LIST OF FIGURES

Figure	Caption	Page
Figure 2.1	Schematic diagram of amorphous and crystalline regions of a polymer	9
Figure 2.2	Chemical structure of (a) LiTf and (b) delocalization of negative charge in triflate anion	15
Figure 2.3	Schematic diagram showing effect of IL doping into polymer electrolyte matrix where K^+ is potassium cation and IL is ionic liquid [Taken from Singh et al. (2008)]	25
Figure 2.4	Chemical structures of (a) BMII and (b) BMITf	26
Figure 2.5	Temperature dependence plots of the conductivity of PAN– LiClO ₄ containing 0 (CPE–0), 1 (CPE–1) and 3 (CPE–3) wt.% SAP [Taken from Chen et al. (2011)]	30
Figure 2.6	Cation motion in a polymer electrolyte via (a) intrachain hopping, (b) interchain hopping, (c) intrachain hopping via ion cluster and (d) intercluster hopping [Taken from Gray, 1997]	31
Figure 2.7	Temperature dependence plots of the conductivity of PEO-LiTf comprised of various EO/Li ratios. [Taken from Karan et al. (2008)]	32
Figure 3.1	Image of reflux set-up during preparation of polymer electrolytes	35
Figure 3.2	Flow chart showing the preparation procedure of PEMA/PVdF– HFP–LiTf polymer electrolyte films	36
Figure 3.3	Image of transparent PEMA/PVdF-HFP based polymer electrolytes	36
Figure 3.4	Flow chart for the preparation procedure of PEMA/PVdF-HFP- LiTf-EC polymer electrolyte films	38
Figure 3.5	Flow chart for the preparation procedure of PEMA/PVdF-HFP- LiTf-PC polymer electrolyte films	40
Figure 3.6	Flow chart for the preparation procedure PEMA/PVdF-HFP- LiTf-BMII polymer electrolyte films	41

Figure 3.7	Image of semi-transparent PEMA/PVdF-HFP-LiTf-BMII based polymer electrolytes	42
Figure 3.8	Flow chart for the preparation procedure of PEMA/PVdF–HFP– LiTf–BMITf polymer electrolyte films	43
Figure 3.9	FTIR spectra of (a) pure PEO, (b) pure LiTf and (c) PEO:LiTf (95:5; wt.:wt.) sample [Taken from Ramesh et al., 2008]	44
Figure 3.10	TGA curves of PMMA and its nanocomposites [Taken from Costache et al., 2006]	48
Figure 3.11	TGA thermograms of PVDF–HFP films containing 0 and 16.3 wt.% PEG [Taken from Chung et al., 2003]	48
Figure 4.1	FTIR spectra in the region (a) $3800-2800 \text{ cm}^{-1}$, (b) $1800-800 \text{ cm}^{-1}$ and (c) $1000-800 \text{ cm}^{-1}$ (enlarged) of i. PEMA, ii. PVdF-HFP, iii. S-0, iv. S-10, v. S-20, vi. S-30, vii. S-40 and viii. LiTf	52
Figure 4.2	FTIR spectra in the region (a) $3200-2600 \text{ cm}^{-1}$ and (b) $1820-720 \text{ cm}^{-1}$ of i. PEMA, ii. PVdF-HFP and iii. PEMA/PVdF-HFP(70:30) or S-0	53
Figure 4.3	Deconvolution and band–fitting components in the region (a) $1440-1340 \text{ cm}^{-1}$, (b) $1220-1100 \text{ cm}^{-1}$ and (c) $1080-980 \text{ cm}^{-1}$ of i. PEMA, ii. PVdF–HFP and iii. S–0	54
Figure 4.4	Schematic diagram of possible interactions in (a) PEMA, (b) PVdF–HFP and (c) S–0 (where ···· represents interactions within a polymer and •• represents intermolecular interactions between PEMA and PVdF–HFP)	57
Figure 4.5	FTIR spectra in the region 1800–1600 cm ⁻¹ for (a) S–0, (b) S–10 (Inset: Enlarged deconvoluted bands of S–10), (c) S–20, (d) S–30, (e) S–40, (f) 70 wt.% PEMA–30 wt.% LiTf, (g) 70 wt.% PVdF–HFP–30 wt.% LiTf and (h) LiTf	59
Figure 4.6	Deconvoluted FTIR spectra in the region 1220–1120 cm^{-1} for (a) S–0, (b) S–10, (c) S–20, (d) S–30 and (e) S–40	61
Figure 4.7	FTIR spectra in the region 1200–1100 cm^{-1} of (a) PEMA–based film, (b) PVdF–HFP based film containing i. 0 and ii. 30 wt. % of LiTf	62
Figure 4.8	Deconvoluted FTIR spectra between 1340–1200 cm ^{-1} for (a) S–0, (b) S–10, (c) S–20, (d) S–30 and (e) S–40	63

- Figure 4.9 FTIR spectra in the region (a) $1450-1350 \text{ cm}^{-1}$ and (b) 1100-64 1000 cm^{-1} for i. PVdF-HFP and ii. 70 wt.% PVdF-HFP-30 wt.% LiTf
- Figure 4.10 Schematic diagram of possible interactions in PEMA/PVdF– 65 HFP–LiTf system (where ••• represents intermolecular interactions between PEMA and PVdF–HFP and •••• represents coordinate bonds between Li⁺ ions and PEMA/PVdF–HFP)
- Figure 4.11 Deconvolution between 1080 and 980 cm⁻¹ of (a) S–10, (b) S–66 20, (c) S–30 and (d) S–40
- Figure 4.12 Area % of the different ionic species of the triflate anion with 67 respect to wt. % of LiTf in PEMA/PVdF–HFP (70:30) blend
- Figure 4.13 FTIR spectra in the region (a) $3800-2800 \text{ cm}^{-1}$ and (b) 1800-69 800 cm^{-1} of i. EC-0, ii. EC-2, iii. EC-4, iv. EC-6, v. EC-8, vi. EC-10 and vii. EC
- Figure 4.14 FTIR spectra in the region 1850–1600 cm⁻¹ for (a) EC–0, (b) 71 EC–2, (c) EC–4, (d) EC–6, (e) EC–8, (f) EC–10, (g) 90 wt.% PEMA–10 wt.% EC, (h) 90 wt.% PVdF–HFP–10 wt.% EC, (i) S–0–EC, (j) EC and (k) LiTf–EC
- Figure 4.15 Deconvoluted FTIR spectra of (a) EC–0, (b) EC–2, (c) EC–4, (d) 72 EC–6, (e) EC–8 and (f) EC–10 in the region $1340-1200 \text{ cm}^{-1}$
- Figure 4.16 Deconvoluted FTIR spectra in the region between 1220 and 74 1120 cm^{-1} of (a) EC–0, (b) EC, (c) EC–2, (d) EC–4, (e) EC–6, (f) EC–8 and (g) EC–10 between 1220–1120 cm⁻¹
- Figure 4.17 Deconvoluted FTIR spectra of (a) 6 wt.% LiTf-94 wt.% EC, (b) 75 90 wt.% PEMA-10 wt.% EC, (c) 90 wt.% PVdF-HFP-10 wt.% EC (in the region 1320-1120 cm⁻¹) and (d) 90 wt.% S-0-10 wt.% EC in the region 1220-1120 cm⁻¹
- Figure 4.18 Schematic diagram of possible interactions in PEMA/PVdF- 76 HFP-LiTf-EC system (where •••• represents coordinate bonds with Li⁺ ions, •••• represents electrostatic interactions between Li⁺ and EC and ••• represents intermolecular interactions between EC and PEMA/PVdF-HFP)
- Figure 4.19 IR deconvoluted bands between 1080 and 950 cm⁻¹ for samples 77 (a) EC-2, (b) EC-4, (c) EC-6, (d) EC-8 and (e) EC-10
- Figure 4.20 Area % of free ions and ion pairs with respect of EC content in 78 70 wt.% [PEMA/PVdF–HFP]–30 wt.% LiTf polymer

electrolytes

- Figure 4.21 FTIR spectra between (a) 3800–2800 cm⁻¹ and (b) 1850–650 81 cm⁻¹ of i. PC–0, ii. PC–2, iii. PC–4, iv. PC–6, v. PC–8, vi. PC–10 and vii. PC
- Figure 4.22 FTIR spectra in the region 1850–1600 cm⁻¹ for (a) PC–0, (b) 82 PC–2, (c) PC–4, (d) PC–6, (e) PC–8, (f) PC–10, (g) 90 wt.% PEMA–10 wt.% PC, (h) 90 wt.% PVdF–HFP–10 wt.% PC, (i) S–0–PC, (j) PC and (k) 6 wt.% LiTf–94 wt.% PC
- Figure 4.23 IR spectra in the wavenumber region between 1850 and 1700 83 cm⁻¹ of (a) PC and (b) 6 wt.% LiTf-94 wt.% PC
- Figure 4.24 Deconvoluted FTIR spectra of (a) PC–0, (b) PC, (c) PC–2, (d) 84 PC–4, (e) PC–6, (f) PC–8 and (g) PC–10
- Figure 4.25 Deconvoluted FTIR spectra of (a) PC–0, (b) PC, (c) PC–2, (d) 86 PC–4, (e) PC–6, (f) PC–8 and (g) PC–10
- Figure 4.26 Deconvoluted FTIR spectra of (a) 6 wt.% LiTf-94 wt.% PC, (b) 87 90 wt.% PEMA-10 wt.% PC, (c) 90 wt.% PVdF-HFP-10 wt.% PC (between 1320 and 1120 cm⁻¹) and (d) 90 wt.% S-0-10 wt.% PC in the IR region between 1220 and 1120 cm⁻¹
- Figure 4.27 Schematic diagram of possible interactions in PEMA/PVdF- 88 HFP-LiTf-PC system (where ···· represents coordinate bonds with Li⁺ ions, ···· represents electrostatic interactions between Li⁺ and PC and ••• represents intermolecular interactions between PC and PEMA/PVdF-HFP)
- Figure 4.28 IR deconvoluted bands in the region 1080–980 cm⁻¹ for (a) PC- 89 2, (b) PC-4, (c) PC-6, (d) PC-8 and (e) PC-10
- Figure 4.29 Area % of free ions and ion pairs with respect to PC content in 90 70 wt.% [PEMA/PVdF–HFP]–30 wt.% LiTf polymer electrolytes
- Figure 4.30 FTIR spectra between (a) 3800–2800 cm⁻¹ and (b) 1850–650 93 cm⁻¹ of i.BI–0, ii. BI–5, iii. BI–10, iv. BI–12.5, v. BI–15, vi. BI–17.5, vii. BI–20 and viii. BMII
- Figure 4.31 FTIR spectra in the region 1850–1600 cm⁻¹ for (a) BI–0, (b) BI– 94 5, (c) BI–10, (d) BI–12.5, (e) BI–15, (f) BI–17.5, (g) BI–20, (h) 90 wt.% PEMA–10 wt.% BMII, (i) 90 wt.% PVdF–HFP–10 wt.% BMII and (j) S–0–BMII and (k) BMII

- Figure 4.32 FTIR spectra in the region between 1340 and 1200 cm⁻¹ of (a) 95 BI–0, (b) BI–5, (c) BI–10, (d) BI–12.5, (e) BI–15, (f) BI–17.5 and (g) BI–20
- Figure 4.33 FTIR spectra in the region between 1220 and 1120 cm⁻¹ of (a) 96 BI–0, (b) BMII, (c) BI–5, (d) BI–10, (e) BI–12.5, (f) BI–15, (g) BI–17.5 and (h) BI–20
- Figure 4.34 FTIR spectra in the region between 1220 and 1120 cm⁻¹ of (a) 97 90 wt.% PEMA-10 wt.% BMII and (b) 90 wt.% S-0-10 wt.% BMII
- Figure 4.35 Schematic diagram of possible interactions in PEMA/PVdF– 98 HFP–LiTf–BMII system (where ••••• represents coordinate bonds with Li⁺ ions and ••• represents intermolecular interactions between BMII and PEMA/PVdF–HFP)
- Figure 4.36 Deconvolution between 1100 and 980 cm⁻¹ of (a) BI–5, (b) BI– 100 10, (c) BI–12.5, (d) BI–15 (e) BI–17.5 and (f) BI–20
- Figure 4.37 Area % of free ion, ion pair and ion aggregate as a function of 100 BMII content
- Figure 4.38 FTIR spectra wavenumber region (a) $3800-2800 \text{ cm}^{-1}$ and (b) 103 $1850-650 \text{ cm}^{-1}$ of i. BT-0, ii. BT-10, iii. BT-20, iv. BT-30, v. BT-40, vi. BT-50, vii. BT-60 and viii. BMITf
- Figure 4.39 FTIR spectra in the region 1850–1600 cm⁻¹ for (a) BT–0, (b) 105 BT–10, (c) BT–20, (d) BT–30, (e) BT–40, (f) BT–50, (g) BT– 60, (h) 90 wt.% PEMA–10 wt.% BMITf, (i) 90 wt.% PVdF– HFP–10 wt.% BMITf and (j) S–0–BMITf and (k) BMITf
- Figure 4.40 FTIR spectra in the region between 1350 and 1200 cm⁻¹ of (a) 106 BT-0, (b) BMITf, (c) BT-10, (d) BT-20, (e) BT-30, (f) BT-40, (g) BT-50 and (h) BT-60
- Figure 4.41 FTIR spectra in the region between 1220 and 1120 cm⁻¹ of (a) 108 BT-0, (b) BMITf, (c) BT-10, (d) BT-20, (e) BT-30, (f) BT-40, (g) BT-50 and (h) BT-60
- Figure 4.42 Schematic diagram of possible interactions in PEMA/PVdF- 109 HFP-LiTf-BMITf system (where •••• represents coordinate bonds with Li⁺ ions and •••represents intermolecular interactions between BMITf and PEMA/PVdF-HFP)
- Figure 4.43 Deconvolution between 1080 and 980 cm⁻¹ of (a) BT–10, (b) 111 BT–20, (c) BT–30, (d) BT–40, (e) BT–50 and (f) BT–60

Figure 4.44	Area % of free ions, ion pairs and ion aggregates as a function of BMITf content	113
Figure 5.1	Nyquist plots of (a) S–0, (b) S–5, (c) S–10, (d) S–12.5, (e) S–15, (f) S–20, (g) S–25, (h) S–30, (i) S–35, (j) S–40 films	116
Figure 5.2	Effect of LiTf content on the ionic conductivity at 298 K of PEMA/PVdF-HFP-based polymer electrolytes	119
Figure 5.3	Nyquist plots of S-30 at various temperatures	121
Figure 5.4	Plot of log σ versus 1000/T of PEMA/PVdF–HFP–LiTf polymer electrolytes	122
Figure 5.5	Plot of number density and mobility in PEMA/PVdF-HFP-LiTf system	123
Figure 5.6	Nyquist plots of (a) EC-2, (b) EC-4, (c) EC-6, (d) EC-8 and (e) EC-10 films	124
Figure 5.7	Effect of EC content on the ionic conductivity at 298 K of PEMA/PVdF-HFP-LiTf based polymer electrolytes	126
Figure 5.8	Nyquist plots of EC-6 at various temperatures	127
Figure 5.9	Plot of log σ versus 1000/T of PEMA/PVdF–HFP–LiTf–EC polymer electrolytes	128
Figure 5.10	Plot of log ($\sigma T^{1/2}$) versus 1000/($T-T_0$) of PEMA/PVdF-HFP- LiTf-EC polymer electrolytes	128
Figure 5.11	Plot of number density and mobility in PEMA/PVdF–HFP– LiTf–EC system	129
Figure 5.12	Nyquist plots of (a) PC-2, (b) PC-4, (c) PC-6, (d) PC-8 and (e) PC-10 films	130
Figure 5.13	Effect of PC content on the ionic conductivity at 298 K of PEMA/PVdF-HFP-LiTf based polymer electrolytes	132
Figure 5.14	Nyquist plots of PC-6 at various temperatures	133
Figure 5.15	Plot of log σ versus 1000/T of PEMA/PVdF–HFP–LiTf–PC polymer electrolytes	134
Figure 5.16	Plot of log ($\sigma T^{1/2}$) versus 1000/(T– T_0) of PEMA/PVdF–HFP– LiTf–PC polymer electrolytes	134

Figure 5.17	Plot of number density and mobility in PEMA/PVdF-HFP-LiTf-PC system	135
Figure 5.18	Nyquist plots of (a) BI–5, (b) BI–10, (c) BI–12.5, (d) BI–15, (e) BI–17.5 and (f) BI–20 films	136
Figure 5.19	Effect of BMII content on the ionic conductivity at 298 K of PEMA/PVdF–HFP–LiTf based polymer electrolytes	137
Figure 5.20	Nyquist plots of BI-12.5 at various temperatures	138
Figure 5.21	Plot of log σ versus 1000/T of PEMA/PVdF–HFP–LiTf–BMII polymer electrolytes	140
Figure 5.22	Plot of number density and mobility in PEMA/PVdF-HFP-LiTf-BMII system	141
Figure 5.23	Nyquist plots of (a) BT–10, (b) BT–20, (c) BT–30, (d) BT–40, (e) BT–50 and (f) BT–60 films	142
Figure 5.24	Plot of log σ vs BMITf content at 298 K	144
Figure 5.25	Nyquist plots of BT-60 at various temperatures	145
Figure 5.26	Plot of log σ versus 1000/T of PEMA/PVdF–HFP–LiTf–BMITf polymer electrolytes	146
Figure 5.27	Plot of number density and mobility in PEMA/PVdF-HFP-LiTf-BMITf system	147
Figure 6.1	TGA plots of PEMA, PVdF–HFP and S–0	150
Figure 6.2	Decomposition of PEMA through (a) head-to-head linkage scission, (b) scission at vinylidene chain-end units and (c) random scission	152
Figure 6.3	Formation of EMA monomers by depropagation and termination of all radicals	153
Figure 6.4	Decomposition of PVdF–HFP by random scission by different pathways a and b	154
Figure 6.5	Decomposition of LiTf [Taken from Ohtani et al., 2008]	155
Figure 6.6	TGA plots of PEMA/PVdF-HFP-LiTf polymer electrolytes	156
Figure 6.7	TGA plots of PEMA/PVdF-HFP-LiTf-EC polymer electrolytes	158
Figure 6.8	TGA plots of PEMA/PVdF-HFP-LiTf-PC polymer electrolytes	160

Figure 6.9	TGA plots of PEMA/PVdF-HFP-LiTf-BMII polymer electrolytes	163
Figure 6.10	Thermal decomposition pathways of BMII	164
Figure 6.11	TGA plots of PEMA/PVdF-HFP-LiTf-BMITf polymer electrolytes	167
Figure 6.12	Thermal decomposition mechanisms of (a) 1–butyl–3– methylimidazolium and (b) triflate of BMITf [Taken from Ohtani et al., 2008]	168
Figure 7.1	Possible ion transport mechanism in PEMA/PVdF–HFP–LiTf– EC system involving the formation of ionic clusters	182