List of Figures

Chapter 1

Figure 1.1	Illustration of entrapment of liposomes in hydrogel network	7
Figure 1.2	The structure of C ₁₈ sucrose ester	10
Figure 1.3	Illustration of a typical micelle	11
Figure 1.4	Major types of vesicles with their range of size	14
Figure 1.5	Simplified geometrical model of oleic acid molecules at	
	intermediate pH (7.5 - 9.5). A cylindrical-shaped dimeric	
	structure is formed that can self-assemble into bilayers and	
	therefore vesicles	17
Figure 1.6	The schematic representation of (a) oil-in-water emulsion (o/w),	
	(b) water-in-oil emulsion (w/o)	20
Figure 1.7	The schematic representation of (a) water-in-oil-in-water	
	emulsion (w/o/w) and (b) oil-in-water-in-oil emulsion (o/w/o)	20
Figure 1.8	Flow curves of Newtonian, pseudoplastic and dilatant fluids	24
Figure 1.9	Flow curve of commercial liposome cream	25
Figure 1.10	(a) Maxwell model and (b) Kelvin-Voigt model	26
Figure 1.11	Viscoelastic spectrum	27
Figure 1.12	Strain sweep of commercial liposome cream	29
Figure 1.13	Frequency sweep and tan δ for commercial liposome cream	30

Chapter 3

Figure 3.1	Equilibrium titration curve of 0.1 mol dm ⁻³ oleic acid/oleate determined	
	with 0.1 mol dm ⁻³ HCl at 30 $^{\circ}$ C. The bright field and dark field	
	polarized light microscopy images of (a) oleic acid bilayer, (b to d)	
	unilamellar oleic acid liposomes, (e and f) multilamellar oleic acid	
	liposomes and (g to j) oil droplets	40
Figure 3.2	(a) Mean particle size and (b) mean zeta potential of oleic	
	acid/oleate at various pH	41
Figure 3.3	Electrical conductivity as a function of oleate concentration in 2.5	
	x 10^{-3} M phosphate buffer at pH 8.5 and 30 °C	42
Figure 3.4	The polarized light micrograph of liposomes prepared from oleic	

	acid (0.1 mol dm^{-3}) in 0.1 mol dm^{-3} phosphate buffer at pH 8.5.	
	The vesicles exhibit Maltese cross textures. Arrows indicate oleic	
	acid liposomes	43
Figure 3.5	The polarized light micrograph of liposomes prepared from oleic	
	acid (0.1 mol dm ^{-3}) in 0.1 mol dm ^{-3} phosphate buffer at pH 8.5	
	under dark field technique. Arrows indicate oleic acid liposomes	43
Figure 3.6	Polarized light micrograph of oleic acid liposomes (0.1 mol dm ⁻³)	
1 iguie 5.0	in olive oil-in-water emulsion. White arrows indicate oleic acid	
	linosomes Vellow arrows indicate oil droplets	44
Figure 3.7	Light micrograph of oleic acid liposomes $(0.1 \text{ mol } dm^{-3})$ in olive	
1 iguie 3.7	oil-in-water emulsion under dark field technique. White arrows	
	indicate oleic acid linosomes. Vellow arrows indicate the oil dronlets	45
Figure 3.8	Accelerated stability test observation as the emulsion volume fraction	10
1 iguie 5.6	changes over a period of 28 days for emulsions with borate buffer as	
	aqueous phase which stabilized by C_{18} , C_{16} and C_{14} sucrose	
	ester	47
Figure 3.9	Accelerated stability test observation as the emulsion volume fraction	
C	changes over a period of 28 days for emulsions in borate buffer with	
	20wt% injected deionized water which stabilized by C_{18} , C_{16} and C_{14}	
	sucrose ester	48
Figure 3.10	Accelerated stability test observation as the emulsion volume fraction	
	changes over a period of 28 days for emulsions in borate buffer with	
	20wt% injected solution for formation of oleic acid liposome without	
	addition of oleic acid which stabilized by C_{18} , C_{16} and C_{14} sucrose ester.	49
Figure 3.11	Accelerated stability test observation as the emulsion volume fraction	
	changes over a period of 28 days for emulsions in borate buffer with	
	20wt% injected solution for formation of oleic acid liposome without	50
	addition of oleic acid which stabilized by mixture of two sucrose esters $(m/m + f C) + C$	50-
Eigung 2 10	(W/W of C_{18} : C_{16} sucrose esters).	32
Figure 5.12	changes over a period of 28 days for emulsions in horate buffer with	
	20wt% injected solution for formation of oleic acid linosome without	
	addition of oleic acid which stabilized by mixture of three sucrose esters	
	$(w/w \text{ of } C_{18} : C_{16} : C_{14} \text{ sucrose esters})$	53
Figure 3.13	Zeta potential distributions for Set A–D emulsions diluted in 0.01	
-	mol dm^{-3} KCl. (a) A single zeta potential distribution peak was	
	obtained for the Set A emulsions. (b) & (c) The observed peaks	

for Set B and C emulsions are much broader with multiple side peaks. (d) The existence of a side peak at the range of -105 to -120 mV suggested the presence of oleic acid liposomes in Set D emulsions....

- Figure 3.14 Illustrative flow curves of Set A emulsions (■ = A-I; ▲ = A-II;
 ▼ = A-III): I-shear thickening region where viscosity increases with increasing shear rate; II-Newtonian plateau region in the intermediate shear rate range where viscosity is constant; III— shear thinning region where viscosity decreases with increasing shear rate; IV—shear-banding region showing coexistence of flowing and non-flowing regions in the system; V—high shear rate shear thinning region. n, filled symbols; σ, empty symbols.... 63

- Figure 3.22 Rheological properties of Set D emulsions ($\blacksquare = D$ -I; $\blacksquare = D$ -II; $\blacktriangle = D$ -III) and control Set C emulsions ($\blacklozenge = C$ -I; $\blacktriangleleft = C$ -II; $\blacktriangleright = C$ -

х

60

	III). (a) Flow curves (η , filled symbols; σ , empty symbols); (b)	
	Dynamic strain sweeps at 30°C and 1 Hz; (c) Dynamic frequency	
	sweeps at 30°C and a target strain of 0.1% (G', filled symbols;	72-
	G", empty symbols)	73
Figure 3.23	Transportation of the oleic acid molecules to the neighboring oleic	
	acid liposomes or oil-in-water emulsion droplets	73