
ABNORMAL EVENT DETECTION IN VIDEO SURVEILLANCE

LIM MEI KUAN

INSTITUTE OF POSTGRADUATE STUDIES
UNIVERSITY OF MALAYA

KUALA LUMPUR

2014



ABNORMAL EVENT DETECTION IN VIDEO
SURVEILLANCE

LIM MEI KUAN

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENT

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF POSTGRADUATE STUDIES
UNIVERSITY OF MALAYA

KUALA LUMPUR

2014



UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: LIM MEI KUAN (I.C./Passport No.: 840305-04-5106)

Registration/Matrix No.: WHA 100045

Name of Degree: Doctor of Philosophy

Title: Abnormal Event Detection in Video Surveillance

Field of Study: Computer Science (Computer Vision)

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii



ABSTRAK

Peningkatan permintaan untuk keselamatan dan ketenteraman awam oleh masyarakat hari

ini menjurus kepada penggunaan kamera litar tertutup (CCTV) yang lebih meluas bagi

tujuan pemantauan di premis awam. Kes pengeboman di Boston Marathon, dan pencu-

likan seorang kanak-kanak warganegara British di Tasik Titiwangsa, Malaysia baru-baru

ini telah membangkitkan lagi kesedaran dan permintaan untuk pelaksanaan video anali-

tik bagi membantu penguatkuasaan undang-undang dalam mencegah jenayah. Siasatan

lanjutan sekitar kes-kes tersebut mendapati bahawa tragedi tersebut boleh dielakkan seki-

ranya terdapat penggunaan teknologi yang dapat mengenalpasti tingkah laku suspek yang

mencurigakan. Oleh itu, objektif utama tesis ini adalah untuk membangunkan dan melak-

sanakan algoritma visi computer untuk mengenal pasti dan mengesan tingkah laku yang

mencurigakan, yang boleh menimbulkan jenayah. Pelaksanaan video analitik bermat-

lamat untuk mencetus peringatan kepada anggota keselamatan untuk pengawasan video

yang lebih berkesan dan proaktif.

Sumbangan pertama tesis ini adalah pengenalan algoritma pengesanan visual yang

mampu mengesan pergerakan objek dalam video. Salah satu cabaran besar dalam do-

main ini adalah keupayaan untuk menangani pergerakan objek yang drastik. Contohnya,

pergerakan drastik disebabkan oleh pergerakan objek yang sering beralih daripada satu

kamera kepada yang lain. Algoritma pengesanan visual yang diusulkan dalam tesis ini

mengandaikan masalah pergerakan objek secara drastik sebagai masalah pengoptimuman

untuk pengesanan yang lebih berkesan. Keputusan eksperimen menggunakan data awam

telah menunjukkan keupayaan algoritma yang diusulkan dalam menangani masalah perg-

erakan drastik objek di bawah pelbagai senario, dengan ketepatan purata, 91.39%.

Penyelesaian di mana setiap object yang bergerak dikesan terlebih dahulu bagi mem-

buat kesimpulan tentang tingkah laku mereka adalah tidak sesuai dan mustahil apabila
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ratusan atau ribuan objek atau orang hadir dalam video, seperti dalam acara-acara besar

seperti marathon, di mana orang ramai berkerumun. Oleh itu, sumbangan kedua tesis ini

mencadangkan penyelesaian alternatif untuk menangani pengawasan orang ramai dalam

kerumun. Algoritma yang dicadangkan menghapuskan syarat untuk mengesan setiap

individu. Sebaliknya, algorithma yang diusulkan mengeksploitasi dinamik pergerakan

orang ramai secara kerumun. Keputusan eksperimen menggunakan data awam telah me-

nunjukkan keberkesanan rangka kerja algoritma yang dicadangkan dalam mengenal pasti

tingkah laku asing dalam kerumun, dengan purata ketepatan lebih kurang 78%. Data

awam tersebut merangkumi pelbagai senario seperti kesesakan dan pergerakan yang tidak

teratur.

Sumbangan ketiga tesis in bertujuan untuk menyediakan platform yang lengkap

untuk mengesan pelbagai aktiviti di kawasan berlainan, yang bersesuaian dengan per-

mintaan di kawasan masing-masing. Ini adalah penting dalam pemantauan seharian, di

mana peristiwa yang berbeza boleh berlaku di kawasan yang sama pada masa yang sama.

Sebagai contoh, kes melepak dan objek terbiar di kawasan larangan, yang boleh mem-

bawa kepada kemungkinan kes keganasan seperti pengeboman berlaku. Penyelesaian

yang dicadangkan menyediakan fleksibiliti untuk menangani persekitaran yang berbeza

untuk pemahaman yang lebih mendalam tentang tempat kejadian, dengan menggunakan

teori yang dikenali sebagai komposisi. Idea utama di sebalik konsep komposisi adalah un-

tuk menguraikan maklumat yang diperolehi dari video yang diberikan kepada beberapa

darjah abstraksi sebelum membuat sebarang kesimpulan. Keputusan eksperimen dalam

mengenal pasti pelbagai aktiviti seperti melepak, pencerobohan, bagasi yang ditinggal

dan dibiarkan, tergelincir dan terjatuh, kekecohan dalam kerumun telah menunjukkan

keberkesanan platform yang dicadangkan dengan ketepatan purata, 83%.
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ABSTRACT

The recent Boston Marathon bombing and the kidnap of a British boy at Lake Titi-

wangsa, have ignited a pressing interest for automated video content analysis to assist the

law enforcement in preventing such events from recurring. Post-mortem investigations

surrounding such cases often found that there were missed opportunities for using tech-

nology to detect the abnormality of the suspects, which lead to those tragedies. Therefore,

this thesis aims to develop computer vision solutions to identify regions or behaviours,

which could lead to unfavourable events, as a cue to direct the attention of security per-

sonnel for a more effective and proactive video surveillance.

The first contribution of this thesis introduces a robust visual tracking algorithm that

is able to locate moving objects in surveillance videos. A great challenge in this do-

main is the capability of dealing with complex scenarios of tracking abrupt motion, such

as switching between cameras, which is very common when the number of CCTV to

be monitored is enormous. Conventional sampling-based predictors often assume that

motion is governed by a Gaussian distribution. This assumption holds true for smooth

motion but fails in the case of abrupt motion. Therefore, by considering tracking as an

optimisation problem, the proposed SwATrack algorithm searches for the optimal distri-

bution of motion model without making prior assumptions, or prior learning of the motion

model. Experimental results have shown that the proposed SwATrack improves the accu-

racy of tracking abrupt motion, with an average accuracy of 91.39%, while significantly

reduces the computational overheads, with an average processing time of 63 milliseconds

per frame.

Visual tracking of objects at mass gatherings such as rallies can be daunting due

to the large variations of crowd. Hence, the second contribution proposes an alternative

solution that deals with dense crowd scenes. A new research direction that identifies and
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localises interesting regions by exploiting the motion dynamics of crowd is proposed.

Here, interesting regions refer to abnormalities, where they exhibit high motion dynamics

or irregularities. This assumption alludes to the social behaviours and conventions of

humans in crowded scenes. Therefore, the possibility of abnormal events taking place

is considered likely, when there is high motion dynamics and irregularities. Experiment

results have shown an average accuracy of 78% on the defined dataset.

The third contribution aims to provide an integrated solution to detect multiple events

in different regions-of-interest of a given scene. This is very critical in the real-world

scenarios where multiple events may take place in a scene at the same time. Existing

solutions such as CROMATICA and PRISMATICA are commonly limited to detect single

events, at a particular time. On the contrary, the proposed solution provides flexibility to

deal with different environments, for a broader degree of scene understanding. The key

idea is to conceptually decompose information obtained from a given scene into several

intermediate degrees of abstractions. These low-level descriptions are then integrated

using a basic set of rule-packages, to discriminate the different events. Experimental

results on fives scenarios of abnormal events have shown an average accuracy of 83%.
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CHAPTER 1

INTRODUCTION

Nowadays, Closed Circuit Television Camera (CCTV) systems are rapidly being de-

ployed in public spaces to help strengthen public safety and deter crime (Anderson &

McAtamney, 2011). CCTV collects images which are then transferred to a monitor-

recording device, to be monitored and stored. A CCTV control room acts as a central

hub, where security activities are regulated and coordinated by CCTV operators. The op-

erators are usually responsible for monitoring and reacting to events acquiring attention,

which they observe on real-time CCTV videos displayed on the screen displays.

By far, the human vision and perception are highly effective at skimming through

large quantity of video sequences and providing high-level semantic interpretation of the

scene. However, difficulties arise due to the sheer amount of information and growing

number of CCTV to be monitored. Fig. 1.1 illustrates a typical setting in a CCTV control

room in Malaysia, where the camera to operator ratio is generally low (approximately 25-

30 cameras per operator). In such situation, it is almost impossible to scan and/or follow

moving people or objects from camera to camera, thus leading to the risk of missing vital

information (Keval & Sasse, 2006). Moreover, the attention span of human has been

shown to deteriorate after 20 minutes, while manual monitoring task requires demanding,

prolonged cognitive attention (N.-H. Liu, Chiang, & Chu, 2013).

Therefore, over the last few decades, the computer vision community has endeav-

oured to bring about similar perceptual capabilities to artificial visual sensors (Gong,

Loy, & Xiang, 2011). Substantial research efforts have been made towards developing

video analytics solutions which are capable to automatically process and analyse the video

streams. Generally, video analytics applications can perform a variety of tasks, ranging
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from real-time analysis of video for immediate detection of events of interest, to analysis

of pre-recorded video for the purpose of extracting events for post-mortem analysis.

(a) (b)

Figure 1.1: A typical CCTV control room in Malaysia, where the camera to operator ratio
is low (Star, 2014).

1.1 Motivation

As aforementioned, the increasing demand for security and public safety by society

leads to an enormous growth in the deployment of CCTV in public spaces. The heartless

murder of an eight year old girl, Nurin Jazlin, at Wangsa Maju, and the most recent kidnap

of a British boy, Freddie, at Lake Titiwangsa, have ignited a pressing interest for video an-

alytics solutions to assist the law enforcement in preventing such events from happening

again (M. L. Lee, 2014). Most of the post-mortem investigations surrounding such cases

found that there were missed opportunities for using technology to detect the abnormality

of the suspects, which lead to those tragedies. Nurin was last seen being dragged into a

white van from a CCTV recording in the neighbourhood. A week after the abduction,

her tortured body was found stuffed in a gym bag and abandoned in front of a shop lot.

Again, the crime of abandoning Nurin’s body was captured by a nearby CCTV but was

left unnoticed, until someone alerted the authority when her body was discovered in the

bag. The footage shows a motorcyclist carrying the sports bag where Nurin’s body was
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squeezed into, before abandoning it at the shop lot. Similarly, a CCTV footage recorded

the entire scene when little Freddie was snatched from his mother’s arms in front of their

house. Snapshots of the footages are as shown in Fig. 1.2. Post-mortem investigations

raise the question of whether these horrifying events can be dealt with more efficiently,

or even prevented if the abnormalities of the suspect were picked up by the monitoring

personnel. Therefore, this research is greatly motivated by the need to grow the role of

CCTV for crime control and public safety. In addition to assisting the authority in their

investigations in the aftermath of events, CCTV should also act as an extensive round-the-

clock solution towards faster respond to potentially catastrophic situations, and ideally, to

prevent such tragedies from recurring. Thus, this thesis aims to develop computer vi-

sion solutions to identify abnormalities, which could lead to unfavourable events, as a

cue to direct the attention of security personnel for a more effective and proactive video

surveillance.

(a) The first segment of the footage, lasting about
two minutes features the suspect, arriving on
motorcycle carrying a blue and black gym bag
placed in front of him, before leaving it in front
of a shop lot (Ramendran, 2007).

(b) A combo screen grab of the three min-
utes footage of Freddie’s abduction recorded by
neighbour (Star, 2013).

Figure 1.2: Sample footages of crime captured on CCTV in Malaysia.
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1.2 Activity Understanding and Abnormal Event Detection in CCTV

There has been an accelerated growth in the deployment of CCTV in public places

such as communal areas (e.g. parks, pedestrianised streets and parking), public transport

infrastructures (e.g. airport, subway and bus stations), sport arenas, recreational centres

and shopping malls (Ratcliffe, 2006). Amongst the direct benefits of implementing CCTV

in public areas include triggering a perceptual mechanism in a potential offender, reducing

fear of crime, assisting the authority in the detection and arrest of offenders, provision of

medical assistance, and information gathering for investigations or analysis. However,

one of the most difficult and expensive aspects of video surveillance has always been the

need to have people monitor these cameras (Fullerton & Kannov, 2008). There would

be no opportunity for immediate intervention and action without someone watching and

interpreting what the cameras are recording. Typically, the monitoring personnel have

all the requisite knowledge and skills for the task, but difficulties arise as the number of

cameras grows. Often, many events were unnoticed due to the inherent limitations from

depending solely on human monitoring. This is commonly due to i) sheer number of

information and screens to be monitored, ii) boredom and human fatigue, iii) distractions

and interferences, and finally iv) the complexity and uncertainty of human behaviour. In

most scenarios, the consequences of not detecting abnormal activities and events which

could ultimately lead to unfavourable events are irreversible and catastrophic. Hence, the

last decade has seen significant advances in the field of using computers and technologies

for a more proactive video surveillance. This field of research is also widely known as

video analytics.
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1.2.1 What is Video Analytics?

Generally, video analytics are computer vision algorithms monitoring live or recorded

video to understand behaviour and identify ‘interesting’ events. The automatic analysis

of video images takes motion detection to a new level, where analytics utilise local or pro-

cessing power to detect, recognise or learn ‘interesting’ events which contextually may

be defined as ‘suspicious’, (Lavee, Khan, & Thuraisingham, 2007), ‘irregular’, (Y. Zhang

& Liu, 2007; Wiliem, Madasu, Boles, & Yarlagadda, 2008), ‘unusual ‘, (Zhong, Shi, &

Visontai, 2004; Jäger, Knoll, & Hamprecht, 2008; Jiang, Wu, & Katsaggelos, 2009) or

‘abnormal’ (Maxion & Tan, 2000; C.-K. Lee, Ho, Wen, & Huang, 2006; Xiang & Gong,

2008; D. H. Hu, Zhang, Zheng, & Yang, 2009; Mehran, Oyama, & Shah, 2009; Varadara-

jan & Odobez, 2009) in terms of behaviours, events or activities. Cameras are integrated

with video analytics solution to recognise various events; from simple recognition task

such as whether a moving object is an animal or person, to more complex scenarios

such as identifying a particular kind of shoplifting known as sweethearting. Amongst the

well-known suppliers of video analytics solutions include CROMATICA, IBM, Bosch,

Honeywell, Siemens, Aimetic, Vidient, Panasonic, PRISMATICA, ObjectVideo, VCA,

Cisco, Agent Vi, IndigoVision and VCA Technology (Gouaillier & Fleurant, 2009).

Video analytics can assist security personnel by identifying ‘interesting’ activity or

events for closer examination. This indirectly leads to the change of human role from

observer to overseer, for a more effective and proactive surveillance. In addition, the

recordings of people and activity in a space allow collection of metadata for forensic

investigations as well as search for unanticipated events. Nevertheless, despite the many

advantages of video analytics, it is important to understand that video analytics are neither

fully autonomous nor perfect. Human intervention in the surveillance loop remains nec-

essary as there will always be questionable situations of false alarms and missed events.
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1.2.2 What is Activity Understanding?

The goal of intelligent surveillance and analytics solutions is to extend the capability

of conventional surveillance to not only detect, classify and track objects in the scene,

but to describe or infer the activity or event taking place. Thus far, two different terms

including action and event are used interchangeably in the literature to refer to activity.

In this thesis, the following taxonomy as proposed by (Xiang & Gong, 2006; W. Lin,

Sun, Poovendran, & Zhang, 2008) is applied. In particular, activity comprises sequential

actions which are described by a combination of features or attributes. For example, a

set of human activities such as walking and running can be differentiated using a com-

bination of features, including body profile and speed. Each feature can be decomposed

further to; body profile = {vertical,horizontal} and speed = {slow,fast}. The walking ac-

tivity is described by vertical body profile and slow speed while running is described by

vertical body profile and fast speed. Accordingly, activity understanding is defined as the

establishment of high-level interpretation or semantic description of low-level features

(Xiang & Gong, 2006). Since the terms activity and event are often used in the literature

interchangeably, this thesis does not attempt to explicitly differentiate the two. At this

point, the term activity understanding refers to general activity and do not discriminate

between normal and abnormal events in the scene.

1.2.3 What is Abnormal Event Detection?

In the literature, there has been a variety of terms used to refer to abnormal events

including interesting, irregular, suspicious, anomaly, uncommon, unusual, rare, atypical,

salient and outlier. The definition of abnormal events has been causing much debate

and confusion in the literature due to the subjective nature and complexity of human

behaviors. In particular, they can be categorised into 2 broad understanding, where an

event is considered abnormal if:
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1. There is deviation from the ordinary observed or learned events (i.e. the event

having low occurrence or statistical representation in the learned model)

2. The event is not known or it is outstanding.

Similarly, there is no clear distinction between abnormal activities, events and behaviours

as their descriptions often overlap one another. Nonetheless, this thesis deems events

as abnormal if they obey the predefined notions that are derived from these common

understanding. One section of this thesis which deals with crowded scenes, describes

abnormality as regions with high motion dynamics and irregularities in the crowd motion.

Meanwhile, in the later section of this thesis, abnormal events are inferred by imposing

predefined notions to the set of associated attributes to provide semantic descriptions of

activities. This is inspired by the principle of compositionality, that is, the relationship

between an object and its associated attribute gives no meaning; unless a rule is applied

to the relationship (Pelletier, 1994). Thereafter, the term abnormal and salient are used

interchangeably to refer to regions acquiring attention, or precarious.

1.3 Objectives

Often, computer vision solutions for video analytics are organised according to the

general pipeline as shown in Fig. 1.3 (Dee & Velastin, 2008). Input videos are firstly fed

into motion estimation module to estimate the motion trajectory of moving individuals in

the scene. The trajectories are then fed into an analysis module to interpret the activities

taking place in the scene. This is followed by higher level analysis and/or event detection

module to discriminate between normal and abnormal events, before triggering alert to

indicate events acquiring attention.
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Figure 1.3: The general framework or pipeline of computer vision solutions for video
analytics comprising 3 main modules; i) motion estimation ii) behaviour analysis and iii)
event detection.

Although the ultimate goal of this work is to devise computer vision algorithms for

activity understanding and abnormal event detection in video surveillance, specifically,

the thesis is driven towards solving the three main issues in conjunction with the three

main modules in the general pipeline of video analytics. The first objective aims to pro-

vide a robust visual tracking algorithm that deals with abrupt motion. The second is

to identify salient regions, which could ultimately lead to unfavourable events in dense

crowd scenes. Finally, the third objective aims to provide an integrated framework to

detect multiple events in different regions-of-interest of a given scene.

The following section discusses the underlying challenges, as well as the problem

formulation that serves as the motivation of this study towards achieving the aforemen-

tioned objectives.

1.4 Challenges and Problem Formulation

Driven by the proliferation of high-powered computers, the availability of high qual-

ity and affordable video cameras, and the ever decreasing cost of digital media storage,

there is a growing demand for sophisticated video analytics solutions (K. C. Smith, 2007).

One of the most fundamental building blocks for complete video analytics solutions is vi-

sual tracking. Basically, there are three key steps in video analysis: the detection of
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object-of-interest, tracking of such objects from one frame to another, and analysis of

their trajectories or other features to recognise their behaviour. The importance of visual

tracking stems from the fact that it is pertinent to the tasks of motion based recognition,

detection of abnormal events, video indexing, human computer interaction and traffic

monitoring (Yilmaz, Javed, & Shah, 2006; H. Yang, Shao, Zheng, Wang, & Song, 2011).

In its simplest form, visual tracking can be defined as the problem of estimating the

locality of an object-of-interest as it moves around in the scene. Over the years, significant

progress has been made in the area of visual tracking and numerous approaches have

been proposed. For instance, the introduction of optical flow (Horn & Schunck, 1981),

utilising predictors such as the Kalman Filter (KF) (Welch & Bishop, 1995; Wan & Van

Der Merwe, 2000; Oussalah & Schutter, 2000), Particle Filter (PF) (Isard & Blake, 1998;

Arulampalam, Maskell, Gordon, & Clapp, 2002; H. Liu & Sun, 2012; Chan, Liu, David,

& Kubota, 2008; Chan & Liu, 2009), or linear regression techniques (Ellis, Dowson,

Matas, & Bowden, 2011). Tracking is often simplified by imposing constraints on the

motion of objects, where the motion is assumed smooth with no abrupt change. It can be

further constrained by supposing that the motion is of constant velocity and acceleration

based on a priori information.

These assumptions tend to fail in the case of abrupt motion, which is fairly com-

mon given the growing number of cameras deployed. Abrupt motion can be caused by

inconsistent or rapid speed of the object itself (e.g. the motion of a tennis ball), switching

between cameras (i.e. object appears in random part between subsequent frames) and low

frame rate videos (i.e. jerky motion). Furthermore, it has always remained a challenge

to handle the trade-off between tracking precision and its computational cost. Many of

the existing tracking algorithms argue that tracking precision can be improved by increas-

ing the number of particles or samples to represent the conditional state density (Isard &

Blake, 1998). However, the increase in the number of particles leads to a surge in the
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computational cost. This is a major challenge in most applications, including the ana-

lytics proposed in this thesis, where activity understanding and abnormal event detection

must often work at real-time, or near real-time rates (Chan, 2008). Therefore, the first

challenge of this thesis is on developing a visual tracking algorithm that deals with abrupt

motion, while striving for an optimised trade-off between accuracy and processing cost.

Secondly, there can be a range of mass of objects in real world video sequence; from

non-crowded scenes comprising less than 3 individuals to dense crowd scenes where hun-

dreds or even thousands gather, as illustrated in Fig. 1.4. While it is ideal to be able to

track each moving object to infer their activity, this is not possible at large events such as

rallies and marathons, where crowds of hundreds or even thousands gather. Visual track-

ing of such events is daunting due to the large variations of crowd densities and severe

occlusions. Besides, tracking enormous number of individuals in a crowd would require

hours or maybe days of processing (Lerner, Chrysanthou, & Lischinski, 2007). There-

fore, finding interesting regions in a crowded scene is generally accomplished by firstly

learning an activity model of the scene, followed by using the learned model to identify

anomalies (Kuettel, Breitenstein, Van Gool, & Ferrari, 2010; Hospedales, Li, Gong, &

Xiang, 2011; X. Tang, Wang, & Zhou, 2012). A major drawback of these methods is the

need to have a large amount of video data for training during the learning stage. They are

not general enough to be adapted to other deployment scenarios. Furthermore, based on

the notion that human behaviours are indeed complex and diversified, and the infrequent

occurrence of anomalies in real world scenes, learning is made unfeasible. The second

challenge is to introduce a framework that identifies and localises interesting regions in

crowded scenes, without the requirements of tracking individuals, prior information of

the scene or extensive learning.

Thirdly, market research and forecast have shown that surveillance technology is

gaining support from numerous governments internationally, in light of various security
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threat and protocols required for public space. The last decade has witnessed significant

advances in the field of video surveillance systems in Malaysia, particularly. Malaysia

video surveillance market was estimated at over US$ 65 million in 2008 with compound

annual growth rate of 27% by 2013 (Frost & Sullivan, 2009). Most recently, the analysis

of video surveillance market in Malaysia has been discussed further in (J. Lin, 2014),

where the actual market revenues for Malaysian market from year 2011 to 2014 demon-

strated a steady growth rate of 17%. Furthermore, as tabled in the Malaysian parliament

under the budget 2014 themed, ‘Strengthening Economic Resilience, Accelerating Trans-

formation and Fulfilling Promises’, one of the government’s priority is in reducing crime

rate, focusing on crime prevention measures. A total of RM3.9 billion fund was injected

to increase efficiency of the security force, including the provision of modern and sophis-

ticated equipment; a commendable measure to curb crime (Tun Haji Abdul Razak, 25

October 2013). The enormous growth in the number of CCTVs deployed in public spaces

gives rise to the need for video analytics (Shafie, 2008). Often, due to the large number

of channels they have to closely observe, as shown in Fig. 1.1, as well as human fatigue,

it is extremely challenging for human operators to monitor and analyse the behaviour of

each individual that appears in the scene. Thus, a system that can interpret the activity

and event of individuals in a constrained environment and trigger the alarm to alert the

human operators will be very beneficial towards efficient and proactive surveillance.

Thus far, there have been considerable efforts in the industry as well as academia,

focusing on the different algorithms, techniques and models to develop the analytics so-

lutions (Albusac, Vallejo, Castro-Schez, Glez-Morcillo, & Jiménez, 2014; Chen, Wu,

Huang, & Fan, 2011; Khoudour et al., 1997; Velastin, Boghossian, Lo, Sun, & Vicencio-

Silva, 2005). These systems are commonly designed for specific surveillance applica-

tions, which arise in favour of social welfare and public safety and they include traffic

monitoring, loitering detection and intrusion detection. However, most of these systems

11



are focused at detecting singular events at a particular region. Meanwhile, systems that

provide multiple events detection are subjected to handling specific scenarios such as rail-

way, and require extensive fine-tuning or learning when deployed in other environment

such as an open market. Thus, in summary, there is an open challenge in the domain

of analytics to deal with multiple events and provide flexibility in handling the differ-

ent environments of public surveillance; indoor and outdoor. The enhancement from

singular event to multiple events provides a broader degree of scene understanding in

video surveillance. Furthermore, usually in real-world scenarios, different events may

take place in a particular scene at the same time. For example, it is very likely that a

loitering event take place alongside an abandoned object or luggage in a given scene.

The third and final challenge is to introduce a framework that deals with multiple events,

on different regions-of-interest (ROI), at a particular time, while utilising the low-level

features of a given scene, for a broader degree of scene understanding.

1.5 Contributions

This thesis aims to alleviate three major problems in video surveillance which has

been discussed in the earlier section. The contributions of this thesis to video-based

activity understanding and abnormal events are as the following:

Contribution 1: The first contribution of this thesis aims to provide a robust visual track-

ing algorithm that deals with abrupt motion. The proposed swarm-intelligence

based approach deems tracking as an optimisation problem. Closer work to ours

include, (X. Zhang, Hu, Maybank, & Zhu, 2008; Thida, Remagnino, & Eng, 2009;

W. Li, Zhang, & Hu, 2009; X. Zhang, Hu, & Maybank, 2010), where the swarm op-

timisation algorithm, Particle Swarm Optimisation (PSO), is adopted to perform vi-

sual tracking. Generally, the interactions and exchange of information between par-

ticles are utilised to allow the search for the optimal distribution of motion model.
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(a) Sample shots of non-crowd - car park , boxing game and airport scenes.

(b) Sample shots of sparse crowd - airport, basketball game and junction scenes.

(c) Sample shots of dense crowd - stadium, train station and marathon scenes.

Figure 1.4: Sample shots of the variation of crowd in real world scenarios.

However, one major drawback of the traditional PSO is the need to fine-tune param-

eters as well as the uncertainty in finding the multiple optimal solutions; most work

applied fix parameters settings as recommended in (Eberhart & Kennedy, 1995).

In contrast, this thesis introduces an adaptive mechanism that detects and responds

to changes in the search environment to allow on-the-fly tuning of the parame-

ters. Also, an optimised sampling strategy is presented to trade-off between the

exploration and exploitation of the state space, in search for the optimal proposal
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distribution. By combining these two sampling strategies within the PSO frame-

work, the proposed tracker allows robust motion estimation, without making prior

assumptions, or need to learn the motion model before-hand. Thus, the proposed

visual tracking algorithm provides flexibility in tracking smooth and abrupt motion,

while keeping the computational cost at its minimal.

Contribution 2: The second contribution of this thesis aims to identify interesting regions,

which could ultimately lead to unfavourable events, in crowded scenes, where

tracking approaches are not possible. Particularly in dense crowd scenes, such as

illustrated in Fig. 1.4c. The proposed method identifies and localises interesting

regions or salient, by exploiting the motion dynamics of crowd; where the motion

field is projected into global similarity structure to characterise the dynamics of the

crowd. Analysing the motion dynamics through the manifold structure has allevi-

ated the need to perform tracking of individuals, prior information requirement or

extensive learning to identify instability or abnormal crowd behaviours.

Contribution 3: Finally, the third contribution aims to provide an integrated framework

to detect multiple events in different regions-of-interest of a given scene. This is

very critical in the real-world scenarios where multiple, different events may take

place in a particular scene at the same time. Conventional solutions such as CRO-

MATICA in (Khoudour et al., 1997), PRISMATICA in (Velastin et al., 2005), and

EAGLE in (Schwerdt, Bernas, & Paul, 2005) are limited to detect single events

only. The proposed solution provides flexibility to deal with the different environ-

ments for a broader degree of scene understanding, by utilising the known theory

of compositionality into the domain of video content analysis. The key idea is to

conceptually decompose information obtained from a given scene into several in-

termediate degrees of abstractions. These low-level descriptions are then integrated
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and combined using a basic set of rule-packages, which discriminate between the

different abnormal events to build a complete knowledge of the given scene.

In summary, the collective impact of the three contributions will constitute to a com-

plete video analytics framework that is able to:

• infer activities and abnormal events in video surveillance, and

• assist the law enforcement in preventing events related to security and public safety,

in the hope of building a better and safer society.

1.6 Outline of Research

This thesis is organised into 6 main chapters as described in the followings:

Chapter 1 has presented the overview of video surveillance in general, while pro-

viding the motivation and dire need for robust analytics solutions for a more effective

and proactive surveillance. In addition, a brief review on the various approaches and

understanding of activity understanding and abnormal event detection in the context of

surveillance is presented.

Chapter 2 reviews the state-of-the-art solutions and strategies which are relevant to

the three broad problem statements that this thesis is addressing. Also, the challenges and

current state of the problems are discussed.

Chapter 3 provides detailed explanation on the proposed optimised visual tracking

solution, SwATrack that deals with smooth and abrupt motion. It describes and formulates

the optimal distribution of motion model in a Bayesian tracking framework. Experimental

results challenges the common understanding in the sampling-based tracking approaches,

where an increase in the number of samples used will lead to an increase in accuracy.

This is motivated by the meta-level question raised by the research community recently,

on whether complex and sophisticated methods are really necessary.
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Chapter 4 presents detailed description on the proposed method to identify anoma-

lies in crowded scenes using the global similarity structure. It discusses the projection

of motion obtained from the optical flow information into the global similarity structure,

followed by a two stages segmentation process that combines the outputs of a coarse and

fine segmentation to alleviate the need for exhaustive fine-tuning. Specifically, the pro-

posed method investigates regions with high motion dynamics as opposed to conventional

methods, where regions with high motion dynamics are often disregarded as noise.

Chapter 5 explains the extension of detection of singular abnormal events to mul-

tiple events, while providing the flexibility to deal with the different environments for

a broader degree of scene understanding. In particular, the key idea behind the pro-

posed framework, which is the principle of compositionality is discussed and formulated.

Experimental results are demonstrated to further validate the effectiveness of the adap-

tation of the knowledge-based architecture, principle of compositionality as proposed in

(Pelletier, 1994) into the domain of video surveillance.

Chapter 6 provides conclusions for each of the three broad problems and suggests

a number of areas for future investigations.
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CHAPTER 2

BACKGROUND RESEARCH

The United Kingdom is amongst the forerunner in the use of public video surveillance as

a primary tool to monitor public activities and prevent terrorism. A substantial amount

of fund has been spent by the UK Government on new technology, making it the country

with the most security cameras than any other countries in the Europe (La Vigne, Lowry,

Markman, & Dwyer, 2011). While surveillance cameras are widely employed in the busi-

ness sector to improve security, until recently their use to monitor public spaces has been

much less common in the United States, in part due to concerns about privacy and civil

liberties (Hernon, 2003). Meanwhile, the implementation of public video surveillance in

Malaysia, was first carried out in the 1990s and the growth of Closed Circuit Television

Camera (CCTV) in public places did not begin in earnest until 2003 (Shafie, 2008).

Traditionally, CCTVs were mainly used to display images on monitors and manned

by operators. The implementation of CCTVs satisfies the goal of safe patrolling from a

control room, while reducing manpower by performing the role of watchdog or guard.

The role of CCTVs can be categorised into two broad categories: passive and active

(Welsh & Farrington, 2008). Passive surveillance systems rely upon the retrieval of pre-

viously recorded images, which are reviewed after-the-fact as needed, or reactive policing

(Welsh & Farrington, 2008). Whereas, active surveillance systems are monitored in real

time, typically by police or private security personnel for immediate investigation and

intervention (Welsh & Farrington, 2008). The effectiveness of active monitoring depends

on how frequently the images from each camera are displayed, the ratio of operators to

video monitoring screens, and the training that operators receive on how to detect and

respond to abnormal activity, or suspicious.

17



Most recently, the availability of computing power and the reduction in cost within

the overall surveillance system has enabled the required demand in automation. Amongst

the automated solutions include, video monitoring for specific events such detection of

loitering, crowding or grouping and unattended objects. The scientific challenge is to

devise and implement computer vision and machine intelligence algorithms that are able

to automatically obtain detailed information about the activities and behaviours of people

observed by a single camera or by a network of cameras, and alert the operator when nec-

essary. At this point, detection thresholds are usually biased in favour of false positives,

since these can usually be quickly recognised and disregarded by human observers. On

the other hand, missing real indicators that lead to incidents could be a serious deficiency

(Davies & Velastin, 2005). Video analytics solutions can be leveraged to serve as accurate

secondary detection, permitting security personnel early notification and the opportunity

to investigate, or ideally, to prevent incidents from happening.

The past decades has witnessed the integration of computer vision and machine in-

telligence techniques for task automation in the video surveillance domain. The com-

puter vision algorithms, especially, have progressed from simple motion-based detections

to sophisticated techniques that recognise activities and detect abnormal events. Often,

the organisation of computer vision systems is hierarchical and this chapter is organised

as such; from visual tracking that deals with abrupt motion, to behaviour analysis in

crowded scenes and followed by multiple events detection systems. In fact, majority of

the computer vision systems for surveillance are organised in this way, with low-level

image processing techniques feeding into tracking algorithms which in turn, feed into

higher level scene analysis and/or behaviour analysis modules (Dee & Velastin, 2008).

This chapter provides a short overview of each of the respective fields, with the focus on

the advantages and disadvantages of these approaches.
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2.1 Ongoing Trends in Video Analytics

As technology advances, smarter systems integration is trending to real, cost-effective

benefits. In general, analytics solutions demonstrate trends towards the different aspects

of video surveillance and are as discussed in the following:

At the edge analytics: Video analytics embedded in a network camera represents

a growing segment where applications run “at the edge” with integrated software. Ulti-

mately, analytics algorithms are embedded on dedicated multimedia DSP boards which

are directly connected to the sensors. Thus far, the technology which can be embedded

into DSP boards are minimal and performs only simple analytics such as motion detec-

tion.

Analytics for special events: With events such as the 2008 Beijing Olympics and

2014 Sochi Winter Olympic, which bring millions of tourists to the country, security and

surveillance have became an essential priority. Situation management solutions, including

video analytics, which can be used by field agents and police to access, live and playback

video feeds have been widely used for this purpose. Similarly, upcoming events such as

the 2014 World Cup in Brazil will see wide implementation of intelligent surveillance

solutions for crime prevention and crowd control.

Complex and customised analytics: In a report published by the National Criminal

Justice Reference Service in (Krahnstoever, 2011), the development of a wide range of

analytics relevant to law enforcement and corrections are described. These include fea-

tures of video surveillance that can help to enable early detection and possibly prevention

of criminal incidents. Beyond the traditional motion detection, demands for complex ac-

tivity and understanding such as predict fight and aggression behaviours are increasing.

In addition, there are numerous ways to package and customised video analytics to serve,

for example, the different requirements and aspects of public and private needs.
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2.2 Visual Tracking

In support of the first trend in video analytics, where simple computer vision algo-

rithms are integrated into multimedia DSP boards for “at the camera” processing, along

with the hierarchical organisation of computer vision systems, this section begins with

visual tracking. It provides readers with the current state and insights into the problem of

visual tracking.

Generally, visual tracking is amongst the most common, yet challenging research

topics in computer vision. It represents the basic processing step for most video analytics

applications, and its output can be easily interpreted, to provide simple analytics such

as intrusion and loitering detection (Höferlin, Höferlin, Weiskopf, & Heidemann, 2011).

Consequently, the performances of these applications are significantly dependent on the

accuracy and robustness of the tracking algorithms (Dore, Soto, & Regazzoni, 2010).

The goal of tracking solutions is to associate foreground pixels over time as belonging to

a particular moving or occasionally stationary object.

In this study, the review is narrowed down to statistical correspondence methods,

where the task of motion estimation is implemented by sampling-based predictors such

as the Kalman Filter (KF) or Particle Filter (PF). These predictors use the state space

approach to model the object properties which include its position, velocity and accel-

eration and thus, are well-suited for estimation of the state of any time varying system.

Commonly, their estimation are enhanced by assuming that motion is always governed by

a Gaussian distribution, based on Brownian motion or constant velocity motion models

(Isard & Blake, 1998; Gustafsson et al., 2002; Weng, Kuo, & Tu, 2006; X. Li, Wang,

Wang, & Li, 2010). However, the motion assumptions which are commonly imposed,

do not apply to nonlinear systems and tends to give poor estimations of state variables

that do not follow the Gaussian distribution, such as when tracking abrupt motion. In this
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context, abrupt motion refers to inconsistency and irregularity in motion pattern between

adjacent frames. This type of motion may occur in situations where; i) the motion of

the target object changes at irregular intervals with unknown pattern (e.g. ball or float-

ing object) and ii) the motion of target is unpredictable due to edited clips acquired from

different cameras (e.g. camera switching) or iii) partially low-frame rate sequences (e.g.

object motion appears jerky), as shown in Fig. 2.1.

(a) Sample scenario where the motion of the object (table tennis ball) is rapid.

(b) Sample scenario of camera switching. The object (person wearing red shirt) appears in the
different position of the scene under varying perspective, captured from different cameras.

(c) Sample scenario of low frame rate. The object (tennis player) moves abruptly in the scene,
from frame 1 to 2 and 2 to 3.

Figure 2.1: Sample scenarios where abrupt motion occur.
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2.2.1 Tracking Abrupt Motion

A variety of tracking algorithms have been proposed to cope with non-linear sys-

tems. While they introduce new extension of the estimator, their work is still bounded

by the basis of linearising the non-linear models so that the traditional linear estimator

such as Kalman Filter can be applied (Seekircher, Abeyruwan, & Visser, 2011; Julier &

Uhlmann, 1997). Although they are more lenient towards Gaussian motion constraint,

the different sampling schemes used to estimate the state variable by either hierarchical

or recursive estimation are still subjected to a certain degree of motion (Van der Merwe,

Doucet, de Freitas, & Wan, 2000; C. Yang, Duraiswami, & Davis, 2005; W. Wu, 2008;

Maggio & Cavallaro, 2009). In practice, these methods have well-known drawbacks

including unstable filters if the assumption of local linearity is violated, potentially un-

bounded number of parameters to be fine-tuned, and exponentially increasing number of

samples for sampling as the dimensions of state space increases. Therefore, they are only

able to deal with nonlinearity to a certain degree and tend to produce poor estimation

when tracking abrupt motion.

2.2.2 Statistical Approach for Correspondence

Specifically, there is limited work that deals with abrupt motion. In a recent work in

(Zuriarrain, Lerasle, Arana, & Devy, 2008), Markov Chain Monte Carlo (MCMC) was

used to overcome the computational complexity in PF as the state space increases while

dealing with abrupt motion. Although the proposed MCMC copes better with a high di-

mensional space, it is still subjected to the common problem of requiring a large number

of samples when tracking abrupt motion. Thereafter, there are a number of researchers

who introduced modifications and refinements to the conventional MCMC. Kwon et al.

in (Kwon & Lee, 2008), integrate the Wang-Landau algorithm into the MCMC tracking

framework to track abrupt motion. Their method alleviates the constant-velocity motion
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constraint in MCMC by improvising the sampling efficiency using the proposed Annealed

Wang-Landau Monte Carlo (A-WLMC) sampling method. The A-WLMC method in-

creases the flexibility of the proposal density in MCMC by utilising the likelihood and

density of states terms for resampling. In the same way, another variation of MCMC

known as the Interactive Markov Chain Monte Carlo (I-MCMC) was proposed (Kwon &

Lee, 2010), where multiple basic trackers are deployed to track the motion changes of a

corresponding object. The basic trackers which consist of different combinations of ob-

servation and motion models are then fused into a compound tracker using the I-MCMC

framework. The exchange of information between these trackers has been shown to deal

with abrupt motion while retaining the number of samples used. In another advancement,

an intensely adaptive MCMC, the Intensely Adaptive Markov Chain Monte Carlo (IA-

MCMC) sampler (X. Zhou et al., 2012) has been proposed. Their method further reduces

the number of samples required when tracking abrupt motion by performing a two-step

sampling scheme; the preliminary sampling step discovers the rough landscape of the

proposal distribution (common when there is large motion uncertainty - abrupt motion)

and the adaptive sampling step refines the sampling space towards the promising regions

found by the preliminary sampling step. In another attempt for effective sampling of

abrupt motion, (Kwon & Lee, 2013) proposed the N-fold Wang-Landau (NFWL) track-

ing method that uses the N-fold algorithm to estimate the density of states which will

then be used to automatically increase or decrease the variance of the proposal distribu-

tion. The NFWL tracking method copes with abrupt changes in both position and scale

by dividing the state space into larger number of subregions. The N-fold algorithm was

introduced during sampling to cope with the exponentially increasing subregions.

In another variation of tracking approach in (Wong & Dooley, 2011), the template

matching approach is adopted. The possible object positions in every frame are obtained

by means of an object detection algorithm, which is a brute force method of searching
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the search window for a region similar to the object template defined in the previous

frame. The estimation is usually based on a similarity measure such as cross correlation.

In contrast to the traditional brute force search, they proposed an adaptive control of

the region-of-interest in order to limit the search to the vicinity of detected candidate

objects (i.e. table tennis ball). Similar work as proposed in (Comaniciu, Ramesh, &

Meer, 2003), the mean-shift procedure is performed to optimised the search window.

The mean-shift tracker maximises the appearance similarity of the target iteratively to

obtain the translation of the target. These improvements of the brute-force template-based

methods however, are still highly dependent on the search window size and incur high

computational cost. In addition, images of the fast moving balls are normally blurred,

which makes object detection more difficult.

2.2.3 Stochastic Optimisation Approach for Correspondence

Recently, Particle Swarm Optimisation (PSO) (Eberhart & Kennedy, 1995; Van den

Bergh & Engelbrecht, 2006; X. Zhang et al., 2008; Tong, Fang, & Xu, 2006; Neri,

Mininno, & Iacca, 2013; Sun, Zeng, Pan, Xue, & Jin, 2013), a new population based,

stochastic optimisation technique, has received more and more attention because of its

considerable success. Variations of PSO methods have been proposed and applied to var-

ious applications, including tracking of dynamic systems, evolving weights and structure

of neural networks, controlling reactive power or voltage, and simulating crowd behaviour

for evacuation planning (Poli, 2008; Ahmed & Glasgow, 2012).

The main difference between the conventional PF and PSO approaches is the inter-

actions between particles in the system. In the PSO, particles interact locally with one

another and with their environment, using the analogy of the cooperative aspect of social

behaviours of animal swarm such as flocks of birds. In the context of visual tracking,

the particles in PSO adjust their velocities dynamically according to their historical per-

24



formance, as well as their neighbours in the search space, towards finding the optimal

proposal distribution of the state. The success lies in the experience-sharing behaviour in

which the experience of each particle is continuously communicated to part or the whole

swarm, leading the overall swarm motion towards the most promising areas detected so

far in the search space, to achieve more accurate estimation.

In what constitutes to the closer work to ours, there are several work which have

adopted PSO to perform visual tracking (X. Zhang et al., 2008; Thida et al., 2009; W. Li

et al., 2009; X. Zhang, Hu, & Maybank, 2010). Mostly, the interactions between particles

in the PSO are leveraged to accelerate the convergence in the search space, where tracking

is deemed as a search problem in a high dimensional search space. The underlying idea

is that a swarm of particles are deployed around the image to look for the best-fit tracking

window. The exploration capability of the particles mitigates the problem known to occur

in PF, where the experience-sharing in PSO, deals with sample impoverishment and pre-

vent the search from being trapped in local maxima. The variations of PSO methods for

tracking in the literatures vary in terms of the fitness functions used, scales and iterations

of search, object detectors and convergence criterion. For example, Zheng and Meng

in (Zheng & Meng, 2008) introduce normalised-accumulative histogram to generate the

fitness function in order to handle the uncertainty of real-world tracking. In another re-

lated work by Yang et al. in (J. Yang, Ji, & Liu, 2011), the fitness function, the fitness

function of particles is combined with fuzzy clustering technique for better approxima-

tion of the true posterior distribution. Each particle is implemented as a local window

classifier that search through the search space. It is important to note that similar to other

evolutionary methods, PSO does not use gradient information and thus, can be applied

effectively to ill-behaved cost functions. Furthermore, it has been observed, through em-

pirical simulations, that the number of particles and iterations required scale weakly with

the dimensionality of the solution space (Saisan, Medasani, & Owechko, 2005), making
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PSO a possible solution for tracking abrupt motion. However, one major drawback of the

traditional PSO is the need to fine-tune parameters as well as the uncertainty in finding

the multiple optimal solutions.

2.2.4 Discussion

In summary, the available visual tracking methods, including the statistical and

stochastic optimisation approaches are still subjected to known constraints when track-

ing abrupt motion. This is due to the dynamic nature of the abrupt motion as well as

the need to accommodate to scenario changes in real-world applications. Furthermore,

motivated by the meta-level question prompted in (Zhu, Vondrick, Ramanan, & Fowlkes,

2012), this study recognise the need for a trade-off between the precision and computa-

tional cost of visual tracking algorithms. From the literature, it is observed that there is

a trend towards increasing complexity as tracking algorithms progress. More often than

not, these refined methods compensate the increased in complexity in a certain aspect of

the algorithm by reducing another aspect of it. Chapter 3 investigates and introduces a

novel tracking algorithm inspired by both, the statistical and stochastic optimisation ap-

proach to deal with the complexity of tracking abrupt motion while maintaining, if not

reducing the computational requirement.

2.3 Behaviour Analysis in Crowded Scenes

One particular class of interest in public security involves a large number of people

gathering together, such as in public assemblies (e.g. music festivals, religious events),

sport competitions, demonstrations (e.g. strikes, protests). The security of public events

involving large crowd has always been of high concern to relevant authorities due to the

dynamics and degeneration risk. Various examples from historical incidents have shown

how things can easily get out of control when mass of people come together during big

events. In a crowd, there is high tendency for emotion spirals (e.g. panic, aggression) to
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develop to high levels and the consequences are often devastating. One must understand

that at large events, where crowds of hundreds or even thousands gather, video monitoring

is a daunting task. This alludes briefly to the second trend of video analytics, where

there is an increasing demand for analytics during special events and mass gatherings,

in particular. Automatic behaviour analysis in crowded scenes is often intended for pre-

screening of scenes for better coordination and control of crowd activities.

Generally, behaviour analysis in crowded scenes faces two fundamental challenges

in computational complexity and uncertainty. Human, which is the class of object in

this context, demonstrates complex spatio-temporal dynamics, and large variations in a

highly dynamical and uncertain environments. For instance, people tend to react and re-

sponse differently with different environment. Thus, segmenting and categorising these

behaviours and their related activities are ill-posed. Understanding and interpreting be-

haviours are not as straightforward. Limited research efforts have been done in developing

computer vision algorithms that deal with high density or extremely crowded scenes (Ali

& Shah, 2007) due to its complexity. The recent years however, has shown rapid growing

interest in the research community (Gong & Xiang, 2011).

The general approach for crowd behaviour analysis and modelling contains the steps

of, detecting moving objects, tracking the targeted objects, finally analysing their trajec-

tories to identify the dominant flows, or to model atypical motion patterns. (Thida, Yong,

Climent-Pérez, Eng, & Remagnino, 2013; Vishwakarma & Agrawal, 2013). Based on

this pipeline, this section discusses the different categories of crowd modelling and the

various approaches in extracting crowd properties for subsequent analysis to infer abnor-

mal activities.
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2.3.1 Categorisation of Crowd

Thus far, there is yet any agreed, detailed definition of crowd. Although the multiple

descriptions of crowds are vague, and relevant to the varying context, they share common

characteristics in several aspects: i) size – large gathering of people, ii) density – crowd

members should be in a particular area, with sufficient density distribution, iii) time –

crowd members should come together at a specific location for a specific purpose over a

measurable time period, iv) collectivity – crowd members should share a social identity

(i.e. common goal and interest) and act in a coherent manner. (Challenger, Clegg, &

Robinson, 2010).

There are three distinct philosophies for modelling a crowd in the literature, where

crowd models are defined as microscopic, mesoscopic and macroscopic (Zhan, Mon-

ekosso, Remagnino, Velastin, & Xu, 2008). Microscopic model focuses on the individual

level while macroscopic deals with the crowd as a whole, and concern the collective

observable behaviours emerging from crowd. Mesoscopic on the other hand, combines

properties of the two extremes, where the characters of individuals are kept while main-

taining a general view of the crowd, entirely.

2.3.2 Properties of Crowd

Various efforts have been done to detect and track objects in order to generate reli-

able trajectories. The outputs of tracking algorithms can either be used for higher-level

analysis using the tracks and mining trends in a bottom-up approach of crowd analysis;

or, conversely, the properties (e.g. trajectory, velocity) obtained from tracking algorithms

can be further refined by using cues obtained from crowd analysis using the top-down

approach (Thida et al., 2013). However, the complexity of most tracking algorithms is

very much influenced by the density of crowd, context and environment in which the

tracking is performed. Visual tracking of individuals becomes more challenging as the
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density increases from pedestrian↔ group↔ crowd (Jo, Chug, & Sethi, 2013). While

there are ample tracking approaches for the various density of crowd, the focal point of

this discussion is on work related to identifying abnormality in crowd.

2.3.2 (a) Microscopic Modeling

In a bottom-up approach as proposed in (Stauffer, 2003), the trajectories are obtained

from background subtraction and correspondence-based tracking of the blobs over a pe-

riod of time. Due to the high possibility of tracking failures in different environments,

(Stauffer, 2003) further introduced a connecting mechanism that associates fragmented

tracking sequences to improve the tracking correspondence. His method aims to pro-

vide the semantics knowledge of the environment (i.e. sources and sinks), based on the

assumption that individuals tend to appear and disappear at particular locations that corre-

spond to sources and sinks. Other similar extensions of using refined trajectories to obtain

the semantics of the scenes are as discussed in (Makris & Ellis, 2005; X. Wang, Tieu, &

Grimson, 2006; Nedrich & Davis, 2010). Although these methods work well, up to a cer-

tain extent, in sparse crowd scenes, they are not suitable to deal with dense crowd scenes.

Tracking in dense crowd scenes is extremely challenging, given the complexity arise due

to the interactions and occlusions between individuals in the crowd. Furthermore, based

on trajectory, or spatio-temporal path alone is not sufficient to detect other scenarios of

abnormality in crowd. In practice, the trajectory property is often used to infer direct

abnormality such as sources and sinks or dominant flows. They are not well-suited to

infer higher-level semantics which requires further analysis on the interactions within

crowd members and their environment, including unstable flow, counter flow direction or

bottleneck.
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2.3.2 (b) Macroscopic Modeling

In order to alleviate the need to track individuals in the scene, in the recent years,

researchers have proposed holistic approaches that exploit the contextual information to

improve flow understanding in crowded scenes (Jacques Junior, Raupp Musse, & Jung,

2010). Rather than computing the trajectories of individuals, holistic approaches build a

crowd motion model using the instantaneous motions of the entire scene such as the flow

field (Andrade, Blunsden, & Fisher, 2006; M. Hu, Ali, & Shah, 2008). The flow field is

then fed into clustering methods such as the Hidden Markov Models to group the coherent

motion patterns of a given scene. Likewise, a multi-scale representation of motion fea-

tures (i.e. direction and speed) extracted from optical flow and low-pass filtering is used

to represent crowd motion (Mancas, Riche, Leroy, & Gosselin, 2011). Other proposals

such as in (Ali & Shah, 2008) utilises the contextual information to track unstructured

crowd scene. (Ali & Shah, 2008) method assumes that all particles, which represent

individuals in the crowd, are moving towards a unified direction. The work has demon-

strated an improvement in tracking of individuals in the dense crowd scenes. However,

the floor field representation is still limited to having one dominant motion in crowd, and

thus is not suitable when the crowd motion is random with different groups of individuals

moving at different directions. In another variation (Mehran et al., 2009), the interac-

tions of targets are integrated to model the crowd flow. Subsequently, the energy function

obtained from the social information and physical constraint in the environment is used

to model the normal behaviour of the crowd. Rodriguez et al. in (S. K. T. Rodriguez

M.and Ali, 2009) employ correlated topic model to model the random motion in unstruc-

tured crowded scenes. Similarly in (Solmaz, Moore, & Shah, 2012; Kratz & Nishino,

2010), the learned motion patterns are incorporated into the motion model for accurate

prediction of the local spatio-temporal patterns that describe the motion of individuals
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in highly dense scenes. Although these methods provide accurate “holistic” tracking of

individuals in crowded scenes, they require exhaustive learning and prior information of

the scene, which may not be practical in most real world scenarios. Furthermore, the

contextual information are often not available in most scenarios.

2.3.3 Abnormality in Crowd

Detecting abnormality in crowded scenes has gained growing research efforts. Au-

tomated detection sources and sinks for instance, can aid in providing contextual infor-

mation for semantic modelling or scene understanding. On the other hand, automated

detection of abnormality caused by congestion may help avoid unnecessary overcrowd-

ing or clogging for traffic monitoring and crowd control. Discoveries of other abnormality

such as instability and counter flow direction may provide cues to alert the authority of

potential threats or incidents.

The definition of abnormality has been causing much debate in the research commu-

nity, due to the subjective nature and complexity of human behaviours. Some researchers

consider any deviation from the ordinary observed events as abnormal, whereas others

consider rare or outstanding event as atypical. In this study, the term salient is used to

refer to interesting regions acquiring attention, or potentially precarious.

Finding interesting regions in a given scene is generally accomplished by firstly

learning an activity model of the scene, followed by using the learned model to iden-

tify anomalies (Kuettel et al., 2010; Hospedales et al., 2011; X. Tang et al., 2012). For

example, the tracking approaches keep track of each individual motion and further apply

a statistical model of the trajectories to identify the semantics or geometric structures of

the scene, such as the walking paths, sources and sinks. Then, the learned semantics are

compared to query trajectories in order to detect anomaly. In a more flexible approach

which detects a broader scope of salient region is proposed by Ali et al. (Ali & Shah,

31



2007). Their method utilises the lagrangian particle dynamics to segment regions based

on the motion stability. Then, abnormality is discovered by comparing the segmented

region with the learned model.

Detection and localisation of salient regions by using spectral analysis is proposed in

(Loy, Xiang, & Shaogang, 2012). In contrast to other methods, their method suppresses

dominant flows with a focus on the motion flows that deviate from the norm. While their

method deals with unstable crowd flow, their experiments were limited to the detection

of simulated instability, and not real-time public scenes. In the closest work to this study,

Solmaz et al. (Solmaz et al., 2012) propose a linear approximation of the dynamical

system to categorise the different behaviours of crowd by observing their eigenvalues

over an interval of time. Their method shows promising results in detecting five different

scenarios of detailed saliency that includes bottlenecks, lane, arch, fountain-head and

blocking.

2.3.4 Discussion

A major drawback of methods that require a learning stage is the need to have a

large amount of video data for training, which is tedious and tend to be specific to a

particular learned scenario. Usually, they are not general enough to be adapted to other

domains, or deployment scenarios. In addition, they are restricted to identifying specific

causes of abnormality such as wrong direction and do not deal with other complex sce-

narios of saliency. Meanwhile, a major shortcoming of the deterministic approaches is

the incapability to detect instability when there is lack of consistent characteristic flow.

Furthermore, based on the notion that human behaviours are indeed complex and diver-

sified, the categorisation of human behaviours into predefined distinct categories, such as

in (Solmaz et al., 2012), may be an oversimplification.
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2.4 Abnormal Event Detection

Since the first appearance of CCTV cameras in the early 1950s, video surveillance

technologies have undertaken several generations of continuous evolutions and the pace

becomes faster over the last decade (Xu, 2007). Technological advancements have led to

the development of semi-automatic systems, known as the second generation surveillance

systems, where algorithms for automatic real-time detection of events, or analytics to aid

the user in identifying events acquiring attention are implemented. Most recently, the

development of a wide range of analytics beyond the traditional event detectors are ex-

plored, leading the way to third generation surveillance systems. This term is sometimes

used in the literature to refer systems conceived to deal with a large number of cameras,

a geographical spread of resources, many monitoring points, and to mirror the hierarchi-

cal and distributed nature of the human process of surveillance (Velastin & Remagnino,

2006). In short, the surveillance space is growing along with the increasing demand for

higher level reasoning and scene understanding for effective surveillance. The race is now

on providing integrated, customised solutions that cater to public and private needs, and at

the same time, are able to handle practical surveillance problems. While great strides have

been made in developing more advanced analytics solutions that deals with more compli-

cated events, this section provides a brief overview of the state-of-the-art solutions, which

are divided into two broad categories, namely the shape or pattern recognition based and

machine learning based approaches (Benezeth, Jodoin, & Saligrama, 2011). For com-

prehensive review on the various approaches of video analytics solutions including the

neural network, topic model and syntactic approaches, please refer to the survey paper by

Turaga et al. (Turaga, Chellappa, Subrahmanian, & Udrea, 2008).
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2.4.1 Rule or Pattern Based Approach

Generally, the rule or pattern recognition based approach requires prior information

regarding the object, or abnormal events that are of interest. In fact, most video ana-

lytics suppliers such as Bosch, Honeywell, Axis and iOmniscient adopt this approach

for implementation. Using this approach, the analytics or event detectors are packaged

into modules which are predefined and can be packaged accordingly to suit the needs

of various deployment scenarios. Examples of such event detectors include i) perimeter

intrusion (Jodoin, Konrad, & Saligrama, 2008), where simple motion descriptor based

on the dynamics of luminance and colour profiles are observed over a period of time to

detect abnormality, ii) abandoned object detection (Tian, Feris, & Hampapur, 2008), the

refined foreground regions are analysed based on user defined parameters to determine

abandoned or removed object scenarios, iii) loitering detection (Nam, 2013), where pre-

defined time span are imposed to consistent tracking outputs for detection. These methods

usually either perform comparison between the properties (i.e. low-level attributes) of the

query object and the learned templates for detection, or apply specific set of rules to the

extracted properties to infer an event.

The need to have prior information or rules that define a particular abnormal event

is not always applicable, especially given the rare occurrence and unpredictability of ab-

normal event. Therefore, alternative approaches which impose set of rules or knowledge

to infer events usually prior define normal patterns. An event is deemed abnormal if it is

non-conforming or deviates from the defined norm. In addition, these methods are often

implemented using the general pipeline of video analytics framework; where objects are

firstly detected via motion descriptors, classified and tracked over a time frame, and fi-

nally the resulting trajectories are matched to the defined rules to discriminate between a

normal and abnormal event (Buxton, 2003). Despite the fact that trajectory-based analysis
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has been proven successful in many applications, these methods are specific, and do not

cope well with complex scenarios of abnormal events (Morris & Trivedi, 2008). Since

they follow the general pipeline from pre-processing to low-level feature extraction to

high-level interpretation, these methods are prone to error propagation. For instance, the

erroneous estimation of motion will lead to incorrect tracking, which will subsequently

result in false detection of events. Furthermore, rule or pattern based recognition are often

specific to certain defined scenarios, and thus, are rigid and cannot be easily extended.

2.4.2 Machine Learning Based Approach

In order to overcome the limitations and inflexibility of rule based recognition, a

great diversity of methods based on learning approach have been introduced. Flexible

models have evolved in the machine learning community, and adopted into the computer

vision arena over the years. These models encompass a wide class or parametric models

such as the Gaussian Mixtures (GM), Hidden Markov Model (HMM) and Bayesian Be-

lief Networks (BBN) (L. Wang, Cheng, Zhao, & Pietikäinen, 2011). Typically, learning

based approach consists of a matching procedure that compares a measured sequence to

the pre-learned models or labelled sequences that represent events; and need to be learnt

by the system via a learning stage. In contrast to the rule-based approach, learning-based

algorithms are more flexible and deal with the lack of information on abnormal events

more effectively, since they do not require prior knowledge. Examples of analytics which

applied learning models include i) crowd dispersal detection, where the interaction force

in crowd is estimated using the social force model and mapped into the feature space to

obtain the dynamics of the interaction; this is then followed by a learning stage using the

bag of words approach to infer abnormal event (Mehran et al., 2009), ii) loitering detec-

tion, where a linear discriminant approach is used to classify and recognise pedestrian by

correlating their appearance feature; time stamps collected with the snapshots in the corre-
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sponding database are then used to infer loitering event (Bird, Masoud, Papanikolopoulos,

& Isaacs, 2005), iii) running detection, where hierarchical classifiers using HMM and its

variation are used to discriminate between normal and abnormal events (Aliakbarpour et

al., 2011). Due to the need to determine the basis prior to classification, learning approach

often requires training stage on a set of example data before it can be used to discriminate

events. In some models such as the BBN, large numbers of training data or extensive

fine tuning are required. A great deal of refinements on the basic learning models have

been proposed, such as Probabilistic Topic Model (PTM) which requires less computa-

tional cost and are less sensitive to noise in comparison to the standard BBN. However,

the high learning cost required by most learning methods hinders them from dealing with

incremental learning; which is still a topic of debate at present.

2.4.3 Discussion

There are a number of established providers of analytics thus far. CROMATICA

(Khoudour et al., 1997) - Crowd Monitoring with Telematic and Communication Assis-

tance combined video-analysis based technologies and wireless data transfer to improve

surveillance in public transport systems. Their method deals with multiple events such

as intrusion and unattended object but is limited to an indoor environment. PRISMAT-

ICA (Velastin et al., 2005) - Pro-active Integrated systems for Security Management by

Technological Institutional and Communication Assistance is a distributed system with

automated event detection to improve the safety in public transport. The system compo-

nents were tested in a real world environment and achieved satisfactory results. Although

their method deals with a certain degree of crowded scene, it is limited to an indoor en-

vironment. Fuentes and Velastin (Fuentes & Velastin, 2004) proposed a framework that

utilises low-level descriptions such as the centroid position of blobs to infer events. An

extension of this work to include not only the low-level features, but also the high-level
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descriptions was discussed in detail, in (Schwerdt et al., 2005). This project, which is also

known as the EAGLE project, shows satisfactory evaluation results using the Challenge

of Real-time Event Detection Solutions (CREDS) dataset. Similarly, Black et al. (Black,

Velastin, & Boghossian, 2005) evaluated their proposed real-time surveillance system for

metropolitan railways in the United Kingdom and Italy using the CREDS dataset. A more

recent work by in (Fernández-Caballero, Castillo, & Rodríguez-Sánchez, 2012), atomised

or divided low-level human actions into smaller components and used these components

as grammars to infer an event. Again, their method is limited to indoor environment

although they cope well with crowded scenes.

In summary, current analytics solutions often act separately to detect multiple events

in different scenarios. For example, systems that perform loitering detection or/and ab-

normal trajectory in a given scene is based on two separate modules that work inde-

pendently. Thus, they are usually not flexible or general enough to allow detections of

different events at one time. There is still an open challenge for a solution that deals with

multiple events and provides flexibility in handling different environments (e.g. indoor

and outdoor) to meet the rising demand from the public and private sectors.

2.5 Summary

In summary, there are still challenges and issues in conjunction with the three main

modules in the general pipeline of computer vision solutions in video analytics as shown

in Fig. 2.2.

Tracking Abrupt Motion: Generally, tracking is often simplified by imposing

constraints on the motion of objects, where the motion is assumed smooth with no

abrupt change. They are further constrained by supposing that the motion is of con-

stant velocity and acceleration based on a priori information (F. Yan, Christmas, &

Kittler, 2005; Maggio & Cavallaro, 2009; Adam, Rivlin, & Shimshoni, 2006; Kwon
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Figure 2.2: The summary of the issues in the three main modules of the general pipeline
of computer vision solutions for video analytics, that serves as the motivations of this
thesis towards achieving the respective objectives.

& Lee, 2008; Wong & Dooley, 2011; X. Zhang et al., 2008). These assumptions

tend to fail in the case of abrupt motion, which is fairly common given the growing

number of cameras deployed today. Therefore, the first contribution of this thesis

aims to develop a visual tracking algorithm that deals with abrupt motion, while

striving for an optimised trade-off between accuracy and processing cost.

Crowd Behaviour Analysis: Visual tracking of objects in dense crowd scenes such

as rallies can be daunting due to the large variations of crowd. Thus tracking meth-

ods are not well-suited in dense crowd scenes where hundreds or even thousands

gather. Meanwhile, holistic approaches that alleviate the need to track each indi-

vidual in crowded scenes often requires learning stage to detect abnormal events

(Kuettel et al., 2010; Hospedales et al., 2011; X. Tang et al., 2012). A major draw-

back of these methods is the need to have a large amount of video data for training

during the learning stage. Hence, the second contribution proposes an alternative

38



solution that deals with dense crowd scenes. A new research direction that identi-

fies and localises interesting regions by exploiting the motion dynamics of crowd is

proposed.

Multiple Events Detection: There are various works in the industry and academia

that provide analytics solutions (Albusac et al., 2014; Chen et al., 2011; Khoudour

et al., 1997; Velastin et al., 2005). However, most of these systems are focused

at detecting singular events at a particular region. Meanwhile, systems that pro-

vide multiple events detection are subjected to handling specific scenarios such as

railway, and require extensive fine-tuning or learning when deployed in other envi-

ronment such as an open market. Therefore, the third part of this study introduces

a framework that deals with multiple events, on different regions-of-interest (ROI),

at a particular time, while utilising the low-level features of a given scene, for a

broader degree of scene understanding.
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CHAPTER 3

ABRUPT MOTION TRACKING

Visual tracking is one of the most important and challenging research topics in computer

vision. Its importance stems from the fact that it is pertinent to the tasks of motion based

recognition, automated surveillance, video indexing, human-computer interaction, vehi-

cle navigation and video analytics (H. Yang et al., 2011; Yilmaz et al., 2006). While

considerable research exist in relation to visual tracking, only a handful deals with abrupt

motion (Wong & Dooley, 2011; Kwon & Lee, 2013; H. Liu & Sun, 2012; X. Zhou et al.,

2012). Abrupt motion can be defined as situations where the object motion changes be-

tween adjacent frames with unknown patterns in scenarios such as i) partially low-frame

rate, ii) switching of camera views in a topology network or iii) irregular motion of the

object as shown in Fig. 3.1 (Kwon & Lee, 2008). These scenarios are extremely common

given the enormous number of cameras deployed in public scenes.

Thus, in this chapter, the focus is on addressing the problem by casting tracking

of abrupt motion as an optimisation problem. A novel abrupt motion tracker which

is inspired by swarm intelligence, known as the Refined Swarm-based Abrupt Motion

Tracking (SwATrack) is proposed. Unlike existing swarm-based filtering methods, the

SwATrack presents an optimised sampling strategy to trade-off between the exploration

and exploitation of the state space, in search for the optimal proposal distribution. A

fine-tuning mechanism, known as the Dynamic Acceleration Parameters (DAP) that al-

lows on-the-fly tuning of the best mean and variance of the distribution for sampling is

also introduced. By combining these two sampling strategies within the Particle Swarm

Optimisation (PSO) framework represents a novel method to address abrupt motion. To

the best of the author’s knowledge, this has never been done before. Experimental results
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with a consolidated dataset using benchmarked sequences are presented. The quantitative

and qualitative results demonstrate the effectiveness of the proposed method in terms of

dataset unbiased, object size invariant and fast recovery in tracking the abrupt motions.

Finally, a comprehensive discussion on the findings and comparisons with the state-of-

the-art solutions conclude this chapter.

This chapter is structured as the following: a brief introduction on abrupt motion and

the conventional Bayesian tracking framework are described in Section 3.1. Section 3.2

explains the standard Particle Swarm Optimisation algorithm as well as its limitation in

dealing with abrupt motion. This is followed by a detailed description of the proposed

SwATrack tracking solution in Section 3.3. Experimental results are reported and dis-

cussed in Section 3.4. Specifically, the effectiveness of the proposed approach in tracking

abrupt motion is evaluated using benchmarked videos which exhibit various challenging

scenarios of abrupt motion. Further evaluations on the research questions raised in this

chapter is discussed in Section 3.5. Finally, the conclusions are drawn in Section 3.6.

Figure 3.1: Example of the abrupt motion in different scenarios. Top: Inconsistent speed.
Middle: Camera switching. Bottom: Low frame-rate videos.
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3.1 Abrupt Motion

The task of motion estimation is usually implemented by utilising sampling-based

predictors such as Kalman Filter (KF) (Welch & Bishop, 1995; Wan & Van Der Merwe,

2000; Oussalah & Schutter, 2000), Particle Filter (PF) (Isard & Blake, 1998; Arulam-

palam et al., 2002; H. Liu & Sun, 2012; Chan et al., 2008; Chan & Liu, 2009), or linear

regression techniques (Ellis et al., 2011). These predictors are commonly enhanced by

assuming that motion is always governed by a Gaussian distribution based on the Brow-

nian motion or constant velocity motion models (Yilmaz et al., 2006; Cifuentes, Sturzel,

Jurie, & Brostow, 2012).

While this assumption holds true to a certain degree for smooth motion, it tends to

fail in the case of abrupt motion such as inconsistent speed (e.g. the movement of ball

in sport events), camera switching (tracking of subject in a camera topology) and low

frame-rate videos, as illustrated in Fig. 3.1. The main reason is that the state equation

cannot cope with the unexpected dynamic movement, e.g. sudden or sharp changes of

the camera/object motion in adjacent frames. These sampling-based solutions also suffer

from the well-known local trap problem and particle degeneracy problem. In order to

handle these problems, one of the earliest work (Y. Li, Ai, Yamashita, Lao, & Kawade,

2008) considered tracking in low frame rate videos. Their work considers tracking in low

frame rate as abrupt motion, and proposed a cascaded PF to solve this problem. This

is then followed by a number of sampling strategies (Kwon & Lee, 2008, 2010, 2013;

X. Zhang, Hu, Wang, et al., 2010; X. Zhou et al., 2012; Xia, Deng, Li, & Geng, 2013;

F. Wang & Lu, 2012), which are incorporated into the standard Markov Chain Monte

Carlo (MCMC) tracking framework. Their method alleviates the constant velocity motion

constraint in MCMC by improvising the sampling efficiency.
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Although the aforementioned works have shown satisfactory results in tracking abrupt

motion, it is observed that there is a clear trend towards increasing complexity of the

Bayesian filtering framework. Proposed methods have become more complicated to cope

with more difficult tracking scenarios. Often these sophisticated methods compensate the

increased in complexity by trading-off performance in some other areas. For example,

the increased number of subregions for sampling to cope with the variation of abrupt mo-

tion is compensated by using a smaller number of samples to reduce, if not maintaining,

the computational cost incurred. Therefore, this chapter is motivated by the meta-level

question on whether these complex and sophisticated methods are really necessary?.

3.1.1 Bayesian Tracking Framework

Visual tracking is often formulated as a graphical model and involves a searching

process for inferring the motion of an object known as the state, xt , from uncertain and

ambiguous observations, zt , at a given time, t. Generally, it consists of two essential steps:

prediction and update. Given all available observations, z1:t−1 = z1, ...zt−1, from time

t = 0 : t−1, the prediction stage applies the probabilistic transition model, p(xt | xt−1), to

predict the posterior distribution, p(xt | z1:t−1), at time t as follows:

p(xt | z1:t−1) =
∫

p(xt | x1:t−1)p(xt−1 | z1:t−1)dxt−1 (3.1)

When the observation, zt , is available at time t, the state is then updated using the

Bayesian rule:

p(xt | z1:t) =
p(zt | xt)p(xt | z1:t−1)

p(zt | z1:t−1)
(3.2)

where p(zt | xt) is the observation model, also known as the likelihood. This process

is also known as Bayesian filtering, optimal filtering or stochastic filtering.
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The transitions from p(xt−1 | z1:t−1) to p(xt | z1:t−1) is often analytically intractable,

and in some cases, the posterior cannot be evaluated simply in closed form due to the

complexity of its observation model, p(zt | xt). Therefore, tracking algorithms resort to

methods that are based on recursive approximations or iterative sampling techniques. In

the PF approach as proposed in (Isard & Blake, 1998), the posterior, p(xt | z1:t) is approx-

imated with a Dirac function, δ , using a finite set of N particles, Xt = {x1
t ,x

2
t , ...x

N
t }. To

accomplish this, candidate particles are sampled from an appropriate importance distri-

bution, π(xt | z1:t), that approximates the posterior, xn
t ∼ π(xt | xn

1:t−1,zt) and the approx-

imation approaches the true posterior density as N → 1. The weight of each candidate

particle can be computed according to the following importance ratio:

wn
t α wn

t−1
p(zt | xn

t )p(xn
t | xn

t−1)

π(xn
t | xn

1:t−1,zt)
(3.3)

Finally, the posterior filtered density, p(xt | z1:t) can be approximated by:

p(xt | z1:t)≈
N

∑
n=1

wn
t δ (xt− xn

t ) (3.4)

A summary of the standard PF algorithm is described in Algorithm 1.

Algorithm 1 : PF Algorithm
Initialisation:
{xn

t =Ø} n = 1, ...,N
η = 0
for n=1:N do

Select the nth sample, xn
t−1 ∈ Xt−1

Sample xn
t−1 from π(xt | xn

1:t−1,zt)

Estimate the importance weight, wn
t α wn

t−1
p(zt | xn

t )p(xn
t | xn

t−1)

π(xn
t | xn

1:t−1,zt)
Update normalisation factor, η = η +wn

t
Insert Xt = {xn

t ,w
n
t }

end for
for n=1:N do

Normalise weight, wn
t = wn

t /η

end for
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3.1.2 Optimal Proposal Distribution

In general, the quality of the posterior distribution through iterative sampling meth-

ods is highly influenced by the quality of the proposal distribution, π(xt | z1:t), since it

concerns sampling the particles in the relevant area where the posterior is significant. If

the proposal distribution is similar to the posterior, the imbalance of weights amongst the

particles can be reduced, and therefore, high accuracy and high computational efficiency

can be achieved. Otherwise, only a few particles would have high likelihood, resulting in

a large variance between the particles’ weights and erroneous estimation. This situation

is known as the particle degeneracy problem as shown in Fig. 3.2a. Also, if the proposal

distribution is drawn from the tail of the actual posterior, a phenomenon known as trapped

in local optima happens as shown in Fig. 3.2b.

(a) Particle degeneracy.

(b) Trapped in local optima.

Figure 3.2: Known problem of sampling-based tracking methods such as particle filter
tracking and its variation.
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Many techniques have been proposed to design efficient proposal distributions (Doucet

& Johansen, 2011). In particular, the use of standard suboptimal filtering techniques such

as the Extended Kalman Filter (EKF) (Ljung, 1979; Ruck, Rogers, Kabrisky, Maybeck,

& Oxley, 1992; Welch & Bishop, 1995; PomÃ¡rico-Franquiz, Khan, & Shmaliy, 2014)

and Unscented Kalman Filter (UKF) (Wan & Van Der Merwe, 2000; Rui & Chen, 2001;

Van Der Merwe & Wan, 2001; G. Liu, Tang, Huang, Liu, & Sun, 2007; Holmes, Klein, &

Murray, 2009) to obtain proposal distributions are very popular in the literature. Besides

that, there are also methods that apply local optimisation techniques to design the pro-

posal distribution, centred around the mode of the actual posterior, p(xt | z1:t) (M. K. Pitt

& Shephard, 1999; M. J. Pitt & Shephard, 2001; F. Yan et al., 2005).

While ideally it is best to perform sampling on the posterior, in reality this is not

possible; as the posterior is not known and is the one to be estimated. Thus, the poste-

rior is estimated by sampling particles from known proposal distribution. In the simplest

scenario, the dynamic transition model is usually taken as the proposal distribution for

sampling, π(xt | z1:t ,zt) = p(xt | x1:t−1). The distribution is commonly governed by the

Gaussian assumption, where π(xt | x1:t−1,N ) and N (θ ,σ2). Often the mean, θ and

variance σ2 are fixed. In constant-velocity dynamic models, the transition model is gov-

erned by Gaussian distribution with the addition that the displacement of the state is

relative to its previous time-step. However, the non-linear Gaussian transition model does

not take into account current observation data, and therefore is still prone to have most of

the particles located in the low likelihood area. Furthermore, in abrupt motion tracking,

the posterior is often of a larger state space with rugged landscape, and cannot be mod-

elled by Gaussian with fixed mean and variance or with uniform sampling. Theoretically,

a larger variance would help to cover abrupt motion. However, the increase in proposal

variance would incur additional computational cost.
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Motivated by the meta-level question prompted in (Zhu et al., 2012) on whether there

is a need to have more training data or better models for object detection, this chapter

raises similar question in the domain of visual tracking; will continued progress in visual

tracking be driven by the increased complexity of tracking algorithms? As indicated in

the earlier section, often these sophisticated methods compensate the increased in com-

plexity in a certain aspect of the algorithm by reducing another aspect of it. Furthermore,

according to (Cifuentes et al., 2012), different scenarios require different dynamic mod-

els. If a particular motion models only work sometimes, on a particular scenario, then

how far should the increased in complexity of tracking algorithms be, to deal with the

challenges of real-time scenarios?

In order to address the common issues of sampling-based tracking methods in deal-

ing with abrupt motion while prioritising the need for accurate, yet efficient tracking

algorithm, this chapter proposes an optimal approximation of the proposal distribution,

known as the SwATrack algorithm. In the proposed framework, abrupt motion tracking

is deemed as an optimisation problem, where the approximation of the distribution incor-

porates the latest observation and sharing of information between particles. A stochastic

optimisation approach known as the PSO algorithm, which exploits the emergent be-

haviour of a swarm of particles is adapted to guide the proposal distribution towards the

actual posterior. The optimal distribution is described as, q(xt | xn
1:t−1, Q), where Q(θ̂ , σ̂2)

is the output of the proposed SwATrack algorithm. There are several advantages of the

proposed solution. First, the proposed method alleviates the Gaussian assumption for

sampling by utilising the global solution (emergence behaviour) found by the swarm of

particles in the SwATrack to automatically adjust the variance of the proposal distribution.

This allows a more flexible and efficient proposal distribution that deals with both, smooth

and abrupt motion. Second, the communication and synergy between particles provide

a way to avoid the local optima and reach the global maximum. This is made possible
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since each particle in the SwATrack swarm has its own velocity and they communicate

with each other to direct the search into optimal regions, a notion that is not present in

other methods such as the PF. Third, the convergence of the swarm takes into account the

observations, thus allowing a faster convergence with limited number of samples.

3.2 Particle Swarm Optimisation Revisit

PSO - a population-based stochastic optimisation technique was developed by Kennedy

and Eberhart in 1995 (Eberhart & Kennedy, 1995). It was inspired by the social behaviour

of a flock of birds. Briefly, let us assume a n-dimensional search space, S ∈ Rn and a

swarm comprising of N particles. Each particle represents a candidate solution to the

search problem and is associated with a fitness function (cost function), f : S→R. At

every kth iteration, each particle is represented as {xn
k}n=1,...,N , where k = 1,2, ...K. Each

particle, xn
k has its own position, p(xn

k), velocity, v(xn
k), and a corresponding fitness value

(cost), f (xn
k). Each particle will remember its personal best solution encountered through-

out kth iterations, pBestn
k = xn

l , where xn
l = argmax( f (xn

k)). l represents the kth iteration,

which has the best solution for the kth particle. The position of the personal best is de-

noted as p(pBestn
k ), while its corresponding fitness value is f (pBestn

k ). Additionally, for

every kth iteration, the particle with the best fitness value will be chosen as the global

best and is denoted as the index of the particle, g, at kth iteration. gBestk = xg
k , where

xg
k = argmax( f (xn

k)). The position of the personal best is denoted as p(gBestk), while its

corresponding fitness value is f (gBestk).

The summary of the conventional PSO algorithm is shown in Algorithm 2. In Eq.

3.5, the parameters ω , c1 and c2 are positive acceleration constants used to scale the

influence of the inertia, cognitive and social components respectively; r1, r2 ∈ [0,1] are

uniformly distributed random numbers to randomise the search exploration.
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Algorithm 2 : Standard PSO
Initialisation, at iteration k=0

• Initialise a population of N particles, {xn
k}n=1,...,N with positions, p(xn

k), at ran-
dom within the search space, S.

• Initialise the velocities, v(xn
k) at random within [1,−1].

• Evaluate the fitness value of each particle, f (p(xn
k)) and identify their personal

best, pBestn
k . Update p(pBestn

k ) and f (pBestn
k ).

• Identify the global best gth particle. Update gBestk, p(gBestk) and f (gBestk).

for k = 1 to K do
for n = 1 to N do

Compute the new velocity according to:

v(xn
k+1) = [(ω v(xn

k))+(c1 r1 (p(pBestn
k )− p(xn

k)))+(c2 r2 (p(gBestk)− p(xn
k))]
(3.5)

Update the position according to:

p(xn
k+1) = p(xn

k)+ v(xn
k+1) (3.6)

Check for out of bound:
p(xn

k+1) ∈ S (3.7)

Update personal best variables; pBestn
k , p(pBestn

k ), and f (pBestn
k ).

Update global best variables; g, gBestk, p(gBestk), and f (gBestk).
Check for Convergence

if Convergence == TRUE then
Terminate iteration

else
Continue

end if

end for
end for
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3.2.1 Limitations of the conventional PSO in Tracking Abrupt Motion

The conventional PSO is not able to track abrupt motion effectively, due to several

reasons as follows:

Constant Acceleration Parameters: The parameter c1 controls the influence of

the cognitive component, (c1 ∗ r1 ∗ (p(pBestn
k )− p(xn

k))), that is, it represents the

individual memory of particles (personal best solution). A higher value of this

parameter indicates a bias towards the cognitive component and vice versa. On

the other hand, the parameter c2 controls the influence of the social component,

(c2 ∗ r2 ∗ (p(gBestk)− p(xn
k)), that is, it indicates the joint effort of all particles to

optimise a particular fitness function, f .

The main drawback of the conventional PSO is the lack of a reasonable mechanism

to effectively handle the acceleration parameters (ω , c and r); which are often set

to constant variables (Clerc & Kennedy, 2002; Epitropakis, Plagianakos, & Vra-

hatis, 2012; H. Wang, Sun, Li, & Rahnamayan, 2013). For example, many applica-

tions of the PSO and its variant set these values to, c1 = c2 = 2.0, which gives the

stochastic factor a mean of 1.0 and giving equal importance to both the cognitive

and social components (Eberhart & Kennedy, 1995). This limits the search space

and therefore cannot deal with abrupt motion, where the search for distribution of

the proposal is not known. Therefore, it is essential to have dynamic acceleration

parameters that are able to cope better with the unexpected dynamics of abrupt

motion.

Trade-off between Exploration and Exploitation: The inertia weight, ω plays

an important role, directing the exploratory behaviour of the swarms. A high value

of inertia accentuates the influence of the previous velocity information and forces

the swarm to explore a wider search space; while a decreasing inertia weight re-
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duces the influence of the previous velocity and exploit a smaller search space.

Often, the inertia value that controls the influence of the previous velocity is set

to ω ∈ [0.8,1.2] (Y. Shi & Eberhart, 1998). Recently, decaying inertia weight,

ω = 0.9→ 0.4 have been proposed and tested, with the aim of favouring global

search at the start of the algorithm and local search towards the end (Poli, 2008;

Rana, Jasola, & Kumar, 2011). While these settings have been shown to work well

in other optimisation problems (Poli, 2008; Rana et al., 2011), one must note that it

is not applicable to tracking abrupt motion as the dynamic change is often unknown.

Therefore, a solution that is able to handle the trade-off between the exploration and

exploitation is crucial.

3.3 Proposed Tracking Framework: SwATrack

In this section, the SwATrack tracking framework to track target with abrupt motion

is proposed. The SwATrack is a variant of the conventional PSO. Particularly, this section

discusses in detail on how the effective combination of Dynamic Acceleration Parameters

(DAP) and Exploration Factor E in the proposed SwATrack framework allows effective

tracking of abrupt motion.

3.3.1 Dynamic Acceleration Parameters (DAP)

Since PSO is an iterative solution, efficient convergence is an important issue to-

wards a real-time abrupt motion estimation system. However, the strict threshold of the

conventional PSO velocity computation as in Eq. 3.5 will always lead to particles con-

verging to a common state estimate (the global solution). One reason is that the velocity

update equation uses a decreasing inertia value which indirectly forces the exploration of

particles to decrease over the iterations. On the other hand, an increasing inertia value

will lead to swarm explosion in some scenarios.

To overcome this, a mechanism to self-tune the acceleration parameters that utilises
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the average velocity information of all particles in the swarm is introduced; the DAP

mechanism. Firstly, the acceleration parameters are normalised so that they can be com-

pared fairly with respect to the estimated velocity, normalise(w,c1,c2) = 1.0. The DAP

mechanism takes into account the observation data, by incorporating the quality of esti-

mation (likelihood) to refine the acceleration parameters dynamically, f (C). The basic

notion is that when an object moves consistently in a particular direction, C = 1, the iner-

tia, w and cognitive weight, c1 values are increased to allow resistance to any changes in

its state of motion in the subsequent frames. Otherwise when C = 0, the social weight c2

is increased by a step size, m to reduce its resistance to motion changes as Eq. 3.8. The

increase of the social weight allows global influence and exploration of the search space,

which is relevant when the motion of a target is dynamic. The exploitation within nearby

regions is equitable when an object is moving with consistent motion.

The parameter C is estimated by computing the frequency of change, f (C), in the

quantised motion direction of the object; C = 1 represents consistent motion with minimal

change of direction, while C = 0 represents inconsistent or dynamic motion. In this study,

the motion velocity is categorised into 8 quantised directions, within an interval of 5

frames to determine its consistency.

f (C) =


c1 = c1 +m; c2 = c2−m; ω = ω +m; C = 1

c1 = c1−m; c2 = c2 +m; ω = ω−m; C = 0

∗ subject to normalise(ω,c1,c2) = 1.0

(3.8)

3.3.2 Exploration Factor (E )

The normalisation of DAP to 1.0 will restrict the overall exploration of the state to

a certain degree. Hence, the exploration factor, E which serves as a multiplying fac-

tor to increase or decrease the exploration is introduced to alleviate the aforementioned
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limitation. The exploration factor, E is defined as the parameters that adaptively:

1. increase the exploration with high variance, or

2. increase the exploitation with low variance.

By utilising these exploitation and exploration capabilities, the SwATrack framework

is able to escape from being trapped in a common state (local optima). Thus, allowing the

SwATrack to deal with smooth and abrupt motion more effectively. At every kth iteration,

the quality of the estimated position upon convergence (global best) is evaluated using its

fitness value. f (gBestk)k→K = 1 indicates high likelihood whereas f (gBestk)k→K = 0

indicates low likelihood or no similarity between an estimation and target.

When f (gBestk) ≤ TMinF , where TMinF is a threshold, it clearly indicates that there

is low resemblance between the estimation (which is derived from the observation) and

the target; most likely the proposal distribution may not be the actual distribution of the

posterior. Thus in this scenario, E is increased with the maximum number of iterations, K

by an empirically determined step size, l. This drives the swarm of particles to explore the

region beyond the current local maxima (increase exploration). However, when an object

has left the scene, K tend to increase continuously and may cause swarm explosion. Thus,

to avoid searching beyond the search space, a boundary search is imposed, where K ∈ S.

E α f (gBestk) (3.9)

In another scenario, where f (gBestk)≥ TMinF , E is decreased along K; constraining

the search around the current local maximum (exploitation). In a straightforward manner,

it is always best to drive particles at its maximum velocity to provide a reasonable bound

in order to cope with the maximum motion change. However, this is not reasonable

for real-time applications as it incurs unnecessary computational cost especially when
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the motion is not abrupt. Thus, by introducing the adaptive scheme to automatically

adjust the exploration and exploitation behaviour of the swarm, SwATrack is able to deal

with smooth and abrupt motion, while keeping the computational cost at its minimal.

Also, since the particles in SwATrack exchange information with one another, a minimal

number of particles is sufficient for sampling. In summary, the E is proportional to the

fitness function, or in this context, the quality of estimation. The threshold, TMinF is

dependent on the fitness function or cost function used and may vary from one application

to another. In this study, the normalised Bhattacharyya distant measure is used as the

fitness value to measure the quality of the estimation; where 1 represents the highest

similarity between an estimation and target and 0 represents no similarity. Based on the

sequences used for experiment, TMinF = 0.7 is applied.

3.3.3 Novel Velocity Model

With the introduction of DAP and E , the novel velocity model, v̀ in the proposed

SwATrack framework can be written as:

v̀(xn
k+1) = Ek[(ω v̀(xn

k))+(c1 r1 (p(pBestn
k )− p(xn

k)))+(c2 r2 (p(gBestk)− p(xn
k))]

(3.10)

where, Ek is the exploration factor at iteration k, and c, r, ω are the acceleration parameters

with the condition normalise(ω,c1,c2) = 1.0. The normalised condition applied to the

acceleration allows on the fly tuning of these parameters according to the quality of the

fitness function. The fitness function used here is represented by the normalised distant

measure between the appearance model of an estimation and the object-of-interest. The

fitness value of a particle, f (xn
k) measures how well an estimation of the object’s position

matches the actual object-of-interest by taking into account the observation data; where
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1.0 represents the highest similarity between an estimation and target and 0 represents no

similarity. At every kth iteration, each particle varies its velocity according to Eq. 3.10

and move its position in the search space according to:

p(xn
k+1) = p(xn

k)+ v̀(xn
k+1) (3.11)

Note that the motion of each particle is directed towards the promising region found

by the global best, gBestk from the previous iteration, k = k−1. The summary of proposed

SwATrack algorithm is shown in Algorithm 3.

3.4 Experimental Results and Discussion

In this section, the feasibility and robustness of the proposed SwATrack in handling

abrupt motion tracking is evaluated using a machine with a configuration of Intel core-i7,

1GHz with 8GB Random Access Memory (RAM). The proposed SwATrack was imple-

mented in C++ and OpenCV library.

3.4.1 Experiment Setup

The object-of-interest is assumed to be priori and hence, the 2D position of the target

in the first frame is initialised manually using the prior information. Automatic initiali-

sation of target is a challenging research topic by itself, and thus is not in the scope of

this study. The object is represented by its appearance model, which comprises HSV his-

togram with uniform binning; 32 bins. The normalised Bhattacharyya distant measure is

used as the fitness value (cost function) to measure the quality of the estimation; where

1 represents the highest similarity between an estimation and target and 0 represents no

similarity. Here, the initial values for SwATrack are E = 25, ω = 0.4, c1 = 0.3, c2 = 0.3,

K = 30, N = 15, m = l = 5, respectively. The initial values are set based on the set of test

sequences used in the experiments and the optimal settings may vary from one sequence
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Algorithm 3 : Proposed SwATrack
Initialisation, at iteration k=0

• Initialise a population of N particles, {xn
k}n=1,...,N with positions, p(xn

k),at random
within the search space, S.

• Initialise the velocities, v(xn
k) at random within [1,−1].

• Evaluate the fitness value of each particle, f (p(xn
k)) and identify their personal

best, pBestn
k . Update p(pBestn

k ) and f (pBestn
k ).

• Identify the global best gth particle. Update gBestk, p(gBestk) and f (gBestk).

for k = 1 to K do
for n = 1 to N do

Compute the new velocity according to:

v̀(xn
k+1) = Ek[(ω v̀(xn

k))+(c1 r1 (p(pBestn
k )− p(xn

k)))+(c2 r2 (p(gBestk)− p(xn
k))]

where,
normalise(ω,c1,c2) = 1

if f (gBestk)≤ TMinF then
E = E + l, K = K + l

else
E = E − l, K = K− l

end if

if C = 1 then
c1 = c1 +m, c2 = c2−m, ω = ω +m

else
c1 = c1−m, c2 = c2 +m, ω = ω−m

end if

Update the position according to:

p(xn
k+1) = p(xn

k)+ v̀(xn
k+1)

Check for out of bound:
p(xn

k+1) ∈ S (3.12)

Update personal best variables; pBestn
k , p(pBestn

k ), and f (pBestn
k ).

Update global best variables; g, gBestk, p(gBestk), and f (gBestk).
Check for Convergence

if Convergence == TRUE then
Terminate iteration

else
Continue

end if

end for
end for 56



to another.

A comparison between the proposed SwATrack and a variety of state-of-the-art

tracking solutions is performed. The benchmarked solutions include the conventional

PSO tracking, PF (F. Yan et al., 2005; Maggio & Cavallaro, 2009), Ball Detection Method

(BDM) (Wong & Dooley, 2011), Fragment-based Tracking (FragTrack) (Adam et al.,

2006), Annealed Wang-Landau Monte Carlo (A-WLMC) (Kwon & Lee, 2008) and Com-

pressive Tracking (CT) (X. Zhang et al., 2008). A thorough evaluation which consists of

both, the detection accuracy (%) and processing time (milliseconds per frame) is done.

In all experiments, the parameters of the state-of-the-art algorithms (i.e. top performing

trackers) are set to fine-tuned settings as proposed by the respective authors accordingly

(F. Yan et al., 2005; Maggio & Cavallaro, 2009; Adam et al., 2006; Kwon & Lee, 2008;

Wong & Dooley, 2011; X. Zhang et al., 2008). In this study, the conventional PSO and

PF (F. Yan et al., 2005; Maggio & Cavallaro, 2009) were re-implemented using C++ and

OpenCV library, while the rest are using the publicly available framework by their re-

spective authors. Only the BDM tracker in(Wong & Dooley, 2011) was implemented in

a Matlab environment, while the others are in C++ and OpenCV library.

3.4.2 Dataset

The proposed SwATrack was evaluated using a newly introduced abrupt motion

dataset - namely the Malaya Abrupt Motion Dataset (MaMO) dataset. This dataset com-

prises 12 videos as illustrated in Fig. 3.3 and Table 3.1, which are compiled from the

various dataset used by the state-of-the-art tracking solutions. These sequences are ar-

ranged according to the different challenging scenarios as described in the following:

a) Rapid Motion of Small Object: There are 5 video sequences in this scenario

to test the effectiveness of the proposed method in terms of tracking small object

(e.g. table tennis ball) that exhibits fast motion. TableT1 is the SIF Table Ten-
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nis sequence - a widely used dataset in the area of computer vision, especially for

evaluation of detection and tracking methods (Wong & Dooley, 2011). This se-

quence has complex, highly textured background and exhibit camera movement

with some occlusion between the ball and the player’s arm. TableT2 is a sample

training video from the International Table Tennis Federation (ITTF) video library

which is created to expose players, coaches and umpires to issues related to ser-

vice action. Although this sequence is positioned to provide the umpire’s point of

view of a service, it is very challenging as the size of the tennis ball is very small;

about 8x8 pixels to 15x15 pixels for an image resolution of 352 x 240. The video

comprises of 90 frames including 10 frames in which severe occlusion happens,

where the ball is hidden by the player’s arm. TableT3 is a match obtained from a

publicly available source. In this sequence, the tennis ball is relatively large as it

features a close-up view of the player. However, there are several frames where

the ball appears to be blurred due to the low frame rate and abrupt motion of the

tennis ball. TableT4 and TableT5 were captured at a higher frame rate, thus the spa-

tial displacement of the ball from one frame to another appears to be smaller (less

abrupt) and the ball is clearer. This is to test the ability of proposed method to han-

dle normal visual tracking scenario. Since the ground truth for these data were not

provided, the ground truth of the object-of-interest, in each sequence is manually

labelled for evaluation. The ground truth is described as bounding box information,

X(x,y,w,h) = (positions in the x-dimension, y-dimension, width, height).

b) Switching Camera: In general, the sampling-based methods often assume a

large variance in the proposal density to deal with abrupt motion. However, a large

variance tends to decrease the tracking accuracy when tracking smooth motion.

Thus, the scenario of tracking using sequences obtained from switching between
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multiple cameras is included to evaluate the tracking methods in dealing with both,

the abrupt and smooth motion. This category comprises 3 videos which includes

the the Youngki, Boxing and Malaya1 sequences. The Youngki and Boxing can be

found at (Kwon & Lee, 2013), where they consist of frames edited from changes

of camera shots between multiple cameras, where the hand-over between cameras

are aimed at tracking a particular object throughout the scene. Due to the object’s

handover between multiple cameras, the object appears to have drastic change in

position between adjacent frames during the switching period as well as the scale.

Otherwise, the object exhibits smooth motion as it is captured by a single cam-

era. The Malaya1 sequence is created by combining the frames in the Boxing and

Youngki sequences in an alternative manner. This combination is done to introduce

definite tracking error when tracking the boxer in the Boxing sequence; since the

boxer is missing in the Youngki sequence. The simulation of inaccurate tracking

scenario is to test the robustness of tracking methods in not only tracking abrupt

motion, but recovery from inaccurate tracking.

c) Partially low frame rate: In another example of abrupt motion, a scenario

of tracking in partially low frame rate is simulated. The Tennis video (Kwon &

Lee, 2013) comprises of down-sampled data to mimic abrupt change caused by

low frame rate. The frames are down sampled from a video with more than 700

original frames, by keeping one frame in every 25 frames. The rapid motion of the

tennis player from one frame to another due to the down-sampling made tracking

extremely difficult. Down-sampling is done to simulate abrupt motion during low-

frame rates.

d) Inconsistent Speed: 2 video sequences were obtained from the YouTube, where

each sequence comprises an object which moves with inconsistent speed through-
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out the sequence. The first video, Malaya2, aims to track a synthetic ball which

moves randomly across the sequence with inconsistent speed, whilst the second

video, Malaya3 tracks a soccer ball which is being juggled in a free-style manner

in a moving scene with a highly textured background (grass).

e) Multiple targets: This is to demonstrate the capability of the proposed system

to track multiple targets; whilst most of the existing solutions are focused on single

target. A synthetic video, Malaya4 that consists of two simulated balls moving at

random speed is created for this purpose.

In general, most of the video sequences in MAMo dataset are well diversified as most

of them contain a mixture of both the smooth and abrupt motion. It is less likely for an

object-of-interest to move with abrupt motion at all time, unless the video is captured at

low frame rate as exhibit by the Tennis sequence, in particular. The MAMo dataset is

publicly available along with their corresponding ground truth information1.

Table 3.1: Summary of the Malaya Abrupt Motion (MAMo) dataset.

Category Name of the Video Sequences Number of Videos
a) Rapid Motion of Small Object TableT1−5 5
b) Switching Camera Youngki, Boxing and Malaya1 3
c) Partially low-frame rate Tennis 1
d) Inconsistent Speed Malaya2−3 2
e) Multiple targets Malaya4 1

TOTAL 12

3.4.3 Quantitative Result

3.4.3 (a) Experiment 1: Detection Rate

Detection rate refers to the correct number and placement of the objects in the scene.

For this purpose, the ground truth of jth object is denoted as GTj, and the output from the

tracking algorithms of jth object is denoted as, ξ j. The ground truth and tracker output of

1http://web.fsktm.um.edu.my/ cschan/project3.htm
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Figure 3.3: Sample shots of the newly introduced Malaya Abrupt Motion (MAMo)
dataset. This collection of data comprises 12 videos which exhibit the var-
ious challenging scenarios of abrupt motion. Top row, from left to right:
TableT1,TableT2,TableT3,TableT4; Second row, from left to right: TableT5, Youngki,
Boxing, Malaya1; Bottom row, from left to right: Tennis, Malaya2, Malaya3, Malaya4.

each nth object as bounding box information is described as, X j(x j,y j,w j,h j = x-position,

y-position, width, height). The coverage metric determines if a GT is being tracked, or

if an ξ is tracking accurately. In (K. Smith, Gatica-Perez, Odobez, & Ba, 2005), it is

shown that the F-measure, F , suited this task as the measure is 1.0 when the estimate,

ξ j overlaps perfectly with the ground truth, GT j. Two fundamental measures known as

precision and recall are used to determine the F-measure.

Recall: Recall measures how much of the GT is covered by the ξ , and takes the

value of 0 if there is no overlap and 1.0 if the estimated position fully overlap with the

actual locality of the target. Given a ground truth, GT j, and a tracking estimate, ξ j, the

recall, ℜ j is expressed as:

ℜ j =
|ξ j∩GTj|
|GTj|

(3.13)
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Precision: Precision measures how much of the ξ covers the GT takes the value of

0 if there is no overlap and 1 if they are fully overlapped. The precision, ℘j is expressed

as:

℘j =
|ξ j∩GTj|
|ξ j|

(3.14)

F-measure: The F-measure, F j is expressed as:

Fj =
2ℜ j℘j

ℜ j +℘j
(3.15)

Coverage Test: In this experiment, the F-measure is employed according to the

score measurement of the known PASCAL challenge (Everingham, Gool, Williams,

Winn, & Zisserman, 2010). That is, if the F j of jth object is larger than 0.5, the es-

timation is considered as correctly tracked in the frame. Table 3.2-3.3 demonstrate

the detection accuracy of the benchmarked tracking algorithms for all 8 test se-

quences. Overall, the experimental results show that the average tracking accuracy

of the proposed method surpasses most of the state-of-the art tracking methods

with an average detection accuracy of 91.39%. For all 6 test sequences (TableT1,

TableT2, TableT5, Youngki and Tennis), the SwATrack generates the best tracking

results amongst the rest and ranked second best for sequence TableT4 and Boxing,

respectively.

Methods that are not built based on sophisticated motion model such as the Frag-

Track (Adam et al., 2006) performs poorly, overall with an average accuracy of

37.19%. Their method, which employs a refined appearance model that adapts to

the changes of the object, copes well with partial occlusion. However, it is still de-

pendent on the search radius and thus fails when tracking abrupt motion, where the
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object tends to be outside the search window. PF on the other hand, achieves a de-

tection accuracy of 85.6%. This is expected, since the PF algorithm is constrained

to a fixed Gaussian motion model. Once PF has lost track of the object, it has the

tendency to continue searching for the object in the wrong region; leading to error

propagation and inability to recover from incorrect tracking such as shown in Fig.

3.4. Fig. 3.4a demonstrates sample shots of an abrupt motion scenario, where the

PF tracker exhibits the state of being trapped in local optima. At frame 449-451,

the PF tracker continues to locate the object within the assumed Gaussian distribu-

tion when the object has in actual fact, moved abruptly to the other corner of the

image. On the other hand, the proposed SwATrack copes better with abrupt mo-

tion and does not get trapped in local optima; since the exploitation and exploration

is self-adjusted based on the fitness function, and is shown in Fig. 3.4b. Thus, as

shown in Fig. 3.4b, the SwATrack is able to track the object accurately although the

motion is highly abrupt. Similarly, the inability of MCMC and its variants, the A-

WLMC (Kwon & Lee, 2008) and Intensely Adaptive Markov Chain Monte Carlo

(IA-MCMC) (X. Zhou et al., 2012) tracking methods in handling abrupt motion is

shown in Fig. 3.6.

Dataset Unbias: The problem of dataset bias was highlighted in (Torralba & Efros,

2011) where the paper argue that ‘Is it valid to expect that when training on one

dataset and testing on another, there is a big drop in performance?’. Motivated by

this, a similar scenario in the tracking domain is replicated, and it is observed that

although the A-WLMC method (Kwon & Lee, 2008) performs well in TableT4 and

Youngki sequence, they do not produce consistent results when tested across the

other datasets as shown in Table 3.2-3.3. For example, it can be seen that the accu-

racy of A-WLMC changes drastically from one tracking scenario to another. The
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average detection accuracy for TableT video sequences is fairly low at, 14.28%

while for the Tennis, Boxing and Youngki sequences, it performs remarkably well

with an average accuracy of 93.33%. This provides an indication that the A-WLMC

solution (Kwon & Lee, 2008) may suffer from dataset bias problem, as it seems to

only work well in their proposed dataset, but performed poorly when it is employed

on different video sequences. Perhaps this is due to the motion model employed

by these tracking methods that only works well on certain scenarios, alluding to

the notion in (Cifuentes et al., 2012) that different motion requires different motion

models. This is indeed not the case for our proposed SwATrack, which is more flex-

ible and non-bias in handling different scenarios or datasets. The overall detection

rates for SwATrack are 85.02% and 97.76%, respectively. For all video sequences

that exhibit different challenging conditions, e.g. rapid motion (TableT1−5), cam-

era switching (Youngki and Boxing), low-frame rate (Tennis), the SwATrack has

shown its ability to cope with the various scenarios of abrupt motion.

Size Invariance: A further investigation on the dataset bias problem is performed

and the results demonstrate that there is an influence of the object size to the de-

tection rate. For instance, the A-WLMC algorithm (Kwon & Lee, 2008) performs

poorly for sequences in which the resolution of the object-of-interest is relatively

small, such as in the TableT video sequences and performs surprisingly well when

the object is large such as in the Youngki, Boxing and Tennis sequences. This

indicates the need to have better representation of the object for a more accurate

acceptance and rejection of estimations in the MCMC algorithm.

3.4.3 (b) Experiment 2: Computational Cost

Fig. 3.5 demonstrates the comparison results between the proposed method and

the state-of-the-art tracking solutions in terms of time complexity. It is observed that the
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Table 3.2: Experiment results - Comparison of the Detection Rate (in %)

PSO PF BDM FragTrack A-WLMC CT SwATrack
TableT1 70.1 58.4 68.3 64.9 47.2 72.3 87.8
TableT2 83.1 69.8 53.4 24.1 3.2 4.3 93.1
TableT3 58.2 52.1 67.3 55.3 8.7 24.5 74.1
TableT4 59.6 47.3 73.2 57.2 6.9 98.2 97.3
TableT5 60.3 34.5 64.2 9.7 5.4 36.3 72.8
Average 66.26 52.42 65.28 42.24 14.28 47.12 85.02

Table 3.3: Experiment results - Comparison of the Detection Rate (in %)

PSO PF FragTrack A-WLMC SwATrack
Tennis 87.3 67.3 20.6 95.1 98.3

Youngki 87.1 47.2 27.5 86.8 98.7
Boxing 82.4 16.3 48.3 98.1 96.3
Average 85.6 43.6 32.13 93.33 97.76

SwATrack algorithm requires the least processing time with an average of 63 milliseconds

per frame. On the contrary, the MCMC-based solutions which include the A-WLMC

(Kwon & Lee, 2008) and PF (F. Yan et al., 2005; Maggio & Cavallaro, 2009) require

higher processing time. This is likely due to the inherent correlation between the MCMC

samplers which is known to suffer from slow convergence when an object has not been

tracked accurately. In the experiments, it is observed that in scenarios where the MCMC

requires high processing time, the accuracy of the MCMC is minimal. The increase in

computational cost is due to the increase of search space when the observation model is

unlikely representing the object. Note that the optimal number of samples deployed in the

PF and MCMC throughout the sequences has been selected empirically; where it ranges

from 150 to 1000 particles in PF, 600 to 1000 particles in MCMC with 600 iterations while

the SwATrack uses 10-50 particles (15× in reduction) with 5-70 iterations. Intuitively,

an increase in the number of samples would lead to an increase in computational cost as

each particle would need to be evaluated against the appearance observation; explaining

the minimal processing time required by the proposed SwATrack.

65



(a) Sample detections from PF tracking.

(b) Sample detections from SwATrack tracking.

Figure 3.4: Sample output to demonstrate the incorrect tracking state, which is caused by
trapped in local optima. The aim of this sequence is to track the person in dark skin and
purple short. From Frame 449-451 (a), PF lost track of the object due to sampling from
incorrect distribution during abrupt motion. Thus, it can be observed that PF continues
to track the object inaccurately once it has lost track of the object. On the other hand,
the results in (b) demonstrate the capability of the SwATrack tracker in dealing with the
non-linear and non-Gaussian motion of the object (Best view in colour).

As shown in Table 3.2-3.3, in which the SwATrack detection rate is ranked second.

It is observed that although the CT (X. Zhang et al., 2008) and A-WLMC (Kwon & Lee,

2008) achieved better accuracy, their average processing time are threefold as compared

to the SwATrack. This is due to the need to increase the subregions for sampling when

the state space increases in the A-WLMC algorithm (Kwon & Lee, 2008). On the con-

trary, the SwATrack adaptively increases and decreases its proposal variance for a more

effective use of the samples. Thus the processing time required is much lower as com-

pared to the other methods. The advantage of the dynamic mechanism is reflected when
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Figure 3.5: Time Complexity. This figure illustrates the comparison in terms of process-
ing time (milliseconds per frame) between the proposed SwATrack, conventional PSO,
PF, BDM, FragTrack, A-WLMC (Kwon & Lee, 2008) and CT.

comparing the processing time of the SwATrack to conventional PSO (average of 195.20

milliseconds per frame); where the processing time of the PSO is three times greater than

that of the SwATrack. In summary, the experimental results have demonstrated the capa-

bility of the proposed system to cope with the variety of scenarios which exhibit highly

abrupt motion. The adaptation of a stochastic optimisation method into tracking abrupt

motion has been observed to incur a slight increase in the processing cost, yet at the same

time is able to have fair tracking accuracy as compared to the more sophisticated methods.

Thus, the preliminary results at this stage, gives a promising indication that sophisticated

tracking methods may not be necessary after all.

3.4.4 Qualitative Result

Partially low Frame Rate: This sequence aims to track a tennis player in a low-

frame rate video, which has been down-sampled from a 700 frames sequence by keeping
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one frame in every 20 frames. Here, the object (player) exhibits frequent abrupt changes

which violate the smooth motion and constant velocity assumptions. Thus, motion that

is governed by Gaussian distribution based on the Brownian or constant-velocity motion

models will not work in this case. Fig. 3.6 shows sample shots to compare the perfor-

mance between the PF tracking (500 samples), A-WLMC (600 samples) (Kwon & Lee,

2013), IA-MCMC (300 samples) (X. Zhou et al., 2012) and SwATrack (50 samples).

It is observed that the tracking accuracy of the SwATrack is better than the PF and A-

WLMC (Kwon & Lee, 2013) even by using fewer samples. While the performance of

the SwATrack is comparable to the IA-MCMC (X. Zhou et al., 2012), the SwATrack

requires fewer samples and thus requires less processing requirement. These results fur-

ther validated that the proposed SwATrack is able to track moving object accurately and

effectively, regardless of the varieties of change in the object’s motion.

Local Minimum Problem: This experiment aims to test the capability of SwATrack

to recover from incorrect tracking. This experiment would in particular, evaluate the

efficacy of the proposed DAP and E in handling abrupt motion. Fig. 3.7 shows the result

for Youngki and Boxing sequences, which exhibits abrupt motion in a camera switching

scenario. Due to the object’s handover between multiple cameras, the object appears to

have a drastic change in position between adjacent frames during the switching period as

well as the scale. Otherwise, the object exhibits smooth motion as it is captured by a single

camera. The switching happens repeatedly when an object moves out of a particular

camera view, into the field of view of another camera. The assortment of both smooth and

abrupt motion would test the capability of the proposed DAP in increasing its exploitation

during smooth motion and increasing its exploration during abrupt motion. In Fig. 3.7a,

it is shown that during the switch from frame 247 and 248, the SwATrack appears to have

inaccurate tracking of the object; as the estimated position which is highlighted by the

ellipse does not overlap accurately with the object. However, due to the flexibility of the
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(a) Sample detections of PF.

(b) Sample detections of SwATrack.

(c) Sample detections of A-WLMC.

(d) Sample detections of IA-MCMC.

Figure 3.6: A comparison between PF, SwATrack, A-WLMC (Kwon & Lee, 2013) and
IA-MCMC (X. Zhou et al., 2012). It is observed that the SwATrack tracking gives a more
accurate fit of the object’s locality.
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proposed DAP and E which allows self-adjustment of the exploitation and exploration of

the swarm based on the fitness function, the SwATrack algorithm is able to recover from

the inaccurate tracking within minimal number of frames. Similar behaviour is observed

in the Youngki sequence, as shown in Fig. 3.7a, which further validated our notion.

In another experiment on an even more challenging scenario, the Malaya1 sequence

is used for evaluation. In the Malaya1 sequence, the frames in the Boxing sequence are

combined in an alternative manner with the frames from the Youngki sequence; incor-

rect tracking is most likely to happen due to the frequent changes of the object’s locality

between two adjacent frames. In this combined sequence, the object-of-interest appears

and disappears from one frame to another interchangeably due to the merge between two

different video sequences, as shown in Fig. 3.8. From the qualitative results shown in Fig.

3.8b, it is shown that the A-WLMC tracking (Kwon & Lee, 2008) is not robust and does

not cope well with inaccurate tracking. When the object-of-interest disappears from the

scene (i.e. Frame 77), the A-WLMC gives an erroneous estimation of the object. In the

subsequent frame, where the object re-appears, the A-WLMC has difficulty recovering

from its tracking such as shown in Frame 78 where the estimation does not fit the actual

position of the object accurately. In the subsequent frames, the A-WLMC tend to contin-

uously missed tracked of the object. Although the sampling efficiency in the A-WLMC

adopts a more efficient proposal distribution as compared to the standard PF, it is still sub-

jected to a certain degree of trapped in local optima. Furthermore, the A-WLMC utilises

the information of historical samples for intensive adaptation, thus requiring more frames

information to recover from inaccurate tracking. The proposed SwATrack on the other

hand, is observed to work well in this Malaya1 video sequence, where minimal frame is

required to recover from erroneous tracking. As shown in Fig. 3.8c, the SwATrack is able

to track the object accurately when the object appears or re-appears in the scene (as shown

in the even frame number). This is made possible due to the information exchange and
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cooperation between particles in a swarm that provide a way to escape the local optima

and reach the global maximum; leading to and optimised proposal distribution.

(a) Sample of SwATrack on Boxing sequence.

(b) Sample of SwATrack on Youngki sequence.

Figure 3.7: Sample outputs to demonstrate the flexibility of the proposed SwATrack to re-
cover from incorrect tracking. It can be noticed that the SwATrack only requires minimal
frames (1-2frames) to escape from local optima and achieve global maximum.

Swarm Explosion Problem: In the conventional PSO algorithm, the lack of a mech-

anism to control the acceleration parameters and the dependency on randomness in the

system fosters the danger of swarm explosion and divergence. When swarm explosion

or divergence happens, the velocities and positions of each particle are steered towards

infinity and thus, preventing convergence. In the context of our study, swarm explosion

and divergence are very likely. This is due to the tendency of the swarm to increase its

exploration in order to deal with the abrupt change in an object locality. Thus, in this com-

bination sequences (similar sequence as shown in Fig. 3.8) where the boxer disappears

and reappears in the scene from one frame to another, it is shown that the conventional

PSO fails to track the abrupt motion of the boxer accurately as shown in 3.9a. When the

object disappears from the scene (since the boxer is missing in the Youngki sequence),

the swarm tends to increase its exploration and is most likely to steer towards infinity; ex-

plosion happens. If this happens, the swarm lose track of the object and is most likely to

continue searching from an inaccurate distribution leading to continuous incorrect track-
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ing of the object. However, in the proposed SwATrack, recovery from incorrect tracking

is made possible by the Dynamic Acceleration Parameters (DAP) and Exploration Factor

E mechanisms, which prevent the particles from steering towards infinity by expanding

and constricting the velocity of particles. See Fig. 3.9.

(a) Sample shots of the dataset that is obtained by combining frames from two different
sequences. The object enclosed in the ellipse is the object to be tracked.

(b) Sample detections by the A-WLMC tracking. A-WLMC tend to tracked the object inaccurately
once it has lost or missed tracked of the object as shown from Frame 79 onwards.

(c) Sample detections by the SwATrack tracking. In Frame 77, since the object-of-interest does not
appear in the frame, inaccurate tracking happens. However, the SwATrack is able to recover its tracking
at the following frame, Frame 78.

Figure 3.8: Sample outputs to demonstrate the capability to recover from incorrect track-
ing.

Invariant to Object Size: Further investigation to test the effectiveness of proposed

SwATrack, PF (F. Yan et al., 2005; Maggio & Cavallaro, 2009) and A-WLMC (Kwon &

Lee, 2013) is performed on resized sequences of similar set of datasets. This is to simulate

the scenario in which the object size is smaller. Thus, the initial frame size of 360x240 is

reduced into half, to 180x120 pixels. Observations on the results show that the SwATrack

is the least sensitive towards the size of object-of-interest, while the detection accuracy of

the A-WLMC decreases as the size of object gets smaller. This is due to the robustness of

the optimised sampling in SwATrack as compared to the least robust method of rejection
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(a) Sample detections by the conventional PSO tracking. PSO tracker tend to tracked the object inac-
curately once it has lost or missed tracked of the object as shown from Frame 103 onwards.

(b) Sample detections by the SwATrack tracking. In Frame 103, since the object-of-interest does not
appear in the frame, inaccurate tracking happens. However, the SwATrack is able to recover its tracking
at the following frame, Frame 104.

Figure 3.9: Sample outputs to demonstrate the inaccurate tracking in conventional PSO
due to swarm explosion, and the capability of the proposed SwATrack to track object
accurately.

and acceptance as proposed in the A-WLMC. The overall detection accuracy of the pro-

posed SwATrack remains at an average of 90% regardless of the object’s size whereas the

detection accuracy of PF and A-WLMC decrease significantly by more than 25% when

the object’s size decreases. Sample output is as shown in Fig. 3.10. Finally, an evaluation

on videos obtained from the Youtube (Malaya2−4) is performed. The qualitative results

are as depicted in Fig. 3.11. It is observed that the SwATrack is able to track the abrupt

motion of the balls efficiently, as well as the capability of the proposed system to track

multiple objects; two simulated balls move at random. From the best of our knowledge,

most of the existing solutions (Kwon & Lee, 2013; X. Zhou et al., 2012) are focused on

single object.

3.5 Discussion

3.5.1 Can an increase in the complexity of tracking algorithms enhance the results
of tracking abrupt motion?

Motivated by the meta-level question prompted in (Zhu et al., 2012) on whether there

is a need to have more training data or better models for object detection, this chapter
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(a) Sample detections from A-WLMC on reduced image size. A-WLMC has a high tendency to lose
track of the object when it moves abruptly, and demonstrate continuous inaccurate tracking such as
shown in Frame 279-284. Note that for similar frames, the A-WLMC tracker is able to track the object
accurately when the image size is larger. Number of iterations = 600, particles = 600.

(b) Sample detections from SwATrack on reduced image size. SwATrack produces consistent tracking
as compared to PF and A-WLMC, regardless of the size of object. Number of iterations = 30, particles
=20.

Figure 3.10: Qualitative Results: Comparison between the A-WLMC and our proposed
SwATrack in terms of reduced object size.

Figure 3.11: Sample of SwATrack on tracking the object(s) in Malaya2−4 video se-
quences.
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raises similar question in the domain of visual tracking. This section is motivated by the

research question, on whether the continued progress in visual tracking will be driven by

the increased complexity of tracking algorithms?

Intuitively, an increase in the number of samples in sampling-based tracking meth-

ods such as the PF and MCMC would increase the tracking accuracy. One may also

argue that the additional computational cost incurred in the iterative nature of the pro-

posed SwATrack and MCMC would complement the higher number of particles required

by the PF. Thus, in order to investigate if these intuitions hold true, an experiment us-

ing an increasing number of samples and iterations (Sampling-based vs. Iterative-based

solutions) is conducted. The behaviours of both the PF and SwATrack in terms of their

tracking accuracy and processing time with the increase in complexity is then observed.

PF is chosen in this testing as it bears close resemblance to the proposed SwATrack al-

gorithm in which a swarm of particles are deployed for tracking. The experiments in this

section are performed on the TableT1−5 video sequences.

3.5.1 (a) Number of Samples vs Accuracy and Processing Time

Particle Filter: In the PF algorithm, a variety of values are set for the number of

samples or particles (i.e. 50, 100, · · · , 2000) used throughout the sequence to determine

the statistical relationship between number of samples and performance. The perfor-

mance is then measured by the detection accuracy (%) and the processing time (in mil-

liseconds per frame). The average performance across all five TableT video sequences

is as shown in Fig. 3.12a. The detection accuracy and performance of the PF algorithm

with different parameter settings are shown in Fig. 3.13-3.17(a).

The results had demonstrated that the amount of particles used in the PF is correlated

to the detection accuracy, that is, the growth in the number of particles leads to an increase

in the accuracy. Similarly, the average time taken also increases greatly as the number of
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particles used in PF grows. This alludes the fact that as the number of particles increases,

the estimation processes which include object representation, prediction and update also

multiply. However, it is observed that the PF reaches a plateau when reaching the optimal

accuracy. After which, any increase in the number of particles will either have a decrease

in accuracy or no significant improvement. Fig. 3.12 shows that the detection accuracy

decreases after the optimal solution, which is given when the number of particles is 600.

This finding instigates the underlying assumption that the increase of number of particles

will lead to an increase in the accuracy. Again, the question of whether complex (in

this context the complexity is proportional to the number of particles deployed) tracking

methods are really necessary is raised. Also, the best parameter configurations may differ

from one sequence to another due to the different motion behaviour portrayed by the

different object in each sequence, respectively. For example, in Fig. 3.13(a), the optimal

setting is 250 particles which produces detection accuracy of 55% and takes 1.78 seconds

of processing time. Meanwhile, the second sequence has a different optimal setting of

150 particles as shown in Fig. 3.14(a). This advocates the notion as in (Cifuentes et al.,

2012) that motion models indeed only work for sometimes.

SwATrack: Similarly, a test using various parameter settings is conducted on the

proposed SwATrack algorithm and the average results are demonstrated in Fig. 3.12b.

Meanwhile, Fig. 3.13-3.17(b) illustrate the results for TableT1 and TableT5. In addition

to the number of particles used in PF tracking, the proposed SwATrack has an additional

influencing parameter, the maximum number of iterations. A variation on the number of

particles against the number of iterations is set for fair evaluation. As illustrated in the left

y-axis of the chart (bottom graph) of Fig. 3.12b, the average processing time increases as

the number of iterations increase. This is similar to the behaviour of the PF. However, the

processing time increases up to a maximum value; after which any increase in the itera-

tions would not make much difference in its processing time. Notice that the processing
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time for large number of iterations (55 & 70) overlaps with one another, demonstrat-

ing minimal increase in processing time as the number of iterations grows. This is due

to the optimisation capability of the proposed SwATrack in terminating its search upon

convergence, regardless of the defined number of iterations. This is particularly useful

in ensuring efficient search for the optimal solution, with minimal number of particles.

As for the detection accuracy, it is shown that in general, the average accuracy of the

proposed SwATrack is higher than PF, with an average accuracy of 92.1% in the first se-

quence as shown in Fig. 3.13(b). The sudden decrease in accuracy for SwATrack tracking

during iteration = 70, as shown in Fig. 3.14(b), is hypothesised to be due to the erratic

generation of random values in the C++ implementation. This behaviour is not observed

in other sequences, where their detection accuracy are consistent across frames. Thus far,

an average result for each test case is computed over 10 runs to ensure the reliability of the

results. Unbiased results without outliers can be obtained with a higher number of runs.

In summary, the results further validate our findings that the proposed SwATrack is able

to achieve better accuracy as compared to the PF, whilst requiring only about 10% of the

amount of samples used in the PF, with minimal number of iterations. This is made pos-

sible by an iterative search for the optimal proposal distribution, incorporating available

observations rather than making strict assumptions on the motion of an object. Thus, the

findings from this study create prospects for a new paradigm of object tracking. Again,

similar question is raised; if there is a need to make complex existing tracking methods

by fusing different models and algorithms to improve tracking efficiency? Would simple

optimisation methods be sufficient?

3.5.1 (b) Sampling Strategy

A sampling strategy test is performed in order to further evaluate the robustness of

the proposed algorithm as well as to understand the behaviours of other algorithms when
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tracking abrupt motion. In this test, a scenario of receiving inputs from the sensors with

a lower frame rate is simulated. This is done by down-sampling the number of frames

from the test sequence. Assuming that the actual data are obtained at normal rate of 25

frames per second to a lower rate of 5 frames per second. The down-sample frames of

TableT 1− 4 sequences are denoted as DoS− TableT 1− 4. The TableT 5 sequence is

excluded in this test, as the object appears to be out of the scene in the early frames of this

video, and thus the down-sampled sequence will comprise minimal number of frames in

which the object appears in the scene.

Fig. 3.18 demonstrates the detection accuracy between the proposed SwATrack and

PF for all four sequences by down-sampling each sequence to simulate the 5 frames per

second scenario. Note that the detection accuracy is determined by comparing the ground

truth of the sampled frames only. It is observed that in general the proposed SwATrack

has better detection accuracy as compared to PF in both situations; with and without sam-

pling. The average detection accuracy of the SwATrack for the complete sequences is

approximately 95.5% whereas the average for the PF is approximately 62.5%. During

sampling, the average detection of accuracy of the SwATrack is approximately 77.25%

whereas the PF is approximately, 32.75%. The experimental results show that the detec-

tion accuracy of the PF drops drastically when the frame rate decreases. This is because,

in the low frame rate videos, the object tends to have abrupt motion and thus, methods

that assume the Gaussian distribution in its dynamic motion model such as the PF, fail

in such cases. The changes between the detection accuracy on both, the complete and

sampled sequence is as indicated in red in Fig. 3.18. SwATrack on the other hand, copes

better with low frame rate with an average accuracy of more than 70% although there is

a decrease in its efficiency. This is because, the proposed SwATrack algorithm allows

iterative adjustment of the exploration and exploitation of the swarm in search for the

optimal motion model without making assumptions on the object’s motion. This alludes
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to the notion that the proposed SwATrack is able to deal with another scenario of abrupt

motion, where the frame rate is low.

(a) PF (b) SwATrack

Figure 3.12: A comparison in terms of accuracy vs different number of samples and
accuracy vs different number of samples and iteration.

(a) PF (b) SwATrack

Figure 3.13: TableT1: The accuracy and performance of PF and SwATrack with different
parameter settings.
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(a) PF (b) SwATrack

Figure 3.14: TableT2: The accuracy and performance of PF and SwATrack with different
parameter settings.

(a) PF (b) SwATrack

Figure 3.15: TableT3: The accuracy and performance of PF and SwATrack with different
parameter settings.

3.6 Summary

This chapter introduced a novel swarm intelligence-based tracker for visual track-

ing that deals with abrupt motion efficiently. The proposed SwATrack optimised the

search for the optimal distribution without making assumptions or need to learn the mo-

tion model before-hand. Furthermore, the introduction of an adaptive mechanism that

detects and responds to the changes in the search environment to allow on-the-fly tuning

of the parameters allows a more flexible and effective solution. Unlike the conventional

sampling-based tracking solutions which require a large number of particles for accurate
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(a) PF (b) SwATrack

Figure 3.16: TableT4: The accuracy and performance of PF and SwATrack with different
parameter settings.

(a) PF (b) SwATrack

Figure 3.17: TableT5: The accuracy and performance of PF and SwATrack with different
parameter settings.

tracking, the sharing of information between particles in the SwATrack allows accurate

tracking while keeping the number of samples at its minimal. To the best of the author’s

knowledge, this has never been done before. A new dataset - the Malaya Abrupt Mo-

tion (MAMo) dataset comprising 12 videos which are consolidated from benchmarked

sequences, along with their ground truth tracking information is provided for future refer-

ence. A variation of experiments have been performed and the results have shown that the

proposed SwATrack improves the accuracy of tracking abrupt motion while significantly

reduces the computational overheads, since it requires less than 20% of the samples used

by the PF.
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Figure 3.18: The detection accuracy of SwATrack against PF during sampling for DoS−
TableT1−4.
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CHAPTER 4

CROWD BEHAVIOUR ANALYSIS

At large events such as rallies and marathons, where crowds of hundreds or even thou-

sands gather, video monitoring is extremely challenging and complex. Identifying inter-

esting regions in the crowded scenes, that could ultimately lead to unfavourable events,

is a vital cue to direct the attention of security personnel (Schultz, 2008). Table 4.1 illus-

trates some cases of crowd disasters at mass gathering events. Carnage in crowd happens

for a variety of reasons and have seen a two-fold increase in the past two decades (James

et al., 2010; Ngai et al., 2013). In the developing world, crowd disaster often happens

during religions festivals, such as the crush that occurred in Cambodia during the water

festival. Meanwhile, in the developed world, soccer games and concerts are the most

likely events to cause deadly crowds. Some examples of such disasters include the Love

Parade and Hillsborough Stadium incidents. The aftermath investigations surrounding

most of the crowd disasters conclude that there were missed opportunities for using tech-

nology to detect the abnormality of the crowd, which leads to such incidents (Klontz &

Jain, 2013).

Therefore, this chapter proposes a framework that identifies and localises interesting

regions in the crowded scenes. The focus is on exploiting the motion dynamics of the

crowd to infer irregularity or abnormality in the regions that acquire attention. Unlike

most of the existing solutions where a learning mechanism is required to group similar

motion dynamics into clusters, this work alleviates the need for a learned model. This

work suppresses the dominant flow information, while focusing on the unstable motion.

In particular, the motion of individuals is assumed to follow the regular or dominant flow

and the social conventions of the crowd dynamics. With this, interesting regions can be

83



considered as the extrema (instability) in the underlying crowd motion dynamics in the

scene. Instead of disregarding the instability as noise, a simple yet effective idea of am-

plifying regions of unstable motion to infer the abnormality is proposed. This is then

extended by projecting the low-level motion field into global similarity structure to allow

the discovery of intrinsic motion structure that deals with more subtle scenario of abnor-

mal crowd activities. In the context of this work, regions deemed abnormal or acquiring

attention are denoted as salient, and refer to areas with high motion dynamics or unsta-

ble. In summary, the proposed method contributes in such a way that the amplification

of unstable motion, along with the global similarity structure allows the discovery of ab-

normality in the crowded scenes. In contrast to existing literature, the presented solution

requires no pedestrian tracking, no prior information of the scene or extensive learn-

ing to identify abnormality. Thus, it can be adapted to the environment over time and

is more practical for real-world applications to prevent, or at least mitigate crowd disas-

ters, by identifying bottlenecks, congestion and local irregular motion which may help in

avoiding stampede and crowd crushes (Helbing & Mukerji, 2012).

This chapter is structured as the following: a brief introduction of the salient region

detection in the crowded scenes is described in Section 4.1. Section 4.2 describes the

proposed salient region detection in detail. This is followed by discussion on the experi-

mental results in Section 4.3. The extended framework, which projects the local motion

dynamics into global structure is described in detail in Section 4.4 and followed by the

experimental results and findings in Section 4.5. Section 4.6 concludes this chapter.
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Table 4.1: Examples of crowd disasters at mass events.

Date Event - Place Description Casualties Reference
Jan 1971 Ibrox disaster (football

match) - Glasgow, UK
Crush between fans entering and exiting. 66 deaths, 140 in-

jured
(Popplewell, 1986)

Feb 1981 Nightclub fire - Ireland Fire was started deliberately in the alcove. 48 deaths, 128 in-
jured

(Tribunal of Inquiry on the
Fire at the Stardust, 1981)

Apr 1989 Hillsborough disas-
ter (football match)-
Sheffield, UK

Crush due to overcrowding surge against bar-
rier.

96 deaths, 766 in-
jured

(Taylor, 1989)

Jul 1990 The Hajj disaster –
Mecca, Saudi Arabia

Crush caused by lack of directional flow of pil-
grims and crowd control in the tunnel.

1426 deaths, no
data is available
for injured

(Alamri, 2014)

Jan 1991 Orkney stadium disas-
ter - South Africa

Crush when fans panic and try to escape from
brawls that break out in the grandstand.

40 deaths, 50 in-
jured

(Darby & Mellor, 2005)

Jan 1993 New year’s eve stam-
pede – Lan Kwai Fong,
Hong Kong

Slip and fall which leads to more and more peo-
ple deprived of footing and fell; piling on top of
another.

21 deaths, no data
is available for in-
jured

(K. K. Wu, Tang, & Leung,
2011)

May 1994 The Hajj disaster –
Mecca, Saudi Arabia

Progressive crowd collapse caused by the sheer
number of pilgrimages.

266 deaths, 98 in-
jured

(Gad-el Hak, 2008)

Jul 2001 Akashi pedestrian
bridge accident -
Akashi Japan

Crush due to sudden panic during fireworks dis-
play.

11 deaths, 247 in-
jured

(Yokota, Ishiyama, Yamada,
& Yamauchi, 2002)



Date Event - Place Description Casualties Reference
Feb 2004 Miyun lantern festival

disaster - Beijing China
Crush when a spectator stumbled on an over-
crowded bridge and in the confusion people
were crushed in an oncoming throng.

37 deaths, 24 in-
jured

(Zhen, Mao, & Yuan, 2008)

Feb 2006 Philsports stadium –
Manilla Philippines

Sudden surged forward with tremendous speed
and force when the entrance gate was flung
open, coupled with steep decline and uneven
surface of the road which leads to dominoes ef-
fect.

74 deaths, 627 in-
jured

(M. Lee, 2012)

Nov 2008 Wallmart black friday
shopping - New York,
United States

Tension grew as the opening time for the store
approaches, where the density of crowd in-
creases rapidly and was out of control.

1 death, no data
is available for in-
jured

(Ripley, 2008)

Jul 2010 Love Parade disaster -
Duisburg, Germany

Crush due to unauthorised entry to the tunnel;
entering fans converge with the exits.

21 death, 510 in-
jured

(Helbing & Mukerji, 2012)

Nov 2010 Khmer water festival -
Phnom Penh, Cambo-
dia

Crush caused by bottleneck on the bridge and
sudden panic in crowd.

347 death, >755
injured

(Hsu & Burkle, 2012)

Apr 2013 Boston marathon
bombing - Mas-
sachusetts, United
States

Two pressure cooker bombs exploded near the
finishing line, where the crowd of spectators
gather. The suspect was later identified and
found to have abandoned the bag containing the
bombs nearby.

3 death, 264 in-
jured

(Starbird, Maddock, Orand,
Achterman, & Mason, 2014)



4.1 Salient Region Detection

Research studies and aftermath investigations on the earlier crowd disasters or mass

gathering incidents have shown significant progress over the recent years. Expert opinions

such as in (Still, 2000; Helbing & Mukerji, 2012; Krausz, 2012) have reported contradict-

ing causes of the crowd disasters. They rebutted the common misconceptions that these

disasters are caused by stampede, mass panic and trampling. Instead, their research find-

ings discover other observations that trigger stampede, mass panic and trampling, which

then lead to crowd disasters. They recommended the use of these observations to aid

situational awareness in crowd. Amongst the recommended observations that can help to

assess the level of criticality in a crowded scene include: perturbation in the crowd den-

sity, stop-and-go waves, congestion (jams of people forming and growing), bottleneck,

unauthorised entry, slip and fall or crawling activity and crowd turbulence.

Motivated by this, this chapter identifies salient regions which correspond to bottle-

neck, occlusion, instability, crowding, local irregular motion and sources and sinks. The

automatic detection of salient regions is vital in assisting the authority to assess the crit-

icality of crowd scenarios. In addition, it eliminates the need to manually annotate these

regions for many surveillance applications, especially in the area of crowd control and

analysis.

4.2 Proposed Salient Region Detection Framework

In this section, the salient region detection framework, which deals with crowded

scenes is proposed. This section discusses in detail the implementation of the motion

stability between a point and its neighbouring, as well as the projection of the motion flow

into global similarity structure to represent the crowd motion dynamics. Furthermore,

evaluations on various scenarios of the salient regions are demonstrated and discussed.

87



4.2.1 Motion Flow Representation

Each point in a given frame can be described as p = (x,y; t) where x = 1, ...,X , and

y = 1, ...,Y . X and Y refer to the width and height of the frames respectively, t is the

frame under investigation, up to the maximum T frames, in a given sequence. Firstly, the

velocity field of each point, V (p) = (up,vp) is estimated by employing the dense optical

flow algorithm in (C. Liu, Freeman, Adelson, & Weiss, 2008). The velocity field of each

point, V (p), comprises of the horizontal, u, and vertical, v, velocity components.

The velocity components for each point are accumulated and an average velocity is

calculated within an interval of time, comprising of τ frames. The mean optical flow at

frame, t, is denoted as (u,v).

V = {u,v}= {1
τ

t+τ

∑
t

up,
1
τ

t+τ

∑
t

vp} (4.1)

Fig. 4.1 illustrates the proposed time instance analysis which is performed to obtain

the smooth and consistent fields, where inconsistent velocity components (noise) are often

reduced if not removed during the averaging step. Fig. 4.2a shows the velocity field of

a cropped region at frame t = 5 whereas Fig. 4.2b shows the mean velocity field of the

same region for frames, t = 1 : 25, where τ = 25.

Figure 4.1: Graphical representation of the window-based analysis.
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Figure 4.2: Flow field corresponding to the Hajj sequence.

The mean velocity field appears to be a good indicator of the global flow of individ-

uals in a crowd (dominant flow), but may not be sensitive enough to capture the actual

interactions and motion flows that deviate from the norm. Therefore, a particle advec-

tion process is implemented to keep track of the velocity changes in each point, p along

its mean velocity field, (u,v). The basic idea of particle advection is to approximate the

‘transport’ quantity by a set of particles as proposed in (Moore, Ali, Mehran, & Shah,

2011).

d~xp

dt
= up(xp, t;x0, t0) (4.2)

d~yp

dt
= vp(yp, t;y0, t0) (4.3)

subject to p = p0 at t = t0 (4.4)

The suffix, p, indicates the motion of a particular particle or point, where (x0,y0)

represents the initial position of point, p0, at time, t0, while (xp,yp) denotes its position

at time, t. Assuming that the initial position of p0 is the mean velocity fields, (u,v), the

dynamic system can be deemed as an initial value problem. Thus, the pathlines which

trace the points from their x0 and y0 positions at time, t0 to their positions, xt and yt at

time, t can be solved using the classical Runge Kutta method, as discussed in (Kennedy
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& Carpenter, 2003). Unlike the conventional optical flow representation that captures

the velocity of a pixel in two consecutive frames, the advected flow field captures the

velocity of a particle in τ frames. The trace of particles over time forms a pathline which

allows quantification of the motion dynamics, which is derived later from the separation

coefficients between particles.

The proposed framework implemented the Jacobian method as in (Haller, 2000) to

measure the separation between particle’s pathlines which are seeded spatially close to

a point, p, within a time instance, τ . The Jacobian of the flow map is computed by the

partial derivatives of d~x and d~y, where:

∇Ft(p) =


∂d~xp
∂xp

∂d~xp
∂yp

∂d~yp
∂xp

∂d~yp
∂yp

 (4.5)

4.2.2 Stability Analysis

From the physical perspective, the partial derivatives of d~x and d~y give an indica-

tion of the slope of the tangent plane in the x and y directions; an indication of the rate

of change in the flow with respect to x and y. According to the theory of linear sta-

bility analysis, the square root of the largest eigenvalue, λt(p) of Ft(p)T Ft(p) indicates

the maximum displacement, if the particle’s seeding location is shifted by one unit as

it satisfies the condition that lnλt(p) > 0. In the context of this study, a large eigen-

value indicates that the query point is unstable, and vice versa for a small eigenvalue.

Note that in contrast to existing solutions (Ali & Shah, 2007; Weiss & Adelson, 1996;

J. Yan & Pollefeys, 2006), where high motion dynamics are regarded as noise and thus

removed; the proposed method exploits these unstable regions to infer salient regions.

Fig. 4.3 illustrates the main difference between the two. The blue dots denote stable mo-

tion, where the spatio-temporal relationships and velocity changes between a point and
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its spatially close neighbours are minimal. The stable motion flow often constitutes to

coherent motion in existing works and thus unstable motion is disregarded and deemed

as noise during segmentation. On the other hand, the proposed method analyses regions

with unstable motion activities, represented by the red dots. The red dots demonstrate

dynamic changes between a point and its spatially close neighbours from one frame to

another. In a dense crowd scene, the motions of individuals tend to follow the regular or

dominant flow (coherent) of a particular region. This is due to the physical constraints

of the environment (i.e. path, junction) and the social conventions of crowd dynamics.

Therefore, irregularities or abnormalities in the scene are identified when the motion dy-

namics of individuals differ from its close neighbours. The dynamics of a point within

its spatially close neighbouring points is estimated by its stability and is represented as a

map, φ = (x,y; t), where x=1,...X, and y = 1,...Y:

φt =
1
| τ |

log
√

λt(p) (4.6)

This is then followed by the flow magnification of regions with high motion instabil-

ity to synthesise the signal, while removing the insignificant ones using equation:

φ̂t =


β .φt , if φt ≥ α

(1−β ).φt , otherwise

(4.7)

where, β is the magnification factor and α is the segmentation threshold. Fig. 4.4 demon-

strates the output of the flow dynamics before and after the magnification, as in Eq. 4.6

and Eq. 4.7 respectively.
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Figure 4.3: Illustration of stable and unstable motion dynamics. Best viewed in colour.

Figure 4.4: Illustration of the stability rate and magnified stability rate on the Hajj se-
quence. Note that the magnified stability rate amplified regions unstable regions while
removing stable regions. Furthermore, the magnified stability rate shows a wider distri-
bution between the stable and unstable points. Best viewed in colour.

4.2.3 Two Stages Segmentation

This chapter proposes two stages of segmentation that combines the output of fine

and coarse segmentation obtained from the local and global segmentation steps. Briefly,

the fine segmentation retains only the regions with high motion dynamics as seen in Fig.

4.6a. The coarse segmentation on the other hand, segments regions into clusters of co-

herent motion as shown in Fig. 4.6b. Note that the coarse segmentation is similar to most

work in the literature, on motion segmentation. Nevertheless, the proposed two stages

of segmentation are necessary in this context to allow accurate detections of the salient

region. Otherwise, the output of the local segmentation alone is highly sensitive to noise,

resulting in false detections. Meanwhile, the output of the coarse segmentation alone has

a high tendency to cluster regions based on motion coherency, which is not the focus of

this chapter; where the aim is to detect salient regions which corresponds to potential ab-
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normality. In addition, the proposed two stages of segmentation alleviate the need to fine

tune the best threshold values to be used for the segmentation of salient regions.

4.2.3 (a) Local Segmentation

In this study, the salient regions are observed to exhibit high values of φ̂t , due to the

high motion dynamics between points in a spatially close region. For example, individuals

in a crowd tend to slow down when they approach an exit; increasing the motion insta-

bility in the exit region. In a regular flow, individuals tend to move with the crowd and

thus exhibiting low motion dynamics (stable). Thus, a strict threshold is firstly applied to

the stability rate to retain regions with high motion dynamics only, where ΩL
t := φ̂t ≥ α .

The parameter setting of α indicates the percentage of the stability rate to be retained. A

higher value of α would retain regions with extremely high motion dynamics whereas a

lower value of α would be more lenient in preserving regions with less motion dynamics.

An opening morphology operation is then performed on the map to retain only the larger

regions while removing the outliers. The sample output of the local flow segmentation

(fine), ΩL
t , is a local map that highlights the regions with high motion dynamics and is

shown in Fig. 4.6a.

4.2.3 (b) Global Segmentation

Subsequently, a lenient threshold is applied to the stability rate for global segmen-

tation. Most of the time, only the background or regions with minimal motion field are

removed; ΩG
t := φt ≥ γ and γ→ 0. After thresholding, the ΩG

t comprises boundaries that

are watershed-like, with many local optima. Thus, a variation of the watershed segmen-

tation algorithm as introduced in (J. Shi & Malik, 2000) is adopted to cluster regions that

are similar. The key idea is the use of the motion dynamics, ΩG
t , as the feature similarity

criterion to be optimised during clustering. A graph, G = (V,E) is constructed by taking

each pixel as a node and the edge weight, wi j between node i and j as the product of a
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feature similarity, Ω and spatial proximity, X terms:

W i j = e
||Ω(i)−Ω( j)||2

σ(Ω)2 ∗


e
||X(i)−X( j)||2

σ(X)2 , if || X(i)−X( j) ||≤ r

0, otherwise,

(4.8)

where X(i) is the spatial location of node i, and Ω(i) is the corresponding separation field.

The weight reflects the likelihood that the motion of the two pixels are coherent. Note

that the weight, W i j = 0, for any pairs of nodes, i and j that are more than r pixels apart.

Fig. 4.6b shows sample shots of the coarse segmentation; each segment is filled with the

quantised flow directions obtained from the mean flow field estimated earlier, in Eq. 4.1.

Finally, the coarse segmentation output is combined with the fine segmentation out-

put to obtain the salient regions, Ωt . The union operator is applied for this purpose,

where Ωt = ΩG
t ∩ ΩL

t . The separation of the task of segmentation into two stages allevi-

ates the need for exhaustive fine tuning of the segmentation thresholds, α and γ . Fig. 4.6

demonstrates the pipeline of the two stages of segmentation and sample salient regions in

the Hajj sequence. Since the proposed method is based on time instance, the two stages of

segmentation, coupled with the magnification of unstable regions will eventually reduce

the influence of stable regions overtime for more accurate detection.A summary of the

overall algorithm is as shown in Fig. 4.5.

4.3 Experimental Results and Discussion

This section presents the detection results on real world crowded scenes. The pro-

posed framework is developed in the Matlab environment and evaluated using an Intel®

Core™ i7-3770 processor running on Windows 7.
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Figure 4.5: The framework of the proposed salient region detection method using two-
stages segmentation.

(a) Sample output of the local
segmentation.

(b) Sample output of the global seg-
mentation.

(c) Sample output of the
two stages segmentation,
where the regions high-
lighted in red represents
salient regions.

Figure 4.6: Sample output of the two stages segmentation process on the Hajj sequence.

4.3.1 Experiment Setup and Dataset

A set of 8 test sequences, comprising a variety of dense crowd scenes were used

for evaluation and are illustrated in Fig. 4.7. These sequences are obtained from related

literature and selected based on their relevancy in the context of exhibiting salient regions

(Ali & Shah, 2007, 2008; Solmaz et al., 2012). Note that while there are numerous

sequences on crowded scenes, most of the time, they are either depicting normal scenario

or subtle salient region which is difficult to be noticed by the human eye. Thus, they are
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omitted from this evaluation.

The first sequence is obtained from the National Geographic documentary, ‘Inside

Mecca’, portraying the Hajj scene. Meanwhile, the second till fourth sequences depict

the different marathon scenes obtained from real events. The fifth sequence is captured

from a train station where a large crowd of passengers alighted from the train and moving

towards the exit. The sixth sequence demonstrates a school of fish swirling and is added to

demonstrate the capability of the proposed system to deal with non-human crowd which

exhibits high motion dynamics. Finally, the last two sequences were of the same sequence

as the earlier (Hajj and Marathon1), but with the addition of synthetic noise to simulate

changes in the motion dynamics (corrupted). In this experiment, the parameters used

across all sequences are: τ = 25 (at 25fps), α = 0.5, β = 0.1, and γ → 0. These values

are defined based on the dataset used in this sequence. In practice, τ should depend on

the rate of change of the flow field, with a higher rate of change of resulting in smaller

time scales and vice versa.

Figure 4.7: Sample shots of the dataset. Top row, from left to right, Hajj, Marathon1 and
Marathon2; Second row, from left to right, Marathon3, Train Station and School of Fish;
Bottom row, from left to right, Corrupted Hajj and Corrupted Marathon1.
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4.3.2 Qualitative Result

The evaluation is categorised into 3 broad categories of triggers which may lead to

crowd disasters including, instability or irregular motion, bottleneck and occlusion.

4.3.2 (a) Instability Detection

The corrupted test sequences, Corrupted Hajj and Corrupted Marathon1 are used to

test the capability of the proposed framework in detecting instability. It is worth noting

that manual annotation of the various triggers of crowd disasters in real world scenarios

is an open issue due to its ambiguous nature. Moreover, in an extremely crowded scene,

it is very challenging to identify abnormality by the naked eyes. Often, the operator will

have to go through the video sequences time and again in order to pick up the subtle cues.

Thus, synthetic noise was injected into these two sequences to simulate the ground truth

unstable regions as enclosed in the yellow bounding boxes in Fig. 4.8a and Fig. 4.9a. The

synthetic instabilities were inserted into the original videos by flipping and rotating the

flow of a random location into the specified ground truth position. A comparison between

the proposed framework, Loy et al. (Loy et al., 2012) and Ali et al. (Ali & Shah, 2007)

is performed.

As shown in Fig. 4.8 and 4.9, all three methods are able to identify the unstable

regions accurately. However, the results show that in addition to the synthetic noise, the

proposed method is able to identify other regions that exhibit high motion dynamics as

highlighted by the red regions. In order to evaluate if the detected regions provide correct

cues to potential triggers to crowd disasters, three informed and trained operators are em-

ployed to manually detect the salient regions. The manually detected salient regions serve

as ground truth information for benchmarking purpose. After a thorough investigation as

well as going through the original sequence time and again, the operators noticed that the

detected areas by the system, indeed, correspond to the exit and turning point around the
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Kaaba as shown in Fig. 4.8b. This is most likely due to the structure of the scene, or

physical constraints of the Kaaba (situated at the centre of the scene); where the motion

of the crowd slows down during the turning. Such saliency is difficult to be noticed by

the naked eyes. In fact, the three operators noted this scenario only when they are asked

to pay extra attention on the detected regions.

Again, it is important to emphasise the open issue in the current literature on identi-

fying the ground truth of potential triggers to crowd disasters. This is due to the subjective

nature of salient regions and the complexity of what constitutes to abnormality. Thus, this

chapter argues that it is unfair to deem these detections as false positives. Instead, this

chapter deliberates if these detections can assist in investigating and understanding the

non-obvious motion dynamics of a scene.

(a) Ground truth un-
stable region (yellow
box).

(b) Output of the pro-
posed method.

(c) Output of (Loy et
al., 2012).

(d) Output of (Ali &
Shah, 2007)

Figure 4.8: Comparison of unstable region detection using the Corrupted Hajj sequence.
Best viewed in colour.

(a) Ground truth un-
stable region (yellow
box).

(b) Output of the pro-
posed method.

(c) Output of (Loy et
al., 2012).

(d) Output of (Ali &
Shah, 2007)

Figure 4.9: Comparison of unstable region detection using the Corrupted Marathon1
sequence. Best viewed in colour.
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4.3.2 (b) Bottleneck or ‘Stop and Go’ Detection

In the following, the original sequence of Hajj and Marathon1 are used to detect

bottleneck. The results in Fig. 4.10 and Fig. 4.11 show that the state-of-the-art methods,

(Loy et al., 2012; Ali & Shah, 2007) are not able to deal with such abnormalities and

do not have any detection on these sequences. On the contrary, our method is able to

detect bottleneck caused by turning and exit areas such as shown in Fig. 4.10b and Fig.

4.11b. The detections of bottleneck has tremendous potential as an indication of impend-

ing danger such as stampede or overcrowding taking place, due to the stop-and-go waves

or sudden build up in the crowd motion. This study reveals new insights into identifying

abnormality in crowd motion. Potentially, the detected regions can be used to perform

intervention for better crowd and congestion control.

(a) Hajj sequence
without synthetic
noise.

(b) Output of the pro-
posed method.

(c) No detection from
(Loy et al., 2012).

(d) No detection
from (Ali & Shah,
2007).

Figure 4.10: Comparison of unstable region detection using the Hajj sequence, where the
salient region is not obvious. Best viewed in colour.

(a) Hajj sequence
without synthetic
noise.

(b) Output of the pro-
posed method.

(c) No detection from
(Loy et al., 2012).

(d) No detection
from (Ali & Shah,
2007)

Figure 4.11: Comparison of unstable region detection using the Marathon1 sequence,
where the salient region is not obvious. Best viewed in colour.

Further evaluation on the Marathon2, Train Station and School of Fish sequences

demonstrate the capability of the proposed method to detect bottleneck in different sce-

narios of crowd. The detected salient regions are as enclosed in the red bounding box in
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Fig. 4.12 and Fig. 4.13. It is observed that the detected regions in the Marathon2 se-

quence correspond to obvious bottleneck near the entry and exit regions, where the crowd

enters and disappears from the scene. Meanwhile, validating the detected regions for

the Train sequence is not as straightforward. However, throughout the video sequence,

the proposed framework identified the central region within the crowd as exhibiting high

motion dynamics. This is most likely due to the bottleneck that happens as the crowd

moves through a constraint pathway. Future investigation would include putting a barrier

or obstruction in the detected salient regions in such scenes, to explore the probability of

reducing traffic congestion or crowd evacuation that may occur due to bottlenecks.

Figure 4.12: Sample bottleneck regions in the Train and Marathon2 sequences.

Fig. 4.13 demonstrates the detection results using the proposed method with an-

other high density crowd scenario; the school of fish. In this sequence, an aggregation of

schooling fish can be seen in the school fish sequence where the school of fish swirl in

what looked like tightly choreographed manoeuvres towards the central of the scene. As

shown in Fig. 4.13, the proposed framework is able to detect regions near the central of

the swirl as salient regions. It is observed that the salient regions enclose a wider space

of the central region across the frames before growing towards the right side of the im-

age space. This is because the movement of the aggregation which gets more dynamic

across the frames as more individual members are attracted towards the central point,

‘whirpool’ and later moving towards the right direction. The capability of the proposed

system in detecting the ‘whirpool’ region would be useful in studies which are related to

understanding the collective motion of fish.
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Figure 4.13: Another scenario of high motion dynamics caused by the collective motion
of fish.

4.3.2 (c) Occlusion Detection

In another variation, the Marathon3 sequence with a visible occlusion or barrier is

used. In this sequence, there is a huge street light appearing in the middle of a dense

marathon scene. The proposed method is able to detect the regions near the street light

as salient. See Fig. 4.14. The results demonstrate the capability of the proposed solution

to not only detect instability and bottleneck, but also other regions that demonstrate high

motion dynamics such occlusion. The automatic detection of salient regions is crucial in

many surveillance applications, such as evacuation planning, traffic analysis and anomaly

detection.

4.3.2 (d) Configuration Test

In order to investigate the influence of the parameters to the detection accuracy, this

evaluation varies their settings. Fig. 4.15 demonstrates sample output for the Hajj se-

quence on the different frames using α = 0.5, while other parameters are set to their de-

fault. It can be seen that while the detected salient regions differ slightly from one frame

to another, the regions which correspond to the ground truth remains consistent through-

out the frames. This shows that the proposed method which requires no learning stage can

adapt to the environment and thus allows detection of changing salient regions. Mean-

while, existing work which requires learning stage would not be able to detect changing

salient regions. The capability of dealing with changing salient regions is important in

most real world applications, since the motion activity differs from one scene to another,
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and from one time to another (i.e. traffic increases during peak hours).

Fig. 4.16 shows sample outputs using different values of α . A wider area of salient

region is detected when the α → 1 while a α → 0 generates less salient regions. An

empirical value of α = 0.5 has been found to be satisfactory across all sequences. Finally,

Fig 4.17 illustrates the sample outputs using the proposed two stages segmentation, local

and global segmentation individually. It is observed that the global segmentation tend to

cluster regions into coherent motion (i.e dominant motion) while the local segmentation is

sensitive to noise and is prone to false alarms. The proposed two stages segmentation on

the other hand, exploits the advantages from the coarse and fine segmentation, resulting

in a better trade-off between the two outputs for a more accurate salient region detection.

Figure 4.14: Sample occlusion region in the Marathon3 sequences.

(a) α = 0.5, at frame 5. (b) α = 0.5, at frame 15. (c) α = 0.5, at frame 25.

Figure 4.15: The detected salient region is consistent throughout the frames, and changes
according to the motion dynamics of the crowd. Best viewed in colour.

(a) α = 0.5, at frame 8. (b) α = 0.7, at frame 8. (c) α = 0.9, at frame 8.

Figure 4.16: The detected salient region grows as, α → 0. Best viewed in colour.
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(a) Ωt = ΩG
t ∩ΩL

t , at frame 20. (b) Ωt = ΩL
t , at frame 20. (c) Ωt = ΩG

t , at frame 20.

Figure 4.17: The detected salient region grows as, α → 0. Best viewed in colour.

4.4 Extended Framework

The crowd behaviour analysis framework proposed earlier, has the advantage of de-

tecting salient regions caused by high motion dynamics such as bottlenecks. However,

the stability rate which is derived locally does not deal with subtle motion changes. In

the context of this study, subtle motion refers to local irregular motion which is usually

caused by an individual or a small group of individuals moving against the dominant

flow. For example, in the recent Boston Marathon bombing incident where two bombs

exploded near the finish line and killed 3 people and injuring 264 others (Malone & Mc-

Cool, 2013). Surveillance videos have been found to show the suspect, carrying backpack

and walking nonchalantly in the area, before leaving the backpack containing the explo-

sives as shown in Fig. 4.18a. In another example, Fig.4.18b illustrates the movement of

individual against the dominant flow, where crowd of spectators are seated in the stadium.

Therefore, the proposed framework is extended to include higher level representation of

the stability feature to allow the discovery of the intrinsic manifold of the motion dynam-

ics, which could not be captured by the low-level representation.

4.4.1 Global Motion Flow Representation

The global motion flow representation is a projection of the low-level stability feature

extracted from the earlier framework, φ̂t . The difference between the local stability, φ̂t , of

each point, p, with every other point, p′, is computed to represent the motion dynamics in

a higher dimensional manifold. The global stability structure comprises St ∈ IX×Y , where
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(a) The highlighted area is widely believed to be
the site of where the bomb went off.

(b) The irregular motion of individuals against
the crowd, who are seated is as highlighted in the
blue bounding box.

Figure 4.18: Sample scenarios of local irregular motion.

X and Y refer to the width and height of the frames respectively. Each point, Si in the

global structure captures the distance correlation, C, between every pair of pixels, p(x,y; t)

and p′(x,y; t). Fig. 4.19 illustrates the local and global stability structure in two and three

dimensional representations. It can be seen that the three-dimensional embedding of the

global similarity structure obtained using multi-dimensional scaling, provides additional

information on the intrinsic manifold of the motion dynamics. The combination of both

feature representations therefore, allows discovery of a broader scenarios of saliency.

Si(p, p′) =Cp(p′) (4.9)

Cp(p′) =
√

(p− p′)2 (4.10)

4.4.2 Ranking Manifold

The aforementioned proposed two stages segmentation is not suitable for the St man-

ifold, as the global stability structure lacks spatial information and is of a higher dimen-

sion. Thus, the ranking of data manifold as proposed in (J. Zhou D.and Weston, Gretton,

Bousquet, & Schölkopf, 2004) is adopted to detect subtle salient regions using the ranking
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(a) Local stability structure (2D), φt . (b) Global stability structure (2D), St .

(c) Local stability structure (3D), φt . (d) Global stability structure (3D), St , obtained
using multi-dimensional scaling.

Figure 4.19: Sample feature representation for the Hajj sequence. Note that the spatial
information is absent in the global structure representation.

points with respect to the intrinsic manifold structure uncovered by the global structure.

As opposed to related work such as in (M. Rodriguez, Sivic, Laptev, & Audibert, 2011),

no learning stage is required for this purpose.

Each point in St is represented in the form of a weighted k-Nearest Neighbour (kNN)

undirected network graph, G = (V,E). Each vertex in the graph represents a data point,

Si. Two vertices are connected by an edge, E weighted by a pairwise affinity matrix, Wi j,

and is defined as:

Wi j = exp
(
−d2(ri,r j)/2σ

2) (4.11)

where the parameter σ determines the width of the neighbourhood, i 6= j and Wii = 0,

to avoid bias self reinforcement during the manifold ranking (J. Zhou D.and Weston et

al., 2004). The distance metric, d, denotes the Euclidean distance. Given the affinity
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matrix, Wi j, the connected graph, G can then be represented by using the symmetrical

normalisation matrix (Laplacian), L = D−
1
2WD−

1
2 , where D is the diagonal matrix with

Dii = ∑ j Wi j.

Let f denotes a ranking function which assigns to each point, Si a ranking value of

fi. f can be viewed as a vector, f = [ f1, . . . , fn]
T . The global stability structure, St can be

represented as S = {S1,S2, . . .Sm,Sm+1, . . .Sn}, where m,n = [X ×Y ]. The first m points

are the queries (random), while the rest are the points to be ranked according to their

relevance to the queries. A vector, y, is defined to store the label assignment of feature

instances, where y = [y1, . . . ,yn]
T , in which yi = 1 if Si is a query, and yi = 0 otherwise.

The connected graph, Wi j, is weighted and symmetrically normalised iteratively,

where each point spread their ranking score to their neighbours via the weighted net-

work. The spread process is repeated until convergence. The ranking score is computed

using:

f (t +1) = αL f (t)+(1−α)y, 0≤ α ≤ 1 (4.12)

where, L is the Laplacian graph, and α is the scaling parameter in the range of [0,1].

By performing ranking, the extrema can be detected as data points with the highest

and lowest rank scores, deviating from the query points. Such extrema suggest salient

regions caused by subtle motion change which correspond to local irregular motion. A

summary of the overall algorithm is as shown in Fig. 4.20.

4.5 Extended Experimental Results and Discussion

Similar to the local motion structure framework, the proposed framework which

utilises global motion structure is developed in the Matlab environment and evaluated

using an Intel® Core™ i7-3770 processor running on Windows 7. This section presents

further evaluation for salient region detection in crowd, including the subtle abnormality.
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Figure 4.20: The framework of the proposed salient region detection method, using global
similarity structure.

4.5.1 Experiment Setup and Dataset

For evaluation a set of 30 datasets obtained from benchmarked crowd dataset is used

(M. Rodriguez et al., 2011; Loy et al., 2012; Solmaz et al., 2012). The sequences are

diversified, representing dense crowd in public spaces in various scenarios such as pil-

grimage, station, marathon, rallies and stadium. Each sequence have different field of

views, resolutions, and exhibit a multitude of motion behaviours that covers both the ob-

vious and subtle instability. Sample shots of the sequences used are shown in Fig. 4.21.

4.5.2 Qualitative Result

The qualitative evaluation on detecting subtle saliency is categorised into 2 cate-

gories of triggers comprising local irregular motion and find Boston bomber. Although

in general, the two triggers are closely related and are not discriminated by the proposed

framework, this section splits the two for easier understanding of the solution in real world

applications.
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Figure 4.21: Sample test sequences comprising of the different scenarios of dense crowd.
The blue bounding box depicts the ground truth salient regions, which exhibit local irreg-
ular motion in particular.

4.5.2 (a) Local Irregular Motion

A comparison is performed between the proposed work and Solmaz et al. in (Solmaz

et al., 2012) using the sequence obtained from an underground station as depicted in Fig.

4.22. In this sequence, there is obvious source and sink regions which are denoted as bot-

tleneck and fountain-head, respectively in (Solmaz et al., 2012). The results demonstrate

the capability of the global stability structure framework to detect similar salient regions

as in (Solmaz et al., 2012), with the addition of another source region at the bottom right

of the scene. The proposed global stability structure is able to detect such subtle motion

of someone walking into the scene from the bottom left corner of the scene. This is not

the case in (Solmaz et al., 2012), where their detection does not highlight accurately the

locality of the triggering event. It is worth noting that while the proposed methods are

able to detect the different scenarios of abnormality caused by high motion dynamics, the

salient regions are not characterised into different categories. Instead, these detections are

deemed abnormal and are intended to provide cues for better understanding of the crowd.
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(a) Original image. (b) Output of (Solmaz et al., 2012).

(c) Output of the proposed method.

Figure 4.22: Comparison of salient region detection using the Marathon1 sequence,
where the salient region is not obvious. Best viewed in colour.

4.5.2 (b) Find Boston Bomber

Further investigation on sequences that resembles the Boston Marathon bombing

incident which exhibit an individual moving against the dominant crowd flow such as

shown in Fig. 4.23 is performed. This scenario is to mimic the Boston Marathon Person

Finder page launched by Google, which aims to identify individuals that seem suspicious.

To the best of the author’s knowledge, most of the conventional solutions fail to detect this

type of anomaly, which is not obvious (Sarafraz, 2013; Solmaz et al., 2012; M. Rodriguez

et al., 2011; Loy et al., 2012; Ali & Shah, 2007). On the contrary, the proposed global

stability structure method which represents the motion flow in a higher dimensional space,

consistently detects such anomaly as illustrated in Fig. 4.23.
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(a) The proposed framework is able to detect an individual walking across the scene, when the
rest of the crowd is seated.

(b) The individual maneuvering through an extremely crowded scene is detected as salient.

Figure 4.23: Find Boston Bomber: Example results of abnormality caused by local ir-
regular motion. The ground truth is enclosed in the white bounding box in the first two
columns, while the detected salient regions are as highlighted in the blue bounding box
on the right most column. Best viewed in colour.

4.5.3 Quantitative Result

At present, most of the related works merely provide qualitative results and since

this field of work is still at its infancy, the implementations are not shared publicly; lead-

ing to difficulties in performing a quantitative comparison for evaluation. As such, this

section summarised the detection rate of the proposed method, against the manually gen-

erated ground truth for all the sequences obtained from the datasets which are publicly

available. The anomalies are determined as per video basis and the F-measure according

to the score measurement of the known PASCAL challenge (Everingham et al., 2010) is

applied. That is, if the detected region overlaps the ground truth by more than 50%, then

the estimation is considered as correctly identified salient region. The different scenarios

of abnormality are categorised as crowding, sources and sinks and local irregular motion

as shown in Table 4.2. The detections are further categorised into 3 categories, including

bottleneck, sources and sinks and local irregular motion as can be perceived naturally by

the human eye, as shown in Table 4.2. Bottleneck in this context is defined as poten-
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tial build up in density or crowding that are typically affected by the physical structure

of the environment. For example, near junctions where the crowd density builds up and

thus, preventing smooth motion amongst individuals. Sources and sinks refer to regions

where individuals in a crowd enter or leave the scene. Finally, the local irregular motion

is triggered by flow instability of individuals or a small groups manoeuvring against the

dominant flow in the scene. Fig. 4.24 illustrates sample outputs of the proposed frame-

work on the various scenarios of abnormality in crowded scenes.

Table 4.2: Summary of the abnormal detection results.

Anomalies Total # # of True # of Missed # of False
of Anomaly Detection Detection Detection

Bottleneck 20 23 3 0
Sources and
Sinks 17 26 9 0
Local Irregular
Motion 43 47 2 6

Figure 4.24: Sample output of the proposed algorithm. Red denotes false positive and
false negative detections, while blue bounding box represents true positive. Best viewed
in colour.
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4.5.4 Comparison Result

In this section, results from the two proposed framework and its extension are com-

pared and discussed. Fig. 4.25a and Fig. 4.25b illustrates sample comparison results. It

is observed that the global projection of motion field enables extraction of intrinsic mo-

tion dynamics, thus allowing detection of subtle motion change caused by local irregular

motion. This type of motion, such as an individual moving against the crowd flow, is not

dealt with by the local representation of motion. Another drawback of the local represen-

tation, which the global representation could overcome, is the inability to detect saliency

which appears near the boundary of the image. This is due to the advection process in the

local framework which removes the boundary of the image to avoid out of bound estima-

tion of the motion flow. As shown in Fig. 4.25c, the global framework is able to detect

the sink region near the boundary, where the crowd disappear from the scene, while the

local framework fails to detect such saliency. Note that the both frameworks are able to

detect the potential bottleneck at the central area of the scene.

4.6 Summary

This section discusses the implementation of different frameworks for salient re-

gion detection in crowded scenes, where one is the extension of the other. The proposed

methods eliminate the need to track each object individually, prior information or exten-

sive learning to identify anomalies by observing the flow activities in a given scene for

inference. In addition, the projection of the low-level motion flow into global similarity

structure has been shown to be an effective indicator of subtle motion dynamics and irreg-

ularities in the crowded scenes. Experimental results show that the proposed frameworks

are not only able to detect salient regions that correspond to the instability, bottleneck,

or occlusion, but also local irregular motion which is subtle and difficult to be noticed

by the naked eyes. Preliminary results demonstrate that the detections from the two pro-
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(a) From left to right: Ground truth saliency; No output from the local framework;
Output of the extended framework.

(b) From left to right: Ground truth saliency; No output from the local framework;
Output of the extended framework.

(c) From left to right: Ground truth saliency; Output of the local framework; Output
of the extended framework.

Figure 4.25: Comparison result between the proposed framework and its extension, where
their detections complement each other for the various scenarios of saliency. Red denotes
missed detection, while blue represents ground truth and true positives. Best viewed in
colour.

posed frameworks are complementary and thus, are worthy of future integration work for

a broader scope of salient region detection. It is acknowledged that at its present point, the

experiment lack of comprehensive dataset. Furthermore, manual annotation of the ground

truth is very challenging as it is not always that an entry or exit is made obvious by a door

or gate. It is often very subjective to ascertain that a detected region is indeed an entry or

exit region and this is made even more challenging in identifying bottlenecks. However,

the promising preliminary results obtained are definitely worthy of future investigation

since it is able to detect regions that are otherwise oblivious to the human operator. Fu-

ture work would include a more comprehensive testing, a wider selection of datasets and

further analysis on the detected salient regions to infer higher level semantics.
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CHAPTER 5

MULTIPLE EVENTS DETECTION IN VIDEO SURVEILLANCE

Video surveillance has gained immense popularity across the globe due to the rising

concerns for public safety and security. This leads to demand for technically advanced

surveillance systems, thereby, creating huge growth opportunities for video surveillance

market. Generally, video surveillance market can be segmented into cameras, servers and

encoders, storage, monitors, and analytics or software. According to the global research

conducted by Frost and Sullivan in (Frost & Sullivan, 2012), the market is expected to

have generated revenues of about US$ 10.3 billion in 2010, with a growth rate of 9.8

percent over the previous year. In Malaysia for example, the last decade has witnessed

significant advances in the field of video surveillance. Malaysia video surveillance mar-

ket was estimated at over US$ 65 million in 2008 with compound annual growth rate of

27% by 2013 (Frost & Sullivan, 2009) and is as shown in Fig. 5.1. Most recently, the

analysis of video surveillance market in Malaysia has been discussed further in (J. Lin,

2014), where the actual market revenues for Malaysian market from year 2011 to 2014

demonstrated a steady growth rate of 17%. Furthermore, the annual budget by the Gov-

ernment of Malaysia has shown tremendous interest in curbing crime and providing ‘safer

city’. This can be seen from the increase in budget allocation over the years. In the recent

budget 2014, a total of RM3.9 billion fund was allocated to strengthen public safety (Tun

Haji Abdul Razak, 25 October 2013).

Along with the enormous growth in the number of CCTVs deployed in public spaces,

rises the need for intelligent analytical solutions (Velastin & Remagnino, 2006). Due to

the large number of monitors to be observed closely, as well as other security tasks in

hand, it is extremely challenging for human operators to perceive and interpret activities
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Figure 5.1: IPV6 market size and forecast in Malaysia.

taking place in the scene. Moreover, other factors such as fatigue, lack of knowledge,

state of learning, confidence and integrity has been considered to influence the reliance of

human monitoring in video surveillance (Dadashi, 2008; Keval & Sasse, 2008; Fookes et

al., 2010; Bruckner, Picus, Velik, Herzner, & Zucker, 2012). Hence, there is a dire need

to automate some aspects of the real-time surveillance systems. Automatic surveillance

systems or analytics are used to detect, track and in higher levels solutions, to analyse the

behaviour of objects in the scene (Valera & Velastin, 2005).

There have been considerable efforts in the industry as well as academia, which are

focused on developing various algorithms and models for surveillance systems (Draganjac,

Kovacic, Ujlaki, & Mikulic, 2008; Chan & Liu, 2009; C. Wang, Lu, Yang, & Liu, 2010;

Chen et al., 2011; Albusac, Castro-Schez, Vallejo, Jiménez, & Glez-Morcillo, 2011; Al-

busac et al., 2014). These systems are commonly designed for specific video surveillance

applications, which arise in favour of social welfare and public safety. Amongst the appli-

cations include traffic monitoring, loitering and intrusion detection. Favourably, analytics

solutions that infer abnormal events or meaningful patterns that suggest complicated cir-

cumstances should be flexible enough to deal with multiple events. Current analytics

solutions, however, often act separately to detect multiple events in different scenarios.

For example, systems that perform loitering detection or/and abnormal trajectory in a

given scene is based on two separate modules that work independently. Thus, they are

usually not flexible or general enough to allow detections of different events at one time,
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or to be generalised to other environments (Dick & Brooks, 2004).

5.1 Compositional Based Multiple Events Detection

This section aims to propose a novel framework, based on the principle of compo-

sitionality for multiple events detection in video surveillance. The framework deals with

multiple events, on different regions-of-interest (ROI), at a particular time while utilising

the low-level features of a given scene. The advancement from detecting singular event

to multiple events provides a broader degree of scene understanding in automated video

surveillance. This is very critical in the real-world scenarios where different (multiple)

events may take place in a scene at the same time. For example, it is very likely that a

loitering event happens at the same time as an abandoned luggage in a given scene.

By adopting the principle of compositionality from the Artificial Intelligence (AI)

domain into video surveillance, the detection of multiple events in multiple regions is

simplified and optimised. This principle proposes that the meaning of a complex expres-

sion is determined by the meanings of its constituent expressions, and the rules used to

combine them (Pelletier, 1994). It is also referred to as the Frege’s Principle, because

Gottlob Frege is widely credited for the first modern formulation of it (Janssen, 2001).

The gist of this chapter is to conceptually decompose information obtained from a

given scene into several intermediate degrees of abstractions. These low-level descrip-

tions are then integrated and combined using a basic set of rule-packages, which dis-

criminate between different abnormal events to build a complete knowledge of the given

scene. In order to represent the contextual information of the scene using the proposed

framework, this work investigates two main research questions: i) how to decompose and

represent the modularised entities of the knowledge-based system in the video surveil-

lance domain, and ii) how to apply the basic set of rule-packages to perform different

abnormally events detection in a given scene.
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The rest of this section is organised as the following. Section 5.2 provides the con-

ceptual understanding to construct the proposed compositional-based framework, while

Section 5.3 formulates the problem of multiple events detection in the context of compo-

sitional model in detail. This is followed by Section 5.4 which discusses a model applica-

tion which is aimed at detecting multiple abnormal events using the proposed framework.

Finally, the experimental results are presented and discussed in Section 5.5. The final

section, in Section 5.6, concludes this study and provides insights as well as the future

work.

5.2 Conceptual Understanding: Proposed Compositional-based Framework

Thus far, constructing the knowledge-based for video understanding is still an open

issue due to the large variety and complexity of real-world scenarios that have to be dealt

with, as well as the lack of formalised expertise on programs (Georis, Bremond, & Thon-

nat, 2007). This chapter explores the potential of exploiting the principle of composition-

ality for optimised abstractions of the complex surveillance problems.

Using the principle of compositionality, the surveillance problem is modularised into

a set of variables comprising of low-level descriptions of the scene. This is made possi-

ble as surveillance systems generally involve monitoring different ROI in a given scene,

classes (i.e. human, animal, vehicle, etc.) with various quantity dimensions (i.e. single

or group) and attributes of the identified object-of-interest (i.e. direction, speed, locality,

etc.). The underlying idea is that most of the events in surveillance can be hierarchi-

cally decomposed into low-level descriptions. By leveraging on this notion, the proposed

method is able to optimise the reasoning of such complex events. This is in contrast to

conventional methods, where redundant low-level processing is required to detect multi-

ple events; since each event detection modules operate individually.

The principle of compositionality in logical semantics indicates that the meaning of
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a complex expression is a function of the meaning of its constituent expressions and the

set of rules used to accomplish them. Thus if an expression E is constituted by E1 and E2

under the constraint of some syntactic rule, then the semantic meaning of E, i.e. M(E), is

acquired by the combination of E1’s meaning M(E1) and E2′s meaning M(E2) abiding

by some semantic rules (Szabó, 2007).

In the domain of video surveillance, the complex understanding of an abnormal

event, E can be modularised into its constituents region-of-interest, elements, classes,

attributes = {E1,E2,E3,E4}. Each constituent expression can then be constraint by a

set of rules, or notion to create meaning, {M(E1),M(E2),M(E3),M(E4)}. These com-

ponents are then combined to infer the complex expression, E. In short, the proposed

compositional-based framework is constructed by means of addressing the following

questions:

• Which ROI in a given scene will be analysed?

• What class of object will be monitored (object-of-interest)?

• What attribute is associated to each object-of-interest that will be analysed?

• What notion (a set of rules) to be applied to the respective attribute or a set of

attributes to infer an event?

• What is the event that may have taken place? Where and when does the event

happen?

5.2.1 General Overview

A scene, C, captured by CCTV(s) can be deemed as comprising multiple sub-environments

defined as the ROI, C = {R1,R2, · · · ,RN}; different activities or events may be taking

place in each ROI. Generally, CCTV is fixed at optimum angle to monitor each of the

ROI, Rn closely. These cameras are often activated when motion is detected in the field
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of view. Otherwise, recording of the scene continues upon activation. In most of the real-

time environments, it is practical to decompose a given monitored scene into different

ROI as each region might have different activities taken place, and hence different set of

rules should be applied for the event detection.

5.2.2 Pre-processing Stage

Pre-processing or also known as the low-level image processing is one of the most

important step in any video surveillance applications (Bozdogan & Efe, 2011; Karasulu

& Korukoglu, 2012; Cancela, Ortega, Fernández, & Penedo, 2013). The outputs from

this step serve as the basic building blocks for higher level understanding and reasoning

of the activities or events happening in the scene. In this chapter, several low-level image

processing modules are adapted for evaluation of this framework, including background

subtraction, object tracking and classification. Note that since the concern of this chapter

is on the capability of the compositional-based framework, and not on introducing the best

low-level processing techniques, these off-the-shelf methods are selected and revised ac-

cordingly, due to their reasonable trade-off between system precision and computational

cost.

5.2.2 (a) Background Subtraction

The objective of the background subtraction module is to delineate the foreground

from the background. In this study, the background subtraction model proposed in (Jacques,

Jung, & Raupp Musse, 2005) is adopted due to its capability in handling illumination

changes and shadow with minimal processing time.

In this study, we adapted the work as in (Jacques et al., 2005) due to its capability

in handling illumination changes and shadow with minimal processing time. Using this

method, each foreground pixels are given a unique label that separates them from the

background pixels. The discrimination is done by analysing the intensity change of pixels
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across frames and is as described further in the following:

V (x,y,δ t)> (B(x,y)−T σ) (5.1)

where, V (x,y) is the input image of the video sequence within δ t frames , and B(x,y)

is the initially learned background model. Each pixel (x,y) is classified as a foreground

pixel if the difference is greater than T σ , where T is a fixed parameter (the empirical

settings of in this study is, T=2), and σ is the median of the largest inter frames absolute

difference (Jacques et al., 2005).

This is then followed by standard morphological filters to remove the noise and

smooth the motion blob’s boundaries. Here, the motion blob refers to the group of pixels

identified as motion. A size filter threshold is then applied to remove groups of pixels

that represent noise, where the noise is usually smaller in size (total number of pixels).

The final output of this module is denoted as the motion map, in which connected pix-

els are grouped into clusters and given unique identifier. Example of the outputs of the

background subtraction pre-processing step is shown in Fig. 5.2.

Figure 5.2: Left: Original frame. Right: Example output from background subtraction.
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5.2.2 (b) Object Tracking and Classification

In order to estimate the locality of each object, the resultant motion map is fed into

a object tracking module. In this framework, the blob-tracking approach as implemented

in (S. L. Tang, Kadim, Liang, & Lim, 2010) is adapted. Using this previous-current rela-

tionships approach, it is critical to classify objects into four broad categories comprising

of: i) new, ii) existing, iii) splitting and iv) merging as illustrated in Fig. 5.3. Each of the

category is defined with a set of rules between the corresponding blobs, O in the previous

and current frames as follows ( j denotes the previous blob number while j′ represents the

current blob number and i as the frame number):

Definition 5.2.1. (Same Label) If the previous blob, O j,i−1 overlaps with one current blob,

O j′,i, then the O j,i is corresponding to an existing object tracker. It will be continued to

be tracked and labeled as the same object label assigned to O j,i−1.

O j,i−1∩O j′,i→ same label (5.2)

Definition 5.2.2. (New Object) If O j′,i does not overlap with any O j,i−1, the blob will

be considered as a new object to be tracked and this will be invoked to assign an object

tracker for the newly identified object.

O j,i−1∩O j′,i = /0→ new object (5.3)

Definition 5.2.3. (Splitting) If O j,i−1 overlaps with more than one O j′,i, then splitting is

detected. {
O0,i,O1,i,O2,i, · · · ,O j′+1,i

}
∩O j,i−1→ splitting (5.4)
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Definition 5.2.4. (Merging) If more than one O j,i−1 relates to a blob, merging scenario is

denoted and a top-down tracking approach will be invoked to estimate the location of each

of the object in the merged motion blobs. In this top-down tracking, prior information

from the low-level processing tasks are incorporated for tracking.

O j′,i∩
{

O0,i−1,O1,i−1,O2,i−1, · · · ,O j+1,i−1
}
→ merging (5.5)

Figure 5.3: Graphical illustration of the previous-current motion blobs relationships.

Following this, the Modular Adaptive Resonance Theory Map (MARTMAP) as pro-

posed in (Tan, Loy, Lai, & Lim, 2008) is adopted to classify each of the object into pre-

defined classes. The predefined classes in this study include human, vehicle and luggage.

The categories of classes are limited to the ones appearing in the set of test sequences used

in this study. The prediction of class membership by the MARTMAP classifier is made

by collectively combining the outputs from the multiple detectors. In contrast to other

neural network methods for multi-class pattern recognition, the MARTMAP network has

incremental learning capability and fast convergence (Tan et al., 2008). In the context of

this study, the fast convergence criterion of the MARTMAP network allows discrimina-

tion between the different classes efficiently. Furthermore, new classes can be added or

removed from the existing model as the need arises, without affecting the other trained
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detectors (Tan et al., 2008). Thus, the MARTMAP is selected to evaluate this framework.

5.2.2 (c) Discussion

Although at present there are numerous low-level image processing methods that are

more sophisticated or can produce better accuracy, there is always a trade-off between

their precision and computational requirement. This finding has been supported by many

studies including, “Motion models that only work sometimes”in (Cifuentes et al., 2012),

“Fuzzy qualitative human motion analysis” in (Chan & Liu, 2009), “Do we need more

training data or better models for object detection?” in (Zhu et al., 2012). Therefore, the

proposed compositional-based framework adopts and revises off-the-shelf methods that

are simple yet effective instead of complex ones. This is because; developing the most

accurate analytics or event detectors that run independently of each other is not the focus

of this study. Instead, the priority and the underlying notion that motivates this study

is that most video understanding problems can be decomposed into similar set of low-

level descriptions and thus, event detection can be optimised further using the principle

of compositionality. In short, modularising the complex event detection problems into

sets of basic descriptions of the scene, allows flexibility to detect multiple events under a

single integrated framework.

5.3 Theoretical Understanding and Research Formulation

The general architecture of the proposed framework for multiple events detection

is illustrated in Fig. 5.4. In general, the proposed framework categorises the process

of detecting multiple events into 3 broad levels comprising the i) Sensory Level (SL)

which refers to the data acquisition process, ii) Analysis and Reasoning Level (ARL) in

which the knowledge of the environment is firstly constructed, followed by an analysis

and reasoning using the principle of compositionality, and the the final level, iii) User

Level (UL) where an alarm is triggered upon the detection of any abnormal event or to
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alert the authority, so that the appropriate action can be taken immediately.

5.3.1 Analysis and Reasoning Level

As shown in Fig. 5.4, the ARL comprises a knowledge database to keep track of

each event detection module, E(s). Note that E is scalable, depending on the given ROI,

R, EN ← RN and that the Pre-processing step is performed globally. This is to alleviate

the need to perform redundant low-level processing tasks across different events. The

ARL framework comprises three analysis stages that exploits the low-level cues obtained

from the aforementioned pre-processing step. The three stages are defined as:

En =
{

e1
n;
{

e2
1,n,e

2
2,n, · · · ,e2

M,n
}

; µn
}

(5.6)

where, e1 denotes the Primary Analysis, e2 is the Secondary Analysis and µ refers to the

Reasoning stage. M is the total number of a series of e2.

Definition 5.3.1. (Primary Analysis, e1) The main goal of the compositional-based frame-

work is to decompose the complex expressions of events into the most basic constituents.

Figure 5.4: The general architecture of the proposed framework for multiple events de-
tection.

124



The primary analysis is defined as:

e1 = {c,dim} (5.7)

where,

• C is a set of classes , C = {c1,c2, · · · ,cK}, K is the maximum number of classes.

• dim is an indication of the dimensions of the object-of-interest. An object can be

associated to a single entity or group entity.

Definition 5.3.2. (Secondary Analysis, e2) The secondary analysis is an extension of the

outputs from the primary analysis, where each element in the primary analysis is associ-

ated to a set of attributes. The attributes include the temporal information (time span of

an object appears in the scene), the geometric properties (profile of the motion map in the

horizontal and vertical directions), and polarization (locality of an object) which can be

represented as:

e2 = {v,met} (5.8)

where,

• V is a set of monitored attributes to infer an event happening in Rn, V = {v1,v2, · · · ,vJ}.

J is the maximum number of attributes and comprises time span, speed, profile, lo-

cality, etc. Note that the set of attributes are not limited to the aforementioned and

may be extended further according to the intended applications. V is derived from

the extracted low-level descriptions. For example, speed is derived from the time

information and displacement in locality within a duration of time.
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• Met is a set of associated variables that infer the physical state of each attribute,

based on a set of rules. Metv j =
{

metv j
0 ,metv j

1 ,metv j
P
}

, where P is the maximum

number of state of variables. For example, the speed variable, vspeed can be associ-

ated to the state of slow, moderate, fast, where Metvspeed = {slow,moderate, f ast}.

Definition 5.3.3. (Reasoning, µ ) The decision to determine if an object is exhibiting

normal (µ = 0) or abnormal (µ = 1) behaviour is defined by means of a crisp set (object

meets the constraints) with logical conjunction ‘AND’. µ is a flag to indicate abnormal

event and is considered by the following:

µ =


1, if (ci∧Dimci)∧

(
v j∧Metv j

)
∧·· ·∧

(
v
′
j∧Metv

′
j

)
0, otherwise.

(5.9)

5.4 Model Application

The proposed decomposition of surveillance problem into compositional model is

described by applying a real world, public surveillance scenario for better understand-

ing of the model. Detailed description of each variables and their associated values are

described. The goal of the proposed compositional-based model is to detect abnormal

events taking place in different regions of a given scene. The abnormal events com-

prises of multiple events such as loitering, intrusion and slip and fall. Since the proposed

model categorises an input environment into multiple ROIs, it is best suited for wide-area

surveillance spaces which include the airport and railway stations. While there are many

scenarios that cause abnormalities, this model describes the most common and critical

scenarios for evaluation. They include the events of a) Loitering, b) Intrusion, c) Slip and

Fall, d) Abnormal Crowd Activity, and e) Unattended Object.
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Definition 5.4.1. (Primary Analysis) The set of variables in e1 is defined as:

C = {Human,Luggage,Unknown} (5.10)

Dim = {Single,Group} (5.11)

Definition 5.4.2. (Secondary Analysis) The set of variables and their corresponding val-

ues for e2 are described as below:

V = {TimeSpan,Region,Pro f ile,Speed,Direction} (5.12)

Met = {{Long,Short} ,{In,Out} ,{Horizontal,Vertical} ,{Fast,Slow} ,{Left,Right}}

(5.13)

Definition 5.4.3. (Reasoning) This section describes the logical rules or notions that

are applied to each event detector according to the definition of the intended module,

E. The set of rules are specific to each attributes, and is as defined by the respective

events. The reasoning stage is performed over an interval of time, ∆t, using the moving

window concept to infer an abnormal event. Note that, the moving window concept allows

flexibility to configure the sensitivity of the detections, and ∆t may vary from one event

detector to another. In the following, the model application for the five different events is

described based on the compositional model in detail.
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5.4.1 Loitering Detection

Loitering is defined as the act of lingering in a restricted area for more than a speci-

fied allowed duration (time). Loitering detection is critical as the act of loitering is often

related to subsequent conduct of illegal activities. For example, a person who loiters

around the at the entrance to a highly secured building are usually planning an illegal in-

trusion to the building or a person loitering at bus stops are often found to be dealing with

drug trafficking (Bird et al., 2005). Intuitively, the act of loitering is often associated to

the time span of a subject in the given scene as described in the first condition, Condition

5.4.1 below. In another scenario of loitering, the condition can be extended to include

the regularity of motion or pace in the scene. For example, in the departure walkway of

a train station, where passengers who get off the train are moving towards the exit, the

act of moving slowly and lingering at the same region for a long time is often deemed

suspicious. Thus, the second condition, Condition 5.4.2 that defines loitering considers

the speed of the subject as well. Based on the proposed compositional framework, the

conditions can be easily extended to deal with the variations of conditions that define a

particular event.

Condition 5.4.1. Given R1 ∈ S, an object that belongs to Class = Human is not allowed

to loiter in a restricted region for a long duration or time span as defined below.

E1 = {{Human,Single};{{Region, In},{TimeSpan,Long}};{Abnormal,Flag}}

(5.14)

µ1 =


1, if (Human∧Single)∧ (Region∧ In)∧ (TimeSpan∧Long)

0, otherwise.

(5.15)
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Condition 5.4.2. Given R2 ∈ S, an object that belongs to Class = Human, is not allowed

to remain in the restricted region with slow motion for a specific duration.

E2 = {{Human,Single} ;{{Region, In} ,{Speed,Slow} ,{TimeSpan,Long}} ;{Abnormal,Flag}}

(5.16)

µ2 =


1, if (Human∧Single)∧ (Region∧ In)∧ (Speed∧Slow)∧ (TimeSpan∧Long)

0, otherwise.

(5.17)

5.4.2 Intrusion Detection

Intrusion detection aims to detect scenario where a specified ROI is invaded and is

extremely important for perimeter security (Norman, 2012). Generally, the act of intru-

sion is often linked to loitering, where both detectors are intended to keep people out of

unauthorised areas. However, in contrast to intrusion that recognises unauthorised entry

immediately, the latter allows leniency in terms of time span. Loitering allows entrance

to a particular area, provided that the subject does not stay in the region for more than a

specified duration. Intrusion is more sensitive towards detecting any motion in the spec-

ified ROI as compared to loitering detector and is extremely useful for applications such

as perimeter monitoring and border control.

Condition 5.4.3. Given R3 ∈ S, object that belongs to Class = Human is not allowed to

appear in an restricted region.

E3 = {{Human,Single} ;{Region, In} ;{Abnormal,Flag}} (5.18)
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µ3 =


1, if (Human∧Single)∧ (Region∧ In)

0, otherwise.

(5.19)

Condition 5.4.4. Given R4 ∈ S, object that belongs to Class = Human, which is mov-

ing towards a specific direction (e.g. reversed traffic flow) is not allowed in a particular

region. This extended condition for intrusion detector is well suited in identifying oppos-

ing traffic flow. Intrusion detector is made complex with the addition of motion direction

attribute, to detect unauthorised motion. One example application is to detect the act of

‘u-turn’ or turning back at security check points. In the example below, motion towards

the left direction with respect to the image space is not allowed.

E4 = {{Human,Single} ;{{Region, In} ,{Direction,Left}} ;{Abnormal,Flag}} (5.20)

µ4 =


1, if (Human∧Single)∧ (Region∧ In)∧ (Direction∧Left)

0, otherwise.

(5.21)

5.4.3 Slip and Fall Detection

Slip and fall detection is important to allow immediate assistance to the victims,

and is extremely critical in public areas, nursery or elderly homes. Intuitively, the most

significant and direct hint to infer a fall event is the change of profile of the motion shape,

from a vertical distribution to a horizontal distribution. In addition to the profile attribute,

the speed of the fall motion is considered to distinguish similar activity such as lying

down from the event of slip and fall. This alludes to the fact that the speed of movement

during a slip and fall event is faster as compared to the act of lying down. This framework
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analyses the speed and profile of the object-of-interest for a more robust detection.

Condition 5.4.5. Given R5 ∈ S, object that belongs to Class = Human is deemed as

exhibiting slip and fall iff the Speed = Fast and Profile = Horizontal.

E5 = {{Human,Single} ;{{Speed,Fast} ,{Profile,Horizontal}} ;{Abnormal,Flag}}

(5.22)

µ5 =


1, if (Human∧Single)∧ (Speed∧Fast)∧ (Profile∧Horizontal)

0, otherwise.

(5.23)

5.4.4 Abnormal Crowd Activity Detection

Abnormal crowd activity is associated to a group of people, acting in a more ag-

gressive manner collectively as compared to the norm (i.e. running away when there

is threat or harmful incidents such as bombing) (N. Li & Zhang, 2011). In the context

of this study, abnormal crowd activity is defined as sudden dispersal event, where the

crowd activity exhibit irregular motion patterns (i.e. running towards different directions

or dispersing from a central point) due to panic escape and evacuation. Abnormal crowd

activity is critical as it is often an indication of threat or incident is taking place.

Condition 5.4.6. Given R6 ∈ S, a group of object that belongs to Class = Human is

deemed as exhibiting abnormal crowd activity when its Speed = Fast.

E6 = {{Human,Group}};{{Speed,Fast},{Direction, Irregular}};{Abnormal,Flag}}

(5.24)
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µ6 =


1, if (Human∧Group)∧ (Speed∧Fast)∧ (Direction∧ Irregular)

0, otherwise.

(5.25)

5.4.5 Unattended Object Detection

Unattended object detection provides an alert when an object such as luggage is

abandoned or left unattended in the public space for a specified duration. For this eval-

uation, the event of unattended object is defined as i) a static object dwelling in a given

region over a specified duration and ii) a static object which belongs to non-human class.

This event detector is extremely important as the act of abandoning an object can be con-

sidered as potential security breach in public safety from terrorism. This is especially

true considering all of the terrorist attacks that have happened over the past decade. The

source of most major terrorist attacks has been unattended objects. For example, in the

recent Boston Marathon bombing incident, where a bag containing explosives was left

unattended in the incident area.

Condition 5.4.7. Given R7 ∈ S, an object that belongs to Class = Luggage is deemed as

an unattended luggage iff its TimeSpan = Long.

E7 = {{Luggage,Single} ;{TimeSpan,Long} ;1} (5.26)

µ7 =


1, if (Luggage∧Single)∧ (TimeSpan∧Long)

0, otherwise.

(5.27)

Fig. 5.5 demonstrates a sample model application represented in a tree structure. It
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is highlighted that based on the proposed compositional model, the conditions for each

respective events can be easily extended and added without the need for a learning stage.

Moreover, the decomposition of the conditions into primary, secondary and reasoning lay-

ers allows optimised detection of multiple events; since most of the events are leveraged

from similar low-level features.

Figure 5.5: Sample tree representation of the model application used for evaluation.

5.5 Experimental Resuts and Discussion

The main goal of this experiment is to evaluate the efficiency of the proposed compositional-

based framework in detecting different scenarios of abnormal events. The proposed sys-

tem is implemented in C++, using the OpenCV image processing library. All experi-

ments were performed on an Intel (R) Core(TM) 2 with CPU frequency of 1.8 Ghz and

2G RAM. Experimental results have demonstrated the performance and robustness of the

proposed framework in providing flexibility and efficiency for multiple events detection.

5.5.1 Experiment Setup and Dataset

Each of the five abnormal events discussed in Section 5.4 are tested on 20 datasets

(with one or two events in each dataset), respectively. Each dataset comprises a com-

bination of video sequences obtained from standard dataset such as the PETS 2006 and
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2007, dataset1, CANTATA dataset2, UMN dataset3 and from the Youtube.com4 5 6. The

sequences comprises mixture of staged and real activities (e.g. unattended luggage, slip

and fall, loitering, intrusion, crowd dispersal). Most of the videos were captured at 25

frames per second and stored using the MPEG4 compression format.

Figure 5.6: Sample benchmarked and public dataset used for evaluation.

5.5.2 Quantitative Result

The proposed framework is evaluated using three common metrics of measurements,

including accuracy, detection rate and Positive Predictive Value (PPV).

1http://www.cvg.rdg.ac.uk/slides/pets.html
2http://www.multibel.be/cantata/
3http://mha.cs.umn.edu/movies/crowd-activity-all.avi
4http://www.youtube.com/watch?v=V8BLV4Wt3gA
5http://www.youtube.com/watch?v=09YrJcMhy9w
6http://www.youtube.com/watch?v=W8blP3DRyuM
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Definition 5.5.1. Accuracy: Reflects the ability of the system to correctly identify both

the actual abnormal event, and normal events from the population.

Accuracy =
TP + TN

TP + FP + TN + FN
(5.28)

Definition 5.5.2. Detection Rate: Reflects the ability of the framework to correctly iden-

tify actual abnormal event against all ground truth positive events.

Detection Rate =
TP

TP + FN
(5.29)

Definition 5.5.3. Positive Predictive Value (PPV): Reflects the ability of the system to

correctly identify actual abnormal event against all positive detections.

PPV =
TP

TP + FP
(5.30)

where T P indicates that the framework detects an event correctly; T N indicates that the

framework performs correct rejection, FP indicates the false alarm from the framework

and FN indicates the miss detection from the framework. Fig. 5.7 illustrates the rep-

resentation of T P, T N, FP and FN with respect to the ground truth detections. When

available, the ground truths of the benchmarked dataset are used, otherwise they are man-

ually annotated for evaluation; abnormal events are given a unique label from the normal

events. The alarm to indicate abnormal event is triggered when any of the object con-

forms to the rules defined beforehand, for each of the ROI, while a non-event refers to the

scenarios where the rules are not met. The collection of the test sequences used in these

experiments comprise a fair distribution of both event and non-event scenarios.
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Figure 5.7: TP, TN, FP and FN are labelled with respect to the ground truth.

As shown in Table 5.1, the average accuracy for the five event detectors is 83.02%;

average of detection rate is 87.82% and average PPV is 92.79%. Meanwhile the average

time performance is 88.4 ms per frame. Meanwhile, Fig. 5.8 illustrates the graphical pre-

sentation of the results. The shaded region represents the acceptable detection accuracy,

as adopted in most systems. It is observed that while the performance of the proposed

framework is not the best in the market, it tends to fall either on the region deemed ac-

ceptable or surpasses the satisfactory accuracy as practised and adopted by state-of-the-

arts (huperLab, 2014; Velastin et al., 2005; Khoudour et al., 1997; Schwerdt et al., 2005;

Fernández-Caballero et al., 2012; VideoIQ & company, 2014).

While it is acknowledged that there are existing analytics solutions that are able to

deliver better performance in terms of accuracy (≥ 90%) and processing time (≤ 60ms

per frame), they are either concentrating on detecting one event at a particular time or do

not deal with events which are similar to the ones recommended in this evaluation (Staff,

2012). Furthermore, the accuracy is often highly dependent on camera position, lighting,

quality, and application scenario (Technology, 2012; Cisco Systems, 2014). Thus a fair

comparison in terms of quantitative measurements against the existing systems is not ap-

plicable. Furthermore, the datasets used for most of the systems differ from one another,

depending on their event detectors, leading to difficulty to perform a fair comparison.

The acceptable detection rate and performance of analytics solutions have always been a

constant debate between the systems’ providers and consumers. Ideally, the consumers

would like to have 100% accuracy of correct detection and 0% false alarms per camera

136



per day. However, no present technology makes this possible (Rozmus, 2012). This issue

is made even more challenging with the fact that precise and unambiguous definition of

the alarm condition is sometimes very difficult and thus also the classification of detec-

tions as false (positives or negatives) alarms is often challenging. Due to the ambiguity

between a human perspective and automated systems, this often leads to debates whether

an alarm triggered is correct or false. For example, according to i-LIDS sterile zone test

the systems have 10 seconds to report an alarm state after an alarm event begins in the

evaluation footage. During this time multiple alarm reports will be disregarded; an alarm

event is either detected or not. After this 10 second window, any further alarms reported

will be deemed ‘false positives’ (Scholz, Kawan, & Schindelhauer, 2012). Nevertheless

experience in the industry shows that customers do not count alert as false alert when they

occurred after 10 seconds window. An in depth discussion regarding this can be found

by i-LIDS where a platform for evaluation is provided for analytics suppliers in (Branch,

2013; Crouwel, 2013). It is important to note that the exact values for detection accuracy

and performance are confidential and not made public.

Table 5.1: Accuracy and performance measures for the five scenarios of abnormal events.

Event Accuracy Detection Rate PPV Time Performance
Loitering 83.33% 88.24% 93.75% 93.5ms
Intrusion 83.33% 90.00% 95.20% 84.5ms

Slip and Fall 88.46% 86.96% 95.00% 89.5ms
Abnormal Crowd Activity 80.00% 86.96% 90.00% 85.5ms

Unattended Object 80.00% 86.96% 90.00% 88.9ms

5.5.3 Comparison Result

Although the quantitative comparison between the proposed framework and exist-

ing systems are not available due to the reasons as discussed in the preceding section,

this section provides a comprehensive comparison in terms of functionality. Table 5.2

summarises the functionality provided by the proposed compositional-based framework

and state-of-the-art surveillance frameworks; CROMATICA in (Khoudour et al., 1997),
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Figure 5.8: Accuracy measurement for the five scenarios of abnormal events.

PRISMATICA in (Velastin et al., 2005), Fuentes et al. in (Fuentes & Velastin, 2004),

EAGLE in (Schwerdt et al., 2005), Black et al. in (Black et al., 2005), Fernández-

Caballero et al. in (Fernández-Caballero et al., 2012), Axis in (Scholz et al., 2012),

Bosch in (Bosch Security Systems, 2008), iOmniscient in (iOmniscient, n.d.) and finally

VideoIQ in (VideoIQ & company, 2014).

The functionality is gauged in terms of the events that can be detected by each frame-

work (e.g. loitering and intrusion), and the deployment scenarios (e.g. indoor and out-

door). The categorisation of the deployment scenarios is based on the sequences used for

evaluation and is classified into 3 broad categories; indoor, outdoor, crowd (i.e. more than

10 persons). From Table 5.2, it is noticed that most of the solutions are able to detect the

event of unattended object. This is probably due to rising concern of threat from terror-

ism that has been shown to be linked to the act of leaving objects comprising explosives

unattended. Another common application is on detecting intrusion which triggers alert

when a person enters a prohibited area or moves towards unauthorised direction. There

are only a few suppliers that deal with fall detection which is extremely useful for smart
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home systems to monitor the elderly or the disabled. The closest work which provides

the most similar functions is iOmniscient in (iOmniscient, n.d.). Although iOmniscient

provides crowd counting functionality, they do not deal with detection of crowd dispersal

due to panic or evacuation. In summary, the proposed framework demonstrates sufficient

detections of multiple events and is comparable to most of the state-of-the-art solutions,

in terms of functionality. Although there are other functionalities such as crowd counting

and face recognition which are provided by the existing solutions, they are not highlighted

in the comparison table. The additional or sophisticated functionality is not in the scope

of this study, and can be extended further for future investigations. It is emphasised that

at this point of study, the main goal is to develop an integrated and optimised framework

that allows detections of multiple events in different regions of the same scene. This is in

contrast to other solutions that are tailored made to fit into detecting a particular event at

one time. Nonetheless, the promising results of the proposed framework demonstrate the

potentials of the proposed compositionality model in the domain of video surveillance.

Table 5.2: A comparison between our proposed compositional-based framework with
state-of-the-art systems. The symbol ‘•’ denotes available functions whereas blank
columns indicate non availability.

Framework
Event Dataset

Loitering Intrusion Slip and Fall Abnormal Crowd Activity Unattended Object Indoor Outdoor Crowd

CROMATICA • • • • •
PRISMATICA • • • • •
Fuentes et al. • • • •

EAGLE • • • •
Black et al. • • • • •

Axis • • •
Bosch • • • • •

iOmniscient • • • • • • •
VideoIQ • • • • • • •

Proposed Framework • • • • • • • •

5.5.4 Qualitative Results

This section presents the qualitative results for all five scenarios of abnormal events

and discusses the evaluation settings comprehensively.
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5.5.4 (a) Loitering Detection

The capability of the proposed system to detect loitering event is evaluated using

the video sequences obtained from a combination of lab simulated dataset as well as the

PETS2006 and PETS2007, respectively. In each video sequence, the ROI is defined as

a restricted region, and the time span threshold to differentiate between long and short

duration in which an object appears in the scene is defined in terms of number of frames.

In this experiment, the threshold is set according to the ground truth and it varies from

one sequence to another, depending on the staged loitering activity. For example, in the

PETS2007 benchmarked sequence, the ground truth time span is fixed to 1500 frames

(60sec x 25fps). In practice, the time span to determine loitering differs from one appli-

cation to another, as well as on the deployment environment. In a critical area such as

the entrance to an authorised building (i.e. bank), for instance, the time span to trigger

loitering event is usually much shorter (i.e. 100 frames (4sec x 25fps)) as compared to

the detector at the corridor of a shopping outlet, where the act of lingering is common.

Fig. 5.9 illustrates sample detections of loitering event. The loitering threshold is set

to 200 frames (8sec x 25fps). The left image of Fig. 5.9 shows a loitering event occurring

at frame 1097 from camera view 4, whereas on the right side shows a loitering event at

frame 1219 from camera view 3.

Figure 5.9: The highlighted region denotes the ROI, and the red bounding box encloses
the subject.
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5.5.4 (b) Intrusion Detection

The capability of the proposed system to detect intrusion is evaluated using se-

quences obtained from a combination of lab simulated dataset as well as the PETS2006

dataset. Unlike the loitering event detector which detects human subject that lingers

around the restricted region for a duration of time, intrusion detection module detects

an event immediately (almost) upon the entry of a human subject into the restricted re-

gion. From Table 5.1, it is observed that the detection rate for intrusion event is better

than loitering with an increase of 2%. This is due to the inconsistency of the tracking

module in providing the same label for the same object over a prolonged period of time,

which eventually leads to miss or late detection of loitering event.

Fig. 5.10 illustrates sample outputs of the intrusion detection event. Accordingly,

the restricted region is highlighted in green, and a person will be deemed as intruding

a defined region if it appears in the region. Fig. 5.10a shows no detection as there is

no object appearing in the restricted region. Fig. 5.10b triggers an alert when there is a

person appearing in the ROI. The second sequence is used to evaluate the second scenario

of intrusion, where the motion direction feature is incorporated for reasoning. The blue

arrow in Fig. 5.10c denotes the prohibited motion direction, whereby any person in the

ROI moving towards the left direction from the image space will trigger an alarm. Fig.

5.10d shows example detection of intrusion with direction.

5.5.4 (c) Slip and Fall Detection

The capability of the proposed system to detect slip and fall events is evaluated using

the video sequences obtained from a combination of lab simulated dataset as well as

real-time dataset from the Youtube video. In this experiment, the histogram projection

algorithm is applied, where for each direction x (rows) and y (columns), a 2D histograms

are computed for each motion blob; Hx and Hy, respectively. In order to differentiate
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(a) Original image. Highlighted region denotes
the prohibited region, where entry is not allowed.

(b) Intrusion detected (regardless of the motion
direction).

(c) Original image. (d) Intrusion detected (unauthorised motion di-
rection is incorporated).

Figure 5.10: Sample detections of intrusion event. Best viewed in color.

between an object who is standing and an object who has fallen down, the profiles are

analysed. A standing posture has a dominant Hy ≥ Hx, while the fall posture has a more

dominant Hx ≥ Hy such as illustrated in Fig. 5.11. In addition to the profile change from

the vertical distribution towards a horizontal distribution, the speed information is used

to discriminate between the act of lying down and actual falling. Empirically, the act of

lying down tend to have a slower motion speed as compared to fall. In this experiment, the

sensitivity threshold is set to 0.7, empirically, and the window size is set to 10 frames. A

sensitivity threshold of ‘1’ indicates that the system is set at non-sensitive mode, where the

human subject must be completely lying down over an interval of time in order to trigger

the event; whereas a sensitivity threshold of ‘0’ indicates greater sensitivity, where the

slightest motion activity will trigger an alarm. The settings of the threshold and window
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size are subjected to the test sequence, and the optimal values may vary from one sequence

to another. The values recommended here are based on the defined dataset. Since the

priority of this evaluation is on the capability of the compositional model in detecting

multiple events under a unified framework, simple yet accurate techniques are used for

reasoning. While it is acknowledged that there are existing works that have demonstrated

sophisticated and reliable methods for robust slip and fall detection, they are beyond the

scope of this study. Fig. 5.12 demonstrates sample detections of slip and fall events on

public scenes.

(a) Sample stand profile, where, Hy ≥ Hx. (b) Sample fall profile, where, Hx ≥ Hy.

Figure 5.11: Illustrations on the profile feature between standing and fall posture.

5.5.4 (d) Abnormal Crowd Activity Detection

It is important to emphasise that the term abnormal crowd activity is broad and covers

a wide applications of crowd anomalies including, crowd formation and crowd counting.

In this context, it is defined as the act of sudden crowd dispersal. The sequences from

PETS 2009 and UMN are used for evaluation. This module decomposes the scenario

of crowd dispersal into layers of analysis using the compositional model. The spatio-

temporal features which include the moving pixels obtained from the background sub-

traction stage, motion direction and magnitude from optical flow estimation are combined

for reasoning. These features are aggregated into histograms and a window-based analy-

sis is performed to monitor the motion changes within the window of frames. Basically,

the proposed algorithm is influenced by two parameters; which are the time interval and

143



Figure 5.12: Example of detected fall events on four different scenes.

the normalised magnitude change. For evaluation, the empirical values are - the threshold

of normalised magnitude differences is set as exceeding 200 when there is a sudden flow

change and the time interval is set to 50.

It is important to point out that the evaluation at this stage does not consider the exact

frame between the detection and occurrence of dispersal. This is in contrast to existing

solutions which are focused at detecting crowd dispersal events in particular (Mehran

et al., 2009; Thida, Eng, Dorothy, & Remagnino, 2011). Instead, the rule of thumb as

recommended by i-LIDS is adopted, where an alert is classified as false if it happens 10

seconds after an event has occurred (Scholz et al., 2012). Fig. 5.13a - 5.13d present

sample detections of sudden crowd dispersal event from camera view 1, 2, 3 and 4 using

the UMN sequences respectively. Fig. 5.13e - 5.13g show detections of sudden crowd

dispersal event for 3 different indoor and outdoor scenes from the UMN dataset.
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5.5.4 (e) Unattended Object Detection

Fig. 5.14a - 5.14b illustrate two different scenarios of staged unattended object

events. The first scenario simulates an unattended object scene, where the car is parked

and in a way left unattended in the scene. This function is useful in various traffic related

applications such as unauthorised parking detection, illegal stop or vehicle breakdown de-

tections. The second scenario depicts an actual unattended luggage event, where a person

enters the scene before leaving behind a bag. Based on the proposed framework, and the

set of notions for reasoning, an object is deemed unattended if it is left static in the scene

for more than 1 minute and belongs to the ‘vehicle’ or ‘luggage’ object class.

5.5.4 (f) Intrusion and Loitering Detection

Fig. 5.15a - 5.15b show sample outputs of multiple event detection. In this sequence,

which is obtained from the PETS 2007, sequence 0, view 3, the individual appears to be

in the region-of-interest at frame 152. At frame 160, the proposed framework detected an

intrusion event. At frame 610, a loitering event is detected. This is due to the time span

of the individual, lingering within the defined region-of-interest for a time span of 450

frames (equivalent to 18 seconds, assuming that the frame rate is 25fps). It is highlighted

that the time threshold to determine if an individual is exhibiting intrusion or loitering

behaviour is subjected to the dataset used.
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(a) PETS 2009 camera 1. (b) PETS 2009 camera 2.

(c) PETS 2009 camera 3. (d) PETS 2009 camera 4.

(e) UMN sequence 1.

(f) UMN sequence 2.

(g) UMN sequence 3.

Figure 5.13: Example of the sudden crowd dispersal events. 146



(a) CANTATA sequence, where a car is parked (left unattended).

(b) PETS 2006 sequence, where a luggage is left unattended in the ROI.

Figure 5.14: Example of the detected unattended object.

(a) Intrusion event is triggered. (b) Loitering event is detected.

Figure 5.15: Example outputs of multiple events, where the scenario depicts an individual
intruding and lingering within the region-of-interest (highlighted in green). An intrusion
event is deteced at frame 160, of the sequence, dataset, and at frame 630, a loitering event
is triggered.
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5.6 Summary

This chapter presents a framework for multiple event detections in surveillance videos.

Based on the principle of compositionality, the surveillance problem is modularised into

a set of sub-problems to allow flexibility and ease of fine-tuning for scalability, to in-

clude other real-time events. In order to demonstrate the functionality of the knowledge

constructed based on the proposed concept of compositionality, comprehensive experi-

ments using 100 videos obtained from the selected benchmark dataset (PETS, UMN and

CANTATA), as well as real-time public videos obtained from the Youtube are used. Ex-

periment results and a comparison, in terms of functionality, with the state-of-the-art so-

lutions have shown the efficiency of the proposed framework in detecting multiple events

efficiently. One of the drawback of this work, at present, is the lack of testing data to fur-

ther evaluate the robustness of the proposed system. Therefore, amongst the future work

of this study is to collect and built a wider selection of dataset for benchmarking purpose

within the research community. Although the necessity for an independent evaluation

of such capabilities becomes more and more prominent as the capabilities advertised by

commercial analytics providers increase, the implementation of a unified performance

framework for benchmarking is not as straightforward. Currently, there are no published

efforts in the literature or independent data that can sustain the claims of existing analyt-

ics providers (Goldgof, Sapper, Candamo, & Shreve, 2009). Nonetheless, other work in-

cludes an extension of the proposed framework to include more complex representations

of the variables (i.e. classes, attributes and notions) to deal more challenging real-time

scenarios, as well as the development of new domain knowledge (e.g. airport).
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CHAPTER 6

CONCLUSION

This thesis has set off to explore the prospect of devising computer vision algorithms for

activity understanding and abnormal event detection in video surveillance. Specifically,

the thesis is driven towards solving the three main issues in conjunction with the three

main trends, progressing towards proactive video surveillance as discussed in Chapter

2.1. The first issue is on providing a robust visual tracking algorithm that deals with

abrupt motion. The second is to identify salient regions, which could ultimately lead

to unfavourable events in dense crowd scenes. Finally, the third aims to provide an in-

tegrated framework to detect multiple events in different regions-of-interest of a given

scene. These problems are non trivial towards effective and proactive implementation of

video surveillance. Activity understanding and abnormal event detection becomes even

more challenging with the enormous growth in the number of CCTVs deployed nowa-

days. Visual ambiguity, clutter and occlusion, rarity and unpredictability of abnormal

events, owing to the diversity of human behaviour, complexity of the environment and

massive number of CCTVs remain an issue. The overview of the current state and the

gap towards solving the three main issues in this thesis are as discussed in Chapter 2.

6.1 Tracking Abrupt Motion

Chapter 3 has presented a novel swarm intelligence-based tracker for visual track-

ing that deals with abrupt motion efficiently. Specifically, the proposed method explores

a new direction by considering motion estimation or tracking as an optimisation prob-

lem. The proposed SwATrack has the advantage of optimising the search for the optimal

distribution without making assumptions or learning the motion model before-hand. In
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addition, the experience-sharing between particles is exploited and further refined with an

adaptive mechanism to allow self-tuning of the parameters. This allows accurate tracking

while keeping the number of samples at its minimal, thus resulting in lower process-

ing cost with comparable tracking accuracy. Experimental results have shown that the

proposed SwATrack improves the accuracy of tracking abrupt motion, with an average

accuracy of 91.39%, while significantly reduces the computational overheads, with an

average processing time of 63 milliseconds per frame. On top of that, findings from this

study has defied the common understanding in most sampling-based tracking approach

such as the PF, where an increase in the number of particles in PF has been shown to

not directly increase the tracking efficiency. The preliminary results at this stage, create

prospects for a new paradigm in object tracking which is very highly motivated by the

notion proposed in (Zhu et al., 2012; Cifuentes et al., 2012); i) Will continued progress in

visual tracking be driven by the increased complexity of tracking algorithms? ii) How far

should the increased in complexity be, since motion models only work sometimes?

There are several aspects of this work for possible extensions. Firstly, the proposed

SwATrack has not been evaluated to track multiple objects in crowded scenarios. A

broad understanding of visual tracking leads to intuitive suggestion that this extension

will require data association techniques such as the known Joint Probability Data Asso-

ciation Filtering (JPDAF) and Multiple Hypothesis Tracking (MHT) to address the issue

of correspondence. The second aspect is on resolving occlusion. Occlusion has been

a constant issue in most surveillance scenarios and is amplified when tracking multiple

objects. A multi-swarm approach which incorporates data association techniques would

be a potential room for future exploration. Also, the experience-sharing advantage of

swarm intelligence can be further exploited to model the interactions between multiple

objects. Finally, contextual information can be included to attune the tracker to particu-

lar deployment scenarios. The accumulated trajectories in a given scene can be used to
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self-imposed constraints in the motion model of objects and vice versa to allow on-going

self-adjustment of tracking mechanism with the environment.

6.2 Behaviour Analysis in Crowd

In order to reduce the cognitive overload in CCTV monitoring, it is critical to have

an automated way to direct the attention of operators on potentially precarious regions

acquiring attention, especially in crowded scenes. Detection of interesting regions in

crowded scene is difficult to be perceived by the naked eyes, due to the large variations of

crowd densities and occlusions. Therefore, chapter 4 of this thesis discussed the imple-

mentation of two frameworks for salient region detection in the crowded scenes, where

one is the extension of the other. The proposed extension is to allow detection of subtle

motion change caused by local irregular motion. The proposed framework eliminates the

need to track each object individually, prior information or extensive learning to identify

anomalies by observing the flow activities in a given scene for inference. In addition,

the projection of low-level motion flow into the global similarity structure to character-

ize stability and phase changes has been shown to be an effective indicator of high mo-

tion dynamics and irregularities in the crowded scenes. Experimental results have shown

the potential of the proposed framework in detecting obvious and subtle motion change

caused by instability, bottleneck, or occlusion, and also local irregular motion, with an

average accuracy of 78% on the defined dataset.

At present, research in crowd behaviour analysis lacks standard dataset and perfor-

mance framework for benchmarking purpose. At its current state, most solutions are

evaluated on partially overlapping sequences due to the differing causes of salient regions

to be detected. Furthermore, it is often very difficult to determine the ground truth infor-

mation, as the salient region such as bottleneck in crowded scenes is often very subjective

and not easily perceived by the human eye. Thus, another aspect of the future investiga-
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tion is to prepare comprehensive datasets and performance measurement framework for

benchmarking. The current framework suppresses the dominant motion flow and narrow

down the analysis to regions with high motion dynamics to infer salient region. It would

be interesting to include the dominant flow summarised over a time period for refined

salient detection. In practice, a system would be more user friendly and efficient if it able

to accept input or feedback from the environment, or user for active learning. Another

aspect for future exploration is to include feedback from user in the learning mechanism

to reduce false alarms and improve true detection. Also, further analysis on the detected

salient regions to infer higher level descriptions would be practical. Finally, the feature

representation can be enriched by including additional feature such as projection of the

texture feature.

6.3 Multiple Events Detection

Chapter 5 presented a new direction in event detection by modularising analytics

into a set of sub-problems. The decomposition method is inspired by the principle of

compositionality, where the knowledge of video analytics is decomposed into low-level

descriptions which are then integrated and combined using a basic set of rule-packages to

infer various events. The compositional representation of the contextual information of a

given scene allows simple and optimised detections of multiple events. This is in contrast

to conventional analytics frameworks, where redundant low-level processing is required

to detect multiple events; since each event detection modules operate individually. Exper-

iment results have demonstrated the capability of the integrated framework to detect five

different scenarios of abnormality, with an average accuracy of 83%. At this stage, the

five scenarios include intrusion, loitering, slip and fall, crowd dispersal and abandoned

object detection.

Video analytics solutions aim to fully complement and enhance the existing security
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infrastructure to provide defence against, as well as proactive understanding of, security

vulnerabilities. Such capabilities as advertised by commercial analytics providers have

been increasing tremendously to meet the increasing demand. However, there are no pub-

lished efforts in the literature or independent data that can sustain the claims of existing

analytics providers (Goldgof et al., 2009) and most of these information are kept confiden-

tial. Thus amongst the future work in this aspect is to collect and built a better and wider

selection of dataset for benchmarking purpose within the research community, or even

industry. Furthermore, there is a need for an independent evaluation of such capabilities

or functionalities in order for video analytics to be widely accepted by the public, as well

as industry. The current framework is designed to deal with five scenarios of abnormality

and can be easily extended to handle a wider range of events such as object removal or

people counting. Although the presented framework is flexible enough to deal with more

scenarios, comprehensive and thorough investigation is required to further advanced the

capabilities of current framework to deal with more complex scenarios such as aggression

detection. The leap forward for analytics solutions is to deal with early detections of be-

haviours that could possible prevents criminal incidents. The fusion of data from multiple

sensors (e.g. multiple cameras, audio and infrared) is another interesting area that would

enrich the functionality of video analytics. Other future work includes the extension of

the proposed framework to include complex representations of the variables, (i.e. classes,

attributes and notions) to deal with the complexity of various real-time scenarios, as well

as the development of new domain knowledge (i.e. underground station and airport).

6.4 Summary

Activity understanding and abnormal event detection have improved dramatically

in recent years. A significant change has been observed in high level of accuracy that

video analytics systems can perform, and the increasing number of tasks or functionali-
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ties they can accomplish. However, given the marketing and advertising gimmicks nowa-

days, there is misconception on what the current technology can achieved. Amongst the

hypes includes, “analytics can detect terrorist walking along the street” or “analytics can

identify an offender out from a sea of faces in the mall”. It is important to understand that

video analytics are still very much at their infancy, and should not be a technology that

is “over-promised” and “under-delivered”. The utmost importance is continuous research

efforts in this domain towards achieving the ideal goal of complementing the existing

security infrastructure, in the hope of creating a better and safer society. This thesis has

set off to contribute to such goal, by introducing growing recognition capabilities and

better analytics solutions for the advancement of video surveillance, from the domain of

computer vision in particular.
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PUBLICATIONS

Chapter 3: Tracking Abrupt Motion

Conference

M. K. Lim, C. S. Chan, D. Monekosso and P. Remagnino (2013) SwATrack: A

Swarm Intelligence-based Tracking of Abrupt Motion, IAPR International Confer-

ence on Machine Vision Applications, pp. 37-40.

M. K. Lim, C. S. Chan, D. Monekosso and P. Remagnino (2013) SwATrack: A

Swarm Intelligence-based Tracking of Abrupt Motion, IEEE workshop on Visual

Object Tracking Challenge, pp. 1-14.

Journal

M. K. Lim, C. S. Chan, D. Monekosso and P. Remagnino (2014) Refined Particle

Swarm Intelligence Method for Abrupt Motion Tracking”, Information Sciences.

Chapter 4: Crowd Behaviour Analysis

Conference

M.K. Lim, V. J. Kok, C. C. Loy and C. S. Chan (2014) Identifying Anomalies in

Crowded Scenes via Global Similarity Structure, IAPR International Conference

on Pattern Recognition.
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M. K. Lim, C. S. Chan, D. Monekosso and P. Remagnino (2014) Detection of

Salient Regions in Crowded Scenes, IET Electronics Letters, pp. 363-365.

Chapter 5: Multiple Events Detection

Journal

M. K. Lim , S. Tang and C. S. Chan (2014) iSurveillance: Intelligent Framework

for Multiple Events Detection in Surveillance Videos, Expert Systems and Appli-

cations, 41 (10), pp. 4704-4715.
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