds of 

recommender systems a similarity function is used to estimate to what extent the user 

preferences match the recommended items. This similarity value can be considered as 

appropriateness of the recommendation for the user. There is another type of 

knowledge-based recommender systems that is called constraint-based systems. Both 

approaches are similar in terms of applied knowledge: user requirements are elicited; in 

cases that no recommendation could be proposed, repairs for inconsistent data are 

automatically applied; and ultimately recommendation results are generated. The root of 

major difference can be traced in the way recommendations are generated. Case-based 

solutions calculate recommendations based on similarity metrics whereas constraint-
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based RSs use predefined knowledge bases containing some well-defined rules for 

matching the users’ needs with item attributes (Martinez, Barranco, Perez, & Espinilla, 

2008). 

 

2.2.2.6 Social Network-Based Algorithms 

 

Social networking sites (SNS) are a type of virtual community that has grown extremely 

over the past few years. Users of this special kind of online environments can easily   

connect with each other, disseminate information, and share the online content through 

their profiles (Zhou, et al., 2012). In the past few years, the dramatic expanding of Web 

2.0 and web-based applications has led to new challenges for current recommender 

systems. Traditional recommender systems mostly ignore social relationships among 

users while in our real life, when we are asking our friends for suggestion of the most 

interesting movies or nice digital cameras, we are actually requesting verbal social 

recommendations. Social recommendation is a real fact, and we always turn to our 

friends for recommendations. Consequently, to improve recommender systems for 

provide more personalized recommendation results, we need to incorporate social 

network information among users (Bonhard, et al., 2007). 

 

The preferences and needs of the user’s friends play the main role in community-based 

recommender systems. In other words, it follows the epigram “Tell me who your friends 

are, and I will tell you who you are” (Arazy, Kumar, & Shapira, 2009). In 

(2005),Smeaton et al. demonstrated that people prefer to get recommendations from 

their friends rather than other persons who they do not know. Results of this study, 

combined with the rapid growth of social networks, prove a dramatically growth of 

interest in community-based systems. Some recent studies refer to this special kind of 
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RSs as social recommender systems (Golbeck, 2006). This approach needs information 

about the social interactions of the users besides of the interests and preferences of their 

friends. Hence, the process of recommendation is in the base of ratings which submitted 

by the user’s friends. 

 

This approach is still in the early stages of research. For example, some recent studies in 

this area (Groh & Ehmig, 2007; Massa & Avesani, 2004) argued that social network 

based RSs are no more coherent than traditional collaborative filtering algorithms, 

except in some special conditions, such as cold-start situations where the users are quite 

new in the system and didn’t assign any ratings to be compared with the others. In 

another research work (Seth, A., & Zhang, J., 2008) a recommender system based on a 

Bayesian user-model was proposed and evaluated. They used the underlying social 

network of blog authors and readers to model the preference features for individual 

users. In (2009), Guy et al. published a paper in which they described that in some 

situations social-network approaches come up with better results comparing with 

methods based on profile similarity data. He, J., & Chu, W. W. (2010) presented a new 

paradigm of recommender systems which can utilize information in social networks, 

including user preferences, item’s general acceptance, and influence from social friends. 

They developed a probabilistic model to make personalized recommendations from 

such information. Furthermore, they propose to improve the performance of their 

system by applying semantic filtering of social networks. And also according to another 

relevant study by (Groh & Ehmig, 2007), the performance of recommender systems can 

be improved when social network data is added to traditional collaborative filtering 

methods.  
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2.2.3 Methods for Evaluating the Recommender Systems 

 

Shaniand Gunawardana (2011) grouped the experimental design methods for evaluating 

recommender systems into three main categories. In the following section these 

experimental techniques with the potential to be used for comparing the efficiency of 

different recommender systems are presented. The discussion can also be traced back to 

other related areas, such as information retrieval and machine learning (Salzberg, 1997; 

Voorhees, 2002; Demšar, 2006). 

 

First, the offline experiments are explained, and they are the easiest to conduct. As the 

term ‘offline’ suggests, interaction with real users is not necessary. The second method 

to be discussed is user studies. In this kind of evaluation, a small group of target users 

are selected to test the system in a controlled environment, after which they are asked to 

report based on their experiences. Finally, group of real users utilize the system without 

being aware of the experiment. 

 

2.2.3.1 Offline Experiments 

 

The offline experimental method involves pre-collected data sets from users who have 

chosen or rated items. In this way it is possible to simulate the behavior of users who 

would normally interact with a recommender system. To facilitate the making of 

reliable decisions in this method, the assumption may be that the users’ behavior in the 

experimental data gathering phase is sufficiently similar to their behavior in real 

conditions when the recommender system is deployed. The independence of offline 

experiments in interacting with real users is what makes this technique so appealing to 

researchers. In addition, it is possible to compare several candidate recommender 
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systems at a low cost. A shortcoming with offline experiments, however, is the fact that 

they may only be used to answer a very limited range of questions, such as the 

prediction power of a recommender system. 

 

Accordingly, the offline technique cannot be expected to directly measure the effects of 

recommender systems on user behavior. The approach can be helpful though when 

planning to filter out inappropriate recommender algorithms.  To test the remaining 

small set of candidate algorithms, user studies or online environments may be employed 

at higher cost and with more effort. 

 

The data sets utilized in offline experiments should be as similar as possible to real data 

that the recommender algorithm is expected to face in a runtime environment. It should 

be carefully considered that there is no bias in the distributions of selected items, ratings 

and users. For example, when manipulating large data sets, the researcher may decide to 

exclude users or items with low counts to reduce experiment cost. Such a situation may 

result in systematic bias. Hence, if necessary, randomly selecting users and items is 

suggested in order to reduce the amount of data (Mahmood & Ricci, 2007a). 

 

In this method, the majority of research papers use a fixed number of hidden items or 

known items per sample user (called “all but n” or “given n” protocols). This method is 

applicable when diagnosing algorithms and illustrating in which situations they function 

best. If the recommender algorithm is to be tested using this approach, the question of 

whether we want to present the recommended items only to users who have ranked 

exactly n items, or are expected to rank more than n items, needs to be answered. If this 

is not the experimental situation we are looking for, this protocol is not reliable and the 

research results will be biased in predicting algorithm efficiency in real environments. 



60 

 

 

The online behavior of users should be simulated to assess the recommender algorithms 

via offline methods. It may thus be possible for the system to trace the recommended 

items and compute how the user employs or amends the recommendations (Mahmood 

& Ricci, 2007a). In doing so, the historical user interactions should be recorded, and 

some of this data should be hidden to simulate user behavior when rating items. In cases 

with large data sets, a simple means is to randomly select sample-test users and consider 

a random time moment immediately prior to a user’s action. Then all sample users’ 

selections will be hidden, right after which an attempt is made to recommend items to 

them. The aforementioned protocols employ user models that illustrate the behavior of 

users in their interactions with a specific application. More complex models can be 

utilized to resemble user behavior as well (Mahmood & Ricci, 2007a), but in such 

circumstances care should be taken when trusting the experiments to ensure the results 

can verify the recommender algorithms. 

 

2.2.3.2 User Studies 

 

In this method, a set of test users were asked to perform some routines in terms of 

interacting with the recommender algorithm. As the selected users carried out the 

assigned tests, their behavior was observed through related quantitative measurements. 

The adopted measurements may include the accuracy of the expected results, the 

portion of the task that was completed, or the time it took to perform it. In various 

research situations, users can be asked to answer the qualitative questions before, 

during, and after the task is completed. These sorts of questions may also be helpful 

when collecting data that is not directly observable, such as whether the designated task 

was easy enough to complete, or if the user found the interface enjoyable. 
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As an example of a user study, it is worth noting the evaluated influence of a 

recommender algorithm on user behavior when browsing the news items. Here the test 

users are asked to read a set of news that seemed interesting to them. A number of these 

items were related news recommendations and others merely random news without 

having been recommended at all. It was thus possible to check whether the 

recommended news items were used, or if the users preferred to read the other news. 

This type of study facilitates compiling data pertaining to how many times a 

recommendation was clicked on, and in more specific cases, eye movement is tracked to 

confirm whether a recommended item succeeded in catching the user’s attention.  

 

User studies have the advantage of being able to cover the widest range of questions 

among all three experimental approaches discussed in this section. It was mentioned 

earlier that by applying this method it is possible to evaluate how the recommender 

algorithm affects user behavior during real-life interactions with the system. In the 

offline approach, only a limited number of assumptions can be made, such as “the user 

is interested in using a relevant item recommended by a given algorithm.” In terms of 

qualitative data, the user studies approach is the only one that allows the collection of 

this sort of data. Since the users are closely monitored while performing the tests, this 

method enables a large set of quantitative measurements to be gathered. 

 

This user studies method, however, has some limitations as well. It is primarily too 

costly to conduct, and accumulating a large set of test users to carry out a sufficiently 

large set of tasks requires a lot of effort. Hence, it would be wise to limit the project 

scope to a small set of users and accordingly, a small set of tasks. It would also be 
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preferable for each scenario to be repeated several times in order to achieve reliable 

results. 

 

Furthermore, in instances when applications malfunction during particular user 

interactions, pilot user studies should initially be executed to prevent failed experiments. 

These entail limited experiments designed solely to test the applications for runtime 

errors and malfunctioning. As such, the results of pilot studies should not be used in the 

measurement computing phase. 

 

It is worth remarking that the test users must represent the target population of users 

who will interact with the system in a real environment as closely as possible. For 

example, avid movie fans would definitely not comprise suitable test users in evaluating 

a movie recommender system. The reason may be that volunteers who are more 

interested in a subject may not be appropriate alternatives for representing the behavior 

of the true population in the user domain. Also, users who get paid would undeniably 

want to satisfy those conducting the experiment to some degree. Hence, when the test 

users are aware of the research objective, they may unconsciously provide evidence 

supporting it. To avoid this, test users should not be made aware of the goal of the 

experiment. 

 

2.2.3.3 Online Evaluation 

 

With regards to the main role of recommender systems, the system designer frequently 

attempts to influence the behavior of users. For this reason, it is important to measure 

the changes in user interactions with the system via different recommender algorithms. 

For instance, evidence that one recommender system is more efficient than another can 
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be gathered by whether users of one system employ the recommended items more often, 

or whether some statistics collected from the users of one system are better than those 

gathered from users of another system. 

 

Several factors may influence the effects of recommender systems. They include the 

user’s intent (e.g. how much risk vs. how much novelty they are seeking, how specific 

their information needs are, etc.), the user’s context (e.g. how familiar they are with the 

items, to what extent they trust the application, etc.), and the interface through which the 

recommendations are presented. 

 

Hence, online evaluation is the strongest experimental approach for measuring the 

efficiency of a recommender system (Shani & Gunawardana, 2011) because the system 

is tested by real users in a real environment. Consequently, it is most preferable to 

compare a few systems online rather than limited numbers of test users that are more 

difficult to interpret. Owing to this advantage, several real-life systems make use of the 

online testing technique to compare multiple recommender algorithms (Kohavi et al. 

2009). As a way of recording user interactions with variant recommender algorithms, 

such systems redirect a portion of the traffic to different designated recommendation 

engines. In running this kind of test several essentials should be considered. For one, to 

attain fair comparisons between recommender algorithms, random user selection is 

necessary to redirect users to designated algorithms. The different recommender system 

concepts should also be separated. If, for example, the research goal is to evaluate the 

algorithm’s accuracy, it is important to maintain a fixed user interface. Similarly, if we 

want to concentrate on a better user interface, the underlying algorithm needs to be kept 

fixed. 
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A number of side effects ought to be taken into consideration as well. One can be a test 

recommender system that makes irrelevant suggestions and could inconvenience users 

and discourage them from using the real system ever again. Such situations are not 

acceptable -- especially in commercial environments. 

 

In light of the above-mentioned explanations, the optimum strategy is to first run the 

offline experiments to ensure that the candidate approaches have the minimum number 

of characteristics necessary to make them eligible for experimentation, and then use the 

online study to evaluate the efficiency of the candidate algorithms (Herlocker et al., 

2004; Shani & Gunawardana, 2011). Such gradual route reduces the inconvenience 

experienced by test users. Online experiments are recognized as the best method of 

evaluating recommender systems because they facilitate the direct measurement of the 

system’s overall goals, e.g. user retention or long-term profit. Consequently, online 

experimentation is the most appropriate means of understanding how system properties 

influence parameters, such as recommendation accuracy and diversity, as well as 

recognizing the tradeoffs between these properties (Shani & Gunawardana, 2011). 

 

In this section, three methods of evaluating recommender systems were described, 

namely offline experiments, user studies, and online evaluation. The majority of 

research works in the domain of recommender systems employ the offline analysis 

method for assessing the performance of recommender algorithms (Adomavicius & 

Tuzhilin, 2005; Herlocker, et al., 2004). In offline studies, offline datasets such as 

MoveiLens1 and GroupLens2 are used to test the recommender algorithms (Chen, et al., 

2010; Jung, 2011; Nguyen & Dinh, 2012; Sarwar, et al., 1998). Other researchers prefer 

the user studies method for model evaluation in the field of recommender systems 

                                                             
1 http://movielens.umn.edu 
2http://www.grouplens.org/node/12 
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(Bambini, et al., 2011; Ge, et al., 2010). There are still others who favor the online 

testing methods (Kohavi, Longbotham, Sommerfield, & Henne, 2009). 

 

The most significant advantages of the offline method are that it is economical and easy 

to implement. These characteristics have made offline techniques appropriate for 

conducting large evaluations on several different algorithms and datasets 

simultaneously. In other words, following dataset preparation, the experiment can be 

conducted simply by running the given algorithms. 

 

Offline methods have two principal disadvantages. First, the set of items to be evaluated 

is limited due to the natural scarcity of data sets representative of the ratings. In the 

absence of rating records from a given user for a specific item, it is not possible to 

evaluate the relevance of a recommended item to that user. Secondly, objective 

evaluation of prediction results is challenging. None of the offline analysis methods can 

claim that users will certainly prefer a specific recommender system or not, either as a 

result of its predictions or because of other less objective parameters such as user 

interface aesthetics (Herlocker, et al., 2004). 

 

2.2.4 Recommender Systems Prediction Accuracy Measurement 

 

In the literature of recommender systems, the prediction accuracy is one of the most 

important items for discussion (Shani & Gunawardana, 2011).  The prediction engine is 

the component that is considered at the base of the majority of RSs. The responsibility 

of this engine is to predict the user opinions about the recommended items (e.g. ratings 

of music files) or the probability of usage (e.g. purchase). A typical assumption in study 



66 

 

of RSs is that the recommender system with more accurate predictions will be better 

from the user’s point of view.  

 

As prediction accuracy is basically independent of the user interface, it can thus be used 

in offline experiments. When this metric is used in a user study, it measures the 

accuracy of a given recommendation. It is a different issue from the prediction of user 

behavior without recommendations. Consequently, it is closer to the true accuracy in the 

real environment. 

 

In following, we discuss three different categories of metrics for measuring the accuracy 

of predictions; measurements for computing the accuracy of ratings predictions, 

measurements for computing the accuracy of usage predictions, and finally 

measurements for computing the accuracy of rankings given to items. 

 

2.2.4.1 Measuring Ratings Prediction Accuracy 

 

In some online environments (e.g. the new versions of DVD rental service at Netflix1), 

the main goal of recommender engine is to predict the rating a user would give to a 

recommended item by selecting 1 to 5 stars. In other words, the accuracy of the 

system’s predicted ratings would be calculated in this situation. 

 

Root Mean Squared Error (RMSE) is considered as the most popular measurement for 

computing the accuracy of predicted ratings (Shani & Gunawardana, 2011). In this 

method, we calculate predicted ratings ���� for a test set � of user-item pairs (�, �)  for 

which the true ratings ��� are known. We consider the ��� as known, because they are 

                                                             
1
https://dvd.netflix.com/ 
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hidden in an offline experiment approach, or because they would be obtained through a 

user study or online experiment. The RMSE between the actual and predicted ratings is 

identified by: 

 

RMSE = �
�

|�|
∑ (���� − ���)

�
(�,�)∈ �                               (2.24) 

 

And also, there is another alternative that is called Mean Absolute Error (MAE): 

 

MAE = �
�

|�|
∑ |r��� − r��|(�,�)∈ �                                (2.25) 

 

Normalized RMSE (NRMSE) and Normalized MAE (NMAE) are two other versions of 

RMSE and MAE that have been normalized by the range of the ratings (i.e. ���� −

���� ). As the functionality of normalized versions is the same as RMSE and MAE 

metrics, their resulting rankings are the same as the unnormalized measures. 

 

Average RMSE and Average MAE are mostly used in case of unbalanced test sets. In 

this situation, the RMSE or MAE methods might be heavily suffered through the side 

effects of the error on a few very frequent items. If we prefer to measure the prediction 

error on any item, it is advised to apply MAE or RMSE for each item separately and 

then use the average value over all items.  

 

2.2.4.2 Measuring Usage Prediction 

 

In many applications, it is not expected from recommendation systems to predict the 

user’s ratings of items. In these situations, they are supposed to recommend to users the 
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items that they may use. For example in Netflix web site, when the user add some 

movies to online shopping cart,  the recommender system suggests a collection of 

movies that may also be interesting for her. Hence, we are curious to know whether the 

system properly recommends an item that the user will use it (Shani & Gunawardana, 

2011). 

 

Usage prediction measurements calculate the frequency with which a recommender 

algorithm suggests relevant or irrelevant items. Thus as Herlocker et al. pointed out in  

(2004), this approach is appropriate for some practical usages such as finding 

appropriate items in such situations that the users have true binary preferences. As 

mentioned previously, these metrics are not used for directly measuring the 

qualifications of a recommender system to predict ratings accurately. Deviations from 

actual ratings are tolerated, as long as they do not lead to classification errors. In 

following, Precision and Recall as two particular metrics of this context are briefly 

discussed.  

 

As the two most popular measurements, Precision and Recall are used for evaluating 

information retrieval algorithms that were proposed by (Cleverdon, Mills, & Keen, 

1966) and have been used ever since. In the history of recommender systems, they have 

been adopted by (Billsus & Pazzani, 1998), (Basu, Hirsh, & Cohen, 1998) ,(B. Sarwar, 

et al., 2001), and (Shani & Gunawardana, 2011) . To calculate the precision and recall, a 

2×2 table is used that is shown in Table 2.3.  The item set are categorized into two 

classes—relevant or irrelevant. That is, if the rating scale is not already binary, we need 

to transform it into a binary scale. For example, the MovieLens dataset has a rating 

scale of 1–5 and is commonly transformed into a binary scale by converting every rating 

of 4 or 5 to “relevant” and all ratings of 1–3 to “not-relevant.” 
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For calculating the precision and recall, it is needed to consider another categorization. 

We should separate the items into the set that was recommended to the user 

(selected/recommended), and the set that was not.  

 

Consequently as shown in Table 2.3, four possible conditions may happen based on 

selection and usage situations: 

 

 ��� = Relevant (Used) and  Selected (Recommended) Items 

 ��� = Irrelevant (Not Used) and  Selected (Recommended) Items 

 

 ��� = Relevant (Used) but  Not Selected (Not Recommended) Items  

 ��� = Irrelevant (Not Used) and Not Selected (Not Recommended) Items 

 �� = Total number of Selected (Recommended) Items 

 �� = Total number of Not Selected (Not Recommended) Items 

 �� = Total number of Relevant (Used) Items 

 �� = Total number of Irrelevant (Not Used) Items 

 

Table 2.3: The Possible Conditions of  Recommendation of Items to  Users 

 

 Selected Not Selected Total 

Relevant ��� ��� �� 

Irrelevant ��� ��� �� 

Total �� �� � 
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Considering the above presented definitions, Precision or true positive accuracy is 

calculated as the ratio of selected (recommended) items that are used (relevant) to the 

total number of selected (recommended) items (Herlocker, et al., 2004): 

 

��������� = ��� = 
���

�������
                                       (2.26) 

 

This is the probability that a recommended item corresponds to the user's interests and 

preferences. 

 

Recall or true positive rate is calculated as the ratio of selected (recommended) items 

that 

Are used (relevant) to the total number of used items (Herlocker, et al., 2004): 

 

������ = ��� = 
���

�������
                                             (2.27) 

 

This is the probability that a used (relevant) item is recommended.  

 

As Shani and Gunawardana (2011) pointed out, Precision and recall are the most 

popular measurements for evaluating the prediction accuracy of recommender systems. 

These two metrics are inversely related. 

 

These measurements depend on the separation of the concept of relevant and irrelevant 

items. The definition of “relevance” and the suitable approach to calculate it has been 

one of the significant sources of argument within the field of information (Harter, 1996; 

Voorhees, 2000). The majority of information retrieval evaluation methods have 

focused on an objective viewpoint of relevance, where it is defined with respect to a 



71 

 

query, and is independent of the user. In doing so, the documents can be compared with 

queries to determine which documents are relevant to which queries. However, in case 

of recommender systems, the objective relevance makes no sense and it’s not 

applicable. Recommender systems suggest items based on the likelihood that they will 

meet a given user’s preferences and interest. That user is the only person who can 

determine if an item is suitable based on his interests or not. Consequently, in 

recommender systems’ domain, relevance is considered as a subjective issue 

(Herlocker, et al., 2004). 

 

Referring back to the definition of precision and recall, typically we can expect a trade 

off between these two measurements. More specifically, in case of longer 

recommendation lists, the recall is increased while the precision is decreased. So 

because of this mutual dependence it is worth to consider precision and recall in 

conjunction with other measurement called fallout. By the way, in some environments 

where the number of recommendations that can be presented to the user is preordained, 

the most useful measure of interest is Precision at N where N is the number of 

recommended items to the user (Shani & Gunawardana, 2011). 

 

Fallout or false positive rate is measured as the ratio of selected (recommended) items 

that are not used (irrelevant) to the total number of not used items (Hernández del Olmo 

& Gaudioso, 2008): 

 

������� = ��� = 
���

�������
                                       (2.28) 

 

This is the probability that an irrelevant (not used) item is recommended to the user. 
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2.3 Academic Social Networks 

 

Studying the global trend in social network applications during the last decade has 

shown there is a need for some special sort of online social networks that enable 

university students, academics and scholars to showcase their research 

accomplishments, connect and expand their academic network. Such types of social 

networking website are called academic social networks. Considering their potential for 

collaboration, making connections, and disseminating ideas and information, academics 

and scholars can utilize academic social networks to improve scholarship (Szkolar, 

2012). In this research, current instances of this particular kind of social network are 

studied and will be discussed next. 

 

2.3.1 Introduction of Current Academic Social Networks   

 

Academia.edu – According to its website1 “Academia.edu is a platform for academics 

to share research papers. The company's mission is to accelerate the world's research.” 

This is a popular academic social network site with over two million researchers (About 

Academia.edu, 2013).  It is rather quick and simple to create a profile in this social 

network. As its most important features, scholars can upload their academic documents 

including resumes and publications, join scientific discussions in communities and 

select relevant topics to follow. Once members have registered and set up their profiles, 

they can find researchers with the same interests based on information submitted in their 

profiles. Subsequently, they are able to follow what other scholars in the same research 

field are working on, browse the latest research results published, and also listen to talks 

being given on interesting research topics. Besides, by subscribing to Rich Site 

                                                             
1
 http://www.Academia.edu 
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Summary (RSS) News, the members will be notified when anyone updates their status. 

As another remarkable feature, Academia.edu notifies members as soon as they are 

looked up on the web using specific keywords (Giglia, 2011). 

 

Mendeley – Another successful competitor, Mendeley1 is a free academic social 

network and reference manager that can help scholars to organize their research, 

collaborate with other researchers, and also discover the latest results in their area of 

research (Szkolar, 2012). Mendeley assists its members share and upload documents 

and encourages collaboration through motivating group features by which users can 

follow updates, make comments, share documents, and track progress within the groups 

they create.   Members are able to search for papers in its crowd-source database, add 

papers of interest to their profile’s library and write comments on peers’ papers 

(Collaborative Features, 2013). According to an official announcement (Victor, 2012) 

Mendelay exceeded 2 million users in November 2012.  

 

One of the earliest objectives of Mandeley was to develop software that automatically 

elicits bibliographic details from submitted publications. Thanks to this feature, 

researchers are not required to enter the detailed specifications of their research works 

by hand (Mangan, 2012). Following the free registration, users can easily set their 

preferences and after specifying their field of research, it is possible to develop their 

personal network of research contacts. The main goal of such an academic social 

network is finding the top members on any subject, seeing who is researching what, and 

staying up to date with colleagues’ latest activities (Giglia, 2011). 

 

                                                             
1
 http://www.Mendeley.com 
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As another effective feature to enable members to have real-time insight into trends in 

research, Mendeley recommended scholarly publications based on their research area. 

Utilizing the readership metrics in the Mendeley network, members also can browse the 

latest statistics on top research papers, topics, authors, and journals in their academic 

discipline (Giglia, 2011).  

 

ResearchGate – This scientific social networking website1, founded in 2008, has 

reached 2,000,000 members (Team, 2012) who are using ResearchGate to upload their 

publications, share their research results, and build their worldwide reputation. 

According to an Economist report (Professor Facebook, 2012), the main objective of 

ResearchGate is to create a working and discovery network among scientists. 

 

Each member represents their research CV in a personal profile, which contains the 

researcher`s preferences, educational record, projects, professional and academic 

experiences, publications, and contact details. Members of ResearchGate have access to 

a personal blog that enables them to submit interesting news and insights to a broad 

academic audience. 

 

To stay connected and keep up to date, all members can follow each other`s profiles and 

receive the latest updates within their news feed. A messaging service additionally 

exists that allows users to contact each other directly. The researchers’ connections are 

visualized through a network graph which helps users discover content on this academic 

social network. ResearchGate also provides the required facilities for researchers to 

connect through their existing profiles in other social networks such as LinkedIn, 

Facebook, FriendFeed, and Twitter (Giglia, 2011).  

                                                             
1
https://www.researchgate.net 
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LinkedIn – LinkedIn1 is known as a social network for professionals and was launched 

on May 5, 2003. It is currently available in nineteen languages and as of December 31, 

2012 it has become the world’s largest professional online network with more than 200 

million members from over 200 countries and territories (About LinkedIn, 2013). 

 

In other words, LinkedIn is truly an enormous expert database.  In spite of Twitter that 

lacks the rich profiles, and Facebook where it is hard to find people, 

LinkedIn standardizes information entered by users into their profiles via predefined 

“Profile Headline,” “Summary,” “Education,” “Company,” and other categories.  In 

addition to this large database of information, an effective search engine is provided that 

allows pinpointing the person you are looking for based on particular parameters 

(Schaffer, 2009). 

 

Many professionals and experts from business domains have joined the LinkedIn social 

network. The connection to business environments has also helped LinkedIn play the 

additional role of career management media. LinkedIn members have the chance to find 

potential companies and recruiters, as well as be found by them. 

 

CampusBuddy – According to the founder Mike Moradian, “CampusBuddy2 is a social 

academic platform for students to connect with other classmates with information that 

will help them succeed in school and it allows them to basically utilize the connections 

with people from Facebook in an academic setting.” The test site was launched in 

February 2008, after which a totally revamped Facebook application/website was 

introduced in October 2008 (Bisca, 2011). 

                                                             
1
 http://www.LinkedIn.com 

2
http://www.campusbuddy.com/ 
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By being members of CampusBuddy, students can communicate with others from the 

same university and can also learn how each professor grades. To join this academic 

social network, students need to either register or link their Facebook accounts to the 

dedicated profile in CampusBuddy (Sumra, November 17, 2009). They can gain 

valuable information by registering to this website. Official grade distributions of 250 

schools in the United States have been stored in the CampusBuddy database. The 

member students can effortlessly learn how difficult lecturers and courses are in their 

university. This feature is helpful to make better decisions in taking the most 

appropriate courses. The school registrars transfer this kind of information to the 

CampusBuddy administration team to input into the designated databases (Bisca, 2011). 

 

Digication – The academic social network Digication1 provides an online e-Portfolio 

and assessment management system for universities, k-12 schools, colleges and other 

professional organizations. e-Portfolios are defined as web-based platforms for 

lecturers, students, alumni, and professionals to publish and share their works and ideas. 

Some applications of e-Portolios are interactive resumes, assessments, student galleries, 

teaching materials assessments, and research presentations (Tochel et al., 2009).  

 

Rhode Island School of Design (RISD) was the first place where Digication was 

launched in 2004 by Kelly Driscoll. The main goal of Digication is to help institutions 

and students to build appropriate e-Portolios to enhance the process of learning. It can 

also be considered a model for publishing digital content in a cost-effective and focused 

way (Acker, 2008).  

 

                                                             
1
 http://www.Digication.com 
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Classmates – Among the pioneers in social networking, Classmates was created in 

1995 by Randy Conrads (Classmates.com site info, 2013). At first, it was developed to 

help members find classmates from kindergarten, primary school, high school, college, 

work and the United States military. But after years, in 2010, it began to be focused on 

nostalgic content such as movie trailers, high school yearbooks, photographic images, 

and music tracks (Bishop, 2011). Currently, it has more than 55 million registered users 

from over 25,000 high schools and at least 130,000 digitized yearbooks (Perez, 2012). 

 

In order to register to Classmates.com, you need to provide your name, e-mail address, 

birth date and graduation year. Then you can create your personal profile and share your 

identifying information as well as a personal photograph. You can upgrade to a Gold 

member by paying a subscription fee. Gold members will be provided with additional 

features. With the free profile in Classmates.com you can search for other people. To 

contact them you need to be a Gold member. Besides, in Classmates.com, users can 

create reunions and events within their community and invite other members to join. It 

is also possible to reconnect with people from the past by e-mail and posting on 

message boards (Bishop, 2011). 

 

According to user demographics of Classmates.com in the United States, the majority of 

members are adults, in contrast to other social networking sites such as Facebook, 

which has a younger average user base. Another interesting statistic shows that 85% of 

users are Caucasian while the share of African American members is around 8%. The 

remaining are Asian, Hispanic and the other races (Quantcast Audience Profile: 

Demographics, 2011). 
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CourseNetworking (TheCN) – TheCN is a new web-based product in the social 

networking domain with the main purpose of improving the learning process. It 

connects students and instructors within a classroom from around the world based on 

their interests and class subjects. It is a free online platform, and theCN is a simple and 

friendly system that enables students and instructors to share classroom materials, 

collaborate on assignments and stay connected worldwide. This social network was 

created in July of 2011 by co-inventors Ali Jafari and Indiana University. It is a private, 

for-profit Limited Liability Company (LLC) managed in Indianapolis, Indiana (Jafari, 

2012).  

 

Dr. Ali Jafari has stated that the primary objective of TheCN is not course management 

but networking that is open and free to any user all over the world. Users of this social 

network can share class notes, teaching materials, and collaborate with their other 

classmates in an online environment. "One of the biggest advantages of this new model 

for learning is it transforms the regular classroom into a global classroom," Jafari said. 

"No longer is it just you, your classmates and your teacher. Now it is you, your 

classmates, your teacher and your virtual classmates and teachers from all over the 

world. CN introduces an intercultural learning experience and offers more opportunities 

for educational collaboration with international universities. With this, the CN is 

expected to invent and introduce a totally new pedagogical framework for online 

learning."(Jafari, Sept. 22, 2011) 

 

2.3.2 Feature Comparison of Current Academic Social Networks  

 

Based on previous number of earlier research works (Rohani & Ow, 2011), academic 

social networks can be compared based on their general and specific features. To 
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contrast the above-mentioned academic social networks, they were examined by 

navigating through their web pages and reviewing their features comprehensively. 

Academic social networks studied in this research are listed in Table 2.4.  

 

Table 2.4: List of Studied Academic Social Networks 

 

Academia (AC) 

LinkedIn (LK) 

Campus Buddy (CB) 

Digication (DG) 

Classmates (CL) 

Course Networking (CN) 

Mendeley (MD) 

ResearchGate (RG) 

 

 

Table 2.5 presents a list of general ASN features. Some features such as Profile 

Management and Friend Management are common among all of them. The Following 

Mechanism is provided by all except CB and DG. Searching for other members and the 

Rating/Recommending mechanism are not very common, only LK and CB provide 

them to their members. Following others and leaving offline messages are quite popular 

in the reviewed academic social networks. As shown in Table 2.5, most features 

provided by DG are not free. These kinds of characteristics that need subscription fees 

are recognized by a small star in Table 2.5. CN, MD, and RG provide another element 

for updating website information such as universities, faculties, and list of disciplines. 

This information is confirmed at a later date by an administration team. Some academic 

social networks enable their members to share their publications through their profiles. 

Members have the opportunity to receive relevance feedback on their research works. A 

point system is a way to motivate members to become more involved in social 

networking activities. CB and CN allocate points to their members based on their 

different online activities. 
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Table 2.5: Comparing the ASNs by Their General Features 
 

General Features LK CB DG CL CN MD RG AC 

 Profile Management 
  

* 
     

 Editing Privacy Settings   
* 

    
 

Sharing Publications   
* 

 
   

 

 Personal Status Management     
  

 
 

 File Repository Management  
 

* 

  
  

 

 Friends Management 
  

* 
     

Invite people to join    
   

 
 

 Forum activities   
  

 
   

 Following Mechanism 
 

  
     

 Point Mechanism  
 

  
 

   

Rating / Recommendation 

Mechanism 
  

      

Online Newsletter  
  

 
 

 
  

 Notification Emails 
  

  
 

  
 

 Offline Messaging  
  

   
 

 

Grouping Contacts     
  

  

Updating Basic Information by 

Members  

    
  

 
 

Search (colleges, people, professors) 
needs detailed description 

  
      

 

* This service needs subscription 
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The aforementioned facilities are classified as general features of academic social 

networks. Table 2.6 presents their more specific features. Almost all examined 

academic social networks except CB, CN, and RG provide an online dashboard for their 

members for illustrating the latest statistics of their activities in ASNs. A special feature 

is considered in CL that enables members to share memories in an online environment. 

MD is the only studied academic social network for Paper and Reference Management 

while CB and DG have paid special attention to Calendar Management and Scheduling. 

Course Management and e-Learning Systems have been considered in CB, DG, and 

CN. It is possible in CN to submit and publish e-Surveys. LK and AC inform their 

members about jobs related to their preferences. Universities, companies and other 

organizations are allowed to have a specific Webpage in LK and DG. CB is the only 

ASN that makes it possible for members to access official grading records in the context 

of course management. Finally, members of LK and CL can check who has visited their 

profile.  
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Table 2.6: Comparing the ASNs by Their Special Features 

 

Special Features LK CB DG CL CN MD RG AC 

Calendar management and 

scheduling 
  *      

Paper Review Mechanism         

Group Assignment Follow up         

Course Management   * 
     

e-learning systems   * 
     

Online Survey         

Reference management tools         

Sharing memories         

Dashboard   *      

Posting jobs         

Access to Official Grading Records 
in Context of Course Management 

        

Class Status Update         

Profile Organizer * 
       

Pages for Companies or Universities   * 
     

Profile Visitors * 
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By studying the elicited features of academic social networks (Tables 2.5 and 2.6), a list 

of academic items is generated (Table 2.7) which are presented to members of such 

online social networks.  

 

Table 2.7: List of Academic Items Presented in Academic Social Networks 

 

 Information about Articles 

 Course Materials 

 Surveys 

 Job Opportunities 

 Course Grading Records 

 Conference Information 

 Scholarships 

 Scientific News 

 Scientific Forum Topics 

 

 

2.3.3 Statistical Comparison of Current Academic Social Networks   

 

Table 2.8 presents some statistical information on the most popular academic social 

networks studied in this research. According to Alexa website (Alexa Site Info, 2013) 

the oldest is Classmates, which was created in 1995, followed by Digication and other 

academic social networks, most of which were launched in 2008. The most popular 

academic social network among these is LinkedIn with more than 200 million members. 

According to Alexa Site Info (2013), it is visited mostly by users from the United States 

(25.2%), India (15.1%), the United Kingdom (5.0%), Spain (3.8%), France (3.6%), 
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Canada (3.3%), Brazil (3.0%), the Netherlands (2.8%), Australia(2.4%), and 

Germany(1.6%).  

 

Table 2.8: Statistical information of ASNs 

ASNs 
Traffic 
Rank 

Number of 
Users 

Page 
Views Per 

User 

Average 
Time on 

Site 

Creation 
Year 

Academia.edu 3,708 > 2,200,000 2.61 2:36 2008 

Mendeley 23,074 > 2,000,000 3.3 3:12 2008 

ResearchGate 6,412 > 2,000,000 2.6 2:41 2008 

LinkedIn 14 
> 

200,000,000 
8.77 7:21 2008 

CampusBuddy 292,369 NA 4.9 2:21 2008 

Digication 249,758 NA 6.7 8:25 2004 

Classmates 1,401 
> 

55,000,000 
2.92 2:47 1995 

TheCN 3,376,475 NA 2.5 3:48 2012 

 

 

Statistics for Average Time on Site shows that members of LinkedIn and Digication 

spend more time in these websites than members of the other academic social networks. 

These two websites also have the highest rate of Page Views per Users with 8.77 for 

LinkedIN and 6.7 for Digication. LinkedIn has the best traffic rank with 14, while 

Classmates (1,401), Academia.edu (3,708), and ResearchGate (6,412) follow at a long 

distance. From this viewpoint, TheCN is the newest and has the lowest traffic rank 

(3,376,475) in Alexa. 
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2.4 Summary 

 

With the explosion of Web 2.0 applications such as blogs, social networks, and various 

other types of web-based applications, the rich online information and various new 

sources of knowledge flood users and hence pose a great challenge in terms of 

information overload. Considering this phenomenon, it is essential to use recommender 

systems to assist users in finding the right information from an abundance of web data 

(Zhou, et al., 2012). The past decade has seen the rapid development of recommender 

systems in both research areas and online business domains. Recommender systems are 

defined as software tools and techniques for suggesting the most related items to users. 

Playing the most important roles by recommender systems in high ranked websites, 

conducting international conferences dedicated to this field, and recently added RS 

courses in famous universities are all witnesses of the increasing interest for this field of 

research. According to earlier research, the collaborative and content-based 

recommender systems were rather successful in suggesting some relevant items to target 

users, but they did suffer from some shortcomings such as sparsity, recommending new 

items, and the cold start problem for new users. More specifically, in academic social 

networks studied in the present research, the cold start problem is considered with more 

attention since the members of these online environments are recommended with new 

items. 

 

Although some recent alternatives like hybrid methods, demographic algorithms, and 

knowledge-based approaches have been proposed to mitigate these problems, the 

current generation of recommender systems surveyed in this study still requires further 

improvements to make recommendation methods more effective. In other words, the 

traditional recommender systems ignored social relationships among users. But in real 
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life, when we ask friends for recommendations of a nice restaurant we are actually 

requesting verbal social recommendations (Bonhard, 2005). In another research in this 

context, Bonhard, Sasse, and Harries (2007) stated that recommender systems and social 

networking functionality should be integrated.  To fill this gap, Seth, et al. (2008) 

proposed and evaluated a recommender system based on a Bayesian user-model. They 

used the underlying social network of blog authors and readers to model the preference 

features for individual users. As a potential technique in this context, friends’ 

preferences can be considered in addition to a given user’s own preferences to improve 

the accuracy of predictions. Consequently, in order to improve recommender systems 

and to provide more personalized recommendation results, it is necessary to incorporate 

social network information among users (Zhou, et al., 2012). 

 

In this chapter, we reviewed various advantages and limitations of the recommendation 

systems and discussed possible augmentations that can help to develop better 

recommendation capabilities. An overall glimpse of recommender systems is illustrated 

in Table 2.9. For more clarification, the commonly used techniques and related research 

works are listed for each category.  
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Table 2.9: Classification of Recommender Systems Research 

 

Recommendation Approach Recommendation Technique 

Collaborative Commonly used Techniques: 
 

 Nearest neighbor (cosine, correlation) 
 memory-based (user-based)  
 model-based (item-based) 
 Clustering 
 Graph theory 
 Bayesian networks 
 Artificial neural networks 
 Linear regression 
 Probabilistic models 

 
Representative research examples: 
 

 Resnick et al. (1994) 
 Breese et al. (1998) 
 Ungar& Foster, (1998) 
 Sarwar et al. (2001) 
 Schafer et al (2001) 
 Schein et al. (2002) 
 Linden et al. (2003) 
 Hofmann, (2004) 
 Lam and Riedl, (2004) 
 Deshpande et al. (2004) 
 Chirita et al. (2005) 
 Wang et al. (2006) 
 Mobasher et al. (2007) 
 Sandvig et al. (2008) 
 Cacheda et al. (2011) 

 
 

Content-Based Commonly used Techniques: 
 

 TF-IDF (information retrieval) 
 Clustering 
 Bayesian classifiers 
 Decision trees 
 Artificial neural networks 

 
Representative research examples: 
 

 Shardanand and Maes, (1995) 
 Holte and Yan, (1996) 
 Pazzani et al, (1996) 
 Balabanović and Shoham, (1997)  
 Pazzani and Billsus, (1997) 
 Mitchell, (1997) 
 Mooney et al. (1998) 
 Billsus and Pazzani, (1999) 
 Mladenic, (1999) 
 Herlocker, (2000) 
 Picard, (2003) 
 Adomavicius and Tuzhilin (2005) 
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 Chowdhury, (2010) 
 Cermonesi et al. (2011) 
 Lops et al. (2011) 
 Davenport, (2012) 

 
 

Hybrid Commonly used Techniques: 
 

 Linear combination of predicted ratings 
 Various voting schemes 
 Incorporating one component as a part of the solution for the 

other 
 Building one unifying model 

 
Representative research examples: 
 

 Balabanović&Shoham (1997) 
 Claypool et al. (1999) 
 Pazzani (1999) 
 Soboroff&  Nicholas (1999) 
 Ansari et al. (2000) 
 Hofmann, (2001) 
 Popescul et al. (2001)  
 Burke, (2002) 
 Melville et al (2002) 
 Schein et al. (2002) 
 Miller et al. (2003) 
 Middleton et al. (2004) 
 Durao&Dolog, (2010) 
 Ghazanfar&Prugel-Bennett, (2010) 
 Jung, (2011) 
 Ricci, et al. (2011) 
 Porcel et al. (2012) 
 Verhoeyen et al. (2012) 

 
 
 

Demographic  Commonly used Techniques: 
 

 Demographic modeling 
 Segmentation 
 Self-organizing map (SOM) 

 
 
Representative research examples: 
 

 Mahmmod et al. (2007) 
 Mosayebian et al. (2012) 

 
 

Knowledge-Based Commonly used Techniques: 
 

 case-based modeling 
 constraint-based modeling 

 
Representative research examples: 
 

 Bridge et al. (2005)  
 Ricci et al. (2006) 
 Martinez et al. (2008) 
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Social Network-Based Commonly used Techniques: 
 

 Social Network Models 
 Friends’ preferences 
 Bayesian User-Model 
 Probabilistic Model 
 Preference Scoring 

 
Representative research examples: 
 

 Massa et al. (2004) 
 Smeaton et al. (2005) 
 Golbeck, (2006) 
 Bonhard, et al. (2007) 
 Groh et al. (2007) 
 Seth, & Zhang, J. (2008) 
 Arazy et al. (2009) 
 Guy et al. (2009) 
 He & Chu, W. W. (2010) 
 Zhou, et al. (2012) 

 
 

 

Academic social networks are a special kind of social networking websites that enable 

their members to collaborate, make connections, and share their ideas and information 

in a web-based environment. To obtain a comprehensive picture of current academic 

social networks, the eight most popular samples are studied in this research, namely 

Academia.edu, LinkedIn, Campus Buddy, Digication, Classmates, Course Networking, 

Mendeley, and Research Gate.  

 

According to Alexa website (Alexa Site Info, 2013) the oldest academic social network 

is Classmates, which was created in 1995, followed by Digication and other academic 

social networks most of which were launched in 2008. The most popular academic 

social network among these is LinkedIn with more than 200 million members. LinkedIn 

has the best traffic rank of 14 while Classmates (1,401), Academia.edu (3,708), and 

ResearchGate (6,412) follow it at a distance. TheCN is the newest and has the least 

traffic rank (3,376,475) according to Alexa. 
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The last part of this literature concentrates on introducing the measurements used for the 

evaluation of recommender systems. According to what exactly they measure, these 

metrics are categorized into three main groups: measuring the accuracy of rating 

prediction, measuring the usage prediction, and measuring the rankings. As will be 

discussed later, the usage prediction metrics have been used in this research to evaluate 

the accuracy of predictions in different recommender algorithms. The details of three-

phase research methodology of this study are presented in the next chapter. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Introduction 

 

Recommender systems play an important role in the success of social networks by 

mitigating the information overloading problem. The systems can suggest the most 

relevant and attractive items to users based on their behavior and preferences (Ido Guy 

& Carmel, 2011). Academic social networks are a specific type of social networks that 

provide web-based services to academicians and scholars. These were pointed out in the 

literature part of this study. In the second part of Chapter 2, the main recommender 

algorithms were described and compared according to their advantages and 

shortcomings. In addition, various means of evaluating the prediction accuracy of 

recommender systems were presented at the end of Chapter 2. In the present chapter, the 

three-phase methodology applied in this research is discussed and the target population 

consisting of 920 MyExpert members from 10 universities in Malaysia is introduced. 

The final section of this chapter provides a detailed schedule of the data collection 

procedure. 

 

3.2 Research Design 

 

A suitable, well-structured method is essential to performing sound empirical research. 

Empirical research methods are a class of research methods in which empirical 

observations or data are collected in order to test a theory   (Easterly & Levine, 2001). 

In the present study, a quantitative method serves to test this theory of whether utilizing 

social networking parameters can improve the performance of content-based 
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recommender systems in academic social networks. This section describes the three-

phase method applied in this investigation (Figure 3.1). 

 

Figure 3.1: Research Methodology 

 

The first research phase centers on a literature review and study of preceding research 

works done on recommender systems. This phase has three stages: studying the 

Literature Review 

Studying the Academic Social 

Networks 

Studying the Recommender 

Algorithms 

Studying the Recommender 
Systems’ Evaluation Methods 

Phase One 

Algorithm Construction 

Developing MyExpert 
(Academic Social Network) 

Implementing Current Recommender 
Algorithms: 

 Random Recommender  

 Collaborative Recommender 

 Content-Based Recommender 

Implementing the ECSN Algorithm 

Formulating the ECSN Algorithm 

Phase Two 

Algorithm Testing 

and Evaluation 

Phase Three 

Sending e-News Letter 
(Using Random Algorithm) 

(5 weeks) 

Sending e-News Letter 
(Using Collaborative Algorithm) 

(3 weeks) 
 

Sending e-News Letter 
(Using Content-Based Algorithm) 

(3 weeks) 
 

Sending e-News Letter 
(Using ECSN Algorithm) 

(3 weeks) 

Evaluating the prediction 
accuracy of the above four 

algorithms 
(Using Precision & Recall) 
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academic social networks, studying the recommender algorithms, and studying the 

recommender systems’ evaluation methods. 

 

With reference to the principal research objective that deals with improving 

recommender systems in academic social networks, the most popular academic social 

networks were first analyzed comprehensively. Eight websites of this domain were 

briefly examined from varying points of view. This component of the literature review 

has led to generating a list of general and specific features of academic social networks, 

as mentioned in Chapter 2. 

 

The next stage of the first phase contains a detailed description of the most important 

recommender systems. According to some vastly cited researchers (Adomavicius & 

Tuzhilin, 2005; Ricci, et al., 2011), the collaborative and content-based methods seem 

to be the most prevalent recommender systems that have become origin points for other 

proposed algorithms in this field. The second literature review section is allocated to 

providing a comprehensive picture of recommender systems. 

 

The last literature review section introduces the measurements done for analyzing 

recommender systems. These metrics fall into three main groups based on what exactly 

they measure: measuring the rating prediction accuracy, usage prediction, and rankings 

– all of which are discussed in the last section of Chapter 2. 

 

The core focus of the second research phase deals with the design and development of 

the required test environment, recommender algorithms and the ECSN model 

(Figure 3.1). First, an online real environment (MyExpert) was developed for testing the 
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various recommender systems and comparing their accuracy in recommending the most 

relevant items to users. 

 

The implementation and testing of recommender systems considering all their details 

are among the most essential aspects of this research. As depicted in Figure 3.1, during 

the second stage of the construction phase, the following three recommender algorithms 

were initially implemented in the MyExpert environment: 

 

 Random Recommender Algorithm 

 Collaborative Recommender Algorithm 

 Content-Based Recommender Algorithm 

 

In the following stage, an ECSN algorithm was designed and formulated as the 

proposed recommender model to enhance the functionality of content-based algorithms. 

By implementing the ECSN algorithm, the final step of the second phase was 

accomplished. 

 

The main objective of the third research phase is to test and evaluate all four 

implemented recommender systems and compare their prediction accuracy. In doing so, 

the online study approach was applied as the strongest experimental method (Shani & 

Gunawardana, 2011) for evaluating the performance of recommender algorithms.   To 

achieve this goal, 1390 records of academic items were submitted in MyExpert, 

including 346 academic jobs, 339 conferences, 355 scholarships, and 350 academic 

news articles. As a follow-up to the data gathering schedule of this research, each of the 

four recommender systems examined was used to send the top 10 academic items to 

MyExpert members over 14 consecutive weeks.  
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The literature review indicates that the collaborative and content-based approaches are 

the most popular algorithms in recommender systems. These two essentially form a 

base for other recommender algorithms. For this reason, the decision to use the 

collaborative and content-based methods was made for recommending academic items 

to MyExpert members. Before applying these approaches, a series of previous ratings in 

the MyExpert environment were required. To collect user ratings, the random 

recommender algorithm was implemented and applied in MyExpert for the first five 

weeks of experimentation. Subsequent to gathering user ratings with the random 

algorithm, the collaborative and content-based algorithms were run for six weeks. 

 

During the first 11 weeks of experiments, MyExpert users experienced three different 

recommender algorithms (random, collaborative, and content-based) and the ratings 

related to each algorithm were collected. Then the main algorithm (ECSN) was applied 

for recommending academic items to users. Similarly, users of MyExpert encountered 

the functionality of this algorithm for three consecutive weeks. The implementation 

particulars of all four algorithms will be provided in Chapter 4. 

 

After gathering the members’ feedback from the 14 weeks, Precision, Recall, Fallout, 

and F1 assessed the prediction accuracy of all recommender algorithms applied. The 

details of the evaluation process and its results are presented in Chapter 5. 

 

3.3 Target Population 

 

To take advantage of the experimental accuracy from online studies, the MyExpert 

academic social network was designed and developed as the runtime environment for 

this research. As the first academic social network in Malaysia, it has so far successfully 



96 

 

motivated 920 academicians from 10 universities and higher-education institutes to join 

this social network (Figure 3.3).  A log generator component was developed and 

embedded in MyExpert, which has generated over 80,000 user transaction records from 

online user-system interactions. 

 

 

Figure 3.2: Target Population Demographics 

 

As illustrated in Figure 3.2, the majority of MyExpert members are postgraduates (449 

PhD and 317 Masters). University of Malaya (UM) is the highest ranking university in 

Malaysia and has contributed the most members (446) to MyExpert, followed by UPM 

with 208 members. Other universities, such as IMU (89 members), MMU (64 
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members), UTM (51 members), UKM (40 members), and USM (15 members) 

contributed fewer members than the first two. UCSI (2 members), UTHM (2 members) 

and Sunway (3 members) have the least share in MyExpert (Figure 3.3). Regarding 

gender, 55% of users are female and 45% are male. 

 

 

Figure 3.3: List of Universities in MyExpert 

 

3.4 Data Collection Procedure 

 

This research endeavors to upgrade the prediction accuracy of content-based 

recommender systems in academic social networks. According to the problem statement 

given in Section 1.2, the most relevant academic items are to be sent to MyExpert users 

through an e-newsletter. The users who receive item recommendations in their inbox 
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click on the links of interest for academic items and may rate them by selecting one to 

five stars from the top right of the related webpage (Figure 3.4). By recording user 

interactions with MyExpert, relevant feedback is collected for the evaluation process. 

 

 

 

Figure 3.4: The Academic Items Webpage in MyExpert 

 

The data collection for this research was carried out over 14 consecutive weeks from 7th 

September to 26th December 2012. Each week, 100 academic items including 25 news, 

25 conferences, 25 scholarships, and 25 job offers were submitted to MyExpert via the 

online webpages designated for this purpose. After completing the weekly submission 

process, every MyExpert member would receive the top 10 items from a total of 100 in 

their email. Users expected to receive the most relevant items through MyExpert 

academic e-newsletter. 
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Throughout the 14 weeks, four recommender algorithms, namely random, collaborative, 

content-based, and ECSN were applied for selecting and recommending the most 

relevant academic items to MyExpert users.  The first five weeks were dedicated to the 

random algorithm since the other three require previous ratings to work with. After 

gathering the applicable feedback with the random algorithm, the collaborative 

algorithm attempted to recommend the top 10 items to users. It took three weeks to 

collect records of user behavior for this algorithm. Immediately after, the content-based 

algorithm was applied for the next three weeks, from 12th November to 3rd December 

2012. The final and most important component of data collection was allocated to the 

ECSN algorithm. Basically, this proposed algorithm was examined over the last three 

weeks, from 4th December to 26th Dec 2012. 

 

3.5 Evaluation method and measurements of this study 

 

The prediction accuracy measures are classified in three categories of Ratings 

Prediction Accuracy, Usage Prediction, and Ranking Measurements (Shani & 

Gunawardana, 2011). In some experimental environments for evaluating recommender 

systems, users prefer to simply click on recommended items rather than rank them. In 

such situations, the usage prediction measures should be considered for calculating the 

prediction accuracy of recommender algorithms (Herlocker, et al., 2004; B. Sarwar, et 

al., 2001; Shani & Gunawardana, 2011).  
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Figure 3.5: User clicks and ranks shares in the MyExpert experiment 

 

In the 14 weeks of gathering data for this research, the academic e-Newsletters were 

sent to 920 MyExpert users. According to statistics (Figure 3.5), 360 persons visited the 

academic items while only 26 members ranked the items and the remaining 334 

preferred to visit by clicking on the title links sent to their email addresses. Considering 

the fact that in this research 92% of users did not rank the recommended items, Usage 

Prediction Measures was employed instead of Ratings Prediction Accuracy and Ranking 

measures to assess the prediction accuracy of recommender algorithms (Herlocker, et 

al., 2004; B. Sarwar, et al., 2001; Shani & Gunawardana, 2011).  

 

Consequently, Precision, Recall, Fallout, and F1 were used in this research to measure 

the usage prediction of each recommender algorithm. During each week of the data 

gathering phase, a fixed number of 10 items from 100 newly entered academic items 

were selected for recommendation to each MyExpert member. Also, referring to 

previous researchers (B. Sarwar, et al., 2001; Shani & Gunawardana, 2011), the above-

mentioned metrics were computed at each recommendation list for every user, and then 

the average value was calculated to compare the prediction accuracy of every 

recommender algorithm.  

334

26

Users click on items

Users rank the items
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The experimental results for this research work are presented based on four usage 

prediction measurements, namely Precision, Recall, Fallout, and F1. To further clarify 

the concept behind these measurements, the space of all possible items considered for 

recommendation to MyExpert users in this research are depicted in Figure 3.6. 

 

 

 

Figure 3.6: The Space of All Possible Items Considered For Recommendation to 

MyExpert Users 

 

All possible items include 100 academic items consisting of academic news, 

conferences, jobs, and scholarships submitted to MyExpert during each week of 

experiments. Every implemented recommender system in this research aimed to identify 

the top 10 items (Y) for all members and recommend them through a MyExpert 

e-newsletter. Hence, in 14 weeks of experiments, 10 items (Y) were recommended to 

every MyExpert member from roughly 100 possible items (A). The MyExpert members 

had two ways of accessing their favorite academic items: by clicking on the hyperlink 

sent by the MyExpert e-Newsletter and by clicking on news links as other news were 
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available at the right side of the news web page. In the former case, the viewed item 

appeared as Relevant Recommended (X), and in the latter case, it was shown as 

Relevant Not Recommended (Z-X). As per Figure 3.6, the related measurements are 

defined as: 

��������� = 
�

�
                                                     (3.1) 

 

������ = 
�

�
                                                     (3.2) 

 

������� = 
���

���
                                                  (3.3) 

 

3.6 Summary 

 

This research was conducted using a three-phase methodology. The first phase 

comprises a review of literature with focus on academic social networks, recommender 

algorithms, and means of evaluating recommender system performance. The next phase 

involves the design and development of MyExpert as a runtime environment and 

applying four different recommender algorithms to be evaluated in the MyExpert online 

environment. Upon realizing the development phase, the performance of the proposed 

recommender algorithm in this research (ECSN) was compared against the other three 

algorithms applied, i.e. random, collaborative, and content-based. This process took 14 

consecutive weeks and the four measurements were precision, recall, fallout, and F1. 

 

MyExpert members were considered the target population for conducting this research 

and evaluating the performance of the ECSN recommender algorithm. The population 

consisted of 920 students, lecturers and academicians from 10 universities in Malaysia 

who received the recommended academic items in their inbox through the MyExpert e-
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newsletter. UM (446 members), UPM (208 members), IMU (89 members), MMU (64 

members), UTM (51 members), UKM (40 members), USM (15 members), Sunway (3 

members), UCSI (2 members), and UTHM (2 members) were the 10 participating 

universities in this study. 

 
Data collection for the current research was done throughout 14 successive weeks from 

7th September to 26th December 2012. Each week, 100 academic items were submitted 

to MyExpert. After completing the submission process for every week of the data 

collection phase, the recommender systems suggested the top 10 items to users and sent 

them through the MyExpert academic e-newsletter. In this research, four different 

recommender algorithms were evaluated during the 14 weeks of gathering relevance 

feedback. Next chapter presents the theoretical framework of ECSN recommender 

algorithm. Also the details of design and implementation for all four applied 

recommender algorithms (Random, Collaborative, Content-based, and ECSBN) are 

discussed in following chapter.  
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CHAPTER 4 

DESIGN AND CONSTRUCTION OF RECOMMENDER 
ALGORITHMS 

 
 

 
4.1 Introduction 

 

The previous chapter discussed the research methodology utilized in this study. This 

chapter focuses on presenting the theoretical framework, architecture, and technical 

issues of this research. To prepare the research environment for ECSN implementation, 

two components were required for design and development. The first component 

comprises four recommender systems, including random, collaborative, content-based 

and ECSN, and the second focuses on MyExpert academic social network which is 

needed for runtime environment of this study. The design and implementation details 

with respect to these elements will be presented next. 

 

4.2 ECSN Algorithm 

 

The ECSN recommender algorithm manages user preference scores for academic item 

categories in a tree data structure. To accomplish this, a hierarchy of items should be 

defined, as per Figure 4.1.  
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Figure 4.1: Hierarchy Tree of Academic Items Used in the ECSN Recommender 

Algorithm 

Hence, in the ECSN algorithm user preference scores for each academic item category 

are stored based on the following definition: 

 

Definition 4.1: The preference tree ��(�) of user � is isomorphic to the hierarchy tree of 

item categories, and the set of nodes of the preference tree ��(�) is as follows: 

 

��(�)= { (���, ����,��)}, 
 

where ���, ����,  and �� are the user identifier, the item category identifier of the 

hierarchy tree, and the preference score, respectively.  

Definition 4.2: The preference scores (��) are defined as follows: 

 

��(�, �)=∝ �× ��������������(�, �)+ ∝�× �������������(�, �)+  

∝�× ����������������� (�, �)+  ∝�× ������������(�, �) 

 

where PS(i, j) is the total preference score of user i for the academic item category node 

j. Each element of this definition is described as follows: 
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��������������(�, �) is the score related to clicks of a given user i for the item category 

node j , which is specified by counting the number of clicks for a given customer during 

the research experiments.  

 

�������������(�, �) is calculated by adopting the submitted rates of given user i to 

academic items classified in category node j.  

 

The value of ����������������� (�, �) is calculated by considering the top 3 

interesting item nodes of the preference tree among members registered in the same 

faculty that the given user i belongs to.  

 

The last element ������������(�, �), is dedicated to preferences of friends for a given 

member i. The strategy described above for calculating the ����������������� (�, �) is 

adopted here for ������������(�, �) with the difference that it takes into account the 

top 3 item nodes that are most interesting  among a given member’s friends.  

 

As mentioned in previous works (J. W. Kim et al., 2006), some weights may be 

assigned to each parameter of the formula to compute the preference scores. 

Accordingly, in Definition 4.2, (∝�)  represents the relative weights for each element. 

As �������������� and �������������are the most important personal elements that 

should be counted for a given user i, the value of 5 is considered for ∝� and ∝�. 

Relatively, the weight of 3 has been considered for ∝� since �����������������   is 

less significant than the user’s own preferences.  Finally, ∝� is set at 1 as 

������������ has the lowest influence in Definition 4.2.  The assigned weights are 

subjective values for considering the levels of importance among users’ own 

preferences, their faculty mates and friends. Although the experimental results of this 
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study indicate that these settings work well in improving the prediction accuracy of 

recommendations, but as the future works, even these weights might be optimized by 

applying some other techniques such as genetic algorithms. 

 

After calculating the preference scores (��) for each user i, Definition 4.3 is applied for 

some non-leaf nodes of the preference tree whose values are still 0. 

 

Definition 4.3: The preference scores (��) of a non-leaf-level product category j are 

defined as follows: 

��(�, �)= ������� �∈{�|� �� � ����� ���� �� ������� �������� �}��(�, �) 

In the initialization stage, the preference tree of a certain user i is initialized to 0 once 

the user creates a profile in the academic social network (in this study it is MyExpert): 

��(�, �)= 0  �∈{�|� �� � ���� �� ����������� ����� ���� ��������� ��� �������� ���� ����������}  

While users open or rate the web pages of academic items, the preference score must be 

updated. The values given in Table 4.1 serve in updating the preference scores.  

 

Table 4.1: Illustration of Assigned Points to Different Rates 

Given Rate Description 
The Rate Value 

(RV)  

 Excellent +3 

 Good +2 

 Fair +1 

 
Not Bad -1 

 Weak -2 
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(1) When the given user i rates the academic items related to category node j: 

  ��(�, �). ������������� = ��(�, �). ������������� + ��  

 

(2) When the given user i clicks on the academic items related to category node j: 

     ��(�, �). �������������� = �� (�, �). �������������� + 1  

 

The above update procedure does not require updating of preference scores for all nodes 

of the tree, but rather the updating of the preference scores of nodes related to visited 

and rated items. 

 

After updating ������������� and, the preference scores (PS) should be updated by 

considering faculty mates and friends of given user i: 

 

��(�, �). ����������������� = �� (�, �). ����������������� + ������� (��) 

 

Where 

�� ∈ {��� 3 ����������� ������ ��������� ����� ��� ����� ���� � } 

 

Similarly, the ������������ value is updated as: 

��(�, �). ������������ = �� (�, �). ������������ + ������� (��) 

Where 

�� ∈ {��� 3 ����������� ������ ��������� ��� ����� ���� � } 

 

As mentioned in above formulas, Average (FS) is the average value of top 3 preferences 

scores which were assigned to product category j by friends or faculty mates of target 

user (i). In this study, top 3 scores were considered instead of all recorded scores to 
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make the proposed algorithm more applicable in real situations facing to millions of 

items and users. As another reason, considering assigned weights in Definition 4.2, the 

preference of faculty mates and friends are mostly effective in cold-start situations when 

there is not enough preferences for target user. In such conditions, for making 

recommendations, it is preferred to find the top items which are most interesting for 

friends and classmates. 

In each week of experiments, 100 academic items were submitted to the MyExpert 

academic social network. Each studied recommender algorithms aimed to select the top 

10 items for each user and recommend it through an e-newsletter. For the first three 

algorithms, the selection process was implemented based on recommender algorithms 

that were studied through the literature review. In the random recommender algorithm, 

10 random items were selected. The collaborative algorithm made predictions based on 

items that people with similar preferences and interests previously preferred (Cacheda, 

Carneiro, Fernández, & Formoso, 2011; Wang & Yang, 2012). For implementing the 

pure content-based recommendation, the preference three approach (Kim, et al., 2006) 

was followed. An enhanced selection process was finally used in the ECSN 

recommender algorithm as illustrated in Figure 4.2. 
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Figure 4.2: ECSN Selection Process 

 

For each MyExpert user, the item categories are ordered according to �� value and 

stored in a stack data structure (���������) such that the category with the biggest 

�� is accessible at the top of the stack. To produce the recommendation list for user �, 

the topmost category is moved to ����������   using ��� (���������). Then the 

newly submitted items in MyExpert (100 items per week) are searched to find academic 

items with the category ID ����������. As mentioned in the research methodology, 

the recommendation list meant to be suggested to each user �  includes the 10 most 

relevant items. To obtain more items with the highest �� value in this list, the 

����������������array has been considered to identify the number of items that should 

be for each top-scored item category: 

 

��� ���������������� = {3,2,2,1,1,1,1,1,1,1} 

 

Based on this identified priority, the highest scored category may contain up to 3 items 

while the two next highest ones come with 2 items most in the recommendation list. 

for each � ∈ � 
{ 

1. Generating the ordered stack of item categories (���������) 
based on �� value computed by Definition 4.2 and 4.3. 

2. ��� ← �    // Initializing the Selected Items Count (���) by 0 
3. �� ← �  // Initializing the selected category (��) by 0 
4. �ℎ��� (������������� < 10) 
5.  {      
6. ���������� ← ��� (���������)  ,  
7. ������������ ←

������������(����������,����������������(��)) 
8. ���−= �����(������������) 
9. ������ ������������ ��  ������������������ 
10. } 

} 
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The others have the same value of one item. In the �ℎ��� ���� body, the ordered 

recommendation list (������������) is generated for each user � ∈ � . 

 

To conclude, Definition 4.2 clearly shows that in the ECSN algorithm, the effective 

preferences that must be considered when finding the most relevant items to a given 

member are driven from three variant sources: member’s own preferences, their faculty 

mates’ interests, and friends’ preferences. In this way, the cold start problem of other 

recommender systems addressed in the literature review section of the dissertation 

(Chapter 2) will be solved. Even if the recommender system does not have any records 

of previous transactions for a given member, friends’ preference records can be 

considered in Definition 4.2. Furthermore, if the member has no friends to be 

considered for this calculation, there are definitely some faculty colleagues whose 

preferences would be applied in Definition 4.3 to obtain the items most relevant to the 

target member.  

 

4.3 ECSN Architecture and Workflows  

 

Figure 4.3 shows the principal workflows within the ECSN Recommender System. The 

architecture for this research work is identified in three main spaces: User space, 

Administrator space, and the ECSN recommender engine. Besides, a database is taken 

into account in this architecture, used for restoring and retrieving related data. The 

functionality of this system is briefly described subsequently based on the three 

different working spaces. 
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Figure 4.3: The architecture and workflows of the ECSN Recommender System 

 

User Space: 

 

The main goal of recommender algorithms is to provide users of online environments 

with the most relevant items (Ricci, et al., 2011). With reference to the experimental 

method selected for this research (online study), having a pool of users to interact with 

various recommender systems implemented in this work was essential. In response to 
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this need, the MyExpert academic social network was developed, and it currently has 

more than 920 members from 10 universities in Malaysia. Some facilities are provided 

in MyExpert, which enable members to submit academic items through their web-based 

profiles. These items consist of academic news, conferences, job offers, and 

scholarships. As shown in Figure 4.3, the submitted items were checked by a MyExpert 

administrator prior to restoration to the designated database. In this research, during 

each week of experiments, 100 items were approved for processing by recommender 

algorithms in the next steps of this research work. The recommended items are fed by 

another process in the working space of the ECSN recommender engine, which will be 

briefly described at a later time. 

 

MyExpert members received the top 10 academic items recommended by four 

recommending algorithms (random, collaborative, content-based, and ECSN) in every 

week of the data collection phase. These items were sent through the MyExpert e-

Newsletter. Members who received it clicked on the title of interesting news and opened 

their web pages. As such, this e-newsletter served as the media for sending 

recommended items to MyExpert users. 

 

An additional functionality that was considered for users of this area is clicking and 

rating academic items. Collecting the relevance feedback is one of the most important 

issues when studying recommender systems, as it gets used to evaluate the functionality 

of recommender algorithms (Shani & Gunawardana, 2011). Thus, MyExpert users’ 

behavior when faced with academic items was recorded for the evaluation process. 

Users ranked the items based on their interest from one to five stars. One star represents 

non-relevance and five stars represent complete relevance. The relevance feedback 
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gathered was applied to the Updating User Profile process, which will be elaborated in 

the context of the ECSN recommender engine working area. 

 

Administrator Space: 

 

The administrator working space provides administrative and monitoring features of an 

ECSN recommender system. The role of MyExpert admin comes with specially 

designated privileges and responsibilities of managing the ECSN.  Figure 4.3 indicates 

that sending academic e-Newsletters and confirming new academic news are two 

principal features that were considered for this working area.  

 

Figure 4.4: The MyExpert Webpage for Administration of Academic Items  

 

Academic news submitted by MyExpert users need to be checked before being 

processed by recommender engines. For this purpose, ‘Confirming New Academic 

Items’ was taken into account in the administrative field to prevent the dissemination of 

wrong or incomplete news to MyExpert users (Figure 4.4). The administrative influence 
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of this feature is revealed in Figure 4.3 by a dashed arrow from ‘Confirming New 

Academic Items’ to ‘Submitting New Academic Items.’ 

The second administrative facility seen in Figure 4.3 is ‘Sending Academic e-

Newsletter.’ In reference to the problem statement section of this dissertation, during 

each week of research experiments over 14 weeks, the top 10 academic items were 

meant to be sent to MyExpert users. More specifically, the recommender systems’ aim 

was to identify the items most relevant to every MyExpert user and then compile them 

in an e-Newsletter. Thus, another responsibility of a MyExpert admin is to select one of 

the recommender algorithms based on the predefined schedule and trigger the procedure 

of sending e-Newsletters to members’ email. By doing this each week, all 920 

MyExpert users would receive emails containing academic MyExpert e-Newsletters in 

their email inbox. A MyExpert e-Newsletter sample is seen in Figure 4.5. 

 

 

Figure 4.5: MyExpert e-Newsletter 

Members receiving the e-Newsletter could click on each news link and open a related 

webpage to read additional details. They could then also rate the given news by clicking 
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on designated stars (1 to 5). After describing the two administrative MyExpert features, 

the functionality and workflow of the main ECSN body are presented next. 

 

ECSN Recommender Engine: 

The center of Figure 4.3 depicts the heart of ECSN recommender system, namely the 

‘ECSN Recommender Engine.’ This section of the architecture is responsible for 

collecting the relevance feedback from MyExpert users, generate and keep user profiles 

updated based on preferences elicited throughout interactions with the system, as well 

as apply an ECSN recommender algorithm to find the top 10 academic items among 

100 submitted every study week, and finally form the weekly e-Newsletter for each 

MyExpert member. The two key features shown in Figure 4.3 are ‘Updating User 

Profile’ and ‘Recommending Top 10 Academic Items.’   

 

The former attribute is dedicated to creating and updating the user profiles in the ECSN 

system. Users of a recommender system may have greatly varying characteristics and 

interests. To personalize recommendations and user interactions with the systems, 

recommender engines exploit a range of information regarding user behavior. This 

concept enables users to provide the recommender system with information regarding 

likes and dislikes. This is an essential task in providing personalized recommendations 

since personalization is not possible in the absence of a convenient user model (Perez, et 

al., 2007). In some cases where the system has no specific knowledge of user 

preferences and interests, it is unable to recommend the most relevant items. The 

structure of this information strictly depends on the recommendation technique selected 

for application. For instance, in collaborative recommender algorithms user profiles are 

constructed as simple lists containing the ratings provided by the user on certain items. 

In a demographic recommender system, sociodemographic characteristics such as age, 
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gender, education, and profession are used. In other words, user data constitutes the user 

profile (Fischer, 2001). 

Now that the necessity for a User Profile has been clarified, the functionality of 

‘Updating User Profile’ shall be addressed. As per Figure 4.3 the input information for 

this process is collected from the user’s space. While MyExpert users interact with the 

system by clicking on, or rating, academic items, all the relevant feedback is received 

by this process box and re-stored in the MyExpert database. The outgoing data arrows 

from the ‘Updating User Profile’ box demonstrate that the relevance feedback is 

transferred into data base via two different channels: ‘User Clicks & Ratings’ and 

‘Preference Score Points.’   

 

As mentioned earlier, the first one is the log records related to the transactions of users’ 

click and ratings. According to Table 4.1, the pointing values which are considered for 1 

to 5 stars are relatively -2, -1, +1, +2, and +3 relatively. The negative values represent 

the unlikeness of users regarding to the given academic items while the positives values 

show the user interest for items. 

 

The second arrow, ‘Preference Score Points,’ signifies points of preference scores. 

Figure 4.1 indicates that the preference scoring tree employed in the ECSN algorithm 

has four levels. The second highest level has four nodes (ellipses) representing four 

types of academic items, namely academic news, academic jobs, conferences, and 

scholarships. The following two lower levels of the tree denote the disciplines to which 

submitted academic items belong to. It is worth mentioning that in view of the tree 

structure’s parametric design enables both vertical and horizontal extension. 
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When a user clicks or rates an academic item, the related node of the given item in this 

hierarchy tree of preferences is established. Then the related point of that node for the 

given user will be updated. More precisely, user clicks and ratings of more than 2 stars 

cause increments of these points while ratings with one or two stars lead to decreasing 

assigned values of a given node.  By repeating this process for each recorded user 

interaction with the system, all nodes of interest will obtain points relative to those that 

would be used for the user profile in an ECSN recommender algorithm. Higher point 

values for each node signify that it is more interesting in the list of academic items of 

the given node for the studied user.  Consequent to the continuous user profile updating 

every week of experiments, it can be used in the next stop of this working space, that is, 

‘Recommending Top 10 Academic Items.’ 

 

The main ECSN recommender engine output is generated by the ‘Recommending Top 

10 Academic Items’ feature. Again, in each week of experiments for this research, the 

top 10 items from 100 submissions were selected and recommended to MyExpert users 

through an e-Newsletter. The process box in the ECSN recommender engine is 

responsible for this mission. Four input arrows show all types of information required 

for recommending the top 10 academic items in an ECSN engine: new academic items, 

user profile, friends profile and faculty colleagues profile. Next, these input workflows 

are concisely described. 

 

As discussed earlier, new academic items are submitted to MyExpert and confirmed by 

the administrator. In each week of current research experimentation, 100 approved 

items were submitted in a runtime environment provided for this study, namely 

MyExpert academic social network. The items were academic jobs, academic news, 

conferences, and scholarships. 
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Another arrow represents the user profile briefly described earlier. A hierarchy tree 

structure has been considered for categorizing the academic items (Figure 4.1). 

Maintaining updated designated database tables for this tree structure helps inform the 

ECSN engine regarding MyExpert users’ interests and preferences based on their 

previous interactions with the system. By having this knowledge, the ECSN 

recommender systems is capable of making true decisions in selecting the top 10 

academic items for each given user of the MyExpert academic social network. 

 

However, only considering the user’s own preferences causes a cold start issue in the 

domain of recommender systems. The origin of this shortcoming can be traced to the 

fact that there is no previously recorded interaction for new users of an online 

environment. This is a problem that some popular recommender algorithms suffer from, 

including the collaborative and content-based approaches (Lam, Vu, Le, & Duong, 

2008; Zhang, et al., 2010). To mitigate this problem, in addition to considering the 

users’ own preferences, the ECSN algorithm utilizes the ‘Friends Profile’ and ‘Faculty 

mates Profile’ too (Figure 4.3). In doing so, all transaction records of a given user’s 

friends are analyzed by the ECSN recommend engine and the most interesting nodes in 

the preference tree structure of academic items would be elicited.  Then the pointing 

value of elicited nodes will be updated in the given user’s preference tree. The same 

process would be done regarding the faculty mates of the target user. 

 

Now, after utilizing the 4 above-mentioned inputs, the ECSN recommender algorithm 

generates an order list of top 10 new academic items by matching the most interesting 

nodes in the tree structure of preferences and new academic items submitted in the most 

recent week. This process was iterated for all weeks of the research experiment when 
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the ECSN algorithm was adopted for recommending the top 10 academic items to 

MyExpert users. Finally, the generated list of recommended items would be embedded 

in the MyExpert e-Newsletter and get sent to MyExpert users. It is worth mentioning 

that each user receives a different list of recommended academic items of the week, 

based on their updated preferences and interests in the MyExpert database. 

 

4.4 Overall View of Adopted Recommender Systems   

 

Now that the detailed workflows and theoretical framework of the ECSN recommender 

algorithm have been described, the overall view of the adopted recommender system is 

presented in this section. This research focuses on utilizing social networking 

techniques to enhance the accuracy of the content-based recommender algorithm in 

recommending the academic items through the e-newsletter of MyExpert academic 

social network. To access the practical results in an online environment and evaluate the 

contribution of this research, in addition to the design, development and implementation 

of the ECSN recommender algorithm, three more recommender systems are adopted in 

this study: the random, collaborative, and content-based recommender algorithms. 

Figure 4.6 depicts the overall architecture of the recommender systems applied in this 

work. 
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Figure 4.6: Overall View of Adopted Recommender Systems in this Research  

 

The main workflows are shown in Figure 4.6 between the coarse-grained elements of 

this study, namely user, MyExpert online environment, recommender system, and 

MyExpert data base. The MyExpert users feed the relevance feedback for this research 

by interacting with the MyExpert academic social network.  To be exact, users’ clicks 

and ratings submitted for academic items are restored in the database as user ratings. 

Besides, in conditions when MyExpert users submit new academic items through their 

web-based profile, these become restored in the database as weekly academic items. 

The recommender systems intended to select the top 10 academic items among 100 

submitted each week of the research experimentation and send them to MyExpert users 
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via e-Newsletters. To achieve this goal, the records in the MyExpert database were 

utilized, as highlighted in Figure 4.6. 

 

New weekly academic items make the basic table commonly used with all 

recommender algorithms examined in this research (random, collaborative, content-

based, and ECSN). The data related to collected relevance feedback (user ratings) is 

also needed for the recommendation process in all mentioned algorithms, except the 

random approach. Similar items are used by the collaborative filtering algorithm to 

make decisions in finding and recommending the most relevant items to MyExpert 

users. The similarity between items can be identified by considering user behavior when 

clicking and ranking academic items. The content-based recommender algorithm and its 

improved version proposed in this study, ECSN, both make use of the hierarchy tree 

structure of academic items. This structure categorizes all possible academic items in a 

tree schematic that would be scored for each user by investigating his or her interests 

and previous interactions with the system. The ratings belonging to friends and faculty 

mates are specifically used by the ECSN algorithm.  By utilizing these two new 

paradigms of information, the ECSN recommender system can solve the cold start issue 

which exists in both the collaborative and content-based algorithms. The 

implementation details of all four mentioned recommender algorithm are described in 

subsequent sections of this chapter. ECSN is the enhanced version of the content-based 

algorithm proposed in this research, and its theoretical framework is presented in brief 

in next. 
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4.5 Implementation of Recommender Algorithms 

 

This section briefly describes the design and implemantion of four studied 

recommender algorithms (random, collaborative, content-based, and ECSN). First of all, 

it is essential to provide a faculty for merging different types of academic items in a 

single table to be utilized by each recomemdner algorithm. 

 

Four different types of academic items were submitted in MyExpert as academic news, 

conferences, academic jobs, and scholarships. With regards to the fact that they have 

different data fields  based on sort of information they convey, four tables have been 

cosnidered in the MyExpert database for academic items, namely tNews, tJobs, 

tConferences and tScholarships. During each week of experiments, it was necessary to 

inetegrate all 100 submitted items of the week in a single table named tNewsTotal. 

Figure 4.7 illustrates the structure of this table. 

 

 

 

Figure 4.7: Table tNewsTotal for Integrating all Academic Items 

 

To integrate all academic items into a single table, the stored procedure 

(spNewsAlgorithmInsertNewToNewsTotal) was designated (Figure 4.8). 
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ALTERPROCEDURE [dbo].[spNewsAlgorithmInsertNewToNewsTotal] 
 
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SETNOCOUNTON; 
 
 INSERTINTO tNewsTotal 
      (fItemRefID, fItemType) 
 SELECT     fID,'N'AS Expr1 
 FROM         tNews 
 where fNewsStatus=1  
 
 INSERTINTO tNewsTotal 
      (fItemRefID, fItemType) 
 SELECT     fID,'J'AS Expr1 
 FROM         tJobs 
 where fJobStatus=1  
 
 INSERTINTO tNewsTotal 
      (fItemRefID, fItemType) 
 SELECT     fID,'C'AS Expr1 
 FROM         tConferences 
 where fConfStatus=1 INSERTINTO tNewsTotal 
      (fItemRefID, fItemType) 
 SELECT     fID,'S'AS Expr1 
 FROM         tScholarships 
 where fSchStatus=1  
END 

 

Figure 4.8: Stored Procedure spNewsAlgorithmInsertNewToNewsTotal   for 

integrating all academic items into a single table 

 

By integrating all possible academic items into a single table, each recommender 

algorithm can apply its own techniques for analyzing the integrated items and find the 

most relevant ones to recommend to each given user. The implementation details of 

these techniques are given next. 

 

4.5.1 Random Algorithm 

 

During the first five weeks of research experiments, from 7th Sep to 16th Oct 2012, the 

random algorithm was adopted for selecting the top 10 academic items and 

recommending them to MyExpert users. Because from the beginning of 

experimentation we did not have any records from MyExpert member preferences and 
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interests, the random algorithm was selected to generate these types of transactional 

records to be used in subsequent experiment phases by other recommender algorithms. 

 

As a result, algorithm implementation in this case was not very complicated since it 

only required a mechanism to select ten random records amongst academic items 

submitted each week of experiments. It was primarily required, though, to transfer the 

academic items in a specific submission time (@fromDate to @toDate) into a temp 

table for further processing. A stored procedure (spTempNewsInDurationInsert) was 

developed in the MyExpert database for this purpose, as shown in Figure 4.9.  

 

ALTERPROCEDURE [dbo].[spTempNewsInDurationInsert]  
 @fromDate datetime, 
 @toDate datetime 
As 
Begin 
  
 SETNOCOUNTON; 
 ---------------------- Delete Current Records 
 delete 
 from tTempNewsAllinDuration 
  
 ---------------------- Insert News 
   
 INSERTINTO tTempNewsAllinDuration 
      (fNewsRefID, fNewsTitle, fCountryID, 
fScienceID, fNewsMemberID, fNewsCountryID, fNewsUniversityID, fNewsFacultyID, 
fNewsDepartmentID, fNewsScopeID, 
        fNewsType) 
 SELECT     fID, fNewsTitle, fCountryID, fScienceID, fNewsMemberID, 
fNewsCountryID, fNewsUniversityID, fNewsFacultyID, fNewsDepartmentID, 
fNewsScopeID,'N'AS Expr1 
 FROM         tNews 
 WHERE     (fNewsStatus = 1)and(fNewsSubmitDate >= 
@fromDate)and((fNewsSubmitDate <= @toDate)) 
  
       
 ---------------------- Insert Conferences 
  
 INSERTINTO tTempNewsAllinDuration 
      (fNewsRefID, fNewsTitle, fCountryID, 
fScienceID, fNewsMemberID, fNewsCountryID, fNewsUniversityID, fNewsFacultyID, 
fNewsDepartmentID, fNewsScopeID, 
        fNewsType) 
 SELECT     fID, fConfTitle, fCountryID, fScienceID, fNewsMemberID, 
fNewsCountryID, fNewsUniversityID, fNewsFacultyID, fNewsDepartmentID, 
fNewsScopeID,'C'AS Expr1 
 FROM         tConferences 
 WHERE     (fConfStatus = 1)and(fConfSubmitDate >= 
@fromDate)and((fConfSubmitDate <= @toDate)) 
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 ---------------------- Insert Jobs 
  
 INSERTINTO tTempNewsAllinDuration 
      (fNewsRefID, fNewsTitle, fCountryID, 
fScienceID, fNewsMemberID, fNewsCountryID, fNewsUniversityID, fNewsFacultyID, 
fNewsDepartmentID, fNewsScopeID, 
        fNewsType) 
 SELECT     fID, fJobTitle, fCountryID, fScienceID, fNewsMemberID, 
fNewsCountryID, fNewsUniversityID, fNewsFacultyID, fNewsDepartmentID, 
fNewsScopeID,'J'AS Expr1 
 FROM         tJobs 
 WHERE     (fJobStatus = 1)and(fJobSubmitDate >= @fromDate)and((fJobSubmitDate 
<= @toDate)) 
  
 
 ---------------------- Insert Scholarships 
  
 INSERTINTO tTempNewsAllinDuration 
      (fNewsRefID, fNewsTitle, fCountryID, 
fScienceID, fNewsMemberID, fNewsCountryID, fNewsUniversityID, fNewsFacultyID, 
fNewsDepartmentID, fNewsScopeID, 
        fNewsType) 
 SELECT     fID, fSchTitle, fCountryID, fScienceID, fNewsMemberID, 
fNewsCountryID, fNewsUniversityID, fNewsFacultyID, fNewsDepartmentID, 
fNewsScopeID,'S'AS Expr1 
 FROM         tScholarships 
 WHERE     (fSchStatus = 1)and(fSchSubmitDate >= @fromDate)and((fSchSubmitDate 
<= @toDate)) 
  
  
End 

 

Figure 4.9: Stored Procedure spTempNewsInDurationInsert 

 

After preparing all possible items in a specific time interval, ten of them were selected 

in random order for recommendation to each member of MyExpert academic social 

network. The stored procedure spNewsAlgorithmGetRandom was created for this 

motive (Figure 4.10). 
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ALTERPROCEDURE [dbo].[spNewsAlgorithmGetRandom] 
 -- Add the parameters for tshe stored procedure here 
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SETNOCOUNTON; 
 
 selecttop (10)*from tTempNewsAllinDuration orderbyNEWID() 
END 

 

Figure 4.10: Stored Procedure spNewsAlgorithmGetRandom 

 

Upon preparing the ten random items, they were sent to every MyExpert user through 

the e-Newsletter designated for this function. 

 

4.5.2 Collaborative Algorithm 

 

As briefly described in the literature review of this dissertation (Chapter 2), in 

collaborative filtering approach, prediction is done based on the items previously 

preferred by people with similar preferences and interests. According to a study carried 

out by Cacheda et al., (2011), there are two main classifications for Collaborative 

Filtering recommender systems, i.e. memory-based (user-based) and  model-based 

(item-based), which are employed in different application domains.  

 

Earlier research works have used the memory-based approach with elicited information 

from items previously rated by users. This method requires that all items, ratings and 

users be collected and stored into the memory to make recommendations.  Afterward, to 

mitigate some of the shortcomings of this approach, a model-based method was 

developed that looks for similar items instead of making groups of similar users. In 

other words, it uses an offline pattern created periodically by summarizing item ratings. 

For this reason, the model-based approach was adopted for this research to utilize its 

advantages.  
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Referring to brief descriptions of model-based collaborative recommender systems 

(Section 2.3.2.1), the following formula is used to find the similarity between items a 

and b: 

 

(4.1)  

 

 

More precisely, the similarity is calculated as: 

 

(4.2) 

 

 

where � indicates the set of all users who rated both items � and �. Accordingly, ��,� 

and ��,� are the ratings assigned by user � to items � and � respectively (Jannach, et al., 

2010). 

 

In the MyExpert database, a table (tNewsItemsSimilarity) is created to store the 

similarity between academic items. The structure of this table is shown in Figure 4.11. 

 

 

Figure 4.11: Table tNewsItemsSimilarity for restoring the similarity records 

between items 
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The element ���  in Equation 4.2 presents the average value of ratings for each member of 

MyExpert. To restore this value for each member, fAvgRate field is considered in table 

tProfile, which keeps the detailed information of every MyExpert user (Figure 4.12).  

 

 

Figure 4.12: Table tProfile for restoring the detail information about MyExpert 

members 

 

To calculate this value (fAvgRate), a stored procedure 

(spNewsAlgorithmCalculateAvgRatebyUserID) was prepared, which updates the 

average value of all ratings submitted by given users in the MyExpert environment 

(Figure 4.13). 
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ALTERPROCEDURE [dbo].[spNewsAlgorithmCalculateAvgRatebyUserID] 
 ( 
  @fUserID bigint 
 ) 
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 
 SETNOCOUNTON; 
 
 DECLARE @i INT 
 DECLARE @totalRateCount INT  
 DECLARE @sumRateValue float  
 DECLARE @avgRank float  
  
---------------------------- Get Count of Ranks by User 
  
 select @totalRateCount=COUNT(*) 
 from tNewsRanks 
 where fMemberID=@fUserID 
  
 ----------------------------- Get Sum 
  
 select @sumRateValue =SUM(fRank) 
 from tNewsRanks 
 groupby fMemberID 
 having fMemberID= @fUserID 
  
 ---------------------------- Update fAvgRank record in user Profile 
  
 set @avgRank =round(@sumRateValue /@totalRateCount , 5) 
  
 update tProfile 
 set fAvgRate= @avgRank 
 where fMemberID=@fUserID  
 
END 

Figure 4.13: Stored Procedure spNewsAlgorithmCalculateAvgRatebyUserID for 

calculating the average value of all ratings submitted by a given member of  

MyExpert users 

 

Referring back to the list of users who have ranked both items a and b, the news ranking 

table (tNewsRanks) should be joint to itself and a new relation should be created 

(Figure 4.14). 
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Figure 4.14: Joining tNewsRank to itself to make a relation used for finding users 

who ranked both items a and b   

 

The stored procedure spNewsAlgorithmClbSimilarityItemAB , shown in Figure 4.15, is 

then called upon to generate the list of users who ranked the items a (@fItemA) and b 

(@fItemB). 
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ALTERPROCEDURE [dbo].[spNewsAlgorithmClbSimilarityItemAB] 

 ( 

  @fItemA bigint, 

  @fItemAType char(1), 

  @fItemB bigint, 

  @fItemBType char(1) 

 ) 

AS 

BEGIN 

SETNOCOUNTON; 

SELECTdistinct tNewsRanks_1.fMemberID 

FROM         tNewsRanks INNERJOIN 

                      tNewsRanks AS tNewsRanks_1 ON tNewsRanks.fMemberID = 

tNewsRanks_1.fMemberID 

WHERE     (tNewsRanks.fNewsID = @fItemA)AND(tNewsRanks.fNewsType= 

@fItemAType)AND(tNewsRanks_1.fNewsID = @fItemB)AND(tNewsRanks_1.fNewsType= 

@fItemBType)and(tNewsRanks.fMemberID<>5) 

 

END 

 

Figure 4.15: Illustration of stored procedure 

spNewsAlgorithmClbSimilarityItemAB for finding the list of MyExpert users who 

have ranked the items a and b 

 

To restore the similarity value between news items, tNewsItemsSimilarity is considered 

(Figure 4.16).  

 

 

 

Figure 4.16: Illustration of table tNewsItemsSimilarity 
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After computing the similarity of all academic items, it is possible to predict which 

items are the best candidates to be recommended to each given member of MyExpert. 

The following predictor function was used at this stage: 

 

����(�,�)=
∑ ���(�,�)∗��,��∈���������(�)

∑ ���(�,�)�∈���������(�)
                                         (4.3) 

 

A table was designated (tNewsPrediction) to restore the pair (user, news) for all new 

academic items meant to be analyzed by the recommender engine and to be sent to users 

(Figure 4.17). 

 

 

 

Figure 4.17: Illustration of table tNewsPrediction 

 

Then, for each member of MyExpert (fUserID) the top 10 items with the highest 

prediction value were selected to be recommended in the e-Newsletter. 

 

To summarize, the implementation of the collaborative recommender algorithm in this 

research is: 

 

1) Updating the fAvgRate in table tProfile by calling the stored procedure 

spNewsAlgorithmCalculateAvgRatebyUserID. This task is done by clicking on 
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‘Calculate the Average Rate for Each User’ button in the administration 

webpage designated for sending the MyExpert e-newsletters1. 

 

2) Adding the latest news records to table tNewsTotal by calling the stored 

procedure spNewsAlgorithmInsertNewToNewsTotal for each week of 

expermients.  

 

3) Deleting all records from tNewsSimilarity, and then inserting the new records by 

clicking on ‘Calculate the Similarity between Items’ button in the mentioned 

administration webpage. 

 

4) Calculating the value of similarity by clicking the ‘Calculate the Similarity 

Value’ button. 

 

5) Deleting all previous records from the tNewsPrediction table. 

 

6) Deleting the previous latest News ready for sending from the 

tNewsTempAllInDuration table. 

 

7) Refilling tNewsTempAllInDuration by clicking the ‘Transfer News in Duration 

to Temp’ button. 

 

8) Recalculating the prediction value by clicking the ‘Calculate News Prediction 

Value’ button. 

 

                                                             
1 http://www.malaysianexperts.com.my/UL/adminnewsletter.aspx 
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9) Preparing the news for sending by clicking on ‘Preparing the News using 

Collaborative Method’ button. In this step, the highest ranked news for each user 

would be inserted to table tNewsPredictionSmall. 

 

10) Sending the news using collaborative method by clicking on ‘Send All’ button. 

 

The above-mentioned 10 steps were implemented for all experiments in which the 

collaborative recommender algorithm was supposed to be applied for recommending the 

most relevant academic items to MyExpert users. 

 

4.5.3 Content-Based Algorithm 

 

In the third phase of this research, the content-based algorithm was adopted. Referring 

to Chapter 2, which focuses on a review of literature in the domain of recommender 

systems, the users’ own preferences through previous interactions are considered in 

predicting new items in the content-based recommender systems. As Lops et al. (2011) 

pointed out in their research this approach needs a well-structured framework that 

supports the techniques for comparing user interests with the item specifications and to 

ultimately suggest the most suitable item to the target user.  Considering the structured 

nature of academic items used in the MyExpert environment, the preference scoring 

structure was implemented to study and model the user profiles (De Gemmis et al., 

2009; Kim et al., 2006).  

 

To execute the hierarchy tree structure of preference scoring, a table (TreeDataTbl) was 

created that re-stores the categories of academic items into three levels: 

 

  



136 

 

Level 1: item types (News, Conferences, Jobs, Scholarships) 

Level 2: first level of disciplines (e.g., all, engineering, art, etc.) 

Level 3: second level of disciplines (e.g., computer sciences, mechanical 

engineering, etc.) 

 

The structure of table TreeDataTbl that has 472 records is illustrated in Figure 4.18. 

 

 

Figure 4.18: Structure of Table TreeDataTbl 

 

Once the academic item categories are re-stored in table TreeDataTbl, they should be 

linked to another table (tTreeNodeScores) that plays the main role in the content-based 

method (Figure 4.19). For each MyExpert member, the preference scores elicited by 

analyzing the users’ online interactions can be restored in this table.  
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Figure 4.19: Structure of Table tTreeNodeScores 

 

As seen in Figure 4.18, the tTreeNodeScores table re-stores the scoring data of ratings 

submitted by users for all visited items. From these scores, fScoreSelfClick and 

fScoreSelfRank are related to ratings by the given user, applied in the content-based 

recomemdner algorithm. Nevertheless, fScoreFacultyMates and fScoreFriends are two 

other scores to be used by the ECSN algorithm. After calculating these scores for each 

MyExpert member, the total score is restored in fScoreTotal. To make this tree, the 

storedprocedurespNewsAlgorithmCBTreeScoreMaking is invoked (Figure 4.20). 

  



138 

 

 

ALTERPROCEDURE [dbo].[spNewsAlgorithmCBTreeScoreMaking] 
 
  
AS 
BEGIN 
 
 INSERTINTO tTreeNodeScores 
      (fMemberID, fTreeNodeID) 
 SELECT     tProfile.fMemberID, TreeDataTbl_1.Tree_ID 
 FROM         tProfile CROSSJOIN 
        TreeDataTbl AS TreeDataTbl_1 
 WHERE     (tProfile.fStatusFlag ='01') 
 ORDERBY tProfile.fMemberID, TreeDataTbl_1.Tree_ID 
 
END 

 

Figure 4.20: The Stored Procedure spNewsAlgorithmCBTreeScoreMaking 

 

With regards to all the above-mentioned issues related to the database structure of the 

main elements in the content-based recommender systems, the sequential step approach 

implementation is summarized as follows: 

 

1- Creating the table tTreeNodeScores to restore the scoring data of ratings 

submitted by users for all visited items. To make this tree, the stored procedure 

spNewsAlgorithmCBTreeScoreMaking is employed. 

 

2- Updating the fScienceID in table tNewsRanks by executing the stored procedure 

spNewsAlgorithmNewsRankScienceIDUpdate. 

 

3- Calculating the various scores for table tTreeNodeScores for each user by 

clicking on “Calculating the scores (Self Click).” 

 

4- Preparing the list of new academic items submitted in the current week by 

pressing the “Transfer the News in Duration to Temp” button. 
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5- Adding the latest news records to tNewsTotal by calling the stored procedure 

spNewsAlgorithmInsertNewToNewsTotal. 

 

6- Updating the fTreeNodeID for new items by invoking the stored procedure  

spNewsAlgorithmCBUpdateNewsNodeID. 

 

7-  Preparing the top 10 recommended items for each user. In this stage, the top 10 

new items are inserted into the table tNewsPredictionCB10based by clicking on 

“Prepare the top 10 items in CB algorithm.” 

 

8- Sending the news by pressing the “Sending News using Content-Based 

algorithm” button. 

 

The 8 steps outlined above are done for each experiment for which the content-based 

recommender algorithm was meant to be applied to for recommending the most relevant 

academic items to MyExpert users. 

 

4.5.4 ECSN Algorithm 

 

In the final three weeks of research experiments, from 4th Dec to 26th Dec 2012, the 

ECSN algorithm was adopted to make recommendations to MyExpert members. The 

ECSN recommender system is the enhanced version of the content-based approach, 

which in addition to considering the given user’s own preferences and interests, takes 

advantage of friends and faculty mates to solve the cold start problem in pure content-

based recommender systems (Figure 4.21).  
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Figure 4.21: The Database Tables Used by the ECSN Recommender Engine 

 

Besides boosting the average values of leaf nodes to higher levels, MyExpert users have 

to opportunity to receive an even wider variety of relevant recommendations based on 

their previous interactions with the system.  

 

The same database structure utilized for the content-based recommender algorithm is 

also used for the ECSN algorithm. However, as stated previously, the ECSN algorithm 

makes use of friends and faculty mates’ preferences to improve the recommendations 

for each member of the MyExpert academic social network. The ECSN algorithm is 

shown in Figure 4.22. 
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Begin 

 Initialization of Preference Scores to Zero 

 For each member (m) of MyExpert: 

i) Update the preference scoring tree (tTreeNodeScores) 

1. For all clicked and rated items by (m), calculating the self-click 

and self-rank scores 

2. For each friends of (m), calculating the average score of top 3 

items and update the designated nodes in preference scoring tree   

3. For each faculty mates of (m), calculating the average score of 

top 3 items and update the designated nodes in preference scoring 

tree   

4. Computing the average score value for all leaf level nodes and 

pushing it up to their parent nodes 

ii) Selecting the top 10 items and generating the Ordered 

Recommended List based on Prediction Value 

ii) Generating the e-Newsletter and send it to given user 

End 

 

Figure 4.22: The Algorithm of ECSN Recommender System  

 

Besides considering the user’s own preferences, the ECSN algorithm utilizes the 

‘Friends Profile’ and ‘Faculty mates Profile’. In doing so, all transaction records of a 

given user’s friends are analyzed by the ECSN recommend engine and the most 

interesting nodes in the preference tree structure of academic items are elicited. Then 

the pointing values of the elicited nodes are updated in the given user’s preference tree. 
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The stored procedure spNewsAlgorithmNewGetUserFacultyTopScoredNodes serves 

this purpose (Figure 4.23). 

 
ALTERPROCEDURE [dbo].[spNewsAlgorithmNewGetUserFriendsTopScoredNodes] 
 
( 
 @memberID bigint 
) 
 
AS 
 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SETNOCOUNTON; 
 
 SELECTtop 3   
tTreeNodeScores.fTreeNodeID,SUM(tTreeNodeScores.fScoreSelfClick)AS 
Expr1,SUM(tTreeNodeScores.fScoreSelfRank)AS 
Expr2,(SUM(tTreeNodeScores.fScoreSelfClick)+SUM(tTreeNodeScores.fScoreSelfRank))as 
Total 
,COUNT(tTreeNodeScores.fTreeNodeID),round(((SUM(tTreeNodeScores.fScoreSelfClick)+SU
M(tTreeNodeScores.fScoreSelfRank))/COUNT(tTreeNodeScores.fTreeNodeID)), 2)as _Avg 
 FROM         tTreeNodeScores INNERJOIN 
        tFriend ON tTreeNodeScores.fMemberID 
= tFriend.fFriendID 
 WHERE     (tTreeNodeScores.fScoreSelfClick <> 0)AND(tFriend.fMemberID = 
@memberID)OR 
      (tFriend.fMemberID = 
@memberID)AND(tTreeNodeScores.fScoreSelfRank <> 0) 
 GROUPBY tTreeNodeScores.fTreeNodeID 
 orderby _Avg desc 
 
END 

 

Figure 4.23: The Stored Procedure 

spNewsAlgorithmNewGetUserFriendsTopScoredNodes 

 

 The same process is followed regarding the target user’s faculty mates (Figure 4.24). 
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ALTERPROCEDURE [dbo].[spNewsAlgorithmNewGetUserFacultyTopScoredNodes] 
 
( 
 @memberID bigint 
) 
 
AS 
 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SETNOCOUNTON; 
 
 SELECT      
tTreeNodeScores.fTreeNodeID,SUM(tTreeNodeScores.fScoreSelfClick)AS 
Expr1,SUM(tTreeNodeScores.fScoreSelfRank)AS Expr2, 
     
 SUM(tTreeNodeScores.fScoreSelfClick)+SUM(tTreeNodeScores.fScoreSelfRank)AS 
Total,COUNT(tTreeNodeScores.fTreeNodeID)AS Expr3, 
     
 ROUND((SUM(tTreeNodeScores.fScoreSelfClick)+SUM(tTreeNodeScores.fScoreSelf
Rank))/COUNT(tTreeNodeScores.fTreeNodeID), 2)AS _Avg, 
        tProfile_1.fMemberID 
 FROM         tProfile INNERJOIN 
        tProfile AS tProfile_1 ON 
tProfile.fFacultyCode = tProfile_1.fFacultyCode INNERJOIN 
        tTreeNodeScores ON 
tProfile.fMemberID = tTreeNodeScores.fMemberID 
 WHERE     (tTreeNodeScores.fScoreSelfClick <> 0)and(tProfile.fMemberID <> 
@memberID)AND(tProfile_1.fMemberID = @memberID)AND(tProfile_1.fFacultyCode 
ISNOTNULL)OR 
      (tProfile_1.fMemberID = 
@memberID)AND(tProfile.fMemberID <> @memberID)and(tProfile_1.fFacultyCode 
ISNOTNULL)AND(tTreeNodeScores.fScoreSelfRank <> 0) 
 GROUPBY tTreeNodeScores.fTreeNodeID, tProfile_1.fMemberID 
 orderby _Avg desc 
 
END 

 

Figure 4.24: The Stored Procedure 

spNewsAlgorithmNewGetUserFacultyTopScoredNodes 

 

After calculating the given user’s own preferences, friends, and faculty mates, the total 

preference score of each elicited node needs to be calculated with the designated stored 

procedure (Figure 4.25). 
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ALTERPROCEDURE [dbo].[spNewsAlgorithmNewNodeUpdateScoreTotal] 
 
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SETNOCOUNTON; 
 
 UPDATE    tTreeNodeScores 
 SET              fScoreTotal = 5*(fScoreSelfClick+ fScoreSelfRank)+ 
fScoreDepMates+3*(fScoreFacultyMates) 
 
END 

 

Figure 4.25: The Stored Procedure spNewsAlgorithmNewNodeUpdateScoreTotal 

 

In light of the new database elements of the ECSN algorithm, the sequential 

implementation steps for the final three weeks of research experiments are: 

 

1- Creating the table tTreeNodeScores to restore the scoring data of ratings 

submitted by users for all visited items. To make this tree, the stored procedure 

spNewsAlgorithmCBTreeScoreMaking is called on. 

 

2- Updating the fScienceID in the table tNewsRanks by executing the stored 

procedure spNewsAlgorithmNewsRankScienceIDUpdate. 

 

3- Calculating the various scores for table tTreeNodeScores for each user by 

clicking on “Calculating the scores (Self Click).” 

 

4- Calculating the scores for friends of a given user by invoking the stored 

procedure spNewsAlgorithmNewGetUserFriendsTopScoredNodes. 
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5- Calculating the scores for faculty mates of a given user by invoking the stored 

procedure spNewsAlgorithmNewGetUserFacultysTopScoredNodes. 

 

6- Calculating the total score by invoking the stored procedure 

spNewsAlgorithmNewNodeUpdateScoreTotal. 

 

7- Computing the average score value for all leaf level nodes and pushing it up to 

their parent nodes by invoking the stored procedure 

spNewsAlgorithmNewNodeUpdateAvgScore. 

 

8- Preparing the list of new academic items that were submitted in the current week 

by pressing the “Transfer the News in Duration to Temp” button. 

 

9- Adding the new news records to tNewsTotal by calling the stored procedure 

spNewsAlgorithmInsertNewToNewsTotal. 

 

10-  Updating the fTreeNodeID for new items by invoking the 

storedprocedurespNewsAlgorithmCBUpdateNewsNodeID. 

 

11- Preparing the top 10 recommended items for each user. In this stage, the top 10 

new items are inserted into the table tNewsPredictionCB10based by clicking on 

“Prepare the top 10 items in ECSN algorithm.”  

 

12- Sending the news by pressing the “Sending News using ECSN algorithm” 

button. 

 



146 

 

The 12 steps outlined are carried out for each of the experiments for which the ECSN 

recommender algorithm had to be applied for recommending the most relevant 

academic items to MyExpert users. 

 

4.6 Summary 

 

This chapter illustrated the technical issues with present research. At the first section, 

the theoretical framework of ECSN recommender algorithm was presented. After that, 

ECSN architecture was shown to illustrate the workflows among proposed 

recommender system elements. The last part of this chapter focused on implementation 

of four studied recommender algorithms. 14 weeks of online experiments were 

conducted in this study to compare the performance of proposed recommender 

algorithm (ECSN) with other previous ones. The details of these experiments are 

presented in following chapter and the results are evaluated based on well-known 

measurements of Precision, Recall, Fallout, and F1. 
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CHAPTER 5 

EXPERIMENTS AND RESULTS 

 

5.1 Introduction 

 

It was discussed in Chapter 4 that the second phase of this research focused on the 

design and development of ECSN, and three other recommender algorithms which were 

studied in this research. The MyExpert academic social network was developed as a 

runtime environment for this study and currently has 920 members from 10 universities 

in Malaysia. After designing and developing the four recommender algorithms (random, 

collaborative, content-based, and ECSN), they were implemented to recommend the 

most relevant items to the members of MyExpert. Hence, the third phase of this research 

is dedicated to evaluating the four mentioned recommender systems along with their 

performance based on usage prediction measurements. This chapter provides the details 

of the evaluation process, which ran for 14 weeks from 7th September to 26th December, 

2012. 

 

5.2 Experimental Design of This Research 

 

In view of all the issues discussed so far, live user experimentation was chosen as the 

best approach for this research, as it deals with the shortcomings of the other two 

methods. Besides, owing to the nature of this study, there were many more reasons for 

which it was necessary to prepare a real academic social network (MyExpert) to 

evaluate the prediction accuracy of the ECSN algorithm and compare its performance 

with other recommender algorithms. 
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Firstly, there was no offline data set for academic social networks with information on 

user feedback regarding the recommended academic items. As stated in the problem 

statement (section 1.2), this research focuses on enhancing the recommending process 

of academic items through an e-Newsletter. Thus, a need arose for a real academic 

social network with real users who receive the recommended academic items via email. 

By having a real online academic social network, it could be possible to record the real 

behavior of users in their interactions with various recommender systems.  

 

Secondly, to develop the ECSN algorithm and compare its results with other 

recommender systems, it was necessary to access the code behind an academic social 

network. By creating MyExpert as the real runtime environment for this research work, 

C# programming could be utilized to develop the random, collaborative, and content-

based and ECSN recommender systems and run them in MyExpert.  

 

The third reason for choosing the online method is that earlier studies on recommender 

systems (Herlocker et al., 2004; Kohavi et al., 2009; Shani & Gunawardana, 2011) show 

that online evaluation is the strongest experimental approach for measuring the 

efficiency of a recommender system. In this approach, the real behavior of users is 

studied by collecting their relevance feedback when faced with different algorithms of 

recommender systems in an experimental environment. 

 

5.3 MyExpert as Runtime Environment 

 

To prepare the real runtime environment of this research for conducting the online 

experiments, MyExpert was designed and developed in this study as the first academic 

social network in Malaysia. It now has over 900 academicians from 10 universities in 
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Malaysia. Figure 5.1 illustrates the details of this process. In this research, the main 

objective of the recommendation process is defined as suggesting the top 10 academic 

items to MyExpert users in each week of experiments. Referring to Table 2.4 in Chapter 

2, which presents the list of academic items presented in academic social networks, 

there are 9 variant items in the list. In the present study, four categories of these items 

were selected as follows to be used in the research experiments: 

 

 Academic news  

 Conference notifications  

 Scholarship notifications  

 Academic job offers. 

 

Each week, 100 academic items comprising 25 news, 25 conferences, 25 scholarships, 

and 25 job offers were submitted to MyExpert through the online web pages specifically 

designated for this purpose. After completing the weekly submission process, MyExpert 

members would receive the top 10 items from a total of 100 in their email. Users 

expected to receive the most relevant items through the MyExpert academic e-

newsletter. 

 



150 

 

 

 

Figure 5.1: Illustration of Recommendation Process in MyExpert Environment  

 

Consequently, this work entails the recommendation of the most relevant academic 

items to members of academic social networks based on their preferences. 

 

5.4 Results 

 

As seen in Chapter 4, the four recommender algorithms assessed in this research are the 

random, collaborative, content-based, and ECSN. In this chapter, the performance of 

these algorithms was evaluated based on precision, recall, fallout, and F1 as the most 

accepted usage prediction metrics in the domain of recommender systems (Shani & 
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Gunawardana, 2011). Data collection for this research ran for 14 consecutive weeks 

from 7th September to 26th December 2012 (Table 5.1).  

 

Table 5.1: The Schedule for Online News Broadcasting in the Data Gathering 

Phase  

 Date Description 

R
an

d
om

 

7th Sep 2012 Sending Part #1 of academic news 

17th Sep 2012 Sending Part #2 of academic news 

24th Sep 2012 Sending Part #3 of academic news 

1st Oct 2012 Sending Part #4 of academic news 

9th Oct 2012 Sending Part #5 of academic news 

C
ol

la
b

or
at

iv
e 17th Oct 2012 Sending Part #6 of academic news 

24th Oct 2012 Sending Part #7 of academic news 

31th Oct 2012 Sending Part #8 of academic news 

C
on

te
n

t-
B

as
ed

 

12th Nov 2012 Sending Part #9 of academic news 

19th Nov 2012 Sending Part #10 of academic news 

25th Nov 2012 Sending Part #11 of academic news 

E
C

S
N

 
al

go
ri

th
m

 4th Dec 2012 Sending Part #12 of academic news 

11th Dec 2012 Sending Part #13 of academic news 

20th Dec 2012 Sending Part #14 of academic news 

 

 

Throughout the 14 weeks, four recommender algorithms, namely random, collaborative, 

content-based, and ECSN were applied for selecting and recommending the most 

relevant academic items to MyExpert users.  The first five weeks were dedicated to the 

random algorithm since the other three require previous ratings to work with. After 

gathering the applicable feedback with the random algorithm, the collaborative 
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algorithm attempted to recommend the top 10 items to users. It took three weeks to 

collect records of user behavior for this algorithm. Immediately after, the content-based 

algorithm was applied for the next three weeks, from 12th November to 3rd December 

2012. The final and most important component of data collection was allocated to the 

ECSN algorithm. Basically, this proposed algorithm was examined over the last three 

weeks, from 4th December to 26th Dec 2012.  

 

5.4.1 Evaluation Results 

 

To reiterate, four measurements (precision, recall, fallout, and F1) were selected to 

evaluate the prediction accuracy of recommender algorithms which were studied in this 

research. The results of this evaluation are presented in the next section. 

 

 Precision 

 

Precision is one of most prevalent metrics for assessing usage prediction in 

recommender systems and information retrieving studies. It plays a great role in 

instances where some sets of best results are required out of several possible alternatives 

(Shani & Gunawardana, 2011).  

 

Basically, precision is the share of top results that are relevant. In this study, the relevant 

items defined include academic items visited by users and that were rated with over 2 

stars. 

 

Table 5.2 illustrates four possible conditions based on the selection and usage situations. 

 

  



153 

 

Table 5.2: The Possible Conditions of Item Recommendation to a User 

 

 Selected Not Selected Total 

Relevant ��� ��� �� 

Irrelevant ��� ��� �� 

Total �� �� � 

 

According to the notations in Table 5.2, precision is defined as: 

 

��������� = 
���

�������
                                              (5.1) 

 

It can furthermore be stated that precision is the probability that a recommended item 

corresponds to a user's interests and preferences. 

 

The remainder of this section focuses on result analysis based on the precision 

measurement.  
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Table 5.3: The Precision Values throughout 14 Weeks of Experiments 
 
 
 

Recommender 
Algorithm 

Data 
Gathering 
Series No. 

Precision 
Average 

Value Graph 
R

an
d

o
m

 

Series #1 0.217241379 
Pre test 

Series #2 0.225974026 

Series #3 0.180392157 

 0.1693 Series #4 0.151785714 

Series #5 0.175641026 

C
o

ll
ab

o
ra

ti
v

e Series #6 0.191304348 

0.2066 Series #7 0.228571429 

Series #8 0.2 

C
on

te
nt

 
B

as
ed

 

Series #9 0.209850746 

0.2132 Series #10 0.215280702 

Series #11 0.214536 

E
C

S
N

 

Series #12 0.225423729 

0.2477 Series #13 0.245454545 

Series #14 0.272340426 

 

 

Table 5.3 presents the precision values for 14 weeks of data gathering in this research. 

During each week of experiments and after gathering the relevant feedback from 

MyExpert users when faced with recommended items, the average precision value for 

all members involved was calculated and stated in the value column for the respective 

week. The first two experimental runs were considered pretest stages where MyExpert 

members received the recommended items through weekly e-Newsletters and, 

accordingly, were not included in measurements. During these two weeks, they tried 

rating the academic items. An upward trend in the Precision value occurred throughout 

the 14 weeks. The last column in Table 5.3 portrays the average precision value for each 

recommender algorithm. The four average values in the last column demonstrate that 
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the precision values of the first three algorithms slightly increased from the random 

(0.1693) to collaborative (0.2066) and content-based (0.2132) recommender algorithms. 

However, a sharp rise in the precision value of the ECSN recommender algorithm took 

place, reaching 0.2477 with 21% improvement compared to the content-based 

algorithm. It should also be noted that the ECSN method enhanced the collaborative 

precision by 20% and the random by 32%. Therefore, an analysis of the precision values 

achieved over 14 weeks of experiments by applying the four different recommender 

systems shows that the ECSN algorithm designed and proposed in this research work 

certainly contributed to the accuracy prediction in the MyExpert recommendation 

process. 

 

Recall 

 

Recall is recognized as another metric for measuring usage prediction in recommender 

systems and other information retrieval domains. It determines the proportion of all 

relevant results included in the top results (Herlocker, et al., 2004). As Sarwar et al. 

(2001) stated in their research, in studies where a fixed number of recommendations is 

suggested to each user (such as the current study in which the top 10 items were 

recommended to MyExpert users in every week of experiment) precision and recall can 

be computed at each recommendation list length N for each user. Then the average 

value of precision and recall can be computed for all users involved in the experiment. 

 

Precision and recall are inversely related.  In most cases, increasing the size of the 

recommendation set will increase recall but decrease precision (Shani & Gunawardana, 

2011). This theory is confirmed by analyzing the data in Tables 5.3 and 5.4, which 

present precision and recall respectively. In the present research where the top 10 
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academic items are included in a recommendation list the precision values range around 

0.2 while recall values are roughly 0.9. 

 

In the recommendations domain, a perfect recall score of 1.0 indicates that all excellent 

items were recommended in the list. Consequently, a higher precision value is better. 

Recall, or the true positive rate, is calculated as the ratio of selected (recommended) 

items used (relevant) to the total number of items used (Herlocker, et al., 2004): 

 

������ = 
���

�������
                                                (5.2) 

 

Table 5.4 shows the analysis results of this measurement for each week of experiments 

conducted in this research. Again, the relevance feedback gathering phase of this 

research took 14 weeks. During the first 5 weeks, academic items were recommended to 

MyExpert users by applying a random algorithm. Three more recommender algorithms 

(collaborative, content-based, and ECSN) were adopted in the remaining weeks.  
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Table 5.4: The Recall Values over 14 Weeks of Experiments 
 
 

Recommender 
Algorithm 

Data 
Gathering 
Series No. 

Recall 
Average 

Value Graph 

R
an

d
o

m
 

Series #1 0.97164751 
Pre test 

 Series #2 0.995238095 

Series #3 0.971895425 

0.9756 Series #4 0.961309524 

Series #5 0.993589744 

C
o

ll
ab

o
ra

ti
v

e Series #6 0.990942029 

 0.9263 Series #7 0.932738095 

Series #8 0.855144558 

C
on

te
nt

 
B

as
ed

 

Series #9 0.941044776 

 0.9175 Series #10 0.918910914 

Series #11 0.892632275 

E
C

S
N

 

Series #12 0.946166263 

 0.9523 
 

Series #13 0.967820599 

Series #14 0.942907801 

 

 

The evaluation results of recall measurements from 14 series of gathered relevance 

feedback are illustrated in Table 5.4. The recall value is measured for each series of data 

gathering by computing the average value of this metrics for all members who visited 

the web page of academic items during the specified week of experiments. Taking into 

account the values in the last column (Average), the overall recall value of the ECSN 

algorithm (0.9523) is better than both the content-based (0.9175) and collaborative 

approach (0.9263). In other words, the recall rates of the collaborative and content-

based algorithms improved by 3% and 4%, respectively. Although the random approach 

presents the best recall rate (0.9756), it seems somewhat odd. This might be because 

during the first 5 weeks, there were not many related news compared to the following 
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weeks. Hence, MyExpert users mostly clicked and ranked the recommended academic 

items, and the portion of related items not included in the recommended list decreased 

in the first 5 weeks. This phenomenon led to enhanced recall rates while evaluating the 

usage prediction of the random recommender algorithm. 

 

To further assure the performance of the ECSN algorithm, two other metrics were 

applied to evaluate the accuracy prediction of all studied recommender systems in this 

research, namely Fallout and F1. The upcoming sections focus on analyzing the 

relevance feedback based on these metrics. 

 

Fallout 

 

Fallout, or the false positive rate, is measured as the ratio of selected (recommended) 

items that are not used (irrelevant) to the total number of unutilized items: 

 

������� = 
���

�������
                                              (5.3) 

In a number of research works (Shani & Gunawardana, 2011) fallout is known as the 

false positive rate. It is the probability that an irrelevant (not used) item will be 

recommended to a user. According to this definition, a lower fallout rate indicates better 

recommender algorithm performance. Table 5.5 presents the fallout rate for each 

feedback series in this research. 
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Table 5.5: The Fallout Values during 14 Weeks of Experiments 
 
 

Recommender 
Algorithm 

Data 
Gathering 
Series No. 

Fallout 
Average 

Value Graph 
R

an
d

o
m

 
Series #1 0.079655298 

 

Pre test 
Series #2 0.07876572 

Series #3 0.083231321 

0.0844 Series #4 0.086121657 

Series #5 0.083744789 

C
o

ll
ab

o
ra

ti
v

e Series #6 0.082245475 

0.0810 Series #7 0.078659818 

Series #8 0.081821206 

C
on

te
nt

 
B

as
ed

 

Series #9 0.078631394 

 0.0801 Series #10 0.080502074 

Series #11 0.081030192 

E
C

S
N

 

Series #12 0.079236005 

0.0770 Series #13 0.077034544 

Series #14 0.074596385 

 

The most striking feature in this table is the decreasing fallout rate trend through the 14 

weeks of experiments. The random recommender algorithm has the lowest average 

fallout value (0.0844), meaning that the highest amount of irrelevant items was included 

in the recommendation list during the first five weeks. The average fallout rate 

improved slightly (0.0810) in the next three weeks when the collaborative algorithm 

was applied. The content-based recommender approach made it even better (0.0801) in 

the next stage. The best rate was in fact achieved by the ECSN recommender algorithm 

with a value of 0.0770. Basically, the fewest irrelevant items were included during the 

last three weeks when the ECSN algorithm was applied. It can be concluded that the 

ECSN recommender algorithm outperformed the random, collaborative and content-

based algorithms by 7%, 5%, and 4% respectively. 
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F1 Measure 

 

To evaluate the overall performance of a recommender algorithm it makes sense to 

consider precision and recall together (Herlocker, et al., 2004). Various research works 

have pointed out that precision and recall are inversely related and dependent on the 

length of the result list returned to the user (Cleverdon, et al., 1966). So under these 

circumstances, a vector of precision/recall pairs may describe recommender system 

performance. Several methods have been assessed to combine precision and recall into a 

single metric (Harman, 1995; Sarwar, et al., 2001). One approach is the F1 metric (Eq. 

5.7) which amalgamates precision and recall into a single value. Sarwar et al. (2001) 

also used F1 to evaluate the performance of recommender systems in their work. 

 

The F1-score, or F1-measure, is defined as the standard harmonic mean of precision and 

recall: 

�1 = 
�

�

���������
�

�

������

= 
�×���������×������

����������������
                               (5.4) 

 

As shown in Eq. 5.4, the values of both precision and recall are considered when 

calculating the F1 score for measuring the accuracy prediction of a given recommender 

algorithm. Table 5.6 demonstrates the F1 scores in the fourteen weeks of experiments in 

this research. 
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Table 5.6: The F1 Values during the 14 Weeks of Experiments 

 

Recommender 
Algorithm 

Data 
Gathering 
Series No. 

F1 
Average 

Value Graph 
R

an
d

o
m

 

Series #1 0.35509129 
Pre test 

Series #2 0.36831924 

Series #3 0.30430305 

 0.2883 Series #4 0.26217532 

Series #5 0.29851271 

C
o

ll
ab

o
ra

ti
v

e Series #6 0.32069714 

0.3373 Series #7 0.36716702 

Series #8 0.324181 

C
on

te
nt

 
B

as
ed

 

Series #9 0.34317441 

0.3460 Series #10 0.34883662 

Series #11 0.34593072 

E
C

S
N

 

Series #12 0.36410063 

 0.3928 Series #13 0.39159455 

Series #14 0.42261639 

 

Based on the above-mentioned definition (Eq. 5.4), a higher F1 score value represents 

enhanced recommender algorithm performance in predicting the most relevant items to 

users. Table 5.6 illustrates an overall upward F1 measurement trend. The lowest value 

belongs to the random algorithm during the three weeks of experiments (0.2883), and a 

peak of 0.3928 was reached during the last three weeks when the ECSN algorithm was 

adopted. The F1 average score rose steadily during the first eleven series of feedback 

gathering, but it experienced a sharp rise when the ECSN algorithm was applied in the 

final three weeks. The data analysis from Table 5.6 illustrates that the ECSN algorithm 

promoted a significant contribution compared to the performance of previous 

recommender algorithms, with an improved F1 score by 26% for the random, 14% for 

collaborative, and 12% for the content-based algorithms.  
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The one-way Analysis of Variance (ANOVA) test can be used for the case of a 

quantitative outcome with a categorical explanatory variable that has two or more levels 

of treatment (Littell, 2006). As four different measurements (Precision, Recall, Fallout, 

and F1) were used in this study for computing the prediction accuracy of recommender 

algorithms, the four ANOVA test were run to examine if there were any between-group 

differences of means between studied recommender algorithms (Table 5.7).  

 

Table 5.7: One-way ANOVA Tests for Examining the Difference of Means between 

Recommender Algorithms 

 

a. ANOVA-Test on Precision Value 

 Rnd Col Cont ECSN 

Rnd 1    

Col 0.03735 1   

Cont 0.04395* 0.00660 1  

ECSN 0.07847* 0.04111* 0.03452* 1 
 

b. ANOVA-Test on Recall Value 

 Rnd Col Cont ECSN 

Rnd 1    

Col 0.4932 1   

Cont 0.05807 0.00875 1  

ECSN 0.02330 0.02602 0.03477 1 

 
 
 

c. ANOVA-Test on Fallout Value 

 Rnd Col Cont ECSN 

Rnd 1    

Col 0.00346* 1   

Cont 0.00431* 0.0085 1  

ECSN 0.00741* 0.00395* 0.00310 1 
 

d. ANOVA-Test on F1 Value 

 Rnd Col Cont ECSN 

Rnd 1    

Col 0.04902* 1   

Cont 0.05765* 0.00863 1  

ECSN 0.10444* 0.05542* 0.04679* 1 
 

 

* the mean difference is significant at the 0.05 level. 

 

According to the results of LSD post hoc tests, the mean value of Precision is 

significantly different between ECSN and three other algorithms (Table 5.7.a) while this 

variation is not clear in terms of Recall measurement (Table 5.7.b). The differences are 

obvious also based on Fallout and F1 as shown in Table 5.7.c and Table 5.7.d. 

Consequently, in exception of Recall, the other measurements (Precision, Fallout, and 
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F1) show the significant difference of prediction accuracy between four studied 

recommender algorithms. 

 

5.4.2 Solving the Cold Start Problem 

 

The literature review in Chapter 2 showed that both the collaborative and content-based 

methods suffer from the cold start problem when new items or new users are involved 

(Shani & Gunawardana, 2011). The ECSN recommender algorithm proposed in this 

research utilized social networking features to solve this problem. Collected feedback 

from 14 weeks of experiments was analyzed to show how the ECSN recommender 

algorithm mitigated this issue.  

 

Table 5.8 demonstrates the detailed statistics in this context. The second column of this 

table, Data Gathering Series No, lists 9 series of the data collection phase where three 

recommender algorithms (collaborative, content-based, and ECSN) were applied. The 

next three columns (New Items, New Users, and Existing Users) present the updated 

situation of the MyExpert system for each week of experiments based on the number of 

users and items. Finally, the last four columns represent the values of some parameters 

used to measure the cold start problem. The four parameters are: 

 

totNRI_EU: Total Number of Recommended New Items with Prediction value >1 to 

Existing Users 

 

totNRI_NU: Total Number of Recommended New Items with Prediction value >1 to 

New Users 
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AvgNRI_EU: Average Number of Recommended New Items with Prediction value >1 

to Existing Users 

 

AvgNRI_NU: Average Number of Recommended New Items with Prediction value >1 

to New Users 

 

To clarify the status of the cold start problem for both new items and new users, this 

research focused on the number of recommended new items to existing and new users. 

In this context, totNRI_EU assisted in investigating the new items problem while 

totNRI_NU concentrated on the new user perspective of the cold start problem. The 

average value of these measurements for each user shows to what extent the adopted 

recommender algorithm succeeded in solving the cold start issue. 
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Table 5.8: The Experimental Statistics in the Context of Cold Start 

 

Algorithms 
Data Gathering 

Series No. 

Cold_Start Parameters 

New 
Items 

New 
Users 

Existing 
Users 

totNRI_EU totNRI_NU AvgNRI_EU AvgNRI_NU 

C
o

ll
ab

o
ra

ti
v

e Series #6 100 8 864 0 0 0 0 

Series #7 99 5 869 0 0 0 0 

Series #8 98 6 875 0 0 0 0 

C
on

te
nt

 
B

as
ed

 

Series #9 99 7 882 3112 0 3.528 0 

Series #10 101 9 891 3156 0 3.542 0 

Series #11 100 8 899 3190 0 3.548 0 

E
C

S
N

 

Series #12 99 7 906 3720 27 4.106 3.857 

Series #13 100 5 911 3769 18 4.137 3.6 

Series #14 98 9 920 3792 34 4.122 3.778 

 

 

As illustrated in Table 5.8, the collaborative recommender algorithm was not able to 

contribute at all regarding new users and new items in the cold start problem. Any new 

item was suggested even to existing MyExpert users. Thus, this method only applies 

when previously rated items are supposed to be recommended to existing users. The 

above-mentioned statistics therefore prove that the collaborative algorithm poses the 

cold start problem in both cases of new items and new users. 

 

The content-based technique found an average of 3 new items for existing users. 

Nevertheless, it still encountered a problem with new users. As shown in Table 5.8, 15 

new users were added to the MyExpert academic social network during the 

experimental series #6 to #8. According to column totNRI_NU (Total Number of 

Recommended Items with Prediction value >1 to New Users), the content-based 

approach was unable to recommend the new items to new users. So it is concluded that 

the new items part of the cold start problem was solved with an average of 3 
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recommended new items to existing users. However, the shortcoming related to new 

users remains in this approach. 

 

The ECSN recommender algorithm could solve both the new users and new items 

issues with regards to the cold start problem. The statistics of experimental series #12 to 

#14 clearly show that roughly 4 new items were recommended to existing users. In the 

case of number of recommended items with prediction values higher than 1 to new 

users, the average value was around 3.7 based on column AvgNRI_NU. This means that 

not only has the cold start problem of previous recommender systems been solved by 

the ECSN algorithm, but it is also clear that the average number of recommended items 

to existing users with values above 1 improved by 15%. 

 

Table 5.9: Cold Start Problem Situations in Different Recommender Algorithms 

 

Recommender 
Algorithms 

Cold Start Problem 

New Items New Users 

Random  NA NA 

Collaborative  × × 

Content-based  √ × 

ECSN  √ √ 
 

 NA : Not Applicable  
 × : Problem exists 
 √ : Problem is solved 

 

 

In conclusion, the cold start status in the four examined recommender algorithms 

(random, collaborative, content-based, and ECSN) is illustrated in Table 5.9. This 

problem is not applicable to the random recommender algorithm, as it only selected 10 

random items and sent them to users. The collaborative algorithm suffers from the new 
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item and new user problem, while the content-based approach solved the new item 

shortcoming but not the new user issue. As depicted in the last row of Table 5.8, both 

the new user and new item issues pertaining to the cold start problem were resolved by 

the ECSN recommender algorithm. 

 

5.5 Summary 

 

The third chapter of this dissertation clarified that the main objective of this work was to 

improve the performance of the content-based recommender system in an academic 

social network.  To confirm the research contributions, it was necessary to compare the 

prediction accuracy of the proposed recommender algorithm (ECSN) against three 

others (random, collaborative, and content-based approaches). After designing and 

implementing all four algorithms, they were applied one at a time in MyExpert online 

social network to collect the relevance feedback of users for evaluation.   

 

The experiments in this research ran for 14 weeks from 7th September until 26th 

December, 2012. In the first 5 weeks, the random algorithm was used to recommend 

academic items to MyExpert users. Next, the collaborative and content-based 

recommender systems were adopted over the following 6 weeks of data gathering. 

Finally, during the last 3 weeks, MyExpert members received recommendations by the 

ECSN algorithm to conclude the experiments for this study. In these 14 weeks of 

feedback collection, 1390 records of academic items were submitted to MyExpert 

including 346 academic jobs, 339 conferences, 355 scholarships, and 350 academic 

news. These items were sent to 920 MyExpert registered members from 10 universities 

in Malaysia. 
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After gathering the members’ feedback from 14 weeks of online experiments, precision, 

recall, fallout, and F1 were measured to assess the prediction accuracy of all applied 

recommender algorithms. A complete view of the results based on usage prediction 

measurements is presented in Table 5.10.  
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Table 5.10: Complete View of Results based on Usage Prediction Measurements 

 

Data 
Gathering 
Series No. 

Precision Recall Fallout 

Value Graph Value Graph Value Graph 

Series #1 0.217241379 0.97164751 0.079655298 

Series #2 0.225974026 0.995238095 0.07876572 

Series #3 0.180392157 0.971895425 0.083231321 

Series #4 0.151785714 0.961309524 0.086121657 

Series #5 0.175641026 0.993589744 0.083744789 

Series #6 0.191304348 0.990942029 0.082245475 

Series #7 0.228571429 0.932738095 0.078659818 

Series #8 0.2 0.855144558 0.081821206 

Series #9 0.209850746 0.941044776 0.078631394 

Series #10 0.215280702 0.918910914 0.080502074 

Series #11 0.214536 0.892632275 0.081030192 

Series #12 0.225423729 0.946166263 0.079236005 

Series #13 0.245454545 0.967820599 0.077034544 

Series #14 0.272340426 0.942907801 0.074596385 
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Figure 5.2 compares the recommender algorithms examined (random, collaborative, 

content-based, and ECSN) based on the four stated metrics for evaluating prediction 

accuracy in recommender systems. 

 

  

(a) Precision (b) Recall 

  

(c) Fallout (d) F1 

 

Figure 5.2:  Comparison of Random, Collaborative, Content-Based, and ECSN 

Algorithms based on four Usage Prediction Metrics 

 

Figure 5.2(a) demonstrates that the precision value experienced an upward trend 

throughout the 14 weeks of experiments. It started at 0.169 with the random algorithm 

and steadily rose to 0.207 for the collaborative and 0.213 for the content-based 

approach. In the last stage of experiments, the ECSN algorithm reached a peak of 0.248. 

The ECSN algorithm enhanced the precision value of other recommender algorithms by 
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32% (random, MD= 0.00741), 20% (collaborative, MD=0.00395) and 21% (content-

based, MD=0.00310). 

The recall value comparison for all four recommender algorithms can be seen in 

Figure 5.2(b). The highest rate was attained by the random (0.976) and the ECSN 

algorithm (0.952), while the collaborative and content-based approaches had lower 

recall values, at 0.926 and 0.918 respectively. Although the ANOVA test results did not 

show any significant differences in the case of recall metrics, and even based on this 

measurement, the contribution of the ECSN method is clear with an improvement over 

the collaborative approach by 3% and the content-based method by 4%. 

 

The fallout values of the studied recommender algorithms are compared in 

Figure 5.2(c), where it is obvious that the fallout rate had a decreasing trend in the 14 

weeks of experiments. Referring to the definition of fallout (Eq. 5.3), a lower fallout 

rate indicates better recommender algorithm performance. Thus, this diagram shows 

that the prediction accuracy of recommender algorithms improved from random (0.084), 

to collaborative (0.081), content-based (0.080), and finally the ECSN algorithm (0.077) 

while the fallout metric values declined steadily. 

 

 The final section of the diagram corresponds to the F1 score. As per Eq. 5.4, the values 

of both precision and recall were combined to calculate the F1 score for measuring the 

accuracy prediction of a given recommender algorithm. It is thus considered an overall 

metric that includes both recall and precision. Figure 5.2(d) shows the steady rise of F1 

values during 14 weeks of experiments. The lowest value belongs to the random 

algorithm (0.288) while the peak of 0.393 corresponds to when the ECSN algorithm 

was applied. In other words, the ECSN recommender algorithm significantly 

contributed to the F1 values of the random (MD= 0.10444), collaborative 
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(MD=0.05542), and content-based (MD=0.04679) algorithms, by 26%, 14%, and 12% 

respectively. 

To conclude, 14 weeks of evaluations based on the four most familiar metrics, namely 

precision, recall, fallout, and F1, demonstrate that the proposed recommender algorithm 

in this research (ECSN) successfully enhanced the prediction accuracy compared to the 

other studied and implemented recommender approaches. 

 

With respect to the cold start problem, the investigation results for the collected 

relevance feedback from MyExpert users show that the ECSN algorithm may 

significantly contribute to solving this problem. In addition to addressing both new user 

and new item issues in the cold start context, the ECSN approach seems to improve the 

average value of recommended items to new users by 15% compared to the pure 

content-based algorithm. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

The purpose of this research was to determine how the prediction accuracy of 

recommender systems in academic social networks could be improved by applying an 

enhanced content-based algorithm utilized by social networking features (ECSN). In 

addition, the cold start problem of recommender systems was solved with the ECSN 

recommender algorithm. This chapter reflects on the aims and methods of the research 

and continues with a discussion of the contributions of this work. Then, future work 

based on this dissertation will be described.  

 

6.1. Aims and Methods 

 

The main objectives of the present research are as follows: 

 

i. To elicit the techniques of recommender systems and essential features of 

academic social networks 

ii. To propose an enhanced content-based recommender system using social 

networking techniques (ECSN) 

iii. To develop an academic social network as a real runtime environment for 

evaluating recommender algorithms 

iv. To evaluate the ECSN recommender system by comparing its prediction 

accuracy with random, collaborative and content-based recommender algorithms 
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The discussion that follows shows how these objectives have been achieved in this 

research. The first objective was to undertake an investigation on techniques and 

approaches in recommender systems and elicit essential features of academic social 

networks. In the first part of Chapter 2, the reasons why academic social networks have 

emerged were described and the most popular examples were discussed.  The second 

section of the literature review focused on recommender system description. After 

providing some information with respect to their functionalities, the three main 

techniques in recommender systems were briefly presented – the collaborative, content-

based, and hybrid approaches. The final part of the chapter presented the methods of 

evaluating the prediction accuracy of recommender systems. 

 

The second objective entailed proposing and implementing an enhanced content-based 

recommender system using a social networking technique (ECSN), which improved 

recommendation accuracy. While the pure content-based recommender algorithm 

considers only the given user’s preferences, the ECSN algorithm takes into account the 

preferences of users’ friends and faculty mates. In this way, not only did the cold start 

problem in recommender systems get solved, but a great contribution was additionally 

made by the improved prediction accuracy of the recommendation process. Chapter 4 

illustrated the technical issues with the ECSBN algorithm and presented the theoretical 

framework of this recommender algorithm. 

 

The third objective was to design and develop MyExpert as a real runtime environment 

for evaluating recommender algorithms. In this study, MyExpert was employed for 

applying different recommender algorithms, studying user behavior, collecting 

relevance feedback in real conditions, and comparing the performance of the 
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recommender systems applied against each other. The details of MyExpert design and 

development were presented in Chapter 4. 

 

The final objective was to evaluate the ECSN recommender system and compare its 

prediction accuracy with the random, collaborative and content-based recommender 

algorithms. In doing so, four well-known measurements were used: precision, recall, 

fallout and F1. The online studies method was employed to design the research 

experiments and collect the relevance feedback from MyExpert academic social 

network users. The experiments and study results were discussed in Chapter 5 

 

6.2. Contributions 

 

The defining characteristic of the Internet today is the abundance of information and 

choice (Bonhard, et al., 2007). Considering this phenomenon, utilizing recommender 

systems is essential to assist users with finding the right information from a wealth of 

Web data (Zhou, Xu, Li, Josang, & Cox, 2012). As the first contribution, this research 

investigated the most popular existing recommender systems. Recommender systems 

are defined as software tools and techniques for suggesting the most related items to 

users. According to earlier research works, the collaborative and content-based 

recommender systems were rather successful in suggesting relevant items to target 

users, but they did have limitations regarding sparsity, recommending new items, and 

the cold start problem (Ricci, et al., 2011). Although recent alternatives like hybrid 

methods, demographic algorithms, and knowledge-based approaches have been 

proposed to address these problems, even the current generation of recommender 

systems surveyed in this study still requires further improvements to increase the 

effectiveness of recommendation methods (Pu, Chen, & Hu, 2012). 
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Referring to the cold start phenomenon, RSs cannot make reliable recommendations in 

situations when new items should be recommended or new users are expecting to 

receive recommendations from the system. It has been argued in previous research in 

this domain that recommender systems could be significantly improved by drawing on 

features from social systems (Bonhard, 2005). In other words, traditional recommender 

systems ignore the social relationships among users. But in real life, when we seek 

advice from our friends, we are actually requesting verbal social recommendations. In a 

related research in this field, Bonhard, Sasse and Harries (2007) stated that 

recommender systems and social networking functionality should be integrated.  Hence, 

in order to improve recommender systems and to provide more personalized 

recommendation results, the incorporation of social network information among users is 

a must (Zhou, et al., 2012). In addition, enhancing the prediction accuracy of 

recommender algorithms is recognized as a cutting-edge research subject in the realm of 

recommender systems and information retrieval (Adomavicius & Tuzhilin, 2005). 

 

To fill the acknowledged gap, this study proposed an enhanced version of a content-

based recommender system by drawing on the social networking feature (ECSN). The 

ECSN recommender algorithm was applied in academic social networks to suggest the 

most relevant academic items to members of these online societies. In addition to 

considering the user’s own preferences, this algorithm took advantage of the interests 

and preferences of the user’s friends and faculty mates to provide more accurate 

recommendations. A hierarchy tree structure was used to store the preference scores for 

all academic items. When users clicked on, or rated academic items, the related node of 

a given item in this hierarchy tree of preferences was established, after which the related 

point of that node for the given user was updated. The higher point value for each node 
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resemble that it is more interesting for studied user.  Definition 4.1 in Chapter 4 

identified this tree structure. Also, the mechanism for updating the scores of each node 

was represented by Definition 4.2. After updating the preference scores for each user by 

analyzing his preferences, as well as his friends’ and faculty mates’ preferences, the 

ordered list of recommended items was sent through a MyExpert e-Newsletter. The 

details of this process were concisely discussed in Chapter 4.  

 

To investigate the contribution made by this research, 14 weeks of experiments (from 

7th September until 26th December) were carried out by adopting the online method. In 

that time, the accuracy prediction of the proposed recommender algorithm (ECSN) was 

compared with three others (random, collaborative, and content-based approaches). 

These four algorithms were applied one by one in the MyExpert online social network 

to collect the relevance feedback of users for the evaluation process.   

 

In the first 5 weeks of experiments, the random algorithm was used to recommend 

academic items to MyExpert users. Next, the collaborative and content-based 

recommender systems were adopted over the following 6 weeks of data gathering. 

Finally, during the last 3 weeks, MyExpert members received recommendations by the 

ECSN algorithm to conclude the experiments for this study. In these 14 weeks of 

feedback collection, 1390 records of academic items were submitted to MyExpert 

including 346 academic jobs, 339 conferences, 355 scholarships, and 350 academic 

news. These items were sent to 920 MyExpert registered members from 10 universities 

in Malaysia. After gathering the members’ feedback from 14 weeks of online 

experiments, precision, recall, fallout, and F1 were measured to assess the prediction 

accuracy of all applied recommender algorithms.  

 



178 

 

According to the online experiment results, the precision value had an upward trend 

starting at 0.1693 with the random algorithm and steadily rising to 0.2066 for the 

collaborative and 0.2132 for the content-based approach. In the last stage of the 

experiments, the ECSN algorithm reached a peak of 0.2477. Clearly, the ECSN 

algorithm enhanced the precision value of other recommender algorithms by 32% 

(random), 20% (content-based) and 21% (collaborative). 

 

The highest rates were attained by the random (0.976) and ECSN algorithm (0.952), 

while the collaborative and content-based approaches had lower recall values, at 0.926 

and 0.918 respectively. The ANOVA test results did not show any significant 

differences in the case of the recall metrics, and even so, the contribution of the ECSN 

method is clear with an improvement over the collaborative technique by 3% and 

content-based method by 4%. 

 

The fallout rate had a decreasing trend in the 14 weeks of experiments. Referring to the 

definition of fallout (Eq. 5.5), a lower fallout rate indicates better recommender 

algorithm performance. Thus, the diagram shows that the prediction accuracy of 

recommender algorithms improved from random (0.084), to collaborative (0.081), 

content-based (0.080), and finally ECSN (0.077), while the values of the fallout metric 

declined steadily. 

 

F1 is considered an overall metric that includes both recall and precision. The results 

show the steady rise of F1 values during 14 weeks of experiments. The lowest value 

belongs to the random algorithm (0.288) while the peak of 0.393 corresponds to when 

the ECSN algorithm was applied. In other words, the ECSN recommender algorithm 

significantly contributed to the F1 values of the random (MD= 0.10444), collaborative 
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(MD=0.05542), and content-based (MD=0.04679) algorithms, by 26%, 14%, and 12% 

respectively. 

 

To conclude, 14 weeks of evaluations based on the four most familiar metrics, namely 

precision, recall, fallout, and F1, demonstrate that the proposed recommender algorithm 

in this research (ECSN) successfully enhanced the prediction accuracy compared to the 

other studied and implemented recommender approaches. 

 

Pertaining to the cold start problem, the investigation results on collected relevance 

feedback from MyExpert users indicate that the ECSN algorithm may significantly 

contribute to resolving this issue. In addition to addressing both the new user and new 

item issues in the cold start context, the ECSN approach could improve the average 

value of recommended items to new users by 15% compared to the pure content-based 

algorithm. 

 

6.3. Future work 

 

During the course of this research several potentially interesting and relevant subjects 

presented themselves, but to keep focused on the objectives of this study, the topics had 

to be abandoned. This section concisely addresses these subjects for possible future 

work. 

 

Social network analysis (SNA) is a leading-edge research topic that studies the structure 

of social networks (Scott, 2012). It also analyzes the structure of organizations and 

enterprises to improve their policies in allocating resources among users and 

organizational nodes. As a novel topic for future research, the social network-based 
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features utilized in this study could be combined with SNA concepts to offer a new 

model for enhancing organizational behaviors and recommendations (Zhou, Xu, Li, 

Josang, & Cox, 2012). The results of such research may assist in decision support 

systems (DSS). 

 

A further question that requires more extensive research is whether it is possible to 

optimize the weights considered for calculating the node scores in Definition 4.2. In this 

research, based on the degree of importance, a weight of 5 was considered for users’ 

own preferences, a weight of 3 for taking into account faculty mates, and finally, for 

applying the preferences of friends a weight of 1 was considered. Although these 

weights could make a significant contribution in solving the cold start problem as well 

as in improving the prediction accuracy of recommendations, it may be better to apply 

fuzzy logic or neural networks techniques to achieve more favorable weights (Zenebe et 

al, 2009). 

 

Furthermore, the MyExpert academic social network developed in this study as the 

runtime environment for establishing online experiments has the potential to be used in 

future research works. Anomaly detection and community studies are two fields of 

related research that can benefit from this runtime environment to establish experiments 

and archive online results. 
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Samples of Collected Relevance Feedback  

from MyExpert Online Environemnt 

 

fID fNewsID fMemD fRankDateTime fRank fEnterDateTime fIPAddress fScienceID fType 

1783 78 391 2012-10-06 
12:46:05.690 

5 2012-10-06 
12:44:19.120 

210.195.121.222 1 S 

1784 93 391 2012-10-06 
12:46:39.797 

3 2012-10-06 
12:44:29.060 

210.195.121.222 85 C 

1785 91 391 2012-10-06 
12:47:00.390 

5 2012-10-06 
12:46:53.750 

210.195.121.222 13 C 

1908 112 850 2012-10-09 
23:10:11.407 

5 2012-10-09 
23:10:07.473 

175.138.173.120 98 S 

1910 151 850 2012-10-09 
23:10:18.023 

4 2012-10-09 
23:10:14.997 

175.138.173.120 13 N 

1911 145 850 2012-10-09 
23:10:31.617 

5 2012-10-09 
23:10:28.107 

175.138.173.120 13 C 

1916 150 865 2012-10-09 
23:15:05.623 

5 2012-10-09 
23:14:56.587 

175.138.173.120 13 N 

1917 135 865 2012-10-09 
23:15:26.620 

4 2012-10-09 
23:15:21.960 

175.138.173.120 13 C 

1918 143 865 2012-10-09 
23:15:38.413 

4 2012-10-09 
23:15:34.803 

175.138.173.120 13 C 

1960 118 751 2012-10-10 
05:21:49.727 

3 2012-10-10 
05:21:44.930 

120.28.136.92 1 S 

1961 111 751 2012-10-10 
05:22:10.360 

3 2012-10-10 
05:22:07.263 

120.28.136.92 70 J 

1962 124 751 2012-10-10 
05:22:38.453 

3 2012-10-10 
05:22:34.177 

120.28.136.92 26 S 

1963 111 751 2012-10-10 
05:22:49.807 

3 2012-10-10 
05:22:46.540 

120.28.136.92 70 J 

1964 135 751 2012-10-10 
05:23:02.333 

3 2012-10-10 
05:22:58.787 

120.28.136.92 13 C 

1965 124 751 2012-10-10 
05:23:21.677 

3 2012-10-10 
05:23:17.803 

120.28.136.92 26 C 

1966 119 751 2012-10-10 
05:23:36.717 

3 2012-10-10 
05:23:31.670 

120.28.136.92 13 J 

1968 108 901 2012-10-10 
05:30:45.687 

3 2012-10-10 
05:30:03.590 

175.136.162.147 13 J 

1969 129 901 2012-10-10 
05:31:55.760 

4 2012-10-10 
05:30:06.080 

175.136.162.147 109 S 

1971 130 901 2012-10-10 
05:32:24.223 

1 2012-10-10 
05:32:03.497 

175.136.162.147 13 C 

1974 111 901 2012-10-10 
05:32:48.010 

5 2012-10-10 
05:32:08.540 

175.136.162.147 70 S 

1975 137 901 2012-10-10 
05:33:11.557 

1 2012-10-10 
05:32:10.127 

175.136.162.147 13 C 

2017 117 928 2012-10-10 
10:29:12.190 

3 2012-10-10 
10:28:55.817 

115.133.211.86 1 S 

2019 113 928 2012-10-10 
10:30:52.570 

3 2012-10-10 
10:30:22.363 

115.133.211.86 18 J 

2020 112 928 2012-10-10 
10:31:13.587 

1 2012-10-10 
10:30:58.787 

115.133.211.86 70 J 

2021 134 928 2012-10-10 
10:31:29.310 

1 2012-10-10 
10:31:23.303 

115.133.211.86 70 N 

2022 117 928 2012-10-10 4 2012-10-10 115.133.211.86 1 S 
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10:31:55.223 10:31:35.140 

2024 113 928 2012-10-10 
10:32:10.150 

4 2012-10-10 
10:31:59.253 

115.133.211.86 18 J 

2025 138 928 2012-10-10 
10:32:29.803 

1 2012-10-10 
10:32:18.897 

115.133.211.86 13 C 

2026 126 928 2012-10-10 
10:32:45.323 

2 2012-10-10 
10:32:35.357 

115.133.211.86 70 J 

2027 143 928 2012-10-10 
10:32:55.827 

1 2012-10-10 
10:32:52.157 

115.133.211.86 55 N 

2028 127 928 2012-10-10 
10:33:06.383 

2 2012-10-10 
10:33:00.403 

115.133.211.86 26 C 

2029 123 928 2012-10-10 
10:33:22.753 

2 2012-10-10 
10:33:10.247 

115.133.211.86 2 J 

2030 129 928 2012-10-10 
10:33:38.950 

4 2012-10-10 
10:33:32.043 

115.133.211.86 109 S 

2031 130 718 2012-10-10 
10:34:01.557 

3 2012-10-10 
10:33:56.280 

60.48.48.138 13 C 

2033 131 718 2012-10-10 
10:35:05.743 

3 2012-10-10 
10:35:03.910 

60.48.48.138 95 S 

2034 143 718 2012-10-10 
10:35:21.523 

3 2012-10-10 
10:35:12.547 

60.48.48.138 13 C 

2035 108 718 2012-10-10 
10:35:58.063 

3 2012-10-10 
10:35:54.060 

60.48.48.138 13 J 

2075 151 391 2012-10-10 
20:07:49.480 

2 2012-10-10 
20:07:41.477 

161.142.24.130 13 N 

2076 128 391 2012-10-10 
20:08:09.987 

5 2012-10-10 
20:07:55.450 

161.142.24.130 2 S 

2077 118 391 2012-10-10 
20:08:56.933 

5 2012-10-10 
20:08:53.217 

161.142.24.130 1 S 

2078 111 391 2012-10-10 
20:10:05.907 

1 2012-10-10 
20:10:02.707 

161.142.24.130 70 S 

2079 110 391 2012-10-10 
20:10:13.247 

1 2012-10-10 
20:10:09.847 

161.142.24.130 13 J 

2099 116 11 2012-10-11 
08:13:19.227 

4 2012-10-11 
08:11:11.960 

5.9.226.26 117 S 

2100 110 11 2012-10-11 
08:13:09.920 

4 2012-10-11 
08:12:47.933 

5.9.226.26 13 J 

2101 112 11 2012-10-11 
08:13:44.467 

3 2012-10-11 
08:13:36.897 

5.9.226.26 70 J 

2106 145 955 2012-10-11 
12:15:53.617 

1 2012-10-11 
12:11:17.813 

175.142.217.9 13 C 

2336 130 828 2012-10-17 
00:45:45.717 

4 2012-10-17 
00:33:39.117 

120.141.131.167 5 J 

2337 139 828 2012-10-17 
00:45:34.500 

5 2012-10-17 
00:33:47.290 

120.141.131.167 95 S 

2346 152 323 2012-10-17 
00:56:37.143 

1 2012-10-17 
00:56:31.230 

175.136.160.114 55 C 

2347 169 323 2012-10-17 
00:57:04.607 

1 2012-10-17 
00:56:49.467 

175.136.160.114 2 C 

2355 139 1 2012-10-17 
03:20:11.763 

5 2012-10-17 
03:20:06.387 

60.54.40.192 95 S 

2360 147 127 2012-10-17 
03:27:03.287 

3 2012-10-17 
03:26:41.123 

159.20.111.138 95 J 

2384 144 850 2012-10-17 
09:09:07.513 

5 2012-10-17 
09:08:45.700 

175.138.173.120 1 S 

2387 161 850 2012-10-17 
09:09:56.470 

4 2012-10-17 
09:09:52.583 

175.138.173.120 14 S 

2388 140 850 2012-10-17 
09:10:19.990 

5 2012-10-17 
09:10:15.090 

175.138.173.120 70 J 
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2410 145 906 2012-10-17 
11:00:43.107 

3 2012-10-17 
11:00:38.097 

120.139.128.139 1 S 

2449 161 391 2012-10-17 
22:31:23.357 

1 2012-10-17 
22:24:52.083 

175.142.146.247 14 S 

2450 165 391 2012-10-17 
22:30:21.640 

1 2012-10-17 
22:25:17.770 

175.142.146.247 70 C 

2451 156 391 2012-10-17 
22:29:51.410 

4 2012-10-17 
22:25:34.890 

175.142.146.247 55 C 

2453 139 391 2012-10-17 
22:32:13.247 

4 2012-10-17 
22:32:09.590 

175.142.146.247 95 S 

2492 156 11 2012-10-18 
18:10:40.203 

4 2012-10-18 
18:08:54.833 

5.9.226.26 13 S 

2493 155 11 2012-10-18 
18:11:50.430 

4 2012-10-18 
18:11:33.377 

5.9.226.26 13 S 

2614 116 862 2012-10-22 
22:21:54.430 

5 2012-10-22 
22:21:46.633 

175.138.173.120 70 J 

2615 129 862 2012-10-22 
22:22:04.353 

5 2012-10-22 
22:22:00.423 

175.138.173.120 109 S 

2616 122 862 2012-10-22 
22:22:11.943 

5 2012-10-22 
22:22:08.130 

175.138.173.120 85 S 

2617 124 862 2012-10-22 
22:22:22.010 

5 2012-10-22 
22:22:18.450 

175.138.173.120 26 S 

2618 124 862 2012-10-22 
22:22:29.307 

5 2012-10-22 
22:22:26.310 

175.138.173.120 26 S 

2619 122 862 2012-10-22 
22:22:39.940 

5 2012-10-22 
22:22:34.973 

175.138.173.120 85 S 

2620 107 862 2012-10-22 
22:22:46.797 

5 2012-10-22 
22:22:44.593 

175.138.173.120 13 J 

2656 165 1 2012-10-23 
17:01:07.677 

4 2012-10-23 
17:00:38.790 

202.185.114.251 70 C 

2657 161 850 2012-10-23 
17:05:31.917 

4 2012-10-23 
17:05:11.053 

175.138.173.120 14 S 

2658 156 850 2012-10-23 
17:05:29.000 

5 2012-10-23 
17:05:23.880 

175.138.173.120 13 S 

2659 153 850 2012-10-23 
17:05:50.000 

4 2012-10-23 
17:05:41.770 

175.138.173.120 55 S 

2661 151 850 2012-10-23 
17:06:05.600 

4 2012-10-23 
17:06:03.083 

175.138.173.120 55 J 

2663 164 850 2012-10-23 
17:06:21.953 

5 2012-10-23 
17:06:18.513 

175.138.173.120 70 C 

2665 165 850 2012-10-23 
17:06:49.147 

4 2012-10-23 
17:06:43.417 

175.138.173.120 13 N 

2669 163 850 2012-10-23 
17:09:39.250 

5 2012-10-23 
17:09:35.333 

175.138.173.120 13 N 

2688 152 323 2012-10-23 
17:17:21.010 

1 2012-10-23 
17:17:12.513 

202.185.108.203 55 C 

2689 155 323 2012-10-23 
17:17:46.990 

2 2012-10-23 
17:17:36.343 

202.185.108.203 13 S 

2770 139 1 2012-10-23 
18:11:04.660 

4 2012-10-23 
18:10:59.183 

202.185.114.251 95 S 

2775 169 1 2012-10-23 
18:20:32.917 

4 2012-10-23 
18:20:21.390 

202.185.114.251 2 C 

2778 102 850 2012-10-23 
18:23:03.423 

5 2012-10-23 
18:23:00.467 

175.138.173.120 48 S 

2779 69 850 2012-10-23 
18:23:23.957 

5 2012-10-23 
18:23:22.007 

175.138.173.120 26 N 

2908 147 865 2012-10-23 
21:51:00.230 

4 2012-10-23 
21:50:52.867 

175.138.173.120 66 C 

2910 143 865 2012-10-23 5 2012-10-23 175.138.173.120 1 S 
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21:51:23.633 21:51:19.777 

2912 150 865 2012-10-23 
21:51:42.617 

4 2012-10-23 
21:51:33.907 

175.138.173.120 26 S 

2913 153 865 2012-10-23 
21:51:48.613 

5 2012-10-23 
21:51:44.080 

175.138.173.120 55 S 

2920 164 1 2012-10-23 
23:49:33.630 

5 2012-10-23 
23:49:25.237 

124.13.84.175 95 J 

2921 164 1 2012-10-24 
00:02:22.387 

4 2012-10-24 
00:02:15.563 

124.13.84.175 1 S 

2924 168 850 2012-10-24 
00:06:29.410 

4 2012-10-24 
00:06:20.853 

175.138.173.120 14 J 

2925 176 450 2012-10-24 
00:06:35.503 

3 2012-10-24 
00:06:26.637 

110.159.159.111 103 C 

2926 172 850 2012-10-24 
00:06:42.090 

5 2012-10-24 
00:06:38.987 

175.138.173.120 13 J 

2927 178 850 2012-10-24 
00:06:59.793 

4 2012-10-24 
00:06:54.000 

175.138.173.120 85 S 

2928 174 850 2012-10-24 
00:07:28.210 

5 2012-10-24 
00:07:25.307 

175.138.173.120 13 S 

2929 186 850 2012-10-24 
00:07:54.350 

5 2012-10-24 
00:07:37.073 

175.138.173.120 1 S 

2930 184 850 2012-10-24 
00:08:06.080 

4 2012-10-24 
00:08:03.200 

175.138.173.120 2 S 

2931 178 862 2012-10-24 
00:08:47.800 

5 2012-10-24 
00:08:41.960 

175.138.173.120 102 N 

2932 189 862 2012-10-24 
00:08:58.320 

5 2012-10-24 
00:08:54.797 

175.138.173.120 95 N 

2933 192 862 2012-10-24 
00:09:07.927 

5 2012-10-24 
00:09:04.533 

175.138.173.120 99 N 

2934 172 862 2012-10-24 
00:09:18.840 

5 2012-10-24 
00:09:13.007 

175.138.173.120 102 C 

2935 178 862 2012-10-24 
00:09:28.973 

5 2012-10-24 
00:09:26.340 

175.138.173.120 99 C 

2936 192 862 2012-10-24 
00:09:35.540 

5 2012-10-24 
00:09:33.047 

175.138.173.120 48 C 

2937 167 862 2012-10-24 
00:09:44.803 

5 2012-10-24 
00:09:40.913 

175.138.173.120 3 J 

2938 187 987 2012-10-24 
00:10:13.800 

3 2012-10-24 
00:10:08.487 

221.133.40.230 2 S 

2939 178 987 2012-10-24 
00:10:31.303 

5 2012-10-24 
00:10:27.693 

221.133.40.230 85 S 

2940 187 987 2012-10-24 
00:10:52.487 

5 2012-10-24 
00:10:47.837 

221.133.40.230 2 S 

2941 178 862 2012-10-24 
00:10:51.763 

5 2012-10-24 
00:10:48.527 

175.138.173.120 13 J 

2942 172 987 2012-10-24 
00:11:00.683 

5 2012-10-24 
00:10:56.913 

221.133.40.230 2 S 

2943 169 862 2012-10-24 
00:11:04.477 

5 2012-10-24 
00:10:57.003 

175.138.173.120 70 S 

2944 188 862 2012-10-24 
00:11:11.433 

5 2012-10-24 
00:11:08.840 

175.138.173.120 11 S 

2945 169 987 2012-10-24 
00:11:13.497 

3 2012-10-24 
00:11:11.183 

221.133.40.230 70 S 

2946 164 987 2012-10-24 
00:11:26.073 

5 2012-10-24 
00:11:23.013 

221.133.40.230 1 S 

2947 180 531 2012-10-24 
00:12:26.080 

5 2012-10-24 
00:12:18.707 

210.195.250.203 99 C 

2952 191 850 2012-10-24 
00:15:12.380 

5 2012-10-24 
00:15:08.960 

175.138.173.120 99 N 
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2955 165 908 2012-10-24 
00:20:29.313 

3 2012-10-24 
00:20:23.313 

180.74.20.142 95 S 

2956 179 908 2012-10-24 
00:21:01.843 

4 2012-10-24 
00:20:56.780 

180.74.20.142 1 S 

2967 179 943 2012-10-24 
01:13:12.603 

2 2012-10-24 
01:12:09.870 

119.40.118.18 103 N 

2969 197 943 2012-10-24 
01:14:10.870 

2 2012-10-24 
01:14:02.400 

119.40.118.18 14 N 

2970 190 943 2012-10-24 
01:14:25.607 

2 2012-10-24 
01:14:16.927 

119.40.118.18 85 C 

2971 156 943 2012-10-24 
01:14:55.107 

2 2012-10-24 
01:14:32.750 

119.40.118.18 70 J 

2972 160 943 2012-10-24 
01:15:04.203 

2 2012-10-24 
01:15:00.313 

119.40.118.18 70 J 

2975 175 943 2012-10-24 
01:15:41.463 

2 2012-10-24 
01:15:28.643 

119.40.118.18 55 S 

2976 184 943 2012-10-24 
01:15:51.727 

2 2012-10-24 
01:15:47.650 

119.40.118.18 2 S 

3118 190 11 2012-10-24 
04:44:24.117 

4 2012-10-24 
04:32:41.703 

94.183.221.30 95 N 

3119 163 11 2012-10-24 
04:43:32.623 

4 2012-10-24 
04:32:53.157 

94.183.221.30 70 J 

3120 174 11 2012-10-24 
04:41:52.287 

3 2012-10-24 
04:33:00.747 

94.183.221.30 13 S 

3122 182 11 2012-10-24 
04:33:57.687 

3 2012-10-24 
04:33:12.927 

94.183.221.30 70 S 

3154 168 342 2012-10-24 
09:14:57.247 

3 2012-10-24 
09:14:54.493 

202.184.111.77 14 J 

3169 180 718 2012-10-24 
10:13:26.760 

3 2012-10-24 
10:13:21.200 

60.48.48.212 11 S 

3172 175 718 2012-10-24 
10:15:10.957 

3 2012-10-24 
10:15:08.167 

60.48.48.212 55 S 

3180 178 718 2012-10-24 
10:29:45.833 

3 2012-10-24 
10:29:42.680 

60.48.48.212 99 C 

3181 177 718 2012-10-24 
10:30:30.240 

3 2012-10-24 
10:30:27.960 

60.48.48.212 2 S 

3183 162 718 2012-10-24 
10:30:37.090 

3 2012-10-24 
10:30:35.307 

60.48.48.212 70 J 

3189 195 251 2012-10-24 
10:49:02.353 

3 2012-10-24 
10:48:47.777 

210.195.99.15 14 N 

3190 201 251 2012-10-24 
10:49:16.323 

4 2012-10-24 
10:49:10.533 

210.195.99.15 106 N 

3191 176 251 2012-10-24 
10:49:25.107 

4 2012-10-24 
10:49:21.663 

210.195.99.15 103 C 

3192 179 251 2012-10-24 
10:49:32.200 

3 2012-10-24 
10:49:30.270 

210.195.99.15 99 C 

3193 193 251 2012-10-24 
10:49:37.483 

3 2012-10-24 
10:49:36.253 

210.195.99.15 48 C 

3194 164 251 2012-10-24 
10:49:47.487 

4 2012-10-24 
10:49:45.173 

210.195.99.15 95 J 

3195 168 251 2012-10-24 
10:49:53.977 

3 2012-10-24 
10:49:52.377 

210.195.99.15 14 J 

3196 171 251 2012-10-24 
10:50:01.320 

3 2012-10-24 
10:50:00.093 

210.195.99.15 13 J 

3197 174 251 2012-10-24 
10:50:08.187 

4 2012-10-24 
10:50:04.887 

210.195.99.15 13 J 

3198 178 251 2012-10-24 
10:50:14.243 

4 2012-10-24 
10:50:11.393 

210.195.99.15 13 J 

3225 187 391 2012-10-24 4 2012-10-24 161.142.24.130 85 C 
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16:53:14.827 16:52:56.870 

3226 165 391 2012-10-24 
16:53:25.073 

2 2012-10-24 
16:53:22.250 

161.142.24.130 103 J 

3227 175 391 2012-10-24 
16:53:34.370 

3 2012-10-24 
16:53:31.003 

161.142.24.130 13 J 

3228 164 391 2012-10-24 
16:53:49.010 

4 2012-10-24 
16:53:44.847 

161.142.24.130 1 S 

3229 173 391 2012-10-24 
16:53:59.377 

1 2012-10-24 
16:53:57.077 

161.142.24.130 1 S 

3231 180 391 2012-10-24 
16:54:18.067 

4 2012-10-24 
16:54:14.343 

161.142.24.130 11 S 

3233 179 772 2012-10-24 
17:12:01.040 

3 2012-10-24 
17:10:45.880 

115.133.210.244 1 S 

3234 185 772 2012-10-24 
17:13:37.850 

3 2012-10-24 
17:10:59.917 

115.133.210.244 70 S 

3656 182 732 2012-10-29 
08:16:20.503 

3 2012-10-29 
08:16:12.943 

210.48.147.106 70 S 

3657 180 732 2012-10-29 
08:17:10.803 

3 2012-10-29 
08:16:59.993 

210.48.147.106 11 S 

3785 209 1 2012-10-31 
02:25:29.847 

4 2012-10-31 
02:25:21.683 

124.13.84.175 13 C 

3813 194 11 2012-10-31 
03:11:53.570 

5 2012-10-31 
03:06:09.307 

94.183.223.90 55 S 

3814 213 11 2012-10-31 
03:14:26.077 

4 2012-10-31 
03:12:08.670 

94.183.223.90 1 S 

3862 206 850 2012-10-31 
08:58:28.433 

5 2012-10-31 
08:58:18.057 

110.159.18.79 99 N 

3863 220 850 2012-10-31 
08:58:45.493 

5 2012-10-31 
08:58:37.920 

110.159.18.79 26 N 

3864 181 850 2012-10-31 
08:58:59.447 

4 2012-10-31 
08:58:55.453 

110.159.18.79 13 J 

3865 203 850 2012-10-31 
08:59:08.090 

4 2012-10-31 
08:59:02.077 

110.159.18.79 13 J 

3866 202 850 2012-10-31 
08:59:35.693 

5 2012-10-31 
08:59:29.817 

110.159.18.79 2 S 

3867 203 850 2012-10-31 
08:59:51.877 

4 2012-10-31 
08:59:47.503 

110.159.18.79 55 S 

3872 194 391 2012-10-31 
09:19:07.450 

4 2012-10-31 
09:17:24.800 

161.142.24.130 55 S 

3875 211 391 2012-10-31 
09:18:50.413 

2 2012-10-31 
09:17:44.580 

161.142.24.130 15 S 

3876 215 391 2012-10-31 
09:18:43.000 

1 2012-10-31 
09:17:48.363 

161.142.24.130 85 N 

3877 222 391 2012-10-31 
09:18:35.780 

1 2012-10-31 
09:17:50.433 

161.142.24.130 70 N 

3879 185 391 2012-10-31 
09:18:20.020 

1 2012-10-31 
09:17:55.093 

161.142.24.130 109 J 

3880 195 391 2012-10-31 
09:19:02.167 

4 2012-10-31 
09:17:57.643 

161.142.24.130 85 J 

3881 199 391 2012-10-31 
09:18:55.993 

4 2012-10-31 
09:18:00.890 

161.142.24.130 2 J 

3921 218 928 2012-10-31 
11:13:11.127 

3 2012-10-31 
11:10:18.280 

115.133.214.185 106 N 

3922 182 928 2012-10-31 
11:12:54.190 

5 2012-10-31 
11:10:24.737 

115.133.214.185 13 J 

3923 185 928 2012-10-31 
11:12:47.787 

3 2012-10-31 
11:10:33.890 

115.133.214.185 109 J 

3924 196 928 2012-10-31 
11:11:19.177 

2 2012-10-31 
11:10:47.853 

115.133.214.185 85 J 
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3925 197 928 2012-10-31 
11:11:04.043 

5 2012-10-31 
11:10:52.423 

115.133.214.185 102 J 

3932 213 550 2012-10-31 
11:35:54.433 

3 2012-10-31 
11:35:50.090 

210.48.147.109 85 C 

3933 182 550 2012-10-31 
11:36:34.397 

3 2012-10-31 
11:36:31.370 

210.48.147.109 13 J 

3934 189 550 2012-10-31 
11:36:53.020 

3 2012-10-31 
11:36:47.870 

210.48.147.109 14 J 

3935 193 550 2012-10-31 
11:37:11.613 

3 2012-10-31 
11:37:08.097 

210.48.147.109 55 S 

3936 209 943 2012-10-31 
11:47:46.467 

3 2012-10-31 
11:47:30.173 

119.40.118.18 13 N 

3937 212 943 2012-10-31 
11:48:27.990 

3 2012-10-31 
11:48:07.277 

119.40.118.18 13 N 

3938 215 943 2012-10-31 
11:48:49.740 

2 2012-10-31 
11:48:37.803 

119.40.118.18 85 C 

3939 183 943 2012-10-31 
11:49:13.390 

4 2012-10-31 
11:49:01.813 

119.40.118.18 13 J 

3940 195 943 2012-10-31 
11:49:36.300 

4 2012-10-31 
11:49:21.063 

119.40.118.18 85 J 

3942 197 943 2012-10-31 
11:49:51.083 

4 2012-10-31 
11:49:45.717 

119.40.118.18 102 J 

3943 200 943 2012-10-31 
11:50:20.860 

4 2012-10-31 
11:49:57.307 

119.40.118.18 13 J 

3944 191 943 2012-10-31 
11:50:37.663 

4 2012-10-31 
11:50:26.310 

119.40.118.18 1 S 

3945 199 943 2012-10-31 
11:51:18.273 

5 2012-10-31 
11:50:46.383 

119.40.118.18 1 S 

3946 202 943 2012-10-31 
11:51:49.270 

4 2012-10-31 
11:51:28.760 

119.40.118.18 2 S 

3947 208 862 2012-10-31 
12:01:03.240 

5 2012-10-31 
12:00:57.397 

110.159.18.79 85 N 

3948 213 862 2012-10-31 
12:01:14.070 

5 2012-10-31 
12:01:11.300 

110.159.18.79 13 N 

3949 226 862 2012-10-31 
12:01:20.970 

5 2012-10-31 
12:01:18.543 

110.159.18.79 70 N 

3950 211 862 2012-10-31 
12:01:27.670 

5 2012-10-31 
12:01:24.557 

110.159.18.79 13 C 

3951 179 862 2012-10-31 
12:01:35.433 

5 2012-10-31 
12:01:32.640 

110.159.18.79 2 J 

3952 196 862 2012-10-31 
12:01:42.900 

5 2012-10-31 
12:01:39.137 

110.159.18.79 85 J 

3953 197 862 2012-10-31 
12:01:50.277 

5 2012-10-31 
12:01:47.957 

110.159.18.79 102 J 

3954 201 862 2012-10-31 
12:01:58.667 

5 2012-10-31 
12:01:56.650 

110.159.18.79 85 J 

3955 197 862 2012-10-31 
12:02:04.923 

5 2012-10-31 
12:02:02.200 

110.159.18.79 97 S 

3956 208 862 2012-10-31 
12:02:11.970 

5 2012-10-31 
12:02:08.967 

110.159.18.79 10 S 

3958 208 862 2012-10-31 
12:12:34.027 

5 2012-10-31 
12:12:30.027 

110.159.18.79 10 S 

3959 197 862 2012-10-31 
12:12:44.607 

5 2012-10-31 
12:12:40.960 

110.159.18.79 97 S 

3960 201 862 2012-10-31 
12:12:50.407 

5 2012-10-31 
12:12:47.793 

110.159.18.79 85 J 

3961 201 862 2012-10-31 
12:12:56.353 

5 2012-10-31 
12:12:54.013 

110.159.18.79 85 J 

3962 201 862 2012-10-31 5 2012-10-31 110.159.18.79 85 J 
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12:13:02.600 12:13:00.443 

4039 226 323 2012-11-01 
12:53:08.547 

5 2012-11-01 
12:51:25.573 

202.185.108.203 70 N 

4040 202 323 2012-11-01 
12:52:08.447 

2 2012-11-01 
12:51:40.730 

202.185.108.203 2 S 

4041 182 323 2012-11-01 
12:53:38.547 

1 2012-11-01 
12:53:31.877 

202.185.108.203 13 J 

4184 197 918 2012-11-03 
15:22:05.827 

5 2012-11-03 
15:22:01.270 

210.195.238.170 97 S 

4699 209 850 2012-11-12 
01:40:36.920 

4 2012-11-12 
01:40:29.990 

60.54.40.239 13 J 

4700 222 850 2012-11-12 
01:40:52.380 

4 2012-11-12 
01:40:47.723 

60.54.40.239 13 C 

4702 228 850 2012-11-12 
01:41:23.170 

2 2012-11-12 
01:41:12.537 

60.54.40.239 13 J 

4704 224 850 2012-11-12 
01:41:43.703 

4 2012-11-12 
01:41:34.803 

60.54.40.239 13 S 

4706 239 850 2012-11-12 
01:42:06.837 

5 2012-11-12 
01:41:51.033 

60.54.40.239 13 S 

4724 220 973 2012-11-12 
01:52:26.700 

3 2012-11-12 
01:52:08.263 

175.142.219.205 70 J 

4725 218 973 2012-11-12 
01:53:11.923 

5 2012-11-12 
01:52:15.083 

175.142.219.205 1 S 

4737 239 11 2012-11-12 
02:03:37.553 

3 2012-11-12 
02:02:37.967 

94.183.222.58 13 S 

4738 224 11 2012-11-12 
07:06:07.070 

3 2012-11-12 
02:03:47.770 

94.183.222.58 13 S 

4739 222 718 2012-11-12 
02:09:43.820 

3 2012-11-12 
02:09:35.707 

118.101.201.182 13 C 

4740 229 718 2012-11-12 
02:09:52.987 

3 2012-11-12 
02:09:50.850 

118.101.201.182 13 C 

4741 234 718 2012-11-12 
02:10:03.087 

3 2012-11-12 
02:10:00.943 

118.101.201.182 13 C 

4742 235 718 2012-11-12 
02:10:10.297 

3 2012-11-12 
02:10:07.407 

118.101.201.182 13 C 

4743 209 718 2012-11-12 
02:10:17.727 

3 2012-11-12 
02:10:15.863 

118.101.201.182 13 J 

4744 216 718 2012-11-12 
02:10:23.647 

3 2012-11-12 
02:10:21.660 

118.101.201.182 13 J 

4745 228 718 2012-11-12 
02:10:35.413 

3 2012-11-12 
02:10:28.753 

118.101.201.182 13 J 

4746 218 718 2012-11-12 
02:10:59.573 

3 2012-11-12 
02:10:57.187 

118.101.201.182 1 S 

4944 206 550 2012-11-12 
09:33:18.703 

3 2012-11-12 
09:33:15.907 

210.48.147.109 14 J 

4945 226 550 2012-11-12 
09:33:30.133 

3 2012-11-12 
09:33:27.427 

210.48.147.109 70 S 

4963 228 710 2012-11-12 
10:04:59.930 

3 2012-11-12 
10:04:48.460 

210.186.223.161 1 S 

4986 205 323 2012-11-12 
10:50:01.590 

2 2012-11-12 
10:49:50.217 

202.185.108.201 70 J 

4987 220 323 2012-11-12 
10:50:24.680 

1 2012-11-12 
10:50:09.973 

202.185.108.201 70 J 

5015 229 328 2012-11-12 
11:51:26.853 

4 2012-11-12 
11:51:10.490 

175.136.17.179 85 N 

5027 214 391 2012-11-12 
12:17:32.000 

4 2012-11-12 
12:16:59.960 

161.142.24.130 1 S 

5028 215 391 2012-11-12 
12:17:41.630 

1 2012-11-12 
12:17:02.730 

161.142.24.130 1 S 
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5029 218 391 2012-11-12 
12:17:49.440 

4 2012-11-12 
12:17:05.187 

161.142.24.130 1 S 

5030 219 391 2012-11-12 
12:17:58.650 

1 2012-11-12 
12:17:07.287 

161.142.24.130 1 S 

5031 223 391 2012-11-12 
12:18:05.727 

4 2012-11-12 
12:17:09.633 

161.142.24.130 1 S 

5032 227 391 2012-11-12 
12:18:55.080 

3 2012-11-12 
12:17:12.010 

161.142.24.130 1 S 

5033 228 391 2012-11-12 
12:19:02.783 

1 2012-11-12 
12:17:15.237 

161.142.24.130 1 S 

5034 232 391 2012-11-12 
12:19:10.530 

4 2012-11-12 
12:17:17.803 

161.142.24.130 1 S 

5035 233 391 2012-11-12 
12:19:17.150 

4 2012-11-12 
12:17:19.800 

161.142.24.130 1 S 

5036 234 391 2012-11-12 
12:19:23.190 

3 2012-11-12 
12:17:21.890 

161.142.24.130 1 S 

5049 222 862 2012-11-12 
12:51:13.320 

5 2012-11-12 
12:50:02.930 

120.141.160.73 13 C 

5050 220 918 2012-11-12 
12:51:08.693 

3 2012-11-12 
12:50:54.823 

210.195.238.170 70 J 

5051 229 862 2012-11-12 
12:51:28.927 

5 2012-11-12 
12:51:25.010 

120.141.160.73 13 C 

5052 234 862 2012-11-12 
12:51:36.313 

5 2012-11-12 
12:51:33.220 

120.141.160.73 13 C 

5053 235 862 2012-11-12 
12:51:43.940 

5 2012-11-12 
12:51:40.983 

120.141.160.73 13 C 

5054 204 862 2012-11-12 
12:51:51.220 

5 2012-11-12 
12:51:47.907 

120.141.160.73 2 J 

5055 207 862 2012-11-12 
12:52:00.333 

5 2012-11-12 
12:51:56.930 

120.141.160.73 2 J 

5056 209 862 2012-11-12 
12:52:07.587 

5 2012-11-12 
12:52:05.033 

120.141.160.73 13 J 

5057 216 862 2012-11-12 
12:52:14.703 

5 2012-11-12 
12:52:12.307 

120.141.160.73 13 J 

5058 228 862 2012-11-12 
12:52:22.670 

5 2012-11-12 
12:52:19.937 

120.141.160.73 13 J 

5059 231 862 2012-11-12 
12:52:28.507 

5 2012-11-12 
12:52:25.987 

120.141.160.73 10 S 

5069 231 421 2012-11-12 
14:02:55.203 

3 2012-11-12 
14:02:30.137 

119.40.120.198 99 N 

5075 228 211 2012-11-12 
14:35:11.020 

3 2012-11-12 
14:35:08.430 

202.185.85.154 99 C 

5090 243 850 2012-11-12 
16:32:23.743 

4 2012-11-12 
16:32:17.800 

110.159.16.163 85 C 

5091 228 850 2012-11-12 
16:33:06.207 

5 2012-11-12 
16:33:03.317 

110.159.16.163 99 C 

5254 222 927 2012-11-14 
00:48:11.770 

3 2012-11-14 
00:48:05.757 

210.186.217.53 99 S 

5255 225 927 2012-11-14 
00:48:49.700 

3 2012-11-14 
00:48:47.280 

210.186.217.53 59 C 

5256 238 927 2012-11-14 
00:49:32.530 

3 2012-11-14 
00:49:10.207 

210.186.217.53 70 N 

5465 216 427 2012-11-15 
15:09:42.170 

3 2012-11-15 
14:43:59.167 

37.255.104.207 16 S 

5493 219 828 2012-11-16 
11:47:22.270 

4 2012-11-16 
11:44:43.357 

120.141.214.250 95 J 

5498 232 828 2012-11-16 
12:00:33.670 

4 2012-11-16 
11:46:25.917 

120.141.214.250 1 S 

5633 240 391 2012-11-19 1 2012-11-19 175.136.62.14 1 S 
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00:49:53.113 00:49:00.933 

5634 241 391 2012-11-19 
00:49:59.140 

5 2012-11-19 
00:49:03.117 

175.136.62.14 1 S 

5636 242 391 2012-11-19 
00:50:05.633 

1 2012-11-19 
00:49:08.093 

175.136.62.14 1 S 

5637 244 391 2012-11-19 
00:50:19.803 

1 2012-11-19 
00:49:13.013 

175.136.62.14 1 S 

5640 246 391 2012-11-19 
00:50:55.980 

1 2012-11-19 
00:49:18.553 

175.136.62.14 1 S 

5643 250 391 2012-11-19 
00:51:18.420 

2 2012-11-19 
00:49:25.183 

175.136.62.14 1 S 

5645 251 391 2012-11-19 
00:51:45.113 

2 2012-11-19 
00:49:30.197 

175.136.62.14 1 S 

5647 255 391 2012-11-19 
00:51:52.640 

5 2012-11-19 
00:49:37.170 

175.136.62.14 1 S 

5649 258 391 2012-11-19 
00:52:14.093 

2 2012-11-19 
00:49:44.107 

175.136.62.14 1 S 

5651 259 391 2012-11-19 
00:52:18.920 

1 2012-11-19 
00:49:47.477 

175.136.62.14 1 S 

5842 270 970 2012-11-19 
02:40:18.987 

3 2012-11-19 
02:39:33.023 

113.210.229.23 85 C 

5844 263 970 2012-11-19 
02:40:42.977 

3 2012-11-19 
02:40:30.893 

113.210.229.23 11 C 

5846 260 970 2012-11-19 
02:40:54.167 

3 2012-11-19 
02:40:49.873 

113.210.229.23 8 C 

5847 258 970 2012-11-19 
02:41:04.113 

3 2012-11-19 
02:40:58.950 

113.210.229.23 8 C 

5849 269 970 2012-11-19 
02:41:38.913 

3 2012-11-19 
02:41:19.230 

113.210.229.23 85 C 

5850 247 970 2012-11-19 
02:41:52.277 

3 2012-11-19 
02:41:45.633 

113.210.229.23 98 C 

5882 241 850 2012-11-19 
09:50:42.000 

4 2012-11-19 
09:50:05.967 

60.54.40.239 13 J 

5883 242 850 2012-11-19 
09:50:38.533 

5 2012-11-19 
09:50:35.767 

60.54.40.239 14 J 

5884 246 850 2012-11-19 
09:51:26.827 

5 2012-11-19 
09:51:22.800 

60.54.40.239 1 S 

5885 255 850 2012-11-19 
09:51:34.320 

4 2012-11-19 
09:51:32.137 

60.54.40.239 1 S 

5886 236 550 2012-11-19 
09:52:21.043 

3 2012-11-19 
09:51:37.850 

210.48.147.109 14 J 

5887 242 550 2012-11-19 
09:52:28.360 

3 2012-11-19 
09:52:25.247 

210.48.147.109 14 J 

5888 251 550 2012-11-19 
09:52:34.960 

3 2012-11-19 
09:52:30.623 

210.48.147.109 14 J 

5924 241 718 2012-11-19 
12:09:15.593 

3 2012-11-19 
12:08:25.550 

118.101.201.173 13 J 

5925 241 718 2012-11-19 
12:09:37.477 

3 2012-11-19 
12:09:34.597 

118.101.201.173 1 S 

5926 248 718 2012-11-19 
12:11:58.107 

3 2012-11-19 
12:11:49.557 

118.101.201.173 48 S 

5927 262 718 2012-11-19 
12:12:22.620 

3 2012-11-19 
12:12:19.593 

118.101.201.173 1 S 

5929 259 718 2012-11-19 
12:13:14.027 

3 2012-11-19 
12:13:05.127 

118.101.201.173 1 S 

5932 256 718 2012-11-19 
12:13:55.393 

3 2012-11-19 
12:13:40.490 

118.101.201.173 11 S 

5933 255 718 2012-11-19 
12:14:15.777 

3 2012-11-19 
12:14:07.383 

118.101.201.173 1 S 
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5934 254 718 2012-11-19 
12:14:43.643 

3 2012-11-19 
12:14:27.390 

118.101.201.173 55 S 

5937 253 718 2012-11-19 
12:15:24.027 

3 2012-11-19 
12:15:18.920 

118.101.201.173 102 S 

5938 249 718 2012-11-19 
12:15:34.890 

3 2012-11-19 
12:15:32.700 

118.101.201.173 85 S 

5939 244 718 2012-11-19 
12:15:46.297 

3 2012-11-19 
12:15:43.783 

118.101.201.173 1 S 

5940 241 718 2012-11-19 
12:16:07.947 

3 2012-11-19 
12:16:05.093 

118.101.201.173 1 S 
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No. Name of Stored Procedure 

1 sp_alterdiagram 

2 sp_creatediagram 

3 sp_dropdiagram 

4 sp_helpdiagramdefinition 

5 sp_helpdiagrams 

6 sp_renamediagram 

7 sp_upgraddiagrams 

8 spAriaGetEmails 

9 spCityGet 

10 spCityToState 

11 spConfDelete 

12 spConfGetByID 

13 spConfGetByOwnerID 

14 spConfGetFromTo 

15 spConfGetPending 

16 spConfGetPendingTop50 

17 spConfGetPicname 

18 spConfGetTop10 

19 spConfGetTop25 

20 spConfGetTop3 

21 spConfInsert 

22 spConfUpdateCounter 

23 spConfUpdateInformation 

24 spConfUpdatePicName 

25 spConfUpdateStatusAccepted 

26 spCountriesGetAll 

27 spDegreeGet 

28 spFacultyGet 

29 spFacultyGetInfo 

30 spFacultyToUniversity 

31 spFacultyUpdateMemberCount 

32 spFriendAccept 

33 spFriendAcceptAndAdd 

34 spFriendDeny 

35 spFriendExistanceCheck 

36 spFriendGetAllByInvitee 

37 spFriendGetAllByInviter 

38 spFriendGetAllPendingByInvitee 

39 spFriendGetByID 

40 spFriendGetNewCount 

41 spFriendInsert 

42 spFriendMyTop5 

43 spFriendsCount 

44 spJobDelete 

45 spJobGetByID 

46 spJobGetByOwnerID 
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47 spJobGetFromTo 

48 spJobGetPicname 

49 spJobGetTop10 

50 spJobGetTop25 

51 spJobGetTop3 

52 spJobInsert 

53 spJobInsertNoDeadline 

54 spJobsGetPending 

55 spJobsGetPendingTop50 

56 spJobsUpdateCounter 

57 spJobsUpdateStatusAccepted 

58 spJobUpdateInformation 

59 spJobUpdatePicName 

60 spLastNewsUpdatesGet 

61 spLastVisitorsGet 

62 spLastVisitorsInsert 

63 spLogin 

64 spLoginFirst 

65 spLogsInsert 

66 spMessageGetByReciever_All 

67 spMessageGetNewCount 

68 spMessageInsert 

69 spMessageUpdateStatus 

70 spMessageUpdateStatusToNotNew 

71 spNewsAlgorithmCalculateAvgRatebyUserID 

72 spNewsAlgorithmCBDeleteAllPrediction10 

73 spNewsAlgorithmCBGetAllItemByTreeNode 

74 spNewsAlgorithmCBGetRandomRemainedItems 

75 spNewsAlgorithmCBGetUserAllScoredNodes 

76 spNewsAlgorithmCBMapRankToNode 

77 spNewsAlgorithmCBNodeUpdateScoreDep 

78 spNewsAlgorithmCBNodeUpdateScoreFaculty 

79 spNewsAlgorithmCBNodeUpdateScoreSelfClick 

80 spNewsAlgorithmCBNodeUpdateScoreSelfRank 

81 spNewsAlgorithmCBNodeUpdateScoreTotal 

82 spNewsAlgorithmCBPrediction10Insert 

83 spNewsAlgorithmCBResetScores 

84 spNewsAlgorithmCBTreeScoreMaking 

85 spNewsAlgorithmCBUpdateNewsNodeID 

86 spNewsAlgorithmClbGetAllNewsSimilarities 

87 spNewsAlgorithmClbGetPredictionListByPredValue 

88 spNewsAlgorithmClbGetPredValuesbyUserID 

89 spNewsAlgorithmClbPredictionInsert 

90 spNewsAlgorithmClbPredictionSmallInsert 

91 spNewsAlgorithmClbSimilarityCalcDownPower 

92 spNewsAlgorithmClbSimilarityCalcUp 

93 spNewsAlgorithmClbSimilarityItemAB 

94 spNewsAlgorithmClbSimilarityItemABInsert 
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95 spNewsAlgorithmClbSimilarityUpdateValue 

96 spNewsAlgorithmEvCalculation 

97 spNewsAlgorithmEvCalculation2 

98 spNewsAlgorithmEvInsert 

99 spNewsAlgorithmGetAllNew 

100 spNewsAlgorithmGetAllNewsInDuration 

101 spNewsAlgorithmGetAllNewsTotal 

102 spNewsAlgorithmGetAllPrediction 

103 spNewsAlgorithmGetCBbByUserID 

104 spNewsAlgorithmGetClbByUserID 

105 spNewsAlgorithmGetNewsPrediction_10_23 

106 spNewsAlgorithmGetNewsPrediction_10_31 

107 spNewsAlgorithmGetNewsPrediction_11_12 

108 spNewsAlgorithmGetNewsPrediction_11_19 

109 spNewsAlgorithmGetNewsPrediction_11_25 

110 spNewsAlgorithmGetNewsPrediction_12_11 

111 spNewsAlgorithmGetNewsPrediction_12_20 

112 spNewsAlgorithmGetNewsPrediction_12_4 

113 spNewsAlgorithmGetNewsRank_Nrn_Count 

114 spNewsAlgorithmGetNewsRank_Nrs_Count 

115 spNewsAlgorithmGetNewsRankInDuration 

116 spNewsAlgorithmGetNewsRankInDuration_10_23 

117 spNewsAlgorithmGetNewsRankInDuration_10_31 

118 spNewsAlgorithmGetNewsRankInDuration_11_12 

119 spNewsAlgorithmGetNewsRankInDuration_11_19 

120 spNewsAlgorithmGetNewsRankInDuration_11_25 

121 spNewsAlgorithmGetNewsRankInDuration_12_11 

122 spNewsAlgorithmGetNewsRankInDuration_12_20 

123 spNewsAlgorithmGetNewsRankInDuration_12_4 

124 spNewsAlgorithmGetRandom 

125 spNewsAlgorithmGetRatedItemsAllByUser 

126 spNewsAlgorithmGetRatedItemsByUser 

127 spNewsAlgorithmGetSimilarityItemAB 

128 spNewsAlgorithmInsertCollaborativeRnd10 

129 spNewsAlgorithmInsertNewToNewsTotal 

130 spNewsAlgorithmNewGetUserFacultyTopScoredNodes 

131 spNewsAlgorithmNewGetUserFriendsTopScoredNodes 

132 spNewsAlgorithmNewNodeUpdateScoreTotal 

133 spNewsAlgorithmNewsRankScienceIDUpdate 

134 spNewsAlgorithmUpdatePredictionValue 

135 spNewsDelete 

136 spNewsGetByID 

137 spNewsGetByOwnerID 

138 spNewsGetFromTo 

139 spNewsGetPending 

140 spNewsGetPendingTop50 

141 spNewsGetPicname 

142 spNewsGetTop10 
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143 spNewsGetTop25 

144 spNewsGetTop3 

145 spNewsInsert 

146 spNewsOldDelete 

147 spNewsOldGetByNewsID 

148 spNewsOldGetPicname 

149 spNewsOldGetRecordsinDuration 

150 spNewsOldGetTop20 

151 spNewsOldGetTop5 

152 spNewsOldInsert 

153 spNewsOldUpdateInformation 

154 spNewsOldUpdatePicName 

155 spNewsRanksGetAllbyUser 

156 spNewsRanksGetLastbyUser 

157 spNewsRanksInsert 

158 spNewsRankUpdate 

159 spNewsTopGetRandom 

160 spNewsUpdateCounter 

161 spNewsUpdateInformation 

162 spNewsUpdatePicName 

163 spNewsUpdateStatusAccepted 

164 spPointsGetBasicValue 

165 spPointsInsertNew 

166 spPointsUpdate1 

167 spPointsUpdate2 

168 spPointsUpdate3 

169 spPointsUpdate4 

170 spPointsUpdate5 

171 spProfileExistanceCheck 

172 spProfileExistanceCheckByEmail 

173 spProfileGet5NewMember 

174 spProfileGetAll00Flag 

175 spProfileGetAllEmails 

176 spProfileGetAllMemberByFaculty 

177 spProfileGetAllMemberByUniversity 

178 spProfileGetInfo 

179 spProfileGetLastUpdates 

180 spProfileGetNewMemberByUniversity 

181 spProfileGetNewsByMember_10 

182 spProfileGetNewsByMember_All 

183 spProfileGetPicname 

184 spProfileGetShortInfo 

185 spProfileGetShortInfoByEmail 

186 spProfileGetStatisticsInfo 

187 spProfileGetTop5Member 

188 spProfileGetTop6MemberInFaculty 

189 spProfileGetTop6MemberInUni 

190 spProfileGetTopMemberByUniversity 
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191 spProfileInsertLastUpdates 

192 spProfileInsertNews 

193 spProfilePreSignUp 

194 spProfileUpdateInformation 

195 spProfileUpdatePassword 

196 spProfileUpdatePicName 

197 spProfileUpdateStatus 

198 spSchDelete 

199 spSchGetByID 

200 spSchGetByOwnerID 

201 spSchGetFromTo 

202 spSchGetPending 

203 spSchGetPendingTop50 

204 spSchGetPicname 

205 spSchGetTop10 

206 spSchGetTop25 

207 spSchGetTop3 

208 spSchInsert 

209 spSchUpdateCounter 

210 spSchUpdateInformation 

211 spSchUpdatePicName 

212 spSchUpdateStatusAccepted 

213 spSciencesGetAll 

214 spSciencesGetByParent 

215 spStateGet 

216 spTempNewsInDurationInsert 

217 spTree_insert_tree_node 

218 spTree_view_human_tree 

219 spTree_view_tree 

220 spUniversityGet 

221 spUniversityGetFaculties 

222 spUniversityGetInfo 

223 spUniversityGetOrderByMembers 

224 spUniversityGetTop4 

225 spUniversityInsert 

226 spUniversityUpdateMemberCount 
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MyExpert 3-tier Programming Architecture 
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MyExpert Data Flow Diagram 
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MyExpert Entity Relationship Diagram (ERD) 
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MyExpert User Interface 

(Homepage) 
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MyExpert User Interface 

(News Details Webpage) 
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MyExpert User Interface 

(Universities Webpage) 
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MyExpert User Interface 

(Profile Management Webpage) 
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 A Sample of MyExpert e-Newsletter 

(Sent in 17th December 2012) 
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