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APPENDIX A: The Equivalent Circuit Model (ECM) Approach 

For Nyquist plot with depressed semicircle, the equivalent circuit can be represented as 

shown in Fig. A.1 and Fig. A.2. 
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The impedance is given by 






























2
sin

2
cos

11111

p
j

p
k

RZRZ pCPE 


 






























2
sin

2
cos

11111

p
j

p
k

RZRZ pCPE 


 

Hence, 


























































2
sin

2
cos

2
sin

2
cos

1

p
j

p
Rk

R
p

j
p

k

Z p

p







 















































































































2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

1

p
j

p

p
j

p

p
j

p
Rk

R
p

j
p

k

Z p

p











 



                                                                                                                                                                                          APPENDIX A 

xxvi 

 

 




















































































2
sin

2
cos

2
sin

2
cos

2
sin

2
cos

1

222

222

p
j

p
Rk

p
j

p
R

p
j

p
k

Z p

p







 

p

p

Rk

p
j

p
Rk

Z 



































2
sin

2
cos

1

  

Inverting the equation gives 
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of the Nyquist plot takes the form of A as in Fig. A.3, the equivalent circuit is as shown 

in Fig. A.4 
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Equivalent circuit are 
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                            Fig. A.3 

 

The impedance is given by 
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For Nyquist plot with depressed semicircle and spike in Fig. A.5., the equivalent circuit 

is as shown in Fig. A.6. 

 

Equivalent circuit are 

 

 

 

 

 

 

 

 

The derivation of equation is given by: 
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Thus, 
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Theoretical Background 

 The fundamental property of a polymer electrolyte is conductivity. Conductivity 

in principle is the product of charge carrier number density (n), charge carrier mobility 

(μ) and their diffusivity which can be represented by the diffusion coefficient (D). the 

diffusion coefficient can be calculated using the Nernst-Einstein equation. This equation 

can be related to the conductivity and hence to the mobility since en    where e is 

elementary charge. The conductivity can be calculated if thickness, area and bulk 

resistance of the polymer electrolyte are known. The bulk resistance can be determined 
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from Nyquist plot which can be established through impedance spectroscopy. Knowing 

the bulk resistance, conductivity can be calculated from the equation 
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2
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where σ is conductivity, d is sample thickness, R is bulk resistance and A is 

electrode/electrolyte contact area. An example of a Nyquist plot is as shown in Fig. 1. 

The Nyquist plot shown in Fig. 1 can be considered to be made up of a depressed 

semicircle and a tilted spike. The depressed semicircle can be represented by an 

equivalent circuit comprising a “leaky capacitor” and a resistor connected in parallel 

and the spike can be represented by a constant phase element (CPE). The equivalent 

circuit can be illustrated as shown in Fig. 2 [10]. 

 

Fig. A.7. Equivalent circuit represent Nyquist plot. 

The impedance of the equivalent circuit, Zeq can be obtained as follows: 
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The values of ω, 1p , 2p and R can be obtained by from Nyquist plot but the values 

of 1k and 2k can be obtained by trial and error. The impedance of the equivalent circuit 

when given the appropriate values will fit the Nyquist plot satisfactorily. A “leaky 

capacitor” is usually represented by a CPE. The resistor and CPE can be arranged in 

series, parallel and series-parallel combination. For the Nyquist plot shown in Fig. 1, the 

equivalent circuit consists of a resistor in parallel with a CPE and the combination is in 

series with a second CPE as shown in Fig. 2. 

 

The inverse of 1k i.e.
1

1


k is the capacitance of the bulk sample, since the bulk sample is 

represented by the depressed semicircle. At the peak of the depressed semicircle, the 

relaxation time can be estimated from the ideal Debye relation:- 
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Where fm is frequency at the peak of depressed semicircle. 

At the same time, 
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Here, R is the bulk resistance. 1 is the characteristics time constant. This implies that  
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Likewise, 
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Where λ is the thickness of the electrical double layer (EDL) that is formed when the 

ions accumulate at the electrodes during impedance measurement. εr is the dielectric 

constant of the material.
 
εo is vacuum permittivity (8.85×10

-14
 F cm

-1
) and A is cross 

section area. According to Bandara and Mellander [9], 
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Here, D is the diffusion coefficient and 2  is 
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with 2 being angular frequency 

corresponding to minimum in imaginary parts of the impedance, Zi. From equation (9) 

and (10), we can write 
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 , where k is Boltzmann constant (1.38×10

-23
 J K

-1
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temperature in Kelvin and e is the electron charge (1.602×10
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 C), we can have 
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