DETERMINATION OF ALCOHOL IN POSTMORTEM BLOOD SAMPLES USING AUTOMATED HEADSPACE GAS CHROMATOGRAPHY – MASS SPECTROMETRY

SARAVANAKUMAR MANIAM

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2014
DETERMINATION OF ALCOHOL IN POSTMORTEM BLOOD SAMPLES USING AUTOMATED HEADSPACE GAS CHROMATOGRAPHY – MASS SPECTROMETRY

SARAVANAKUMAR MANIAM

RESEARCH REPORT SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (ANALYTICAL CHEMISTRY & INSTRUMENTAL ANALYSIS)

DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2014
UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: SARAVANAKUMAR A/L MANIAM

I/C/Passport No: 800317-05-5129

Regisration/Matric No.: SGC130019

Name of Degree: MASTER OF SCIENCE (ANALYTICAL CHEMISTRY & INSTRUMENTAL ANALYSIS)

Title of Project Paper (“this Work”): “DETERMINATION OF ALCOHOL IN POSTMORTEM BLOOD SAMPLES USING AUTOMATED HEATSPACE GAS CHROMATOGRAPHY – MASS SPECTROMETRY”

Field of Study:

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work,
(2) This Work is original,
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work,
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work,
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained,
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

(Candidate Signature) Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name ASSOCIATE PROF DR LO KONGMUN

Designation ASSOCIATE PROFESSOR
ACKNOWLEDGEMENT

First and foremost, I would like to forward the greatest appreciation and gratitude to the Mighty God for blessing me with the strength and determination to complete my research project.

I would like to express my appreciation to the Ministry of Health for giving me the opportunity to further my study. I also like to thank Faculty of Science, University Malaya for their co-operation and accommodation provided to me with all the equipment and materials concerned.

I also would like to express my grateful thanks to my supervisor, Associate Prof. Dr Lo Kong Mun for endless support, guidance and valuable comments in the preparation and completion of this research.

Not forgetting a special thanks to my superior, Dr Shahidan Hj MD Noor, Head of Department for Forensic Medicine Department, Hospital Sungai Buloh, and Selangor for allowing me to complete my studies. I would like to extend my sincere gratitude to several individuals that help directly or indirectly in completion of my research project and there are Khairul Adli Nikman, NorHusni bt Md Room and fellow staffs from Forensic Medicine Department Hospital Sungai Buloh.

I also would like to convey and endless appreciations and gratitude to my beloved mother Madam Suppummah Maniam, and my supportive wife Madam Nagarani Perumal, for their sacrifices and understandings, for lending supports and have faith and for their never endless love throughout my lives. This project paper would not be materialized without the
help and encouragement from each of person mention and person who indirectly help and supported me.

Finally I would say thanks to my all colleagues of Master in Analytical Chemistry and Instrumentation session 2013/14 who had been there for me when I needed them. Last but not least thank you very much.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1

1.0 INTRODUCTION 1-6
1.1 PURPOSE OF STUDY 7
1.2 OBJECTIVES OF STUDY 8

CHAPTER 2

2.0 LITERATURE REVIEW 9-13
2.1 BLOOD AND ITS CONSTITUENTS 9-13
2.2 ALCOHOL AND ITS EFFECT 13-25
2.3 HEAD SPACE ANALYSIS 26-33

CHAPTER 3

3.0 METHODOLOGY 34
3.1 INSTRUMENTATION 34-35
3.2 PROCEDURE FOR METHOD VALIDATION 35-36
3.3 CALIBRATION STANDARDS 37
3.4 INTERNAL STANDARD 37
3.5 EXTERNAL STANDARD 38
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 SAMPLE COLLECTION</td>
<td>38-39</td>
</tr>
<tr>
<td>3.7 INTERNAL STANDARD PREPARATION</td>
<td>39</td>
</tr>
<tr>
<td>3.8 SAMPLE PREPARATION</td>
<td>39</td>
</tr>
<tr>
<td>3.9 EXPERIMENTAL PROCEDURE</td>
<td>40</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td></td>
</tr>
<tr>
<td>4.0 RESULT AND DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>4.1 CALIBRATION CURVE</td>
<td>42-44</td>
</tr>
<tr>
<td>4.2 LINEARITY STUDY</td>
<td>45</td>
</tr>
<tr>
<td>4.3 SELECTIVITY AND SPECIFICITY</td>
<td>46-47</td>
</tr>
<tr>
<td>4.4 ACCURACY</td>
<td>48-50</td>
</tr>
<tr>
<td>4.5 PRECISION</td>
<td>51-52</td>
</tr>
<tr>
<td>4.6 LIMIT OF DETECTION</td>
<td>53-54</td>
</tr>
<tr>
<td>4.7 LIMIT OF QUANTIFICATION</td>
<td>54</td>
</tr>
<tr>
<td>4.8 ROBUSTNESS</td>
<td>55-58</td>
</tr>
<tr>
<td>4.9 ANALYSIS OF ETHANOL POST MORTEM BLOOD</td>
<td>59-67</td>
</tr>
<tr>
<td>SAMPLE</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td></td>
</tr>
<tr>
<td>5.0 CONCLUSION</td>
<td>68</td>
</tr>
<tr>
<td>REFERENCE</td>
<td>69-73</td>
</tr>
</tbody>
</table>
List of Figure

Figure 1 Blood Components
Figure 2 Ethyl Alcohol @ ethanol structural formula
Figure 3 Oxidative pathways of alcohol metabolism
Figure 4 Schematic representation of the phases of the headspace in the vial
Figure 5 Chromatograms for ethanol for blood sample spiked with (A) 0.08% (or 80 mg/dl); and (B) 0.20% (or 200 mg/dl).
Figure 6 Spectrums for ethanol for blood sample spiked with (a) 0.08% (or 80 mg/dl); and (b) 0.20% (or 200 mg/dl).
Figure 7 Calibration curve for ethanol with six calibration levels 0.04%, 0.05%, 0.08%, 0.10%, 0.20% and 0.30%.
Figure 8 Chromatograms of five volatile compounds analysed by Gas Chromatography with headspace sampling technique
Figure 9 Chromatogram of Blood sample
Figure 10 Chromatogram for ethanol-40 (40mg/dl)
Figure 11 Chromatogram for ethanol -80 (80mg/dl)
Figure 12 Chromatogram and Mass Spectra for Blank
Figure 13 Chromatogram and Mass Spectra for 0.025% @ 25mg/dl
Figure 14 Chromatogram and Mass Spectra for 0.05% @ 50mg/dl
Figure 15 Chromatogram and Mass Spectra for 0.08% @ 80 mg/dl
Figure 16 Chromatogram and Mass Spectra for 0.10% @ 100 mg/dl
Figure 17 Chromatogram and Mass Spectra for 0.20% @ 200 mg/dl
Figure 18 Chromatogram and Mass Spectra for 0.30% @ 300 mg/dl
Figure 19 Calibration Curve for ethanol standards
List of Table

Table 1 Road traffic Fatalities involving alcohol (% of all road traffic fatalities)
Table 2 Reduced BAC level and decline in road traffic collision.
Table 3 Stages of Alcohol Intoxication
Table 4 GC Instrumentation Parameter
Table 5 Parameters of calibration curve for standard ethanol
Table 6 Result of recovery testing on six standard ethanol solution
Table 7 Result on the evaluation of accuracy of the method.
Table 8 Precision result for low, medium and high ethanol concentration
Table 9 Result of ten blank sample for LOD determination
Table 10 Result of fortified ethanol concentration from 40 mg/dl to 300mg/dl in six replicates
Table 11 Summary of result obtained from analysis of 50 sample (January – March)
Determination of ethanol in post mortem blood has become one of the important tool in medico legal investigation. The concentration of the ethanol upon dead in a person or alive has legal complication if it is more than permitted level. In Malaysia the level of Blood Alcohol Concentration (BAC) permittable according Road Traffic Act 1987 is 0.08g/100ml of blood. Nonetheless the determination of ethanol concentration in fresh blood obtained from alcohol consumer post no significant problem whereas when the blood is obtained from dead person or post-mortem blood it validity is in questioned. Accurate interpretation of blood ethanol concentration at the time of death is a difficult task to obtain due to time and other environmental factor. A reliable and rapid method is required to overcome the difficultness of the analysis. Gas Chromatography Mass Spectrometry assisted with Headspace sampling has given a new way for accurate and rapid analysis with simple procedure. Validation on the method of determination concentration of ethanol in post-mortem blood using iso-propanol as the internal standard was conducted. The validation parameter obtained indicate that iso-propanol is suitable to be used as internal standard. The validated protocol was followed to analysis 50 post-mortem blood sample obtain from Forensic Medicine Department upon autopsy. Result obtained relates that the quantification of ethanol in post-mortem blood can be conducted with high accuracy and specificity.
Abstrak

Pengukuran kepekatan etanol dalam darah yang diperolehi semasa bedah siasat telah menjadi salah faktor penting dalam penyiasatan pegawai polis. Kepekatan etanol dalam darah pada seseorang yang hidup atau mati mempunyai komplikasi undang-undang jika ia adalah lebih daripada paras yang dibenarkan atau ditetapkan. Di Malaysia tahap kandungan alcohol dalam darah yang ditetapkan dalam Akta ‘Road Traffic Act’ 1987 adalah 0.08g/100ml. Penentuan kepekatan etanol dalam darah seorang yang hidup adalah tidak sukar atau kurang dipertikaikan namun kepekatan alcohol dalam darah yang diperolehi daripada seseorang yang telah mati menghadapi sedikit kesukaran dalam menentukan kesahihan kepekatan etanol yang diperolehi. Ia juga sering dipersoalkan atas factor-faktor luaran yang mana kandungan etanol darah boleh disebabkan oleh mekanisma pencernaan glukosa kepada ethanol. Oleh yang demikian tafsiran yang tepat amatlah diperlukan untuk menentukan kepekatan etanol darah pada masa kematian adalah kepekatan yang sebenarnya dan ini merupakan satu tugas yang sukar. Sehubungan dengan itu satu kaedah yang boleh dipercayai dan pantas diperlukan untuk mengatasi kesukaran dalam penganalisaan ini. Teknik yang dimaksudkan ialah “Gas Chromatography Mass Spectrometry” dibantu dengan persampelan ‘headspace’ telah memberikan nafas baru untuk analisis yang tepat dan cepat dengan prosedur yang mudah. Validasi kepada kaedah penentuan kepekatan etanol dalam darah bedah siasat menggunakan iso-propanol sebagai piawai dalaman telah dijalankan. Parameter validasi yang diperolehi menunjukkan bahawa iso propanol sesuai untuk digunakan sebagai piawai dalaman. Protokol disahkan dan digunakan untuk analisis 50
sampel darah (bedah siasat) yang diambil semasa pemeriksaan bedah siasat di Jabatan Perubatan Forensik Hospital Sungai Buloh. Keputusan yang diperolehi menunjukkan bahawa teknik dan instrumentasi yang digunakan adalah tepat dan sahih.