UNIVERSITY MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of candidate: Khor Goot Heah

Matrix Number: HHC 090007

Name of Degree: Doctor of Philosophy

Title of Thesis ("this work"): Methylation Profiling in Oral Squamous Cell Carcinoma

Field of study: Molecular Biology

I do solemnly and sincerely declare that:

- 1) I am the sole author/writer of this Work;
- 2) This work is original;
- 3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract form, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship has been acknowledged in this Work;
- 4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this Work constitutes an infringement of any copyright work;
- 5) I hereby assign all and ever rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be of the owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- 6) I am fully aware that if in the course of making this Work I have infringed any copyright whether internationally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's signature

Date

Subscribed and solemnly declared before

Witness' signature

Name:

Date

Designation:

ABSTRACT

Introduction: DNA methylation is an epigenetic phenomenon at molecular level that involves gene expression regulation of cell development and differentiation, and diseases. DNA hypermethylation in a gene promoter region shows dramatic effects on gene expression and is a common phenomenon in initiation and progression of many solid tumours that includes Oral Squamous Cell Carcinoma (OSCC). Silencing of hypermethylated genes in promoter regions is a frequent phenomenon in different types of cancer and has achieved increasing diagnostic and therapeutic importance since the changes are reversible. Thus, methylation analysis may provide promising clinical applications that include the development of biomarkers, assessment of prognosis and prediction of the therapeutic response in oral malignancy. For years, OSCC has been amongst the leading cancers in developing countries. Despite considerable efforts in research studies and cancer treatments, a 5-year survival rate for OSCC has not shown any significant improvement. To improve on this situation, it is therefore necessary to understand the fundamental biological processes and to identify appropriate prognostic factors of OSCC on DNA hypermethylation-mediated silencing that leads to cancer progression.

Objectives: OSCC methylation profiling was investigated by microarray analysis followed by identification and verification of significantly hypermethylated genes and their protein products. To achieve this, methylation specific polymerase chain reaction (MSPCR) and immunohistochemical (IHC) analysis were used. Both analyses were conducted on selected promoter hypermethylation markers used for detecting the epigenetic alterations associated with OSCC. In this study, the significant pathways of selected hypermethylated genes that are involved in oral carcinogenesis were also elucidated. Finally, relations of demographic and

clinicopathological characteristics along with these signature genes were conducted for prognostic purposes of OSCC.

Materials and methods: Genome-wide analysis of 4 normal oral mucosa and 20 OSCC tissues were conducted using Illumina methylation microarray. The specified differential genes were selected from a gene list and their methylation statuses and protein expressions were further verified by an independent cohort sample of 40 OSCC samples. Lastly, statistical analysis conducted on demographic, clinicopathological data and gene hypermethylations for OSCC prognostication.

Results: Unsupervised hierarchical clustering of methylation data revealed distinct methylation patterns between the normal and the tumour tissues. For tumour tissues, high frequencies of promoter hypermethylation were found in p16, DDAH2, DUSP1, PIKCR3, TP73, MEF2D, RRM2 and CELSR3 genes in the MSPCR analysis; whereas low positive immunostaining of DDAH2, DUSP1, MEF2D and RRM2 were demonstrated in the IHC analysis. Notably, an inverse correlation was observed between hypermethylations and protein expressions of DDAH2, DUSP1, MEF2D and RRM2. In addition to that, significant association was found between p16 and TP73 hypermethylation with patients' tumour site, and CELSR3 and TP73 hypermethylation with patients' tumour site, and CELSR3 and TP73 hypermethylation with patients' invasive stages. Furthermore, DDAH2 and CELSR3 hypermethylation, and RRM2 expression were correlated significantly with patients' age. Finally, gender showed a significant difference in the survival rate with 24.2% for males and 46.5% for females.

Conclusions: Multiple candidate genes were identified using computational and gene-specific validation approaches in this study. The results provide a new insight into the molecular basis of promoter hypermethylation and prognostic values of OSCC. Nevertheless, the identified candidate genes revealed from the present research are worth making further investigations on oral carcinogenesis.

Abstrak

Pengenalan: Metilasi DNA adalah suatu fenomena epigenetik di peringkat molekul yang melibatkan ekspresi gen dalam pembangunan dan pembahagian sel-sel, dan penyakit. Hipermetilasi DNA dalam penganjur gen telah menunjukkan kesan dramatik ke atas gen regulasi dan merupakan fenomena biasa dalam perkembangan banyak tumor pepejal termasuk karsinoma sel skuamus mulut (OSCC). Penyenyapan dalam proses hipermetilasi adalah satu mekanisme yang kerap berlaku dalam pelbagai jenis kanser dan menjadi semakin penting dalam bidang diagnostik dan terapeutik kerana metilasi merupakan proses tindakbalas berbalik. Oleh itu, analisis metilasi boleh menyediakan aplikasi klinikal yang menjamin, termasuk penemuan penanda-penanda baru, penilaian prognosis dan pemberian terapeutik pada kanser mulut. Sejak beberapa tahun yang dulu, OSCC telah menjadi salah satu kanser utama di negara-negara yang sedang berkembang. Walaupun pelbagai usaha dalam penyelidikan dan pengubatan barah berkembang telah dibuat, kadar kelangsungan hidup 5 tahun untuk pesakit-pesakit OSCC masih tidak bertambah baik. Bagi memperbaiki keadaan ini, adalah perlu untuk memahami proses biologi asas pada DNA hipermetilasi dalam penganjur gene yang merupakan punca kanser.

Objektif: Penyiasatan profil metilasi OSCC dijalankan oleh analisis microarray, diikuti dengan pengenalan dan pengesahan status perbezaan gen metilasi yang signifikan dan ekspresi protein menggunakan metilasi khusus "polymerase chain reaction" (MSPCR) dan immunohistokimia (IHC) analisis. Kedua-dua analisis telah dijalankan ke atas gen-gen terpilih untuk mengesan perubahan epigenetik yang berkaitan dengan OSCC. Dalam kajian ini, laluan sel-sel penting untuk gen hipermetilasi yang terlibat dalam karsinogenesis mulut juga dijelaskan. Akhir sekali,

hubungan ciri-ciri demografi dan klinikopathologikal dengan gen-gen penanda telah diadakan untuk tujuan ramalan OSCC.

Material dan cara:

Untuk mengenal pasti kelainan metilasi DNA yang berkaitan dengan OSCC, kita menyiasat analisis keseluruhan genom keatas 4 mukosa mulut biasa dan 20 tisu OSCC, dengan menggunakan Illumina metilasi microarray. Status metilasi dan ekspresi protein untuk calon-calon gen telah disahkan oleh sampel kohort berbeza daripada 40 sampel tumor. Akhir sekali, analisis secara statistik juga dijalankan keatas data demografi dan klinikopathologika, dan tanda-tanda hipermetilasi untuk nilai prognostik bagi pesakit OSCC.

Keputusan: Kelompok hierarki tanpa pengawasan data metilasi mendedahkan pola metilasi berbeza antara tisu normal dan tisu tumor. Dalam kajian tisu tumor, frekuensi tinggi dalam penganjur hipermetilasi ditemui pada gen-gen P16, DDAH2, DUSP1, PIKCR3, TP73, MEF2D, RRM2, BCL2 dan CELSR3 dalam MSPCR analisis, begitu juga perwarnaan imuno dalam IHC analisis yang rendah bagi DDAH2, DUSP1, MEF2D dan RRM2 telah ditunjukkan. Hubungan songsang antara hipermetilasi dan imunoreaktiviti untuk DDAH2, DUSP1, MEF2D dan RRM2 telah dikesan dalam kajian ini. Tambahan pula, hubungan yang ketara ditemui antara hipermetilasi P16 dan TP73 dengan lokasi tumor, hipermetilasi CELSR3 dan TP73 dengan pesakit peringkat invasif. Tambahan pula, hipermetilasi bagi DDAH2 dan CELSR3, and RRM2 ekspresi adalah berkait rapat dengan ketara dengan usia pesakit. Akhir sekali, jantina menunjukkan perbezaan yang signifikan dalam kadar jangkaan hidup dengan 24.2% bagi lelaki dan 46.5% untuk wanita.

Kesimpulan: Pelbagai calon gen telah dikenal pasti menggunakan pendekatan pengesahan pengiraan dan gen khusus dalam kajian ini. Keputusan ini juga menyediakan wawasan baru ke dalam asas molekul hIpermetilasi penganjur dan nilai prognostik OSCC. Lagipun, calon-calon gen yang dikenal pasti dari kajian ini adalah bernilai untuk siasatan lanjut mengenai karsinogenesis mulut.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for giving me the strength, patience and health throughout the study tenure. I would like to express my deepest gratitude to my main supervisors, Prof. Dr Thong Kwai Lin and Prof Dr Rosnah Mohd. Zain for their generous guidance, enthusiastic supervision and constant encouragement. This also applies to my co-supervisor, Associate Prof. Dr Gabriele Ruth Anisah Froemming for her continuous supports and invaluable advices.

I appreciate the encouragement that I have received from my Dean of the Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Prof Dr Mohamed Bin Ibrahim Hassan. I would like to acknowledge the grants, PS001/2010A and PV046-2011B provided by the University of Malaya, 600-RMI/DANA/5/3/RIF (633/2012) by the UiTM. and the Fundamental Research Grant Scheme (FRGS) of the Ministry of Higher Education, Malaysia.

Many thanks to Asst. Prof Dr. Tan Aik Choon from the school of medicine, University of Colorado, Denver, USA for his time and invaluable help in the microarray data analysis. I am grateful to Dr Mariam Mohamad of Population Health and Preventive Medicine Department, Medical Faculty, UiTM for her invaluable advice in the statistical analysis.

I would like to thank IMMB staffs and members who knowingly and unknowing-led me through the life-challenges to our ability to thrive. Thank you to the OCRCC team for their support despite the tight working schedule, especially to Nabilah, Karen Ng and Vincent Chong.

My deepest gratitude and special heartfelt thanks to my husband, Ir Teoh Teik Seng, my wonderful sons, Teoh Khai Ping and Teoh Khai Jieh, and my loving daughter, Teoh Xian Ying for being patient and supportive during my study. I am so lucky to have them with me all the time sharing the great moments in our life. This thesis is dedicated to them.

LIST OF CONTENTS	Page No.
i COVER PAGE	
ii. ORIGINAL LITERARY WORK DECLARATION	ii
iii. ABSTRACT	iii
iv. ACKNOWLEDGEMENTS	ix
v. LIST OF CONTENTS	х
vi. LIST OF FIGURES	xvi
vii. LIST OF TABLES	xx
viii. LIST OF APPENDICES	xxi
ix. LIST OF ABBREVIATIONS	xxii
CHAPTER 1 INTRODUCTION	
1.1 Background of the study	1
1.2 Rationale of the study	3
1.3 Significance of the study	4
1.4 Objectives of the study	5
CHAPTER 2 LITERARURE REVIEW	
2.1 Oral cancer	6
2.1.1 The world scene	6
2.1.2 The Malaysian scene	7

2.2 Carcinogenesis	8
2.3 Cancer staging and grading	9
2.4 Cancer prognosis	10
2.5 Risk factors of oral cancer	
2.5.1 Lifestyle factors - Tobacco and betel quid chewing	11
2.5.1.1 Tobacco and betel quid chewing	11
2.5.1.2 Excessive alcohol consumption and mouthwash	12
2.5.2 Infectious factors	13
2.5.3 Genetic instability	15
2.5.4 Diet and nutrition	15
2.5.5 Host defences	16
2.5.6 Chemical carcinogenic substances	17
2.6 Molecular alterations in cancers	
2.6.1 Oncogenes	
2.6.2 Tumour suppressor genes	
2.7 Epigenetic biomarkers for cancers	
2.8 Cancer therapy	
2.9 Epigenetic	
2.9.1 Significance of epigenetic studies	
2.9.2 Epigenetic interaction	
2.9.2.1 Epigenetic and aging	26
2.9.2.2 Epigenetic and gender	26
2.9.2.3 Epigenetic and diets	26

293 DNA methylation	27
2.9.5 DIVA methylation	21
2.9.3.1 DNA methylation mechanism	28
204 CrC islands	20
2.9.4 CpG Islands	29
2.9.4.1 CpG methylation	31
2042 DNA muchatida mathulatean afaragas	20
2.9.4.2 DINA nucleonde methylatransferases	32
2.9.5 Effects of DNA methylation on gene transcription	34
2.10 Histore modifications	35
	55
2.11 High throughput methylation analysis	35
2 11 1 Microarray	37
	57
2.11.2 DNA methylation microarrays	37
2.11.3 Cytosine microarray	38
	50
2.11.4 Microarray application in oral cancers	39
2.12 Methylation analysis	40
2.12.1 Bisulfite-conversion based method	40
2.12.2 Gene-specific methylation analysis	42
2.12.3 Methylation-specific polymerase chain reaction	43
2.12.4 Methylation-sensitive restriction enzymes methods	44
2.12.5 Methylation-sensitive high-resolution melting	44
2.13 Immunohistochemistry	45
	10
2.13.1 Technical aspect of immunohistochemistry	46
	47
CHAPTER 3 MATERIALS AND METHODS	47
3.1 Study design	47

	40
3.2 Study population	48
3.3 DNA extraction	48
	40
3.3.1 Snap frozen tissues	48
3.3.2 Formalin fixed paraffin embedded tissues	49
3 3 3 Bisulfite converted DNA	50
5.5.5 Disume converted DIVA	50
3.4 Microarray assay	51
3.4.1 Microarray data analysis	52
	50
3.4.1.1 Genome Studio data analysis	52
3.4.1.2 Partek Genomic Suite and Genego, Metacore TM analysis	53
3.5 Methylation-specific polymerase chain reaction analysis	54
5.5. Wentylation-specific porymetase chain reaction analysis	54
3.5.1 Statistical analysis for comparisons between patients' demographic profiles	
and clinicopathological characteristics	55
3.5.2 Survival analysis	
3.6. Immunohistochemical analysis	57
	57
3.6.1 Protocol for detection of protein expression of selected genes using IHC	
3.6.1.1 Dewaxing, deparafinization and rehydration	
	59
3. 6.1.2 Antigen retrieval	50
3. 6.1.3 Blocking	57
2 6 1 4 Steining	59
3. 6.1.4 Staining	60
3. 6.1.5 Counterstaining	
3 61 6 Tissue preservation	60
5. 0.1.0. Tissue preservation	
3. 6.2 Image scoring analysis of protein expressions of selected genes in IHC	<i>с</i> 1
stained specimens	61
3.6.3 Statistical analysis of protein expressions of selected genes	62

CHAPTER 4 RESULTS	63
4.1 Methylation microarray analysis	63
4.1.1 Study population	
4.1.2 Illumina's Genome Studio software analysis	63
4.1.3 Partek Genomic Suite assay	67
4.1.4 Signalling pathway analysis of hypermethylated genes of OSCC	73
4.2 Methylation-specific polymerase chain reaction analysis	76
4.2.1 Demographic and clinicopathological parameters of OSCC	82
4.2.2 Association between patients' demographic profiles, clinicopathological data	
and methylation status	82
4.3 Survival analysis	86
4.4 Immunohistochemical analysis	
4.4.1 Association between gene hypermethylation levels and protein expressions of	
DDAH2, DUSP1, MEF2D and RRM2.	
4.4.2 Correlation between protein expressions of DDAH2, DUSP1, MEF2D and	
RRM2	106
4.4.3 Correlation between patients' age and protein expressions of DDAH2,	
DUSP1, MEF2D and RRM2.	
CHAPTER 5 DISCUSSIONS	
5.1 Methylation microarray analysis	107
5.2 Partek Genomic Suite assay	110
5.3 Methylation-specific polymerase chain reaction analysis	111

5.4 Significant signaling pathway analysis of hypermethylated genes of MEF2D and		
RRM2		
5.4.1 MEF2D	120	
5.4.2 RRM2	120	
5.5 Survival analysis	121	
5.6 Immunohistochemical analysis	122	
5.6.1 Association of protein expression of DDAH2, DUSP1, MEF2D and RRM2	124	
5.7 Association of gene hypermethylation levels with protein expression of		
DDAH2, DUSP1, MEF2D and RRM2	124	
5.8 Demographic profiles, clinicopathological characteristics, gene		
hypermethylations and protein expressions of OSCC		
5.9 Limitations of study		
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS	131	
6.1 Conclusions		
6.2 Recommendations		
BIBIOGRAPHY		

	LIST OF FIGURES	Page No.
Figure 2.1	Illustration of de novo methylation and maintenance methylation processes	29
Figure 2.2	Schematic drawing of methylated CpG	30
Figure 2.3	Schematic drawing of cytosine methylation	32
Figure 2.4	Schematic drawing of known members of the DNMT super-family	34
Figure 2.5	Schematic chemical conversion of DNA methylation analysis	42
Figure 3.1	Project workflow	47
Figure 4.1	The line plot shows unsupervised hierarchical clustering of probes of normal tissues and clinical samples	64
Figure 4.2	Mean methylation value difference between normal tissues with different stages of OSCC cases	65
Figure 4.3.1	Histogram of group methylation profiles of p16 alleles average β value between normal and 4 pathological stages	65
Figure 4.3.2	Histogram of group methylation profiles of DDAH2 alleles average β value between normal and 4 pathological stages	66
Figure 4.3.3	Histogram of group methylation profiles of DUSP1 alleles average β value between normal and 4 pathological stages	66
Figure 4.4	Heatmap methylation frequency of differentially methylated genes in OSCC	68
Figure 4.5	Principle Component Analyses segregated the normal samples from tumor samples	69

Figure 4.6	Scatter plot of fold change of normal and tumour tissues with gene locus	69
Figure 4.7	Distribution chart of p value with locus for hypomethylated genes and hypermethylated genes	70
Figure 4.8.1	Representative of Partek Genomic Suite visualization of P16 gene in normal and four pathological stages	70
Figure 4.8.2	Representative of Partek Genomic Suite visualization of DUSP1 gene in normal and four pathological stages	71
Figure 4.8.3	Representative of Partek Genomic Suite visualization of DDAH2 gene in normal and four pathological stages	71
Figure 4.8.4	Representative of Partek Genomic Suite visualization of PIKC3R5 gene in normal and four pathological stages	72
Figure 4.8.5	Representative of Partek Genomic Suite visualization of CELSR3 gene in normal and four pathological stages	72
Figure 4.8.6	Representative of Partek Genomic Suite visualization of BCL2 gene in normal and four pathological stages	73
Figure 4.9.1	Representative agarose gel electrophoretic images of methylation status for gene of p16 in methylation control and tumour samples	76
Figure 4.9.2	Representative agarose gel electrophoretic images of methylation status for gene of DDAH2 in methylation control and tumour samples	77
Figure 4.9.3	Representative agarose gel electrophoretic images of methylation status for gene of DUSP1 in methylation control and tumour samples	77
Figure 4.9.4	Representative agarose gel electrophoretic images of methylation status for gene of CELSR3 in methylation control and tumour samples	78
Figure 4.9.5	Representative agarose gel electrophoretic images of methylation status for gene of PIK3R5 in methylation control and tumour samples	78
Figure 4.9.6	Representative agarose gel electrophoretic images of methylation status for gene of TP73 in methylation control and tumour samples	79
Figure 4.9.7	Representative agarose gel electrophoretic images of methylation status for gene of MEF2D in methylation control and tumour sample.	79

Figure 4.9.8	Representative agarose gel electrophoretic images of methylation status for gene RRM2 in methylation control and tumour samples	80
Figure 4.9.9	Representative agarose gel electrophoretic images of methylation status for gene of BCL2 in methylation control and tumour samples	80
Figure 4.10	Overall survival rate in OSCC patients showed in Kaplan-Meier curve	89
Figure 4.11.1	Relative survival of ethnicity demonstrated in Kaplan-Meier survival curve	89
Figure 4.11.2	Relative survival of age demonstrated in Kaplan-Meier survival curve	90
Figure 4.11.3	Relative survival of gender demonstrated in Kaplan-Meier survival curve	90
Figure 4.11.4	Relative survival of habits demonstrated in Kaplan-Meier survival curve	91
Figure 4.11.5	Relative survival of tumour sites demonstrated in Kaplan-Meier survival	91
Figure 4.11.6	Relative survival of pathological stages demonstrated in Kaplan- Meier survival curve	92
Figure 4.11.7	Relative survival of invasive front demonstrated in Kaplan-Meier survival curve	92
Figure 4.11.8	Relative survival of tumour grading demonstrated in Kaplan-Meier survival curve	93
Figure 4.11.9	Relative survival of p16 methylation demonstrated in Kaplan- Meier survival curve	93
Figure 4.11.10	Relative survival of DDAH2 methylation demonstrated in Kaplan- Meier survival curve	94
Figure 4.11.11	Relative survival of DUSP1 methylation demonstrated in Kaplan- Meier survival curve	94
Figure 4.11.12	Relative survival of CELSR3 methylation demonstrated in Kaplan-Meier survival curve	95

Figure 4.11.13	Relative survival of PIK3R5 methylation demonstrated in Kaplan- Meier survival curve	95
Figure 4.11.14	Relative survival of TP73 methylation demonstrated in Kaplan- Meier survival curve	96
Figure 4.11.15	Relative survival of MEF2D methylation demonstrated in Kaplan- Meier survival curve	96
Figure 4.11.16	Relative survival of RRM2 methylation demonstrated in Kaplan- Meier survival curve	97
Figure 4.11.17	Relative survival of BCL2 methylation demonstrated in Kaplan- Meier survival curve	97
Figure 4.12.1	Negative immunostaining of DDAH2 shows in cytoplasm of the tumour cells	99
Figure 4.12.2	Positive immunostaining of DDAH2 shows in the cytoplasm of the normal epithelium	99
Figure 4.12.3	Positive staining of DDAH2 was detected in the cytoplasm of the tumour cells	100
Figure 4.12.4	Negative cytoplasmic immunostaining of DUSP1 shows in the tumour cells	100
Figure 4.12.5	Positive cytoplasmic immunostaining of DUSP1 shows in the normal epithelium	101
Figure 4.12.6	Positive DUSP1 cytoplasmic staining was detected in the tumour cells	101
Figure 4.12.7	Negative MEF2D nuclear staining shows in the tumour cells	102
Figure 4.12.8	Positive MEF2D nuclear staining shows in the normal epithelium	102
Figure 4.12.9	Positive MEF2D nuclear staining was detected in the tumour cells	103
Figure 4.12.10	Negative RRM2 cytoplasmic staining shows in the tumour cells	103

Figure 4.12.11	Positive RRM2 cytoplasmic staining shows in the normal epithelium	104
Figure 4.12.12	Positive RRM2 cytoplasmic staining was detected in the tumour cells	104

	LIST OF TABLES	Page No
Table 2.1	TNM clinical staging categories with 5-year survival rate for cancer	9
Table 3.1	Details of primers used in methylation-specific polymerase chain reaction	56
Table 3.2	Details of antibodies used in immunohistochemical assay	58
Table 4.1	Significant biological pathway associated with hypermethylated genes of OSCC	75
Table 4.2	Methylation status and percentage for methylated genes	81
Table 4.3	Demographic profiles, clinicopathological characteristics and gene methylations of OSCC patients	84
Table 4.4	Survival analysis of patients' demographic profiles, clinicopathological characteristics, and genes' hypermethylation status	87
Table 4.5	Status and percentage of immunostaining for hypermethylated genes	105

	LIST OF APPENDICES	Page No
Appendix A	Protocol of Haematoxylin and Eosin Staining	156
Appendix B	Primer design criteria	157
Appendix C	Protocol of immunohistochemical staining: Labelled Streptavidin Biotin	157
Appendix D	Details of 34 promoter-associated hypermethylated genes of OSCC with UCSC gene accession and CpG Island (Illumina's Genome Studio software)	158
Appendix E	Details of 89 promoter hypermethylated genes of OSCC with island location and p value (Partek Genomic Suite software)	160
Appendix F	Correlation between protein expression and patients' age	163
Appendix G	List of publications and conference proceedings	164

LIST OF ABBREVIATIONS

5-MCs	5-Methylcytosines
А	Adenine
ANOVA	One-way analysis of variance
ASR	Age standard ratio
BCL2	B-cell lymphoma 2
С	Cytosine
Calmodulin	Calcium-bound calmodulin 2
СаМК	Calcium/calmodulin-dependent kinase
CELSR3	Cadherin EGF LAG seven-pass G-type receptor 3
СН3-	Methyl
COBRA	Combined bisulfite restriction analysis
CpG	Cytosine-Guanine
DAB	Diaminobenzidine
DAPK	Death associated protein kinase
dd	Dideoxynucleotides
DDAH2	Dimethylarginine dimethylaminohydrolase 2
ddH2O	Double distilled water
ddNTPs	Dideoxynucleotide triphosphate
DNMTs	DNA nucleotide methyltransferases
DNP	2,4-dinitrophenol
dNTPs	Deoxynucleoside triphosphates

dRNs	Deoxyribonucleotides
DUSP	Dual specificity phosphatase
EBV	Epstein–Barr virus
EGCG	Epigallocatechin-3–gallate
FDR	False discovery rate
FFPE	Formalin fixed paraffin embedded
G	Guanine
GSTP1	Glutathione S-transferase gene
H&E	Haematoxylin and Eosin
H ₂ O ₂	Hydrogen peroxide
HDACs	Histone deacetylases
HNSCC	Head and neck squamous cell carcinoma
HP1	Heterochromatin protein 1
HRP	Horseradish peroxidase
lincRNAs	Large intergenic non- coding RNAs
MAPKs	Mitogen-activated protein kinase
MCs	Methylcytosines
MEF2D	Myocyte Enhancer Factor 2D
MGMT	Methylguanine-DNA methyltransferase
Mins	Minutes
ml	Mililiter
mM	Mili Molar

MOCDTBS	Malaysia Oral Cancer Database and Tissue Bank System
MS-HRM	Methylation-sensitive high-resolution melting
MSPCR	Methylation-specific polymerase chain reaction
MS-SNuPE	Methylation-sensitive single nucleotide primer extension
nc RNAs	Non-coding RNAs
NCR	National Cancer Registry
ng	Nanogram
NORs	Nucleolar organizing regions
NTP	Nucleoside triphosphate
OCRCC	Oral Cancer Research and Coordinating Centre
OSCC	Oral Squamous Cell Carcinoma
p101	PI3K regulation class IB
PCA	Principle Component Analyses
РСР	Planar cell polarity
Pik3r5	Phosphoinositide-3-kinase, regulatory subunit 5
piRNAs	PIWI-interacting RNAs
RefSeq	Reference sequence
RR	Ribonucleotide reductase
RRM2	Ribonucleotide reductase small subunit M2
RT-PCR	Real-time polymerase chain reaction
SAM	S-Adenosyl-L-Methionin
SCC	Squamous cell carcinoma

snoRNAs	Small nucleolar RNAs
SPSS	Statistical Package for Social Sciences
Т	Thymine
TBS	Tris phosphate buffer
TP 73	Tumour protein 73
TSS	Transcription start site
T-UCRs	Transcribed ultra-conserved regions
U	Uracil
ul	Microliter
μg	Microgram
μm	Micrometer
USA	United States of America
VEGF	Vascular endothelial growth factor
WHO	World Health Organization