
 i

ABSTRAK

Kegiatan penipuan telah mencapai ke peringkat kritikal dimana ianya

menyebabkan syarikat telekomunikasi mengalami kerugian berjumlah jutaan ringgit

dan memaksa syarikat-syarikat tersebut mengguna pakai aplikasi atau sistem (seperti

Telekom Malaysia Berhad Sistem Pengenalpastian Kegiatan Penipuan Generasi Baru)

untuk mengenalpasti kegiatan tersebut.

Kami memperkenalkan satu algoritma baru yang dapat mengenalpasti kegiatan

penipuan dalam industri telekomunikasi (sebagai contoh, pencerobohan penipuan

berlaku apabila akaun yang sah diancam oleh penceroboh yang membuat dan menjual

panggilan dengan menggunakan akaun tersebut) yang menggunakan Model Bercampur

Gauss, satu model kebarangkalian yang seringkali digunakan dalam mengenalpasti

kegiatan kecurian melalui pengenalpastian suara. Disebabkan kerumitan yang

dipamerkan oleh Model Bercampur Gauss, kami menggunakan Pemaksimum Jangkaan

oleh Dempster et al. (1977) untuk mencari Penganggaran Kebolehjadian Maksimum

bagi parameter Model Bercampur Gauss. Bersama-sama dengan kaedah inti (sila rujuk

kepada Silverman, 1986), kami dapat memperbaiki proses yang berkaitan dengan

menentukan bilangan komponen dalam Model Bercampur Gauss. Tambahan pula, kami

berjaya menghasilkan Ujian Kebolehjadian Nisbah dalam menentukan bilangan

komponen dalam Model Bercampur Gauss dan perbandingan keputusan yang

diperolehinya dengan keputusan yang diperolehi oleh Kriteria Maklumat Akaike akan

ditekankan dalam tesis ini. Algoritma tersebut juga menggunakan pekali keserupaan

untuk mengklasifikasi data sebenar berdasarkan kepada fungsi log-kebolehjadian dan

 ii

ianya diperluaskan untuk mengenalpasti panggilan yang mencurigakan yang

dikenalpasti oleh syarikat telekomunikasi.

Algoritma yang baru diperkenalkan ini diuji dengan menggunakan data simulasi

dan data sebenar dimana keputusannya (daripada ujian tersebut) menunjukkan ia

berupaya mengenal pasti kegiatan penipuan. Data sebenar adalah terdiri daripada

berapa lama panggilan dibuat dan berapa cajnya, diambil daripada ibusawat Telekom

Malaysia Berhad, dan ianya dicemari oleh aktiviti penipuan. Memandangkan format

data sebenar adalah berbeza dengan yang biasa digunakan untuk pengenalpastian suara,

ianya disusun semula sebelum pengujian dan penganalisaan. Algoritma baru bersetuju

dengan apa yang dicurigai oleh syarikat

 iii

ABSTRACT

Fraud activities have reached to critical point causing millions of ringgit of

losses to telecommunication companies, and as a result, forcing them to employ

applications or systems (such as Telekom Malaysia Berhad’s Next Generation Fraud

Detection System) to detect the said activities.

We introduce a new algorithm that could detect fraud activities in

telecommunication industry (e.g. intrusion fraud which occurs when legitimate account

is comprised by an intruder who makes or sells calls on this account) that uses Gaussian

Mixed Model (or GMM), a probabilistic model normally used in fraud detection via

speech recognition. Due to the complexity of GMM, we use Expectation Maximization

(or EM) algorithm by Dempster et al. (1977) to obtain the maximum likelihood

estimates of the GMM parameters. Together with Kernel method (see Silverman,

1986), we improve the process of finding the number of components in GMM. In

addition, we have also successfully derived the likelihood ratio test in the determination

of the number of components in GMM and the comparison of its results with those of

Akaike Information Criteria (AIC) will also be highlighted in this thesis. The said

algorithm uses similarity coefficient to classify the real data based on the log-likelihood

function and it’s extended to detect incoming fraud calls as suspected by the

telecommunication company.

The new algorithm is tested on simulated and real data where the results show it

is capable of detecting fraud activities. The real data, which included call charging and

duration, are collected from Telekom Malaysia Berhad’s exchanges and they are

 iv

believed to be contaminated by fraud activities. As the original data are clearly not in

the format that is generally used for speech recognition, they are reformatted prior to

testing and analysis. The new algorithm is in agreement with those suspected by the

company.

 v

ACKNOWLEDGEMENTS

First and foremost, I thank my wife, Mastura Abu Bakar, for her constant love,

support and encouragement in this time-consuming and difficult work. I thank my

supervisors, Associate Professor Dr Ibrahim Mohamed and Associate Professor Dr

Mohd Rizam Abu Bakar, for their advice on the content of this thesis, for their

vigilance and energy in reading with great care the drafts of this work, and for their

valuable suggestions. Special thanks to Head of Institute of Mathematical Sciences who

made it possible for me to carry out my post graduate studies; post graduate students (in

particular, Adzhar Rambli, Kamil Khalid, Safwati Ibrahim, Mardziah Nawama, Nurul

Najihah) and staff of Institute of Mathematical Sciences (in particular, Budiyah Yeop)

for making my stay a pleasant and memorable one.

I thank Telekom Research & Development Sdn Bhd for sponsoring my post

graduate studies; Mohd Shafri Kamaruddin and Mohd Daud Jaafar of Telekom

Research & Development Sdn Bhd for their cooperation in providing data and

information about fraud activities in telecommunication industry.

Finally, I dedicate this thesis to my wife, children, and parents for without them none of

this would be possible.

 vi

TABLE OF CONTENTS

Page

ABSTRAK I

ABSTRACT III

ACKNOWLEDGEMENTS V

LIST OF TABLES IX

LIST OF FIGURES X

CHAPTER 1: INTRODUCTION 1

1.1 Background of the study 1

1.1.1 Modus Operandi 2
1.1.2 Methods used to detect fraud activities 4

1.2 Statement of the problem 13

1.3 Objectives 13

1.4 Significance of the study 14

1.5 Thesis outline 14

CHAPTER 2: GAUSSIAN MIXED MODEL 17

2.1 Introduction 17

2.2 Gaussian Mixed Model 19

2.2.1 Expectation Maximization algorithm 20

2.3 Summary 24

 vii

CHAPTER 3: IMPROVED EXPECTATION MAXIMIZATION ALGORITHM

FOR GAUSSIAN MIXED MODEL USING THE KERNEL METHOD 25

3.1 Introduction 25

3.2 The Kernel Method 26

3.3 Improved EM Algorithm for GMM 29

3.4 Simulation 30

3.4.1. Simulation Scheme 30
3.4.2 Study of performance based on log-likelihood function 31
3.4.3 The value of intersections 37
3.4.4 The effects of different overlapping percentages on performance 39

3.5. Determination of the final number of components in the GMM using AIC 42

3.6 Real example – Phone call data 43

3.7 Summary 45

CHAPTER 4: FRAUD DETECTION IN TELECOMMUNICATION INDUSTRY

USING GAUSSIAN MIXED MODEL 47

4.1 Introduction 47

4.2 Algorithm for detecting fraud calls 49

4.2.1 The performance of the algorithm 53
4.2.2 The characteristics of the similarity coefficient 56

4.3 Data 63

4.4 Results 64

4.5 Discussion 66

CHAPTER 5: EXPLORING THE USE OF HYPOTHESIS TESTING IN

DETERMINING THE NUMBER OF COMPONENTS IN GAUSSIAN MIXED

MODEL 73

5.1 Introduction 73
5.2.1 Introduction to property 1 and 2 74
5.2.2 The derivation of the hypothesis testing 75
5.2.3 The performance of the hypothesis testing 79

 viii

5.3 Comparison between using the AIC and hypothesis testing in determining the

number of components in GMM 83

5.4 Summary 88

CHAPTER 6: “REAL TIME” FRAUD DETECTION ALGORITHM FOR

TELECOMMUNICATION INDUSTRY USING GAUSSIAN MIXED MODEL 89

6.1 Introduction 89

6.2 “Real time” fraud detection algorithm using GMM 90
6.2.1 The performance of the “real time” fraud detection algorithm using GMM 95

6.3 Data 98

6.4 Results 100

6.5 Summary 104

CHAPTER 7: CONCLUSION AND FUTURE RESEARCH 105

7.1 Conclusion 105

7.2 Future research 109

REFERENCES 110

APPENDIX A 118

APPENDIX B 130

 ix

LIST OF TABLES

Page

Table 3.1 List of true values of a’s, µ’s, σ’s 31

Table 3.2 Simulation results for the case 1µ =0, 2µ =3.0 and 316.02
2

2
1 == σσ 41

Table 3.3 Simulation results for the case 1µ =0, 2µ =1.0, 707.02

2 =σ and

447.02
1 =σ 41

Table 3.4 Simulation results for the case 1µ =0, 2µ =0.25, 577.02

1 =σ and

414.12

2 =σ 41

Table 3.5An extract from the TM’s customer call detail record. 44

Table 4.1 An example of TM’s customer call detail record. 63

Table 4.2 Summary statistics for groups HM till MM. Note that customers are given in

the bracket; SD and Var are short forms for standard deviation and variable,

respectively. 67

Table 5.1 Frequency table for Range equals to (a) 1, (b) 2, (c) 3 and (d) 4. 82

Table 6.1 Outliers(%) * Freq(%) * 10th customer cross-tabulation. 99

Table 6.2 Frequency table for Day equals to 22. 102

Table 6.3 Frequency table for Day equals to 72. 104

 x

LIST OF FIGURES

Page

Figure 3.1 Plot of)(ˆ
ktf against kt 29

Figure 3.2 The histograms of (a) Sample 1 (with overall mean and standard deviation

equal to 1.28 and 1.19, respectively), (b) Sample 2 (with overall mean and

standard deviation equal to 0.34 and 1.19, respectively) and (c) Sample 3 (with

overall mean and standard deviation equal to 1.18 and 2.62, respectively). 32

Figure 3.3 Plots of values of log-likelihood function. 33

Figure 3.4 Plot of log-likelihood function against number of components for Sample 1.

 34

Figure 3.5 Plot of log-likelihood function against number of components for Sample 2.

 34

Figure 3.6 Plot of log-likelihood function against number of components for Sample 3.

 34

Figure 3.7 Plot of log-likelihood function for selected simulated data set from Sample 1

 35

Figure 3.8 Plot of log-likelihood function for selected simulated data set from Sample

2. 36

Figure 3.9 Plot of log-likelihood function for selected simulated data set from Sample

3. 36

Figure 3.10 ∫ dxxf)(1 and ∫ dxxf)(2 are used to find the shaded areas as shown in (a)

and (b). 38

Figure 3.11 %Min is plotted against Range for Box and Whisker plot. 42

 xi

Figure 3.12 Plot of AIC of three data sets generated from samples defined in Table 3.1.

 43

Figure 3.13 Duration (in day format) is displayed in the histogram. 45

Figure 3.14 Plots of (a) log-likelihood values (b) AIC values. 45

Figure 4.1 The use of GMM in voice recognition technique. 48

Figure 4.2 Flow-diagram showing the steps that are needed to detect fraud activities. 50

Figure 4.3 Example of results from Step One. 50

Figure 4.4 Example of results from Step Two (involving log-likelihood function). 50

Figure 4.5 Example of results from Step Four (involving Similarity coefficient). 51

Figure 4.6 Box plot for customers (a) 10, 20, 30,…,100 and (b) 50, 100, 150,…,500 on

the x-axis and SimCoef(%) on the y-axis is a short-form for similarity coefficient

in percentage. 54

Figure 4.7 The histogram of Frequency versus SimCoef(%). SimCoef(%) on the y-axis

is a short-form for similarity coefficient in percentage. 55

Figure 4.8 The histogram of Frequency against Count(%). 56

Figure 4.9 A represents the probability density function derived from the histogram of

call behavior for a customer collected on the first day (1,...,2,1, nixi =) and B

represents the histogram of call behavior collected on the second day

(2,...,2,1, niyi =). 57

Figure 4.10 Similarity coefficient is plotted against percentage using Box plot for (a)

Oµ =0.0, (b)
Oµ =0.5, (c)

Oµ =1.0, (d)
Oµ =2.0, (e)

Oµ =4.0, (f)
Oµ =6.0, (g)

Oµ =8.0 and (h) Oµ =10.0. 59

Figure 4.11 Files created for Customer A. 64

 xii

Figure 4.12 Similarity coefficient (after converting into percentage) together with its

classification for customer Q (using two variables namely duration and call

charging or billing): (a) Overall and (b) Low Similarity only. 68

Figure 4.13 Similarity coefficient (after converting into percentage) together with its

classification for customer I (using two variables namely duration and call

charging or billing): (a) Overall and (b) Low Similarity only. 69

Figure 4.14 Similarity coefficient (after converting into percentage) together with its

classification for customer C (using two variables namely duration and call

charging or billing): (a) Overall and (b) Low Similarity only. 70

Figure 5.1 The first (i.e. upper) and second (i.e. lower) lines represent

() 















− ∏

=

2

1

log2log
i

iφ and























∑

=

2

1

log
j

jφ , respectively. X-axis represents 100

samples (generated by using random numbers). 74

Figure 5.2 The first (i.e. upper) and second (i.e. lower) lines represent























∑

=

2

1

log
j

jφ

and 















∏

=

2

1

log
i

iφ , respectively. X-axis represents 100 samples (generated by

using random numbers). 75

Figure 5.3 Simulation data is displayed in the histogram for (a) ∑
=








 −2

1

2

L L

Lx

σ

µ
 and (b)

∑
=








 −2

1

2

L L

LLx

σ

µ
. 80

Figure 5.4 2χ -distribution with (a) 2, (b) 3, (c) 4 and (d) 5 degrees of freedom. 81

Figure 5.5 Results of AIC and hypothesis testing for ()∑
=

2

1

2,,
i

iii xa σµφ where

(2.01 =a , 0.01 =µ , ()22

1 707.0=σ) and (8.02 =a , 25.02 =µ , 0.12

2 =σ). 82

 xiii

Figure 5.6 Percentage is plotted against Range in the Box plot. 83

Figure 5.7 Results of AIC and hypothesis testing for customer C. 86

Figure 5.8 Results of AIC and hypothesis testing for customer D. 86

Figure 5.9 Log-likelihood function against number of components for Customer C. 87

Figure 5.10 Log-likelihood function against number of components for Customer D. 88

Figure 6.1 A represents the probability density function of customer X call detail record

for the 1st day collected over a period of 24 hours and saved in the database. B

represents the probability density function of customer X call detail record for the

thi day where i=8,9,… collected over a period of 24 hours. C represents customer

X call detail record for the thi day that is classified as an observation belonging to

A and D represents customer X call detail record for the thi day that is classified

as an outlier (i.e. by using the parameters belonging to A). 91

Figure 6.2 Simulation data is displayed in the histogram for (a) ∑
=








 −2

1

2

L L

Lix

σ

µ
, (b)

2








 −

L

Lix

σ

µ
 where ()2, LLi Nx σµ∈ and 2,1=L and (c) 2χ distribution with one (1)

degree of freedom. 94

Figure 6.3 Box plot for (a) similarity coefficient and (b) percentage of outliers where

the values on the x-axis represent Oµ . 96

Figure 6.4 Box plot for the 10th customer. 97

Figure 6.5 Scatter plot for (a) 10th , 20th ,…,100th customer and (b) 50th ,100th ,150th

,…,500th customer. 98

Figure 6.6 Percentage is plotted against Day and Time in the Scatter plot. 101

 xiv

Figure 6.7 For Customer 1 of the simulation data, (a) Percentage is plotted against Day

and Time in the Scatter plot and (b) Percentage is plotted against Day in the Box

plot. 101

Figure 6.8 Percentage is plotted against Day, which is equals to 22, in the Box plot. 102

Figure 6.9 For Customer A of the real telecommunication data, (a) Percentage is plotted

against Day and Time in the Scatter plot and (b) Percentage is plotted against Day

in the Box plot. 103

Figure 6.10 Percentage is plotted against Day, which is equals to 72, in the Box plot.

 103

 1

CHAPTER 1

INTRODUCTION

1.1 Background of the study

Telecommunication companies (including those that are operating in Malaysia)

suffered heavy losses amounting to US$55 Billion per year due to fraud activities.

Between 3 and 5 percent of the company’s annual revenue would “disappear” due to

the said activities. They (i.e. the said companies) will not declare or make public these

activities (if they do decide to declare, they will call these activities as bad debt) fearing

huge migration of customers to the competitors due to lack of confidence in the

services they offered. The fraud activities are expected to increase with the introduction

of new services such as 3G and Voice Over Internet Protocol.

Although the number of fraudulent calls is small when compared to the overall

call volume but the cost incurred is huge (or significant) amounting to, based on

estimation by analysts for telecommunication industry in U.S., $1 Billion a year as

mentioned by Cox et al. (1997). Cahill et al. (2002) reported fraud activities eroded

between 4% and 6% of U.S. telecom’s revenue; and suggested that the degree of

“erosion” is much worse at international level where several new service providers

reported losses greater than 20%. In terms of losses to fraud, Moreau et al. (1996)

estimated several millions European Currency Units (ECUs) per year. Bolton and Hand

(2002) gave figures representing losses to fraud each year of £13 Billion and $13

 2

Billion (U.S.); and estimated it could reach $28 Billion within 3 years. Generally, the

loss is significantly large and warrants serious action to manage the problem.

Becker et al. (2010) mentioned the Communications Fraud Control Association

(cfca.org) periodically estimates the extent of worldwide telecommunications fraud. In

1999 this estimate was $12 billion, in 2003 it was between $35 and $ 40 billion, in

2006 it was between $55 and $60 billion, and in 2009 it was between $70 and $78

billion.

1.1.1 Modus Operandi

Becker et al. (2010) gave examples of some common varieties of fraud in

telecommunication and the one that is of our interest is intrusion fraud. This occurs

when an existing, otherwise legitimate account, typically a business, is compromised in

some way by an intruder, who subsequently makes or sells calls on this account. In

contrast to subscription calls, the legitimate calls may be interspersed with fraudulent

calls, calling for an anomaly detection algorithm.

For mobile telecommunication, the perpetrator would normally hack into a

network and use false identity to access services for free. Nowadays the perpetrator

would use cloned phones (or SIM) to make free international and expensive roaming

calls (see Bihina Bella et al., 2005). This activity would involve the duplication of

customer’s hardware and firmware thus allowing the perpetrators to make calls on their

account and consequently inflating their monthly bill. Other types of fraud are prepaid

and interconnect.

 3

Premium Rate Service (PRS) involves high number of calls made to the PRS

number from customer’s line network without their knowledge or from a number where

there is no intention to pay for the outgoing calls using auto-dialers. Other types of

fraud are Private Automatic Branch Exchange (PABX) for international calls,

network’s personnel provide an assigned number to a user that does not have an

account with the network (this activity is called stolen line unknown) and international

roaming manipulation which is similar to subscription fraud where the perpetrator

exploits the time delay of high rate identification and notification to home network

when roaming on another network.

There are cases where perpetrators are the subscribers themselves that

performed call back (with the intention to get cheaper international calls from call back

operator usually in another country via dialing out, regular dial tone availability, call

booked via other channels, and call initiated via international toll free number) and

illegal schemes (e.g. reselling calling cards to other subscribers, forgery of vouchers,

recharge, counterfeit and stolen cards to pay goods over the phone).

Several types of telecom fraud are listed in Shawe-Taylor et al. (2000), but the

one, which is of our interest, is called superimposed or “surfing” fraud. Superimposed

fraud refers to the use of a service without permission and it would appear as phantom

calls on a bill. It will generally occur at the level of individual calls where fraudulent

will be mixed together with the legitimate calls.

 4

1.1.2 Methods used to detect fraud activities

Data Mining is one of the applications capable of detecting fraud in

telecommunication and Malaysian companies (especially telecommunication ones) are

using the said application. IBM developed Data-Mining application called “Intelligent

Miner” (amongst its users are Australia’s Health Insurance, John Hancock Life

Insurance, “Saveway” Mart in UK and banking industry in USA) whereas SAS

“Enterprise Miner”, SPSS, Lotus, SGI and Hitachi are not far behind in the “race” (in

developing the said application). In Malaysia, companies such as Aetna Insurance,

Astro, Celcom and Franks & Small have been using Data-Mining application since

1996 and SAS has developed Data-Mining application called SISWANG to manage

corporate type data for Telekom Malaysia Berhad.

Briefly, techniques used in Data-Mining can be divided into two: (1)

Preparation of Data and (2) Model of Data. Techniques (1) and (2) are equally

important where according to Pyle (1999), the data must be well managed so that

process with regard to modeling could be performed smoothly and quickly. Zuber et al.

(2013) on the other hand concentrated on (2) and gave six models used in Data-Mining:

(1) Classification, (2) Regression, (3) Time Series, (4) Cluster, (5) Association Analysis

and (6) Sequence Discovery.

SAS has developed a data mining analysis cycle known by the acronym

SEMMA (Rohanizadeh and Moghadam, 2009). This acronym stands for the five steps

of an analysis that are ordinarily a part of a data mining projects. Those five steps are:

 5

Sample: First step of data mining is to create one or more data tables by sampling data

from the data warehouse. The samples should be big enough to contain significant

information, yet small enough to process quickly hence reducing the processing time

required to get critical business information. This approach uses a reliable, statistical

representative sample of the entire database.

Explore: After sampling the data, they would be explored visually and numerically (i.e.

using statistical techniques including Factor Analysis, Corresponding Analysis and

Clustering) for inherent trends or groupings.

Modify: Based on the discoveries in the exploration phase, modification may be

needed:

(1) To include information such as grouping of customers and significant

subgroups, or

(2) To introduce new variables such as ratio obtained by comparing two previously

defined variables.

Modification process also involves looking for outliers, reduce the number of variables

to narrow them down to the most significant ones and modify data when previously

mined data change in some way.

Model: After the data have been assessed and modified, data modeling techniques (e.g.

neural networks, tree-based models, logistic models, and other statistical models such

as time series analysis and survival analysis) are used to construct models that explain

“pattern” in the data and each of them (i.e. data modeling techniques) is appropriate

within specific data-mining situations depending on the data.

 6

Assess: Assessing a model to determine how well it performs is done by applying it to a

portion of the data that was set-aside during the sampling stage. If it is valid, it should

work for this reserved sample as well as the sample used to construct the model.

Abbot et al. (1998) highlighted the findings of a study done by DataQuest back

in 1997 (more and better Data Mining applications have started to emerge nowadays

with the advent of more “powerful” micro-processors) where IBM was the data mining

software market leader with a 15% share of license revenue, Information Discovery

was second with 10%, Unica was third with 9% and Silicon Graphics was fourth with

6%. They went even further by evaluating data mining products or tools (vendor is

given in brackets and will be used henceforth to describe the product) namely

Clementine (ISL); Darwin (TMC); Enterprise Miner (SAS); Intelligent Miner for Data

(IBM); and Pattern Recognition Workbench (Unica) based on the following factors:

Client Server Processing: Data mining applications often use data sets far too large to

be retained in physical RAM, slowing down processing considerably as data loaded to

and from virtual memory. Also, algorithm runs far slower when hundreds of candidate

inputs are considered in models. Therefore a client server processing model has great

appeal by using a single high powered workstation for processing but let multiple

analysts access the tools from PCs on their desktops.

Automation and Project Documentation: The experimentation process involves

repeatedly adjusting algorithm parameters, candidate inputs and sample sets of the

training data. It would be a great help to automate what can be in this process in order

to free the analysts from some of the mundane and error prone tasks of linking and

documenting exploratory research findings. All five products provided means to

 7

document findings during the research process, including time and date stamps on

models, text fields to hold notes about the particular model and the saving of guiding

parameters.

Algorithms: Referring to Decision Trees, Neural Networks, Regression, Radical Basic

Functions, Nearest Neighbor, Nearest Mean Kohonen Self Organizing Maps,

Clustering and Associate Rules.

Ease of Use: Referring to Data Loading and Manipulation, Model Building and

Understanding (Specifying Models, Reviewing Trees and Reviewing Classification

Results) and Technical Support.

Accuracy: The smaller number of false alarms is better and the larger number of

fraudulent activities caught is better. Data used to grade accuracy of the tools contained

fraudulent and non-fraudulent financial transactions.

Abbot et al. (1998) found ISL’s performance on modem line was acceptably

slow. Unica’s processor capabilities must be significantly better than is required for the

others. IBM’s Java runs more slowly than other GUI designs. SAS has the largest disk

footprint of any of the tools (i.e. at 300+ MB). Unica doesn’t have Decision Trees (this

study focused on Decision Trees and Neural Networks). They (i.e. Abbot et al., 1998)

concluded that IBM’s Intelligent Miner for Data has the advantage of being the current

market leader with a strong vendor offering well-regarded consulting support. ISL’s

Clementine excels in support provided and in ease of use (given Unix familiarity) and

might allow the model iterations in a tight deadline. SAS’s Enterprise Miner would

especially enhance a statistical environment where users are familiar with SAS and

 8

could exploit its macros. Thinking Machine’s Darwin is the best when network

bandwidth is at a premium (say, on very large databases). Unica’s Pattern Recognition

Work-bench is a strong choice when it’s obvious what algorithm will be most

appropriate, or when analysts are more familiar with spreadsheets than Unix.

The detection and analysis of outliers become difficult when the data involved

is:

• Time series data because they (i.e. outliers) may be hidden in trend, seasonal or

other cyclic changes,

• Multidimensional data where not any particular one but rather a combination of

dimension values may be extreme and

• Non-numeric (i.e. categorical data) where the definition of outlier requires

special consideration.

Methods for detecting them (i.e. outliers) are (as per listed by Han and Kamber, 2001):

Online Analytic Processing (OLAP) uses data cubes to identify regions of anomalies in

large multidimensional data. For example, discovery driven exploration is an approach

where pre-computed measures indicating data exceptions are used to guide the user in

data analysis at all levels of aggregation. A cell value in the cube is considered an

exception if it is significantly different from the expected value based on a statistical

model. The method uses visual cues such as background color to reflect the degree of

exception of each cell. The user can choose to drill down on cells that are flagged as

exceptions. The measure value of a cell may reflect exceptions occurring at more

detailed or lower levels of the cube where these exceptions are not visible from the

current level.

 9

Deviation based Outlier Detection identifies outliers by examining the main

characteristics objects in a group. No statistical technique (or distance based measures)

is used. For example, Dissimilarity function does not require a metric distance between

the objects. It is any function that, if given a set of objects, returns a low value if the

objects are similar to one another. The greater the dissimilarity among the objects, the

higher the value returned by the function. The dissimilarity of a subset is incrementally

computed based on the subset prior to it in the sequence. Given a subset of n numbers

{x1,…,xn} a possible dissimilarity function is the variance of the numbers in the set that

is ∑
=

−
n

i

i xx
n 1

2)(
1

 where x is the mean of the n numbers in the set. For character strings,

the dissimilarity function may be in the form of a pattern string (e.g. containing

wildcard characters) that is used to cover all the patterns seen so far. The dissimilarity

increases when the pattern covering all of the strings in Sj-1 doesn’t cover any string in

Sj that is not in Sj-1.

Distance based outlier detection: Objects that do not have enough neighbors, where

neighbors are defined based on distance from the given object. For example, given a

data set, the index-based algorithm uses multi-dimensioning indexing structures, such

as R-trees, to search for neighbors of each object o within radius d-around that object.

Let M be the maximum number of objects within the d-neighborhood of an outlier.

Therefore, once M+1 neighbors of object o are found, it is clear that o is not an outlier.

Statistical approach: Assuming a distribution or probability model for the given data

set (e.g. normal distribution) and the identification of outliers with respect to the model

using discordance test. Other examples are as follows:

 10

• Hollmen and Tresp (2000) presented a Learning Vector Quantization (LVQ)

algorithm for learning a classifier defined by a codebook of probabilistic

models. The models implicitly define a discrimination function in the input data

space through maximum likelihood search. The prototypical codebook vectors

were replaced by generative, probabilistic models and the LVQ learning rules

were modified accordingly. The likelihood-based distance was justified by a

derivation form the Kullback-Leibler distance. The conceptual difference to

conventional training of probabilistic models is the use of supervised, gradient-

based learning instead of maximum likelihood estimation. This specially tunes

the models for discrimination. The algorithm may also be used in post-

processing to enhance the discriminative aspect of generative density models

earlier trained by using the EM algorithm.

• Hollmen and Tresp (2000) extended the Hidden Markov Model (or HMM) to

modeling time series that exhibit switching between matrix and event based

representations. This essentially combines an HMM with continuous emission

distribution and one with discrete emission distribution. Additional variable data

semantics controls the interpretation of data and is dependent on the hidden

variable. Inference and learning rules were developed within a maximum

likelihood framework. The approach was illustrated in a user profiling problem

where the mechanism leading to the event representation was important from

user profiling point of view.

• Taniguchi et al. (1998) presented three approaches to fraud detection in

communications networks. They are Neural networks with supervised learning,

Probability density estimation methods and Bayesian networks. The

 11

performance of these methods has been validated with data from a real mobile

communication networks. The feature vectors used in this application

describing the subscriber’s behavior were based on toll tickets. For supervised

learning approach, the features used were summary statistics over the whole

observed time period as no times of fraud were recorded in the data. For the two

latter approaches, the features described the daily behavior for every subscriber.

To improve the fraud detection system, the combination of the three presented

methods could be beneficial. Furthermore, the incorporation of rule-based

systems could show an improvement.

• Hollmen and Tresp (1998) presented a call based on line fraud detection system

which is based on a hierarchical regime switching generative model. The

inference rules are obtained from the junction tree algorithm for the underlying

graphical model. The model is trained by using the EM algorithm on an

incomplete data set and is further refined with gradient based discriminative

training, which considerably improves the results.

• Linoff (2004) has successfully used survival data mining (especially Kaplan-

Meier Survival Analysis) to understand customer behavior or churn such as

plots produced from using hazards formula (where in this case

 t toequalor an greater th tenureshad whoeveryone

 t nureexactly te with stopped whocustomers ofnumber
) show peaks of non-

payment and promotion ends and from using the survival formula (i.e.

cumulative probability by multiplying one minus the hazards together for all

values less than t) shows the number of customers that will survive beyond the

non-payment period. The said data mining would “censor” customers that leave

voluntarily and may be able to answer questions such as: “When will a lapsed

 12

customer return?”, “When is the next customer’s purchase?” and “How long

will an upgrade last?”.

Xing and Girolami (2007) employ Latent Dirichlet Allocation (LDA) to build

user profile signatures. The authors assume that any significant unexplainable deviation

from the normal activity of an individual user is strongly correlated with fraudulent

activity. A straightforward generalization of LDA to time-invariant Markov chains of

arbitrary order is proposed in Girolami and Kaban (2005), where the experimental

study refers to modeling the sequential usage of a telephone service by a large group of

individuals. Xu et al. (2008) presents a novel rough fuzzy set based approach to detect

fraud in 3G mobile telecommunication network. It analyzes the scenarios in 3G

network including subscription fraud and superimposed fraud and profile and confirms

the parameters to detect the scenarios. Hilas and Mastorocostas (2008) investigates the

usefulness of applying different learning approaches to a problem of

telecommunications fraud detection that is by applying multilayer perception classifier

and the hierarchical agglomerative clustering technique on five models (profiles) of

telecommunications users’ behaviors. Hilas (2009) constructs an expert system, which

incorporates both the network administrator’s expert knowledge and knowledge

derived from the application of data mining techniques on real-world data. The

detection of individual fraud call which are of the time series type become tricky as

they may be hidden in trend, seasonal, or other cyclic changes. The problem becomes

more complicated when multidimensional data are considered. Such problem may be

classified as the problem of detecting outliers.

Gomez-Restrepo and Cogollo-Florez (2012) evaluate the implementation of

generalized linear mixed models to detect fraud. They consider the heterogeneity of

 13

customers and generate not only a global model, but also a model for each customer

which describes the behavior of each one according to their transactional history and

previously detected fraudulent transactions. In particular, a mixed logistic model is

used to estimate the probability that a transaction is fraudulent, using information that

has been taken by the banking systems in different moments of time.

1.2 Statement of the problem

The number of literatures that discuss about pattern recognition method (namely

Gaussian Mixed Model, GMM) used to detect fraud activities in telecommunication

industry involving real data other than speech recognition’s format is limited and GMM

is considered as difficult in reality because we need to find the initial estimates of

parameters to start Expectation Maximization (EM) algorithm and the exact number of

components. Telekom Malaysia Berhad, a leading telecommunication company in

Malaysia, via their current system or application believes the real data collected by

them (e.g. duration and charging or billing) from its exchanges are contaminated by

fraud activities and, since GMM is not included on the list of methods, there is no

knowing if their findings are statistically correct.

1.3 Objectives

Based on the statement of the problem given above, we have outlined the

following objectives for this study:

 14

• To improve Gaussian Mixed Model (GMM) from its known (or current) weaknesses

(or difficulties) such as finding the initial estimates of parameters to start Expectation

Maximization (EM) algorithm and finding exact number of components.

• To introduce a new algorithm that is capable of detecting fraud activities (especially)

in telecommunication industry and that incorporates the improvement as mentioned in

the first bullet.

• To test the new algorithm (at the same time improving the EM algorithm for GMM)

using simulation data and real data (e.g. duration and charging or billing) collected

from Telekom Malaysia Berhad’s exchanges that are believed to be contaminated by

fraud activities.

1.4 Significance of the study

In addition to contributing to the knowledge in statistics, the findings from this

study will encourage the use of statistical methods (in this case, Gaussian Mixed

Model) in detecting fraud activities in telecommunication industry by incorporating

them into the company’s decision support system.

1.5 Thesis outline

This research attempts to detect fraud in telecommunication using pattern

recognition method and it is outlined as follows:

 15

Chapter two provides a literature review about the use of pattern recognition method in

detecting fraud activities in Telecommunication industry where special attention is

given to Gaussian Mixed Model (GMM). Formulas involved in GMM and Expectation

Maximization, an algorithm typically used in solving the problem of calculating

maximum likelihood estimation, are listed and derived.

Chapter three attempts to use Gaussian mixed model which is a probabilistic model

normally used in speech recognition to identify fraud calls in the telecommunication

industry. We look at several issues encountered when calculating the maximum

likelihood estimates of the Gaussian mixed model using an expectation maximization

algorithm. Firstly, we look at a mechanism for the determination of the initial number

of Gaussian components and the choice of the initial values of the algorithm using the

kernel method. We show via simulation that the technique improves the performance of

the algorithm via simulation. Secondly, we develop a procedure for determining the

order of the Gaussian mixed model using the log-likelihood function and the Akaike

information criteria (AIC). Finally, for illustration, we apply the improved algorithm to

real telecommunication data. The modified method will pave the way to introducing a

comprehensive method for detecting fraud calls in future work.

Chapter four proposes a new fraud detection algorithm that uses Gaussian mixed

model, a probabilistic model normally used in recognizing a person’s voice in speech

recognition field. Using data obtained from one of the leading telecommunication

company in Malaysia, we show that the proposed algorithm has not only successfully

detected fraud calls as suspected by the company, but also identify suspicious calls

which can be candidates of fraud call. The proposed algorithm is easy to implement

 16

with a great potential to be extended to detect billed (or outgoing) fraud calls and hence

reduces the loss incurred by the telecommunication companies.

Chapter five shows the successful derivation of hypothesis testing in the determination

of the number of components in GMM, which is an important process as highlighted by

a number of authors. The performance of the hypothesis testing and the comparison of

its results with those of AIC will also be highlighted in this chapter.

Chapter six proposes a new algorithm than can be efficiently used to identify fraud

activities. The algorithm is developed by finding the characteristics of historical fraud

and non-fraud calls and is consequently used in identifying possible fraud call instantly

for immediate call verification process. Using data obtained from one of the leading

telecommunication company in Malaysia, we show that the proposed algorithm has

successfully detected outgoing fraud calls as suspected by the company.

Chapter seven presents the general conclusion and highlights the significant

contributions of this research, moreover, we also suggest several possibilities for

extending research work on fraud detection in telecommunication using pattern

recognition method.

Appendices A and B present the programming language (and software) used to produce

the results in this thesis and a sample of real data supplied by Telekom Malaysia

Berhad, respectively.

 17

CHAPTER 2

GAUSSIAN MIXED MODEL

2.1 Introduction

Jain et al. (2000) defines a pattern “as opposite as a chaos; it is an entity,

vaguely defined, that could be given a name”. For example, pattern could be a

fingerprint image, a handwritten cursive word, a human face, or a speech signal. They

added given a pattern, its recognition/classification may consist of one of the following

tasks: 1) supervised classification (e.g. discriminate analysis) in which the input pattern

is identified as a member of predefined class, 2) unsupervised classification (e.g.

clustering) in which the pattern is assigned to hitherto unknown class. They noted that

the recognition problem here is being posed as a classification or categorization task,

where the classes are either defined by the system designer (in supervised

classification) or are learned based on the similarity patterns (in unsupervised

classification).

Reynolds (1995) presented an overview of his research efforts in automatic

speaker recognition. He based his approach on a statistical speaker-modeling technique

that represents the underlying characteristic sounds of a person's voice. Using the said

technique, he built speaker recognizers that are computationally inexpensive and

capable of recognizing a speaker regardless of what is being said. Performance of the

systems is evaluated for a wide range of speech quality; from clean speech to telephone

speech, by using several standard speech corpora. Reynolds and Rose (1995)

 18

introduced the use of Gaussian Mixed Model (GMM) for robust text-independent

speaker identification. The focus of their work is on applications which require high

identification rates using short utterance from unconstrained conversational speech and

robustness to degradations produced by transmission over a telephone channel.

The function of GMM is extended to detect fraud activities on the number (as

well as length) of domestic and international calls made on a daily basis during office,

evening and night hours. Tanigushi et al. (1998) presented three approaches to fraud

detection in communication networks: neural networks with supervised learning,

probability density estimation methods and Bayesian networks. Information describing

a subscriber’s behavior kept in toll tickets was used. For example, supervised learning

used summary statistics over the whole observed time period (especially the number of

times fraud activities were recorded in the data). The two latter approaches used a

subscriber’s daily behavior. To improve the fraud detection system, they recommended

the combination of the three presented methods together with the incorporation of rule-

based systems.

The maximum likelihood estimation for a GMM is generally difficult to obtain

directly, but it is made easier with the availability of the Expectation Maximization

(EM) algorithm which was first introduced by Dempster et al. (1977). Since then, there

has been a significant increase of its use especially in finding the maximum likelihood

for probabilistic models. For example, Hollmen and Tresp (1998, 2000) developed an

online system for detecting fraud calls using a hierarchical switching generative model.

The model is trained by using the EM algorithm on an incomplete data set and is

further improved by using a gradient-based discriminative method. Redner and Walker

(1984) discussed the formulation as well as the theoretical and practical properties of

 19

the EM algorithm for mixture densities, focusing in particular on mixtures of densities

from exponential families. Xu and Jordan (1996) built up the mathematical connection

between EM algorithm and gradient based approaches for maximum likelihood

learning of finite Gaussian mixtures.

2.2 Gaussian Mixed Model

Let x ∈ R
d and K be the number of components where each component has its

own prior probability ai and probability density function with mean iµ and covariance

.,1, Kii K=Σ A Gaussian mixed model is then given by

() ()
∑∑

=

−

=









 −−−
=

K

i

ii

t

i

i

d
i

K

i

iii aa
1

1

1 2
exp

||)2(

1
),|(

µxΣµx

Σ
Σµx

π
φ (2.1)

where 1
1

=∑
=

K

i

ia . We next define the likelihood function and the log-likelihood function

by ∏
=

=
n

j

jfL
1

)|()|(θθ xX and ∑ ∑
= =









=

n

j

K

i

iijial
1 1

),|(log)|(ΣµxX φθ where

()tt

n

t xxX ,,1 K= respectively. The maximum likelihood estimation (m.l.e) method aims

at finding θ̂ that maximizes)|(θXl , see Mardia et al. (1979). The expression









∑

=

K

i

iijia
1

),|(log Σµxφ in)|(θXl is difficult to compute. We use the Expectation

Maximization (EM) algorithm to overcome this problem.

 20

2.2.1 Expectation Maximization algorithm

In a general set-up of the EM algorithm given in Dempster et al. (1977), the

authors considered an unobservable variable X in sample space X, which is indirectly

observed through observed variable Y in sample space l. Assuming that ()θ|xf is

the sampling density depending on the parameter Ω∈θ , the corresponding family of

sampling densities for Y , say ()θ|yg , can be derived from

∫=
)(

)|()|(
y

dxxfyg
χ

θθ (2.2)

where χ (y) is a subset of X under the mapping x → y(x) from X to l. The main

objective of the EM algorithm is to find the value of θ that maximizes equation (2.2).

Consider the expected value of)'|(log θxf given y and θ, denoted by)(θθ |'Q , where

),|)'|((log)|'(θθθθ yxfEQ = (2.3)

with the expectation assumed to exist for all pairs ()θθ ,' and () 0| >θxf for Ω∈θ .

According to Dempster et al. (1977), the EM iteration consists of two steps namely the

E-step and the M-step. At the pth iteration with the estimate of θ denoted by)(pθ , the

E-step will give the value of ())(| pQ θθ and the M-step will find a new estimate of θ ,

say)1(+pθ , that maximizes ())(| pQ θθ . The steps are repeated until convergence is

achieved.

 21

For the case of a GMM, we define () 







= ∏

=

θφθθ ,,|log)|'(
1

'''
XΣµx

n

i

yyiy iii
aEQ

where yi∈{1,2,…,K} and yi=k if the i
th sample is generated by the k

th mixture

component. It is simplified by applying, amongst others, the Bayes formula

() () ()θθθ Pxfxf || ∝ where ()xf |θ is the posterior probability, ()θ|xf is the

likelihood function and ()θP is the prior probability to the following equations (see

Bilmes, 1998, and Tsay, 2005):

()∑∑∑∑
= == =

+=
n

i

K

k

kkiki

n

i

K

k

kki papQ
1 1

''

,

1 1

'

, ,|loglog)|'(Σµxφθθ (2.4)

where

()
()∑

=

l

llil

kkik
ki

a

a
p

'''

'''

,
,|

,|

Σµx

Σµx

φ

φ
 and (2.5)













 −−−
=

−

2

)()(
exp

||)2(

1
),|(

'1''

'

'' kik

t

ki

k

dkki

µxΣµx

Σ
Σµx

π
φ (2.6)

Hence, the EM iteration for a GMM is defined by:

E-Step: Use equation (2.5).

M-Step: Use the formulas

∑=
i

ijj p
n

a
1' ,

∑

∑
=

i

ij

i

iij

j
p

p x

µ
' ,

()()

∑

∑ −−

=

i

ij

i

t

jijiij

j
p

p ''

'

µxµx

Σ (2.7)

 22

The above steps (i.e. E-step and M-step) are repeated until convergence is achieved.

The first equation of (2.7) which maximizes equation (2.4) is derived by using

Lagrange multipliers (Spiegel, 1974) on the first expression of equation (2.4), i.e.

()∑
ji

jij ap
,

'logmax subject to 1' =∑
j

ja , followed by ()




+

∂

∂
∑

*,

'

**'
log

ji

jij

j

ap
a

01
*

'

* =
















−∑

j

jaλ . The results from the derivative are as follows: 0
1

'
=+













∑

=

λ
n

i j

ij

a

p
 and

n−=λ . Performing a simple mathematical procedure on the derivative’s results, we

get the first equation of (2.7), i.e. ∑=
i

ijj p
n

a
1' .

We apply the derivative to the extended version of equation (2.4)’s second

expression and limited to () ()∑ −−
−

*,

'

*

1'

*

'

**
2

1

ji

jij

t

jiijp µxΣµx . We equate it to zero, i.e.

() () 0
2

1

*,

'

*

1'

*

'

**'
=










−−

∂

∂
∑

−

ji

jij

t

jiij

j

p µxΣµx
µ

 or

() 0
2

1

*,

'

*

1'

*

'

*

1'

*

'

*

'

*

1'

*

1'

**'
=










+−−

∂

∂
∑

−−−−

ji

jj

t

jij

t

jjj

t

iij

t

iij

j

p µΣµxΣµµΣxxΣx
µ

 (2.8).

The results for second, third and fourth expressions of equation (2.8) are as follows

where we use Ay
x

Ayx
=

∂

∂ t

 and a
x

xa
=

∂

∂ t

 (Mardia et al., 1979):

() ()∑∑
−−

=










∂

∂

i

t

j

t

iij

ji

jj

t

iij

j

pp
1'

*,

'

*

1'

**' 2

1

2

1
ΣxµΣx

µ
,

() ()∑∑
−−

=










∂

∂

i

ijij

ji

ij

t

jij

j

pp xΣxΣµ
µ

1'

*,

1'

*

'

**' 2

1

2

1
 and

() ()∑∑
−−

=










∂

∂

i

jjij

ji

jj

t

jij

j

pp '1'

*,

'

*

1'

*

'

**'
2

2

1

2

1
µΣµΣµ

µ

 23

Applying the results to equation (2.8), we get the second equation of (2.7), i.e.

∑

∑
=

i

ij

i

iij

j
p

p x

µ
' .

We repeat the above steps but this time on the extended version of equation

(2.4)’s second expression, i.e. () ()∑ +−−
−

*,

'

*

1'

*

'

**
2

1

ji

jij

t

jiijp µxΣµx

()()∑
*,

'

** 2log
2

1

ji

j

d

ijp Σπ . We apply the derivative and equate it to zero, i.e.

() () ()() 02log
2

1

2

1

*, *,

'

**

'

*

1'

*

'

**1'
=










+−−

∂

∂
∑ ∑

−

−
ji ji

j

d

ijjij

t

jiij

j

pp ΣµxΣµx
Σ

π (2.9).

The results for first and second expressions of equation (2.9) are as follows where we

use)(
)(

yyy
x

xy
Diag

tr t −+=
∂

∂
 and)(∑∑ = t

iii

t

i tr xxAAxx (Mardia et al., 1979):

() () ()() −−−=









−−

∂

∂
∑∑

−

−
i

t

jijiij

ji

jij

t

jiij

j

pp ''

*,

'

*

1'

*

'

**1'
2

2

1

2

1
µxµxµxΣµx

Σ

()() 







−−∑

i

t

jijiijpdiag ''

2

1
µxµx

and

()() ()()∑∑ −=










∂

∂
−

i

jjij

ji

j

d

ij

j

diagpp ''

*,

'

**1'
2

2

1
2log

2

1
ΣΣΣ

Σ
π

Applying the results to equation (2.9), we get

()() −







−−− ∑∑

i

jij

i

t

jijiij pp ''' Σµxµx

()() 0
2

1 ''' =







−−− ∑∑

i

jij

i

t

jijiij ppdiag Σµxµx (2.10).

The condition as displayed by equation (2.10) is satisfied when

 24

()() 0''' =−−− ∑∑
i

jij

i

t

jijiij pp Σµxµx . (2.11)

Performing a simple mathematical procedure on equation (2.11), we get the third

equation of (2.7), i.e.

()()

∑

∑ −−

=

i

ij

i

t

jijiij

j
p

p ''

'

µxµx

Σ .

2.3 Summary

 A brief introduction to pattern recognition method namely Gaussian Mixed

Model (GMM) is given. The said method is commonly used in voice recognition

technique and used EM algorithm to solve the problem related to maximum likelihood

estimation. The introduction also listed all of the equations where derivation and

weaknesses are provided for some of them.

In the coming chapters, we will focus on the strength and weaknesses of GMM

to detect fraud activities in telecommunication industry by using real data different

from those that are normally used in voice recognition technique and propose a solution

to solve them.

 25

CHAPTER 3

IMPROVED EXPECTATION MAXIMIZATION ALGORITHM FOR

GAUSSIAN MIXED MODEL USING THE KERNEL METHOD

3.1 Introduction

A number of authors highlighted the importance of identifying the right number,

say k, of components in a GMM and subsequently choosing good initial values for the

model parameters iµ and 2
iσ , k21i K,,= , in the EM algorithm. Schlattmann (2003)

noted the difficulty of using log-likelihood ratio statistics to test the number of

components and subsequently suggested using a non-parametric bootstrapping

approach. Similarly, Wang et al. (2004) pointed out the same concerns and introduced

an algorithm called the stepwise-split-and-merge EM algorithm to solve the said

problem. In addition, Miloslavsky and Van Der Laan (2003) investigated the possibility

of using the minimization of the Kullback-Leiber distance between fitted mixture

models and the true density as a method for estimating k where the said distance was

estimated using cross validation. Zhuang et al. (1996) viewed the mixture distribution

as a contaminated Gaussian density and proposed a recursive algorithm called the

Gaussian mixture density decomposition Algorithm for identifying each Gaussian

component in the mixture. Other works on this topic can also be found, for example, in

Lee et al. (2006) and Celeux and Soromenho (1996).

This chapter attempts to use Gaussian mixed model which is a probabilistic

model normally used in speech recognition to identify fraud calls in the

 26

telecommunication industry. We look at several issues encountered when calculating

the maximum likelihood estimates of the Gaussian mixed model using an expectation

maximization algorithm. Firstly, we look at a mechanism for the determination of the

initial number of Gaussian components and the choice of the initial values of the

algorithm using the kernel method (Section 3.2). We show via simulation that the

technique improves the performance of the algorithm (Sections 3.3 and 3.4). Secondly,

we develop a procedure for determining the order of the Gaussian mixed model using

the log-likelihood function and the Akaike information criteria (Section 3.5). Finally,

for illustration, we apply the improved algorithm to real telecommunication data

(Section 3.6). The modified method will pave the way to introducing a comprehensive

method for detecting fraud calls in future work.

3.2 The Kernel Method

The kernel method can be used to find the probability density estimate for

univariate data, see for example Silverman (1986). Let hxi 3)min(−<α ,

hxi 3)max(+>β , rM 2= (for some integer r), h be the bandwidth,
M

αβ
δ

−
= and

δα ktk += be the thk grid point where 110 −= Mk ,,, K . The density estimate at grid

point kt is represented by the following equation:

∑ ∑
−=

−

=






















−
−







−
















≈

2

2

2

2
1

0

2

2

12
exp

2
exp

1
)(ˆ

M

M
l

M

k

kk

l
hi

M

kl
i

M

kl

M
tf

αβ

πππ
ξ (3.1)

where 12 −=i .

 27

For []1, +∈ kk ttx , the density estimate)(ˆ xf is defined by

∑
=








 −
=

n

i

i

h

xx
K

nh
xf

1

1
)(ˆ where n equals to total number of observations and









−= 2

2

1
exp

2

1
)(ttK

π
. To compute)(ˆ xf at a grid of points, a method which makes

use of the Fourier transform is employed. Let)(
~

sf be the Fourier transform of the

kernel density estimate)(ˆ xf . It can be shown that

())(
2

1
exp)()(

~
2)(

~ 22
2

1

sushsuhsKsf 







−== π where)(

~
sK is the Fourier transform of

the Gaussian kernel and () ()∑
=

−−
=

n

j

jisxnsu
1

1
2

1

exp2)(π is the Fourier transform of the

data. Thus, () ()∫
−−

= dssuhsKexf isx)()(
~

22)(ˆ 2

1

2

1

ππ is the convolution of the data with

the kernel.

We will use the following algorithm by Silverman (1986) to discretize the data

to very fine grids, and to find)(ˆ xf by convolving the data with the kernel.

Step A: Discretize the data to find the weight sequence { }kξ with 82=M . If

[]1, +∈ kk ttx , it is split into a weight ()xt
n

k −+12

1

δ
 at kt and a weight ()ktx

n
−

2

1

δ
 at

1+kt ; these weights are accumulated over all the data points ix to give a sequence of

(
kξ) weights summing up to

δ

1
.

 28

Step B: Find the sequence { }lY defined by ∑
−

=

−








=

1

0

1 2
exp

M

k

kl i
M

kl
MY

π
ξ where

22

M
l

M
≤≤− . It can be shown that when 0=α , () ())(2

1
2

1

ll suY
−

−≈ αβπ where

αβ

π

−
=

l
sl

2
.

Step C: Find the sequence { }*
lζ where lll Ysh 








−= 22*

2

1
expζ . Here, 5

1

9.0
−

= Anh

where 







=

34.1
,min
IQR

sdA , sd is the standard deviation, and IQR is the inter-quartile

range. The IQR is chosen here by Silverman (1986), who claimed that the

bandwidth is useful for a wide range of densities.

Step D: Let kζ be the inverse discrete Fourier transform of *

lζ i.e.

∑
−=









−=

2

2

* 2
exp

M

M
l

lk i
M

klπ
ζζ .

It can be shown that when 0=α , kktf ζ≈)(ˆ . We then identify
ix where its density

estimate, denoted by)(ˆ
ixf , is greater than those of its nearest neighbors 1−ix and 1+ix .

In other words,)(ˆ)(ˆ
1−> ii xfxf and)(ˆ)(ˆ

1+> ii xfxf , refer to Figure 3.1, where the

vertical line that touches kt and)(ˆ
ktf shows the location of the peak.

Note that we may obtain more than one maximum point which means that the data may

consist of more than one Gaussian distribution. These results form a very important

component of the improved EM algorithm for GMM to be described next.

 29

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

4.00E-01

4.50E-01

5.00E-01

-4.2 -3.9 -3.5 -3.2 -2.8 -2.5 -2.1 -1.8 -1.4 -1.1 -0.7 -0.4 -0 0.33 0.69 1.04 1.39 1.74 2.09 2.44 2.79 3.14 3.5 3.85 4.2 4.55

Figure 3.1 Plot of)(ˆ
ktf against

kt

3.3 Improved EM Algorithm for GMM

In this section, we propose an improved EM algorithm for GMM which can

perform both tasks: identifying the initial number of components and providing

automatic initial values for the EM algorithm. The full improved EM algorithm for

GMM is now presented:

Step 1: The kernel method as described in Section 3.2 is used to determine the number

0K of components and also the corresponding means iµ of each component,

0Ki ,1,2,= K . The initial estimates of the standard deviations iiσ are set to unity

while the prior weights ia are set to be
0K

1
;

Step 2: The EM algorithm for a GMM as described in Section 2.2 is executed to give

the final estimates of parameters iµ , iiσ and ia , 0Ki ,1,2,= K . The log-

likelihood function and Akaike information criteria (AIC) are calculated using the

said parameters;

 30

Step 3: Step 2 is repeated for other possible number K of components with iµ =0,

iiσ =1 for the other 0KK − components and ia =
K

1
.

Step 4: The log-likelihood function and AIC values for 10,1,2,K=K are plotted. The

final number of components fK is chosen when adding extra components in the

model does not significantly increase or decrease the values of the log-likelihood

function and the AIC respectively.

3.4 Simulation

We use simulation to investigate the performance of the proposed improved EM

algorithm.

3.4.1. Simulation Scheme

Simulation data were generated using the Box and Muller Transformation

(1958) as defined by equations (3.2-1) and (3.2-2) below:

1
2

1

2 2cos)log2(+−+= jjj uuz πσµ (3.2-1)

1
2

1

2

1 2sin)log2(++ −+= jjj uuz πσµ (3.2-2)

where)1,0(~, 1 Uuu jj + . For the case of two components, we start by generating a

random number)1,0(~1 Uu . If 110 au << , we generate two random numbers

 31

)1,0(~2 Uu and)1,0(~3 Uu and calculate 32 zz + using equations (3.2-1) and (3.2-2)

with
2

* 1µ
µ = , and

2
* 1σ

σ = . Otherwise, we use
2

* 2µ
µ = , and

2
* 2σ

σ = . The process

continues until the required sample size is obtained. The scheme is easily extended to

any number of components. For further details, refer to Fishman (2001).

Table 3.1 List of true values of a’s, µ’s, σ’s

Sample name and

size (in bracket)

Prior probability Mean Variance

Sample 1
Two components

1a =0.4

2a =0.6
1µ =0.0

2µ =2.0

2

1σ =1.0
2

2σ =0.25

Sample 2
Two components

1a =0.85

2a =0.15
1µ =0.0

2µ =2.0

2

1σ =1.0
2

2σ =0.25

Sample 3
Three components

1a =0.33

2a =0.33, 3a =0.34
1µ =0.0

2µ =-1.0, 3µ =4.0

2

1σ =1.0
2

2σ =0.25, 2

3σ =4.0

3.4.2 Study of performance based on log-likelihood function

We first look at the performance of the standard method, called Method 1,

followed by that of the improved method, called Method 2. For Method 1, in place of

Step 1 of the improved method, we assign values zero and unity respectively to the

means and variances of all components. We compare the performances by looking at

the log-likelihood function via simulation study.

Following Everitt and Hand (1981), we consider two cases with two

components and one case with three components with the true values of the parameters

given in Table 3.1. For each case, we generate 100 samples of size 1000 where the

chosen sample size reflects the large size of data sets found in the telecommunication

industry, the focus of our interest. Figure 3.2 shows histograms for all cases, each with

a sample of size 1000, where (a) two peaks are observed representing two components,

 32

(b) two components are observed where the second component is partially hidden and

(c) three components but only two are observed where the third component is totally

hidden. This scenario is best described by the percentage of overlapping, which will be

discussed in the later section.

(a)

(b)

(c)

Figure 3.2 The histograms of (a) Sample 1 (with overall mean and standard deviation

equal to 1.28 and 1.19, respectively), (b) Sample 2 (with overall mean and standard

deviation equal to 0.34 and 1.19, respectively) and (c) Sample 3 (with overall mean and

standard deviation equal to 1.18 and 2.62, respectively).

We then apply Method 1 and Method 2 on the simulated data. For each case and

better quality viewing, we plot only 50 values selected randomly of the log-likelihood

function for both methods on the same plot, as given in Figure 3.3. Figures 3.4, 3.5 and

 33

3.6 give the plots of log-likelihood function against number of components for the three

samples considered. It can be seen that, for Sample 1 and Sample 3, the proposed

Method 2 clearly outperforms the standard Method 1 with the values of the log-

likelihood function corresponding to Method 2 always larger than those of Method 1.

However, we see that some values overlap for Sample 2, though the proposed Method 2

still generally performs better. In this case, the prior probabilities ia are distinctly

different from the chosen values of ia in Sample 1 while other true values remain the

same which leads to different percentages of overlapping of the Gaussian components

in the GMM.

(a) Sample 1

(b) Sample 2

(c) Sample 3

Figure 3.3 Plots of values of log-likelihood function.

 34

(a) Method 1

(b) Method 2

Figure 3.4 Plot of log-likelihood function against number of components for Sample 1.

(a) Method 1

(b) Method 2

Figure 3.5 Plot of log-likelihood function against number of components for Sample 2.

(a) Method 1

(b) Method 2

Figure 3.6 Plot of log-likelihood function against number of components for Sample 3.

 35

Figure 3.7 gives the plots of log-likelihood function against number of

components for simulated data sets number 10, 25, 75 and 90 of Sample 1. It can be

seen that the log-likelihood function value improves from 1 till 2 components and

becomes constant from 2 components onwards. Figure 3.8 shows similar results for the

case simulated data sets number 10, 25, 75 and 90 of Sample 2. Figure 3.9 gives the

plots of log-likelihood function against number of components for simulated data sets

number 25, 40, 75 and 90 of Sample 3 and they show log-likelihood function value

improves from 1 till 3 components and becomes constant from 3 components onwards

thus revealing (or exposing) the so-called “hidden component”.

(a) Data#10

(b) Data#25

(c) Data#75

(d) Data#90

Figure 3.7 Plot of log-likelihood function for selected simulated data set from Sample 1

 36

(a) Data#10

(b) Data#25

(c) Data# 75

(d) Data#90

Figure 3.8 Plot of log-likelihood function for selected simulated data set from Sample 2.

(a) Data#25

(b) Data#40

(c) Data#75

(d) Data#90

Figure 3.9 Plot of log-likelihood function for selected simulated data set from Sample
3.

 37

We will investigate the performance of the improved EM algorithm in

estimating the parameters of the GMM by taking into account the effect of different

percentages of overlapping between the components observed in the data.

3.4.3 The value of intersections

The value of intersections (as shown in Figure 3.10(a)) for the case when

21 µµ ≠ , 21 σσ ≠ ,

2

1

1

2

1

1

1
2

1
)(








 −
−

=
σ

µ

πσ

x

exf and

2

2

2

2

1

2

2
2

1
)(








 −
−

=
σ

µ

πσ

y

eyf are

obtained from
a

acbb
x

2

42

11

−+−
= and

a

acbb
x

2

42

12

−−−
= where ()2

1

2

2 σσ −=a ,

()1

2

22

2

12 µσµσ −=b , and () 







−−=

1

22

2

2

1

2

2

2

1

2

1

2

2 log2
σ

σ
σσµσµσc . Firstly, using the above

formula as well as ∫
−

∞−

−

=
−

σ

µ

πσ

µ x
t

dte
x

P
2

2

1

2

1
)(, we find the area between 11x and 12x

(and convert it into percentage) for each component; refer to Figure 3.10(a). Secondly,

we find the minimum between the areas of the two components. This value represents

the percentage of overlapping between two components (which is an approximation).

For the case when 21 µµ ≠ , 21 σσ = ,

2

1

1

2

1

1

1
2

1
)(








 −
−

=
σ

µ

πσ

x

exf and

2

2

2

2

1

2

2
2

1
)(








 −
−

=
σ

µ

πσ

y

eyf , let () ()2211 22 σµσµ −−+=d . The value of the

intersection, say 1x , is approximated from the following formula:

()

()











>−+

=+

<

=

0
2

2

02

00

11

111

d
d

d

d

x

σµ

σµ .

 38

(a)

(b)

Figure 3.10 ∫ dxxf)(1 and ∫ dxxf)(2 are used to find the shaded areas as shown in (a)

and (b).

Taking similar steps, the area for the component on the left hand side of Figure

3.10(b) is obtained from ∫
−

∞−

−

−=
−

− 1

11 2

2

1

1

11

2

1
1)(1 σ

µ

πσ

µ
x

t

dte
x

P and that of the

component on the right hand side of Figure 3.10(b) from

∫
−

∞−

−

=
−

2

21 2

2

1

2

21

2

1
)(σ

µ

πσ

µ
x

t

dte
x

P . We convert them into percentages before adding them

up to represent the percentage of overlapping between two components (which is an

approximation).

 39

3.4.4 The effects of different overlapping percentages on performance

The main objective here is to investigate the performance of the improved EM

algorithm for different overlapping percentages of the components in the GMM. For

simplicity, we restrict our attention to two components so that

() ()
2211212161 σσµµaaθθ ,,,,,,,θ == K are to be estimated. Data is simulated

using the simulation scheme described in Section 3.4.1.

After performing Steps 1 and 2, we find iiiD θθ ˆ−= where iθ is the true value

of the ith parameter and iθ̂ is the EM estimate of the parameter, i=1,2,…,n. The

sample mean and standard deviation of iD are computed using formulas ∑
=

=
n

i

iD
n

D
1

1

and ()∑
=

−
−

=
n

i

DiD
nDS

1

2

1

1
. The estimates are considered good if D is close to zero,

indicating small biases observed in the simulation results, and DS is also close to zero,

indicating that the parameter estimates are concentrated around their respective true

values.

We determine the area of overlapping between the two components for each

model by using the misclassification concept given in Johnson and Wichern (1998), the

details of which are provided in Section 3.4.3. The formula to estimate the overlapping

areas depends on the mean and standard deviation of the components. The choices of

prior probabilities should not affect the estimates greatly as their sum equals unity.

We consider three cases for different combinations of parameter θ which give

different percentages of overlapping of the GMM components. The results are

 40

tabulated in Tables 3.2-3.4. Table 3.2 deals with case 1, where the true values of 1µ =0,

2µ =3.0 and 316.02211 == σσ are fixed but the true values of 1a , 2a are varied. In

all cases, the percentage of overlapping is 0% as the separation of the means is rather

large with small values of dispersion. We can see that the values of the mean are close

to zero with the small standard errors less than unity for all parameters considered. On

the other hand, Table 3.3 gives the results for case 2 where 1µ =0, 2µ =1.0,

707.022 =σ and 447.011 =σ are fixed but 1a , 2a are varied to give 25% of

overlapping. The bias is still considered small but generally larger than that for case 1.

In addition, the values are more dispersed here. Finally, Table 3.4 shows the results of

case 3 where 1µ =0, 2µ =0.25, 577.011 =σ and 414.122 =σ are fixed with 45% of

overlapping. As expected, the results deteriorate when the percentage of overlapping

increases.

For each model and final estimates of parameters, we check whether 1<D and

12 <DS . Out of six (6), we count the number of 1<D and find its percentage, which is

denoted by A. We repeat the same process for DS , that is 12 <DS , where its percentage

is denoted by B. We find the smallest percentage between A and B, which is denoted

by %Min . We then plot %Min against the range for percentage of overlapping (or

Range). Range equals to 1 represents percentage of overlapping between 0% and 25%,

2 between 25% and 50%, 3 between 50% and 75% and 4 between 75% and 100%. Note

that second component will “hide” behind the first component as Range increases.

Figure 3.11 shows median for Range equals to 1 is located at 100, 54.9% of

%Min equals to 100, and 65.2% of %Min is greater than (or equal to) 83. Range

equals to 2, its median is located at 66.67% where 35.4% of %Min is greater than (or

 41

equal to) 83. Range equals to 3, its median is similar to the above (that is 66.67%)

where 17.4% of %Min is greater than (or equal to) 83. Range equals to 4, its median is

similar to the above (that is 66.67%) where 24.2% of %Min is greater than (or equal

to) 83.

Table 3.2 Simulation results for the case 1µ =0, 2µ =3.0 and 316.02

2

2

1 == σσ

Bias, iD Prior prob.

1a 2a 1µ 2µ
2
1σ

2
2σ

1a 2a D DS D DS D DS D DS D DS D DS

0.1 0.9 -0.001 0.010 0.001 0.010 0.007 0.033 -0.003 0.013 0.000 0.014 0.001 0.004

0.2 0.8 0.002 0.013 -0.002 0.013 0.002 0.022 -0.003 0.011 0.000 0.011 0.002 0.007

0.3 0.7 -0.002 0.014 0.002 0.014 0.004 0.017 -0.002 0.010 0.002 0.009 0.001 0.005

0.4 0.6 0.003 0.020 -0.003 0.020 -0.004 0.019 -0.006 0.012 0.000 0.009 0.001 0.005

 Table 3.3 Simulation results for the case 1µ =0, 2µ =1.0, 707.02

2 =σ and 447.02

1 =σ

Bias, iD Prior prob.

1a 2a 1µ 2µ 2
1σ 2

2σ

1a 2a D DS D DS D DS D DS D DS D DS

0.1 0.9 -0.112 0.148 0.112 0.148 -0.130 0.203 -0.067 0.139 -0.030 0.103 0.034 0.068
0.2 0.8 -0.014 0.073 0.014 0.073 -0.006 0.087 0.006 0.091 0.022 0.056 0.005 0.057
0.3 0.7 0.020 0.087 -0.020 0.087 0.031 0.069 0.023 0.104 0.044 0.048 -0.006 0.075
0.4 0.6 0.067 0.075 -0.067 0.075 -0.112 0.444 0.145 0.232 -0.002 0.085 -0.021 0.099

Table 3.4 Simulation results for the case 1µ =0, 2µ =0.25, 577.02
1 =σ and 414.12

2 =σ

Bias,
iD Prior prob.

1a 2a 1µ 2µ
2
1σ

2
2σ

1a 2a D DS D DS D DS D DS D DS D DS

0.1 0.9 0.089 0.007 -0.089 0.007 -0.817 3.770 0.045 0.048 -0.341 0.823 0.305 0.095
0.2 0.8 0.157 0.108 -0.157 0.108 0.291 3.521 0.075 0.073 -0.169 0.374 0.413 0.256
0.3 0.7 0.237 0.100 -0.237 0.100 -0.205 2.924 0.105 0.121 -0.278 0.389 0.578 0.278
0.4 0.6 0.245 0.187 -0.245 0.187 0.602 2.520 0.092 0.108 -0.008 0.258 0.508 0.435

 42

23296430964826N =

Range

4321

M
in

%

120

100

80

60

40

20

5093509454505673577158525915591659175918617163056443669566966722693469466947

68606818681667666661665966556413641264096406640464036282605760546053605160486047598559845983588258815793578857545558555655485544544953365330528952885107

605660505791578957875552555155435341533953375335518151795177517555555547

33043525355737213730377338063870387439603961396240184026423842754277427843924441452245484552465548407249729272947326732773387372737373747482748475677568756975707609763576367637763876547738776477667770777677777800781478327835783678377838784278457862790679127913791480018002805080648066808380848085808680928093809481968197819882048205820682378238825282548260826282708272827782788286831383238324832583268348834983508408841384148445851685198557856185628570860086018613861486208621862286278649865086628667866886698670868686888689870187028745876587748775877687828789879087948796879888048805880688208825882688448845884788508862889388988922892589268928892989308933893489418942894989548956895789588979898089818985898689898990900890099010901890219035903690399048905790589069907990809082908690879089909290939100910291049106910991129113911591179118

3029303032383290330635263558377438784114

904490278996899589928987897489728971896589638961890388338817881588138811879587938791871585718564856385518521851885128230815681318128769776887683768276797483748174797355728948724868486548604680466843054260387638753872386838643728372637253722347532703268323732353233323131093106

879785668554855385528520851481588157815581468145814481438134813381328129812781258123805880578056805578787876787577947793779277917769776777657763768476817678767676757550754975487547735873577356734673457344734372937291728750055003500149994871486748634859467946754671466745534551454945474309430743033871386738633719357335713569356733053303330132993107310531033074307330723071856585178511787776854672

Figure 3.11 %Min is plotted against Range for Box and Whisker plot.

We conclude that the improved EM algorithm for GMM performs well when

the percentages of overlapping are small, but its performance is affected when the

percentages increase.

3.5. Determination of the final number of components in the GMM using AIC

In the last two steps of the improved algorithm, we intend to confirm that the

choice of the initial number 0K of components in the GMM using the kernel method is

final. This can be done by considering extra components in the model. For that, as

stated in Section 3.3.3, we repeat Step 2 for other possible numbers K of components,

by setting iµ =0, iiσ =1 for the other 0KK − components and ia =
K

1
. The final

number of components fK is chosen when adding extra components neither increases

the log-likelihood nor decreases the AIC values significantly. The changes can easily

be seen on a line plot of the values. Figure 3.12 shows the plots of AIC against number

of components for data set, each from (a) Sample 1, (b) Sample 2 and (c) Sample 3 of

Section 3.4.2. All of them show concave like shape where AIC decreases to a

minimum value and then increases as the number of components increases. The

 43

minimum value gives the exact number of components for the plots of AIC against

number of components. In the case of Figure 3.12, plots (a) and (b) give 2 components

and plot (c) gives 3 components.

2900

2950

3000

3050

3100

3150

3200

3250

3300

0 2 4 6 8 10 12

No. of components

A
IC

(a) Sample 1

3130

3140

3150

3160

3170

3180

3190

3200

0 2 4 6 8 10 12

No. of components

A
IC

(c) Sample 2

4000

4100

4200

4300

4400

4500

4600

4700

4800

0 2 4 6 8 10 12

No. of components

A
IC

(c) Sample 3

Figure 3.12 Plot of AIC of three data sets generated from samples defined in Table 3.1.

3.6 Real example – Phone call data

The call detail record, which was supplied by Telekom Malaysia Berhad

(henceforth, TM), consists of calls made by customers that fell victim to fraud

activities. Table 3.5 shows the format of the call detail record for each TM customer.

We performed several steps on the original data in order to have the data in a desired

format i.e. group the real data according to Service No, find the country that matches

the Country Code and sort the real data according to Seize Time. The column entitled

 44

“Seize time” gives the time when the call was made; the 4th and 5th columns detail the

duration of the call in the following format: day (dd), hour (hh), minute (mm) and

second (ss); and the 6th column is the result of converting the information in the 4th and

5th columns into day format.

We consider real data consisting of the duration of each call made by Customer

A, whose identity is not revealed to ensure confidentiality, on 31st March 2011 as

displayed in Figure 3.13. Step 1 of the improved EM algorithm for GMM identifies

two initial components. The plot of the log-likelihood function and AIC in Figure

3.14(a) and (b) are the results from performing Steps 2, 3 and 4 of the improved EM

algorithm for GMM, which reveal that the EM algorithm fails to achieve convergence

when the number of components equals to five or above. It can also be seen that a

GMM with 2 components is identified as the ‘best’ model, since the inclusion of more

components not only fails to increase the value of the log-likelihood, but also fails to

decrease the values of the AIC. The final EM estimates for the two-component GMM

are 6401 .ˆ =a , 3602 .ˆ =a , 6601 .ˆ −=µ , 1712 .ˆ =µ , 07011 .ˆ =σ and 35022 .ˆ =σ ,

and they represent the behavior of calls made by Customer A on 31st March 2011. In

the following chapters, we will show how the above information produced from the

improved EM algorithm for GMM can be used in the process of detecting fraud

activities in the telecommunication industry.

Table 3.5An extract from the TM’s customer call detail record.

Service
number

Dialed
digits

Seize time Duration
(hhmmss)

Duration
(dd)

Duration
(Convert into day

format)

Xxx yyy 8:41:37 000339 00 0.002534722

Xxx yyy 9:27:03 000035 00 4.05E-04

Xxx yyy 9:43:46 000048 00 5.56E-04

Xxx yyy 9:50:21 000031 00 3.59E-04

Xxx yyy 10:54:30 000138 00 0.001134259

 45

Figure 3.13 Duration (in day format) is displayed in the histogram.

(a)

(b)

Figure 3.14 Plots of (a) log-likelihood values (b) AIC values.

3.7 Summary

In this chapter, we proposed a modified EM algorithm which can numerically identify

the number of components of a GMM and estimate the parameters of the model using

the kernel method. We showed via simulation that the performance of the algorithm is

generally good but, as expected, is affected by increasing percentages of overlapping of

the Gaussian components. We then used the line plots of the log-likelihood and AIC

 46

values to identify the final number of GMM component. They could clearly be

determined via the concave-like shape of the AIC plot, which indicates that the AIC

decreases to a minimum value and then increases as the number of components

increases. Finally, the modified EM algorithm for GMM was tested on real

telecommunication data. The results serve as testimony to the effectiveness of the

improved EM algorithm for GMM and should be useful when considering the problem

of fraud calls faced by the telecommunication companies.

 47

CHAPTER 4

FRAUD DETECTION IN TELECOMMUNICATION INDUSTRY USING

GAUSSIAN MIXED MODEL

4.1 Introduction

Gaussian Mixed Model (GMM) has been widely used in voice recognition as

exemplified next: suppose we have Totspeak speakers where each has Totsamp samples

of recorded voices to be used as training data as shown in Figure 4.1 surrounded by the

dotted line. Next, the GMM is fitted on each sample of recorded voice where it is in

vector format after going through the coded process. The GMM parameters namely

prior probability, mean and covariances are saved inside the database in training matrix

format. They are given special designation as shown on the bottom right of Figure 4.1.

For example, kjia
,,

 is the prior probability for i-th speaker with corresponding j-th

sample and k-th component. ()jiK , is the maximum number of components for the

said speaker and sample. The identification of a new speaker is done as follows: the

speaker’s recorded voice is coded into vector T

l
x , n,,Kl 1= , based on standard voice

recognition criteria as shown on the top left of Figure 4.1. The vector would be known

as data matrix from this point onwards. Next, the data matrix is used in

∑ ∑
= =








n

L

jiK

k

kjikjiLkjia
1

),(

1

),,(),,(),,(),|(log Σµxφ that produce log-likelihood function for each

training matrix. All log-likelihood functions produced are compared and the maximum

one is chosen. The parameters that give the maximum log-likelihood function,

especially its designation in the database, reveal the speaker’s true identity.

 48

Figure 4.1 The use of GMM in voice recognition technique.

We use the idea given above to detect fraud activities in the telecommunication

industry. In our case, the training data is based on customer’s call behavior for a period

of Totspeak days. The training matrix is produced from say duration of each call made

for a particular day. The duration of each call made in the subsequent day will be

treated as the data matrix. We are interested to identify the behavior saved in the

training data that is similar to the one saved in the data matrix. This is the first step of

our proposed algorithm for detecting fraud calls, which will be highlighted in Section

4.2.

This chapter, via Section 4.2, proposes a new fraud detection algorithm that

uses Gaussian mixed model, a probabilistic model normally used in recognizing a

person’s voice in speech recognition field. Using data obtained from one of the leading

telecommunication company in Malaysia (Section 4.3), we show, via Section 4.4, that

 49

the proposed algorithm has successfully not only detected fraud calls as suspected by

the company, but also identify suspicious calls which can be candidates of fraud call.

The proposed algorithm is easy to implement with a great potential to be extended to

detect billed (or outgoing) fraud calls and hence reduces the loss incurred by the

telecommunication companies. Details of Gaussian Mixed Model (GMM) (together

with Expectation Maximization, EM, algorithm) and improved EM algorithm for GMM

can be found in Chapter 2 and 3, respectively.

4.2 Algorithm for detecting fraud calls

The proposed algorithm for detecting fraud calls in telecommunication involves

the following steps as described in Figures 4.1 and 4.2:

Step One: For the selected customer, we perform the steps as per given in Chapter 3

(improved EM algorithm for GMM) on a given data set (which represent say the 1st

day, refer to Table 4.1), and save the final estimates of parameters together with the

log-likelihood functions (which gives the minimum AIC) in the text file called

“database” (refer to Figure 4.3).

We repeat the process for the rest of the data sets, which represent the 2nd day

till 7th day. Note that the first seven days are assumed to be “free” from fraud activities

and they represent customer’s behavior for the first week1.

Step Two: The saved parameters are used on the data sets for the 8th day onwards,

which include choosing the one that gives the maximum log-likelihood function and

comparing the maximum log-likelihood function with the one saved in the database

(Mardia et al., 1979, mentioned allocate x to the population which gives the largest

1 The number of days is not fixed and can be reduced for newly registered customers.

 50

likelihood to x) as shown in Figure 4.4. In the said figure, except for the last row, the

first column shows the name of the file where the real data is obtained and the second

Figure 4.2 Flow-diagram showing the steps that are needed to detect fraud activities.

BEGIN

null;8.27205882352941E-4;7.793628360996634E-4;Lambda;Power

2_Normalized_Massaged_TMData_XXX.txt;Filename

2;No of components

2;-17.02083611317418;-1000.0;No of components;LLF;SD

0.6411573990790228;-

0.6564611309420394;0.06975010234300855;Alpha;Mu;Sigma

0.35884260092097725;1.1729234773993837;0.352458162932219;Alpha;Mu;Sigma

END

BEGIN

-7.528699885739343E-16;-

7.688105006114814;1.3737495007245424;Lambda;Power

3_Normalized_Massaged_TMData_XXX.txt;Filename

1;No of components

1;-36.38253259232894;-1000.0;No of components;LLF;SD

1.0;5.102755824719469E-16;0.961538461538469;Alpha;Mu;Sigma

END

Figure 4.3 Example of results from Step One.

72_XXX -5.10039 58_XXX -5.10039

72_XXX -5.1276881 60_XXX -12.240423

72_XXX -5.104467 66_XXX -6.5368338

72_XXX -5.1316998 67_XXX -13.662583

72_XXX -5.10039 69_XXX -5.10039

72_XXX -5.10039 71_XXX -5.10039

max llf -5.10039 (null) 71_XXX -5.10039 -2.26E-15

Figure 4.4 Example of results from Step Two (involving log-likelihood function).

 51

column shows the calculated log-likelihood function from using the parameters saved

in the database. The details of the parameters are given in the third (i.e. the name of the

file) and fourth (i.e. the log-likelihood function) columns. The last row shows the

maximum log-likelihood function found from comparing the values in the second

column. The information corresponding to the maximum log-likelihood function in the

third and fourth column is also captured.

Step Three: Dissimilarity coefficient (or dc) is calculated and the said coefficient is

defined by









><
−

>>
−

=
ABBAif

A

BA

ABBAif
B

AB

dc

0,

0,

where A and B are log-likelihood functions of training data and observation,

respectively. The percentage of similarity coefficient is defined by (1.0-dc)100%. High

dissimilarity will result in low similarity and vice-verse. No similarity is observed when

A and B are having different signs that is the percentage of similarity coefficient is zero

when 0>B and 0<A
2.

67_XXX -

11.29525

(0.5488501726894228,

Moderate_Similarity)

15_XXX -

25.03658

(null)

68_XXX -5.10039 (null) 38_XXX -5.10039 (1.741393151905200

5E-

16,High_Similarity)

69_XXX -

3.489596

(0.757039164822191,Lo

w_Similarity)

19_XXX -

14.36279

(null)

70_XXX -

11.10145

(0.19362934575160162,

High_Similarity)

37_XXX -

13.76717

(null)

71_XXX -

2.693121

(0.43939063059603395,

Moderate_Similarity)

33_XXX -

4.803917

(null)

72_XXX -5.10039 (null) 71_XXX -5.10039 (2.263811097476761

E-

15,High_Similarity)

73_XXX -

11.23451

(0.260756177742852,Hi

gh_Similarity)

26_XXX -15.1973 (null)

Figure 4.5 Example of results from Step Four (involving Similarity coefficient).

2 In reality 0, <BA , refer to Chapter 5.

 52

Step Four: Similarity coefficient is assigned to Low Similarity group when it (after

converting into percentage) is less than (or equal to) 30%, Moderate Similarity group

when it is greater than 30% and less than (or equal to) 70% and High Similarity group

when it is greater than 70% as exemplified in Figure 4.5.

In the said figure, the first column shows the list of files that gone through Steps

One till Three, the second column shows the maximum log-likelihood function, the

information about the parameters used to calculate the maximum log-likelihood

function are given in the fourth and fifth columns and similarity coefficient and its

group are given in the third and sixth columns (they are placed in a bracket).

The assignment of the similarity group is based on the approach taken by

Turkmen (2013) for correlation coefficient, denoted by r, to describe the strength of

relationship: None: r from -0.1 to 0.1; Weak: r from 0.1 to 0.3 or from -0.3 to -0.1;

Moderate: r from 0.3 to 0.5 or from -0.5 to -0.3; Strong: r from 0.5 to 1.0 or from -1.0

to -0.5.

Step Five: If similarity coefficient between maximum log-likelihood function and the

one saved in the database is 0.3 and below (or in terms of percentage, 70 and above)

then no updating is performed on the database.

Step Six: Updating is performed on the database if, in terms of percentage, less than 70.

Updating involves performing the steps as per given in Section 4.2.2 on the data set and

saving final estimates of parameters together with log-likelihood function produced in

the database.

In this chapter we will compare the results produced from the proposed

algorithm using one variable with two variables.

 53

4.2.1 The performance of the algorithm

For each of the five hundred customers and for each of the seven days, the

number of components are chosen at random where the maximum number of

components is fixed at three (3). If three components are chosen, the values of 1a , 2a

and 3a are chosen at random from 0.1,…,0.9 where 1321 =++ aaa ; the values of 1µ ,

2µ and 3µ are chosen at random from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of

two or more components are chosen such that no two or more means are the same; and

the values of 1σ , 2σ and 3σ are chosen at random from 10,,3,2,1,
10

1
,,

3

1
,

2

1
LL .

Similar steps are taken if less than three components are chosen. The chosen values

(that represent a model) are used in 1
2

1

2 2cos)log2(+−+= jjj uuz πσµ and

1
2

1

2

1 2sin)log2(++ −+= jjj uuz πσµ where)1,0(~, 1 Uuu jj + (Box and Muller, 1958) to

generate (one thousand) simulation data. For each day starting the 8th till 28th,

simulation data is generated using either one of the seven models (which represents the

first condition where the performance of the algorithm is evaluated by this condition) or

other model derived from repeating the steps as mentioned above (which represents the

second condition where the performance of this condition is partly explained in the

upcoming/following section).

For each customer, we perform all of the steps in the algorithm (altogether they

are six) on models that represent 1st till 28th day. The similarity coefficients, derived

from performing the algorithm’s third step on models produced from the first condition

and represent 8th day onwards, are displayed using Box plot as shown in Figure 4.6

(due to its size, only a few of the customers are displayed here). For ease of graphical

 54

presentation, the similarity coefficient is converted into percentage. All of them (i.e. the

percentage of similarity coefficient) exceed 90.

(a)

(b)

Figure 4.6 Box plot for customers (a) 10, 20, 30,…,100 and (b) 50, 100, 150,…,500 on

the x-axis and SimCoef(%) on the y-axis is a short-form for similarity coefficient in

percentage.

Our observation is supported by the histogram in Figure 4.7, which is derived

from using all of the (five hundred customers) similarity coefficients, where the mean

 55

and standard deviation are 99.07 and 0.76, respectively. We find iiiD θθ ˆ−= where
iθ

equals to 100.0 and iθ̂ is the similarity coefficient used to produce Figure ii,

mi ,...,2,1= . The sample mean and standard deviation of iD are computed using

formulas ∑
=

=
m

i

iD
m

D
1

1
 and ()∑

=

−
−

=
m

i

iD DD
m

S
1

2

1

1
, respectively. The similarity

coefficients are considered good if D is close to zero, indicating small biases observed

in the similarity coefficient results, and DS is also close to zero, indicating that the

similarity coefficients are concentrated around their respective true values. The sample

mean and standard deviation (of iD , mi ,...,2,1=) are 0.93 and 0.76, respectively.

Figure 4.7 The histogram of Frequency versus SimCoef(%). SimCoef(%) on the y-axis

is a short-form for similarity coefficient in percentage.

The steps in the algorithm (i.e. second till sixth) are performed on models that

represent 8th days onwards. We are interested on models that are produced from the

first condition. “A” denotes the total number of models produced from the first

condition that is correctly classified. “B” denotes the total number of models that is

 56

produced from the first condition. Count(%) equals to (A/B)%. Figure 4.8 shows the

histogram of Frequency against Count(%) where the mean and standard deviation are

61.2 and 22.5, respectively.

Figure 4.8 The histogram of Frequency against Count(%).

4.2.2 The characteristics of the similarity coefficient

The characteristics of similarity coefficient are best described using Figure 4.9.

Let A represents call behavior for a customer collected on the first day and B represents

call behavior collected on the second day. The probability density function

()2

111 ,| σµiyf for some of iy is greater than zero and the rest is close to zero. We

calculate h
llf

llf

B

A = where 10 ≤≤ h , ()()∑
=

=
2

1

2

111 ,|log
n

i

iB yfllf σµ ,

 57

()()∑
=

=
1

1

2

111 ,|log
n

i

iA xfllf σµ , 0, <BA llfllf , 21 nn Ψ where { }=><∈Ψ ,, and BA llfllf > .

Note that the parameters 1µ , 2

1σ and Allf of A are kept inside the database. Using these

information on B, the percentage of similarity coefficient, denoted by %h , is close to

zero due to () 0.0,| 2

111 ≈σµiyf for the majority of iy . In other words, call behavior on

the first day is dissimilar to the second day.

Figure 4.9 A represents the probability density function derived from the histogram of

call behavior for a customer collected on the first day (1,...,2,1, nixi =) and B represents

the histogram of call behavior collected on the second day (2,...,2,1, niyi =).

Other characteristics are described by performing the following processes and

repeat them 100 times for each 12 nn Ω= where 025.0,...,925.0,95.0,975.0,0.1=Ω

(these values are converted into percentage for ease of graphical presentation) and

10001 =n .

 58

We generate 1n simulation data from ()1,0N using Box and Muller

Transformation (Box and Muller, 1958). We treat the simulation data as training data

(or td). We calculate the mean (denoted by tdµ), variance (denoted by 2

tdσ) and log-

likelihood function (denoted by
tdllf).

We generate 2n simulation data from ()1,ON µ using Box and Muller

Transformation (Box and Muller, 1958) for each 0.10,...,1.0,0.0=Oµ . We treat the

simulation data as observation (or O). Using tdµ and 2

tdσ from the above, we calculate

the log-likelihood function (denoted by Ollf) and similarity coefficient
td

O

llf

llf
.

Figures 4.10(a)-(h) give the plot of similarity coefficient against the percentage of

sample ratio (i.e. %100×Ω) for all values of Oµ considered. Figure 4.10(a) shows for

the case 0.0=Oµ , 10001 =n , percentage (or %Ω) equals to 2.4 (i.e. 242 =n), ix is a

training data where 1,...,2,1 ni = , iy is an observation where 2,...,2,1 ni = , both training

data and observation are randomly generated, the mean and standard deviation for

()()∑
=

=
2

1

2

1 ,|log
n

i

tdtdiO yfllf σµ are -34.27 and 3.63, respectively, the mean and standard

deviation for ()()∑
=

=
1

1

2

1 ,|log
n

i

tdtditd xfllf σµ are -1415.99 and 23.34, respectively and the

similarity coefficient is close to zero. The similarity coefficient is close to one when

percentage (or %Ω) equals to 100 (i.e. 10002 =n) where the mean and standard

deviation for ()()∑
=

=
2

1

2

1 ,|log
n

i

tdtdiO yfllf σµ are -1424.43 and 22.36, respectively and the

 59

(a) Oµ = 0.0

(b) Oµ = 0.5

Figure 4.10 Similarity coefficient is plotted against percentage using Box plot for (a) Oµ =0.0, (b) Oµ =0.5, (c) Oµ =1.0, (d) Oµ =2.0, (e) Oµ =4.0, (f)

Oµ =6.0, (g) Oµ =8.0 and (h) Oµ =10.0.

 60

(c) Oµ =1.0

(d) Oµ =2.0

Figure 4.10 Continued.

 61

(e) Oµ =4.0

(f) Oµ =6.0

Figure 4.10 Continued.

 62

(g)
Oµ =8.0

(h) Oµ =10.0

Figure 4.10 Continued.

 63

mean and standard deviation for ()()∑
=

=
1

1

2

1 ,|log
n

i

tdtditd xfllf σµ are -1419.90 and 19.90,

respectively.

4.3 Data

The call detail record, which was supplied by Telekom Malaysia Berhad

(henceforth, TM), consists of calls made by the customers and they were victims of

fraud activities. Altogether there are 18 customers and they are labeled as A till R to

ensure confidentiality. We use the same format of call detail record for each TM’s

customer as described before in Table 4.1. We performed several steps to get the

desired format e.g. group the real data according to service no, find the country that

matches with the country code and sort the real data according to seize time.

To make our job of handling the real data for the TM customers easier, we

divided them into several parts and saved in the following format: (for each customer)

1, 2, 3, 4,… represent fn(1), fn(2), fn(3), fn(4),… and date(1), date(2), date(3),… where

fn is a short-form for filename and date(1) < date(2) < date(3) < …. as exemplified in

Figure 4.11.

Table 4.1 An example of TM’s customer call detail record.

No
Service
No Dialed Digit … Seize Time1 Duration1 Duration2

281 XXX yyy …
31/03/2011

10:07 000255 00 0.0020255

282 XXX yyy …
31/03/2011

15:24 000054 00 6.25E-04

283 XXX yyy …
31/03/2011

16:16 000045 00 5.21E-04

284 XXX yyy …
31/03/2011

16:37 000556 00 0.0041204

 64

Figure 4.11 Files created for Customer A.

4.4 Results

TM’s (current) system, which uses non-GMM method and customer’s call

detail record (details of the system will not be revealed to ensure confidentiality),

detected fraud activity on the 15th of November 2011 for the customers mentioned in

Section 4.3. From our analysis of customers D and Q, by studying the duration and real

data on the 15th of November 2011 that are saved in filename 63, similarity coefficient

is assigned to High Similarity group. Similar results are obtained when using two

variables namely duration and call charging (or billing). An example is given in Figure

4.12.

For each customer mentioned above (using one variable, i.e. duration, and two

variables, i.e. duration and call charging or billing), we find the number of similarity

coefficient assigned to Low Similarity group, which we believe they have close

connection to fraud activity, and convert them into percentage. For example,
kxx ,...,1

 65

represent the percentage of similarity coefficient assigned to Low Similarity group for k

customers when using one variable and kyy ,...,1 when using two variables where

18=k . Statistical methods such as summary statistics are applied to
kxx ,...,1 and

kyy ,...,1 . The k customers are grouped together based on which group the percentage

of similarity coefficient is assigned to when using one and two variables on the 15th of

November 2011. For example, Step Four results for customer D especially on the 15th

of November 2011 show, when using one variable, log-likelihood function and

similarity coefficient (after converting into percentage) equal to -5.503 and 86.69%,

respectively. High Similarity group (denoted by H) is assigned to customer D. Similar

results are obtained, in terms of assigning High Similarity group (denoted by H) to

customer D, when using two variables where log-likelihood function and similarity

coefficient (after converting into percentage) equal to -15.996 and 85.27%,

respectively.

HH is the group assigned to customers D and Q. By studying the duration, the

minimum and maximum percentages of similarity coefficients assigned to Low

Similarity group for all customers mentioned above are 5 and 22, respectively. The

minimum and maximum percentages are reduced to 3 and 12, respectively, when using

two variables namely duration and call charging (or billing).

From our (second) analysis of customers H, K, O and P, by studying the

duration and real data on the 15th of November 2011 that are saved in filename 57, 73,

51 and 55, respectively, similarity coefficient is assigned to Moderate Similarity group.

Similarity coefficient is assigned to High Similarity group when using two variables

namely duration and call charging (or billing) thus upgrading the previous group. MH

is the group assigned to customers H, K, O and P. By studying the duration, the average

 66

percentage of similarity coefficient assigned to Low Similarity group is 8 bounded by 0

and 14. They spread around the average (or standard deviation) at 5.9. When using two

variables namely duration and call charging (or billing), the average is lowered to 5.5

bounded by 0 and 9. The standard deviation equals to 3.9. Note that no similarity

coefficient is assigned to Low Similarity group for customers O for one variable

(namely duration) and P for two variables (namely duration and call charging or

billing).

From our (third) analysis of customers R, E, F and I, by studying the duration

and real data on the 15th of November 2011 that are saved in filename 68, 75, 67 and 68

respectively, similarity coefficient is assigned to Low Similarity group. Similar results

are obtained (i.e. similarity coefficient is assigned to Low Similarity group) when using

two variables namely duration and call charging (or billing). An example is given in

Figure 4.13. LL is the group assigned to customers R, E, F and I. The average

percentage of similarity coefficient assigned to Low Similarity group for duration is

17.5 where it’s left and right wings are 10 and 21, respectively. They spread around the

average (or standard deviation) at 5.1. When using two variables namely duration and

call charging (or billing), most of the values are lowered. For example, the average is

16.8, minimum and maximum values are 5 and 41, respectively, and standard deviation

equals to 16.5. The results of the fourth till the seventh analysis can be found in Table

4.2. For MM, an example is given in Figure 4.14.

4.5 Discussion

In the previous chapters, we introduced the GMM, EM algorithm and algorithm

for determining the number of components that incorporates kernel method. We also

 67

introduced in the previous section an algorithm for detecting fraud calls. We used them

on two variables namely duration and call charging (or billing) of the real data (TM

customers), which revealed interesting results.

Table 4.2 Summary statistics for groups HM till MM. Note that customers are given in

the bracket; SD and Var are short forms for standard deviation and variable,

respectively.

Group HM (A,L,N,J) LM (B)

 1 Var 2 Vars 1 Var 2 Vars

Min 2 3 14 3
Average 13 14.5 14 3

SD 8.1 9.0 - -
Max 20 25 14 3

Group LH (G) MM (C,M)

 1 Var 2 Vars 1 Var 2 Vars

Min 14 7 1 7
Average 14 7 2.5 9.5

SD - - 2.1 3.5
Max 14 7 4 12

TM’s (current) system detected fraud activity on the 15th of November 2011. If

one variable is used in the proposed algorithm, 33% of 18 TM’s customers used in this

study support the findings made by TM’s system. The rest i.e. 33% of the customers are

assigned to Moderate Similarity group and 33% to High Similarity group. If two

variables are used in the proposed algorithm, 22% of 18 TM’s customers used in this

study support the findings made by TM’s system. The rest i.e. 39% of the customers are

assigned to Moderate Similarity group and 39% to High Similarity group.

Furthermore, 22% of 18 TM’s customers are downgraded (i.e. from High Similarity

group to Moderate Similarity group), 33% of 18 TM’s customers are upgraded (i.e. 6%

from Low Similarity group to Moderate Similarity group, 6% from Low Similarity

group to High Similarity group and 22% from Moderate Similarity group to High

 68

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Low 0.0 27.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Moderate 63.8 0.0 47.9 0.0 0.0 0.0 61.7 0.0 0.0 40.1 0.0 53.6 0.0 0.0 0.0 64.466.4 0.0 67.9 0.0 0.0 0.0 0.0 38.252.851.2 0.0 0.0 41.9 0.0 0.0 39.567.1 0.0 0.0 0.0 0.0

High 0.0 75.7 0.0 81.679.170.1 0.0 99.294.3 0.0 71.9 0.0 94.078.570.5 0.0 0.0 92.9 0.0 95.572.1 0.0 83.9 0.0 0.0 0.0 95.694.6 0.0 70.987.5 0.0 0.0 97.082.683.370.6

12 15 16 17 18 19 20 21 22 24 26 27 28 29 30 32 38 40 43 44 47 48 49 50 51 53 54 55 57 58 59 60 62 63 64 65 66

(a)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Low 0.0 27.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

12 15 16 17 18 19 20 21 22 24 26 27 28 29 30 32 38 40 43 44 47 48 49 50 51 53 54 55 57 58 59 60 62 63 64 65 66

(b)

Figure 4.12 Similarity coefficient (after converting into percentage) together with its classification for customer Q (using two variables namely

duration and call charging or billing): (a) Overall and (b) Low Similarity only.

 69

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Moderate 0.0 0.0 0.0 0.0 0.0 50.5 0.0 64.2 0.0 69.7 54.0 67.1 0.0 53.9 0.0 0.0 47.1 0.0 0.0 0.0 46.1 0.0 0.0 0.0

High 0.0 95.3 76.7 99.4 71.9 0.0 74.4 0.0 77.9 0.0 0.0 0.0 98.9 0.0 84.9 82.5 0.0 89.1 81.6 73.5 0.0 96.6 0.0 84.3

Low 25.4 0.0 9.7 0.0

16 19 20 25 26 30 34 36 37 39 40 41 42 45 49 51 53 55 56 62 64 67 68 71

(a)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Low 25.4 0.0 9.7 0.0

16 19 20 25 26 30 34 36 37 39 40 41 42 45 49 51 53 55 56 62 64 67 68 71

(b)

Figure 4.13 Similarity coefficient (after converting into percentage) together with its classification for customer I (using two variables namely duration

and call charging or billing): (a) Overall and (b) Low Similarity only.

 70

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Low 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.

6

0.0 10.

9

0.0 0.0 0.0 0.0 23.

8

27.

5

0.0 0.0 0.0 0.0 25.

7

0.0

Moderate 0.0 63.

5

50.

6

0.0 54.

5

69.

7

65.

7

0.0 49.

8

0.0 34.

0

0.0 50.

5

65.

5

0.0 41.

8

65.

5

68.

1

0.0 0.0 0.0 63.

6

41.

6

63.

3

58.

1

0.0 57.

3

0.0 46.

5

44.

0

0.0 0.0 0.0 46.

4

31.

1

44.

4

47.

3

66.

1

0.0 54.

4

0.0 0.0 0.0 69.

4

47.

7

43.

0

0.0 0.0 0.0 0.0 0.0 62.

9

52.

2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.

1

68.

0

0.0 60.

9

0.0 54.

2
High 79.

7

0.0 0.0 98.

0

0.0 0.0 0.0 73.

1

0.0 0.0 0.0 94.

7

0.0 0.0 92.

8

0.0 0.0 0.0 91.

5

72.

9

91.

6

0.0 0.0 0.0 0.0 78.

6

0.0 96.

6

0.0 0.0 75.

2

86.

4

79.

6

0.0 0.0 0.0 0.0 0.0 92.

2

0.0 78.

0

96.

2

74.

8

0.0 0.0 0.0 97.

5

90.

5

92.

1

85.

8

83.

2

0.0 0.0 96.

1

93.

4

81.

5

0.0 95.

3

91.

1

96.

5

74.

4

0.0 0.0 0.0 0.0 78.

3

0.0 0.0 0.0

8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 32 33 34 35 36 38 39 40 41 42 44 45 46 47 48 51 52 53 54 55 57 58 59 60 61 62 63 64 65 66 69 70 71 72 73 75 76 77 78 79 80 81 82 83 84 85 86 88

(a)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Low 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.

6

0.0 10.

9

0.0 0.0 0.0 0.0 23.

8

27.

5

0.0 0.0 0.0 0.0 25.

7

0.0

8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 32 33 34 35 36 38 39 40 41 42 44 45 46 47 48 51 52 53 54 55 57 58 59 60 61 62 63 64 65 66 69 70 71 72 73 75 76 77 78 79 80 81 82 83 84 85 86 88

(b)

Figure 4.14 Similarity coefficient (after converting into percentage) together with its classification for customer C (using two variables namely

duration and call charging or billing): (a) Overall and (b) Low Similarity only.

 71

Similarity group) and 44% of 18 TM’s customers are unchanged (i.e. 22% at Low

Similarity group, 11% at Moderate Similarity group and 11% at High Similarity group).

Similarity group for 11% of 18 TM’s customers depends on whether using one or two

variables (e.g. Low Similarity group when using one variable).

No similarity coefficient is assigned to Low Similarity group for customer P

(hence no fraud activity is observed or expected) when using two variables (i.e.

duration and call charging or billing) and no similarity coefficient is assigned to Low

Similarity group for customer O (hence no fraud activity is observed or expected) when

using one variable (i.e. duration).

The average number of similarity coefficient assigned to Low Similarity group

when using two variables is 11.2% (meaning, fraud activities might happened earlier

than 15th of November 2011).

The results show the effectiveness of the proposed algorithm in detecting Low

Similarity group (before and on the 15th of November 2011, which we believe they

have close connection to fraud activity). Future research work will involve the

following: the proposed algorithm will be tested on a bigger number of customers, the

handling of files with small data points, twenty four (24) hours period for collecting

customer’s call detail record will be divided into 3 parts (sub-periods), similarity

coefficient that falls under Moderate Similarity group will be further investigated (for

possible fraud activities) and the use of other variables such as type of call (domestic

and international) as shown in Figure 4.2.

 72

It was mentioned by Schonlau et al. (2001) (computer) intrusion can be detected

by the statistical methods in any circumstances even in difficult ones and this field of

study (i.e. computer intrusion detection) offers many challenges and opportunities to

statistics and statisticians. Bolton and Hand (2002), page 246, generalized by saying

“Fraud detection is an important area, one in many ways ideal for the application of

statistical and data analytic tools and one where statisticians can make a very

substantial and important contribution”.

 73

CHAPTER 5

EXPLORING THE USE OF HYPOTHESIS TESTING IN DETERMINING THE

NUMBER OF COMPONENTS IN GAUSSIAN MIXED MODEL

5.1 Introduction

The improvement of EM algorithm for GMM involves the use of Kernel

method (Silverman, 1986) to determine the number of components and to find means as

initial values to start EM algorithm for GMM has been described in Chapter 3. It also

involves the calculation of the log-likelihood function and Akaike Information Criteria

(AIC) (Akaike, 1974) and the comparison of all AICs where the minimum value gives

the true (or correct) number of components. Details of Gaussian Mixed Model (GMM)

and Expectation Maximization (EM) algorithm can be found in Chapter 2.

This chapter, via Section 5.2, shows the successful derivation of hypothesis

testing in the determination of the number of components in GMM, which is an

important process as highlighted by a number of authors (for example Schlattmann,

2003, and Wang et al., 2004), and the performance of the hypothesis testing. The

comparison of its results with those of AIC will be highlighted in Section 5.3.

The development of this method enables one to determine the number of

components in the GMM in an objective way.

 74

5.2 Hypothesis testing

5.2.1 Introduction to property 1 and 2

Property 1 (or Prop 1) is defined by n
n

j

j

n

i

i <

















< ∑∏

== 11

0 φφ where it is obtained

by using 10 << iφ where ni ,...,2,1= , 10
1

<







< ∏

=

n

i

iφ , n
n

j

j <









< ∑

=1

0 φ and

n
n

j

j

n

j

j

n

i

i <









<

















< ∑∑∏

=== 111

0 φφφ . Apply logarithm to n
n

j

j

n

i

i <

















< ∑∏

== 11

0 φφ , we get

()n
n

j

j

n

i

i loglog
11

<































∑∏

==

φφ or () 















−<
























∏∑

==

n

i

i

n

j

j n
11

logloglog φφ (Spiegel, 1974).

An example is given in Figure 5.1.

-4

-2

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Figure 5.1 The first (i.e. upper) and second (i.e. lower) lines represent

() 















− ∏

=

2

1

log2log
i

iφ and























∑

=

2

1

log
j

jφ , respectively. X-axis represents 100 samples

(generated by using random numbers).

 75

Property 2 (or Prop 2) is defined by 









<
















∑∏

==

n

j

j

n

i

i
n

n

11

φφ or 









<








∑∏

==

n

j

j

n

i

i

11

φφ

where it is obtained by using 10 << iφ where ni ,...,2,1= , 10
1

<







< ∏

=

n

i

iφ ,

n
n

j

j <









< ∑

=1

0 φ and j

n

i

i

n

i

i
n

φφφ <







<
















∏∏

== 11

1
 or j

n

i

i
n

φφ <















∏

=1

1
 where nj ,...,2,1=

(Spiegel, 1974). An example is given in Figure 5.2.

-12

-10

-8

-6

-4

-2

0

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Figure 5.2 The first (i.e. upper) and second (i.e. lower) lines represent























∑

=

2

1

log
j

jφ

and 















∏

=

2

1

log
i

iφ , respectively. X-axis represents 100 samples (generated by using

random numbers).

5.2.2 The derivation of the hypothesis testing

AIC used in the improvement of EM algorithm for GMM can be replaced by

hypothesis testing
































































=

kkka

a

H

Σ

Σ

µ

µ

θ MMM

111

0 ,,: versus

































































=
*

*

*

1

*

*

*

1

*

*

*

1

1 ,,*:

kkka

a

H

Σ

Σ

µ

µ

θ MMM

where θ and *θ are final estimates of parameters corresponding to k and k*,

 76

respectively. k and k* are number of parameters where k,k*=1,2,…,K (and preferably

k*>k). The likelihood ratio statistics for testing the above hypothesis is defined by

()

()
∑

∑

∑

=

=

=



















=−
n

j
k

i

iiji

k

i

iiji

a

a

1

1

1

,|

,|

log2log2

*

Σµx

Σµx

φ

φ

λ (Mardia et al., 1979). It can be written as

() ()

() ()
.

2
exp

||)2(

1
log2

2
exp

||)2(

1
log2log2

1

1

1

1 1

*1**

*

*

*

∑ ∑

∑ ∑

=

−

=

= =

−



























 −−
−−



























 −−
−=−

n

j

iji

t

ij

i

p

k

i

i

n

j

k

i

iji

t

ij

i

p
i

a

a

µxΣµx

Σ

µxΣµx

Σ

π

π
λ

 (5.1)

We apply ()





















<








−

==
∏∑

1

11

loglog
h

i

i

h

i

i h φφ where hii ,...,2,1,10 =<< φ (see Section

5.2.1) and 1
*

1

** <∑
=

k

i

ii fa 3 to the first term of equation (5.1) yielding

() ()

() ()
.

2
exp

||)2(

1
log

2
exp

||)2(

1
log

1

1

*

1

*1**

*

*

1 1

*1**

*

*

*

∑ ∏

∑ ∑

=

−

=

−

= =

−



























































 −−
−<



























 −−
−

n

j

k

i

iji

t

ij

i

p
i

n

j

k

i

iji

t

ij

i

p
i

a

a

µxΣµx

Σ

µxΣµx

Σ

π

π

 (5.2)

The right hand side of equation (5.2) can be written as

3 Using 10 * << ia , 10 * << if ,
***0 iii afa << where *,...,2,1 ki = and 1

*

1

* =∑
=

k

i

ia , we get

1
*

1

** <∑
=

k

i

ii fa

 77

() ()

() ()
.

2||)2(

1
log

2
exp

||)2(

1
log

1

*

1

*1**

1

*

1
*

*

1 1

*1**

*

*

*

∑∑∑∑

∑ ∑

= =

−

= =

= =

−













 −−
+


























−<



























 −−
−

n

j

k

i

iji

t

ij
n

j

k

i
i

p
i

n

j

k

i

iji

t

ij

i

p
i

a

a

µxΣµx

Σ

µxΣµx

Σ

π

π
 (5.3)

We apply 







>








∏∑

==

h

i

i

h

i

i

11

loglog φφ where hii ,...,2,1,10 =<< φ (see Section 5.2.1) to

the second term of equation (5.1) yielding

() ()

() ()
.

2
exp

||)2(

1
log

2
exp

||)2(

1
log

1 1

1

1 1

1

∑ ∏

∑ ∑

= =

−

= =

−



























 −−
−>



























 −−
−

n

j

k

i

iji

t

ij

i

p
i

n

j

k

i

iji

t

ij

i

p
i

a

a

µxΣµx

Σ

µxΣµx

Σ

π

π
 (5.4)

The right-hand-side of equation (5.4) can be written as

() ()

() ()
.

2||)2(

1
log

2
exp

||)2(

1
log

1 1

1

1 1

1 1

1

∑∑∑∑

∑ ∑

= =

−

= =

= =

−













 −−
−


























>



























 −−
−

n

j

k

i

iji

t

ij
n

j

k

i
i

p
i

n

j

k

i

iji

t

ij

i

p
i

a

a

µxΣµx

Σ

µxΣµx

Σ

π

π
 (5.5)

Applying minus sign to both sides of equation (5.5), we get

() ()

() ()
.

2||)2(

1
log

2
exp

||)2(

1
log

1 1

1

1 1

1 1

1

∑∑∑∑

∑ ∑

= =

−

= =

= =

−













 −−
+


























−<



























 −−
−−

n

j

k

i

iji

t

ij
n

j

k

i
i

p
i

n

j

k

i

iji

t

ij

i

p
i

a

a

µxΣµx

Σ

µxΣµx

Σ

π

π
 (5.6)

 78

Note that () ()∑∑
= =

−
−−

n

j

k

L

LjL

t

Lj

1

*

1

*1** µxΣµx of equation (5.3) and

() ()∑∑
= =

−
−−

n

j

k

L

LjL

t

Lj

1 1

1
µxΣµx of equation (5.6) are greater than

() ()∑
=

−
−−

*

1

*1**
k

L

LLL

t

LL µxΣµx and () ()∑
=

−
−−

k

L

LLL

t

LL

1

1
µxΣµx , respectively.

() ()∑
=

−
−−

*

1

*1**
k

L

LLL

t

LL µxΣµx and () ()∑
=

−
−−

k

L

LLL

t

LL

1

1
µxΣµx follow 2χ distribution with

k*p and kp degrees of freedom, respectively. They are derived from the following

property (Mardia et al., 1979):

() () () () ()LLL

t

LLLL

n

i

LiL

t

Li nntr µxΣµxSΣµxΣµx −−+=−− −−

=

−∑ 11

1

1

where ()()∑
=

−−=
n

i

t

LiLiLn
1

xxxxS and () () 21 ~ pLLL

t

LL χµxΣµx −− − . The lower limit

(it is found by Prop1 swapping places with Prop2 that is Prop2 and Prop1 are applied to

first and second term of equation (5.1), respectively) has the same distribution as the

upper limit hence

()

()
∑

∑

∑

=

=

=



















=−
n

j
k

i

iiji

k

i

iiji

a

a

1

1

1

,|

,|

log2log2

*

Σµx

Σµx

φ

φ

λ satisfy 2χ distribution with

(k*+k)p degrees of freedom. 0H is accepted when

()

()
∑

∑

∑

=

=

=



















=−
n

j
k

i

iiji

k

i

iiji

a

a

1

1

1

,|

,|

log2log2

*

Σµx

Σµx

φ

φ

λ is less than ()
2

*, pkk +αχ .

 79

If

()

()
0

,|

,|

log2log2
1

1

1

*

<



















=− ∑
∑

∑

=

=

=
n

j
k

i

iiji

k

i

iiji

a

a

Σµx

Σµx

φ

φ

λ due to the following prop erties

() 0,|log
1 1

<







∑ ∑

= =

n

j

k

i

iijia Σµxφ and () 0,|log
1

*

1

*** <







∑ ∑

= =

n

j

k

i

iijia Σµxφ , we swap places

between
































































=

kkka

a

Σ

Σ

µ

µ

θ MMM

111

,, and

































































=
*

*

*

1

*

*

*

1

*

*

*

1

,,*

kkka

a

Σ

Σ

µ

µ

θ MMM and test

































































=
*

*

*

1

*

*

*

1

*

*

*

1

0 ,,*:

kkka

a

H

Σ

Σ

µ

µ

θ MMM versus
































































=

kkka

a

H

Σ

Σ

µ

µ

θ MMM

111

1 ,,: where 0H is

accepted when λlog2− (which is now greater than 0) is less than ()
2

*, pkk +αχ .

5.2.3 The performance of the hypothesis testing

The characteristics of the hypothesis testing as mentioned in the previous

section are described by performing the following processes for ()∑
=

2

1

2,,
i

iii xa σµφ where

(4.01 =a , 0.01 =µ , 0.12

1 =σ) and (6.02 =a , 0.22 =µ , 25.02

2 =σ) (refer to Table 3.1

under Sample 1) and repeat them 1000 times:

We generate 1000 simulation data using Box and Muller Transformation (Box

and Muller, 1958) and calculate ∑
=








 −2

1

2

L L

Lx

σ

µ
 and ∑

=







 −2

1

2

L L

LLx

σ

µ
. The one thousand

(1000) simulation data is then plotted as shown in Figure 5.3. Figure 5.4 shows several

 80

2χ distributions for comparison purposes. Note that the histogram displayed in Figure

5.3 (b) is similar in terms of shape to Figure 5.4 (a).

(a)

(b)

Figure 5.3 Simulation data is displayed in the histogram for (a) ∑
=








 −2

1

2

L L

Lx

σ

µ
 and (b)

∑
=








 −2

1

2

L L

LLx

σ

µ
.

The performance of the hypothesis testing is described by using Box and Muller

Transformation (Box and Muller, 1958) to generate simulation data for

() ()
∑∑

=

−

=









 −−−
=

K

i

ii

t

i

i

d
i

K

i

iii aa
1

1

1 2
exp

||)2(

1
),|(

µxΣµx

Σ
Σµx

π
φ focusing on two

components with the following properties: 1a is chosen from 0.1,…,0.9, 2a is derived

from the following formula 12 1 aa −= , 1µ is fixed at 0.0; 2µ is chosen from

0.25,0.50,0.75,…,3.0, 11σ and 22σ are chosen from 10,,3,2,1,
10

1
,,

3

1
,

2

1
LL . A total of

25 samples, each with 1000 observations, are generated for each model.

 81

(a)

(b)

(c)

(d)

Figure 5.4 2χ -distribution with (a) 2, (b) 3, (c) 4 and (d) 5 degrees of freedom.

Note that

%
 testingshypothesis ofnumber Total

components ofnumber 2 accepts that testingshypothesis ofNumber








=Percentage

is calculated and Range is assigned to each model where Range equals to 1 represents

percentage of overlapping between 0% and 25%, 2 represents percentage of

overlapping between 25% and 50%, 3 represents percentage of overlapping between

50% and 75% and 4 represents percentage of overlapping between 75% and 100%.

Example of an output is given in Figure 5.5, which represents

(2.01 =a , 0.01 =µ , ()22

1 707.0=σ) and (8.02 =a , 25.02 =µ , 0.12

2 =σ).The Range for

the given example equals to 3 and 0H is accepted when 3* =k where p is greater

 82

than 0.05. Note that λlog2− is given in the first bracket and probability value p is

given in the second.

Akaike Information Criteria

no_of_components AIC Min

1 2759.241221463931 2759.241221463931

2 2742.695779311172 2742.695779311172

3 2745.7438644121394 2742.695779311172

Hypothesis Testing

H_0:theta,k=1

H_0:theta,k=1 versus H_1:theta*,k*=2 (22.54544215275928)(p=5.028078782631841E-5)

H_0:theta,k=1 versus H_1:theta*,k*=3 (25.497357051791823)(p=3.9955836008321434E-5)

H_0:theta,k=2

H_0:theta,k=2 versus H_1:theta*,k*=3 (2.951914899032545)(p=0.7073991861415829)

Figure 5.5 Results of AIC and hypothesis testing for ()∑
=

2

1

2,,
i

iii xa σµφ where

(2.01 =a , 0.01 =µ , ()22

1 707.0=σ) and (8.02 =a , 25.02 =µ , 0.12

2 =σ).

 The results are displayed in Figure 5.6 where the values used can be found in

Table 5.1. The value under the column titled “(Freq/Tot)%” of Table 5.1 that

corresponds to Percentage equals to 100 decreases not lower than 50 as the Range

increases.

Table 5.1 Frequency table for Range equals to (a) 1, (b) 2, (c) 3 and (d) 4.

 Frequency (Freq/Tot)%

Valid 0 21 1.2

 25 1 0.1

 33.3 24 1.4

 50 197 11.6

 66.7 131 7.7

 75 15 0.9

 100 1313 77.1

 Total 1702 100

(a)

 Frequency (Freq/Tot)%

Valid 0 29 4.9

 33.3 12 2

 50 121 20.3

 66.7 37 6.2

 75 7 1.2

 100 391 65.5

 Total 597 100

(b)

 83

Table 5.1 Continued.

 Frequency (Freq/Tot)%

Valid 0 13 9.5

 50 36 26.3

 66.7 10 7.3

 75 1 0.7

 100 77 56.2

 Total 137 100

(c)

 Frequency (Freq/Tot)%

Valid 0 6 20.7

 50 6 20.7

 66.7 2 6.9

 100 15 51.7

 Total 29 100

(d)

Figure 5.6 Percentage is plotted against Range in the Box plot.

5.3 Comparison between using the AIC and hypothesis testing in

determining the number of components in GMM

Akaike Information Criteria (AIC) used in the improvement of EM algorithm

for GMM is defined by)(22 LLogpmtrAIC −= where pmtr is the number of

parameters and)(LLog is the maximized log-likelihood function.

Let

 84

() ()
∑ ∑

=

−

= 

























 −−
−−Ω=

n

j

iji

t

ij

i

p

k

i

ik akAIC
1

1

1 2
exp

||)2(

1
log22

µxΣµx

Σπ
 (5.7)

and

() ()
∑ ∑

= =

−



























 −−
−−Ω=

n

j

k

i

iji

t

ij

i

p
ik akAIC

1 1

*1**

*

*

*

*

2
exp

||)2(

1
log2*2

µxΣµx

Σπ
 (5.8)

Where the second term of kAIC and *kAIC is taken from equation (5.1), and 62 =Ω if

1=p .

In this section, we present two cases. They are:

Case 1: Let kk AICAIC >* (according to Step 5, kAIC is minimum therefore it is

chosen) where k*>k. Using equations (5.7) and (5.8), we get

() ()

() ()
∑ ∑

∑ ∑

=

−

=

= =

−



























 −−
−−Ω

>


























 −−
−−Ω

n

j

iji

t

ij

i

p

k

i

i

n

j

k

i

iji

t

ij

i

p
i

ak

ak

1

1

1

1 1

*1**

*

*

2
exp

||)2(

1
log22

2
exp

||)2(

1
log2*2

*

µxΣµx

Σ

µxΣµx

Σ

π

π
 (5.9)

Equation (5.9) can be written as

() β>−Ω kk *2 (5.10)

where

 85

() ()

() ()
∑ ∑

∑ ∑

=

−

=

= =

−



























 −−
−−



























 −−
−=

n

j

iji

t

ij

i

p

k

i

i

n

j

k

i

iji

t

ij

i

p
i

a

a

1

1

1

1 1

*1**

*

*

2
exp

||)2(

1
log2

2
exp

||)2(

1
log2

*

µxΣµx

Σ

µxΣµx

Σ

π

π
β

Let ()
2

*,~ pkk +αχγ . If () γβ >>−Ω kk *2 , we reject 0H , which contradicts the

AIC results. If () β>−Ω kk *2 and βγ > , we accept 0H .

Case 2: Let kk AICAIC <* (according to Step 5, *kAIC is minimum therefore it is

chosen) where k*>k. By repeating the process in Case 1, that is using equations (5.7)

and (5.8), we get

() β<−Ω kk *2 (5.11)

where

() ()

() ()
∑ ∑

∑ ∑

=

−

=

= =

−



























 −−
−−



























 −−
−=

n

j

iji

t

ij

i

p

k

i

i

n

j

k

i

iji

t

ij

i

p
i

a

a

1

1

1

1 1

*1**

*

*

2
exp

||)2(

1
log2

2
exp

||)2(

1
log2

*

µxΣµx

Σ

µxΣµx

Σ

π

π
β

Let ()
2

*,~ pkk +αχγ . If () β<−Ω kk *2 and γβ > , we reject 0H . If () γβ <<−Ω kk *2 ,

we accept 0H , which contradicts the AIC results.

 86

Figure 5.7 (the results shown here are taken from Chapter 4) shows hypothesis

testing results support those of AIC (note that λlog2− is given in the first bracket

whereas probability value is given in the second). Case 1 and 2 can be found in the

hypothesis testing when ()3*,2 == kk and ()3,2*,1 == kk , respectively. The

probability value α is fixed at 0.05. Figure 5.8 shows, especially for the case when k

and *k equal to 2 and 3, respectively, hypothesis testing results do not support those of

AIC. Case 2 can be found in all of the hypothesis testing.

Akaike Information Criteria

no_of_components AIC Min

1 92.957704551177 92.957704551177

2 78.93876969062063 78.93876969062063

3 80.78840789298813 78.93876969062063

Hypothesis Testing

H_0:theta,k=1

H_0:theta,k=1 versus H_1:theta*,k*=2 (20.01893486055637)(Prob=1.6832767836781848E-4)

H_0:theta,k=1 versus H_1:theta*,k*=3 (24.16929665818887)(Prob=7.386963782137005E-5)

H_0:theta,k=2

H_0:theta,k=2 versus H_1:theta*,k*=3 (4.150361797632499)(Prob=0.5279773066298088)

Figure 5.7 Results of AIC and hypothesis testing for customer C.

Akaike Information Criteria

no_of_components AIC Min

1 47.53326292383591 47.53326292383591

2 35.70610331847866 35.70610331847866

3 33.64022457875683 33.64022457875683

Hypothesis Testing

H_0:theta,k=1

H_0:theta,k=1 versus H_1:theta*,k*=2 (17.827159605357252)(Prob=4.7764602611496796E-4)

H_0:theta,k=1 versus H_1:theta*,k*=3 (25.89303834507908)(Prob=3.325553903926139E-5)

H_0:theta,k=2

H_0:theta,k=2 versus H_1:theta*,k*=3 (8.065878739721828)(Prob=0.15264184961471652)

Figure 5.8 Results of AIC and hypothesis testing for customer D.

 In addition to the above, the contradiction between AIC and hypothesis testing

can also be seen in Figure 5.1 and Table 5.1 especially the values under the column

 87

titled “(Freq/Tot)%” that correspond to Percentage not equal to 100. The total number

of Percentage not equal to 100 increases as the Range increases.

Hypothesis testing results depend on log-likelihood function and the choice of

the probability value α that gives ()
2

*, pkk +αχ . AIC results on the other hand depend on

log-likelihood function only as shown in Figures 5.9 and 5.10. Hypothesis testing

results are similar to those of AIC if α is set at different value (i.e. other than 0.05).

Further research on the behavior of the hypothesis testing especially when it

conflicts with AIC is required that will involve the use of the power of a test (Guenther,

1977).

-45

-43

-41

-39

-37

-35

-33

-31

1 2 3

No. of components

L
o

g
-l

ik
e
li

h
o

o
d

 f
u

n
c
ti

o
n

Figure 5.9 Log-likelihood function against number of components for Customer C.

 88

-23

-21

-19

-17

-15

-13

-11

-9

-7

-5

1 2 3

No. of components
L

o
g

-l
ik

e
li

h
o

o
d

 f
u

n
c

ti
o

n

Figure 5.10 Log-likelihood function against number of components for Customer D.

5.4 Summary

In the previous chapters, we showed the effects of fraud activities to

telecommunication industry and gave a brief introduction to GMM and EM algorithm.

We also mentioned when would we determine the number of components in GMM and

gave several examples that are normally used in the determination of the number of

components in GMM, including the use of AIC in the determination process.

We successfully derived hypothesis testing in the previous sections, which we

believe can be used as an alternative method to AIC in the determination of the number

of components in GMM.

 89

CHAPTER 6

“REAL TIME” FRAUD DETECTION ALGORITHM FOR

TELECOMMUNICATION INDUSTRY USING GAUSSIAN MIXED MODEL

6.1 Introduction

Sain et al. (1999) consider the difficult task of using seismic signals (or any

other discriminates) for detecting nuclear explosions from the large number of

background signals such as earth quakes and mining blasts. They used the following

nonparametric bootstrapping by Efron and Tibshirani (1993) to test Π∈+10 : nH x

versus Π∉+11 : nH x for the case in which no events in the training sample are labeled

and the number of event types represented in the training sample is unknown.

Step A: Given the training sample Π∈nxxx ,...,, 21 and potential outlier 1+nx , calculate

W based on

)(
sup

)(
sup

1

0

θ
θ

θ
θ

L

L

W

Θ∈

Θ∈
= where);();()(1

1

0 θxθxθ +
=









= ∏ n

n

s

s ffL and









= ∏

=

n

s

sfL
1

1);()(θxθ .

Step B: For each integer b, b=1,…,B draw a sample of size n with replacement from the

training data. Additionally, an (n+1)st observation is also drawn from the training data

(because we are approximating the distribution of W when Π∈+10 : nH x is true). For

 90

each b, re-sampled data is used to compute the statistics in

)(
sup

)(
sup

1

0

θ
θ

θ
θ

L

L

W

Θ∈

Θ∈
= . The test

statistics is denoted by *

bW .

Step C: Define
aW to be the (100α)th percentile of all *

bW . Specifically if α =j/(B+1),

then aW is the jth smallest value of { }B

bbW
1

*

=
 (see McLachlan, 1987)

Step D: Π∈+10 : nH x is rejected and concluded that the (n+1)st point is an outlier if

aWW ≤ .

This chapter proposes a new algorithm that can be efficiently used to identify

fraud activities (Section 6.2). The algorithm is developed by using the above concept

but instead of using nonparametric bootstrapping, we use likelihood ratio test. It also

finds the characteristics of historical fraud and non-fraud calls and is consequently used

in identifying possible fraud call instantly for immediate call verification process.

Using simulation and data obtained from one of the leading telecommunication

company in Malaysia, we show that the proposed algorithm has successfully detected

outgoing fraud calls as suspected by the company (Sections 6.3 and 6.4).

6.2 “Real time” fraud detection algorithm using GMM

The algorithm for detecting fraud activities as mentioned in Chapter 4, which

include the improved EM algorithm for GMM, involves two steps. The first step finds

and saves the final estimates of parameters in the database for each of the seven days.

The second step finds the maximum of log-likelihood function, the similarity

coefficient and performs the updating of the database process for the eight day

 91

onwards. The observations used in the said steps that represent thi day where

i=1,2,3,… are collected over a period of 24 hours. The second step is improved to

include the testing of each observation (as soon as it is available or in “real time”)

whether it is an outlier or not that is Π∈+10 : nH x versus Π∉+11 : nH x (refer to Figure

6.1). Note that the rest of the second step remains unchanged.

Figure 6.1 A represents the probability density function of customer X call detail record

for the 1st day collected over a period of 24 hours and saved in the database. B

represents the probability density function of customer X call detail record for the th
i

day where i=8,9,… collected over a period of 24 hours. C represents customer X call

detail record for the th
i day that is classified as an observation belonging to A and D

represents customer X call detail record for the th
i day that is classified as an outlier

(i.e. by using the parameters belonging to A).

The likelihood ratio statistics for testing the above hypothesis is defined by

()

()
()









−



















=− ∑∑
∑

∑

=
+

=

=

=
k

i

iini

n

j
k

i

iiji

k

i

iiji

a

a

a

1

1

1

1

1 ,|log2

,|

,|

log2log2 Σµx

Σµx

Σµx

φ

φ

φ

λ

or

()








−=− ∑

=
+

k

i

iinia
1

1 ,|log2log2 Σµxφλ

 92

(Mardia et al., 1979). It can be written as

() ()


























 −−
−−=− ∑

=

+

−

+
k

i

ini

t

in

i

pia
1

1

1

1

2
exp

||)2(

1
log2log2

µxΣµx

Σπ
λ (6.1)

Using equations (5.3) and (5.6), we get

() ()

() ()
∑∑

∑

=

+

−

+

=

=

+

−

+













 −−
+



























−<



























 −−
−

k

i

ini

t

in
k

i i

pi

k

i

ini

t

in

i

pi

a

a

1

1

1

1

1

1

1

1

1

2||)2(

1
log

2
exp

||)2(

1
log

µxΣµx

Σ

µxΣµx

Σ

π

π
 (6.2)

and

() ()

() ()
∑∑

∑

=

+

−

+

=

=

+

−

+













 −−
−



























>



























 −−
−

k

i

ini

t

in
k

i i

pi

k

i

ini

t

in

i

pi

a

a

1

1

1

1

1

1

1

1

1

2||)2(

1
log

2
exp

||)2(

1
log

µxΣµx

Σ

µxΣµx

Σ

π

π
 (6.3)

For example, replacing k with unity in equations (6.2) and (6.3), we get

() ()

() ()


























 −−
−



























−<



























 −−
−−

+

−

+

+

−

+

2||)2(

1
log

2
exp

||)2(

1
log

11

1

111

1

1

11

1

111

1

1

µxΣµx

Σ

µxΣµx

Σ

n

t

n

p

n

t

n

p

a

a

π

π

and

 93

() ()

() ()












 −−
−



























>



























 −−
−−

+

−

+

+

−

+

2||)2(

1
log

2
exp

||)2(

1
log

11

1

111

1

1

11

1

111

1

1

µxΣµx

Σ

µxΣµx

Σ

n

t

n

p

n

t

n

p

a

a

π

π
.

It can be shown that

() ()

() ()












 −−
+


























−=



























 −−
−−

+

−

+

+

−

+

2||)2(

1
log

2
exp

||)2(

1
log

11

1

111

1

1

11

1

111

1

1

µxΣµx

Σ

µxΣµx

Σ

n

t

n

p

n

t

n

p

a

a

π

π
.

Note that () ()∑
=

+

−

+ −−
k

L

LnL

t

Ln

1

1

1

1 µxΣµx of equations (6.2) and (6.3) is greater

than () ()LnL

t

Ln µxΣµx −− +

−

+ 1

1

1 where ()LLn N Σµx ,1 ∈+ and kL ,...,2,1= .

() ()LnL

t

Ln µxΣµx −− +

−

+ 1

1

1 follows 2χ distribution with one (1) degree of freedom

(Mardia et al., 1979). Hence, ()








−=− ∑

=
+

k

i

iinia
1

1 ,|log2log2 Σµxφλ satisfy 2χ

distribution with one (1) degree of freedom.

The characteristics of the hypothesis testing as mentioned above are described

by performing the following processes for ()∑
=

2

1

2,,
i

iii xa σµφ where

(4.01 =a , 0.01 =µ , 0.12

1 =σ) and (6.02 =a , 0.22 =µ , 25.02

2 =σ) (refer to Table 3.1

under Sample 1). We generate 1000 simulation data using Box and Muller

Transformation (Box and Muller, 1958) and calculate ∑
=








 −2

1

2

L L

Lix

σ

µ
 and

2








 −

L

Lix

σ

µ

 94

where ()2, LLi Nx σµ∈ and 2,1=L . The one thousand (1000) simulation data is then

plotted as shown in Figure 6.2.

(a)

(b)

(c)

Figure 6.2 Simulation data is displayed in the histogram for (a) ∑
=








 −2

1

2

L L

Lix

σ

µ
, (b)

2








 −

L

Lix

σ

µ
 where ()2, LLi Nx σµ∈ and 2,1=L and (c) 2χ distribution with one (1)

degree of freedom.

Note that the histogram displayed in Figure 6.2 (b) is similar in terms of shape to (c)

2χ distribution with one (1) degree of freedom.

 95

0H is accepted when ()








−=− ∑

=
+

k

i

iinia
1

1 ,|log2log2 Σµxφλ is less than 2

, pαχ

where α =0.0001. The value of α is chosen such that it follows Sachs (1984) where a

new observation that falls outside the boundaries derived from the mean and (four

times) standard deviation of the current observations is an outlier.

6.2.1 The performance of the “real time” fraud detection algorithm using GMM

We generate 1n =1000 simulation data from ()1,0N using Box and Muller

Transformation (Box and Muller, 1958). We treat the simulation data as training data

(or td). We calculate the mean (denoted by tdµ), variance (denoted by 2

tdσ) and log-

likelihood function (denoted by
tdllf). The following is repeated 100 times: For each

0.10,...,1.0,0.0=Oµ , we generate 2n =1000 simulation data from ()1,ON µ using Box

and Muller Transformation (Box and Muller, 1958). We treat the simulation data as

observation (or O). Using tdµ and 2

tdσ from the above, we calculate the log-likelihood

function (denoted by Ollf) and similarity coefficient
td

O

llf

llf
. Each observation of the

simulation data is tested whether it is an outlier or not by using the likelihood ratio

statistics as mentioned in Section 6.2. We count the total number of outliers for the

given simulation data and convert it into percentage (denoted by the percentage of

outliers or outliers(%)).

Figure 6.3 (a) shows (negative) s-curve where similarity coefficient decreases as

Oµ increases and (b) shows, as we expected, (positive) s-curve where the percentage of

outliers increases as
Oµ increases.

 96

(a)

(b)

Figure 6.3 Box plot for (a) similarity coefficient and (b) percentage of outliers where

the values on the x-axis represent Oµ .

For each of the five hundred customers (they are labeled as 1st, 2nd, 3rd,…,500th

customer) and for each of the seven days, the number of components are chosen at

random where the maximum number of components is fixed at three (3). If three

components are chosen, the values of 1a , 2a and 3a are chosen at random from

0.1,…,0.9 where 1321 =++ aaa ; the values of 1µ , 2µ and 3µ are chosen at random

from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of two or more components are chosen

such that no two or more means are the same; and the values of 1σ , 2σ and 3σ are

chosen at random from 10,,3,2,1,
10

1
,,

3

1
,

2

1
LL . Similar steps are taken if less than

three components are chosen. The chosen values (that represent a model) are used in

1
2

1

2 2cos)log2(+−+= jjj uuz πσµ and 1
2

1

2

1 2sin)log2(++ −+= jjj uuz πσµ where

)1,0(~, 1 Uuu jj + (Box and Muller, 1958) to generate (one thousand) simulation data.

For each day starting the 8th till 28th, simulation data is generated using either one of the

seven models (which represents the first condition where the performance of the

 97

algorithm is evaluated by this condition) or other model derived from repeating the

steps as mentioned above.

 For each customer, Chapter 4’s algorithm is employed on the models that

represent 1st till 7th day. Each observation on 8th day onwards that satisfies the first

condition is tested whether it is an outlier or not by using the likelihood ratio statistics

as mentioned in Section 6.2. We repeat the steps as mentioned earlier that is we count

the total number of outliers for the given data set (that represents 8th day onwards and

satisfies first condition) and convert it into percentage. We find the frequency for each

Outliers(%)and convert it into percentage (denoted by Freq(%)). Figure 6.4, which is

derived from Table 6.1, shows the results from the steps taken on the 10th customer and

Outliers(%) with the highest Freq(%) is zero. There is a huge gap (or difference)

between Outliers(%) equals to 0.0 with the rest of the Outliers(%). The same pattern

can also be found in Figure 6.5 (due to its size, only a few of the customers are

displayed here).

Figure 6.4 Box plot for the 10th customer.

 98

(a)

(b)

Figure 6.5 Scatter plot for (a) 10th , 20th ,…,100th customer and (b) 50th ,100th ,150th

,…,500th customer.

6.3 Data

Two types of data will be used. They are:

(i) Simulation data. For each of the one thousand customers and for each of the seven

days, the number of components are chosen at random where the maximum number of

components is fixed at three (3). If three components are chosen, the values of 1a , 2a

and 3a are chosen at random from 0.1,…,0.9 where 1321 =++ aaa ; the values of 1µ ,

2µ and 3µ are chosen at random from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of

two or more components are chosen such that no two or more means are the same; and

the values of 1σ , 2σ and 3σ are chosen at random from 10,,3,2,1,
10

1
,,

3

1
,

2

1
LL .

Similar steps will be taken if less than three components are chosen. The chosen values

(that represent a model) will be used in 1
2

1

2 2cos)log2(+−+= jjj uuz πσµ and

 99

Table 6.1 Outliers(%) * Freq(%) * 10th customer cross-tabulation.

Customer Freq(%)

 0.1 0.2 0.3 0.4 0.5 0.6 2.4 6.7 7.4 7.8 8.2 8.4 8.7 8.8 10 10.6

Cust_10.txt Outliers(%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 14.29 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1

 28.57 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0

 42.86 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0

 57.14 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0

 71.43 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0

 85.71 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

 100 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

 Total 6 5 6 3 1 1 1 1 1 1 1 1 1 1 1 1

 Total

11.1 11.4 11.6 11.9 12.4 14.1 74.2 75.7 75.8 78 81.4 81.5 82.4 84.8 97.4

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 9

0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 9

1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 48

 100

1
2

1

2

1 2sin)log2(++ −+= jjj uuz πσµ where)1,0(~, 1 Uuu jj + (Box and Muller, 1958) to

generate (one thousand) simulation data. For each day starting the 8th till 28th,

simulation data is generated using either one of the seven models or other model

derived from repeating the steps as mentioned above.

(ii) Phone call data. Call detail record, which was supplied (or provided) by Telekom

Malaysia Berhad (henceforth, TM), consists of calls made by customers and they were

victims of fraud activities (altogether there are 18 customers and they are labeled as A

till R to ensure confidentiality). As mentioned in Chapter 4, we performed several steps

for each of TM’s customer call detail record to get the desired format; e.g. group the

real data according to service no, find the country that matches with the country code

and sort the real data according to seize time. We divided them (i.e. real data for TM

customers) into several parts and saved in the following format: (for each customer) 1,

2, 3, 4,… represent fn(1), fn(2), fn(3), fn(4),… and date(1), date(2), date(3),… where fn

is a short-form for filename and date(1) < date(2) < date(3) < ….

6.4 Results

The results using simulation and real data are presented in the visual format as

exemplified in Figure 6.6 where, for ease of visual presentation, the times when the

calls were made are arranged in ascending order (and labeled 1,2,3,…). For each call,

we calculate equation (6.1) and ()%100
 testingshypothesis ofnumber totalThe

rejected is H timesofnumber The 0 X








where the latter is denoted by Percentage. Percentage that is greater than zero is plotted

in Figure 6.6.

 101

Figure 6.6 Percentage is plotted against Day and Time in the Scatter plot.

Due to its size, only a portion of the results are presented here. For the simulation

data where we choose Customer 1, Figure 6.7 shows there are lots of calls that are

classified as outliers.

(a)

(b)

Figure 6.7 For Customer 1 of the simulation data, (a) Percentage is plotted against Day

and Time in the Scatter plot and (b) Percentage is plotted against Day in the Box plot.

 102

This is supported by Figure 6.8 and Table 6.2 for Day equals to 22. For the said Day,

out of 1000 calls, each of 135 calls has the Percentage equals to 14.29, each of 105 calls

has the Percentage equals to 42.86 and each of 72 calls has the Percentage greater than

70. Note that nine calls have the Percentage equals to 100. In other words, the call is

considered as an outlier by all models saved inside the database.

Figure 6.8 Percentage is plotted against Day, which is equals to 22, in the Box plot.

Table 6.2 Frequency table for Day equals to 22.

 Frequency Percent Valid Percent
Cumulative

Percent

.00 538 53.8 53.8 53.8

14.29 135 13.5 13.5 67.3

28.57 95 9.5 9.5 76.8

42.86 105 10.5 10.5 87.3

57.14 55 5.5 5.5 92.8

71.43 47 4.7 4.7 97.5

85.71 16 1.6 1.6 99.1

100.00 9 .9 .9 100.0

Valid

Total 1000 100.0 100.0

By taking similar steps, we get the following figures and table for Customer A

of the real telecommunication data. Figure 6.9 shows there are quite a considerable

number of calls that are classified as outliers and none of them has the Percentage

equals to 100. Figure 6.10 and Table 6.3 are derived from Figure 6.9 where we are

 103

focusing on Day equals to 72 (i.e. 15th of November 2011), the same day TM’s system

claimed to detect fraud activity. For the said Day, out of 4 calls, one call has the

Percentage equals to 3, one call has the Percentage equals to 8 and one call has the

(a)

(b)

Figure 6.9 For Customer A of the real telecommunication data, (a) Percentage is plotted

against Day and Time in the Scatter plot and (b) Percentage is plotted against Day in

the Box plot.

Figure 6.10 Percentage is plotted against Day, which is equals to 72, in the Box plot.

 104

Table 6.3 Frequency table for Day equals to 72.

 Frequency Percent Valid Percent
Cumulative

Percent

.00 1 25.0 25.0 25.0

2.78 1 25.0 25.0 50.0

8.33 1 25.0 25.0 75.0

16.67 1 25.0 25.0 100.0

Valid

Total 4 100.0 100.0

Percentage equals to 17. Note that none of the calls has the Percentage equals to 100.

Fraud call is the one that gives the Percentage equals to 100.

6.5 Summary

In the previous section, we highlighted the approach taken by Sain et al. (1999) in

detecting nuclear explosions from the large number of background signals. The same

approach is included in the algorithm for detecting fraud activities as mentioned in

Chapter 4, which involves the testing of each observation whether it is an outlier or not

i.e. Π∈+10 : nH x versus Π∉+11 : nH x . We showed its performance by using real

telecommunication data and simulation data. The introduction of the “real time” fraud

detection algorithm using GMM would help telecommunication companies to act upon

fraud calls instantaneously instead of waiting until the 24 hours period is complete.

 105

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

7.1 Conclusion

The damages caused by fraud activities to telecommunication companies are

valued at millions (or billions) of dollars (Telecom and Network Security Review,

1997, Cahill et al., 2002, and Moreau et al., 1996) and the said activities could come in

many forms. Superimposed fraud, which is the one of our interest, refers to the use of a

service without permission and it would appear as phantom calls on a bill.

The number of literatures that discuss about pattern recognition method (namely

Gaussian Mixed Model, GMM) used to detect fraud activities in telecommunication

industry involving real data other than speech recognition’s format is limited and GMM

is difficult to apply (or implement) in real practice because we need to find the initial

estimates of parameters to start Expectation Maximization (EM) algorithm and find the

exact number of Gaussian components. Telekom Malaysia Berhad, a leading

telecommunication company in Malaysia, via their current system or application

believes the real data collected by them (e.g. duration and charging or billing) from its

exchanges are contaminated by fraud activities and, since GMM is not included on the

list of methods, there is no knowing if their findings are statistically correct. The

following objectives for this study were derived based on the above problems. The first

objective is to improve Gaussian Mixed Model (GMM) from its known (or current)

weaknesses (or difficulties) such as finding the initial estimates of parameters to start

 106

Expectation Maximization (EM) algorithm and finding the exact number of Gaussian

components. The second objective is to introduce a new algorithm that is capable of

detecting fraud activities (especially) in telecommunication industry and that

incorporates the improvement as mentioned in the first objective. The third objective is

to test the new algorithm (as well improved the EM algorithm for GMM) using

simulation data and real data (e.g. duration and charging or billing) collected from

Telekom Malaysia Berhad’s exchanges that are believed to be contaminated by fraud

activities.

Schlattmann (2003) suggested using a non-parametric bootstrapping approach

to identify the right number, say k, of components in a GMM and subsequently

choosing good initial values for the model parameters iµ and 2
iσ , k21i K,,= , in the

EM algorithm. Wang et al. (2004) introduced an algorithm called the stepwise-split-

and-merge EM algorithm to solve the said problem and Miloslavsky and Van Der Laan

(2003) suggested using the minimization of the Kullback-Leiber distance between fitted

mixture models and the true density as a method for estimating k where the said

distance was estimated using cross validation. Other works on this topic can also be

found, for example, in Zhuang et al. (1996), Lee et al. (2006) and Celeux and

Soromenho (1996). We proposed an improved EM algorithm for GMM to identify the

number of components of a GMM and estimate the parameters of the model using the

kernel method. The first step uses kernel method, Silverman (1986), to determine the

number of components, say K components, and to find Means as initial values to start

EM algorithm for GMM. The second step executes EM algorithm for GMM to find the

final estimates of parameters using k=1 number of components, Means obtained from

the first step, and Variances fixed at 1 as initial values. The third step calculates log-

likelihood function and Akaike Information Criteria (AIC) Akaike (1974) using final

 107

estimates of parameters from the second step. The fourth step repeats the second and

third steps for k=2,….,K number of components. The final step compares all (K) AICs

obtained from the fourth step and the one that gives the minimum value is chosen

(which gives the true or correct number of components). The performance of the

algorithm via simulation is generally good but, as we expected, is affected by

increasing percentages of overlapping of the Gaussian components. The final number

of GMM component could clearly be determined via the concave-like shape of the AIC

plot, which indicates that the AIC decreases to a minimum value and then increases as

the number of components increases.

The idea used to give “birth” to the algorithm for detecting fraud calls is related

to speaker identification, which involve the coding of the new speaker’s recorded voice

into vector, the calculation of the log-likelihood function for each training matrix, the

comparison of all log-likelihood functions and the selection of the maximum one thus

revealing the speaker’s true identity. In our case, we use customer’s call behavior in

place of speaker’s recorded voice. The algorithm for detecting fraud calls involves two

steps. The first step performs, for each of the first seven days, the improved EM

algorithm for GMM and save the final estimates of parameters in the database. For the

8th day onwards, the second step uses the parameters saved in the database on the data

set to find the maximum log-likelihood function, calculates the percentage of similarity

coefficient and performs the updating process, which depends on the percentage of

similarity coefficient. We used them on two variables namely duration and call

charging (or billing) collected from 18 TM’s customers (that fell victim to fraud

activities on the 15th of November 2011), which revealed interesting results. The

percentage of TM’s customers that support the findings made by TM’s system

decreases as the number of variables used increases. The downgrading, upgrading and

 108

unchanging of the similarity group depend on whether using one or two variables. No

downgrading to Low Similarity group is observed. The unchanging of Low Similarity

group is observed for more than 10% of TM’s customers. No Low Similarity group is

observed for several of TM’s customers depending on whether using one or two

variables. Fraud activities might happen earlier than 15th of November 2011 due to the

average number of similarity coefficient assigned to Low Similarity group when using

two variables, which is greater than 10%. The results show the effectiveness of the

proposed algorithm in detecting Low Similarity group (before and on the 15th of

November 2011, which we believe they have close connection to fraud activity). Bolton

and Hand (2002) (and Schonlau et al., 2001) said fraud (and computer intrusion)

detection offers many challenges and opportunities to statisticians where they could

make a very substantial and important contribution.

The proposed algorithm uses AIC to determine the number of components in

GMM and we showed this task could also be performed by the hypothesis testing. The

comparison between hypothesis testing and AIC using mathematical derivation and real

telecommunication data revealed conflicting results under certain conditions due to the

dependence of the former on log-likelihood function and the choice of the probability

value α that gives ()
2

*, pkk +αχ and the latter on log-likelihood function. Hypothesis

testing results are similar to those of AIC if α is set at a different value (i.e. other than

0.05).

The approach taken by Sain et al. (1999) in detecting nuclear explosions from

the large number of background signals is included in the algorithm for detecting fraud

activities that involves the testing of each observation whether it is an outlier or not i.e.

Π∈+10 : nH x versus Π∉+11 : nH x (as shown by several examples using real

 109

telecommunication data and simulation data). Thus helping the telecommunication

companies to act upon fraud calls instantaneously instead of waiting until the day is

over.

7.2 Future research

Future research work will involve the following: the proposed algorithm will be

tested on a bigger number of customers, the handling of files with small data points,

twenty four (24) hours period for collecting customer’s call detail record will be

divided into 3 parts (sub-periods), similarity coefficient that falls under Moderate

Similarity group will be further investigated (for possible fraud activities) and the use

of other variables such as type of call (domestic and international). The suitability of

the Gaussian Mixed Model Hidden Markov Model (refer to Bilmers, 1998, Rabiner,

1989, Juang and Rabiner, 1985, Box and Jenkins, 1976, Bidgoli, 2007) for type of call

will be explored where 1S and 2S are the states assigned to the domestic and

international call, respectively. The power of a test (Guenther, 1977) will be used to

explain the behavior of the hypothesis testing especially when it conflicts with AIC (in

terms of the number of components in GMM).

 110

REFERENCES

Abbott, D.W., Matkovsky, I.P., & Elder, J.F. (1998). An evaluation of high-end data

mining tools for fraud detection. IEEE International Conference on Systems, Man, and

Cybernetics, 3, 2836-2841. doi:10.1109/ICSMC.1998.725092

Akaike, H. (1974). A new look at the statistical model identification. IEEE

Transactions on Automatics Control, 19(6), 716-723. doi:10.1109/TAC.1974.1100705

Becker, R.A., Volinsky, C., & Wilks, A.R. (2010). Fraud detection in

Telecommunications: History and Lessons Learned. Technometrics, 52(1), 20-33.

doi:10.1198/TECH.2009.08136

Bidgoli, H. (2007). The Handbook of Computer Networks, Volume 3, Distributed

Networks, Network Planning, Control, Management, and New Trends and

Applications. New Jersey: John Wiley & Sons, Inc. doi:10.1002/9781118256107

Bihina Bella, M.A., Eloff, J.H.P., Olivier, M.S. (2005). Using the internet protocol

detail record standard for next generation network billing and fraud detection.

Information Security South Africa 2005 New Knowledge Today Conference, 1-11.

ISBN 1-86854-625-X.

Bilmes, J.A. (1998). A Gentle tutorial of the EM algorithm and its application to

parameter estimation for Gaussian Mixture and Hidden Markov Models. Technical

Report, University of Berkeley, ICSI-TR-97-021.

 111

Bolton, R.J, & Hand, D.J. (2002). Statistical Fraud Detection: A Review. Statistical

Science, 17(3), 235-255.

Box, G.E.P, & Jenkins, G. (1976). Time Series Analysis: Forecasting and Control

(Revised Edition). San Francisco: Holden-Day.

Box, G.E.P, & Muller, M.E. (1958). A note on the generating of random normal

deviates. Ann. Math. Statistic, 29(2), 610-611.

Cahill, M.H., Lambert, D., Pinheiro, J.C., & Sun, D.X. (2002). Detecting fraud in the

real world. In J.Abello, P.M. Pardalos, & M.G.C. Resende, (Eds.), Handbook of

Massive Datasets, 911-929, Dordrecht: Kluwer.

Celeux, G., & Soromenho, G. (1996). An Entropy Criterion for assessing the number of

clusters in a mixture model. Journal of Classification, 13(2), 195-212.

Cox, K.C., Erick, S.G., & Wills, G.J. (1997). Visual data mining: Recognizing

telephone calling fraud. Data Mining and Knowledge Discovery, 1(2), 225-231.

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum Likelihood from

incomplete data via the EM algorithm. Journal Royal Statistics Society Series B

(Methodological), 39(1), 1-38.

Efron, B. & Tibshirani, R.J. (1993). An introduction to the Bootstrap. New York:

Chapman and Hall.

 112

Everitt, B.S. & Hand, D.J. (1981). Finite Mixture Distributions. London: Chapman and

Hall.

Fishman, G.S. (2001). Discrete-event simulation: modeling, programming, and

analysis. New York: Springer-Verlag.

Girolami, M., & Kaban, A. (2005). Sequential activity profiling: latent Dirichlet

allocation of Markov Chains. Data Mining and Knowledge Discovery, 10, 175-196.

Gomez-Restrepo, J. & Cogollo-Florez, M.R. (2012). Detection of fraudulent

transactions through a Generalized Mixed Linear Models. Ing.cienc [online], 8(16),

221-237.

Guenther, W.C. (1977). Power and sample size for approximate Chi-Square tests. The

American Statistician, 31(2), 83-85.

Han, J., Kamber, M. (2001). Data Mining: Concepts and Techniques. San Francisco:

Morgan Kaufmann.

Hilas, C.S. (2009). Designing an expert system for fraud detection in private

telecommunication networks. Expert Systems with Applications, 36, 11559-11569.

Hilas, C.S., & Mastorocostas, P.A. (2008). An application of supervised and

unsupervised learning approaches to telecommunication fraud detection. Knowledge

Based Systems, 21(7), 721-726.

 113

Hollmen, J. and Tresp, V. (1998). Call based fraud detection in Mobile communication

networks using a hierarchical regime-switching model. In Kearns, M., Solla, S. and

Cohn, D. (Eds). Advances in Neural information processing systems II. Proceedings of

the 1998 Conference (NIPS ‘II), 889-895. Massachusetts: MIT Press.

Hollmen, J. & Tresp, V. (2000). A hidden Markov model for metric and event-based

data. EUSIPCO 2000 – X European Signal Processing Conference, 2, 737-740

Hollmen, J., Tresp, V. & Simula, O. (2000). A learning vector quantization algorithm

for probabilistic models. EUSIPCO 2000 – X European Signal Processing Conference,

2, 721-724.

Jain, A.K., Duin, R.P.W., & Mao, J. (2000). Statistical pattern recognition: A review.

IEEE Transactions On Pattern Analysis And Machine Intelligence, 22(1), 4-37.

Johnson, R.A. & Wichern, D.W. (1998). Applied Multivariate Statistical Analysis. New

Jersey: Prentice-Hall International Inc.

Juang, B.H., & Rabiner, L.R. (1985). Mixture Autoregressive Hidden Markov Models

for Speech Signals. IEEE Trans. On Acoust. Speech And Signal Processing, 33(6),

1404-1413. doi:10.1109/TASSP.1985.1164727

Lee, Y., Lee, K.Y. & Lee, J. (2006). The estimating optimal number of Gaussian

Mixtures based on incremental k-means for Speaker Identification. International

Journal of Information Technology, 12(7), 13-21.

 114

Linoff, G.S. (2004). Survival Data Mining for Customer Insight. Intelligent Enterprise,

7(12), 28-33.

Mardia, K.V., Kent, J.T. & Bibby, J.M. (1979). Multivariate analysis. London:

Academic Press Inc.

McLachlan, G.J. (1987). On bootstrapping the likelihood ratio test statistic for the

number of components in a normal mixture. Appl. Stat., 36, 318-324.

Miloslavsky, M. & Van Der Laan, M.J. (2003). Fittting of mixture with unspecified

number of components using cross validation distance estimate. Computational

Statistics and Data Analysis, 41, 413-428.

Moreau, Y., Preneel, B., Burge, P., Shawe-Taylor, J., Stoermann, C., & Cooke, C.

(1996). Novel techniques for fraud detection in mobile communications. ACTS Mobile

Summit, 1-6.

Pyle, D. (1999). Data Preparation for Data Mining. San Francisco: Morgan Kaufmann.

Rabiner, L.R. (1989). A tutorial on Hidden Markov Models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2), 257-286. doi:10.1109/5.18626

Redner, R. & Walker, H. (1984). Mixture densities, maximum likelihood and the em

algorithm. SIAM Review, 26(2), 195-239.

 115

Reynolds, D.A. (1995). Automatic Speaker Recognition using Gaussian Mixture

Speaker Models. The Lincoln Laboratory Journal, 8(2), 173-192.

Reynolds, D.A. & Rose, R.C. (1995). Robust Text-Independent Speaker Identification

Using Gaussian Mixture Speaker Models. IEEE Transactions on speech and audio

processing, 3(1), 72-83. doi:10.1109/89.365379

Rohanizadeh, S.S. & Moghadam, M.B. (2009). A proposed data mining methodology

and its application to industrial procedures. Journal of Industrial Engineering, 4(2009),

37-50.

Sachs, L. (1984). Applied Statistics: A Handbook of Techniques. New York: Springer-

Verlag.

Sain, S.R., Gray, H.L., Woodward, W.A., Fisk, & M.D. (1999). Outlier detection from

a mixture distribution when training data are unlabeled. Bulletin of the Seismological

Society of America, 89(1), 294-304.

Schlattmann, P. (2003). Estimating the number of components in a finite mixture

model: the special case of homogeneity. Computational Statistics and Data Analysis,

41, 441-451.

Schonlau, M., Dumouchel, W., Ju, W., -H., Karr, A.F., Theus, M., & Vardi, Y. (2001).

Computer intrusion: Detecting masquerades. Statist. Sci., 16, 58-74.

 116

Shawe-Taylor, J., Howker, K., Gosset, P., Hyland, M., Verrelst, H., Moreau, Y.,

Stoermann, C., &, Burge, P. (2000). Novel techniques for profiling and fraud detection

in mobile telecommunications. In P.J.G. Lisboa, A. Vellido & B.Edisbury, (Eds),

Business Application of Neural Networks, 113-139. Singapore: World Scientific.

Silverman, B.W. (1986). Density estimation for statistics and data analysis. London:

Chapman and Hall.

Spiegel, M.R. (1974). Shaum’s outline series: Theory and problems of advanced

calculus: SI (Metric) edition. Singapore: Mc Graw-Hills Inc.

Taniguchi, M., Haft, M., Hollmen, J., & Tresp, V. (1998). Fraud detection in

communications networks using neural and probabilistic methods. 1998 IEEE

International Conference in Acoustics, Speech and Signal Processing (ICASSP ’98), 2,

1241-1244.

Tsay, R.S. (2005). Analysis of Financial Time Series: Financial Econometrics. New

Jersey: John Wiley and Sons, Inc.

Turkmen, M. (2013). Investigation of the relationship between academic and sport

motivation orientations. Middle-east Journal of Scientific Research, 16(7), 1008-1014.

doi:10.5829/idosi.mejsr.2013.16.07.765

Wang, H.X., Luo, B., Zhang, Q.B. & Wei, S. (2004). Estimation for the number of

components in a mixture model using stepwise split-and-merge EM algorithm. Pattern

Recognition Letters, 25, 1799-1809.

 117

Xing, D., & Girolami, M. (2007). Employing latent Dirichlet allocation for fraud

detection in telecommunications. Pattern Recognition Letters, 28, 1727-1734.

Xu, L. & Jordan, M.I. (1996). On convergence properties of the em algorithm for

Gaussian mixtures. Neural Computation, 8, 129–151.

Xu, W., Pang, Y., Ma, J. Wang, S.-Y., Hao, G., Zeng, S., Qian, Y.-H. (2008). Fraud

detection in telecommunication: a rough fuzzy set based approach. 2008 International

Conference on Machine Learning and Cybernetics, 3, 1249-1253.

doi:10.1109/CMLC.2008.4620596

Zhuang, X., Huang, Y., Palaniappan, K. & Zhao, Y. (1996). Gaussian Mixture Density

Modelling, Decomposition, and Applications. IEEE Transactions on Image Processing,

5(9), 1293-1302. doi:10.1109/83.535841

Zuber, Md., Suman, N., Gouse Pasha, Md. & Adam, Md. (2013). A study on data

mining approaches. International Journal of Emerging Trends in Engineering &

Development, 3(1), 676-683.

 118

APPENDIX A

The results presented in this thesis were produced from using the computer

facility in the Institute of Mathematical Sciences (University of Malaya) and Telekom

Research and Development Sdn. Bhd. The applications used were SPSS, Microsoft®

Excel and NetBeans, which is an Integrated Development Environment, IDE, for

developing primarily with Java and it is an application platform framework for Java

desktop applications and others. The first two applications were used for producing

graphical presentations. Due to its size, only a portion of Java script will be displayed.

class EM {

 double sum1, sum2, sum3, sum4;

 double maximum;

 double a_ih,a_il;

 double eq1,eq2,eq3;

 double diff1, diff2, diff3;

 double epsilon=0.000001;

 double[][]alpha;

 double[][][]mu;

 double[][][] sigma;

 double[][]sigma_determinant;

 double[][][] sigma_inverse;

 double[][][]prob;

 double[][] x;

 int dim;

 int h,i,j,k,l;

 int count;

 int h1,h2;

 int N,K;

 int p, P;

 int iterate;

 int Stop;

 int Stop_limit;

 //

 String[][]statement;

 int count_statement=0;

 //

 PrintWriter output=null;

 BufferedReader input = null;

 String character=null;

 StringTokenizer token;

 //

 String filename=null;

 DecimalFormat sixDigits;

 119

 public int EM_Algorithm()

 {

 //

 try

 {

 //

 //P=1;//fixed

 //

 /*if (Math.abs(Type) == 1)

 {

 K=2; dim=1;

 }

 else if (Math.abs(Type) == 2)

 {

 K=2; dim=1;

 }

 else if (Math.abs(Type) == 3)

 {

 K=6; dim=1;

 //original

 //K=3; dim=1;

 //original

 }

 else if (Math.abs(Type) == 4)

 {

 K=3; dim=4;

 }*/

 //

 //

 //

 prob=new double[P+1][][];

 for (i=0;i<=P;i++) prob[i]=new double[N+1][];

 for (i=0;i<=P;i++)

 for (j=0;j<=N;j++)

 prob[i][j]=new double[K+1];

 //

 //

 /*

 1 2 3 4

 5 6 7 8

 9 10 11 12

 13 14 15 16

 (4X4 matrix)

 */

 //

 sigma_inverse=new double[P+1][][];

 for (i=0;i<=P;i++) sigma_inverse[i]=new double[K+1][];

 for (i=0;i<=P;i++)

 for(j=0;j<=K;j++)

 sigma_inverse[i][j]=new double[dim*dim+1];

 //

 sigma_determinant=new double[P+1][];

 for (i=0;i<=P;i++)

 sigma_determinant[i]=new double[K+1];

 //

 //Initialize parameters

 /*for (k=1; k<=K; k++)

 {

 if (Type < 0)

 {

 //

 if (Type == -1)

 120

 {

 //

 if (k==1)

 {

 alpha[0][k]=0.5;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else

 {

 alpha[0][k]=0.5;

 mu[0][k][1]=2.0;

 sigma[0][k][1]=1.0;

 }

 //

 }

 else if (Type == -2)

 {

 //

 if (k==1)

 {

 alpha[0][k]=0.5;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else

 {

 alpha[0][k]=0.5;

 mu[0][k][1]=1.5;

 sigma[0][k][1]=1.0;

 }

 //

 }

 else if (Type == -3)

 {

 if (k==1)

 {

 alpha[0][k]=1.0/6.0;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else if (k==2)

 {

 alpha[0][k]=1.0/6.0;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else if (k==3)

 {

 alpha[0][k]=1.0/6.0;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else if (k==4)

 {

 alpha[0][k]=1.0/6.0;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else if (k == 5)

 {

 alpha[0][k]=1.0/6.0;

 mu[0][k][1]=0.0;

 121

 sigma[0][k][1]=1.0;

 }

 else

 {

 alpha[0][k]=1.0/6.0;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 }

 else//Type == -4

 {

 if (k==1)

 {

 alpha[0][k]=0.33;

 //

 mu[0][k][1]=4;

 mu[0][k][2]=4;

 mu[0][k][3]=2;

 mu[0][k][4]=1;

 //

 sigma[0][k][1]=1;

sigma[0][k][2]=sigma[0][k][5]=0;

sigma[0][k][3]=sigma[0][k][9]=0;

sigma[0][k][4]=sigma[0][k][13]=0;

 sigma[0][k][6]=1;

sigma[0][k][7]=sigma[0][k][10]=0;

sigma[0][k][8]=sigma[0][k][14]=0;

 sigma[0][k][11]=1;

sigma[0][k][12]=sigma[0][k][15]=0;

 sigma[0][k][16]=1;

 }

 else if (k==2)

 {

 alpha[0][k]=0.33;

 //

 mu[0][k][1]=7;

 mu[0][k][2]=2;

 mu[0][k][3]=3;

 mu[0][k][4]=2;

 //

 sigma[0][k][1]=1;

sigma[0][k][2]=sigma[0][k][5]=0;

sigma[0][k][3]=sigma[0][k][9]=0;

sigma[0][k][4]=sigma[0][k][13]=0;

 sigma[0][k][6]=1;

sigma[0][k][7]=sigma[0][k][10]=0;

sigma[0][k][8]=sigma[0][k][14]=0;

 sigma[0][k][11]=1;

sigma[0][k][12]=sigma[0][k][15]=0;

 sigma[0][k][16]=1;

 122

 }

 else

 {

 alpha[0][k]=1.0-

(0.33+0.33);

 //

 mu[0][k][1]=8;

 mu[0][k][2]=4;

 mu[0][k][3]=5;

 mu[0][k][4]=3;

 //

 sigma[0][k][1]=1;

sigma[0][k][2]=sigma[0][k][5]=0;

sigma[0][k][3]=sigma[0][k][9]=0;

sigma[0][k][4]=sigma[0][k][13]=0;

 sigma[0][k][6]=1;

sigma[0][k][7]=sigma[0][k][10]=0;

sigma[0][k][8]=sigma[0][k][14]=0;

 sigma[0][k][11]=1;

sigma[0][k][12]=sigma[0][k][15]=0;

 sigma[0][k][16]=1;

 }

 }

 //

 }

 else if (Type == 1)

 {

 if (k==1)

 {

 alpha[0][k]=0.4;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else

 {

 alpha[0][k]=0.6;

 mu[0][k][1]=2.0;

 sigma[0][k][1]=0.25;

 }

 }

 else if (Type == 2)

 {

 if (k==1)

 {

 alpha[0][k]=0.85;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else

 {

 alpha[0][k]=0.15;

 mu[0][k][1]=2.0;

 sigma[0][k][1]=0.25;

 }

 }

 else if (Type == 3)

 {

 123

 if (k==1)

 {

 alpha[0][k]=0.33;

 mu[0][k][1]=0.0;

 sigma[0][k][1]=1.0;

 }

 else if (k==2)

 {

 alpha[0][k]=0.33;

 mu[0][k][1]=-1.0;

 sigma[0][k][1]=0.25;

 }

 else

 {

 alpha[0][k]=1.0-(0.33+0.33);

 mu[0][k][1]=4.0;

 sigma[0][k][1]=4.0;

 }

 }

 else//Type == 4

 {

 if (k==1)

 {

 alpha[0][k]=0.33;

 //

 mu[0][k][1]=5.01;

 mu[0][k][2]=3.43;

 mu[0][k][3]=1.46;

 mu[0][k][4]=0.25;

 //

 sigma[0][k][1]=0.12;

 sigma[0][k][2]=sigma[0][k][5]=0.1;

sigma[0][k][3]=sigma[0][k][9]=0.02;

sigma[0][k][4]=sigma[0][k][13]=0.01;

 sigma[0][k][6]=0.14;

sigma[0][k][7]=sigma[0][k][10]=0.01;

sigma[0][k][8]=sigma[0][k][14]=0.13;

 sigma[0][k][11]=0.03;

sigma[0][k][12]=sigma[0][k][15]=0.01;

 sigma[0][k][16]=0.3;

 }

 else if (k==2)

 {

 alpha[0][k]=0.30;

 //

 mu[0][k][1]=5.91;

 mu[0][k][2]=2.78;

 mu[0][k][3]=4.2;

 mu[0][k][4]=1.3;

 //

 sigma[0][k][1]=0.27;

 sigma[0][k][2]=sigma[0][k][5]=0.1;

sigma[0][k][3]=sigma[0][k][9]=0.18;

sigma[0][k][4]=sigma[0][k][13]=0.05;

 sigma[0][k][6]=0.09;

sigma[0][k][7]=sigma[0][k][10]=0.09;

 124

sigma[0][k][8]=sigma[0][k][14]=0.04;

 sigma[0][k][11]=0.2;

sigma[0][k][12]=sigma[0][k][15]=0.06;

 sigma[0][k][16]=0.03;

 }

 else

 {

 alpha[0][k]=1.0-(0.33+0.30);

 //

 mu[0][k][1]=6.54;

 mu[0][k][2]=2.95;

 mu[0][k][3]=5.48;

 mu[0][k][4]=1.98;

 //

 sigma[0][k][1]=0.38;

sigma[0][k][2]=sigma[0][k][5]=0.09;

 sigma[0][k][3]=sigma[0][k][9]=0.3;

sigma[0][k][4]=sigma[0][k][13]=0.06;

 sigma[0][k][6]=0.11;

sigma[0][k][7]=sigma[0][k][10]=0.08;

sigma[0][k][8]=sigma[0][k][14]=0.05;

 sigma[0][k][11]=0.32;

sigma[0][k][12]=sigma[0][k][15]=0.07;

 sigma[0][k][16]=0.08;

 }

 }

 //

 }//end k

 */

 //

 //

 Stop = 0; iterate=0;

 while (Stop == 0 && (iterate <= Stop_limit))//while (Stop

== 0 && (iterate <= 200000))

 {

 iterate=iterate+1;

 //**Expectation**

 for (i=1;i<=N;i++)

 {

 sum3=0.0;

 for (k=1;k<=K;k++)

 {

 //

 if (dim > 1)

 {

 //

 if

(Cholesky_inverse(sigma[0][k],dim,sigma_inverse[0][k]) != 0)

 {

 return -1;

 }

sigma_determinant[0][k]=Determinant(sigma[0][k],dim);

 //

 }

 else

 {

 125

sigma_inverse[0][k][1]=(1.0/sigma[0][k][1]);

 sigma_determinant[0][k]=sigma[0][k][1];//

 }

 //

 sum1=0.0;

 for (h1=1;h1<=dim;h1++)

 {

 sum2=0.0;

 for (h2=1;h2<=dim;h2++)

 {

 sum2=sum2+(

 (x[i][h1]-mu[0][k][h1])*

 (sigma_inverse[0][k][(h1-1)*dim+h2])*

 (x[i][h2]-mu[0][k][h2]));

 }

 sum1=sum1+sum2;

 }

 eq1=Math.exp(-sum1/2.0);

eq2=sigma_determinant[0][k]*Math.pow(2.0*Math.PI, dim);

 eq2=1.0/Math.sqrt(eq2);

 //

 sum3=sum3+(

 alpha[0][k]*

 eq1*

 eq2);

 }

 //

 //

 for (k=1;k<=K;k++)

 {

 //

 if (dim > 1)

 {

 //

 if

(Cholesky_inverse(sigma[0][k],dim,sigma_inverse[0][k]) != 0)

 {

 return -1;

 }

sigma_determinant[0][k]=Determinant(sigma[0][k],dim);

 //

 }

 else

 {

 //

sigma_inverse[0][k][1]=(1.0/sigma[0][k][1]);

 sigma_determinant[0][k]=sigma[0][k][1];//

 //

 }

 //

 sum1=0.0;

 for (h1=1;h1<=dim;h1++)

 {

 sum2=0.0;

 for (h2=1;h2<=dim;h2++)

 {

 sum2=sum2+(

 (x[i][h1]-mu[0][k][h1])*

 (sigma_inverse[0][k][(h1-1)*dim+h2])*

 (x[i][h2]-mu[0][k][h2]));

 126

 }

 sum1=sum1+sum2;

 }

 eq1=Math.exp(-sum1/2.0);

eq2=sigma_determinant[0][k]*Math.pow(2.0*Math.PI, dim);

 eq2=1.0/Math.sqrt(eq2);

 prob[0][i][k]=(alpha[0][k]*eq1*eq2)/sum3;

 //

 }

 }//end i

 //

 //**Maximization**

 for (k=1; k<=K; k++)

 {

 //1st Equation

 sum1=0.0;

 for (i=1;i<=N;i++)

 {

 sum1=sum1+prob[0][i][k];

 }

 alpha[1][k]=sum1/((double) N);

 //

 //2nd Equation

 for (j=1; j<=dim; j++)

 {

 sum1=sum2=0.0;

 for (i=1;i<=N;i++)

 {

 sum1=sum1+(prob[0][i][k]*x[i][j]);

 }

 for (i=1;i<=N;i++)

 {

 sum2=sum2+prob[0][i][k];

 }

 mu[1][k][j]=sum1/sum2;

 }

 //

 //3rd Equation

 for (h=1;h<=dim;h++)

 {

 for (l=1;l<=dim;l++)

 {

 //

 sum1=sum2=0.0;

 for (i=1;i<=N;i++)

 {

 a_ih=x[i][h]-mu[1][k][h];

 a_il=x[i][l]-mu[1][k][l];

 sum1=sum1+(prob[0][i][k]*a_ih*a_il);

 }

 for (i=1;i<=N;i++)

 {

 sum2=sum2+prob[0][i][k];

 }

 sigma[1][k][(h-1)*dim+l]=sum1/sum2;

 //

 }

 }

 //

 }//end k

 //

 127

 //checking for convergence

 //iteration iterate and iterate-1 parameters are

compared. If difference is less than say 1e-6, convergence is

achieved.

 count=0;

 for (k=1; k<=K; k++)

 {

 //1st equation

 diff1=Math.abs(alpha[1][k]-alpha[0][k]);

 if (diff1 < epsilon)

 {

 count=count+1;

 }

 //number of alphas = K

 //2nd equation

 for (j=1; j<=dim; j++)

 {

 diff2=Math.abs(mu[1][k][j]-mu[0][k][j]);

 if (diff2 < epsilon)

 {

 count=count+1;

 }

 }

 //number of mus = K*dim

 //3rd equation

 for (h=1;h<=dim;h++)

 {

 for (l=1;l<=dim;l++)

 {

 diff3=Math.abs(sigma[1][k][(h-

1)*dim+l]-sigma[0][k][(h-1)*dim+l]);

 if (diff3 < epsilon)

 {

 count=count+1;

 }

 }

 }

 //number of sigmas = K*dim*dim

 //

 }//end k

 //

 if (count == (K+(K*dim)+(K*dim*dim)))

 {

 //

 Stop = 1;

 //

statement[count_statement][1]=statement[count_statement][1]+"(iteratio

n# "+String.valueOf(iterate)+")";

 //

 for (k=1; k<=K; k++)

 {

 character=null;

 //1st equation

character="(k="+String.valueOf(k)+",alpha="+String.valueOf(alpha[1][k]

);//alpha

 //

 //2nd equation

 for (j=1; j<=dim; j++)

 {

character=character+",mu_"+String.valueOf(j)+

 128

"="+String.valueOf(mu[1][k][j]);//mu

 }

 //

 //3rd equation

 for (h=1;h<=dim;h++)

 {

 for (l=1;l<=dim;l++)

 {

 character=character+",sigma_"+

 String.valueOf(h)+"_"+

 String.valueOf(l)+

"="+String.valueOf(sigma[1][k][(h-1)*dim+l]);//sigma

 }

 }

 //

 character=character+")";

 //

//count_statement++;statement[count_statement][1]=(character);

statement[count_statement][1]=statement[count_statement][1]+(character

);

 //

 }//end k

 //

 }

 else

 {

 //

 Stop=0;

 //

 for (k=1; k<=K; k++)

 {

 //1st equation

 alpha[0][k]=alpha[1][k];

 //

 //2nd equation

 for (j=1; j<=dim; j++)

 {

 mu[0][k][j]=mu[1][k][j];

 }

 //

 //3rd equation

 for (h=1;h<=dim;h++)

 {

 for (l=1;l<=dim;l++)

 {

 sigma[0][k][(h-

1)*dim+l]=sigma[1][k][(h-1)*dim+l];

 }

 }

 //

 //

 }//end k

 //

 }//end if

 //

 }//end while

 //

 //

 }

 129

 catch (ArithmeticException arithmeticException)

 {

count_statement++;statement[count_statement][1]=String.valueOf(arithme

ticException);

 return -1;

 }

 //

 if (Stop == 1) return -100;

 //

 return 0;

 //

 }

 130

APPENDIX B

Due to its size, we tabulate only a portion of customer’s call detail record (cdr)

supplied by Telekom Malaysia Berhad. SERVICE NUMBER and DIALED DIGITS

are not revealed to ensure confidentiality.

SERVICE
NUMBER

DIALED
DIGITS

AREA
CODE

COUNTRY
CODE

SEIZE TIME DURATION SYSTEM
CHARGING

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

null
null
null
19
19
19
16
16
null
null
16
12
19
19
null
19
19
3
19
84
19
19
13
13

675
675
675
60
60
60
60
60
675
675
60
60
60
60
675
60
60
60
60
60
60
60
60
60

1/03/2011 14:05
1/03/2011 15:44
1/03/2011 15:56
31/03/2011 8:41
31/03/2011 9:27
31/03/2011 9:43
31/03/2011 9:50
31/03/2011 10:54
31/03/2011 11:26
31/03/2011 11:27
31/03/2011 12:46
31/03/2011 14:03
31/03/2011 14:29
31/03/2011 14:40
31/03/2011 14:47
31/03/2011 15:37
31/03/2011 15:42
31/03/2011 15:55
31/03/2011 16:04
31/03/2011 16:22
30/05/2011 8:50
30/05/2011 8:54
30/05/2011 9:20
30/05/2011 9:27

000054 00
000430 00
000049 00
000339 00
000035 00
000048 00
000031 00
000138 00
000003 00
000057 00
000002 00
000041 00
000233 00
000029 00
000032 00
000002 00
000230 00
000251 00
000202 00
000022 00
000015 00
000031 00
000508 00
000003 00

3.6
18
3.6
0.8
0.5
0.6
0.2
0.5
0.4
4
0.1
0.5
0.8
0.4
2.4
0.1
1.8
2.5
1.5
0.1
0.1
0.2
1.6
0.1

