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CHAPTER 1  INTRODUCTION 

 

1.1 Background of the study 

Oral cancer is the tenth most common type of cancer contributing to death worldwide (Cheng 

& Blumenthal, 2008; Jemal et al., 2011). Oral Squamous Cell Carcinoma (OSCC) is a type of 

oral cancer and subgroup of head and neck squamous cell carcinoma (HNSCC). OSCC is the 

sixth most common malignancy with an incidence of more than 300,000 cases yearly, of 

which 62% are from developing countries (Kumar et al., 2013; Parkin et al., 2005). Smoking 

tobacco and drinking alcohol are regarded as major risk factors for oral cancer (Petersen, 

2003).  Significant efforts of oral cancer researchers committed and advanced treatments in 

surgery, radiotherapy, and chemotherapy; however, the overall 5-year survival rate has 

remained less than 50% for the last decades. There is also a rising incidence of oral cancer in 

developed countries and among the younger population (Scully & Bagan, 2007; 

Warnakulasuriya, 2009). The prognosis of OSCC remains poor essentially due to late 

diagnosis. Therefore it is of great importance to identify specific molecular markers that 

could be potentially useful for early diagnosis and prevention of OSCC. Moreover, the 5-year 

survival rate for oral cancer is directly associated to pathological stage at the time of 

diagnosis, thus early diagnosis and treatment remain the main keys in improving the overall 

survival rates of patients diagnosed with this disease.   

An epigenetic phenomenon is a heritable alteration in the gene function without sequence 

changes, which involves the enzymatic addition of methyl groups to deoxycytidine residues 

to CpG dinucleotides.  Alterations in the established epigenetic patterns usually lead to 

changes in gene expression, which can cause transcriptional repression. The classic 

epigenetic changes include DNA methylation, histone modification (acetylation, methylation 

and phosphorylation), chromatin remodelling and microRNA interference, which have been 
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shown to be involved in post-transcriptional silencing.  DNA methylation is one of the 

epigenetic phenomena that occur at the molecular level involving cell regulation with regards 

to development and differentiation, aging, and diseases such as multiple sclerosis, diabetes, 

schizophrenia and cancers (Shaw, 2006; Supic et al., 2009). In terms of DNA methylation, 

cancer cells show genome-wide hypomethylation occurring at many genomic sequences, 

such as repetitive elements, retrotransposons, and introns resulting in genomic instability and 

site-specific Cytosine-Guanine (CpG) islands (Esteller, 2008). A recent study that compared 

colorectal cancer tissue with normal tissue suggests an important alteration at the CpG island 

shores (Irizarry et al., 2009).  Notably, one of the main gene inactivation mechanisms 

involved in cancer progression is the promoter hypermethylation of CpG islands. Silencing of 

certain tumour suppressor genes (TSGs) leads to the development of many solid tumours, 

which may occur via hypermethylation of CpG islands located in the promoter region without 

the presence of genetic alterations (Herman & Baylin, 2003; Jones, 2012). The 

hypermethylation of CpG dinucleotides, especially at the CpG sites of TSGs, shows the 

dramatic effects on gene expression and this process is now widely recognized as either a 

causative or correlative event in carcinogenesis.  

Recent advanced technology for high throughput genome-wide DNA methylation analyses of 

microarray is a potential diagnostic tool for methylation profiling (Kim & Kim, 2010). The 

advanced microarray technology has enabled researchers to generate large amounts of data 

which include approximately the entire known human genome, and has shown that many 

genetic alterations can be involved in carcinogenesis (Bibikova et al., 2004). Alterations in 

over one hundred oncogenes and TSGs have now been implicated in some cancers (Hayslip 

& Montero, 2006; Stransky et al., 2011; Vogelstein & Kinzler, 2004). Thus, a microarray 

technology was applied to analyse the methylation status of genes simultaneously and 



3 
 

discover the epigenetic signatures that distinguish normal from tumour tissues of OSCC in 

this study.  

The promoter hypermethylation can also be detected by methylation-specific polymerase 

chain reaction (MSPCR) (Herman, Graff, Myöhänen, Nelkin, & Baylin, 1996) or by 

imunohistochemical (IHC) staining of the proteins coded for by the genes (Turbin et al., 2008, 

Rexhepaj et al., 2008).  The advancement of this MSPCR technique has demonstrated a 

simple, rapid and cost-effective assessment for promoter methylation status. The methylation 

technique provides information about the methylation status, which improves the sensitivity 

of detection of 1 methylated allele in a background of 1000 unmethylated alleles, when 

detecting the tumour-specific signals in oral cancer (Cottrell & Laird, 2003). Thus, MSPCR 

was applied to confirm the microarray data in the study. In addition, the IHC staining was 

used to identify changes in protein expressions associated with the promoter 

hypermethylation (Rexhepaj et al., 2008, Turbin et al., 2008) in the OSCC cases. 

 

1.2 Rationale of the study 

The precise molecular mechanisms involved in the development and progression of OSCCs 

remain unclear. Furthermore, the discovery of TSGs often fails to be expressed in the absence 

of a detectable genetic mutation. This has recently led to greater research emphasis on cancer 

epigenetic studies, especially in the DNA methylation (Feinberg et al., 2006). Thus, the 

detailed study of methylation profiling pattern in normal and pathological conditions is very 

crucial for a better understanding of OSCC aetiology and its early detection (Moskalyov et al., 

2007). Moreover, identification of new genes that are hypermethylated in OSCC can be used 

as biomarkers for better detection, as well as for an individual’s cancer risk assessment of 
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recurrence and/or progression after diagnosis, and personalized medicine (Phé et al., 2010; 

Schmezer & Plass, 2008). 

 

 

1.3 Significance of the study 

Direct benefits of OSCC methylation profiling include probable advances in 

hypermethylation patterns which have been well characterized in many cancers. The specific 

patterns of hypermethylation are indicative of specific cancer types, have prognostic values 

and can help to guide the best course of treatment (Laird, 2003; Ludwig & Weinstein, 2005) 

for OSCC. An in-depth understanding of epigenetic alterations underlying oral cancer for 

identifying possible molecular therapeutic targets can enhance usage of molecular targeted 

therapy in clinics. The findings of this research could reveal that molecular biomarkers and 

gene detection will become a reality for the care of patients with OSCC. 

 

The analyses of advanced methylation technologies have enabled us to validate the signature 

candidate gene methylation levels and protein expressions; and also to correlate these 

epigenetic alterations with carcinogenic pathways. The findings can ultimately lead to better 

cancer diagnostic, prognostication and new therapeutic strategies (including molecular-

targeted therapy) that will benefit patients afflicted with oral cancer in the near future. 

Therefore, the observations made from this research are important in providing a stepping 

stone for further research into exploring the biological functions of the signature candidate 

genes, or roles involving methylation mechanisms and their interactive pathways leading to 

oral carcinogenesis.  
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1.4 Objectives of this study: 

1. To investigate the methylation profiling expressions of OSCC.   

2. To explore the hypermethylated genes for the epigenetic alterations associated with 

OSCC.   

3. To determine the protein expression of hypermethylated genes.  

4. To correlate the protein expressions with specific genes methylation levels in OSCC.  

5. To correlate the characteristic of DNA hypermethylation patterns with demographic and 

clinicopathological data, and survival rate of the OSCC patients. 

 

The hypotheses of the study are: 

1. There is a difference in methylation profiling expressions between normal subjects and 

OSCC patients. 

2. There is a difference in gene hypermethylation levels and protein expressions between 

normal subjects and OSCC patients. 
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CHAPTER 2  LITERATURE REVIEW 

 

2.1 Oral cancer 

Oral cancer is an epithelial neoplasia commonly initiated as a focal clonal overgrowth of 

altered stem cells near the basement membrane, and then expanding upward to replace the 

normal epithelium in the oral cavity (Werning, 2007).  The basal cell of the oral epithelium 

has a higher than normal mitotic activity, any disturbance in quality and quantity of cell-

regulating proteins can lead to carcinogenesis (Sapp at el., 1997). This malignancy commonly 

involves the tongue, gum, cheek, palate, lip and floor of the mouth (Garzino-Demo et al., 

2006). Its oncogenic transformation is initially from normal epithelium through hyperplasia 

to dysplasia to carcinoma in situ and lastly, invasive carcinoma (Saranath, 2000). Recurrence 

of OSCC at the local tumour site or regional metastases through the lymph nodes of the neck 

to form secondary cancer can occur, despite a very advanced form of cancer treatment by 

surgery and/or radiotherapy.  This suggests that the cancer treatment fails to target the small 

amounts of cancerous cells that still remain in the body. As such, in order to cure cancer with 

a higher success rate, the current conventional surgical and/or radiotherapeutic treatments 

must be critically examined. Modification of the treatment protocols using newer technology 

such as molecular-targeted therapy need to be further investigated. 

 

2.1.1 The world scene 

Oral cancer is one of the common human cancers worldwide for which it is ranked 10
th

 most 

common for men and 13
th

 most common for women.  In 2008, it was reported in the global 

burden of cancer (GLOBOCAN) that 263,900 new oral cancer cases were diagnosed and 

128,000 deaths occurred annually with 65.4% of oral cancers occurring in the less developed 
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countries such as in Asia (Jemal et al., 2011). The incidence of oral cancer is higher in 

developing countries as compared to developed countries. Although OSCC accounts for less 

than 5% of malignant tumours in developed countries, it is the most common malignancy in 

parts of South Asia and South East Asia, accounting for up to two third of malignant tumours 

in these regions (Warnakulasuriya, 2009). In the United States of America (USA), 30,000 

people are diagnosed with oral or pharyngeal cancer annually for which the incidence rate is 

similar between African-American and Caucasian females, but is 30% higher amongst males 

of African-American descent if compared with Caucasian males. Squamous cell carcinomas 

(SCCs) account for the majority of the cases in the USA and are mainly related to tobacco 

and alcohol exposures (Sturgis et al., 2004). Approximately 90% of oral cancers are 

presented as squamous cells in origin, thus they are usually referred as OSCC (Walker et al., 

2003). Despite significant efforts and commitment of oral cancer researchers in recent years, 

the overall survival rate has remained at less than 50%, which is lower than cervical and 

breast cancers.  

 

2.1.2 The Malaysian scene  

Oral cancer is one of the emerging health problems within Malaysia due to the increase in 

risky habits such as smoking, betel quid chewing and excessive alcohol drinking being 

practised amongst the local population (Zain, 2001; Zain & Ghazali, 2001). The most 

common form of oral cancer diagnosed in Malaysia is OSCC (Ng & Siar, 1997). According 

to National Cancer Registry (NCR), oral cancer is the sixteenth most common cancer for 

females and is ranked number twenty one for males for overall cancer incidence per 1000,000 

populations in 2002 (Lim et al., 2008). It is ranked seventh and third most common cancer for 

Indian males and females with 4.5% and 6.5% respectively of all cancers (Lim et al., 2008). 

Based on the third report of the NCR on clinical data from government hospitals in 
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Peninsular Malaysia, it was reported that the highest incidence of oral cancer (excluding 

tongue cancer) occurred for those of Indian ethnicity, followed by the Malays and then the 

Chinese (Lim et al., 2008). This can be seen quite prominently amongst Indian females for 

whom an age standard ratio (ASR) of 14.4 per 100,000 population was observed,  in 

comparison  with the Malays and the Chinese both of whom only reached ASR values of 0.8 

and 0.6 per 100,000 respectively (Lim et al., 2008). 

 

2.2 Carcinogenesis  

Carcinogenesis is a progression of a normal healthy cell to a potentially malignant cell, which 

undergoes an autonomous proliferation. It is a multistep and multifactorial complex 

mechanism containing a variety of genetic and epigenetic alterations. These alterations 

include silencing of gene expression and cell functions involve in regulating cell signalling, 

growth, survival, angiogenesis, and cell cycle control which are fundamental to cell 

homeostasis (Gordana et al., 2009). For decades, gene mutations seemed to be the most 

important alterations in human cancers. However, in recent years, it has been shown that 

epigenetic alterations, especially alterations in DNA methylation patterns play a vital role in 

carcinogenesis. Both hypermethylation of CpG rich areas, namely CpG islands which are 

mostly located at the 5’ end of the transcription start site (TSS) of the activated transcribed 

genes, and hypomethylation of transcriptional inactive genomic regions, frequently happen in 

various cancers (Enokida & Nakagawa, 2008; Esteller, 2011). Silencing of tumour suppressor 

genes (TSGs) by the promoter hypermethylation, or induction of oncogenes by the promoter 

hypomethylation are frequent mechanisms in different types of cancer. This may potentially 

be of increasing diagnostic and therapeutic importance since the DNA methylation alterations 

are reversible (Iglesias-Linares et al., 2010). Therefore, methylation analysis may provide 
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promising clinical applications that includes the development of new biomarkers and 

prediction of the therapeutic response or prognosis. 

 

2.3 Cancer staging and grading 

The most widely used cancer staging system is the TNM (Tumour/nodes/metastases) system 

(Table 2.1). The TNM system has been well accepted by the Union for International Cancer 

Control (UICC) and the American Joint Committee on Cancer (AJCC) (Edge & Compton, 

2010). The cancer staging system describes with roman numerals of I to IV, and indicates the 

extent that the cancer has spread. A higher number indicates a more advanced cancer and a 

worse outcome is more likely. This system includes the identification of the size and/or 

extent of the primary tumour (T) with degree of invasion (scale from 1-4), the quantity of 

spread to nearby lymph nodes (N) with the degree of involvement (range 0-3), and the 

presence of metastasis to other parts of the body (0 or 1). A number is added to each letter to 

indicate the size and/or extent of the primary tumour and the severity of cancer spread. This 

staging system is used for most types of cancer, except for brain tumours and haematological 

malignancies. Clinicians can plan appropriate treatment and estimate patient’s prognosis by 

knowing the stage of disease. This system has evolved over time and continues to change as 

scientists gain more knowledge about cancer. In addition, physical examinations, imaging 

procedures, laboratory tests, pathology reports, and surgical reports can provide more 

information to determine the stage of a cancer.  

 

At the same time, histological grade of the tumour is usually assessed as well. The grade 

score increases with the lack of cellular differentiation. Grade I is referred as well 

differentiated if they appear similar to normal cells, and grade III if they appear to be poorly 

differentiated (Pindborg et al., 1997). 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045847&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045762&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046710&version=Patient&language=English
http://en.wikipedia.org/wiki/Brain_tumor
http://en.wikipedia.org/wiki/Hematological_malignancies
http://en.wikipedia.org/wiki/Hematological_malignancies
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Bryne et al. (1992) proposed the multifactorial grading system using deep invasive margins 

when tumour’s morphological features are to be evaluated in the grading system.  The pattern 

of invasion is described as individual, non-cohesive and cohesive tumour cells, well defined 

tumour islands and cords (Bryne et al., 1992).  

 

Table 2.1:  TNM clinical staging categories with 5-year survival rate for cancer (Edge & 

Compton, 2010) 

Stage TNM Classification 5-year survival rate 

I T1 N0 M0 85% 

II T2 N0 M0 66% 

III T3 N0 M0  or  T1,T2,T3, N1 M0 41% 

IV Any T4 lesion or Any N2 or N3 or Any M1 lesion 9% 

 

2.4 Cancer prognosis 

Patients’ survival depends on the cancer staging after diagnosis.  Patients’ survival rates for 

early stage detection are about 5 times higher than that of late stage cancers. If the cancer is 

symptomatic, it is typically quite advanced and overall survival is poor, but it would depend 

on the type and if metastases to other parts of the body or organs had already occurred. 

Usually, a stage I cancer patient has an average 5-year survival of approximately 85%-90%. 

This drops to about 50-60% for a more invasive tumour at stage II, and without node 

involvement it can reach 70%. Cancers diagnosed at stage III with positive regional lymph 

nodes have an average 5-year survival of 30%-40%, whilst cancers at stage IV that is 

accomplished distant metastases the 5-year survival is less than 9% (Table 2.1). 

 

2.5 Risk factors for oral cancer  

Risk factors that predispose to OSCC are lifestyle factors such as tobacco consumption, 

excessive alcohol drinking, and betel-quid chewing. Human papillomavirus (HPV), other 
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infections, or host defences may also be relevant. In addition, genetic factors such as single 

nucleotide polymorphisms (SNPs) or mutation may influence the risks (Scully & Bagan, 

2009). Other predisposing factors to oral cancer development include diet, occupational risk, 

poor oral health, and radiation or sunlight exposure. The main aetiological factors of causing 

OSCC in western countries are excessive alcohol consumption and tobacco use, which act on 

genetically susceptible individuals, whereas in the Asian countries, betel quid chewing habit 

is seen as another important risk factor (Chen et al., 1999;  Zain & Ghazali, 2001; 

Warnakulasuriya,2009).  

 

2.5.1 Lifestyle factors - tobacco, alcohol and betel-quid chewing  

2.5.1.1 Tobacco and betel-quid chewing 

Smoked tobacco or smokeless tobacco consumption is one of the major risk factors for OSCC 

(Warnakulasuriya & Ralhan, 2007). Cigarette smokes contain more than 7,000 chemicals 

whereby hundreds of them are toxic.  Nitrosamines, formed by nitrosation of nicotine during 

the curing of tobacco leaves and other tobacco alkaloids present in tobacco smoke can 

alkylate DNA bases. This form of DNA damage is repairable if recognised by the various 

repair enzymes. However, excessive smoking leads to the impairment of multiple DNA repair 

pathways such as adduct reversal as well as base and nucleotide excision repair pathways 

(Cogliano et al., 2004).  The free radicals contained in the cigarette smoke will lead to the 

oxidation of the thiol group of the antioxidant enzymes glutathione-S-transferase, glutathione 

reductase, superoxide dismutase, catalase and glutathione peroxidase which renders the 

enzymes ineffective and leaves the cell exposed to oxidative stress (Patel et al., 2005).  

Another mechanism involved in smoking induced carcinogenicity is cytochrome P450-

mediated α-hydroxylation of nucleotides causing the formation of DNA adducts (Cogliano et 

al., 2004).   Arecoline, an aldehyde found in cigarette smoke can induce the transition of 
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cytosine (C) to thymine (T) by binding to 5-Methylcytosines (5-MCs) present in gene 

promoter regions which is associated with the development of lung cancer (Feng et al., 2006). 

Promoter methylation of p16 has been observed in normal oral mucosa of 9.7% of cigarette 

smokers, supporting the fact that p16 hypermethylation is an early event in HNSCC 

(Ventorin von Zeidler et al., 2004). Elevation of the OSCC risk for males and females were 

found by observing the effects of betel quid chewing with or without tobacco. There is also a 

relationship between OSCC and betel-quid (areca nut) usage, a habit found in about 20% of 

the world’s population, especially in Asian communities (Cogliano et al., 2004). Areca nut is 

carcinogenic to humans as confirmed by many studies (Scully & Bagan, 2009). Chewing 

betel quid induces local irritation and trauma to the oral mucosa, causing chronic 

inflammation, oxidative stress and cytokine production (Lai & Lee, 2006; Shillitoe, 2009). 

Gene expression may be altered by a main component in the areca nut, arecoline, by 

hypermethylation mechanism in blocking TSGs of p14, p15 and p16, inhibiting the p53 by 

repressing DNA repair and triggering DNA damage responses (Tsai et al., 2008). 

 

2.5.1.2 Excessive alcohol consumption and mouthwash 

A suspected carcinogen, acetaldehyde is oxidized by alcohol dehydrogenases (ADHs) from 

alcohol and acetaldehyde is then degraded to a non-carcinogenic substrate, acetate by 

aldehyde dehydrogenases (ALDH) in the liver. Acetaldehyde has been found to hinder DNA 

nucleotide methyltransferases (DNMTs) in a defective metabolic pathway of alcohol 

metabolism. Aberrant methylation can result in the increased oncogene expression 

(hypomethylation) and TSG suppression (hypermethylation). The worldwide prevalence of 

25% oral cancers is attributed to tobacco usage (smoking and or chewing), 7–19% to alcohol 

drinking, and more than 50% attributed to betel quid chewing in areas of high chewing 

prevalence (Petti, 2009). Smoking increases the acetaldehyde burden following excessive 
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alcohol consumption, which enhances the activation of pro-carcinogens present in tobacco 

due to increased metabolic activation (Purohit et al., 2012).   

 

Synergistic effects of cigarette smoking, heavy alcoholic consumption, and betel-quid 

chewing were found in the studies (Wu et al., 2006; Zygogianni et al., 2011). Extracellular 

nicotine worked synergistically on the arecoline-induced cytotoxicity, which plays a vital role 

in getting higher risk of developing oral cancer (Chang et al., 2001).  

 

It has been reported that excessive use of alcoholic mouthwash increased the risk of acquiring 

oral cancer for smokers up to nine times (OR 9.15) compared with the non-alcoholic 

mouthwash which had an OR of nearly five times (OR 4.96) (McCullough & Farah, 

2008).   However, Warnakulasuriya (2009) summarized that alcoholic mouthwash is still a 

debatable risk factor for oral cancer. The molecular link between mouthwash use and oral 

cancer detected in some of the epidemiological studies may be explained by the local 

carcinogenic effects of acetaldehyde with cumulative exposure in the oral cavity 

(Lachenmeier, 2010). 

 

2.5.2 Infectious factors 

Infections induced by bacteria, fungus and virus may inhibit cell apoptosis, trigger cell 

proliferation, interfere with cellular signalling mechanisms and up-regulate tumour promoters 

that can lead to carcinogenesis (Meurman, 2010). Chronic infections or oral ecological-

periodontal disease or loss of teeth are characterized by an inflammatory response of 

oxidative stress leading to carcinogenesis. In addition, the proliferation of ketone-producing 

and nitrate-reducing microorganisms may contribute to the increase of carcinogens present 

(Abnet et al., 2008).  A study conducted by Kolenbrander et al. (2005) on biofilm formation 
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has observed that 16S rRNA gene amplification was dominated by Streptococcus spp., 

Actinomyces spp., Veillonella spp., Prevotella spp., Neisseria spp., Gemella spp., Abiotrophia 

spp., Rothia spp. and Clostridia class.  The mechanism of microbial interactions with dental 

bacterial plaque causing periodontal disease is by synthesizing acetaldehyde from alcohol by 

both oral Streptococci and Neisseria. Thus, oral infections may trigger malignant 

transformation in tissues of the oral cavity (Meurman & Bascones-Martinez, 2011).  

 

Viral infections of Herpes Simplex virus (HSV), Epstein–Barr virus (EBV) and Human 

Papilloma Virus (HPV) have been found to be related to OSCC development (Termine et al., 

2008; Jalouli et al., 2010; Demokan & Dalay, 2011). The occurrence of OSCC increases in 

females who have cervical carcinoma related to HSV, and this also increases the risks in their 

partners. These tumours are likely to represent transmission between the couple (Haddad et al, 

2008). The HSV, types-1 and -2 have been investigated for the possible associations with 

human cancers. Levels of antibody to HSV-1 together with smoking have been reported to be 

higher in patients with oral cancer than those in the control group (Shillitoe, 2009). However, 

the HSV’s involvement in oral cancer is also a debatable risk (Warnakulasuriya, 2009).   

 

EBV is widespread in all populations, its DNA can be occasionally found in normal oral 

mucosa and lesions that include oral cancer. However, controversy between many studies 

was found, where an EBV gene expression in oral cancer have or have not shown the viral 

protein expressions that are or are not associated with malignancy. So, it is difficult to predict 

the role of EBV in oral cancer pathogenesis (Wu et al., 2006; Griffith et al., 2007; Shillitoe, 

2009).  
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A recent study has shown that HPV E7-protein increases the de novo methyltransferases 

enzymatic activity by directly interacting with DNMT1, which may be used to control 

cellular proliferation pathways (Burgers et al., 2006).  Moreover, some tumour formation 

may be associated with HPV, HSV and EBV infections, even though the viruses’ roles in 

causing the tumours need to be evaluated carefully. 

 

2.5.3 Genetic instability  

Genetic instability may be inherited or acquired thereby making a person more susceptible to 

oral cancer. Single Nucleotide polymorphisms (SNPs) in cytochrome P450 and glutathione S-

transferase genes have been implicated in oral cancer (Hua et al., 2012). Polymorphisms of 

glutathione S-transferase genes (GSTM1, GSTT1 and CSTP1) are also found to be related to 

cancers by several studies (Dialyna et al., 2003; Hashibe et al., 2003; Srivastava et al., 2005; 

Hua et al., 2012). The function of this gene family involves metabolizing carcinogens, 

repairing DNA damage and controlling cell growth. Therefore, SNPs leads to changes in 

amino acid sequence, will cause malfunction of enzymes encoded by this gene family and 

consequently increase the risk for cancer. 

 

2.5.4 Diet and nutrition 

A diet with a low fruit and vegetable intake but rich in animal origin and fat is associated 

with increased risk for developing oral cancer (Edefonti et al., 2010).  A study conducted by 

Petridou et al. (2002) observed that vegetables, fruits, micronutrients, dairy products and 

olive oil can play an important role in protecting cells against oral cancers.  A meta-analysis 

demonstrated a 50% significant reduction of oral cancer risk after an additional daily serving 

of fruits and vegetables (Pavia et al., 2006). 
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Dietary factors that are involved in one-carbon metabolism, provides the interaction of 

nutrients and DNA methylation because they influence the supply of methyl groups, and 

therefore the biochemical pathways of methylation. These nutrients include folate, vitamin B 

12, vitamin B 6, methionine, and choline (Davis & Uthus, 2004; Gilbert & Liu, 2010).  

 

Folate, a water soluble vitamin, is a major component of the one-carbon metabolism.  It 

cannot be synthesized de novo by mammals; therefore their cellular level depends on dietary 

intake. The folate has a capacity in modulating DNA methylation levels, which has a 

protective effect against colorectal carcinogenesis (Kim, 2004).  However, it has become 

increasingly evident that folate possesses dual modulatory effects on colorectal 

carcinogenesis, which depend on the timing and dose of folate intervention. Furthermore, a 

study has shown that folate deficiency has an inhibitory effect, whilst folate supplementation 

promotes the progression of established colorectal neoplasms (Kim, 2007).   

 

Methionine, an essential amino acid, is the main source for S-adenosylmethionine (SAM), the 

primary methyl group donor for most of the methylation reactions in the body (Selhub & 

Miller, 1992). It has been reported methionine supplement induced binding of methyl CpG 

binding protein 2 to reelin promoter as well as CpG hypermethylation in frontal cortex of a 

mouse, causes schizophrenia  in methionine-induced mouse model (Dong et al.,  2005) 

 

2.5.5 Host defences 

Certain viruses manage to find alternate ways to adapt to the host defence system by 

regulating their gene expression through modulation of DNA methylation; which thus allows 

a virus to silence its gene activation to favour its establishment of persistent infection and 

evades the host immune defence (Tao & Robertson, 2003).  Tsai et al. (2002) also 
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demonstrated that the EBV oncogene product, latent membrane protein 1, inactivates E-

cadherin gene expression through activation of DNA methyltransferases. 

 

There is evidence of host defences against carcinogens or repair or defence mechanisms that 

include genetic, immune and dietary defects. The evidence associated to host defences with 

an increased risk of OSCC include organ transplantation, Fanconi anaemia and dyskeratosis 

congenita (Scully & Bagan, 2009).  

 

2.5.6 Chemical carcinogenic substances 

Chemical carcinogenic substances such as asbestos and coal tar can lead to genetic damage in 

normal cells which normally would undergo apoptosis. This carcinogenic exposure can cause 

genotoxic alterations in normal cells leading to irreversible cellular mutations if passed on 

during the next cell cycle.  The mutated cells have a selective growth advantage leading to 

the development of a clonal population of neoplastic cells.  A study revealed effects of oral 

carcinogenesis from carcinogens of coal tar, 20-methylcholanthrene, DMBA, and 4-NQO 

levels of polyamine synthesis as well as nucleolar organizing regions (NORs) were increased 

in animal models, along with the progression of oral carcinogenesis (Tanaka., 2011).  In 

addition, a variety of compounds are considered to be epigenetic carcinogens as they result in 

an increased incidence of tumours; that may be caused by epigenetic changes in  homeobox 

genes, DNA repair genes, and epigenetic regulatory enzymes ( Zhou et al., 2012).  

  

A recent study conducted by Tabish et al. (2012) on  DNA damaging chemicals such as 

benzene, hydroquinone, styrene, carbon tetrachloride and trichloroethylene, found that these 

chemicals can cause DNA hypomethylation via oxidative stress pathways activation. 

Increased DNA methylation of p16 promoter was observed in exposures to the environmental 
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chemical pollutant, arsenite, where arseniasis patients were found to have higher p16 

alteration when compared with people who did not have any history of arsenite exposure 

(Majumdar et al., 2010; Zhang et al., 2007).          

 

2.6 Molecular alterations in cancers  

The fundamental mechanisms involved in carcinogenesis are the overexpression of 

oncogenes and TSGs silencing. Promoter CpG hypermethylation is one of the epigenetic 

alterations that represents an alternative mechanism apart from genetic factors for silencing 

TSGs. It is also noticeable that epigenetic and genetic factors are often involved in multiple 

cellular pathways such as cell cycle regulation, DNA repair, apoptosis, angiogenesis, and 

cell-to-cell adhesion during the process of tumour growth and progression.  Cell cycle control 

is disturbed particularly by oncogene over-expression or amplification which drives cell 

proliferation. TSGs on the other hand, are negative growth regulators involved in cell 

protection by regulating cellular trafficking, DNA damage response and apoptosis (Weinberg, 

1991). A plethora of sequential accumulation of genetic and epigenetic defects in oncogenes 

and TSGs respectively, are involved in OSCC pathogenesis (Scully, 2011; Argiris et al., 2008; 

Saranath, 2000). Moreover, alterations in more than a hundred oncogenes and TSGs have 

now been implicated in various cancers (Hayslip & Montero, 2006; Stransky et al., 2011; 

Vogelstein & Kinzler, 2004). 

 

2.6.1 Oncogenes 

Generally, oncogenes are derived from function gains in cellular proto-oncogenes. Proto-

oncogenes are normal genes that are involved in cell growth and division. Alterations or 

mutations, chromosomal rearrangement, and gene amplification in these genes lead to the 

development of oncogenes, which can promote or allow excessive and continuous cell 
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growth and division. Genes whose protein products have been found to be very important for 

normal cell growth signalling and whose over-expression or mutation leads to unchecked cell 

growth and carcinogenesis, are defined as “oncogenes”. Oncogenes are broadly divided into 

five categories. They are growth factors or growth factor receptors  such as hst-1, int-2, 

EGFR/erbB, c-erbB-2/Her-2 and sis; intracellular signal transducers such as ras, raf and stat-3; 

transcription factors such as myc, fos, jun and  c-myb; cell cycle regulators such as Cyclin D1, 

and those involved in apoptosis such as bcl-2 and Bax (Croce, 2008).  

 

However, it has also been described that the proto-oncogenes transcription depression by 

hypomethylation that leads to increased mutation rates and causes chromosome instability, is 

an early hallmark of tumour cells (Eden et al., 2003; Mascolo et al., 2012). 

 

2.6.2 Tumour suppressor genes  

TSGs are genes that normally function in the growth control mechanism by regulating cell 

cycle arrest, apoptosis, cell adhesion, and DNA repair. TSG functions can be disturbed by 

several mechanisms that include point mutations, deletion, binding with cellular and viral 

proteins, or by TSG silencing from hypermethylation - all of which can lead to 

carcinogenesis (Ha & Califano, 2006).  p53 is a TSG, which plays an important role in 

maintaining genome stability involving cell repair or apoptosis, and is implicated in a 

majority of malignancies, either spontaneous or inherited.  

 

The loss functions of TSGs which often occurs in tumours, has been ascribed to be more 

frequently associated with epigenetic silencing through methylation rather than genetic 

defects in the OSCC (Jithesh et al., 2013). Additionally, gene hypermethylation correlates 

with transcriptional inactivation that can serve as an alternative repression to the promoter 
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region other than mutations for TSGs. Studies have shown that the silencing of TSGs is 

recognized as a vital role in cancer development (Jones & Baylin, 2002). An example of p16 

methylation is the epigenetic inactivation of a TSG, which abrogates cell cycle control, 

escaping from senescence and then inducing cell proliferation that leads to the abnormal cell 

growth in SCC (Gonzalez et al., 1997; Rosas et al., 2001). Nearly 50% of the genes that cause 

familial forms of cancer when mutated in the germ line are known to undergo methylation-

associated silencing in various sporadic forms of cancer. Similarly, there has been an increase 

in candidate of TSGs being identified to be associated with promoter hypermethylation 

silencing in certain cancers (Herman & Baylin, 2000). Several genes including p16/CDKN2A, 

DAPK1, MGMT, TIMP3, TCF21, RASSF1 and C/EBPalpha have been found to harbour 

hypermethylated regulatory sequences that could lead to the repression of gene expression or 

silencing in some cancers (Schmezer & Plass, 2008; Josena et al., 2011; Fukushige & Horii, 

2013). 

 

2.7 Epigenetic biomarkers for cancers 

DNA methylation biomarker is defined as a molecular target that undergoes DNA 

methylation changes in carcinogenesis. Many genes show great specificity as DNA 

methylation biomarkers for early cancer diagnosis, prognosis, therapy response, and cancer 

recurrence detection (Fukushige & Horii, 2013).   Usage of DNA methylation as a biomarker 

has been especially focused on early cancer detection. Furthermore, methylation markers are 

a stable target that allows flexibility for assay development. Therefore, gene promoter 

hypermethylation can be used not only as biomarkers for the early detection of HNSCC but 

also to improve prevention strategies and therapy outcomes (Schmezer & Plass, 2008). 
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A recent finding of one of the methylated genes, glutathione S-transferase gene (GSTP1), 

was detected in 80-90% of prostate cancer patients, but was not in benign hyperplastic tissues. 

Its detection specificity may be applied as a diagnostic marker for prostate cancer detection. 

Since specific CpG islands hypermethylation can be a cancer biomarker by applying various 

types of biological fluids and biopsy specimens, urine samples via a non-invasive approach 

may become a possible clinical application for the detection of gene methylation (Nakayama 

et al., 2004; Payne et al., 2009; Fukushige & Horii, 2013). 

 

In addition, p16 or CDKN2A methylation has been used as a biomarker by using the sputum 

of smokers for early detection of lung cancer. The p16 hypermethylation has been associated 

with poorer outcome of colorectal cancer, and a similar finding of death associated Protein 

kinase (DAPK) was also evident in lung cancer (Brock et al., 2008; Model et al., 2007). 

Recently, ABHD9, AOX1 and RERG, novel genes with tumour specific DNA methylation in 

colorectal cancer were found using whole-genome methylation arrays (Øster et al., 2011). 

 

There are currently very few studies that have been evaluated for DNA methylation as a 

biomarker for treatment response with DNMT and HDAC inhibitors. If these inhibitors 

manage to reactivate functions of TSGs, then DNA methylation may be used as a biomarker 

to predict treatment response with these epigenetic drugs. Application of detection of 

methylation level in plasma and serum can monitor for the established disease after cancer 

therapy (Sozzi et al., 2003). Thus, particular gene hypermethylation can be a predictor for 

cancer treatment response. Promoter hypermethylation of O 6-methylguanine-DNA 

methyltransferase (MGMT) is an independent predictor biomarker with a favorable outcome 

in glioblastoma patients treated with alkylating agents, carmustine (Weller et al., 2009). 
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Although many promising DNA methylation biomarkers have been identified for diagnostic 

purposes, their use in clinical practices is still presently very limited. This is due to lack of 

diagnostic specificity and sensitivity that is required in running a diagnostic test (Cottrell & 

Laird, 2003). Thus, panels of biomarkers may be needed in order to ensure sufficient test 

specificity and sensitivity. As such, the application of DNA-hypermethylation as tumour 

markers in routine clinical practice requires rapid, quantitative, accurate, and cost-effective 

techniques. Moreover, the objective criteria for gene selection in tissue-specific methylation 

suited to different tumour types are extensively required for methylation analysis (Tokumaru 

et al., 2004). 

 

2.8 Cancer therapy 

Surgery, radiotherapy, and chemotherapy are conventional treatment modalities of oral 

cancer, which are designed to stop the spread of cancer by killing cancerous cells. 

Unfortunately, due to unselective nature and toxicity effects of radiotherapy and 

chemotherapy, many of the body's healthy cells are also damaged. As a result, the most 

recent research of cancer treatment is now focused on the molecular biology of oral cancer in 

an attempt to target selected pathways involved in carcinogenesis. 

 

With the increased understanding of molecular mechanisms and basic pathways in the 

pathogenesis of SCC, these pathways may be modified, and rational approaches in cancer 

therapy at the molecular level may be invented as molecular targeted therapy. Some of the 

new approaches depend on tumour biology and aim to specifically inhibit tumour growth and 

metastasis by targeting the tumour microenvironment or vasculature (Jain, 2005), or tend to 

focus on specific protein or signal transduction pathways (Adjei & Hidalgo, 2005).
  

By 

blocking the signals that inhibit the cancerous cells to divide uncontrollably, targeted cancer 
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therapies aim to stop the growth and division of cancerous cells. One example is the usage of 

“signal-transduction inhibitors” to block receptors of specific enzymes on the cancer cell 

surface. In addition to that, “apoptosis-inducing drugs” may cause cancerous cells to undergo 

apoptosis by interfering with synthesis process and allowing the cancerous cell to die 

(Ghobrial et al., 2005).  Another method includes the usage of “angiogenesis inhibitors” that 

can prevent the growth of new blood vessels in the surrounding tissue of solid tumour by not 

creating a new blood circulatory system to other parts of the body (Brannon-Peppas & 

Blanchette, 2012; Ferrara & Kerbel, 2005). 

 

Current research related to molecular targeted therapies has shown that epigenetic 

pharmaceuticals could be a putative replacement or adjuvant therapy, and possibly enhance 

the effects of these current cancer treatments (Wang & Chiao, 2010).
 
 The epigenetic 

mechanism shows reversible effects on proto-oncogene and tumour suppressor sequences by 

conformational changes in histones, directly affecting cancer progression (Iglesias-Linares et 

al., 2010). The aim of epigenetic therapy is to reverse the causal epigenetic aberrations in 

cancer, leading to the restoration of normal epigenome. In particular, the most current 

molecular candidates for new drug targets that are capable of reversing  aberrant DNA 

methylation and histone acetylation patterns by inhibiting histone acetyltransferasehistone, 

lysine methyltransferases, protein arginine methyltransferases and HDACs have been 

extensively explored (Dowden et al., 2010; Iglesias-Linares et al., 2010).  

 

These types of cancer therapies may have a profound impact on personalized medicine that is 

based on molecular target selection of each individual patient’s tumour biology (Jain, 2002). 

Eventually, these cancer therapies should be able to provide more selective treatment in 

http://encyclopedia.thefreedictionary.com/Histone+acetyltransferase
http://encyclopedia.thefreedictionary.com/Histone+acetyltransferase
http://encyclopedia.thefreedictionary.com/Histone+methyltransferase
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comparison to conventional cancer treatments, resulting in fewer normal cells being harmed, 

the reduction in treatment side effects, and overall quality of life improvement. 

 

 

2.9 Epigenetics  

Literally “epi- (Greek: over, above) genetics” incorporates mechanisms that regulate gene 

expression but do not alter the DNA sequence itself, leading to inheritable changes in the 

phenotype. Epigenetic processes include genomic imprinting (Hore, Rapkins, & Graves, 

2007), gene silencing (Jones & Baylin, 2007; Lande-Diner et al., 2007), X-chromosome 

inactivation, nuclear reprogramming (Yang et al., 2007), and some elements of 

carcinogenesis (Jones & Baylin, 2007; O’Sullivan & Goggins, 2013). Epigenetic events play 

a vital role in multiple genes and cell signal processes, including DNA repair, cell cycle, 

carcinogen metabolism, intercellular responses, apoptosis and angiogenesis. The epigenetic 

alterations refer to any heritable modifications in gene expression without alterations or 

coded of the DNA sequence. They do not affect the underlying base-pair sequence, whereas 

genetic aberrations change the expression by altering the sequence of adenine–thymine and 

cytosine–guanine base pairs (Shaw et al., 2007). They occur more frequently than gene 

mutations and may persist for the entire cell life and even for multiple generations (Kyrgidis 

et al., 2010). DNA methylation is an epigenetic phenomenon that has dramatic effects on 

gene expression and this process is now widely recognized as either a causative or correlative 

event in carcinogenesis (Baylin, 2005). It involves all or even only a few of the CpG islands 

may result in a closed chromatin structure and consequently in silencing the transcription of 

the gene (Ahuja & Issa, 2000). 
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Epigenetic changes are dynamic and reversible processes. Epigenetic takes part in facilitating 

the wide diversity of cell types.  Besides its physiologic function, epigenetic changes can 

appear aberrantly during aging and development causing expression disequilibrium which 

may lead to pathologies.  The classification of epigenetic modification which occurs in 

human cells is known as DNA methylation, histone deacetylation, and microRNAs. 

 

2.9.1 Significance of epigenetic studies 

Epigenetic alteration represents an alternative mechanism in carcinogenesis, as opposed to 

genetic factors, such as gene mutations and deletion, by inactivating TSGs. Both epigenetic 

and genetic factors often work together in affecting multiple cellular pathways in cell-cycle 

regulation (p14, p15, p16), DNA repair (Hmlh1, BRCA1, MGMT)), apoptosis (DAPK, 

APAF-1), cell-to-cell adhesion (CDH1, CDH3) and carcinogen metabolism (GSTP1) which 

leads to tumour progression (Momparler, 2003; Fan, 2004; Rodríguez-Paredes & Esteller, 

2011). Furthermore, a tumour-type specific profile of promoter hypermethylation exists in 

particular cancers that allow these hypermethylation genes to be used as biomarkers for 

malignancy.  

 

Epigenetic changes may occur due to environmental factors, aging, and genomic imprinting 

and disease. An attractive aspect to the study of epigenomic dysregulation in disease is that 

the epigenetic changes should be reversible, whereas genetic mutations are difficult to 

complement with gene therapy approaches. Nowadays, the available drugs which are globally 

applied include DNMTs and histone deacetylase inhibitors (Hellebrekers et al., 2006); but the 

disease changes might be limited to a subset of the genome.    Research areas recognized for 

future work on epigenetics include: (a) basic epigenetic mechanisms in cancer need further 

investigation; (b) technology development in the area of epigenetics, such as high-throughput 
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quantitative assays and increased sensitivity or specificity is essential for the early detection 

and risk assessment of cancer; (c) clinical application of epigenetic changes to cancer 

prevention and risk assessment needs further investigation. 

 

2.9.2 Epigenetic interaction 

2.9.2.1 Epigenetics and aging 

Epigenetic aberrations such as global hypomethylation potentially decreases and promoter 

hypermethylation will increase as people age (Issa, 2012). Animal studies showed loss of 

genomic imprinting (Bennett-Baker et al., 2003) and age-related reactivation X-linked 

chromosome gene (Wareham et al., 1987). During the aging process of monozygotic twins, 

differential patterns of DNA methylation and histone modifications were observed in the 

study (Fraga et al., 2005). 

  

2.9.2.2 Epigenetics and gender 

Susceptibility of epigenetic alterations may be influenced by gender, even though the 

involved mechanisms are not fully understood.  The female gender has been reported to be 

highly related with CDKN2A gene in colorectal cancer (Lind et al., 2004) and CDG1 in lung 

cancer (Vaissière et al., 2009). Controversially, gender has a protective effect with RASSF1A 

and ESR1 in lung cancer (Lai et al., 2005). In addition, the female gender has also been 

associated with a low level of global hypomethylation in HNSCC (Hsiung et al., 2007). 

 

2.9.2.3 Epigenetics and diets   

Diet has been implicated in many pathways involved in carcinogenesis including DNA 

methylation. Epigenetic events constitute an important mechanism by which dietary bioactive 

components can selectively activate or inactivate gene expression that leads to cancer 



27 
 

susceptibility. The most compelling is nutrients involved in one-carbon metabolism due to 

the facts that methyl (CH3-) groups for DNA methylation are derived from one-carbon 

methyl donors. This suggests an intrinsic link between one-carbon nutrients and epigenetic 

alterations.  Dietary compounds important for the one-carbon metabolism include folate, 

methionine, and s vitamin B6 and vitamin 12 (Davis & Uthus, 2004; Gilbert & Liu, 2010). 

Low folate intake has been related to an increased incidence of colorectal cancer (Choi & 

Mason, 2002). Molecular changes in tumour cells in relation to folate intake may provide 

insights into the role of one-carbon metabolism in carcinogenesis (Choi & Mason, 2002; 

Giovannucci, 2002). In addition, one study observed that soy phytoestrogens may have 

cancer-protective effect by preservation of normal methylation pattern (Davis & Uthus, 2004). 

Other investigations conducted on green tea (epigallocatechin-3-gallate (EGCG)) showed that 

polyphenols affect DNA methylation by binding and inhibiting DNMTs activity, resulting in 

the reactivation of methylation-silenced TSG in human skin cancer cells. Thus, epigenetic 

mechanism of action of EGCG may contribute to the chemoprevention of skin cancer 

(Nandakumar et al., 2011). 

 

2.9.3 DNA methylation 

The epigenetic alteration most studied in the human cancer cell is DNA methylation. The 

number of genes with aberrant methylation in the cancer cell is still unknown, but it is 

estimated that approximately 5% (approximately 1,500–2,000) of the human genome can be 

aberrantly methylated in a cancer cell (Schuebel et al., 2007).  

 

DNA methylation is a post-replicative modification of the DNA molecule itself, in which 

methyl groups are added to cytosine nucleotides in specific areas of the gene by the enzyme 

DNA methyltransferase (Herman & Baylin, 2003). DNA methylation directly switches off 
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gene expression by preventing the binding of transcription factors in the genes. DNA 

methylation regulates gene expression either directly or by influencing the histone 

modification that influences gene expression. 

 

2.9.3.1 DNA methylation mechanism 

DNA methylation is a heritable, tissue- and species-specific modification of mammalian 

DNA (Cross & Bird, 1995). Two different DNA methylation mechanisms are known as the 

de novo methylation (Fraga & Esteller, 2007) and maintenance methylation (Chao & 

D’Amore, 2008; Church & Pruitt, 2002) (Figure 2.1).  Firstly, the de novo methylation is an 

additive process of methyl group to an unmethylated cytosine as cells divide and age (Fraga 

& Esteller, 2007). Such epigenetic modifications may be due to a mutation at the DNA level 

(for example, a point mutation that changes a CG pair to GG), or they may develop in 

response to nutrients such as folate and vitamin B12,  and environmental factors such 

as  toxins, infections and hypoxia (Bayarsaihan et al., 2010). 

 

The phenomenon of epigenetic change over time was recently demonstrated in a study of 40 

pairs of monozygotic twins by quantifying genome-wide methylation (Fraga et al., 2005).  

Fraga et al. (2005) found that epigenetic differences between older twin pairs were 

significantly greater than those between younger twins. Secondly the maintenance 

methylation is inheritance of DNA methylation patterns during cell division, involving a 

copying process of pre-existing methylation patterns from mother strand to a newly 

synthesized DNA strand. The maintenance methylation is to ensure conservation of 

methylation pattern during replication process. Aberrant patterns of the de novo methylation 

can lead to disease and various cancers by altering the gene expression in a given cell type at 



29 
 

a given time. For example, a silenced proto-oncogene losing its methylation status or an 

unmethylated TSG being silenced can both lead to carcinogenesis. 

 

 

 

Figure 2.1 Illustration of de novo methylation and maintenance methylation processes. In 

vertebrates DNA methylation occurs mainly in CpG dinucleotides depicted here as CG. 

Methyl residues are depicted as ‘m’. De novo methylation is the introduction of methyl 

groups at previously unmethylated cytosines. Existing methylation pattern can be erased by 

demethylation. Maintenance methylation ensures conservation of the methylation pattern 

during replication by copying the methylation pattern from the mother strand to the daughter 

stand (Easwaran, 2003). 

 

 

2.9.4 CpG islands 

Few decades have passed since Riggs, Holliday and Pugh proposed that cytosine DNA 

methylation in eukaryotes could act as a stably inherited modification affecting gene 

regulation and cellular differentiation and transmitting the silenced state to daughter cells 

(Holliday & Pugh, 1975; Riggs, 2008). Cytosine methylation is one of the most extensively 

studied epigenetic processes. In the mammalian genome, DNA methylation plays a vital role 

in ensuring the accurate epigenetic inheritance; its process takes place only at 5′-cytosine 

preceding to a guanosine base in a CpG dinucleotide (Bird, 2002).  In view of this 

dinucleotide is actually underrepresented in most of the genomic regions, but short regions of 
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0.5–4 kb in length, known as CpG islands, are rich in CpG content (Bird, 2002; Takai & 

Jones, 2002). The CpG islands are mostly found in the transcriptionally inactive proximal 

promoter regions of most of the genes and normally are unmethylated in normal cells (Figure 

2.2) or even heterochromatin sections of the genome, suggesting that CpG island methylation 

is correlated with DNA compaction. Methylation of CpG islands is often associated with 

delayed replication, condensed chromatin and transcription initiation inhibition. Initial 

sequencing and analysis of the human genome conducted by the International Human 

Genome Sequencing Consortium for CpG islands predicted that a total of 28,890 CpG islands 

is present in a mammalian genome, with 70-80% of CpG dinucleotides are methylated 

(Lander et al., 2001). However, in 5′ promoter regions of approximately 60% of CpG 

islands can be found. Therefore, it is speculated that CpG islands can overlap with the 

promoter region and even extend into exonic regions, with the exception of X-

chromosomally inactivated genes, imprinted genes and tissue-specifically expressed genes 

that are generally unmethylated (Gardiner-Garden & Frommer, 1987). 

 

 

 

Figure 2.2 Methylated CpG schematic. In the normal cell, promoter-associated CpG islands 

are predominantly unmethylated (grey) whereas CpG sites within gene bodies are sparse and 

generally methylated (red). The panel on the right expands the molecular structure of DNA at 

an individual CpG site and shows methylation with a CH3 molecule at carbon 5 of cytosine 

(Patterson et al., 2011). 
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2.9.4.1 CpG methylation 

DNA methylation is a transfer process of a methyl group (-CH3) from a universal methyl 

group donor called S-Adenosyl-L-Methionin (SAM) to a 5’ carbon of cytosine bases (Lieber 

& Packer, 2002) (Figure 2.3) by methyltransferase I and II. SAM, an important methyl group 

donor in various biochemical reactions, is derived from the amino acid L-methionine 

(Williams et al.,  2005).  

 

CpG islands of growth-regulatory gene promoter regions have often found hypermethylated 

in tumours, an event causing the transcriptional “silencing” of TSGs (Bonazzi et al., 2009), 

thus contributing to carcinogenesis.  Schuebel et al. (2007) reported that 5% of known gene 

promoters have aberrant methylation in a typical solid tumour. In addition, aberrant CpG 

hypermethylation due to DNMTs overexpression are attributed by down regulation of TSGs. 

A recent research reported some genes hypermethylation correlates with increased DNTM3B 

levels in colorectal tumours (Ibrahim et al., 2011).  These genes are predicted to be essential 

for carcinogenesis based on their presumed functions which otherwise seemed not to be 

frequently mutated in such cancers (Jones & Baylin, 2002).  
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Figure 2.3  Methylation of cytosine. The donor of the methyl group is the active form of 

methionine, S-adenosyl-L-methionine (SAM) and its addition to cytosine is realised at the 

carbon-5 position (Lieber & Packer, 2002). 

 

2.9.4.2 DNA nucleotide methyltransferases  

 DNA methylation is a key enzymatic process mediated by DNMTs.  In mammals, three 

major DNMTs, namely DNMT1, DNMT3a, DNMT3b (Figure 2.4) are involved in covalently 

transferring a methyl group to the C5 position of cytosine residues, by changing the DNA 

conformation (Cheng & Blumenthal, 2008; Rottach et al., 2009). All mammalian DNMTs are 

encoded by their own single gene, and consist of catalytic and regulatory regions except 

DNMT2 (Xu et al., 2010). 

 

DNMT1 interact with methylated or unmethylated CpG dinucleotides during chromosome 

replication (Chen & Li, 2006) and DNA repair (Mortusewicz et al., 2005) in maintaining 

established methylation pattern or de novo methylation. DNMT1 has a 30- to 40-fold 

preference for hemimethylated daughter strands during DNA replication to maintain the 

established methylation patterns across successive cell divisions. 
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DNMT2 appears to provide an example of divergent evolution: it was named based on its     

high sequence and structural similarity to known DNA DNMT. However, it does not 

methylate DNA but methylates cytosine 38 in the anticodon loop of tRNA aspartic acid 

methyltranferase (Goll et al., 2006; Rai et al., 2007). DNMT2 (TRDmt1) is the first RNA 

methyltransferase to be identified in humans. It is the most widely conserved DNMT protein 

with homologues in plants, fungi, and animals (Rai et al., 2007).  

 

Two of active de novo DNMTs, DNMT3a and DNMT3b, and one regulatory factor, 

DNMT3-Like protein (DNMT3L) belong to the DNMT3 family. The DNMT3a and 

DNMT3b have similar domain arrangements: both contain a variable region at the N 

terminus, a Cys-rich 3-Zn-binding domain, and a C-terminal catalytic domain. DNMT3a and 

DNMT3b are essential for the de novo methylation during cell development by methylating 

previously unmodified CpG residues to methylated CpG residues, but can lead to aberrant 

methylation in cancer cells (Fabbri et al., 2007). They also interact with miRNA in 

maintaining global gene expression patterns (Veeck & Esteller, 2010). DNMT3L is a protein 

which is homologous to the other two DNMTs but has no intrinsic DNA DNMTs catalytic 

activity (Lukasik et al., 2006). It is physically associated with DNMT3a and DNMT3b by 

assisting them in DNA binding ability and modulating their catalytic activity. 

 

Interestingly, a recent study has proposed that DNMTs are not only involved in CpG 

methylation, but also activates demethylation of 5-methyl CpGs through deamination and 

DNA glycosylase, and base excision repair proteins (Wu & Zhang, 2010). 
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Figure 2.4 Schematic drawing of known members of the DNMT super-family are 

summarized. DNMT 1 is essential for maintenance methylation. Function of DNMT 2 is so 

far unknown. DNMT 3A and DNMT3B are essential for de novo methylation. DNMT 3L is a 

co-factor protein for DNMT 3A and DNMT 3B (Cheng & Blumenthal, 2008). 

 

 

 

2.9.5 Effects of DNA methylation on gene transcription  

The overall methylation state in a cell might also be a precipitating factor in carcinogenesis as 

evidence suggests that genome-wide hypomethylation can lead to chromosome instability and 

increased mutation rates (Baylin et al., 2001). An epigenetic pathway of transcriptional 

inactivation for many TSGs has also been identified in many different cancers especially on 

promoter hypermethylation in OSCC studies (Balmain et al., 2003; Ha & Califano, 2006;  

Herman & Baylin, 2003; Manel Esteller, 2011). 

 

Recently, hypermethylation of CpG dinucleotides has been identified as being involved in the 

TSGs inactivation. Its involvement in all or even a few of the CpG islands may result in a 

closed chromatin structure and consequently in silencing the transcription of the gene (Ahuja 

& Issa, 2000; Baylin et al., 2001). A number of studies have shown that TSGs silencing is 

recognized as a vital role for developing cancer. This hypermethylation correlates with 
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transcriptional inactivation that can serve as an alternative repression in the promoter region 

other than mutations in TSGs (Ahuja & Issa, 2000; Baylin et al., 2001;  Esteller & Herman, 

2002;  Herman & Baylin, 2003). It is observed in most of neoplasm and is associated with the 

inappropriate transcriptional silencing of genes (Baylin et al., 2001; Jones & Baylin, 2002).  

Razin (1998) has demonstrated that the gene silencing effect on methylated regions is 

associated with the interaction of 5-MCs binding proteins with other components of 

chromatin. The interaction makes the DNA inaccessible to transcription factors through the 

changes of histone deacetylation and chromatin structure (Bestor, 1998). Surprisingly, such 

promoter hypermethylation is at least and possibly more common as the disruption of classic 

TSGs in human cancer by mutation. 

  

2.10 Histone modifications 

Histones are basic proteins consisting of a global domain and histone tail, which protrude out 

of the nucleosome. DNA is wrapped around an octamer of histones consisting of a histone 3 

and histone 4 tetramer, and two histone 2A and histone 2B dimers. This structure is called a 

nucleosome, the basic unit of building block of chromatin (Luger et al., 1997). These histone 

tails are subject to post-translational modifications including lysine acetylation, lysine and 

arginine methylation, serine and threonine phosphorylation, as well as lysine ubiquitination 

and sumoylation (Yang & Seto, 2008).  These modification patterns on histone tails are 

involved in gene regulation through the histone amino-terminal tails protruding from the 

surface of the nucleosome and on the globular core region (Margueron et al., 2005). 

 

2.11 High throughput methylation analysis 

The need for genome-wide techniques has apparently increased due to the great demand of 

possible targets for molecular-targeted therapies. Techniques such as the methylated DNA 
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immunoprecipitation combined with microarray analyses (MeDIP-chip), or approaches with 

epigenetically active drugs combined with gene expression microarrays which allow the 

analysis of ~29.000 genes at a time, have become available over the last few decades 

(Babinsky, 2011). Nowadays, multiple advancements in sequencing and microarray 

technologies of high throughput methylation methods have enabled many tools to be 

developed for large-scale methylation screening (O’Sullivan & Goggins, 2013).  The 

following points list out some of the advanced tools available nowadays in the market: 

1. Utility of fragments cloned from CpG island libraries (Estécio et al., 2007).  

2. Bead based array-like (Bibikova et al., 2006).  

3. DNA precipitation with methyl-binding proteins or antibodies that recognize methyl 

cystosine (ChIP-chip) (Weber et al., 2005; Zhang et al., 2006). 

4. Methylation sensitive restriction endocleases with or without fractionation of the 

genome (Adrien et al., 2006; Balog et al., 2002). 

5. Generation sequencers such as the Roche Genome Sequencer FLX (Taylor et al., 

2007). 

6. Hpall tiny fragment Enrichment by Ligation-mediated PCR (HELP) assay (Khulan et 

al., 2006). 

7. MASS utilizes enzyme McrBC (Ibrahim et al., 2006) 

8. Modification method of HELP and MASS (Kamalakaran et al., 2009). 

9. Representational oligonucleotide microarray analysis (ROMA) (Lucito et al., 2003). 

 

The above mentioned tools have their own implications and advantages in technological 

usages. DNA microarray and next generation sequencing are the most reliable and 

informative methods applied today (Lippman et al., 2005). 
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2.11.1 Microarray  

The availability of microarray technology has encouraged researchers to carry out extensive 

studies using data available on the entire known human genome, and these studies have 

reported more than one hundred gene alterations are implicated in carcinogenesis. During the 

past few years, three major types of microarrays using tissue, protein and DNA platforms 

have been developed (Angenendt, 2005; Nazmul-Hossain et al., 2008). Tissue microarray 

technology has been developed in an effort to overcome the limitations of standard histologic 

methods. It immobilizes small amounts of biopsy tissues from multiple subjects on glass 

slides for IHC processing (Shergill et al., 2004). Protein microarrays, peptides or intact 

proteins are immobilized for detection by antibodies. Applications of protein microarrays 

include assessment of enzyme–substrate, protein–protein and DNA-protein interactions 

(Angenendt et al., 2003). DNA microarrays are the most widely utilized applications of 

microarray technology, where thousands to tens of thousands of data points may be generated 

in each experiment.  

 

In epigenetic application, hundreds of thousands of SNPs can be genotyped, or genomic 

applications carried out for which mRNA transcripts are interrogated as a measure of gene 

expression. Nowadays, the continuous utility of the novel genomics tools, DNA microarrays 

are increasing due to their ability to incorporate a large number of the genes into a single 

assay, turning into promising tools for the genome-wide analysis of transcripts.  

 

2.11.2 DNA methylation microarrays 

Profiling DNA methylation across the genome is vital to understand the influence of 

epigenetics especially DNA methylation for normal biology and disease. There has been a 

revolution in DNA methylation analysis technology over the past decade where analyses that 
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were previously restricted to specific loci can now be performed on a genome-scale and 

entire methylomes can be characterized at single-base-pair resolution. Genome-wide 

methylation assays were developed mostly based on two platforms. The first platform is 

based on pharmacological reactivation of epigenetically regulated genes combined with gene 

expression microarray analysis whilst the second platform is comprised of microarray 

analyses of DNA fragments after immunoprecipitation of methylated DNA fragments. 

 

DNA microarrays have been developed and include cDNA microarray, high-density 

oligonucleotide microarrays, bead-based microarray, and microelectronic arrays (Roy et al., 

2002).  A bead-based microarray platform depending on genotyping of bisulfite-converted 

genomic DNA shows a high level of assay multiplexing, and scalable automation for sample 

handling and data processing.  

 

A quality control study has been conducted for inter-laboratory reproducibility, inter-platform 

and technical reliability of DNA microarray using breast cancer samples. These reliability 

tests have made it possible for molecular tests to become an important tool in tailoring cancer 

treatment and anticancer drug responses for personalized cancer medicine management (van't 

Veer & Bernards, 2008). 

 

2.11.3 Cytosine microarray 

One of the DNA methylation microarrays is a 450K cytosine microarray, which is an 

alternative option to determine a genome-wide DNA methylation profile. The latest 

HumanMethylation 450 beadchip assay, Illumina, Infinium Methylation 450K covers 99% of 

all reference sequences (RefSeq) genes and approximately 450,000 CpGs overall, is for the 

high-resolution, genome-wide DNA methylation profiling of human samples to be carried out.  
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This microarray analysis includes CpG and CNG sites, CpG islands, shores (the 2 kb flanking 

the CpG islands), shelves (the 2kb flanking the shores), open sea, non-coding RNA 

(microRNAs and long non-coding RNAs) and sites surrounding the transcription start sites (-

200 bp to -1,500 bp, 5'-UTRs and exons 1) for coding genes, but also for the corresponding 

gene bodies and 3'-UTRs (Sandoval et al., 2011). If compared with sequencing approaches, 

DNA methylation arrays are a low-cost alternative, which allows the profiling of a large 

number of samples, although this occurs at a reduced resolution. 

 

2.11.4 Microarray application in oral cancers 

A variety of applications of microarrays in oral cancer identification include the early 

diagnosis of oral potentially malignant disorders with high transformation potential, the 

identification of malignancy in tissue biopsies and comparison of genetic alterations at 

different pathological stages. Applications are also in the sub-classification of histologically 

identified tumours, the identification of biomarkers and prognosticators, and the area drug 

discovery (Bibikova et al., 2009; Ramaswamy & Golub, 2002; van't Veer et al., 2002). The 

usage of microarrays is particularly important as additional information to complete clinical 

information for accurate cancer diagnosis. This is to ensure that cancer patients receive 

appropriate treatment.  

 

In oral potentially malignant disorders such as leukoplakias and erythroplakias, microarrays 

have been used to identify genes that could serve as biomarkers for dysplastic lesions which 

have the potential to progress to cancer (Carinci et al., 2005). By comparison of normal 

tissues with histopathologically classified potentially malignant or malignant lesions, these 

studies reveal that aberrant methylation can begin very early in tumour progression (Baylin et 

al., 2001). Most of the important pathway abnormalities in cancer include the loss of cell 
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cycle regulation, altered function of transcription factors, altered receptor function, disruption 

of cell adhesion or motility, inactivation of signal transduction pathways, loss of apoptotic 

signals and lastly genetic instability (Baylin, 2005). Characterization of molecular pathways 

that are dysregulated leading to malignant transformations can be targeted for early diagnosis 

and therapy. 

 

2.12 Methylation analysis 

DNA methylation patterns are established early in development, modulated during tissue 

specific differentiation, and disrupted in diseases including cancer. To understand the 

biological role of DNA methylation and its role in human disease, precise, efficient and 

reproducible methods are required to detect and quantify individual 5-MCs in CpG 

dinucleotides. The bisulphite conversion protocol is a gold standard for DNA methylation 

analysis, which facilitates DNA methylation identification and quantification at single 

nucleotide resolution. 

 

2.12.1 Bisulfite-modification based method 

Chemistry of cytosine deamination by sodium bisulphite is involved in steps of sulphonation, 

hydrolic deamination and alkali desulphonation. Sulphonation involves the addition of 

bisulphite to the 5-6 double bond of cytosine. Hydrolic deamination is a hydrolytic 

deamination of the resulting cytosine-bisulphite derivative to give a uracil-bisulphite 

derivative. Lastly, alkali desulphonation is a removal of the sulphonate group by an alkali 

treatment to give a uracil in bisulfite-modification process (Figure 2.5) (Patterson et al., 

2011). 
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In a brief for the bisulfite-modification process, sodium bisulfite deaminated unmethylated 

cytosine that is situated in single-stranded DNA and sodium 5, 6-dihydrocytosine-6 

sulphonate forms at a low pH. When pH rises to basic conditions, sodium bisulfite will 

degrade and unmethylated cytosine will transform into uracil (Piperi & Papavassiliou, 2011). 

Bisulfite preferentially deaminates cytosine to uracil in a single stranded DNA - 5-MCs are 

refractory to bisulphite-mediated deamination. Upon PCR amplification, uracil is amplified 

as thymine while 5-MCs residues remain as cytosines, allowing methylated CpGs to be 

distinguished from unmethylated CpGs by the presence of a cytosine (C) versus thymine (T) 

residue during sequencing. These reaction conditions result in the complete conversion of 

approximately 99.5-99.7% of every target DNA sequence (Frommer et al., 1992). 

 

The resultant products with converted single strand DNA will replace the uracil to thymine 

and can be analysed by various techniques such as MSPCR, bisulfite sequencing, real-time 

PCR, combined bisulfite restriction analysis (COBRA), methylation-sensitive single 

nucleotide primer extension (MS-SNuPE), microarrays, pyrosequencing and the most recent 

developed technique of quantitative real-time PCR, methylation-sensitive high-resolution 

melting (MS-HRM) (O’Sullivan & Goggins, 2013). All methods share the same procedure of 

modifying DNA with sodium bisulfite as the first step and subsequently PCR amplification 

with primers specific for modified DNA. This technique has a higher sensitivity and 

specificity if compared with non bisulfite-modification techniques (Shapiro et al., 1974; 

Susan et al., 1994). 
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Figure 2.5 Schematic chemical conversion of DNA methylation analysis. Analysis of DNA 

methylation includes four main stages as shown; denaturation, bisulphite conversion, PCR 

amplification and analysis. In the right panel, modifications to the cytosine molecule that 

occur during bisulphite conversion of sulphonation, hydrolic deamination and alkali 

desulphonation are depicted (Patterson et al., 2011).  

 

 

2.12.2 Gene-specific methylation analysis 

Recently, two major techniques involved in research of gene-specific in methylation status 

are the bisulfite-modification based method, and the methylation-sensitive restriction 

enzymes.   Most of the techniques used to detect DNA methylation are based on PCR 

methods, and are therefore extremely sensitive. DNA methylation can be analysed easily by 

qualitative or quantitative polymerase chain reaction (PCR)-based methods.  In the bisulphite 

modification-PCR amplification approaches, quantitative MSPCR and Methyl-Light mainly 

rely on a methylation change at the PCR primer binding site (and or Taqman probe site for 

quantitative PCR). As a result, these tests are prone to false-negative results where the gene 
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promoter might have been methylated (but not at the primer binding site). Bisulfite 

sequencing is comparatively time-consuming if compared with others.  

 

Methylation-sensitive restriction enzyme PCR technique combines methylation-sensitive 

restriction enzyme digestion and PCR. After enzyme digestion, PCR products are obtained if 

the enzyme does not digest the methylated CpG sites within the specified DNA region (Galm 

& Herman, 2005; Wong, 2006). Examples of PCR products are COBRA, Ms-SNuPE, and 

quantitative real-time MS-HRM that allows the quantitative analyses of DNA methylation. 

 

2.12.3 Methylation-specific polymerase chain reaction (MSPCR)  

MSPCR is a rapid, cost-effective, highly sensitive method that can specifically assess the 

methylation status of virtually any group of CpG sites within a CpG island. It is independent 

of methylation-sensitive restriction enzymes or radioactive reagent usage. This assay entails 

initial modification of DNA by sodium bisulfite, converting all unmethylated cytosines to 

uracils whilst leaving the methylated cytosines remains unmodified, and is lastly followed by 

subsequent amplification with primers specific for methylated versus unmethylated DNA 

(Wong, 2006). This method requires specific PCR primers that are designed to distinguish 

between methylated and unmethylated DNA sequences.  

 

The great sensitivity of this technique allows qualitative methylation analysis from DNA 

obtained not only from fresh frozen tissues, peripheral blood, bone marrow, or body fluids 

but also from paraffin-embedded samples. Although MSPCR is a simple, sensitive and 

specific method for determining the methylation status of virtually any CpG-rich region, one 

of its limitations is that it exclusively detects the methylation status within two short 

sequences targeted by the MSPCR primer. If the incomplete converted sequence occurs in 
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bisulfite-converted DNA, a false possible result may be generated. MSPCR primers are 

designed to flank one or more of the CpG sites, or is near the 3’ end. This condition makes 

the primers more selective for methylated template. The specificity and sensitivity of primers 

are significantly related to primer design. The advantages of this technique include shorter 

duration and that only small amounts of DNA are required for methylation status detection 

(Galm & Herman, 2005; Wong, 2006). 

 

2.12.4 Methylation-sensitive restriction enzymes methods 

Restriction-sensitive enzymes are used to digest cytosine in unmethylated DNA sequences 

whilst the methylated sequences are left untouched. This method does not change the DNA 

sequences. Disadvantages of this method include the very limited amount of potential 

unmethylated site that can be probed, and false positive results could occur if there is 

incomplete digestion in enzymatic treatment occurs. 

 

2.12.5 Methylation-sensitive high-resolution melting (MS-HRM) 

PCR-based methylation detection applications led to the development of the MS-HRM 

technique. MS-HRM technology is being increasingly applied in research laboratories and 

has the potential for future application in diagnostic settings. The MS-HRM analysis is a 

recently developed technique that has an enormous potential for detecting DNA sequence 

changes. This temperature gradient analysis was to identify the methylation level of the DNA 

sequence over a period of 10 years; where methylated and unmethylated sequences generate 

different sequences after bisulfite treatment, resulting in a significant change in the melting 

curve between methylated and unmethylated PCR products. The methylation status can be 

estimated by comparing the melting profiles of unknown PCR products to melting profiles of 

PCR products from a serial standard DNA mixture of methylated and unmethylated templates 
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(Wojdacz & Dobrovic, 2007). It provides a sensitive detection of methylation status in a 

labour- and cost-efficient manner (Wojdacz & Dobrovic, 2007). Moreover, it investigates the 

methylation status of imprinted loci as well as the identification of heterogeneous methylation 

(Galm & Herman, 2005). Recent new instruments combined with DNA intercalating dyes, 

for example, EvanGreen that can be used at saturating concentrations allowing the 

discrimination of sequence changes in PCR amplicons without manual handling separately 

for PCR products. The recent application of MS-HRM to mutation scanning and SNP 

genotyping as well as DNA methylation studies have been demonstrated (Wojdacz & 

Dobrovic, 2007). 

 

2.13 Immunohistochemistry  

IHC was established by Coons and Jones for detecting bacteria using an immunofluoresent 

technique since 1941 (Coons et al., 1941). IHC became the standard tool in diagnostic 

pathology and research for the detection of protein expression in the late 1970s.  The problem 

of low reproducibility and standardization of the IHC technique, especially in the fixative 

used for pretreatment of specimens, detection methods, and result interpretation still remain 

unsolved (Wester et al., 2000; Cregger et al., 2006).  Furthermore, it may be impossible to 

standardize all potential variables in IHC.  Nevertheless, the interpretation of IHC results may 

be standardized through the usage of new quantitative methods where the inherent 

subjectivity of the assessment of in-situ protein concentration is overcome by quantifying the 

protein concentration.  Thus, more objective quantitative scoring methods using automated 

systems in the analysis of IHC have been implemented recently (Levsky & Singer, 2003; 

Turbin et al., 2008; Rexhepaj et al.,  2008). 
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Chromogenic or fluorescence techniques are widely used in quantitative histochemistry.  The 

end-product of immunostaining will be deposited at the site of the antigen. The antigen may 

be located in a specific cellular location, such as nuclear, organellular, cytoplasmic, 

membranous, or extracellular locations.  After photographic capture, the reaction product 

may be quantified by image-analysis software (Latham et al., 1996; Levsky & Singer, 2003). 

 

2.13.1 Technical aspect of immunohistochemistry 

IHC techniques involve a serial of processes, beginning with antigen retrieval to unmask 

antigens hidden by formalin cross-link or other fixations using pressure cooking, protease 

treatment, microwaving or heating techniques (Shi  et al.,1997; Shi et al. 2001). The first 

definite step of IHC is the primary antibody incubation step following antigen retrieval 

treatment. Then, a specific secondary antibody that is tagged with biotin and horseradish 

peroxidase is added. Lastly, a detection reagent, a chromogen or fluorescent tagged molecule 

is applied for visualizing of the primary antibody (Polak & Van Noorden, 1997). 
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CHAPTER 3 MATERIALS AND METHODS 

 

3.1 Study design 

A cross sectional study was conducted using archived samples to analyse the methylation 

profiling of OSCC.  A workflow of this study is depicted in Figure 3.1 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

Figure 3.1 Project workflow 
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3.2 Study population 

Archived specimens were used for this study. Human genomic DNA was extracted from four 

snap frozen healthy tissues surrounding impacted teeth, twenty independent snap frozen 

OSCC tissues for microarray analysis, and 40 independent formalin fixed and paraffin 

embedded (FFPE) OSCC tissues for validating significant hypermethylated genes using the 

MSPCR and IHC assays. The selected normal tissues were from healthy subjects who had no 

clinical lesions in their oral mucosa and non-smokers, non-alcoholics and non-betel quid 

chewers. All of these selected were new cases and had not undergone any anticancer 

treatment prior to this. An oral pathologist confirmed the histopathological findings and all 

samples used had more than 70% of the tumour samples for OSCC or more than 70% 

epithelium for the healthy tissues.  

 

The samples and relevant clinical data were obtained from the Malaysia Oral Cancer 

Database and Tissue Bank System (MOCDTBS) coordinated by the Oral Cancer Research 

and Coordinating Centre (OCRCC). This study was approved by the Medical Ethics 

Committee of the Faculty of Dentistry, University of Malaya (Ethic reference no: DF 

OP1101/0049 (L)).  

 

3.3 DNA extraction  

3.3.1 Snap frozen tissues  

A total of 0.1 mg snap frozen specimen was sectioned using a cryostat (Leica Microsystem, 

Wetzlar, Germany) at a temperature of -20
o
C.  A reference slide was prepared from 

representative tumour tissues and stained using Haematoxylin and Eosin (H&E) staining 

(Appendix A) to confirm the diagnosis and to gauge the percentage of tumour cells in the 

tissue.  The sections from macrodissected tissues that showed more than 70% tumour cells 



49 
 

were then selected for DNA extraction. QIAamp® DNA Extraction Mini Kit (Qiagen, 

Germany) was used for DNA extraction following the manufacturer’s procedure. The purity 

of the extracted genomic DNA was analysed by NanoDrop Spectrophotometer ND-1000 

(NanoDrop Technologies) with an extinction coefficient for double stranded DNA (50ng-

cm/µl). The quality of DNA was checked using 1% agarose gel electrophoresis.  DNA 

samples with OD260/280 ratio from 1.80 - 2.00 were selected for further downstream 

application. Overall, the DNA purity of the samples had an average absorbance ratio of 1.89 

± 0.10. The extracted genomic DNA were frozen and stored at –20°C until required for the 

experiment.  

 

3.3.2 Formalin fixed paraffin embedded (FFPE) tissues  

Tumour tissues were surgically removed from the oral cancer patients during treatment by an 

oncology team, immediately fixed in 10% neutral buffered formalin, and then embedded in 

paraffin and prepared as FFPE blocks. Selected blocks in excess of diagnosis were retrieved 

from the MOCDTBS for use in this study.  Four µm tissues were sectioned from the FFPE 

block using a microtome and 20 of these sections from each block were transferred
 
into a 

centrifuge tube containing deparafinization reagent (Qiagen, Germany), vortexed, and 

centrifuged. The supernatant was
 
discarded and the procedure repeated sequentially with 90% 

and 70% ethanol respectively. After centrifugation at 16 000 g for 20 minutes at 4°C, cell 

pellets were treated for Proteinase K digestion at 50
o
C for 4-16 hours. DNA extraction using 

QIAamp® DNA Extraction Mini Kit (Qiagen, Germany) was carried out following the 

manufacturer’s procedure. The quality and purity of the genomic DNA were analysed by 

NanoDrop Spectrophotometer ND-1000 (NanoDrop Technologies) and the quality of DNA 

was checked by 1% agarose gel electrophoresis. The genomic DNA was frozen and stored at 

-20°C. 
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3.3.3 Bisulfite-converted DNA  

The extracted genomic DNA was bisulfite-converted using the EpiTect Bisulfite Kit (Cat. No. 

59104, Qiagen, CA) according the manufacturer’s protocol. One ng to 2 µg of extracted 

genomic DNA was chemically modified by sodium bisulfite which changed the unmethylated 

cytosine into uracil. Conversely, this does not happen with methylated cytosine.  The product 

contained unconverted cytosine where they had been previously methylated, and had cytosine 

converted to uracil if they were previously unmethylated.  

 

A total volume of 20 µl solution of the bisulfite mix reagent and genomic DNA was added 

into microfuge tubes for PCR amplification using Eppendorf Mastercycler Gradient PCR 

(Germany). The following cycling conditions were performed:- first denaturation step: 5 

minutes for 95°C, first incubation step:  25 minutes for 60°C, second denaturation step: 5 

minutes for 95°C, second incubation step: 85 minutes for 60°C, third denaturation step: 5 

minutes for 95°C, third incubation step: 175 minutes for 60°C, and lastly holding at 20°C. 

The bisulfite-converted DNA was then purified with lysis buffer containing 10ug/ml carrier 

RNA and centrifuged in spin columns for 1 minute. After that, washing with wash buffer was 

carried out and centrifuged at a maximum speed for 1 minute. Desulfonation buffer was then 

added in the spin column and incubated for 15 minutes at room temperature and centrifuged. 

Wash buffer was added to the spin column and centrifuged again before the spin column was 

placed in a heating block at 56°C for 5 minutes. This step enables the evaporation of any 

remaining liquid. Finally, 20 µl of elution buffer was added to the spin column and inserted 

into 1.5 ml of microcentrifuge tubes. Final PCR product can be eluted by centrifugation for 1 

minute at approximately 15,000g (12,000 rpm). The DNA products were qualified by 

NanoDrop Spectrophotometer ND-1000 (NanoDrop Technologies) with an extinction 

coefficient for single stranded DNA (33ng-cm/µl). The purified bisulfite-converted DNA was 
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ready for immediate analysis or it could be stored at or below -20°C for later use. For long 

term storage, the samples would ideally be stored at or below -70°C. 

 

3.4 Microarray assay 

Microarray experiment was conducted on the Infinium Illumina methylation bead array 

(Illumine, San Diego, USA).  A total of 200 ng of total bisulphite converted DNA was 

applied to a bead-based microarray following the manufacturer’s protocol (Illumine, San 

Diego, USA).  In brief, the bisulfite converted DNA was subjected to whole genome 

amplification by DNA polymerase. Amplified products were then enzymatically fragmented 

and
 
purified from dNTPs, primers and enzymes, and applied to chip via allele specific 

annealing to either the methylation specific probe or the non-methylation probe. There are 

two bead types for each CpG site per locus on the chip. Each locus tested is differentiated by 

different bead types since there are over 200,000 bead types available.
 
Each bead type is 

attached to single stranded 50-mer DNA oligonucleotides that differ in sequence only at the 

free end; and this type of probe is known as an allele specific oligonucleotide. One of the 

bead types will correspond to the methylated cytosine locus and the other will correspond to 

the unmethylated cytosine locus which has been converted into uracil during bisulfite 

treatment, and later amplified as thymine during whole genome amplification. Hybridization 

was followed by single base extension with hapten labelled dideoxynucleotides. ddCTP was 

labelled with biotin while ddATP, ddUTP and ddGTP were labelled with 2,4-dinitrophenol 

(DNP).
 

After incorporation of these hapten labelled ddNTPs, multi-layered 

immunohistochemical assays were performed by repeated rounds of staining with a 

combination of antibodies to differentiate the two types.
 
After staining, the chip was scanned 

by BeadArray Reader to show the intensities of the unmethylated and methylated bead types 

(Bibikova et al., 2011). 

http://en.wikipedia.org/w/index.php?title=Whole_genome_amplification&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Whole_genome_amplification&action=edit&redlink=1
http://en.wikipedia.org/wiki/DNA_polymerase
http://en.wikipedia.org/wiki/Annealing_%28metallurgy%29
http://en.wikipedia.org/wiki/Oligonucleotide
http://en.wikipedia.org/wiki/Allele_specific_oligonucleotide
http://en.wikipedia.org/wiki/Hapten
http://en.wikipedia.org/wiki/Biotin
http://en.wikipedia.org/wiki/2,4-dinitrophenol
http://en.wikipedia.org/wiki/Immunostaining
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3.4.1 Microarray data analysis 

3.4.1.1 Genome Studio Data Analysis 

The raw data were analysed by GenomeStudio Data Analysis Software (Illumine, San Diego, 

USA), and fluorescence intensity ratios between the two bead types were calculated. In the 

diploid human genome, a ratio value of 0 equals a non-methylation of the locus, a ratio of 1 

equals to total methylation, and a value of 0.5 means that one copy is methylated and the 

other is not. 

 

After the detection of the methylation status, the microarray files were further analysed and 

this included normalization of the raw data to reduce experimental variations, background 

and average normalization, and preforming standard statistical tests on the results. 

 

The single-site resolution data could then be compiled into several types of figures for 

visualization and analysis, such as line plots, bar graphs, scatter plots, histograms, 

dendrograms, box plots, or heat maps. Here, scatter plots are used to correlate the methylation 

data, bar plots to visualize relative levels of methylation at each site tested, and heat maps are 

used to cluster the data to compare the methylation profile at the sites tested. 

 

The array signals were uploaded to the Illumina’s Genome Studio software for background 

normalization and filtered by β values for methylation levels using the Illumina’s Genome 

Studio software (Bibikova et al., 2011). Samples which showed fluorescence intensity with 

p<0.001 were included in the study. The methylation level was defined as follows: 

Hypermethylated and hypomethylated alleles as those having an average β value of more 

than 0.6, and below 0.4 of the overall mean for all samples respectively.  Wilcoxon rank sum 

test with a p value of 0.001 was corrected with 5% of false discovery rate corrections (FDR) 

http://en.wikipedia.org/wiki/Normalization_%28statistics%29
http://en.wikipedia.org/wiki/Scatterplot
http://en.wikipedia.org/wiki/Heat_map
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for multiple testing corrections (Susan et al., 1994). Multiple testing corrections allow a 

justification of p value based on test numbers being performed.  Five percent of the FDR is 

allowed; having a 5% chance of 1 false positive in every 500 genes. The FDR adjusts the p 

value of 0.05 to reflect the frequency of false positive occurrences in the gene list. 

Differences in average β values between the two groups are presented along with the details 

of methylation probes where the differentially methylated probes between normal subjects 

and patients were identified. Only selected differentially hypermethylated probes in OSCC 

patients that passed the filtration criteria were further analysed by Partek Genomic Suite 6.5. 

 

3.4.1.2 Partek Genomic Suite and Genego, Metacore
TM

 analysis 

The selected data of differentially methylated genes was then exported to the Partek 

Genomics Suite 6.5 (Partek Inc., USA). Unsupervised analysis of hierarchical clustering was 

obtained for distribution of subjects with healthy and OSCC tissue samples. List with 

significant methylated genes was generated using one-way ANOVA with p < 0.05 and fold 

change > 2.0 (Kron et al., 2009) and then subjected to Genego, Metacore
TM

 to determine their 

biological pathway associated with carcinogenesis.  
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3.5 Methylation-specific polymerase chain reaction 

The protocol was performed according to the manufacturer’s instructions (EpiTect MSP Kit,  

Qiagen, CA). Unmethylated and methylated DNA controls (Catalog NO. D5014, ZYMO, 

Orange, CA, USA) were used as negative and positive controls, respectively; and double 

distilled water (ddH2O) was used as a blank control in all the experiments.  

 

Primers were designed using the Methyl Primer Express Software v1.0 (Applied Biosystems, 

USA) based on primer design criteria (Appendix B). Details of the primers are shown in 

Table 3.1. The bisulfite-converted DNA served as a template using primers specific for the 

methylated or the modified unmethylated sequences. The primers were designed to anneal the 

methylated bisulfite-converted sequences within a gene. Thus, the bisulfite-converted DNA 

served as a template using primers specific for the methylated or the modified unmethylated 

sequences. 

  

The bisulfite-converted DNA was subjected to PCR amplification using the Eppendorf 

Mastercycler Gradient PCR (Germany) with the following cycling conditions: - Initial 

activation step: 95
o
C for 10 minutes; 35 cycles in the denaturation step: 94

o
C for 15 seconds; 

annealing step: Tm of primer; extension step: 72
o
C for 30 seconds; and final extension: 72

o
C 

for 10 minutes. Five microliters of the PCR products were loaded into 1% agarose gels, 

electrophoresed and visualized under image analyser (Typhoon 9410 variable mode imager, 

Amersham Biosciences; Baie d'Urfe, Quebec, Canada) after staining with the SYBR Safe 

DNA gel stain (Invitrogen, USA).  
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3.5.1 Statistical analysis for comparisons between patients’ demographic profiles and 

clinicopathological characteristics 

Statistical analysis for comparisons between patients’ demographic and clinicopathological 

data and the selected genes were analysed using Pearson Chi-square or Fisher’s Exact for 

categorical variables, and independent sample T-tests for continuous normally distributed 

variables. The patients’ demographic data included in the data analysis were age, gender, 

alcohol consumption, tobacco smoking, betel quid chewing habits, tumour sites, pathological 

stages, invasive front and tumour grading. The data were analysed by the Statistical Package 

for Social Sciences (SPSS software, version 17, Chicago, USA). When a p value was found 

to be less than 0.05, statistical difference was regarded as significant. 
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Table 3.1 Details of primers used in methylation-specific polymerase chain reaction 

Genes 

 

UCSC 

reference 

location 

Methylated Unmethylated 
Annealing 

temperature 

(oC) 

Product 

length 

(bp) 

Forward 

primer 

Reverse primer 

Forward 

primer 

Reverse primer 

P16 

chr9:2196775

1-21994490 

5′TTATTAGA

GGGTGGGGC

GGATCGC3’ 

5′GACCCCGAA

CCGCGCCGTA

A3′ 

5′TTATTAGA

GGGTGGGGT

GGATGT3 

5′CAACCCCAA

ACCACAACCA

TA A3′ 

61 156 

DDAH2 

chr6:3169589

4-31698245 

5'TTGGATTA

CGGTCGTGT

C 3' 

5'ACGAAAACT

AACCTTCCCG3' 

5'TTTTTGGAT

TATGGTTGT

GTT3' 

5'ATACAAAAA

CTAACCTTCCC

AC3' 

55 167 

DUSP1 

chr5:1721974

82-

172199606 

5'AGTTTGGA

AAATTAAAG

GAGC3' 

5'ATACCCACGT

TACCTCCATA3' 

5'GGAGTTTG

GAAAATTAA

AGGAGT3' 

5'CAATACCCA

CATTACCTCCA

TA3 

53 155 

CELSR3 

 

chr3:4869833

5-48701667 

5'TAGATTAG

GCGTTCGGT

TTC3' 

5'AAAAAATAA

CCTCGACGAA

CC3' 

5'GAGTAGAT

TAGGTGTTT

GGTTTT3' 

5'CCAAAAAAA

TAACCTCAACA

AACC3' 

50 136 

PIKCR5 

chr17:886846

9-8869372 

5'GTAGTTGG

GATTATAGG

CGC3' 

5'ACGAATCAC

GAAATCAAAA

A3' 

5'GGGTAGTT

GGGATTATA

GGTGT3' 

5'AAACAAATC

ACAAAATCAA

AAA3' 

52 157 

TP73 

chr1:3566445

-3569636 

5'TGAAGATG

TGCGAGTTA

GTC3' 

5'TCTTAAAAA

ATCGCGTCAAT

3' 

5'TTATGAAG

ATGTGTGAG

TTAGTT3' 

5'ACATCTTAAA

AAATCACATC

AAT3' 

55 125 

MEF2D 

chr12:536472

0-53646071 

5'AAGGAGAT

TTTTTCGGTT

TC3' 

5'TTTCTTCCGT

ACAATACTCG

A3' 

5'ATTAAGGA

GATTTTTTTG

GTTTT3' 

5'CTTTTCTTCC

ATACAATACTC

AAA3' 

53 

 

105 

 

RRM2 

chr2:1026217

3-10263481 

5'TCGTTTTGT

TTTGGTTGTT

C3' 

5'GCGAACTCA

CCGTATTCTC3' 

5'TAGTTGTTT

TGTTTTGGTT

GTTT3' 

5'CCCACAAAC

TCACCATATTC

TC 3' 

54 115 

BCL2 

chr18:609866

21-60988286 

5'GTTGTGTTA

TCGGCGTTC3

' 

5'CTCGAAACG

TCCCTAAACA3' 

5'GTTGTGTTA

TTGGTGTTT3' 

5'CTCAAAACA

TCCCTAAACA3' 
54 134 
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3.5.2 Survival analysis 

Survival rates and curves were estimated using the Kaplan-Meier method and comparisons of 

prognostic subgroups of demographic, clinicopathological data and genes hypermethylation 

with survival rate were conducted using the log-rank test, respectively. The association was 

considered statistically significant if p< 0.05. 

 

3.6 Immunohistochemical staining 

Archival FFPE  tissue blocks of normal oral mucosa (n=4) and OSCC (n= 40) were retrieved 

from OCRCC. To construct tissue microarray block, small core biopsies were taken from 

non-necrotic, morphologically representative areas of FFPE tumour tissues and assembled on 

a recipient paraffin block. This was performed using a semi-automatic tissue arrayer minicore 

(Alphelys, SAS, France). The biopsied core was 3.0 mm in diameter which was sufficient for 

assessing the morphological features in the tissues, and 40 cores were assembled on a 

recipient paraffin block. After construction, 4 μm sections were cut and H&E staining was 

performed on the initial slide to verify the histology. 

 

All these selected cases were histologically verified and diagnosed according to the 

classification of the World Health Organization (WHO) by an oral pathologist. The 

confirmed OSCC cases were used as positive control on each IHC run. The protocol was 

performed according to the manufacturer’s instructions (Dako, USA, Capinteria, CA). The 

primary antibodies applied for immunohistochemical analysis were rabbit, mouse or goat 

monoclonal or polyclonal antibodies to specific hypermethylated genes of DDAH2, DUSP1, 

RRM2 and MEF2D respectively with 30 minutes of incubation time (Table 3.2). The 

immunohistochemical staining was performed with DAKO REAL EnVision Detection 
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System, Peroxidase/DAB
+
, Rabbit/Mouse (K500711, Dako, USA, Capinteria, CA) 

(Kämmerer  et al., 2001). 

 

 

Table 3.2 Details of antibodies used in immunohistochemical assay 

Name of  

proteins 

Catalog

ue 

number 

Positive control 

tissues 

Primary 

antibodies 

Nuclear or 

cytoplasmic 

staining 

Dilution 

factor  

DDAH2 Ab87064 Human colon  

tissues 

Rabbit polyclonal 

antibody against 

human DDAH2 

Cytoplasmic 1:100 

DUSP1 ab1351 Human colon 

tissues 

Goal polyclonal 

antibody against 

human DUSP1 

Cytoplasmic 1:200 

RRM2 ab57653 Human 

appendix 

tissues 

Mouse monoclonal 

antibody to human 

RRM2 

Cytoplasmic 1:450 

MEF2D 

 

ab32845 

 

Human 

appendix 

tissues 

Rabbit polyclonal 

antibody to human 

MED2F 

Nuclear 

 

1:450 
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3.6.1 Protocol for detection of protein expression of selected genes using IHC  

The protocols are as listed in Appendix C 

 

3.6.1.1 Dewaxing, deparafinization and rehydration 

Slides were labelled and placed in a slide holder. The slides were put in an oven at 60
 o
C for 

30-60 minutes for dewaxing. The slides were then submerged for 3 minutes each in three 

different chambers of xylene to deparaffinize the FFPE tissues. The tissues were then 

rehydrated in a graded alcohol series of 95% and 70% for 3 minutes each and this was 

followed by rinsing in running water. After that, the slides were incubated in 100 mM Tris 

phosphate buffer (TBS) (pH 9.0) for 10-35 minutes prior to an antigen retrieval process.  

 

3.6.1.2 Antigen retrieval 

For antigen retrieval, the slides were placed in a plastic container containing 250 ml of 10 

mM citrate buffer (pH 6.0). The container was placed in an 8-quarter programmable pressure 

cooker filled with 2-3 L of ddH2O and the slides were pressurized on a low setting for 5 

minutes. Once finished, pressure was released and the container was removed from the 

pressure cooker and cooled to room temperature for 15 minutes. 

 

3.6.1.3 Blocking 

A hydrophobic glue marker (Pap Pen, Research Products International Corp, Mt. Prospect, IL) 

was used to draw a hydrophobic barrier around each tissue specimen. To quench endogenous 

peroxidase activity of the tissues, 3% of hydrogen peroxide (H2O2) in methanol was applied 

to each slide and incubated for 5 minutes in a humidity chamber. The slides were then 

washed 3 times in with 0.05% Tween-20 for 3 minutes each, and then in ddH2O for 6 minutes. 
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3.6.1.4 Staining 

Primary monoclonal and polyclonal antibodies were pre-diluted with 100 mM TBS (pH 9.0) 

according to dilution factors as shown in Table 3.2. The slides were placed in the humidity 

chamber for 30 minutes. A negative control slide without antibody incubation was stained 

along with the other slides. The slides were then rinsed twice in the TBS with 0.05% Tween-

20 for 3 minutes each and placed back into the humidity chamber. Subsequently, 10% of 

horseradish peroxidase (HRP) from the Dako REAL EnVision Detection System, 

Peroxidase/DAB+, Rabbit/Mouse (Dako, Glostrup, Denmark) was applied on each slide 

before incubating for 30 minutes. The slides were then washed twice, each for 3 minutes in 

the TBS containing 0.05% Tween-20. Two drops of diaminobenzidine (DAB) substrate (1 ml 

DAB and 20ul DAB chromogen) were applied to each slide and incubated for 10 minutes. 

Finally, the slides were washed three times (2 minutes each) in the TBS with 0.05% Tween-

20. 

 

3.6.1.5 Counterstaining 

For counterstaining, the slides were briefly dipped once into the Hematoxylin solution, 

followed immediately with two separate rinses in ddH2O. 

 

3.6.1.6 Tissue preservation 

The slides were serially dehydrated in graded alcohol of 70%, 95% and 100% for 2 minutes 

each. Two drops of Vectomount (Vector Laboratories, Burlingame, CA) were added onto 

each slide and a coverslip was carefully placed on each slide without trapping air bubbles. 

The slides were left to dry overnight before being analysed under the light microscope. 
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3.6.2 Image scoring analysis of protein expressions of selected genes in IHC stained 

specimens  

Photomicrographs with power magnification of 40 times were taken by a CCD camera DP50 

(Olympus, Tokyo, Japan) attached to an Olympus BX61 Fluorescence microscope (Olympus 

America, Inc., Center Valley, PA, USA).  Cell count and tumour areas were measured in each 

photomicrograph to detect brownish positive IHC staining using digital image analysis 

software (AnalySIS LS Professional version 5.0; Olympus America, Inc., Center Valley, PA, 

USA). Colour threshold detection of the AnalySIS Professional software was used to 

determine positive (brown pixels) and negative (blue pixels) stained cells per tumour area. 

The tumour tissues present in the images were marked and included for image analysis. Data 

are expressed as the presence of positive cells in percentages (positively brown stained 

divided by tumour area). The evaluation was done qualitatively by taking the definite positive 

brown staining at the specific cellular location of each protein (Durlej et al., 2010).  In the 

study, MEF2D expression was associated with distinct nuclear staining of the cells, whereas 

DDAH2, DUSP1 and RRM2 revealed cytoplasmic staining of the cells. IHC staining scoring 

were examined by an evaluator without prior knowledge of the methylation status of MSPCR.  

 

The cut off threshold for positive and negative immunostaining was dependent on the median 

percentage of each gene’s reactivity as described previously (Sis et al., 2005). Percentage of 

the median value for each gene was used to differentiate between positive and negative 

immunostainng. The percentage of median value of immunostaining demonstrated in tumour 

tissues for DDAH2 was 10.0%, 5.13% for DUSP1, 17.8% for MEFD2, and 20.0% for RRM2. 

Protein expression with a value of more than the median percentage was considered to be 

overexpressed. 
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3.6.3 Statistical analysis of protein expressions of selected genes  

Quantitative data obtained as continuous abnormally distributed variables were presented as 

median (interquartile) for percentage of protein expressions. The statistical analysis of 

association between protein expressions of selected genes in OSCC was analysed using the 

Mann-Whitney U test for continuous abnormally distributed variables. Association of gene 

hypermethylation and protein expression was conducted by Chi-square and Fisher’s exact 

tests. Correlations between protein expressions of different genes and a patient’s age were 

performed using Spearman’s rho test for continuous abnormally distributed variables. The 

correlation of protein expression strength between genes was considered to be weak if 

correlation (r) was close to 0 and considered strong if it was close to 1 with a significant 

value of P < 0.01 (two-tailed). The data were analysed by SPSS software, version 17 (SPSS, 

Chicago, USA).  Statistical significance was accepted at p < 0.05.   
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CHAPTER 4 RESULTS 

 

4.1 Methylation microarray analysis 

4.1.1 Study population 

Twenty frozen tissue samples of OSCC and 4 normal tissues were collected over a time 

period of five years from 2005 to 2010 for microarray assay. These samples were obtained 

from 10 male patients with a mean age of 57 ± 18.90 years and 10 female patients with a 

mean age of 64.5 ± 13.62 years. In this study, a total of four cases of tumour pathological 

stage I, five cases of stage II, five cases of stage III and six cases of stage IV were obtained 

for the microarray assay. 

 

4.1.2 Illumina’s Genome Studio software analysis 

The methylation levels of 45,000 CpG sites were measured by Infinium methylation assay 

and are presented as a value from 0 (completely unmethylated) to 1.0 (completely 

methylated). In the Illumina’s Genome Studio software analysis, one of the 4 normal tissue 

samples was categorized and filtered as an outlier during the data handling and excluded from 

the study.  

In this study, mean methylation value differences between normal tissues with different 

stages of OSCC cases were obtained. Line plot (Figure 4.1) and box plot (Figure 4.2) 

represent the difference in methylation values (average β value) between normal tissues 

(average β value < 0.4) and OSCC tissues (average β value > 0.6) in CpG sites and tumour 

pathological stages. These values were averaged from all patients within each CpG site.  The 

difference in values is averaged for all patients within each CpG site. All CpG sites within a 

PCR product are grouped together. The results demonstrated that normal samples segregated 

differently from clinical samples as shown in Figure 4.1 and Figure 4.2.   
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Histogram of representative genes’ group methylation profiles of average β value for p16, 

DDAH2 and DUSP1 alleles were distinctly differentiated between normal and 4 pathological 

stages (Figure 4.3.1-4.3.3). A distinct profile shows lower average β value in normal subjects 

if compared with pathological stage I, II, III and IV for p16, DDAH2 and DUSP1 alleles. The 

analysis of the methylation profile resulted in a gene list with 34 promoter-associated 

hypermethylated genes with an average β value of 0.4 in methylation (p < 0.001) (Appendix 

D).  

 

         

               

 

Figure 4.1. The line plot shows unsupervised hierarchical clustering of CpG sites of normal tissues 

and tumour samples (Stage I-IV) with methylation values (average β value). Normal samples (blue 

line) segregated differently from tumour samples (stage I in red line, stage II in orange-coloured line, 

stage III in green-coloured line, stage IV in yellow-coloured line) in OSCC. 
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Normal and tumour pathological stages (Stage I, II, III and IV) 

 

Figure 4.2. Mean methylation value difference between normal tissues with different stages 

of OSCC cases. The box plot represents methylation difference values between samples of 

normal (average β value < 0.4) and OSCC (Stage I, II, III and IV) (average β value > 0.6). 

 

 

 

                   

 

Normal and tumour pathological stages (Stage I, II, III and IV) 

Figure 4.3.1. Histogram of group methylation profiles of five different p16 alleles average β 

value between normal and 4 pathological stages (Stage I, II, III and IV).  
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Normal and tumour pathological stages (Stage I, II, III and IV) 

 

Figure 4.3.2. Histogram of group methylation profiles of seven different DDAH2 alleles 

average β value between normal and 4 pathological stages (Stage I, II, III and IV). DDAH2 

alleles are representative in colour of dark blue, red, orange, green, yellow, pink and light 

blue. 

 

 

 

 

             

 

Normal and tumour pathological stages (Stage I, II, III and IV) 

                                                     

Figure 4.3.3. Histogram of group methylation profiles of DUSP1 alleles average β value 

between normal and 4 pathological stages (Stage I, II, III and IV). Four different DUSP1 

alleles are representative in colour of blue, red, orange and green. 
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4.1.3 Partek Genomic Suite 6.5 assay 

Data obtained from the Illumina’s Genome Studio software were analysed by the Partek 

Genomic Suite software. A separate hierarchical clustering analysis was performed on normal 

(n=3) and tumour tissues (n=20).  The data set was clustered using a standard hierarchical 

method with the Pearson’s correlation to determine the distance function. The cluster set of 

normal and tumour samples (stage I, II, III and IV) clearly segregated the normal from 

tumour samples (Figure 4.4, Figure 4.5). 

 

The unsupervised hierarchical clustering (Figure 4.4) and principle component analysis 

(Figure 4.5) of methylation status of normal and tumour samples (stage I, II, III and IV) 

showed that normal samples were clustered differently from clinical samples.  However, 

there was no clear separation between the clustering patterns among the four different 

pathological stages.   

 

A total number of 1318 loci were differentially methylated between tumour and normal 

samples by at least a 2 fold change and FDR value <0.05 (Figure 4.6)  - 1080 loci (fold 

change 2.0001 - 30.1393) were hypermethylated, and 238 loci (fold change -2.00025 - -

7.99067) were hypomethylated with p < 0.0001 (Figure 4.7).  A gene list of 89 promoter 

hypermethylated  loci was generated (Appendix E), where 69 loci are located in the islands of 

promoter, 1 in the north shelf, 10 in the north shore, 5 at the south shore of promoter regions 

and 4 were unspecific regions. Representative hypermethylated genes of  p16 (FC=+2.85385 

p=0.002357),  DUSP1 (FC=+2.56631 p=5.49E-08), DDAH2 (FC=+2.82636 p=0.000934), 

PIK3R5(FC=+3.18124 p=0.001524), CELSR3 (FC=+15.0254 p=0.000736), TP73 

(FC=+2.2665 p=0.001507), RRM2 (FC=+2.54062 p=0.001067), MEF2D  (FC=+2.54282 

p=0.002182), and one hypomethylated gene of  BCL2 (FC= -2.15965 p=0.000201556) were 
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selected for further study.  Gene selection criteria included their biological functions, p < 

0.001 and a methylation fold change for microarray data validation using MSPCR and IHC 

assays. These selected genes do not necessary reflect the greatest statistical significance or 

greatest methylation fold change. 

 

The Partek Genomic Suite visualization also demonstrated the selected significant enrichment 

differences in p16, DDAH2, DUSP1, PIKC3R5, CELSR3 and BCL2 genes in their selected 

probe regions respectively (p < 0.001) as shown in Figure 4.8.1-4.8.6. The entire gene’s 

significant enrichment differences corresponded to the designated primer regions for MSPCR 

analys  

  

Figure 4.4. Heatmap of methylation frequency of differentially methylated genes in OSCC. 

Unsupervised hierarchical clustering was performed on gene methylation profiles for the 

normal tissues (n=3) and tumour tissues (n=20, stage I, II, III and IV).  The heat map of 

differentially methylated genes based on clustering is shown in the figure.  Each row 

represents a sample and each column represents a CpG loci. Red colour indicates 

hypermethylated CpG sites and blue colour indicates hypomethylated CpG sites. 
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Figure 4.5.  Principle Component Analyses segregated the normal samples (red colour) from 

tumour samples (stage I: blue; stage II: green; stage III:  purple; and stage IV: orange) 

 

 

 

 

 

Figure 4.6. Scatter plot of fold change of normal and tumour tissues with gene locus. A 

number of loci are differentially hypermethylated between tumour and normal samples with 

fold change of 2.0001 to 30.13 and hypomethylated with fold change of -2.00025 to -7.99067. 

  



70 
 

 

Figure 4.7. Distribution chart of p-value with locus for hypomethylated genes and 

hypermethylated genes. Figure shows hypermethylated loci are represented in blue boxes and  

hypomethylated loci are represented in red boxes. All loci that selected in the study was 

based on p < 0.0001. 

 

 

 

                                           

 Figure 4.8.1.  Representative of Partek Genomic Suite Visualization. The upper panel of 

each shows the heat map for each probe of p16 gene in normal and four pathological stages. 

The line graphs in the lower panel of each show log2 ratio of β values of each probe between 

normal and four pathological stages with clear separation (indicated with green arrow). 
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Figure 4.8.2.  Representative of Partek Genomic Suite Visualization. The upper panel of each 

shows the heat map for each probe of DUSP1 gene in normal and four pathological stages. 

The line graphs in the lower panel of each show log2 ratio of β values of each probe between 

normal and four pathological stages with clear separation (indicated with green arrow). 

 

 

 

 

 

Figure 4.8.3.  Representative of Partek Genomic Suite Visualization. The upper panel of each 

shows the heat map for each probe DDAH2 gene in normal and four pathological stages. The 

line graphs in the lower panel of each show log2 ratio of β values of each probe between 

normal and four pathological stages with clear separation (indicated with green arrow). 
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Figure 4.8.4.  Representative of Partek Genomic Suite Visualization. The upper panel of each 

shows the heat map for each probe of PIKC3R5 gene in normal and four pathological stages. 

The line graphs in the lower panel of each show log2 ratio of β values of each probe between 

normal and four pathological stages with clear separation (indicated with green arrow). 

 

 

 

                           

Figure 4.8.5.  Representative of Partek Genomic Suite Visualization. The upper panel of each 

shows the heat map for each probe of CELSR3 gene in normal and four pathological stages. 

The line graphs in the lower panel of each show log2 ratio of β values of each probe between 

normal and four pathological stages with clear separation (indicated with green arrow). 
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Figure 4.8.6.  Representative of Partek Genomic Suite Visualization. The upper panel of each 

shows the heat map for each probe of BCL2 gene in normal and four pathological stages. The 

line graphs in the lower panel of each show log2 ratio of β values of each probe between 

normal and four pathological stages with clear separation (indicated with green arrow). 

 

 

4.1.4 Signalling pathway analysis of hypermethylated genes from patients with OSCC  

To elucidate which biological pathways are involved in OSCC progression, the 

hypermethylated gene list was further mapped using the MetaCore
TM

 analytical suite 4.5 for 

significant pathway analysis.  A summary of the significant pathways (p<0.001) identified 

from the hypermethylated genes of OSCC is illustrated in Table 4.1. The top ten pathways 

were selected in the study.  In depth biological analysis by  the MetaCore
TM

 analytical  suite 

4.5 revealed that the most significant pathway involved in hypermethylation was  immune 

response of function of MEF2 in T lymphocytes  pathway (p=6.696E-03).  The 

hypermethylated genes involved in this pathway include MEF2D and MEF2.  These two 

genes, MEF2D and MEF2 genes, were also involved in the development role of HDAC and 

calcium/calmodulin-dependent kinase (CaMK) in control of skeletal myogenesis pathway 

(p=7.776E-03), cardiac hypertrophy of Ca (2+)-dependent NF-AT signalling  in cardiac 

hypertrophy (p= 8.634E-03), and immune response of gastrin in the inflammatory response 
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(p=1.247E-02). The MEF2 gene was also hypermethylated in the transcription role of 

heterochromatin protein 1 (HP1) family in transcriptional silencing (p=5.329E-02). The 

second top most pathway was immune response of DAP12 receptors role in NK cells  

(p=7.776E-03) which revealed genes of HLA-C and HLA-B. The other two hypermethylated 

genes, RRM2, small RR subunit were predominantly in pathways of dCTP/dUTP metabolism 

(p=1.461E-02), dATP/dITP metabolism (p=2.283E-02 and ATP/ITP metabolism (p=3.734E-

02). PI3K regulation class IB (p101) gene was hypermethylated in the last top ten pathway of 

apoptosis and survival of beta-2 adrenergic receptor anti-apoptotic  (p= 5.565E-02). Thus, the 

two most predominant genes, MED2F and RRM2 were further analysed by MSPCR and IHC. 
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Table 4.1. Significant biological pathway associated with hypermethylated genes of OSCC 

(Enrichment analysis pathway maps by GeneGo software) 

 

 

 

 

 

 

 

 

No Enrichment by Pathway Maps p value Genes  

1 Immune response_Function of MEF2 in T lymphocytes 6.696E-03 MEF2D, MEF2 

2 

Immune response_Role of DAP12 receptors in NK 

cells 7.776E-03 

HLA-C, HLA-

B 

3 

Development_Role of HDAC and calcium/calmodulin-

dependent kinase (CaMK) in control of skeletal 

myogenesis 7.776E-03 MEF2D, MEF2 

4 

Cardiac Hypertrophy_Ca(2+)-dependent NF-AT 

signalling  in Cardiac Hypertrophy 8.634E-03 MEF2D, MEF2 

5 Immune response_Gastrin in inflammatory response 1.247E-02 MEF2D, MEF2 

6 dCTP/dUTP metabolism 1.461E-02 

RRM2, Small 

RR subunit 

7 dATP/dITP metabolism 2.283E-02 

RRM2, Small 

RR subunit 

8 ATP/ITP metabolism 3.734E-02 

RRM2, Small 

RR subunit 

9 

Transcription_Role of heterochromatin protein 1 (HP1) 

family in transcriptional silencing 5.329E-02 MEF2 

10 

Apoptosis and survival_Beta-2 adrenergic receptor anti-

apoptotic action 5.565E-02 

PI3K reg class 

IB (p101) 
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http://portal.genego.com:8100/cgi/imagemap.cgi?id=671
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4.2 Methylation-specific polymerase chain reaction analysis 

The selected genes of p16, DDAH2, DUSP1, CELSR3, PIK3R5, TP73, MEF2D, RRM2 and 

BCL2 were assessed using a quantitative technique, MSPCR in independent FFPE samples. 

Table 4.2 shows the methylation status and frequencies of promoter hypermethylation.   

Promoter hypermethylation of positivity of p16 (n=31, 77.5%), DDAH2 (n=32, 80%), 

DUSP1 (n=35, 87.5%), CELSR3 (n=35, 87.5%), PIK3R5 (n=32, 80%), TP73 (n=37, 92.5%), 

MEF2D (n=28, 70%), RRM2 (n=32, 80%) and BCL2 (n=18, 45%) correlated with the 

microarray data. For unmethylation status, p16, DDAH2, DUSP1, CELSR3, PIK3R5, TP73, 

MEF2D, RRM2 and BCL2 genes had 22.5% (n=9), 20% (n=8), 12.5% (n=5), 12.5% (n=5), 

20% (n=8) , 7.5% (n=3), 30% (n=12),  20% (n=8) and 55% (n=22) respectively.  

Representative agarose gel images are shown in Figure 4.9.1-4.9.9. Details of 

hypermethylated and unmethylated gene status and percentage of gene methylations are listed 

in Table 4.2. 

 

 

            

 

   

 

Figure 4.9.1. Representative agarose gel electrophoretic images of methylation status for gene 

of p16 in methylation control and tumour samples. DKO represents methylation control; M 

represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker of 

50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-15 represent methylation status of tumour samples. Lanes 16: Distilled water used as 

negative control. Sample no. 14,15,16,17,18 and 19 show methylated status 
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Figure 4.9.2. Representative agarose gel electrophoretic images of methylation status for gene 

of  DDAH2  in methylation control and tumour samples. DKO represents methylation control; 

M represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker 

of 50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-15 represent methylation status of tumour samples. Sample no. 27, 28, 29, 30, 31 and 

32 show methylated status. 

 

 

 

 

 

 

 

Figure 4.9.3. Representative agarose gel electrophoretic images of methylation status for gene 

of  DUSP1 in methylation control and tumour samples. DKO represents methylation control; 

M represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker 

of 50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-15 represent methylation status of tumour samples. Lanes 16: Distilled water used as 

negative control. Sample no. 27, 28, 29, 30, 31 and 32 show methylated status. 
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Figure 4.9.4. Representative agarose gel electrophoretic images of methylation status for gene 

of CELSR3 in methylation control and tumour samples. DKO represents methylation control; 

M represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker 

of 50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-15 represent methylation status of tumour samples. Sample no. 25, 26, 27, 28, 29 and 

30 show methylated status. 

 

 

 

 

 

 

Figure 4.9.5. Representative agarose gel electrophoretic images of methylation status for gene 

of PIK3R5 in methylation control and tumour samples. DKO represents methylation control; 

M represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker 

of 50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-15 represent methylation status of tumour samples. Sample no. 22, 23, 24, 25, 26 and 

27 show methylated status. 
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Figure 4.9.6. Representative agarose gel electrophoretic images of methylation status for gene 

of TP73 in methylation control and tumour samples. DKO represents methylation control; M 

represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker of 

50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-13 represent methylation status of tumour samples. Sample no. 8, 9, 10, 11 and 12 

show methylated status. 

 

 

 

 

 

 

Figure 4.9.7. Representative agarose gel electrophoretic images of methylation status for gene 

of MEF2D in methylation control and tumour samples. DKO represents methylation control; 

M represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker 

of 50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-15 represent methylation status of tumour samples. Sample no.10, 11, 12, 13, 14 and 

15 show methylated status. 
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Figure 4.9.8. Representative agarose gel electrophoretic images of methylation status for gene 

RRM2 in methylation control and tumour samples. DKO represents methylation control; M 

represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker of 

50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-15 represent methylation status of tumour samples. Sample no. 27, 28, 29, 30, 31 and 

32 show methylated status. 

 

 

 

 

 

 

Figure 4.9.9. Representative agarose gel electrophoretic images of methylation status for gene 

of BCL2 in methylation control and tumour samples. DKO represents methylation control; M 

represents methylated alleles and U represents unmethylated alleles. Lane 1: ladder marker of 

50 bp.  Lanes 2 and 3: universal methylated (DKO M) and unmethylated control (DKO U). 

Lanes 4-13 represent methylation status of tumour samples.  Sample no. 28, 29, and 31 show 

methylated status. 
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Table 4.2.  Methylation status and percentage for methylated genes of p16, DDAH2, 

CELSR3, DUSP1, PIKCR3, TP73, MEF2D, RRM2 and BCL2 

No. 

       

Hypermethylated genes 

 

p16 DDAH2 DUSP1 CELSR3 PIK3R5 TP73 MEF2D RRM2 BCL2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

UM 

UM 

M 

M 

UM 

M 

UM 

M 

UM 

M 

M 

UM 

M 

UM 

UM 

M 
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M 
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M 
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M 

M 

M 

M 

M 
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M 

M 

M 
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M 
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M 
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M 

M 
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M 
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UM 

M 

M 

M 

M 

M 

M 

M 

M 

UM 

M 

UM 

UM 

M 

M 

M 

UM 

UM 

M 

M 

M 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

M 

UM 

UM 

M 

M 

M 

UM 

UM 

M 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

UM 

M 

M 

M 

UM 

M 

M 

UM 

UM 

M 

M 

M 

M 

M 

M 

M 

UM 

UM 

UM 

M 

M 

UM 

UM 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

UM 

UM 

M1 

UM 

M 

M 

M 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

M 

M 

M 

UM 

UM 

UM 

UM 

UM 

UM 

UM 

M 

M 

M 

M 

UM 

UM 

UM 

UM 

UM 

UM 

UM 

UM 

UM 

M 

M 

M 

M 

M 

M 

UM 

M 

M 

UM 

M 

M 

UM 

UM 

M 

M 

M 

UM 

UM 

M 

Percentage, % 

(No of cases) of 

methylation 

77.5 

(n=31) 

80 

(n=32) 

87.5 

(n=45) 

87.5 

(n=35) 

80 

(n=32) 

92.5 

(n=37) 

70 

(n=28) 

 

80 

(n=32) 

 

45 

(n=18) 

 

Indication: 

M = Methylated status 

UM = Unmethylated status 
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4.2.1 Demographic and clinicopathological parameters of OSCC patients  

Table 4.3 shows the demographic profiles and clinicopathological characteristics of the 40 

OSCC patients. These characteristics of age, gender, ethnic group, habits of alcohol drinking, 

tobacco smoking and betel-quid chewing, tumour sites, pathological stages, invasive fronts 

and differentiation of tumour grading were included in the study. The ethnic groups of 40 

patients consisting of 14 men and 26 women with a mean age of 59.3 years (age range of 28–

80 years) consisted of Malays (n=5), Chinese (n=6) and Indians (n=29). Most of the patients 

(80%) were found to have alcohol drinking, tobacco smoking and/or betel-quid chewing 

habits, whilst only 20% of the patients abstained from them. For the tumour sites, one (2.5%) 

OSCC was located on the lip, 19 (47.5%) of buccal mucosa, 8 (20%) gum and 12 (30%) 

tongue.  For the pathological TNM (Tumour staging), four (10%) cases each were TNM stage 

I and III, six (15%) stage II, and 26 (65%) were at stage IV. For the invasive front (POI 

staging), the total amount of no graded cases was recorded as 3 (7.5%), 31 (77.5%) as non-

cohesive, and 6 (15%) as cohesive staging.  The number of differentiation (tumour grading) 

of OSCC for a well differentiated grade was reported at 13 (32.5%), moderate at 26 (65%), 

and one each (2.5%) for poorly differentiated and no graded case. 

 

4.2.2 Association between patients’ demographic profiles, clinicopathological 

characteristics  and methylation status of p16, DDAH2, DUSP1, CELSR3, PIKC3R5, 

TP73, MEF2D, RRM2 and BCL2 genes  

The Chi Square and Fisher’s Exact tests, and independent sample T-tests of SPSS version 

17.0 were applied to determine the association between patients’ demographic profiles,  

clinicopathological characteristics with p16, DDAH2, DUSP1, CELSR3, PIKC3R5, TP73, 

MEF2D, RRM2 and BCL2 genes. A p < 0.05 was considered statistically significant. There 

was a significant association found between p16 and TP73 hypermethylation with patients’ 

tumour site (p=0.001 and 0.006), and CELSR3 and TP73 hypermethylation with patients’ 
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invasive stages (p=0.008 and 0.025). In addition, DDAH2 and CELSR3 hypermethylation 

was found significantly associated with patients’ age (p=0.042 and 0.044). However, there 

was no statistical significance of the association between p16, DDAH2, DUSP1, CELSR3, 

PIKC3R5, TP73, MEF2D, RRM2 and BCL2 genes with other demographic and 

clinicopathological data except the aforementioned characteristics  as shown in Table 4.3. 
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Table 4.3.  Demographic profiles, clinicopathological characteristics and gene methylations 

of OSCC patients 

 

Character-

istics  

  

Percent-

age,  % 

   

P values (Chi-square or Fisher Exact tests) 

 

p16 DDAH2 DUSP1 CELSR3 PIKC3R5 TP73 MEF2D RRM2 BCL2 

Gender 

    

      

Male 14 (35%) 

   

      

Female 26 (66%) 0.546 0.168 0.631 1.000 1.000 0.279 0.477 0.686 0.747 

Ethnic 

    

      

Malay 
5 

(12.5%) 

   

      

Chinese 

6 

(15.0%) 

   

      

Indian 

29 

(72.5%) 0.214 0.473 0.560 

 

0.728 

 

0.770 

 

0.669 

 

0.563 

 

0.514 

 

0.379 

Age Range  

(Years) 

    

      

20-39 4 (10%) 

   

      

40-59 

15 

(37.5%) 

   

      

60-79 
19 

(47.5%) 

   

      

> 80 2 (5%) 0.196 0.05* 0.574 0.468 0.902 0.240 0.704 0.693 0.968 

Habit 

    

      

No habit 8 (20%) 

   

      

Quit habit 1 (2.5%) 

   

      

Alcohol/To
bacco 

/Betel quid 
31 

(77.5%) 0.855 0.541 0.575 

 

 

0.113 

 

 

0.402 

 

 

0.365 

 

 

0.764 

 

 

0.563 

 

 

0.390 

Tumour 

Sites 

    

      

Buccal 

mucosa 

 

19 

(47.5%) 

   

      

Gum 8(20%) 

   

      

Tongue 12 (30%) 

   

      

Lip 1 (2.5%) 0.001* 0.700 0.601 0.797 0.922 0.006* 0.247 0.701 0.708 
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Table 4.3, continued 

 

   

   

Character-

istics  

  

Percent-

age,  % 

  

  

P values (Chi-square or Fisher Exact tests) 

  

p16 DDAH2 DUSP1 CELSR3 PIKC3R5 TP73 MEF2D RRM2 BCL2 

 

Pathologi-

cal TNM 

stage 

    

      

I 4 (10%) 

   

      

II 6 (15%) 

   

      

III 4 (10%) 

   

      

IV 26 (65%) 0.327 0.587 0.325 0.300 0.282 0.619 0.194 0.608 0.646 

Invasive  

front  (POI 
staging) 

    

      

Cohesive 6 (15%) 

   

      

Non-

cohesive 

31 

(77.5%) 

   

      

No stated 3 (7.5%) 0.247 0.542 0.278 0.008 0.819 0.025 0.980 0.137 0.448 

Differentiati

on (Tumour 
grading) 

    

      

Well 

13 

(32.5%) 

   

      

Moderate 

25 

(62.5%) 

   

      

Poorly 1 (2.5%) 

   

      

No stated 1 (2.5%) 0.862 0.858 0.735 0.876 0.463 0.959 0.610 0.845 0.280 

 

*Significant difference for promoter hypermethylation in p16 and TP73 hypermethylation 

with patients’ tumour site (p=0.001 and 0.006), CELSR3 and TP73 hypermethylation with 

patients’ invasive stages (p=0.008 and 0.025) by Chi-square or Fisher’s Exact test. 
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4.3 Survival analysis 

The OSCC patient survival data were calculated using Kaplan-Meier and log-rank tests. In 

survival rate data, there were two missing pieces of information due to lost contact during the 

follow-up time of 38 weeks. The patients’ survival time were found to range from 2 to 87 

weeks with a median follow-up time of 28.5 weeks. 

 

In this study, the overall 5-year survival rate was 38.1% of OSCC patients (95% CI=27.1, 

49.1) (Figure 4.10). The relative survival rate for patients’ demographic profiles, 

clinicopathological characteristics and gene hypermethylations are shown in Table 4.4 and 

Figure 4.11.1-4.11.17. 

 

There were no significance observed between the patients’ relative survival rate and ethnicity 

(X
2
=0.188, p=0.911), age (X

2
=0.466, p=0.926), (X

2
=2.715, p=0.438), tumour sites (X

2
=3.390, 

p=0.335), pathological stages (X
2
=1.411, p=0.842), invasive front (X

2
=1.604, p=0.448) and 

tumour grading, (X
2
=2.977, p=0.226). In addition, there were also no significance observed 

between the patients’ relative survival rate and hypermethylation of p16 (X
2
=1.338, p=0.226), 

DDAH2 (X
2
=0.365, p=0.546), DUSP1 (X

2
=0.093, p=0.760), PIKCR5 (X

2
=0.094, p=0.759), 

TP73 (X
2
=0.006, p=0.940), MEF2D (X

2
=0.235, p=0.628), RRM2 (X

2
=0.084, p=0.772), 

CELSR3 (X
2
=0.090, p=0.764) and BCL2 (X

2
=0.001,  p=0. 980).  All of the patients’ 

demographic and clinicopathological parameters, and gene hypermethylations did not 

influence the overall survival rate (p>0.05), except for the gender difference (X
2
=3.636, 

p=0.050) (Figure 4.11.3). The gender of patients had a significant difference in the survival 

rate with 24.2% for males and 46.5% for females.  
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Table 4.4. Survival  analysis of patients’ demographic profiles, clinicopathological 

characteristics, and genes’ hypermethylation status 

 

Characteristics Mean of overall survival  Log rank (Mantel 

Cox) test 

Estimate 95% confidence 

interval (CI) 

X
2
 p value 

Lower 

bound 

Upper 

bound 

Ethnic Malay 

Chinese 

Indian 

Overall 

33.8 

38.2 

36.9 

38.1 

8.7 

15.6 

24.4 

27.1 

58.8 

60.7 

49.4 

49.1 

0.188 0.911 

Age 20-39 

40-59 

60-79 

> 80 

Overall 

43.7 

35.4 

32.7 

34.0 

38.1 

6.6 

21.0 

17.8 

0.0 

27.1 

80.7 

49.8 

47.6 

68.6 

49.1 

0.466 0.926 

Sex Male 

Female 

Overall 

24.2 

46.5 

38.1 

6.4 

7.4 

5.6 

36.8 

61.2 

49.1 

3.636 *0.050 

Habits No habit 

Betel quid 

Smoke 

Alcohol 

Overall 

32.1 

30.9 

76.0 

36.6 

38.1 

16.0 

16.8 

60.8 

19.2 

27.1 

48.3 

44.8. 

91.2 

54.0 

49.1 

2.715 0.438 

Tumour sites Buccal 

mucosa 

Gum 

Tongue 

Lip 

Overall 

29.2 

 

61.5 

38.1 

24.0 

38.1 

14.7 

32.6 

23.6 

24.0 

27.1 

43.7 

90.4 

52.6 

23.0 

49.1 

3.390 0.335 

Pathological 

stages 

No Stage 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

Overall 

14.0 

46.3 

28.0 

52.2 

36.9 

38.1 

14.0 

22.6 

5.8 

16.9 

22.5 

27.1 

14.0 

69.9 

50.2 

87.4 

51.2 

49.1 

1.411 0.842 

Invasive 

stages 

Nil 

Non cohesive 

Cohesive 

Overall 

23.3 

38.2 

45.8 

38.1 

6.21 

24.9 

21.9 

27.1 

40.5 

51.4 

69.7 

49.1 

1.604 0.448 
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Table 4.4; continued 

Characteristics Mean of overall survival  Log rank (Mantel 

Cox) test 

Estimate 95% confidence 

interval (CI) 

X
2
 p value 

Lower 

bound 

Upper 

bound 

Tumour 

grading 

Well 

differentiated 

Moderate 

differentiated 

Poor 

differentiated 

Overall 

 

33.4 

 

41.2 

 

8.00 

38.1 

 

17.7 

 

26.9 

 

8.0 

27.1 

 

49.0 

 

55.4 

 

8.0 

49.1 

 

2.977 

 

0.226 

p16 Unmethylated 

Methylated 

Overall 

53.7 

33.8 

38.1 

25.21 

22.8 

27. 

82.2 

44.7 

49.1 

1.338 0.247 

DDAH2 Unmethylated 

Methylated 

Overall 

34.1 

36.8 

38.1 

19.6 

24.6 

27.1 

48.5 

49.0 

49.1 

0.365 0.546 

DUSP1 Unmethylated 

Methylated 

Overall 

29.0 

38.8 

38.1 

5.3 

27.2 

27.1 

52.7 

50.6 

49.1 

0.093 0.760 

PIK3R5 Unmethylated 

Methylated 

Overall 

33.5 

38.4 

38.2 

20.6 

26.3 

27.1 

56.4 

50.4 

49.1 

0.094 0.759 

TP 73 Unmethylated 

Methylated 

Overall 

23.0 

37.8 

38.1 

0.0 

26.8 

27.1 

52.1 

48.9 

49.1 

0.006 0.940 

MEF2D Unmethylated 

Methylated 

Overall 

35.7 

38.7 

38.1 

15.1 

26.4 

27.1 

56.4 

51.2 

49.1 

0.235 0.628 

RRM2 Unmethylated 

Methylated 

Overall 

27.4 

39.5 

38.1 

18.3 

26.6 

27.1 

36.5. 

52.4. 

49.1 

0.084 0.772 

CELSR3 Unmethylated 

Methylated 

Overall 

36.4 

37.4 

38.1 

10.7 

25.7 

27.1 

62.1 

49.0 

49.1 

0.090 0.764 

BCL2 Unmethylated 

Methylated 

Overall 

37.7 

37.7 

38.1 

22.9 

21.5 

27.1 

52.5 

54.1 

49.1 

0.001 0.980 

 

*Significant difference was found between sex difference with survival rate (p=0.050) by log rank test.  
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Figure 4.10. 38.1% of overall survival rate in OSCC patients (95% CI=27.1, 49.1) showed in 

Kaplan-Meier curve. 

 

 

 

   

 

 

 

Figure 4.11.1. Relative survival of ethnicity demonstrated in Kaplan-Meier survival curve.  

The curve shows ethnicity have no influence on the patients’ overall survival rate (X
2
=0.188, 

P=0.911). 
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Figure 4.11.2. Relative survival of age demonstrated in Kaplan-Meier survival curve.  The 

curve shows age has no influence on the patients’ overall survival rate (X
2
=0.466, P=0.926). 

 

 

 

 

 

 

 

 

 

Figure 4.11.3. Relative survival of gender demonstrated in Kaplan-Meier survival curve. The 

curve shows gender has influence on patients’ overall survival with 24.2% for male and 46.5% 

for female (X
2
=3.636, p=0.050). 
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Figure 4.11.4. Relative survival of habits demonstrated in Kaplan-Meier survival curve.  The 

curve shows habits have no influence on the patients’ overall survival rate (X
2
=2.715, 

p=0.438). 

 

 

 

 

 

 

 

 

Figure 4.11.5. Relative survival of tumour sites demonstrated in Kaplan-Meier survival curve.  

The curve shows tumour sites have no influence on the patients’ overall survival rate 

(X
2
=3.390, p=0.335). 
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Figure 4.11.6. Relative survival of pathological stages demonstrated in Kaplan-Meier 

survival curve.  The curve shows pathological stages have no influence on the patients’ 

overall survival rate (X
2
=1.411, p=0.842). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.7. Relative survival of invasive front demonstrated in Kaplan-Meier survival 

curve.   The curve shows invasive stages have no influence on the patients’ overall survival 

rate (X
2
=1.604, p=0.448). 
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Figure 4.11.8. Relative survival of tumour grading demonstrated in Kaplan-Meier survival 

curve.  The curve shows tumour grading has no influence on the patients’ overall survival 

rate (X
2
=2.977, p=0.226). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.9. Relative survival of p16 methylation demonstrated in Kaplan-Meier survival 

curve.  The curve shows p16 methylation has no influence on the patients’ overall survival 

rate (X
2
=1.338, p=0.247). 
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Figure 4.11.10. Relative survival of DDAH2 methylation demonstrated in Kaplan-Meier 

survival curve.  The curve DDAH2methylation has no influence on the patients’ overall 

survival rate (X
2
=0.365, p=0.546). 

 

 

 

 

 

     

     

 

Figure 4.11.11. Relative survival of DUSP1 methylation demonstrated in Kaplan-Meier 

survival curve.  The curve shows DUSP1methylation has no influence on the patients’ overall 

survival rate (X
2
=0.093, p=0.760). 
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Figure 4.11.12. Relative survival of CELSR3 methylation demonstrated in Kaplan-Meier 

survival curve.  The curve shows CELSR3 methylation has no influence on the patients’ 

overall survival rate (X
2
=0.090, p=0.764). 

 

 

 

 

 

 

 

 

 

 

  

       

 

Figure 4.11.13. Relative survival of PIK3R5 methylation demonstrated in Kaplan-Meier 

survival curve.  The curve shows PIK3R5 methylation has no influence on the patients’ 

overall survival rate (X
2
=0.094, p=0.759). 

 

             Methylation status of PIK3R5 
 
                     Unmethylated 
                     Methylated 

 

         

 

 

 

        Methylation status of CELSR3 
 
                     Unmethylated 
                     Methylated 

 

         

 

 

 



96 
 

 

          

 

Figure 4.11.14. Relative survival of TP73 methylation demonstrated in Kaplan-Meier 

survival curve.    The curve shows TP73 methylation has no influence on the patients’ overall 

survival rate (X
2
=0.006, p=0.940). 

 

 

 

 

 

 

      

 

Figure 4.11.15. Relative survival of MEF2D methylation demonstrated in Kaplan-Meier 

survival curve.  The curve shows MEF2D methylation has no influence on the patients’ 

overall survival rate (X
2
=0.235, p=0.628). 

 

             Methylation status of  TP73  
 
                     Unmethylated 
                     Methylated 

 

         

 

 

 

        Methylation status of MEF2D 
 
                     Unmethylated 
                     Methylated 

 

         

 

 

 



97 
 

 

  

 

 

 

 

 

 

                         

    

Figure 4.11.16. Relative survival of RRM2 methylation demonstrated in Kaplan-Meier 

survival curve.  The curve shows RRM2 methylation has no influence on the patients’ overall 

survival rate (X
2
=0.084, p=0.772) 

 

 

 

 

 

 

Figure 4.11.17. Relative survival of BCL2 methylation demonstrated in Kaplan-Meier 

survival curve.  The curve shows BCL2 methylation has no influence on the patients’ overall 

survival rate (X
2
=0.001, p=0.980). 
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4.4 Immunohistochemical analysis 

To detect the protein expression levels of DDAH2, DUSP1, MEF2D and RRM2, IHC 

analysis was performed on 4 normal oral mucosa and 40 OSCC tissues. Negative 

immunostaining of OSCC tissue was observed in negative control sections of DDAH2 

(Figure 4.12.1), DUSP1 (Figure 4.12.4), MEF2D (Figure 4.12.7) and RRM2 (Figure 4.12.10). 

All normal mucosa demonstrated positive immunostaining in DDAH2 (Figure 4.12.2), 

DUSP1 (Figure 4.12.5), MEF2D (Figure 4.12.8) and RRM2 (Figure 4.12.11). MEF2D 

demonstrated nuclear immunostaining (Figure 4.12.9), while DDAH2, DUSP1 and RRM2 

showed cytoplasmic immunostaining (Figure 4.12.3, 4.12.6 and 4.12.12) in OSCC tissue. 

 

A low percentage of cases of positive immunostaining was demonstrated in tumour tissues 

for DDAH2 at 30% (12/40), DUSP1 with 27.5% (11/40), MEF2D with  25% (10/40) and 

RRM2 with 22.5% (9/40) (Table 4.5).   
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Figure 4.12.1.  Formalin-fixed paraffin-embedded section of representative Oral Squamous 

Cell Carcinoma tissues was stained with the antibodies against DDAH2.  No staining of was 

observed in the cytoplasm (with red arrow) of the tumour cells of the negative control section 

(40X magnification).  

 

 

 

                                     

Figure 4.12.2.  Formalin-fixed paraffin-embedded section of representative normal squamous 

cells was stained with the antibodies against DDAH2.  Positive immunostaining of DDAH2 

was observed in most of the cytoplasm (with red arrow) of the normal epithelium (40X 

magnification).  
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Figure 4.12.3.  Formalin-fixed paraffin-embedded section of representative Oral Squamous 

Cell Carcinoma tissues was stained with the antibodies against DDAH2.  Positive staining of 

DDAH2 was detected in most of the cytoplasm (with red arrow) of the tumour cells (40X 

magnification). 

 

 

 

                           

 

Figure 4.12.4.  Formalin-fixed paraffin-embedded section of representative Oral Squamous 

Cell Carcinoma tissues was stained with the antibodies against DUSP1. No cytoplasmic 

immunostaining (with red arrow) shows in the tumour cells of the negative control section 

(40X magnification). 
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Figure 4.12.5.  Formalin-fixed paraffin-embedded section of representative normal squamous 

cells was stained with the antibodies against DUSP1.  Weak positive cytoplasmic 

immunostaining (with red arrow) of DUSP1 shows in the normal epithelium (40X 

magnification). 

   

 

 

 

Figure 4.12.6.  Formalin-fixed paraffin-embedded section of representative Oral Squamous 

Cell Carcinoma tissues was stained with the antibodies against DUSP1. Positive DUSP1 

cytoplasmic staining (with red arrow) was detected in the tumour cells (40X magnification) 
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Figure 4.12.7.  Formalin-fixed paraffin-embedded section of representative Oral Squamous 

Cell Carcinoma tissues was stained with the antibodies against MEF2D. Negative MEF2D 

nuclear staining (with red arrow) shows in the tumour cells of the negative control section 

(40X magnification). 

 

  

 

 

          

Figure 4.12.8.  Formalin-fixed paraffin-embedded section of representative normal squamous 

cells was stained with the antibodies against MEF2D. Positive MEF2D nuclear staining (with 

red arrow) shows in the normal epithelium (40X magnification). 
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Figure 4.12.9.  Formalin-fixed paraffin-embedded section of representative Oral Squamous 

Cell Carcinoma tissues was stained with the antibodies against MEF2D. Positive MEF2D 

nuclear staining (with red arrow) was detected in the tumour cells (40X magnification). 

 

 

        

Figure 4.12.10.  Formalin-fixed paraffin-embedded section of representative Oral Squamous 

Cell Carcinoma tissues was stained with the antibodies against RRM2. Negative RRM2 

cytoplasmic staining (with red arrow) shows in the tumour cells of the negative control 

section (40X magnification). 
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Figure 4.12.11.  Formalin-fixed paraffin-embedded section of representative normal 

squamous cells was stained with the antibodies against RRM2. Positive RRM2 cytoplasmic 

staining (with red arrow) shows in the normal epithelium (40X magnification). 

 

 

                

Figure 4.12.12.  Formalin-fixed paraffin-embedded section of representative Oral Squamous 

Cell Carcinoma tissues was stained with the antibodies against RRM2. Positive RRM2 

cytoplasmic staining (with red arrow) was detected in the tumour cells (40X magnification). 
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Table 4.5 Status and percentage of immunostaining for DDAH2, DUSP1, MEF2D and 

RRM2  

No. 

Immunostaining status of hypermethylated genes 

 

DDAH2 DUSP1 MEF2D RRM2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

P 

P 

P 

N 

P 

P 

P 

N 

P 

N 

N 

N 

P 

P 

N 

N 

P 

N 

N 

P 

N 

P 

N 

N 

N 

N 

N 

P 

P 

P 

P 

P 

P 

P 

N 

N 

N 

P 

N 

N 

P 

P 

P 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

P 

N 

N 

N 

N 

P 

P 

N 

P 

P 

P 

P 

P 

N 

N 

N 

N 

N 

N 

P 

N 

N 

N 

N 

N 

N 

N 

P 

N 

N 

N 

N 

N 

N 

N 

P 

N 

N 

N 

N 

P 

P 

P 

P 

P 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

P 

N 

N 

N 

N 

N 

P 

N 

P 

N 

 

Percentage, % 

(No of cases) of 

immunostaining 

30  

(n=12) 

27.5 

(n=11) 

25 

(n=10 

22.5 

(n=9) 

 

Indication: 

P = Positive immunostaining 

N = Negative immunostaining 
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4.4.1 Association between gene methylation levels and protein expressions of DDAH2, 

DUSP1, MEF2D and RRM2. 

The Chi-square and Fisher’s exact tests were conducted to investigate the association 

between gene hypermethylations and protein expressions.  The results showed an association 

between gene hypermethylation level with protein expression of DDAH2 (p=0.017), DUSP1 

(p=0.006), MEF2D (p=0.002), and RRM2 (p=0.001). 

 

4.4.2 Correlation between protein expressions of DDAH2, DUSP1, MEF2D and RRM2 

Spearman’s rho test was conducted to correlate protein expressions of DDAH2, DUSP1, 

MEF2D and RRM2. In the results, no correlation was found between protein expression of 

DDAH2 with DUSP1 (p = 0.584, r = 0.081, CI = 95%), DDAH2 with RRM2 (p = 0.88, r = 

0.022, CI = 95%), DUSP1 with MEF2D (p = 0.071, r = 0.263, CI = 95%), DUSP1 with 

RRM2 (p = 0.366, r = 0.133, CI = 95%) and MEF2D with RRM2 (p = 0.823, r = -0.033, CI = 

95%).  However, there was a significant correlation of protein expression found between 

DDAH2 and MEF2D (p = 0.008, r = 0.378, CI = 95%), where DDAH2 revealed a weak 

positive correlation with MEF2D (Appendix F).    

 

4.4.3 Correlation between patients’ age and protein expression of DDAH2, DUSP1, 

MEF2D and RRM2. 

Spearman’s rho test showed no correlation between patients’ age with protein expressions of 

DDAH2 (p = 0.227, r = -0.195, CI = 95%), DUSP1 (p = 0.078, r = 0.282, CI = 95%), and 

MEF2D (p = 0.158, r = -0.228, CI = 95%) (Appendix F).  However, a significant correlation 

was found between a patient’s age with the protein expression of RRM2 (p = 0.015, r = 

0.381, CI = 95%), where RRM2 revealed a weak positive correlation with the patient’s age 

(Appendix F). 
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CHAPTER 5 DISCUSSIONS 

 

The overall goal of this study was to enhance the knowledge of the epigenetic alterations in 

OSCC through genome-wide methylation profiling, especially to verify the established and 

newly found hypermethylated genes as potential clinically useful biomarkers by MSPCR and 

IHC analysis. Correlations between gene hypermethylation and protein expression of 

DDAH2, DUSP1, MEF2D and RRM2 in OSCC were also elucidated. Finally, the potential 

co-founding factors in oral cancer were studied for the prognostic purpose and survival rate. 

 

5.1 Methylation microarray analysis  

The result of methylation microarray analysis demonstrated the demarcation between the 20 

tumour tissues and 3 normal samples using unsupervised hierarchical clustering and PCA 

analysis. It is concordant with those reported elsewhere (Bibikova et al., 2006; Killian et al., 

2012; Nazmul-Hossain et al., 2007).  

 

To the best of my knowledge, this is the first methylation study on Malaysian oral cancer 

patients using the Illumina, Infinium 450K Methylation assay which is also the latest 

generation of methylation microarray.  

 

This approach provided very comprehensive and high throughput data in a genome-wide  

study, covering 99% of RefSeq genes.  More than 450,000 methylation sites, including the 

promoter region of CpG islands and shores per sample at single nucleotide resolution are 

provided by this platform (Bibikova et al., 2011; Cheng et al., 2014; Stott-Miller et al., 2014). 

The recent advances in high-throughput microarray technologies have enabled investigators 

to study site-specific DNA methylation events on a much broader scale (O’Sullivan & 
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Goggins, 2013). Many hypermethylation events in CpG islands near known genes 

transcriptional start sites (which correlated with reduction in gene expression) have been 

identified. These approaches have led to the discovery of hundreds of affected genes 

previously not identified, which are potential prognostic DNA methylation in cancer events 

(Noushmehr et al., 2010; Øster et al., 2011). 

 

To date, the Infinium 450K Methylation microarray is the most attractive, powerful and cost-

effective tool available for generating quantitative DNA methylomes in healthy and diseased 

individuals (Dedeurwaerder et al., 2011). Furthermore, quality control of test reliability of 

DNA microarray conducted recently has made it possible for molecular testing to become an 

important tool (van't Veer & Bernards, 2008).  Using the Infinium 450K methylation 

microarray, the present study compared the genomic DNA hypermethylation of oral cancer 

screened for 1080 differential sites, which showed the detailed distribution of these 

differential sites, establishing an oral cancer DNA methylation profile. Similar observation 

also reported by Stott-Miller et al. (2014).  Verification of microarray results by MSPCR and 

IHC in the study showed that these results were reliable. This shows that methylation array 

analysis is very specific and useful in identifying the signature hypermethylated genes and for 

understanding the roles of hypermethylated genes that are involved in oral 

carcinogenesis (Bibikova et al., 2006; Viet & Schmidt, 2010). 

 

Methylation microarrays have been applied on various cancers including breast, colon, 

stomach, pancreatic, oesophageal, lung, bladder, colorectal and ovarian cancers (Viet & 

Schmidt, 2010; Øster et al., 2011). Although numerous studies have been published on DNA 

methylation of HNSCC, very few studies have utilized microarray technology. A panel of 2 
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to 21 known gene-associated oral cancer sources have been employed instead in the DNA 

methylation studies (Viet & Schmidt, 2010).   

 

A considerable number of differentially methylated sites had been reported in most of 

methylation profiling of oral cancer that conducted by other studies (Viet & Schmidt, 2008; 

Towle et al., 2013). Towle et al. (2013) reported methylation profile on 30 biopsies consisting 

of dysplastic, carcinoma in situ, OSCC and adjacent normal biopsies. This methylation 

profile was performed using the Infinium Human Methylation 27K platform which evaluates 

27,578 CpG dinucleotides (corresponding to 14,473 unique genes).  Viet & Schmidt (2008) 

applied the GoldenGate Methylation Array (Illumina) platform which includes 1,505 CpG 

loci selected from 807 cancer-related genes for methylation profile patterns in preoperative 

and post-operative saliva of thirteen OSCC patients. Thus, this partially explains the gene 

dissimilarity in OSCC studies that identified from different microarray platforms and tumour 

subtypes.   

 

The methylation approach of searching for new biomarkers in oral cancer is a promising 

alternative since this epigenetic modification is an early, progressive and cumulative event in 

OSCC. Microarray technologies have been frequently applied to compare the epigenetics 

between normal and tumour tissues for determining biomarkers, and can contribute in 

diagnostic and therapeutic strategies. However, most of the clinical sample selections were 

from different oral tumour sites, and this explains why gene dissimilarities were identified in 

different experiments, as some findings suggest the possibility of gene expressions of SCC 

from different tumour sites which may be distinct from one another (Ginos et al., 2004; 

Warner et al., 2004). 
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In this study, further verification of candidate genes on a separate cohort of healthy and oral 

cancer population by MSPCR and IHC analysis have confirmed the hypermethylation in the 

promoter region of existing biomarkers of p16, TP73, BCL2 and DUSP1 as reported by 

others (Friedrich et al., 2004; Hoque et al., 2005; Kang et al., 2007; Wilcox, Baysal, Gallion, 

Strange, & DeLoia, 2005) and new biomarkers of DDAH2, PIK3R5, CELSR3, MEF2D and 

RRM2. Thus, confirmation of the gene methylation statuses using methylation specific 

technique, MSPCR in p16, DUSP1, DDAH2, CELSR3, PIK3R5, RRM2, MEF2D, TP73 and 

BCL2   genes;  and IHC assay for protein expressions of DDAH2, DUSP1, MEF2D and 

RRM2, provide reliability of the microarray data that show 100% of concordance (Weber et 

al., 2005). Therefore, by using computational and gene-specific validation approaches, we 

identified that DUSP1, DDAH2, CELSR3, PIK3R5, RRM2 and MEF2D are the potential 

epigenetic biomarkers for oral cancer. 

 

5.2 Partek Genomic Suite assay 

Data obtained from Illumina’s Genome Studio software were further analysed and integrated 

using Partek Genomic Suite software. A separate heat-map hierarchical clustering analysis 

was performed on normal (n=3) and tumour tissues (n=20).  The data set was clustered using 

a standard hierarchical method with the Pearson’s correlation to determine the distance 

function (Kron et al., 2009). The cluster set of normal and tumour samples (stage 1, 2, 3 and 

4) clearly segregated the normal from tumour samples (Figure 3). However, there was no 

clear separation between the clustering patterns in the four different pathological stages.  This 

may be due to the number of samples per pathological stage, as these were small in sample 

size in this study. 
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Signature candidate genes of p16, DUSP1, DDAH2, PIK3R5, CELSR3, BCL2, RRM2 and 

MEF2D were selected based on the p < 0.001, methylation fold change and their biological 

functions. In addition, Genomic Suite Visualization demonstrated the selected significant 

enrichment differences in p16, DDAH2, DUSP1, PIKC3R5, CELSR3 and BCL2 genes as 

their selected probe regions were further validated for microarray data validation using 

MSPCR and IHC assays. 

 

Genes that were differentially hypermethylated in their promoter regions between tumour and 

normal samples by at least 2 fold changes and FDR value less than 0.05 (Kron et al., 2009) 

were further mapped to the GeneGo, Metacore
TM

 for pathway analysis. MED2F and RRM2 

genes were further selected after pathway analysis for microarray data verification with 

MSPCR and IHC assays. 

 

5.3 Methylation-specific polymerase chain reaction analysis 

DNA methylation plays an essential role in maintaining cellular function, although 

methylation aberrations may lead to carcinogenesis.  Thus, several methods have been 

developed recently to analyse gene methylation status in human cells, depending on their 

detection strengths and weaknesses (O’Sullivan & Goggins, 2013). One of the methods is the 

MSPCR which applies specific designed methylated and unmethylated primers for detecting 

the methylation level (Herman et al., 1996).  It can be applied for distinguishing methylated 

from unmethylated cytosine residues. As few as 1 to 10 tumour cells among 10
4
 normal cells 

in clinical samples can be detected (Cottrell & Laird, 2003).  It is a sensitive but not 

quantitative technique for the methylation level (Herman et al., 1996; Towle & Garnis, 2012). 
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The methylation frequency of promoter regions of some important genes, such as p16 and 

TP73 is high in OSCC and has also been well documented in other cancer studies (Sharma et 

al., 2007; Towle & Garnis, 2012; Jha et al., 2012). The variation of gene methylation 

frequencies in individual studies may be due to the different geographical origin, which 

suggests population differences (Jha et al., 2012), because similar results have been observed 

in a study of genetic alteration in mutations. In fact, frequency variation of gene 

hypermethylation can also be due to cancer heterogeneity in promoter methylation, such 

methylation alterations were generally not correlated with gene expression (Aryee et al., 

2013). 

  

Tumour suppressor gene, p16 (chromosome 9p21.3) is a cell cycle regulator involved in the 

inhibition of checkpoint G1 phase progression in normal cells. The loss of p16 expression is 

usually connected to homozygote deletion, loss of heterozygosity, mutations and 

methylation. Apparently, promoter hypermethylation of p16 gene in CpG islands silences its 

transcription and represses gene expression act as another alternative pathway in many 

cancers. In this study, the p16 gene revealed that the 

promoter CpG island hypermethylation is associated with transcriptional silencing in OSCC, 

as indicated  by many cancers including cervical (Jha et al., 2012), oesophagus (Kuwano et 

al., 2005), head and neck (Herman et al., 1995), lung (An et al., 2002), colorectal (Xu et al., 

2004), breast (Sharma et al., 2007) and oral cavity (Cao et al., 2009; Dong et al., 2012; Pérez-

Sayáns et al., 2011; Šupi et al., 2009; Towle & Garnis, 2012). These studies and the data here 

firmly demonstrate that the promoter hypermethylation is a frequent mode of gene silencing 

and p16 is one of the most frequently altered genes in most of the cancers. 

 

http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000147889
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Dimethylarginine dimethylaminohydrolase 2 (DDAH2) (chromosome 6p21.3) encodes an 

enzyme that is involved in nitric oxide (NO) generation by regulating cellular concentrations 

of methyl arginine, which in turn inhibits nitric oxide synthase (NOS) activity in normal cells 

(Leiper & Nandi, 2011). NO is involved in vital cell processes of vasodilation, respiration, 

cell migration, immune response and apoptosis. However, its dysregulation has been 

implicated in many pathophysiological conditions such as chronic disease and cancer 

(Hasegawa et al., 2006; Abhary et al., 2010; Kim et al., 2010; Korde et al., 2012), including 

the OSCC cases in this study.  This is in contrast to the recent report by Kim et al. (2010) 

who showed that the DDAH2 gene expression was up-regulated in ovarian carcinoma. In this 

study, the DDAH2 gene was significantly hypermethylated in the promoter of CpG islands. 

This indicates that the novel gene, DDAH2 might play a putative role in OSCC 

carcinogenesis. 

Dual Specificity phosphatase-like 1 (DUSP1) (chromosome 5q35.1) encodes for dual 

specificity protein phosphatase enzyme. It is an emerging subclass of the protein tyrosine 

phosphatase gene superfamily, a heterogeneous group of protein phosphatases that can 

dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues. It acts 

as an activator in the MAPK signalling  pathway, to dephosphorylate mitogen-activated 

protein  kinase (MAPK) on both 'Thr-183' and 'Tyr-185' which are actively involved in 

protein modification, signal transduction and oxidative stress in normal cells (Keshet & Seger, 

2010). In addition, DUSP1 is controlled by p53 during the cellular response to oxidative 

stress.  It may play an important role in the human cellular response to environmental stress 

as well as in the negative regulation of cellular proliferation. In addition, it is also involved in 

angiogenesis, invasion and metastasis of non-small cell lung cancer (Keyse, 2008). High 

level of DUSP1 promoter hypermethylation was demonstrated in the tumour samples as 

reported by other studies including prostate, hepatocellular and non small cell lung 

http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000120129
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carcinomas (Rauhala et al., 2005; Calvisi et al., 2008; Keyse, 2008; Moncho-Amor et al., 

2011). 

 

Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) (chromosome 3p21.31), 

belongs to a flamingo subfamily, part of the cadherin superfamily, but it does not interact 

with catenins. CELSR3 is a member of cell contact-mediated communication, with cadherin 

domains acting as homophilic binding regions and EGF-like domains involved in cell 

adhesion and receptor-ligand interactions. CELSR3 is crucial in controlling neural 

development which develops and maintains individual plastic changes throughout life  by 

regulating planar cell polarity (PCP) through interactions with PCP proteins in WNT/PCP 

signalling  pathway (Tissir et al., 2005; Feng et al., 2012). WNT/PCP signalling pathway is 

apparently implicated in embryogenesis and carcinogenesis, where aberrant activation of the 

WNT/PCP signalling pathway leads to malignancy through abnormal tissue polarity, invasion, 

and metastasis. Its’ up-regulation in pancreatic cancer could be provided as a potential 

druggable target since its protein is located at the plasma membrane and has intriguing 

capabilities in WNT/PCP signalling pathway (Katoh, 2005). In addition, the dysregulation of 

DNA methylation has been reported recently in various cancer types including renal, bladder, 

hepatic and pancreatic carcinomas (Erkan et al., 2010; Morris et al., 2010; Jeong et al., 2011; 

Shen et al., 2012).  Erkan et al. (2010) group found that in pancreatic and hepatic carcinoma 

CELSR3 was identified as a hypermethylated marker as reported in my finding.   Moreover, 

Katoh et al. (2005) demonstrated that CELSR3 expression was reduced in adult brain 

tumours, which showed that its gene expression had undergone inactivation effect. Thus, this 

study predicts that hypermethylation mechanism has reduced this gene expression in OSCC 

cases. CELSR3 hypermethylation status in this finding suggests that it may be involved in 

oral carcinogenesis. Together, the data suggest an important role for CELSR3 in tumour cells 
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that warrants further investigation in the study. In the study, CELSR3 hypermethylation level 

was 87.5%, whereas 15% of CELSR3 hypermethylation activity in renal cell carcinoma 

(Morris et al., 2010).  This controversy may be due to 1) the specific patterns of 

hypermethylation are indicative of specific cancer types and 2) the high specificity of primers 

design has targeted the gene promoter region. To the best of my knowledge, this is the first 

time CELSR3 is being investigated in OSCC cases. Thus, CELSR3 is a novel gene involved 

in epigenetic inactivation, which has not been reported elsewhere in OSCC. 

 

Phosphoinositide-3-kinase, regulatory subunit 5 (PIK3R5), is also known as p101 

(chromosome 17p13.1).  Its hypermethylation level was found significant in the OSCC of this 

study, as reported in breast cancer (Rodenhiser et al., 2008), ovarian cancer (Dai, 2011) and 

non-small lung cancer (Lee et al., 2013; Lokk et al., 2012). Rodenhiser et al. (2008) reported 

that PIK3R5 hypermethylation is involved in the canonical pathway of ERK/MAPK 

signalling, B-cell receptor signalling, Integrin signalling and Huntington's disease signalling.  

Dai demonstrated the involvement of PIK3R5 promoter hypermethylation in AKT/mTOR 

pathway signalling pathway that leads to carcinogenesis in ovarian cancer (Dai, 2011). 

Meanwhile, Lee et al. (2013) found that PIK3R5 is one of the members of vascular 

endothelial growth factor (VEGF) signalling pathway that may influence an angiogenesis-

dependent biological pathway, which is a critical component of carcinogenesis of non-small 

cell lung cancer. Lokk et al. (2012) revealed that patients with a high PIK3R5 

methylation level had better survival rate than those with medium level. Based on my present 

knowledge during this study, this is the first report on the PIK3R5 that may act as a candidate 

gene that leads to OSCC carcinogenesis. 

 



116 
 

Ribonucleotide reductase small subunit M2 (RRM2) (chromosome 2p25.1) is the main 

component in modulating enzymatic activity of ribonucleotide reductase (RR), which is 

composed of RRM1 and RRM2.  RRM1/RRM2 complex is the major source of 

deoxynucleoside triphosphates (dNTPs) for DNA replication during S phases (Lee et al., 

2003). It is a rate-limiting enzyme in DNA synthesis and thus plays a pivotal role in cell 

growth. Increased RR activity has been shown by increasing DNA synthesis rate to serve the 

proliferative activity of cancer cells. Thus, aberration of the RR is dramatically associated 

with malignant transformation and tumour cell growth (Liu et al., 2007). These important 

roles have made RRM2 to be an attractive target for chemotherapeutic development 

(Tsimberidou et al., 2002).   Methylation of CpG promoter regions of RRM2 was rare, when 

analysed by direct sequencing of bisulphate-modified DNA in primary renal cell carcinoma 

(Morris et al., 2008). However, Hsu et al. (2011) has correlated its overexpression with 

tumour malignancy and progression in the early stages of lung cancer. Rahman et al., also 

observed that RRM2 regulates BCL2 protein stability.  The RRM2 gene suppression leads to 

increased Bcl-2 degradation in head and neck, and lung cancer, where RRM2 represses 

expression of the antiapoptotic protein BCL2 resulting in induction of mitochondria-mediated 

intrinsic apoptosis (Rahman et al., 2013). In addition, Zhang et al. (2009) found that RRM2 

involved in tumour angiogenesis and growth through regulation of the expression of 

antiangiogenic thrombospondin-1 and proangiogenic VEGF. 

 

Myocyte Enhancer Factor 2D (MEF2D) (chromosome 1q22) is a member of the MEF2 

family of transcription factors for DNA binding proteins that activate genes transcription 

involved in muscle and neuronal cell differentiation.  MEF2D is regulated by class II histone 

deacetylases (Nebbioso et al., 2009).  It is a growth factor- and stress-induced gene which 

mediates cellular functions not only in skeletal and cardiac muscle development, but also in 
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neuronal differentiation and survival. It plays diverse roles in the control of cell growth, 

survival and apoptosis via p38 MAPKs signalling in muscle-specific and/or growth factor-

related transcription. It plays a critical role in the regulation of neuronal apoptosis. It has also 

been identified as a candidate oncogene in murine retroviral insertional mutagenesis studies 

(Schwieger et al., 2009). The MEF2 signalling pathways mediate response to MAPK and 

calcium related signals that control survival of neurons and T-lymphocytes; which induce a 

known transforming oncogene, c-jun expression. Prima et al. found that MEF2D signalling 

pathway alteration occurs in acute lymphoblastic leukemia and suggested that 

MEF2D/DAZAP1 and/or DAZAP1/MEF2D contribute to leukemogenesis. They also have 

identified fusion proteins of MEF2D and DAZAP1 as components of novel pathways that 

contribute to human leukemogenesis (Prima et al., 2005). Cortese et al. (2012) revealed that 

MEF2D is a plasma-circulating DNA identified in an independent 38 of the prostate patient 

validation cohort in their epigenetic study. These findings concur with the OSCC cases of this 

study for MEF2D gene aberration. 

 

TP73 gene is located on chromosome 1p36.3.  It is a tumour suppressor, encodes for p73 

protein which has structurally similar to p53 protein within a DNA binding domain and 

oligomerization and transactivation domain.   It participates in the apoptotic response to DNA 

damage. p73 is p53-related protein that can induce apoptosis  in association with cell cycle 

gene, p21 (Zhu et al., 1998). Its aberration is frequently deleted in meningioma (Nakane et al., 

2007), and frequently hypermethylated in B cell lymphomas (Corn et al., 1999), gliomas 

(Watanabe et al., 2002), gastric carcinoma (Ushiku et al., 2007), colorectal carcinoma (Xu et 

al., 2004), cervical cancer (Jha et al., 2012) and oral cancer (Fan, 2004; Shaw, 2006; 

Radhakrishnan et al., 2011).  The high incidence of p73 hypermethylation in various cancers 

has proposed that epigenetic modification of p73 via CpG island hypermethylation represents 
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a critical alternative mechanism for epigenetic silencing of p73, which could have important 

consequences for cell cycle regulation.   

 

The B-cell lymphoma 2 (BCL2) locus is located on chromosome 18q21, encodes an integral 

outer mitochondrial membrane protein that inhibits caspase activity and suppresses apoptosis 

(Youle & Strasser, 2008).  It has been reported frequently silencing in prostate tumour is due 

to low BCL2 promoter hypermethylation and associated with a decrease in its expression. 

Similar finding was also observed in this study. Although methylation levels were 

significantly higher for BCL2 with advanced pathological stages, an inverse correlation with 

mRNA expression was found in BCL2 (Carvalho et al., 2010). BCL2 hypermethylation is 

involved in three TNF-α-mediated apoptosis-relevant pathways, the MAPK pathway, the 

classical NF-kB pathway, and the TNF-α-induced caspase-dependent death signalling 

pathway (Kim et al., 2011). In glioma, BCL2 methylation was correlated both with global 

DNA methylation and another methylation of anti-apoptotic gene BclXL, suggesting that the 

common methylation mechanisms was involved in the apoptosis pathway (Shono et al., 2001). 

Another research conducted on 134 lung cancer by Nagatake et al. (1996) revealed that 28% 

cases of BCL2 promoter hypermethylation were found as the most frequent tumour-specific 

with low hypermethylation in lung cancer. Moreover, the results of this study demonstrated 

that 45% of BCL2 methylation status, which was concordant with low BCL2 

hypermethylation was evident in lung cancer (Nagatake et al., 1996). However, there may be 

another possibility that gene transcriptional modulation was modified by traditional activators 

or repressors, in addition to the gene expression regulation by methylation mechanism 

(Tsunematsu et al., 2009).  This means that BCL2 has low frequency in methylation level 

when compared with other studied genes in OSCC cases. 
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Finally, the data findings here demonstrate that the mechanism of promoter 

hypermethylations is the frequent mode of gene silencing and apparently they are amongst 

the most frequently altered genes in the OSCC cases. 

 

5.4 Significant signalling pathway analysis of hypermethylated genes of MEF2D and 

RRM2 

GeneGo, MetaCore
TM

 analytical suite 4.5 software was applied to identify genes in known 

biological pathways and/or processes that may be deregulated due to altered DNA 

methylation. The software identified the cellular pathways of immune response and DNA 

synthesis emerged as crucial players in the regulation of oral cancer progression in the study.  

One report about signalling pathway of gene expression in the cheek site of Malaysian OSCC 

patients conducted by the DASL Cancer Panel, containing 502 cancer related genes 

demonstrated similar cellular pathways in immune response in T lymphocytes and natural 

killers (Amyza, 2012). Both T lymphocytes and natural killers are important mediators in 

anti-tumour immunity for destructing malignant cells.   

 

This study also highlighted gene enrichment showing aberrant DNA methylation in cancer 

related pathway of apoptosis.  One methylation study of gastric cancer conducted on the same 

microarray platform showed that the dysregulation genes were involved in cancer-related 

pathways of regulation of the inhibitor-κB kinase/nuclear factor-κB cascade, cell 

differentiation, cell cycle arrest, cascade activation and cell proliferation (Cheng et al., 2014). 

However, since the pathway analysis was conducted on a limited set of hypermethylated 

genes selected, caution needs to be taken in interpreting these results. 
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Notably, the two predominant genes in the top significant cellular pathway found to exhibit 

recurring DNA methylation alteration are MEF2D and RRM2.  

 

MEF2D 

MEF2D gene predominantly involves pathways of immune response of function of MEF2 in 

T lymphocytes  and development role of HDAC and calcium/calmodulin-dependent kinase 

(CaMK) in control of skeletal myogenesis.  MEF2D transcription factor plays an important 

role in T cell calcium-induced apoptosis. Several factors regulate MEF2 transcription factors, 

including Map kinases and HDAC enzymes. Association of MEF2 with HDAC4, HDAC5, 

HDAC7 and HDAC9 results in deacetylation of nucleosomal histones surrounding MEF2 

DNA-binding sites with subsequent suppression of MEF2-dependent genes. 

 

In view of the development role of HDAC and CaMK in control of skeletal myogenesis 

pathway, MEF2D is one of the downstream transcription factors of mitogen activated protein 

kinase 1 (BMK1) pathway which can be induced by mitogens and or oncogenic signals that 

promotes cell cycle progression in tumour cells. The activated BMK1 phosphorylates and 

activates transcription factors of MEF2D subsequently regulate oncogenic potential of proto-

oncogenes, -Jun, which participates in proliferation regulation (Kato et al., 2000). 

 

RRM2 

RRM2, the DNA damage repair-related nucleotide metabolism enzyme was predominantly 

activated in pathways of dCTP/dUTP metabolism, dATP/dITP metabolism and ATP/ITP 

metabolism.  RR was a catalyst in the conversion of ribonucleotides to 2'-

deoxyribonucleotides which are the precursors for DNA synthesis and repair. Endogenous 

ribonucleotides and deoxyribonucleotides are essential metabolites that play a critical role in 

http://portal.genego.com:8100/cgi/imagemap.cgi?id=541
http://portal.genego.com:8100/cgi/imagemap.cgi?id=541
http://portal.genego.com:8100/cgi/imagemap.cgi?id=440
http://portal.genego.com:8100/cgi/imagemap.cgi?id=440
http://portal.genego.com:8100/cgi/imagemap.cgi?id=440
http://portal.genego.com:8100/cgi/imagemap.cgi?id=874
http://portal.genego.com:8100/cgi/imagemap.cgi?id=865
http://portal.genego.com:8100/cgi/imagemap.cgi?id=873
http://portal.genego.com:8100/cgi/imagemap.cgi?id=873
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cell function, and determination of their levels is of fundamental importance in understanding 

key cellular processes involved in energy metabolism and molecular as well as biochemical 

signalling pathways. An increase of RRs activity was observed in transforming tumour cells 

as the DNA synthesis rate has increased to serve the proliferative activities of tumour cells. 

Thus, aberration of the RR is dramatically associated with malignant transformation and 

tumour cell growth (Liu et al., 2007). These important facts have made the RRM2 gene to 

become an attractive target for chemotherapeutic treatment. 

 

5.5. Survival analysis 

In the study, Kaplan-Meier survival analysis was performed to determine the differences of 

patients’ demographic profiles, clinicopathological characteristics, and methylation of 

selected genes in a 5-year overall survival rate.  A low 5-year overall survival rate of 38.1% 

was reported in this study and 18.2% in another study that conducted in Thailand 

(Kruaysawat et al., 2010). However, no correlation was found between survival rate and 

methylation status except for gender. Susceptibility of epigenetic alterations may be 

influenced by gender, even though the involved mechanisms are not fully understood.   

 

In this study, gender had a significant impact on the survival rate with 24.2% for males and 

46.5% for females. Therefore, in terms of gender, females appeared to have a better 

prognostic outcome rather than males in the OSCC survival rate of this finding. It seems 

controversial as one report has lower survival rates in females, but that was attributed to delay 

in seeking medical treatments (Leite & Koifman, 1998).  In addition, Hsiung et al. (2007) 

also observed that the female gender has been associated with low level of global 

hypomethylation in HNSCC.  There is a controversy in reporting no correlation between 

prognoses with age (Al-Rajhi et al., 2000), however, one study has shown worse prognosis in 
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older patients (Ribeiro et al., 2003).  Survival of OSCC patients following surgical therapy 

has been reported to be affected by tumour size, nodal metastasis, staging, and differentiation 

(Lo, Kao, Chi, Wong, & Chang, 2003). In addition, Arduino et al. (2008) reported a 

statistically significant relationship between survival rates with histological grading, tumour 

size, nodal metastasis, staging, and differentiation as well as loco-regional involvement, and 

emphasize on the importance of tumour differentiation to predict the OSCC clinical outcome. 

However, the correlation between the multiple survival affecting factors of patient- and or 

tumour-related factors for predicting the well survival rate of cancer therapy still remains a 

challenge (Glare, 2005; Massano et al., 2006). The OSCC prognosis is still considered poor 

for the time being and it would be beneficial to rule out the molecular markers that are 

involved in self-sufficiency of growth signals, insensitivity to growth-inhibitor signals, 

evasion of apoptosis, unlimited replicative potential, ability to promote sustained 

angiogenesis, and capacity to invade surrounding tissue and metastasize (Hanahan & 

Weinberg, 2011)  in order to find out the absolute and reliable prognostic markers for better 

cancer treatment. 

 

5.6 Immunohistochemical analysis  

IHC has become a standard assay in surgical pathology and research for protein expression, 

even though manual interpretation of IHC is a very subjective, time-consuming and variable 

process, with an inherent intra-observer and inter-observer variability (Cregger et al., 2006). 

Thus, automated image analysis approaches offer an opportunity for developing rapid, 

uniform indicators of IHC staining (Rexhepaj et al., 2008). Moreover, Turbin et al. (2008) 

and Rexhepaj et al. (2008) reported that automated quantitation immunostaining results do 

not differ from scoring of pathologist.  
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Protein expressions of the selected gene products were examined by IHC. The protein 

expression was 100% in normal mucosa tissues in this study. In the tumour tissues, the IHC 

results revealed a low immunostaining frequency in the signature candidates of 

hypermethylated genes of DDAH2, DUSP1, MEF2D and RRM2. De Bruin et al. (2007) 

revealed that DDAH2 is involved in apoptosis regulation showed low expression in low-

apoptotic subset of rectal tumour. In addition, Zhou et al. (2009) found that  the expression of 

DUSP1 gradually decreased in normal ovarian tissues, benign tumour, borderline tumour and 

primary ovarian carcinoma respectively; and its expression level in ovarian carcinoma tissues 

of the late pathological stage (III/IV) patients was significantly lower than the early stage (I/II) 

patients (Zhou, Gan, & Zhang, 2009). Moreover, Li et al. (2011) found that MEF2D 

expression is related to all of clinical stages with invasion and metastatic involvements of 

nasopharyngeal carcinoma. Furthermore, Xie et al. (2012) showed that RRM2 protein 

expression does not show any prognostic value even though it was associated with pancreatic 

adenocarcinoma. 

 

These facts reflected that protein expressions of DDAH2, DUSP1, MEF2D and RRM2 are 

observed previously in other cancers rather than in OSCC, thus these four protein expressions 

are actually newly explored in these OSCC cases, which may be used as biomarkers for 

OSCC identification in the near future. 
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5.6.1 Association of protein expression of DDAH2, DUSP1, MEF2D and RRM2  

In addition, the increase of each protein expression of the DDAH2, DUSP1, MEF2D and 

RRM2 genes do not significantly have coexpression to each other, except MEF2D with 

DDAH2 (P=0.008, r=0.378, CI = 95%) which means that the four proteins are most likely not 

expressed together in the OSCC cases except for MEF2D, where MEF2D interact 

significantly together with DDAH2. This was similar to the findings of coexpression of other 

genes in the breast cancer study (Van den Akker et al., 2011).  Further investigation needs to 

be conducted for further confirmation with larger sample size. 

 

5.7 Association of gene hypermethylation levels with protein expression of DDAH2, 

DUSP1, MEF2D and RRM2  

In this study, there was an association observed between gene hypermethylation levels and 

protein expression of DDAH2 (P=0.017), DUSP1 (P=0.006), MEF2D (P=0.002), and RRM2 

(P=0.001).  A few other studies showed gene promoter hypermethylation was significantly 

associated with decreased protein expression in gastric cancer (Guan et al., 2013), 

choriocarcinoma (Feng et al., 2004) and ovarian cancer (Yang et al., 2012). Similar finding 

was reported in the present study. Furthermore, Hsu et al. (2005) also reported that an 

association between hMLH1 and hMLH2 hypermethylation status with protein expressions 

was observed in their study of 105 non-smoking female patients with lung cancer.   The 

observed inverse correlations of the hypermethylation level of DDAH2, DUSP1, MEF2D and 

RRM2 with their protein expression were evident in OSCC samples of this study, suggesting 

that the protein expressions of DDAH2, DUSP1, MEF2D and RRM2 were silenced by 

promoter hypermethylation in OSCC, as promoter hypermethylation is an epigenetic change 

which acts as one of the pathways that leads to oral carcinogenesis (Ha & Califano, 2006).   
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No inverse relationship was observed between methylation status with expression level in 

another study (Xu et al., 2004).  This means no statistically significant association between 

the gene hypermethylation levels with protein expression and this might be attributed to small 

tumour sample size and also samples selection. This may also be explained by the 

multiplicity of molecular mechanisms regulating gene expression by many other mechanisms 

including histone modifications as these modifications are known to impact the transcription 

regulation (Deaton & Bird, 2011).  

 

Previous reports of similar findings about DUSP1 hypermethylation in hepatocellular 

carcinoma have been reported by Calvisi et al. (2008). Itoi et al. (2007) proposed poor 

prognostic value of high levels of RRM2 gene expression in pancreatic carcinoma. Li et al. 

(2012) found that the BZLF1 promoter can be transcribed by the transcription factor of 

MEF2D in EBV-positive tumours.  In a few studies, it was reported that the gene promoter 

hypermethylation was significantly associated with decreased protein expression in various 

carcinomas (Yang et al., 2012; Guan et al., 2013) as was found this study.  To the best of my 

knowledge, presently there are no other OSCC studies conducted on the association of 

DDAH2, MEF2D and RRM2 hypermethylation with their protein expressions.  

 

 

 

 

 

 

 



126 
 

5.8 Demographic profiles, clinicopathological characteristics, gene hypermethylations 

and protein expressions of OSCC 

Patients’ demographic and clinicopathological data included in this  study were age, gender, 

alcohol drinking and tobacco smoking and betel quid chewing habits, tumour sites, 

pathological stages, and tumour grading.  

 

In MSPCR for methylation analysis, there are statistically significant associations found 

between p16 and TP73 hypermethylation with a patient’s tumour site (p=0.001 and 0.006), 

CELSR3 and TP73 hypermethylation with patients’ invasive stages (p=0.008 and 0.025).  

 

A study conducted by Maruya et al. (2004) found no significant correlation between 

methylation status of an individual gene and clinicopathological parameters including age, 

stage, and histological differentiation, except that methylation of P16 may be associated with 

the pathological stage during tumour progression.  Radhakrishnan et al. (2011) reported that 

an absence or reduced expression of p73 in all cases clinically classified as stage IV in 

primary oral cancer. Lack of correlation of molecular level of hypermethylated genes with 

pathological stages may be due to small sample size (Woolgar, 2006) and OSCC 

heterogeneity (Bhargava et al., 2010).  OSCC usually exhibits a heterogeneous cell 

population with difference in degree of differentiation. Presence or absence of metastases in 

cancer may be correlated with survival; therefore a pathological stage of tumour has 

predicted to be the outcome of tumour for many years, with varying prognostic values 

(Bhargava et al., 2010). 

 

A significant correlation between of hypermethylation of TP73 promoter and both age groups 

(age ≤ 45 years and age > 45 years) was observed in a study amongst passive smokers of 
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cervical cancer patients (Jha et al., 2012). In addition, down regulation of TP73 expression by 

its promoter hypermethylation leads to cervical carcinogenesis (Jha et al., 2012). These 

previous studies support that the TP73 hypermethylation is significant in pathogenesis of 

cancers including the OSCC cases in this study. CELSR3 hypermethylation has been reported 

recently in renal, bladder, hepatic and pancreatic carcinomas (Erkan et al., 2010; Morris et al., 

2010; Jeong et al., 2011; Shen et al., 2012). This data suggests an important role for CELSR3 

in tumour cells that warrants further investigation in this study as a potential prognosticator. 

Furthermore, CELSR3 hypermethylation is scarcely reported by others and is therefore 

explored in this finding. The identification of additional reliable prognosticators in OSCC has 

been hampered by factors such as a relatively small sample size; heterogeneity of cancer, and 

lastly lack of standard clinical management and laboratory protocols combined with 

inconsistent data reporting and records (Woolgar, 2006). 

 

From the aforementioned studies, it can be concluded that p16, CELSR3 and TP73 promoter 

methylation occur frequently in various cancers including OSCC.  The association between 

p16 and TP73 hypermethylation patterns in tumour sites, and CELSR3 and TP73 

hypermethylation with patients’ invasive stages may become a valuable tool for early oral 

cancer detection in the study.  

 

In the IHC analysis, a significant correlation between patients’ age and the hypermethylated 

genes of RRM2 (p=0.015, r=0.381, CI = 95%) was observed while there is no correlation 

with DUSP1 (p=0.078, r =0.282, CI = 95%). However, there appears to be a tendency 

towards such correlation for DUSP1.  In view of this, researchers have proposed that 

epigenetic factors may also be central to controlling changes in gene expression and genomic 

instability during aging (Issa, 2012; Oberdoerffer et al., 2008) and age-related disease such as 
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cancer (Berdasco & Esteller, 2012).  This means that the RRM2 may be related to the ageing 

process along with oral carcinogenesis. It may play an important role in aging (Oberdoerffer 

et al., 2008) and aging-related disease (Berdasco & Esteller, 2012; van Otterdijk et al., 2013). 

This also indicates that RRM2 genes will be of poor prognostic value as OSCC patient’s age 

increase. 
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5.9 Limitations of the study 

There were some unavoidable limitations in this study. 

While microarrays are designed to give a genome-wide view of the cell on an unprecedented 

scale, this technology still poses some limitations outside certain research settings which 

inhibit its broad usage. One of the main drawbacks is costing. Each array, depending on the 

platform, may cost hundreds to thousands of dollars per sample (Kuo et al., 2004).  On the 

other hand, genome-wide methylation platforms have lagged behind because of an inherent 

loss of DNA sequences during the bisulfite conversion. This bisulfite conversion can lead to 

loss of specificity during the hybridization process. Another challenge is the efficiency of 

handling and analysing large volumes of data generated by microarray approaches. However, 

there are sophisticated computational methods that have been increasingly developed to be 

amenable to large data sets generated from microarray experiments (Kirmizis & Farnham, 

2004). As key disease pathways are identified, custom arrays containing relevant subsets of 

genes may eventually be integrated into clinical settings for drug therapeutic usage. 

 

The bisulphite modification-PCR amplification approaches such as semiquantitative MSPCR 

mainly relies on a methylation change at the PCR primer binding. As such, these tests are 

prone to false-negative results, where the gene promoters might have been methylated, but 

not at the primer binding site. However, this problem can be solved as the selected primers in 

the study were designed based on the most methylated loci found in RefSeq genes. 

 

The methylation information available in oral cancer is limited if compared with other 

neoplasms. Nevertheless, studies have established that aberrant hypermethylation is an 

important event in the carcinogenesis of OSCC. Published studies have made it possible to 

establish that transcriptional gene silencing is due to the methylation state of its promoter 
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regions. However, many newly explored methylated genes in this finding need to be 

validated by functional assays such as cell proliferation, migration and invasive assays. This 

can be done by developing in vitro models of cell cultures in the future in order to consolidate 

the facts of epigenetic aberrations in this study. 
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CHAPTER 6    CONCLUSIONS AND RECOMMENDATIONS 

6.1  Conclusions 

The primary objective of this study was to investigate methylation profiling of OSCC using 

DNA microarray.  The microarray results have revealed that there was a difference in gene 

methylation levels of oral cancer tissues from normal tissues. This study has also managed to 

compile a list of differential hypermethylated genes in OSCC using Illumina’s Genome 

Studio software analysis and Partek Genomic Suite analysis. Finally, significant candidate 

genes involved in oral cancer and pathway network that was generated by GeneGo 

Metacore
TM

 software were warranted for microarray data validation. Two cellular pathways 

of immune response and DNA synthesis pathways were identified as major players involved 

in oral carcinogenesis of this study. 

 

The second objective of this study was to explore hypermethylated genes using MSPCR 

assay that may be used to detect the epigenetic alterations associated with OSCC.  The 

present study suggests that besides the established hypermethylated genes of P16, and TP73, 

other genes such as DDAH2, DUSP1, CELSR3, Pikc3r5, MEF2D and RRM2 

hypermethylation may be important and need further study. 

 

The third objective of this study was to determine protein expression of hypermethylated 

genes using immunohistochemical staining, and to correlate the specific genes methylation 

level with its protein expression in OSCC. DDAH2, DUSP1, MEF2D and RRM2 

demonstrated low positive immunostaining in OSCC by IHC assay. These four proteins most 

likely do not interact amongst themselves except MEF2D, which may coexpress with 

DDAH2 in cancer signalling networks.  

 



132 
 

The fourth objective of this study was to correlate the protein expressions with genes 

methylation levels in OSCC. The inverse relations of DDAH2, DUSP1, MEF2D and RRM2 

hypermethylations with their protein expressions were observed in the present study.  Protein 

expressions of DDAH2, DUSP1, MEF2D and RRM2 actually are newly explored in this 

study and have not been reported before. These proteins may be used as novel biomarkers for 

OSCC identification in the near future. 

 

The last objective of this study was to correlate the DNA hypermethylation patterns with the 

patients’ demographic and clinicopathological data of tumour site, pathological stage, 

invasive stage and histological grading, and survival rate for predicting OSCC prognosis. The 

molecular prognostic study of protein expression with age was also investigated in OSCC. 

The results showed that the association of p16 and TP73 hypermethylation patterns in tumour 

site, and CELSR3 and TP73 hypermethylation with invasive stage may become valuable 

prognostic tools for OSCC.  In addition, gender is the only demographic factor that 

significantly associated with an OSCC patient’s overall survival rate. Furthermore, the 

correlation between RRM2 protein expression with patients’ age was shown to be a poor 

prognosis of OSCC as patients’ age increased. 

 

In summary, comprehensive promoter hypermethylation biomarkers screening approach with 

the DNA methylation assay, and data validation by MSPCR assay for p16, DUSP1, DDAH2, 

CELSR3, PIK3R5, TP73, MEF2D and RRM2, and IHC analysis for DUSP1, DDAH2, 

MEF2D and RRM2 genes, have managed to identify potential signature candidates especially 

DUSP1, DDAH2, CELSR3, PIK3R5, RRM2 and MEF2D in OSCC identification and 

prognostication purposes.  
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Protein expressions of DUSP1, DDAH2, MEF2D and RRM2 genes were reduced by their 

promoter hypermethylation in OSCC, as promoter hypermethylation is the predominant 

mechanism in DUSP1, DDAH2, MEF2D and RRM2 deregulations, which seems to play an 

important role in oral carcinogenesis.  The inverse correlation between gene 

hypermethylations and protein expressions in the study suggests that the hypermethylation 

mechanism is an important event in silencing expressions of  DDAH2, DUSP1, MEF2D and 

RRM2 in the OSCC cases.  Furthermore, protein expressions of DDAH2, DUSP1, MEF2D 

and RRM2 are newly explored in the OSCC cases, which may encourage deeper molecular 

understanding of OSCC progression.  The coexpression of MEF2D with DDAH2 may 

demonstrate the involvement of these genes in a cellular pathway network. Hence, these 

biomarkers can become a helpful tool for OSCC prognostication and diagnosis, as some other 

genes were reported in breast cancer (Van den Akker et al., 2011). 

 

Last but not least, it was observed that gender has a clear influence on the patients’ survival 

rate in OSCC prognosis. Susceptibility of epigenetic alterations may be influenced by gender, 

even though the involved mechanisms are not fully understood. In addition, the association 

between hypermethylation of p16 and TP73 with tumour site, and TP73 and CELSR3 with 

invasive stage demonstrates OSCC prognosis in the study. Moreover, integrated available 

clinical data for discovering novel prognostic markers where DDAH2, CELSR3 and RRM2 

are involved, the aging-related gene may indicate poor prognosis of OSCC as patient’s age 

increase.  

 

In conclusion, the hypothesis set in my study was true that there is a difference in methylation 

profiling expressions, hypermethylation levels and protein expressions between normal 

subjects and OSCC patients. 
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6.2 Recommendations  

Further work will be aimed at elucidating the functional roles in cell proliferation, 

immigration and invasion of DUSP1, DDAH2, MEF2D and RRM2 by using in-vitro models. 

Treatment with a demethylation drug, 5-aza-2'-deoxycytidine in OSCC cell lines will 

restore   gene expression. The differential expression of DUSP1, DDAH2, MEF2D and 

RRM2 in OSCC may have potential application as a prognostic indicator and planning for 

patient treatment.  In addition, improvement of therapeutic immunotherapies may become a 

reality in the future by exploring genes involved in immune response of these OSCC cases, 

since immunotherapy has become one of the most promising new cancer treatment.   

 

Direct comparison of OSCC to normal tissues by larger clinical samples in microarray assay 

will allow research to identify more hypermethylated-based biomarkers in OSCC in future.  

This will provide critical insight into the differences found in oral malignancy and may also 

provide a new strategy in cancer prevention and develop a molecular targeted therapy.  

 

The rationale for epigenetic molecular-targeted prevention of oral cancer is the use of 

biomarkers to detect the cancer risk of pre-malignancy and malignancy. In this sense, an 

understanding of the biology of oral carcinogenesis will yield important advances for 

detecting high-risk cancer patients, monitoring preventive interventions, and assessing cancer 

risk and pharmacogenomics. In addition, novel chemopreventive agents based on epigenetic 

molecular mechanisms and targets against oral cancers will be derived from studies using 

appropriate animal carcinogenesis models. New approaches such as molecular-targeted 

agents and agent combinations in high-risk individuals are undoubtedly needed to reduce the 

devastating worldwide consequences of oral malignancy (Tanaka et al., 2011). 
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Early detection and diagnosis of oral cancer can be done by identifying reliable biomarkers 

which can then reduce patient morbidity and mortality. Conventional histopathological 

studies provide a subjective diagnosis due to human limitations, thus, new molecular 

diagnostic tools aid in identifying marginal surgical tissue clearance and lymph node 

metastases. The use of additional reliable biomarkers besides the existing/established 

immunohistochemical assay of p53 and p16 will act as an adjunct to routine histopathological 

examination in order to enhance the prognostication and cancer treatment management. 

 

Due to the molecular and cellular heterogeneity of oral cancers, and the subsequent 

variability in biological behaviours, a single pathway or biomarker may have inherent 

limitations in terms of predicting cancer outcome. Thus, coexpression networks of several 

genes within linked pathways, have striking implications at a time where there is significant 

emphasis on developing cancer and targeted therapies (Van den Akker et al., 2011). It will 

make less sense if the only target is a single gene that can be functionally bypassed by 

deregulating other factors in the same signalling cascade. It is envisaged that clinical 

utilization of DNA methylation as a biomarker would be based on a panel of genes associated 

with oral cancer. The identification of CpG island hypermethylation in the promoter region of 

selected genes could provide a reliable biomarker for establishing methylation profiles in 

OSCC. Moreover, it is pertinent to point out the need for the use of such panels of genes as a 

diagnostic/screening tool on noninvasively obtained biological specimens such as serum or 

saliva. Thus, the development of a robust system of diagnosis of prognosis using such panels 

would have significant clinical implications. 

 

Patient survival rates have remained at a disappointingly stable level despite significant 

development in the multimodality treatment of the disease. Therefore, there should be more 
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molecular diagnostic tools to explore other predictive biomarkers to overcome the existing 

limited conventional prognostic factors. More research and development should be done and 

could include a wider use of standardised computerised databases with improved methods for 

the retrieval and exchange of information (Woolgar, 2006).  A reduced reliance on subjective 

interpretation along with a wider use of automated techniques and quantitative data would 

also be beneficial (Woolgar, 2006). Therefore, these suggestions may help clinicians to 

improve prognostic accuracy and conduct appropriate management for oral cancer patients. 
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Appendix A  

 

Protocol of Haematoxylin and Eosin Staining 

 

1. Xylene I ………………………………………………………… 5 mins. 

2. Xylene II  ……………………………………………………….… 4 mins. 

3. Ethanol 100% ………………………………………………………. 3 mins. 

4. Ethanol 95% ………………………………………………………… 3 mins. 

5. Ethanol 70% ………………………………………………………… 3 mins. 

6. Running water ……………………………………………………… 3 mins. 

7. Harris Hematoxylin ………………………………………………. 12  mins. 

8. Running water ……………………………………………………... 3 mins. 

9. Acid Alcohol ………………………………………………………. Count to 10. 

10. Running water ……………………………………………………. 3  mins. 

11. Potassium Acetate ………………………………………………… 4 dips. 

12. Running water ……………………………………………………. 3 mins. 

13. Ethanol 80% ……………………………………………………….. 1 min. 

14. Eosin  ………………………………………………………….. 6 mins. 

15. Ethanol 95% ……………………………………………………….. 4 dips. 

16. Ethanol 95% ……………………………………………………….. 4 dips. 

17. Ethanol 100% (2 changes) ………………………………………… 2 mins. 

18. Xylene (3 changes) ………………………………………………… 3 mins. 

19. Mount in D.P.X 

 

RESULTS : 

Anionic tissue components…………………blue 

Cationic tissue components ………………..red 
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Appendix B  

Primer design criteria: 

1. Primers should be approximately 30bp in length, to ensure specificity 

2. Primer should have a similarly predicted Tm above 50
o
C and did not differ by more 

than 1-2
 o
C. 

3. Primer should contain multiple CT bases, to ensure conversion specificity. 

4. The final base at the 3’ end should be a CT base to ensure amplification of converted 

DNA. 

5. CpG dinucleotides should be avoided in the primer sequence to avoid potential bias 

towards methylated, unmethylated or unconverted template. 

6. The length of amplicon should be no more than 450bp to ensure maximum yield. 

 

 

Appendix C  

Protocol of Immunohistochemical staining: Labelled Streptavidin Biotin (LSAB) 

 

1. Deparaffinize and hydrate to water.  

2. Antigen retrieval with microwave.                                      - 10 mins 

3. Cool down to room temperature 

4. Quenching with Peroxidase Blocking Reagent (3% H2O2)                        - 5 mins 

5. Rinse with TBS 1X3 mins 

6. Incubation with primary antibody                                      - 30 mins 

7. Rinse with TBS 1X3 mins 

8. Incubate with Link: Biotinylated secondary antibody              - 30 mins 

9. Rinse with TBS 2X3mins 

10. Streptavidin Peroxidase complex                                      - 15-30 mins 

11. TBS 1X3 

12. Incubate with DAB working solution     - 10 mins 

13. Washing in running water 

14. Counterstain with Hematoxylin     - 2-5 mins 

15. Washing in running water 

16. Blueing in 2% Sodium Acetate.     - 5 dips 

17. Washing in running water  

18. Dehydrate, clear and mount 

 

 

Peroxidase Blocking Reagent 

DESCRIPTION: Peroxidase Blocking Reagent: Peroxidase inhibitor containing hydrogen 

peroxide and 15 mM sodium azid 
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Appendix D  

Details of 34 promoter-associated hypermethylated genes of OSCC with UCSC gene 

accession and CpG Island name (Illumina’s Genome Studio software analysis) 
 

UCSC_REFGENE_NAME 
 

UCSC_REFGENE_ACCESSION 
 

 
UCSC_CPG_ISLANDS_NAME 

 

 
DFFB 

DUSP1* 

FEZ2 

RWDD3 

ZNF589 

DDAH2* 

TSC22D3 

LEPRE1 

ORMDL3 

HYAL2 

MUM1 

KIF3C 

EPHX2 

GEMIN7 

MIER2 

MAPRE2 

C14orf80 

VEZF1 

ZBTB4 

 

 

 
NM_014704;NM_004402 

NM_004417 

NM_001042548;NM_005102 

NM_001128142;NM_015485 

NM_016089 

NM_013974 

NM_004089;NM_198057; 

NM_022356;NM_001146289 

NM_139280 

NM_003773;NM_033158 

NM_032853;NR_024247 

NM_002254 

NM_001979 

NM_001007269;NM_001007270;NM_024707 

NM_017550 

NM_001143826 

NM_001134877 

NM_007146 

NM_001128833;NM_020899 

 

 

 
chr1:3775077-3775369 

chr5:172197482-172199606 

chr2:36824792-36825305 

chr1:95699725-95700142 

chr3:48282425-48282817 

chr6:31695894-31698245 

chrX:106959378-106959914 

chr1:43232214-43233359 

chr17:38083226-38084052 

chr3:50359839-50360042 

chr19:1354420-1355350 

chr2:26204554-26205649 

chr8:27348658-27348883 

chr19:45594397-45595007 

chr19:345260-345590 

chr18:32556654-32557883 

chr14:105956175-105958197 

chr17:56064830-56066051 

chr17:7382266-7382710 
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Appendix D; continued 

 

UCSC_REFGENE_NAME 
 

UCSC_REFGENE_ACCESSION 
 

 
UCSC_CPG_ISLANDS_NAME 

 

 
P16* 

HYAL2 

PPT2 

TRIM65 

TMEM120A 

PFDN5 

CCNJ 

GEMIN7 

NCKAP5L 

TAF4 

C1orf52 

TRAPPC5 

TAF4 

TRIM65 

 

 
NM_001195132;NM_058195 

NM_003773;NM_033158 

NM_005155;NM_030651;NM_138717 

NM_173547 

NM_031925 

NM_002624;NM_145897 

NM_001134376;NM_001134375; 

NM_001007269;NM_001007270;NM_024707 

NM_001037806;NR_027499;NR_027500 

NM_003185 

NM_198077;NR_024113 

NM_001042461;NM_174894;NM_001042462 

NM_003185 

NM_173547 

 

 
chr9:21974578-21975306 

chr3:50359839-50360042 

chr6:32121829-32122529 

chr17:73892496-73893448 

chr12:53689227-53689570 

chr6:31695894-31698245 

chr10:97802871-97804262 

chr19:45594397-45595007 

chr12:50221558-50222609 

chr20:60638612-60638982 

chr1:85724701-85725524 

chr19:7745490-7747714 

chr20:60639272-60639835 

chr17:73892496-73893448 

 

 

Genes of DUSP1, DDAH2 and p16 marked with * were selected for further study. 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=Search&doptcmdl=GenBank&term=NM_001195132.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=Search&doptcmdl=GenBank&term=NM_058195.3
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Appendix E  

 

Details of 89 promoter hypermethylated genes of OSCC with island location and p value 

generated (Partek Genomic Suite software) 

 

 

 

 

Gene name 

Promoter _ 

CPG_Island 

location Chromosome location P value Fold change 

KCNA3 Island chr1:111216244-111217937 0.001631 24.6852 

CELSR3* island Chr3:48693118-48701667 0.000736 15.0254 

PLXNC1 Island chr12:94541727-94544000 0.000349 14.1601 

ZNF582 Island chr19:56904636-56905355 0.000345 13.8471 

MAP1LC3A Island chr20:33146135-33147318 0.002268 12.7764 

C17orf46 Island chr17:43339124-43339832 0.000696 12.2603 

TSPYL5 Island chr8:98289604-98290404 0.001153 10.8674 

TRIM61 Island chr4:165878036-165878446 0.001392 10.5525 

INA Island chr10:105036628-105038084 0.000185 10.3509 

ZNF529 Island chr19:37095680-37096589 0.000222 7.67903 

ZNF844 Island chr19:12175460-12176057 0.000696 7.53149 

ZNF808 Island chr19:53039077-53039920 0.000324 6.93332 

SPDYA Island chr2:29033351-29034011 0.001080 6.25406 

ZNF761 Island chr19:53935089-53935291 0.000645 6.09716 

ZSCAN18 Island chr19:58609338-58609988 1.30E-05 5.68720 

HLA-H Island chr6:29855295-29856565 0.001807 5.62426 

PPP1R16B Island chr20:37434206-37435592 0.001031 5.61812 

ITPKB Island chr1:226924560-226926553 0.000376 5.44636 

USP44 Island chr12:95941906-95942979 0.001043 5.34401 

ZNF611 Island chr19:53237861-53238499 0.000733 5.33032 

NKAPL Island chr6:28226979-28227483 0.000474 4.90568 

DPY19L2P2 Island chr7:102920309-102921514 0.000976 4.71972 

ELMO1 Island chr7:37487354-37488672 0.001611 4.66954 

HKR1 Island chr19:37825101-37825756 0.000127 4.38601 

ZNF845 North shore chr19:53836795-53837495 0.000167 4.14363 

FLJ45983 Island chr10:8091374-8098329 0.000988 4.12495 

BMP8B Island chr1:40253683-40255172 0.000547 4.12023 

LOC100133991 Island chr17:43339124-43339832 0.001262 4.10620 

HLA-C Island chr6:31238852-31240120 0.001490 4.08982 
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Appendix E, continued  

 

 

 

 

 

Gene name 

Promoter _ 

CPG_Island 

location Chromosome location P value Fold change 

ZNF354C Island chr5:178487146-178487921 0.001030 4.04431 

ZNF492 North shore chr19:22817274-22817546 0.001103 4.03547 

HLA-L Island chr6:30227320-30228255 0.001482 3.88852 

WDR8 Island chr1:3566445-3569636 0.001731 3.76379 

FABP5L3 Unspecific  0.000371 2.10058 

ARPC1B Island chr7:98990157-98990922 0.001252 3.33637 

ZNF382 Island chr19:37095680-37096589 0.001594 3.25046 

PIK3R5* Island chr17:8868469-8869372 0.001524 3.18124 

HLA-B Island chr6:31323946-31325211 0.000925 3.17527 

AHRR Island chr5:343449-344535 0.002364 3.08810 

UGDH Island chr4:39528728-39529723 0.000656 3.03321 

C9orf119 Island chr9:131037591-131038695 0.000281 2.97446 

ATP6V1B2 North shore chr8:20054546-20055027 0.001921 2.96530 

TRIM59 Island chr3:160167184-160168200 0.000339 2.95672 

ZNF568 Island chr19:37406931-37407463 0.002031 2.88949 

CSDA Island chr12:10875137-10876180 0.000324 2.87859 

PDE4C Island chr19:18335072-18337375 0.001892 2.87417 

P16* Island chr9:21974578-21975306 0.002357 2.85385 

DDAH2* Island chr6:31695894-31698245 0.000934 2.82636 

GPRASP1 South shore chrX:101906001-101907017 0.00116 2.82113 

NR6A1 Island chr9:127532040-127533691 0.000954 2.81225 

ZNF578 Island chr19:52956656-52957245 0.000254 2.77831 

LTC4S North shore chr5:179222608-179223825 0.000138 2.69466 

COX5A Island chr15:75229782-75230660 0.000267 2.65538 

LIMD2 Island chr17:61776890-61778733 0.001213 2.64260 

ZNF321 Island chr19:53445344-53445933 0.002135 2.59262 

NUB1 North shore chr7:151038858-151039136 0.001992 2.57423 

MEF2D* 

DUSP1* 
Unspecific 

Island Chr5:172197482-172199606 

0.002182 

5.49E-08 

2.54062 

2.56631 

RRM2* Island chr2:10262173-10263481 0.001067 2.54062 

ZNF418 Island chr19:58446336-58446800 8.68E-05 2.51806 

C19orf57 Island chr19:14016665-14017435 0.002252 2.49569 

RBM4B North shore chr11:66444997-66445471 0.000141 2.42872 
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Appendix E, continued  

 

 

Genes of CELSR3, PIK3R5, p16, DDAH2, MEF2D, DUSP1, RRM2 and TP73 marked with 

* were selected for further study. 

 

 

 

 

 

Gene name 

Promoter _ 

CPG_Island 

location Chromosome location P value Fold change 

ZNF283 Unspecific  0.006481 2.36704 

CTSA North shore chr20:44518897-44520361 0.000188 2.36562 

FAM35A Island chr10:88853757-88855498 0.000561 2.33510 

HPDL Island chr1:45792419-45793301 8.57E-07 2.32230 

POM121L2 Island chr6:27279794-27280635 0.001275 2.30725 

TP73* Island Chr1:3566445-3569636 0.00150754 2.26647 

MYEF2 South shore chr15:48470007-48470628 7.14E-05 2.26717 

ARHGEF7 North shore chr13:111805638-111806531 0.001953 2.24715 

BZW2 Island chr7:16685252-16686364 0.002295 2.24408 

ZNF701 Island chr19:53073308-53074039 0.001135 2.23376 

ZNF677 South shore chr19:53757819-53758148 0.001913 2.22286 

ZNF610 North shore chr19:52839444-52839937 0.002055 2.21386 

CHD4 North shelf chr12:6715500-6715829 0.001025 2.19070 

ZPBP Island chr7:50132572-50132921 0.002319 2.16902 

KLHL21 South shore chr1:6661776-6663844 0.000551 2.16866 

IFFO2 Unspecific  0.011708 2.15139 

BCL11A Island chr2:60776596-60778157 0.001565 2.14449 

CCDC106 North shore chr19:56159257-56159937 0.002300 2.13559 

ZNF75A Island chr16:3355020-3356012 0.000479 2.13414 

IGF2BP1 Island chr17:47072820-47076042 0.001266 2.10853 

DPYSL2 Island chr8:26434372-26436785 0.000146 2.08274 

TBCA Island chr5:77071645-77072303 0.001422 2.07714 

ADPRHL2 Island chr1:36554325-36554955 0.001030 2.07696 

TMEM220 Island chr17:10632789-10633490 0.000436 2.04846 

THG1L Island chr5:157158378-157158856 0.001672 2.03017 

SENP7 Island chr3:101231610-101232173 0.002304 2.02761 

ELL2 South shore chr5:95296368-95297438 0.002360 2.00901 



163 
 

Appendix F  

Correlation between protein expression and patients’ age 

 

 

 DDAH2 DUSP1 MEF2D RRM2 Age_Cont 

Spearman's rho 

DDAH2 

Correlation 

Coefficient 

1.000 .081 .378
**

 .022 -.195 

Sig. (2-tailed) . .584 .008 .880 .227 

N 40 40 40 40 40 

DUSP1 

Correlation 

Coefficient 

.081 1.000 .263 .133 .282 

Sig. (2-tailed) .584 . .071 .366 .078 

N 40 40 40 40 40 

MED2F 

Correlation 

Coefficient 

.378
**

 .263 1.000 -.033 -.228 

Sig. (2-tailed) .008 .071 . .823 .158 

N 40 40 40 40 40 

RRM2 

Correlation 

Coefficient 

.022 .133 -.033 1.000 .381
*
 

Sig. (2-tailed) .880 .366 .823 . .015 

N 40 40 40 40 40 

Age_Cont 

Correlation 

Coefficient 

-.195 .282 -.228 .381
*
 1.000 

Sig. (2-tailed) .227 .078 .158 .015 . 

N 40 40 40 40 40 

 

**. Correlation is significant at the 0.01 level (2-tailed).    

*. Correlation is significant at the 0.05 level (2-tailed). 
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Appendix G 

 

List of publications and conference proceedings  

Publications: 

1. G.H. KHOR, R.B. ZAIN, G.A. FROEMMING, A.M. THOMAS, EFFAT O, SK 

TAN, V. CHONG and K.L. THONG (2013). DNA Methylation Profiling 

Revealed Promoter Hypermethylation-induced Silencing of p16, DDAH2 and 

DUSP1 in Primary Oral Squamous Cell Carcinoma. Inter J Med Sci,  2013, 

10(12); 1727-1739. 

2. G.H KHOR, G.A. FROEMMING, R.B. ZAIN, A.M. THOMAS, and K.L. 

THONG (2014). Screening of Differential Promoter Hypermethylated Genes in  

Primary Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev. 15 (20), 8957-

8961.  

3. G.H. KHOR,, K.L. THONG,  G.A. FROEMMING, A.M. THOMAS, NMM NIK 

MOHD ROSDY and R.B. ZAIN. Human Papiloma Virus 18 detection in Oral 

Squamous Cell Carcinoma and potentially Malignant Lesions Using Saliva 

Samples. Asian Pacific J Cancer Prev, 2012, 13 (12); 6109-6113 

4. G.H. KHOR, R.B. ZAIN, G.A. FROEMMING, A.C. TAN, J. KIM, A.M. 

THOMAS, and K.L. THONG. Pathways Deregulation In Oral Squamous Cell 

Carcinoma Using Methylation Profiling. J Dent Res 2011, 89 (Sp C), Abs 47. 

ISSN: 1544-0591 

5. G.H. KHOR, R.B. ZAIN, G.A. FROEMMING, A.M. THOMAS, and K.L. 

THONG. Identification and Validation of Novel Aberrant Gene Promoter 

Hypermethylation in Oral Squamous Cell Carcinoma. Malaysian J Pathol 2012; 

34 (Supplement A): P/AP/22 

6. G.H. KHOR, G.A. FROEMMING, R.B. ZAIN, A.M. THOMAS, E OMAR, SK 

TAN and K.L. THONG. (2013). Aberrant methylation of genes in oral  squamous 

cell carcinoma. Oral Oncology Vol 49,supplement 1, pg S6-S7, OP007. 
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Conference proceedings: 

1. G.H. KHOR, R.B. ZAIN, G.A. FROEMMING, A.C. TAN, J. KIM, A.M. 

THOMAS, and K.L. THONG. Pathways Deregulation In Oral Squamous Cell 

Carcinoma Using Methylation Profiling. 25th IADR-SEA Division Annual 

Scientific Meeting and 22nd SEAADE Annual Meeting. 28-30/10/2011. Grand 

Copthorne Waterfront, Singapore. Program book. Abs 47  

 

2. G.H. KHOR, R.B. ZAIN, G.A. FROEMMING, A.M. THOMAS, and K.L. 

THONG. DifferentiaI Hypermethylation In Oral Squamous Cell Carcinoma using 

microarraybased DNA methylation analysis. 1st Annual IMMB Postgraduate 

Colloquium 2011. 25-26/11/2012. Calton Holiday Hotel and Suites, Shah Alam. 

Programme & abstract book. O6 (Oral presentation). 

 

3. G.H. KHOR, R.B. ZAIN, G.A. FROEMMING, A.M. THOMAS, and K.L. 

THONG. DifferentiaI Hypermethylation In Oral Squamous Cell Carcinoma.16th 

Biological Science Graduate Congress. 12-13/12/2011. National University of 

Singapore. Singapore. Abstract book.  PP-3-08. 

 

4. G.H. KHOR, R.B. ZAIN, G.A. FROEMMING, A.M. THOMAS, and K.L. 

THONG. DifferentiaI Hypermethylation In Oral Squamous Cell Carcinoma Using 

Methylation Bead Array. Human Genome Meeting 2012. 11-14/3/2012. Sydney 

Convention Centre, Sydney, Australia. Abstract Book. P030 

 

5. G.H. KHOR, R.B. ZAIN, G.A. FROEMMING, A.M. THOMAS, and K.L. 

THONG. Identification and Validation of Novel Aberrant Gene Promoter 

Hypermethylation in Oral Squamous Cell Carcinoma 11th Annual Scientific 

Meeting. 8-10/6/2012 Crowne Plaza Mutiara Hotel, Kuala Lumpur. Proceedings 

and Programme Book. P/AP/22. 

 

6. G.H. KHOR, G.A. FROEMMING, R.B. ZAIN, A.M. THOMAS, E OMAR, SK 

TAN and K.L. THONG. (2013). Methylation Profiling in Primary Oral Squamous 

Cell Carcinoma. 38
th

 Malaysian Society for Biochemistry and Molecular Biology 

(MSBMB). 28- 29/8/2013. Putrajaya Marriott Hotel and Spa, Putrajaya. Won the 

best poster presentation. 
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