LIST OF FIGURES

CAPTIONS

FIGURE

PAGE

Fig. 1.1	Consumption of fossil fuel worldwide and in the USA from 1949 to 2030	2
Fig. 2.1	The structure of PVDF-HFP	15
Fig. 2.2	The structure of a dye sensitized solar cell	17
Fig. 2.3	Working principle of a DSSC	18
Fig. 2.4	Basic molecular structure of (a) anthocyanin and (b) chlorophyll dyes	20
Fig. 3.1	Preparation and characterization of polymer electrolytes	27
Fig. 3.2	Preparation and characterization of dye sensitized solar cells	28
Fig. 3.3	A Pandanus Amaryllifolius (pandan leaves) tree	35
Fig. 3.4	Preparation step of chlorophyll dye from pandan leaves	35
Fig. 3.5	Fabricated DSSC	36
Fig. 3.6	FTIR machine	37
Fig. 3.7	XRD machine	38
Fig. 3.8	A typical cole-cole or Nyquist plot for a polymer electrolyte and the R_B value	40
Fig. 3.9	I-V characteristic of a typical solar cell	42
Fig. 4.1	FTIR specrum for pure PVDF-HFP film in the range (a) 650 to 2000 cm ^{-1} and (b) 2000 to 4000 cm ^{-1}	45
Fig. 4.2	The chemical structure of (a) EC and (b) PC	47

Fig. 4.3(a)	FTIR specrum of (a) (i) EC, (ii) PC and (iii) the mixture of EC/PC at $1/1$ wt. ratio in from 700 to 2000 cm ⁻¹	49
Fig. 4.3(b)	FTIR specrum of (a) (i) EC, (ii) PC and (iii) the mixture of EC/PC at $1/1$ wt. ratio in from 2000 to 4000 cm ⁻¹	49
Fig. 4.4(a)	FTIR specrum of (i) NaI and (ii) KI in the range from 650 to 2000 cm ⁻¹	50
Fig. 4.4(b)	FTIR specrum of (i) NaI and (ii) KI in the range from 2000 to 4000 cm ⁻¹	51
Fig. 4.5	FTIR spectra of (i) NaI, (ii) pure PVDF-HFP and (iii) to (vii) for (PVDF-HFP) with 10 to 50 wt.% NaI in the range 700 to 1000 cm ⁻¹	53
Fig. 4.6	FTIR spectra of (i) NaI, (ii) pure PVDF-HFP and (iii) to (vii) for (PVDF-HFP) with 10 to 50 wt.% NaI in the range 1000 to 1500 cm ⁻¹	54
Fig. 4.7	Schematic diagram of (PVDF-HFP) – NaI interaction	55
Fig. 4.8	Area under the amorphous peak at 870 cm ⁻¹ calculated with Origin 8.0 software for all salt concentrations(in wt.%); (a) 10 (b) 20, (c) 30, (d) 40 and (e) 50	56
Fig. 4.9	Area under the amorphous peak at 870 cm ⁻¹ at different salt concentrations (in wt.%); (a) 50, (b) 20, (c) 30, (d) 40 and (e) 50	57
Fig. 4.10(a)	FTIR spectra of (i) pure PVDF-HFP, (ii) to (vi) plasticized (PVDF-HFP)-NaI electrolytes with 10 to 50 wt.% (EC/PC) and (vii) (EC/PC) mixture at 1/1 wt. ratio in the range 650 to 1000 cm ⁻¹	59
Fig. 4.10(b)	FTIR spectra of (i) pure PVDF-HFP, (ii) to (vi) plasticized (PVDF-HFP)-NaI electrolytes with 10 to 50 wt.% (EC/PC) and (vii) (EC/PC) mixture at 1/1 wt. ratio in the range 1000 to 2000 cm ⁻¹	60
Fig. 4.11	FTIR spectra of (i) NaI-(EC/PC) mixture and (ii) (EC/PC) mixture at $1/1$ wt. ratio in the range 650 to 2000 cm ⁻¹	61
Fig. 4.12	FTIR spectra of (i) pure PVDF-HFP, (ii) (PVDF-HFP)-(EC/PC) mixture and (iii) (EC/PC) mixture at 1/1 wt. ratio in the range 650 to 2000 cm-1	62

Fig. 4.13	Area under amorphous peak calculated with Origin 8.0 software for different (EC/PC) concentrations (in wt.%); (a) 10, (b) 20, (c) 30, (d) 40 and (e) 50	63
Fig. 4.14	Area under amorphous peak calculated with Origin 8.0 software for (EC/PC) concentrations (in wt.%); (a) 50, (b) 20, (c) 30, (d) 40 and (e) 50	64
Fig. 4.15	FTIR spectra of (i) pure PVDF-HFP and (ii) to (vii) (PVDF-HFP)-KI with 5 to 30 wt.% KI in the range 700 to 1000 cm ⁻¹	66
Fig. 4.16	FTIR spectra of (i) pure PVDF-HFP and (ii) to (vii) (PVDF-HFP)-KI with 5 to 30 wt.% KI in the range 1000 to 2000 cm ⁻¹	67
Fig. 4.17	Area under amorphous peak calculated with Origin 8.0 software for different KI concentrations (in wt.%); (a) 5, (b) 10, (c) 15, (d) 20, (e) 25 and (e) 30	68
Fig. 4.18	Area under amorphous peak calculated with Origin 8.0 software for different KI concentrations (in wt.%); (a) 5, (b) 10, (c) 15, (d) 20, (e) 25 and (e) 30	69
Fig. 4.19	FTIR spectra of (i) pure PVDF-HFP (ii) (PVDF-HFP)-KI complexes (iii) (PVDF-HFP)-KI-(EC/PC) and (iv) (EC/PC) in the range 700 to 1000 cm ⁻¹	71
Fig. 4.20	FTIR spectra of (i) pure PVDF-HFP (ii) (PVDF-HFP)-KI complexes (iii) (PVDF-HFP)-KI-(EC/PC) and (iv) (EC/PC) in the range 1000 to 2000 cm ⁻¹	72
Fig. 4.21	FTIR spectra for (i) pure (PVDF-HFP) and (ii) to (vii) (PVDF-HFP) -KI-(EC/PC) at different EC/PC concentration (in wt.%); (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60	73
Fig. 4.22	Area under amorphous peak calculated with Origin 8.0 software at different (EC/PC) concentrations (in wt.%); (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60	74
Fig. 4.23	Area under amorphous peak calculated with Origin 8.0 software at different (EC/PC) concentrations (in wt.%); (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60	75

Fig. 5.1	X-ray diffraction patterns of (a)Pure PVDF-HFP and (PVDF-HFP)-NaI electrolytes with various contents of NaI (in wt. %); (b) 10 (c) 20 (d) 30 (e) 40 and (f) 50	78
Fig. 5.2	Deconvoluted XRD diffractogram for pure PVDF-HFP	80
Fig. 5.3	Deconvoluted X-ray diffractograms of (PVDF-HFP)-NaI electrolyte having different NaI content in wt.%, (a) 10, (b) 20 (c) 30, (d) 40 and (e) 50	83
Fig. 5.4	XRD pattern of (a) PVDF-HFP and (PVDF-HFP)-NaI-(EC/PC) electrolytes with various contents of (EC/PC) (in wt.%); (a) 10, (b) 20, (c) 30, (d) 40 and (e) 50	85
Fig. 5.5	Deconvoluted X-ray diffractograms of (PVDF-HFP)-NaI- (EC/PC) electroytes having different (EC/PC) concentrations (in wt.%) (a) 10, (b) 20, (c) 30, (d) 40 and (e) 50	88
Fig. 5.6	XRD pattern for (a) Pure PVDF-HFP and (b) to (g) for (PVDF-HFP)-KI electrolytes having 5 to 30 wt.% KI in steps of 5 wt.%	90
Fig. 5.7	Deconvoluted X-ray diffractograms for (PVDF-HFP)-KI electrolytes with (a) 5, (b) 10, (c) 15, (d) 20, (e) 25 and (f) 30 wt.% KI	94
Fig. 5.8	XRD pattern of (PVDF-HFP)-KI-(EC/PC) electrolytes having different wt.% of (EC/PC), (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60	95
Fig. 5.9	Deconvoluted X-ray diffractograms of (PVDF-HFP)-KI- (EC/PC) having different (EC/PC) concentrations (in wt.%); (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60	99
Fig. 6.1	The Nyquist plots of (PVDF-HFP) - NaI polymer electrolyte with (a) 10, (b) 20, (c) 30, (d) 40 and (e) 50 wt.% NaI content	105
Fig. 6.2	The room temperature ionic conductivity of (PVDF-HFP)- NaI electrolytes containing various wt.% of NaI	106
Fig. 6.3	(a) Equivalent circuit for sample with 10 wt.% NaI(b) The fitting obtained from equivalent circuit for 10 wt.% NaI sample	108 109

Fig. 6.4	(a) Equivalent circuit for sample with 20 wt.% NaI(b) The fitting obtained from equivalent circuit for 20 wt.% NaI sample	110 110
Fig. 6.5	The fitting obtained from equivalent circuit for 30 wt.% NaI sample	111
Fig. 6.6	(a) Equivalent circuit for sample with 40 wt.% NaI(b) The fitting obtained from equivalent circuit for the electrolyte with 40 wt.% NaI	111 112
Fig. 6.7	The fitting obtained from equivalent circuit for the 50 wt.% NaI sample	112
Fig. 6.8	Variation of (a) n , (b) μ and (c) D obtained from equivalent circuit model approach with different NaI contents for (PVDF-HFP)-NaI	115
Fig. 6.9	The Nyquist plots of (PVDF-HFP) - NaI polymer electrolyte with(a) 10, (b) 20, (c) 30, (d) 40 and (e) 50 wt.% EC/PC content	116
Fig. 6.10	The room temperature ionic conductivity of (PVDF- HFP) – NaI – (EC/PC) electrolytes containing various wt. % of (EC/PC)	117
Fig. 6.11	Nyquist plot for electrolyte with different EC/PC concentration	120
Fig. 6.12	Variation of (a) n , (b) μ and (c) D obtained from equivalent circuit model approach with different (EC/PC) contents in (PVDF-HFP)-NaI-(EC/PC)	121
Fig. 6.13	The Nyquist plots of (PVDF-HFP)-KI polymer electrolyte at (a) 5, (b) 10, (c) 20, (d) 25 and (e) 30 wt. % KI	125
Fig. 6.14	The room temperature ionic conductivity of (PVDF-HFP) – KI at various wt.% of KI	126
Fig. 6.15	The fitting obtained from equivalent circuit for (PVDF-HFP)-KI at different wt.% KI (a) 5, (b) 10, (c) 15, (d) 20, (e) 25 and (f) 30	129

Fig. 6.16	The value of (a) n , (b) μ and (c) D obtained from Equivalent circuit model approach for (PVDF-HFP)-KI electrolyte	131
Fig. 6.17	The Nyquist plots of (PVDF-HFP)-KI-(EC/PC) polymer electrolyte at (a) 10, (b) 20, (c) 30, (d) 40, (e) 30 and (f) 60 wt.% (EC/PC)	133
Fig. 6.18	The room temperature ionic conductivity of (PVDF-HFP)–KI–(EC/PC) at various wt.% of (EC/PC)	134
Fig. 6.19	The fitting obtained from equivalent circuit for (PVDF-HFP)-KI-(EC/PC) at different wt.% (EC/PC) (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60	137
Fig. 6.20	The value of (a) n , (b) μ and (c) D obtained from Equivalent circuit model approach for (PVDF-HFP)-KI-(EC/PC) electrolyte at different (EC/PC) content	139
Fig. 7.1	Absorption spectra of different dye materials (a) Ruthenizer 535 (N3), (b) anthocyanin/chlorophyll mixture, (c) anthocyanin (d) chlorophyll	142
Fig. 7.2	Photocurrent density – voltage graphs for DSSCs with different natural dyes for [47 wt.% (PVDF-HFP)-31 wt.% NaI- 19 wt.% (EC/PC)]- 3 wt.% I ₂ electrolyte	144
Fig. 7.3	Photocurrent density – voltage graph for DSSC with mixed anthocyanin-chlorophyll dyes with [47 wt.% (PVDF-HFP)-31 wt.% NaI- 19wt.% (EC/PC)]-3 wt.% I_2 electrolyte at 30, 60 and 100 mW cm ⁻² light intensities	146
Fig. 7.4	Photocurrent density – voltage graph for DSSCs with N3 dye for [47 wt.% (PVDF-HFP)-31 wt.% NaI- 19 wt.% (EC/PC)]-3 wt.% I_2 electrolyte	147
Fig. 7.5	Photocurrent density – voltage graphs for the DSSC with [47 wt.% (PVDF-HFP)-31 wt.% NaI- 19 wt.% (EC/PC)]-3 wt.% I ₂ electrolyte and Ruthenizer 535 N3 dye under 30, 60 and 100 mW cm ⁻² light intensities	148

Fig. 7.6	Photocurrent density – voltage graphs for DSSCs with different natural dyes for [40 wt.% (PVDF-HFP)-10 wt.% KI- 50 wt.% (EC/PC)]-1 wt.% I ₂ electrolyte	149
Fig. 7.7	Photocurrent density – voltage graph for DSSC with mixed anthocyanin-chlorophyll dyes with [40 wt.% (PVDF-HFP)-10 wt.% KI- 50 wt.% (EC/PC)]-1 wt.% I_2 electrolyte at 30, 60 and 100 mW cm ⁻² light intensities	151
Fig. 7.8	Photocurrent density – voltage graph for DSSCs with N3 dye for [40 wt.% (PVDF-HFP)-10 wt.% KI- 50 wt.% (EC/PC)]- 1 wt.% I_2 electrolyte	152
Fig. 7.9	Photocurrent density – voltage graphs for the DSSC with [40 wt.% (PVDF-HFP)-10 wt.% KI- 50 wt.% (EC/PC)]-1 wt.% I ₂ electrolyte and Ruthenizer 535 N3 dye under 30, 60 and 100 mW cm ⁻² light intensities	153
Fig. 7.10	Photocurrent density – voltage graphs for DSSCs with N3 dye and with [40 wt.% (PVDF-HFP)-10 wt.% (KI/TBAI)-50 wt.% (EC/PC)]- 1 wt.% I ₂ electrolytes having KI:TBAI weight ratio of 2:8, 4:6, 6:4, 8:2 and 10:0	156