ABSTRAK

Kegiatan penipuan telah mencapai ke peringkat kritikal dimana ianya
menyebabkan syarikat telekomunikasi mengalami kerugian berjumlah jutaan ringgit
dan memaksa syarikat-syarikat tersebut mengguna pakai aplikasi atau sistem (seperti
Telekom Malaysia Berhad Sistem Pengenalpastian Kegiatan Penipuan Generasi Baru)

untuk mengenalpasti kegiatan tersebut.

Kami memperkenalkan satu algoritma baru yang dapat mengenalpasti kegiatan
penipuan dalam industri telekomunikasi (sebagai contoh, pencerobohan penipuan
berlaku apabila akaun yang sah diancam oleh penceroboh yang membuat dan menjual
panggilan dengan menggunakan akaun tersebut) yang menggunakan Model Bercampur
Gauss, satu model kebarangkalian yang seringkali digunakan dalam mengenalpasti
kegiatan kecurian melalui pengenalpastian suara. Disebabkan kerumitan yang
dipamerkan oleh Model Bercampur Gauss, kami menggunakan Pemaksimum Jangkaan
oleh Dempster et al. (1977) untuk mencari Penganggaran Kebolehjadian Maksimum
bagi parameter Model Bercampur Gauss. Bersama-sama dengan kaedah inti (sila rujuk
kepada Silverman, 1986), kami dapat memperbaiki proses yang berkaitan dengan
menentukan bilangan komponen dalam Model Bercampur Gauss. Tambahan pula, kami
berjaya menghasilkan Ujian Kebolehjadian Nisbah dalam menentukan bilangan
komponen dalam Model Bercampur Gauss dan perbandingan keputusan yang
diperolehinya dengan keputusan yang diperolehi oleh Kriteria Maklumat Akaike akan
ditekankan dalam tesis ini. Algoritma tersebut juga menggunakan pekali keserupaan

untuk mengklasifikasi data sebenar berdasarkan kepada fungsi log-kebolehjadian dan



ianya diperluaskan untuk mengenalpasti panggilan yang mencurigakan yang

dikenalpasti oleh syarikat telekomunikasi.

Algoritma yang baru diperkenalkan ini diuji dengan menggunakan data simulasi
dan data sebenar dimana keputusannya (daripada ujian tersebut) menunjukkan ia
berupaya mengenal pasti kegiatan penipuan. Data sebenar adalah terdiri daripada
berapa lama panggilan dibuat dan berapa cajnya, diambil daripada ibusawat Telekom
Malaysia Berhad, dan ianya dicemari oleh aktiviti penipuan. Memandangkan format
data sebenar adalah berbeza dengan yang biasa digunakan untuk pengenalpastian suara,
ianya disusun semula sebelum pengujian dan penganalisaan. Algoritma baru bersetuju

dengan apa yang dicurigai oleh syarikat



ABSTRACT

Fraud activities have reached to critical point causing millions of ringgit of
losses to telecommunication companies, and as a result, forcing them to employ
applications or systems (such as Telekom Malaysia Berhad’s Next Generation Fraud

Detection System) to detect the said activities.

We introduce a new algorithm that could detect fraud activities in
telecommunication industry (e.g. intrusion fraud which occurs when legitimate account
is comprised by an intruder who makes or sells calls on this account) that uses Gaussian
Mixed Model (or GMM), a probabilistic model normally used in fraud detection via
speech recognition. Due to the complexity of GMM, we use Expectation Maximization
(or EM) algorithm by Dempster et al. (1977) to obtain the maximum likelihood
estimates of the GMM parameters. Together with Kernel method (see Silverman,
1986), we improve the process of finding the number of components in GMM. In
addition, we have also successfully derived the likelihood ratio test in the determination
of the number of components in GMM and the comparison of its results with those of
Akaike Information Criteria (AIC) will also be highlighted in this thesis. The said
algorithm uses similarity coefficient to classify the real data based on the log-likelihood
function and it’s extended to detect incoming fraud calls as suspected by the

telecommunication company.

The new algorithm is tested on simulated and real data where the results show it
is capable of detecting fraud activities. The real data, which included call charging and

duration, are collected from Telekom Malaysia Berhad’s exchanges and they are



believed to be contaminated by fraud activities. As the original data are clearly not in
the format that is generally used for speech recognition, they are reformatted prior to
testing and analysis. The new algorithm is in agreement with those suspected by the

company.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

Telecommunication companies (including those that are operating in Malaysia)
suffered heavy losses amounting to US$55 Billion per year due to fraud activities.
Between 3 and 5 percent of the company’s annual revenue would “disappear” due to
the said activities. They (i.e. the said companies) will not declare or make public these
activities (if they do decide to declare, they will call these activities as bad debt) fearing
huge migration of customers to the competitors due to lack of confidence in the
services they offered. The fraud activities are expected to increase with the introduction

of new services such as 3G and Voice Over Internet Protocol.

Although the number of fraudulent calls is small when compared to the overall
call volume but the cost incurred is huge (or significant) amounting to, based on
estimation by analysts for telecommunication industry in U.S., $1 Billion a year as
mentioned by Cox et al. (1997). Cahill et al. (2002) reported fraud activities eroded
between 4% and 6% of U.S. telecom’s revenue; and suggested that the degree of
“erosion” is much worse at international level where several new service providers
reported losses greater than 20%. In terms of losses to fraud, Moreau et al. (1996)
estimated several millions European Currency Units (ECUs) per year. Bolton and Hand

(2002) gave figures representing losses to fraud each year of £13 Billion and $13



Billion (U.S.); and estimated it could reach $28 Billion within 3 years. Generally, the

loss is significantly large and warrants serious action to manage the problem.

Becker et al. (2010) mentioned the Communications Fraud Control Association
(cfca.org) periodically estimates the extent of worldwide telecommunications fraud. In
1999 this estimate was $12 billion, in 2003 it was between $35 and $ 40 billion, in
2006 it was between $55 and $60 billion, and in 2009 it was between $70 and $78

billion.

1.1.1 Modus Operandi

Becker et al. (2010) gave examples of some common varieties of fraud in
telecommunication and the one that is of our interest is intrusion fraud. This occurs
when an existing, otherwise legitimate account, typically a business, is compromised in
some way by an intruder, who subsequently makes or sells calls on this account. In
contrast to subscription calls, the legitimate calls may be interspersed with fraudulent

calls, calling for an anomaly detection algorithm.

For mobile telecommunication, the perpetrator would normally hack into a
network and use false identity to access services for free. Nowadays the perpetrator
would use cloned phones (or SIM) to make free international and expensive roaming
calls (see Bihina Bella et al., 2005). This activity would involve the duplication of
customer’s hardware and firmware thus allowing the perpetrators to make calls on their
account and consequently inflating their monthly bill. Other types of fraud are prepaid

and interconnect.



Premium Rate Service (PRS) involves high number of calls made to the PRS
number from customer’s line network without their knowledge or from a number where
there is no intention to pay for the outgoing calls using auto-dialers. Other types of
fraud are Private Automatic Branch Exchange (PABX) for international calls,
network’s personnel provide an assigned number to a user that does not have an
account with the network (this activity is called stolen line unknown) and international
roaming manipulation which is similar to subscription fraud where the perpetrator
exploits the time delay of high rate identification and notification to home network

when roaming on another network.

There are cases where perpetrators are the subscribers themselves that
performed call back (with the intention to get cheaper international calls from call back
operator usually in another country via dialing out, regular dial tone availability, call
booked via other channels, and call initiated via international toll free number) and
illegal schemes (e.g. reselling calling cards to other subscribers, forgery of vouchers,

recharge, counterfeit and stolen cards to pay goods over the phone).

Several types of telecom fraud are listed in Shawe-Taylor et al. (2000), but the
one, which is of our interest, is called superimposed or “surfing” fraud. Superimposed
fraud refers to the use of a service without permission and it would appear as phantom
calls on a bill. It will generally occur at the level of individual calls where fraudulent

will be mixed together with the legitimate calls.



1.1.2 Methods used to detect fraud activities

Data Mining is one of the applications capable of detecting fraud in
telecommunication and Malaysian companies (especially telecommunication ones) are
using the said application. IBM developed Data-Mining application called “Intelligent
Miner” (amongst its users are Australia’s Health Insurance, John Hancock Life
Insurance, “Saveway” Mart in UK and banking industry in USA) whereas SAS
“Enterprise Miner”, SPSS, Lotus, SGI and Hitachi are not far behind in the “race” (in
developing the said application). In Malaysia, companies such as Aetna Insurance,
Astro, Celcom and Franks & Small have been using Data-Mining application since
1996 and SAS has developed Data-Mining application called SISWANG to manage

corporate type data for Telekom Malaysia Berhad.

Briefly, techniques used in Data-Mining can be divided into two: (1)
Preparation of Data and (2) Model of Data. Techniques (1) and (2) are equally
important where according to Pyle (1999), the data must be well managed so that
process with regard to modeling could be performed smoothly and quickly. Zuber et al.
(2013) on the other hand concentrated on (2) and gave six models used in Data-Mining:
(1) Classification, (2) Regression, (3) Time Series, (4) Cluster, (5) Association Analysis

and (6) Sequence Discovery.

SAS has developed a data mining analysis cycle known by the acronym
SEMMA (Rohanizadeh and Moghadam, 2009). This acronym stands for the five steps

of an analysis that are ordinarily a part of a data mining projects. Those five steps are:



Sample: First step of data mining is to create one or more data tables by sampling data
from the data warehouse. The samples should be big enough to contain significant
information, yet small enough to process quickly hence reducing the processing time
required to get critical business information. This approach uses a reliable, statistical

representative sample of the entire database.

Explore: After sampling the data, they would be explored visually and numerically (i.e.
using statistical techniques including Factor Analysis, Corresponding Analysis and

Clustering) for inherent trends or groupings.

Modify: Based on the discoveries in the exploration phase, modification may be

needed:

(1) To include information such as grouping of customers and significant
subgroups, or

2) To introduce new variables such as ratio obtained by comparing two previously
defined variables.

Modification process also involves looking for outliers, reduce the number of variables

to narrow them down to the most significant ones and modify data when previously

mined data change in some way.

Model: After the data have been assessed and modified, data modeling techniques (e.g.
neural networks, tree-based models, logistic models, and other statistical models such
as time series analysis and survival analysis) are used to construct models that explain
“pattern” in the data and each of them (i.e. data modeling techniques) is appropriate

within specific data-mining situations depending on the data.



Assess: Assessing a model to determine how well it performs is done by applying it to a
portion of the data that was set-aside during the sampling stage. If it is valid, it should

work for this reserved sample as well as the sample used to construct the model.

Abbot et al. (1998) highlighted the findings of a study done by DataQuest back
in 1997 (more and better Data Mining applications have started to emerge nowadays
with the advent of more “powerful” micro-processors) where IBM was the data mining
software market leader with a 15% share of license revenue, Information Discovery
was second with 10%, Unica was third with 9% and Silicon Graphics was fourth with
6%. They went even further by evaluating data mining products or tools (vendor is
given in brackets and will be used henceforth to describe the product) namely
Clementine (ISL); Darwin (TMC); Enterprise Miner (SAS); Intelligent Miner for Data

(IBM); and Pattern Recognition Workbench (Unica) based on the following factors:

Client Server Processing: Data mining applications often use data sets far too large to
be retained in physical RAM, slowing down processing considerably as data loaded to
and from virtual memory. Also, algorithm runs far slower when hundreds of candidate
inputs are considered in models. Therefore a client server processing model has great
appeal by using a single high powered workstation for processing but let multiple

analysts access the tools from PCs on their desktops.

Automation and Project Documentation: The experimentation process involves
repeatedly adjusting algorithm parameters, candidate inputs and sample sets of the
training data. It would be a great help to automate what can be in this process in order
to free the analysts from some of the mundane and error prone tasks of linking and

documenting exploratory research findings. All five products provided means to



document findings during the research process, including time and date stamps on
models, text fields to hold notes about the particular model and the saving of guiding

parameters.

Algorithms: Referring to Decision Trees, Neural Networks, Regression, Radical Basic
Functions, Nearest Neighbor, Nearest Mean Kohonen Self Organizing Maps,

Clustering and Associate Rules.

Ease of Use: Referring to Data Loading and Manipulation, Model Building and
Understanding (Specifying Models, Reviewing Trees and Reviewing Classification

Results) and Technical Support.

Accuracy: The smaller number of false alarms is better and the larger number of
fraudulent activities caught is better. Data used to grade accuracy of the tools contained

fraudulent and non-fraudulent financial transactions.

Abbot et al. (1998) found ISL’s performance on modem line was acceptably
slow. Unica’s processor capabilities must be significantly better than is required for the
others. IBM’s Java runs more slowly than other GUI designs. SAS has the largest disk
footprint of any of the tools (i.e. at 300+ MB). Unica doesn’t have Decision Trees (this
study focused on Decision Trees and Neural Networks). They (i.e. Abbot et al., 1998)
concluded that IBM’s Intelligent Miner for Data has the advantage of being the current
market leader with a strong vendor offering well-regarded consulting support. ISL’s
Clementine excels in support provided and in ease of use (given Unix familiarity) and
might allow the model iterations in a tight deadline. SAS’s Enterprise Miner would

especially enhance a statistical environment where users are familiar with SAS and



could exploit its macros. Thinking Machine’s Darwin is the best when network
bandwidth is at a premium (say, on very large databases). Unica’s Pattern Recognition
Work-bench is a strong choice when it’s obvious what algorithm will be most

appropriate, or when analysts are more familiar with spreadsheets than Unix.

The detection and analysis of outliers become difficult when the data involved
is:

¢ Time series data because they (i.e. outliers) may be hidden in trend, seasonal or
other cyclic changes,

e Multidimensional data where not any particular one but rather a combination of
dimension values may be extreme and

e Non-numeric (i.e. categorical data) where the definition of outlier requires
special consideration.

Methods for detecting them (i.e. outliers) are (as per listed by Han and Kamber, 2001):

Online Analytic Processing (OLAP) uses data cubes to identify regions of anomalies in
large multidimensional data. For example, discovery driven exploration is an approach
where pre-computed measures indicating data exceptions are used to guide the user in
data analysis at all levels of aggregation. A cell value in the cube is considered an
exception if it is significantly different from the expected value based on a statistical
model. The method uses visual cues such as background color to reflect the degree of
exception of each cell. The user can choose to drill down on cells that are flagged as
exceptions. The measure value of a cell may reflect exceptions occurring at more
detailed or lower levels of the cube where these exceptions are not visible from the

current level.



Deviation based Outlier Detection identifies outliers by examining the main
characteristics objects in a group. No statistical technique (or distance based measures)
is used. For example, Dissimilarity function does not require a metric distance between
the objects. It is any function that, if given a set of objects, returns a low value if the
objects are similar to one another. The greater the dissimilarity among the objects, the
higher the value returned by the function. The dissimilarity of a subset is incrementally
computed based on the subset prior to it in the sequence. Given a subset of n numbers

{x1,...,xn,} a possible dissimilarity function is the variance of the numbers in the set that

N R _ _ . . .
is —Z(xi —X)> where X is the mean of the n numbers in the set. For character strings,

i=1
the dissimilarity function may be in the form of a pattern string (e.g. containing
wildcard characters) that is used to cover all the patterns seen so far. The dissimilarity
increases when the pattern covering all of the strings in S;.; doesn’t cover any string in

Sj that is not in S;.;.

Distance based outlier detection: Objects that do not have enough neighbors, where
neighbors are defined based on distance from the given object. For example, given a
data set, the index-based algorithm uses multi-dimensioning indexing structures, such
as R-trees, to search for neighbors of each object o within radius d-around that object.
Let M be the maximum number of objects within the d-neighborhood of an outlier.

Therefore, once M+ 1 neighbors of object o are found, it is clear that o is not an outlier.

Statistical approach: Assuming a distribution or probability model for the given data
set (e.g. normal distribution) and the identification of outliers with respect to the model

using discordance test. Other examples are as follows:



Hollmen and Tresp (2000) presented a Learning Vector Quantization (LVQ)
algorithm for learning a classifier defined by a codebook of probabilistic
models. The models implicitly define a discrimination function in the input data
space through maximum likelihood search. The prototypical codebook vectors
were replaced by generative, probabilistic models and the LVQ learning rules
were modified accordingly. The likelihood-based distance was justified by a
derivation form the Kullback-Leibler distance. The conceptual difference to
conventional training of probabilistic models is the use of supervised, gradient-
based learning instead of maximum likelihood estimation. This specially tunes
the models for discrimination. The algorithm may also be used in post-
processing to enhance the discriminative aspect of generative density models

earlier trained by using the EM algorithm.

Hollmen and Tresp (2000) extended the Hidden Markov Model (or HMM) to
modeling time series that exhibit switching between matrix and event based
representations. This essentially combines an HMM with continuous emission
distribution and one with discrete emission distribution. Additional variable data
semantics controls the interpretation of data and is dependent on the hidden
variable. Inference and learning rules were developed within a maximum
likelihood framework. The approach was illustrated in a user profiling problem
where the mechanism leading to the event representation was important from

user profiling point of view.

Taniguchi et al. (1998) presented three approaches to fraud detection in
communications networks. They are Neural networks with supervised learning,

Probability density estimation methods and Bayesian networks. The
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performance of these methods has been validated with data from a real mobile
communication networks. The feature vectors used in this application
describing the subscriber’s behavior were based on toll tickets. For supervised
learning approach, the features used were summary statistics over the whole
observed time period as no times of fraud were recorded in the data. For the two
latter approaches, the features described the daily behavior for every subscriber.
To improve the fraud detection system, the combination of the three presented
methods could be beneficial. Furthermore, the incorporation of rule-based

systems could show an improvement.

Hollmen and Tresp (1998) presented a call based on line fraud detection system
which is based on a hierarchical regime switching generative model. The
inference rules are obtained from the junction tree algorithm for the underlying
graphical model. The model is trained by using the EM algorithm on an
incomplete data set and is further refined with gradient based discriminative

training, which considerably improves the results.

Linoff (2004) has successfully used survival data mining (especially Kaplan-
Meier Survival Analysis) to understand customer behavior or churn such as
plots produced from wusing hazards formula (where in this case

number of customers who stopped with exactly tenure t

) show peaks of non-
everyone who had tenures greater than or equal to t

payment and promotion ends and from using the survival formula (i.e.
cumulative probability by multiplying one minus the hazards together for all
values less than t) shows the number of customers that will survive beyond the
non-payment period. The said data mining would “censor” customers that leave

voluntarily and may be able to answer questions such as: “When will a lapsed
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customer return?”’, en is the next customer’s purchase?” an ow lon
t turn?”’, “Wh th t cust ’ hase?” and “How 1

will an upgrade last?”.

Xing and Girolami (2007) employ Latent Dirichlet Allocation (LDA) to build
user profile signatures. The authors assume that any significant unexplainable deviation
from the normal activity of an individual user is strongly correlated with fraudulent
activity. A straightforward generalization of LDA to time-invariant Markov chains of
arbitrary order is proposed in Girolami and Kaban (2005), where the experimental
study refers to modeling the sequential usage of a telephone service by a large group of
individuals. Xu et al. (2008) presents a novel rough fuzzy set based approach to detect
fraud in 3G mobile telecommunication network. It analyzes the scenarios in 3G
network including subscription fraud and superimposed fraud and profile and confirms
the parameters to detect the scenarios. Hilas and Mastorocostas (2008) investigates the
usefulness of applying different learning approaches to a problem of
telecommunications fraud detection that is by applying multilayer perception classifier
and the hierarchical agglomerative clustering technique on five models (profiles) of
telecommunications users’ behaviors. Hilas (2009) constructs an expert system, which
incorporates both the network administrator’s expert knowledge and knowledge
derived from the application of data mining techniques on real-world data. The
detection of individual fraud call which are of the time series type become tricky as
they may be hidden in trend, seasonal, or other cyclic changes. The problem becomes
more complicated when multidimensional data are considered. Such problem may be

classified as the problem of detecting outliers.

Gomez-Restrepo and Cogollo-Florez (2012) evaluate the implementation of

generalized linear mixed models to detect fraud. They consider the heterogeneity of
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customers and generate not only a global model, but also a model for each customer
which describes the behavior of each one according to their transactional history and
previously detected fraudulent transactions. In particular, a mixed logistic model is
used to estimate the probability that a transaction is fraudulent, using information that

has been taken by the banking systems in different moments of time.

1.2 Statement of the problem

The number of literatures that discuss about pattern recognition method (namely
Gaussian Mixed Model, GMM) used to detect fraud activities in telecommunication
industry involving real data other than speech recognition’s format is limited and GMM
is considered as difficult in reality because we need to find the initial estimates of
parameters to start Expectation Maximization (EM) algorithm and the exact number of
components. Telekom Malaysia Berhad, a leading telecommunication company in
Malaysia, via their current system or application believes the real data collected by
them (e.g. duration and charging or billing) from its exchanges are contaminated by
fraud activities and, since GMM is not included on the list of methods, there is no

knowing if their findings are statistically correct.

1.3 Objectives

Based on the statement of the problem given above, we have outlined the

following objectives for this study:
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* To improve Gaussian Mixed Model (GMM) from its known (or current) weaknesses
(or difficulties) such as finding the initial estimates of parameters to start Expectation

Maximization (EM) algorithm and finding exact number of components.

* To introduce a new algorithm that is capable of detecting fraud activities (especially)
in telecommunication industry and that incorporates the improvement as mentioned in

the first bullet.

* To test the new algorithm (at the same time improving the EM algorithm for GMM)
using simulation data and real data (e.g. duration and charging or billing) collected
from Telekom Malaysia Berhad’s exchanges that are believed to be contaminated by

fraud activities.

1.4 Significance of the study

In addition to contributing to the knowledge in statistics, the findings from this
study will encourage the use of statistical methods (in this case, Gaussian Mixed
Model) in detecting fraud activities in telecommunication industry by incorporating

them into the company’s decision support system.

1.5 Thesis outline

This research attempts to detect fraud in telecommunication using pattern

recognition method and it is outlined as follows:
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Chapter two provides a literature review about the use of pattern recognition method in
detecting fraud activities in Telecommunication industry where special attention is
given to Gaussian Mixed Model (GMM). Formulas involved in GMM and Expectation
Maximization, an algorithm typically used in solving the problem of calculating

maximum likelihood estimation, are listed and derived.

Chapter three attempts to use Gaussian mixed model which is a probabilistic model
normally used in speech recognition to identify fraud calls in the telecommunication
industry. We look at several issues encountered when calculating the maximum
likelihood estimates of the Gaussian mixed model using an expectation maximization
algorithm. Firstly, we look at a mechanism for the determination of the initial number
of Gaussian components and the choice of the initial values of the algorithm using the
kernel method. We show via simulation that the technique improves the performance of
the algorithm via simulation. Secondly, we develop a procedure for determining the
order of the Gaussian mixed model using the log-likelihood function and the Akaike
information criteria (AIC). Finally, for illustration, we apply the improved algorithm to
real telecommunication data. The modified method will pave the way to introducing a

comprehensive method for detecting fraud calls in future work.

Chapter four proposes a new fraud detection algorithm that uses Gaussian mixed
model, a probabilistic model normally used in recognizing a person’s voice in speech
recognition field. Using data obtained from one of the leading telecommunication
company in Malaysia, we show that the proposed algorithm has not only successfully
detected fraud calls as suspected by the company, but also identify suspicious calls

which can be candidates of fraud call. The proposed algorithm is easy to implement
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with a great potential to be extended to detect billed (or outgoing) fraud calls and hence

reduces the loss incurred by the telecommunication companies.

Chapter five shows the successful derivation of hypothesis testing in the determination
of the number of components in GMM, which is an important process as highlighted by
a number of authors. The performance of the hypothesis testing and the comparison of

its results with those of AIC will also be highlighted in this chapter.

Chapter six proposes a new algorithm than can be efficiently used to identify fraud
activities. The algorithm is developed by finding the characteristics of historical fraud
and non-fraud calls and is consequently used in identifying possible fraud call instantly
for immediate call verification process. Using data obtained from one of the leading
telecommunication company in Malaysia, we show that the proposed algorithm has

successfully detected outgoing fraud calls as suspected by the company.

Chapter seven presents the general conclusion and highlights the significant
contributions of this research, moreover, we also suggest several possibilities for
extending research work on fraud detection in telecommunication using pattern

recognition method.

Appendices A and B present the programming language (and software) used to produce

the results in this thesis and a sample of real data supplied by Telekom Malaysia

Berhad, respectively.
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CHAPTER 2

GAUSSIAN MIXED MODEL

2.1 Introduction

Jain et al. (2000) defines a pattern “as opposite as a chaos; it is an entity,
vaguely defined, that could be given a name”. For example, pattern could be a
fingerprint image, a handwritten cursive word, a human face, or a speech signal. They
added given a pattern, its recognition/classification may consist of one of the following
tasks: 1) supervised classification (e.g. discriminate analysis) in which the input pattern
is identified as a member of predefined class, 2) unsupervised classification (e.g.
clustering) in which the pattern is assigned to hitherto unknown class. They noted that
the recognition problem here is being posed as a classification or categorization task,
where the classes are either defined by the system designer (in supervised
classification) or are learned based on the similarity patterns (in unsupervised

classification).

Reynolds (1995) presented an overview of his research efforts in automatic
speaker recognition. He based his approach on a statistical speaker-modeling technique
that represents the underlying characteristic sounds of a person's voice. Using the said
technique, he built speaker recognizers that are computationally inexpensive and
capable of recognizing a speaker regardless of what is being said. Performance of the
systems is evaluated for a wide range of speech quality; from clean speech to telephone

speech, by using several standard speech corpora. Reynolds and Rose (1995)
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introduced the use of Gaussian Mixed Model (GMM) for robust text-independent
speaker identification. The focus of their work is on applications which require high
identification rates using short utterance from unconstrained conversational speech and

robustness to degradations produced by transmission over a telephone channel.

The function of GMM is extended to detect fraud activities on the number (as
well as length) of domestic and international calls made on a daily basis during office,
evening and night hours. Tanigushi et al. (1998) presented three approaches to fraud
detection in communication networks: neural networks with supervised learning,
probability density estimation methods and Bayesian networks. Information describing
a subscriber’s behavior kept in toll tickets was used. For example, supervised learning
used summary statistics over the whole observed time period (especially the number of
times fraud activities were recorded in the data). The two latter approaches used a
subscriber’s daily behavior. To improve the fraud detection system, they recommended
the combination of the three presented methods together with the incorporation of rule-

based systems.

The maximum likelihood estimation for a GMM is generally difficult to obtain
directly, but it is made easier with the availability of the Expectation Maximization
(EM) algorithm which was first introduced by Dempster et al. (1977). Since then, there
has been a significant increase of its use especially in finding the maximum likelihood
for probabilistic models. For example, Hollmen and Tresp (1998, 2000) developed an
online system for detecting fraud calls using a hierarchical switching generative model.
The model is trained by using the EM algorithm on an incomplete data set and is
further improved by using a gradient-based discriminative method. Redner and Walker

(1984) discussed the formulation as well as the theoretical and practical properties of
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the EM algorithm for mixture densities, focusing in particular on mixtures of densities
from exponential families. Xu and Jordan (1996) built up the mathematical connection
between EM algorithm and gradient based approaches for maximum likelihood

learning of finite Gaussian mixtures.

2.2 Gaussian Mixed Model

Let x € R’ and K be the number of components where each component has its

own prior probability a; and probability density function with mean p, and covariance

X, i=1...K. A Gaussian mixed model is then given by

—(x-p )T (x- u)J
a. lp,2)=)> a L 2.1
Z BH(xIp, X)) = Z \/m) B xp{ > (2.1)

K
where Za . =1. We next define the likelihood function and the log-likelihood function
i=1

by L(X18)= ﬁf(xj | 8) and I(X18) = Zn:log[i ad(x; | p.t.,):.l.)j where
j=1 i=1

j=1
X= (xi,...,x; )’ respectively. The maximum likelihood estimation (m.l.e) method aims

at finding § that maximizes [(X18), see Mardia et al. (1979). The expression
K

log[Zaﬁ(x il pi,):l.)j in [(X16) is difficult to compute. We use the Expectation
i=1

Maximization (EM) algorithm to overcome this problem.
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2.2.1 Expectation Maximization algorithm

In a general set-up of the EM algorithm given in Dempster et al. (1977), the

authors considered an unobservable variable X in sample space %, which is indirectly
observed through observed variable Y in sample space @/ Assuming that f(x18) is

the sampling density depending on the parameter 8 Q, the corresponding family of

sampling densities for ¥, say g(y| 0), can be derived from

g(10)= [ f(xI6)dx (2.2)

2(y)

where ¥ (y) is a subset of %4 under the mapping x — y(x) from % to %, The main

objective of the EM algorithm is to find the value of # that maximizes equation (2.2).

Consider the expected value of log f(x16") given y and 6, denoted by Q(€'| 6), where

0(6'16) = E(log f(x16)1 y,6) (2.3)

with the expectation assumed to exist for all pairs (6',8) and f(x18)>0 for fe Q.

According to Dempster et al. (1977), the EM iteration consists of two steps namely the

E-step and the M-step. At the pth iteration with the estimate of 8 denoted by 6P , the

E-step will give the value of Q(0 16 )) and the M-step will find a new estimate of 8,

say 67" that maximizes Q(GIG(” )). The steps are repeated until convergence is

achieved.
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For the case of a GMM, we define Q(6'16) = E{logna;ﬁ(xi Iu'y[ ,Z;,[)
i=1

0]

where ye{1,2,...K} and y=k if the " sample is generated by the K" mixture
component. It is simplified by applying, amongst others, the Bayes formula
f(@1x)oc £(x18)P(0) where f(61x) is the posterior probability, f(x16) is the
likelihood function and P(6) is the prior probability to the following equations (see

Bilmes, 1998, and Tsay, 2005):

0016)=3"3 p, loga, +33 p,, logglx, .., ) (2.4)

i=l k=l i=l k=l

where

— allc¢(xi |“k’2k)) and (25)

b= Za;¢(xi |";’21
]

o(x, 1, X,) = 1 __exp —x-p)'E (X —p) (2.6)
Jen'1z, | 2

Hence, the EM iteration for a GMM is defined by:
E-Step: Use equation (2.5).

M-Step: Use the formulas

Zpijxi Zpij(xi - "'j Xxi - ";)
al, =lZP ut =i 2'4 =L
J ns ij2 Zpij > = Zpij

(2.7)

1
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The above steps (i.e. E-step and M-step) are repeated until convergence is achieved.

The first equation of (2.7) which maximizes equation (2.4) is derived by using

Lagrange multipliers (Spiegel, 1974) on the first expression of equation (2.4), i.e.

maxz P log(a'j) subject to Za;:l, followed by (Z 2 log( )
ij ]

J iJj*

/7{2 a'j* — 1JJ =0. The results from the derivative are as follows: Z(&j +A=0 and

J* i=1 Clj

A =-n. Performing a simple mathematical procedure on the derivative’s results, we

get the first equation of (2.7), i.e. a, = %Z p; -

We apply the derivative to the extended version of equation (2.4)’s second

expression and limited to %Z Dy (Xi . y Z‘.'j*_l (xl. - p]*) We equate it to zero, i.e.

i, j*

0 (1 : .= .
ﬁ(azpij*(xi_"’j*yzj* I(Xi_"'j*)j:o or
j iJ*

d

[ S| vl -1
o ( Zpu (x IS 0 R T TIND Y SRS T M M)]:o (2.8).
J

The results for second, third and fourth expressions of equation (2.8) are as follows

where we use ox'Ay = Ay and da’x =a (Mardia et al., 1979):
X X
d 1 e -l
. ( ZPU (X z “1 )j=EZP,-j(X,- L, )’
J l

R o T S oS I

a“]( A 4*““',.*)]:%12%(22;1“;)
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Applying the results to equation (2.8), we get the second equation of (2.7), i.e.

L
n; = S

We repeat the above steps but this time on the extended version of equation

(2.4)’s second expression, ie. %Z pij*(xi - pvj*)'):j*_l (X,- - ll, )+
ij*

). We apply the derivative and equate it to zero, i.e.

%Z p,-logl2n) £,
ij*

)j =0 2.9).

0 1 : -l . 1 ,
- _zpij*(xi _uj*)lzj* (Xi _“j*)+_z pij* log((Zﬂ')d‘Zj*
az] 2 i,j* 2 i, j*

The results for first and second expressions of equation (2.9) are as follows where we

use @ =y+y' — Diag(y) and Zx?Axi = tr(AZXixﬁ) (Mardia et al., 1979):
X

9 (1 Yy - =1 | |
| (EZPU*(X,- —ll,-*yZ,-* l(Xi _llj*)J:EZzpij(Xi _"j)(xi _uj) N
i, j* !

oz

%diag(z P (Xi —ll} Xxi _”yj YJ

and

0 (1 : 1 : ) :
I -1 (EZ Dij ]0g((27[)d‘2j* )j = EZ P (221’ - dlag (Zj ))
j i,j* i
Applying the results to equation (2.9), we get

DR S B

%diag(z Pyl = Jox =) = pi,-z;) =0 (2.10).

The condition as displayed by equation (2.10) is satisfied when
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>l —n o —w, ) -z =0. 2.11)
Performing a simple mathematical procedure on equation (2.11), we get the third

Zpi,-(xi—u})(xi—u}y

equation of (2.7), i.e. X, =
2.0

2.3 Summary

A brief introduction to pattern recognition method namely Gaussian Mixed
Model (GMM) is given. The said method is commonly used in voice recognition
technique and used EM algorithm to solve the problem related to maximum likelihood
estimation. The introduction also listed all of the equations where derivation and

weaknesses are provided for some of them.

In the coming chapters, we will focus on the strength and weaknesses of GMM
to detect fraud activities in telecommunication industry by using real data different
from those that are normally used in voice recognition technique and propose a solution

to solve them.
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CHAPTER 3
IMPROVED EXPECTATION MAXIMIZATION ALGORITHM FOR

GAUSSIAN MIXED MODEL USING THE KERNEL METHOD

3.1 Introduction

A number of authors highlighted the importance of identifying the right number,

say k, of components in a GMM and subsequently choosing good initial values for the
model parameters u; and aiZ , i=12,...k, in the EM algorithm. Schlattmann (2003)

noted the difficulty of using log-likelihood ratio statistics to test the number of
components and subsequently suggested using a non-parametric bootstrapping
approach. Similarly, Wang et al. (2004) pointed out the same concerns and introduced
an algorithm called the stepwise-split-and-merge EM algorithm to solve the said
problem. In addition, Miloslavsky and Van Der Laan (2003) investigated the possibility
of using the minimization of the Kullback-Leiber distance between fitted mixture
models and the true density as a method for estimating k where the said distance was
estimated using cross validation. Zhuang et al. (1996) viewed the mixture distribution
as a contaminated Gaussian density and proposed a recursive algorithm called the
Gaussian mixture density decomposition Algorithm for identifying each Gaussian
component in the mixture. Other works on this topic can also be found, for example, in

Lee et al. (2006) and Celeux and Soromenho (1996).

This chapter attempts to use Gaussian mixed model which is a probabilistic

model normally used in speech recognition to identify fraud calls in the
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telecommunication industry. We look at several issues encountered when calculating
the maximum likelihood estimates of the Gaussian mixed model using an expectation
maximization algorithm. Firstly, we look at a mechanism for the determination of the
initial number of Gaussian components and the choice of the initial values of the
algorithm using the kernel method (Section 3.2). We show via simulation that the
technique improves the performance of the algorithm (Sections 3.3 and 3.4). Secondly,
we develop a procedure for determining the order of the Gaussian mixed model using
the log-likelihood function and the Akaike information criteria (Section 3.5). Finally,
for illustration, we apply the improved algorithm to real telecommunication data
(Section 3.6). The modified method will pave the way to introducing a comprehensive

method for detecting fraud calls in future work.

3.2 The Kernel Method

The kernel method can be used to find the probability density estimate for

univariate data, see for example Silverman (1986). Let «<min(x;)-3h |,

B >max(x;)+3h, M =2" (for some integer r), h be the bandwidth, é = B Ajla and

t, =a+kS be the k" grid point where k =0,1,...,M —1. The density estimate at grid

point 7, is represented by the following equation:

|

o= 3 s 20 s (- 2200) -3 {72 ] o

1=—%
2

where i* =—1.
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For xelt,.t,,], the density estimate f(x) is defined by

f (x):iZK (x;xij where n equals to total number of observations and

1 1 2 A . . .
= exp| ——=t" |. To compute f(x) ata grid of points, a method which makes
Ton p( 5 J pute f g p
use of the Fourier transform is employed. Let f(s) be the Fourier transform of the

kernel density estimate f (x). It can be shown that

~ L. ~
fls)= (27[)5 K(hs)u(s) = exp(— %hzszju(s) where K(s) is the Fourier transform of

1 n
the Gaussian kernel and u(s) = (27[)7En"12exp(isxj) is the Fourier transform of the
j=1

1

N . [
data. Thus, f(x)=(27z)2 j e ™ (2x)2 K (hs)u(s)ds is the convolution of the data with

the kernel.

We will use the following algorithm by Silverman (1986) to discretize the data
to very fine grids, and to find f (x) by convolving the data with the kernel.

Step A: Discretize the data to find the weight sequence {é‘k} with M =2%. If

. . . 1 : 1
Xe [tk,tkﬂ], it is split into a weight ?(tk+1 —x) at t, and a weight 5 (x— tk) at
n n

t,.;; these weights are accumulated over all the data points x; to give a sequence of

(&,) weights summing up to % )
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M-1
Step B: Find the sequence {Yl} defined by Y, =M _Ika exp(zﬂjzd

k=0

[ j where

1
—% <I< % It can be shown that when =0, ¥, = (Zx)i(ﬁ—af)_lu(s,) where

1

Step C: Find the sequence {é’l*} where ¢ =exp(—%h2s,2jY,. Here, h=0.9An >

where A = min(sd ,%), sd is the standard deviation, and /QR is the inter-quartile

range. The IQR is chosen here by Silverman (1986), who claimed that the

bandwidth is useful for a wide range of densities.

Step D: let {, be the inverse discrete Fourier transform of ¢ i.e.

It can be shown that when & =0, f (t},) = ¢, . We then identify x, where its density
estimate, denoted by f (x,), is greater than those of its nearest neighbors x, , and x,,,.
In other words, f(xt.) > f(xi_l) and f(xl.) > f(xm), refer to Figure 3.1, where the

vertical line that touches #, and f (t ) shows the location of the peak.

Note that we may obtain more than one maximum point which means that the data may
consist of more than one Gaussian distribution. These results form a very important

component of the improved EM algorithm for GMM to be described next.
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Figure 3.1 Plot of f(tk) against ¢,

3.3 Improved EM Algorithm for GMM

In this section, we propose an improved EM algorithm for GMM which can
perform both tasks: identifying the initial number of components and providing
automatic initial values for the EM algorithm. The full improved EM algorithm for
GMM is now presented:

Step 1: The kernel method as described in Section 3.2 is used to determine the number

K of components and also the corresponding means u; of each component,

i=12,...,K,. The initial estimates of the standard deviations o, are set to unity

1
while the prior weights a; are setto be ——;
0

Step 2: The EM algorithm for a GMM as described in Section 2.2 is executed to give

the final estimates of parameters Kis O and a;, i=1,2,...,K0. The log-

likelihood function and Akaike information criteria (AIC) are calculated using the

said parameters;
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Step 3: Step 2 is repeated for other possible number K of components with =0,

;. =1 for the other K — Kjcomponents and a;= —.
12 l K

Step 4: The log-likelihood function and AIC values for K =1,2,...,10 are plotted. The

final number of components K 7 is chosen when adding extra components in the

model does not significantly increase or decrease the values of the log-likelihood

function and the AIC respectively.

3.4 Simulation

We use simulation to investigate the performance of the proposed improved EM

algorithm.

3.4.1. Simulation Scheme

Simulation data were generated using the Box and Muller Transformation

(1958) as defined by equations (3.2-1) and (3.2-2) below:

1

z, = p+(-20" logu,)* cos27m (3.2-1)
1
i = M+ (=207 logu;)? sin27mu (3.2-2)
where u;,u;, ~U(0,1). For the case of two components, we start by generating a

random number u, ~U(0,1). If 0< u; < a;, we generate two random numbers
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u, ~U(0,1) and u, ~U(0,]) and calculate z, + z; using equations (3.2-1) and (3.2-2)

A el

. O . (9]
with ¥ ==, and o*= —; Otherwise, we use u* = ,and o*= Té The process

continues until the required sample size is obtained. The scheme is easily extended to

any number of components. For further details, refer to Fishman (2001).

Table 3.1 List of true values of a’s, i&’s, o’s

Sample name and  Prior probability Mean Variance
size (in bracket)
Sample 1 a,=0.4 4,=0.0 0. =1.0
Two components a,=0.6 U, =2.0 0, =025
Sample 2 a,=0.85 #,=0.0 0;=1.0
Two components a,=0.15 U, =2.0 0, =025
Sample 3 a,=0.33 14,=0.0 0;=1.0

Three components 033, 4,034 4,=-1.0,4,=4.0  52=0.25,0%=4.0

3.4.2 Study of performance based on log-likelihood function

We first look at the performance of the standard method, called Method 1,
followed by that of the improved method, called Method 2. For Method 1, in place of
Step 1 of the improved method, we assign values zero and unity respectively to the
means and variances of all components. We compare the performances by looking at

the log-likelihood function via simulation study.

Following Everitt and Hand (1981), we consider two cases with two
components and one case with three components with the true values of the parameters
given in Table 3.1. For each case, we generate 100 samples of size 1000 where the
chosen sample size reflects the large size of data sets found in the telecommunication
industry, the focus of our interest. Figure 3.2 shows histograms for all cases, each with
a sample of size 1000, where (a) two peaks are observed representing two components,
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(b) two components are observed where the second component is partially hidden and
(c) three components but only two are observed where the third component is totally
hidden. This scenario is best described by the percentage of overlapping, which will be

discussed in the later section.
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Figure 3.2 The histograms of (a) Sample 1 (with overall mean and standard deviation
equal to 1.28 and 1.19, respectively), (b) Sample 2 (with overall mean and standard
deviation equal to 0.34 and 1.19, respectively) and (c) Sample 3 (with overall mean and

standard deviation equal to 1.18 and 2.62, respectively).

We then apply Method 1 and Method 2 on the simulated data. For each case and
better quality viewing, we plot only 50 values selected randomly of the log-likelihood
function for both methods on the same plot, as given in Figure 3.3. Figures 3.4, 3.5 and
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3.6 give the plots of log-likelihood function against number of components for the three
samples considered. It can be seen that, for Sample 1 and Sample 3, the proposed
Method 2 clearly outperforms the standard Method 1 with the values of the log-
likelihood function corresponding to Method 2 always larger than those of Method 1.

However, we see that some values overlap for Sample 2, though the proposed Method 2

still generally performs better. In this case, the prior probabilities a; are distinctly
different from the chosen values of a; in Sample 1 while other true values remain the

same which leads to different percentages of overlapping of the Gaussian components

in the GMM.
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OMethod 2

Label

Hethod 1
Oiethod 2

log_likelihood_function
log_likelihood_function

(a) Sample 1 (b) Sample 2

Label

Method 1
CMethod 2

log_likelihood_function

(c) Sample 3

Figure 3.3 Plots of values of log-likelihood function.
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Figure 3.4 Plot of log-likelihood function against number of components for Sample 1.
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Figure 3.5 Plot of log-likelihood function against number of components for Sample 2.
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Figure 3.6 Plot of log-likelihood function against number of components for Sample 3.
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Figure 3.7 gives the plots of log-likelihood function against number of

components for simulated data sets number 10, 25, 75 and 90 of Sample 1. It can be

seen that the log-likelihood function value improves from 1 till 2 components and

becomes constant from 2 components onwards. Figure 3.8 shows similar results for the

case simulated data sets number 10, 25, 75 and 90 of Sample 2. Figure 3.9 gives the

plots of log-likelihood function against number of components for simulated data sets

number 25, 40, 75 and 90 of Sample 3 and they show log-likelihood function value

improves from 1 till 3 components and becomes constant from 3 components onwards

thus revealing (or exposing) the so-called “hidden component”.
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Figure 3.7 Plot of log-likelihood function for selected simulated data set from Sample 1
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We will investigate the performance of the improved EM algorithm in
estimating the parameters of the GMM by taking into account the effect of different

percentages of overlapping between the components observed in the data.

3.4.3 The value of intersections

The value of intersections (as shown in Figure 3.10(a)) for the case when

RIEST
1 2[ o

2 1 y-u 2
#U,, O, #0,, X) = e and = e 2 are
M #F U, 1 2 Si(x) 1 /—2 £H) ] /—2

—b++b* —4dac

where a = (0'22 - 0'12),
2a

obtained from x;, = and x,,

_ —b—Ab*—4ac
2a

0,

b= 2(0'12/12 -0, ,ul), and ¢ = (022 Ww—ol )— 20,0, log( J . Firstly, using the above

1

x—p R .
formula as well as P(T) = J: Ee > dt, we find the area between x;, and x,,

(and convert it into percentage) for each component; refer to Figure 3.10(a). Secondly,
we find the minimum between the areas of the two components. This value represents

the percentage of overlapping between two components (which is an approximation).

If x=4 ’
For the case when u #+Uu, O,=0,, (x)= e 1
1 2 1 2 S 1 /—2

and

1 )’*ﬂzz
£, = ! ez( "zj, let d=(y +20,)-(u,—20,). The value of the

0,27

intersection, say x,, is approximated from the following formula:

0 d<0
x=1 (4+20,) d=0.
(,ul+20'1)—% d>0
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Figure 3.10 j f(x)dx and j f,(x)dx are used to find the shaded areas as shown in (a)

and (b).

Taking similar steps, the area for the component on the left hand side of Figure

1,
e ? dt and that of the

. . X, — U Sl
3.10(b) is obtained from 1—P(=L—1)=1- j ’
o, - 2z

component on the right hand side of Figure 3.10(b) from

X =y _ltz
o2 Te 2 dr. We convert them into percentages before adding them
* V1

P(xlo__:uz) :J'

up to represent the percentage of overlapping between two components (which is an

approximation).
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3.4.4 The effects of different overlapping percentages on performance

The main objective here is to investigate the performance of the improved EM
algorithm for different overlapping percentages of the components in the GMM. For

simplicity, ~we restrict our attention to two components so that
0=(91"“’96)=(aj’az’/‘]’ﬂZ"’]]’UZZ) are to be estimated. Data is simulated

using the simulation scheme described in Section 3.4.1.

After performing Steps 1 and 2, we find D, =6, —62. where 6, is the true value

of the ith parameter and 6A’t is the EM estimate of the parameter, i=1/,2,...,n. The

n

sample mean and standard deviation of D, are computed using formulas D= lZDi
nii=

1

n—ll

n —_— . . . T~ .
and S, = \/ 3 (Di - D)2 . The estimates are considered good if D is close to zero,

1

indicating small biases observed in the simulation results, and S, is also close to zero,

indicating that the parameter estimates are concentrated around their respective true

values.

We determine the area of overlapping between the two components for each
model by using the misclassification concept given in Johnson and Wichern (1998), the
details of which are provided in Section 3.4.3. The formula to estimate the overlapping
areas depends on the mean and standard deviation of the components. The choices of

prior probabilities should not affect the estimates greatly as their sum equals unity.

We consider three cases for different combinations of parameter # which give

different percentages of overlapping of the GMM components. The results are
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tabulated in Tables 3.2-3.4. Table 3.2 deals with case 1, where the true values of =0,

1,=3.0 and \/0'_“ = \/0'_22 =0.316 are fixed but the true values of q,, a, are varied. In
all cases, the percentage of overlapping is 0% as the separation of the means is rather
large with small values of dispersion. We can see that the values of the mean are close
to zero with the small standard errors less than unity for all parameters considered. On

the other hand, Table 3.3 gives the results for case 2 where g =0, u,=1.0,

J0» =0.707 and \Jo, =0.447 are fixed but a,, a, are varied to give 25% of
overlapping. The bias is still considered small but generally larger than that for case 1.
In addition, the values are more dispersed here. Finally, Table 3.4 shows the results of
case 3 where 4, =0, ©,=0.25, \/o,, =0.577 and /0,, =1.414 are fixed with 45% of

overlapping. As expected, the results deteriorate when the percentage of overlapping

increases.

For each model and final estimates of parameters, we check whether |5 | <1 and
S} <1.Out of six (6), we count the number of |5 | <1 and find its percentage, which is

denoted by A. We repeat the same process for S, thatis S, <1, where its percentage
is denoted by B. We find the smallest percentage between A and B, which is denoted
by Min% . We then plot Min% against the range for percentage of overlapping (or
Range). Range equals to 1 represents percentage of overlapping between 0% and 25%,
2 between 25% and 50%, 3 between 50% and 75% and 4 between 75% and 100%. Note

that second component will “hide” behind the first component as Range increases.

Figure 3.11 shows median for Range equals to 1 is located at 100, 54.9% of
Min% equals to 100, and 65.2% of Min% is greater than (or equal to) 83. Range

equals to 2, its median is located at 66.67% where 35.4% of Min% is greater than (or
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equal to) 83. Range equals to 3, its median is similar to the above (that is 66.67%)

where 17.4% of Min% 1is greater than (or equal to) 83. Range equals to 4, its median is

similar to the above (that is 66.67%) where 24.2% of Min% is greater than (or equal

to) 83.

Table 3.2 Simulation results for the case x =0, 4,=3.0 and /o] =+/0; =0.316

Pri b. :
T101 pI'O BlaS, Dl_
2 2

a a, My Hp o P
a a, p Sp D Sp D Sp D Sp D Sp D Sp
01 09 -0001 0010 000l 0010 0007 0033 -0003 0013 0000 0014 0001 0.004
0.2 0.8 0.002 0.013 -0.002 0.013 0.002 0.022 -0.003 0.011 0.000 0.011 0.002 0.007
0.3 0.7 -0.002 0.014 0.002 0.014 0.004 0.017 -0.002 0.010 0.002 0.009 0.001 0.005
04 06 0003 0020 -0003 0020 -0.004 0019 -0006 0012 0.000 0009 0001 0.005

Table 3.3 Simulation results for the case g, =0, i,=1.0, y/o, =0.707 and +/o] = 0.447

Prior prob. Bias. D.
’ i
2 2
a a, 4y Hy o] o,
a a, p Sp D Sp D Sp D Sp D Sp D Sp
0.1 09 -0.112 0.148 0.112 0.148  -0.130 0.203 -0.067 0.139 -0.030 0.103 0.034 0.068
0.2 0.8 -0.014 0.073 0.014 0.073  -0.006 0.087 0.006 0.091 0.022 0.056 0.005 0.057
0.3 0.7 0.020 0.087 -0.020 0.087 0.031 0.069 0.023 0.104 0.044 0.048 -0.006 0.075
0.4 0.6 0.067 0.075 -0.067 0.075 -0.112 0.444 0.145 0.232  -0.002 0.085 -0.021 0.099

Table 3.4 Simulation results for the case =0, 1#,=0.25, yJo; =0.577 and /o, =1.414

Prior prob. Bias. D.
’ i
2 2
a a, 4y Hy o] o)
a4 a, p Sp D Sp D Sp D Sp D Sp D Sp
0.1 0.9 0.089 0.007 -0.089 0.007 -0.817 3.770 0.045 0.048 -0.341 0.823 0.305 0.095
02 038 0.157 0.108 -0.157 0.108 0.291 3.521 0.075 0.073 -0.169 0.374 0.413 0.256
0.3 0.7 0.237 0.100 -0.237 0.100 -0.205 2.924 0.105 0.121 -0.278 0.389 0.578 0.278
04 0.6 0.245 0.187 -0.245 0.187 0.602 2.520 0.092 0.108 -0.008 0.258 0.508 0.435
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Figure 3.11 Min% 1is plotted against Range for Box and Whisker plot.

We conclude that the improved EM algorithm for GMM performs well when
the percentages of overlapping are small, but its performance is affected when the

percentages increase.

3.5. Determination of the final number of components in the GMM using AIC

In the last two steps of the improved algorithm, we intend to confirm that the
choice of the initial number Ko of components in the GMM using the kernel method is
final. This can be done by considering extra components in the model. For that, as

stated in Section 3.3.3, we repeat Step 2 for other possible numbers K of components,

by setting u;=0, o, =1 for the other K — K components and a,=

1
= - The final
K

number of components K 7 is chosen when adding extra components neither increases

the log-likelihood nor decreases the AIC values significantly. The changes can easily
be seen on a line plot of the values. Figure 3.12 shows the plots of AIC against number
of components for data set, each from (a) Sample 1, (b) Sample 2 and (c) Sample 3 of
Section 3.4.2. All of them show concave like shape where AIC decreases to a

minimum value and then increases as the number of components increases. The
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minimum value gives the exact number of components for the plots of AIC against
number of components. In the case of Figure 3.12, plots (a) and (b) give 2 components

and plot (c) gives 3 components.

< ¢
o
o
No. of components No. of components
(a) Sample 1 (c) Sample 2
o
o
o
Q w
<

H

6
No. of components

(c) Sample 3

Figure 3.12 Plot of AIC of three data sets generated from samples defined in Table 3.1.

3.6 Real example — Phone call data

The call detail record, which was supplied by Telekom Malaysia Berhad
(henceforth, TM), consists of calls made by customers that fell victim to fraud
activities. Table 3.5 shows the format of the call detail record for each TM customer.
We performed several steps on the original data in order to have the data in a desired
format i.e. group the real data according to Service No, find the country that matches

the Country Code and sort the real data according to Seize Time. The column entitled
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“Seize time” gives the time when the call was made; the 4" and 5™ columns detail the
duration of the call in the following format: day (dd), hour (hh), minute (mm) and
second (ss); and the 6™ column is the result of converting the information in the 4™ and

5™ columns into day format.

We consider real data consisting of the duration of each call made by Customer
A, whose identity is not revealed to ensure confidentiality, on 31°" March 2011 as
displayed in Figure 3.13. Step 1 of the improved EM algorithm for GMM identifies
two initial components. The plot of the log-likelihood function and AIC in Figure
3.14(a) and (b) are the results from performing Steps 2, 3 and 4 of the improved EM
algorithm for GMM, which reveal that the EM algorithm fails to achieve convergence
when the number of components equals to five or above. It can also be seen that a
GMM with 2 components is identified as the ‘best’ model, since the inclusion of more
components not only fails to increase the value of the log-likelihood, but also fails to
decrease the values of the AIC. The final EM estimates for the two-component GMM

and they represent the behavior of calls made by Customer A on 31* March 2011. In
the following chapters, we will show how the above information produced from the
improved EM algorithm for GMM can be used in the process of detecting fraud

activities in the telecommunication industry.

Table 3.5An extract from the TM’s customer call detail record.

Service Dialed Seize time Duration Duration Duration
number digits (hhmmss) (dd) (Convert into day
format)
Xxx yyy 8:41:37 000339 00 0.002534722
Xxx yyy 9:27:03 000035 00 4.05E-04
Xxx yyy 9:43:46 000048 00 5.56E-04
Xxx yyy 9:50:21 000031 00 3.59E-04
Xxx yyy 10:54:30 000138 00 0.001134259
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Figure 3.13 Duration (in day format) is displayed in the histogram.
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Figure 3.14 Plots of (a) log-likelihood values (b) AIC values.

3.7 Summary

In this chapter, we proposed a modified EM algorithm which can numerically identify
the number of components of a GMM and estimate the parameters of the model using
the kernel method. We showed via simulation that the performance of the algorithm is
generally good but, as expected, is affected by increasing percentages of overlapping of

the Gaussian components. We then used the line plots of the log-likelihood and AIC
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values to identify the final number of GMM component. They could clearly be
determined via the concave-like shape of the AIC plot, which indicates that the AIC
decreases to a minimum value and then increases as the number of components
increases. Finally, the modified EM algorithm for GMM was tested on real
telecommunication data. The results serve as testimony to the effectiveness of the
improved EM algorithm for GMM and should be useful when considering the problem

of fraud calls faced by the telecommunication companies.
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CHAPTER 4
FRAUD DETECTION IN TELECOMMUNICATION INDUSTRY USING

GAUSSIAN MIXED MODEL

4.1 Introduction

Gaussian Mixed Model (GMM) has been widely used in voice recognition as
exemplified next: suppose we have Totspeak speakers where each has Totsamp samples
of recorded voices to be used as training data as shown in Figure 4.1 surrounded by the
dotted line. Next, the GMM is fitted on each sample of recorded voice where it is in
vector format after going through the coded process. The GMM parameters namely
prior probability, mean and covariances are saved inside the database in training matrix

format. They are given special designation as shown on the bottom right of Figure 4.1.

For example, a, ;, is the prior probability for i-th speaker with corresponding j-th

sample and k-th component. K (i, j) is the maximum number of components for the
said speaker and sample. The identification of a new speaker is done as follows: the
speaker’s recorded voice is coded into vector xZ , £=1,...,n, based on standard voice

recognition criteria as shown on the top left of Figure 4.1. The vector would be known

as data matrix from this point onwards. Next, the data matrix is used in

n K(i.j)
ZIOg( Za(iﬂj,kﬂ)(xLIu(i,j,k),E(i,j,k))J that produce log-likelihood function for each
L=1 k=1

training matrix. All log-likelihood functions produced are compared and the maximum
one is chosen. The parameters that give the maximum log-likelihood function,

especially its designation in the database, reveal the speaker’s true identity.
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Figure 4.1 The use of GMM in voice recognition technique.

We use the idea given above to detect fraud activities in the telecommunication
industry. In our case, the training data is based on customer’s call behavior for a period
of Totspeak days. The training matrix is produced from say duration of each call made
for a particular day. The duration of each call made in the subsequent day will be
treated as the data matrix. We are interested to identify the behavior saved in the
training data that is similar to the one saved in the data matrix. This is the first step of
our proposed algorithm for detecting fraud calls, which will be highlighted in Section

4.2.

This chapter, via Section 4.2, proposes a new fraud detection algorithm that
uses Gaussian mixed model, a probabilistic model normally used in recognizing a
person’s voice in speech recognition field. Using data obtained from one of the leading

telecommunication company in Malaysia (Section 4.3), we show, via Section 4.4, that
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the proposed algorithm has successfully not only detected fraud calls as suspected by
the company, but also identify suspicious calls which can be candidates of fraud call.
The proposed algorithm is easy to implement with a great potential to be extended to
detect billed (or outgoing) fraud calls and hence reduces the loss incurred by the
telecommunication companies. Details of Gaussian Mixed Model (GMM) (together
with Expectation Maximization, EM, algorithm) and improved EM algorithm for GMM

can be found in Chapter 2 and 3, respectively.

4.2 Algorithm for detecting fraud calls

The proposed algorithm for detecting fraud calls in telecommunication involves
the following steps as described in Figures 4.1 and 4.2:
Step One: For the selected customer, we perform the steps as per given in Chapter 3
(improved EM algorithm for GMM) on a given data set (which represent say the 1%
day, refer to Table 4.1), and save the final estimates of parameters together with the
log-likelihood functions (which gives the minimum AIC) in the text file called

“database” (refer to Figure 4.3).

We repeat the process for the rest of the data sets, which represent the o day
till 7" day. Note that the first seven days are assumed to be “free” from fraud activities

and they represent customer’s behavior for the first week'.

Step Two: The saved parameters are used on the data sets for the g™ day onwards,
which include choosing the one that gives the maximum log-likelihood function and
comparing the maximum log-likelihood function with the one saved in the database

(Mardia et al., 1979, mentioned allocate x to the population which gives the largest

' The number of days is not fixed and can be reduced for newly registered customers.

49



likelihood to x) as shown in Figure 4.4. In the said figure, except for the last row, the

first column shows the name of the file where the real data is obtained and the second

D DT
Subs'1", Subs"1",
Subs™2'... Subs'f" Subs™",... Subs')
. Subs"M" and v SUbs MW" and
"Total” “Total’
(EDﬁZSEZZ;” *Subs = Supscriber

Database

Similar?
{in terms of
trend displayed
by traffic
measurements)

Replace
info/raw data
"1 with "1 in
the database

To check whether the
outliers are truly caused by
fraud activities

National & International calls

Figure 4.2 Flow-diagram showing the steps that are needed to detect fraud activities.

BEGIN
null;8.27205882352941E-4;7.793628360996634E-4; Lambda;Power
2_Normalized_Massaged_TMData_ XXX.txt;Filename

2;No of components

2;-17.02083611317418;-1000.0;No of components;LLF;SD
0.6411573990790228; -
0.6564611309420394;0.06975010234300855;A1pha;Mu;Sigma
0.35884260092097725;1.1729234773993837;0.352458162932219;Alpha;Mu;Sigma
END

BEGIN

-7.528699885739343E-16; —
7.688105006114814;1.3737495007245424; Lambda;Power
3_Normalized_Massaged_TMData_ XXX.txt;Filename

1;No of components

1;-36.38253259232894;-1000.0;No of components;LLF;SD
1.0;5.102755824719469E-16;0.961538461538469;Alpha;Mu; Sigma
END

Figure 4.3 Example of results from Step One.

72_XXX -5.10039  58_XXX -5.10039
72_XXX -5.1276881  60_XXX -12.240423
72_XXX -5.104467  66_XXX -6.5368338
72_XXX -5.1316998  67_XXX -13.662583
72_XXX -5.10039  69_XXX -5.10039
72_XXX -5.10039  71_XXX -5.10039
max lIf -5.10039  (null) 71_XXX -5.10039 -2.26E-15

Figure 4.4 Example of results from Step Two (involving log-likelihood function).
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column shows the calculated log-likelihood function from using the parameters saved
in the database. The details of the parameters are given in the third (i.e. the name of the
file) and fourth (i.e. the log-likelihood function) columns. The last row shows the
maximum log-likelihood function found from comparing the values in the second
column. The information corresponding to the maximum log-likelihood function in the
third and fourth column is also captured.

Step Three: Dissimilarity coefficient (or dc) is calculated and the said coefficient is

defined by

— if AB>0 B>A

— if AB<0O0 B>A

where A and B are log-likelihood functions of training data and observation,
respectively. The percentage of similarity coefficient is defined by (1.0-dc)100%. High
dissimilarity will result in low similarity and vice-verse. No similarity is observed when
A and B are having different signs that is the percentage of similarity coefficient is zero

when B>0 and A<02

67_XXX - (0.5488501726894228, 15_XXX - (null)
11.29525 Moderate_Similarity) 25.03658
68_XXX -5.10039  (null) 38_XXX -5.10039 (1.741393151905200
SE-
16,High_Similarity)
69_XXX - (0.757039164822191,Lo  19_XXX - (null)
3.489596 w_Similarity) 14.36279
70_XXX - (0.19362934575160162, 37 XXX - (null)
11.10145 High_Similarity) 13.76717
71_XXX - (0.43939063059603395, 33_XXX - (null)
2.693121 Moderate_Similarity) 4.803917
72_XXX -5.10039  (null) 71_XXX -5.10039 (2.263811097476761
E-
15,High_Similarity)
73_XXX (0.260756177742852,Hi  26_XXX -15.1973  (null)

11.23451 gh_Similarity)

Figure 4.5 Example of results from Step Four (involving Similarity coefficient).

* In reality A, B < 0, refer to Chapter 5.
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Step Four: Similarity coefficient is assigned to Low Similarity group when it (after
converting into percentage) is less than (or equal to) 30%, Moderate Similarity group
when it is greater than 30% and less than (or equal to) 70% and High Similarity group
when it is greater than 70% as exemplified in Figure 4.5.

In the said figure, the first column shows the list of files that gone through Steps
One till Three, the second column shows the maximum log-likelihood function, the
information about the parameters used to calculate the maximum log-likelihood
function are given in the fourth and fifth columns and similarity coefficient and its
group are given in the third and sixth columns (they are placed in a bracket).

The assignment of the similarity group is based on the approach taken by
Turkmen (2013) for correlation coefficient, denoted by r, to describe the strength of
relationship: None: r from -0.1 to 0.1; Weak: r from 0.1 to 0.3 or from -0.3 to -0.1;
Moderate: r from 0.3 to 0.5 or from -0.5 to -0.3; Strong: r from 0.5 to 1.0 or from -1.0
to -0.5.

Step Five: If similarity coefficient between maximum log-likelihood function and the
one saved in the database is 0.3 and below (or in terms of percentage, 70 and above)
then no updating is performed on the database.

Step Six: Updating is performed on the database if, in terms of percentage, less than 70.
Updating involves performing the steps as per given in Section 4.2.2 on the data set and
saving final estimates of parameters together with log-likelihood function produced in

the database.

In this chapter we will compare the results produced from the proposed

algorithm using one variable with two variables.
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4.2.1 The performance of the algorithm

For each of the five hundred customers and for each of the seven days, the
number of components are chosen at random where the maximum number of

components is fixed at three (3). If three components are chosen, the values of q,, a,
and a, are chosen at random from 0.1,...,0.9 where a, +a, +a, =1; the values of 4,
M, and g, are chosen at random from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of

two or more components are chosen such that no two or more means are the same; and

L 123100.

the values of o,, o0, and o, are chosen at random from %,%,-- 10

Similar steps are taken if less than three components are chosen. The chosen values

1
(that represent a model) are used In z;,=u + (=207 logu;)* cos2mu;, and

1

T = U+ (20" loguj)E sin2zu;,, where u;,u,;,, ~U(0,1) (Box and Muller, 1958) to

j+1 j+
generate (one thousand) simulation data. For each day starting the 8™ Il 28",
simulation data is generated using either one of the seven models (which represents the
first condition where the performance of the algorithm is evaluated by this condition) or
other model derived from repeating the steps as mentioned above (which represents the

second condition where the performance of this condition is partly explained in the

upcoming/following section).

For each customer, we perform all of the steps in the algorithm (altogether they
are six) on models that represent 1% till 28" day. The similarity coefficients, derived
from performing the algorithm’s third step on models produced from the first condition
and represent g™t day onwards, are displayed using Box plot as shown in Figure 4.6

(due to its size, only a few of the customers are displayed here). For ease of graphical
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presentation, the similarity coefficient is converted into percentage. All of them (i.e. the

percentage of similarity coefficient) exceed 90.

LR —

SimCoef(%)
8

w50 o

@0

Customer

(a)

T BT TRd =
8 B %

20 o

SimCoef(%)

By
7o

Cur 100 Cus 200 S 300 Cur 00 Cus 50,
Curl_1s0 Cusl_250 Curl_350 Cus 450 Cus 500

Customer

(b)

Figure 4.6 Box plot for customers (a) 10, 20, 30,...,100 and (b) 50, 100, 150,...,500 on

the x-axis and SimCoef(%) on the y-axis is a short-form for similarity coefficient in

percentage.

Our observation is supported by the histogram in Figure 4.7, which is derived

from using all of the (five hundred customers) similarity coefficients, where the mean
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and standard deviation are 99.07 and 0.76, respectively. We find D, =6, —él. where 6,

equals to 100.0 and él is the similarity coefficient used to produce Figure ii,

i=12,..,m. The sample mean and standard deviation of Di are computed using

formulas D = lZDi and S, = \/%Z(D, -D )2 , respectively. The similarity
m - m—1

coefficients are considered good if D is close to zero, indicating small biases observed
in the similarity coefficient results, and S, is also close to zero, indicating that the
similarity coefficients are concentrated around their respective true values. The sample

mean and standard deviation (of Di , 1=12,...,m) are 0.93 and 0.76, respectively.

700
00 o
=00 o
o
[N, Pk
=
o
>
=3
D oo
I ||
200 o
100 o
o —
EXEE] 2475 2575 T RS ETH EXH]
2425 @525 w25 ] ] 25

SimCoef(%)

Figure 4.7 The histogram of Frequency versus SimCoef(%). SimCoef(%) on the y-axis

is a short-form for similarity coefficient in percentage.

The steps in the algorithm (i.e. second till sixth) are performed on models that
represent 8" days onwards. We are interested on models that are produced from the
first condition. “A” denotes the total number of models produced from the first

condition that is correctly classified. “B” denotes the total number of models that is
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produced from the first condition. Count(%) equals to (A/B)%. Figure 4.8 shows the
histogram of Frequency against Count(%) where the mean and standard deviation are

61.2 and 22.5, respectively.

Freguency
-}

oo 200 400 [=elx) 200 1000
[]x] el ) a0 00

Count(%)

Figure 4.8 The histogram of Frequency against Count(%).

4.2.2 The characteristics of the similarity coefficient

The characteristics of similarity coefficient are best described using Figure 4.9.
Let A represents call behavior for a customer collected on the first day and B represents

call behavior collected on the second day. The probability density function

fi (y,. I ,ul,of) for some of y, is greater than zero and the rest is close to zero. We

uf,
uf,

calculate =h where 0<h<l, lf, = ﬁ:log(f1 (yl. | i, 07 )),
i=1
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f, =Y 10g(f(x, 1 4,62)), Uif,.llf, <0, nn, where We{<,>=} and If,>Ilf,.
i=1

Note that the parameters 4, , o; and lIf, of A are kept inside the database. Using these
information on B, the percentage of similarity coefficient, denoted by 7%, is close to
zero due to f, (yi | 4,07 ) = 0.0 for the majority of y,. In other words, call behavior on

the first day is dissimilar to the second day.

fl(xi |#'1:C’f)

11, = otos (4 14, 62)

=1

37, = 3 tog (A, | 4 52 )
Gl

~
fl(ys|e“1:af)>0-0 ﬂ()ﬂﬂpaf)“o-o

Figure 4.9 A represents the probability density function derived from the histogram of

call behavior for a customer collected on the first day (x,,i =12,...,n, ) and B represents

the histogram of call behavior collected on the second day ( y,,i =1,2,...,n, ).

Other characteristics are described by performing the following processes and
repeat them 100 times for each n, =Qn, where Q =1.0,0.975,0.95,0.925....,0.025
(these values are converted into percentage for ease of graphical presentation) and

n, =1000.
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We generate n, simulation data from N (0,1) using Box and Muller
Transformation (Box and Muller, 1958). We treat the simulation data as training data

(or td). We calculate the mean (denoted by z,,), variance (denoted by o) and log-

likelihood function (denoted by lif,, ).

We generate n, simulation data from N (,uo 1) using Box and Muller
Transformation (Box and Muller, 1958) for each x, =0.0,0.1,...,10.0. We treat the

simulation data as observation (or O). Using 4, and 0., from the above, we calculate

Wo

td

the log-likelihood function (denoted by /If,,) and similarity coefficient

Figures 4.10(a)-(h) give the plot of similarity coefficient against the percentage of

sample ratio (i.e. Qx100% ) for all values of y, considered. Figure 4.10(a) shows for
the case 1, =0.0, n, =1000, percentage (or Q% ) equals to 2.4 (i.e. n, =24), x, isa

training data wherei =1,2,...,n,, y, is an observation where i =1,2,...,n,, both training

data and observation are randomly generated, the mean and standard deviation for

lf, = Zlog( fl(yi lu,, 0, )) are -34.27 and 3.63, respectively, the mean and standard
i=1
deviation for [If,, = Zlog( h (xl, |, .07, )) are -1415.99 and 23.34, respectively and the
i=1

similarity coefficient is close to zero. The similarity coefficient is close to one when

percentage (or Q% ) equals to 100 (i.e. n, =1000) where the mean and standard

deviation for lIf,, = Zlog( A (yl. lu, .0, )) are -1424.43 and 22.36, respectively and the

i=l1
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Figure 4.10 Similarity coefficient is plotted against percentage using Box plot for (a) 1,

1,=6.0, () 11,=8.0 and (h) z,=10.0.

=0.0, (b) 4,=0.5, (c) 1, =1.0,(d) u,=2.0, (e) pt,=4.0. ()
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”1

mean and standard deviation for [lf,, = Zlog( f (xl, |, .07, )) are -1419.90 and 19.90,

i=1

respectively.

4.3 Data

The call detail record, which was supplied by Telekom Malaysia Berhad
(henceforth, TM), consists of calls made by the customers and they were victims of
fraud activities. Altogether there are 18 customers and they are labeled as A till R to
ensure confidentiality. We use the same format of call detail record for each TM’s
customer as described before in Table 4.1. We performed several steps to get the
desired format e.g. group the real data according to service no, find the country that

matches with the country code and sort the real data according to seize time.

To make our job of handling the real data for the TM customers easier, we
divided them into several parts and saved in the following format: (for each customer)
1,2, 3,4,... represent fn(1), fn(2), fn(3), fn(4),... and date(1), date(2), date(3),... where

fn is a short-form for filename and date(1) < date(2) < date(3) < .... as exemplified in

Figure 4.11.
Table 4.1 An example of TM’s customer call detail record.
Service
No No Dialed Digit Seize Timel Durationl ~ Duration2

31/03/2011

281 XXX yyy 10:07 000255 00 0.0020255
31/03/2011

282 XXX yyy 15:24 000054 00 6.25E-04
31/03/2011

283 XXX yyy 16:16 000045 00 5.21E-04
31/03/2011

284 XXX yyy 16:37 000556 00  0.0041204
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Hame InFolder  Size| Type Date Modified

[l 2_realdata_M... F:\Expe...  1KB Text Document 13/09/2013 7:36 PM
[Z] 3_realdsta_M... F:Expe..  1KB Text Document 13/09/2013 7:36 PM
[ 4_realdata_M... F:\Expe..  1KB Text Document 13/09/2013 7:36 PM
[l 5_realdata_M... FiExpe..  1KB Text Document 13/09/2013 7:37 PM
[l 6_realdsta_M... FiiExpe..  1KB Text Document 13J09/2013 7:37 PM
[Z] 7_realdata_M... F:\Expe...  1KB Text Document 13/09/2013 7:37 PM
[ 9_realdsta_M... FiExpe..  1KB Text Document 13]09/2013 7:38 PM
[ 10 realdata_... F:\Expe...  1KB Text Document 13/09/2013 7:38 PM
[Z] 11_realdata_... F:Expe..  1KB Text Document 13/09/2013 7:38 PM
(] 12_realdata_... F:iExpe... 1KE Text Document 13/09/2013 7:38 PH
[Z] 13 _realdata_... FuExpe..  1KB Text Document 13/09/2013 7:38 PM
[E] 14_resldats_... F:\Expe...  1KB Text Document 13]09/2013 7:38 PM
[Z] 15 realdata_... F:\Expe...  1KB Text Document 13/09/2013 7:38 PM
[Z] 16_realdata_.., FiExpe..  1KB Text Document 13]09/2013 7:33 PM
[£] 17 realdata_... F:\Expe...  1KB Text Document 13/09/2013 7:39 PM
[ 18_realdata_... FuExpe..  1KB Text Document 13/09/2013 7:33 PM
[E] 19_realdata_... F:iExpe... 1KB  Text Document 13/09/2013 7:39 PH
[Z] 20_realdata_... F:\Expe...  1KB Text Document 13/09/2013 7:41 PM
[l 21_resldats_... F:\Expe...  1KB Text Document 13/09/2013 7:41 PM
[l 22_realdata_... F:\Expe...  1KB Text Document 13/09/2013 7:41 PM
[Z] 23 _realdata_... F:Expe..  1KB Text Document 13]09/2013 7:41 PM
[£] 24_realdata_... F:\Expe...  1KB Text Document 13/09/2013 7:41 PM
[Z] 26_realdata_... FuExpe..  1KB Text Document 13/09/2013 7:41 PM
[E] 27 _realdats_... F:\Expe...  1KB Text Document 13]09/2013 7:42 PM
[ 28 realdata_... F:\Expe..  1KB Text Document 13/09/2013 7:42 PM
[ 29_realdata_.., FiExpe..  1KB Text Document 13]09/2013 7142 PM
[ 30_realdata_... F:\Expe...  1KB Text Document 13/09/2013 7:42 PM
[Z] 31_realdata_... F:Expe..  1KB Text Document 13]09/2013 7:42 PM

Figure 4.11 Files created for Customer A.

4.4 Results

TM’s (current) system, which uses non-GMM method and customer’s call
detail record (details of the system will not be revealed to ensure confidentiality),
detected fraud activity on the 15™ of November 2011 for the customers mentioned in
Section 4.3. From our analysis of customers D and Q, by studying the duration and real
data on the 15™ of November 2011 that are saved in filename 63, similarity coefficient
is assigned to High Similarity group. Similar results are obtained when using two
variables namely duration and call charging (or billing). An example is given in Figure

4.12.

For each customer mentioned above (using one variable, i.e. duration, and two
variables, i.e. duration and call charging or billing), we find the number of similarity
coefficient assigned to Low Similarity group, which we believe they have close

connection to fraud activity, and convert them into percentage. For example, x,....,x,
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represent the percentage of similarity coefficient assigned to Low Similarity group for k

customers when using one variable and y,,...,y, when using two variables where
k =18. Statistical methods such as summary statistics are applied to x,...,x, and
Yi»---» Y, - The k customers are grouped together based on which group the percentage

of similarity coefficient is assigned to when using one and two variables on the 15 of
November 2011. For example, Step Four results for customer D especially on the 15"
of November 2011 show, when using one variable, log-likelihood function and
similarity coefficient (after converting into percentage) equal to -5.503 and 86.69%,
respectively. High Similarity group (denoted by H) is assigned to customer D. Similar
results are obtained, in terms of assigning High Similarity group (denoted by H) to
customer D, when using two variables where log-likelihood function and similarity
coefficient (after converting into percentage) equal to -15.996 and 85.27%,

respectively.

HH is the group assigned to customers D and Q. By studying the duration, the
minimum and maximum percentages of similarity coefficients assigned to Low
Similarity group for all customers mentioned above are 5 and 22, respectively. The
minimum and maximum percentages are reduced to 3 and 12, respectively, when using

two variables namely duration and call charging (or billing).

From our (second) analysis of customers H, K, O and P, by studying the
duration and real data on the 15™ of November 2011 that are saved in filename 57, 73,
51 and 55, respectively, similarity coefficient is assigned to Moderate Similarity group.
Similarity coefficient is assigned to High Similarity group when using two variables
namely duration and call charging (or billing) thus upgrading the previous group. MH
is the group assigned to customers H, K, O and P. By studying the duration, the average
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percentage of similarity coefficient assigned to Low Similarity group is 8 bounded by 0
and 14. They spread around the average (or standard deviation) at 5.9. When using two
variables namely duration and call charging (or billing), the average is lowered to 5.5
bounded by 0 and 9. The standard deviation equals to 3.9. Note that no similarity
coefficient is assigned to Low Similarity group for customers O for one variable
(namely duration) and P for two variables (namely duration and call charging or

billing).

From our (third) analysis of customers R, E, F and I, by studying the duration
and real data on the 15™ of November 2011 that are saved in filename 68, 75, 67 and 68
respectively, similarity coefficient is assigned to Low Similarity group. Similar results
are obtained (i.e. similarity coefficient is assigned to Low Similarity group) when using
two variables namely duration and call charging (or billing). An example is given in
Figure 4.13. LL is the group assigned to customers R, E, F and I. The average
percentage of similarity coefficient assigned to Low Similarity group for duration is
17.5 where it’s left and right wings are 10 and 21, respectively. They spread around the
average (or standard deviation) at 5.1. When using two variables namely duration and
call charging (or billing), most of the values are lowered. For example, the average is
16.8, minimum and maximum values are 5 and 41, respectively, and standard deviation
equals to 16.5. The results of the fourth till the seventh analysis can be found in Table

4.2. For MM, an example is given in Figure 4.14.

4.5 Discussion

In the previous chapters, we introduced the GMM, EM algorithm and algorithm
for determining the number of components that incorporates kernel method. We also

66



introduced in the previous section an algorithm for detecting fraud calls. We used them
on two variables namely duration and call charging (or billing) of the real data (TM

customers), which revealed interesting results.

Table 4.2 Summary statistics for groups HM till MM. Note that customers are given in

the bracket; SD and Var are short forms for standard deviation and variable,

respectively.
Group HM (A,L,N,J) LM (B)
1 Var 2 Vars 1 Var 2 Vars
Min 2 3 14 3
Average 13 14.5 14 3
SD 8.1 9.0 - -
Max 20 25 14 3
Group LH (G) MM (C,M)
1 Var 2 Vars 1 Var 2 Vars
Min 14 7 1 7
Average 14 7 2.5 9.5
SD - - 2.1 3.5
Max 14 7 4 12

TM’s (current) system detected fraud activity on the 15™ of November 2011. If
one variable is used in the proposed algorithm, 33% of 18 TM’s customers used in this
study support the findings made by TM’s system. The rest i.e. 33% of the customers are
assigned to Moderate Similarity group and 33% to High Similarity group. If two
variables are used in the proposed algorithm, 22% of 18 TM’s customers used in this
study support the findings made by TM’s system. The rest i.e. 39% of the customers are

assigned to Moderate Similarity group and 39% to High Similarity group.

Furthermore, 22% of 18 TM’s customers are downgraded (i.e. from High Similarity
group to Moderate Similarity group), 33% of 18 TM’s customers are upgraded (i.e. 6%
from Low Similarity group to Moderate Similarity group, 6% from Low Similarity

group to High Similarity group and 22% from Moderate Similarity group to High
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Figure 4.12 Similarity coefficient (after converting into percentage) together with its classification for customer Q (using two variables namely

duration and call charging or billing): (a) Overall and (b) Low Similarity only.
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Figure 4.13 Similarity coefficient (after converting into percentage) together with its classification for customer I (using two variables namely duration

and call charging or billing): (a) Overall and (b) Low Similarity only.
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Figure 4.14 Similarity coefficient (after converting into percentage) together with its classification for customer C (using two variables namely

duration and call charging or billing): (a) Overall and (b) Low Similarity only.
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Similarity group) and 44% of 18 TM’s customers are unchanged (i.e. 22% at Low
Similarity group, 11% at Moderate Similarity group and 11% at High Similarity group).
Similarity group for 11% of 18 TM’s customers depends on whether using one or two

variables (e.g. Low Similarity group when using one variable).

No similarity coefficient is assigned to Low Similarity group for customer P
(hence no fraud activity is observed or expected) when using two variables (i.e.
duration and call charging or billing) and no similarity coefficient is assigned to Low
Similarity group for customer O (hence no fraud activity is observed or expected) when

using one variable (i.e. duration).

The average number of similarity coefficient assigned to Low Similarity group
when using two variables is 11.2% (meaning, fraud activities might happened earlier

than 15™ of November 2011).

The results show the effectiveness of the proposed algorithm in detecting Low
Similarity group (before and on the 15™ of November 2011, which we believe they
have close connection to fraud activity). Future research work will involve the
following: the proposed algorithm will be tested on a bigger number of customers, the
handling of files with small data points, twenty four (24) hours period for collecting
customer’s call detail record will be divided into 3 parts (sub-periods), similarity
coefficient that falls under Moderate Similarity group will be further investigated (for
possible fraud activities) and the use of other variables such as type of call (domestic

and international) as shown in Figure 4.2.
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It was mentioned by Schonlau et al. (2001) (computer) intrusion can be detected
by the statistical methods in any circumstances even in difficult ones and this field of
study (i.e. computer intrusion detection) offers many challenges and opportunities to
statistics and statisticians. Bolton and Hand (2002), page 246, generalized by saying
“Fraud detection is an important area, one in many ways ideal for the application of
statistical and data analytic tools and one where statisticians can make a very

substantial and important contribution”.
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CHAPTER 5
EXPLORING THE USE OF HYPOTHESIS TESTING IN DETERMINING THE

NUMBER OF COMPONENTS IN GAUSSIAN MIXED MODEL

5.1 Introduction

The improvement of EM algorithm for GMM involves the use of Kernel
method (Silverman, 1986) to determine the number of components and to find means as
initial values to start EM algorithm for GMM has been described in Chapter 3. It also
involves the calculation of the log-likelihood function and Akaike Information Criteria
(AIC) (Akaike, 1974) and the comparison of all AICs where the minimum value gives
the true (or correct) number of components. Details of Gaussian Mixed Model (GMM)

and Expectation Maximization (EM) algorithm can be found in Chapter 2.

This chapter, via Section 5.2, shows the successful derivation of hypothesis
testing in the determination of the number of components in GMM, which is an
important process as highlighted by a number of authors (for example Schlattmann,
2003, and Wang et al., 2004), and the performance of the hypothesis testing. The

comparison of its results with those of AIC will be highlighted in Section 5.3.

The development of this method enables one to determine the number of

components in the GMM in an objective way.
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5.2 Hypothesis testing

5.2.1 Introduction to property 1 and 2

Property 1 (or Prop 1) is defined by 0 < (

QJ(Z(/? J < n where it is obtained

i=

by using 0<¢ <1 where i=12,..,n, 0<( gz)tj<1, O<[z¢])<n and
j=1

i=1

0<[ QJ(Z j [Z¢J<n Apply logarithm to O<(I @j(i¢jj<n, we get

1

log((n(p j(z(p D <log(n) or log((g@]j <log(n log((HQD (Spiegel, 1974).

An example is given in Figure 5.1.

Figure 5.1 The first (i.e. upper) and second (i.e. lower) lines represent

2 2
log(2)—log((n 9, D and log((z @B, respectively. X-axis represents 100 samples
i=1 j=1

(generated by using random numbers).
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0<(}Z_;¢,J<n and (;j([ll@j<(g¢i}<¢j or [;)(HQ]<@ where j=12,...,n

i=1

(Spiegel, 1974). An example is given in Figure 5.2.

2
Figure 5.2 The first (i.e. upper) and second (i.e. lower) lines represent log((z o JD

J=1

2
and log((ngz)i B , respectively. X-axis represents 100 samples (generated by using

i=1

random numbers).

5.2.2 The derivation of the hypothesis testing

AIC used in the improvement of EM algorithm for GMM can be replaced by

a ||m || & a, ", r,
hypothesis testing H,:0=[| : || : || : versus H, :0*=|| : || : || :

a | [ ] [ Qs | | W | | Bs

where @ and 0* are final estimates of parameters corresponding to k and k¥,

75




respectively. k and k* are number of parameters where k,k*=1,2,...,K (and preferably
k*>k). The likelihood ratio statistics for testing the above hypothesis is defined by
r
n zai.¢(xj |uz’21)

—2logA=2)» log| = (Mardia et al., 1979). It can be written as
g gl %
s~ Zai¢(xj |"’i’2i)
i=1

—2log A= 2210g ia.w

1 .
i T ————=06Xp| —
AT Jenrix) [ 2

(Xj_"li )f):i—l(xj —ll,-)

k 1
—2% lo B — —
; s Zla JRT)P1E, |eXp( 2

(5.1)

i=1

h -1
We apply log(z j<log( (H ] J where 0<¢, <Li=12,...,h (see Section

5.2.1) and Zai* f<l1 3 to the first term of equation (5.1) yielding

i=1

b, -u)x
log ——exp| ——
Z ;a J(Zﬂ')”IE | p[ 2

4 5.2)

: L A
<) 1 ) -
JZ; % 1_11 “ J(27)? |>:j‘|eXp[ 2

The right hand side of equation (5.2) can be written as

k*
PUsing 0<a; <1, 0< f <1, 0<a, f, <a; where i=12,..k* and Y a; =1, we get
i=1
k* * *
Zaifl. <1
i=1
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no (S (x,-n)z &, -n;)
1 . % i i J i
JZ; Og[,zlla' Jen)r1E! |eXp[ 2 N

1

= ) -
n k* ) n k* 4—113“2*.‘_ x.—pf
<- logl @, ————| |+ !
jl;[ [ 2r)* |Zj |ﬂ jzllil[ 2 J
h h
We apply log[iﬁ} > log[nq‘)i} where 0<¢. <li=12,...,h (see Section 5.2.1) to
i=1 i=1
the second term of equation (5.1) yielding
n ‘ 1 (x,-m )z b, -
logl ¥ a, ———exp| ——1—"——1 —
; [Zl JRT)IZ, | ( 2
o), o) -
n k 1 X —p )X =,
> > lo a, ———exp| ———""——1—||
JZ; g[li_ll NN p[ 2 JJ
The right-hand-side of equation (5.4) can be written as
n & 1 (&, -n )z, (x,-n)
log| ¥ a, ————=exp| ——L———L—
= [Zl J2T)’1E, | 2
(5.5)
o & 1 R
> log| @, ———=| |- e
;Zl[ g{ CJer)r x| J ]1;[ 2
Applying minus sign to both sides of equation (5.5), we get
o [& 1 x, -n) =, -n,)
- log| > a, ————exp| —— R
; [Zl Jem) x| [ 2
(5.6)
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n_ k*

Note that z z (X i~ n, )l Eﬂ[l (x i~ ", ) of equation (5.3) and

j=1 L=1

‘ Zk: (x iy ) X L_l (X it L) of equation (5.6) are greater than

K k
Z(iL - H*Lyzz_l(iL - HZ) and Z(iL - "L)EL_I (iL - l‘L)’ respectively.
L=1 L=1

i(ﬁL —p )z (%, —n) and i(iL —n, )z, (%, —n,) follow g distribution with
L=1

L=1
k*p and kp degrees of freedom, respectively. They are derived from the following

property (Mardia et al., 1979):

n

(Xi - HL)IZZI (Xi - HL) = ntr(ZZISL)+ n(iL - HL)IZZI ()_(L - ,'I’L)

i=l1

where 7S, => (x,-X, )x,-%,) and (X, —p,JZ,'(X,—n,)~ 2. The lower limit
i=1

(it is found by Prop1 swapping places with Prop2 that is Prop2 and Prop1 are applied to
first and second term of equation (5.1), respectively) has the same distribution as the
e
| Do,z

upper limit hence —2log A = 22 log| =
= Zai¢(xj|pi’2i)
i=1

satisfy y* distribution with

(k*+k)p degrees of freedom. H, is accepted when

R
[ S,z
—2logA=2) log - is less than g, 1, -

k

g Zai¢(xj|ui’2i)
i=1
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e
L | Daelx; m )
If —2logd= 22 log ’? <0 due to the following prop erties
a Zai¢(xj|"i’2i)

i=1

ilog(iai ¢(Xj Ip, X, )j <0 and ilog(iafgz)(xj Ipf,Ej)j <0, we swap places
J= J= i=

i=

a || m || X a || w || X
between 0=\ : | : || : and k= : || : || : and  test
a | [ ]| X o | | Wy | | Zie
a | m X a || m || E
H,: 0= : || : || : versus H, :0=[| : || i || @ where H, is
' La ] [ ] [ 5

* *
Qe | | Mg | | B

accepted when —2log A (which is now greater than 0) is less than ){;(Hk*) )

5.2.3 The performance of the hypothesis testing

The characteristics of the hypothesis testing as mentioned in the previous

2
section are described by performing the following processes for Zai(b(x, ,ul.,of) where

i=1

(a,=0.4,14,=0.0,00=1.0) and (a,=0.6,4,=2.0,0;, =0.25) (refer to Table 3.1

under Sample 1) and repeat them 1000 times:

We generate 1000 simulation data using Box and Muller Transformation (Box

2 f _ 2 2 i _ 2
and Muller, 1958) and calculate Z(iJ and Z(L—'ULJ . The one thousand
=1\ O =1 o,

(1000) simulation data is then plotted as shown in Figure 5.3. Figure 5.4 shows several
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x* distributions for comparison purposes. Note that the histogram displayed in Figure

5.3 (b) is similar in terms of shape to Figure 5.4 (a).

160 300

o
5]
5

Frequency
Frequency

0

Data Data

() (b)

2
2 (%
Figure 5.3 Simulation data is displayed in the histogram for (a) Z[x ] j and (b)
o

L=1 L
2
5 (=
Z X, —Hy
=1 o,

The performance of the hypothesis testing is described by using Box and Muller

Transformation (Box and Muller, 1958) to generate simulation data for

iaﬁ(xlllp):) i \/ xp(_(x_"")zzi (X_"i)J focusing on two
5 = ez

components with the following properties: a, is chosen from 0.1,...,0.9, a, is derived

from the following formula a,=1-aq,, 4 is fixed at 0.0; g, is chosen from

1

0.25,0.50,0.75....,3.0, o,, and o,, are chosen from --,E,1,2,3,---,10. A total of

11
2°3°

25 samples, each with 1000 observations, are generated for each model.

80



300

200

Frequency
Frequency

100

o
s e 0 0 0 Y0 0 " g e Y N P s e e P e e e B e

Data Data

(a) (b)

200

300

Frequency
Frequency

200 oo 20 4.0 6.0 80 100 120 140 160 180
18.0 1.0 30 5.0 Ta 90 110 130 150 170 180

Data Data

(©) (d)

Figure 5.4 y?-distribution with (a) 2, (b) 3, (¢) 4 and (d) 5 degrees of freedom.

Note that

Number of hypothesis testings that accepts 2 number of components j o
(o

Percentage = - -
Total number of hypothesis testings

is calculated and Range is assigned to each model where Range equals to 1 represents
percentage of overlapping between 0% and 25%, 2 represents percentage of
overlapping between 25% and 50%, 3 represents percentage of overlapping between

50% and 75% and 4 represents percentage of overlapping between 75% and 100%.

Example of an output is given in Figure 5.5, which represents
(a,=02,4,=0.0,0 =(0.707)*) and (a, =0.8, 1, =0.25,67 =1.0).The Range for

the given example equals to 3 and H,, is accepted when k*=3 where p is greater
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than 0.05. Note that —2log A is given in the first bracket and probability value p is

given in the second.

Akaike Information Criteria

no_of_components AIC
1 2759.241221463931
2 2742.695779311172
3 2745.7438644121394

Hypothesis Testing

theta, k=1

T

theta, k=2

e

_0:
_0:

_0:
_0O:theta, k=1 versus H_l:theta*,k*=2
_0O:theta, k=1 versus H_l:theta*,k*=3

theta, k=2 versus H_l:theta*,k*=3

Min

2759.241221463931
2742.695779311172
2742.695779311172

(22.54544215275928) (p=5.028078782631841E-5)
(25.497357051791823) (p=3.9955836008321434E-5)

(2.951914899032545) (p=0.7073991861415829)

2
Figure 5.5 Results of AIC and hypothesis testing for Zalﬂ)(x, ,ul.,of) where

i=l1

(a,=0.2,4,=0.0,0 =(0.707)*) and (a, = 0.8, 1, =0.25,02 =1.0).

The results are displayed in Figure 5.6 where the values used can be found in

Table 5.1. The value under the column titled “(Freq/Tot)%” of Table 5.1 that

corresponds to Percentage equals to 100 decreases not lower than 50 as the Range

increases.

Table 5.1 Frequency table for Range equals to (a) 1, (b) 2, (¢) 3 and (d) 4.

Frequency  (Freq/Tot)% Frequency  (Freq/Tot)%
Valid 0 21 1.2 Valid 0 29 4.9
25 1 0.1 33.3 12 2
333 24 1.4 50 121 20.3
50 197 11.6 66.7 37 6.2
66.7 131 7.7 75 7 1.2
75 15 0.9 100 391 65.5
100 1313 77.1 Total 597 100

Total 1702 100 (b)

(a)
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Table 5.1 Continued.

Frequency  (Freq/Tot)% Frequency  (Freq/Tot)%
Valid 0 13 9.5 Valid 0 6 20.7
50 36 26.3 50 6 20.7
66.7 10 73 66.7 2 6.9
75 1 0.7 100 15 51.7
100 71 56.2 Total 29 100
Total 137 100 (d)
(©)
100+ S — — i
807
*
*
@ 601
g
. L - L
7
o
*
*
20
o * 4 -4 -
1 3 3 i
Range

Figure 5.6 Percentage is plotted against Range in the Box plot.

5.3 Comparison between using the AIC and hypothesis testing in

determining the number of components in GMM

Akaike Information Criteria (AIC) used in the improvement of EM algorithm

for GMM is defined by AIC =2pmtr—2Log(L) where pmtr is the number of

parameters and Log (L) is the maximized log-likelihood function.

Let
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¢ -1
AIC, :2Qk—2210g iai ;exp[_ (Xj —ll,-) X, (Xj -1 )} (5.7)

=1 = 4Q2m)PIE, |

and
N £ . 1 (x—p’f)tzf_l(x.—pf)
AIC,. =2Qk*-2Y"log| Y a] ———exp| ——L——— 1 (5.8)
' ; Zl J2T)IE! | i [ 2

Where the second term of AIC, and AIC,. is taken from equation (5.1), and 2Q =6 if

p=1.

In this section, we present two cases. They are:
Case I: Let AIC,. > AIC, (according to Step 5, AIC, is minimum therefore it is

chosen) where k*>k. Using equations (5.7) and (5.8), we get

j=1 i=1

s\t *
20k * -2 log kZaf ! [ bx, -p) = (Xj "')J >

—exp
N(CZ R DI 2
| 5.9
N a x —n T (x, —n,
20k -2 o 30y ey =, o)
j=1 i=1 Qm)’ 1%, | 2
Equation (5.9) can be written as
20(k*—k)> B (5.10)

where
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=23 -
o ;Og Zl CJem T

kK 1
a

J 1
a

= Jenriz,

exp

exp

Let ¥~ ;(,i(,ﬁk*)p. If 2Q(k*~k)> B>y, we reject H,, which contradicts the

AIC results. If 2Q(k *—k)> 8 and y > 3, we accept H,.

Case 2: Let AIC,.<AIC, (according to Step 5, AIC,. is minimum therefore it is

chosen) where k*>k. By repeating the process in Case 1, that is using equations (5.7)

and (5.8), we get

20(k*—k)< B (5.11)
where
[ b, ) =, )
=2) log , ——=C¢Xp / A J !
/ JZ’ ,-:la JRT)P 1] i 2

n

k

a

1

€X

—-2) log i T ———=0CXp ‘
; =l A Q2m)PIE, | 2

Let ¥~ X (i) If 2Q(k*—k)< B and f>y, we reject H,. If 2Q(k*—k)< S <y,

we accept H, which contradicts the AIC results.
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Figure 5.7 (the results shown here are taken from Chapter 4) shows hypothesis
testing results support those of AIC (note that —2logA is given in the first bracket
whereas probability value is given in the second). Case 1 and 2 can be found in the
hypothesis testing when (k =2,k*=3) and (k=1k*= 2,3), respectively. The
probability value « is fixed at 0.05. Figure 5.8 shows, especially for the case when &
and k * equal to 2 and 3, respectively, hypothesis testing results do not support those of

AIC. Case 2 can be found in all of the hypothesis testing.

Akaike Information Criteria

no_of_components AIC Min

1 92.957704551177 92.957704551177

2 78.93876969062063 78.93876969062063
3 80.78840789298813 78.93876969062063

Hypothesis Testing

:theta, k=1
:theta, k=1 versus H_l:theta*,k*=2 (20.01893486055637) (Prob=1.6832767836781848E-4)
:theta, k=1 versus H_l:theta*,k*=3 (24.16929665818887) (Prob=7.386963782137005E-5)

fanipaniigas
o o o

:theta, k=2
:theta, k=2 versus H_l:theta*,k*=3 (4.150361797632499) (Prob=0.5279773066298088)

zlm
o o

Figure 5.7 Results of AIC and hypothesis testing for customer C.

Akaike Information Criteria

no_of_components AIC Min

1 47.53326292383591 47.53326292383591
2 35.70610331847866 35.70610331847866
3 33.64022457875683 33.64022457875683

Hypothesis Testing

H_O:theta, k=1

H_O:theta,k=1 versus H_l:theta*,k*=2 (17.827159605357252) (Prob=4.7764602611496796E-4)
H_O:theta, k=1 versus H_l:theta*,k*=3 (25.89303834507908) (Prob=3.325553903926139E-5)
H_O:theta, k=2

H_O:theta, k=2 versus H_l:theta*,k*=3 (8.065878739721828) (Prob=0.15264184961471652)

Figure 5.8 Results of AIC and hypothesis testing for customer D.

In addition to the above, the contradiction between AIC and hypothesis testing

can also be seen in Figure 5.1 and Table 5.1 especially the values under the column
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titled “(Freq/Tot)%” that correspond to Percentage not equal to 100. The total number

of Percentage not equal to 100 increases as the Range increases.

Hypothesis testing results depend on log-likelihood function and the choice of
the probability value ¢ that gives ,{;,(H 1+, - AIC results on the other hand depend on

log-likelihood function only as shown in Figures 5.9 and 5.10. Hypothesis testing

results are similar to those of AIC if « is set at different value (i.e. other than 0.05).

Further research on the behavior of the hypothesis testing especially when it
conflicts with AIC is required that will involve the use of the power of a test (Guenther,

1977).

Log-likelihood function

No. of components

Figure 5.9 Log-likelihood function against number of components for Customer C.
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Log-likelihood function

No. of components

Figure 5.10 Log-likelihood function against number of components for Customer D.

5.4 Summary

In the previous chapters, we showed the effects of fraud activities to
telecommunication industry and gave a brief introduction to GMM and EM algorithm.
We also mentioned when would we determine the number of components in GMM and
gave several examples that are normally used in the determination of the number of

components in GMM, including the use of AIC in the determination process.

We successfully derived hypothesis testing in the previous sections, which we

believe can be used as an alternative method to AIC in the determination of the number

of components in GMM.
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CHAPTER 6
“REAL TIME” FRAUD DETECTION ALGORITHM FOR

TELECOMMUNICATION INDUSTRY USING GAUSSIAN MIXED MODEL

6.1 Introduction

Sain et al. (1999) consider the difficult task of using seismic signals (or any
other discriminates) for detecting nuclear explosions from the large number of
background signals such as earth quakes and mining blasts. They used the following

nonparametric bootstrapping by Efron and Tibshirani (1993) to test H,:x , €Il

versus H,:x, & Il for the case in which no events in the training sample are labeled

n+l

and the number of event types represented in the training sample is unknown.

Step A: Given the training sample X,,X,,...,X, € Il and potential outlier x ,,, calculate
sup
LO(G) n
0c ©
W based on W= T where L,(0)= Hf(xs;ﬂ) f(x,.:0) and
9 =1
oc o ®

L) = {f{ f(xs;e>j .

Step B: For each integer b, b=1,...,B draw a sample of size n with replacement from the
training data. Additionally, an (n+1)st observation is also drawn from the training data

(because we are approximating the distribution of W when H,, :x , € Il is true). For

n+
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sup
Oe @LO ®
each b, re-sampled data is used to compute the statistics in W = ——————. The test

sup L©)
0c©
statistics is denoted by W, .

Step C: Define W, to be the (100a)th percentile of all W, . Specifically if a =j/(B+1),

then W, is the jth smallest value of {Wh* }::1 (see McLachlan, 1987)

Step D: H,:x,,, €Il is rejected and concluded that the (n+1)st point is an outlier if

n+l

W<Ww, .

a

This chapter proposes a new algorithm that can be efficiently used to identify
fraud activities (Section 6.2). The algorithm is developed by using the above concept
but instead of using nonparametric bootstrapping, we use likelihood ratio test. It also
finds the characteristics of historical fraud and non-fraud calls and is consequently used
in identifying possible fraud call instantly for immediate call verification process.
Using simulation and data obtained from one of the leading telecommunication
company in Malaysia, we show that the proposed algorithm has successfully detected

outgoing fraud calls as suspected by the company (Sections 6.3 and 6.4).

6.2 “Real time” fraud detection algorithm using GMM

The algorithm for detecting fraud activities as mentioned in Chapter 4, which
include the improved EM algorithm for GMM, involves two steps. The first step finds
and saves the final estimates of parameters in the database for each of the seven days.
The second step finds the maximum of log-likelihood function, the similarity
coefficient and performs the updating of the database process for the eight day
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onwards. The observations used in the said steps that represent i” day where
i=1,2,3,... are collected over a period of 24 hours. The second step is improved to
include the testing of each observation (as soon as it is available or in “real time”)

whether it is an outlier or not thatis H,:x, € Il versus H,:x,, & Il (refer to Figure

n+l

6.1). Note that the rest of the second step remains unchanged.

Figure 6.1 A represents the probability density function of customer X call detail record

for the 1* day collected over a period of 24 hours and saved in the database. B

represents the probability density function of customer X call detail record for the i”

day where i=8,9,... collected over a period of 24 hours. C represents customer X call
detail record for the i day that is classified as an observation belonging to A and D

represents customer X call detail record for the i day that is classified as an outlier

(i.e. by using the parameters belonging to A).
The likelihood ratio statistics for testing the above hypothesis is defined by

—2logA= 2210g .

k Zai ¢(Xn+l Ip, X, )J

A Zai¢(xj |"’i’zi) =
=1

k
. [ Daslkin.x)
—ZIOg(

or

—2logA= _210g(i 4 ¢(Xn+l In X )J

i=1
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(Mardia et al., 1979). It can be written as

(x +1_u,)z.“(x,,+1—u,»)ﬂ 6.1)

& 1
_210g/1——210g(z S lexp[_ n i 2

Using equations (5.3) and (5.6), we get

k 1 (X 1_”)2‘71(" 1_”‘)
1 ) _ \Mnt i i n+ i
Og{;a’ J2T) X, |eXp[ 2

o)z bw))
: 1 : X, Ei_l X1~ W
N1 nt
< Z[ og(a G T lJJ+;( ) J
and
k 1 (X 1_”)2'71(" 1_”')
1 _ _ By i i n+ i
Og[;a’ JerlE, |eXp£ 2
(6.3)

z[lg[ WU i(( REEN »}

For example, replacing k with unity in equations (6.2) and (6.3), we get

— log a, 1 exp| — (Xn+1 K yzl_l(xnﬂ W )
JemIE, | 2

{H . M()( )JJ

and

92



- IOg{al ;exp[_ (X”H - pl )21_1 (X"H — lll )JJ
Qr)rix, | 2

>[10g(al _mn_[(xmulrzzu(xmul )J |

It can be shown that

1 (%, —m )2, (0 -y
-1 R 1 1 n+l 1
Og[a‘ Jen' iz, |eXp[ 2

I
=—log| 4, —— ||+
[ Henrix, J ( 2

k
Note that Z(X,m -n L)'): Lfl(xn+1 -n L) of equations (6.2) and (6.3) is greater

L=1

than (X”+1 - pLyZ‘.L_l (X”+1 - pL) where x, € N(uL,Z‘.L) and L=12,..,k.

(xm—uLyZLfl(xm—uL) follows x> distribution with one (1) degree of freedom

k
(Mardia et al., 1979). Hence, —2logﬂ:—2log[2ai¢(xmIui,Zi)j satisfy y°

i=1

distribution with one (1) degree of freedom.

The characteristics of the hypothesis testing as mentioned above are described

2
by  performing the following  processes  for Zaly)(x, ,ul.,of) where
i=1

(a,=0.4,1,=0.0,07=1.0) and (a,=0.6,4,=2.0,0, =0.25) (refer to Table 3.1

under Sample 1). We generate 1000 simulation data using Box and Muller

5 B 2 _ 2
Transformation (Box and Muller, 1958) and calculate Z(x’—’uLj and (X’—’ULJ
(o3

=1\ Oy L
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where x,e N (,uL,O'f) and L=1,2. The one thousand (1000) simulation data is then

plotted as shown in Figure 6.2.
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Figure 6.2 Simulation data is displayed in the histogram for (a) Z(MJ , (b)

L=1 L

O,

2
(MJ where x. € N(,,62) and L=1,2 and (c) »° distribution with one (1)

degree of freedom.

Note that the histogram displayed in Figure 6.2 (b) is similar in terms of shape to (c)

x* distribution with one (1) degree of freedom.
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k
H, is accepted when —2logA= —ZIOg[Zai ¢§(x,Hl In;, X, )j is less than ;(fw

i=1
where a =0.0001. The value of «& is chosen such that it follows Sachs (1984) where a
new observation that falls outside the boundaries derived from the mean and (four

times) standard deviation of the current observations is an outlier.

6.2.1 The performance of the “real time” fraud detection algorithm using GMM

We generate n, =1000 simulation data from N (0,1) using Box and Muller
Transformation (Box and Muller, 1958). We treat the simulation data as training data
(or td). We calculate the mean (denoted by 4,,), variance (denoted by o) and log-

likelihood function (denoted by [If,,). The following is repeated 100 times: For each

U, =0.0,0.1,...,10.0, we generate n,=1000 simulation data from N(,uo 1) using Box
and Muller Transformation (Box and Muller, 1958). We treat the simulation data as

observation (or O). Using #, and o, from the above, we calculate the log-likelihood

function (denoted by lIf,) and similarity coefficient %. Each observation of the
td

simulation data is tested whether it is an outlier or not by using the likelihood ratio
statistics as mentioned in Section 6.2. We count the total number of outliers for the
given simulation data and convert it into percentage (denoted by the percentage of

outliers or outliers(%)).

Figure 6.3 (a) shows (negative) s-curve where similarity coefficient decreases as

U, increases and (b) shows, as we expected, (positive) s-curve where the percentage of
outliers increases as f,, increases.
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Figure 6.3 Box plot for (a) similarity coefficient and (b) percentage of outliers where

the values on the x-axis represent £, .

For each of the five hundred customers (they are labeled as 1%, 2™, 3", ... 500™
customer) and for each of the seven days, the number of components are chosen at
random where the maximum number of components is fixed at three (3). If three

components are chosen, the values of a,, a, and a, are chosen at random from
0.1,...,0.9 where a, +a, +a, =1; the values of 4, 4, and u, are chosen at random

from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of two or more components are chosen

such that no two or more means are the same; and the values of o,, 0, and o, are

1

chosen at random from --,5,1,2,3;--,10. Similar steps are taken if less than

11
2°3’
three components are chosen. The chosen values (that represent a model) are used in

1 1
2; =pu+(20logu;)?>cos2m;,, and <z, =pu+(-20"logu,)?sin2m,,, where

uu, ~U (0,) (Box and Muller, 1958) to generate (one thousand) simulation data.
For each day starting the 8™ till 28", simulation data is generated using either one of the

seven models (which represents the first condition where the performance of the
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algorithm is evaluated by this condition) or other model derived from repeating the

steps as mentioned above.

For each customer, Chapter 4’s algorithm is employed on the models that
represent 1 till 7" day. Each observation on 8" day onwards that satisfies the first
condition is tested whether it is an outlier or not by using the likelihood ratio statistics
as mentioned in Section 6.2. We repeat the steps as mentioned earlier that is we count
the total number of outliers for the given data set (that represents g™ day onwards and
satisfies first condition) and convert it into percentage. We find the frequency for each
Outliers(%)and convert it into percentage (denoted by Freq(%)). Figure 6.4, which is
derived from Table 6.1, shows the results from the steps taken on the 10™ customer and
Outliers(%) with the highest Freq(%) is zero. There is a huge gap (or difference)
between Outliers(%) equals to 0.0 with the rest of the Outliers(%). The same pattern
can also be found in Figure 6.5 (due to its size, only a few of the customers are

displayed here).

Freg(%]

==I—

o 1+ -] 2 B T =53 100

Outliers(%)

Figure 6.4 Box plot for the 10™ customer.
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Figure 6.5 Scatter plot for (a) 10™, 20™ ,...,100™ customer and (b) 50 ,100™ ,150™

yee .,500th customer.

6.3 Data

Two types of data will be used. They are:

(i) Simulation data. For each of the one thousand customers and for each of the seven
days, the number of components are chosen at random where the maximum number of

components is fixed at three (3). If three components are chosen, the values of q,, a,
and a, are chosen at random from 0.1,...,0.9 where a, +a, +a, =1; the values of g,
M, and u, are chosen at random from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of

two or more components are chosen such that no two or more means are the same; and

..’i,1’2,3’...,10.

the values of o,, 0, and o, are chosen at random from %,%; 10

Similar steps will be taken if less than three components are chosen. The chosen values

1
(that represent a model) will be used in z; = 4+ (=20 logu ;)2 cos2mu;,, and
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Table 6.1 Outliers(%) * Freq(%) * 10" customer cross-tabulation.

Freq(%)

Customer

10.6

8.2 8.4 8.7 8.8 10

7.8

74

6.7

0.6 24

0.5

0.4

0.3

0.2

0.1

0
14.29
28.57

Outliers(%)

Cust_10.txt

0
0
3
0
1
1

42.86
57.14

71.43
85.71

100

Total

Total

114 11.6 11.9 124 14.1 74.2 75.7 75.8 78 81.4 81.5 824 84.8 97.4

11.1

48
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1

T = U+ (20" loguj)i sin2mu,,, where u;,u,;,, ~U(0,1) (Box and Muller, 1958) to

+1
generate (one thousand) simulation data. For each day starting the 8™ il 28™,
simulation data is generated using either one of the seven models or other model

derived from repeating the steps as mentioned above.

(ii) Phone call data. Call detail record, which was supplied (or provided) by Telekom
Malaysia Berhad (henceforth, TM), consists of calls made by customers and they were
victims of fraud activities (altogether there are 18 customers and they are labeled as A
till R to ensure confidentiality). As mentioned in Chapter 4, we performed several steps
for each of TM’s customer call detail record to get the desired format; e.g. group the
real data according to service no, find the country that matches with the country code
and sort the real data according to seize time. We divided them (i.e. real data for TM
customers) into several parts and saved in the following format: (for each customer) 1,
2,3, 4,... represent fn(1), fn(2), fn(3), fn(4),... and date(1), date(2), date(3),... where fn

is a short-form for filename and date(1) < date(2) < date(3) < ....

6.4 Results

The results using simulation and real data are presented in the visual format as
exemplified in Figure 6.6 where, for ease of visual presentation, the times when the

calls were made are arranged in ascending order (and labeled 1,2,3,...). For each call,

The number of times H , is rejected

we calculate equation (6.1) and ( jX (100%)

The total number of hypothesis testings

where the latter is denoted by Percentage. Percentage that is greater than zero is plotted

in Figure 6.6.
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Figure 6.6 Percentage is plotted against Day and Time in the Scatter plot.

Due to its size, only a portion of the results are presented here. For the simulation
data where we choose Customer 1, Figure 6.7 shows there are lots of calls that are

classified as outliers.
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Figure 6.7 For Customer 1 of the simulation data, (a) Percentage is plotted against Day

and Time in the Scatter plot and (b) Percentage is plotted against Day in the Box plot.
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This is supported by Figure 6.8 and Table 6.2 for Day equals to 22. For the said Day,

out of 1000 calls, each of 135 calls has the Percentage equals to 14.29, each of 105 calls

has the Percentage equals to 42.86 and each of 72 calls has the Percentage greater than

70. Note that nine calls have the Percentage equals to 100. In other words, the call is

considered as an outlier by all models saved inside the database.

Percentage

120

100

&0

B0

40

20

-20

22

Day

Figure 6.8 Percentage is plotted against Day, which is equals to 22, in the Box plot.

Table 6.2 Frequency table for Day equals to 22.

Cumulative
Frequency Percent Valid Percent Percent

Valid 00 538 538 538 538
14.29 135 13.5 13.5 67.3
28.57 95 9.5 9.5 76.8
42.86 105 10.5 10.5 87.3
57.14 55 55 55 92.8
71.43 47 4.7 4.7 97.5
85.71 16 1.6 1.6 99.1
100.00 9 9 9 100.0
Total 1000 100.0 100.0

By taking similar steps, we get the following figures and table for Customer A

of the real telecommunication data. Figure 6.9 shows there are quite a considerable

number of calls that are classified as outliers and none of them has the Percentage

equals to 100. Figure 6.10 and Table 6.3 are derived from Figure 6.9 where we are
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focusing on Day equals to 72 (i.e. 15™ of November 2011), the same day TM’s system

claimed to detect fraud activity. For the said Day, out of 4 calls, one call has the

Percentage equals to 3, one call has the Percentage equals to 8 and one call has the
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Figure 6.9 For Customer A of the real telecommunication data, (a) Percentage is plotted

against Day and Time in the Scatter plot and (b) Percentage is plotted against Day in

the Box plot.
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Figure 6.10 Percentage is plotted against Day, which is equals to 72, in the Box plot.
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Table 6.3 Frequency table for Day equals to 72.

Cumulative
Frequency Percent Valid Percent Percent
Valid .00 1 25.0 250 25.0
2.78 1 25.0 25.0 50.0
8.33 1 25.0 25.0 75.0
16.67 1 25.0 25.0 100.0
Total 4 100.0 100.0

Percentage equals to 17. Note that none of the calls has the Percentage equals to 100.

Fraud call is the one that gives the Percentage equals to 100.

6.5 Summary

In the previous section, we highlighted the approach taken by Sain et al. (1999) in
detecting nuclear explosions from the large number of background signals. The same
approach is included in the algorithm for detecting fraud activities as mentioned in
Chapter 4, which involves the testing of each observation whether it is an outlier or not
ie. H,:x ¢ I1. We showed its performance by using real

eIl versus H,:x

n+l n+l

telecommunication data and simulation data. The introduction of the “real time” fraud
detection algorithm using GMM would help telecommunication companies to act upon

fraud calls instantaneously instead of waiting until the 24 hours period is complete.
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

7.1 Conclusion

The damages caused by fraud activities to telecommunication companies are
valued at millions (or billions) of dollars (Telecom and Network Security Review,
1997, Cahill et al., 2002, and Moreau et al., 1996) and the said activities could come in
many forms. Superimposed fraud, which is the one of our interest, refers to the use of a

service without permission and it would appear as phantom calls on a bill.

The number of literatures that discuss about pattern recognition method (namely
Gaussian Mixed Model, GMM) used to detect fraud activities in telecommunication
industry involving real data other than speech recognition’s format is limited and GMM
is difficult to apply (or implement) in real practice because we need to find the initial
estimates of parameters to start Expectation Maximization (EM) algorithm and find the
exact number of Gaussian components. Telekom Malaysia Berhad, a leading
telecommunication company in Malaysia, via their current system or application
believes the real data collected by them (e.g. duration and charging or billing) from its
exchanges are contaminated by fraud activities and, since GMM is not included on the
list of methods, there is no knowing if their findings are statistically correct. The
following objectives for this study were derived based on the above problems. The first
objective is to improve Gaussian Mixed Model (GMM) from its known (or current)

weaknesses (or difficulties) such as finding the initial estimates of parameters to start
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Expectation Maximization (EM) algorithm and finding the exact number of Gaussian
components. The second objective is to introduce a new algorithm that is capable of
detecting fraud activities (especially) in telecommunication industry and that
incorporates the improvement as mentioned in the first objective. The third objective is
to test the new algorithm (as well improved the EM algorithm for GMM) using
simulation data and real data (e.g. duration and charging or billing) collected from
Telekom Malaysia Berhad’s exchanges that are believed to be contaminated by fraud

activities.

Schlattmann (2003) suggested using a non-parametric bootstrapping approach

to identify the right number, say k, of components in a GMM and subsequently
choosing good initial values for the model parameters x; and 01'2 , 1=1,2,...k, in the

EM algorithm. Wang et al. (2004) introduced an algorithm called the stepwise-split-
and-merge EM algorithm to solve the said problem and Miloslavsky and Van Der Laan
(2003) suggested using the minimization of the Kullback-Leiber distance between fitted
mixture models and the true density as a method for estimating k& where the said
distance was estimated using cross validation. Other works on this topic can also be
found, for example, in Zhuang et al. (1996), Lee et al. (2006) and Celeux and
Soromenho (1996). We proposed an improved EM algorithm for GMM to identify the
number of components of a GMM and estimate the parameters of the model using the
kernel method. The first step uses kernel method, Silverman (1986), to determine the
number of components, say K components, and to find Means as initial values to start
EM algorithm for GMM. The second step executes EM algorithm for GMM to find the
final estimates of parameters using k=/ number of components, Means obtained from
the first step, and Variances fixed at 1 as initial values. The third step calculates log-

likelihood function and Akaike Information Criteria (AIC) Akaike (1974) using final
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estimates of parameters from the second step. The fourth step repeats the second and
third steps for k=2,....,K number of components. The final step compares all (K) AICs
obtained from the fourth step and the one that gives the minimum value is chosen
(which gives the true or correct number of components). The performance of the
algorithm via simulation is generally good but, as we expected, is affected by
increasing percentages of overlapping of the Gaussian components. The final number
of GMM component could clearly be determined via the concave-like shape of the AIC
plot, which indicates that the AIC decreases to a minimum value and then increases as

the number of components increases.

The idea used to give “birth” to the algorithm for detecting fraud calls is related
to speaker identification, which involve the coding of the new speaker’s recorded voice
into vector, the calculation of the log-likelihood function for each training matrix, the
comparison of all log-likelihood functions and the selection of the maximum one thus
revealing the speaker’s true identity. In our case, we use customer’s call behavior in
place of speaker’s recorded voice. The algorithm for detecting fraud calls involves two
steps. The first step performs, for each of the first seven days, the improved EM
algorithm for GMM and save the final estimates of parameters in the database. For the
gt day onwards, the second step uses the parameters saved in the database on the data
set to find the maximum log-likelihood function, calculates the percentage of similarity
coefficient and performs the updating process, which depends on the percentage of
similarity coefficient. We used them on two variables namely duration and call
charging (or billing) collected from 18 TM’s customers (that fell victim to fraud
activities on the 15" of November 2011), which revealed interesting results. The
percentage of TM’s customers that support the findings made by TM’s system

decreases as the number of variables used increases. The downgrading, upgrading and

107



unchanging of the similarity group depend on whether using one or two variables. No
downgrading to Low Similarity group is observed. The unchanging of Low Similarity
group is observed for more than 10% of TM’s customers. No Low Similarity group is
observed for several of TM’s customers depending on whether using one or two
variables. Fraud activities might happen earlier than 15™ of November 2011 due to the
average number of similarity coefficient assigned to Low Similarity group when using
two variables, which is greater than 10%. The results show the effectiveness of the
proposed algorithm in detecting Low Similarity group (before and on the 15™ of
November 2011, which we believe they have close connection to fraud activity). Bolton
and Hand (2002) (and Schonlau et al., 2001) said fraud (and computer intrusion)
detection offers many challenges and opportunities to statisticians where they could

make a very substantial and important contribution.

The proposed algorithm uses AIC to determine the number of components in
GMM and we showed this task could also be performed by the hypothesis testing. The
comparison between hypothesis testing and AIC using mathematical derivation and real
telecommunication data revealed conflicting results under certain conditions due to the

dependence of the former on log-likelihood function and the choice of the probability

value o that gives ;(;,(Hk*)p and the latter on log-likelihood function. Hypothesis

testing results are similar to those of AIC if ¢ is set at a different value (i.e. other than

0.05).

The approach taken by Sain et al. (1999) in detecting nuclear explosions from
the large number of background signals is included in the algorithm for detecting fraud
activities that involves the testing of each observation whether it is an outlier or not i.e.
H,:x

eIl versusH,:x, ,, ¢Il (as shown by several examples using real

n+l n+l
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telecommunication data and simulation data). Thus helping the telecommunication
companies to act upon fraud calls instantaneously instead of waiting until the day is

over.

7.2 Future research

Future research work will involve the following: the proposed algorithm will be
tested on a bigger number of customers, the handling of files with small data points,
twenty four (24) hours period for collecting customer’s call detail record will be
divided into 3 parts (sub-periods), similarity coefficient that falls under Moderate
Similarity group will be further investigated (for possible fraud activities) and the use
of other variables such as type of call (domestic and international). The suitability of
the Gaussian Mixed Model Hidden Markov Model (refer to Bilmers, 1998, Rabiner,
1989, Juang and Rabiner, 1985, Box and Jenkins, 1976, Bidgoli, 2007) for type of call

will be explored where S, and S, are the states assigned to the domestic and

international call, respectively. The power of a test (Guenther, 1977) will be used to
explain the behavior of the hypothesis testing especially when it conflicts with AIC (in

terms of the number of components in GMM).
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APPENDIX A

The results presented in this thesis were produced from using the computer
facility in the Institute of Mathematical Sciences (University of Malaya) and Telekom
Research and Development Sdn. Bhd. The applications used were SPSS, Microsoft®
Excel and NetBeans, which is an Integrated Development Environment, IDE, for
developing primarily with Java and it is an application platform framework for Java
desktop applications and others. The first two applications were used for producing

graphical presentations. Due to its size, only a portion of Java script will be displayed.

class EM {

double suml, sum2, sum3, sum4;
double maximum;

double a_ih,a_1il;

double eql,eq2,eq3;

double diffl, diff2, diff3;
double epsilon=0.000001;

double[] []alpha;
double ][] []mu;

double[][][] sigma;

double[] []sigma_determinant;
double[][][] sigma_inverse;
double[][] []lprob;

double[][] x;

int dim;

int h,i,3,k,1;

int count;

int hl,h2;

int N,K;

int p, P;

int iterate;

int Stop;

int Stop_limit;

//

String[] []statement;

int count_statement=0;
//

PrintWriter output=null;
BufferedReader input = null;
String character=null;
StringTokenizer token;
//

String filename=null;
DecimalFormat sixDigits;
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public int EM_Algorithm()

{

//
try
{

//

//P=1;//fixed

//

/*if (Math.abs(Type) == 1)

{

K=2; dim=1;
}
else if (Math.abs(Type) == 2)
{

K=2; dim=1;
}
else if (Math.abs(Type) == 3)
{

K=6; dim=1;

//original

//K=3; dim=1;

//original

}
else if (Math.abs(Type) == 4)

K=3; dim=4;

prob=new double[P+1][][];
for (i=0;i<=P;i++) prob[i]=new double[N+1][];
for (i=0;i<=P;i++)
for (j=0;j<=N;j++)
prob[i] [j]l=new double[K+1];

//
//
/*
1 2 3 4
5 6 7 8

9 10 11 12

13 14 15 16

(4X4 matrix)

*/
//
sigma_inverse=new double[P+1][][];
for (i=0;i<=P;i++) sigma_inverse[i]=new double[K+1][];
for (i=0;1i<=P;i++)

for (j=0; j<=K; j++)
sigma_inverse[i] [j]=new double[dim*dim+1];
//
sigma_determinant=new double[P+1][];
for (i=0;i<=P;i++)
sigma_determinant [i]=new double[K+1];

//
//Initialize parameters
/*for (k=1; k<=K; k++)

{

if (Type < 0)
{
//
if (Type == -1)
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if (k==1)
{
alpha[0][k]=0.5;
mul0] [k][1]1=0.0;
sigma[0] [k][1]1=1.0;
}
else
{
alpha[0] [k]=0.5;
mul[0] [k][1]1=2.0;
sigma[0] [k][1]1=1.0;
}
//
}
else if (Type == -2)
{
//
if (k==1)
{
alpha[0][k]=0.5;
mul0] [k][1]1=0.0;
sigma[0] [k][1]=1.0;
}
else
{
alpha[0] [k]=0.5;
mul[0] [k][1]=1.5;
sigma[0] [k][1]=1.0;
}
//
}
else if (Type == -3)
{
if (k==1)
{
alpha[0][k]=1.0/6.0;
mu[0] [k][1]=0.0;
sigma[0] [k][1]=1.0;
}
else if (k==2)

{
alpha[0] [k]=1.0/6.0;
mul[0] [k][1]1=0.0;
sigma[0] [k][1]=1.0;

}

else 1if (k==3)

{

alpha[0] [k]=1.0/6.0;
mul[0] [k][1]=0.0;
sigma[0] [k] [1]=1.0;
}
else if (k==4)
{
alpha[0][k]=1.0/6.0;
mul[0] [k][1]=0.0;
sigma[0] [k][1]=1.0;
}
else if (k == 5)

{
alpha[0] [k]=1.0/6.0;
mul[0] [k][1]1=0.0;
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sigma[0] [k][1]1=1.0;
}

else

{
alpha[0] [k]=1.0/6.0;
mul[0] [k][1]1=0.0;
sigma[0] [k][1]=1.0;

}
else//Type == -4
{

if (k==1)

//

sigma[0] [k][2]=sigma[0] [k] [5]

0;

sigma[0] [k] [3]=sigma[0] [k][9]=0;

sigma[0] [k] [4]=sigma[0] [k][13]=0;
sigma[0] [k][6]

I
—_
~.

sigma[0] [k] [7]=sigma[0] [k][10]=0;

sigma[0] [k] [8]=sigma[0] [k][14]=0;
sigma[0] [k][11]=1;

sigma[0] [k] [12]=sigma[0] [k] [15]=0;
sigma[0] [k][16]=1;

}
else if (k==2)

sigma[0] [k][1]=1;

sigma[0] [k][2]=sigma[0] [k] [5]

0;

sigma[0] [k] [3]=sigma[0] [k][9]=0;

sigma[0] [k] [4]=sigma[0] [k][13]=0;
sigma[0] [k][6]=1;

sigma[0] [k] [7]=sigma[0] [k][10]=0;

sigma[0] [k] [8]=sigma[0] [k][14]=0;
sigma[0] [k][11]=1;

sigma[0] [k] [12]=sigma[0] [k][15]=0;
sigma[0] [k][16]=1;
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(0.33+40.33);

sigma[0] [k][2]
sigma[0] [k][3]
sigma[0] [k] [4]

sigma[0] [k][7]

sigma[0] [k][8]

sigma[0] [k][12]

=sigma[0] [k] [5]=
=sigma[0] [k] [9]=0

=sigma[0] [k] [13]=0;

=sigma[0] [k] [10]=0;

=sigma[0] [k] [14]=0;

=sigma[0] [k] [15]=0;

}

sigma[0] [k][6]

I
—_
~.

sigma[0] [k] [11]=1;

sigma[0] [k][16]=1;

//
}
else if (Type == 1)
{
if (k==1)
{
alpha[0] [k]=0.4;
mu[0] [k] [1]=0.0;
sigma[0] [k][1]=1.0;
}
else
{
alpha[0] [k]=0.6;
mul[0] [k][1]1=2.0;
sigma[0] [k][1]=0.25;
}
}
else if (Type == 2)
{
if (k==1)
{
alpha[O][ 1=0.85;
ul0] [k][11=0.0;
31gma[ 1[k][1]=1.0;
}
else
{
alpha[0] [k]=0.15
mu[0] [k] [1]=2.0;
sigma[0] [k][1]=0.25
}
}
else if (Type == 3)

{
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if (k==1)
{

alpha[0] [k]=0.33;
mul[0] [k][1]1=0.0;
sigma[0] [k][1]=1.0;

}

else if (k==2)

{
alpha[0] [k]=0.33;
mul[0] [k][1]=-1.0;

else
{
alpha[0] [k]=1.0-(0.33+0.33);
mul[0] [k][1]=4.0;
sigma[0] [k][1]=4.0;
}
}
else//Type == 4
{
if (k==1)

{
alpha([0] [k]=0.33;

//
mu[0] [k] [1]=5.01;
mu[0] [k] [2]=3.43;
mu[0] [k] [3]=1.46;
mu[0] [k] [4]=0.25;
//

sigma[0] [k][1]=0.12;

sigma[0] [k] [2]=sigma[0] [k] [5]=0.

sigma[0] [k] [3]=sigma[0] [k][9]=0.02;

sigma[0] [k] [4]=sigma[0] [k][13]=0.01;
sigma[0] [k] [6]1=0.14;

sigma[0] [k] [7]=sigma[0] [k] [10]=0.01;

sigma[0] [k] [8]=sigma[0] [k][14]=0.13;
sigma[0] [k][11]1=0.03;

sigma[0] [k][12]=sigma[0] [k][15]=0.01;
sigma[0] [k] [16]=0.3;
}
else if (k==2)
{
alpha[0] [k]=0.30;

//

mu[0] [k][1]=5.91;
mu[0] [k] [2]=2.78;
mu[0] [k] [3]=4.2;
mu[0] [k][4]=1.3;

//
sigma[0] [k] [1]=0.27;

1;

sigma[0] [k] [2]=sigma[0] [k] [5]=0.1;

sigma[0] [k] [3]=sigma[0] [k][9]=0.18;

sigma[0] [k] [4]=sigma[0] [k][13]=0.05;
sigma[0] [k] [6]1=0.09;

sigma[0] [k] [7]=sigma[0] [k] [10]=0.09;
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sigma[0] [k] [8]=sigma[0] [k][14]=0.04;
sigma[0] [k] [11]1=0.2;

sigma[0] [k][12]=sigma[0] [k][15]=0.06;
sigma[0] [k][16]=0.03;
}
else
{
alpha[0] [k]=1.0-(0.33+0.30);
//
0] [k]I[1
0] [k]I[2
0] [k]I[3

mu [
mu [
mu [
mu[0] [k] [4

//

sigma[0] [k][1]=0.38;

sigma[0] [k] [2]=sigma[0] [k][5]=0.09;
sigma[0] [k] [3]=sigma[0] [k][9]1=0.3;

sigma[0] [k] [4]=sigma[0] [k] [13]=0.06;
sigma[0] [k] [6]=0.11;

sigma[0] [k] [7]=sigma[0] [k] [10]=0.08;

sigma[0] [k] [8]=sigma[0] [k][14]=0.05;
sigma[0] [k][11]=0.32;

sigma[0] [k][12]=sigma[0] [k][15]=0.07;
sigma[0] [k][16]=0.08;
}

//
}//end k
*/
//
//
Stop = 0; iterate=0;
while (Stop == 0 && (iterate <= Stop_limit))//while (Stop

== 0 && (iterate <= 200000))
{
iterate=iterate+1;
//**Expectation**
for (i=1;i<=N;i++)
{
sum3=0.0;
for (k=1;k<=K;k++)
{
//
if (dim > 1)
{
//
if
(Cholesky_inverse(sigma[0] [k],dim, sigma_inverse[0] [k]) != 0)
{
return -1;

}

sigma_determinant [0] [k]=Determinant (sigma[0] [k],dim) ;
//
}

else

{
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sigma_inverse[0] [k][1]=(1.0/sigma[0] [k][1]);
sigma_determinant [0] [k]=sigma[0] [k][1];//
}
//
suml=0.0;
for (hl=1;hl<=dim;hl++)
{
sum2=0.0;
for (h2=1;h2<=dim;h2++)
{
sum2=sum2+ (
(x[1] [h1]-mu[0] [k] [h1])™*
(sigma_inverse[0] [k] [ (h1l-1)*dim+h2])*
(x[1] [h2]-mu[0] [k] [h2]));
}

suml=suml+sum?2;

}
egl=Math.exp (-suml/2.0);

eg2=sigma_determinant [0] [k]*Math.pow(2.0*Math.PI, dim);
eq2=1.0/Math.sqgrt (eq2);
//
sum3=sum3+ (
alpha[0] [k]™*

eqlx*
eq?);
}
//
//
for (k=1;k<=K;k++)
{
//
if (dim > 1)
{
//
if
(Cholesky_inverse(sigma[0] [k],dim, sigma_inverse[0] [k]) != 0)

{

return -1;

}

sigma_determinant [0] [k]=Determinant (sigma[0] [k],dim) ;
//
}
else
{
//

sigma_inverse[0] [k][1]=(1.0/sigma[0] [k][1]);
sigma_determinant [0] [k]=sigma[0] [k][1];//
//
}
//
suml=0.0;
for (hl=1;hl<=dim;hl++)
{
sum2=0.0;
for (h2=1;h2<=dim;h2++)
{
sum2=sum2+ (
(x[1] [h1]-mu[0] [k] [h1])*
(sigma_inverse[0] [k] [ (h1l-1)*dim+h2])*
(x[1] [h2]-mu[0] [k] [h2]));

125



}

suml=suml+sum?2;

}
egl=Math.exp(-suml/2.0);

eg2=sigma_determinant [0] [k]*Math.pow(2.0*Math.PI, dim);
eg2=1.0/Math.sqrt (eg2) ;
prob[0][i] [k]l=(alpha[0] [k]*egl*eg2) /sum3;
//
}

}//end i

//

//**Maximization**

for (k=1; k<=K; k++)

{

//1lst Equation
suml=0.0;
for (i=1;i<=N;i++)
{
suml=suml+prob[0] [i] [k];
}
alpha[l] [k]=suml/ ( (double) N);
//
//2nd Equation
for (j=1; j<=dim; Jj++)
{
suml=sum2=0.0;
for (i=1;i<=N;i++)
{
suml=suml+ (prob[0] [1] [k]1*x[1][]]);
}
for (i=1;i<=N;i++)
{
sum2=sum2+prob[0] [1] [k];
}
mul[l] [k] [j]l=suml/sum2;
}
//
//3rd Equation
for (h=1;h<=dim;h++)
{
for (1=1;1<=dim;1l++)
{
//
suml=sum2=0.0;
for (i=1;i<=N;i++)
{
a_ih=x[i] [h]-mu[l] [k] [h];
a_il=x[i][1]-mull][k][1];
suml=suml+ (prob[0] [i] [k]*a_ih*a_1il);
}
for (i=1;i<=N;i++)
{
sum2=sum2+prob[0] [1] [k];
}
sigma[1][k][(h-1)*dim+1]=suml/sum?2;
//

}
//

}//end k
//
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//checking for convergence
//iteration iterate and iterate-1 ©parameters are
compared. If difference 1s 1less than say le-6, convergence 1is
achieved.
count=0;
for (k=1; k<=K; k++)
{
//1lst equation
diffl=Math.abs(alphall] [k]-alpha[0] [k]);
if (diffl < epsilon)
{
count=count+1;
}
//number of alphas = K
//2nd equation
for (j=1; j<=dim; Jj++)
{
diff2=Math.abs(mul[l] [k][j]-mu[0] [k][]]);
if (diff2 < epsilon)
{
count=count+1;
}
}
//number of mus = K*dim
//3rd equation
for (h=1;h<=dim;h++)
{
for (1=1;1<=dim;1l++)
{
diff3=Math.abs(sigma[l] [k] [ (h-
1)*dim+1]-sigma[0] [k] [ (h-1)*dim+1]);
if (diff3 < epsilon)
{

count=count+1;

}
}

//number of sigmas = K*dim*dim
//
}//end k
//
if (count == (K+ (K*dim)+ (K*dim*dim)))
{
//
Stop = 1;
//
statement [count_statement] [l]=statement [count_statement] [1]+" (iteratio
n# "+String.valueOf (iterate)+")";
//

for (k=1; k<=K; k++)

{
character=null;
//1st equation

character=" (k="+String.valueOf (k)+",alpha="+String.valueOf (alpha[l] [k]
);//alpha

//

//2nd equation

for (j=1; j<=dim; j++)

{

character=character+",mu_"+String.valueOf (j) +
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"="4String.valueOf (mu[l] [k][]j]);//mu
}
//
//3rd equation
for (h=1;h<=dim;h++)
{
for (1=1;1<=dim;1l++)
{
character=character+", sigma_"+
String.valueOf (h)+"_"+
String.valueOf (1) +

"="+String.valueOf (sigma[1] [k] [(h-1)*dim+1]);//sigma
}
}

//

character=character+")";

//
//count_statement++; statement [count_statement] [1]=(character) ;

statement [count_statement] [l]=statement [count_statement] [1]+ (character
)i
//
}//end k
//

else

//
Stop=0;
//
for (k=1; k<=K; k++)
{
//1lst equation
alpha([0] [k]=alphall] [k];
//
//2nd equation
for (j=1; j<=dim; Jj++)
{
mul[0] [k] [jl=mu[1][k][3];
}
//
//3rd equation
for (h=1;h<=dim;h++)
{
for (1=1;1l<=dim;1l++)
{
sigma[0] [k] [ (h—
1)*dim+1]=sigmal[l] [k][(h-1)*dim+1];
}
}

//
//
}//end k
//
}//end if
//
}//end while
//
//
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catch (ArithmeticException arithmeticException)

{
count_statement++;statement [count_statement] [1]=String.valueOf (arithme

ticException);
return -1;

}

//

if (Stop == 1) return -100;
//

return 0;

//
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APPENDIX B

Due to its size, we tabulate only a portion of customer’s call detail record (cdr)

supplied by Telekom Malaysia Berhad. SERVICE NUMBER and DIALED DIGITS

are not revealed to ensure confidentiality.

SERVICE DIALED AREA COUNTRY  SEIZE TIME DURATION  SYSTEM
NUMBER DIGITS CODE CODE CHARGING
X Y null 675 1/03/2011 14:05 000054 00 3.6
X Y null 675 1/03/2011 15:44 000430 00 18
X Y null 675 1/03/2011 15:56 000049 00 3.6
X Y 19 60 31/03/2011 8:41 000339 00 0.8
X Y 19 60 31/03/2011 9:27 000035 00 0.5
X Y 19 60 31/03/2011 9:43 000048 00 0.6
X Y 16 60 31/03/2011 9:50 000031 00 0.2
X Y 16 60 31/03/2011 10:54 000138 00 0.5
X Y null 675 31/03/2011 11:26 000003 00 0.4
X Y null 675 31/03/2011 11:27 000057 00 4
X Y 16 60 31/03/2011 12:46 000002 00 0.1
X Y 12 60 31/03/2011 14:03 000041 00 0.5
X Y 19 60 31/03/2011 14:29 000233 00 0.8
X Y 19 60 31/03/2011 14:40 000029 00 0.4
X Y null 675 31/03/2011 14:47 000032 00 2.4
X Y 19 60 31/03/2011 15:37 000002 00 0.1
X Y 19 60 31/03/2011 15:42 000230 00 1.8
X Y 3 60 31/03/2011 15:55 000251 00 2.5
X Y 19 60 31/03/2011 16:04 000202 00 1.5
X Y 84 60 31/03/2011 16:22 000022 00 0.1
X Y 19 60 30/05/2011 8:50 000015 00 0.1
X Y 19 60 30/05/2011 8:54 000031 00 0.2
X Y 13 60 30/05/2011 9:20 000508 00 1.6
X Y 13 60 30/05/2011 9:27 000003 00 0.1
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