Abstract

Establishment of protoplasts system provides a useful platform for cloning and genetic manipulation of ginger plants. In this study, an efficient protocol for developing protoplast isolation and culture for *Boesenbergia rotunda* has been established. B. rotunda embryogenic cell suspension cultures showed good growth rate ($\mu = 0.1125$) when cultured in plant growth regulator (PGR)-free liquid Murashige and Skoog (MS) basal medium supplemented with 3 % sucrose, where no promotive effect were observed in the presence of any concentrations of 2,4dichlorophenoxyacetic acid (2,4-D) and sonication treatment. This suspension culture was subsequently used as a source to isolate protoplast using enzyme cocktails. A total number of 1 - 5×10^5 per mL protoplasts were isolated using 0.25 % macerozyme and 1 % cellulase incubated for 24 h under continuous shaking condition of 50 rpm in dark condition. Of the isolated protoplasts, 54.93 % were viable according to fluorescein diacetate staining test. About 7.61 \pm 1.65 % cultured protoplasts successfully formed micro-colonies when cultured in liquid MS basal medium supplemented with 9 g/L mannitol, 2 mg/L 1-naphthaleacetic acid (NAA), 0.5 mg/L benzylaminopurine (BAP) and incubated at 25 ± 2 °C in dark condition for 4 weeks. The osmoticum of the culture media were reduced weekly during the protoplast culture period from 9 to 5 % followed by 1 %. These colonies were subsequently transferred to solid MS medium supplemented with 0.5 mg/L BAP for callus initiation. The callus was formed after 5 weeks of culture.

Abstrak

Sistem penghasilan protoplas menyediakan satu platfom yang berguna untuk genetik manipulasi dan teknik pengklonan bagi tumbuhan halia. Dalam kajian ini, satu protokol yang berkesan untuk penghasilan dan pengkulturan protoplas untuk Boesenbergia rotunda telah dibangunkan. Kultur ampaian embriogenik sel B. rotunda menunjukkan kadar pertumbuhan yang baik ($\mu = 0.1125$) apabila dikultur dalam cecair Murashige dan Skoog (MS) medium tanpa zat pengatur tumbuhan (ZPT) dengan 3 % sukrosa, di mana tiada kesan penggalakan diperhatikan dalam kehadiran pelbagai kepekatan dengan asid 2,4-dichlorophenoxyacetic (2,4-D) dan rawatan sonikasi. Kultur ampaian ini kemudiannya digunakan sebagai sumber untuk menghasilkan protoplas menggunakan koktel enzim. Sebanyak 1 - 5 $\times 10^5$ per mL protoplas telah diasingkan mengguna 0.25 % maserozim dan 1 % selulase diinkubasi selama 24 jam dengan rotasi berterusan sebanyak 50 rpm dalam keadaan gelap. Daripada protoplas yang dihasilkan, 54.93 % menunjukkan daya kehidupan berdasarkan ujian pewarnaan fluorescein diaceta. Anggaran 7.61 \pm 1.65 % protoplas yang dikulturkan berjaya menghasilkan mikro-koloni apabila dikulturkan dalam cecair MS medium dengan 9 g/L mannitol, 2 mg/L asid 1naphthaleacetic (NAA), 0.5 mg/L benzilaminopurina (BAP) dan diinkubasi pada 25 ± 2 °C dalam keadaan gelap selama 4 minggu. Tekanan osmotik media kultur dikurangkan setiap minggu sepanjang tempoh pangkulturan protoplas dari 9 ke 5 % sehingga 1 %. Koloni ini kemudian dipindahkan ke medium MS pepejal dengan 0.5 mg/L BAP untuk inisiasi kalus. Kalus berjaya dihasilkan selepas 5 minggu pengkulturan.

ACKNOWLEDGEMENTS

Starting to write this thesis is not as easy as I was thought. It is full of challenging along the journey and requires a bundle of time and efforts to complete it. I would not complete my thesis without the support from my supervisor, Plant Biotechnology Research Laboratory (PBRL) members, Master of Biotechnology course-mates, family and friends.

First and foremost, I would like to thank my supervisor, Professor Dr. Norzulaani Khalid, for her unselfishness to sacrifice times from her busy carrier to guide and supervise me whenever I need.

Second, I would like to express my appreciation to PBRL members, especially postdoctoral research fellow, Dr Tan Boon Chin, assistant science officer Pn Norazlina and PhD student, Wong Sher Ming, for their generous helps and guidance throughput the project.

Here, I also would like to thank my family and friends for their moral support when facing any difficulties throughout my project.

Last but not least, I would like to express my gratitude to Ministry of Higher Education (MOHE) for the studentship (MyMaster) and Institute of Research Management and Consultancy (IPPP), UM (P0030/2012A) for project financial support.

I am truly appreciated all the helps regardless in any form from all.

TABLE OF CONTENTS

Original literary work declaration	i
Abstract	iii
Abstrak	iv
Acknowledgements	V
Table of contents	vi
List of figures	ix
List of tables	xi
List of abbreviations	xii
List of symbols and units	xiv
List of appendices	XV

3.0

2.0 Literatur	re review
---------------	-----------

2.1	Classification 3		3
2.2	Plant under study (Boesenbergia rotunda)		
	2.2.1	Morphological description	4
	2.2.2	Common uses	4
	2.2.3	Medicinal properties of B. rotunda	6
2.3	3 Suspension culture		
	2.3.1	Introduction	8
	2.3.2	Growth cycle of suspension culture	9
	2.3.3	Advantages and applications of suspension cultures	10
2.4	4 Protoplast		
	2.4.1	Introduction	11
	2.4.2	Protoplast isolation methods	13
	2.4.3	Factors influencing the protoplast isolation	14
	2.4.4	Protoplast culture	16
	2.4.5	Protoplast regeneration	18
Mater	ials and	methods	
3.1	Plant materials and maintenance of cultures 19		
3.2	Optimisation of factors affecting cell suspension cultures growth 20		
3.3	Isolati	on of protoplast	21
3.4	Calco	fluor white M2R and fluorescein diacetate staining	23
3.5	Recov	very of protoplasts	23
3.6	Statistical analysis 2		

1

4.0 Results and discussion

	4.1	Suspension culture 2		25
		4.1.1	2,4-D treatment	25
		4.1.2	Sonication treatment	28
		4.1.3	Sucrose as carbon source	32
	4.2	Isolati	ion of protoplast	35
		4.2.1	Source of protoplast	35
		4.2.2	Optimisation of enzyme combinations in isolating protoplast	37
		4.2.3	Optimisation of incubation period	39
	4.3	Viability test		41
	4.4	Recovery of protoplast		41
5.0	5.0 Conclusion		46	
6.0	0.0 References		47	
7.0	7.0 Appendices			
	7.1	Appendix A: Materials used in details		62
	7.2	2 Appendix B: Raw data 6		65
	7.3	Apper	ndix C: Statistical analysis	70

LIST OF FIGURES

		Page
Figure 2.1	Plant of <i>B. rotunda</i> . A: whole plant with maroon stem.	
	B: shoots with 3 to 5 leaves attached to maroon sheaths.	
	C: leaf with 7 to 9 cm broad and 10 to 20 cm long	
	(Yusuf, 2011c).	7
Figure 2.2	B. rotunda. A: rhizome part. B: tuber sprout from the	
	rhizome part (Yusuf, 2011c).	7
Figure 3.1	Fuchs Rosenthal Counting Chamber (Science service,	
	2013, July 9).	26
Figure 4.1	Effect of different concentrations of 2,4-D on cell	
	density.	30
Figure 4.2	Effect of different sonication times on cell density.	32
Figure 4.3	B. rotunda suspension cells with sonication treatment	
	and FDA test (green) at first day. A: 0 s sonication	
	treatment, B: 30 s sonication treatment, C: 120 s	
	sonication treatment, D: 300 s sonication treatment and	
	E: 600 s sonication treatment. Red arrows indicate	
	viable cells after 30 s sonication treatment. Bar	
	indicates 0.25 mm.	34
Figure 4.4	B. rotunda suspension cells with sonication treatment	
	and FDA test (green) after 27 days (last day). A: 0 s	
	sonication treatment, B: 30 s sonication treatment, C:	
	120 s sonication treatment, D: 300 s sonication	
	treatment and E: 600 s sonication treatment. Red	
	arrows indicate viable cells. Bar indicates 0.25 mm	35

Figure 4.5	Effect of different sucrose concentrations on cell	
	density.	36
Figure 4.6	Standard growth curve for B. rotunda cell suspension	
	culture.	40
Figure 4.7	Effect of different combinations and concentrations of	
	enzyme on protoplast yield.	41
Figure 4.8	Effect of different enzyme incubation period on	
	protoplast yield.	43
Figure 4.9	Protoplasts isolated from B. rotunda suspension cell	
	culture under observation using an inverted microscope.	
	A: isolated protoplast, bar indicates 125 µm. B:	
	protoplasts stained with FDA viewed under normal	
	light, bar indicates 125 µm. C: viable protoplasts	
	appeared green fluorescent under blue light, bar	
	indicates 125 μm.	48
Figure 4.10	Recovery of the protoplasts at different developmental	
	stages. A: 2-cell stage for first 5 days, bar indicates 100	
	μm. B: 4-cell stage at day 7, bar indicates 100 μm. C:	
	protoplasts stained with calcofluor white M2R after 24	
	h of culturing viewed under normal light, bar indicates	

500 $\mu m.$ D: cell wall appeared white fluorescent under

UV light, bar indicates 500 µm. E: friable callus

derived from protoplast, bar indicates 1 mm.

49

LIST OF TABLES

Table 2.1	Medicinal properties identified from the rhizomes of	
	Boesenbergia rotunda.	9
Table 4.1	Effect of different concentrations of 2,4-D on cell	
	suspension growth rate from day 6 till day 18.	31
Table 4.2	Effect of various sonication times on cell suspension	
	growth rate from day 6 till day 18.	32
Table 4.3	Effects of different concentrations of sucrose on cell	
	suspension growth rate from day 6 till day 18.	37

LIST OF ABBREVIATIONS

2,4-D	2,4-dichlorophenoxyacetic acid
ANOVA	analysis of variance
ave.	average
BAP	6-benzylaminopurine
CaCl ₂ .2H ₂ O	calcium chloride dihydrat reinst
CoCl ₂ .6H ₂ O	cobalt (II) chloride 6-hydrate
CPW	cell and protoplast washing solution
CPW13M	cell and protoplast washing solution with 13% mannitol
CPW21S	cell and protoplast washing solution with 21% sucrose
CuSO ₄ .5H ₂ O	copper (II) sulphate 5-hydrate
EDTA	ethylenediaminetetraacetic acid
et al.	Latin: et alii or English: and others
FeSO4.7H2O	iron (II) suphate
8	gravity force
H ₃ BO ₃	boric acid
HCl	hydrochloric acid
KH ₂ PO ₄	monopotassium phosphate
KI	potassium iodide
KNO ₃	potassium nitrate
MgSO ₂ .7H ₂ O	magnesium sulphate
MnSO ₄ .4H ₂ O	mangan (II) sulphate
MS	Murashige and Skoog, (1962) medium
MSP1	MS protoplast culture medium
MSP1 9M	MS protoplast culture medium with 9% mannitol
Na2EDTA.2H2O	ethylenediaminetetraacetic acid-disodium dihydrate
Na ₂ MoO ₄ .2H ₂ O	sodium molybdate dihydrate

NAA	1-naphthaleacetic acid
NH ₄ NO ₃	ammonium nitrate
PGR	plant growth regulator
pН	the negative logarithm of the hydrogen ion concentration
Rep.	replicate
SD	standard deviation
SE	standard error
uv	ultra violet
w/v	weight per volume
ZnSO ₄ .7H ₂ O	zinc sulphate

LIST OF SYMBOLS AND UNITS

%	percentage
/	per
>	more than
±	more less
×	times
\mathfrak{C}	degree Celcius
μ	specific growth rate
h	hour
L	litre
mg	miligram
mL	millilitre
rpm	revolution per minute
S	second
SCV	settle cell volume

LIST OF APPENDICES

Appendix A: Materials used in details

- Table 1
 Composition of Murashige and Skoog based media (MS basal salt)
- Table 2Composition of liquid medium
- Table 3Enzyme combination for protoplast isolation
- Table 4Composition of CPW13M and CPW21S
- Table 5Composition of liquid protoplast culture

Appendix B: Raw Data

- Table 1Suspension culture with 2,4-D treatment
- Table 2Suspension culture with sonication treatment
- Table 3Suspension culture with sucrose treatment
- Table 4Enzyme combination optimisation (protoplast isolated per SCV)
- Table 5Enzyme incubation time optimisation (protoplast isolated per SCV)
- Table 6Viability of isolated protoplasts
- Table 7
 Recovered protoplast during protoplast culture

Appendix C: Statistical Analysis

- Table 1
 Test of homogeneity of variances for different enzyme combination
- Table 2
 ANOVA test for difference enzyme combination
- Table 3
 Homogenous subset for difference enzyme combination
- Table 4
 Test of homogeneity of variances for difference enzyme incubation time
- Table 5ANOVA test for difference enzyme incubation time
- Table 6
 Homogenous subset for difference enzyme incubation time
- Table 7:Test of homogeneity of variances for effects of different concentrations of 2,4-D on cell suspension growth rate from day 6 till day 18
- Table 8:ANOVA test for effects of different concentrations of 2,4-D on cell suspensiongrowth rate from day 6 till day 18
- Table 9:Homogenous subset for effects of different concentrations of 2,4-D on cell
suspension growth rate from day 6 till day 18
- Table 10:Test of homogeneity of variances for effect of various sonication times on cellsuspension growth rate from day 6 till day 18
- Table 11:
 ANOVA test for effects of various sonication times on cell suspension growth

 rate from day 6 till day 18
- Table 12: Homogenous subset for effects of various sonication times on cell suspensiongrowth rate from day 6 till day 18
- Table 13:
 Test of homogeneity of variances for effects of different concentrations of sucrose on cell suspension growth rate from day 6 till day 18
- Table 14: ANOVA test for effects of different concentrations of sucrose on cell suspension growth rate from day 6 till day 18
- Table 15: Homogenous subset for effects of different concentrations of sucrose on cellsuspension growth rate from day 6 till day 18