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ABSTRAK 

  

Objektif utama kajian ini adalah untuk mengkaji petrologi, geokimia dan petrogenesis 

batuan volkanik dari tenggara Semenanjung Malaysia terutamanya di sekitaran Teluk 

Ramunia. Batu gunung berapi dari kawasan itu terletak di magmatisma jaluran timur 

yang didominasi oleh Batuan Jenis-I. Batu di kawasan kajian terdiri daripada rhyolit, 

traki-dasit dan diorite. Mereka menunjukkan sepadan batuan yang tidak teratur dimana 

ia menunjukkan penghabluran berlaku pada masa yang hampir sama. Analisis petrografi 

menunjukkan ciri-ciri batuan jenis-A dimana terdapat kewujudan biotite dan hornblend 

dicelah mineral lain dan juga tekstur inter-pertumbuhan. Analisis geokimia 

menunjukkan bahawa rhyolit berasal dari magma berbeza daripada traki-dasit dan 

diorit. Nilai Ga / Al dan HFSE (Zr + nb + Ce + Hf) untuk semua batuan dari kawasan 

kajian adalah lebih kurang sama dengan purata batuan Jenis A. Semua batuan 

menunjukkan indek alkali silica daripada metaluminous ke peralumina lemah 

berdasarkan nilai A/CNK. Semua batuan mempunyai nilai suhu ketepuan yang tinggi 

(826+ 5
o
C) dan kandungan tinggi unsur-unsur bidang kekuatan yang tinggi (cth. Zr, Nb, 

Ce dan Hf) dimana kedua-duanya jelas menunjukkan magma berasal dari sumber yang 

kering atau lebit tepat perleburan pada tekanan rendah. Berdasarkan pengumuran zirkon 

U-Pb, umur riolit adalah kira-kira 238 + 2 Ma dimana semua batuan terbentuk adalah 

berkait rapat dengan proses subduksi kerak lautan Palaeo-Tethys kebawah kerak daratan 

Indochina (arka gunung berapi). Walau bagaimanapun kewujudan A-jenis memberi 

implikasi bahawa semua batuan menghablur semasa lanjutan kerak lautan disebabkan 

oleh balikan-kerak (slab-rollback). Basalt yang terbentuk daripada mantle akan 

menceroboh masuk ke bahagian bawah dan tengah kerak benua semasa lanjutan kerak. 

Haba yang tinggi daripada basalt akan menyumbang kepada perleburan separa pada 
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tekanan rendah dimana ia akan menghasilkan magma jenis – A. Kebarangkalian besar 

kewujudan batuan jenis- A juga wujud sepanjang Jalur Timur Semenajung Malaysia. 
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ABSTRACT 

 

The main objective of this study is to investigate the petrology, geochemistry and 

petrogenesis of volcanic rocks from southeast Peninsular Malaysia mainly within Teluk 

Ramunia. The volcanic rocks from that area are located on the eastern belt magmatism 

dominated by I-type rocks. The rocks from study area are dominated by rhyolite, 

trachydacite and diorite and they show irregular contact which suggests 

contemporaneous crystallization. Petrographically, all rocks shows occurrence of 

microgranophyric, interstitial biotite and hornblende which is characteristic of the A-

type rocks and sub-volcanic emplacement. Field and geochemical evidence shows that 

the rhyolite is derived from a different magmatic pulse than trachydacite and diorite. 

The value of Ga/A and HFSE (Zr+Nb+Ce+Hf) for all rocks from study area is 

comparable to the average A-type rocks. All rocks shows range from metaluminous to 

weakly peraluminous in term of their A/CNK value. All rocks from Ramunia yield high 

zircon saturation temperature value (826+ 5
o
C) and high content of high field strength 

elements (e.x. Zr,Nb,Ce and Hf) which are clearly indicative of dry source derived or 

low pressure incongruent melting. Based on geochemical, petrographical and high 

saturation temperature and low pressure (~3.2kbar) calculated from thermometry shows 

that all Rock from Ramunia may plausibly derived from low pressure melting of 

granodiorite.   Based on zircon U-Pb isotope age, rhyolite gave age about 238 + 2 Ma 

which suggest that all rocks are related to subduction of the Palaeo-tethys ocean 

underneath Indochina (volcanic arc). However the occurrences A-type give implication 

that all rocks are formed during crustal extension due to oceanic slab rollback. The 

under-plated mantle derived basalt will intrude into the lower to middle crust and 

provide sufficient heat to melt the country rocks. The high heat yield by the mantle 

derived basalt will contribute to the low pressure incongruent melting of the middle 
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crust rocks (tonalite and granodiorite) which will formed the A-type magma and 

gradually crystallized to be Ramunia volcanics. It is high possible that there are more 

occurrence of the A-type rocks throughout Eastern belt province of Peninsular 

Malaysia. 
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1.0 INTRODUCTION 

1.1 General Introduction and background of Teluk Ramunia 

 Teluk Ramunia and its adjacent area is famous for abundances of bauxite deposits 

(aluminium ore) since 1950 until now. First research study has been done by Grubb in his 

PhD research in 1962 which cover whole Pengerang district . Later in 1965, detailed 

geological investigation has been done by Geological Survey of Malaysia with compilation 

manuscript from Grubb research. There is no doubt that large amount of bauxite has only 

been found within Pengerang area. Bauxite has been economically mined since then. 

 This research is done on smaller area within Pengerang district because there has 

been lot of quarry activities within Teluk Ramunia area which give chances of more 

geological investigation within that area. This research focus more on petrology and 

geochemistry of  the volcanic rock from that area.        

Teluk Ramunia is situated within Kota Tinggi district which located at very most 

southeastern part of Johor State. The north and south boundaries lines of latitude 1ᴼ 24‟N 

and 1ᴼ 21‟N respectively, while to the east and west it is contained within lines of longitude 

104ᴼ 15‟ and 104ᴼ 17‟ respectively (Figure 1.1).The volcanic rocks from the study area 

have special features compared to the volcanic rock from other area within south east 

Johore as weathering of these rock produce bauxite. The area (Teluk Ramunia) is one of the 

main bauxite producer in Malaysia since early ninetinth century. From 1998 to 2003, 600 

000 tonne bauxite have been produce by the bauxite mined in the study area (JMG report 

2003). The aim of this paper is to study the geochemical characteristis of volcanic rocks as 

well as the associate granitic rocks from Teluk Ramunia. Presently, the quarry where the 

research took place has been bought by the Malaysian local company from Singapore 

company because the rocks are mostly composed of volcanic rocks which absolutely not 

suitable for rock aggregate. 
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Figure 1.1: Figure shows the satellite image of whole Peninsular Malaysia. Mark „A‟ 

shows the location of the Teluk Ramunia (upper). The satellite image shows close up of 

study area (below) 
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1.2 Research Objective 

 There is no detailed geochemistry study in previous research for igneous rocks from 

Teluk Ramunia. The study is only focussing on the distribution of the economic mineral 

mainly bauxite (Grubb 1968). The purpose of this study is to determine the petrology and 

petrogenesis of the igneous rocks from Teluk Ramunia. This study will include the aspects 

of field relationship, petrology analysis and geochemical. From these studies, the writer 

will have sufficient information to discuss about the petrogenesis of the rocks. It is also 

possible to determine the tectonic setting with the help of published rock age. Apart from 

that, geochemical data and relation between the minerals, texture and phenocryst 

assemblages can be used to determine the evolution of magma and its emplacement. 

Summaries of the objectives are :-    

 

- To obtain more systematical information/datas regarding geology of Teluk 

Ramunia which include the field relation, petrology and geochemistry analysis. 

- To discuss the magmatic evolution and their process in producing the volcanic 

and plutonic rocks. 

- Propose the petrogenesis of the rocks based on the geochemistry analysis 

- To make improvement to the geological map made by previous researcher.  

- To predict the tectonic setting using the published tectonic discrimination 

diagrams and correlated it to the Permo-Triassic tectonic model. 
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1.3 Research Method / Methodology 

1.3.1 Reviewing Literature 

 There are few methodologies that are crucial or important in order to make this 

research a successful project. By systematically order, first, the writer will do literature 

review as many as possible which is correlated with the research study. They included 

thesis, books, journals and memoirs. Any relevant information about the research area 

especially geological information will be used to help before going to field. This is very 

important because it can give the general ideas about geology of the study area before 

going to fieldwork. Literature review will be done throughout the thesis in order to obtain 

ideas or new ideas regarding research work.  

 

1.3.2 Fieldwork mapping and sampling  

Over 30 samples rocks samples consists of volcanic and plutonic were collected for 

this research. Most of the samples were taken from fresh outcrop within Quarry in 

surrounding Teluk Ramunia. Only non- weathered, unaltered and unmixing rock samples 

were used for geochemistry purposes. Location of each rock samples were marked by using 

GPS. All the geological features such as joint and shear or faults will be noted and will be 

added in the previous geological map done by Grubb (1968). This research covers detail on 

Teluk Ramunia part including Bukit Boping, Bukit Lontar, Bukit Wakap, Kampung Teluk 

Ramunia and adjacent areas. Rock samples will be collected during the mapping. All the 

samples will be mark on the base map and also in GPS. Each rock samples will be given 

specific name to make sure that the samples will not mix up.    
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1.3.3 Produce Detail Geological Map 

 A mapping has been done based on the geological features found within the 

research area. A detail geological map with appropriate scale will be produced by using 

GPS and GIS software. All geological information obtain from the study area will be input 

in this map. 

 

1.3.4 Preparing Samples 

 The collected samples will be taken to lab for petrography and geochemistry 

analysis. Of all the samples, 30 rock samples of different rock type will be chosen for 

analysis. The chosen samples were made sure not weathered or it will affect the result 

especially geochemical analysis. Thin section will be made with standard thickness that is 

30 micron meter will be made for petrography analysis. Besides that, same rock samples 

that had been made for thin section will be crushed into powder for geochemical analysis. 

Jaw crusher (rock crusher) will be use for crushing rocks into smaller size and Tema Mill 

will be used for milling process to make powder.  

 

1.3.5 Petrography Analysis 

Rocks are analysed petrographically by using petrology microscope in order to 

determine the rock constituents. Minerals and texture formed in rock is determined and will 

be discuss in detail in one chapter. Rock types type from the study area will be classify base 

on their general texture and mineral composition.  
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1.3.6 Geochemical Analysis 

 Geochemical analysis is done to determine the petrogenesis of the rock as as well as 

magma evolution in forming the rock. Other than that, geochemical data also can be used to 

backup petrography observation in determining rock type.    

 

1.4 Literature Review 

Petrology, petrography and geochemistry has been done by previous study on most 

part of Pengerang district. The study on geological aspect has been done by Grubb 1968 for 

his Phd research. His research was more emphasized on bauxite formation. There are two 

types of bauxite reported by high which are residual bauxite and transported bauxite 

however his research is lack of geochemistry approach. More detailed petrology and 

geochemistry of rock soil related which forming the bauxite has been done by Hutchison 

(1979). However there is no detailed petrology and geochemistry of igneous rock within 

Teluk Ramunia vicinity. Furthermore there are some intermediate plutonic found nearby 

Teluk Ramunia. The main rocks that found within Pengerang area were ranging from 

intermidiate to felsic type such as rhyolite, andesite, tuff, pegmatite and granite which 

associate with keratophyric dyke. The pegmatite formed as stock which intruded the granite 

at the eastern of Teluk Ramunia. Pegmatite is commonly known as late magmatic rock 

where the pegmatite was formed from the residual melt  The volcanic rhyolite within 

Pengerang area has been dated and they were generally formed during Middle Triassic 

which are not very much different compared to the granite age. Study to determine the 

volcanic eruptions center has been done by Zainal (1984). He measured and statistically 

analyzed the clast sizes of agglomerates and input the clast contoured. The larger clast sizes 

will be proximal to the source of eruption foci and the smaller clast size will be distal from 

eruption foci. The geological map of the whole pengerang district is shown in Figure 1. 
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Alluvium 

Volcanic lava flow (rhyolitic to 

andesitic composition) 

Microgranite 

Pyroclastic and tuff 

Granite  

Figure 1.2: Geological map of Pengerang district. The area shaded (blue) in the 

box marked the location of the study area. Note the yellow box marked the 

occurrence of A-type volcnics 
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1° 22' 16.54"N , 104°15‟56.91N (Sampling Location)     
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2.0  REGIONAL GEOLOGY OF PENINSULAR MALAYSIA 

This chapter will summarize the occurrence and general description for all volcanic 

rocks throughout Peninsular Malaysia. Field characteristic in the study area will be 

discussed in detail at the end of this chapter. The major distribution of the volcanic rocks is 

shown in Map 1. Hutchison (1973a) has summarized the distribution and the relative age of 

the Peninsula Malaysia volcanic sequence (Figure 2.2). 

 

2.1 Volcanism in Peninsular Malaysia 

2.1.1 Research History on volcanic rocks in Peninsular Malaysia 

 The occurrences of the volcanic, pyroclastic and subvolcanic in Peninsular were 

first noted as Pahang Volcanic Series (Wilbourn, 1917; Scrivenor, 1931). The relative ages 

of their formation are assumed to be restricted from Carboniferous up to Triassic age 

(Scrivenor 1931). Richardson (1951) suggested that the termed Pahang Volcanic Series 

should be apply only to all volcanic rocks with known origin. However more field 

investigation shows that the volcanic rocks including lava, pyroclastics were found on more 

broad area rather than within Pahang state itself. Their occurrences spread from Kelantan 

on the north down to Terengganu, Negeri Sembilan (Fitch, 1952) and Johore (Grubb, 1965) 

toward the south. Therefore, the use of the term Pahang Volcanic Series have been 

disregard due to broad occurrences of volcanic rocks throughout out the Peninsular 

Malaysia. 
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Figure 2.1: Distribution of the volcanic rocks within Peninsular Malaysia 

(modified after Hutchison, 1973a) 



 

14 Figure 2.2: Distribution and relative age of volcanic rocks in Peninsular Malaysia (modified after Hutchison, 1973a) 

(This Study) 
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The overall distribution of volcanic rocks are shown in Fieldwork occurrence and 

detailed petrographic description has been reviewed by Hutchison (1973a). The volcanic 

and pyroclastic rocks are described only according to localities that marked their 

occurrences. The geochemistry and isotopic age of the overall volcanic rocks within 

Peninsular Malaysia has been reviewed by (Ghani, 2009). Ghani (2009) has subdivided 

the volcanic rocks in Peninsular into 3 belts which are Western belt, Eastern Belt and 

Genting Sempah Complex. 

 

2.1.2 Western Belt Volcanism 

 Volcanic rocks occur as scattered bodies of foliated rhyolitic flows and tuff 

which is conformable with metasediments and occur as interbedded with Ordovician 

rocks. For example there are occurrences of foliated rhyolite tuff in the Jerai Formation 

and foliated rhyolite in the Dinding Schist, Lawin Tuff and Genting Sempah volcanic 

rocks. The main rock type of Lawi tuff is foliated rhyolite and rhyodacitic tuff. All these 

volcanic rocks were interfoliated with Ordovician to Silurian meta quartzite and 

limestone of Baling Group. As for Dinding Schist in Kuala Lumpur, the main volcanic 

rock type is Meta- rhyolitic (Gobbet 1965a), There are clear occurrences of strong 

foliated of flow banded of the similar rock. At the northern part of the Western Belt, 

there is small occurrence of porphyry found in the Jerai Formation at Northeast of 

Gunung Jerai summit. The rock is conformable with the metasediments of the Jerai 

Formation. Bradford (1972) suggested that it may have been a tuff or volcanic rock and 

described t as quartz feldspatic hornfel. There are quite similar quartz porphyry with 

finer grained groundmass that occurs at Pulau Bunting which located on northwest of 

Gunong Jerai (Chung 1959). 
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 This is somewhat similar to as Gunung Jerai Porphyry that is associated with 

metasediments that contained biotite, epidote, garnet, magnetite and andalusite. 

Genting Sempah Volcanic is believed of both temporally and spatially related 

with the Main Range Granite (Haile et al., 1977). This volcanic complex consists of 

pyroclastic tuff, rhyolite and orthopyroxene bearing porphyry rhyodacite (Liew, 1977, 

1983; Chakraborty, 1995). Detailed fieldwork studies show that rhyolite and 

orthopyroxene (hyperstene) rhyodacite predominates the Sempah Volcanic Complex 

where the (Chakraborty, 1995; Singh & Ghani, 2000). Zircon U-Pb age for 

orthopyroxene rhyodacite give the concordia at 219+5 Ma and 1550+300 Ma. The lower 

intercept is most likely to represent volcanic and sub-volcanic while the higher intercept 

represent the age of the basement rocks. However there are no occurrences of rocks with 

Pre-Cambrian age within the area or even in Peninsular Malaysia. Based on petrography 

characteristic, the hyperstene rhyodacite does not represent on single magma (magma 

mixing?) (Ghani, 2009). Detail study on geochemical behaviour on rhyolite and 

hyperstene rhyodacite has been done by Singh and Ghani, (2000) and Ghani, (2005). It 

is suggest that the magma that produced these both units are influenced by assimilation-

fractional crystallization where the fractional crystallization are controlled by alkali 

feldspar, plagioclase and biotite. However the source rocks for these is yet determined. 

From the author observation on previous study on the orthopyroxene rhyodacite, the 

occurrences of glomeroporphyritic orthopyroxene (hyperstene) in rhyodacite give 

important implication in determining the source rock of the rhyodacite and rhyolite. 

Assumption can made that the magma was initially water under-saturated because 

orthopyroxene can be produced from partial melting with minimum liquidus temperature 

(~750
O
C) at lower pressure (2Kbar) and water content (wt% H2O < 5%) (Wood, 1973; 

Nany, 1983; Frost and Frost, 2007). So the author propose that that  
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rhyolite and Opx bearing rhyodacite are plausibly derived from previously dehydrated 

and dry granulite rock or charnockite at high temperature melting. This is because 

orthopyroxene in present in granulite and charnockite and the orthopyroxene can be 

possibly preserved in more evolved charnockite (~60%) because fractional 

crystallization is not so large in more evolved rock compared to the basic rock.  

It must be note that high temperature is needed to melt the dry granulite or the 

charnockite. Based on gravity studies across Peninsular Malaysia, there is some 

evidence shows that Central belt of Peninsular Malaysia might has undergone crustal 

extension (Ryall et al 1982, Loke et al., 1983). The mechanism that can contribute to the 

extension of the lower crustal are slab-roll back (e.g Chung et al., 2005; Zhao et al. 

2008), post-collision and rifting (Loiselle and Wones, 1979; Eby, 1992). 

 

2.1.3 Eastern Belt Volcanism 

Main occurrences of volcanic rocks on the eastern belt (Indochina Terrain) can 

be divided into 2 group based on their locality. The first group covered from eastern 

margin of Bentong Raub Suture Zone and several parts of Pahang (Central and North), 

north Terengganu and north Kelantan. The second group covers the central, south and 

southeastern of Johor which is located at southern part of Peninsular Malaysia.The 

occurrences of the volcanic rocks on the Eastern Belt or East of Main Range are 

believed to have age from Late Paleozoic to Early Mesozoic (see Hutchison 1973a). 

According to previous studies, the tuff is more common compared to the lava flow type  

 

(Hutchison, 1973a). The compositions of the volcanic rocks on the eastern belt are from 

andesitic to acidic. Late Permian volcanic rocks consist of andesitic-acidic and Triassic 
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volcanic rocks mainly of acidic composition (Metcalfe et al., 1982). There is also 

occurrence of Cenozoic-Tertiary basalt (Kuantan basalt and Segamat Basalt) located on 

Eastern Belt which is absence on the Western Belt (Gobbett and Hutchison, 1973; 

Ghani, 2009).  

 

2.1.4 Volcanic rocks in Pahang, North Terengganu and North Kelantan 

In many of the area of the area, the volcanic rock show close association with the 

metasediments formation (Hutchison, 1973a). Based on field occurrence of volcanic 

associated with Middle Paleozoic metasediment and structural, Richardson (1950) has 

proposed a succession that volcanic rock of rhyolitic material are produced first from 

volcanoes and later material ranging from trachytic to andesitic were produced. On other 

part of Eastern Belt near Kuantan there are also similar volcanic occurrences of rhyolite 

and volcanic associated with Lower Carboniferous metasediments. Fitch (1952) 

suggested that the volcanic and pyroclastic rocks in the Kuantan area are submarine but 

was extruded near a shoreline.  

Porphyry andesite and agglomeratic andesite (refer to Wong, 1960; Hutchison, 

1973) were believed to be contemporaneous and they are found at a quarry in Kampung 

Awah (Wong, 1960; Chong and Yong, 1967). From geochemical classification, all 

analyzed rock samples from Kampung Awah fall in basaltic andesite, tephrite/basanite 

and basalt (Ghani, 2009). The volcanic andesitic shows an evidence of intrusion into the 

limestone prior to eruption.  

Similar lava, pyroclastic and agglomerate type found in from North Terengganu 

to North Kelantan which most probably extension from the volcanic body from central 

Pahang. Volcanic rocks within this area have been subdivided into two groups which are 

1) almost all andesitic composition and 2) predominant rhyolitic and trahytic 
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composition with subordinate of dacitic and andesitic component. Field occurrences and 

petrography of the volcanic rocks from North Terengganu to North Kelantan has been 

reviewed by Macdonald (1968). Petrographically, biotite shows variable textures and K-

feldspar shows euhedral shape may implicate high temperature source rocks (e.g. 

Loiselle and Wones Li et al., 2011, ) 

Temangan ignimbrite are  occur in the north Kelantan and in contact with shale 

and sandstone. It shows intrusive nature and generally formed as laterally and vertically 

homogenous massive body with minor flow texture. Temangan Ignimbrite appear to be 

related to Lebir Fault zone (e.x. Hutchison, 1973a ; Aw, 1967)  

 

2.1.5 Volcanic rocks in central, eastern and southeastern of Johor 

 The main volcanic area for this group is in central, southeastern and eastern of 

Johor state. There are also occurrences of volcanic rocks found at the several islands on 

the east and southeastern offshore of Johor.   

 The occurrence of volcanic rocks within the central part of Johor has been 

described by Rajah (1967) and subdivided them into Sedili Volcanic and Chemendong 

Volcanic. Both Sedili and Chemendong consist of pyroclastic and lava flow type.  The 

composition of lava type at Sedili volcanic is ranging from rhyolitic to rhyodacitic while 

restricted lava flow of andesitic to dacitic formed within tuff bodies. Ignimbrite, lithic 

tuff, agglomerate tuff, agglomerate and ash are the main pyroclastic in Sedili with 

approximately similar composition as the lava type. 

Volcanic lava type that occur within Chemendong volcanic are rhyolite and 

rhyodacite with very minor occurrence of quartz-andesite. The occurrence of pyroclastic 

type are not as extensive as in Sedili volcanic. Rajah (1967) deduced that the Sedili and 

Chemedong are Triassic although some may be Permian or possibly Carboniferous.  
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South and Southeastern Johor 

 Studies on volcanic rock in south and southeast Johor mainland are mostly done 

by Grubb (1968). He described the volcanic rock within this area consist of chiefly lava 

flow and pyroclastic. These volcanic rocks are associated with graphitic and muscovite 

schist. The composition of lava and pyroclastic are ranging from intermediate to felsic. 

Grubb (1968) proposed that lava of andesitic composition extrude at initial stage of 

extrusive followed by intermediate and felsic flow and lastly by explosive pyroclastic 

deposition. Detail petrology and field observation has been described by Grubb (1968) 

and short summary will be given here. Volcanic rocks are the main igneous rocks that 

occur in southeastern of Johor within Pengerang district. 4 types of volcanic rocks of 

lava types that have been recognized, they are andesite, dark non banded rhyolite, 

banded porphyritic rhyolite and banded felsitic rhyolite (Grubb, 1968). According to 

Grubb (1968), andesite is the oldest volcanic sequence of volcanic and felsitic rhyolite is 

the youngest of lava flow type. The occurrence of pyroclastic is mostly consist of tuff. 

Grubb (1968) has subdivided the pyroclastic tuff into ashy tuff and agglomeratic tuff 

where the former is more common. On Nenas Island within Johor strait, there are also 

occurrence of pyroclastic ranging from rhyolitic to andesitic composition. 

 

2.1.6 Islands on the Southeastern Offshore of Johore. 

 Tioman, Sibu and Tinggi island of southeast are dominated by felsic to 

intermediate lava and pyroclastic (Bean 1972; Ismail et al., 2003). Apparently volcanic 

rock of lava type on Tioman island has been metamorphosed to meta-rhyolite with some 

meta-trachyte and meta-andesite (Grubb 1972). The occurrence of tuff also is common 

and associated with the metamorphosed lava. Unlike Tioman island, Sibu and Tinggi 

island are totally consist of pyroclastic rocks with very little of lava flow type (Ghani, 
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2006).  Field evidence shows that the Tinggi Island is distinct from Sibu Island in term 

of volcanic rock types. The size of the pyroclastic rock on Tinggi island are varies from 

mm to 5cm while pyroclastic on Sibu island shows ashy characteristic (Ghani, 2006). 

Detail field and petrographic has been discuss by Hutchison (1973) and Ghani (2009). 

Unpublished data for Ar-Ar wholerock dating shows that Tioman volcanic (~88.9 Ma) 

have close age with Tinggi Island (~85 Ma) while age of Sibu volcanic is much older 

than Tioman and Tinggi volcanic (~296Ma + 0.96) (see page 198 in Ghani, 2009). 

Based on these ages, it is likely that only Sibu volcanic is related to the Permian-Triassic 

volcanic arc. It is clearly shows that Tioman/Tinggi and Sibu Island are formed within 

distinct tectonic environment. 

 

2.2 General Geology of Study Area. 

The study area located at southeastern part of Pengerang district and about 5km east of 

Sungai Rengit. Geological map of study area is shown in Figure 1.2. Most of the studies 

are carry out in a quarry which consist are mainly consists of rhyolite, dark colour 

trachydacite and diorite. All these rocks are overlain by soil/laterite with thickness of 

10m – 15m thick (Figure 2.3a, 2.3b). These reddish – yellowish colour soils are known 

to be the source of the bauxite (Grubb, 1968).  
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Figure 2.3b : Photograph shows other part of the study area 

which also shows thick soil overlying the volcanic rocks. 

Figure 2.3a: Photograph shows the thick soil overlying the volcanic rocks. The un-

continuous yellow line marked the contact between soil and underlain rocks 
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Figure 2.4a: Photograph the occurrence of pink rhyolite. It 

formed as massive homogenous body. 

 

Figure 2.4b: Photograph shows massive trachydacite with poor 

conchoidal texture. Note the trachydacite shows grey colour. 
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Figure 2.5: Photograph shows clear irregular contact shown by 

rhyolite (light colour) and trachydacite (dark colour) 

Figure 2.4c : Photograph shows the rock contact between pink rhyolite and 

diorite. Note the elongated hornblend and biotite shown within diorite. 
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Figure 2.5: Photograph shows the elongated mafic phase which 

are mainly biotite and hornblende yield by diorite. 

Figure 2.6: Photograph shows the rocks from study area are been 

intrude by mafic dyke. 
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Figure 2.7: Photograph shows the rocks shows porphyritic texture where the main 

phenocryst phase are plagioclase (light colour) and clinopyroxene with minor olivine 

(dark colour). 
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On the eastern part of the Ramunia, there is intrusion of igneous body mainly of 

granitic composition where Grubb (1968) classify it as micro-granite. Within the study 

area, there is a quarry consist of 3 pits. These quarry consist of predominantly pink 

rhyolite and minor occurrence of trachydacite and diorite (Figure 3a,3b and 3c). 

Rhyolite is the main volcanic rocks in the study area followed by trachydacite and 

diorite. The writer classified it as pink rhyolite because of its very characteristic colou. 

The pink rhyolite and dark grey trachydacite are formed as massive igneous body and 

clearly shows irregular contact (Figure 4). There is no trace of banded or preferred 

orientation within the rhyolite and trachydacite. As for diorite, the appearance of long 

prismatic to sub-accicular mafic phase (hornblende and minor biotite) can be clearly 

seen in macroscopic scale (Figure 5). The relation between rhyolite, trachy-dacite and 

diorite are very clear. The diorite are high probably older that the volcanics because 

there is occurrences several diorite enclave in volcanic body. All rocks from study area 

type intruded by a series of younger doleritic dykes (Figure 6).The size of the dyke 

varies from centimeters up to meters and they shows porphyritic texture (Figure 7) and 

chilled margin is common on the margin of the smaller size dykes (Figure 8). Faults and 

joints are common within the igneous body. Some crushed rocks can be found along the 

large scale fault (Figure 9). There are 3 sets of joint can be found within the rocks 

(Figure 10). Some of the rhyolite rocks shows yellow colour due to weathering.  Apart 

from the study area, there is also a quarry in Belungkur which located on the north-

eastern from Teluk Ramunia where the main rocks are banded rhyolite and pyroclastic 

rocks (Shafik Izzuan 2011). Volcanic rocks from that area might be related to the 

volcanic rocks from study area.  
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Figure 2.8: Photograph shows occurrence of chilled margin shown by 

mafic dyke. Note the chilled margin occur in small dyke. 

Figure 2.9: Photograph shows the occurrence of faulting (left lateral strike 

slip?). Note the crushed rocks produced due to the faulting. 
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2.2 Tectonic Implication (Palaeozoic to Mesozoic) 

Distribution and the age of the volcanic rocks obtained from previous studies the 

relative age of the volcanic rocks are ranging from Early Permian to late Triassic 

(Metcalfe, 2000b). Summary of volcanic rocks age is presented by Ghani (2009). Based 

on these ages the writer sub-divided them into 3 distinct major tectonic setting that lead 

to volcanism activity in Peninsular Malaysia. The first occurrences of volcanic rocks are 

related to the volcanic arc setting which occur during Early Permian to Middle Triassic. 

The volcanic rocks that formed during this time marked  the periods of subduction of the 

Paleo-tethys oceaninc crust underneath  the Indochina Block (East Malaya). The period 

of volcanic arc has ceased probably during the Late Triassic. During late Triassic, the 

volcanic arc subduction is ceased prior to the collision between Sibumasu Block 

(Westmalaya) and Indochina Block (East Malaya). At the end of the collision period the 

Figure 2.10: Photograph shows there are at least 3 sets of joint formed 

within the igneous rocks from study area. 
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crust will be uplifted then sink because of overburden (Jurrassic). It have been proven 

that the continental crust particularly below the central belt is thin (Ryall, 196x; Loke.). 

Several previous studies has interpreted that the thinning below the central belt is due to 

slab-break off which obviously may lead to crust thinning (Mustaffa Kamal and Ghani. 

2003;Umor, 2009). However, slab delamination also may play part instead of slab-

break-off. Either one of these two mechanisms will be triggered in time after collision 

has ceased (e.g. Whalen et al., 1996).  

Slab break-off is also known as slab detachment. Slab-break-off will occur when 

subducted oceanic lithosphere is detached from the continental lithosphere during 

continental collision (Davies & Blanckenburg, 1995). The occurrence of slab break-off 

is due to decrease in the subduction rate that was damped by positive buoyancy of 

continental lithosphere introduced into the subduction zone (Davies & Blanckenburg, 

1995; Gerya, 2004) 

Slab delamination is the detachment of thickened lithospheric mantle from 

overlying crust during continental collision (Bird, 1978). In order delamination process 

to begin, some which lead to the break through mantle lithosphere must be developed 

first allowing asthenosphere to contact with the crust. According to Bird (1979), there 

are 4 possible cause of delamination which are convective instability, rifting, plume 

erosion and continental collision (Figure 11). Both of slab break-off and delamination of 

the subducting slab will lead to the rise of hot asthenospheric mantle through the 

lithospheric gap and causes a transitory thermal anomaly and caused partial melting of 

the lower crust.  (Figure 12) (Bird 1979; Sinclair, 1997; van de Zadde and Wortle,2001; 

Rogers et al., 2002; Ferrari, 2004).  

Either slab break-off or delamination event can lead to the magmatism activities 

from Jurassic up to Cretaceous time in Peninsular Malaysia. The igneous suites that 
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related to these post-collision events are mostly occur on the central belt of Peninsular 

Malaysia (e.x. (Mustaffa and Ghani, 2003; Rozi Umor, 2010).  

 

Figure 2.11: Four possible causes of delamination, convective instability, 

riting , plume erosion or continental collision (after Bird, 1979) 
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Figure 2.12: Cartoons showing the sequence of events leading to the 

delamination (a and b) and slab break-off (c and d) after von Blakenburg 

(1995) 



 

33 

3.0 PETROGRAPHY ANALYSIS 

 

3.1 Introduction 

Petrography observation is important to determine the dominant minerals 

accessory mineral and their inter-relationship (e.x. mineral shape and texture) that form 

igneous rocks from study area. General description will be discussed for each type of 

rocks. Interpretation will be discussed in discussion and conclusion sub-chapter. From 

microscopic textural relationship it is also possible to determine the emplacement of the 

magma that gradually formed all rocks. . The study area consist of 3 main rock types 

which are dioritem rhyolite and trachydacite. Summary of petrographic description is 

shown in Table 3.1 

 

3.2 General Description 

3.2.1 Diorite 

This rock has varies in minerals sizes from medium grained to coarse grained 

equigranular with average size from 0.8mm to 1.0mm. Most diorite shows coarse grain 

pheneritic texture. The coarse grained diorite consists of prominent prismatic hornblende 

and white colour lath shape plagioclase. Minerallogically, diorite consists of plagioclase 

+ hornblende + biotite + k-feldspar as main minerals and zircon+opaque+rarely apatite 

as accessories.  Plagioclase is the most abundant mineral in diorite which composed 

approximately 60% - 70% of the rock total composition. The plagioclase are mostly 

euhedral to subhedral and display albite and Carlsbad albite twinning. There is also 

plagioclase crystal that shows zoning extinction. Mafic minerals present in this rock are 

hornblende and biotite and they make up about 10% to 15% of total rock compositions. 

Biotite composed 5% of total rock mostly formed as subhedral with jagged shape at both 
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end of the crystals. Their size is from 0.5mm to 0.8mm. Hornblende crystallized as 

prismatic crystal with size ranging from 0.6mm up to 1.0mm and makes up about 10% 

of rock compositions.The ratio of length to width for hornlende and biotite can be up to 

8:1.  Alteration minerals occurred in this rock including sericite and chlorite. The 

secondary epidote usually formed by replacing plagioclase feldspar through 

hydrothermal process. K-feldspar mostly shows subhedral shape and consists of 3% of 

the total rock. Quartz which likely to be the last primary mineral to crystallized 

composed about 10% in diorite and usually occurs as anhedral crystals. It occurs as 

interstitial crystal to plagioclase and some of the quartz are the main component of the 

microgranophyric and less common myrmekitic intergrowth. Microgranophyric is less 

common in this rock compared to rhyolite and trachydacite as this intergrowth are more 

common in more felsic rocks. Microgranophyric or granophyric texture is k-feldspar and 

quartz formed together as skeletal and triangle shape morphologies (refer to sub-chapter 

3.5). 

 

3.2.2 Rhyolite 

Rhyolite occurs either as porphyritic and or fine grained textured rocks and 

shows pink to greyish colour. Plagioclase, K-feldpsar and quartz occurs as main 

phenocrystic phase and also reflect the composition of the groundmass. Some of the 

rhyolite samples shows patches of secondary epidote which formed due to hydrothermal 

alteration. Microscopically, the rhyolite consists of plagioclase + K-feldspar + Quartz + 

biotite as main minerals. Plagioclase, K-feldspar,  quartz and biotite occur as main 

phenocryst  phase as well as groundmass with the size ranging from 2.0 - 3.0mm, 2.0 - 

3.5mm,<0.1 - 3.0mm and 0.5 - 1.0mm respectively. The groundmass formed as 

microcrystalline to cryptocrystalline of quartzo-feldspatic compositions. Plagioclase 
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constitutes about 33% to 35% of total rock composition and formed as lath shape or 

prismatic crystals. K- feldspar constitutes approximately 35% to 38% of total 

composition and formed as euhedral to subhedral crystal shape. Quartz constitutes about 

25% to 30% and often shows anhedral shape. Like k-feldspar and plagioclase, quartz 

also formed both as invidual phencryst and also as interstitial within groundmass. Biotite 

is the only ferromagnesian mineral which constitutes about 2% to 3% of total rock 

composition. Biotite is strongly pleochroic from light brown to dark brown sometimes 

replaced by chlorite along the cleavages. The accessory minerals are zircon, apatite and 

opaque. Zircon formed as inclusion in biotite and usually associated with the pleochroic 

haloes. Microgranophyric intergrowth of quartz and k-feldspar is the most common 

intergrowth in rhyolite. There is also occurrence of spherulite which is quite common in 

rhyolite from study area.. Apatite  formed as individual prismatic crystals. Opaque 

mineral formed as individual mineral and clots. Chlorite, epidote and sericite are the 

main alteration minerals in rhyolite.  

 

3.2.3 Trachydacite   

Most trachydacite is porphyritic and are light to dark grey colour 

Mineralogically, trachydacite consist of k-feldspar + quartz + plagioclase + biotite as 

major minerals and zircon + apatite+ opaque as accessory minerals. The phenocrystic 

phases are plagioclase and K-feldspar. Generally K-feldspar is the most abundant 

mineral in trachydacite which constitute about 42% to 45% of total rock composition. 

The crystal usually is euhedral to subhedral with the size 0.3 to 2.5mm. K-feldspar 

usually formed as individual crystal as well as glomerocryst where the K-feldspar 

phenocryst is formed in group or clustered together surrounded by groundmass. 

Plagioclase is the least major mineral in trachydacite which consist about 23% to 26% of 



 

36 

total rock composition. Plagioclase size ranging from 0.5 – 2.0mm and commonly 

formed as euhedral to subhedral crystals. Plagioclase exhibit albite twinning and 

carslbad-albite twinning. There is also pericline in plagioclase which develop along with 

albite twinning. Quartz constitutes approximately 29%-33% of total rock composition. 

The size of quartz is ranging from 0.7 – 1.1mm and often shows anhedral crystal shape. 

The main mafic mineral phase is biotite and rarely hornblende. Biotite formed as 

individual crystal and as interstitial between earlier formed minerals. The accessory 

minerals found in trachydacite are zircon and apatite. Most of the zircon formed as 

inclusion in biotite and associated with pleochroic haloes. Apatite formed as small 

individual prismatic mineral. The sizes of zircon and apatite are <0.1mm.The felsic 

minerals (quartz and feldspar) shows microgranophyric intergrowth of quartz and k-

feldspar. However the amount of the intergrowth is lesser compared to rhyolite. Chlorite, 

epidote and sericite formed as alteration mineral replacing the formed feldspars and 

biotites. 

 



 

38 

Rock Types Rhyolite Trachydacite Diorite 

Colour Pink  to Light Grey Dark Grey Grey to Dark Grey 

Main texture Porphyrictic to Aphanitic Porphyritic to aphanitic 
Pheneritic , equigranular (easily 

indetified by prismatic hornblende) 

Phenocryst 

Assemblages 

Plagioclase, Kfeldspar and 

Quartz 
Plagioclase, Kfeldpsar and Quartz None 

Groundmass Quartzo Feldspatic Quartzo-Feldspatic None 

Primary Mineral 

Assemblages 

Plagioclase       (33 – 35 %) K-feldspar               ( 42 – 45%) Plagioclase           (60 – 70%) 

K-feldpsar        (35 - 38 %) Plagioclase              (23 – 26% ) Hornblende           (10 – 15%) 

Quartz               (25 – 30 %) Quartz                     (29 – 33% ) Biotite                   (7 – 10 %) 

Biotite                ( 2 – 3 %) Biotite/Hornblede   (2 – 3%)  K-feldspar             (2 – 5%)  

Mineral Size 

Plagioclase       (2.0 – 3.0mm) K-feldspar          (0.3 – 2.5mm ) Plagioclase          (1.5 – 2.5mm) 

K-feldpsar        (<2.0 – 3.5mm) Plagioclase         (0.5 – 2.0mm) Hornblende         (0.6 – 1.0mm) 
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Quartz              (<0.1 – 3.0 mm) Quartz                (0.7 – 1.1 mm) Biotite                 (0.5 – 0.8mm) 

  Biotite              (0.5 – 1.0mm) Biotite/Hornblede   (<0.8mm)) K-feldspar          (0.5 – 1.0mm))  

Accessory Mineral 

Assemblages (size < 

0.1mm) 

Zircon, apatite and opaque Zircon, apatite and opaque Zircon, apatite and opaque 

Alteration Minerals Epidote and Chlorite, Sericite Epidote and Chlorite, Sericite Epidote and Chlorite, Sericite 

Early crystalizing phase 
Plagioclase, K-feldspar and 

quartz 
Plagioclase, K-feldspar and quartz Plagioclase, bioite and hornblende 

Late Crystalizing phase Biotite and opaque Biotite + hornblende and opaque Biotite and Hornblende 

Special Features 

-        Microgranophyric 

intergrowth are common and 

myrmekitic intergrowth is less 

common 

-        Microgranophyric is less 

common compared to to rhyolite. Occurrence of microgranophyric 

intergrowth is not common Biotite 

and hornblende formed as 

interstitial 

-        Biotite formed as 

interstitial 
-        Biotite formed as interstitial 

-        K-feldspar shows euhedral 

shape. 
-        K-feldspar shows euhedral shape 
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3.3 Photomicrograph of Diorite from study area  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate A1: Hand specimen of diorite taken from western part of Pit 3. The diorite shows 

medium to coarse grained. Plate A2: Most of the euhedral plagioclase at the centre of 

photomicrograph shows zoning extinction. Plate A3: Photomicrograph shows that 80% of 

the sample dominated by euhedral to subhedral plagioclase with interstitial of quartz. Note 

there are also myrmekitic intergrowth between plagioclase and quartz. Plate A4: 

Photomicrograph view occurrence of prismatic hornblende in diorite sample (green black 

mineral at the centre part of the microphotograph. Plate A5: Micrograph shows 

occurrence of hornblende with biotite inclusion in sample MIX 4A which may indicates 

that the biotite was formed by alteration of hornblende. Plate A6: Secondary epidote and 

hornblende form a network surrounding anhedral to subhedral plagioclase. 

 
 

0.2mm 

0.2mm 0.2mm 

0.2mm 0.2mm 

2.0 mm 



 

39 

3.4 Photomicrograph Of Rhyolite From Study Area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate B1: Hand specimen of rhyolite taken from Pit 3 of Pejal quarry. Plate B2: Twinning 

plagioclase phenocryst surrounded by relatively finer grained K- feldspar, quartz and 

plagioclase. Plate B3: Micrograph of euhedral k-feldspar microphenocryst in rhyolite. Note 

that the k-feldpsar microphenocryst is surrounded by k-feldspar-quartz intergrowth. Plate B4: 

Presence of microgranophyric intergrowth texture in rhyolite.Plate B5: Clot in P3C which 

composed of numerous anhedral secondary epidote is  common features in rhyolite. This 

epidote is an alteration product of plagioclase feldspar (Cox 1979).Plate B6: Photomicrograph 

of rhyolite shows another shape of microgranophyric texture in rhyolite. Note the triangle 

shapes formed within grain. 
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3.5 Photomicrograph of trachydacite from study area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate C1: Hand specimen of rhyolite taken from Pit 3 of Pejal quarry. Plate C2: General 

view of sample P3J showing that rhyolite are composed of mainly K-feldspar and Quartz. 

Note that most of the K-feldspar shows good shape while quartz shows clear irregular 

shape. Plate C3: K-feldspar shows euhedral shape and formed glomercryst or 

glomeroporphyritic texture in sample P3J. Plate C4: K-feldspar and quartz intergrowth 

forming microgranophyric texture in trachydacite. Plate C5: Photomicrograph shows the 

occurrences of secondary epidote inclusion in Plagioclase in P3K samples. Plate C6: 

Photomicrograph shows biotite formed as interstitial in trachydacite. 
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3.6 Discussion and Conclusion 

Petrographic studies can give several informations about the occurrence of magma 

mixing, implication of mineral intergrowth and spherulite towards magma emplacement, 

hydrothermal alteration and A-type classification. 

- There are 3 rock types exposed in the study area. They are diorite, rhyolite and 

trachydacite. All these 3 rocks have sharp contact and there is no evidence of 

magma mixing between these magmas (e.x. hybrid rock). There are 2 types of 

volcanic rocks and 1 type of plutonic rock found within the study area. The main 

volcanic rock types are rhyolite and trachydacite and the plutonic rock is diorite. 

- Microgranophyric texture is common in all rocks from study area although rhyolite 

content more micrographic intergrowth compared to trachydacite and diorite. 

Microgranophyric or granophyric texture is k-feldspar and quartz formed together 

as skeletal and triangle shape morphologies. Some of the microgranophyric texture 

shows formation of k-feldspar as nucleus or core at the center of intergrowth. The 

size of the k-feldspar nucleus are varies. Following experiment studies on 

granophyric texture on the Long mountain A-type granite (Morgan and London 

2012), the occurrences of the microgranophyric texture in all rocks from study area 

suggest that the magma that produce micrographic intergrowth has undergone 

undercooling in high viscosity silicate magma in range of 50 -150
O
C which is 

initially H2O undersaturated (<2.9 wt% according to Tuttle and Bowen, 1958) and 

became equilibrium as water saturated magma at final emplacement (0.5kbar) 

(Morgan and London 2012). The occurrence of feldspar phenocryst enclosed by 

microgranophyric intergrowth shows that some k-feldspar has crystallized before 

the intergrowth and quartz. The occurrence of microgranophyric intergrowth 
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marked the process undercooling stage where this process is restricted only to the 

formation of the microgranophyric texture before individual quartz are formed. 

- The occurrences of interstitial biotite in all rocks from study area indicate that the 

biotite is of annite type. The stabilization of annite in late crystallization sequence 

attributed to progressive enrichment in H2O in residual melt upon crystallization of 

feldspar and quartz. Annite is enrich in fluorine which can be used as an indicator of 

magmatic and fluid-rock interaction processes associated with melt (Markle and 

Piazolo, 1998; Selby and Nesbitt, 2000) 

- The occurrences of radial spherulitic texture also indicate the magma has undergone 

undercooling process. However, the rate of undercooling shown by spherulite is 

higher compared to the microgranophyric of granophyric intergrowth (e.g. Fenn, 

1977; Morgan and London, 2012). Regardless their difference in temperature range, 

undercooling of high viscosity silicate liquid is the key process toward formation of 

crystallization of granophyric or micrograniphyric (Morgan and London, 2012).  

- Mineral alteration is common in all rocks from study area (e.g chlorite and epidote). 

The replacement of biotite mineral to chlorite is common in granitic composition 

(Parry and Downey, 1982; Eggleton and Banfield, 1985). The water that contained 

in the host rock is the catalyst to the formation of the chlorite. The water provides 

hydrogen cation (H
+
) which will react with the chemically unstable biotite and 

produce chlorite + Mg
2+

 (e.g. Parry and Downey, 1982). With example of igneous 

biotite from Gold Hill Utah, Parry and Downey (1982) suggest that the alteration of 

the biotite by chlorite took place at near 200
O
C.  

- Other alteration mineral such as epidote which altered from plagioclase feldspar. 

The alteration process of plagioclase to formed epidote is called saussuritization. 

Saussuritization process by which calcium-bearing plagioclase feldspar is altered to a 
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characteristic assemblage of minerals called saussurite (Cox, 1979). Residual fluids 

present during the late stages of magmatic crystallization can react with previously 

formed plagioclase feldspar to form epidote. The epidote will be spread through the 

plagioclase or located near its outer margin. The replacement possibly took at higher 

temperature than chlorite which is 320OC (e.g Keith et al., 1968)    

- The occurrence of the euhedral k-feldspar, interstitial biotite and association with 

microgranophyric intergrowth shown in all rocks from Ramunia are similar to the 

A-type rocks elsewhere (King et al., 1997;Shen et al., 2011; Li et al., 2012). These 

features are important in petrographic and field features of A-type rocks although 

the useful of this features are still uncertain (e.g. Collins et al., 1982; Whalen et 

al.,1987; Landenberger and Collins, 1996). 

 

 

 

 

http://www.britannica.com/EBchecked/topic/145334/


 

44 

4.0 GEOCHEMISTRY 

4.1 Introduction  

This chapter will describe in detail the geochemical variation of volcanic rocks from 

the study area. 30 samples have been analysed for major, trace and REE elements. Each of 

the rock type will be describe separately. All rocks will be classified using TAS diagram 

(Middlemost. 1994) and will be used throughout the thesis. Petrogenesis of the magma 

based on the geochemistry will be discussed at the end of this chapter.. Result of the 

analysis is presented in Table 4.1 
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Sample P2A P2B P2G1 P3B P3C P3E P3F P3G P3H P3J 

Type Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite 

Major Elements 

         SiO2 72.4 72 72.4 72.1 71.8 73 71.9 72.5 73.4 70.3 

Al2O3 12.69 12.6 12.73 12.63 12.94 11.98 12.51 12.37 11.9 13.33 

Fe2O3 3.16 3.32 3.27 3.42 3.61 3.68 3.37 3.15 3.35 3.88 

CaO 0.97 0.94 1.51 2.37 1.25 1.04 1.28 1.34 1.88 1.21 

MgO 0.12 0.1 0.23 0.19 0.12 0.22 0.15 0.13 0.18 0.13 

Na2O 3.92 3.72 5.09 3.66 3.55 3.29 3.62 3.06 3.29 4.13 

K2O 4.72 4.76 2.78 3.45 4.99 3.93 4.12 5.18 3.98 4.73 

MnO 0.04 0.07 0.07 0.06 0.06 0.06 0.07 0.07 0.12 0.08 

TiO2 0.35 0.25 0.29 0.23 0.27 0.25 0.26 0.23 0.22 0.3 

P2O5 0.03 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.02 

BaO 0.15 0.16 0.12 0.14 0.19 0.18 0.17 0.19 0.16 0.25 

LOI 0.58 0.62 0.68 1.07 0.54 1.05 0.97 0.7 0.77 0.7 

SUM (%) 99.13 98.56 99.19 99.34 99.34 98.71 98.45 98.94 99.27 99.06 

Trace Elements 

         Ba 1625 1572 1163 1304 1883 1746 1643 1828 1566 2635 

Be 4 4 2 3 3 3 2 3 2 3 

Co 1 0.9 1.6 1.8 0.7 0.8 1.1 1.2 0.9 1.5 

Cs 4.1 3.4 5.2 2.7 3.4 3.2 3 6 3.4 5 

Ga 20.4 20.3 19.7 20 20.3 18.9 19.6 18.9 18.1 20.7 

Hf 10 9 9.2 8.4 9.3 9.1 9 8.4 8.5 8.4 

Nb 18.5 19.6 17.2 18.8 19.2 17 18.1 17.3 17.8 17.4 

Rb 181.1 206.5 115.7 128.5 176.2 155.8 151.4 196.5 155.9 187.9 

Sn 6 7 4 5 6 5 5 3 5 5 

Sr 155.9 131.2 158.5 247.7 162.1 133.9 139.1 125.6 164.6 180.2 

Ta 1.6 1.4 1.2 1.4 1.3 1.3 1.2 1.3 1.2 1.3 

Th 32.9 28.8 28.9 28.4 29.1 26.6 28.2 26.9 26.7 25.8 

U 7.9 7.8 6.8 6.6 7.1 6.9 6.9 6.8 6.8 6.3 

W 2.1 2.4 3.2 6.4 4.4 1.8 3 7.2 3.2 6.4 

Zr 365.5 350.9 330.1 317.5 332.2 332.7 318.9 316.4 308.5 306.1 

Y 57.1 59.7 50.3 49.8 49.7 47.8 50.5 53.6 50.5 52.2 

La 67.1 71.8 68 59.6 64.5 60.2 63.4 66.3 60.8 65.4 

Ce 132.1 139.2 134.8 119.3 128.8 120.8 122.3 132.6 120 134.8 

Pr 14.91 15.81 15.55 13.5 15.09 13.7 14.13 14.96 14.21 15.48 

Nd 55.9 60.6 58.6 50.9 56.1 53.2 53.3 55.8 50.4 58.9 

Sm 10.32 10.61 10.52 9.59 10.02 9.4 9.5 10.11 9.88 10.5 

Eu 1.49 1.57 1.65 1.58 1.53 1.68 1.47 1.53 1.81 2.29 

Gd 9.72 10.34 9.72 8.92 9.08 8.85 8.81 9.47 9.15 10.26 

Tb 1.6 1.68 1.54 1.46 1.5 1.4 1.45 1.54 1.48 1.63 

Dy 9.36 9.89 8.96 8.57 8.93 8.12 8.48 9.05 8.84 9.29 

Ho 1.92 1.99 1.83 1.62 1.7 1.64 1.72 1.93 1.79 1.92 

Er 5.98 5.81 5.21 4.82 5.27 4.69 5.04 5.49 5.27 5.37 

Tm 0.87 0.9 0.77 0.69 0.78 0.72 0.74 0.81 0.77 0.8 

Yb 5.6 5.93 5.19 4.49 5.34 4.64 5.09 5.46 5.09 5.28 

Lu 0.87 0.89 0.8 0.68 0.79 0.73 0.8 0.82 0.78 0.83 

Mo 2 2 1.8 1.7 2.4 0.8 1 1.6 2.6 2 

Cu 4.9 4.2 9.9 10.7 13.4 6.1 9 10.2 7.3 14.5 

Pb 13.2 26.1 118.3 606.2 77.2 22.7 52.3 37.5 41.2 74.2 

Zn 26 48 116 333 53 41 64 54 38 82 

Ni 3.4 2.7 4 4.8 3.1 3.1 4.3 3.7 4.7 3.7 

As 0.8 6.8 2 3.6 1.7 <0.5 0.6 60 7.9 9.1 

Normative Minerals 

         Quartz 29.66 30.19 29.39 33.08 29.53 36.25 32.24 29.24 35.47 25.79 

Ortoclase 27.89 28.11 16.43 20.38 29.45 23.21 24.33 27.89 23.49 27.95 

Albite 33.15 31.47 42.06 30.94 30 27.8 30.63 33.41 27.8 34.93 

Anorthite 3.09 3.62 3.67 7.85 4.67 5.27 5.7 3.26 2.98 3.87 

H2O/LOI 1.05 0.95 1.04 1.07 0.8 1.1 0.97 0.7 0.77 0.68 

Table 4.1: Whole rock major and trace element composition for all rocks from Teluk Ramunia 
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Sample P3M TRP1 TRP2 TRA TR5 TRG3 TRG4 TRG5 P2C P2E 

Type Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite Rhyolite 

Tra-

dacite 

Tra-

dacite 

Major Elements 

         SiO2 72.2 73.6 74.4 70 71.1 70.8 70.1 70.9 64.6 63.5 

Al2O3 12.8 12.55 12.53 13.56 13.81 13.71 13.95 13.93 14.85 17.02 

Fe2O3 3.73 2.18 2.07 4.14 2.9 3.01 3.08 2.94 4.87 5.36 

CaO 0.91 0.27 0.58 2.01 1.11 0.82 1.04 1.11 2.57 1.34 

MgO 0.14 0.12 0.1 0.34 0.26 0.28 0.29 0.25 0.91 0.72 

Na2O 3.95 3.74 3.8 4.26 4.21 4.3 4.14 4.25 4.85 8.65 

K2O 4.72 4.78 4.74 3.5 4.49 4.65 4.53 4.5 3.98 0.21 

MnO 0.06 0.04 0.04 0.11 0.07 0.07 0.07 0.08 0.13 0.15 

TiO2 0.25 0.17 0.16 0.25 0.25 0.25 0.29 0.27 0.6 0.68 

P2O5 0.02 0.02 0.01 0.05 0.04 0.05 0.05 0.05 0.16 0.19 

BaO 0.19 0.1 0.1 0.13 0.18 0.19 0.17 0.16 0.15 0.03 

LOI 0.7 0.96 0.96 1.1 0.92 0.93 1.03 0.96 1.25 1.37 

SUM 99.67 98.53 99.49 99.45 99.34 99.06 98.74 99.4 98.92 99.22 

Trace Elements 

         Ba 1856 1020 1000 1340 1663 1857 1799 1689 1518 181 

Be 2 3 3 4 3 4 4 3 4 2 

Co 1.4 1.8 1.6 2.6 2.1 2.3 2.6 2.4 5.9 4 

Cs 2.9 3 2.8 3.1 2.8 6.5 3.1 2.9 2.9 1.6 

Ga 19.4 21.5 20.9 22.5 19.4 19.6 21.3 19.7 21.5 27.2 

Hf 8.5 7.8 7.5 8.4 8.3 9 8.4 9 8.4 8 

Nb 17.1 17.7 19 14.2 15.5 15.4 16.1 15.7 12.8 16.5 

Rb 188.3 230.7 220 144.9 191.2 194.9 196.8 195.4 155.8 6.3 

Sn 3 4 5 14 5 14 5 5 5 10 

Sr 147.5 53.2 59.6 162.1 118 135.7 132.6 117.6 233 143.2 

Ta 1.3 1.4 1.6 1.2 1.1 1.1 1.2 1.1 0.8 1.2 

Th 28 34.3 39.6 32.2 30.2 29.7 31.1 27.9 27.2 24.7 

U 7 8.4 9.8 7.5 6.3 7.3 7.5 6.8 6.8 6.5 

W 4 2.8 3.3 3.3 3.3 3 2.6 3.3 2.3 4 

Zr 328.6 241.3 223.6 330 336.7 345.8 324.9 350.3 312.4 303.3 

Y 45.2 54.7 46.8 40 40.4 33.3 45.8 35.5 43.5 52.2 

La 62.2 75.1 61.9 47.6 77.3 43.1 55.3 39.3 60.1 57.2 

Ce 123.4 153.2 128.7 96.7 150.1 90.4 109.5 81.4 112.6 117.2 

Pr 13.97 16.7 13.73 10.76 15.43 10.08 12 8.84 13.02 13.64 

Nd 51.8 63.6 48.8 40.5 52.8 37.7 47.2 35.2 47.2 49.8 

Sm 9.23 11.58 9.15 7.2 8.63 6.8 8.38 6.51 8.57 9.22 

Eu 1.53 0.9 0.61 1.12 1.17 0.99 1.18 0.98 1.56 1.76 

Gd 8.17 10.58 8.37 6.57 7.53 6.01 7.98 6.22 7.74 8.81 

Tb 1.37 1.68 1.35 1.09 1.17 0.98 1.27 1.01 1.23 1.39 

Dy 8.09 9.6 7.99 6.45 6.84 5.73 7.39 5.94 7.02 8.18 

Ho 1.6 1.91 1.59 1.37 1.41 1.19 1.61 1.22 1.43 1.68 

Er 4.69 5.73 4.66 4.12 3.98 3.59 4.77 3.84 4.16 4.98 

Tm 0.71 0.88 0.76 0.64 0.62 0.55 0.73 0.6 0.62 0.75 

Yb 4.99 5.69 5.11 4.36 4.3 3.57 4.89 3.93 4.25 5.11 

Lu 0.77 0.84 0.73 0.65 0.63 0.57 0.74 0.61 0.64 0.76 

Mo 1.5 1.5 1.8 1.2 1.2 1.1 1.3 1.2 1.3 0.4 

Cu 4.8 5.3 13.7 4.7 4.8 5.5 4.5 4.5 3.8 9.8 

Pb 31.9 22.7 19.8 15.1 12 51.3 19.5 11.4 23.6 1118.9 

Zn 49 51 47 89 57 108 76 53 87 1777 

Ni 5.1 3.7 5.4 3.7 4 4.3 3.6 3.9 2.6 1.9 

As 0.8 1.6 1.1 1.3 1.8 1.8 1.5 2 2.3 3 

Normative Mineral 

         Quartz 29.24 32.8 32.71 27.58 26.26 25.84 26.08 26.26 15.74 8.99 

Ortoclase 27.89 28.22 28 20.65 26.55 27.43 26.72 26.55 23.49 1.22 

Albite 33.41 31.63 32.15 36.03 35.93 36.35 34.98 35.93 41.01 73.16 

Anorthite 3.26 1.41 3.03 7.54 5.48 4.12 5.18 5.48 7.01 5.45 

H2O/LOI 0.7 0.96 0.96 1.1 0.96 0.93 0.9 0.96 1.25 1.37 

Table 4.1, continued: Whole rock major and trace element composition for all rocks from 

Teluk Ramunia 



 

47 

 

Sample P2G2 P3N P3O P3K P1G MIX2A MIX4A P1I 

HBL 

LONG 

Type Tra-dacite Tra-dacite Tra-dacite Tra-dacite 

Tra-

ande Diorite Diorite Diorite Diorite 

Major Elements 

        SiO2 64.7 64.9 66.7 64.9 59.4 65.8 58.7 64.1 64.4 

Al2O3 14.72 14.09 14.02 14.63 15.39 14.76 15.34 15.14 14.41 

Fe2O3 5.26 7.32 6.46 6.08 7.69 4.89 8.49 6.18 6.78 

CaO 2.38 1.98 2.17 2.76 3.62 2.2 5.02 2.75 2.45 

MgO 0.87 0.41 0.32 0.29 1.65 0.66 1 1.01 0.43 

Na2O 4.5 5 4.8 5.13 4.25 4.46 3.8 4.48 4.26 

K2O 4.51 4.16 3.68 3.42 4.16 4.26 3.99 3.46 4.15 

MnO 0.12 0.21 0.15 0.15 0.24 0.15 0.24 0.18 0.17 

TiO2 0.58 0.54 0.48 0.45 1.01 0.52 0.89 0.74 0.53 

P2O5 0.16 0.11 0.09 0.07 0.37 0.13 0.3 0.21 0.11 

BaO 0.18 0.17 0.17 0.15 0.21 0.15 0.14 0.16 0.19 

LOI 0.87 0.6 0.64 0.79 1.55 1.01 1.39 1.21 0.74 

SUM 98.85 99.49 99.68 98.82 99.54 98.99 99.3 99.62 98.62 

Trace Elements 

        Ba 1632 1793 1822 1651 2107 1582 1492 1541 1960 

Be 4 4 3 4 4 4 4 4 4 

Co 5.1 1.9 2 1.5 7.4 3 5.8 6.2 2.5 

Cs 20.9 3.1 3.6 6.4 15.9 12.2 24.2 10 15.5 

Ga 19.8 20 22.7 25.2 22.8 20.6 27.6 22.6 22.8 

Hf 6.9 7.5 7.4 6.6 6.1 9.1 6.5 5.7 6.8 

Nb 16.4 20.1 15.7 15.9 13.7 13.7 12.5 15.6 16.1 

Rb 237.8 168.1 149.8 144.3 255.7 215.7 242.5 170.4 233.6 

Sn 4 4 4 5 6 5 9 4 5 

Sr 292.1 240.9 237.7 241 354.5 275.8 315.7 289.4 320.5 

Ta 1.1 1.5 1.1 1.1 1 1 0.8 1.2 1.1 

Th 21.7 22.7 22.9 20.8 19.3 23.8 19.6 20.2 21.7 

U 5 5.7 6.2 4.9 5 6.4 5.1 4.9 5.6 

W 4 5.5 7.7 6.5 4.2 4.2 9.6 3 2.8 

Zr 228.2 269.7 284.7 249.2 225.3 348.1 245.8 199.1 277 

Y 46.2 53.1 53.2 45.8 44.5 44.9 50.8 39.5 44.5 

La 59.1 58.3 60.1 54.8 46.2 51.6 56.2 50.8 49.5 

Ce 119.4 115.9 119.7 107.3 97.2 103.9 117.8 106 105.8 

Pr 13.7 13.72 14.05 12.82 11.37 11.81 14.12 11.99 11.97 

Nd 50.6 55.8 53.3 49.6 44.4 45.4 54 47.3 46 

Sm 9.37 10.16 10.3 9.09 8.82 8.37 10.3 8.37 8.67 

Eu 1.82 2.38 2.44 2.67 1.83 1.62 2.57 1.75 2.2 

Gd 8.58 9.91 9.77 8.59 8.35 7.83 9.89 7.82 8.33 

Tb 1.39 1.54 1.58 1.39 1.29 1.27 1.53 1.21 1.31 

Dy 8.28 9.01 9.11 8.28 7.84 7.64 8.83 6.86 8.04 

Ho 1.61 1.81 1.86 1.66 1.51 1.52 1.79 1.39 1.63 

Er 4.6 5.31 5.53 4.83 4.38 4.58 5.11 4.02 4.61 

Tm 0.66 0.79 0.78 0.69 0.66 0.67 0.76 0.62 0.7 

Yb 4.46 5.38 5.19 4.54 4.41 4.43 4.85 3.91 4.7 

Lu 0.66 0.81 0.79 0.72 0.63 0.65 0.69 0.57 0.67 

Mo 1.5 1.7 1.8 2.2 1.1 4.1 1.2 1.4 2.4 

Cu 3.9 4.3 6.1 5.9 4.2 5.2 4.4 4.3 8.1 

Pb 16 38.2 80.4 22.6 28.2 24.3 34.2 15.8 72.6 

Zn 64 60 57 55 98 56 124 85 107 

Ni 2.7 2.4 3.3 3.2 2.7 3 2.6 3.3 2.5 

As 3.9 1.6 3.2 2.5 3.4 6.1 7.9 2.6 112.3 

Normative Mineral 

        Quartz 16.17 16.48 20.72 17.17 10.61 18.72 12.08 18 18.93 

Ortoclase 26.61 24.55 21.71 20.21 24.55 25.16 23.55 20.43 24.49 

Albite 30.08 42.77 40.59 42.37 35.93 37.71 32.15 37.87 36.03 

Anorthite 6.85 3.73 5.87 6.79 10.66 7.68 13.02 10.99 7.96 

H2O/LOI 1.4 0.6 1.2 1.3 1.25 1.12 1.39 1.21 0.74 

Table 4.1, continued: Whole rock major and trace element composition for all rocks from 

Teluk Ramunia 
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4.2 Analytical procedure 

4.2.1 X- ray fluorescence (XRF) 

Loss of Ignition 

About 1.0 gram of dry rock sample powder is put into the crucible and heated at 

1000°C for 60 minutes. After 60 minutes heated, the samples will be left cooled and weight 

lost are measured (LOI). The value of LOI can be obtained from the calculation below. 

                             LOI = [(b – a)/(c – a)] X 100 

Fusion Disc (Major Element) 

  Sample powder of 0.6g is mixed with the Flux (Lithium Tetraborate) with factor 8 

(1 sample: 8 flux).  So about 4.8g of flux is mix with the sample powder in the fusion 

crucible. The fusion crucible is then installed on the fusion machine (Vulcan Fusion) and 

the fusion process is start. The heating and fusion process will take about 9.45 minutes (567 

seconds) and the cooling will take about 6 minutes (360 seconds) until the fused glass bead 

is ready. Analysis of ACME laboratories standard rocks (STD SO-18 and STD SY-4D) 

indicate that both analytical precision and accuracy for all major are better than 0.5% - 

1.0% 

 

4.2.2 ICP-MS 

Reagent HF and HNO3 were used and purified by su-boiling distillation. A laboratory 

PTFE bombs were cleaned using 20% HNO3 heated to 100°C for 1 hour. 100mg of sample 

powder were placed into the PTFE bomb. 1ml of HF (38%) and 0.5ml of HNO3 (68%) 

were added to each if the samples powder. Then the PTFE bombs were placed on a hot 

plate and left to dry in order to remove silica in the solution through evaporation. After that, 

1ml of HF and 0.5ml HNO3 was added again. The seal bomb were then placed in an 

electric oven and heated to 190°C for 12 hours. After 12 hours heated, the bombs are left to 
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be cooled then unsealed. 1ml of 1μml
-1

 Rh solution was added as standard and placed on a 

hot plate (approximately 150°C) and left to dry. 1ml of HNO3 was put into the PTFE bomb 

and left to dry followed by the same step for 1 more time. The final residue was re-

dissolved by adding 8ml of 40% HNO3, resealing the bombs and placed them back at 110°C 

electric oven and leave for 3 hours. After cooling, distilled de-ionized (UPW) water was 

mix with the final solution until they reach 100ml. The standard materials used for this 

analyses were STD SO-18, STD SY-4(D), STD DS8 STD CSC and STD OREA S45CA. 

Analysis of ACME laboratories standard rocks (STD SO-18 and STD SY-4D) indicate that 

both analytical precision and accuracy for trace and REE elements are better than 0.5%. 

 

4.3 Major Element Variations 

Based on TAS classification (Middlemost, 1994), all samples from study area are 

plot into rhyolite, trachydacite and diorite (Figure 4.1). Selected Harker diagrams for major 

elements are illustrated in Figure 4.2. The ranges of SiO2 for rhyolite, trachydacite and 

diorite are 70% - 74.4%, 63.5% – 66.7% and 58.7% – 65.8% respectively. The felsic rock 

is considered as highly evolved as the SiO2 content is more than 70%. In general all Al2O3, 

Fe2O3, CaO, MgO, MnO, TiO2 and P2O5 show increasing trends with increasing SiO2. A 

gap of 5.2% occurs between the rhyolite and trachydacite and diorite. Most rocks have high 

K2O and Na2O content (> 4%). K2O and Na2O shows no systematic trend with increasing 

SiO2. Rhyolite, trachydacite and diorite have high total alkali content (Na2O+K2O) which 

ranging from 7.11% to 9.16%. The value of K2O/Na2O of rhyolite (mostly more than 1.0) 

is slightly higher than trachyte and diorite (<1.0). Total alkali Silica (Na2O + K2O) vs SiO2 

diagram display decreasing trend for rhyolite and trachyte with increasing SiO2 except for 

diorite rock which display increasing trend with increasing silica content. In K2O vs.SiO2 

diagram (after Peccerillo and Taylor, 1976) the samples are plot in high- K calc alkaline 
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and shoshonitic affinity (Figure 4.3). Mole of Al2O3/(CaO+Na2O+K2O) and 

Al2O3/(Na2O+K2O) are plot against SiO2 shows all trachydacite and diorite samples are 

metaluminous whereas rhyolite is plot in meta-peraluminous (Figure 4.4a and 4.4b). The 

Fetot/Fetot+MgO for rhyolite, trachydacite and diorite are 0.95, 0.91, 0.89 respectively. 

Diagram Fetot/(Fetot+MgO) against SiO2 of Frost (2011) shows that they are plots in 

within ferroan and A-type field (Figure 4.5).   

 

Figure 4.1: TAS volcanic classification (modified after Middlemost (1994). Note the 

volcanic rocks are plot into rhyolite, trachy-dacite and trachy-andesite. 
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Figure 4.2: Harker diagram for major element plot of igneous rock from 

Ramunia 
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Figure 4.3: K2O vs SiO2 diagram shows that most of the rocks from 

Ramunia are plot into High-K calc alkaline series 
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Figure 4.4a :  Mol of Al2O3/(CaO+Na2O+K2O) against SiO2 After Shand 

(1943). Most volcanic and plutonic rock from Teluk Ramunia shows 

characteristic from Metaluminous to Peraluminous. 

 

Figure 4.4b: Mol of Al2O3/(Na2O+K2O) against mol of 

Al2O3/(CaO+Na2O+K2O) after Shand (1943). Most volcanic and plutonic 

rock from Teluk Ramunia shows charateristic from Metaluminous to weakly 

Peraluminous. 
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4.4 Trace Element Variation. 

Trace element Harker diagrams were plotted for all samples are plotted in Figure 

4.6. In general, Sr, Zr, Ba, Co, Ga, Hf shows decreasing trends with increasing SiO2 

content. Trend for Rb, W and Zr shows decreasing trend although they are quite scatter. 

The content of Ba in rhyolite is ranging from 1000 - 2635ppm with a mean of 1622 ppm. 

The other LIL element such as Rb and Sr are low which is less than 250ppm. Primordial 

mantle normalized extended element plot for rhyolite, trachydacite and diorite are given in 

Figure 4.7. In general, all rocks show roughly parallel and smooth pattern with no 

significant crossover. They are characterized by Nb, Ta, Sr, P and Ti negative anomalies 

Figure 4.5: Diagram of FeOt/(FeOt + MgO) vs SiO2 (after Frost (2001). The 

shaded area marked the A-type field. 
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without any significant enrichment. Relative to primordial mantle, the changes on trace 

elements concentration ratios for all rocks are large; enrichment range from 150 to 300 

times for Rb and 7 to 20 times for Y. The ratios of depletion range from 20 to 40 times for 

Nb and Ta, 2 to 15 times for Sr, 0.4 to 15 times for P and 0.7 to 4 times for Ti. This 

depletion may be related to the fractionation of apatite, plagioclase and sphene. In 

triangular plot of Ba-Rb-Sr for all rocks from study area shows the vector trend is toward 

Ba with increasing SiO2. Diagram of Th/Nb vs Zr shown in Figure 4.8 shows the arrow 

vector is toward AFC (Assimilation-Fractional crystallization). The average values of 

10000Ga/Al ratios in rhyolite, trachydacite and diorite is 2.94, 2.87 and 2.96 respectively 

thus signify A-type characteristic. All rocks shows low average Sr/Y value which are 2.98, 

4.78, 6.72 respectively and contained restricted range of Nb/Ta ratio (Nb/Ta=11 – 14). The 

average value of Y/Nb for all rocks from study area is from 2.7 – 4.6 which is higher than 

the value of the mantle sources (Y/Nb < 1.2). Average value of Ca/Sr ratio for rhyolite, 

trachydacite and diorite are 60.38, 68.15 and 73.3 respectively. Clarke (1992) has proposed 

that the high ratios of K/Rb in igneous rocks are typical normal in magmatic process. The 

low ratio of K/Rb can be exceptionally obtain if the magma is affected from fluid 

interaction and crustal contribution. All rocks shows higher high field strength elements 

content (220.2 ppm – 394.2 ppm), high K/Rb (136.6ppm – 235.1ppm) ratio and very low 

Rb/Ba ratio (0.07 ppm – 0.23 ppm). K/Rb ratios of Ramunia rocks are higher compare to 

the Mahneshan granitoid, northeast Iran which has moderate ratio of K/Rb (Saki, 2010) 

thus implicate less magma-fluid interaction and crustal contribution in magma. 
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Figure 4.6: Harker diagram for selected trace element plot of rcok 

samples from Ramunia  
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Figure 4.6, continued: Harker diagram for selected trace element plot of 

igneous rock from Ramunia  
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Figure 4.7: Multi-elements spidergrams normalized to Primitive Mantle after Sun and 

Mcdonough. (1989). 

Diorite 

Rhyolite 

Trachydacite 
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Figure 4.8: Diagram Th/Bn versus Zr shows that Ramunia rocks are pointing 

toward AFC (after Nicolae and Saccani 2003). BA =Bulk assimilation, AFC = 

Assimilation Fractional Crystalization), FC= Fractional Crystalization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Rare Earth Trace Elements 

Rare earth elements for all samples from Ramunia are shown in Table 4.1 (La – 

Lu). The REE chondrite normalized pattern in all rocks from study area have similar trends 

to the A-type from other studies (e.g. Whalen et al., 1996; Landenberger and Collins, 1996; 

Han et al., 1997; Zhao et al., 2008; Shen et al., 2011. They display sub-parallel LREE (La – 

Sm) pattern, roughly flat HREE (Gd – Lu) pattern and negative Eu anomalies (Figure 4.9). 

The ratio of (La/Yb)N for rhyolite, trachydacite and diorite are 10.0 - 18.0, 10.8 – 14.1 and 

10.5 – 13.0 respectively. All rocks have high ratios of [(La/Lu)N = 6.7 – 12.7]  clearly 

shows higher light rare earth elements enrichments. Values of (Gd/Lu)N  for rhyolite, 

trachydacite and rhyolite are 1.42, 1.53 and 1.62 respectively. (Eu/Eu*= 
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EuN/√[(SmN).(GdN)] ratios for rhyolite, trachydacite and diorite is 0.42 – 1.32, 1.22 – 1.82 

and 1.20 – 1.55 respectively.  

 Rhyolite shows large negative Eu anomalies compared to trachydacite and diorite. 

Trachydacite and diorite display almost identical negative Eu anomaly. The negative Eu 

anomalies in all rocks indicate the plagioclase fractionation as the partition coefficient for 

Eu is high in plagioclase and K-feldspar (Pearce and Norry, 1979; Nash and Crecraft, 1985; 

Mahmood and Hildreth, 1983). HREE shows nearly flat pattern which indicate that the 

source rock does not retain a HREE rich minerals such as garnet and allanite as HREE 

especially shows high partition coefficient in garnet and allanite. 
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Figure 4.9: REE normalized to chondrite after Boynton 1984. Note the difference 

of Eu anomalies between rhyolite and trachydacite. 
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4.6 Rocks classification of rhyolite, trachydacite and diorite from Ramunia (A-

type) and comparison to the I and S type from Peninsular Malaysia. 

 The igneous rocks can be divided into I, S, M and A types according to the 

alphabetical classification (see reviews in Bonin, 2007). Several attempts have been made 

to differentiate A-type rocks from other type of rocks (Loiselle and Wones, 1979; Whalen 

et al., 1987; Eby, 1990). The A-type magma are suggested to have been produced by 

combination of partial melting and fractionation from magma source that slightly different 

chemical composition to that I-type source (e.g. Anderson and Cullers, 1978; Cullers et al., 

1981; Collins et al., 1982; Anderson, 1983; Clemens et al., 1986; Whalen et al., 1987; 

Wormald and Price, 1988; Creaser et al., 1991; Landenberger and Collins, 1996). The term 

A-type are widely used to describe the occurrence of the granite in anorogenic setting 

(Loiselle and Wones, 1979). King et al, (1997) has suggest that A-type igneous that have 

aluminous characteristic should be characterized as Aluminous type to replace the A-type 

Generally the A-type rocks have high Fe(total)/[(Fe(total) + MgO)], Na2O + K2O, 

Ga/Al, HFSE, lower CaO, display large negative anomaly for Eu and yield higher REE 

content compared to the I and S type granitoid (Loiselle and Wones, 1979; Collins et al., 

1982; Whalen et al., 1987; Whalen and Currie, 1990; Eby, 1992; King et al., 1997; Bonin, 

2007, Zhao et al., 2008; Dargahi et al., 2010; Shen et al., 2011 and reference therein). 

 In major and trace elements discrimination diagrams of Whalen et al. (1987) shown 

in Figure 4.10, most of rocks from study area are plot into the A-type field while the S-type 

are clearly plot into FG-OGT field and I-S type field (Figure 4.11). Apart from that, the 

rocks classification of Frost (2001) in binary diagrams (Fetotal/(Fetotal + MgO)versus SiO2 

shows that Ramunia rocks are also plot into A-type field thus strongly suggest that the 

rhyolite, trachydacite and diorite should be classified as A-type rocks (Figure 4.5).  
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Figure 4.10: Discrimination diagrams after Whalen et al. (1987). Note that 

rhyolite, trachydacite and diorite are plot into A-type field. 
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Figure 4.10, continued: Discrimination diagrams after Whalen et al. 

(1987). Note that rhyolite, trachydacite and diorite are plot into A-type 

field 
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 A-type Ramunia I-type Peninsular 

Malaysia 

S-type Peninsular 

Malaysia 

Figure 4.11: Discrimination diagrams after Whalen et al. (1987). Note that most of I 

and S type from Peninsular plotted in FG-OTG and I-S field while A-type Ramunia 

are plotted in A-type field 
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 A-type Ramunia I-type Peninsular 

Malaysia 

S-type Peninsular 

Malaysia 

Figure 4.11,continued: Discrimination diagrams after Whalen et al. (1987). Note that 

most of I and S type from Peninsular plotted in FG-OTG and I-S field while A-type 

Ramunia are plotted in A-type field 
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Figure 4.12a: Multi-elements spidergram normalized to Primitive Mantle after Sun and 

Mcdonough. (1989). Note the S-type shows very different pattern compared to the A-

type Ramunia. Although generally I-type shows similar pattern with A-type however 

the I-type shows clear Barium negative anomaly (Ba) which is not seen in A-type 

Ramunia. [data for S-type taken from Nyien (2014) and I-type from Syai (2012)] 

  

A-type Ramunia 

I-type Peninsular Malaysia  

S-type Peninsular Malaysia  
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A-type Ramunia 

I-type Peninsular Malaysia  

S-type Peninsular Malaysia  

Figure 4.12b: Rare earth elements (REE) spidergram normalized to chondrite 

after Boynton 1984. Note the A-type Ramunia yield higher REE content 

compared to typical I and S type from Peninsular Malaysia. [data for S-type 

taken from Nyien (2014) and I-type from Syai (2012)] 
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Figure 4.13: Discrimination diagrams of a) Nb – Y – 3Ga and b) Nb – Y – Ce shows all 

Igneous rocks from Teluk Ramunia are plotted within A2 field. The A1 and A2 are the 

subdivision of the A-type magma by Eby (1992). A1 = intraplate magmatism, A2 = Post 

Collision 
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Comparison on the multi-elements and REE spidergrams clearly shows that the A-type 

Ramunia have very distinct chemical characteristic compared to the I and S-type from 

Peninsular Malaysia (Figure 4.12a and 4.12b) [data for S-type taken from Nyien (2014) and 

I-type from Syai (2012)] 

 

4.7 Zircon (Zr) Saturation Thermometry 

In felsic and intermediate rock the occurrence of zircon, monazite and apatite are 

common. Zircon, monazite and apatite saturation temperatures can be calculated from 

whole rock geochemical analysis to estimate the temperature of the magma forming 

rhyolite, trachyte and diorite by using the experimental model of Watson and Harrison 

(1983), Watson and Harrison (1984), Harrison and Watson (1984), Montel (1993) and 

Piccolli et al. (1999). 

 

4.8 Magma thermometry 

In felsic and intermediate igneous rocks, the occurrence of zircon as accessory 

mineral is common. Zircon or zirconium saturation temperature  can be calculated from 

whole rock geochemical analysis to estimate the minimum temperature of the magma 

source that formed the magmatic rocks using the experimental models of Watson and 

Harrison (1983) and Watson and Harrison (1984).  

Zircon saturation temperatures were calculated using this following equation from 

Watson and Harrison (1983) :   

 

T Zr saturation 
o 
C =                12900 

ln ( DZr ) + 3.8 + 0.85 (M – 1) 

 

273.15 
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Where DZr is the ratio of 497644 to the concentration of Zr in ppm and M is the cationic 

ratio [(100 Na + K + 2Ca)/(Al.Si)] of the whole rock concentration of SiO2, Al2O3, Na2O, 

K2O and CaO. 

 

=  100 Na + K + 2Ca  

             Al.Si 

Results of the Zr saturation temperatures calculations including with error for Ramunia A-

type, Eastern Belt I-type and Western belt S-type are shown in Table 4.2.                                      

 

4.9 Discussion On Saturation Thermometry And Estimated Depth Of Melting Of 

A-Type Ramunia Source 

The estimation of magma temperatures for A-type, I-type and S-type are given in 

Table 2. Figure 4.14 shows most of the samples from Ramunia are more than 750
O
C. It is 

clearly shows that A-type yield higher Zr saturation temperature (826 ± 5 °C) compared to 

the I-type (775±3°C) and S-type (763 ± 4 °C).  and are comparable with temperature 

estimates for A-type magmas elsewhere [e.g. Guimares, et al., 2005 (869
 O

C) , 1996; Jiang 

et al (820
O
C), 2005 and Zhao, 2008 (880

 O
C); Yang, S.Y., 2012 (~ 810

O
C]. High saturation 

temperatures shown by Ramunia A-type can be explained by high heat which contributed 

by the upper mantle contemporaneous with crust extension. Given an average magma 

temperature of 826 
o
C (from the magma saturation estimates) and a surface temperature of 

30 
o
C (since Indochina was located near the equator in the Middle Triassic, see Metcalfe, 

2013) and assuming a geothermal gradient of 35/km  such as might be expected in a 

stretched back arc. Considering the average lithostatic pressure gradient is 0.027 GPa/km 

(e.g. Christensen and Mooney, 1995) with Beta factor of 2, the magma source that formed 
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A-type Ramunia might have been generated at a depth of about 11.8km at lithostatic 

pressure of about 0.32 GPa or 3.2 kbar . 
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 A(Ramunia) I (eastern) S(Western) 

 

TZr.sat.C TZr.sat.C TZr.sat.C 

 

852.6 777.9 786.9 

 

851.3 784.6 778.8 

 

834.8 767.5 773.9 

 

831.9 784.2 795.8 

 

843 775.7 744.1 

 

856.7 771.5 770.4 

 

844 775.2 762.2 

 

839.1 773.7 780.1 

 

832.7 797.7 771.8 

 

830.8 779.2 749.8 

 

843.1 745.1 716.9 

 

828.2 828.1 738.4 

 

815.5 752.1 778.7 

 

836.5 746.2 782.8 

 

847.9 773.9 778.8 

 

851.2 767.3 793.8 

 

846.6 754.3 746.6 

 

851.7 825.4 789.2 

 

810.7 774.1 763.1 

 

784.7 793 779.6 

 

795.6 779.8 726.4 

 

807.9 755.6 712.6 

 

787.6 760.5 775.9 

 

831.3 754.1 754 

 

759.7 761.9 785.5 

 

779.4 756.3 761.5 

 

805.2 812.8 713.3 

  

790.6 727.6 

  

809.7 776.7 

  

779.3 791.3 

  

775.7 750.4 

  

780.8 735.3 

  

783.4 770.1 

  

762 792.3 

  

770.9 766 

  

774.8 761.5 

  

770.9 764.7 

  

761.2 783.7 

  

764.8 788.8 

  

761.9 772.2 

Mean 826 775 763 

Std. Deviation 26.06 21.66 24.70 

Std. Error 5 3 4 

T.Zr °C 826 ± 5 °C 775±3°C 763 ± 4 °C 

Table 4.2: Table shows zircon saturation temperature for A-type, I-type and S-type 

rock (data for I and S rocks are taken from Cobbing et al., 
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4.10 Magmatic Evolution 

Petrographically there is no evident in term of texturally as well as compositional 

for magma mixing and contamination in rhyolite, trachydacite and diorite from Ramunia. 

There is no occurrence of mafic rock composition within study area. Most major and trace 

elements (ex. Al2O3,CaO,MgO,TiO2,Sr,Th and etc.) show increasing and decreasing with 

increasing SiO2 content reflect the significant of fractional crystallization processes (eg. K-

feldpsar + plagioclase + biotite + hornblende and minor apatite) during the evolution of the 

magma suite. However the considerable scattered variation in the Harker major and trace 

elements plots is attributed to the porphyritic /phenocryst nature of the volcanic rocks (Cox 

et al., 1979; Wilson, 1994). Na2O shows scattered pattern with increasing SiO2 to some 

Figure 4.14: Zr concentration in ppm versus melt basicity index (M) after 

Watson and Harrison 1983. Note that most of the rocks from Ramunia are 

plot roughly around 800
O
C – 850

O
C. The dashed temperature lines are 

constructed using Zr saturation (in ppm) with fixed temperature using 

equation Zr sat. = 497644/DZr 

Basicity index (M) 
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extent which could be explained by chlorite partly replacing feldspars and biotite by late 

hydrothermal alteration (Dargahi et al., 2010). However the effect of the hydrothermal 

alteration appears to be less important or negligible or less important on most trace 

elements because of their immobile nature.  Scattered variation in the major and trace 

Harker diagrams is attributed to the porphyritic/phenocryst nature of the volcanic rocks 

(Cox et al. 1979; Wilson, 1994). Rhyolite, trachydacite and diorite exhibits J-shape on 

Rb/Sr vs SiO2 diagram (Figure 4.15) which suggest the feldspar crystallization play major 

role in magmatic evolution. All rocks shows negative anomalies in Sr and Eu are shown in 

Figure 4.7 and Figure 4.9 which implicate major role of plagioclase and k-feldpsar in 

fractional crystallization during magma evolution. Large ion lithophile (LIL) modelling 

shows that k-feldspar play important role rather than plagioclase during magmatic 

evolution (Figure 4.16a, 4.16b and 4.17).  

 

Figure 4.15: Rb/Sr vs SiO2 diagram show J shape which implicate the feldspar 

crystallization play major role in magmatic evolution. 
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Figure 4.16 : Diagram of (a) Ba versus Eu/Eu*, Sr vs Eu/Eu* after Eby 

(1990). From diagram above it is clearly shows that fractionation of 

plagioclase play control in magma evolution. Eu/Eu* = EuN/√GdN x SmN 

where N is the subscript for chondrite normalized after Boynton 1984. 
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Low Ca/Sr ratio (<70) yield by all rocks from study area indicate that the 

plagioclase extraction from the melt on the earlier fractionation process was limited (e.g. 

Landenberger and Collins, 1992) which support the less important of plagioclase compared 

to K-feldspar. But note must be taken that plagioclase also play role during evolution 

although it is less important compared to k-feldspar. This is because of low Ca/Sr (<70) 

value which indicating that the removal of plagioclase in earlier fractionation phase was 

limited (e.g. Landenberger and Collins, 1996). Other than that, they have high ratio of K/Rb 

and low ratio of Rb/Ba suggests that the enrichment of K reflects melting rather than biotite 

(Landenberger and Collins.1996; Jiang et al., 2005). Negative spike in Ta and Nb might as 

well implicate involvement of crustal materials in the source or crustal contamination (Xu 

et al., 1984; Chazot and Bertrand, 1995). From multi-element variation spider-diagram and 

REE spidergram, each rocks shows difference in enrichment/depletion. The difference in 

Figure 4.17: Large ion lithophile element modelling for rhyolite, trachydacite 

and diorite from Ramunia (e.g. Guimaraes et al., 2005). Vector arrow trends 

shows K-feldspar play dominant role in the melt during fractionation. Note 

that the rhyolite has different trend with trachydacite and diorite with 

implicate that they are non-comagmatic. 
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RE enrichment/depletion, occurrence of magma mingling, 5.4% SiO2 gap and different 

vector trend shown in Figure 4.15 suggest that the rhyolite is not co-magmatic with the 

trachydacite and diorite. The high concentration of Th and U reflects the more evolved 

igneous rocks most probably because the high content of zircon in felsic compared to 

mafic. In fact the fractional crystallization and assimilation occurred contemporaneously 

which can be clearly seen in Th/Nb vs Zr of Nicolae and Saccani (2003) where the vector 

plot point toward Assimilation-Fractional crystallization (Figure 4.8) although the trends is 

not very clear. The high content of HREE in all rocks from study area reflects the magma 

source contained pyroxenes (Mark, 1999). High concentration of HFSE (ex. Zr, Nb, Hf and 

Ta) coupled with high HREE content implies that they were derived from dehydrated 

source rocks (Collins et al., 1982; Whalen et al., 1987). The source rock was possibly 

dehydrated during thermal event but not to a point where it is geochemically depleted 

(Landenberger and Collins, 1996: Zhao et al., 1997).  

 

4.11 Source rocks potential of the A-type rocks from study area 

A-type rocks especially granite have been extensively studied since it was 

introduced by Loiselle and Wones (1979) because of the unusual geochemical 

characteristic and tectonic setting (e.g. Collins et al., 1982; Clemens et al., 1986; Whalen et 

al., 1987; Creaser et al., 1991; King et al., 1997; Bonin, 2007). There are several 

mechanisms or genetic model proposed to explain the generation of A-type rocks; a) 

fractional crystallization of alkaline basaltic magma (Loiselle and Wones, 1979; Turner et 

al., 1992); b) partial melting of relatively refractory lower crustal granulites (Collins et al., 

1982; Whalen et al., 1987); c) partial melting coupled with high temperature of tonalite and 

granodiorite (Creaser et al., 1991; King et al., 1997; Patino Douce, 1997) and d) partial 
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melting of charnockite or dry rocks which are non-depleted melt, anhydrous, alkali feldspar 

rich granulitic protolith (Landenberger and Collins, 1996; Jiang et al., 2005). 

The fractionation of basalt is a certain mechanism that can create the A-type 

magmas (Loiselle and Wones, 1979; Turner et al., 1992). One of the closest example from 

Padthaway Ridge in South Australia where the A-type granite is formed from basaltic 

parental magma (Turner et al., 1992). Fractionation of the alkaline basaltic magmas is not 

suitable mechanism to form the Ramunia A-type because one of the dyke has been analyse 

for major and trace elements and they shows much lower REE content ( and high field 

strength elements content compared to the rhyolite , trachydacite and diorite. In order for 

the dyke (mafic dyke) to be suitable source for Ramuni rocks, they must contain higher 

REE content and also HFSE. Other than that, the volume of mafic composition which 

represent only by mafic dyke is insufficient to form the large volume of Ramunia volcanic. 

High content of high field strength element (HFSE) yield by Ramunia A-type rocks 

(>300ppm for Zr+Nb+Ce+Y) need a basaltic precursor that contained highly enriched in 

HFSE elements (e.x King et al., 2001; Chen, Y., 2013). However spidergrams shows that 

mafic dyke within Teluk Ramunia contained low amount of REE and HFSE content 

(Figure 4.18). There is no isotopic age yet to be done on the dolerite dyke within the study 

area. However Ghani et al., (in manuscript) has determine the age of most dyke from 

Eastern Peninsular and they age are varies from 178.5 Ma – 124 Ma (Jurassic – 

Cretaceous). Volcanic from Ramunia has been dated about 238+2 Ma (Middle Triassic) 

and shows that the Ramunia rocks are plausibly not related to the dolerite dyke from the 

studyarea.



 

80 

 

 

Basalt 

Ramunia 

volcanics 

Figure 4.18: Spidergrams of a) Rare Earth Element. b) Multi-

Element of Ramunia volcanic with basalt 

Ramunia 

volcanics 

Basalt 

Sample/Chondrite 



 

81 

Some other possible mechanism that can formed the A-type magma are the granulite and 

charnockite (e.x. Landenberger and Collins, 1996; Jiang et al., 2005; Zhao et al., 

2008;Yang et. al., 2012). Granulite is a high grade metamorphic rocks which form at high 

pressure and temperature where the protoliths may originated from igneous and 

sedimentary source. The mineralogy of the granulite are strongly influenced by the type of 

the protolith bulk chemistry. As for charnockite, latest definition by Frost (2011) define that 

charnockite is an orthopyroxene – (or fayalite) bearing granite rocks that is clearly of origin 

or that is present as orthogneiss within a granulite terrain. In term of mineralogy the 

granulite of igneous origin have the same mineral characteristic with charnockite. Most of 

the rocks from Teluk Ramunia shows metaluminous to weakly peraluminous characteristic 

based on Aluminium saturation index (Figure 4.4a and Figure 4.4b). It shows that these 

rocks are formed by igneous source and parametamorphic granulite is not a suitable to 

become A-type Ramunia source. Charnockite and mafic granulite is not suitable to be 

source because they mainly contained garnet which indicates high pressure formation. The 

lowest SiO2 shown by Ramunia A-type is 58.7% which mean that the source must be mafic 

– intermediate composition. However mafic – intermediate granulite (data taken from 

Turner et al., 1992) shows low average content of High field strength elements 

(Zr+Nb+Hf+Y = 167) compared to Ramunia A-type (Zr+Nb+Hf+Y = 378) which strongly 

suggest that mafic-intermediate granulite is not suitable to be the source of Ramunia A-type 

plus there is no occurrence of granulite nearby the study area to confirmed the granulite to 

be the Ramunia A-type source rock. 

Patino Douce (1997) has done experimental melt on tonalite and granodiorite at low 

pressure (4kbar) melting. From the experimental melt it is possible that partial melting low 

pressure (4kbar) of dehydrated metaluminous tonalite and granodiorite might produce the 

metaluminous – weakly peraluminous Ramunia A-type volcanic because they shows 
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similar geochemical characteristic (e.x high Fetotal and high HFSE). Most of the Ramunia 

rocks shows slightly higher value of Ga/Al which can be explained by the low pressure 

residual assemblages dominated by the plagioclase. This is because partition coefficient 

value of Ga/Al for plagioclase is only about ~0.5 and occurrence of clinopyroxene will give 

higher Ga/Al values. The high Fetot/MgO shown by granodiorite is generally same due to 

crystallization of orthopyroxene during melting at low pressure. The flat HREE trend 

shows by all ramunia rocks may indicate presence of orthopyroxene (Mark, 1999). The flat 

HREE pattern shows that there is absence of garnet in the source which indicate low 

pressure melting. Patino also demonstrate that A-type rocks can be formed by low pressure 

melting of tonalite and granodiorite. This was supported by the low melting depth (Partial 

melting of the tonalite-granodiorite may explained the contemporaneously of formed of A-

type and I-type from Eastern belt of Peninsular Malaysia.   

 

4.12 Integrated petrogenetic model in forming the A-type magma/rocks 

 Melting experiment of tonalite and granodiorite has been demonstrated by Patino 

Douce (1997) and shows that shallow dehydration melting of granitoids that contain 

hornblende and biotite can generates metaluminous A-type which is same with 

metaluminous Ramunia A-type. Writer try to do a cartoon model showing the formation of 

the Ramunia A-type rocks. In early discussion, it has been mentioned that there are 

extension process occur on the lower crust during Middle Triassic due to oceanic slab roll 

back. Due to the lower crust extension, the mafic under-plating derived mantle will  intrude 

and ascending toward the middle crust and the heat from the mantle input will definitely 

partial melt the country rock at the middle crust (in this case tonalite and granodiorite). The 

pressure of the crust has been decrease due to the extension process which make the low 

pressure incongruent melting possible. The partial melting of the granodiorite will create 
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the A-type magma and formed the Ramunia volcanic suite when they crystallized. The 

dominant occurrence of I-type rocks on the Eastern Belt Peninsular Malaysia can be 

explained from different types of rock derivation. 

  

4.13 Implication of the A-type magma on Peninsular Malaysia geotectonic during 

Anisian (Early Middle Triassic) 

The magmatism on the eastern belt of Peninsular Malaysia are believed to be related 

to the volcanic arc during Permo-Triassic. The plutonism and volcanism are trending 

parallel to the Bentong Raub Suture Zone which is north-south trend. These magmatism are 

generally formed during the subduction of the Paleo-Tethys oceanic crust beneath the 

Indochina block (Mitchell, 1977; Hutchison, 1989a; Metcalfe, 2000b; Sevastjanova 2011; 

Searle, 2012). The occurrence of the A-type rocks including rhyolite, trachydacite and 

diorite from Ramunia give the implication that there is extensional setting occurred during 

middle Triassic as pink rhyolite from Ramunia is dated 238+2 Ma (Oliver et al, 2013) with 

U-Pb dating. As mentioned before, the A-type are believed to be closely related with the 

within plate or post collisional setting. Discrimination diagrams of Pearce (1984) shows 

that most of the rhyolite, trachydacite and diorite from Ramunia were plotted in the 

intersection of volcanic arc and within plate tectonic setting. Pearce (1996) has modified 

the discrimination diagram of Rb vs (Y+Nb) suggesting that the igneous rocks that are 

plotted within the intersection of volcanic arc and within plate should be classified as post-

collisional setting (Figure 4.19). Other ternary discrimination diagrams from Eby (1992) 

also support this post-collisional setting. However these tectonic events fail to explain the 

occurrence of the A-type rocks because of the volcanic arc still occurring during Middle 

Triassic (~238 + 2 Ma) thus exclude the suitability of within plate and post-collisional 

tectonic setting. Tectonic discrimination triangular plot of Harris et al. (1986) and high ratio 
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of Nb/Ta (Green, 1993) shows that A-type rocks from Ramunia are related to the volcanic 

arc setting. However the occurrences of the A-type rocks give strong implication of crustal 

extension. 

Post Collision A-type 

Figure 4.19: Tectonic discrimination diagram of (a) Rb versus (Y+Nb), (b) Rb versus (Ta+Yb), 

(c) Nb versus Y and (d) Ta versus Yb after Pearce et al. (1984). The continuous circle line 

indicate post collision field (Pearce, 1996) and the dashed circle shows A-type magma (Whalen 

et al., 1987). 
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A suitable explanation is needed to explain the occurrence of the extension during the 

volcanic arc regime. Ryall 1982 has done cross section magnetic studies on the central belt 

of Malay Peninsula and there is evidence of thinning crust mainly on the central belt 

(Figure 4.20).  Most of the Ramunia rocks show the characteristic of high-K calc alkaline 

which reflects the geodynamic environment of transitional regimes from subduction to 

continental collision (Barbarin 1999) which may implicate late subduction (no collision 

yet). Therefore the most suitable to explain the crustal extensional during volcanic arc 

setting is oceanic slab-roll back which is consistent with the geochemical characteristic of 

the Ramunia rocks and the age (Anisian). The slab-roll back will pull the crust to be pulled 

because of the high density of the oceanic crust. This geodynamic model is the most 

suitable tectonic environment to explain the occurrence of the A-type magma which is 

related to the crust extensional. During the continuous of the subduction process, the angle 

of the subducted oceanic plate will get more which will trigger lower crust extension and 

back arc basin extension (Bourgois et al.,1996; Sample and Reid, 2003). The value of slab 

dip (d) will be increase as the age of the subduction becoming older (Lallemand et al., 

2005). The Upwelling athenosphere mantle flow is the main factor that will increase the 

slab dip angle (d) (Figure 4.21b) (Heuret and Lallemand, 2005 ; Lallemand et al.,, 2005). 

The schematic cross section illustrating the oceanic subduction leading to slab-rollback is 

shown in Figure 4.21a. The Semantan basin on the central belt could be formed during the 

back-arc extension. There is evident of volcanic rocks interbedded with the metasediment 

there (Jaafar 1976) which is juxtaposition with the crustal extension during slab-roll back. 

However there are not enough evidence to support this assumption because the basin can 

also formed during post-collision which is not related to the volcanic arc. The A-type 

magma that formed all rock from study area must be generate during the process of the 
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slab-roll back which eventually will lead to the opening of the back-arc basin (Semantan 

Basin?). After the lower crust has start extend, the underplated mantle derived mafic 

magma will intrude into the exposed extension area and melt the lower crustal rocks. 

Melting of the lower crust and middle crust will lead to the generation of the I–type and A-

type rocks found on the eastern belt of Peninsular Malaysia. The slab-roll back related 

extension is consistent with the tectonic proposed by Oliver et al (2013). In the paper he 

proposed the oceanic slab-roll back of Paleo-tethys plate based on the U-Pb zircon age 

younging from eastern to western across the Peninsular Malaysia.  

 

Figure 4.20: Diagram of observed Bouguer gravity and calculated gravity for a model with 

no granite in the Central back. However there is no Moho Line shown.  Gravity profile 

supports the occurrence of extensional in Peninsular Malaysia (profile taken from Ryall, 

1982). 
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Figure 4.21 a: Schematic diagram showing the tectonic setting  for (a) partial melt of the 

subducted Paleo-tethys ocean which lead to the generation of the volcanic arc magmatism. (b) 

the angle of subducted oceanic crust is getting steeper because of the slab-roll back which 

then will lead to crustal extension. During this time the A-type magma will generate from the 

partial melting of the dry rock at lower crust. 

 

Figure 4.21 b: Diagram illustrating the relation between Slab dip angle and 

asthenospheric flow force. 
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5.0 CONCLUSION 

 

5.1 Introduction 

In this chapter the writer will summarize all the conclusions that has been proposed 

in each chapter before. New interpretation can be made based on the geological finding 

from the study area. 

 

5.2 Summary of conclusion on volcanism within Teluk Ramunia 

Based on fieldwork, petrographic and geochemistry study there are 3 types of 

igneous rocks found within study area which located in Teluk Ramunia. They are diorite, 

rhyolite and trachydacite. Occurrence of the micro-granophyric texture in all rocks shows 

that they are emplaced at sub-volcanic environment. Rhyolite is formed from the same 

source rock with trachydacite and diorite. However based on geochemistry charateristic the 

rhyolite is not formed within same magmatic pulse with trachydacite and diorite. The 

rhyolite, trachydacite and diorite strongly shows A-type characteristic thus the writer 

suggest it can be called A- type Ramunia. Lower pressure partial melting of tonalite-

granodiorite are highly possible to be the source rock of A-type Ramunia. Most of the 

studies on A-type rocks indicate that they are very close related with the extensional 

magmatism. Based on published U-Pb zircon isotope dating on rhyolite from study area 

(238+2 Ma from Oliver et al., 2013), the extensional is occurred during volcanic arc setting 

thus exclude the mechanism of delamination and slab-break off. The most suitable to 

explain the occurrence of A-type Ramunia during volcanic arc setting is the effect of pull-

slab or slab-roll back during subduction process. Based on previous studies, slab roll back 

of subducted oceanic crust is the main factor that lead to mantle lithosphere extension under 
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the central belt of Peninsular Malaysia. The slab roll back geodynamic setting on 

Peninsular Malaysia has been proposed by Oliver et al. (2013).  

 

5.3 New Finding 

 From petrographic and geochemistry analysis the writer found the occurrence of A-

type rocks which consists of rhyolite, trachydacite and diorite. The A-type always give 

implication of magmatism due to crustal extension and high temperature magma sources 

with average Zr saturation temperature of 826 
O
C. Most of the A-type from other places are 

closely related of either post-collision or intraplate magmatism. In the case of the A-type 

rocks found within study area, the age of the volcanic rock is rather old to be correlate with 

the post-collision magmatism (Middle Triassic). It is because the main tectonic event that 

occurred during the time is volcanic arc setting. Therefore the best tectonic to explain the 

formation of the A-type is slab roll back or slab pull back that can lead to crustal extension.  

 

5.4 Future work suggestion. 

 The rock samples that have been analysed in this research are only constrained on 

the south eastern part of peninsular Malaysia. It is very important to study on the 

occurrence of the A-type rocks which are likely can be found on the eastern belt of 

Peninsular Malaysia. Studies on the volcanic rocks on the eastern belt of Peninsular 

Malaysia should be more thoroughly especially on geochemistry characteristic. Previous 

study has shown that there are association of the I-type and A-type rocks in volcanic arc 

settings. They are more likely to have formed within the back arc regime. The occurrence 

of A-type might give important clue about the contribution of slab roll back, slab 

delamination or slab break-off which can lead to extension of the lithospheric mantle and 

will continue to the back-arc deformation. Other than that, the Peninsular Malaysia igneous 
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rocks have lack of isotopical data which make it hard to interpret the relationship between 

the mantel output with the crustal contribution. In case of Ramunia volcanics, it is crucial to 

do isotopical studies as the A-type magma have strong relation to the mantle contribution, 

crustal contamination and fractional crystallization.     
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