3.1 INTRODUCTION

Tris(hydroxymethyl)aminomethane (TRIS) is part of the aminoalcohol group and has found many applications in biochemistry, medicine, biology and physiology [Bubb et al., 1995]. In biochemistry, TRIS is used as pH buffer in biological media as it has a $p \mathrm{~K}_{\mathrm{a}}$ value of 8.06. Therefore, TRIS buffer has an effective pH range between 7.0 and 9.2. It has also been reported that TRIS is used in the treatment of acidosis in acute lung injury and it is an effective method to control acidosis [Kallet et al., 2000].

The main characteristic of TRIS is that it contains an amino group and three hydroxyl groups in the structure. The presence of the amino group allows the condensation with the carbonyl group; ketones or aldehydes which lead to the change in its physicochemical and biological properties. TRIS Schiff base derivatives are known to have a broad spectrum of biological activities including anti-tumour, antibiotic, anticancer, antihistamine, antifungal and anti-inflammatory effects. The biological activities of the complexes are found to be largely dependent on the tautomeric form of the ligand; and also the nature and position of the substituent in the benzene ring [Asgebom et al., 1995, Chumakov et al., 2003, Chumakov et al., 2005, Odabaşoğlu et al., 2003b].

The crystal structures of some of the tris(hydroxymethyl)aminomethane Schiff base ligands have been reported by several research groups [Odabaşoğlu et al., 2003a, Chumakov et al., 2000, Asgebom et al., 1996, Tatar et al., 2005]. The ligands are found to adopt the keto-amine tautomeric form whereby the hydrogen atom is located on the azomethine nitrogen atom. The N-H group and oxo-oxygen display a strong intramolecular N-H----O hydrogen in its structures. A recent X-ray study has shown that the Schiff base ligand, 4-chloro-2-[tris(hydroxymethyl)methyliminomethyl]phenol,
exists in zwitterionic form in solid state [Ng , 2008]. This report is in good agreement with the studies on salicylideneaniline structure which revealed that NH form of the salicylideneaniline is predominantly in a zwitterionic form in the crystal and is stabilized by electrostatic intermolecular interactions and further stabilized by intermolecular hydrogen bonding [Ogawa \& Harada 2003].

In this study, a series of diorganotin complexes containing TRIS Schiff base ligands was prepared. The ligands and complexes were characterized by various spectroscopic techniques and further tested for their cytotoxic activities.

3.2 SYNTHESIS

The following commercial chemicals of reagent grade were used in the synthesis: tris(hydroxymethyl)aminomethane, salicylaldehyde, 5-bromosalicylaldehyde, 5-chlorosalicylaldehyde, 5-nitrosalicylaldehyde, 5-bromo-3-methoxy-2-hydroxy benzaldehyde, triethylamine, dimethyltin dichloride, dimethyltin oxide, dibutyltin dichloride, dibutyltin oxide, diphenyltin dichloride and diphenyltin oxide. The following organotin starting materials were prepared as discussed in chapter 2: dicyclohexyltin dichloride, dicyclohexyltin oxide, dibenzyltin dichloride, di(ochlorobenzyl)tin dichloride and di(p-chlorobenzyl)tin dichloride.

The solvents used in the preparation of the Schiff base ligands and their complexes were absolute ethanol, chloroform and toluene. These solvents were distilled before use. Structural formula for the Schiff base ligands are listed in figure 3.1.

Figure 3.1.1
Structural formula for the TRIS Schiff base ligands

2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenol, TA

2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenol, TB

2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl] iminomethyl\}-4-chlorophenol, TC

2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-nitrophenol, TD

2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenol, TE

3.2.1 Preparation of Ligands

Preparation of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenol, TA
Tris(hydroxymethyl)aminomethane $(1.21 \mathrm{~g}, 0.01 \mathrm{~mol})$ and salicylaldehyde (1.07 $\mathrm{mL}, 0.01 \mathrm{~mol}$) were added to 100 mL of ethanol and the mixture was refluxed for 2 hours. A yellow solid formed upon cooling to room temperature. The solid was recrystallized from ethanol. Yield: 1.90 g (84.5%) ; m.p. $139-140^{\circ} \mathrm{C}$

Preparation of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenol, TB

Tris(hydroxymethyl)aminomethane (1.21 $\quad \mathrm{g}, \quad 0.01 \mathrm{~mol})$ and 5bromosalicylaldehyde ($2.01 \mathrm{~g}, 0.01 \mathrm{~mol}$) were dissolved in 200 mL of ethanol. The mixture was refluxed for 2 hours. An orange solid formed when the solution was allowed to stand at room temperature. The solid was recrystallized from ethanol. Yield: 2.13 g (70.1 \%) ; m.p. $141-142^{\circ} \mathrm{C}$

Preparation of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-chlorophenol, TC

A solution of tris(hydroxymethyl)aminomethane ($1.21 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added to an ethanolic solution of 5 -chlorosalicylaldehyde ($1.57 \mathrm{~g}, 0.01 \mathrm{~mol}$) and refluxed for 2 hours. The solution was allowed to stand at room temperature during which an orange solid formed and was recrystallized from ethanol. Yield: 1.95 g (75.1 \%) ; m.p. 137$138^{\circ} \mathrm{C}$

Preparation of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-nitrophenol, TD

An ethanolic solution of 5-nitro-2-hydroxybenzaldehyde ($1.67 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added to an ethanolic solution of tris(hydroxymethyl)aminomethane ($1.21 \mathrm{~g}, 0.01 \mathrm{~mol}$) and refluxed for 2 hours. A yellow solid formed when the solution was allowed to stand at room temperature. The solid was recrystallized from ethanol. Yield: 2.10 g (77.8 \%) ; m.p. $228-230^{\circ} \mathrm{C}$

Preparation of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4bromophenol, TE

A solution of tris(hydroxymethyl)aminomethane ($1.21 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added to an ethanolic solution of 5-bromo-3-methoxy-2-hydroxybenzaldehyde ($2.31 \mathrm{~g}, 0.01$ mol) and refluxed for 2 hours. The solution was allowed to stand at room temperature during which an orange solid formed and was recrystallized from ethanol. Yield: 2.69 g (80.4\%) ; m.p. $192-193^{\circ} \mathrm{C}$

3.2.2 Preparation of organotin complexes

Preparation of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)dimethyltin(IV), TA1

To a suspension of dimethyltin oxide ($0.17 \mathrm{~g}, 1.0 \mathrm{mmol}$) in dry toluene (40 ml), the ligand TA $(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added. The mixture was heated under reflux in a Dean-Stark apparatus for 8 hours for azeotropic removal of water formed in the reaction. The mixture was filtered and the filtrate was left at room temperature during which a yellow solid was obtained. Yield: $0.29 \mathrm{~g}(77.8 \%)$; m.p. $196-198^{\circ} \mathrm{C}$

Preparation of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl] iminomethyl\}phenolato)-

dibutyltin(IV), TA2

An ethanolic solution of dibutyltin dichloride $(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to a hot ethanol solution containing ligand $\mathbf{T A}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ which was earlier refluxed with triethylamine $(0.14 \mathrm{~mL}, 1.0 \mathrm{mmol})$. The solution was stirred and refluxed for 5 hours. The filtrate was evaporated until precipitation was obtained. The precipitation was recrystallised from toluene and the by-products, triethylammonium chloride, was removed through filtration. A yellow crystalline solid was obtained upon slow evaporation of the solution. Yield: $0.35 \mathrm{~g}(79.2 \%)$; m.p. $126-127^{\circ} \mathrm{C}$

Preparation of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)diphenyltin(IV), TA3

Ligand TA ($0.22 \mathrm{~g}, 1.0 \mathrm{mmol}$) and triethylamine ($0.14 \mathrm{~mL}, 1.0 \mathrm{mmol}$) were added to 100 mL of absolute ethanol and the mixture was heated under reflux for 2 hours. Diphenyltin dichloride $(0.34 \mathrm{~g}, 1.0 \mathrm{mmol})$ was then added and the mixture was further refluxed for another 5 hours and filtered. The filtrate was evaporated until precipitation was obtained. The precipitation was recrystallised from toluene and the by-products, triethylammonium chloride, was removed through filtration. A yellow crystalline solid was obtained upon slow evaporation of the solution. Yield: 0.37 g (74.4\%); m.p. $>350^{\circ} \mathrm{C}$ (dec.)

Preparation of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)dicyclohexyltin(IV), TA4

A hot toluene solution of dicyclohexyltin oxide $(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to a hot toluene solution containing ligand $\mathbf{T A}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$. The mixture was stirred and refluxed using a Dean-Stark apparatus for 6 hours and the water formed was
removed at the end of the reaction. The mixture was filtered and the filtrate was left at room temperature during which a yellow solid was obtained. Yield: 0.37 g (75.5\%) ; m.p. $190-191^{\circ} \mathrm{C}$

Preparation of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl] iminomethyl\}phenolato)dibenzyltin(IV), TA5

Ligand TA ($0.22 \mathrm{~g}, 1.0 \mathrm{mmol}$) and triethylamine ($0.14 \mathrm{~mL}, 1.0 \mathrm{mmol}$) were dissolved in 100 mL of absolute ethanol and the mixture was heated under reflux for 2 hours. Dibenzyltin dichloride $(0.37 \mathrm{~g}, 1.0 \mathrm{mmol})$ was then added and the mixture was refluxed for another 5 hours and filtered. The filtrate was evaporated until precipitation was obtained. The precipitation was recrystallised from toluene:chloroform (1:1) and the by-products, triethylammonium chloride, was removed through filtration. A yellow crystalline solid was obtained upon slow evaporation of the solution. Yield: 0.34 g (65.2\%); m.p. $>350^{\circ} \mathrm{C}$ (dec.)

Preparation of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)-di(o-chlorobenzyltin)(IV), TA6

Ligand TA $(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ was refluxed with triethylamine $(0.14 \mathrm{~mL}, 1.0$ mmol) for 3 hours. Then, a hot ethanolic solution containing di(o-chlorobenzyl)tin dichloride $(0.44 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added to the mixture. The mixture was stirred, refluxed for 5 hours and filtered. The filtrate was evaporated until precipitation was obtained. The precipitation was recrystallised from toluene and the by-products, triethylammonium chloride, was removed through filtration. A yellow crystalline solid was obtained upon slow evaporation of the solution. Yield: 0.42 g (70.3\%); m.p. 194$195^{\circ} \mathrm{C}$

Preparation of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)-

di(p-chlorobenzyltin)(IV), TA7

An ethanolic solution containing ligand $\mathbf{T A}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ was refluxed with triethylamine $(0.14 \mathrm{~mL}, 1.0 \mathrm{mmol})$ for 2 hours. Then, a hot ethanolic solution containing di(p-chlorobenzyl)tin dichloride $(0.44 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to the mixture, refluxed for 6 hours and filtered. The filtrate was evaporated until precipitation was obtained. The precipitation was recrystallised from toluene and the by-products, triethylammonium chloride, was removed through filtration. A yellow crystalline solid was obtained upon slow evaporation of the solution. Yield: 0.39 g (65.0 \%) ; m.p. $>350^{\circ} \mathrm{C}$ (dec.)

The various complexes were prepared using the similar procedure described for complexes TA1-TA7. The yields and melting points of the complexes are tabulated in table 3.3.2.

3.2.3 Physical measurement of the Schiff base ligands and organotin complexes

The melting points of the compounds were determined on a 'Electrothermal' digital melting point apparatus and were uncorrected. Elemental analyses of the complexes were carried out on an Eager 300 CHNS Elemental Analyzer in the Department of Chemistry, National University of Malaysia and on a Perkin-Elmer EA2400 CHNS Elemental Analyzer in the University of Malaya.

The infrared spectra for the compounds were recorded in the region 400-4000 cm^{-1} with a Perkin-Elmer Spectrum 2000 FT-IR spectrophotometer and a Perkin-Elmer Spectrum RX1 FT-IR spectrophotometer. The samples were prepared as nujol mull or KBr pellet. The UV spectra for the ligands and organotin complexes were recorded
using a Shimadzu UV-PC1601 UV-visible spectrophotometer in the wavelength range of 190 to 600 nm .

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the ligands were recorded in CDCl_{3} or deuterated DMSO at ambient temperature on a JEOL JNM-GSX270 FT NMR SYSTEM spectrometer operating at 270.05 MHz for ${ }^{1} \mathrm{H}$ NMR and 67.80 MHz for ${ }^{13} \mathrm{C}$ NMR. The ${ }^{119}$ Sn NMR spectra were recorded on a JEOL ECA-400MHz. The chemical shifts were recorded in ppm with reference to $\mathrm{Me}_{4} \mathrm{Si}$ for ${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}$ and DMSO for ${ }^{13} \mathrm{C}$ NMR and $\mathrm{Me}_{4} \mathrm{Sn}$ for ${ }^{119} \mathrm{Sn}$ NMR. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of some of the complexes in DMSO gave poor spectra and hence, assignment of peaks was not satisfactory.

The X-ray crystallographic intensity data were measured using $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation graphite-crystal monochromator ($\lambda=0.71073 \AA$) radiation on a Bruker SMART APEX2 CCD diffractometer in University of Malaya and Bruker-Nonius APEX2 CCD diffractometer in University of Canterbury, New Zealand. The structure of the compounds were solved by the direct method and refined by the full-matrix leastsquares procedure based on F^{2} using the SHELXL programme. Supplementary data including observed and calculated structure factors for the complexes are available from the author on request.

3.3 RESULTS AND DISCUSSION

3.3.1 Analytical Data

The TRIS Schiff base ligands were prepared from the reactions of 1:1 molar ratio of the tris(hydroxymethyl)aminomethane with salicylaldehyde and substituted salicylaldehyde. However, pure products were not isolated from the reaction between the tris(hydroxymethyl)aminomethane with 2-hydroxyacetophenone and substituted 2hydroxyacetophenone. As the obtained product was a sticky mass, purification failed to give moderate yield of the product.

The prepared TRIS Schiff base had several potential coordination sites namely the imine nitrogen and four hydroxyl groups; three hydroxyl groups on the methylene group and one hydroxyl on the salicylaldehyde or substituted salicylaldehyde site. A general reaction scheme of the preparation of the Schiff base ligands is shown in scheme 3.3.1.

Scheme 3.3.1 Reaction scheme for the preparation of the TRIS Schiff base ligands

The Schiff base ligands were used without further purification in the preparation of their organotin complexes. The analytical data of the Schiff base ligands, TA, TB, TC, TD and TE are listed in table 3.3.1. The colour of the Schiff base ligands were yellow or orange and their melting points were in the range of $137-230^{\circ} \mathrm{C}$. As
diorganotin halides and diorganotin oxides are relatively strong Lewis acids, they can easily form stable complexes with Schiff bases. The diorganotin complexes obtained were yellow, orange or brown in colour. A general reaction scheme for the preparation of the complexes is shown in scheme 3.3.2.

Scheme 3.3.2 Reaction scheme for the preparation of the diorganotin TRIS Schiff base complexes

$$
\begin{aligned}
& \mathrm{X}=\mathrm{H}, \mathrm{Br}, \mathrm{Cl} ; \mathrm{Y}=\mathrm{OCH}_{3} \\
& \mathrm{R}=\mathrm{CH}_{3}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{6} \mathrm{H}_{5}, \text { benzyl, } o \text {-Clbenzyl, } p \text {-Clbenzyl }
\end{aligned}
$$

$$
\mathrm{X}=\mathrm{H}, \mathrm{Br}, \mathrm{Cl} ; \mathrm{Y}=\mathrm{OCH}_{3}
$$

$$
\mathrm{R}=\mathrm{CH}_{3}, n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{Cy}
$$

Table 3.3.1.
Analytical data for the TRIS ligands

Ligand	Colour	Percentage Yield (\%)	Melting-Point $\left({ }^{\circ} \mathrm{C}\right)$	Elemental Analysis Found (Calculated)		

TA: $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{H} ; \mathbf{T B}: \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{H} ;$
TC: $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{H} ; \mathbf{T D}: \mathrm{X}=\mathrm{NO}, \mathrm{Y}=\mathrm{H} ;$ TE: $\mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{OCH}_{3}$

Table 3.3.2a
Analytical data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)diorganotin complexes

Complex	Colour	Percentage Yield (\%)	Melting-Point (${ }^{\circ} \mathrm{C}$)	Elemental Analysis Found (Calculated) (\%)		
				C	H	N
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dimethyltin(IV), TA1	Yellow	77.8	196-198	41.02 (41.99)	5.02 (5.11)	3.98 (3.77)
(2- \{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\} phenolato)dibutyltin(IV), TA2	Yellow	79.2	126-127	49.94 (50.06)	7.12 (6.80)	2.79 (3.07)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)diphenyltin(IV), TA3	Yellow	74.4	>350 (dec.)	56.00 (55.69)	4.66 (4.64)	2.73 (2.82)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\} phenolato)dicyclohexyltin(IV), TA4	Yellow	75.5	190-191	53.70 (54.39)	6.87 (6.89)	3.02 (2.76)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dibenzyltin(IV), TA5	Yellow	65.2	> 350 (dec.)	56.95 (57.31)	5.57 (5.15)	2.43 (2.67)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)- di(o-chlorobenzyl)tin(IV), TA6	Yellow	70.3	194-195	51.15 (50.64)	4.27 (4.22)	2.38 (2.36)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)- di(p-chlorobenzyl)tin(IV), TA7	Yellow	65.0	> 350 (dec.)	50.35 (50.64)	3.90 (4.22)	2.20 (2.36)

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{\mathrm{y}}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl (o-ClBz), p-chlorobenzyl p-ClBz)

Table 3.3.2b
Analytical data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenolato)diorganotin complexes

Complex	Colour	Percentage Yield (\%)	Melting-Point (${ }^{\circ} \mathrm{C}$)	Elemental Analysis Found (Calculated) (\%)		
				C	H	N
Bis[(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)]dimethyltin(IV), TB1	Yellow	72.1	208-210	34.29 (34.65)	3.89 (3.99)	3.34 (3.11)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)dibutyltin(IV), TB2	Yellow	78.5	110-112	42.84 (42.78)	5.69 (5.62)	2.42 (2.62)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)diphenyltin(IV), TB3	Yellow	70.5	> 350 (dec.)	48.07 (48.16)	3.79 (3.84)	2.86 (2.44)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl $\}$-4-bromophenolato)- dicyclohexyltin(IV), TB4	Yellow	71.1	194-196	47.32 (47.07)	5.27 (5.79)	2.78 (2.31)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)- dibenzyltin(IV), TB5	Yellow	73.2	> 350 (dec.)	50.29 (49.81)	4.40 (4.31)	2.55 (2.32)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)di(o-chlorobenzyl)tin(IV), TB6	Yellow	70.1	> 350 (dec.)	45.00 (44.69)	3.61 (3.59)	1.91 (2.08)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)di(p-chlorobenzyl)tin(IV), TB7	Yellow	70.3	212-214	45.02 (44.69)	3.90 (3.59)	2.35 (2.08)

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz)
o-chlorobenzyl $(o-\mathrm{ClBz}), p$-chlorobenzyl $(p$-ClBz $)$

Table 3.3.2c
Analytical data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}-4$-chlorophenolato)diorganotin complexes

Complex	Colour	Percentage Yield (\%)	Melting-Point (${ }^{\circ} \mathrm{C}$)	Elemental Analysis Found (Calculated) (\%)		
				C	H	N
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dimethyltin(IV), TC1	Yellow	79.9	220-222	38.79 (38.72)	4.00 (4.43)	3.80 (3.44)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-chlorophenolato)dibutyltin(IV), TC2	Yellow	82.5	133-134	46.34 (46.52)	5.99 (6.11)	3.02 (2.85)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)diphenyltin(IV), TC3	Yellow	72.3	> 350 (dec.)	52.27 (52.10)	3.99 (4.15)	2.65 (2.64)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dicyclohexyltin(IV), TC4	Yellow	78.9	180-182	50.59 (50.93)	5.89 (6.27)	2.70 (2.58)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dibenzyltin(IV), TC5	Yellow	73.2	> 350 (dec.)	53.38 (53.81)	4.30 (4.66)	2.67 (2.51)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-chlorophenolato)-di(o-chlorobenzyl)tin(IV), TC6	Yellow	72.1	188-189	48.15 (47.89)	3.97 (3.83)	2.45 (2.23)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)di(p-chlorobenzyl)tin(IV), TC7	Yellow	66.2	>350 (dec.)	47.50 (47.89)	3.47 (3.83)	2.03 (2.23)

Table 3.3.2d
Analytical data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)diorganotin complexes

Complex	Colour	Percentage Yield (\%)	Melting-Point (${ }^{\circ} \mathrm{C}$)	Elemental Analysis Found (Calculated) (\%)		
				C	H	N
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-nitrophenolato)dimethyltin(IV), TD1	Yellow	78.1	113-114	36.99 (37.45)	4.59 (4.32)	6.68 (6.72)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-nitrophenolato)dibutyltin(IV), TD2	Yellow	73.5	97-98	45.10 (45.55)	5.92 (5.99)	5.77 (5.59)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)diphenyltin(IV), TD3	Yellow	73.8	179-180	50.77 (51.05)	4.28 (4.07)	5.07 (5.17)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dicyclohexyltin(IV), TD4	Yellow	77.6	210-212	50.28 (49.95)	6.08 (6.33)	5.34 (5.06)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dibenzyltin(IV), TD5	Orange	70.1	90-91	53.05 (52.76)	4.82 (4.57)	5.26 (4.92)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)-di(o-chlorobenzyl)tin(IV), TD6	Orange	71.2	102-103	47.84 (47.06)	3.59 (3.76)	4.00 (4.39)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)di(p-chlorobenzyl)tin(IV), TD7	Orange	69.3	72-74	47.77 (47.06)	3.76 (3.76)	4.28 (4.39)

$\mathrm{R}=\mathrm{CH}_{3} \quad \mathrm{C}_{4} \mathrm{H}_{0}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz), o-chlorobenzyl (o-ClBz), p-chlorobenzyl $(p$-CIBz)

Table 3.3.2e
Analytical data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)diorganotin complexes

Complex	Colour	Percentage Yield (\%)	Melting-Point $\left({ }^{\circ} \mathrm{C}\right)$	Elemental Analysis Found (Calculated) (\%)		
				C	H	N
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dimethyltin(IV), TE2	Yellow	78.8	179-180	35.22 (34.97)	4.10 (4.16)	2.93 (2.91)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dibutyltin(IV), TE2	Yellow	72.2	145-146	42.48 (42.50)	5.41 (5.66)	2.46 (2.48)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)diphenyltin(IV), TE3	Yellow	71.5	208-210	47.90 (47.64)	4.24 (3.97)	2.32 (2.31)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-2-methoxy-4-bromophenolato)dicyclohexyltin(IV), TE4	Yellow	76.8	180-181	46.80 (46.72)	5.54 (5.83)	2.42 (2.27)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dibenzyltin(IV), TE5	Yellow	72.2	162-164	48.99 (49.33)	4.75 (4.42)	2.56 (2.21)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)-di(o-chlorobenzyl)tin(IV), TE6	Yellow	70.3	167-168	44.68 (44.48)	3.80 (3.70)	1.95 (1.99)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)di(p-chlorobenzyl)tin(IV), TE7	Yellow	69.6	92-95	44.81 (44.48)	3.42 (3.70)	1.64 (1.99)

3.3.2 IR Spectral data

Table 3.3.3 summarizes the characteristic infrared stretching frequencies for ligands TA, TB, TC, TD and TE while the vibrational stretching frequencies for the diorganotin complexes are listed in table 3.3.4. The hydroxyl stretching frequencies of the free ligands were expected to be in the $3200-3400 \mathrm{~cm}^{-1}$ region [Mikhalylova et al., 2006, Sandbhlor et al., 2002] and a strong broad peak was observed around $3290 \mathrm{~cm}^{-1}$ in the ligands spectra. However, no visible N-H stretching was observed, possibly due to the overlapping of the $\mathrm{N}-\mathrm{H}$ stretching frequency with the $\mathrm{O}-\mathrm{H}$ stretching frequency. In the diorganotin complexes, a characteristic absorption was also clearly observed between $3200-3400 \mathrm{~cm}^{-1}$ region which indicated that not all the hydroxyl oxygen atoms participated in the coordination to the centre metal atom [Dey et al., 1982, Yin and Chen 2006a, Sui et al., 2007]. These findings supported the molecular structure of the diorganotin complexes obtained from X-ray crystallography.

All the Schiff base ligands exhibited the $\mathrm{C}=\mathrm{N}$ stretching frequencies in the region of $1635-1650 \mathrm{~cm}^{-1}$ as derived from the azomethine group and this was within the range reported for azomethine group in Schiff base ligands [Sandbhor et al., 2002, Sui et al., 2007]. The $\mathrm{C}=\mathrm{N}$ stretching frequencies for the organotin complexes were found in the region between $1608-1620 \mathrm{~cm}^{-1}$ which was about $20-30 \mathrm{~cm}^{-1}$ lower than those reported for the Schiff base ligands. These findings confirmed the involvement of the azomethine nitrogen in the coordination with tin atom. The weakening in the $\mathrm{C}=\mathrm{N}$ bond led to the lowering of the $\mathrm{C}=\mathrm{N}$ stretching frequencies in the diorganotin complexes. The reason for this was due to the reduction in the electron density of the azomethine nitrogen and carbonyl moieties.

The C-O stretching frequencies for both the ligands and diorganotin complexes were within the region 1150-1200 cm^{-1} [Signorini et al., 1996, Faniran et al., 1974, Bellamy, 1958]. Ligand TE and its diorganotin complexes exhibited an asymmetrical and symmetrical v (C-O-C) vibration stretching in the $1147-1223 \mathrm{~cm}^{-1}$ and 1026-1097 cm^{-1} region.

The presence of two new bands was observed in the lower frequency region of $400-800 \mathrm{~cm}^{-1}$ for the organotin complexes. The medium absorption in the region of $680-710 \mathrm{~cm}^{-1}$ had been assigned to the $\mathrm{Sn}-\mathrm{O}$ stretching mode of vibration while the weak absorption in the region of $460-480 \mathrm{~cm}^{-1}$ had been assigned to the $\mathrm{Sn}-\mathrm{N}$ stretching vibration. Both the $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{Sn}-\mathrm{N}$ stretching frequencies were within the range reported for diorganotin derivatives [Pettinari et al., 2001, Shujha et al., 2010]

Table 3.3.3
Infrared spectral data for the TRIS ligands

Ligand	$v(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H})$	$v(\mathrm{C}=\mathrm{N})$	$v(-\mathrm{O}-\mathrm{C}=\mathrm{C}-)$	$v(\mathrm{C}-\mathrm{O})$	$\begin{gathered} v_{\mathrm{a}}(\mathrm{C}-\mathrm{O}-\mathrm{C}) \\ v_{\mathrm{s}}(\mathrm{C}-\mathrm{O}-\mathrm{C}) \end{gathered}$
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenol, TA	3321b	1636s	1555m	1189m	-
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenol, TB	3357b	1637s	1560m	1175m	-
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenol, TC	3339b	1639s	1561m	1175m	-
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenol, TD	3255b	1650s	1545m	1194m	-
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenol, TE	3330b	1640s	1528m	1171m	1066m

${ }^{\mathrm{a}} \mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder, $\mathrm{b}=$ broad

> TA: $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{H} ; \mathbf{T B}: \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{H} ;$ TC: $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{H} ; \mathbf{T}: \mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{H} ;$ $\mathbf{T F} \cdot \mathrm{X}=\mathrm{Rr}=\mathrm{Y}=\mathrm{OCH}$

TE: $\mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{OCH}_{3}$,

Table 3.3.4a
Infrared spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)diorganotin complexes

Complex	$v(\mathrm{O}-\mathrm{H})$	$v(\mathrm{C}=\mathrm{N})$	$v(-\mathrm{O}-\mathrm{C}=\mathrm{C}-)$	$v(\mathrm{C}-\mathrm{O})$	$v($ Sn-O)	$v(\mathrm{Sn}-\mathrm{N})$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dimethyltin(IV), TA1	3495b	1614	1540m	1191m	669 m	419w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\} phenolato)dibutyltin(IV), TA2	3422b	1611s	1541 m	1182m	678w	422w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)diphenyltin(IV), TA3	3281b	1611s	1545m	1173 m	699w	436w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\} phenolato)dicyclohexyltin(IV), TA4	3369b	1616s	1542m	1149m	669w	421w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)dibenzyltin(IV), TA5	3401b	1612s	1545 m	1174 m	698m	458w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)di(o-chlorobenzyl)tin(IV), TA6	3373b	1609s	1539m	1140m	697w	457w
$\begin{aligned} & (2-\{[1,1-\text { Bis (hydroxymethyl)-2-oxidoethyll]- } \\ & \text { iminomethyl }\} \text { phenolato) di(} p \text {-chlorobenzyl)tin(IV), } \\ & \text { TA7 } \end{aligned}$	3282b	1610s	1543m	1172m	688w	412w

${ }^{\mathrm{a}} \mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder, $\mathrm{b}=$ broad

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl (o-ClBz), p-chlorobenzyl (p-ClBz)

Table 3.3.4b
Infrared spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenolato)diorganotin complexes

Complex	$v(\mathrm{O}-\mathrm{H})$	$v(\mathrm{C}=\mathrm{N})$	$v(-\mathrm{O}-\mathrm{C}=\mathrm{C}-)$	$v(\mathrm{C}-\mathrm{O})$	$v($ Sn-O)	$v(\mathrm{Sn}-\mathrm{N})$
Bis[(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)]dimethyltin(IV), TB1	3293b	1612s	1525 m	1169 m	684 m	455w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)dibutyltin(IV), TB2	3290b	1612s	1528m	1169 m	661 m	451w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)diphenyltin(IV), TB3	3380b	1608s	1528m	1177 m	660m	448w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)dicyclohexyltin(IV), TB4	3369b	1612s	1525m	1172 m	658m	434w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-bromophenolato)dibenzyltin(IV), TB5	3373b	1618s	1531m	1172m	657 m	463w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)-di(o-chlorobenzyl)tin(IV), TB6	3339b	1620s	1552m	1177 m	655m	455w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)- di(p-chlorobenzyl)tin(IV), TB7	3285b	1611s	1531 m	1167 m	653m	420w

${ }^{\mathrm{a}} \mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak sh $=$ shoulder, $\mathrm{b}=$ broad

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl (o-ClBz), p-chlorobenzyl (p-ClBz)

Table 3.3.4c
Infrared spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-chlorophenolato)diorganotin complexes

Complex	$v(\mathrm{O}-\mathrm{H})$	$v(\mathrm{C}=\mathrm{N})$	$v(-\mathrm{O}-\mathrm{C}=\mathrm{C}-)$	$v(\mathrm{C}-\mathrm{O})$	$v(\mathrm{Sn}-\mathrm{O})$	$v($ Sn-N $)$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dimethyltin(IV), TC1	3376b	1618s	1529 m	1180 m	702w	430w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl\}-4-chlorophenolato)dibutyltin(IV), TC2	3327 b	1614s	1533 m	1170 m	690m	414w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)diphenyltin(IV), TC3	3380b	1611s	1532 m	1178 m	698m	431 m
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dicyclohexyltin(IV), TC4	3367b	1617s	1528m	1172m	702 m	435w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dibenzyltin(IV), TC5	3399b	1619s	1535 m	1170 m	700 m	467w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)-di(o-chlorobenzyl)tin(IV), TC6	3370b	1620s	1533 m	1180m	699m	437w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)di(p-chlorobenzyl)tin(IV), TC7	3283b	1614s	1535 m	1167 m	700 m	430w

${ }^{\mathrm{a}} \mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, sh $=$ shoulder, $\mathrm{b}=$ broad

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz), o-chlorobenzyl $(o-$
ClBz), p-chlorobenzyl (p-CIBz)

Table 3.3.4d
Infrared spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-nitrophenolato)diorganotin complexes

Complex	$v(\mathrm{O}-\mathrm{H})$	$v(\mathrm{C}=\mathrm{N})$	$v(-\mathrm{O}-\mathrm{C}=\mathrm{C}-)$	$v(\mathrm{C}-\mathrm{O})$	$v($ Sn-O)	$v(\mathrm{Sn}-\mathrm{N})$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dimethyltin(IV), TD1	3294b	1619s	1546m	1172 m	695w	448w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dibutyltin(IV), TD2	3274b	1617 m	1543m	1172 m	728w	450w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)diphenyltin(IV), TD3	3396b	1615s	1554m	1187 m	692 m	448w
$\begin{aligned} & \text { (2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- } \\ & \text { iminomethyl }\} \text {-4-nitrophenolato)dicyclohexyltin(IV), } \\ & \text { TD4 } \\ & \hline \end{aligned}$	3274b	1617s	1545m	1173 m	729w	485w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dibenzyltin(IV), TD5	3262b	1615 s	1545 m	1155 m	729w	458w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)-di(o-chlorobenzyl)tin(IV), TD6	3254b	1617s	1548m	1156m	730w	455w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)-di(p-chlorobenzyl)tin(IV), TD7	3422b	1616m	1546m	1173 m	730 m	460w

${ }^{\mathrm{a}} \mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder, $\mathrm{b}=$ broad

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz)
o-chlorobenzyl ($o-\mathrm{ClBz}$), p-chlorobenzyl (p-ClBz)

Table 3.3.4e
Infrared spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)diorganotin complexes

Complex	$v(\mathrm{O}-\mathrm{H})$	$v(\mathrm{C}=\mathrm{N})$	$v(-\mathrm{O}-\mathrm{C}=\mathrm{N}-)$	$v(\mathrm{C}-\mathrm{O})$	$\begin{aligned} & v_{a}(\mathrm{C}-\mathrm{O}-\mathrm{C}), \\ & v_{\mathrm{s}}(\mathrm{C}-\mathrm{O}-\mathrm{C}) \end{aligned}$	$v($ Sn-O)	$v($ Sn-N $)$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dimethyltin(IV), TE2	3395b	1611s	1544m	1180m	1071m, 1039m	670w	469w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-2-methoxy-4-bromophenolato)dibutyltin(IV), TE2	3329b	1608s	1542 m	1183m	1060m, 1038m	681 m	468w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)diphenyltin(IV), TE3	3390b	1611s	1543m	1187 m	1074m, 1040m	697w	471w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dicyclohexyltin(IV), TE4	3341b	1607s	1542m	1175m	1071m, 1037m	683w	462w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-2-methoxy-4-bromophenolato)dibenzyltin(IV), TE5	3343b	1610s	1545m	1178m	1071m, 1038m	685w	464w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-2-methoxy-4-bromophenolato)-di(o-chlorobenzyl)tin(IV), TE6	3433b	1617s	1544 m	1170m	1086m, 1047m	678w	462w
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)di(p-chlorobenzyl)tin(IV), TE7	3399b	1618s	1580m	1170m	1082m, 1052m	708w	438w

$\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder, $\mathrm{b}=$ broad

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{0}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl (o-ClBz), p-chlorobenzyl (p-ClBz)

3.3.3 NMR Spectral Data

Most of the Schiff base ligands and organotin complexes had poor solubility in common deuterated solvents such as $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{CD}_{3} \mathrm{CN},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$. Therefore, the ligands and complexes were prepared and dissolved in deuterated DMSO.
${ }^{1} \mathrm{H}$ NMR chemical shifts for ligands are listed in table 3.3 .5 while the ${ }^{13} \mathrm{C}$ NMR chemical shifts for ligands are listed in table 3.3.6. The ${ }^{1} \mathrm{H}$ NMR chemical shifts for the complexes are listed in table 3.3.7 and the ${ }^{13} \mathrm{C}$ NMR chemical shifts for complexes are listed in table 3.3.8; while the ${ }^{119} \mathrm{Sn}$ NMR chemical shifts are listed in table 3.3.9.

${ }^{1}$ H NMR Spectra

The presence of a sharp resonance signal in the range of $4.70-5.10 \mathrm{ppm}$ for Schiff base ligands TA, TB, TC, TD and TE was assigned to the three equivalent hydroxy protons from the hydroxymethyl group. The methine protons of the azomethine group, $-\mathrm{N}=\mathrm{C}(\mathrm{H})$ - occured as a single peak in the range of $8.30-8.70 \mathrm{ppm}$ for the ligands. The chemical shift for the methylene protons existed as a group of multiplets in the range of $3.30-3.80 \mathrm{ppm}$ while the chemical shift for the phenyl protons was in the range of 6.20-8.00 ppm. The methoxy protons for ligand TE occurred as a singlet and could be found at 3.95 ppm and this was in good agreement with those reported in literature [Pavia et al., 2001].

Similarly, in the organotin complexes, the chemical shift for the methylene protons could also be observed as a group of multiplets in the range of $3.00-4.00 \mathrm{ppm}$ while the chemical shift for the aryl protons was in the range of $6.20-8.50 \mathrm{ppm}$. The $\mathrm{HC}=\mathrm{N}$ azomethine proton of the diorganotin complexes was observed as a sharp singlet in the region of 8.20-9.00 ppm which varied slightly from those reported for the Schiff base ligands.

In the ${ }^{1} \mathrm{H}$ NMR spectra for the organotin complexes, the presence of a strong signal in the range of $4.70-5.10 \mathrm{ppm}$ indicated the presence of the hydroxy protons from the hydroxymethyl groups. This evidence further supported the fact that not all the hydroxy protons were involved in the coordination to the centre tin atom. The decrease in the integration value of the OH proton signal in the organotin complexes suggested the bonding of the tin atom to one of oxygen atom of the Schiff base ligand through the replacement of one of the phenolic protons.

The chemical shift values of the aromatic and aliphatic protons of the complexes were located in the expected region of the spectra. These chemical shifts information were useful for the confirmation of the presence of the alkyl and aryl groups in the complexes.

The chemical shifts of the azomethine carbon in the ligands $\mathbf{T A}, \mathbf{T B}, \mathbf{T C}, \mathbf{T D}$ and TE occurred in the range of 162-166 ppm. Among the Schiff base ligands, TD showed the highest $\mathrm{C}(7)$ chemical value at 166.3 ppm . Also the chemical shift value for $\mathrm{C}(5)$ in $\mathbf{T D}$ was the highest, probably due to the presence of the nitro substituent in the aryl ring. Nitro groups are strong electron-withdrawing functional groups which remove electron density from aryl rings. This in turn affects the electron density on the azomethine nitrogen which gave rise to the highest deshielding effect on $\mathrm{C}(7)$. The presence of the electron donating groups, Cl and Br , on $\mathrm{C}(5)$ did not display result in large shifts in its chemical shift values in the diorganotin complexes in comparison to the Schiff base ligands.

The ${ }^{13} \mathrm{C}$ NMR chemical shift for the quarternary carbon, $\mathrm{C}(8)$, was observed between $65-68 \mathrm{ppm}$ in the TRIS Schiff base ligands and the diorganotin complexes. The chemical shift values for the methylene carbons, $\mathrm{C}(9), \mathrm{C}(10)$ and $\mathrm{C}(11)$ can be found in the region of 61-62 for the ligands while for the diorganotin complexes, its chemical shift value range was slightly wider, between $60-70 \mathrm{ppm}$ due to the influence of the interaction between the methylene oxygen and the tin atom. The ${ }^{13} \mathrm{C}$ NMR chemical shift value for the methoxy substituent in ligand TE and its complexes was observed at around 56 ppm .

The ${ }^{13} \mathrm{C}$ NMR spectra for the complexes showed a significant downfield shift for all carbon resonances as compared to the free ligands, as a consequence of the electron density transfer from the ligand to the acceptor. The chemical shifts of the aryl carbons were observed between $110-160 \mathrm{ppm}$ and these values were consistent with those of aromatic carbons [Yin and Chen 2006a, Yin and Chen 2006b].

As some of the complexes had poor solubility in most of the deuterated solvent, including DMSO, rigorous assignments of the carbon peaks could not be done especially on the J-coupling constants $\left[{ }^{\mathrm{n}} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)\right]$ of the organotin fragments. Also, some of the aryl carbons for the dibenzyltin and substituted dibenzyltin complexes were not observed due to the high signal-to-noise (S / N) overlapping with the carbon signals because of the insolubility of the complexes in deuterated solvents.

${ }^{119}$ Sn NMR Spectra

${ }^{119}$ Sn NMR spectroscopy was used as an additional chemical tool to predict the coordination environment of tin in the complexes. From the table, the ${ }^{119} \mathrm{Sn}$ NMR chemical shifts of the dimethyltin complexes were found between -158 to -174 ppm , dibutyltin complexes at around -179 to -190 ppm, diphenyltin complexes at around -325 ppm and dicyclohexyltin complexes at -238 to -283 ppm . These ${ }^{119} \mathrm{Sn}$ NMR chemical shift values were found to be in the similar range to those reported for the respective diorganotin compounds indicating that most of these diorganotin complexes displayed five-coordinate tin geometry.

However, the ${ }^{119}$ Sn NMR chemical shift values were not obtained for some of the dibenzyltin, $\operatorname{di}(o$-chlorobenzyl)tin and $\operatorname{di}(p$-chlorobenzyl)tin as the complexes had poor solubility in most deuterated solvents including deuterated DMSO. The ${ }^{119} \mathrm{Sn}$ NMR chemical shifts for some of the dibenzyltins and substituted dibenzyltins showed that their chemical shift values covered over a wide range, from -275 to -520 ppm . One of the reasons that the complexes were not in a five-coordinated coordination could be due to many factors such as the presence of the solvate solvent in the complexes.

Table 3.3.5
${ }^{1}$ H NMR chemical shifts for the TRIS ligands

Ligand	Assignments ${ }^{\text {a }}$ [$\left.\delta\left({ }^{1} \mathrm{H}\right) / \mathrm{ppm}\right]$			
	Aryl	$-\mathrm{N}=\mathrm{C}(\underline{\mathrm{H}})$	-C-CH2 ${ }_{2}$-, - OCH_{3}	-Oㅐ
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenol, TA	$\begin{aligned} & \hline 6.63-6.73(\mathrm{~m}, 3 \mathrm{H}), \\ & 7.13-7.26(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.47 (s, 1H)	3.47-3.59 (m, 6H)	4.76 (s, 3H)
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-bromophenol, TB	$\begin{gathered} \hline 6.67-6.71(\mathrm{~m}, 1 \mathrm{H}), \\ 7.34-7.62(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$	8.50 (s, 1H)	3.47-3.59 (m, 6H)	4.85 (s, 3H)
$\text { 2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl }\} \text { - }$ 4-chlorophenol, TC	$\begin{gathered} \hline 6.73-6.76(\mathrm{~m}, 1 \mathrm{H}), \\ 7.25-7.50(\mathrm{~m}, 2 \mathrm{H}) \\ \hline \end{gathered}$	8.51 (s, 1H)	3.42-3.59 (m, 6H)	4.83 (s, 3H)
$\begin{aligned} & \text { 2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl }\} \text { - } \\ & \text { 4-nitrophenol, TD } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.25-6.52(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.81-8.54(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.70 (s, 1H)	3.50-3.62 (m, 6H)	5.28 (s, 3H)
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -2-methoxy-4-bromophenol, TE	$\begin{aligned} & \hline 6.83 .6 .89(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.01-7.10(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	8.35 (s, 1H)	$\begin{gathered} 3.37-3.75(\mathrm{~m}, 6 \mathrm{H}), \\ 3.95(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	5.06 (s, 3H)

${ }^{a} \mathrm{~s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet

[^0]TE: $\mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{OCH}_{3}$

Table 3.3.6a
${ }^{1}$ H NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)diorganotin complexes

Complex	Assignments ${ }^{\text {a }}$ [$\left.\delta\left({ }^{1} \mathrm{H}\right) / \mathrm{ppm}\right]$				
	Aryl	$-\mathrm{N}=\mathrm{C}(\underline{\mathrm{H}})$	-OH	- $\mathrm{C}-\mathrm{CH}_{2}{ }^{-}$	R group
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)dimethyltin(IV), TA1	$\begin{aligned} & \hline 6.59-6.67(\mathrm{~m}, 2 \mathrm{H}), \\ & 7.30-7.33(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.39 (s, 1H)	5.21 (s, 2H)	3.47-3.60 (m, 6H)	0.43 (s, 6H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\} phenolato)dibutyltin(IV), TA2	$\begin{gathered} \hline 6.62-6.69(\mathrm{~m}, 2 \mathrm{H}), \\ 7.14-7.37(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$	8.94 (s, 1H)	5.24 (s, 2H)	3.55-3.85 (m, 6H)	0.83-2.00 (m, 18H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\} phenolato)diphenyltin(IV), TA3	$\begin{gathered} 6.69-6.75(\mathrm{~m}, 2 \mathrm{H}), \\ 6.93-8.00(\mathrm{~m}, 3 \mathrm{H}) \\ \hline \end{gathered}$	8.58 (s, 1H)	5.27 (s, 2H)	3.48-3.93 (m, 6H)	6.93-8.00 (m, 10H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)dicyclohexyltin(IV), TA4	$\begin{aligned} & \hline 6.55-6.57(\mathrm{~m}, 2 \mathrm{H}), \\ & 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.39(s, 1H)	5.02 (s, 2H)	3.57-3.70 (m, 6H)	$\begin{gathered} 1.24-1.76(\mathrm{~m}, 20 \mathrm{H}) \\ 2.45-2.46(\mathrm{~m}, 2 \mathrm{H}) \\ \hline \end{gathered}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dibenzyltin(IV), TA5	6.90-7.50 (m, 4H)	8.40 (s,1H)	5.04 (s, 2H)	3.00-3.30 (m, 6H)	$\begin{aligned} & 1.10-1.23(\mathrm{~m}, 4 \mathrm{H}), \\ & 6.90-7.50(\mathrm{~m}, 10 \mathrm{H}) \\ & \hline \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl\}phenolato)di(o-chlorobenzyl)tin(IV), TA6	7.16-7.87 (m, 4H)	8.58 (s, 1H)	5.18 (s, 2H)	3.80-3.86 (m, 6H),	$\begin{aligned} & 1.11-1.19(\mathrm{~m}, 4 \mathrm{H}), \\ & 7.16-7.87(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)di(p-chlorobenzyl)tin(IV), TA7	6.74-7.66 (m, 4H)	8.56 (s, 1H)	5.20 (s, 2H)	3.69-3.90 (m, 6H)	$\begin{aligned} & 1.13-1.20(\mathrm{~m}, 4 \mathrm{H}), \\ & 6.74-7.66(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$

${ }^{\mathrm{a}} \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{\mathrm{H}}$, phenyl (Ph), cyclohexyl (Cy$)$, benzyl (Bz),
o-chlorobenzyl $(o-\mathrm{ClBz}), p$-chlorobenzyl (p-CIBz)

Table 3.3.6b
${ }^{1} \mathrm{H}$ NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenolato)diorganotin complexes

Complex	Assignments ${ }^{\text {a }}$ [$\delta\left({ }^{1} \mathrm{H}\right) / \mathrm{ppm}$]				
	Aryl	$-\mathrm{N}=\mathrm{C}(\underline{\mathrm{H}})$	-OH	$-\mathrm{C}-\mathrm{CH}_{2}-$	R group
Bis[(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)]dimethyltin(IV), TB1	6.60-7.40 (m, 3H)	8.85 (s, 1H)	5.30 (s, 2H)	3.69-3.80 (m, 6H)	0.63 (s, 6H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenolato)dibutyltin(IV), TB2	$\begin{aligned} & \text { 6.60-6.64(m, 1H), } \\ & 7.27-7.38(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.94 (s, 1H)	5.45 (s, 2H)	3.50-3.85 (m, 6H)	0.85-2.00 (s, 18H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-bromophenolato)diphenyltin(IV), TB3	$\begin{aligned} & \text { 6.90-6.93(m, 1H), } \\ & 7.37-7.76(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.52 (s, 1H)	5.04 (s, 2H)	3.56-3.93 (m, 6H)	7.37-7.76 (m. 10H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenolato)dicyclohexyltin(IV), TB4	$\begin{aligned} & \text { 6.43-6.75(m, 1H), } \\ & 7.09-7.61(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.39 (s, 1H)	5.10 (s, 2H)	3.50-3.62 (m, 6H)	1.07-2.25 (m, 22H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-bromophenolato)dibenzyltin(IV), TB5	$\begin{aligned} & 6.60-6.70(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.44-7.77(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.59 (s, 1H)	5.21 (s, 2H)	3.43-3.68 (m, 6H)	$\begin{aligned} & \hline 1.12-1.20(\mathrm{~m}, 4 \mathrm{H}), \\ & 7.44-7.77(\mathrm{~m}, 10 \mathrm{H}) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenolato)di(o-chlorobenzyl)tin(IV), TB6	$\begin{aligned} & \hline 6.43-6.67(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.01-7.70(\mathrm{~m}, 2 \mathrm{H}) \\ & \hline \end{aligned}$	8.49 (s, 1H)	5.20 (s, 2H)	3.00-3.48 (m, 6H)	$\begin{aligned} & 1.12-1.34(\mathrm{~m}, 4 \mathrm{H}), \\ & 7.01-7.70(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-bromophenolato)di(p-chlorobenzyl)tin(IV), TB7	$\begin{aligned} & \hline 6.44-6.63(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.00-7.81(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.60 (s, 1H)	5.19 (s, 2H)	3.04-3.72 (m, 6H)	$\begin{aligned} & \hline 1.13-1.20(\mathrm{~m}, 4 \mathrm{H}), \\ & 7.00-7.81(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$

${ }^{\mathrm{a}} \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl $(o$-ClBz), p-chlorobenzyl $(p-\mathrm{ClBz})$

Table 3.3.6c
${ }^{1}$ H NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-chlorophenolato)diorganotin complexes

Complex	Assignments ${ }^{\text {a }}$ [$\delta\left({ }^{1} \mathrm{H}\right) / \mathrm{ppm}$]				
	Aryl	$-\mathrm{N}=\mathrm{C}(\underline{\mathrm{H}})$	-OH	$-\mathrm{C}-\mathrm{CH}_{2}-$	R group
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-chlorophenolatodimethyltin(IV), TC1	$\begin{aligned} & \hline 6.57-6.60(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.25-7.48(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.40 (s, 1H)	5.02 (s, 2H)	3.40-3.62 (m, 6H)	0.42 (s, 6H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-chlorophenolato)dibutyltin(IV), TC2	$\begin{gathered} \text { 6.64-6.89(m, 1H), } \\ 7.05-7.42(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$	8.91 (s, 1H)	5.27 (s, 2H)	3.68-3.82 (m, 6H)	0.84-2.03 (m, 18H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-chlorophenolato)diphenyltin(IV), TC3	$\begin{gathered} \hline 6.96-6.98(\mathrm{~m}, 1 \mathrm{H}), \\ 7.35-7.87(\mathrm{~m}, 2 \mathrm{H}) \\ \hline \end{gathered}$	8.53 (s, 1H)	5.05 (s, 2H)	3.36-3.89 (m, 6H)	7.35-7.87 (m, 10H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-chlorophenolato)dicyclohexyltin(IV), TC4	$\begin{gathered} \hline 6.71-6.75(\mathrm{~m}, 1 \mathrm{H}), \\ 7.12-7.40(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$	8.56 (s, 1H)	5.13 (s, 2H)	3.39-3.73 (m, 6H)	1.07-1.91 (m, 22H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-chlorophenolato)dibenzyltin(IV), TC5	$\begin{aligned} & \text { 6.65-6.77(m, 1H), } \\ & 7.00-7.67(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.55 (s, 1H)	5.08 (s, 2H)	3.40-3.75 (m, 6H)	$\begin{gathered} 1.14(\mathrm{~m}, 4 \mathrm{H}) \\ 7.00-7.67(\mathrm{~m}, 10 \mathrm{H}) \end{gathered}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-chlorophenolato)di(o-chlorobenzyl)tin(IV), TC6	$\begin{gathered} \hline 6.27-6.45(\mathrm{~m}, 1 \mathrm{H}), \\ 7.05-7.54(\mathrm{~m}, 2 \mathrm{H}) \\ \hline \end{gathered}$	8.71 (s, 1H)	5.13 (s, 2H)	3.42-3.81 (m, 6H)	$\begin{aligned} & 1.21-1.27(\mathrm{~m}, 4 \mathrm{H}), \\ & 7.05-7.54(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-chlorophenolato)di(p-chlorobenzyl)tin(IV), TC7	$\begin{aligned} & 6.29-6.59(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.07-7.57(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.60 (s, 1H)	5.14 (s, 2H)	3.50-3.92 (m, 6H)	$\begin{aligned} & 1.13-1.19(\mathrm{~m}, 4 \mathrm{H}), \\ & 7.07-7.57(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl (o-ClBz), p-chlorobenzyl (p-ClBz)

Table 3.3.6d
${ }^{1}$ H NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-nitrophenolato)diorganotin complexes

Complex	Assignments ${ }^{\text {a }}$ [$\left.\delta\left({ }^{1} \mathrm{H}\right) / \mathrm{ppm}\right]$				
	Aryl	$-\mathrm{N}=\mathrm{C}(\underline{\mathrm{H}})$	- OH	$-\mathrm{C}-\mathrm{CH}_{2}{ }^{-}$	R group
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-nitrophenolato)dimethyltin(IV), TD1	$\begin{gathered} \hline 6.22-6.37(\mathrm{~m}, 1 \mathrm{H}), \\ 7.46-7.99(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$	8.22 (s, 1H)	5.02 (s, 2H)	3.13-3.70 (m, 6H)	0.29 (s, 6H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-nitrophenolato)dibutyltin(IV), TD2	$\begin{aligned} & 6.51-6.55(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.94-8.25(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.65 (s, 1H)	5.10 (s, 2H)	3.07-3.68 (m, 6H)	0.76-1.48 (m, 18H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-nitrophenolato)diphenyltin(IV), TD3	$\begin{gathered} 7.12-7.68(\mathrm{~m}, 10 \mathrm{H}) \\ 8.40-8.44(\mathrm{~m}, 2 \mathrm{H}) \end{gathered}$	8.58 (s, 1H)	5.01 (s, 2H)	3.07-3.64 (m, 6H)	7.12-7.68 (m, 10H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-nitrophenolato)dicyclohexyltin(IV), TD4	$\begin{aligned} & \hline 6.66-6.69(\mathrm{~m}, 1 \mathrm{H}), \\ & 8.07-8.51(\mathrm{~m}, 2 \mathrm{H}) \\ & \hline \end{aligned}$	8.62 (s, 1H)	5.07 (s, 2H)	3.37-3.80 (m, 6H)	1.25-1.98 (m, 22H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-nitrophenolato)dibenzyltin(IV), TD5	$\begin{gathered} 6.46-6.50(\mathrm{~m}, 1 \mathrm{H}), \\ 6.91-7.10(\mathrm{~m}, 2 \mathrm{H}) \\ \hline \end{gathered}$	8.49 (s, 1H)	5.08 (s, 2H)	3.03-3.65 (m, 6H)	$\begin{gathered} \hline 1.12-1.15(\mathrm{~m}, 4 \mathrm{H}), \\ 6.91-7.10(\mathrm{~m}, 10 \mathrm{H}) \\ \hline \end{gathered}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-nitrophenolato)di(o-chlorobenzyl)tin(IV), TD6	$\begin{aligned} & 6.19-6.22(\mathrm{~m}, 1 \mathrm{H}) \\ & 6.86-7.62(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.52 (s, 1H)	5.14 (s, 2H)	3.00-3.27 (m, 6H)	$\begin{aligned} & \hline 1.14-1.19 \mathrm{~m}, 4 \mathrm{H}), \\ & 6.86-7.62(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -4-nitrophenolato)di(p-chlorobenzyl)tin(IV), TD7	$\begin{aligned} & \text { 6.48-6.69(m, 1H), } \\ & 7.06-7.98(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$	8.55 (s, 1H)	5.31 (s, 2H)	3.07-3.63 (m, 6H)	$\begin{aligned} & 1.15-1.24(\mathrm{~m}, 4 \mathrm{H}), \\ & 7.06-7.98(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$

${ }^{\mathrm{a}} \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet

$\underset{o \text {-chlorobenzyl }(o \text {-ClBz }), p \text {-chlorobenzyl }(p-\mathrm{ClBz})}{\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9} \text { phenyl (} \mathrm{Ph} \text {) cyclohexyl }(\mathrm{Cy}) \text {, benzy }}$

Table 3.3.6e
${ }^{1} \mathrm{H}$ NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)diorganotin complexes

Complex	Assignments ${ }^{\text {a }}$ [$\delta\left({ }^{1} \mathrm{H}\right) / \mathrm{ppm}$]				
	Aryl	$-\mathrm{N}=\mathrm{C}(\underline{\mathrm{H}})$	-OH	$\begin{gathered} -\mathrm{C}-\mathrm{CH}_{2}-\text { and } \\ -\mathrm{O}-\mathrm{CH}_{3} \end{gathered}$	R group
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -2-methoxy-4-bromophenolato)dimethyltin(IV), TE1	$\begin{aligned} & \text { 6.93-6.95(m, 1H), } \\ & 7.10-7.13(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	8.82 (s, 1H)	5.10 (s, 2H)	$\begin{gathered} 3.70-3.80(6 \mathrm{H}), \\ 3.88(\mathrm{~s}, 3 \mathrm{H}) \\ \hline \end{gathered}$	0.69 (s, 6H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)dibutyltin(IV), TE2	$\begin{aligned} & \text { 6.97-6.98(m, 1H), } \\ & 7.15-7.18(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	8.38 (s, 1H)	5.02 (s, 2H)	$\begin{gathered} 3.45-3.70(6 \mathrm{H}), \\ 3.73(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	0.76-1.54 (m, 18H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)diphenyltin(IV), TE3	$\begin{aligned} & \hline 6.95-7.03(\mathrm{~m}, 1 \mathrm{H}), \\ & 7.15-7.26(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	8.87 (s, 1H)	5.20 (s, 2H)	$\begin{gathered} \hline 3.74-3.94(\mathrm{~m}, 6 \mathrm{H}), \\ 3.96(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	7.37-7.88 (m, 10H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)dicyclohexyltin(IV), TE4	$\begin{aligned} & \text { 6.53-6.55(m, 1H), } \\ & 6.91-7.09(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	8.34 (s, 1H)	5.11 (s, 2H)	$\begin{gathered} \hline 3.60-3.68(\mathrm{~m}, 6 \mathrm{H}), \\ 3.95(\mathrm{~s}, 3 \mathrm{H}) \\ \hline \end{gathered}$	1.00-2.26 (m, 22H)
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ -2-methoxy-4-bromophenolato)dibenzyltin(IV), TE5	6.90-7.89 (m, 2H)	8.69 (s, 1H)	5.23 (s, 2H)	$\begin{gathered} \hline 3.56-3.82(\mathrm{~m}, 6 \mathrm{H}) \\ 3.90(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{gathered} \hline 1.12-1.19(\mathrm{~m}, 4 \mathrm{H}) \\ 6.90-7.89(\mathrm{~m}, 10 \mathrm{H}) \\ \hline \end{gathered}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)di(o-chlorobenzyl)tin(IV), TE6	6.82-7.59 (m, 2H)	8.90 (s, 1H)	5.22 (s, 2H)	$\begin{gathered} 3.50-3.86(\mathrm{~m}, 6 \mathrm{H}) \\ 3.93(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{aligned} & 1.13-1.18(\mathrm{~m}, 4 \mathrm{H}), \\ & 6.22-7.59(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)di(p-chlorobenzyl)tin(IV), TE7	6.85-7.50 (m, 2H)	8.99 (s, 1H)	5.12 (s, 2H)	$\begin{gathered} 3.45-3.89(\mathrm{~m}, 6 \mathrm{H}), \\ 3.92(\mathrm{~s}, 3 \mathrm{H}) \end{gathered}$	$\begin{aligned} & 1.25-1.31(\mathrm{~m}, 4 \mathrm{H}), \\ & 6.33-7.50(\mathrm{~m}, 8 \mathrm{H}) \end{aligned}$

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl (o-ClBz), p-chlorobenzyl (p-ClBz)

Table 3.3.7
${ }^{13}$ C NMR chemical shifts for the TRIS ligands

Ligand	${ }^{13} \mathrm{C}$ NMR chemical shifts [$\delta\left({ }^{13} \mathrm{C}\right) / \mathrm{ppm}$]
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenol, TA	$\begin{aligned} & 61.5\left(\mathrm{C}_{\text {aliphatic }}\right), 67.2\left(\mathrm{C}_{8}\right), 117.3\left(\mathrm{C}_{3}\right), 117.7\left(\mathrm{C}_{1}\right), 118.6\left(\mathrm{C}_{5}\right), 132.4\left(\mathrm{C}_{6}\right), 132.6\left(\mathrm{C}_{4}\right), 163.7 \\ & \left(\mathrm{C}_{2}\right), 164.6\left(\mathrm{C}_{7}\right) \end{aligned}$
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenol, TB	$\begin{aligned} & 61.2\left(\mathrm{C}_{\text {aliphatic }}\right), 67.2\left(\mathrm{C}_{8}\right), 118.8\left(\mathrm{C}_{5}\right), 119.6\left(\mathrm{C}_{3}\right), 120.4\left(\mathrm{C}_{1}\right), 131.3\left(\mathrm{C}_{6}\right), 132.7\left(\mathrm{C}_{4}\right), 163.8 \\ & \left(\mathrm{C}_{2}\right), 164.3\left(\mathrm{C}_{7}\right) \end{aligned}$
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenol, TC	$\begin{aligned} & 61.2\left(\mathrm{C}_{\text {aliphatic }}\right), 67.2\left(\mathrm{C}_{8}\right), 106.6\left(\mathrm{C}_{5}\right), 119.4\left(\mathrm{C}_{3}\right), 121.1\left(\mathrm{C}_{1}\right), 134.4\left(\mathrm{C}_{6}\right), 135.5\left(\mathrm{C}_{4}\right), 163.8 \\ & \left(\mathrm{C}_{2}\right), 165.1\left(\mathrm{C}_{7}\right) \end{aligned}$
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenol, TD	$\begin{aligned} & 61.0\left(\mathrm{C}_{\text {aliphatic }}\right), 66.6\left(\mathrm{C}_{8}\right), 113.2\left(\mathrm{C}_{3}\right), 123.7\left(\mathrm{C}_{1}\right), 129.6\left(\mathrm{C}_{5}\right), 132.9\left(\mathrm{C}_{6}\right), 134.0\left(\mathrm{C}_{4}\right), 166.3\left(\mathrm{C}_{2}\right), \\ & 179.9\left(\mathrm{C}_{7}\right) \end{aligned}$
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl\}-2-methoxy-4-bromophenol, TE	$\begin{aligned} & 56.7\left(\mathrm{OCH}_{3}\right), 61.0\left(\mathrm{C}_{\text {aliphatic }}\right), 66.6\left(\mathrm{C}_{8}\right), 103.2\left(\mathrm{C}_{5}\right), 116.4\left(\mathrm{C}_{3}\right), 126.0\left(\mathrm{C}_{1}\right), 132.9\left(\mathrm{C}_{6}\right), 134.0 \\ & \left(\mathrm{C}_{4}\right), 163.0\left(\mathrm{C}_{2}\right), 163.3\left(\mathrm{C}_{7}\right) \end{aligned}$

[^1]Table 3.3.8a
${ }^{13} \mathrm{C}$ NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)diorganotin complexes

Complex	${ }^{13} \mathrm{C}$ NMR chemical shifts [$\left.\delta\left({ }^{13} \mathrm{C}\right) / \mathrm{ppm}\right]$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dimethyltin(IV), TA1	$\begin{aligned} & 1.1\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=678 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Me}), 61.5,62.4\left(\mathrm{C}_{\text {aliphatic }}\right), 67.3\left(\mathrm{C}_{8}\right), 117.8,118.5,121.9,133.5,136.5, \\ & 168.4,173.3\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dibutyltin(IV), TA2	$\begin{aligned} & 13.6,21.2\left[{ }^{1} J\left({ }^{19} \mathrm{Sn}^{13} \mathrm{C}\right)=627 \mathrm{~Hz}\right], 26.8\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=80 \mathrm{~Hz}\right], 27.3\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=33 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Bu}), \\ & 63.7,64.2\left(\mathrm{C}_{\text {aliphatic }}\right), 66.9\left(\mathrm{C}_{8}\right), 116.1,117.6,122.3,135.9,136.7,169.7,173.6\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)diphenyltin(IV), TA3	$\begin{aligned} & \text { 59.3, } 61.5\left(\mathrm{C}_{\text {aliphatic }}\right), 67.9\left(\mathrm{C}_{8}\right), 116.6,117.7,122.0,127.2,127.8\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=91 \mathrm{~Hz}\right], 128.3,130.0, \\ & 135.0,136.5\left[{ }^{2} J\left({ }^{19} \mathrm{Sn}^{13} \mathrm{C}\right)=22 \mathrm{~Hz}\right], 136.7,141.8\left[{ }^{1} J\left({ }^{19} \mathrm{Sn}^{-13} \mathrm{C}\right)=697 \mathrm{~Hz}\right], 168.8,173.7\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dicyclohexyltin(IV), TA4	$\begin{aligned} & 26.4,28.8\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=90 \mathrm{~Hz}\right], 30.4\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=36 \mathrm{~Hz}\right], 39.4\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=590 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Cyh}), \\ & 60.4,61.8\left(\mathrm{C}_{\text {aliphatic }}\right), 67.5\left(\mathrm{C}_{8}\right), 115.6,118.0,122.0,136.2,136.7,170.1,173.4\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dibenzyltin(IV), TA5	$\begin{aligned} & 10.8\left[{ }^{1}{ }^{11}\left({ }^{19} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=676 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 61.4,63.2\left(\mathrm{C}_{\text {aliphatic }}\right), 67.0\left(\mathrm{C}_{8}\right), 116.8,117.2,117.6,118.2,}^{122.0,128.2,132.3,132.6,135.7,136.4,163.7,164.6,172.3\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)di(o-chlorobenzyl)tin(IV), TA6	$\begin{aligned} & 9.0\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=616 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 61.8,63.0\left(\mathrm{C}_{\text {aliphatic }}\right), 65.2\left(\mathrm{C}_{8}\right), 115.1,125.9,126.6,127.0,}^{128.9,129.7,130.6,131.7,133.3,134.2,138.2,169.1,173.7\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)di(p-chlorobenzyl)tin(IV), TA7	$\begin{aligned} & 8.9\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=624 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 61.7,62.5\left(\mathrm{C}_{\text {aliphatic }}\right), 66.3\left(\mathrm{C}_{8}\right), 117.3,126.0,127.5,128.5,}^{129.5,129.9,130.7,131.0,133.6,135.2,138.0,167.3,172.2\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$

$\underset{\mathrm{R}}{\mathrm{R}} \mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph l$)$, cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl (o-ClBz), p-chlorobenzyl (p-ClBz)

Table 3.3.8b
${ }^{13} \mathrm{C}$ NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)diorganotin complexes

Complex	${ }^{13} \mathrm{C}$ NMR chemical shifts [$\left.\delta\left({ }^{13} \mathrm{C}\right) / \mathrm{ppm}\right]$
Bis[(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)]dimethyltin(IV), TB1	$\begin{aligned} & 12.2\left[{ }^{1} J^{119} \mathrm{Sn}^{13}{ }^{13}\right)=585 \mathrm{~Hz} \delta(\mathrm{Sn}-\mathrm{Me}), 63.8,64.4\left(\mathrm{C}_{\text {aliphatic }}\right), 67.0\left(\mathrm{C}_{8}\right), 106.6,114.9,124.3,132.0,136.9, \\ & 158.8\left(\mathrm{C}_{2}\right), 172.0\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)dibutyltin(IV), TB2	$\begin{aligned} & 13.6,21.3\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=604 \mathrm{~Hz}\right], 26.8\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=82 \mathrm{~Hz}\right], 27.3\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=36 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Bu}), \\ & 62.4,63.6\left(\mathrm{C}_{\text {aliphatic }}\right), 67.3\left(\mathrm{C}_{8}\right), 106.8,118.8,124.4,137.2,139.1,168.5\left(\mathrm{C}_{2}\right), 172.9\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)diphenyltin(IV), TB3	$\begin{aligned} & 61.164 .0\left(\mathrm{C}_{\text {aliphatic }}\right), 68.3\left(\mathrm{C}_{8}\right), 106.4,119.3,124.5,128.7\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=90 \mathrm{~Hz}\right], 129.6,130.0,135.0, \\ & \left.136.3\left[{ }^{2} J\left({ }^{19} \mathrm{Sn}^{-13} \mathrm{C}\right)=27 \mathrm{~Hz}\right], 137.7,138.4\left[{ }^{1} J{ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=711 \mathrm{~Hz}\right], 141.9,167.7\left(\mathrm{C}_{2}\right), 172.7\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)dicyclohexyltin(IV), TB4	$\begin{aligned} & \text { 26.4, 28.1 }\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)=82 \mathrm{~Hz}\right], 29.9\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=24 \mathrm{~Hz}\right], 37.9\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=658 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Cyh}), \\ & 61.0,61.2\left(\mathrm{C}_{\text {aliphatic }}\right), 67.0\left(\mathrm{C}_{8}\right), 106.5,119.1,124.0,135.2,137.4,168.6\left(\mathrm{C}_{2}\right), 172.1\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-bromophenolato)dibenzyltin(IV), TB5	$\begin{aligned} & 9.3\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=604 \mathrm{~Hz}\right] \delta\left(\mathrm{Sn}^{2} \mathrm{CH}_{2}\right), 60.8,61.9\left(\mathrm{C}_{\text {aliphatic }}\right), 67.5\left(\mathrm{C}_{8}\right), 106.9,119.7,124.0,124.3,128.6, \\ & 129.0,130.5,136.3,137.5,138.6,160.0,165.8\left(\mathrm{C}_{2}\right), 171.5\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)di(o-chlorobenzyl)tin(IV), TB6	$\begin{aligned} & 8.6\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=708 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 59.3,60.2\left(\mathrm{C}_{\text {aliphatic }}\right), 68.1\left(\mathrm{C}_{8}\right), 110.8,120.0,124.1,127.1,128.1,}_{128.5,128.8,129.3,130.5,130.9,138.6,162.4\left(\mathrm{C}_{2}\right), 169.8\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)di(p-chlorobenzyl)tin(IV), TB7	$\begin{aligned} & 8.7\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=616 \mathrm{~Hz}\right] \delta\left(\mathrm{Sn}_{\mathrm{S}}-\mathrm{CH}_{2}\right), 59.3,61.0\left(\mathrm{C}_{\text {aliphatic }}\right), 66.4\left(\mathrm{C}_{8}\right), 109.5,120.0,124.5,127.0,128.1, \\ & 128.3,128.8,129.4,130.5,131.3,137.6,165.8\left(\mathrm{C}_{2}\right), 169.7\left(\mathrm{C}_{7}\right) \end{aligned}$

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl $(o-\mathrm{ClBz}), p$-chlorobenzyl (p-ClBz)

Table 3.3.8c
${ }^{13} \mathrm{C}$ NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)diorganotin complexes

Complex	${ }^{13} \mathrm{C}$ NMR chemical shifts [$\left.\delta\left({ }^{13} \mathrm{C}\right) / \mathrm{ppm}\right]$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-chlorophenolato)dimethyltin(IV), TC1	$\begin{aligned} & 8.7\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=557 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Me}), 61.0,61.2\left(\mathrm{C}_{\text {aliphatic }}\right), 68.0\left(\mathrm{C}_{8}\right), 118.1,118.5,123.8,134.5,135.2 \\ & 167.1\left(\mathrm{C}_{2}\right), 171.9\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dibutyltin(IV), TC2	$\begin{aligned} & 13.6,21.4\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)=611 \mathrm{~Hz}\right], 26.9\left[{ }^{3} J\left({ }^{199} \mathrm{Sn}^{13} \mathrm{C}\right)=82 \mathrm{~Hz}\right], 27.4\left[{ }^{2} J\left({ }^{199} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=36 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Bu}), \\ & 61.1,63.8\left(\mathrm{C}_{\text {aliphatic }}\right), 67.3\left(\mathrm{C}_{8}\right), 118.9,120.3,124.1,134.1,136.6,168.1\left(\mathrm{C}_{2}\right), 173.0\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)diphenyltin(IV), TC3	$\begin{aligned} & \text { 61.0, } 64.3\left(\mathrm{C}_{\text {aliphatic }}\right), 68.1\left(\mathrm{C}_{8}\right), 118.3,119.2,123.9,128.2\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=79 \mathrm{~Hz}\right], 129.0,129.8,134.5, \\ & 135.6\left[{ }^{2} J\left({ }^{19} \mathrm{Sn}^{-13} \mathrm{C}\right)=22 \mathrm{~Hz}\right], 136.2\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=681 \mathrm{~Hz}\right], 136.4,141.8,167.3\left(\mathrm{C}_{2}\right), 172.6\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dicyclohexyltin(IV), TC4	$\begin{aligned} & 24.2,28.8\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=72 \mathrm{~Hz}\right], 30.2\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)=25 \mathrm{~Hz}\right], 40.4\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=634 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Cyh}), \\ & 60.7,61.5\left(\mathrm{C}_{\text {aliphatic }}\right), 68.0\left(\mathrm{C}_{8}\right), 118.5,121.0,123.8,129.3,134.6,165.4\left(\mathrm{C}_{2}\right), 168.6\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dibenzyltin(IV), TC5	$\begin{aligned} & 9.0\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=610 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 61.4,63.4\left(\mathrm{C}_{\text {aliphatic }}\right), 67.4\left(\mathrm{C}_{8}\right), 118.9,119.6,121.2,123.8,124.3,}^{127.0,128.2,129.1,130.0,133.4,142.7,164.2\left(\mathrm{C}_{2}\right), 167.7\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)-di(o-chlorobenzyl)tin(IV), TC6	$\begin{aligned} & 8.5\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=560 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 60.9,62.8\left(\mathrm{C}_{\text {aliphatic }}\right), 68.0\left(\mathrm{C}_{8}\right), 116.2,118.0,121.8,124.3,126.3,}^{128.9\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=73 \mathrm{~Hz}\right], 130.9,132.3,135.8,136.1,138.4,168.8\left(\mathrm{C}_{2}\right), 173.3\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)-di(p-chlorobenzyl)tin(IV), TC7	$\begin{aligned} & 8.6\left[[^ { 1 } J ({ } ^ { 1 1 9 } \mathrm { Sn } ^ { 1 3 } { } ^ { 1 3 } \mathrm { C }) = 6 9 3 \mathrm { Hz }] \delta \left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 61.3,62.2\left(\mathrm{C}_{\text {aliphatic }}\right), 67.6\left(\mathrm{C}_{8}\right), 120.0,124.0,127.5,128.2,128.9}_{\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=86 \mathrm{~Hz}\right], 130.6,131.3,132.8,134.7,135.2,135.9,165.5\left(\mathrm{C}_{2}\right), 171.7\left(\mathrm{C}_{7}\right)}\right.\right. \end{aligned}$

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl (o-ClBz), p-chlorobenzyl (p-ClBz)

Table 3.3.8d
${ }^{13} \mathrm{C}$ NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-nitrophenolato)diorganotin complexes

Complex	${ }^{13} \mathrm{C}$ NMR chemical shifts [$\left.\delta\left({ }^{13} \mathrm{C}\right) / \mathrm{ppm}\right]$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dimethyltin(IV), TD1	$\begin{aligned} & 8.8\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=515 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Me}), 59.5,61.4\left(\mathrm{C}_{\text {aliphatic }}\right), 66.9\left(\mathrm{C}_{8}\right), 113.3,123.8,129.8,133.1,134.2, \\ & 166.5\left(\mathrm{C}_{2}\right), 180.0\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dibutyltin(IV), TD2	$\begin{aligned} & 13.4,21.8\left[{ }^{1} J\left({ }^{19} \mathrm{Sn}^{-13} \mathrm{C}\right)=665 \mathrm{~Hz}\right], 26.5\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=81 \mathrm{~Hz}\right], 27.8\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=38 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Bu}), \\ & 60.7,61.7\left(\mathrm{C}_{\text {aliphatic }}\right), 67.2\left(\mathrm{C}_{8}\right), 113.6,124.3,130.4,133.7,134.5,166.9\left(\mathrm{C}_{2}\right), 180.5\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)diphenyltin(IV), TD3	$\begin{aligned} & 60.3,61.4\left(\mathrm{C}_{\text {aliphatic }}\right), 66.7\left(\mathrm{C}_{8}\right), 113.3,116.8,123.2,127.5,128.9\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}^{-{ }^{13}} \mathrm{C}\right)=73 \mathrm{~Hz}\right], 130.0,133.0 \\ & {\left[{ }^{2} J\left({ }^{19} \mathrm{Sn}^{-13} \mathrm{C}\right)=30 \mathrm{~Hz}\right], 134.2,136.3\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=751 \mathrm{~Hz}\right], 136.9,141.9,166.5\left(\mathrm{C}_{2}\right), 180.0\left(\mathrm{C}_{7}\right)} \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dicyclohexyltin(IV), TD4	$\begin{aligned} & 26.4,28.2\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=74 \mathrm{~Hz}\right], 29.9\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=36 \mathrm{~Hz}\right], 38.6\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=730 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Cyh}), \\ & 63.2,64.7\left(\mathrm{C}_{\text {aliphatic }}\right), 67.5\left(\mathrm{C}_{8}\right), 116.5,122.5,130.0,134.0,135.7,167.8\left(\mathrm{C}_{2}\right), 174.8\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)dibenzyltin(IV), TD5	$\begin{aligned} & 9.1\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=524 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 60.6,61.2\left(\mathrm{C}_{\text {aliphatic }}\right), 67.0\left(\mathrm{C}_{8}\right), 113.5,116.5,124.2,124.3,128.3,}^{128.4,128.8,130.0,133.3,134.4,136.9,166.7\left(\mathrm{C}_{2}\right), 174.6\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)-di(o-chlorobenzyl)tin(IV), TD6	$\begin{aligned} & 8.7\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=564 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 60.3,61.2\left(\mathrm{C}_{\text {aliphatic }}\right), 67.9\left(\mathrm{C}_{8}\right), 113.3,116.7,122.2,123.8,126.0,}_{128.0,129.7,130.6,132.1,133.0,134.1,166.4\left(\mathrm{C}_{2}\right), 180.0\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenolato)di(p-chlorobenzyl)tin(IV), TD7	$\begin{aligned} & 8.6\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=564 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 59.3,60.1\left(\mathrm{C}_{\text {aliphatic }}\right), 66.7\left(\mathrm{C}_{8}\right), 113.2,123.1,123.8,127.2,127.6,}_{128.1,128.8,129.6,130.8,131.2,134.1,166.4\left(\mathrm{C}_{2}\right), 180.0\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
ρ-chlorobenzyl ($o-\mathrm{ClBz}$), p-chlorobenzyl (p-ClBz)

Table 3.3.8e
${ }^{13} \mathrm{C}$ NMR chemical shifts for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-2-methoxy-4-bromophenolato)diorganotin complexes

Complex	${ }^{13} \mathrm{C}$ NMR chemical shifts [$\delta\left({ }^{13} \mathrm{C}\right) / \mathrm{ppm}$]
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dimethyltin(IV), TE2	$\begin{aligned} & 0.8\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)=665 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Me}), 56.3\left(-\mathrm{OCH}_{3}\right), 63.2,64.3,\left(\mathrm{C}_{\text {aliphatic }}\right), 67.5\left(\mathrm{C}_{8}\right), 106.3,118.0, \\ & 128.2,136.2,152.3,163.5\left(\mathrm{C}_{2}\right), 172.6\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dibutyltin(IV), TE2	$\begin{aligned} & \text { 13.7, 21.0 }\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=627 \mathrm{~Hz}\right], 26.8\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=10 \mathrm{~Hz}\right], 27.0\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=36 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Bu}), \\ & 56.2\left(-\mathrm{OCH}_{3}\right), 61.2,65.0\left(\mathrm{C}_{\text {aliphatic }}\right), 67.8\left(\mathrm{C}_{8}\right), 104.1,117.9,118.3,128.4,152.3,163.6\left(\mathrm{C}_{2}\right), 172.1\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)diphenyltin(IV), TE3	$\begin{aligned} & 56.6\left(\mathrm{OCH}_{3}\right), 61.0,63.2\left(\mathrm{C}_{\text {aliphatic }}\right), 67.9\left(\mathrm{C}_{8}\right), 104.5,118.2,125.3,128.2,128.7\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=71 \mathrm{~Hz}\right], \\ & 129.0,130.1,133.0\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}^{-}{ }^{13} \mathrm{C}\right)=32 \mathrm{~Hz}\right], 136.4\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=682 \mathrm{~Hz}\right], 137.2,139.9,162.1\left(\mathrm{C}_{2}\right), \\ & 175.0\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dicyclohexyltin(IV), TE4	$\begin{aligned} & \text { 26.7, 28.3 }\left[{ }^{3} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)=73 \mathrm{~Hz}\right], 30.2\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=33 \mathrm{~Hz}\right], 38.6\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=652 \mathrm{~Hz}\right] \delta(\mathrm{Sn}-\mathrm{Cyh}), \\ & 56.1\left(\mathrm{OCH}_{3}\right), 61.0,63.4\left(\mathrm{C}_{\text {aliphatic }}\right), 66.3\left(\mathrm{C}_{8}\right), 103.2,116.3,126.1,136.5,152.3,163.5\left(\mathrm{C}_{2}\right), 172.9\left(\mathrm{C}_{7}\right) \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dibenzyltin(IV), TE5	$\begin{aligned} & 9.0\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)=663 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 57.1\left(\mathrm{OCH}_{3}\right), 60.9,61.5\left(\mathrm{C}_{\text {aliphatic }}\right), 66.5\left(\mathrm{C}_{8}\right), 104.9,105.1,110.8,}^{111.0,120.1,121.8,127.0,128.6,129.4,136.5,154.4,163.0\left(\mathrm{C}_{2}\right), 170.9\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)-di(o-chlorobenzyl)tin(IV), TE6	$\begin{aligned} & 8.8\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)=586 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 56.4\left(\mathrm{OCH}_{3}\right), 62.3,63.7\left(\mathrm{C}_{\text {aliphatic }}\right), 66.9\left(\mathrm{C}_{8}\right), 112.0,119.9,121.5,}_{124.3,127.2,128.8,132.9,136.2,138.6,148.6,151.2,163.5\left(\mathrm{C}_{2}\right), 170.8\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)di(p-chlorobenzyl)tin(IV), TE7	$\begin{aligned} & 8.5\left[{ }^{1} J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)=564 \mathrm{~Hz}\right] \delta\left({\left.\mathrm{Sn}-\mathrm{CH}_{2}\right), 56.1\left(\mathrm{OCH}_{3}\right), 61.9,63.4\left(\mathrm{C}_{\text {aliphatic }}\right), 67.9\left(\mathrm{C}_{8}\right), 111.0,120.4,121.8,}_{125.1,127.9,128.2,132.3,136.5,140.6,149.2,150.6,163.2\left(\mathrm{C}_{2}\right), 170.3\left(\mathrm{C}_{7}\right)}\right. \end{aligned}$

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz),
o-chlorobenzyl $(o-\mathrm{ClBz}), p$-chlorobenzyl $(p$-ClBz)

Table 3.3.9
${ }^{119} \mathrm{Sn}$ NMR chemical shifts of TRIS diorganotin complexes

	${ }^{119} \mathrm{Sn}$ NMR chemical shifts $\left[\delta\left({ }^{119} \mathrm{Sn}\right) / \mathrm{ppm}\right]$						
	$\mathrm{R}=\mathrm{Me}$	$\mathrm{R}=\mathrm{Bu}$	$\mathrm{R}=\mathrm{Ph}$	$\mathrm{R}=\mathrm{Cy}$	$\mathrm{R}=\mathrm{Bz}$	$\mathrm{R}=o-\mathrm{ClBz}$	$\mathrm{R}=p-\mathrm{ClBz}$
TA: $\mathbf{X}=\mathbf{H}, \mathrm{Y}=\mathrm{H}$	-164.4	-189.2	-324.7	-244.5	-	-	-
TB: $\mathbf{X}=\mathbf{B r}, \mathrm{Y}=\mathrm{H}$	-174.8	-186.9	-325.5	-243.1	-460.0	-459.3	-506.7
$\mathrm{TC}: \mathrm{X}=\mathbf{C l}, \mathrm{Y}=\mathrm{H}$	-163.4	-186.6	-325.3	-244.2	--	-261.9	-
TD: $\mathrm{X}=\mathrm{NO}_{2}, \mathbf{Y}=\mathbf{H}$	-164.1	-179.2	-330.2	-238.5	-279.1	-271.9	-408.3
TE: $\mathbf{X}=\mathbf{B r}, \mathrm{Y}=\mathrm{OCH}_{3}$	-158.0	-179.0	-318.6	-283.0	-514.2	-450.8	-

3.3.4 Electronic Spectra

The electronic spectral data of the Schiff base ligands and organotin complexes in acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were recorded in the $190-600 \mathrm{~nm}$ regions. Due to the poor solubility of some of the complexes in $\mathrm{CH}_{3} \mathrm{CN}$ and most solvents, only selected UV spectra were recorded. Selected spectral data for the TRIS Schiff base ligands TA, TB, TC, TD and TE and its diorganotin complexes are given in table 3.3.10 and table 3.3.11 respectively.

The absorption bands of the free TRIS Schiff base ligands could be classified into two absorption regions of 200-260 nm and 310-350 nm. However, there was a large shift in the absorption bands of the TA, TB, TC and TD complexes; between 190249 nm and $250-400 \mathrm{~nm}$. For the TE complexes, the absorption bands were found between the $190-220 \mathrm{~nm}$ and $221-350 \mathrm{~nm}$.

The $n \rightarrow \pi^{*}$ transition which is associated with azomethine chromophore [Bella et. al., 1997] was assigned to the band absorption in the higher region, between 250-349 nm. In the diorganotin complexes, this band showed a bathochromic shift due to the donation of the lone pair of electrons to the metal centre; as a result of the coordination of the azomethine group to the tin centre.

For this series of compounds, the ligand bands between 190-250 nm were assigned as $\pi \rightarrow \pi^{*}$ transitions, which occurred in all the free tridentate Schiff bases ligands. This $\pi \rightarrow \pi^{*}$ transition involved molecular orbitals of the $\mathrm{C}=\mathrm{N}$ chromophore and the phenyl ring.

In the spectra for the organotin complexes, all the $n \rightarrow \pi^{*}$ type transitions, which were due to the $\mathrm{C}=\mathrm{N}$ chromophore and the phenyl ring were found to shift to different wavelengths.

As the complexes had poor solubility in acetonitrile, some of the absorption bands were not visibly observed in the spectra due to the poor intensity of the band. Overall, the electronic spectra of both the ligands and diorganotin complexes were of little help in assigning a definite structure to the compounds.

Table 3.3.10
Electronic spectral data for the TRIS ligands

Ligand	Intraligand transfer transition	
	$\pi-\pi^{*}$	$n-\pi^{*}$
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}$ phenol, TA	216, 255	315
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenol, TB	224, 253	327
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenol, TC	222, 253	326
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-nitrophenol, TD	202	349
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl\}-2-methoxy-4-bromophenol, TE	201	323


```
TA: }\textrm{X}=\textrm{H},\textrm{Y}=\textrm{H};\mathbf{TB}:\textrm{X}=\textrm{Br},\textrm{Y}=\textrm{H}
TC:X=Cl,Y=H; TD:X = NOO},Y=H=H
TE: X=Br,Y = OCH 
```

Table 3.3.11a
Electronic spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)diorganotin complexes

Complex	Intraligand transfer transition	
	$\pi-\pi^{*}$	$n-\pi^{*}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}$ phenolato)dimethyltin(IV), TA1	220,240	277,376
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}$ phenolato)dibutyltin(IV), TA2	221,240	278,380
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl $]-$ iminomethyl $\}$ phenolato)diphenyltin(IV), TA3	210	278,375
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}$ phenolato)dicyclohexyltin(IV), TA4	217,240	278,384
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}$ phenolato)di($o-$ chlorobenzyl)tin(IV), TA6	242	280,381

$\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{4} \mathrm{H}_{9}$, phenyl (Ph), cyclohexyl (Cy), benzyl (Bz), o-chlorobenzyl ($o-\mathrm{ClBz}$), p-chlorobenzyl (p - ClBz)

Table 3.3.11b
Electronic spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4bromophenolato)diorganotin complexes

Complex	Intraligand transfer transition	
	$\pi-\pi^{*}$	$n-\pi^{*}$
Bis $[(2-\{[1,1-B i s(h y d r o x y m e t h y l)-2-~$ oxidoethyl]-iminomethyl $\}-4-$ bromophenolato)]dimethyltin(IV), TB1	226,242	276,388
$(2-\{[1,1-B i s(h y d r o x y m e t h y l)-2-o x i d o e t h y l]-~$ iminomethyl $\}-4-$ bromophenolato)dibutyltin(IV), TB2	226,242	278,390
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}-4-$ bromophenolato)diphenyltin(IV), TB3	218,242	278,387
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}-4-$-bromophenolato)- dicyclohexyltin(IV), TB4	226	279,397
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}-4-$ bromophenolato)dibenzyltin(IV), TB5	$n a$.	383

Note: na. = not observed

Table 3.3.11c
Electronic spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl\}-4-chlorophenolato)diorganotin complexes

Complex	Intraligand transfer transition	
	$\pi-\pi^{*}$	$n-\pi^{*}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}-4-$ chlorophenolato)dimethyltin(IV), TC1	229	276,388
$(2-\{[1,1-B i s($ hydroxymethyl)-2-oxidoethyl $]-$ iminomethyl $\}-4-$ chlorophenolato)dibutyltin(IV), TC2	229	277,392
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}-4-$ chlorophenolato)diphenyltin(IV), TC3	219	278,387
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}-4$-chlorophenolato)- dicyclohexyltin(IV), TC4	226	392
$(2-\{[1,1-$-Bis(hydroxymethyl)-2-oxidoethyl $]-$ iminomethyl $\}-4-$ chlorophenolato)dibenzyltin(IV), TC5	$n a$.	291,374
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- iminomethyl $\}-4-c h l o r o p h e n o l a t o)-~$ di(o-chlorobenzyl)tin(IV), TC6	197,242	381

Note: na. = not observed

Table 3.3.11d
Electronic spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl\}-4-nitrophenolato)diorganotin complexes

Complex	Intraligand transfer transition	
	$\pi-\pi^{*}$	$n-\pi^{*}$
$\begin{array}{l}\text { (2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- } \\ \text { iminomethyl }\}-4- \\ \text { nitrophenolato)dimethyltin(IV), TD1 }\end{array}$	na.	258,352
$\begin{array}{l}\text { (2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]- } \\ \text { iminomethyl }\}-4-n i t r o p h e n o l a t o) d i b u t y l t i n(I V), ~\end{array}$		
TD2		

Note: $n a .=$ not observed

Table 3.3.11e
Electronic spectral data for (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl\}-2-methoxy-4-bromophenolato)diorganotin complexes

Complex	Intraligand transfer transition	
	$\pi-\pi^{*}$	$n-\pi^{*}$
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dimethyltin(IV), TE2	197	224
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dibutyltin(IV), TE2	202	244
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)diphenyltin(IV), TE3	196	221,349
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)dicyclohexyltin(IV), TE4	202	230,337
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)-di(o-chlorobenzyl)tin(IV), TE6	197, 212	331
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-2-methoxy-4-bromophenolato)-di(p-chlorobenzyl)tin(IV), TE7	197, 216	329

Note: na. = not available

3.3.5 X-ray Structures

Bis](2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4bromophenolato)]dimethyltin(IV), TB1, (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethylliminomethyl\}-4-bromophenolato)diorganotins(IV), $\mathbf{R}=\mathbf{B u}, \mathbf{P h}(\mathbf{T B} 2$ and TB3)

Crystallographic data and selected bond lengths and angles for TB1, TB2 and TB3 are tabulated in tables 3.3.12 and 3.3.13 whereas the molecular structure of the complexes are shown in figures 3.3.1a, 3.3.1b and 3.3.1c respectively.

The molecular structure showed that TB1 was a dimer (unlike the proposed structure as shown). The formation of dimeric chain in TB1 involved one of the hydroxymethyl oxygen from each of the two adjacent molecules to form a central distannoxane $\mathrm{Sn}_{2} \mathrm{O}_{2}$ ring. The environment at both tin sites adopted distorted octahedral geometry with the imino nitrogen, the phenoxyl oxygen and two methoxyl oxygens (one of which was from the adjacent molecule) forming the equatorial plane. The sum of angles subtended at $\operatorname{Sn}(1)$ was 360.02° and $\operatorname{Sn}(2)$ was 359.95° respectively. These observations indicated that the square planes around both the tin atoms were flat.

The axial position was occupied by the two methyl groups and the apical angle, $\mathrm{C}(12)-\mathrm{Sn}(1)-\mathrm{C}(13)$ was $147.85(19)^{\circ}$ and $\mathrm{C}(25)-\mathrm{Sn}(2)-\mathrm{C}(26)$ was $150.8(2)^{0}$ respectively. The $\mathrm{Sn}(1)-\mathrm{O}(1)$ and $\mathrm{Sn}(1)-\mathrm{O}(2)$ bond distances were $2.262(3) \AA$ and $2.076(3) \AA$, while $\operatorname{Sn}(2)-\mathrm{O}(5)$ and $\mathrm{Sn}(2)-\mathrm{O}(6)$ were $2.281(3) \AA$ and $2.090(3) \AA$. The $\mathrm{Sn}(1)-\mathrm{O}(2)$ and $\mathrm{Sn}(2)-\mathrm{O}(6)$ bond distances, which were the coordination between methylene oxygen to tin, were slightly shorter than bond distances of phenoxyl oxygen to tin, $\mathrm{Sn}(1)-\mathrm{O}(1)$ and $\mathrm{Sn}(2)-\mathrm{O}(5)$.

Unlike TB1, the molecular structure of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenolato)dibutyltin(IV), TB2 and (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenolato)diphenyltin(IV), TB3 were each monomeric. This is probably due to the steric effect introduced by the presence of the two bulky butyl and phenyl groups.

In both TB2 and TB3, the ligand was tridentate in which one phenoxo, one alkoxo, an imine nitrogen atom and the two butyl chains and phenyl rings completed the coordination at tin to form a five-coordinated molecule. The equatorial plane was occupied by the imine nitrogen and the alkyl/aryl moieties of the diorganotins and the sum of angles subtended at tin for TB2 was 359.94° and 355.26° for $\mathbf{T B 3}$; showing a planar trigonal plane. The apical angle, $\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(2)$, for $\mathbf{T B} 2$ was $155.60(6)^{\circ}$ and TB3 was $159.33(8)^{0}$ indicating that the apical angle was rather distorted from the ideal linear angle of 180°. The $\mathrm{Sn}-\mathrm{O}(1)$ and $\mathrm{Sn}-\mathrm{O}(2)$ bond distances were $2.1203(15) \AA$ and $2.1049(14) \AA$ for TB2, 2.083(2) \AA and 2.073(2) \AA for TB3 while the $\mathrm{Sn}-\mathrm{N}$ bond distance was $2.2108(17) \AA$ and $2.191(2) \AA$ respectively. These bond distances were within the range of bond distances reported in the literature for $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{Sn}-\mathrm{N}$ coordination.

Figure 3.3.1a
Molecular plot of bis[(2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}-4-$ bromophenolato)]dimethyltin(IV), TB1

Figure 3.3.2a
Packing diagram of bis[(2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4bromophenolato)]dimethyltin(IV), TB1, showing hydrogen bonding between $\mathrm{O}(1)$ with $\mathrm{O}(3)-\mathrm{H}, \mathrm{O}(4)$ with $\mathrm{O}(8)-\mathrm{H}$ and $\mathrm{O}(5)$ with $\mathrm{O}(4)-\mathrm{H}$

Figure 3.3.1b
Molecular plot of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4bromophenolato)dibutyltin(IV), TB2

Figure 3.3.2b
Packing diagram of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4bromophenolato)dibutyltin(IV), TB2, showing hydrogen bonding between $\mathrm{O}(2)$ with $\mathrm{O}(3)-\mathrm{H}$ and $\mathrm{O}(3)$ with $\mathrm{O}(4)-\mathrm{H}$

Figure 3.3.1c
Molecular plot of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4bromophenolato)diphenyltin(IV), TB3

Figure 3.3.2c
Packing diagram of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4bromophenolato)diphenyltin(IV), TB3, showing hydrogen bonding between $\mathrm{O}(2)$ with $\mathrm{O}(3)-\mathrm{H}$ and $\mathrm{O}(3)$ with $\mathrm{O}(4)-\mathrm{H}$

Table 3.3.12
Crystallographic parameters for complexes TB1, TB2 and TB3

	TB1	TB2	TB3
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Sn}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{BrNO}_{4} \mathrm{Sn}$	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{Sn}$
Formula weight	901.77	535.04	575.02
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P 2_{1} / n$	C2/c	$P^{\overline{1}}$
$a(\AA)$	18.9301(4)	18.8326(9)	$8.7156(2)$
$b(\AA)$	8.8951(2)	13.3811(7)	10.0110(3)
$c(\AA)$	19.8873(4)	16.5768(8)	14.8031(4)
$\alpha\left({ }^{\circ}\right)$	90	90	104.680(1)
$\beta\left({ }^{\circ}\right.$)	114.075(1)	91.385(3)	94.759(1)
$\gamma\left({ }^{\circ}\right.$	90	90	113.230(1)
Volume (\AA^{3})	3057.43(11)	5214.9(3)	1123.57(5)
Z	4	8	2
Calculated density, $\mathrm{D}_{\text {calc }}\left(\mathrm{Mgm}^{-3}\right)$	1.959	1.702	1.700
Absorption coefficient, $\mu\left(\mathrm{mm}^{-1}\right)$	4.297	3.160	2.944
F(000)	1760	2144	568
Crystal size (mm)	$0.40 \times 0.33 \times 0.27$	$0.40 \times 0.10 \times 0.08$	$0.43 \times 0.40 \times 0.36$
Limiting indices	$-24 \leq \mathrm{h} \leq 24,-11 \leq \mathrm{k} \leq 9,-25 \leq 1 \leq 25$	$-24 \leq \mathrm{h} \leq 24,-17 \leq \mathrm{k} \leq 17,-21 \leq 1 \leq 21$	$-11 \leq h \leq 9,-12 \leq k \leq 12,-19 \leq 1 \leq 19$

Reflections collected / unique
Max. and min. transmission
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole $\left(\mathrm{e}^{-3}\right)$
$21362 / 7016[R($ int $)=0.0279]$
0.3900 and 0.2783
$7016 / 0 / 365$

1.158

$\mathrm{R}_{1}=0.0293, w \mathrm{R}_{2}=0.0846$
$\mathrm{R}_{1}=0.0394, w \mathrm{R}_{2}=0.1052$
1.595 and -1.087

$19535 / 4785[\mathrm{R}($ int $)=0.0324]$

0.7861 and 0.3646 $4785 / 2 / 239$
1.023
$\mathrm{R}_{1}=0.0218, w \mathrm{R}_{2}=0.0494$
$\mathrm{R}_{1}=0.0274, w \mathrm{R}_{2}=0.051$
0.647 and -0.375
$8208 / 5038[\mathrm{R}($ int $)=0.0181]$
0.4171 and 0.3642 5038 / $0 / 274$
1.163
$\mathrm{R}_{1}=0.0239, w \mathrm{R}_{2}=0.0706$
$\mathrm{R}_{1}=0.0286, w \mathrm{R}_{2}=0.0900$ 0.749 and -0.793

Table 3.3.13
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviation for complexes TB1, TB2 and TB3
TB1
TB2
TB3

Bond lengths

$\mathrm{Sn}(1)-\mathrm{O}(1)$	$2.262(3), 2.281(3)$	$2.120(3)$	$2.083(2)$
$\mathrm{Sn}(1)-\mathrm{O}(2)$	$2.075(2), 2.090(3)$	$2.1049(14)$	$2.073(2)$
$\mathrm{Sn}(1)-\mathrm{O}(2) \#$	$2.329(2), 2.348(3)$	-	-
$\mathrm{Sn}(1)-\mathrm{N}(1)$	$2.269(3), 2.269(3)$	$2.2108(17)$	$2.191(2)$
$\mathrm{Sn}(1)-\mathrm{C}_{i}$	$2.113(4), 2.117(4)$	$2.129(2)$	$2.123(3)$
$\mathrm{Sn}(1)-C_{i}{ }^{\prime}$	$2.113(4), 2.109(4)$	$2.139(2)$	$2.125(3)$
$\mathrm{C}(2)-\mathrm{O}(1)$	$1.291(5), 1.320(5)$	$1.317(2)$	$1.319(3)$
$\mathrm{C}(9)-\mathrm{O}(2)$	$1.403(4), 1.405(5)$	$1.405(2)$	$1.403(4)$
$\mathrm{C}(10)-\mathrm{O}(3)$	$1.400(4), 1.408(5)$	$1.422(2)$	$1.411(3)$
$\mathrm{C}(11)-\mathrm{O}(4)$	$1.419(4), 1.409(5)$	$1.418(2)$	$1.406(4)$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.296(4), 1.285(5)$	$1.289(3)$	$1.292(4)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.479(4), 1.475(5)$	$1.487(3)$	$1.485(3)$

Bond angles

$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(2)$	$155.32(10), 152.04(10)$	$155.60(6)$	$159.33(8)$
$\mathrm{C}_{i}-\operatorname{Sn}(1)-\mathrm{C}_{i}{ }^{\prime}$	$147.94(18), 150.87(19)$	$129.92(9)$	$120.80(2)$
$\mathrm{N}(1)-\operatorname{Sn}(1)-\mathrm{C}_{i}$	$105.06(15), 99.65(15)$	$107.69(8)$	$112.97(10)$
$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{C}_{i}{ }^{\prime}$	$100.46(14), 103.03(16)$	$122.33(7)$	$121.49(10)$

C_{i} and C_{i} 'refer to the ipso-carbon of the diorganotin moieties attached to the central tin diorganotins(IV), $\mathrm{R}=\mathrm{Me}, \mathrm{Ph}$ and $\mathrm{Cy}(\mathrm{TC1}, \mathrm{TC} 3$ and TC4)

The molecular structures of the complexes are shown in figures 3.3.3a, 3.3.3b and 3.3 .3 c respectively while the crystallographic data and selected bond lengths and angles are tabulated in tables 3.3.14 and 3.3.15.

$$
\mathrm{R}=\mathrm{Me}(\mathbf{T C} 1), \mathrm{Ph}(\mathbf{T C} 3), \mathrm{Cy}(\mathbf{T C 4})
$$

From their molecular plots, the tin atoms were found to adopt distorted trigonalbipyramidal geometry, whereby the trigonal plane consisted of the imine nitrogen and two alkyl/aryl groups from the diorganotin moieties. The sum of angles subtended at tin for $\mathbf{T C} 1$ was 359.86°, $\mathbf{T C} 3$ was 359.85° and $\mathbf{T C} 4$ were 359.9° and 360° respectively. The axial position which was occupied by the phenoxyl and methoxyl oxygens had a $\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(2)$ angle of $158.37(6)^{\circ}$ for $\mathbf{T C 1}, 159.03(7)^{\circ}$ for $\mathbf{T C} 3$ and $156.46(17)^{\circ}$ and $158.29(16)^{\circ}$ for TC4. These values showed that the apical angle of the complexes was largely dependent on the size of the alkyl/aryl groups of the diorganotin moieties.

As similar to TB3, (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4chlorophenolato)diphenyltin(IV), TC3 also crystallizes in triclinic, $P \overline{1}$ space group. In the case of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}-4$ -
chlorophenolato)dicyclohexyltin(IV), TC4, there were two unique molecules in its asymmetric unit.

The $\mathrm{Sn}-\mathrm{O}(1)$ and $\mathrm{Sn}-\mathrm{O}(2)$ bond distances of these complexes were within the values of those reported for five-coordinated diorganotin complexes [TC1: 2.1251(16) \AA and $2.0752(15) \AA, \mathbf{T C} 3: 2.0920(17) \AA$ and 2.0821(2) \AA, TC4: 2.076(5) $\AA, 2.093(4)$ $\AA, 2.131(4) \AA$ and $2.107(4) \AA$ respectively] while the $\mathrm{Sn}(1)-\mathrm{N}(1)$ bond distance was between 2.19-2.20 \AA.

All three complexes were monomeric and in the crystal structure, the molecules in each of the complexes were linked together by strong intermolecular hydrogen bonding.

Figure 3.3.3a
Molecular plot of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4chlorophenolato)dimethyltin(IV), TC1

Figure 3.3.4a
Packing diagram of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4chlorophenolato)dimethyltin(IV), TC1, showing hydrogen bonding between $\mathrm{O}(2)$ with $\mathrm{O}(3)-\mathrm{H}$ and $\mathrm{O}(3)$ with $\mathrm{O}(4)-\mathrm{H}$

Figure 3.3.3b
Molecular plot of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4chlorophenolato)diphenyltin(IV), TC3

Figure 3.3.4b
Packing diagram of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4chlorophenolato)diphenyltin(IV), TC3, showing hydrogen bonding between $\mathrm{O}(2)$ with $\mathrm{O}(3)-\mathrm{H}$ and $\mathrm{O}(3)$ with $\mathrm{O}(4)-\mathrm{H}$

Figure 3.3.3c
Molecular plot of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl $]$ iminomethyl $\}-4$ chlorophenolato)dicyclohexyltin(IV), TC4

Figure 3.3.4c
Packing diagram of (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4chlorophenolato)dicyclohexyltin(IV), TC4, showing hydrogen bonding between $\mathrm{O}(2)$ with $\mathrm{O}(8)-\mathrm{H}, \mathrm{O}(6)$ with $\mathrm{O}(7)-\mathrm{H}$ and $\mathrm{O}(7)$ with $\mathrm{O}(4)-\mathrm{H}$

Table 3.3.14
Crystallographic parameters for complexes TC1, TC3 and TC4

Reflections collected / unique
Max. and min. transmission
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole $\left(\mathrm{e} \AA^{-3}\right)$

$16984 / 3594[\mathrm{R}($ int $)=0.0268]$

0.8993 and 0.4969

3594 / $2 / 191$

1.242

$\mathrm{R}_{1}=0.0180, w \mathrm{R}_{2}=0.0544$
$\mathrm{R}_{1}=0.0210, w \mathrm{R}_{2}=0.0677$
0.745 and -0.460
$9422 / 4973[\mathrm{R}(\mathrm{int})=0.0158]$
0.9258 and 0.5912

4973 / 0 / 273
1.340
$\mathrm{R}_{1}=0.0197, w \mathrm{R}_{2}=0.0596$
$\mathrm{R}_{1}=0.0257, w \mathrm{R}_{2}=0.0968$
0.662 and -1.165
$37000 / 8392\left[R\left({ }_{\text {int }}\right)=0.1372\right]$ 0.9418 and 0.8390

8392 / 0 / 545
1.001
$\mathrm{R}_{1}=0.0529, w \mathrm{R}_{2}=0.0860$
$\mathrm{R}_{1}=0.1103, w \mathrm{R}_{2}=0.1045$
0.676 and -0.675

Table 3.3.15
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviation for complexes TC1, TC3 and TC4

TC1

TC3
TC4
Bond lengths

$\mathrm{Sn}(1)-\mathrm{O}(1)$	$2.1251(16)$	$2.0920(17)$	$2.093(4), 2.131(4)$
$\mathrm{Sn}(1)-\mathrm{O}(2)$	$2.0752(15)$	$2.0821(17)$	$2.076(5), 2.107(4)$
$\mathrm{Sn}(1)-\mathrm{N}(1)$	$2.2090(17)$	$2.1967(19)$	$2.215(6), 2.196(5)$
$\mathrm{Sn}(1)-\mathrm{C}_{i}$	$2.117(2)$	$2.129(2)$	$2.143(6), 2.143(6)$
$\mathrm{Sn}(1)-C_{i}{ }^{\prime}$	$2.117(2)$	$2.130(2)$	$2.147(7), 2.133(7)$
$\mathrm{C}(2)-\mathrm{O}(1)$	$1.312(3)$	$1.314(3)$	$1.315(7), 1.315(7)$
$\mathrm{C}(9)-\mathrm{O}(2)$	$1.413(2)$	$1.414(3)$	$1.401(8), 1.401(7)$
$\mathrm{C}(10)-\mathrm{O}(3)$	$1.413(3)$	$1.416(3)$	$1.486(8), 1.417(7)$
$\mathrm{C}(11)-\mathrm{O}(4)$	$1.421(3)$	$1.408(3)$	$1.415(8), 1.416(7)$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.300(3)$	$1.293(3)$	$1.295(8), 1.301(7)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.492(3)$	$1.490(3)$	$1.426(7), 1.512(7)$

Bond angles

$\mathrm{O}(1)-\operatorname{Sn}(1)-\mathrm{O}(2)$	$158.37(6)$	$159.03(7)$	$156.46(17), 158.29(16)$
$\mathrm{C}_{i}-\operatorname{Sn}(1)-\mathrm{C}_{i}{ }^{\prime}$	$125.83(9)$	$126.60(9)$	$122.2(3), 132.9(3)$
$\mathrm{N}(1)-\operatorname{Sn}(1)-\mathrm{C}_{i}$	$119.51(8)$	$121.86(8)$	$110.4(2), 118.6(2)$
$\mathrm{N}(1)-\operatorname{Sn}(1)-\mathrm{C}_{i}{ }^{\prime}$	$114.52(8)$	$111.39(8)$	$127.3(2), 108.5(2)$

Note:
C_{i} and C_{i} 'refer to the ipso-carbon of the diorganotin moieties attached to the central tin atom

Summary

Although both TB1 and TC1 were dimethyltin derivatives, the complexes showed different molecular arrangement; TB1 was a dimer while TC1 was monomeric. The difference between the two complexes could also be observed from the $\mathrm{O}(1)-\operatorname{Sn}(1)-\mathrm{O}(2)$ angle, whereby the angle was smaller in TB1 $\left[\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(2)\right.$ is $\left.155.32(10)^{\circ}\right]$ compared to TC1 $\left[\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(2)\right.$ is $\left.158.37(6)^{\circ}\right]$. The $\mathrm{Sn}-\mathrm{O}$ bond distances for TB3 and TC3, which were diphenyltin derivatives, were shorter than their dimethyltin and dibutyltin derivatives.

Strong intermolecular O-H---O hydrogen bonding interactions were observed in all the diorganotin complexes. There were two different hydrogen bondings observed in complex TB1; that was between the phenoxyl oxygen and one of the free methoxyl oxygen and between the methoxyl oxygen with the free methoxyl oxygen from an adjacent molecule. For complexes TB2, TB3, TC1, TC3 and TC4, the hydrogen bondings involved two different pairs of free methoxyl oxygen with the free methoxyl oxygen from an adjacent molecule. The hydrogen bonding interactions are indicated in the molecular structures in the packing diagrams [Complex TB1: O-H..O 3.117(5), 2.697(4), 2.705(4) and 2.703(4) \AA; Complex TB2: O-H..O 2.608(2) and 2.733(2) \AA; Complex TB3: O-H..O 2.623(3) and 2.666(3) Å; Complex TC1: O-H..O 2.620(2) and 2.707(2) \AA; Complex TC3: O-H..O 2.639(2) and 2.695(3) \AA]. The hydrogen bonding which linked the molecules resulted in the formation of infinite polymeric structures.

3.4. Cytotoxic Activity

The in vitro cytotoxic activity of the Schiff base ligands and their diorganotin complexes had been evaluated against three human carcinoma cell lines, namely HT-29 (human colon carcinoma cell line), SKOV-3 (human ovarian cancer cell line) and MCF7 (hormone-dependent breast carcinoma cell line). For the anticancer screening, the Schiff base ligands and diorganotin complexes were dissolved in DMSO. The concentration of DMSO used did not reveal any cytotoxic activity.

Cisplatin used as a positive control in the present study was found to exhibit remarkable growth inhibitory activities with mean IC_{50} values ranging from 1.4-5.7 $\mu \mathrm{g}$ mL^{-1} on the studied cancer cell lines. The diorganotin complexes in general displayed better cytotoxicity against the tested human carcinoma cell lines as compared to the Schiff base ligands.

From the tabulated data, it could be observed that the Schiff base ligands were less cytotoxic in all the tested cell lines. In fact, the ligands hardly killed any of the cancer cells. The dibenzyltin and di(p-chlorobenzyl)tin derivatives also displayed poor cytotoxicity in all the tested cancer-lines.

In TA series, the dicyclohexyltin derivative, TA4 was not tested for its biological activity as the yield obtained from the preparation of the complex was low. As observed from table 3.4.1a, only the dibutyltin derivative, TA2 and diphenyltin derivative, TA3 showed prominent cytotoxic activity. The dimethyltin derivative, TA1 was only active against the MCF-7 cell line.

For TB series, the dimethyltin, dibenzyltin and di(p-chlorobenzyl)tin derivatives were found to be inactive in all the tested cell lines. The dicyclohexyltin derivative, TB4, was the most active compound, followed by the dibutyltin derivative, TB2 and diphenyltin derivative, TB3, as observed from the results against HT-29 and MCF-7 cell lines. The three compounds displayed similar anticancer activities in SKOV-3 cell lines.

Similarly, in TC series, dimethyltin, dibenzyltin and di(p-chlorobenzyl)tin derivatives were also not active against all the tested cell lines with IC_{50} values of more than $100 \mu \mathrm{~g} \mathrm{ml}^{-1}$. Only the dibutyltin, diphenyltin and dicyclohexyltin derivatives were active against the three tested cancer cell-lines. From table 3.4.1c, it is noted that the dibutyltin derivative, TC2, was the most active against the MCF-7 cell line while the dicyclohexyltin derivative, TC4, was more active against HT-29 cell line. The diphenyltin derivative, TC3, was the least active compound against the HT-29 cell line.

In conclusion, the cytotoxic activities of the tested TRIS Schiff ligands and their diorganotin complexes were not as good as compared to the cisplatin. This was probably due to the insolubility of the ligands and the diorganotin complexes in most solvents including water. Although the TRIS Schiff base ligands and complexes contained several free hydroxyl groups in their molecular structures, the presence of strong intramolecular and intermolecular hydrogen bonding could be affecting the solubility of the ligands and complexes.

Table 3.4.1a
Cytotoxic activity of of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl $]$ iminomethyl $\}$ phenol, TA and (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)diorganotin(IV) complexes

Compound	Cell lines ($\left.\mathrm{IC}_{50} \mu \mathrm{~g} \mathrm{ml}^{-1}\right)^{\mathrm{a}}$		
	HT-29	MCF-7	SKOV-3
cisplatin	5 ± 0	2.4 ± 0.6	1.4 ± 0
2-\{[1,1-Bis(hydroxymethyl)-2oxidoethyl]iminomethyl $\}$ phenol, TA	> 100	> 100	> 100
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)dimethyltin(IV), TA1	> 100	5.7 ± 0.6	> 100
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}phenolato)dibutyltin(IV), TA2	6.7 ± 0.1	1.6 ± 0.3	2.2 ± 0.2
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato) diphenyltin(IV), TA3	65.2 ± 1.3	46.7 ± 1.2	36 ± 0.5
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato) dibenzyltin(IV), TA5	> 100	> 100	> 100
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato) $\mathrm{di}(p-$ chlorobenzyl)tin(IV), TA7	> 100	> 100	> 100

${ }^{a}{ }^{1} \mathrm{IC}_{50}$ values $\left(\mu \mathrm{g} \mathrm{ml}^{-1}\right)=$ inhibition concentration at 50% i.e., the concentration to reduce growth of cancer cells by 50%

Graph 3.4.1a
Bar chart showing IC_{50} value of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenol, TA and (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$ phenolato)diorganotin(IV) complexes

Table 3.4.1b
Cytotoxic activity of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl $]$ iminomethyl $\}-4$ bromophenol, TB and (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4bromophenolato)diorganotin(IV) complexes

Compound	Cell lines ($\left.\mathrm{IC}_{50} \mu \mathrm{~g} \mathrm{ml}{ }^{-1}\right)^{\text {a }}$		
	HT-29	MCF-7	SKOV-3
Cisplatin	5 ± 0	2.4 ± 0.6	1.4 ± 0
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-bromophenol, TB	> 100	> 100	83.3 ± 0.8
Bis[(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)]dimethyltin(IV), TB1	> 100	> 100	72.3 ± 0.3
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]-iminomethyl\}-4-bromophenolato)dibutyltin(IV), TB2	35.3 ± 0.6	6.7 ± 0.1	5.7 ± 0.1
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)diphenyltin(IV), TB3	34.7 ± 0.6	27.7 ± 0.3	5.6 ± 0.1
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)dicyclohexyltin(IV), TB4	7.1 ± 0.3	3.57 ± 0.15	5.7 ± 0.1
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)dibenzyltin(IV), TB5	> 100	> 100	> 100
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-bromophenolato)di(p-chlorobenzyl)tin(IV), TB7	> 100	> 100	> 100

${ }^{\mathrm{a}} \mathrm{IC}_{50}$ values $\left(\mu \mathrm{g} \mathrm{ml}^{-1}\right)=$ inhibition concentration at 50% i.e., the concentration to reduce growth of cancer cells by 50%

Graph 3.4.1b

Bar chart showing IC_{50} value of 2-\{[1,1-bis(hydroxymethyl)-2oxidoethyl $]$ iminomethyl $\}$-4-bromophenol, TB and (2-\{[1,1-bis(hydroxymethyl)-2oxidoethyl]iminomethyl $\}$-4-bromophenolato)diorganotin(IV) complexes

Table 3.4.1c
Cytotoxic activity of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl $]$ iminomethyl $\}-4$ chlorophenol, TC and (2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4chlorophenolato)diorganotin(IV) complexes

Compound	Cell lines ($\left.\mathrm{IC}_{50} \mu \mathrm{~g} \mathrm{ml}^{-1}\right)^{\mathrm{a}}$		
	HT-29	MCF-7	SKOV-3
cisplatin	5 ± 0	2.4 ± 0.6	1.4 ± 0
2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-chlorophenol, TC	> 100	> 100	100 ± 0
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dimethyltin(IV), TC1	> 100	> 100	> 100
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-chlorophenolato)dibutyltin(IV), TC2	8.2 ± 0.2	2.2 ± 1.2	5.6 ± 0.1
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)diphenyltin(IV), TC3	41 ± 1	7.9 ± 0.1	5.7 ± 0
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl \}-4-chlorophenolato)dicyclohexyltin(IV), TC4	4.6 ± 0.1	8.2 ± 0.2	5.4 ± 0.1
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)dibenzyltin(IV), TC5	> 100	> 100	> 100
(2-\{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl $\}$-4-chlorophenolato)di(p-chlorobenzyl)tin(IV), TC7	> 100	> 100	> 100

${ }^{a}{ }^{\text {a }} \mathrm{IC}_{50}$ values $\left(\mu \mathrm{g} \mathrm{ml}^{-1}\right)=$ inhibition concentration at 50% i.e., the concentration to reduce growth of cancer cells by 50%

Graph 3.4.1c
Bar chart showing IC_{50} value of 2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-4-chlorophenol, TC and (2-\{[1,1-bis(hydroxymethyl)-2oxidoethyl]iminomethyl \}-4-chlorophenolato)diorganotin(IV) complexes

[^0]: TA: $X=H, Y=H ;$ TB: $X=B r, Y=H$;

[^1]: TA: $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{H}$; $\mathbf{T B}: \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{H}$; $\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{H}$; TE: $\mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{OCH}_{3}$

