LIST OF TABLES

TABLES		PAGE
Table 2.1	Consumption of fossil fuel worldwide and in the conductivities	12
Table 2.2	Some CPE systems and their conductivities	14
Table 2.3	(a) Some polymer electrolytes in DSSC using chlorophyll natural dyes as sensitizer and their performance value	21
	(b) Some polymer electrolytes in DSSC using anthocyanin natural dyes as sensitizer and their performance value	22
Table 2.4	Some PVDF-HFP based polymer electrolytes in DSSC using synthetic dyes as sensitizer and their performance value	23
Table 3.1	The weight ratio of (PVDF-HFP) – NaI electrolytes	30
Table 3.2	The weight ratio of (PVDF-HFP + NaI) – EC/PC electrolytes	31
Table 3.3	The weight ratio of (PVDF-HFP) – KI electrolytes	32
Table 3.4	The weight ratio of (PVDF-HFP + KI) – EC/PC electrolytes	33
Table 3.5	The compositions of (PVDF-HFP) – (KI+TBAI) – (EC/PC) electrolytes	34
Table 4.1	The characteristic vibrational modes and wavenumbers of PVDF-HFP	46
Table 4.2	The characteristic vibrational modes and wavenumbers of EC	47
Table 4.3	The characteristics vibrational modes and wavenumbers of PC	48
Table 4.4	Area under amorphous peak calculated with Origin 8.0 software for different NaI content	57
Table 4.5	Area under amorphous peak calculated with Origin 8.0 software for different (EC/PC) content	64
Table 4.6	Area under amorphous peak calculated with Origin 8.0 software for different KI content	69

Table 4.7	Area under amorphous peak calculated with Origin 8.0 software at different EC/PC content	49
Table 5.1	Degree of crystallinity for PVDF-HFP sample (without salt)	80
Table 5.2	Degree of crystallinity (d.o.c) for (PVDF-HFP)-NaI polymer electrolytes having different NaI contents	84
Table 5.3	Degree of crystallinity for (PVDF-HFP)-NaI-(EC/PC) polymer electrolytes having different (EC/PC) contents	89
Table 5.4	Degree of crystallinity for (PVDF-HFP)-KI polymer electrolytes having different KI concentrations	94
Table 5.5	Degree of crystallinity for (PVDF-HFP)-KI-(EC/PC) polymer electrolytes having different (EC/PC) contents	99
Table 6.1	Summary of <i>n</i> , μ and <i>D</i> obtained from the Equivalent Circuit Model and the respective <i>R</i> , p_1 , p_1 , k_1^{-1} and k_2^{-1} value for (PVDF-HFP)-NaI	114
Table 6.2	Summary of <i>n</i> , μ and <i>D</i> obtained from the Equivalent Circuit Model and the respective <i>R</i> , p_2 and k_2^{-1} value for (PVDF-HFP)-NaI-(EC/PC)	120
Table 6.3	Summary of <i>n</i> , μ and <i>D</i> obtained from the Equivalent Circuit Model and the respective <i>R</i> , <i>p</i> , k_1^{-1} and k_2^{-1} value for (PVDF-HFP)-KI	130
Table 6.4	Summary of <i>n</i> , μ and <i>D</i> obtained from the Equivalent Circuit Model and the respective <i>R</i> , p_2 and k_2^{-1} value for (PVDF-HFP)-KI-(EC/PC)	138
Table 7.1	Performance parameters of DSSCs utilizing [47 wt.% (PVDF-HFP)-31 wt.% NaI-19 wt.% (EC/PC)]-3 wt.% I_2 electrolytewith different natural dyes	144
Table 7.2	Performance parameters for DSSCs with mixed anthocyanin-chlorophyll dyeswith [47 wt.% (PVDF-HFP)- 31 wt.% NaI- 19 wt.% (EC/PC)]-3 wt.% I ₂ electrolyte at 30, 60 and 100 mW cm ⁻² light intensities	146

Table 7.3	Performance parameters of DSSCs with [47 wt.%	148
	(PVDF-HFP)-31 wt.% NaI- 19 wt.% (EC/PC)]-3 wt.% I ₂	
	electrolyte and Ruthenizer 535 N3 dye under 30, 60 and	
	100 mW cm^{-2} light intensities	

- Table 7.4Performance parameters of DSSCs with different natural
dyes for [40 wt.% (PVDF-HFP)-10 wt.% KI- 50 wt.%
(EC/PC)]-1 wt.% I2 electrolyte150
- Table 7.5Performance parameters for DSSCs with mixed151anthocyanin-chlorophyll dyes with [40 wt.% (PVDF-
HFP)-10 wt.% KI- 50 wt.% (EC/PC)]-1 wt.% I2
electrolyte at 30, 60 and 100 mW cm⁻² light intensities151
- Table 7.6Performance parameters of
(PVDF-HFP)-10 wt.% KI- 50 wt.% (EC/PC)]-1 wt.% I2
electrolyte and Ruthenizer 535 N3 dye under 30, 60
and 100 mW cm $^{-2}$ light intensities
- Table 7.7Performance parameters for DSSCs with with N3 dye and
[40 wt.% (PVDF-HFP)-10wt.% (KI/TBAI)-50 wt.%
(EC/PC)]- 1 wt.% I2 electrolytes having KI:TBAI weight
ratio of 2:8, 4:6, 6:4, 8:2 and 10:0156