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ABSTRACT 
 

 

Liposome in gel preparation has opened up a new dimension in pharmaceutical 

formulation especially topical application as gels usually have longer contact time with 

the skin. In this study, the liposomal gel was prepared by mixing surface modified oleic 

acid (OA) liposomes into a carbohydrate based gel. The surface of oleic acid liposomes 

was modified using different molecular weight of chitosan (Ch1 and Ch2) and N-

palmitoyl chitosan with different degree of acylation (Ch2P1 and Ch2P2) thereby 

providing a cloak structure on the surface of the liposomes.  

The surface modification of the OA liposomes by the Chs (Ch1 and Ch2) and 

Ch2Ps (Ch2P1 and Ch2P2) was characterized using microscope images and 

physicochemical properties such as zeta potential and the size of the liposomes. The 

micrographs obtained from the transmission electron microscope (TEM) showed that 

the Chs-modified and Ch2Ps-modified OA liposomes were spherical in shape and 

appeared to be dark in colour. It was mainly due to the present of the Chs and Ch2Ps on 

the lipid surface of the OA liposome that thickened the lipid layer and increased its 

opacity. The surface modification has also enhanced the OA liposome rigidity. After 

surface modification, the size of the Chs- and Ch2Ps-modified OA liposomes was 

decreased by at least 20 nm as compared to the unmodified OA liposomes. The decrease 

in the liposome size was also accompanied with the increase of their zeta potential. The 

increase of the zeta potential of the surface modified OA liposome from -86 mV to -60 

mV indicated that the Chs and Ch2Ps had successfully modified the surface of OA 

liposomes.  

The carbohydrate based gel was prepared from the mixture of iota carrageenan 

(ιC) and carboxymethyl cellulose (CMC). The presence of CMC in ιC gel showed the 

improvement of the flexibility and cohesive energy of the gel. The gel mixture with 5:5 
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ιC to CMC ratio has been found to be the optimum composition. Under this optimum 

composition, the gel matrix showed optimum flexibility and elasticity. The liposomal 

gels were prepared by dispersing the liposomes into the optimized gel matrix. Based on 

the rheological results, the presence of liposomes enhanced the elasticity and viscosity 

of the liposomal gel. The liposomal gels showed greater shear thinning effect indicating 

a better spreading ability of the liposomal gels as compared to the pure 5:5 ιC-CMC 

mixed gel.  However, the changes in the viscous modulus (G”) and the n value obtained 

from creep test that described the physical entanglements within the liposomal gel were 

negligible. These results indicated that the liposomes do not alter the internal gel 

network structure, but accommodated in the void spaces in the gel. At the same time, 

the gel matrix could act as a protective layer for the liposomes towards disruption effect 

from the environment.    
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ABSTRAK 

 

Pengenalan liposom ke dalam gel telah membuka suatu dimensi yang baru dalam 

formulasi farmaseutikal terutamanya untuk applikasi topikal kerana pada umumnya gel 

mempunyai masa pendedahan terhadap kulit yang lebih panjang. Dalam kajian ini, gel 

liposom disediakan dengan mencampurkan liposom asid oleik (OA) yang 

permukaannya diubahsuai. Pengubahsuian permukaan liposom asid oleik dilakukan 

dengan menggunakan kitosan yang mempunyai berat molekul yang berlainan (Ch1 dan 

Ch2) dan N-palmitoyl kitosan yang mempunyai darjah penghasilan yang berlainan 

(Ch2P1 dan ChP2) untuk menghasilkan suatu lapisan yang meliputi permukaan liposom 

tersebut.   

 Sifat-sifat liposom OA yang permukaannya diubahsui dengan menggunakan Chs 

(Ch1 dan Ch2) dan Ch2Ps (Ch2P1 dan Ch2P2) telah dikenalpasti dengan menggunakan 

imej mikroskop elektron dan sifat fizikokimia seperti keupayaan Zeta dan saiz liposom. 

Imej liposom yang diperolehi dengan menggunakan mikroskop pancaran elektron (TEM) 

menunjukkan bahawa liposom OA yang diubahsuaikan dengan Ch dan Ch2P adalah 

berbentuk sfera dan legap. Ini disebabkan oleh kehadiran Ch dan Ch2P pada permukaan 

lipid liposom OA yang telah menambahkan ketebalan lapisan lipid dan kelegapan 

liposom tersebut. Pengubahsuaian liposom OA dengan Ch dan Ch2P juga dapat 

mempertingkatkan ketegaran liposom tersebut. Setelah pengubahsuaian permukaan 

dilakukan, saiz bagi liposom OA yang permukaannya diubahsuai dengan Ch dan Ch2P 

tersebut telah menurun sebanyak 20 nm berbanding dengan liposom OA. Selain itu, 

keupayaan Zeta bagi liposom OA yang permukaannya diubahsuai meningkat dari -86 

mV ke -60 mV. Keputusan ini menunjukkan Ch dan Ch2P telah berjaya 

mengubahsuaikan permukaan liposom tersebut.  
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 Dalam kajian ini, gel kabohidrat disediakan dari campuran iota karagenan (ιC) 

dan karboksimetil selulosa (CMC). Kehadiran CMC di dalam gel ιC telah meningkatkan 

kekenyalan dan tenaga jeleketan bagi gel tersebut. Gel campuran yang disediakan 

dengan nisbah 5:5 (ιC:CMC) merupakan komposisi optimum. Di bawah komposisi 

optimum tersebut, matriks gel ini telah menunjukkan keterlenturan dan kekenyalan yang 

optimum. Gel liposom telah disediakan dengan menyebarkan liposom ke dalam matriks 

gel dengan komposisi optimum. Mengikut hasil kajian reologi, kehadiran liposom 

dalam gel telah mempertingkatkan kekenyalan dan kelikatan gel liposom. Gel liposom 

ini juga mempamerkan sifat pencairan ricihan yang lebih tinggi berbanding dengan gel 

5:5 (ιC:CMC) dan menunjukkan gel liposom ini boleh disebarkan dengan lebih mudah. 

Walaubagaimanapun, perubahan dalam modulus kelikatan dan nilai n yang diperolehi 

dari ujian rayap yang menggambarkan keadaan berbelit antara rantaian polimer bagi gel 

didapati tiada perubahan untuk gel liposom. Hasil kajian ini menunjukkan kehadiran 

liposom dalam gel tidak mengganggu struktur rangkaian gel, tetapi hanya menepatkan 

diri di dalam ruang kekosongan di dalam gel. Pada masa yang sama, gel matriks 

tersebut juga dapat menjadi suatu lapisan perlindungan bagi liposom terhadap gangguan 

dari sekitaran.      
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CHAPTER 1 

1.0 Gels and their application in cosmetic and pharmaceutical 

industries 

Gels are soft solid masses composed of a three-dimensional macroscopic network of 

structures that can entrap large volumes of solvent within the network (Ajayaghosh et 

al., 2008). Gels are classified as soft solids because they can withstand their own weight 

without collapsing and at the same time exert some degree of flexibility (Estroff and 

Halmilton, 2003). In general, gels can be classified into two categories based on their 

gelling mechanism; colloidal gel and polymeric gel (Partlow and Yoldas, 1981). For a 

colloidal gel system, its gelling ability is a result of the electrostatic effects of the 

colloidal particles. These colloidal particles can link together via attractive bond or floc 

to form an interlaced network (Barlett et al., 2012; Ilg and Gado, 2011; Pemetti et al., 

2007). Polymeric gels, however, are a cross-linked network of polymer chains. They 

can be formed via covalent cross-link or physical entanglement of the polymer chains 

(Grillet et al., 2012; Picout and Ross-Murphy, 2002). Polymeric gels are commonly 

used as the matrix in the pharmaceutical and cosmeceutical industries as carrier in 

which medicinal or cosmetic active ingredients are incorporated. This is because the 

fluid filling interstitial space within the polymer gel network not only provides 

continuous moisturising effect to the skin, it also effectively disperses the medicinal or 

cosmetically active ingredients homogeneously throughout the gel matrix (Kumar et al., 

2009; Kwon and Gong, 2006; Saha and Bhattacharya, 2010).  

 Although polymeric gels can be prepared from synthetic polymers such as 

silicon and poly(N-isopropylacrylamide), the concept of using natural biopolymers such 

as polysaccharides in the preparation of polymeric gels for cosmetic and pharmaceutical 

applications has attracted growing interest over the recent years (Peppas and Huang, 
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2002; Singh, 2011). This is due to the characteristics of the polysaccharides as they are 

biocompatible, biodegradable, edible, and they are available from natural sources such 

as plants and living organisms (Klein, 2009). Traditionally, polysaccharides were used 

as viscosity modifiers, thickening agents, hair conditioners, moisturisers, hydrates, and 

emolliates in various cosmetic and pharmaceutical products (Gruber, 1999). However, 

polysaccharides have played an even more important role in the modern cosmetic and 

pharmaceutical formulations, especially as drug carriers. Due to their adhesive property, 

polymer gels can also become the supporting layer in the topical and transdermal patch 

delivery systems such as DuoDERM®, CitruGel®, and Hydrocoll® (Kim et al., 2013; 

Munarin et al., 2012; Wokovich et al., 2006; Xi et al., 2013). This supporting layer not 

only helps to protect the dispersed drugs from the environment, but also helps to deliver 

the dispersed drugs through the skin into the body. Besides biocompatible and 

biodegradable, the polysaccharide gels such as pectin (Morris et al., 2010), carrageenan 

(Miyazaki et al., 2011), and caboxymethyl cellulose (Palmer et al., 2011) that are used 

as drug carriers and supporting matrix in controlled release drug delivery systems have 

also been reported to exhibit bioadhesive characteristics (Dew et al., 2009; Mourtas et 

al., 2009; Qiu and Park, 2001).  

 The delivery of drugs from gel matrix into the skin requires successful 

penetration of the drugs through the main skin barrier, stratum corneum, as it limits 

permeation of many active therapeutic agents because of its highly organised structure 

(Osborne et al., 2013; Touitou and Godin, 2007). For this reason, skin penetration 

enhancers such as sulphoxides, azones, pyrrolidones, alcohols, glycols, surfactants, and 

terpenes were used in topical and transdermal applications in order to increase the 

delivery efficiency through the percutaneous route (Gwak and Chun, 2002; Karande et 

al., 2005; Williams and Barry, 2004). They are known to induce structural changes in 

the stratum corneum by disrupting the tightly packed lipid layer, which consequently 
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increases the drug penetration through the skin (Barry, 1987; Moghadam et al., 2013). 

However, the use of skin penetration enhancers has often triggered undesired immune 

system reactions such as irritation, allergy or inflammation. Most skin penetration 

enhancers are also not specific and allow the penetration of small lipophilic compounds. 

This is particularly observed in cosmetic formulations where the fragrance compounds 

and preservatives will penetrate along with the active ingredients through the skin 

(Dayan, 2005). These problems can be minimised by encapsulating the drugs or active 

ingredients into carriers such as colloidal particles and liposomes and at the same time 

can also improve the percutaneous absorption of the drugs from the gel matrix (Mezei 

and Gulasekharam, 1980).  

 

1.1 Type of carriers in drug delivery systems 

Several particulate drug carriers such as colloidal particle systems and lipid-based drug 

delivery systems have been widely developed in order to improve the drug therapeutic 

efficacy by enhancing the specific targeted ability of the drug carrier systems (Peer et al., 

2007). The colloidal particle systems can be inorganic-based, polymer-based or lipid-

based particles (Gaumet et al., 2008). These colloidal particle systems consist of small 

colloidal particles with diameters ranging from hundreds to thousands of micrometers 

(Abraham et al., 2011; Zamiri and Gemeinhart, 2006). Of these colloidal particle 

systems, the inorganic-based particles such as silica nanoparticles, carbon nanoparticles 

and gold nanoparticles, which can be porous in nature, are known to be  physically and 

chemically stable and exhibit a prolonged drug release profile (Anitha et al., 2012; 

Bianco et al., 2005; He et al., 2004; Prakash et al., 2011). For effective drug delivery 

applications, the drugs or active ingredients are loaded into the pores of these particles 

via adsorption or capillary filling, and their release profiles can be altered by controlling 
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the pore size and pore surface chemistry (Jiang and Brinker, 2006; Liu et al., 2009). 

Such inorganic particles can also be designed as hollow particles (Im et al., 2005; Koike 

et al., 2013; Zhang et al., 2009).  The hollow structures were also used in drug delivery 

application due to the presence of a large fraction of void within the particle that could 

accommodate large amounts of drugs and active ingredients (Fuji et al., 2007; Lou et al., 

2008; Yang et al., 2013). Besides, the surface of the hollow particles can be further 

modified using amino acids or polymers for controlled released and targeted delivery 

(You et al., 2013; Zhu et al., 2011).  

Compared with the inorganic-based particle, the polymeric colloidal particles are 

used to load both small molecule drugs as well as biomacromolecules such as proteins 

and peptides (Leong et al., 2011; Teng et al., 2013; Zhang and Ma, 2013). Poly(lactic-

co-glycolic acid) (PLGA) is currently one of the most frequently used polymers in the 

preparation of polymeric particle drug delivery systems (Choi et al., 2012; Klose et al., 

2008; Samadder et al., 2013; Zeng et al., 2013). It is also one of the US FDA approved 

polymers for medical purposes. However, some problems are associated with the use of 

polymeric colloidal particles in the drug delivery system i.e. the slow release profile of 

its drug load. Owing to the fact that each polymer has its own specific physicochemical 

properties, it becomes difficult to obtain desired drug release profile from these polymer 

matrixes that involved slow degradation or dissolution of the polymer matrix 

(Gemeinhart, 2006).  As shown in the earlier studies, it may take up to a few weeks for 

a total in vivo degradation or dissolution of the polymer matrix (D'Souza and DeLuca, 

2006; Gupta et al., 2001; Gutowska et al., 1995; Hiremath et al., 2013). Also, some 

polymeric materials were cytotoxic after phagocytosis that caused irritation in vivo and 

could only be partially overcome by incorporating anti-inflammatory drugs (Müller et 

al., 1996; Smith and Hunneyball, 1986). The polymeric colloidal particles were also 

found to have a limited drug loading capacity. As a result, large excessive amounts of 
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the polymeric colloidal particles were needed to achieve sufficient drug supply 

(Gemeinhart, 2006; Tan et al., 2009).  

The lipid nanoparticle is another example of a colloidal particle drug carrier 

which was designed in the early 1990s (Blasi et al., 2013; Üner, 2006). The lipid 

nanoparticle drug carrier was designed as an alternative to the polymeric colloidal 

particle (Ekambaram et al., 2012) and oil-in-water emulsion in parenteral nutrition 

(Mehnert and Mäder, 2001). It could be suspended in aqueous medium and provided a 

higher drug loading capacity compared with the polymeric and emulsion types of drug 

carrier (Ekambaram et al., 2012; Mehnert and Mäder, 2001). The lipid nanoparticle drug 

delivery system is a perfect system for the delivery of lipophilic drugs such as retinol 

(Westesen et al., 1997) and doxorobucin (Cavali et al., 1993). However, the lipid 

nanoparticle is not entirely suitable for hydrophilic drugs. This is because of the high 

partition coefficient of the hydrophilic drug to the aqueous phase which results in the 

low entrapment efficiency of the hydrophilic drug in the lipid nanoparticle (Üner, 2006).   

Liposome drug carrier (lipid-based) are widely investigated as it was discovered 

by Bangham et al. (1974) (Lasic, 1995; Peer et al., 2007). The higher popularity of 

liposome as a drug carrier compared with lipid nanoparticle and polymeric-based 

nanoparticle is mainly attributed to its versatile nature and ability to entrap both 

hydrophilic and hydrophobic drugs. Liposome can be modified easily in order to 

achieve passive and/or active targeting. The passive targeting system can be attained by 

altering the physical properties of the liposome such as size, surface charge, and 

membrane fluidity (Sato and Sunamoto, 1992; Takeuchi et al., 2001b). On the other 

hand, the active targeting system can be attained by grafting the liposome surface with 

targeting ligands such as antibodies (Danhier et al., 2010).  
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1.1.1 Liposomes in gel 

Incorporation of the liposome into a gel is the most common approach used in the 

preparation of topical and transdermal liposomal formulations. Most pharmaceutical 

formulations are prepared in gel forms as gels usually have a considerably longer 

contact time with the skin (Dew et al., 2009). This is an important characteristic of gel 

as it can prolong the release rate of the liposome from the gel matrix, and thus reduce 

the dosing frequency of the therapeutic drugs encapsulated within the liposome 

(Mourtas, Duraj et al., 2008).  

Liposomes can disperse in the gel matrix and get accommodated in between the 

network spaces. There is strong evidence to prove the co-existence of the liposomes in 

the gel matrix (Dragicevic-Curic et al., 2009; Mourtas et al., 2007). Dispersion of the 

liposomes into the gel formulation can be visualised using the cryo-electron microscope 

(Dragicevic-Curic et al., 2009). The electron micrographs revealed that the liposomes 

were dispersed into the gel with high homogeneity. The size of the dispersed liposome 

was also unaffected by the presence of gels. Besides, no changes in liposome size were 

observed during the stability test (six months period of testing). It was also found that 

the liposomes dispersed in the gel are more stable when compared with the conventional 

liposomal solution (six months period of testing).  

In this study, the liposomes were loaded into the carbohydrate-based gel 

prepared from a mixture of carboxymethyl cellulose (CMC) and iota carrageenan (ιC). 

The CMC is a derivative of cellulose with a carboxymethyl group at the hydroxyl group 

of its glucopyranose monomer backbone, as shown in Figure 1.1(a) (Heinze et al., 1998). 

It is often used as a binding, thickening, and stabilising agent of various products, 

especially in the cosmetic and pharmaceutical industries such as creams, lotions, and 

toothpaste formulations due to its biocompatibility and solubility in water (Benchabane 
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and Bekkour, 2008; Palmer et al., 2011; Srokova et al., 1998; Wade and Weller, 1994; 

Weiner, 1991). As shown in Figure 1.1(b), the ιC is a linear sulphated polysaccharide 

composed of alternating 3-linked β-D-galactopyranose and 4-linked 3,6-anhydro-α-

pyranose residues (Gobet et al., 2009; Millane et al., 1988). The water soluble ιC is used 

in the preparation of food stuffs such as dairy products and jellies, due to its typical 

gelling strength (Gobet et al., 2009; Gupta et al., 2001). Besides the food industry, the 

ιC is also widely used in pharmaceutical and cosmetic formulations, in the preparation 

of soft gel formulations for oral drug delivery systems prescribed for patients with 

swallowing difficulties (Gupta et al., 2001; Miyazaki et al., 2011; Thrimawithana et al., 

2011).  

 

(a) 

 

 
  

(b)  

 
 

Figure 1.1: Molecular structure of (a) carboxymethyl cellulose (CMC) 

and (b) ι-carrageenan (ιC). 
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The pKa of ιC and CMC are 2 and 4.3, respectively (Gu et al., 2004; Magdassi 

et al., 2003). In other words, at pH levels greater than 4.3, both ιC and CMC behave as 

polyelectrolytes. As polyelectrolyte polymers, their internal network structure and gel 

strength become very sensitive to the change of the types of ions, ionic strength, and pH 

(Bonferoni et al., 1995; Gobet, 2009; Liu et al., 2002; Michailova et al., 1999). 

According to previous study, ιC formed a strong and transparent gel in the presence of 

divalent cations (Thrimawithana et al., 2010). This is mainly due to the ability of the 

divalent cations to interact electrostatically with the two sulphate groups present in the 

anhydro-D-galactopyranose and D-galactopyranose of the ιC polymer chains. As a 

result, bridges are formed between the adjacent double helices of the ιC polymer chains 

and thus, an even more complicated gel network structure is formed (Nijenhuis, 1996). 

However, the ιC gel formed in the presence of monovalent cations was relatively more 

flexible and soft when compared with the divalent cations (van de Velde et al., 2003), 

mainly because of the less inter-helical aggregation of the double helical structure of the 

ιC polymer chains with the monovalent cations (Gobet, 2009; Yuguchi et al., 2003). 

Unlike divalent cations, the monovalent cations can only interacted ionically with one 

of the sulphate groups of the ιC chains and is followed by the formation of secondary 

electrostatic interactions with the sulphate groups or the anhydro-bridge oxygen atom of 

the galactose unit from the adjacent double helices of the ιC polymer chains. This 

secondary electrostatic interaction is relatively weak when compared with the 

electrostatic interaction contributed by the divalent cations. Therefore, it reduced the 

efficacy of the monovalent cations in controlling the flexibility and rigidity of the ιC 

chains and resulted in the formation of a soft gel (Gobet, 2009; Thrimawithana et al., 

2010).   

The presence of cations also influences the physical strength of the CMC gel 

(Bajpai and Giri, 2003; Kästner et al., 1997). However, the physical strength of the 
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CMC gel was reduced in the presence of the cations, especially the divalent cations, as 

they induce globular aggregations of the CMC chains even at very low ionic strengths 

(~ 0.5 mM) thus destroying the three dimensional CMC gel network structure (Ueno et 

al., 2007). This is because the CMC chains that are rich in –COOH groups can interact 

with the cations to form intra- and intermolecular linkages (Khvan et al., 2005). These 

interactions will be more pronounced as the cation’s valency and the concentration of 

the used cations increase.  

For pH effect, it was found that the conformational changes of the ιC chains 

with respect to the pH changes were negligible because the sulphate groups in the 

backbone of the ιC chains begin to ionise at pH 2 (pKa= 2) (Gu et al., 2004). On the 

other hand, the physical strength of the CMC gel is highly dependent on the pH of its 

aqueous environment. It was found that the physical strength of the CMC gel increased 

with increasing pH and reached the maximum in the pH range of 6-10 depending on the 

degree of substitution of the CMC chains (Bajpai and Giri, 2003; Kästner et al., 1997; 

Lee et al., 2006). This is mainly due to the swelling behaviour of the CMC chains. The -

COOH groups in the CMC backbone begin to ionise as the pH increases and adopt a 

more extended conformation due to strong intramolecular electrostatic repulsion. These 

extended CMC chains interpenetrate and entangle with each other to form a good gel 

network. However, when the CMC chains are extensively charged at high pH (> pH 10), 

the strength of the CMC gel network decreases (Zhong and Jin, 2009). This is mainly 

due to the great electrostatic repulsion between the highly charged CMC chains.  

 

1.2  Liposomes as drug carrier 

Liposome has been widely used as drug delivery carrier in the pharmaceutical and 

medical industries due to its unique structure which consists of an aqueous core 
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entrapped by bilayer lipid membrane composed of lipids or lipid mixture (Figure 1.2) 

(Bangham and Horne 1964; Jesorka and Orwar, 2008; López-Pinto et al., 2005; Mura et 

al., 2007; Sato and Sunamoto, 1992). The unique structure of the liposome enables it to 

encapsulate both hydrophobic and hydrophilic drugs into its lipid bilayer membrane and 

aqueous core, respectively (Maurer et al., 2001). This could protect the drugs from 

degradation and increase the therapeutic efficacy of the drugs by reducing their toxicity 

and side effects (Torchilin, 2005; Yuan et al., 2010).  

 

 

Figure 1.2: Unilamellar liposome showing the enclosed 

structure of the liposome. 

  

 There are many types of liposomes which can be classified based on their 

lamellarity and size (Figure 1.3 and Table 1.1) (Jesorka and Orwar, 2008). Liposomes 

formed by a single bilayer enclosing an aqueous core are termed unilamellar liposomes 

(Shailesh et al., 2009). The unilamellar liposomes can range in size from less than 100 

nm to 1 μm (Figure 1.3 (a)). All unilamellar liposomes less than 100 nm in size are 

categorised as small unilamellar liposomes, while the unilamellar liposomes larger than 

100 nm in size are categorised as large unilamellar liposomes. Giant unilamellar 

liposomes refer to liposomes more than 1 μm in size (Mezei and Gulasekharam, 1980; 

Samad et al., 2007). Liposomes also can be formed by more than one enclosed bilayer 

(Figure 1.3(b)). Such liposomes are termed multilamellar liposomes which are actually 
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several unilamellar liposomes formed one inside another, creating an onion-like 

structure separated by an aqueous layer (Shailesh et al., 2009). The multilamellar 

liposomes are normally larger than 500 nm in size. Multivesicular liposomes are another 

type of liposomes easily distinguished from the unilamellar liposomes and multilamellar 

liposomes by their unique structure. The multivesicular liposome consists of several 

non-concentric lipid bilayer membranes as shown in Figure 1.3(c) (Mantripragada, 

2002; Zhong et al., 2005). Typically, this multivesicular liposome is larger than 1 μm in 

size (Table 1.1) (Samad et al., 2007).  

 

Table 1.1: The classification of liposomes and their size (Samad et al., 2007). 

Type of liposome Diameter (nm) 

Small unilamellar liposome < 100 

Large unilamellar liposome 100 < x< 1000 

Giant unilamellar liposome > 1000 

Multilamellar liposome > 500 

Multivesicular liposome > 1000 

  

 

 Liposomes with different lamellarity and size can be controlled by their 

preparation methods (Vemuri and Rhodes, 1995). For example, the unilamellar 

liposomes can be obtained by the disruption of the multilamellar liposome and 

multivesicular liposome using sonication or extrusion (Kepczynski et al., 2010; 

Schrijvers et al., 1989). Besides, unilamellar liposomes can also be prepared from the 

reverse-phase evaporation method (Moscho et al., 1996). The large unilamellar 

liposome and multilamellar liposome can be prepared using the hydration technique or 

thin film method, which is another commonly used method in liposome preparation 

(Jesorka and Orwar, 2008; Samad et al., 2007; Shailesh et al., 2009; Vemuri and 

Rhodes, 1995). 
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Figure 1.3: Different types of liposomes classified based on the liposomal structure and their 

fluorescence micrographs. (a) Fluorescence micrograph of unilamellar liposome; (b)(i) and (ii) 

shows the appearance of multilamellar liposomes; and (c) Fluorescence micrograph of 

multivesicular or oligomer liposomes.  

 

 

 

 

 

 

 

(a) 
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 Single type, non-surface modified liposomes were found to barely survive in the 

bloodstream because of their fast elimination by the mononuclear phagocyte system 

(Immordino et al., 2006; Maurer et al., 2001). The recognition and removal of the 

liposomes from the bloodstream as foreign particles was promoted by the adsorption of 

proteins present in the bloodstream, onto the liposome surface (Maurer et al., 2001). 

This disadvantage inhibited the function of the liposome as a drug carrier and reduced 

its circulation half-life (Immordino et al., 2006). In order to overcome this disadvantage, 

surface modified liposomes were developed (He et al., 2010; Klibanov et al., 1990; 

Takeuchi et al., 2001a; Yuan et al., 2010). 

 

1.2.1 Surface-modified liposomes 

The first attempt to modify the liposome surface was performed by Allen and Chonn 

(1987) using gangliosides. It was found that the bioavailability of the surface modified 

liposome increased with increasing concentrations of the gangliosides (Abuchowski et 

al., 1977; Allen, 1994; Chonn and Cullis, 1998). Another type of surface modified 

liposome was prepared using the derivatives of polyethylene glycol (PEG) (Abuchowski 

et al., 1977; Immordino et al., 2006). The PEG grafted liposome was proved to exhibit 

high liposome stability and bioavailability in the bloodstream compared to the 

unmodified liposomes, although the PEG was a synthetically produced polymer (Chonn 

and Cullis, 1998; Taguchi et al., 2009). This was because the grafted PEG on the 

liposome surface created a steric barrier which prevented the adsorption and the binding 

of the proteins which marked the liposome for removal by the phagocytic cells (Figure 

1.4) (Lasic, 1995; Maurer et al., 2001; Veronese and Pasut, 2005).  
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Figure 1.4: Surface modified liposome. The presence of the 

polymers on the liposome surface can act as a steric shield that 

decreases the accessibility of the proteins which mark the 

liposome for recognition and removal by phagocyte system.  

 

The PEGylated-lipid liposomes have been widely used in the pharmaceutical 

and medical industries, such as chemotherapy of cancer, fungal infections (Mehta et al., 

1987; Mills et al., 1994), vaccines (Gregoriadis et al., 1996; Steers et al., 2009), and 

gene therapy (Gul-Uludag et al., 2012; Jeschke and Klein, 2004; Ropert, 1999). There 

are several liposome-based pharmaceutical products that have been approved by the US 

FDA (U.S. Food and Drug Administration) for cancer and antifungal treatment, such as 

DOXIL, Amphotec, and AmbiSome (Barenholz, 2001; Torchilin, 2005). However, 

studies have revealed that the systematic administration of the PEGylated-lipid 

liposome can induce the Accelerated Blood Clearance (ABC) phenomenon and reduce 

its bioavailability (Dams et al., 2000; Ishida et al., 2005; Laverman et al., 2001). The 

clearance of the second dose of PEGylated-lipid liposomes from the bloodstream was 

triggered by the serum proteins produced in response to the first injection of the 

liposome (Dams et al., 2000). According to Ishida et al. (2006), IgM (Immunoglobulin 

M) is the protein responsible for the clearance of the PEGylated-lipid liposomes due to 
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its high affinity to the PEG on the liposome surface. Therefore, studies on many other 

liposomal systems that stabilised with various polymers, especially polysaccharides 

such as dextran, pullulan, amylopectin and chitosan have been conducted (Filipovicâ-

Grcïicâ et al., 2001; Mobed and Chang, 1998; Thongborisute et al., 2006).  

 The potential of the polysaccharides to serve as ligands in the preparation of stable 

and site-targeted liposomes has received wide attention because the cell surface is rich 

in carbohydrate moieties (Table 1.2) (Dicorleto and De La Motte, 1989; Mufamadi et 

al., 2011; Sato and Sunamoto, 1992; Sihorkar and Vyas, 2001; Sunamoto et al., 1992). 

This carbohydrate-rich layer, known as the glycocalyx, contains high amounts of 

polysaccharide that are involved in cellular adhesion, intercellular communication, and 

biological recognition (Abeygunawardana and Bush, 1991; Palte and Raines, 2012; 

Sihorkar and Vyas, 2001). Miyazaki et al., (1992) have successfully demonstrated the 

lung-targeted delivery of amphotericin B using polysaccharide-modified liposomes as 

the delivery vehicle. The bioavailability of the amphotericin B at the disease site was 

found to be higher compared to the non-encapsulated amphotericin B. Besides, the 

liposome can also act as a drug reservoir by coating the mucoadhesive polysaccharide 

such as cellulose and chitosan onto its surface (El Maghraby et al., 2005; Harrington et 

al., 2002; Takeuchi et al., 1994; Vinood et al., 2012; Yuan et al., 2010). The layer of the 

mucoadhesive polysaccharide which has a high adherence to the mucous membrane 

helps to prolong the residence time of the liposome and increases the bioavailability of 

the encapsulated drug (Nguyen et al., 2011).  
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Table 1.2: Polymers used for the modification of liposome surface. 

Polymer Structure Reference(s) 

Amylopectin 

 

(Miyazaki et al., 

1992) 

Carbopol 

 

(Jain et al., 2007; 

Takeuchi et al., 2003) 

Chitosan 

 

(Liu et al., 2011; 

Mady et al., 2009) 

 

Dextran 

 

 

  
 

(Elferink et al., 1992; 

Sunamoto et al., 

1992) 

gangliosides 

 

(Allen, and Chonn, 

1987) 

Gelatin 

 

(Shende and Gaud, 

2009) 
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Table 1.2 (continued) 

Hydroxypropyl-

methyl cellulose 

 

(Takeuchi et al., 

2001b) 

O-palmitoyl fucose 
 

(Garg et al., 2007) 

O-palmitoyl mannose 

 

(Garg et al., 2007) 

Pectin 

 

(Nguyen et al., 

2011) 

Poly(acrylic acid) 

 

(Takeuchi et al., 

1994; Werle et al., 

2009) 

Poly(asparagines) 

 

(Park et al., 2011) 

Polyethylene glycol 

 

(Abuchowski, et 

al. 1977; Beugin 

et al., 1998; 

Woodle and 

Lasic, 1992) 
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Table 1.2 (continued) 

Poly(vinyl alcohol) 

 

(Rescia et al., 2011; 

Takeuchi et al., 2000; 

Takeuchi et al, 

2001b) 

Pullulan 

 

(Kang et al;, 1997; 

Sehgal and Rogers, 

1995) 

 

   

 Polysaccharide-modified liposomes are prepared using the co-incubation method. 

The polysaccharide chains adsorbed onto the liposome surface interacts with the 

liposome through hydrogen bonding or hydrophobic interaction (Sato and Sunamoto, 

1992). However, desorption of the polysaccharides from the liposome surface may 

occur during storage and transportation (Sihorkar and Vyas, 2001; Sunamoto and 

Iwamoto, 1986). In order to prevent desorption, the polysaccharide was further modified 

by introducing hydrophobic moieties such as fatty acids and cholesterol onto its 

backbone (Figure 1.5) (Sehgal and Rogers, 1995; Sihorkar and Vyas, 2001; Wang et al., 

2010). These hydrophobic moieties are allowed to interact covalently with the lipid 

bilayer of the liposome, thus endowing the lipid bilayer membrane with an anchoring 

ability (Sihorkar and Vyas, 2001). The incorporation of the modified polysaccharide 

into the lipid bilayer of the liposome can reduce membrane permeability, increase the 

stability as well as bioavailability of the liposome and encapsulated drugs (Ge et al., 

2007). 
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Figure 1.5: Hydrophobic moieties from the polysaccharide 

backbone anchored into the lipid bilayer of the liposome.  

 

1.2.2  Chitosan modified liposomes 

Chitosan-modified phospholipid liposomes are showing promise for application in gene 

and drug delivery (Liu et al., 2011; Parabaharan, 2008). According to Liu et al. (2011), 

the combination of the phospholipid liposome and chitosan-DNA complexes has 

enhanced the DNA delivery efficiency in the in vitro cell culture system as well as the 

in vivo mouse model system. The application of the chitosan-coated phospholipid 

liposome as a drug carrier for lung disease through nebulisation was also investigated 

(Zaru et al., 2009). It was found that the chitosan-coated phospholipid liposome 

exhibited greater stability and its drug encapsulation efficiency was relatively higher 

when compared to the non-coated phospholipid liposome.  

The bioadhesive properties of chitosan have also shown some potential 

application of chitosan in the mucoadhesive drug delivery system, especially in the oral 

peptides and proteins delivery (Prego et al., 2005; Sonia and Sharma, 2011). The study 

carried out by Takeuchi et al. (1996; 2003) has shown that chitosan-coated liposomes 

were able to improve the bioavailability and prolong the pharmacokinetic effect of the 

peptides (e.g. insulin) in the gastrointestinal tract. This is mainly due to the ability of the 

chitosan-coated liposome to protect the drug load from enzymatic degradation in the 
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gastrointestinal tract and its mucoadhesive property to the intestinal tract. Besides, the 

chitosan-coated phospholipid liposome was also found to show muco-penetrative 

behaviour across the mucous layer in the intestinal epithelial cell (Thongborisute et al., 

2006). Research had revealed that the orally administrated chitosan-coated phospholipid 

liposome could permeate the mucous layer in the small intestine and thus enhance the 

adsorption of the therapeutic drugs.  

Chitosan-anchored phospholipid liposome is another type of liposome where the 

liposome surface was modified with lipid-modified chitosan. The lipid-modified 

chitosan can be prepared via chemically attaching the lipids such as fatty acids to either 

the carboxyl group at the C-6 position (esterification) or amino group at the C-2 position 

(acylation) of the chitosan (Qu et al., 2012; Sonia and Sharma, 2011; Wang et al., 2010). 

The fatty acid modified chitosan can successfully modify the liposome surface by 

anchoring its fatty acid alkyl chain into the phospholipid liposome bilayer, thereby 

improving the entrapment efficacy of the drugs by reducing the permeability of the 

liposome bilayer and thus, prolonging the drug releasing rate (Qu et al., 2012). This will 

enhance the stability of the liposome and increase its encapsulated drug circulation time. 

Besides fatty acids, cholesterol also has been used to modify the chitosan for the 

preparation of cholesterol modified chitosan-anchored phospholipid liposome for the 

encapsulation of epirubicin as an anticancer drug (Wang et al., 2010). It was found that 

the drug release rate of the Epirubicin from the chitosan-anchored phospholipid 

liposome decreased significantly when compared to the unmodified liposome. This slow 

release profile of the encapsulated epirubicin from the chitosan-anchored phospholipid 

liposome was mainly attributed to the decrease in the liposome membrane permeability 

after surface modification.    
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1.2.2.1 Chitosan 

Chitosan is a linear polysaccharide which is composed of randomly distributed β-(1-4)-

linked ᴅ-glucosamine and N-acetyl-ᴅ-glucosamine (Figure 1.6).  It is also a form of N-

deacetylated chitin that can be prepared from N-deacetylation of the chitin under 

alkaline conditions using concentrated sodium hydroxide or the enzymatic hydrolysis 

method in the presence of chitin deacetylase (Rinaudo, 2006). The degree of 

deacetylation of chitosan normally ranges from 50% to 98% whereas for the 

commercially available chitosan, the degree of deacetylation is generally 80% (Baldrick, 

2010; Dufresne et al., 1999; Rinaudo, 2006).  

 

 

Figure 1.6: The molecular structure of chitosan with n is 

the number of repeating unit where R = H or COCH3.  

 

Chitosan has a wide range of application in different fields such as agriculture, 

waste water treatment, dentistry, cosmetic, pharmaceutical, and food industries 

(Honarkar and Barikani, 2009; Renault et al., 2009; Zhang et al., 2006). There is a 

growing interest in using chitosan in biomedical application mainly due to its 

biocompatibility, biodegradability, non-toxic nature, bioadhesivity (Adamo and Isabella, 

2003; Aranaz et al., 2010), mucoadhesive properties (Karn et al., 2011; Rengal et al., 

2002) and cost effectiveness (Illum, 1998; Kean and Thanou, 2010; Sheng et al., 2009). 

Besides, the chitosan was also a potential haemostatic agent as it was found to have a 

blood clotting ability (Barnard and Millner, 2009; Gu et al., 2010; Russell et al., 2009). 

http://en.wikipedia.org/wiki/Polysaccharide
http://en.wikipedia.org/wiki/D-glucosamine
http://en.wikipedia.org/wiki/N-Acetylglucosamine
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Several haemostatic products such as Celox and HemCon, which contain chitosan for 

bleeding control in cardiothoracic surgery and bandage have been marketed in USA, as 

well as Europe (CDRH, 2006; Russell et al., 2009). Besides, chitosan gel membrane has 

also been used for wound dressing. The chitosan gel membranes showed excellent 

results in wound healing by promoting skin regeneration and also preventing scar tissue 

formation (Oshima et al., 1987; Risbud and Bhat, 2001). 

However, research conducted on the chitosan-coated liposome and the chitosan-

anchored liposome has been largely focused on the phospholipid-based liposome (e.g. 

(Abdelbary, 2011; Li et al., 2009; Zaru et al., 2009). The chitosan-coated non-

phospholipid liposome such as fatty acid liposome has not been reported because the 

preparation of the chitosan-modified fatty acid liposome is often restricted by the poor 

solubility of chitosan in aqueous solution.  

 

1.2.2.2 Solubility of chitosan in aqueous solution 

In general, chitosan is insoluble in both neutral and alkaline solutions, and can only be 

dissolved in mild acidic solutions (Chan et al., 2007). Under acidic conditions, the 

solubilisation of chitosan occurs by the protonation of the –NH2 group at the ᴅ-

glucosamine repeating units (Rinaudo, 2006). When the pH of the aqueous phase is 

increased, deprotonation of chitosan at the –NH2 group occurs leading to flocculation of 

the polymer chains. The chitosan was eventually precipitated with further increase in 

the pH of the solution to pH 7.5 (Rinaudo, 2006). However, the aqueous solubility of 

chitosan can be improved by reducing its molecular weight (Li et al., 2006; Rinaudo, 

2006). This is attributed to the decreasing intermolecular interaction such as van der 

Waals forces between the chitosan chains (Kubota et al., 2000). Besides, increasing the 

degree of the N-deacetylation of chitosan and the distribution type of N-acetyl-ᴅ-

http://en.wikipedia.org/wiki/D-glucosamine
http://en.wikipedia.org/wiki/D-glucosamine
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glucosamine and the ᴅ-glucosamine copolymers in the chitosan chains also influence 

the aqueous solubility of the chitosan (Aiba, 1991; Fan et al., 2009; Rinaudo, 2006).  

 

 

Figure 1.7: The sequence of the N-acetyl-ᴅ-glucosamine and ᴅ-

glucosamine residues in the chitosan chains. (a) Random-type 

distribution of N-acetyl-ᴅ-glucosamine and ᴅ-glucosamine residues 

which can be prepared from alkaline treatment in the dissolved state. (b) 

Block-type distribution of N-acetyl-ᴅ-glucosamine and ᴅ-glucosamine 

residues which can be prepared at high temperatures under solid-state 

reaction conditions. 

 

 

It has been reported that chitosan with the random-type distribution of N-acetyl-

ᴅ-glucosamine and ᴅ-glucosamine residues have higher aqueous solubility when 

compared with the block-type distribution as depicted in Figure 1.7 (Aiba, 1991; 

Tolaimate et al., 2000). This is because the block-type distribution of the N-acetyl-ᴅ-

glucosamine and ᴅ-glucosamine residues has a higher cohesive force between the 
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chitosan chains than the random-type which limits the swelling behaviour of the 

chitosan and consequently decreases its solubility. Besides the degree of deacetylation, 

chemical modification can also improve the aqueous solubility of chitosan (Sogias et al., 

2010). Modifying the chitosan by introducing hydrophilic or hydrophobic groups in the 

chitosan chains will reduce its crystallinity and thus, improve its aqueous solubility (Fan 

et al., 2009; Ge et al., 2007; Hirano et al., 2002).  

 

1.3 Fatty acid liposomes 

Much interest is being generated in developing non-phospholipid liposomes in recent 

years due to the relatively higher costs associated with phospholipid preparation (Bastiat 

et al., 2007; Gupta et al., 1996). Non-phospholipid liposomes can be prepared from 

amphiphiles such as fatty acids (Bastiat et al., 2007). The preparation of liposomes 

using fatty acids was first reported by Gebicki and Hicks (Gebicki and Hicks, 1973; 

Morigaki and Walde, 2007). The formation of fatty acid liposomes is often restricted to 

a narrow pH range as it required the coexistence of both the ionic and neutral forms of 

the fatty acid in critical ratio (Cistola et al., 1988). In other words, the fatty acid 

liposome is formed when the fatty acid is at or around its corresponding pKa value 

(Bastiat et al., 2007). In order to determine the correct pH range to produce the fatty 

acid liposome, a titration curve can be constructed (Figure 1.8). The titration curve can 

be divided into five regions (Cistola et al., 1988):  

 at the (I) region, the pH of the mixture was high (i.e. highly alkaline) and contained 

micelles in the aqueous phase;  

 region (II) is a three-phase region containing a mixture of micelles, with liposomes 

in the aqueous phase;  

 region (III), a two-phase region containing liposomes in the aqueous phase;  
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 further increase in the volume of hydrochloric acid and the degree of protonation of  

the fatty acid increase led to the formation of emulsion as shown in region (IV); 

 in region (V), when the mixture became acidic, the fatty acid molecules were fully 

protonated and the formation of water insoluble oil droplets or fatty acid crystals 

was observed.  

 

   

 

 

 

 

 

Figure 1.8: (a) Images of the physical appearance of (i) micelles, (ii) 

liposomes, and (iii) emulsions. (b) Titration curve indicating the 

regions for the formation of (I) micelles, (II) coexistence of micelle 

and liposomes, (III) liposomes, (IV) coexistence of liposomes and 

emulsion, and (V) emulsion. 
  

 

 

 

 

 

   

(a) (i) (ii) (iii) 

(b) 
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 It has also revealed that the saturated fatty acids composed of 8 to 16 carbons are 

capable of forming liposomes (Apel et al., 2002; Hargreaves and Deamer, 1978). The 

pH range for the formation of these fatty acid liposomes can vary from pH 7 to pH 9 

depending on the chain length of the fatty acid. As demonstrated by several studies, the 

saturated fatty acid with 8 to 10 carbons form liposomes at pH 7 (Apel et al., 2002; 

Cistola et al., 1988; Hargreaves and Deamer, 1978; Morigaki et al., 2003; Namani and 

Walde, 2005). However, the pH for the formation of fatty acid liposomes further 

increases to pH 9 with the increasing fatty acid chain length from 12 to 16 carbons. The 

fatty acid liposomes can also be prepared using unsaturated fatty acids such as 

myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, and docosahexanoic acid 

(Chen and Szostak, 2004; Morigaki and Walde, 2002; Namani et al., 2007; Rogerson et 

al., 2006). These unsaturated fatty acids were able to form liposomes at pH 8 – 9.  

  Unlike the phospholipid liposome, the concentration of the fatty acid monomers 

in equilibrium with the bilayer of the fatty acid liposome (~ 10-4 M) was significantly 

larger than that of the phospholipid liposome (~ 10-10 M). This could be due to the fact 

that the bilayer of fatty acid liposomes are non-covalently bound, and merely interact 

electrostatically between their carboxylic (COOH) and carboxylate (COO-) groups in 

the solution. Therefore, the interchange kinetic refers only to monomeric exchange and 

not to pairs of fatty acids, thus reflecting the higher concentration in the fatty acid 

liposome when compared with the phospholipid liposome. Another scenario could be 

due to the imbalance between the COOH to COO- ratio of the fatty acid whereby the 

COO- has a higher solubility in the aqueous bulk solution. It was also suggested that the 

fatty acid liposome system is a chemical system in equilibrium, because the dynamic 

exchange rate of the fatty acid monomer between the bulk and the monolayer of the 

liposome bilayer membrane was relatively higher when compared with the phospholipid 

liposome (Morigaki and Walde, 2007; Walde et al., 1994).  
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1.4 Potential application of liposomes in dermal/transdermal 

delivery systems 

The potential application of liposomes as topical and transdermal drug delivery carriers 

has been extensively studied. This is because the liposomes were found to improve the 

drug deposition and permeation rate within the skin (El Maghraby et al., 2008). Figure 

1.9 shows the proposed routes that the drug-loaded liposomes may able to penetrate the 

epidermal layer through the transepidermal pathway, as in paths C and D (de Jager et 

al., 2007; El Maghraby et al., 2008). The transepidermal pathway refers to the 

permeation of chemical compounds such as active therapeutic agents across the stratum 

corneum without altering the structure of the stratum corneum. The transepidermal 

pathway consists of two micro-pathways, one is the intercellular route and the other is 

the transcellular route (Barry, 1991). For the intercellular route, liposomes are required 

to diffuse deep into the dermis layer through the intercellular space (Figure 1.9(C)). 

Meanwhile, the transcellular route involved the diffusion of the liposomes through the 

keratinocytes and the lipid lamellae (Figure 1.9(D)) (Fox et al., 2011).  

 

Figure 1.9: The possible penetration route of the drug-loaded liposome through the stratum 

corneum, (A) the loaded drug release on the surface of the stratum corneum, (B) liposome 

adsorption or fusion with the stratum corneum and release the drug payload, (C) liposome 

penetration through the intercellular diffusion in the stratum corneum, and (D) liposome 

penetration via transcellular diffusion through the keratinocytes and lipid lamellae.  
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 Many studies have been carried out to investigate the efficiency of different 

types of liposomes as the dermal and transdermal drug delivery vehicle (El Maghraby et 

al., 2008; Pierre and Costa, 2011). In the dermal delivery system, the phospholipid 

liposomes, less than 278 nm in size, were found to penetrate deeper into the dermis 

layer of the skin via the intercellular penetration mechanism, which was proved by the 

microscopic technique (van Kujik-Meuwissen et al., 1998; Verma et al., 2003). Besides 

the phospholipid liposomes, the penetration of the non-phospholipid liposomes prepared 

from sucrose esters through the stratum corneum was also observed under the freeze-

fracture electron microscope by Honeywell-Nguyen et al. (Honeywell-Nguyen et al., 

2002; Honeywell-Nguyen et al., 2003). Their results showed that the liposomes, 100-

200 nm in size, were present in significant amounts in the deeper layer of the stratum 

corneum. These liposomes were found to fill the channel-like region located within the 

intercellular lipid lamellae and revealed the ability of the liposome to diffuse into the 

deeper layer of the skin via the intercellular diffusion route.  

 Besides deep penetration, the liposomes can also act as a localised drug reservoir 

in the skin in order to avoid excessive usage of the active ingredients while minimising 

the side effects of the active ingredients during topical delivery (El Maghraby et al., 

2005). Mezei and Gulasekharam, (1980) demonstrated the topical administration of 

triamcinolone encapsulated phospholipid liposomes through the anti-fungal liposomal 

lotion formulation. The drug concentration in the epidermis and dermis layers was four 

times higher than in the control sample and the urinary excretion of the drug was 

lowered. Besides the anti-fungal liposomal formulation, liposomal formulation was also 

used for the treatment of other dermatological diseases, such as acne and psoriasis (de 

Leeuw et al., 2009). Foong et al., (1990) found that the liposome containing retinoic 

acid produced higher percutaneous adsorption and greater retention of the retinoic acid 

compared to the conventional cream. The topical anaesthesia delivery of lidocaine using 
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the phospholipid liposomal formulation has also shown an improvement in its 

effectiveness and prolonged anaesthetic action of the drugs compared with the 

conventional dosage form of formulation (Glavaš-Dodov et al., 2005; Ranjit and Vyas, 

1996).  

 For transdermal delivery, several studies have shown the ability of the liposome 

to enhance the drug transport across animal and human skin. The effectiveness of the 

liposome to deliver drugs across the skin was demonstrated by using model drugs such 

as oestradiol (El Maghraby et al., 2000) and diclofenac (Cevc and Blume, 2001). It was 

found that drug-encapsulated liposomes were able to penetrate into the skin 

spontaneously and were distributed throughout the whole body via the lymphatic system 

(Cevc et al., 1995). This finding has also shown that the transdermal administration of 

anti-cancer drugs into the systemic circulation using liposomes is promising. Several 

studies have been conducted to investigate the effectiveness of transdermal 

administration of 5-fluorouracil which is a type of anti-cancer drug using liposomal 

formulation (da Costa and Moraes, 2003; El Maghraby et al., 2001; Glavaš-Dodov et 

al., 2003). Besides small molecule drugs, the transdermal delivery of macromolecules 

such as insulin in the liposome was also investigated as demonstrated by Cerv et al., 

(1998) where the phospholipid liposome encapsulated insulin was successfully 

delivered through transdermal route into the human skin. Results also showed that the 

transdermal delivery of insulin using liposome can be as efficient as the injection 

method.  
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1.5 Rheology of gel and its topical applications 

Rheology is a commonly used method in the characterisation of polymeric gels. In the 

rheological study, the gel is characterised according to its flow and viscoelastic 

properties. These are important properties of the gel as they provide information on the 

deformability, spreadability, and stability of the gel (Brummer, 2006b; Brummer, and 

Godersky, 1999; de Brito et al., 2005; Nishinari, 2009). Besides, the rheological 

behaviour of the gels could also affect the interaction between the liposome and the skin 

and skin feel upon application (Dragicevic-Curis et al., 2009). Flow property such as gel 

viscosity, especially for the topical application gels such as the liposomal gel, can 

directly influence the treatment consistency to the targeted site. This is because the 

viscosity is responsible for gel spreadability and poor spreading could reduce the 

homogeneity of the liposome’s dispersion in the skin (Garg et al., 2002; Ueda et al., 

2009). As a result, the liposome’s diffusion rate from the gel into the skin is affected 

and this may also cause adverse effects due to the incorrect drug dosage that has been 

transferred (Glavaš-Dodov et al., 2003; Ivens et al., 2001; Jelvehgari et al., 2007). 

Besides, monitoring the rheological properties of the topical application gel would also 

help to control the batch-to-batch production consistency of the liposomal gel in order 

to ensure the efficiency of the final products. 

 Other than the spreading property of the gel, rheological data also helps to 

evaluate the skin feel of the gel upon application, especially for topical application 

products, as they affect sensation when the gel is rubbed against the skin (Islam et al., 

2004). This can be done by studying the critical yield point and shear thinning of the 

gels. For example, a high yield point gel is desirable for storage as it could suspend and 

stabilise the loaded carrier or drugs. However, the high yield stress of the gel must occur 

at a low shear rate for the ease of application. Most of all, the gel should be able to 
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exhibit shear thinning behaviour in order to allow even spreading onto the skin for 

optimum adsorption of the loaded carrier or drug (Brummer, 2006b; Jelvehgari et al., 

2007; Jones et al., 1997). In addition, the gel formulations used in the topical 

applications are expected to be able to extend their retention time on the targeted site. In 

order to achieve this property, gels with thixotropic behaviour are often used in the 

preparation of cosmetic and pharmaceutical products such as sunscreen, topical drugs 

and vaginal formulations. Such thixotropic type of gels extend their retention time by 

forming a layer of film on top of the targeted site and thus, prolonged the release of the 

liposome or loaded drug (Lee et al., 2009). 

 Apart from the physical flow properties of the gels, information on its 

microstructural changes with respect to the applied strain and frequency related to its 

physical strength can also be extracted from their rheological data (Brummer, 2006a; 

Grillet et al., 2012). This can be achieved by studying the viscoelastic properties of the 

gel. Generally, gels that exhibit high elastic property possess great internal network 

structure integrity and physical strength (Nishinari et al., 2000). Besides physical 

strength, it is also possible to estimate the thermal stability and gelling temperature of 

the gel by evaluating its viscoelastic behaviour as a function of temperature (Hossain et 

al., 2001; Tischer et al., 2006). These tests provide useful information on the study of 

storage and lifetime of the final gel products.   
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1.6 Objective 

a) To prepare and characterize chitosan- and N-(fatty acyl)-chitosan-coated oleic 

acid liposome; 

b) To prepare carbohydrate-based liposomal gel; 

c) To study the rheological properties of the liposomal gel. 
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CHAPTER 2 

 
2.0 Materials  

All solutions and samples were prepared by using deionized water with the resistivity of 

18.2 Ω/cm, (Barnstead Diamond Nanopure Water Purification, Barnstead International, 

Iowa USA). ιC was obtained from Fluka (USA). Food grade CMC with degree of 

substitution ranging from 0.60 to 0.70, was purchased from Dai-Ichikogyo Seiyaku Co. 

Ltd. (Japan). Boric acid, hydrochloric acid and acetone were obtained from Merck 

(Germany). Sodium hydroxide (NaOH) and sodium nitrite (NaNO2) were purchased 

from Fluka (Switzerland). Potassium bromide (KBr) for IR spectroscopy was purchased 

from Merck (Germany). Deuterium oxide (D2O) and deuterated acetic acid (CD3COOD) 

were purchased from ARMAR Chemicals (Switzerland). GC grade oleic acid (OA) 

(99%), and acetic acid were purchased from Sigma (USA). Potassium chloride was 

purchased from R&M (UK). Palmitoyl chloride was purchased from Aldrich 

(Switzerland) and used as received. Chitosan with the average molecular weight of 150 

kDa was obtained from Acros Organics (USA). 

 

2.1 Preparation of depolymerized chitosan 

Different molecular weights of chitosans were prepared through depolymerisation 

reaction. First, an appropriate amount of chitosan was dissolved in 1% acetic acid 

solution to yield 1% (w/v) of chitosan solution. The depolymerisation was performed by 

adding dropwise of 7 and 10 mL of NaNO2 solution (0.10 mol dm-3) into the solution 

1% (w/v) chitosan solutions separately (Table 2.1). The reaction mixture was stirred 

under magnetic stirring at room temperature for 1 hour. Then, the pH of the solution 

was adjusted to pH 8-9 with 0.1 mol dm-3 of NaOH solution in order to precipitate out 

the non-water soluble chitosan that later was removed by filtration. The remaining 
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filtrate was neutralized to pH 7 using 0.1 mol dm-3 of hydrochloric acid solution. The 

remaining water soluble chitosan was precipitated by adding acetone and collected by 

using centrifugation method (will be discussed in section 2.6.1). The collected 

precipitate was dried under vacuum (Janes and Alonso, 2003; Mao et al., 2004).  

 

Table 2.1: Volume of NaNO2 used in the depolymerisation reaction of chitosan. 

Name Volume of NaNO2 added (mL) 

Ch1 10 

Ch2 7 

 

 

2.2 Preparation of N-Acylated Chitosan  

Two types of Ch2Ps with different degree of acylation (DA) were prepared from Ch2 

(Ch2P1 and Ch2P2). First, 1% (w/v) of Ch2 solution was preprared by dissolving an 

appropriate amount of Ch2 into 1% of acetic acid solution. Then, the pH of the Ch2 

solution was adjusted to 7. Then, 27 μL and 55 μL of palmitoyl chloride were added 

into two Ch2 solutions, separately. These two solutions were stirred under magnetic 

stirring at room temperature to yield Ch2P1 and Ch2P2, respectively. After 5 hours, the 

mixtures were neutralized and Ch2P1 and Ch2P2 were precipitated using acetone. The 

Ch2P1 and Ch2P2 were collected by centrifugation method as discussed in section 2.6.1. 

The collected Ch2P1 and Ch2P2 were washed several times with chloroform to 

eliminate any presence of free fatty acid and followed by drying under vacuum oven at 

30oC  (Le-Tien et al., 2003).  

 

2.3 Preparation of OA liposome and chitosan-modified OA liposome 

A liposome solution with final concentration of 30 mmol dm-3 was prepared by 

dissolving appropriate amount of OA using 50 mmol dm-3 of borate buffer (pH 8.8). For 
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Chs-modified OA liposome, series of Ch1 and Ch2 solutions with different 

concentrations ranging from 0.04 to 0.30% (w/v) were prepared by dissolving 

appropriate amount of Ch1 and Ch2 into 50 mmol dm-3 of borate buffer. The pH of OA 

liposome, Ch1 and Ch2 solutions were adjusted to 7 before mixing. Then, the liposome 

solution was added dropwise into Ch1 and Ch2 solutions under magnetic stirring. The 

mixtures were stirred for 24 hours at room temperature. Then, the pH of the mixtures 

was adjusted to 8.8 for the formation of Chs-coated OA liposomes (OACh1 and 

OACh2). With similar method, OA liposomes modified with Ch2P1 and Ch2P1 were 

prepared (OACh2P1 and OACh2P2). All liposome solutions were incubated at 25oC for 

24 hours before analysis.    

 

2.4 Preparation of ιC and CMC gel  

1% (w/w) of ιC gel and 2% (w/w) of CMC solution were prepared individually by 

dispersing appropriate amount of ιC and CMC into 50 mmol dm-3 borate buffer (pH 8.8) 

that containing 0.20% (w/w) of potassium chloride. These solutions were then heated to 

80 °C in a sealed vial until a clear gel system was obtained. All ιC gels and CMC 

solutions were kept at room temperature for 24 hours before proceed to the next 

preparation step. Then, a series of gel mixtures with different amount of ιC and CMC 

were prepared using the above mentioned ιC gel and CMC solution. These gel mixtures 

were further diluted with 50 mmol dm-3 borate buffer (pH 8.8) at the ratio of 9 to 1. The 

final composition of ιC and CMC was presented in mass fraction (Table 2.2). The 

mixtures were stored at room temperature for another 24 hours before rheological study. 

Prepared gel with optimum rigidity and elasticity was selected to prepare liposomal gels.  
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Table 2.2: The final concentration of the gel mixtures. 

ιC-CMC ratio 
Mass Fraction 

ιC CMC 

8:2 0.8 0.2 

7:3 0.7 0.3 

5:5 0.5 0.5 

4:6 0.4 0.6 

3:7 0.3 0.7 

 

2.5 Preparation of liposomal gels  

Liposomal gels were prepared by dispersing 10% (w/w) of the prepared OA, OACh1, 

OACh2, OAChP1, and OAChP2 liposomes into the selected gel with the ratio of 1:9 by 

weight using a Vortex mixer (Uzusio VTX-3000L, Japan). The mixtures were vortexed 

for 3 minutes and store at room temperature for 24 hours prior to analysis.  

 

2.6 Instrumentation 

2.6.1 Centrifugation 

The Chs and Ch2Ps precipitates that were obtained from section 2.2.2 and 2.2.3 were 

collected by centrifugation method. The centrifugation was performed at 5000 rpm for 2 

minutes using a CT15RT TechComp Versatile Refrigerated Centrifuge equipped with a 

TA15-6-50 angle rotor at 25oC. (Janes and Alonso, 2003; Mao et al., 2004).  

 

2.6.2 Chitosan structural analysis 

2.6.2.1  Fourier transform infrared spectroscopy (FT-IR) analysis 

The FT-IR spectra for Ch1, Ch2, Ch2P1 and Ch2P2 in KBr disc were obtained using 

Perkin Elmer spectrometer (model RX-1, USA). For the sample preparation, these Ch1, 

Ch2, Ch2P1, and Ch2P2 were mixed with KBr (1:100) and compressed into pellets. The 
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resolution of the IR spectra was 4 cm-1 and was recorded in 8 accumulations from 400 – 

4000 cm-1 in transmittance mode. The degree of acylation (DA) of Ch1, Ch2, Ch2P1 

and Ch2P2 was calculated from FT-IR spectra using the following equation (Kasaai, 

2008), 

   Eq. 2.1 

 and  are the intensity of the 1655cm-1 and 3450 cm-1 peaks in FT-IR spectra, 

respectively.  

 

2.6.2.2 1H-NMR 

The sample for 1H-NMR analysis was prepared by dissolving 10 mg of each Ch1, Ch2, 

Ch2P1, and Ch2P2 into 1 ml of 1 % of CD3COOD/D2O solution. 1H-NMR spectra for 

all samples were acquired using a JEOL JNM-GSX 270 FT NMR spectrometer (270 

MHz) at 70 oC. The 1H-NMR measurements of the samples were performed at high 

temperature in order to obtain better resolution of the signals and minimized the 

interference from the solvent peaks with the chitosan peaks (Lavertu et al., 2003; 

Onesippe and Lagerfe, 2008).   

 

2.6.3 Average molecular weight determination 

The average molecular weight of Ch1, Ch2, Ch2P1, and Ch2P2 were determined by 

Static Light Scattering (SLS) method using a Malvern NanoSeries ZetaSizer (Malvern, 

UK) at 25oC. First, a series of Ch1, Ch2, Ch2P1, and Ch2P2 solutions with different 

concentrations was prepared. Then, the refractive index of the solutions was determined 

with an ATAGO refractometer (NAR-2T, Japan) at 25oC. The refractive index 
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3450

100
(%) ( )

1.33

A
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A
 

1655A 3450A



38 
 

increment, of the Ch1, Ch2, Ch2P1, and Ch2P2 was determined from the slope of 

the linear relationship between the refractive index and concentration (Zhao et al., 

2011). A value of 0.159 of  was used in this study in order to determine the average 

molecular weight of all Chs and Ch2Ps. The average molecular weight for the Chs and 

Ch2Ps was measured in triplicate.  

 In the SLS theory, the average molecular weight was determined by applying the 

Rayleigh equation as shown in the following equation: 

     
2

1
( 2 ) ( )

KC
A C P

R M

     Eq. 2.2 

where C is the concentration, M is the molecular weight, A2 is the 2nd viral coefficient 

which described the interaction strength between the polymer and it’s dispersed 

medium, ( )P  is the angular dependency of the analyte scattering intensity. In the 

Rayleigh scattering, this ( )P   is reduced to 1 by assuming that the particles are small 

and the multiple photon scattering was absent. Therefore, the Rayleigh equation can be 

rewritten as follow:  

     
2

1
2

KC
A C

R M

      Eq. 2.3 

where the K is an optical constant and can be defined as follow: 

     

2

4

2
( )o

o A

dn
K n

N dc




     Eq. 2.4 

where 4

o is the wavelength of the laser, AN is the Avogadro’s number, on is the 

refractive index of the solvent, and 
dn

dc
is the differential refractive index increment 

which referred to the changes in refractive index as a function of analyte concentration. 

 The R found in the Rayleigh equation (Eq. 2.3) is the Rayleigh ratio of the 

dn

dc

dn

dc



39 
 

analyte which is used to characterize its scattered intensity at scattering angle of  . The

R of the analyte can be obtained from the relative scattering intensity of the analyte to 

that of a standard pure liquid and is defined as follow: 

      

2

2

A o
T

T T

I n
R R

I n
      Eq. 2.5 

where AI and TI is the scattering intensity of the analyte and standard liquid, respectively; 

Tn is the refractive index of the standard liquid; and TR is the Rayleigh ratio of the 

standard liquid. In this study, toluene was used as the standard liquid for the 

determination of the analyte’s R .  

 After the scattering intensity of the analyte was obtained, a Debye plot was 

constructed by the Zetasizer software by plotting 
KC

R

versus concentration of the 

analyte. The molecular weight of the analyte was determined from the intercept of the 

plot.  

 

2.6.4 Determination of chitosan solubility by UV-Vis spectroscopy 

The solubility of Ch1, Ch2, Ch2P1, and Ch2P2 in water were determined using UV-Vis 

spectrophotometer. First, a series of Ch1, Ch2, Ch2P1, and Ch2P2 solutions with 

different concentrations was prepared. Calibration curve was constructed by plotting the 

intensity of the absorption at the wavelength of 274 nm versus concentration. Then, 

saturated Ch1, Ch2, Ch2P1, and Ch2P2 solutions were prepared and their UV-Vis 

absorption was determined at 25oC. The solubility of the Ch1, Ch2, Ch2P1, and Ch2P2 

solutions was obtained by extrapolation method from the calibration curve (Li et al., 

2006).    
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2.6.5 Surface tension measurement 

The surface tension of a series of OA, OACh1 OACh2, OACh2P1, and OACh2P2 

liposome solutions with different concentrations was determined by du Noüy ring 

method using a Krüss Tensiometer (Model K100, Germany) at 25oC. These liposome 

solutions were diluted using 50 mmol dm-3 of borate buffer (pH 8.8) and were incubated 

at 25oC for overnight before measurement. Surface tension of the prepared solutions 

was determined using 20 successive measurements and the standard deviation was 

calculated.   

 

2.6.6  Size and Zeta potential  

The size and zeta potential of the OA, OACh1, OACh2, OACh2P1, and OACh2P2 

liposomes were measured using a Malvern NanoSeries ZetaSizer (Malvern, UK) at a 

constant temperature of 25oC. The size and zeta potential of the prepared liposome were 

monitored over 30 days of storage time. The size and zeta potential measurements for 

all liposomes were measured in triplicates and the average value was reported.   

 

2.7 Morphological study  

2.7.1 Optical Polarizing Microscope imaging 

The polarizing micrographs of the OA, OACh1, OACh2, OACh2P1, and OACh2P2 

liposomes were captured using a Leica Polarizing Microscope equipped with Leica 

QWin software (Leica Mycrosystems, Germany). All measurements were performed at 

the temperature of 25oC. 
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2.7.2 Confocal microscope 

The micrographs of the liposomes and liposomal gels were studied using a Leica TCS 

SP5 confocal setup mounted on a Leica DMI 6000 CFS inverted microscope (Leica 

Microsystems GmbH, Germany) and was operated under the Leica Application Suite 

Advanced Fluorescence program (LAS AF) (courtesy of Hi-Tech Instrument, Malaysia). 

The LGs were stained with acridine orange. The sample was equilibrated at room 

temperature for 5 minutes before further analysis. 

 

2.7.3 Atomic Force Microscope (AFM) imaging 

AFM images of the liposomes were captured using AFM Nanoscope III, Model 

MMAFM-2 (Digital Instruments, USA). All imaging was performed via tapping mode 

with integrated pyramidal tips aluminium cantilever (BS-Multi75Al) (Vermette et al., 

2002). The samples were prepared by placing a drop of the liposome solutions onto a 

freshly cleaved mica surface. The dispersing medium was removed by air dry (Paleos et 

al., 1996).   

 

2.7.4 Transmission Electron Microscope (TEM) imaging 

An Energy Filtered TEM (EFTEM) model LIBRA 120 equipped with an Olympus SIS-

iTEM (ver. 5) was employed to analyze the image of the prepared liposomes. A drop of 

the liposome solution was placed onto a copper-coated carbon grid followed by the 

removal of excess dispersed medium using a filter paper. Then, a drop of negative 

staining reagent (1% of phosphotungstic acid in 50 mmol dm-3 of borate buffer solution 

(pH 8.8) was added and the sample was air dried at room temperature for 25 minutes. 

The sample was then examined under TEM (Garg et al., 2007).  
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2.8 Rheological study 

The rheological tests in this study were performed using a stress/rate controlled Bohlin 

Germini CVO-R Rheometer (Malvern, UK) which was equipped with a temperature 

controller. All measurements were carried out at 25.0 ± 0.1oC with 4o/40 mm cone and 

plate geometry at 0.100 mm gap in triplicates and average value was reported. 

 

2.8.1 Dynamic oscillation measurement 

The amplitude sweep test was performed at a controlled strain mode with the applied 

strain ranging from 0.01 to 10 units at fixed frequency of 0.5 Hz. This amplitude sweep 

test was performed prior to frequency sweep test in order to ensure that the selected 

strain was within the linear viscoelastic region (LVR) of the gels (Figure 2.1). The 

frequency sweep test was performed at controlled strain mode by varying the frequency 

from 0.01 to 5 Hz.  

The viscoelastic property of the gels was studied from small deformation test 

using dynamic oscillatory rheometry method. In general, this oscillation method 

containing two main tests where both the storage elastic energy (elastic modulus, G’) 

and the loss of energy through viscous flow (viscous modulus, G”) can be obtained as a 

function of strain (amplitude sweep test) and frequency (frequency sweep test). In the 

amplitude sweep test, the gel is subjected to sinusoidal oscillating strain at a constant 

angular frequency and the response stress that shifted by an amount of phase difference 

(δ radians) is measured (Figure 2.2). For frequency sweep test, the gel is subjected to a 

constant strain and the response stress is recorded as a function of frequency. This test is 

useful in monitoring the behavior of the gel at different time scale since frequency is 

inversely proportional to time. 
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Figure 2.1: The linear viscoelastic region (LVR) of gels. 
 

 

 
 

 
Figure 2.2: Sinusoidal stress response which shifted by an amount 

of δ to the sinusoidal strain deformation for viscoelastic material.  

 

 

2.8.2 Temperature sweep 

The temperature sweep test was performed at temperature interval of 2oC from 20oC to 

60oC. The frequency was set at 0.5 Hz throughout the test and a constant strain of 0.01 

units which is well within the LVR of the gels is applied.  

In this test, a small and non-destructive shear stress or shear strain is applied 

onto the gel at a temperature range and the changes of its moduli were monitored. The 

gelling point of the gels was defined as the crossover point of the G’ and G” curves as 

shown in Figure 2.3 (MacArtin et al., 2003). The moduli of the gel will remain constant 

and show a plateau with G’ > G” when the applied temperature is below its gelling 

ωt 

 

δ 
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temperature. This also indicated that there are no significant changes in the internal 

network structure of the gel. However, when the applied temperature reached the gelling 

temperature of the gel, it’s G” will dominate against G’ which implied the deformation 

of the internal gel networks structure as a result in the changes of polymer chain’s 

mobility. 

 

   

Figure 2.3: (I) Constant moduli showing the thermal 

stability of the gel (G’ > G”). (II) Deformation of the 

internal gel network structure at high temperature (G” > G’). 

The cross point between the G’ and G” profiles show the 

gelling temperature of the examined gel.  

 

2.8.3 Creep-recovery test 

The creep measurements were performed at a constant stress of 0.1 Pa for 60 s (within 

the range of LVR) and the changes in the strain of the gel with time were recorded. This 

was followed by a recovery test where the applied stress is removed. In the recovery test, 

the responded strain or deformation of the gel is measured for another 300 s.  

The deformation from the creep and recovery test is presented as compliance, J 

(per unit stress). Generally, there are three types of creep and recovery curves as shown 

in Figure 2.4. For an ideal elastic material, it shows a constant strain response once the 
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material is loaded with stress and immediately returns to its original state upon removal 

of the applied stress (Figure 2.4(i)).  On the other hand, the strain of an ideal viscous 

material would show a linear response to the applied stress indicating the steady flow 

and its strain is not able to be recovered when the applied stress is removed (Figure 

2.4(ii)). A viscoelastic material would exhibit both the elastic response and followed by 

steady flow (Figure 2.4(iii)). However, the ability to recover its structure was mainly 

attributed to the magnitude of the applied stress. The viscoelastic material could fully 

recover if the applied stress was lower than its critical stress. Otherwise, the structure of 

this viscoelastic material could only be partially recovered as some of the applied stress 

has been dissipated in its viscous flow (Dolz et al., 2008; Goodwin and Hughes, 2008; 

Schramm, 2000). The creep and recovery test is also a useful method used to 

characterize the retardation time of the gel. This retardation time ( ret ) is 1

1G


 that 

measured the rate for the gel to reach its full deformation and it is unique for every 

material. The gel with large retardation time indicated that it takes a long period to reach 

its full deformation which implies that the gel is less elastic (Steffe, 1996).   

 

 

Figure 2.4: Creep and recovery curves for (i) an ideal 

elastic material, (ii) an ideal viscous material, and (iii) a 

viscoelastic material. 
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In this study, the creep profiles of all gels were fitted with the Burger’s model 

which is one of the most widely used model due to its acceptable results obtained in 

many cases (Figure 2.5) (Dolz et al., 2008). The four-components Burger’s model 

consisted of a Maxwell model and a Kelvin-Voigt model that are associated in series as 

shown in Figure 2.6 and can be expressed as follow (Dogan et al., 2012): 

1

0 1 1 0

1 1
( ) 1 exp

tG t
J t

G G  

  
     

  
   Eq. 2.6 

where Go is the instantaneous elastic modulus which defines the sample resistivity to 

deformation. G1 is the retarded elastic modulus, ηo is the residual viscous flow of the 

gels, η1 is the internal viscosity.  

 

   

Figure 2.5: Creep and recovery profile for Burger’s model. 

 

 

J∞ 
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Figure 2.6: Burger’s model which consists 

of Maxwell model and Kelvin-Voigt model 

in series. 

   

For the recovery test, the obtained profile as shown in Figure 2.5 can be fitted to 

the following equation: 

   Eq. 2.7 

where J∞ is the permanent deformation, JKV is the retarded deformation, B and C are the 

parameters that define the recovery speed and can be calculated from the first derivative 

with respect to Eq. 2.7. Typically, the recovery profile consisted of three zones (Dolz, 

2008). The first recovery zone is an instantaneous recovery (JSM) which corresponds to 

the spring element of the Maxwell model and the second zone corresponds to the 

Kelvin-Voigt model (JKV) which is decreasing in an exponential manner. The third zone 

is the permanent deformation (J∞) which corresponds to the sliding of dashpot from the 

Maxwell model (Figure 2.6). The contributions of the four elements i.e. JSM, JKV, and J∞ 

from the Burger’s model to the total compliance of the system can be calculated using 

Eq. 2.8, while the contribution of JSM , JKV , and J∞  to the total deformation (%Je)  of the 

system is determined using Eq. 2.9 . The recovery percentage (%Re) of the JSM , JKV , 

and J∞ and overall system recovery (%Rovr) of the gels were defined using Eq. 2.10 and 

Eq. 2.11, respectively (Dolz et al., 2008; Toro-Vazquez et al., 2010).   
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max ( )SM KVJ J J J    Eq. 2.8 
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% 100e
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J
   

Eq. 2.9 
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   

Eq. 2.10 
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J J
R

J


   

Eq. 2.11 

where Jmax is the maximum compliance achieved during the creep test. 

 

 

2.8.4 Steady flow measurement 

The steady rheological behavior of the gels was measured at a controlled rate mode 

varying from 0.01 to 200 s−1.  

Polymeric gels systems are generally non-Newtonian and exhibited shear 

thinning behavior which is also described as pseudoplastic. Although the polymeric gel 

is shear thinning, it also shows shear thickening behavior at low shear rate region as 

shown in Figure 2.7(a) (Goodwin and Hughes, 2008; Steffe, 1996). This is a typical 

behavior of a plastic type of material such as tooth paste and tomato paste. However, the 

pseudoplastic gel starts to flow when the applied shear exceeds its critical yield point 

and shows shear thinning behavior (Figure 2.7(b)). In order to study the degree of shear 

thinning of all gels and LGs, their shear viscosity profile were fitted with Power-Law 

model as shown in the following equation:  

    Eq. 2.12 

where η is shear viscosity, �̇� is shear rate, k is the consistency index, and n is the Power-

Law index (PLI) (Karaman and Kayacier, 2012). The consistency index is referred to 

the average viscosity of the fluid and it is temperature dependent (Osswald and 

1nk  
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Hernández-Ortiz, 2006). For a Newtonian fluid, this consistency index is equal to its 

Newtonian viscosity (Rauwendaal, 2001). The PLI is a measure of the degree of 

deviation of a fluid from Newtonian behavior (PLI for Newtonian fluid is equal to 1). A 

shear thinning fluid will show PLI value less than 1 and it is considered to behave 

strong shear thinning when its PLI is less than 0.5 (Rauwendaal, 2001). On the other 

hand, a shear thickening fluid showed PLI larger than 1 (Barrera et al., 2013).  

 

 

                                (a)  

 
 

                                 (b)  

 
 

Figure 2.7: (a) A typical viscosity curve of pseudoplastic gel 

showing shear thickening behavior at low shear rate. When 

the applied shear rate exceeded the yield point, the viscosity 

of the gel started to decrease with increasing shear rate and 

shows shear thinning behavior. (b) Yield stress 

determination from shear viscosity versus shear stress curve.  
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2.8.5 Thixotropic behavior study 

The thixotropic for all gels and LGs was performed within a shear rate of 0.1-10 s-1. In 

general, this time-dependent viscosity can be divided into rheopectic and thixotropic 

(Figures 2.8). The viscosity of a rheopectic gel will increase with time when it is 

subjected to a shear stress (Figure 2.8(a)). Meanwhile a thixotropic gel behaves like a 

shear thinning gel which demonstrated a decrease in viscosity with time and regained 

it’s viscosity when the applied shear is removed as a result of the ability of the gel to 

rebuild it’s network structure (Figure 2.8(b)). In this study, all the prepared gels and 

LGs are thixotropic gel. The degree of thixotropic for all gels was determined by 

performing hysterics experiment. In this approach, the thixotropic gel is subjected to an 

increasing shear rate and followed by a decreasing shear rate in order to produce a 

hysteresis loop. The degree of thixotropic is estimated from the area of the hysteresis 

loop (Figure 2.8(c)) and it was admitted that the greater the hysteresis area, the stronger 

the thixotropic properties (Barnes, 2000; Benchabane and Bekkour, 2008; Harris, 1967).  

 

                          (a) 

 
 

 
Figure 2.8: Time dependent viscosity profile of (a) 

rheopectic systems for shear thickening materials, (b) 

thixotropic for shear thinning materials, and (c) the 

hysteresis loop of thixotropic gel. 
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                          (b) 

 

 

 

                           (c) 

 
 

Figure 2.8 (continued) 

 

2.9 Statistic 

The statistical analyses were performed using Microsoft Excel 2010 (Microsoft 

Corporation, Redmond, WA). The data were analyzed with one-way analysis of 

variance (Moghadam). The differences in means and pairwise comparisons were 

considered to be statistically significant when P < 0.05 (Lorenzo et al., 2013; Nakauma 

et al., 2012). 
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CHAPTER 3 

3.1 Characterization of chitosan 

3.1.1 FT-IR analysis  

As shown in the FT-IR spectrum of the Chs and Ch2Ps (Figure 3.1), absorption peak at 

1555cm-1 and 1655 cm-1 assigned for the N-H bending of the amide II band and the 

carbonyl stretching of secondary amides from the chitosan backbone respectively (Xu, 

1996). The intensity of the N-H bending of amide II was found to increase with 

increasing degree of acylation (DA). Other peaks that have shown similar trend are the 

absorption peaks at 2879 and 2929 cm-1 which were attributed to the –CH stretching of 

the alkyl chains attached at the amino group at C-2 position of chitosan (Tien et al., 

2003). We are using these results to confirm that the acylation reaction which was 

carried out using palmitoyl chloride at the amino group of chitosan has been successful.  

4500 4000 3500 3000 2500 2000 1500 1000 500 0

Wavenumber (cm
-1
)

1655

1555

28792929
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Figure 3.1: FT-IR spectra of (a) Ch2, (b) Ch2P1 (DA=8 ± 2 %), 

and (c) Ch2P2 (DA= 18 ± 2 %). 
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3.1.2 1H-NMR analysis  

The 1H-NMR spectra of the Ch2 and Ch2Ps are presented in Figure 3.2. The peak 

assignment for the Chs and Ch2Ps were based on previous works (Li et al., 2006; 

Rinaudo et al., 1992). The proton of deuterated water (HOD) and deuterated acetic acid 

(CD3COOD) resonated at 4.65 and 2.11 ppm, respectively. Following is the proton 

assignment of Chs (Figures 3.2(a)): δ1.92 = CH3 (acetyl group of chitosan); δ2.5-2.1 = CH 

(carbon 2 of chitosan); δ4.1-3.1 = CH (carbon 2-6 of chitosan); and δ4.5-4.3 = CH (carbon 1 

of chitosan). After modification, the NMR spectrums of Ch2Ps showed two new peaks 

at δ1.1 and δ1.7 which refer to -CH3 and -CH2- protons of the long alkyl chains, 

respectively (Figures 3.2(b) and (c)) (Li et al., 2006). This result confirmed the 

modification of Ch2 with palmitoyl chloride.  
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Figure 3.2: NMR spectra for (a) Ch2, (b) Ch2P1, and (c) Ch2P2 where D is the glucosamine group and A is the N-acetyl or N-acyl 

glucosamine group of the chitosan. 
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3..1.3 Average molecular weight determination 

In this study, depolymerization of chitosan was performed using sodium nitrite. The 

average molecular weight of the original chitosan decreased from 150 kDa to 10 kDa as 

the amount of 0.1M sodium nitrite increased to 10 mL during depolymerization reaction 

(Table 3.1). The decrease in chitosan molecular weight with increasing sodium nitrite 

amount was mainly due to the increase in the amount of nitrosonium ion (NO+) and 

eventually more β-glycosidic linkage is cleaved. The cleavage mechanism of the β-

glycosidic linkage by ion NO+ was first proposed by Allan and Peyron (1995). This 

NO+ attacked the primary amine group in the chitosan molecule and resulting in the 

formation of 2,5-anhyro-mannose unit at the reducing end of the depolymerized 

chitosan (Figure 3.3). In order to produce the NO+, the sodium nitrite was first dissolved 

into deionized water to obtain nitrite ion (NO2-). The solution that contains NO2- was 

then added dropwise into the chitosan that dissolved in 1% acetic acid solution. Under 

acidic condition, the NO2- was converted into nitrous acid (HONO). These HONO were 

then rearranged to form NO+ and uses for the depolymerization of chitosan as shown in 

Figure 3.4. 

Table 3.1: Average molecular weight of the depolymerized chitosan with different amount of 

sodium nitrite and the degree of deacetylation. 

Name 
Volume of 0.1M sodium 

nitrite used (mL) 

Average molecular 

weight, Mw (kDa) 

Degree of deacetylation 

(%) 

(± 2 %) 

chitosan 0 150 90 

Ch2 7 25 90 

Ch1 10 10 90 

Ch2P1 - 29 82 

Ch2P2 - 32 72 
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Figure 3.3: Chemical equation of the depolymerization of chitosan by 

sodium nitrite (Allan and Peyron 1995). 

 

 

Figure 3.4: Formation of NO+ from the salt of nitrous acid for the 

depolymerization process. 

 

3.1.4 Determination of chitosan solubility 

The water solubility of Ch1 and Ch2 was found to decrease with increasing molecular 

weight (Figure 3.5). The decrease of Ch1 and Ch2 water solubility was mainly 

attributed to the increase in the intermolecular interactions such as van der Waals forces 

between the Ch1 and Ch2 chains which restricted their swelling (Kubota et al., 2000). 

For the Ch2P1 and Ch2P2, the water solubility was decreased with increasing DA 

(Figure 3.5). This was mainly due to the increase of hydrophobic moieties at the 

chitosan backbone that increases the hydrophobicity of the Ch2Ps (Hirano et al., 2002). 
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Figure 3.5: Water solubility of Ch1, Ch2, Ch2P1, and Ch2P2. 

 

3.2 Characterization of OA and chitosan-modified OA liposomes 

3.2.1 Titration curve 

The formation of OA liposome and Chs or Ch2Ps modified OA liposomes were studied 

by evaluating their titration curves. By adding HCl into the alkaline solution of sodium 

oleate, some of the sodium oleate molecules were protonated and the pH of the solution 

was decreased (Figure 3.6 (a)(i)). Initially, when all the OA molecules were completely 

dissociated in high alkaline region, the solution was transparent (Figure 3.6(b)(i)). 

However, when the degree of protonation increases to a certain oleate/oleic ratio, the 

solution became turbid due to the formation of OA liposomes that scattered light 

(Figure 3.6(b)(ii)) and confirmed by the appearance of Maltase crosses under the 

Polarizing Microscope (Figure 3.6 (a)(ii)). At the liposome formation region, a 

buffering effect that started from pH 10.0 – 8.8 was observed. However, when the pH of 

the solution was decreased to pH 8.5 the solution became milky which showed the 

formation of emulsion droplets (Figure 3.6(b)(iii)). As the pH of the solution further 



                                                                                                              

58 

 

decreased to 7, phase separation was observed and a white precipitate was formed. Also, 

there were two plateau regions in the equilibrium titration curves in this study, one 

appear at the high pH (located at phase transition between micelle and liposome region 

(A-B)) and another at low pH (located at phase transition between liposome and 

emulsion region (C-D)) (Figure 3.6 (b)-(f)). The plateau that appeared at high pH region 

indicated the coexistence of micelles and liposomes, while the plateau located at low pH 

region showed coexistence of liposomes and emulsions droplets (Namani and Walde, 

2005).  
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Figure 3.6: Equilibrium titration curve of oleate/OA and the buffering effect (from pH 

10-9) when the oleate and OA coexist (a). The changes of the OA solution appearance 

with decreasing pH from (b)(i) the clear micellar region (> pH 10) to the formation of 

liposomes showing turbid appearance (pH 10 - 8.0) (b)(ii) and finally to milky 

appearance of emulsion (< pH 8) (b)(iii). The equilibrium titration curves for (c) OA + 

Ch1, (d) OA + Ch2, (e) OA + Ch2P1, and (f) OA + Ch2P2. All the titration curves were 

obtained at room temperature.  
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Figure 3.6 (continued)  

 

The profiles of the titration curves for OA-Chs and OA-ChPs mixtures were 

found to be slightly deviated from the pure OA solution. The buffering region for OA-

Chs and OA-Ch2Ps was found to shift towards lower pH region (~ pH 8.5) as compared 

to the titration curve for pure OA (Figure 3.6). This result can be explained with the 

shift of the pKa value for the OA-Chs or Ch2Ps mixtures. It was found that the pKas of 

OA-Chs and OA-Ch2Ps mixed systems were relatively lower than the pure OA (Table 

3.2).  The decrease in the pKa of a mixed system may be attributed to the intermolecular 

interaction between the OA molecules and Chs or Ch2Ps. In the OA-Chs mixed systems, 
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Chs containing amine and hydroxyl groups could interact with the OA molecules at the 

membrane bilayer of the liposomes. The interaction between the OA molecules and Chs 

may involve hydrogen bonding by sharing the hydrogen from the amine and/or 

hydroxyl groups of the Chs with the OA molecules or via ion-dipole interaction with the 

Chs molecules since the OA dimers are negatively charged (Harris and Turner, 2002). 

Besides, the decrease in the pKa of the mixed systems may also be attributed to the 

intermolecular distance between the OA molecules, as the pKa value was proposed to be 

inversely proportional to the intermolecular distance between OA molecules (Kanicky 

and Shah, 2002; Kanicky et al., 2000). This may typically occur in the OA-Ch2Ps 

mixture as the hydrophobic moieties from its backbone could interact with the OA 

molecules via hydrophobic interaction and disturbed the close packing of the OA 

molecules.  

 

Table 3.2: pKa of the pure OA and its mixture with Ch1, Ch2, 

Ch2P1, and Ch2P2. 

 

Samples pKa 

OA 9.81 

OA + Ch1 9.20 

OA + Ch2 8.96 

OA + Ch2P1 8.98 

OA + Ch2P2 8.95 
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3.2.2 Surface tension 

The surface tensions of all liposomal solutions were plotted against ln concentration of 

their monomeric species at pH ~8.8 in 0.05 mol dm-3 borate buffer solution (Figure 3.7). 

It was found that the surface tension of all liposomal solutions decreased with 

increasing oleic acid concentration until reaching a concentration at which the surface 

tension deviate to a constant value. For the surface tension profile of the OA liposome, 

two inflection points were observed with the increase of OA concentration. These 

inflection points were characterized as the critical aggregation concentration (CAC), 

namely CAC1 and CAC2. This result indicated that there was a difference in the 

decreasing rate of the surface tension with increasing OA concentration before and after 

CAC1 that can be plausibly explained with the presence of the conjugate base (OA-

COO-) and conjugate acid (OA-COOH) of OA. Since the OA liposome solution was 

prepared at pH 8.8, more OA-COOH was present in the solution as the pKa of OA was 

reported to be 9.80 as discussed in previous section. This OA-COOH is more 

hydrophobic and more surface active at the air-water interface. On the other hand, the 

OA-COO- is more polar characteristic, therefore it has higher solubility in the aqueous 

environment. For this reason, the OA-COOH could adsorb at the surface of the aqueous 

and thus, reduced its surface tension. This phenomenon is pronounced at OA 

concentration lower than CAC1. However, when the OA concentration increased and 

exceeded the CAC1, the OA liposomes started to form whereby the OA-COOH started 

to pair-up with the OA-COO- of the OA molecule (Walde et al., 2007). The pair of OA-

COOH and OA-COO- with double alkyl chains is more hydrophobic, as a result the 

hydrophobic effect will minimized the unfavourable energy by forming aggregates (i.e. 

liposomes) or adsorb at the air-water interface. As a consequence, the second slope as 

shown in Figure 3.7 is formed. Further increase in the OA concentration led to the 

formation of more OA-COOH and OA-COO- pair and eventually reached an 
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equilibrium condition between the bulk and the surface of the aqueous solution which 

explained the formation of plateau region after the CAC2. However, this phenomenon is 

less pronounced in the OAChs and OACh2Ps liposomes systems.  
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Figure 3.7: Surface tensions profile of the (■) OA, (○) OACh1 

(0.20%), (▲) OACh2 (0.20%), (●) OACh2P1 (0.20%), and (▼) 

OACh2P2 (0.20%) liposome solutions respectively as a function of 

ln concentration at pH 8.8±0.1 in 0.05 mol dm-3 borate buffer 

solution at 25oC. 

 

The surface tensions of OAChs and OACh2Ps liposomes were found to be 

higher than the OA liposome (Figure 3.7). This could be due to the greater water 

solubility and less surface active property of the Chs and Ch2Ps as compared to the OA 

(Li et al., 2006). The critical vesicular concentration (CVC) of the liposome solutions 

was estimated at the crossover point by drawing two linear lines, one at low 

concentration region and the other one at plateau region. The CVC of all the Chs and 

Ch2Ps modified liposomes were found to be slightly lower than OA liposome (Table 

3.3). This result showed that the formation of OAChs and OACh2Ps liposomes were 

more favourable as compared to the OA liposome (Teo, 2012).  
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Table 3.3: CVC of OA, OACh1, OACh2, OACh2P1, and OACh2P2 liposome solutions at 

constant temperature of  25 oC. 

 

Sample name 
Amount of chitosan  

(% w/v) 

Critical vesicular concentration, CVC (µmol dm-3) 

1 2 

OA - 79.48 101 

OACh1 

0.10 74.85 - 

0.20 68.41 - 

0.30 58.88 - 

OACh2 

0.04 74.85 - 

0.10 74.85 - 

0.15 76.36 - 

0.20 61.28 - 

0.25 60.67 - 

OACh2P1 0.03 71.46 - 

 0.05 65.84 - 

 0.10 57.55 - 

 0.15 62.47 - 

 0.20 60.01 - 

 0.25 67.66 - 

OAChP2 0.03 70.00 - 

 0.05 67.53 - 

 0.10 54.75 - 

 0.15 52.33 - 

 0.20 55.71 - 

 0.25 62.88 - 

 

3.2.3 Morphology of liposomes 

3.2.3.1 Optical polarizing micrographs 

The morphology of OA, OACh1, OACh2, OACh2P1, and OACh2P2 was evaluated 

using optical polarizing microscope, TEM, and AFM. The micrographs obtained from 

the optical polarizing microscope showed that all liposomes are spherically shape 

(Figure 3.8). Unlike the OA liposome, the optical polarizing images of OACh1, 

OACh2, OACh2P1, and OACh2P2 liposomes do not exhibit any birefringence effect 

and Maltese cross at dark field. This might be due to the adsorption of chitosan onto the 

surface of OA liposome and disturbed the packing order of the OA molecules at the 

bilayer membrane since the birefringence effect of the OA liposomes arises from the 

ordered alignment of OA molecules at the lipid bilayer (Miyata and Hotani, 1992).   
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Figure 3.8: The optical polarizing micrograph of (a) OA liposome which showed birefringence 

effect, (b) OA liposome under dark field which showed Maltese cross, (c) OACh1 liposome, (d) 

OACh2 liposome, (e) OACh2P1, and (f) OACh2P2 liposome. 
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3.2.3.2 TEM and AFM micrographs 

The TEM micrographs clearly showed that the chitosan modified OA liposomes 

(OACh1, OACh2, OACh2P1, and OACh2P2) were spherical in shape (Figure 3.9). The 

presence of the Chs and Ch2Ps on the lipid layer of the OA liposome thickened the lipid 

layer and increased the opacity, thus the surface of the chitosan-modified OA liposome 

appears to be black in colour (Wang et al., 2010). However, the OA liposome was not 

observed under TEM. The structure of the OA liposome was found to collapse under the 

TEM (Figure 3.9(a)). The collapse of the OA liposome structure might be due to the 

drying process or vacuum condition.  

(a) 

 

(b) 

 

Figure 3.9: TEM image of the (a) OA liposomes, (b) OACh1 liposomes, (c) OACh2 liposomes, 

(d) OACh2P1 liposomes, and (e) OACh2P2 liposomes. The amount of chitosan used in the 

preparation of the OACh2 liposome was 0.20%. 
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(c) 

 

 

(d) 

 

 

                                    (e) 

 

Figure 3.9 (continued) 

 

  Similarly, for the AFM micrographs, the OA liposomes were hardly seen as 

compared with the OACh1, OACh2, OACh2P1, and OACh2P2 liposomes (Figures 

3.10). This observation further indicated that the rupture of structure of the OA 

liposome happen in the drying process during sample preparation, as vacuum is not 

required for AFM imaging. These results can be explained in terms of the rigidity of the 

liposome (Lipowsky, 1991; Maurer et al., 2001). Generally, rapid spreading will happen 
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once the liposome is in contact with the surface (Maurer et al., 2001). The membrane 

bilayer of liposomes tends to flatten on the surface when they come in contact with 

surface and eventually increase the tension of the membrane bilayer. When the stress 

continuously increases, the lipid membrane of the liposomes will release the stress by 

rupturing its structure (Lipowsky, 1991; Maurer et al., 2001). In other word, liposome 

with greater rigidity has higher resistance to the stress and prevents structural damage as 

demonstrated by the surface modified liposomes (OACh1, OACh2, OACh2P1, and 

OACh2P2). It was also found that the OACh1, OACh2, OACh2P1, and OACh2P2 

liposomes showed “peeling off” effect on their surface and indicated that the Ch1, Ch2, 

Ch2P1, and Ch2P2 have modified the surface of the OA liposome. 

 

(a) 

 

(b)  
 
 

 

 

 

 
 

 

 

 

 

Figure 3.10:  AFM image of (a) OA liposome, (b) OACh1, (c) OACh2, (d) OACh2P1, and (e) 

OACh2P2. All the chitosan modified OA liposomes were prepared with 0.20 % (w/v) of 

chitosan and its derivatives. (The liposomes were indicated by the black arrows).  
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(c)

 

(d) 
 

 
                                     (e) 

  

Figure 3.10 (continued) 

 

3.2.4 Size of liposomes 

The size of the OACh1 and OACh2 liposomes was found to be at least 20 nm smaller 

than that of the OA liposome (Figure 3.11). It was mainly due to the chitosan that 

formed a cage-like steric barrier that protected the liposome from aggregation and 

stabilized the liposomes (Morigaki and Walde, 2007). The size of OACh1 was increased 
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from 115 nm to 130 nm when the amount of Ch1 increased from 0.10% (w/w) to 0.30% 

(w/w), whereas, the size of the OACh2 increased from 105 nm to 125 nm when the 

amount of Ch2 increased from 0.10% (w/w) to 0.20% (w/w) (Figure 3.11). This result 

indicated that the formation of more chitosan layers on the surface of the liposome (Guo 

et al., 2003). Similar result was also reported in the characterization of chitosan-coated 

phospholipid liposomes (Li et al., 2009; Liu and Park, 2010; Mady et al., 2009). 

However, the size of the OA liposomes that are modified with Chs concentration lower 

than 0.10% was found to be higher as compared to the liposomes that modified with 

0.30% of Chs. This result indicated that 0.04% of Chs was not sufficient to create an 

adequate protection layer on the surface of the liposomes (Li et al., 2009). The 

distributions of the prepared liposomes were found to be polydispersed (Figure 3.12). 

The changes in the polydispersity index of all chitosan-modified liposomes were not 

significant as compared to the OA liposome (Figure 3.12(b)). 
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Figure 3.11: Effect of the amount of Ch1, Ch2, Ch2P1, and 

Ch2P2 on the size and zeta potential of the OA liposome. 

The data was taken at day seventh after the liposome 

solutions were prepared. 
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Figure 3.12: (a) The typical size distribution of the OA liposome showing its 

polydispersity. (b) The polydispersity index for the OA liposome and chitosan-modified OA 

liposomes.  

 

The size of OACh2P1 and OACh2P2 liposomes was found to be at least 30 nm 

smaller than that of OA liposome (Figures 3.11). The decrease in the size of OACh2P1 

and OACh2P2 liposomes was mainly due to the anchored Ch2Ps that perturbed the OA 

monomer arrangement at the liposome bilayer. The insertion of the hydrophobic 

moieties of Ch2Ps into the liposome bilayer has resulted in the increase of curvature and 

decrease of the size of liposomes (Park et al., 2011). The effect of the amount of Ch2P1 

and Ch2P2 on the size of the OACh2Ps liposome was evaluated at day 7. The 

OACh2P1 and OACh2P2 liposomes were found to exhibit two different size profiles 

with increasing amount of Ch2Ps. The size of OACh2P1 liposome was decreased with 

increasing amount of Ch2P1 from 0 to 0.15% (w/w) but increased when the amount of 

Ch2P1 exceeded 0.15% (w/w). This result indicated that more Ch2P1 layers were 

attached onto the surface of the liposome (Guo et al., 2003). For the OACh2P2 

liposome, the size was decreased from 165 nm to 136 nm when the amount of Ch2P2 

increased from 0 to 0.05% (w/w) and the size remained unchanged when the amount of 

Ch2P2 exceeded 0.05% (w/w). This result indicated that 0.05% (w/w) of Ch2P2 is 

sufficient to enhance the physical stability of the OACh2P2 liposome. This was mainly 
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attributed to the higher DA of Ch2P2. Ch2P2 has more alkyl side chains that are 

available to be inserted into the liposome lipid bilayer and improved the liposome 

membrane rigidity and integrity as discussed in section 3.2.3.2.   

 

3.2.5 Zeta potential of liposomes 

The surface modification of the OA liposome by Chs and Ch2Ps was also evaluated by 

comparing their zeta potential before and after modification. The zeta potential of OA 

liposome was negatively charged. After surface modification, the zeta potential for all 

Chs- and Ch2Ps-modified OA liposomes were decreased by at least 20 mV. These 

results were attributed to the formation of a condensed coating of the chitosan layers 

that carried the positive charge, on the surface of the liposomes (Li et al., 2009; Liu and 

Park, 2010; Mady et al., 2009). The Chs and Ch2Ps layers have effectively shielded the 

negatively charge of the OA liposomes. The amount of Chs and Ch2Ps used also 

affected the zeta potential of the Chs- and Ch2Ps-modified OA liposomes. For Chs, the 

zeta potential increased from -86 to -64 mV when the amount of Ch1 and Ch2 increased 

to 0.15% and 0.05%, respectively (Figures 3.13). However, there were no significant 

changes in the zeta potential of OACh1 and OACh2 liposomes that are modified with > 

0.15% of Ch1 and > 0.05% of Ch2, respectively. This result implied that 0.15% of Ch1 

and 0.05% of Ch2 are the minimum amount required to coat and protect the surface of 

the OA liposome. Also, the amount of Ch2 required was significantly lesser than Ch1. 

This can be explained with the molecular structure of the Ch1 and Ch2. According to 

section 3.1.3, the molecular weight of Ch2 is greater than Ch1. In other word, the Ch2 

have longer polymer chain as compared to Ch1. The longer polymer chain can coat and 

shield the liposome more effectively than the shorter one. As a result, less amount of 

Ch2 is required to reduce the zeta potential of the OA liposome. Similar result was also 

found in the zeta potential of OACh2P1 and OACh2P2 liposomes. The zeta potential for 
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OAChP1 and OACh2P2 increased from -86.0 to -60.0 mV by increasing the amount of 

Ch2P1 and Ch2P2 to 0.05% and 0.03%, respectively (Figures 3.13). However, the 

difference in the minimum amounts of Ch2P1 and Ch2P2 that are required to decrease 

the zeta potential of the liposomes were negligible. This result was mainly due to the 

fact that the chain length of Ch2P1 and Ch2P2 were the same as they were prepared 

from the same starting material (Ch2). Besides, it was found that the effect of DA to the 

changes in liposome size and zeta potential were negligible.   
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Figure 3.13: The effect of (□) Ch1, (○) Ch2, (▲) Ch2P1, and (▼) 

Ch2P2 amount of the zeta potential of the OA liposome. 

 

3.2.6 Liposome stability 

The stability of all prepared liposomes was evaluated by monitoring the changes of their 

size as a function of storage duration of 30 days. As compared to Chs and Ch2Ps 

modified liposomes (130 nm), the OA liposome can only be stable at larger liposome 

size (161 nm). This was mainly due to the increase in the curvature of the surface 
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modified OA liposomes as discussed previously in section 3.2.4. As an OA liposome, 

the size of the OACh1, OACh1, OACh2P1 and OAChP2 liposomes was found to 

increase slowly for the first 7 days of storage time. This result has been attributed to the 

continuous rearrangement of the Chs and Ch2Ps distribution at the surface of the 

liposomes (Li et al., 2009). The size of all OACh1, OACh2, OACh2P1 and OACh2P2 

liposomes remained unchanged after the 7th day. However, liposomes that were 

modified with 0.25% of Ch2P1 and 0.30% of Ch2P2 showed slight increment in size 

(Figure 3.14). For the liposome that modified with 0.25% of Ch2P1 (OACh2P1), the 

size of the liposome was found to increase from 140 nm to 160 nm after 30 days of the 

storage period, while the size of liposome that was modified with 0.30% of Ch2P2 

(OACh2P2) was found to increase dramatically from 125 nm to 190 nm at the 30 days 

of storage period. These results have showed that the OACh2P1 (0.25% Ch2P1) and 

OACh2P2 (0.30% Ch2P2) liposomes are relatively less stable as compared to other 

liposomal systems that have been prepared in this study. 
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Figure 3.14: Variation of size of (a) OACh1, (b) 

OACh2, (c) OACh2P1, and (d) OACh2P2 liposomes. 
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(c) 
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Figure 3.14 (continued) 

 

3.3 Rheological study of ιC-CMC mixed gel  

3.3.1 Rheological behaviour of ιC and CMC pure gel 

All gels prepared in this study were subjected to rheological studies such as elasticity 

and flow behavior in order to evaluate the feasibility of these pure gels for the 

preparation of liposomal gels. The rheological behavior of ιC and CMC were first 

examined using amplitude sweep mode. In the amplitude sweep mode, the linear 

viscoelastic region (LVR), critical strain (
c ), G’, and cohesive energy (CE) values 

were obtained. The LVR and  
c  are the parameters used to characterize the flexibility 

of the gels, while the G’ and CE are the parameters that can be used to evaluate the 
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elasticity and cohesiveness of the gel (Table 3.4). The G’ of the gel was determined 

from the LVR from the amplitude sweep profile and the 
c is the critical strain that 

represents the end of the LVR (Figure 3.15(a)), whereas the CE can be determined using 

the following equation (Sohm and Tadros, 1989):  

                                             
' 21

2
cCE G                                                  Eq. 3.1 

The ιC gel exhibited high G’ and CE values which indicated its high rigidity 

(Table 3.4 and Figure 3.15). This result was mainly attributed to the strong internal gel 

network structure of the ιC. The frequency sweep test of the ιC gel also showed that the 

G’ of the ιC was found to be greater than its G” over the studied frequency range which 

indicated its solid-like behavior (Figure 3.15(b)). The solid-like behavior of the ιC was 

also indicated by its tan δ profile (Figure 3.15(c)). The tan δ is defined as G′′/G′. The 

result showed that the ιC was highly elastic since its tan δ ~0.1 (Tan and Misran., 2011).  

Besides viscoelastic properties, the flow behavior of the ιC was also studied by 

measuring its shear viscosity as a function of shear rate and shear stress which provides 

information on the spreadability and flowability of the gel (Garg et al., 2002). The ιC 

gel exhibited high viscosity and large yield stress (σp ) which indicated that higher 

applied stress is required to initiate the flow of ιC gel as the σp is the critical stress where 

the gels begin to flow (Table 3.4 and Figure 3.15(d)) (Brummer, 2006a). This result was 

also attributed to its strong internal gel network structure.  

 

 

 



                                                                                                              

76 

 

Table 3.4: The critical strain (γc), break point (γb), elastic modulus (G’), cohesive energy (CE), 

and yield stress (σp) of the ιC and CMC that determined from their dynamic and steady 

rheological behaviors.   
 

 Critical 

strain, γc 

Break point, 

γb 

Elastic modulus, 

G’ (Pa) 

Cohesive 

energy, CE (Pa) 

yield stress, σp 

(Pa) 

ιC 0.413±0.005 0.305±0.005 36.41±0.01 5.11±0.01 38±2 

CMC N/A N/A 0.70±0.02 N/A 4.72±0.09 
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Figure 3.15: The rheological behavior of the (■) ιC and (●) CMC obtained at 25oC where (a) 

the strain sweep profile, (b) the variation of G’ (solid symbol) and G” (open symbol) as a 

function of frequency, (c) the tan δ, and (d) the flow curve. 

 

Unlike ιC gel, the rheological analyses showed that the CMC solution exhibits 

different viscoelastic behavior. The amplitude and frequency sweep profile of the CMC 

solution have shown that the G” curve is always dominant against G’ over the studied 

strain and frequency range. These results indicated that the CMC is more liquid-like 

characteristic and does not form gel structure (Figures 3.15(a)-(c)) (Benchabane and 
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Bekkour, 2008; Kästner et al., 1997). In other words, there were no complicated gel 

network structure being formed within the CMC chains (Barbucci et al., 2000; Kästner 

et al., 1997; Khaled and Abdelbaki, 2012; Zhong and Jin, 2009). The G’ of the CMC 

solution was also relatively lower than that of ιC gel. This predictably shows that the 

internal network structure of the CMC solution is quite weak which is due possibly to 

the non-entangled nature of CMC chains (Benchabane and Bekkour, 2008). It’s also 

interesting to note that the shear viscosity of the CMC solution was 1000 time lower 

than ιC gel. This result indicated that the CMC solution is less resistant to flow and less 

entanglement of CMC chain in the network to form three dimensional network 

structures as discussed above.  

By comparing the rheological properties that has been discussed, it can be 

concluded that the ιC gel in this study has a rigid structure with high G’ and CE. 

However, the liposomes were unable to be dispersed homogeneously in the ιC gel due 

to its high G’ and CE (Rodríguez-Hernández and Tecante, 1999). In addition, the high 

shear viscosity of the ιC will also result in poor spreadability at the skin which 

eventually affected the liposome’s diffusion rate from the ιC gel into the skin during 

application (Garg et al., 2002; Ueda et al., 2009). This may also cause adverse effects 

due to the incorrect dosage of drugs that has been transferred (Glavaš-Dodov et al., 

2003; Ivens et al., 2001; Jelvehgari et al., 2007; Gabrijelčič and Šentjurc, 1995). On the 

other hand, the weak internal structure of the CMC solution was not strong enough to 

entrap the dispersed liposomes in its network structure thereby reducing the liposomal 

gel stability. For these reasons, mixtures of ιC and CMC were prepared by mixing the 

ιC and CMC at different ratio (Table 2.2). In order to identify the optimum composition 

of the mixed gel system that is suitable for the preparation of liposomal gel system, the 

rheological properties of these mixed gels were evaluated.  

 

http://journals.ohiolink.edu/ejc/search.cgi?q=authorExact:%22Rodr%26iacute%3Bguez-Hern%26aacute%3Bndez%2C%20A.I.%22
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3.3.2 Gelation temperature of ιC-CMC mixed gel 

Gelling temperature (Tgel) of the mixed gel was studied by evaluating the variation of its 

moduli as a function of temperature since the gelling behavior is temperature dependent 

(Tischer et al., 2006). In this study, Tgel of the gel mixtures was determined from a graph 

of modulus versus temperature as shown in Figure 3.16. The Tgel of ιC in borate buffer 

(pH 8.8) was 39.63 oC (Figure 3.16(a)). The determination of the Tgel of CMC solution 

in borate buffer (pH 8.8) was not possible as the CMC did not form gel under the 

experimental condition as mentioned earlier in section 3.3.1 (Figure 3.16(b)). As 

compared to ιC gel, the Tgel of the ιC-CMC mixed gel has shifted to lower temperature 

(Figure 3.16(c)). This result showed that the CMC chains have disturbed the network 

structure of the ιC gel. The Tgel of the ιC-CMC mixed gel was also found to decrease 

with increasing amount of CMC used (P < 0.05) which indicated the decrease of the gel 

strength of ιC-CMC mixed gel. This was mainly attributed to the increase in the number 

of interaction between ιC and CMC chains which is relatively weak as compared to the 

interaction between the original ιC polymer chains. According to previous studies, 

gelling behavior of ιC gel were mainly attributed to the coil-helices transition of the 

polymer chains (Wang and Cui, 2005a). In other words, the ιC chains formed double 

helices conformation when the experimental temperature was lower than the Tgel where 

the polymer chains would associate with each other to form strong three dimensional 

gel network structures (Hossain, 2001; Yuguchi et al., 2002). 

The moduli versus temperature profiles in Figure 3.16 show that the ιC gels 

showed single plateau and exhibited single step gelation behavior. The same profiles 

were also observed in all the mixed gel studied with the exception in CMC profile 

whereby no cross-over was observed. In the plateau region, both modulus (G’ and G”) 

of the all mixed gel systems in this study were temperature independent which 

suggested the homogeneity of the mixed gel (Norziah et al., 2006).  
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Figure 3.16: Gelation temperature of mixed gel. (a) pure ιC gel , (b) pure CMC solution, 

and (c) gelation temperature of the mixed gels as a function of the ιC weight fraction 

 

3.3.3 Dynamic behavior of ιC-CMC mixed gel 

In dynamic behavior test, all mixed gels were subjected to oscillating strain at an 

increasing manner i.e. the amplitude sweep test and the amplitude sweep profiles of 

these mixed gels were presented in Figures 3.17(a) and (b). The γc of the mixed gels was 

found to increase with increasing ιC concentration in the gel which indicated that the 

mixed gel has become more resistant to deformation. This was mainly due to the 

increase of ιC concentration in the gel which exerted more influence on the elasticity 

and flexibility of the gel mixture. As reported in previous studies (Gobet et al., 2009; 

Jones and Staples, 1973; Norton and Goodall, 1983), the ιC chains are in the form of 
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random-coil conformation and entangled with each other to form gel which promoted 

the formation of more flexible network structure. However, the γc value of the mixed gel 

was found to decrease when the concentration of ιC increased further and exceeded 0.54% 

(w/w) which indicated that the mixed gels is more sensitive to an applied strain and less 

flexible which might be due to the increase in the gel rigidity that is attributed from 

significant increase in entanglement in network structure of the mixed gels with ιC-

CMC ratio of 8:2 and 7:3 as compared to the one with 5:5 of ιC-CMC ratio (Rodríguez-

Hernández and Tecante 1999). The increase of physical entanglement between the 

polymer chains limited the mobility of the polymer chains and thus led to the formation 

of less flexible gel (low γc). Other than γc, the amplitude sweep profile also showed that 

the G’ of the mixed gels were dominant over their G” which implied the solid-like 

behavior of the gels. The magnitude of G’ of the gels was also found to increase with 

increasing ιC concentration from the mixed gels with ιC-CMC ratio of 3:7 to 8:2 (Table 

3.5). These results indicated the increase in the strength of the internal gel network 

(Shah et al., 2007). After exceeding the γc, the G’ of the mixed gels was found to 

decrease with increasing applied strain until it reached the break point (γb). This is a 

characteristic point where the mixed gel started to flow (G’ < G”). On the other hand, 

the γb was found to decrease with decreasing ιC concentration. This result indicated that 

the mixed gels with lower ιC concentration can easily flow. This result further 

supported the fact that the mixed gels with lower ιC concentration had gradually lost 

their elasticity as discussed above.     

The changes in the CE of the mixed gels were found to be negligible for the 

mixed gels with ιC-CMC ratio of 8:2, 7:3, and 5:5. However, the CE of the mixed gel 

decreased dramatically from 1.989 Pa to 0.2497 Pa when the concentration of CMC in 

the mixed gel was greater than the ιC as in the mixed gel with ιC-CMC ratio of 4:6 and 

3:7. This result indicated that the elastic strength of the gel network structure for the 
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mixed gels with ιC-CMC ratio of 4:6 and 3:7 were relatively weak as compared with the 

mixed gels with 8:2, 7:3, and 5:5 of ιC-CMC ratio. 
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Figure 3.17: The dynamic mode rheology of the mixed gel with ιC-CMC ratio of 

(♦)3:7, (▼)4:6, (▲)5:5, (●)7:3, and (■)8:2 mixed gels obtained at 25oC where (a) is 

the strain sweep profile, (b) is the plot of shear stress versus strain to determine the 

γc, (c) is the variation of G’ (solid symbol) and G” (open symbol) as a function of 

frequency, and (d) is the tan δ of the mixed gels. 
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Table 3.5: The Critical strain (γc), break point (γb), elastic modulus (G’), cohesive energy (CE), 

and yield stress (σp) of the mixed gels determined from respective dynamic rheological 

behaviors. 

   

ιC-CMC ratio 
Critical 

strain, γc 

Break point, 

γb 

Elastic 

modulus, 

G’ (Pa) 

CE (Pa) Slope of G’ 

8:2 0.41±0.01 3.66±0.01 23.84±0.01 2.02±0.02 0.103±0.001 

7:3 0.48±0.01 3.47±0.01 18.89±0.01 2.15±0.02 0.135±0.001 

5:5 0.57±0.02 2.81±0.02 12±1 1.9±0.1 0.199±0.001 

4:6 0.34±0.05 2.10±0.05 8.64±0.01 0.5±0.1 0.213±0.001 

3:7 0.29±0.05 1.11±0.05 5.98±0.01 0.25±0.2 0.327±0.003 

 

The viscoelastic behaviors of the mixed gels have been investigated using 

frequency sweep test. The frequency profiles are presented in Figure 3.17(c), all gel 

mixtures showed solid-like behavior with G’ larger than G” over the selected frequency 

range. The G’ of the mixed gels was observed to be less frequency dependent when the 

concentration of ιC in the gel mixture was increased. The slope of G’ of the gel  

decreases with increasing ιC concentration which indicates that the internal gel network 

has become stronger due to the increase of the physical entanglement between the 

polymer chains (Table 3.5) (Picout and Ross-Murphy, 2002). The magnitude of G’ of 

the gels was found to increase with increasing ιC concentration in the mixed gel which 

implied that the applied energy can be stored more effectively  in the elastic component 

of the gels with higher ιC concentration (Ikeda and Foregeding, 2003). Beside G’, the G” 

of the gels was also increased with increasing ιC concentration. This result showed that 

the gels with higher ιC concentration dissipated more energy through its’ viscous 

component. The energy dissipation that occurred in the gels was mainly due to the 

internal energy dissipation mechanism such as physical entanglements (Grillet et al., 

2012). The increase in the ιC concentration has gradually promoted greater physical 

entanglement between the polymer chains and dissipated more internal energy.  
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The relationship and ratio between the G’ and G” of the mixed gels also can be 

expressed through their tan δ profile (Figure 3.17(d)). The tan δ of the prepared gels 

increased towards 1 when the concentration of CMC in the gel mixture is increased. 

This result indicated that the gel with higher CMC concentration was more liquid-like. 

An increase in the tan δ with increasing CMC concentration also indicated that the gel 

has gradually lost its elasticity and rigidity (Figure 3.17(b)) (Barbucci et al., 2000). 

The frequency sweep test will help to provide information on the relaxation time 

(τ) of the gel where τ is defined as the reciprocal frequency at the point where G’ equal 

to G” in the frequency sweep profile (Tan and Misran, 2011). However, the τ of all the 

gels was unable to determine from this study as ω did not fall within the studied 

frequency range. This is because the ω of the gels has shifted to lower frequency region 

(< 0.1 Hz) and indicated the long relaxation time of all gels.       

 

3.3.4 Creep and recovery of ιC-CMC mixed gel 

The long time scales viscoelastic behavior of the mixed gel was studied using the creep 

and recovery tests within the LVR. The long term viscoelastic behavior is highly related 

to the internal structure and realignment of the polymer chains. The information 

obtained from the long term viscoelastic behavior test also can be used to characterize 

the strength of a physical gel (Herraz et al., 2012). The formation of a physical gel was 

mainly attributed to the physical entanglement between the polymer chains i.e. the 

mixed gel system that was prepared in this study. The physical gel is reversible and the 

cross-links of the gel are non-covalent bond, and have finite lifetime (Fuchs et al., 1998). 

Since the cross-link of the physical gel is non-permanent, the physical gel tends to 

exhibit rheological creep behavior (Picout and Ross-Murphy, 2002).  
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Figure 3.18: Creep and recovery profiles for the mixed gels with ιC-CMC 

ratio of (♦)3:7, (▼)4:6, (▲)5:5, (○)7:3, and (□)8:2 performed under 0.1 Pa 

constant stresses at 25oC. 

 

In this study, the creep profile was performed for 60 s and fitted to the Burger’s 

model (Eq. 2.6 as discussed in Chapter 2) and yielded values of r2 ≥ 0.995. On the other 

hand, the recovery profile (t ≥ 60s) of the gels was fitted to the Eq. 2.7. All four 

elements, Go, G1, ηo, η1, that contributed to the springs and dashpots of Maxwell and 

Kelvin-Voigt models were determined and shown in Table 3.6. All mixed gels were 

found to exhibit viscoelastic creep response (Figure 3.18). The creep and recovery 

compliance profile (J(t)) and the maximum compliance, Jmax, of the mixed gels 

decreased with increasing concentration of ιC (Figure 3.18). This result indicated that 

the mixed gel with higher ιC concentration have become stronger as similarly observed 

in our previous frequency test (Herraz et al., 2012). The Go and G1 that corresponded to 

the spring elements in the Burger’s model of the mixed gel increased with increasing ιC 

concentration. Higher Go and G1 of the mixed gel indicated the greater elasticity and 

higher resistance to deformation. This is in agreement with the results obtained from the 
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oscillatory test discussed previous section. The increased in the elastic components (Go 

and G1) of the mixed gels with higher ιC concentration was also accompanied with an 

increased in its viscous component (ηo and η1). This result implied that the mixed gel 

with higher concentration of ιC undergoes lower structural deformation upon 

application of stress which could mainly be due to the greater and stronger physical 

entanglement between the polymer chains of the mixed gel. 

The retardation time, λret , is another characteristic parameter that can be 

obtained from the Kelvin-Voigt model to describe the viscoelastic behavior of the 

mixed gel. The λret is defined as 1

1G


 that described the rate at which the maximum strain 

is achieved immediately after the application of constant stress (Toro-Vazquez et al., 

2010). The result showed that the λret of the mixed gel is increased with decreasing ιC 

concentration which indicated that longer time is needed to achieve its maximum 

compliance (Table 3.6). This result was mainly due to the low elasticity in the mixed gel 

with lower ιC concentration (Toro-Vazquez et al., 2010). 

The relaxation behavior of all mixed gels was also studied by evaluating the 

recovery function (J(t)) of the mixed gels as it can be converted into relaxation modulus 

(G(t)) in order to characterize the strength of the mixed gels. It was proposed that when 

the slope of the ln J(t) versus ln t plot, m << 1 (Figure 3.19),  the G(t) becomes 

reciprocal of the J(t) (Eq.3.2) and can be characterized by a power-law behavior as 

shown in Eq. 3.3 (Fuchs et al., 1998; Herraz et al., 2012; Struik, 1987): 

ln ( ) ln ( )

ln ln

d J t d G t
m n

d t d t
       Eq.3.2 

( ) nG t St      Eq. 3.3 
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where S is describing the strength of the junction zones between the polymer chains and 

n is the degree of the entanglement in the gel (Gabriele et al., 2001). In this study, the S 

of the mixed gel was found to increase with increasing ιC. This result indicated that the 

mixed gel with higher ιC has stronger internal network structure (Table 3.6). On the 

other hand, the n value of the mixed gel exhibited a different trend as compared to the S 

value. The result showed that no significant changes in the n value (~ 7%) for the mixed 

gels with ιC-CMC ratio of 8:2, 7:3, and 5:5. However, the n value of the mixed gel was 

found to increase for more than 50% in the mixed gels with ιC-CMC ratio of 4:6 and 

3:7. The increase in the n value implied the decrease of the physical crosslink density in 

the mixed gel which indicated the weak internal network of the mixed gels with ιC-

CMC ratio of 4:6 and 3:7 as compared to 8:2, 7:3, and 5:5 (Herraz et al., 2012). This is 

in agreement with results obtained from the oscillatory test (section 3.3.3).   
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Figure 3.19: ln J(t) versus ln t plot (solid symbol) and ln G(t) versus ln t plot (open 

symbol) for the mixed gels with ιC-CMC ratio of (♦)3:7, (▼)4:6, (▲)5:5, (●)7:3, 

and (■)8:2 mixed gels that showed the reciprocal relationship between the J(t) and 

G(t). 
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Table 3.6: Strain corresponded to Maxwell element (γ0), strain correspond to Kelvin-Voigt 

element (γ1), Go, G1, ηo, η1, and delay time, λret  for ιC-CMC mixed gels. The percentage of 

deformation of each element in the Burger’s model (JSM, JKV, and J∞) and the percentage of 

recovery for the entire gel system (R%) at t=300 s, the strength of junction zone, and degree of 

entanglement for ιC-CMC mixed gels. 
 

ιC-CMC ratio 8:2 7:3 5:5 4:6 3:7 

γ0 (× 10-3) 4.2±0.1 8.6±0.3 9.1±0.1 16.4±0.3 26.4±0.4 

γ1(× 10-3) 3.4±0.1 7.1±0.3 6.9±0.1 27.4±0.3 
105.7 

±0.4 

Go  (Pa) 24.0±0.5 11.7±0.4 10.9±0.1 6.1±0.1 4.9±0.1 

ηo  (Pas) 3170±10 1390±10 340±6 227±3 55.2±0.8 

G1 (Pa) 29.9±0.9 14.2±0.6 14.5±0.9 3.7±0.4 1.6±0.1 

η1  (Pas) 146.7±0.1 70±4 61±2 45±6 20±6 

Jmax  (Pa-1) 0.095 0.199 0.272 0.621 1.94 

λret  (s) 4.91 4.93 4.21 12.16 12.50 

Percentage of 

deformation 

%JSM 

(%) 
51.31 47.41 49.94 36.90 17.16 

%JKV 

(%) 
38.91 40.94 40.10 51.92 65.71 

%J∞ 

(%) 
9.77 9.64 9.95 11.64 17.13 

Percentage of  

recovery 

RSM 

(%) 
105.9 99.7 98.50 94.65 92.24 

RKV 

(%) 
90.32 88.36 90.04 78.82 76.89 

Rovr (%) 90.22 90.65 89.91 88.82 82.87 

Strength of junction 

zone, S (Pas) 

20.4362 

±0.0004 

9.5816 

±0.0008 

6.708    

±0.007 

4.6249 

±0.0005 

2.3746 

±0.0007 

Degree of entanglement, 

n 

0.1468 

±0.0007 

0.1580 

±0.0008 

0.1588 

±0.0004 

0.2588 

±0.0004 

0.3752 

±0.0006 

 

 

The contribution of each element to the total deformation (%Je, where e = SM, 

KV or ∞) in the Burger’s model was calculated using Eq. 2.9 (Table 3.6).  The %JSM 

which is the instantaneous elastic response of the gel was found to decrease with 

decreasing ιC concentration. This result showed that the elasticity contributed from the 

Maxwell spring of the mixed gel had decreased. In other word, the ιC is the component 

that is responsible for the instantaneous elastic response of the mixed gels. On the other 
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hand, the contribution of the mixed gel to the deformation by Kelvin-Voigt element 

(%JKV) is very similar in ιC-CMC ratio of 8:2, 7:3, and 5:5. However, the %JKV of the 

mixed gel increased dramatically (> 10%) when there is less amount of ιC in the gel 

mixture as in the 4:6 and 3:7 of ιC-CMC ratio. The increase in the %JKV indicated the 

decrease in the elasticity and recovery ability of the Kelvin-Voigt element since the JKV 

is representing the delayed elasticity of the gel system. This might be due to the 

reduction in the strength of junction zone (S) and degree of entanglement (n) of the 

mixed gel with ιC-CMC ratio of 3:7 as discussed above. The contribution of the 

Maxwell dashpot (J∞) to the deformation of the mixed gels was found to be negligible 

for the ιC-CMC ratio of 8:2, 7:3, 5:5, and 4:6. However, the mixed gel with 3:7 of ιC-

CMC ratio showed the highest %J∞ among the mixed gels. This result revealed that the 

mixed gel exhibited the most liquid like behavior with greatest unrecovered strain when 

the stress was applied (Dolz, 2008). This result was also supported by the percentage 

recovery (%R) of the mixed gel which is the lowest among the mixed gels.  

As reported by Steffe (1996), when a material that obeys the Burger’s model is 

tested in the linear viscoelastic region, its Jo and J1 determined from the creep test will 

be equal to its JSM and JKV from the recovery test. In other words, the recovery of the 

Maxwell spring (%RSM) and the Kelvin-Voigt element (%RKV) will be 100% for a 

perfect viscoelastic material. In our mixed gel system, their Jo was > 90% recovered 

(Table 3.6). However, the Kelvin-Voigt element of all mixed gel was < 90% recovered 

especially for all the mixed gels. The %RKV was found to decrease dramatically when 

the amount of CMC in the mixed gel increased and exceeded 50%. The decrease of 

the %RKV of the gel mixture with ιC-CMC ratio of 3:7 and 4:6 has showed its low 

retarded recovery ability as compared to 8:2, 7:3, and 5:5 of ιC-CMC ratio which may 

be due to its low S and n values.   
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3.3.5 Flow behavior of ιC-CMC mixed gel  

The shear viscosity of mixed gels was found to increase with increasing ιC. The 

increase in the viscosity of the mixed gels was highly related to its S and n values (Table 

3.6). The mixed gels with higher S and n values were more resistant to flow. The 

viscosity profiles of the mixed gels showed shear-thickening behavior at shear rate 

lower than 0.02 s-1 (Figure 3.20(a)). The shear thickening behavior of the mixed gels at 

low shear rate was attributed to the stiff inner structure of the gels (Benchabane and 

Bekkour, 2008). However, when the shear stress increased and exceeded σp, the shear 

viscosity of the mixed gels was found to decrease with increasing shear rate and this 

result showed the shear thinning effect. The shear thinning behavior originated from the 

disentanglement of the polymer coil or increased orientation of the polymer chains in 

the flow direction (Benchabane and Bekkour, 2008). The PLI of the mixed gel was 

increased with decreasing ιC and indicated that the mixed gel has become less shear 

thinning. This result implied the decrease of spreadability of the mixed gels (Table 3.7). 

Apart from the shear thinning behavior, heterogeneous flow was also observed in the 

flow curve of the mixed gels (Figure 3.20). 

 

Table 3.7: Shear viscosity, Power Law Index (PLI), and yield stress (σp) of the mixed gels 

which determined from their steady rheological behaviors.   

ιC-CMC ratio Shear Viscosity Power Law Index, PLI Yield stress, σp (Pa) 

8:2 603±5 0.124±0.005 13.28 

7:3 407±4 0.137±0.004 10.88 

5:5 190±7 0.247±0.004 4.23 

4:6 98±2 0.284±0.003 3.63 

3:7 66±3 0.362±0.004 1.65 
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Figure 3.20: The flow behavior of the mixed gel with ιC-CMC 

ratio of (♦)3:7, (▼)4:6, (▲)5:5G, (●)7:3, and (■)8:2 where (a) is 

the shear viscosity profile of the mixed gels with increasing shear 

rate and (b) is the shear stress versus shear rate profile for the 

determination of yield stress (σp) of the mixed gels. 

 

A stress peak that illustrates the shear banding transitions (indicated with arrows) 

(Chu and Feng, 2010) was observed for all mixed gels (Figure 3.20(b)). Initially, at low 

shear rate, the flow of the gels was homogeneous until it reached the σp of the gels. 

When the σp is reached, the flow of the gels became unstable and followed by 

decreasing in shear stress. A nonlinear increment of shear stress was observed when the 
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shear rate increased further and showed the second critical point for phase transition. 

This heterogeneous flow may be attributed by the relaxation of the entanglement of the 

polymer chain (Adams and Olmsted, 2009; Chu and Feng, 2010; Tapadia et al., 2006). 

The heterogeneous flow may also be attributed to the newly formed entanglements 

between the polymer chains which retarded the flow of the mixed gel at higher shear 

rate region (Wang, and Cui, 2005b). The stress banding was found to shift to lower 

shear stress region when the concentration of ιC in the gel decreased and eventually 

associated with the σp for 3:7 of ιC-CMC ratio. This result indicated that the gel 

structure has become less entangled with the decreasing of ιC concentration.  

 

3.3.6  Thixotropic behavior of ιC-CMC mixed gel  

All mixed gels prepared in this study were thixotropic gel (Figure 3.21). However, the 

degree of thixotropy of the mixed gels decreased with increasing CMC concentration 

indicating the decrease in the thixotropic properties of the gels. This result might be due 

to the less entanglement of the gel with higher CMC concentration since thixotropic 

behavior described the changes in the disentanglement-entanglement process of the gel 

network with time (Table 3.8). This result also explained the decrease in the strength of 

gel network structure with increasing CMC concentration as the degree of thixotropy 

was obtained from the hysteresis loop which is also describing the force that is needed 

to disrupt gel network structure (Benchabane and Bekkour, 2008). The structural change 

can also be explained with the pseudoplastic index and thixotropic index of the gel 

which described the rate of changes in the viscosity of the gel. These indices were 

obtained from the logarithmic plot of instantaneous viscosity versus shear rate. The 

pseudoplastic index is referred to the slope of the plot with increasing shear rate, while 

the thixotropic slope is referred to the slope of the reverse path (decreasing shear rate). 

It was found that the change in the pseudoplastic index for the mixed gels with ιC-CMC 
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ratio of 8:2, 7:3, and 5:5 was negligible. This result showed that the disentanglement 

process was similar in these mixed gel. However, the pseudoplastic index for 4:6 and 

3:7 of ιC-CMC ratio was significantly lower than that of 8:2, 7:3, and 5:5. This result 

indicated that less structural changes occur in the mixed gel with higher CMC 

concentration due to its less entanglement gel structure and the polymer chains can be 

easily aligned along the shear direction. This was also further supported by the low 

shear viscosity of the mixed gels with 4:6 and 3:7 of ιC-CMC ratio as discussed in 

section 3.3.5.   

 The thixotropic index of all mixed gels was lower as compared to their 

pseudoplastic index. For the mixed gels with 8:2, 7:3, and 5:5 of ιC-CMC ratio, their 

thixotropic indices were found to be half of their pseudoplastic index. This result 

implied that the structural recovery for these mixed gels were relatively slower than 

their disentanglement process. However, the structural recovery rate for these mixed 

gels was found to occur at similar rate. On the other hand, the difference between the 

pseudoplastic index and thixotropic index of the mixed gels with ιC-CMC ratio of 4:6 

and 3:7 was small. This result indicated that these mixed gels do not experience large 

structural change after the first cycle of stress loading.  

 

Table 3.8: Degree of thixotropy, pseudoplastic index, and thixotropic index of the mixed gels.  

ιC-CMC ratio Degree of thixotropy Pseudoplastic index Thixotropic index 

8:2 23.1±0.8 1.15±0.03 0.77±0.03 

7:3 20.3±0.8 1.15±0.03 0.76±0.02 

5:5 11.9±0.2 1.05±0.01 0.72±0.02 

4:6 5.78±0.07 0.99±0.04 0.66±0.03 

3:7 1.48±0.05 0.60±0.02 0.49±0.02 
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Figure 3.21: Thixotropic plot for mixed gel. 

 

3.4 Liposomal gels  

In order to produce a good dispersion of liposome in the selected gel system, the CE of 

the gel must be high enough to suspend the liposome since the CE is related to the work 

required to disrupt the dispersion (Sohm and Tadros, 1989). Another factor to be 

considered was the flow property of the gel, because it could affect the stability of the 

dispersed liposome and also the texture of the gel. The mixed gel with ιC-CMC ratio of 

5:5 exhibited greatest flexibility by showing largest γc value among the mixed gel. The 

CE and %R of this mixed gel was an optimum value as there were no significant 

changes being observed when the concentration of ιC increased further in the mixed 

gels with 7:3 and 8:2 ιC-CMC ratio. In addition, the mixed gel with 5:5 ιC-CMC ratio 

showed medium σp and shear viscosity as compared to others (3:7, 4:6, 7:3, and 8:2 of 

ιC-CMC ratio). This is because high shear viscosity will decrease the homogeneity of 

the liposome dispersion, whereas low viscosity will lead to phase separation and 
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consequently affect the liposome stability and homogeneity in the gel. High σp will also 

affect the spreadability and texture of the mixed gel. After considering these factors, 

mixed gel that prepared from 5:5 ιC-CMC ratio was selected for the preparation of the 

liposomal gel. 

In this work, five types of different liposomal gels were prepared, namely OA-

in-gel (LG-OA), OACh1-in-gel (LG-OACh1), OACh2-in-gel (LG-OACh2), OACh2P1-

in-gel (LG-OACh2P1), and OACh2P2-in-gel (LG-OACh2P2). Each liposomal gel was 

loaded with 8 mg/mL of liposomes. 

 

3.4.1 Morphology of liposomal gels 

The morphology of liposomal gels was evaluated using a confocal laser scanning 

microscope. All the liposomes were found to be entrapped in the 3-dimentional network 

of the gel. As compared with the liposome which dispersed in aqueous (Figure 3.22(a)), 

the liposomes entrapped in the gel matrix (5:5 ιC-CMC ratio) showed spherical 

morphology (Figures 3.22(b) and (c)). This result showed that the polymer chains do 

not disrupt the structure of the liposome, but the liposomes are accommodated into the 

voids of the gel network (Chieng, 2010). Similar result was also reported in a number of 

earlier studies (Bochot et al., 1998; Dowling et al., 2009; Dragicevic-Curic et al., 2009).   
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(a) 

 

  

(b) 

 

  
 

(c) 

 

  

 

(d) 

 

 
  

Figure 3.22: The fluorescence images of (a) OA in solution, (b) LG-OA, (c) LG-OACh1, 

and (d) LG-OACh2P1. The liposomes were indicated with arrows. 

 

3.4.2 Rheological properties of the liposomal gels 

3.4.2.1 Gelling temperature of the liposomal gels 

The gelling temperature (Tgel) of all liposomal gels was 1 oC higher than the 5:5 ιC-

CMC mixed gel (P < 0.05) (Table 3.9).  In other words, the gelation temperature of the 

gel increased with the presence of liposomes. This result indicated that there was an 

interaction between the liposomes and the polymer network. The liposomes that are 
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accommodated in between the network space of the gel matrix could act as bridges that 

link the adjacent polymer chains via intermolecular interaction such as hydrogen 

bonding and enhanced the integrity of internal gel network structure (Chieng and Chen, 

2010). This behaviour was further proved with the S value of the liposomal gels which 

will be discussed in the following section. The higher Tgel also revealed that the 

liposomal gels had exhibited greater thermostability as compared to the pure 5:5 ιC-

CMC mixed gel. However, the increment of the Tgel for all the liposomal gels was found 

to be independent of liposome type (P > 0.05).  

 

Table 3.9: Gelation temperature of liposomal gels. 
 

Sample Tgel (oC) 

5:5 ιC-CMC mixed gel 34.2 ± 0.6 

LG-OA 35.9 ± 0.6 

LG-OACh1 35.6 ± 0.6 

LG-OACh2 35.7 ± 0.6 

LG-OACh2P1 35.6 ± 0.6 

LG-OACh2P2 35.4 ± 0.6 

 

3.4.2.2 Dynamic behavior of liposomal gels 

The G’ value of the liposomal gels increased from 12 Pa to 13.7 Pa after liposomes 

were added into the 5:5 ιC-CMC mixed gel indicating the increase in its elasticity 

(Figure 3.23). This result was mainly due to the rigidity of the liposomes (Mourtas, 

Haikou et al., 2008). Under applied shear, the liposomes could effectively store the 

applied stress in its elastic component and thus increased the G’ of the liposomal gels 

(Table 3.10). This result is further supported by the γb of the liposomal gels. The γb of 

the liposomal gels was one unit higher than the 5:5 ιC-CMC mixed gel and indicated 

that the liposomal gels’ strength were slightly higher than the pure gel and can 

withstand larger deformation strain before they started to flow like a liquid. However, 
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the γc for all liposomal gels were found to be lower than 5:5 ιC-CMC mixed gel and 

indicated that these liposomal gels exhibited shorter LVR. This was accompanied with 

the decrease in the CE of the liposomal gels which indicated the decrease of 

cohesiveness of the gel structure. This result is favorable as the cohesiveness within the 

liposomal gels is directly proportional to the flowability and spreadability of the 

liposomal gels. High CE retarded the flow of the liposomal gels and limited the 

spreadability of the gel. This result will influence the homogeneity and consistency of 

the gel upon application (Garg et al., 2002).  

 The contribution of liposomes to the elastic component of the 5:5 ιC-CMC 

mixed gel is also shown in the frequency sweep (Figure 3.24). According to the 

frequency sweep profile, all liposomal gels exhibited viscoelastic behavior with G’ 

larger than G” over the selected frequency range. The G’ profile of all liposomal gels 

was shifted to higher value as compared to the pure 5:5 ιC-CMC mixed gel (P< 0.05). 

This result showed the increase in the elasticity of the liposomal gels (Ikeda and 

Foregeding, 2003). The slope of G’ of the liposomal gels was also found to decrease as 

compared to the pure 5:5 ιC-CMC mixed gel. The decrease in the G’ slope implied that 

the liposomal gels are more solid-like behavior than that of the 5:5 ιC-CMC mixed gel 

(Picout and Ross-Murphy, 2002). The increase in the elasticity of liposomal gels was 

also expressed through their tan δ profile (Figure 3.25). The tan δ of the liposomal gels 

was significantly lower than the blank gel which showed that the liposomal gels were 

more solid-like. The decrease of tan δ for liposomal gels also shows that the presence of 

liposomes have enhanced the elasticity of the gel (Barbucci et al., 2000). On the other 

hand, the changes of the G” for the liposomal gels were negligible as compared to the 

5:5 ιC-CMC mixed gel which implied that the amount of dissipation energy of the 

liposomal gels was similar to the 5:5 ιC-CMC mixed gel. This result indicated that the 

presence of liposomes does not affect the physical entanglements in the 5:5 ιC-CMC 
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mixed gel and can be proved with the n value of the liposomal gels ( will be discuss in 

section 3.4.2.3) (Grillet et al., 2012).  
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Figure 3.23: The strain sweep profile of the (■)5:5 ιC-CMC mixed gel where 

(●)LG-OA, (▲)LG-OACh1, (▼)LG-OACh2, (◄)LG-OACh2P1, and (►)LG-

OACh2P2 that obtained at 25oC.  
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Figure 3.24: The variation of G’ (solid symbol) and G” (close symbol) as a 

function of frequency of the (■)5:5 ιC-CMC mixed gel where (●)LG-OA, 

(▲)LG-OACh1, (▼)LG-OACh2, (◄)LG-OACh2P1, and (►)LG-OACh2P2 that 

obtained at 25oC. 
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Figure 3.25: The tan δ of the (■)5:5 ιC-CMC mixed gel where (●)LG-OA, 

(▲)LG-OACh1, (▼)LG-OACh2, (◄)LG-OACh2P1, and (►)LG-

OACh2P2 that obtained at 25oC. 

 

Table 3.10: The critical strain (γc), break point (γb), elastic modulus (G’), cohesive energy (CE), 

and yield stress (σp) of the liposomal gels which determined from their dynamic rheological 

behaviors.   

 

Name 
Critical 

strain, γc 

Break point, 

γb 

Elastic 

modulus, G’ 

(Pa) 

CE (Pa) Slope of G’ 

5:5 ιC-CMC 

mixed gel 
0.57±0.02 2.81±0.02 12±1 1.9±0.1 0.199±0.001 

LG-OA 0.41±0.01 3.67±0.01 12.31±0.04 1.039±0.006 0.178±0.001 

LG-OACh1 0.43±0.01 3.79±0.01 13.38±0.04 1.243±0.007 0.147±0.001 

LG-OACh2 0.42±0.01 3.76±0.01 13.62±0.04 1.184±0.007 0.159±0.001 

LG-OACh2P1 0.44±0.01 3.79±0.01 13.45±0.04 1.28±0.01 0.163±0.001 

LG-OACh2P2 0.44±0.02 3.67±0.02 13.85±0.04 1.33±0.01 0.161±0.001 
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3.4.2.3 Creep and recovery of liposomal gels 
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Figure 3.26: Creep and recovery profiles for (■)5:5 ιC-CMC mixed gel, (□)LG-

OA, (▼)LG-OACh1, (○)LG-OACh2, (◊)LG-OACh2P1, and (□)LG-OACh2P2 

that performed at 0.1 Pa constant stresses at 25 ᵒC. 

 

The J(t) results showed that all liposomal gels exhibited viscoelastic creep 

response (Figure 3.26). The J(t) profile and Jmax of the liposomal gels were found to be 

lower than the 5:5 ιC-CMC mixed gel. The result indicated that the elastic response of 

liposomal gels had become stronger in the presence of liposomes. However, the changes 

of the Go value for the liposomal gels which corresponded to the Maxwell’s spring 

element in the Burger’s model were negligible as compared to the pure 5:5 ιC-CMC 

mixed gel (Table 3.11). This result showed that only the gel matrix of the liposomal gels 

was responsible for the instantaneous elastic response. In other words, the contribution 

of the liposomes to the Go of the liposomal gels was negligible. The presence of 

liposomes was found to contribute to the Kelvin-Voigt elements as the G1 value of 

liposomal gels was found to be two times higher than the pure 5:5 ιC-CMC mixed gel 

(Table 3.11). The increase in the G1 of the liposomal gels was also accompanied with an 
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increase in their viscous component, η1 which increased the liposomal gels’ retarded 

elasticity. The results also indicate that the liposomal gels can sustain greater 

deformation stress as compared to the 5:5 ιC-CMC mixed gel. This behavior could be 

due to the small and more rigid liposomes that could not easily deform (as easy as the 

5:5 ιC-CMC mixed gel) under applied stress and thus, increased the G1 and η1 values of 

the liposomal gels (Figure 3.27) (Mourtas, Haikou et al., 2008). The λret for the 

liposomal gels was increased as compared to the pure 5:5 ιC-CMC mixed gel as a result 

of the increase in the η1 value (Table 3.11). The increase in the η1 of the liposomal gel 

had delayed the response of the elastic component in its Kelvin-Voigt element, thus 

increased the time taken for the strain of the liposomal gels to accumulate and reached 

Jmax.  

 

 

Figure 3.27: (a) Gel matrix representing internal network structure of blank gel and liposomal 

gel before creep; (b) during creep, the pure 5:5 ιC-CMC mixed gel deformed more as 

compared to the liposomal gel where the θ > θ′.  

 

 

(a) (b) 

θ 

θ′ 
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The J(t) functions of the liposomal gels obtained from the creep test were also 

converted to the G(t) function in order to study their S and n (Figure 3.28). According to 

the result (Table 3.11), the changes in the n value for all liposomal gels were found to 

be negligible as compared to the pure 5:5 ιC-CMC mixed gel which indicated that the 

degree of entanglement (n) in the liposomal gels was similar with the pure 5:5 ιC-CMC 

mixed gel. However, the S value of the liposomal gels increased significantly and 

indicated their greater gel strength. This was mainly due to the presence of liposomes in 

the gel matrix that plays a role in enhancing the elasticity of the gel. The result is in 

good agreement with the result obtained from the frequency sweep profile of the 

liposomal gels.    
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Figure 3.28: The (a) ln J(t) versus ln t plot and (b) ln G(t) versus ln t plot of 

the pure 5:5 ιC-CMC mixed gel and liposomal gels showing the reciprocal 

relationship between the J(t) and G(t). 
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Figure 3.28 (continued) 

 

 

For the recovery profiles of the liposomal gels, its percentage of deformation 

(%JSM) was found to be 20% higher than the pure 5:5 ιC-CMC mixed gel. However, the 

JSM for all the liposomal gels recovered is 100% after the load was removed (Table 3.11) 

(Steffe, 1996). On the other hand, the %JKV of the liposomal gels which represents the 

retarded elasticity was found to be 30% lower than the pure 5:5 ιC-CMC mixed gel. The 

lower %JKV of liposomal gels was mainly due to its higher internal viscosity (η1) than 

that of the pure 5:5 ιC-CMC mixed gel. As discussed above, the η1 of the liposomal gels 

was tenfold greater than the η1 of the pure 5:5 ιC-CMC mixed gel. The higher η1 has 

decreased the deformation of the Kelvin-Voigt elements of the liposomal gels and 

resulted in the decrease of the %JKV. It was found that the deformation contributed by 

the Kelvin-Voigt elements (%RKV) was not fully recovered as compared to the %RSM. 

This unrecovered strain from the Kelvin-Voigt elements contributed to the permanent 

deformation of the gels (J∞) (Table 3.11). The %J∞ of the liposomal gels was slightly 
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lower than the pure 5:5 ι-C-CMC gel. This result showed that the recovery ability of the 

liposomal gels was higher than that of pure 5:5 ι-C-CMC gel. This was further 

supported by the overall recovery percentage (%Rovr) of the liposomal gels. The %Rovr 

of the liposomal gels was found to be higher than the pure 5:5 ι-C-CMC gel. This result 

might be attributed to the presence of the liposomes that added an extra “bridging” 

effect which linked the  adjacent polymer chains in the gel beside the physical 

entanglement between the polymer chains (Figure 3.29) (Chieng and Chen, 2010). It 

was suggested that this bridging effect originated from the hydrogen bonding between 

the O-H at the backbone of the polymer chains from the gel matrix and the oxygen atom 

of fatty acid or the oxygen atom or nitrogen atom of the chitosan molecules at the 

surface of the liposomes as the molecules were  rich with –OH groups. Since the 

hydrogen bond is weak and non-permanent, it could break during creep process, but 

reformed when the applied stress was removed, leading to the high recovery of the 

liposomal gels. This result further indicates that the loaded liposomes do not contribute 

to the permanent deformation of gel, but enhanced the recovery of the liposomal gels. 

The permanent deformation was mainly attributed to the disentanglement of some 

entangled polymer chains during creep.   

The CMC chains present in the 5:5 ι-C-CMC mixed gel might also be partially 

coated on the chitosan-modified liposomes (Figure 3.29(b)). This is because the –OH 

group in the CMC chains as its pKa value is 4.3 and will interact ionically with the –NH 

group in the chitosan molecules (Magdassi et al., 2003). However, this does not 

significantly affect the elastic property of the gel matrix as the changes in the G0 of the 

liposomal gel was found to be negligible as compared to the pure 5:5 ι-C-CMC mixed 

gel (Table 3.11).  
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Figure 3.29: Schematic network structure of the 5:5 ιC-CMC mixed gel matrix (a) 

loaded with OA liposome and (b) chitosan-modified OA liposomes. They grey area 

is the possible hydrogen bonding zone between the gel network structure and the 

liposomes.  

 

 

(a) 

(b) 
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Table 3.11: Strain corresponds to Maxwell element (γ0), strain corresponds to Kelvin-Voigt 

element (γ1), Go, G1, ηo, η1, and delay time, λret for the liposomal gels. The percentage of 

deformation of each element in the Burger’s model (JSM, JKV, and J∞), the percentage of total 

recovery (R%) at t=300 s, the strength of junction zone, and degree of entanglement for 

liposomal gels. 
 

 
5:5 ιC-

CMC 

mixed gel 

LG-OA 
LG-

OACh1 

LG-

OACh2 

LG-

OACh2P1 

LG-

OACh2P2 

γ0 (×10-3) 9.1±0.1 7.5±0.1 7.9±0.1 7.9±0.1 8.2±0.3 7.4±0.2 

γ1(×10-3) 6.9±0.1 
3.49 

±0.06 

3.29   

±0.04 

4.29  

±0.04 
3.6    ±0.02 

3.55 

±0.05 

Go  (Pa) 10.9±0.1 
13.3±0.

2 
12.7±0.2 12.7±0.2 12.3±0.5 13.4±0.4 

ηo  (Pas) (× 103) 
0.340 

±0.006 

3.13 

±0.02 

2.78   

±0.02 

2.63 

±0.05 

2.38   

±0.04 

2.92 

±0.02 

G1 (Pa) 14.5±0.9 
28.6 

±0.2 
30.4±0.2 23.3±0.2 27.8±0.2 28.2±0.2 

η1  (Pas) (× 102) 0.61±0.02 3.1±0.2 3.3±0.3 3.0±0.2 2.9±0.4 2.6±0.3 

JMAX  (Pa-1) 0.2723 0.1398 0.1404 0.1435 0.128 0.1276 

λret  (s) 4.21 10.84 10.85 12.88 10.43 9.22 

Percentage 

of 

deformation 

JSM 

(%) 
49.94 63.89 62.18 84.28 64.83 62.29 

JKV 

(%) 
40.10 27.62 32.41 28.61 28.59 30.95 

J∞ 

(%) 
9.95 8.49 5.41 7.11 6.58 6.67 

Percentage 

of recovery 

RSM 

(%) 
98.5 102 99.54 99.75 101 102 

RKV 

(%) 
90.04 91.51 94.57 92.89 91.42 91.73 

Rovr (%) 89.91 91.31 94.20 92.64 93.42 93.37 

Strength of 

junction zone, S 

(Pas) 

6.71 

±0.01 

14.4±0.

9 
12.8±0.9 12.5±0.9 13.1±0.9 13.4±0.2 

Degree of 

entanglement, n 

0.159 

±0.001 

0.124 

±0.001 

0.131 

±0.001 

0.129 

±0.003 

0.135 

±0.003 

0.131 

±0.004 

 

 

3.4.2.4  Flow behavior of liposomal gels 

At low shear rate, the shear viscosity profile of the liposomal gels was shifted to higher 

value as compared to the 5:5 ιC-CMC mixed gel (Table 3.12). Beside the shear 

viscosity, the yield stress (σp) of the liposomal gels was also found to be greater than the 

pure 5:5 ιC-CMC mixed gel. The increase of the shear viscosity and σp might be due to 

the rigidity of the loaded liposomes or the liposomes’ bridging effect as discussed in 
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previous section (Chieng and Chen, 2010; Mourtas, Haikou et al., 2008). The viscosity 

and flow curves of the liposomal gels showed that they are shear thinning gels (Figure 

3.30). The PLI of liposomal gels was significantly lower than that of 5:5 ιC-CMC 

mixed gel. This result indicated that the liposomal gels were more shear thinning and 

had better spreading ability as compared to the 5:5 ιC-CMC mixed gel (Garg et al., 

2002). The effect of liposomes on the flow behavior of the gel was also found to be 

independent of the loaded liposome types (Table 3.12). 

 

Table 3.12: Shear viscosity, Power Law Index (PLI), and yield stress (σp) of the liposomal gels 

which determined from their steady rheological behaviors.   
 

Name Shear viscosity (Pas) Power Law Index, PLI 
Yield stress, σp 

(Pa) 

5:5 ιC-CMC mixed 

gel 
132±7 0.247±0.004 4.23 

LG-OA 202±9 0.200±0.004 4.32 

LG-OACh1 256±2 0.169±0.005 5.48 

LG-OACh2 264±5 0.179±0.005 5.65 

LG-OACh2P1 222±2 0.175±0.005 5.58 

LG-OACh2P2 248±4 0.179±0.005 5.28 

 

The heterogeneous flow that was initially found in the 5:5 ιC-CMC mixed gel 

was still present in the liposomal gels (Figure 3.30(b)). The shear banding region of the 

liposomal gels has shifted to higher shear rate region as compared with 5:5 ιC-CMC 

mixed gel. The shift of the shear banding region was mainly due to the combinations of 

different stress relaxation response from different component of the liposomal gel (i.e. 

the gel and liposomes) (Ovarlez et al., 2009). The increase in the shear banding might 

also be due to the localization of stress in the region where the loaded liposomes 

rearrange themselves to the flow direction. When all the liposomes were orientated in 

the flow direction, the stress is responding linearly with the shear rate again.  

 



                                                                                                              

109 

 

                 (a) 

0.01 0.1 1 10 100

0.1

1

10

100

V
is

c
o

s
it
y
, 

 (

P
a

s
)

Shear rate (s
-1
)

 
                  (b)  

0.01 0.1 1 10 100

1

10

S
h

e
a

r 
s
tr

e
s
s
, 

 (

P
a

)

Shear rate (s
-1
)

 

Figure 3.30: (a) Viscosity curves of the liposomal gels. (b) The flow 

curve of the (■)5:5 ιC-CMC mixed gel, (●)LG-OA, (▲)LG-OACh1, 

(▼)LG-OACh2, (◄)LG-OACh2P1, and (♦)LG-OACh2P2.  
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3.4.2.5  Thixotropic behavior of liposomal gels 

All the prepared liposomal gels showed thixotropic properties (Figure 3.31). However, 

their degree of thixotropic was found to be slightly higher than the pure 5:5 ιC-CMC 

mixed gel (Table 3.13). This result indicated that the presence of liposomes enhanced 

the strength of the gel network structure which was further supported by the higher 

elastic response of the liposomal gels as discussed in sections 3.4.2.2 and 3.4.2.3. The 

pseudoplastic index of all liposomal gels was significantly lower than the pure 5:5 ι-C-

CMC mixed gel which indicated the slower structural change of the liposomal gels with 

respect to shear rate as compared to the pure 5:5 ι-C-CMC mixed gel. This might due to 

the greater elasticity of the liposomal gels as discussed previously. The change in the 

thixotropic index of the all liposomal gels was negligible and these results implied that 

the structural rebuilt process occurred at similar rate and independent of loaded 

liposome types (Table 3.13).  
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Figure 3.31: Thixotropic plot for liposomal gels. 
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Table 3.13: Degree of thixotropy, pseudoplastic index, and thixotropic index of liposomal gels.  

Name Degree of thixotropy Pseudoplastic index Thixotropic index 

5:5 ιC-CMC mixed gel 11.9±0.2 1.05±0.01 0.72±0.02 

LG-OA 15.9±0.2 0.67±0.02 070±0.01 

LG-OACh1 16.2±0.3 0.63±0.05 0.66±0.06 

LG-OACh2 13±1 0.68±0.03 0.66±0.04 

LG-OACh2P1 19±2 0.64±0.03 0.65±0.05 

LG-OACh2P2 18±2 0.69±0.04 0.67±0.04 
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CHAPTER 4 

4.0 Conclusion 

This study demonstrated the preparation of surface modified OA liposomes using Chs- 

and Ch2Ps. The pKa of the OA-Chs and OA-Ch2Ps mixtures was found to decrease by 

1 unit and this result indicated that the interaction between the OA molecules and the 

Chs and Ch2Ps molecules were favourable. The size of the Chs- and Ch2Ps-modified 

liposomes was found to be lower than the unmodified OA liposome. In addition, the 

zeta potentials of these surface modified liposomes were decreased and indicated that 

the Chs and ChPs have successfully coated on the surface of the OA liposome. The 

stability and rigidity of the surface modified OA liposomes was also improved. This 

result can be observed from the TEM and AFM micrographs of the surface modified 

liposomes whereby these surface modified OA liposomes are able to retain their 

spherical shape unlike the unmodified OA liposome that showed structural rupture 

under the microscope.  

The surface modified liposomes were then mixed into carbohydrate based gel 

for the preparation of LG. The carbohydrate gel was prepared using a mixture of ιC and 

CMC, this is because the individual pure gels were not suitable to be used for the 

preparation of LG. The high G’ (36.4 Pa), CE (5.11 Pa) and shear viscosity (1000 Pas) 

of the ιC gel reduced the dispersity and homogeneity of the liposomes in the gel. On the 

other hand, the weak internal structure of the CMC gel (100 times lower than the ιC) 

which is due to its non-entangled nature was not strong enough to suspend the 

liposomes. Therefore, a series of the mixture of ι-C and CMC gels were prepared. The 

results showed that the presence of CMC in ιC gel managed to improve the flexibility 

and CE of the gel. The mixture with 5:5 ιC-CMC was used to prepare the LG due to its 

optimum viscoelastic properties and moderate flow behavior. The 
c  of the mixed gel 

with ιC-CMC ratio of 5:5 was the highest among all prepared gels which was also an 
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indication of more elastic nature of the gel. The CE of this mixed gel was also found to 

be an optimum value among the mixed gels. These properties can enhance the 

homogeneity, stability, and liposome dispersion in the gel. The LGs were prepared by 

mixing the prepared liposomes into the mixed gel with ιC-CMC ratio of 5:5. The 

presence of liposomes in the gel matrix has slightly modified the elastic property of the 

gel and this was explained with the rigidity of the loaded liposomes that could not be 

easily deformed. Similar results were also showed in the creep profile of the LGs as the 

Jmax of all LGs were significantly lower than the pure gel matrix which indicated the 

stronger elastic response of the LGs. The increase in the elastic response was mainly 

contributed by the retarded elasticity of the LGs as the retarded elasticity of the LGs 

was ten folds higher than the pure 5:5 ιC-CMC mixed gel. Besides elasticity, the 

presence of liposomes in the gel has also enhanced its shear viscosity. The shear 

thinning behavior of the LGs was also found to be greater than the pure 5:5 ιC-CMC 

mixed gel and indicated the better spreading ability of the LGs. The G” and σp values of 

the LGs revealed that the addition of liposomes into the gel formulation do not affect 

the physical entanglement of the original mixed gel with ιC-CMC ratio of 5:5. At the 

same time, the prepared gel system could provide the liposomes with a better protection 

environment towards disruptive effects and thus, improved the stability of the liposomes. 

 

4.1 Future work 

As previous researches have revealed that the liposomes have a huge potential 

application especially in cosmetics and topical drug delivery system. Our liposome in 

gel systems can be further developed for application such as delivery of anesthesia 

drugs and other drugs for dermatological diseases. Besides topical applications, the 

liposomal systems that were prepared in this study can also be used for transdermal 

delivery of small drugs molecules as well as macromolecules. In order to obtain an 
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optimum performance from liposomal system prepared in this study in transdermal 

delivery application, the study of biological interaction between the targeted cells and 

the liposomal system is relatively important. This is because it provides better 

understanding on the mechanism of this liposomal drug delivery system to the targeted 

cell and the therapeutic efficacy of the drug loaded into the liposomal system can also 

be predicted.   
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Introduction

Over the past few decades, focus has been given to drug 
targeting in pharmaceutical industries to prevent the usage 
of excessive drugs during medication to reduce the toxicity 
and side effects caused by undesired drug localization 
(Yuan et al., 2010). Currently, liposomes have drawn 
much attention in the pharmaceutical industry as a drug 
delivery vehicle. The ability of the liposome to encapsulate 
and protect active drugs enabled it to deliver drugs to the 
desired disease sites. Commercially available liposome 
and liposome-like pharmaceutical products, such as 
DOXIL, have been developed and successfully applied for 
the delivery of anticancer drug, such as doxorubicin, for 
the treatment of breast cancer (Torchilin, 2005). However, 
researches have revealed that conventional liposome hardly 
survive in the bloodstream because it can be easily detected 
and destroyed by the immune system. This disadvantage 
has limited the application of conventional liposome as 
a drug carrier (Immordino et al., 2006). Consequently, 
PEGylated liposomes with longer circulation times (He  
et al., 2010) have been developed to overcome this 

problem. PEG (polyethylene glycol) is a synthetic, nontoxic 
polymer that has been used to modify the surface of the 
liposome for the enhancement of liposome stability in the 
bloodstream (Chonn and Cullis, 1998; Taguchi et al., 2009). 
Again, studies have revealed that repeated injections of 
the PEGylated liposome can induce the accelerated blood 
clearance phenomenon and reduce the bioavailability 
of the PEGylated liposome (Laverman et al., 2001; Ishida 
et al., 2005). Therefore, various polymers, especially 
polysaccharides, have been used to replace PEG (Mobed and 
Chang, 1998; Filipovicâ-Grcïicâ et al., 2001; Thongborisute 
et al., 2006). Among polysaccharides, chitosan has been the 
most widely used coating material for liposomes because 
of its biocompatibility, biodegradability, nontoxicity, 
bioadhesivity (Adamo and Isabella, 2003; Aranaz et al., 2010), 
and mucoadhesive properties (Karn et al., 2011). Takeuchi 
et al. (1996, 2003) reported that chitosan-coated liposomes 
were able to prolong the pharmacokinetic effect of peptides 
(e.g., insulin) as a result of the mucoadhesion of the 
liposome to the intestinal tract. Chitosan can also increase 
the stability and prolong the blood-circulation time of the 
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liposome as well as decrease the leakage of encapsulated 
drugs (Garg et al., 2007; Dong and Rogers, 1991; Wang  
et al., 2010).

So far, research on chitosan-coated liposomes has 
been largely focused on phospholipid-based liposomes 
(Zaru et al., 2009; Li et al., 2009; Abdelbary, 2011), and 
chitosan-coated nonphospholipid liposomes have not 
been reported on. There has been continuous interest 
in developing the nonphospholipid liposome because 
of the instability of phospholipids, their reactivity in the 
biological environment, and the relatively higher cost 
associated with phospholipid preparation (Bastiat et al., 
2007). Nonphospholipid materials, especially oleic acid 
(OA), are self-assembled into closed bilayers to form 
liposomes in an aqueous solution at basic conditions 
(pH 9) (Morigaki et al., 2003). The application of chitosan 
in the preparation of chitosan-coated nonphospholipid 
liposomes, such as chitosan-coated OA liposomes, is 
restricted because of the poor solubility of chitosan in 
water under basic conditions. Therefore, the main aim 
of this study was to prepare chitosan-coated nonphos-
pholipid liposomes using low molecular weight LMW 
chitosan (10–25 kDa), and the OA liposome was selected 
as a model for nonphospholipid liposomes. The selected 
LMW chitosan is well soluble in water under neutral and 
basic conditions. The coating of LMW chitosan on the 
surface of the OA liposome was confirmed by its micro-
scope images and physicochemical properties, such as 
zeta potential and the size of the liposome.

Methods

Method and materials
All solutions and samples were prepared by using 
deionized water (with the resistivity of 18.2 Ω/cm) from 
a Barnstead Diamond Nanopure Water Purification 
unit coupled with a Barnstead DiamondTM reverse 
osmosis RO unit (Barnstead International, Dubuque, 
Iowa, USA). Gas-chromatography–grade OA (99%) and 
acetic acid (99%) were purchased from Sigma-Aldrich  
(St. Louis, Missouri, USA). Boric acid, hydrochloric acid, 
and acetone were obtained from Merck KGaA (Darmstadt, 
Germany). Sodium hydroxide and sodium nitrite 
were purchased from Fluka AG (Buchs, Switzerland). 
Chitosan, with an average molecular weight of 150 kDa, 
was obtained from Acros Organics (Fair Lawn, New 
Jersey, USA) and used as received.

Sample preparation
Preparation of LMW chitosan
For this experiment, two types of chitsans (Ch1 and Ch2) 
with different molecular weights (MWs) were prepared. 
Depolymerization of chitosan was started by preparing a 
1% (w/v) chitosan solution in 1% acetic acid solution. Next, 
10 mL of sodium nitrite solution (0.10 M) was then added 
dropwise into the chitosan solution under magnetic stir-
ring at room temperature (25oC) for 1 hour. Then, the pH 
of the solution was adjusted to pH 8–9 with 1 M of sodium 

hydroxide solution. The reaction mixture containing Ch1 
was then neutralized with 1 M of hydrochloric acid solu-
tion. Ch1 was then precipitated using acetone and collected 
using centrifugation. With a similar method, Ch2 was pre-
pared by using 7 mL of 0.10 M sodium nitrite solution.

Preparation of chitosan-coated OA liposomes
First, 30 mM of OA liposome solution was prepared by dis-
solving an appropriate amount of OA using 50 mM of borate 
buffer (pH 8.8). Ch1 and Ch2 solutions, with concentration 
ranging from 0.04 to 0.30% (w/v), were prepared by dissolv-
ing an appropriate amount of Ch1 and Ch2 into 50 mM of 
borate buffer. pH levels of both OA liposome and Ch1 or 
Ch2 solutions were adjusted to 7 before mixing. Then, the 
liposome solution was added dropwise into Ch1 and Ch2 
solutions under magnetic stirring to produce OACh1 and 
OACh2 solution, respectively. OACh1 and OACh2 were 
stirred for 24 hours at room temperature. Then, pH levels of 
OACh1 and OACh2 were adjusted to 8.8 for the formation 
of chitosan-coated liposomes. These liposome solutions 
were incubated at 25oC for 24 hours before analysis.

Characterization of liposomes and liposome solutions
Average MW determination
Average MWs of Ch1 and Ch2 were determined by 
the dynamic light scattering method using a Malvern 
NanoSeries ZetaSizer (Malvern Instruments Ltd., 
Malvern, UK).

Estimation of chitosan solubility
Water solubility of Ch1 and Ch2 was determined by the 
turbidity method (Li et al., 2006). Briefly, 0.10% of Ch1 and 
Ch2 were dissolved separately into deionized water and 
50 mM of borate buffer (pH 8.8). Then, the transmittance 
of these solutions was recorded using a Cary 50 Conc 
UV-Vis spectrophotometer (Varian, Melbourne, Victoria, 
Australia) with a quartz cell with an optical path length 
of 1 cm at 600 nm. The above-described method was 
repeated by changing the concentration of Ch1 and Ch2.

Size and zeta potential
Size and zeta potential of OA, OACh1, and OACh2 lipo-
somes were measured using a Malvern NanoSeries 
ZetaSizer (Malvern Instruments) at a constant tempera-
ture of 25oC. Size and zeta potential of prepared lipo-
somes were over 30 days of storage time.

Optical polarizing microscope (OPM) imaging
OPM images of OA, OACh1, and OACh2 liposomes were 
captured using a Leica Polarizing Microscope equipped 
with Leica QWin software (Leica Microsystems, Buffalo 
Grove, Illinois, USA). All measurements were performed 
at the temperature of 25oC.

Transmission Electron Microscope (TEM) imaging
An EFTEM model LIBRA 120 (Carl Zeiss Microscopy 
GmbH, Oberkochen, Germany) equipped with an 
Olympus SIS-iTEM (ver. 5) was employed to analyze the 
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image of the prepared liposomes. A drop of liposome 
solution was placed onto a copper-coated carbon grid, 
followed by the removal of excess dispersed medium 
using a filter paper. Then, a drop of negative staining 
reagent (1% of phosphotungstic acid in 50 mM of borate 
buffer solution; pH 8.8) was added and the sample was 
air-dried at room temperature for 25 minutes. The sam-
ple was then examined under a TEM.

Atomic force microscope (AFM) imaging
AFM imaging of liposomes was captured by using an AFM 
Nanoscope III (Model MMAFM-2; Digital Instruments, 

Tonawanda, New York, USA). All imaging was performed 
by tapping mode with an integrated pyramidal tips alu-
minium cantilever (BS Multi75Al; NanoAndMore GmbH, 
Wetzlar, Germany) (Vermette et al., 2002). Samples were 
prepared by placing a drop of the liposome solutions onto 
a freshly cleaved mica surface. The dispersing medium 
was removed by air drying (Paleos et al., 1996).

Surface tension
The rigidity of the vesicle was investigated by studying 
the effect of Ch1 and Ch2 on the critical vesicular con-
centration (CVC) of liposome solutions. Surface tension 

Figure 1. Image of liposomes obtained using OPM. (a) Birefringence effect of OA liposome, (b) maltase cross structure of OA liposome under 
dark field, (c) the OACh1 liposome (0.20% of Ch1), and (d) the OACh2 liposome (0.20% of Ch2).

Figure 2. TEM image of (a) OACh2 liposome and (b) OA liposome. The amount of chitosan used in the preparation of the OACh2 liposome 
was 0.20%.
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of a series of OA, OACh1, and OACh2 liposome solutions 
with different concentrations were determined by the 
du Noüy ring method using a Krüss Tensiometer (Model 
K100; Krüss, Hamburg, Germany) at 25oC. OA, OACh1, 
and OACh2 liposome solutions were diluted using 50 mM 
of borate buffer (pH 8.8) and were incubated at 25oC 
overnight before measurement. Surface tension of the 
prepared solution was determined using 20 successive 
measurements, and the standard deviation was calculated.

Results and discussion

Characterization of LMW chitosan (Ch1 and Ch2)
The average MW of Ch1 and Ch2 was 10 and 25 kDa, 
respectively, and Ch1 and Ch2 have been found to be 
soluble in deionized water and borate buffer (pH 9).

Appearance of chitosan-coated liposomes
Ch1- and Ch2-coated OA liposomes were prepared and 
labeled as OACh1 and OACh2, respectively. The appear-
ance of OACh1 and OACh2 was evaluated using an OPM, 
a TEM, and AFM. According to the micrographs obtained 
from the OPM, all liposomes (OA, OACh1, and OACh2) 
showed a spherical morphology (Figure 1). Compared 
with the OA liposome, OACh1 and OACh2 liposomes do 
not exhibit any birefringence effect (Figure 1C and 1D) 
and Maltese cross at dark field.

The TEM image clearly shows that the chitosan-
coated OA liposome was spherical in shape (Figure 2A). 
The present of the chitosan layer on the lipid layer of the 
OA liposome thickened the lipid layer and increased 
the opacity, thus the surface of the chitosan-coated OA 
liposome appears to be black in color (Wang et al., 2010). 

Figure 3. AFM image of (a) OA liposome, (b) magnified OA 
liposome, and (c) OACh2 (0.20% Ch2). Liposomes were indicated 
by black arrows. Figure 4. Variation of the size of (a) OACh1 and (b) OACh2 liposomes.
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However, the OA liposome was not observed under the 
TEM. The structure of the OA liposome was found to 
collapse under the TEM (Figure 2B). The collapse of the 
structure of the OA liposome might be the result of the 
drying process or vacuum condition and indicates less 
rigidity of the OA liposome bilayer. This result also indi-
cated that the chitosan modification of the OA liposome 
has enhanced the stability and bilayer rigidity of OA lipo-
somes. For the AFM image, compared with the chitosan-
coated OA liposome, the OA liposomes were hardly seen 
(Figure 3A and 3B). This result further indicated that the 
structure of the OA liposome was damaged as a result of 
the dry condition, because a vacuum is not required for 
AFM imaging. By comparison with the OA liposome, the 
chitosan-coated liposome showed a “peeling off” effect 
on the surface. This result showed that Ch1 and Ch2 have 
been coated on the surface of the OA liposome.

In terms of stability of the prepared liposomes, there 
was no flocculation observed throughout the 30 days of 
storage time, except for the OACh2 liposome solution 
that contained 0.30% of Ch2. A white precipitate was 
observed in the OACh2 liposome solution after 3 days of 
storage time. It was suggested that the presence of excess 
Ch2 has promoted the coagulation process of liposomes. 
Therefore, the size and zeta potential analysis of the 
OACh2 liposome are not presented.

Liposome size and zeta potential
The size of the OACh1 and OACh2 liposomes was found 
to be at least 20 nm smaller than that of the OA liposome 
(Figure 4). It was the result of the chitosan that formed 
a cage-like steric barrier that protected the liposome 
from aggregation and also prevented the uptake of the 
OA monomer from the bulk (Morigaki and Wald, 2007). 
As an OA liposome, the size of OACh1 and OACh2 was 
also found to increase slowly for the first 7 days of storage 
time, and this result has been attributed to the chitosan-
coating process that happens on the surface of liposomes 
(Li et al., 2009). The size of OACh1 was increased from 
115 to 130 nm when the amount of Ch1 increased from 
0.10 (w/v) to 0.30% (w/v), whereas the size of the OACh2 
increased from 105 to 125 nm when the amount of Ch2 
increased from 0.10 (w/v) to 0.20% (w/v). This result 
indicated the formation of more chitosan layers on the 
surface of the liposome (Figure 5) (Guo et al., 2003). A 
similar result was also reported in the characterization of 
chitosan-coated phospholipid liposomes (Li et al., 2009; 
Liu and Park, 2010; Mady et al., 2009). For OACh2 lipo-
somes, the size of liposomes was found to decrease from 
140 to 100 nm when the amount of Ch2 increased from 
0.04 (w/v) to 0.10% (w/v). This result indicated that 0.04% 
of Ch2 was not sufficient to create an adequate protec-
tion layer on the surface of the liposomes, as compared 
with the OACh2 liposome coated with 0.10 and 0.20% of 
Ch2 (Li et al., 2009).

The surface modification of the OA liposome by Ch1 
and Ch2 was also evaluated by comparing its zeta poten-
tial before and after coating (Takeuchi et al., 2003). The 
zeta potential of OA was negatively charged. The zeta 
potential increased from –86.0 to –61.8 and –54.4 mV with 
the increasing amount of Ch1 and Ch2 coating, respec-
tively (Figure 6). This result was attributed to the forma-
tion of a condensed coating of the Ch1 and Ch2 layers, 
which carried the positive charge, on the surface of the 
liposomes (Li et al., 2009; Liu and Park, 2010; Mady et al., 
2009). Among the chitosan-coated liposomes, the zeta 
potential of the OACh2 liposome was smaller, compared 

Figure 5. Effect of the amount of (a) Ch1 and (b) Ch2 chitosan on 
the size and zeta potential of the OA liposome. The reading plotted 
was taken at 7 days after liposome solutions were prepared.

Figure 6. Surface tensions profile of the OA, OACh1 (0.20% of Ch1), 
and OACh2 (0.20% of Ch2) liposome solutions.



334 H. W. Tan and M. Misran

  Journal of Liposome Research

with the OACh1 liposome, thus suggesting that the lon-
ger chain length of Ch2 effectively shielded the surface of 
the liposome.

Surface tension
A surface tension (γ) versus ln (OA) was plotted for the 
determination of the CVC of the liposome (Leclercq  
et al., 2009). All the plots exhibited two break points and 
indicated two CVC values (Figure 6). To investigate the 
formation of the two CVC values, the size of the liposome 
for the solution with the concentration greater than 
CVC

1
 and CVC

2
 was evaluated (Figure 7). By using the 

OA liposome solution as an example, the OA liposome 
was formed after CVC

1
 (71.6 µM). The size of the OA lipo-

some was found to decrease from 620 to 161 nm when 
the concentration of OA increased from CVC

1
 to CVC

2
  

(100 µM). The decrease of the size of the OA liposome 
was also accompanied with a decreasing γ of the OA 
liposome solution. After CVC

2
, there were no significant 

changes in the γ of the OA liposome solution and also the 
size of the OA liposome. Therefore, it was suggested that 
the rearrangement of the OA liposome into a smaller size 
led to the formation of CVC

2
.

The CVC
1
 of the OACh1 and OACh2 liposomes were 

significantly lower, compared with the OA liposome. 
However, there was no significant difference in CVC

2
. To 

explain this result, the minimum surface area occupied 
by the OA at the air/water interface (A

min
) and the surface 

excess concentration (Г
max

) were calculated. Because the 
liposome started forming at CVC

1
, A

min
 and Г

max
 were 

obtained using the first slope before CVC
1
. A

min
 values 

were determined using Gibbs’ adsorption isotherm, as 
described by Equation 1:

 
A

N A
min

max

=
1
.Γ  

(1)

where N
A
 is Avogadro’s number. The Г

max
 was calculated 

using Gibbs’ adsorption equation as shown in Equation 2:

 
Γmax ln

= 











1

nRT

d

d C

γ

 
(2)

where n is the number of molecular species involved, 
and C is the concentration of OA. Liposome solutions 
were prepared at pH 9, where the OA was partially ion-
ized; therefore, n is equal to 2 was used in the calculation 
of Г

max
.

The A
min 

value obtained from the OA liposome 
solution was lower than that of OACh1 and OACh2  
(Table 1). This result suggested that the OA monomers 
in the OA liposome solution were more closely packed 
at the air/water interface, compared with the OACh1 
and OACh2 liposome solutions (Ghosh et al., 2010). 
This result shows that Ch1 and Ch2 that were adsorbed 
on the surface of the OA monolayer had disturbed the 
packing of the OA molecules and decreased the num-
ber of adsorbed OA monomers at the air/water inter-
face, thus resulting in the increase of A

min 
 as well as γ 

(Figure 7). The effect of the amount of Ch1 and Ch2 
used to prepare OACh1 and OACh2 liposomes on the 
γ was negligible.

Conclusion

This study demonstrated the preparation of chitosan-
coated nonphospholipid liposomes, where basic condi-
tions are required. The OA liposome was selected as a 
model for this study. The result indicated that the depoly-
merized water-soluble chitosan was successfully coated 
on the surface of the OA liposomes. Modification of 
water-soluble chitosan on the surface of the OA liposome 
also improved the stability and rigidity of liposomes. A 
different combination of liposomes and water-soluble 
chitosan may produce liposomes with specific size and 
surface charge.

Table 1. Г
max

, A
min

, and γ at CVC of OA, OACh1, and OACh2 liposome solutions at constant temperature of 25oC.

Sample name

Amount of chitosan  
(% w/v)

Surface excess 
concentration, 

 Г
max

 × 10–6 (molm–2)

Minimum surface 
area per head group,

 A
min

 (Å2)

Critical vesicular 
concentration, CVC (µM)

Surface tension at  
CVC, γ (mNm–1)

Ch1 Ch2 CVC
1

CVC
2

CVC
1

CVC
2

OA — — 3.03 54.9 71.6 100.0 28.3 25.6
OACh1 0.10 — 2.02 80.2 58.3 105 29.5 26.8

0.20 — 2.32 71.6 53.1 101 30.9 27.2
0.30 — 2.50 66.6 45.4 107 31.3 27.8

OACh2 — 0.04 2.61 63.5 61.3 102 30.6 28.9
— 0.10 2.70 61.1 56.0 94.2 33.5 30.7
— 0.20 2.50 65.7 54.9 108 31.6 30.2

Figure 7. Liposome size and surface tension of the OA liposomes.
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a  b  s  t  r  a  c  t

In  this  study,  the  preparation  of  N-pamitoyl  chitosan  (ChP)  anchored  oleic  acid (OA)  liposome  was  demon-
strated.  Two  different  types  of  water-soluble  ChPs  with  different  degrees  of  acylation  (DA)  were  selected
for  this  study.  The  presence  of  ChPs  on the  surface  of  OA  liposome  was  confirmed  with  their  micrographs
and  physicochemical  properties.  The  “peeling  off”  effect  on the  surface  of  the  ChP-anchored  OA (OAChP)
liposomes  was  observed  on  the  atomic  force  microscope  micrographs  and  confirmed  the presence  of  the
ChPs  layer  on  the  liposome  surface.  The  surface  tension  of  the OAChPs  liposome  solution  was  found  to  be
higher  than  that  of  the OA  liposome  solution.  This  result  indicated  the removal  of  OA  monomer  by ChPs
from  the  air–water  interface.  The  increase  in  the  minimum  area  per  headgroup  (Amin) of  the  OA  with  the
presence  of  ChPs  has  further  proved  the  interaction  between  OA  monomer  and  the  hydrophobic  moieties
of  the  ChPs.  The  ChPs  anchored  onto  the  OA monolayer  increased  the curvature  of  the  OAChP  liposomes
monolayer  and  reduced  the  liposome  size.  The  size  of  the  OAChP  liposomes  was  reduced  by  30  nm  as
compared  with  the  unmodified  OA  liposome.  Results  revealed  that  the  anchored  ChPs  can  improve  the
integrity  and  rigidity  of  the  OA  liposome.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The surface of cells is rich in carbohydrate moieties that
are attached to both membrane glycolipids and glycoproteins
(Dicorleto and De La Motte, 1989). This carbohydrate-rich layer
is known as glycocalyx (Palte and Raines, 2012). Glycocalyx con-
tains a high amount of polysaccharide and is involved in cellular
adhesion, intercellular communication, and biological recognition
(Abeygunawardana and Bush, 1991; Sihorkar and Vyas, 2001).
Therefore, the potential of polysaccharides to serve as ligand in the
preparation of site-targeted liposomes has received wide attention
(e.g. Mufamadi et al., 2011; Sihorkar and Vyas, 2001; Sunamoto
et al., 1992). Among polysaccharides, the combination of chitosan
with liposome has been a promising approach in the gene and drug
delivery systems (e.g. Liu et al., 2011; Parabaharan, 2008; Riva et al.,
2011; Zaru et al., 2009). Chitosan has been extensively used in the
drug delivery system due to its biocompatibility, biodegradability,
non-toxic nature, and cost effectiveness (e.g. Illum, 1998; Sheng
et al., 2009). However, the use of chitosan in the biomedical field
is often restricted by its poor solubility in water. Chitosan only dis-
solves in acidic condition (Chan et al., 2007). Previous studies have
suggested that the solubility of chitosan in neutral and high pH
condition can be improved by reducing its molecular weight (MW)
(Illum, 1998; Kubota et al., 2000). The solubility of chitosan also

∗ Corresponding author. Tel.: +60 3 79676776; fax: +60 3 79674193.
E-mail address: weith83@gmail.com (H.W. Tan).

can be improved by introducing the hydrophobic moiety at the pri-
mary amino group of the chitosan through acylation (Illum, 1998;
Lee et al., 2005; Mourya et al., 2010; Ortona et al., 2008). The pres-
ence of hydrophobic moieties at the backbone of the chitosan can
destroy the crystalline structure of chitosan and improve the sol-
ubility of chitosan in aqueous solution (Ge et al., 2007; Wu  et al.,
2006).

The hydrophobized chitosan can integrate with the lipid bilayer
membrane as well as be used to prepare polysaccharide-anchored
liposomes. The coating of hydrophobized chitosan on the surface of
the liposome can enhance the liposome stability, structural rigid-
ity, and membrane integrity (Ge et al., 2007). The preparation
of chitosan-coated liposome with hydrophobized chitosan has its
advantage compared with the unmodified chitosan. The hydropho-
bic moieties of the hydrophobized chitosan such as the palmitoyl
group can be anchored onto the monolayer (outer layer) of the lipo-
some bilayer through hydrophobic interactions (Wang et al., 2010).
This method can prevent the desorption of the coated hydropho-
bized chitosan from the surface of liposome during storage and
transportation (Sunamoto and Iwamoto, 1986; Sihorkar and Vyas,
2001).

So far, research conducted on the hydrophobized chitosan-
anchored liposomes has been largely focused on the phospholipid-
based liposomes (e.g. Garg et al., 2007; Ge et al., 2007; Wang et al.,
2010, 2012; Qu et al., 2012), and the study on non-phospholipid
liposomes has not been reported. There is continuous interest
in the development of the non-phospholipid liposomes due to
the disadvantages of phospholipids, such as reactivity in the

0378-5173/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ijpharm.2012.11.013
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biological milieu and high production cost (Gupta et al., 1996;
Bastiat et al., 2007). Non-phospholipid liposomes can be pre-
pared from several amphiphiles such as fatty acids (Bastiat et al.,
2007) and the derivatives of polymers (Battaglia and Ryan, 2009;
Discher and Eisenberg, 2002). In this study, the main objective
is to prepare hydrophobized chitosan-anchored non-phospholipid
liposomes using water-soluble N-palmitoyl chitosans (ChPs) with
different DA. OA was selected as a model for non-phospholipid
liposomes.

2. Methods and materials

2.1. Materials

All solutions and samples were prepared by using deionized
water with a resistivity of 18.2 �/cm, from Barnstead Diamond
Nanopure water Purification unit coupled with a Barnstead
DiamondTM RO unit (Barnstead International, USA). GC grade
OA (99%), palmitoyl chloride, and acetic acid (99%) were pur-
chased from Sigma (USA). Boric acid, hydrochloric acid (HCl),
potassium bromide, and acetone were obtained from Merck
(Germany). Sodium hydroxide (NaOH) and sodium nitrite (NaNO2)
were purchased from Fluka (Switzerland). Deuterated acetic acid
(CD3COOD) and water (D2O) were purchased from Armar Chem-
icals (Switzerland). Chitosan with an average molecular weight
(MWavg) of 150 kDa was obtained from Acros Organics (USA) and
used as received.

2.2. Sample preparation

2.2.1. Preparation of water-soluble chitosan
The preparation of water-soluble chitosan was reported in pre-

vious works (Tan and Misran, in press). Briefly, 1% (w/v) of chitosan
(MWavg = 150 kDa) in 1% of acetic acid solution was  prepared. 7 ml
of 0.10 M of NaNO2 was added dropwise into the chitosan solution
under mechanical stirring. Then, the reaction mixture was stirred
for 1 h. After that, the pH of the reaction mixture was adjusted
to 8–9 in order to precipitate the undissolved chitosan. These
undissolved chitosans were removed by filtration. The filtrate was
neutralized to pH 7, and the remaining water soluble chitosan was
precipitated by adding acetone. The precipitate was collected by
using the centrifugation method at 5000 rpm for 2 min  at 25 ◦C.
The collected precipitate was washed with chloroform and dried
overnight under vacuum.

2.2.2. Preparation of N-palmitoyl chitosans (ChPs)
Two types of ChPs with different DA (ChP1 and ChP2) were

prepared from the water-soluble chitosan. First, 1% (w/v) of water-
soluble chitosan solution was prepared. Then, the pH of the chitosan
solution was adjusted to 7 using 1 M of NaOH. 27 �l and 55 �l
of palmitoyl chloride were added to the chitosan solution under
magnetic stirring at room temperature to prepare ChP1 and ChP2,
respectively. After 5 h, the mixtures were neutralized. ChP1 and
ChP2 were precipitated using acetone. ChP1 and ChP2 were col-
lected by the centrifugation method at 5000 rpm for 2 min. ChP1
and ChP2 were washed repeatedly with chloroform to eliminate
free fatty acid. Finally, the products were dried overnight under
vacuum.

2.2.3. Preparation of ChP-coated OA liposomes
30 mM of OA liposome solution was prepared by dissolving an

appropriate amount of OA in 50 mM of borate buffer (pH 8.8). ChP1
and ChP2 solutions with their concentration ranging from 0.05 to
0.30% (w/w) were prepared by dissolving an appropriate amount of
ChP1 and ChP2 into 50 mM of borate buffer (pH 8.8). Then, the pH of
OA liposome, ChP1 and ChP2 solutions was adjusted to 7 using 1 M

of HCl. The liposome solution was  added dropwise into ChP1 and
ChP2 solutions individually under magnetic stirring. These mix-
tures were stirred for 24 h at room temperature (25 ◦C). Then, the
pH of the mixtures was  adjusted to pH 8.8 for the formation of ChP-
coated liposomes, OAChP1, and OAChP2. These liposome solutions
were incubated at 25 ◦C for 24 h before analysis.

2.3. Characterization of ChP1, ChP2, and liposome solutions

2.3.1. Average molecular weight determination
The average molecular weight (MW)  of chitosan was deter-

mined by the Static Light Scattering (SLS) method using a Malvern
NanoSeries ZetaSizer (UK) (Wu et al., 1995).

2.3.2. Fourier-transform infrared (FT-IR) spectroscopy
FT-IR spectra for chitosan, ChP1, and ChP2 in the form of KBr disc

were obtained using the Perkin Elmer spectrometer (model RX-1,
USA). Water-soluble chitosan, ChP1, and ChP2 were mixed with KBr
(1:100) and compressed into pellets before analysis. The resolution
of the IR spectra was 4 cm−1 and was recorded in 8 accumulations
from 400 to 4000 cm−1 in the transmittance mode. The DA of ChP1
and ChP2 was calculated from FT-IR spectra using the following
equation (Kasaai, 2008):

DA(%) =
(

A1655

A3450

)
× 100

1.33

A1655 and A3450 are the intensity of the peak at 1655 cm−1 and
3450 cm−1 in FT-IR spectra, respectively.

2.4. 1H NMR spectroscopy

The sample for 1H NMR  analysis was prepared by dissolving
10 mg  of chitosan and ChP into 1 ml  of 2% of CD3COOD in D2O solu-
tion. 1H NMR  spectra for all samples were acquired using a JEOL
JNM-GSX 270 FT NMR  spectrometer (270 MHz) at 20 ◦C.

2.5. Estimation of chitosan solubility

The solubility of water-soluble chitosan, ChP1, and ChP2 in
water was determined using a UV–Vis spectrophotometer. First,
a series of the water-soluble chitosan, ChP1, and ChP2 solutions
with different concentrations was  prepared. Calibration curves
for the water-soluble chitosan, ChP1, and ChP2 were constructed
by plotting the intensity of the absorption peak at wavelength
274 nm versus the concentration. Saturated chitosan, ChP1, and
ChP2 solutions were then prepared, and their UV–Vis absorption
was  determined. The solubility of the chitosan, ChP1, and ChP2
solutions was estimated by the extrapolation method of the cal-
ibration curve.

2.6. Size and zeta potential

The size and zeta potential of the prepared liposomes were mea-
sured using a Malvern NanoSeries ZetaSizer (Malvern, UK) at a
constant temperature of 25 ◦C. Size and zeta potential of the pre-
pared liposome were monitored over 30 days of storage time.

2.7. Optical polarizing microscope imaging (OPM)

The OPM micrographs of the prepared liposomes were captured
using a Leica Polarizing Microscope equipped with a Leica QWin
software. All measurements were performed at a temperature of
25 ◦C.
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Fig. 1. FT-IR spectra of (a) chitosan, (b) ChP1 (DA = 18 ± 2%), and (c) ChP2
(DA  = 28 ± 2%).

2.8. Transmission electron microscope imaging (TEM)

An Energy-filtered TEM model LIBRA 120 equipped with an
Olympus SIS-iTEM (ver. 5) was employed to analyze the image of
the prepared liposomes. A drop of the liposome solution was placed
onto a copper-coated carbon grid followed by the removal of excess
dispersed medium using a filter paper. Then, a drop of negative
staining reagent (1% of phosphotungstic acid in 50 mM of borate
buffer solution (pH 8.8)) was added, and the sample was  air dried
at room temperature for 25 min. The sample was  then examined
under TEM.

2.9. AFM imaging

AFM micrographs of the liposomes were captured by using
an AFM Nanoscope III, Model MMAFM-2 (Digital Instruments,
USA). All imaging was performed via the tapping mode with
an integrated pyramidal-tip aluminum cantilever (BS-Multi75Al)
(Vermette et al., 2002). The samples were prepared by placing a
drop of the liposome solutions onto a freshly cleaved mica surface.

The dispersing medium was removed by air drying (Paleos et al.,
1996).

2.10. Surface tension

The rigidity of the liposomes was investigated by studying
the effect of ChP1 and ChP2 on the critical vesicular concentra-
tion (CVC) of the liposome solutions. The surface tension of a
series of liposome solutions with different concentrations was
determined by du Noüy ring method using a Krüss Tensiometer
(Model K100, Germany) at 25 ◦C. The prepared liposome solu-
tions were diluted using 50 mM of borate buffer (pH 8.8) and
were incubated overnight at 25 ◦C before measurement. Sur-
face tension of the prepared solution was determined using
20 successive measurements, and the standard deviation was
calculated.

3. Results and discussion

3.1. Characterization of water-soluble chitosan, ChP1, and ChP2

The average molecular weight, solubility and DA of the water-
soluble chitosan, ChP1, and ChP2 was  listed in Table 1. The
solubility of hydrophobized chitosan was decreased by increasing
DA. This was  due to the increase in the number of hydropho-
bic moieties, which reduced the solubility of the ChPs (Hirano
et al., 2002).

3.2. FT-IR analysis

The absorption peak at 1655 cm−1 was assigned as the car-
bonyl stretching of secondary amides, and the peak at 1555 cm−1

was  attributed to the N H bending vibration of the amide II
band (Xu et al., 1996). Referring to the FT-IR spectra of chi-
tosan and ChPs (Fig. 1), the intensity of the absorption peak for
N H bending of amide II was increased by increasing DA. In
addition, the absorption peaks at 2879–2929 cm−1 were assigned
as the CH stretching of the alkyl chain (Tien et al., 2003).
These results clearly confirmed that the chitosan was  successfully
modified.

Fig. 2. NMR  spectra for (a) water soluble chitosan and (b) ChP2 where D is the glucosamine group and A is the N-acetyl or N-acyl glucosamine group of the chitosan.
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Fig. 3. The OPM micrograph of (a) OA liposome which showed birefringence effect, (b) OA liposome under dark field which showed Maltese cross, (c) OAChP1 liposome, and
(d)  OAChP2 liposome.

3.3. 1H NMR  analysis

The 1H NMR  spectra of the water-soluble chitosan and ChP2 are
presented in Fig. 2. The proton of solvent (HOD) and acetic acid res-
onates at 4.65 and 2.11 ppm, respectively. The proton assignment
of water-soluble chitosan (Fig. 2(a)): ı1.92 = CH3 (acetyl group of
chitosan); ı2.5–2.1 = CH (carbon 2 of chitosan); ı4.1–3.1 = CH (carbon
2–6 of chitosan); and ı4.5–4.3 = CH (carbon 1 of chitosan). The pro-
ton assignment of ChP (Fig. 2(b)): ı1.1 = CH3 (alkyl chain); ı1.7 = CH2
(alkyl chain); ı1.92 = CH3 (acetyl group of chitosan); ı2.5-2.1 = CH
(carbon 2 of chitosan); ı4.1–3.1 = CH (carbon 2-6 of chitosan); and
ı4.5–4.3 = CH (carbon 1 of chitosan) (Li et al., 2006). The peak assign-
ment was based on previous works (Li et al., 2006; Rinaudo et al.,
1992). The NMR  spectrum of ChP confirmed the modification of
water-soluble chitosan with palmitoyl chloride. New peaks at 1.10

and 1.7 ppm that were observed from the 1H NMR  spectra of ChP2
were due to the CH2 and CH3 protons of the long alkyl chain.

3.4. Micrographs of chitosan-coated liposomes

The appearance of OAChP1 and OAChP2 was evaluated using
OPM, TEM, and AFM. According to the micrographs obtained from
the OPM, all liposomes exhibited a spherical morphology (Fig. 3).
Compared with the OA liposome, OAChP1 and OAChP2 liposomes
do not exhibit any birefringence effect (Fig. 3(c) and (d)) and Mal-
tese cross at dark field. The hydrophobic moieties anchored into the
monolayer of the liposome bilayer and disturbed the arrangement
of the OA monomers (Sessa and Weissmann, 1968).

The TEM micrographs clearly showed that the OAChP1 and
OAChP2 were spherical in shape (Fig. 4(a) and (b)). The presence

Table 1
Average molecular weight, water solubility and DA of the water soluble chitosan, ChP1 and ChP2.

Sample Average molecular weight,
MWavg (kDa)

Water solubility
(g/L)

DA (%)

Water soluble chitosan 25 5.60 10
ChP1 29 4.29 18
ChP2  32 2.62 28
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Fig. 4. TEM micrograph of (a)OAChP1, (b) OAChP2, and (c) OA liposome. The amount of hydrophobized-chitosan used in the preparation of the OAChPs liposome was 0.15%.

of the hydrophobized-chitosan layer on the lipid layer of the OA
liposome thickened the lipid layer and increased the opacity. Thus,
the surface of OAChP1 and OAChP2 liposomes appeared to be black
in color (Wang et al., 2010). However, the OA liposome was  not
observed under TEM. The structure of the OA liposome was  found
to collapse under TEM (Fig. 4(c)) (Tan and Misran, in press). The
collapse of the structure of the OA liposome might be due to the
drying process or vacuum. This result indicated that the OA lipo-
some bilayer is less rigid as compared with the OAChP liposomes
(Tan and Misran, in press). For the AFM image, the OA liposome
was hardly seen (Fig. 5(a)). The breakdown of the OA liposome
under AFM imaging further indicated that the structure of the
liposome was damaged due to the drying condition, as vacuum
is not required for AFM imaging. These results revealed that the
presence of ChP on the surface of the OA liposome enhanced the
stability and rigidity of liposomes (Sihorkar and Vyas, 2001). As
compared with the OA liposome, the ChP-coated liposomes can
be seen as being spherical in shape. In addition, the ChP-coated
liposomes showed “peeling off” effect on the surface (Fig. 5). This

result showed that ChP1 and ChP2 were anchored on the surface of
liposomes.

3.5. Liposome size and zeta potential

The size of OAChP1 and OAChP2 liposomes was found to be
at least 30 nm smaller than that of the OA liposome (Fig 6). The
decrease in the size of OAChP1 and OAChP2 liposomes was mainly
due to the anchored ChPs that perturbed the OA monomer arrange-
ment at the liposome bilayer. The insertion of the hydrophobic
moieties of ChP into the liposome bilayer has resulted in increased
curvature and decreased size of the liposomes (Fig. 7) (Park et al.,
2011). The effect of the amount of ChP1 and ChP2 on the size of the
OAChPs liposome was evaluated at day 7 (Fig. 6). The OAChP1 and
OAChP2 liposomes was  found to exhibit two different size profiles
with increasing amount of ChPs. The size of OAChP1 liposome
was  decreased with increasing amount of ChP1 from 0 to 0.15%
(w/w)  but increased when the amount of ChP1 exceeded 0.15%
(w/w)  (Fig. 6(a)). This result indicated that more ChP1 layers were
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Fig. 5. AFM image of (a) OA liposome, (b) OAChP1 liposome (0.20% ChP1), and (c) OAChP2 liposome (0.15% ChP2).

Table 2
� max , Amin , � , and CVC of OA, OAChP1, and OAChP2 liposome solution obtained at controlled temperature of 25 ◦C.

Sample Surface excess
concentration,
� max (×10−6)

Molecular area per
head group, Amin

(Å2)

Surface tension
obtained at
100 �M,  � , (mN/m)

CVC (�M)

OA 3.03 54.90 25.60 100
OAChP1-3 3.04 54.46 29.82 71.46
OAChP1-5 2.67 62.21 31.02 65.84
OAChP1-10 2.56 65.14 32.15 57.55
OAChP1-15 2.66 62.42 30.64 62.47
OAChP1-20 2.55 65.23 31.42 60.01
OAChP1-25 2.59 64.12 31.43 67.66
OAChP2-3 2.88 57.72 27.76 70.00
OAChP2-5 2.79 59.48 29.50 67.53
OAChP2-10 2.42 68.62 30.19 54.75
OAChP2-15 2.40 69.30 29.92 52.33
OAChP2-20 2.43 68.21 30.40 55.71
OAChP2-25 2.35 70.69 31.54 62.88
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Fig. 6. Effect of (a) ChP1 and (b) ChP2 amount on the size of the OA liposome. The effect of (c) ChP1 and (d) ChP2 amount of the zeta potential of the OA liposome.

condensed onto the surface of the liposome (Guo et al., 2003).
Similar results were also reported in the previous studies on the
characterization of chitosan modified phospholipid liposome (Li
et al., 2009; Liu and Park, 2010; Mady et al., 2009). For the OAChP2
liposome, the size was decreased from 165 nm to 136 nm when
the amount of ChP2 increased from 0 to 0.05% (w/w)  and the size
remained unchanged when the amount of ChP2 exceeded 0.05%
(w/w) (Fig. 6(b)). This result indicated that 0.05% (w/w) of ChP2 is
sufficient to enhance the physical stability of the OAChP2 liposome.
This was mainly attributed to the higher DA of ChP2. ChP2 has
more alkyl side chains which are available to be inserted into
the liposome lipid bilayer and improved the liposome membrane
rigidity and integrity (Fig. 7) (Li et al., 2006).

Surface modification of the OA liposome by ChP1 and ChP2 was
also evaluated by comparing its zeta potential before and after the

ChP incorporation (Takeuchi et al., 2003). The zeta potential of OA
liposome was negatively charged. The zeta potential of OAChP1 and
OAChP2 liposomes increased from −90.0 to −60.0 mV  by increasing
the amount of ChPs (Fig 6(c) and 6(d)). This result was attributed to
the formation of a condensed coating of the ChP1 and ChP2 layers on
the surface of the liposomes that has shielded the negative charge
of the OA liposome (Li et al., 2009; Liu and Park, 2010; Mady et al.,
2009).

3.6. Liposome stability

The stability of OAChP liposomes was evaluated through the
monitoring of their size for 30 days of the storage period at 25 ◦C.
As an OA liposome, the size of the OAChP1 and OAChP2 liposomes
was  found to increase slowly for the first 7 days of storage time,

(a) (b)

Fig. 7. Schematic illustration of the hydrophobic moieties of (a) ChP1 and (b) ChP2 anchored into the liposome lipid bilayer.
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Fig. 8. Variation of size of (a) OAChP1 and (b) OAChP2 liposomes.

and this result has been attributed to the ChPs coating process that
occurred at the surface of the liposome (Li et al., 2009). The size of all
OAChP1 and OAChP2 liposomes remained unchanged after the 7th
day of storage time except for the liposomes coated with 0.25% of
ChP1 and 0.30% of ChP2 (Fig. 8). For the OAChP1 liposome that was
coated with 0.25% of ChP1, the size of the liposome was  found to
increase from 140 nm to 160 nm after 30 days of the storage period,
while the size of OAChP2 liposome that coated with 0.30% of ChP2
was found to increase dramatically from 125 nm to 190 nm after 30
days of the storage period. These results might due to the presence
of excess ChPs that promote the coagulation process of liposomes
(Tan and Misran, in press).

3.7. Surface tension

A surface tension (�) versus ln [concentration] was  plotted
for the determination of CVC of the prepared liposomes (Leclercq
et al., 2009). Two different surface tension profiles were observed
for the OA and OAChPs liposomes. The � profile for the OA lipo-
some exhibited two inflection points (Fig. 9(a)). These inflection
points were characterized as the critical aggregation concentra-
tion (CAC). The CAC1 is considered the CVC, because it corresponds
to the formation of the OA liposome. A previous work has pro-
posed that the formation of these inflection points was  mainly
due to the rearrangement of the OA monomer at the liposome
bilayer (Tan and Misran, in press). For the OAChPs liposome, the
� profile of OAChPs liposomes showed only one inflection point
(Fig. 9(a) and (b)). The changes in the profile of the OAChPs lipo-
some as compared with the OA liposome were mainly attributed
to the presence of ChPs. A strong hydrophobic interaction between
the alkyl side chains of the ChPs with OA promotes the tighter

lipid layer arrangement and increases the membrane rigidity (Park
et al., 2011). The increase in the membrane rigidity of OAChPs
liposomes has limited the rearrangement of the OA  monomer,
resulting in the slower dynamic exchange rate of the OA monomer
in the membrane with the OA monomer in the bulk phase
(Fig. 9).

By comparing the � of OA, OAChP1, and OAChP2 lipo-
somes, the � of OAChP1 and OAChP2 liposomes was found
to be slightly higher than that of the OA liposome (Fig. 9(a)).
The increase in the � with the presence of ChPs in the
solution suggested that the OA monomers are bound to the
ChPs and are further removed from the surface into the bulk
phase (Asnacios et al., 2000). As compared with the OAChP1
liposome, the � of the OAChP2 was  found to be lower after the CVC.
This result was  mainly due to the difference in the surface activ-
ity of ChP1 and ChP2. According to the experimental result, the
� decreased with an increase in DA (ChP1 = 0.0696 ± 0.0005 N/m
and ChP2 = 0.0674 ± 0.0008 N/m). This result indicated that ChP2
has greater surface activity as compared with ChP1 (Li et al.,
2006).

The CVCs of the OAChPs were slightly decreased as compared
with the OA liposome (Table 2). In order to explain this result, the
Amin that was occupied by OA at the air–water interface and the
surface excess concentration (� max) were calculated. Since the lipo-
some started forming at CVC1, Amin and � max were obtained using
the first slope before CVC1. Amin values were determined using
Gibbs adsorption isotherm as described by the following equation
(Goddard, 2002):

Amin = 1
NA · �max

(1)

where NA is the Avogadro’s number. The � max was calculated using
the Gibbs adsorption equation as described by the following equa-
tion (Goddard, 2002):

�max =
(

1
nRT

)  (
d�

d ln C

)
(2)

where n is the number of molecular species involved, and C is the
concentration of OA. The liposome solutions were prepared at pH
9, where the OA was  partially ionized; therefore, n equal to 2 was
used in the calculation of � max.

The Amin value obtained from the OA liposome solution was
lower than the values of OAChP1 and OAChP2 (Table 2). This
result suggested that the OA monomers in the OA liposome
solution were more closely packed at the air–water interface as
compared with OAChP1 and OAChP2 liposome solutions (Ghosh
et al., 2010). This result showed that the ChP1 and ChP2 that
anchored to the OA monolayer have disturbed the packing of the
OA molecules, thus resulting in an increase in Amin (Fig. 9 and
Table 2).

The effect of the amount of ChP1 and ChP2 used to prepare
OAChP1 and OAChP2 liposomes on the � at CVC was negligible
except for the liposome coated with 0.03% (w/w) of ChPs (Table 2).
In average, the � of OAChP1 and OAChP2 were 31.3 ± 0.5 mN/m
and 29.7 ± 0.5 mN/m,  respectively. However, the � of the OAChP1
and OAChP2 liposome coated with 0.03% (w/w)  ChP1 and ChP2 was
2 mN/m lower as compared with those coated with higher amount
of ChP1 and ChP2. This result indicated that there were more OA
monomers adsorbed at the air–water interface. Greater amounts
of OA monomers present at the air–water interface showed that
0.03% of ChPs are insufficient to bind to the OA monomers
and to further remove the OA monomer from the air–water
interface.
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Fig. 9. Surface tension profile of the (a) OA, OAChP1 (0.15% ChP1), and OAChP2 (0.15% ChP2) liposome solutions (a). Schematic illustration on the bulk and surface conditions
of  (b) OAChP liposome solution and (c) OA liposome solution.

4. Conclusion

This study demonstrated the preparation of ChP-anchored OA
liposomes. The decrease in the size and zeta potential of the
OAChP1 and OAChP2 liposomes indicated that the ChPs success-
fully modified the surface of the OA liposome. According to the
micrographs obtained from AFM and TEM, the OAChP1 and OAChP2
liposomes retained their spherical shape. Results also indicated that
the anchored ChPs can improve the integrity and rigidity of the OA
liposome. The � of the OAChPs liposome solutions was  increased
as compared with the OA liposome solution. The increase in the
� of the OAChPs liposome solutions indicated that the ChPs was
bound to the OA monomer. The increased in the Amin of the OA in
the presence of ChPs has further proved the interaction between
the OA monomer and the hydrophobic moieties of the ChPs.

Acknowledgement

We  would like to extent our gratitude to University of Malaya
for providing us financial support (PPP, No. PS437/2010A, and
PV004/2012A).

References

Abeygunawardana, C., Bush, C.A., 1991. Complete structure of the cell syrface
polysaccharide of Streptococcus oralis ATCC 10557. A receptor for lectin-
mediated interbacterial adherence. Biochemistry 30, 6528–6540.

Asnacios, A., Klitzing, R., Langevin, D., 2000. Mixed monolayers of polyelectrolytes
and surfactants at the air–water interface. Colloids Surf. A 167, 189–197.

Bastiat, G., Oliger, P., Karlssong, G., Edwards, K., Lafleur, M.,  2007. Development of
non-phospholipid liposomes containing a high cholesterol concentration. Lang-
muir 23, 7695–7699.

Battaglia, G., Ryan, A.J., 2009. Pathways of polymeric vesicle formation. J. Phys. Chem.
B  110, 10272–10279.

Chan, P., Kurisawa, M.,  Chung, J.E., Yang, Y.Y., 2007. Synthesis and characterization of
chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted
gene delivery. Biomaterials 28, 540–549.

Dicorleto, P.E., De La Motte, C., 1989. Role of cell surface carbohydrate moieties in
moonocytic cell adhesion to endothelium in vitro. J. Immunol. 143, 3666–3672.

Discher, D.E., Eisenberg, A., 2002. Polymer vesicles. Mater. Sci. Soft Surf. 297,
967–973.

Garg, M.,  Dutta, T., Jain, N.K., 2007. Stability study of stavadine-loaded O-palmitoyl-
anchored carbohydrate-coated liposomes. AAPS PharmSciTech 8, Article 38.

Ge,  L., Zhu, J.B., Xiong, F., Ni, B., 2007. Preparation, characterization and pharma-
cokinetics of N-palmitoyl chitosan anchored docetaxel liposomes. J. Pharm.
Pharmacol. 59, 661–667.

Ghosh, A., Shrivastava, S., Dey, J., 2010. Concentration and pH-dependent aggrega-
tion behavior of an l-histidine based amphiphile in aqueous solution. Chem.
Phys.  Lipids 163, 561–568.

Goddard, E.D., 2002. Polymer/surfactant interaction: interfacial aspects. J. Colloid
Interface Sci. 256, 228–235.

Guo, J., Pin, Q., Jiang, G., Huang, L., Tong, Y., 2003. Chitosan-coated liposomes: char-
acterization and interaction with leuprolide. Int. J. Pharm. 260, 167–173.



H.W. Tan, M. Misran / International Journal of Pharmaceutics 441 (2013) 414– 423 423

Gupta, R.K., Varanelli, C.L., Griffin, P., Wallach, D.F.H., Siber, G.R., 1996. Adjuvant
properties of non-phospholipid liposome (novasomes) in experimental animals
for  human vaccine antigen. Vaccine 14, 219–225.

Hirano, S., Yamaguchi, Y., Kamiya, M.,  2002. Novel N-saturated-fatty-acyl derivatines
of  chitosan soluble in water and in aqueous acid and alkaline solutions. Carbo-
hydr. Polym. 48, 203–207.

Illum, L., 1998. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15,
1326–1331.

Kasaai, M.R., 2008. A review of several reported procedures to determined the degree
of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr.
Polym. 71, 497–508.

Kubota, N., Tatsumoto, N., Sano, T., Toya, K., 2000. A simple preparation of half
N-acetylated chitosan highly soluble in water and aqueous organic solvents.
Carbohydr. Res. 324, 268–274.

Leclercq, L., Nardello-Rataj, V., Turmine, M.,  Azaroual, N., Aubry, J., 2009. Stepwise
aggregation of dimethyl-di-n-actylammonium chloride in aqueous solutions:
from dimer to vesicles. Langmuir 26, 1716–1723.

Lee, M.Y., Hong, K.J., Kajiuchi, T., Yang, J.W., 2005. Synthesis of chitosan-based poly-
meric surfactants and their adsorption properties for heavy metals and fatty
acids. Int. J. Biol. Macromol. 36, 152–158.

Li, N., Zhuang, C.Y., Wang, M.,  Sun, X.Y., Nie, S.F., Pan, W.S., 2009. Liposome coated
with low molecular weight chitosan and its potential use in ocular drug delivery.
Int. J. Pharm. 379, 131–138.

Li, Y.Y., Chen, X.G., Yu, L.M., Wang, S.X., Sun, G.Z., Zhou, H.Y., 2006. Aggregation of
hydrophobically modified chitosan in solution and at air–water interface. J. Appl.
Polym. Sci. 102, 1968–1973.

Liu, N., Park, H.J., 2010. Factors effect on the loading efficiency of Vitamin C loaded
chitosan-coated nanoliposomes. Colloids Surf. B 76, 16–19.

Liu, R.Z., Gan, L., Yang, X.L., Xu, H., 2011. Chitosan as a condensing agent induces high
gene  transfection efficiency and low cytotoxicity of liposome. J. Biosci. Bioeng.
111, 98–103.

Mady, M.M.,  Darwish, M.M.,  Khalil, S., Khalil, W.M.,  2009. Biophysical studies on
chitosan-coated liposomes. Eur. Biophys. J. 38, 1127–1133.

Mourya, V.K., Inamdar, N.N., Tiwari, A., 2010. Carboxymethyl chitosan and its appli-
cations. Adv. Mater. Lett. 1, 11–33.

Mufamadi, M.S., Pillay, V., Choonara, Y.E., Tolt, L.C.D., Girish, M.,  Naidoo,
D.,  Ndesendo, V.M.K., 2011. A review on composite liposomal tech-
nologies for specialized drug delivery. J. Drug Deliv. 2011, Article ID
939851.

Ortona, O., D’errico, G., Mangiapia, G., Ciccarelli, D., 2008. The aggregation behavior
of  hydrophobically modified chitosans with high substitution degree in aqueous
solution. Carbohydr. Polym. 74, 16–22.

Paleos, C.M., Sideratou, Z., Tsiourvas, D., 1996. Mixed vesicles of didodecyldimethy-
lammonium bromide with recognizable moieties at the interface. J. Phys. Chem.
100,  13900–13989.

Palte, M.J., Raines, R.T., 2012. Interaction of nucleic acids with the glycocalyx. J. Am.
Chem. Soc. 134, 6218–6223.

Parabaharan, M.,  2008. Review paper: chitosan derivatives as promising materials
for  controlled drug delivery. J. Biomater. Appl. 23, 5–36.

Park, S.I., Lee, E.O., Kim, J.W., Kim, Y.J., Han, S.H., Kim, J.D., 2011. Polymer-bybridized
liposomes anchored with alkyl grafted poly(asparagine). J. Colloid Interface Sci.
364, 31–38.

Qu, G.W., Wu,  X.L., Yin, L.F., Zhang, C., 2012. N-octyl-Osulfate chitosan-modified
liposomes for delivery of docetaxel: preparation, characterization, and pharma-
cokinetics. Biomed. Pharmacother. 66, 46–51.

Rinaudo, M.,  Le Dung, P., Gey, C., Milas, M.,  1992. Substituent distribution on
ON-carboxymethylchitosans by 1H and 13C n.m.r. Int. J. Biol. Macromol. 14,
122–128.

Riva, R., Ragelle, H., Des Rieux, A., Duhem, N., Jérôme, C., Préat, V., 2011. Chitosan
and chitosan derivatives in drug delivery and tissue engineering. Adv. Polym.
Sci. 244, 19–44.

Sessa, G., Weissmann, G., 1968. Phospholipid spherules (liposomes) as a model for
biological membranes. J. Lipid Res. 9, 310–318.

Sheng, Y., Liu, C.S., Yuan, Y., Tao, X.Y., Yang, F., Shan, X.Q., Zhou, H.J., Xu, F., 2009. Long-
circulating polymeric nanoparticles bearing a combinatorial coating of PEG and
water-soluble chitosan. Biomaterials 30, 2340–2348.

Sihorkar, V., Vyas, S.P., 2001. Potential of polysaccharide anchored liposomes in drug
delivery, targeting and immunization. J. Pharm. Pharm. Sci. 4, 138–158.

Sunamoto, J., Iwamoto, K., 1986. Protein anchored and polysaccharide-anchored
liposomes as drug carriers. Crit. Rev. Ther. Drug Carrier Syst. 2, 117–136.

Sunamoto, J., Sato, T., Taguchi, T., Hamazaki, H., 1992. Naturally occuring polysac-
charide derivatives which behave as an artificial cell wall on an artificial cell
liposome. Macromoleculars 25, 5665–5670.

Takeuchi, H., Matsui, Y., Yamamoto, H., Kawashima, Y., 2003. Mucoadhesive proper-
ties  of carbopol or chitosan-coated liposomes and their effectiveness in the oral
administration of calcitonin to rats. J. Control. Release 86, 235–242.

Tan, H.W., Misran, M.  Characterization of fatty acid liposome
coated with low molecular weight chitosan. J. Liposome Res.,
http://dx.doi.org/10.3109/08982104.2012.700459,  in press.

Tien, C.L., Lacroix, M.,  Ispas-Szabo, P., Mateescu, M.A., 2003. N-acylated chi-
tosan: hydrophobic matrices for controlled drug release. J. Control. Release 93,
1–13.

Vermette, P., Meagher, L., Gagnon, E., Griesser, H.J., 2002. Immobilized liposome lay-
ers  for drug delivery applications: inhibition of angiogenesis. J. Control. Release
80, 179–195.

Wang, Y.S., Tu, S.L., Li, R.S., Yang, X.Y., Liu, G., Zhang, Q.Q., 2010. Cholesterol succinyl
chitosan anchored liposomes: preparation, characterization, physical stability,
and drug release behavior. Nanomed. Nanotechnol. 6, 471–477.

Wang, Y.W., Jou, C.H., Hung, C.C., Yang, M.C., 2012. Cellular fusion and whitening
effect of a chitosan derivative coated liposome. Colloids Surf. B 90, 169–176.

Wu,  C., Zhou, S., Wang, W.,  1995. A dynamic laser light-scattering study of chitosan
in  aqueous solution. Biopolymers 35, 385–392.

Wu,  Y.S., Seo, T., Sasaki, T., Irie, S., Sakurai, K., 2006. Layered structures of hydropho-
bically modified chitosan derivatives. Carbohydr. Polym. 63, 493–499.

Xu, J., Mccarthy, S.P., Gross, R.A., 1996. Chitosan film acylation and effects on
biodegradability. Macromolecules 29, 3436–3440.

Zaru, M.,  Manca, M.L., Fadda, A.M., Antimisiaris, S.G., 2009. Chitosan-coated lipo-
somes for delivery to lungs by nebulisation. Colloids Surf. B 71, 88–95.


