TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv-v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background and Problem Statement 1
1.2 Wax Crayon 4
1.3 Previous works on determination of Lead in Wax Crayon 7
1.4 Methods of determining lead in Wax Crayon 7
 1.4.1 Sampling 7
 1.4.1.1 Cone and Quartering 8
 1.4.2 Extraction method 9
 1.4.2.1 Microwave digestion 10
1.4.3 Analytical techniques for determination of Lead 11
 1.4.3.1 Atomic Absorption Spectrometry 11
1.5 Significance of Study 15
1.6 Objectives of Study 16

CHAPTER 2 METHODOLOGY

2.1 Background 17
2.2 Reagent and Materials 17
2.3 Methods 18
 2.3.1 Glassware Cleaning 18
 2.3.2 Preparation of Lead Standard solution 18
2.4 Sample Preparation 20
 2.4.1 Sample Pretreatment 20
 2.4.2 Sample Decomposition 20
 2.4.3 Instrumentation 22
 2.4.4 Method Verification Procedure 23
CHAPTER 3 RESULTS AND DISCUSSION

3.1 Method Verification 24
3.2 Standard Calibration Curve of Lead by FAAS 24
3.3 Accuracy 26
3.4 Precision 27
3.5 Limit of detection (LOD) and limit of quantitation (LOQ) 29
3.6 Concentration of Lead in Red, Blue and Orange Wax Crayon 30
3.7 Statistical Analysis 32
 3.7.1 t-test 32
3.8 The Recommended Daily Allowance of Lead 33

CHAPTER 4 CONCLUSION AND RECOMMENDATION

4.1 Conclusion 35
4.2 Recommendations 36

REFERENCES 37