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ABSTRAK 

 

Kegiatan penipuan telah mencapai ke peringkat kritikal dimana ianya 

menyebabkan syarikat telekomunikasi mengalami kerugian berjumlah jutaan ringgit 

dan memaksa syarikat-syarikat tersebut mengguna pakai aplikasi atau sistem (seperti 

Telekom Malaysia Berhad Sistem Pengenalpastian Kegiatan Penipuan Generasi Baru) 

untuk mengenalpasti kegiatan tersebut. 

 

Kami memperkenalkan satu algoritma baru yang dapat mengenalpasti kegiatan 

penipuan dalam industri telekomunikasi (sebagai contoh, pencerobohan penipuan 

berlaku apabila akaun yang sah diancam oleh penceroboh yang membuat dan menjual 

panggilan dengan menggunakan akaun tersebut) yang menggunakan Model Bercampur 

Gauss, satu model kebarangkalian yang seringkali digunakan dalam mengenalpasti 

kegiatan kecurian melalui pengenalpastian suara. Disebabkan kerumitan yang 

dipamerkan oleh Model Bercampur Gauss, kami menggunakan Pemaksimum Jangkaan 

oleh Dempster et al. (1977) untuk mencari Penganggaran Kebolehjadian Maksimum 

bagi parameter Model Bercampur Gauss. Bersama-sama dengan kaedah inti (sila rujuk 

kepada Silverman, 1986), kami dapat memperbaiki proses yang berkaitan dengan 

menentukan bilangan komponen dalam Model Bercampur Gauss. Tambahan pula, kami 

berjaya menghasilkan Ujian Kebolehjadian Nisbah dalam menentukan bilangan 

komponen dalam Model Bercampur Gauss dan perbandingan keputusan yang 

diperolehinya dengan keputusan yang diperolehi oleh Kriteria Maklumat Akaike akan 

ditekankan dalam tesis ini. Algoritma tersebut juga menggunakan pekali keserupaan 

untuk mengklasifikasi data sebenar berdasarkan kepada fungsi log-kebolehjadian dan 
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ianya diperluaskan untuk mengenalpasti panggilan yang mencurigakan yang 

dikenalpasti oleh syarikat telekomunikasi. 

 

Algoritma yang baru diperkenalkan ini diuji dengan menggunakan data simulasi 

dan data sebenar dimana keputusannya (daripada ujian tersebut) menunjukkan ia 

berupaya mengenal pasti kegiatan penipuan. Data sebenar adalah terdiri daripada 

berapa lama panggilan dibuat dan berapa cajnya, diambil daripada ibusawat Telekom 

Malaysia Berhad, dan ianya dicemari oleh aktiviti penipuan. Memandangkan format 

data sebenar adalah berbeza dengan yang biasa digunakan untuk pengenalpastian suara, 

ianya disusun semula sebelum pengujian dan penganalisaan. Algoritma baru bersetuju 

dengan apa yang dicurigai oleh syarikat  
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ABSTRACT 

 

Fraud activities have reached to critical point causing millions of ringgit of 

losses to telecommunication companies, and as a result, forcing them to employ 

applications or systems (such as Telekom Malaysia Berhad’s Next Generation Fraud 

Detection System) to detect the said activities.  

 

We introduce a new algorithm that could detect fraud activities in 

telecommunication industry (e.g. intrusion fraud which occurs when legitimate account 

is comprised by an intruder who makes or sells calls on this account) that uses Gaussian 

Mixed Model (or GMM), a probabilistic model normally used in fraud detection via 

speech recognition. Due to the complexity of GMM, we use Expectation Maximization 

(or EM) algorithm by Dempster et al. (1977) to obtain the maximum likelihood 

estimates of the GMM parameters. Together with Kernel method (see Silverman, 

1986), we improve the process of finding the number of components in GMM. In 

addition, we have also successfully derived the likelihood ratio test in the determination 

of the number of components in GMM and the comparison of its results with those of 

Akaike Information Criteria (AIC) will also be highlighted in this thesis. The said 

algorithm uses similarity coefficient to classify the real data based on the log-likelihood 

function and it’s extended to detect incoming fraud calls as suspected by the 

telecommunication company.  

 

The new algorithm is tested on simulated and real data where the results show it 

is capable of detecting fraud activities. The real data, which included call charging and 

duration, are collected from Telekom Malaysia Berhad’s exchanges and they are 
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believed to be contaminated by fraud activities. As the original data are clearly not in 

the format that is generally used for speech recognition, they are reformatted prior to 

testing and analysis. The new algorithm is in agreement with those suspected by the 

company.  
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CHAPTER 1 

INTRODUCTION  

 

1.1 Background of the study 

 

Telecommunication companies (including those that are operating in Malaysia) 

suffered heavy losses amounting to US$55 Billion per year due to fraud activities. 

Between 3 and 5 percent of the company’s annual revenue would “disappear” due to 

the said activities. They (i.e. the said companies) will not declare or make public these 

activities (if they do decide to declare, they will call these activities as bad debt) fearing 

huge migration of customers to the competitors due to lack of confidence in the 

services they offered. The fraud activities are expected to increase with the introduction 

of new services such as 3G and Voice Over Internet Protocol. 

 

Although the number of fraudulent calls is small when compared to the overall 

call volume but the cost incurred is huge (or significant) amounting to, based on 

estimation by analysts for telecommunication industry in U.S., $1 Billion a year as 

mentioned by Cox et al. (1997). Cahill et al. (2002) reported fraud activities eroded 

between 4% and 6% of U.S. telecom’s revenue; and suggested that the degree of 

“erosion” is much worse at international level where several new service providers 

reported losses greater than 20%. In terms of losses to fraud, Moreau et al. (1996) 

estimated several millions European Currency Units (ECUs) per year. Bolton and Hand 

(2002) gave figures representing losses to fraud each year of £13 Billion and $13 
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Billion (U.S.); and estimated it could reach $28 Billion within 3 years. Generally, the 

loss is significantly large and warrants serious action to manage the problem. 

 

Becker et al. (2010) mentioned the Communications Fraud Control Association 

(cfca.org) periodically estimates the extent of worldwide telecommunications fraud. In 

1999 this estimate was $12 billion, in 2003 it was between $35 and $ 40 billion, in 

2006 it was between $55 and $60 billion, and in 2009 it was between $70 and $78 

billion.  

 

1.1.1 Modus Operandi 

 

Becker et al. (2010) gave examples of some common varieties of fraud in 

telecommunication and the one that is of our interest is intrusion fraud. This occurs 

when an existing, otherwise legitimate account, typically a business, is compromised in 

some way by an intruder, who subsequently makes or sells calls on this account. In 

contrast to subscription calls, the legitimate calls may be interspersed with fraudulent 

calls, calling for an anomaly detection algorithm.  

 

For mobile telecommunication, the perpetrator would normally hack into a 

network and use false identity to access services for free. Nowadays the perpetrator 

would use cloned phones (or SIM) to make free international and expensive roaming 

calls (see Bihina Bella et al., 2005). This activity would involve the duplication of 

customer’s hardware and firmware thus allowing the perpetrators to make calls on their 

account and consequently inflating their monthly bill. Other types of fraud are prepaid 

and interconnect. 
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Premium Rate Service (PRS) involves high number of calls made to the PRS 

number from customer’s line network without their knowledge or from a number where 

there is no intention to pay for the outgoing calls using auto-dialers. Other types of 

fraud are Private Automatic Branch Exchange (PABX) for international calls, 

network’s personnel provide an assigned number to a user that does not have an 

account with the network (this activity is called stolen line unknown) and international 

roaming manipulation which is similar to subscription fraud where the perpetrator 

exploits the time delay of high rate identification and notification to home network 

when roaming on another network. 

 

There are cases where perpetrators are the subscribers themselves that 

performed call back (with the intention to get cheaper international calls from call back 

operator usually in another country via dialing out, regular dial tone availability, call 

booked via other channels, and call initiated via international toll free number) and 

illegal schemes (e.g. reselling calling cards to other subscribers, forgery of vouchers, 

recharge, counterfeit and stolen cards to pay goods over the phone).  

 

Several types of telecom fraud are listed in Shawe-Taylor et al. (2000), but the 

one, which is of our interest, is called superimposed or “surfing” fraud. Superimposed 

fraud refers to the use of a service without permission and it would appear as phantom 

calls on a bill. It will generally occur at the level of individual calls where fraudulent 

will be mixed together with the legitimate calls. 
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1.1.2 Methods used to detect fraud activities 

 

Data Mining is one of the applications capable of detecting fraud in 

telecommunication and Malaysian companies (especially telecommunication ones) are 

using the said application. IBM developed Data-Mining application called “Intelligent 

Miner” (amongst its users are Australia’s Health Insurance, John Hancock Life 

Insurance, “Saveway” Mart in UK and banking industry in USA) whereas SAS 

“Enterprise Miner”, SPSS, Lotus, SGI and Hitachi are not far behind in the “race” (in 

developing the said application). In Malaysia, companies such as Aetna Insurance, 

Astro, Celcom and Franks & Small have been using Data-Mining application since 

1996 and SAS has developed Data-Mining application called SISWANG to manage 

corporate type data for Telekom Malaysia Berhad.  

 

Briefly, techniques used in Data-Mining can be divided into two: (1) 

Preparation of Data and (2) Model of Data. Techniques (1) and (2) are equally 

important where according to Pyle (1999), the data must be well managed so that 

process with regard to modeling could be performed smoothly and quickly. Zuber et al. 

(2013) on the other hand concentrated on (2) and gave six models used in Data-Mining: 

(1) Classification, (2) Regression, (3) Time Series, (4) Cluster, (5) Association Analysis 

and (6) Sequence Discovery. 

 

SAS has developed a data mining analysis cycle known by the acronym 

SEMMA (Rohanizadeh and Moghadam, 2009). This acronym stands for the five steps 

of an analysis that are ordinarily a part of a data mining projects. Those five steps are: 
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Sample: First step of data mining is to create one or more data tables by sampling data 

from the data warehouse. The samples should be big enough to contain significant 

information, yet small enough to process quickly hence reducing the processing time 

required to get critical business information. This approach uses a reliable, statistical 

representative sample of the entire database. 

 

Explore: After sampling the data, they would be explored visually and numerically (i.e. 

using statistical techniques including Factor Analysis, Corresponding Analysis and 

Clustering) for inherent trends or groupings. 

 

Modify: Based on the discoveries in the exploration phase, modification may be 

needed:  

(1) To include information such as grouping of customers and significant 

subgroups, or  

(2) To introduce new variables such as ratio obtained by comparing two previously 

defined variables. 

Modification process also involves looking for outliers, reduce the number of variables 

to narrow them down to the most significant ones and modify data when previously 

mined data change in some way. 

 

Model: After the data have been assessed and modified, data modeling techniques (e.g. 

neural networks, tree-based models, logistic models, and other statistical models such 

as time series analysis and survival analysis) are used to construct models that explain 

“pattern” in the data and each of them (i.e. data modeling techniques) is appropriate 

within specific data-mining situations depending on the data.  
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Assess: Assessing a model to determine how well it performs is done by applying it to a 

portion of the data that was set-aside during the sampling stage. If it is valid, it should 

work for this reserved sample as well as the sample used to construct the model. 

 

Abbot et al. (1998) highlighted the findings of a study done by DataQuest back 

in 1997 (more and better Data Mining applications have started to emerge nowadays 

with the advent of more “powerful” micro-processors) where IBM was the data mining 

software market leader with a 15% share of license revenue, Information Discovery 

was second with 10%, Unica was third with 9% and Silicon Graphics was fourth with 

6%. They went even further by evaluating data mining products or tools (vendor is 

given in brackets and will be used henceforth to describe the product) namely 

Clementine (ISL); Darwin (TMC); Enterprise Miner (SAS); Intelligent Miner for Data 

(IBM); and Pattern Recognition Workbench (Unica) based on the following factors: 

 

Client Server Processing: Data mining applications often use data sets far too large to 

be retained in physical RAM, slowing down processing considerably as data loaded to 

and from virtual memory. Also, algorithm runs far slower when hundreds of candidate 

inputs are considered in models. Therefore a client server processing model has great 

appeal by using a single high powered workstation for processing but let multiple 

analysts access the tools from PCs on their desktops. 

 

Automation and Project Documentation: The experimentation process involves 

repeatedly adjusting algorithm parameters, candidate inputs and sample sets of the 

training data. It would be a great help to automate what can be in this process in order 

to free the analysts from some of the mundane and error prone tasks of linking and 

documenting exploratory research findings. All five products provided means to 
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document findings during the research process, including time and date stamps on 

models, text fields to hold notes about the particular model and the saving of guiding 

parameters. 

 

Algorithms: Referring to Decision Trees, Neural Networks, Regression, Radical Basic 

Functions, Nearest Neighbor, Nearest Mean Kohonen Self Organizing Maps, 

Clustering and Associate Rules.  

 

Ease of Use: Referring to Data Loading and Manipulation, Model Building and 

Understanding (Specifying Models, Reviewing Trees and Reviewing Classification 

Results) and Technical Support. 

 

Accuracy: The smaller number of false alarms is better and the larger number of 

fraudulent activities caught is better. Data used to grade accuracy of the tools contained 

fraudulent and non-fraudulent financial transactions. 

 

Abbot et al. (1998) found ISL’s performance on modem line was acceptably 

slow. Unica’s processor capabilities must be significantly better than is required for the 

others. IBM’s Java runs more slowly than other GUI designs. SAS has the largest disk 

footprint of any of the tools (i.e. at 300+ MB). Unica doesn’t have Decision Trees (this 

study focused on Decision Trees and Neural Networks). They (i.e. Abbot et al., 1998) 

concluded that IBM’s Intelligent Miner for Data has the advantage of being the current 

market leader with a strong vendor offering well-regarded consulting support. ISL’s 

Clementine excels in support provided and in ease of use (given Unix familiarity) and 

might allow the model iterations in a tight deadline. SAS’s Enterprise Miner would 

especially enhance a statistical environment where users are familiar with SAS and 
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could exploit its macros. Thinking Machine’s Darwin is the best when network 

bandwidth is at a premium (say, on very large databases). Unica’s Pattern Recognition 

Work-bench is a strong choice when it’s obvious what algorithm will be most 

appropriate, or when analysts are more familiar with spreadsheets than Unix. 

 

The detection and analysis of outliers become difficult when the data involved 

is:  

• Time series data because they (i.e. outliers) may be hidden in trend, seasonal or 

other cyclic changes,  

• Multidimensional data where not any particular one but rather a combination of 

dimension values may be extreme and  

• Non-numeric (i.e. categorical data) where the definition of outlier requires 

special consideration.  

Methods for detecting them (i.e. outliers) are (as per listed by Han and Kamber, 2001): 

 

Online Analytic Processing (OLAP) uses data cubes to identify regions of anomalies in 

large multidimensional data. For example, discovery driven exploration is an approach 

where pre-computed measures indicating data exceptions are used to guide the user in 

data analysis at all levels of aggregation. A cell value in the cube is considered an 

exception if it is significantly different from the expected value based on a statistical 

model. The method uses visual cues such as background color to reflect the degree of 

exception of each cell. The user can choose to drill down on cells that are flagged as 

exceptions. The measure value of a cell may reflect exceptions occurring at more 

detailed or lower levels of the cube where these exceptions are not visible from the 

current level. 
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Deviation based Outlier Detection identifies outliers by examining the main 

characteristics objects in a group. No statistical technique (or distance based measures) 

is used. For example, Dissimilarity function does not require a metric distance between 

the objects. It is any function that, if given a set of objects, returns a low value if the 

objects are similar to one another. The greater the dissimilarity among the objects, the 

higher the value returned by the function. The dissimilarity of a subset is incrementally 

computed based on the subset prior to it in the sequence. Given a subset of n numbers 

{x1,…,xn} a possible dissimilarity function is the variance of the numbers in the set that 

is ∑
=

−
n

i

i xx
n 1

2)(
1

 where x  is the mean of the n numbers in the set. For character strings, 

the dissimilarity function may be in the form of a pattern string (e.g. containing 

wildcard characters) that is used to cover all the patterns seen so far. The dissimilarity 

increases when the pattern covering all of the strings in Sj-1 doesn’t cover any string in 

Sj that is not in Sj-1. 

 

Distance based outlier detection: Objects that do not have enough neighbors, where 

neighbors are defined based on distance from the given object. For example, given a 

data set, the index-based algorithm uses multi-dimensioning indexing structures, such 

as R-trees, to search for neighbors of each object o within radius d-around that object. 

Let M be the maximum number of objects within the d-neighborhood of an outlier. 

Therefore, once M+1 neighbors of object o are found, it is clear that o is not an outlier. 

 

Statistical approach: Assuming a distribution or probability model for the given data 

set (e.g. normal distribution) and the identification of outliers with respect to the model 

using discordance test. Other examples are as follows: 
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• Hollmen and Tresp (2000) presented a Learning Vector Quantization (LVQ) 

algorithm for learning a classifier defined by a codebook of probabilistic 

models. The models implicitly define a discrimination function in the input data 

space through maximum likelihood search. The prototypical codebook vectors 

were replaced by generative, probabilistic models and the LVQ learning rules 

were modified accordingly. The likelihood-based distance was justified by a 

derivation form the Kullback-Leibler distance. The conceptual difference to 

conventional training of probabilistic models is the use of supervised, gradient-

based learning instead of maximum likelihood estimation. This specially tunes 

the models for discrimination. The algorithm may also be used in post-

processing to enhance the discriminative aspect of generative density models 

earlier trained by using the EM algorithm.  

 

• Hollmen and Tresp (2000) extended the Hidden Markov Model (or HMM) to 

modeling time series that exhibit switching between matrix and event based 

representations. This essentially combines an HMM with continuous emission 

distribution and one with discrete emission distribution. Additional variable data 

semantics controls the interpretation of data and is dependent on the hidden 

variable. Inference and learning rules were developed within a maximum 

likelihood framework. The approach was illustrated in a user profiling problem 

where the mechanism leading to the event representation was important from 

user profiling point of view.  

 

• Taniguchi et al. (1998) presented three approaches to fraud detection in 

communications networks. They are Neural networks with supervised learning, 

Probability density estimation methods and Bayesian networks. The 
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performance of these methods has been validated with data from a real mobile 

communication networks. The feature vectors used in this application 

describing the subscriber’s behavior were based on toll tickets. For supervised 

learning approach, the features used were summary statistics over the whole 

observed time period as no times of fraud were recorded in the data. For the two 

latter approaches, the features described the daily behavior for every subscriber. 

To improve the fraud detection system, the combination of the three presented 

methods could be beneficial. Furthermore, the incorporation of rule-based 

systems could show an improvement.  

 

• Hollmen and Tresp (1998) presented a call based on line fraud detection system 

which is based on a hierarchical regime switching generative model. The 

inference rules are obtained from the junction tree algorithm for the underlying 

graphical model. The model is trained by using the EM algorithm on an 

incomplete data set and is further refined with gradient based discriminative 

training, which considerably improves the results.  

 

• Linoff (2004) has successfully used survival data mining (especially Kaplan-

Meier Survival Analysis) to understand customer behavior or churn such as 

plots produced from using hazards formula (where in this case 

 t toequalor an greater th  tenureshad whoeveryone

 t  nureexactly te with stopped  whocustomers ofnumber 
) show peaks of non-

payment and promotion ends and from using the survival formula (i.e. 

cumulative probability by multiplying one minus the hazards together for all 

values less than t) shows the number of customers that will survive beyond the 

non-payment period. The said data mining would “censor” customers that leave 

voluntarily and may be able to answer questions such as: “When will a lapsed 
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customer return?”, “When is the next customer’s purchase?” and “How long 

will an upgrade last?”. 

 

Xing and Girolami (2007) employ Latent Dirichlet Allocation (LDA) to build 

user profile signatures. The authors assume that any significant unexplainable deviation 

from the normal activity of an individual user is strongly correlated with fraudulent 

activity. A straightforward generalization of LDA to time-invariant Markov chains of 

arbitrary order is proposed in Girolami and Kaban (2005), where the experimental 

study refers to modeling the sequential usage of a telephone service by a large group of 

individuals. Xu et al. (2008) presents a novel rough fuzzy set based approach to detect 

fraud in 3G mobile telecommunication network. It analyzes the scenarios in 3G 

network including subscription fraud and superimposed fraud and profile and confirms 

the parameters to detect the scenarios. Hilas and Mastorocostas (2008) investigates the 

usefulness of applying different learning approaches to a problem of 

telecommunications fraud detection that is by applying multilayer perception classifier 

and the hierarchical agglomerative clustering technique on five models (profiles) of 

telecommunications users’ behaviors. Hilas (2009) constructs an expert system, which 

incorporates both the network administrator’s expert knowledge and knowledge 

derived from the application of data mining techniques on real-world data. The 

detection of individual fraud call which are of the time series type become tricky as 

they may be hidden in trend, seasonal, or other cyclic changes.  The problem becomes 

more complicated when multidimensional data are considered.  Such problem may be 

classified as the problem of detecting outliers. 

 

Gomez-Restrepo and Cogollo-Florez (2012) evaluate the implementation of 

generalized linear mixed models to detect fraud. They consider the heterogeneity of 
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customers and generate not only a global model, but also a model for each customer 

which describes the behavior of each one according to their transactional history and 

previously detected fraudulent transactions. In particular, a mixed logistic model is 

used to estimate the probability that a transaction is fraudulent, using information that 

has been taken by the banking systems in different moments of time. 

 

1.2 Statement of the problem 

 

The number of literatures that discuss about pattern recognition method (namely 

Gaussian Mixed Model, GMM) used to detect fraud activities in telecommunication 

industry involving real data other than speech recognition’s format is limited and GMM 

is considered as difficult in reality because we need to find the initial estimates of 

parameters to start Expectation Maximization (EM) algorithm and the exact number of 

components. Telekom Malaysia Berhad, a leading telecommunication company in 

Malaysia, via their current system or application believes the real data collected by 

them (e.g. duration and charging or billing) from its exchanges are contaminated by 

fraud activities and, since GMM is not included on the list of methods, there is no 

knowing if their findings are statistically correct. 

 

1.3 Objectives  

 

Based on the statement of the problem given above, we have outlined the 

following objectives for this study: 
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•  To improve Gaussian Mixed Model (GMM) from its known (or current) weaknesses 

(or difficulties) such as finding the initial estimates of parameters to start Expectation 

Maximization (EM) algorithm and finding exact number of components. 

 

•  To introduce a new algorithm that is capable of detecting fraud activities (especially) 

in telecommunication industry and that incorporates the improvement as mentioned in 

the first bullet.  

 

• To test the new algorithm (at the same time improving the EM algorithm for GMM) 

using simulation data and real data (e.g. duration and charging or billing) collected 

from Telekom Malaysia Berhad’s exchanges that are believed to be contaminated by 

fraud activities. 

 

1.4 Significance of the study 

 

In addition to contributing to the knowledge in statistics, the findings from this 

study will encourage the use of statistical methods (in this case, Gaussian Mixed 

Model) in detecting fraud activities in telecommunication industry by incorporating 

them into the company’s decision support system. 

 

1.5 Thesis outline  

 

This research attempts to detect fraud in telecommunication using pattern 

recognition method and it is outlined as follows: 
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Chapter two provides a literature review about the use of pattern recognition method in 

detecting fraud activities in Telecommunication industry where special attention is 

given to Gaussian Mixed Model (GMM). Formulas involved in GMM and Expectation 

Maximization, an algorithm typically used in solving the problem of calculating 

maximum likelihood estimation, are listed and derived.  

 

Chapter three attempts to use Gaussian mixed model which is a probabilistic model 

normally used in speech recognition to identify fraud calls in the telecommunication 

industry. We look at several issues encountered when calculating the maximum 

likelihood estimates of the Gaussian mixed model using an expectation maximization 

algorithm. Firstly, we look at a mechanism for the determination of the initial number 

of Gaussian components and the choice of the initial values of the algorithm using the 

kernel method. We show via simulation that the technique improves the performance of 

the algorithm via simulation. Secondly, we develop a procedure for determining the 

order of the Gaussian mixed model using the log-likelihood function and the Akaike 

information criteria (AIC). Finally, for illustration, we apply the improved algorithm to 

real telecommunication data. The modified method will pave the way to introducing a 

comprehensive method for detecting fraud calls in future work. 

 

Chapter four proposes a new fraud detection algorithm that uses Gaussian mixed 

model, a probabilistic model normally used in recognizing a person’s voice in speech 

recognition field. Using data obtained from one of the leading telecommunication 

company in Malaysia, we show that the proposed algorithm has not only successfully 

detected fraud calls as suspected by the company, but also identify suspicious calls 

which can be candidates of fraud call. The proposed algorithm is easy to implement 
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with a great potential to be extended to detect billed (or outgoing) fraud calls and hence 

reduces the loss incurred by the telecommunication companies. 

 

Chapter five shows the successful derivation of hypothesis testing in the determination 

of the number of components in GMM, which is an important process as highlighted by 

a number of authors. The performance of the hypothesis testing and the comparison of 

its results with those of AIC will also be highlighted in this chapter. 

 

Chapter six proposes a new algorithm than can be efficiently used to identify fraud 

activities.  The algorithm is developed by finding the characteristics of historical fraud 

and non-fraud calls and is consequently used in identifying possible fraud call instantly 

for immediate call verification process. Using data obtained from one of the leading 

telecommunication company in Malaysia, we show that the proposed algorithm has 

successfully detected outgoing fraud calls as suspected by the company.  

 

Chapter seven presents the general conclusion and highlights the significant 

contributions of this research, moreover, we also suggest several possibilities for 

extending research work on fraud detection in telecommunication using pattern 

recognition method. 

 

Appendices A and B present the programming language (and software) used to produce 

the results in this thesis and a sample of real data supplied by Telekom Malaysia 

Berhad, respectively. 
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CHAPTER 2 

GAUSSIAN MIXED MODEL 

 

2.1 Introduction 

 

Jain et al. (2000) defines a pattern “as opposite as a chaos; it is an entity, 

vaguely defined, that could be given a name”. For example, pattern could be a 

fingerprint image, a handwritten cursive word, a human face, or a speech signal. They 

added given a pattern, its recognition/classification may consist of one of the following 

tasks: 1) supervised classification (e.g. discriminate analysis) in which the input pattern 

is identified as a member of predefined class, 2) unsupervised classification (e.g. 

clustering) in which the pattern is assigned to hitherto unknown class. They noted that 

the recognition problem here is being posed as a classification or categorization task, 

where the classes are either defined by the system designer (in supervised 

classification) or are learned based on the similarity patterns (in unsupervised 

classification). 

 

Reynolds (1995) presented an overview of his research efforts in automatic 

speaker recognition. He based his approach on a statistical speaker-modeling technique 

that represents the underlying characteristic sounds of a person's voice. Using the said 

technique, he built speaker recognizers that are computationally inexpensive and 

capable of recognizing a speaker regardless of what is being said. Performance of the 

systems is evaluated for a wide range of speech quality; from clean speech to telephone 

speech, by using several standard speech corpora. Reynolds and Rose (1995) 
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introduced the use of Gaussian Mixed Model (GMM) for robust text-independent 

speaker identification. The focus of their work is on applications which require high 

identification rates using short utterance from unconstrained conversational speech and 

robustness to degradations produced by transmission over a telephone channel.  

 

The function of GMM is extended to detect fraud activities on the number (as 

well as length) of domestic and international calls made on a daily basis during office, 

evening and night hours. Tanigushi et al. (1998) presented three approaches to fraud 

detection in communication networks: neural networks with supervised learning, 

probability density estimation methods and Bayesian networks. Information describing 

a subscriber’s behavior kept in toll tickets was used. For example, supervised learning 

used summary statistics over the whole observed time period (especially the number of 

times fraud activities were recorded in the data). The two latter approaches used a 

subscriber’s daily behavior. To improve the fraud detection system, they recommended 

the combination of the three presented methods together with the incorporation of rule-

based systems. 

 

The maximum likelihood estimation for a GMM is generally difficult to obtain 

directly, but it is made easier with the availability of the Expectation Maximization 

(EM) algorithm which was first introduced by Dempster et al. (1977).  Since then, there 

has been a significant increase of its use especially in finding the maximum likelihood 

for probabilistic models. For example, Hollmen and Tresp (1998, 2000) developed an 

online system for detecting fraud calls using a hierarchical switching generative model. 

The model is trained by using the EM algorithm on an incomplete data set and is 

further improved by using a gradient-based discriminative method. Redner and Walker 

(1984) discussed the formulation as well as the theoretical and practical properties of 
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the EM algorithm for mixture densities, focusing in particular on mixtures of densities 

from exponential families. Xu and Jordan (1996) built up the mathematical connection 

between EM algorithm and gradient based approaches for maximum likelihood 

learning of finite Gaussian mixtures. 

 

2.2 Gaussian Mixed Model 

 

Let x  ∈  R
d and K be the number of components where each component has its 

own prior probability ai and probability density function with mean iµ  and covariance 

.,1, Kii K=Σ  A Gaussian mixed model is then given by  
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),|(log Σµxφ  in )|( θXl  is difficult to compute. We use the Expectation 

Maximization (EM) algorithm to overcome this problem. 
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2.2.1 Expectation Maximization algorithm 

 

In a general set-up of the EM algorithm given in Dempster et al. (1977), the 

authors considered an unobservable variable X in sample space X, which is indirectly 

observed through observed variable Y in sample space l.  Assuming that ( )θ|xf  is 

the sampling density depending on the parameter Ω∈θ , the corresponding family of 

sampling densities for Y , say ( )θ|yg , can be derived from 

 

∫=
)(

)|()|(
y

dxxfyg
χ

θθ          (2.2) 

 

where χ (y) is a subset of X under the mapping x → y(x)  from X to l. The main 

objective of the EM algorithm is to find the value of θ that maximizes equation (2.2). 

Consider the expected value of )'|(log θxf  given y and θ, denoted by )( θθ |'Q , where 

 

),|)'|((log)|'( θθθθ yxfEQ =         (2.3) 

 

with the expectation assumed to exist for all pairs ( )θθ ,'  and ( ) 0| >θxf  for Ω∈θ .   

According to Dempster et al. (1977), the EM iteration consists of two steps namely the 

E-step and the M-step.  At the pth iteration with the estimate of θ  denoted by )( pθ , the 

E-step will give the value of ( ))(| pQ θθ  and the M-step will find a new estimate of  θ , 

say )1( +pθ , that maximizes ( ))(| pQ θθ .  The steps are repeated until convergence is 

achieved. 
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For the case of a GMM, we define ( ) 
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where yi∈{1,2,…,K} and yi=k if the i
th sample is generated by the k

th mixture 

component. It is simplified by applying, amongst others, the Bayes formula 

( ) ( ) ( )θθθ Pxfxf || ∝  where ( )xf |θ  is the posterior probability, ( )θ|xf  is the 

likelihood function and ( )θP  is the prior probability to the following equations (see 

Bilmes, 1998, and Tsay, 2005): 
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Hence, the EM iteration for a GMM is defined by: 

E-Step: Use equation (2.5).  

M-Step: Use the formulas  
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The above steps (i.e. E-step and M-step) are repeated until convergence is achieved. 

 

The first equation of (2.7) which maximizes equation (2.4) is derived by using 

Lagrange multipliers (Spiegel, 1974) on the first expression of equation (2.4), i.e. 
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The results for second, third and fourth expressions of equation (2.8) are as follows 
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Applying the results to equation (2.8), we get the second equation of (2.7), i.e. 
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Applying the results to equation (2.9), we get  
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The condition as displayed by equation (2.10) is satisfied when 
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Performing a simple mathematical procedure on equation (2.11), we get the third 

equation of (2.7), i.e. 
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2.3 Summary 

 

 A brief introduction to pattern recognition method namely Gaussian Mixed 

Model (GMM) is given. The said method is commonly used in voice recognition 

technique and used EM algorithm to solve the problem related to maximum likelihood 

estimation. The introduction also listed all of the equations where derivation and 

weaknesses are provided for some of them.  

 

In the coming chapters, we will focus on the strength and weaknesses of GMM 

to detect fraud activities in telecommunication industry by using real data different 

from those that are normally used in voice recognition technique and propose a solution 

to solve them.  
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CHAPTER 3 

IMPROVED EXPECTATION MAXIMIZATION ALGORITHM FOR 

GAUSSIAN MIXED MODEL USING THE KERNEL METHOD 

 

3.1 Introduction 

 

A number of authors highlighted the importance of identifying the right number, 

say k, of components in a GMM and subsequently choosing good initial values for the 

model parameters iµ  and 2
iσ , k21i K,,= , in the EM algorithm. Schlattmann (2003) 

noted the difficulty of using log-likelihood ratio statistics to test the number of 

components and subsequently suggested using a non-parametric bootstrapping 

approach. Similarly, Wang et al. (2004) pointed out the same concerns and introduced 

an algorithm called the stepwise-split-and-merge EM algorithm to solve the said 

problem. In addition, Miloslavsky and Van Der Laan (2003) investigated the possibility 

of using the minimization of the Kullback-Leiber distance between fitted mixture 

models and the true density as a method for estimating k where the said distance was 

estimated using cross validation. Zhuang et al. (1996) viewed the mixture distribution 

as a contaminated Gaussian density and proposed a recursive algorithm called the 

Gaussian mixture density decomposition Algorithm for identifying each Gaussian 

component in the mixture. Other works on this topic can also be found, for example, in 

Lee et al. (2006) and Celeux and Soromenho (1996). 

 

This chapter attempts to use Gaussian mixed model which is a probabilistic 

model normally used in speech recognition to identify fraud calls in the 
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telecommunication industry. We look at several issues encountered when calculating 

the maximum likelihood estimates of the Gaussian mixed model using an expectation 

maximization algorithm. Firstly, we look at a mechanism for the determination of the 

initial number of Gaussian components and the choice of the initial values of the 

algorithm using the kernel method (Section 3.2). We show via simulation that the 

technique improves the performance of the algorithm (Sections 3.3 and 3.4). Secondly, 

we develop a procedure for determining the order of the Gaussian mixed model using 

the log-likelihood function and the Akaike information criteria (Section 3.5). Finally, 

for illustration, we apply the improved algorithm to real telecommunication data 

(Section 3.6). The modified method will pave the way to introducing a comprehensive 

method for detecting fraud calls in future work. 

 

3.2 The Kernel Method  

 
The kernel method can be used to find the probability density estimate for 

univariate data, see for example Silverman (1986). Let hxi 3)min( −<α  , 

hxi 3)max( +>β , rM 2=  (for some integer r), h be the bandwidth, 
M

αβ
δ

−
=  and 

δα ktk +=  be the thk  grid point where 110 −= Mk ,,, K . The density estimate at grid 

point kt  is represented by the following equation: 
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where 12 −=i .  
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For [ ]1, +∈ kk ttx , the density estimate )(ˆ xf  is defined by 

∑
=



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


 −
=

n

i

i

h

xx
K

nh
xf

1

1
)(ˆ  where n equals to total number of observations and 









−= 2

2

1
exp

2

1
)( ttK

π
. To compute )(ˆ xf  at a grid of points, a method which makes 

use of the Fourier transform is employed. Let )(
~

sf  be the Fourier transform of the 

kernel density estimate )(ˆ xf . It can be shown that 

( ) )(
2

1
exp)()(

~
2)(

~ 22
2

1

sushsuhsKsf 







−== π  where )(

~
sK  is the Fourier transform of 

the Gaussian kernel and ( ) ( )∑
=

−−
=

n

j

jisxnsu
1

1
2

1

exp2)( π  is the Fourier transform of the 

data. Thus, ( ) ( )∫
−−

= dssuhsKexf isx )()(
~

22)(ˆ 2

1

2

1

ππ  is the convolution of the data with 

the kernel.   

 

We will use the following algorithm by Silverman (1986) to discretize the data 

to very fine grids, and to find )(ˆ xf  by convolving the data with the kernel. 

Step A: Discretize the data to find the weight sequence { }kξ  with 82=M . If 

[ ]1, +∈ kk ttx , it is split into a weight ( )xt
n

k −+12

1

δ
 at kt  and a weight ( )ktx

n
−

2

1

δ
 at 

1+kt ; these weights are accumulated over all the data points ix  to give a sequence of 

(
kξ ) weights summing up to 

δ

1
.  
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Step B: Find the sequence { }lY  defined by ∑
−

=

−

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Step C: Find the sequence { }*
lζ  where lll Ysh 








−= 22*

2

1
expζ . Here, 5

1

9.0
−

= Anh  

where 







=

34.1
,min
IQR

sdA , sd is the standard deviation, and IQR is the inter-quartile 

range. The IQR is chosen here by Silverman (1986), who claimed that the 

bandwidth is useful for a wide range of densities.  

Step D: Let kζ  be the inverse discrete Fourier transform of *

lζ  i.e. 

∑
−=





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2

* 2
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l

lk i
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It can be shown that when 0=α , kktf ζ≈)(ˆ .  We then identify 
ix  where its density 

estimate, denoted by )(ˆ
ixf , is greater than those of its nearest neighbors 1−ix  and 1+ix . 

In other words, )(ˆ)(ˆ
1−> ii xfxf  and )(ˆ)(ˆ

1+> ii xfxf , refer to Figure 3.1, where the 

vertical line that touches kt  and )(ˆ
ktf  shows the location of the peak.  

 

Note that we may obtain more than one maximum point which means that the data may 

consist of more than one Gaussian distribution.  These results form a very important 

component of the improved EM algorithm for GMM to be described next. 
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Figure 3.1 Plot of )(ˆ
ktf  against 

kt  

 

3.3 Improved EM Algorithm for GMM  

 

In this section, we propose an improved EM algorithm for GMM which can 

perform both tasks: identifying the initial number of components and providing 

automatic initial values for the EM algorithm.  The full improved EM algorithm for 

GMM is now presented: 

Step 1: The kernel method as described in Section 3.2 is used to determine the number 

0K  of components and also the corresponding means iµ  of each component, 

0Ki ,1,2,= K .  The initial estimates of the standard deviations iiσ are set to unity 

while the prior weights ia  are set to be  
0K

1
; 

Step 2: The EM algorithm for a GMM as described in Section 2.2 is executed to give 

the final estimates of parameters iµ , iiσ and ia , 0Ki ,1,2,= K .  The log-

likelihood function and Akaike information criteria (AIC) are calculated using the 

said parameters;  
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Step 3: Step 2 is repeated for other possible number K  of components with iµ =0, 

iiσ =1  for the other 0KK − components and ia = 
K

1
. 

Step 4: The log-likelihood function and AIC values for  10,1,2,K=K  are plotted.  The 

final number of components fK  is chosen when adding extra components in the 

model does not significantly increase or decrease the values of the log-likelihood 

function and the AIC respectively.   

 

3.4 Simulation  

 
We use simulation to investigate the performance of the proposed improved EM 

algorithm.   

 

3.4.1. Simulation Scheme  

 
Simulation data were generated using the Box and Muller Transformation 

(1958) as defined by equations (3.2-1) and (3.2-2) below:  

 

1
2

1

2 2cos)log2( +−+= jjj uuz πσµ        (3.2-1) 

 

1
2

1

2

1 2sin)log2( ++ −+= jjj uuz πσµ        (3.2-2) 

 

where )1,0(~, 1 Uuu jj + .  For the case of two components, we start by generating a 

random number )1,0(~1 Uu . If 110 au << , we generate two random numbers 
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)1,0(~2 Uu  and )1,0(~3 Uu  and calculate 32 zz +  using equations (3.2-1) and (3.2-2) 

with
2

* 1µ
µ = , and 

2
* 1σ

σ = . Otherwise, we use 
2

* 2µ
µ = , and 

2
* 2σ

σ = . The process 

continues until the required sample size is obtained.  The scheme is easily extended to 

any number of components. For further details, refer to Fishman (2001). 

Table 3.1 List of true values of a’s, µ’s, σ’s 

Sample name and 

size (in bracket) 

Prior probability Mean Variance 

Sample 1 
Two components 

1a =0.4 

2a =0.6 
1µ =0.0 

2µ =2.0 

2

1σ =1.0 
2

2σ =0.25 

Sample 2 
Two components 

1a =0.85 

2a =0.15 
1µ =0.0 

2µ =2.0 

2

1σ =1.0 
2

2σ =0.25 

Sample 3 
Three components 

1a =0.33 

2a =0.33, 3a =0.34 
1µ =0.0 

2µ =-1.0, 3µ =4.0 

2

1σ =1.0 
2

2σ =0.25, 2

3σ =4.0 

 

3.4.2 Study of performance based on log-likelihood function  

 
We first look at the performance of the standard method, called Method 1, 

followed by that of the improved method, called Method 2. For Method 1, in place of 

Step 1 of the improved method, we assign values zero and unity respectively to the 

means and variances of all components. We compare the performances by looking at 

the log-likelihood function via simulation study.   

 

Following Everitt and Hand (1981), we consider two cases with two 

components and one case with three components with the true values of the parameters 

given in Table 3.1.  For each case, we generate 100 samples of size 1000 where the 

chosen sample size reflects the large size of data sets found in the telecommunication 

industry, the focus of our interest. Figure 3.2 shows histograms for all cases, each with 

a sample of size 1000, where (a) two peaks are observed representing two components, 
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(b) two components are observed where the second component is partially hidden and 

(c) three components but only two are observed where the third component is totally 

hidden. This scenario is best described by the percentage of overlapping, which will be 

discussed in the later section.  

 

 

(a)  

 

(b)  

 

(c) 

Figure 3.2 The histograms of (a) Sample 1 (with overall mean and standard deviation 

equal to 1.28 and 1.19, respectively), (b) Sample 2 (with overall mean and standard 

deviation equal to 0.34 and 1.19, respectively) and (c) Sample 3 (with overall mean and 

standard deviation equal to 1.18 and 2.62, respectively).  

 

We then apply Method 1 and Method 2 on the simulated data. For each case and 

better quality viewing, we plot only 50 values selected randomly of the log-likelihood 

function for both methods on the same plot, as given in Figure 3.3. Figures 3.4, 3.5 and 
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3.6 give the plots of log-likelihood function against number of components for the three 

samples considered. It can be seen that, for Sample 1 and Sample 3, the proposed 

Method 2 clearly outperforms the standard Method 1 with the values of the log-

likelihood function corresponding to Method 2 always larger than those of Method 1. 

However, we see that some values overlap for Sample 2, though the proposed Method 2 

still generally performs better. In this case, the prior probabilities ia  are distinctly 

different from the chosen values of ia  in Sample 1 while other true values remain the 

same which leads to different percentages of overlapping of the Gaussian components 

in the GMM.  

 

 

(a) Sample 1 

 

(b) Sample 2 

 

(c) Sample 3 

Figure 3.3 Plots of values of log-likelihood function. 
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(a) Method 1 

 

 

(b)  Method 2 

Figure 3.4 Plot of log-likelihood function against number of components for Sample 1.  

 

(a)  Method 1 

 

(b) Method 2 

Figure 3.5 Plot of log-likelihood function against number of components for Sample 2. 

 

 

(a)  Method 1 

 

 

(b) Method 2 

Figure 3.6 Plot of log-likelihood function against number of components for Sample 3. 
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Figure 3.7 gives the plots of log-likelihood function against number of 

components for simulated data sets number 10, 25, 75 and 90 of Sample 1. It can be 

seen that the log-likelihood function value improves from 1 till 2 components and 

becomes constant from 2 components onwards. Figure 3.8 shows similar results for the 

case simulated data sets number 10, 25, 75 and 90 of Sample 2. Figure 3.9 gives the 

plots of log-likelihood function against number of components for simulated data sets 

number 25, 40, 75 and 90 of Sample 3 and they show log-likelihood function value 

improves from 1 till 3 components and becomes constant from 3 components onwards 

thus revealing (or exposing) the so-called “hidden component”.  

 

 

(a) Data#10      

 

(b) Data#25 

 

(c)  Data#75 

 

(d)  Data#90 

 

Figure 3.7 Plot of log-likelihood function for selected simulated data set from Sample 1  
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(a)  Data#10 

 
(b)   Data#25 

 
(c)  Data# 75 

 
(d)  Data#90 

Figure 3.8 Plot of log-likelihood function for selected simulated data set from Sample 2. 

 
(a) Data#25 

 
(b)  Data#40 

 
(c) Data#75 

 
(d) Data#90 

Figure 3.9 Plot of log-likelihood function for selected simulated data set from Sample 
3. 
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We will investigate the performance of the improved EM algorithm in 

estimating the parameters of the GMM by taking into account the effect of different 

percentages of overlapping between the components observed in the data. 

 

3.4.3 The value of intersections 

 

The value of intersections (as shown in Figure 3.10(a)) for the case when 

21 µµ ≠ , 21 σσ ≠ , 
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)( , we find the area between 11x  and 12x  

(and convert it into percentage) for each component; refer to Figure 3.10(a). Secondly, 

we find the minimum between the areas of the two components. This value represents 

the percentage of overlapping between two components (which is an approximation).  
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(a) 

 

 

 

(b) 

Figure 3.10 ∫ dxxf )(1  and ∫ dxxf )(2  are used to find the shaded areas as shown in (a) 

and (b).  

 

Taking similar steps, the area for the component on the left hand side of Figure 

3.10(b) is obtained from ∫
−
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−
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P . We convert them into percentages before adding them 

up to represent the percentage of overlapping between two components (which is an 

approximation). 
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3.4.4 The effects of different overlapping percentages on performance  

 
The main objective here is to investigate the performance of the improved EM 

algorithm for different overlapping percentages of the components in the GMM.  For 

simplicity, we restrict our attention to two components so that 

( ) ( )
2211212161 σσµµaaθθ ,,,,,,,θ == K  are to be estimated.  Data is simulated 

using the simulation scheme described in Section 3.4.1. 

 

After performing Steps 1 and 2, we find iiiD θθ ˆ−=  where iθ  is the true value 

of the ith parameter and iθ̂  is the EM  estimate of the parameter, i=1,2,…,n. The 

sample mean and standard deviation of iD  are computed using formulas ∑
=

=
n

i

iD
n

D
1

1
 

and ( )∑
=

−
−

=
n

i

DiD
nDS

1

2

1

1
. The estimates are considered good if D  is close to zero, 

indicating small biases observed in the simulation results, and DS  is also close to zero, 

indicating that the parameter estimates are concentrated around their respective true 

values.  

 

We determine the area of overlapping between the two components for each 

model by using the misclassification concept given in Johnson and Wichern (1998), the 

details of which are provided in Section 3.4.3. The formula to estimate the overlapping 

areas depends on the mean and standard deviation of the components. The choices of 

prior probabilities should not affect the estimates greatly as their sum equals unity.  

 

We consider three cases for different combinations of parameter θ  which give 

different percentages of overlapping of the GMM components.  The results are 
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tabulated in Tables 3.2-3.4. Table 3.2 deals with case 1, where the true values of 1µ =0, 

2µ =3.0 and 316.02211 == σσ  are fixed but the true values of 1a , 2a  are varied.  In 

all cases, the percentage of overlapping is 0% as the separation of the means is rather 

large with small values of dispersion.  We can see that the values of the mean are close 

to zero with the small standard errors less than unity for all parameters considered.  On 

the other hand, Table 3.3 gives the results for case 2 where 1µ =0, 2µ =1.0, 

707.022 =σ  and 447.011 =σ  are fixed but 1a , 2a  are varied to give 25% of 

overlapping.  The bias is still considered small but generally larger than that for case 1. 

In addition, the values are more dispersed here. Finally, Table 3.4 shows the results of 

case 3 where 1µ =0, 2µ =0.25, 577.011 =σ  and 414.122 =σ  are fixed with 45% of 

overlapping. As expected, the results deteriorate when the percentage of overlapping 

increases.  

 

For each model and final estimates of parameters, we check whether 1<D  and 

12 <DS . Out of six (6), we count the number of 1<D  and find its percentage, which is 

denoted by A. We repeat the same process for DS , that is 12 <DS , where its percentage 

is denoted by B. We find the smallest percentage between A and B, which is denoted 

by %Min . We then plot %Min  against the range for percentage of overlapping (or 

Range). Range equals to 1 represents percentage of overlapping between 0% and 25%, 

2 between 25% and 50%, 3 between 50% and 75% and 4 between 75% and 100%. Note 

that second component will “hide” behind the first component as Range increases.  

 

Figure 3.11 shows median for Range equals to 1 is located at 100, 54.9% of 

%Min  equals to 100, and 65.2% of %Min  is greater than (or equal to) 83. Range 

equals to 2, its median is located at 66.67% where 35.4% of %Min  is greater than (or 
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equal to) 83. Range equals to 3, its median is similar to the above (that is 66.67%) 

where 17.4% of %Min  is greater than (or equal to) 83. Range equals to 4, its median is 

similar to the above (that is 66.67%) where 24.2% of %Min  is greater than (or equal 

to) 83. 

 

Table 3.2 Simulation results for the case 1µ =0, 2µ =3.0 and 316.02

2

2

1 == σσ  

Bias, iD  Prior prob. 

1a  2a  1µ  2µ  
2
1σ  

2
2σ  

1a  2a  D  DS  D  DS  D  DS  D  DS  D  DS  D  DS  

0.1 0.9 -0.001 0.010 0.001 0.010 0.007 0.033 -0.003 0.013 0.000 0.014 0.001 0.004 

0.2 0.8 0.002 0.013 -0.002 0.013 0.002 0.022 -0.003 0.011 0.000 0.011 0.002 0.007 

0.3 0.7 -0.002 0.014 0.002 0.014 0.004 0.017 -0.002 0.010 0.002 0.009 0.001 0.005 

0.4 0.6 0.003 0.020 -0.003 0.020 -0.004 0.019 -0.006 0.012 0.000 0.009 0.001 0.005 

 

 Table 3.3 Simulation results for the case 1µ =0, 2µ =1.0, 707.02

2 =σ  and 447.02

1 =σ   

Bias, iD  Prior prob. 

1a  2a  1µ  2µ  2
1σ  2

2σ  

1a  2a  D  DS  D  DS  D  DS  D  DS  D  DS  D  DS  

0.1 0.9 -0.112 0.148 0.112 0.148 -0.130 0.203 -0.067 0.139 -0.030 0.103 0.034 0.068 
0.2 0.8 -0.014 0.073 0.014 0.073 -0.006 0.087 0.006 0.091 0.022 0.056 0.005 0.057 
0.3 0.7 0.020 0.087 -0.020 0.087 0.031 0.069 0.023 0.104 0.044 0.048 -0.006 0.075 
0.4 0.6 0.067 0.075 -0.067 0.075 -0.112 0.444 0.145 0.232 -0.002 0.085 -0.021 0.099 

 

Table 3.4 Simulation results for the case 1µ =0, 2µ =0.25, 577.02
1 =σ  and 414.12

2 =σ  

Bias, 
iD  Prior prob. 

1a  2a  1µ  2µ  
2
1σ  

2
2σ  

1a  2a  D  DS  D  DS  D  DS  D  DS  D  DS  D  DS  

0.1 0.9 0.089 0.007 -0.089 0.007 -0.817 3.770 0.045 0.048 -0.341 0.823 0.305 0.095 
0.2 0.8 0.157 0.108 -0.157 0.108 0.291 3.521 0.075 0.073 -0.169 0.374 0.413 0.256 
0.3 0.7 0.237 0.100 -0.237 0.100 -0.205 2.924 0.105 0.121 -0.278 0.389 0.578 0.278 
0.4 0.6 0.245 0.187 -0.245 0.187 0.602 2.520 0.092 0.108 -0.008 0.258 0.508 0.435 
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Figure 3.11 %Min  is plotted against Range for Box and Whisker plot.  

 

We conclude that the improved EM algorithm for GMM performs well when 

the percentages of overlapping are small, but its performance is affected when the 

percentages increase. 

 

3.5. Determination of the final number of components in the GMM using AIC 

 
In the last two steps of the improved algorithm, we intend to confirm that the 

choice of the initial number 0K  of components in the GMM using the kernel method is 

final. This can be done by considering extra components in the model. For that, as 

stated in Section 3.3.3, we repeat Step 2 for other possible numbers K  of components, 

by setting iµ =0, iiσ =1 for the other 0KK − components and ia = 
K

1
. The final 

number of components fK  is chosen when adding extra components neither increases 

the log-likelihood nor decreases the AIC values significantly.  The changes can easily 

be seen on a line plot of the values. Figure 3.12 shows the plots of AIC against number 

of components for data set, each from  (a) Sample 1, (b) Sample 2 and (c) Sample 3 of 

Section 3.4.2.  All of them show concave like shape where AIC decreases to a 

minimum value and then increases as the number of components increases. The 
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minimum value gives the exact number of components for the plots of AIC against 

number of components. In the case of Figure 3.12, plots (a) and (b) give 2 components 

and plot (c) gives 3 components. 
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Figure 3.12 Plot of AIC of three data sets generated from samples defined in Table 3.1. 

 

3.6 Real example – Phone call data  

 
The call detail record, which was supplied by Telekom Malaysia Berhad 

(henceforth, TM), consists of calls made by customers that fell victim to fraud 

activities.  Table 3.5 shows the format of the call detail record for each TM customer. 

We performed several steps on the original data in order to have the data in a desired 

format i.e. group the real data according to Service No, find the country that matches 

the Country Code and sort the real data according to Seize Time. The column entitled 
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“Seize time” gives the time when the call was made; the 4th and 5th columns detail the 

duration of the call in the following format: day (dd), hour (hh), minute (mm) and 

second (ss); and the 6th column is the result of converting the information in the 4th and 

5th columns into day format. 

 

We consider real data consisting of the duration of each call made by Customer 

A, whose identity is not revealed to ensure confidentiality, on 31st March 2011 as 

displayed in Figure 3.13.  Step 1 of the improved EM algorithm for GMM identifies 

two initial components. The plot of the log-likelihood function and AIC in Figure 

3.14(a) and (b) are the results from performing Steps 2, 3 and 4 of the improved EM 

algorithm for GMM, which reveal that the EM algorithm fails to achieve convergence 

when the number of components equals to five or above.  It can also be seen that a 

GMM with 2 components is identified as the ‘best’ model, since the inclusion of more 

components not only fails to increase the value of the log-likelihood, but also fails to 

decrease the values of the AIC. The final EM estimates for the two-component GMM 

are 6401 .ˆ =a , 3602 .ˆ =a , 6601 .ˆ −=µ , 1712 .ˆ =µ , 07011 .ˆ =σ  and 35022 .ˆ =σ , 

and they represent the behavior of calls made by Customer A on 31st March 2011. In 

the following chapters, we will show how the above information produced from the 

improved EM algorithm for GMM can be used in the process of detecting fraud 

activities in the telecommunication industry. 

 

Table 3.5An extract from the TM’s customer call detail record. 

Service 
number 

Dialed 
digits 

Seize time Duration 
(hhmmss) 

Duration 
(dd) 

Duration 
(Convert into day 

format) 

Xxx yyy 8:41:37 000339 00 0.002534722 

Xxx yyy 9:27:03 000035 00 4.05E-04 

Xxx yyy 9:43:46 000048 00 5.56E-04 

Xxx yyy 9:50:21 000031 00 3.59E-04 

Xxx yyy 10:54:30 000138 00 0.001134259 
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Figure 3.13 Duration (in day format) is displayed in the histogram.  

 

 

(a) 

 

(b) 

Figure 3.14 Plots of (a) log-likelihood values (b) AIC values.  

 

3.7 Summary  

 
In this chapter, we proposed a modified EM algorithm which can numerically identify 

the number of components of a GMM and estimate the parameters of the model using 

the kernel method.  We showed via simulation that the performance of the algorithm is 

generally good but, as expected, is affected by increasing percentages of overlapping of 

the Gaussian components.  We then used the line plots of the log-likelihood and AIC 
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values to identify the final number of GMM component.  They could clearly be 

determined via the concave-like shape of the AIC plot, which indicates that the AIC 

decreases to a minimum value and then increases as the number of components 

increases. Finally, the modified EM algorithm for GMM was tested on real 

telecommunication data. The results serve as testimony to the effectiveness of the 

improved EM algorithm for GMM and should be useful when considering the problem 

of fraud calls faced by the telecommunication companies. 
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CHAPTER 4 

FRAUD DETECTION IN TELECOMMUNICATION INDUSTRY USING 

GAUSSIAN MIXED MODEL 

 

4.1 Introduction  

 

Gaussian Mixed Model (GMM) has been widely used in voice recognition as 

exemplified next: suppose we have Totspeak speakers where each has Totsamp samples 

of recorded voices to be used as training data as shown in Figure 4.1 surrounded by the 

dotted line. Next, the GMM is fitted on each sample of recorded voice where it is in 

vector format after going through the coded process. The GMM parameters namely 

prior probability, mean and covariances are saved inside the database in training matrix 

format. They are given special designation as shown on the bottom right of Figure 4.1. 

For example, kjia
,,

 is the prior probability for i-th speaker with corresponding j-th 

sample and k-th component. ( )jiK ,  is the maximum number of components for the 

said speaker and sample. The identification of a new speaker is done as follows: the 

speaker’s recorded voice is coded into vector T

l
x , n,,Kl 1= , based on standard voice 

recognition criteria as shown on the top left of Figure 4.1. The vector would be known 

as data matrix from this point onwards. Next, the data matrix is used in 

∑ ∑
= =








n

L

jiK

k

kjikjiLkjia
1

),(

1

),,(),,(),,( ),|(log Σµxφ  that produce log-likelihood function for each 

training matrix. All log-likelihood functions produced are compared and the maximum 

one is chosen. The parameters that give the maximum log-likelihood function, 

especially its designation in the database, reveal the speaker’s true identity.  
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Figure 4.1 The use of GMM in voice recognition technique. 

 

We use the idea given above to detect fraud activities in the telecommunication 

industry. In our case, the training data is based on customer’s call behavior for a period 

of Totspeak days. The training matrix is produced from say duration of each call made 

for a particular day. The duration of each call made in the subsequent day will be 

treated as the data matrix. We are interested to identify the behavior saved in the 

training data that is similar to the one saved in the data matrix. This is the first step of 

our proposed algorithm for detecting fraud calls, which will be highlighted in Section 

4.2. 

 

This chapter, via Section 4.2, proposes a new fraud detection algorithm that 

uses Gaussian mixed model, a probabilistic model normally used in recognizing a 

person’s voice in speech recognition field. Using data obtained from one of the leading 

telecommunication company in Malaysia (Section 4.3), we show, via Section 4.4, that 
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the proposed algorithm has successfully not only detected fraud calls as suspected by 

the company, but also identify suspicious calls which can be candidates of fraud call. 

The proposed algorithm is easy to implement with a great potential to be extended to 

detect billed (or outgoing) fraud calls and hence reduces the loss incurred by the 

telecommunication companies. Details of Gaussian Mixed Model (GMM) (together 

with Expectation Maximization, EM, algorithm) and improved EM algorithm for GMM 

can be found in Chapter 2 and 3, respectively. 

 

4.2 Algorithm for detecting fraud calls  

 

The proposed algorithm for detecting fraud calls in telecommunication involves 

the following steps as described in Figures 4.1 and 4.2: 

Step One: For the selected customer, we perform the steps as per given in Chapter 3 

(improved EM algorithm for GMM) on a given data set (which represent say the 1st 

day, refer to Table 4.1), and save the final estimates of parameters together with the 

log-likelihood functions (which gives the minimum AIC) in the text file called 

“database” (refer to Figure 4.3).   

We repeat the process for the rest of the data sets, which represent the 2nd day 

till 7th day. Note that the first seven days are assumed to be “free” from fraud activities 

and they represent customer’s behavior for the first week1. 

Step Two: The saved parameters are used on the data sets for the 8th day onwards, 

which include choosing the one that gives the maximum log-likelihood function and 

comparing the maximum log-likelihood function with the one saved in the database 

(Mardia et al., 1979, mentioned allocate x to the population which gives the largest 

                                                 
1 The number of days is not fixed and can be reduced for newly registered customers. 
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likelihood to x) as shown in Figure 4.4. In the said figure, except for the last row, the 

first column shows the name of the file where the real data is obtained and the second  

 

 

Figure 4.2 Flow-diagram showing the steps that are needed to detect fraud activities. 

 

BEGIN 

null;8.27205882352941E-4;7.793628360996634E-4;Lambda;Power 

2_Normalized_Massaged_TMData_XXX.txt;Filename 

2;No of components 

2;-17.02083611317418;-1000.0;No of components;LLF;SD 

0.6411573990790228;-

0.6564611309420394;0.06975010234300855;Alpha;Mu;Sigma 

0.35884260092097725;1.1729234773993837;0.352458162932219;Alpha;Mu;Sigma 

END 

BEGIN 

-7.528699885739343E-16;-

7.688105006114814;1.3737495007245424;Lambda;Power 

3_Normalized_Massaged_TMData_XXX.txt;Filename 

1;No of components 

1;-36.38253259232894;-1000.0;No of components;LLF;SD 

1.0;5.102755824719469E-16;0.961538461538469;Alpha;Mu;Sigma 

END 

Figure 4.3 Example of results from Step One. 

 
72_XXX -5.10039 58_XXX -5.10039   

72_XXX -5.1276881 60_XXX -12.240423   

72_XXX -5.104467 66_XXX -6.5368338   

72_XXX -5.1316998 67_XXX -13.662583   

72_XXX -5.10039 69_XXX -5.10039   

72_XXX -5.10039 71_XXX -5.10039   

      

max llf -5.10039 (null) 71_XXX -5.10039 -2.26E-15 

Figure 4.4 Example of results from Step Two (involving log-likelihood function). 
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column shows the calculated log-likelihood function from using the parameters saved 

in the database. The details of the parameters are given in the third (i.e. the name of the 

file) and fourth (i.e. the log-likelihood function) columns. The last row shows the 

maximum log-likelihood function found from comparing the values in the second 

column. The information corresponding to the maximum log-likelihood function in the 

third and fourth column is also captured. 

Step Three: Dissimilarity coefficient (or dc) is calculated and the said coefficient is 

defined by  









><
−

>>
−

=
ABBAif

A

BA

ABBAif
B

AB

dc

0,

0,
 

where A and B are log-likelihood functions of training data and observation, 

respectively. The percentage of similarity coefficient is defined by (1.0-dc)100%. High 

dissimilarity will result in low similarity and vice-verse. No similarity is observed when 

A and B are having different signs that is the percentage of similarity coefficient is zero 

when 0>B  and 0<A
2.  

 

67_XXX -

11.29525 

(0.5488501726894228,

Moderate_Similarity) 

15_XXX -

25.03658 

(null) 

68_XXX -5.10039 (null) 38_XXX -5.10039 (1.741393151905200

5E-

16,High_Similarity) 

69_XXX -

3.489596 

(0.757039164822191,Lo

w_Similarity) 

19_XXX -

14.36279 

(null) 

70_XXX -

11.10145 

(0.19362934575160162,

High_Similarity) 

37_XXX -

13.76717 

(null) 

71_XXX -

2.693121 

(0.43939063059603395,

Moderate_Similarity) 

33_XXX -

4.803917 

(null) 

72_XXX -5.10039 (null) 71_XXX -5.10039 (2.263811097476761

E-

15,High_Similarity) 

73_XXX -

11.23451 

(0.260756177742852,Hi

gh_Similarity) 

26_XXX -15.1973 (null) 

Figure 4.5 Example of results from Step Four (involving Similarity coefficient). 

 

                                                 
2 In reality 0, <BA , refer to Chapter 5. 
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Step Four: Similarity coefficient is assigned to Low Similarity group when it (after 

converting into percentage) is less than (or equal to) 30%, Moderate Similarity group 

when it is greater than 30% and less than (or equal to) 70% and High Similarity group 

when it is greater than 70% as exemplified in Figure 4.5.  

In the said figure, the first column shows the list of files that gone through Steps 

One till Three, the second column shows the maximum log-likelihood function, the 

information about the parameters used to calculate the maximum log-likelihood 

function are given in the fourth and fifth columns and similarity coefficient and its 

group are given in the third and sixth columns (they are placed in a bracket).  

The assignment of the similarity group is based on the approach taken by 

Turkmen (2013) for correlation coefficient, denoted by r, to describe the strength of 

relationship: None: r from -0.1 to 0.1; Weak: r from 0.1 to 0.3 or from -0.3 to -0.1; 

Moderate: r from 0.3 to 0.5 or from -0.5 to -0.3; Strong: r from 0.5 to 1.0 or from -1.0 

to -0.5.  

Step Five: If similarity coefficient between maximum log-likelihood function and the 

one saved in the database is 0.3 and below (or in terms of percentage, 70 and above) 

then no updating is performed on the database.  

Step Six: Updating is performed on the database if, in terms of percentage, less than 70. 

Updating involves performing the steps as per given in Section 4.2.2 on the data set and 

saving final estimates of parameters together with log-likelihood function produced in 

the database. 

 

In this chapter we will compare the results produced from the proposed 

algorithm using one variable with two variables. 
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4.2.1 The performance of the algorithm 

 

For each of the five hundred customers and for each of the seven days, the 

number of components are chosen at random where the maximum number of 

components is fixed at three (3). If three components are chosen, the values of 1a , 2a  

and 3a  are chosen at random from 0.1,…,0.9 where 1321 =++ aaa ; the values of 1µ , 

2µ  and 3µ  are chosen at random from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of 

two or more components are chosen such that no two or more means are the same; and 

the values of 1σ , 2σ  and 3σ  are chosen at random from 10,,3,2,1,
10

1
,,

3

1
,

2

1
LL . 

Similar steps are taken if less than three components are chosen. The chosen values 

(that represent a model) are used in 1
2

1

2 2cos)log2( +−+= jjj uuz πσµ  and 

1
2

1

2

1 2sin)log2( ++ −+= jjj uuz πσµ  where )1,0(~, 1 Uuu jj +  (Box and Muller, 1958) to 

generate (one thousand) simulation data. For each day starting the 8th till 28th, 

simulation data is generated using either one of the seven models (which represents the 

first condition where the performance of the algorithm is evaluated by this condition) or 

other model derived from repeating the steps as mentioned above (which represents the 

second condition where the performance of this condition is partly explained in the 

upcoming/following section).  

 

For each customer, we perform all of the steps in the algorithm (altogether they 

are six) on models that represent 1st till 28th day. The similarity coefficients, derived 

from performing the algorithm’s third step on models produced from the first condition 

and represent 8th day onwards, are displayed using Box plot as shown in Figure 4.6 

(due to its size, only a few of the customers are displayed here). For ease of graphical 
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presentation, the similarity coefficient is converted into percentage. All of them (i.e. the 

percentage of similarity coefficient) exceed 90.  

 

 

(a) 

 

(b) 

Figure 4.6 Box plot for customers (a) 10, 20, 30,…,100 and (b) 50, 100, 150,…,500 on 

the x-axis and SimCoef(%) on the y-axis is a short-form for similarity coefficient in 

percentage. 

 

Our observation is supported by the histogram in Figure 4.7, which is derived 

from using all of the (five hundred customers) similarity coefficients, where the mean 
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and standard deviation are 99.07 and 0.76, respectively. We find iiiD θθ ˆ−=  where 
iθ  

equals to 100.0 and iθ̂  is the similarity coefficient used to produce Figure ii, 

mi ,...,2,1= . The sample mean and standard deviation of iD  are computed using 

formulas ∑
=

=
m

i

iD
m

D
1

1
 and ( )∑

=

−
−

=
m

i

iD DD
m

S
1

2

1

1
, respectively. The similarity 

coefficients are considered good if D  is close to zero, indicating small biases observed 

in the similarity coefficient results, and DS  is also close to zero, indicating that the 

similarity coefficients are concentrated around their respective true values. The sample 

mean and standard deviation (of iD , mi ,...,2,1= ) are 0.93 and 0.76, respectively. 

 

 

Figure 4.7 The histogram of Frequency versus SimCoef(%). SimCoef(%) on the y-axis 

is a short-form for similarity coefficient in percentage. 

 

The steps in the algorithm (i.e. second till sixth) are performed on models that 

represent 8th days onwards. We are interested on models that are produced from the 

first condition. “A” denotes the total number of models produced from the first 

condition that is correctly classified. “B” denotes the total number of models that is 
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produced from the first condition. Count(%) equals to (A/B)%. Figure 4.8 shows the 

histogram of Frequency against Count(%) where the mean and standard deviation are 

61.2 and 22.5, respectively. 

 

 

Figure 4.8 The histogram of Frequency against Count(%). 

 

4.2.2 The characteristics of the similarity coefficient 

 

The characteristics of similarity coefficient are best described using Figure 4.9. 

Let A represents call behavior for a customer collected on the first day and B represents 

call behavior collected on the second day. The probability density function 

( )2

111 ,| σµiyf  for some of iy  is greater than zero and the rest is close to zero. We 

calculate h
llf

llf

B

A =  where 10 ≤≤ h , ( )( )∑
=

=
2

1

2

111 ,|log
n

i

iB yfllf σµ , 
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( )( )∑
=

=
1

1

2

111 ,|log
n

i

iA xfllf σµ , 0, <BA llfllf , 21 nn Ψ  where { }=><∈Ψ ,,  and BA llfllf > . 

Note that the parameters 1µ , 2

1σ  and Allf  of A are kept inside the database. Using these 

information on B,  the percentage of similarity coefficient, denoted by %h , is close to 

zero due to ( ) 0.0,| 2

111 ≈σµiyf  for the majority of iy . In other words, call behavior on 

the first day is dissimilar to the second day. 

 

 

 

 

 

Figure 4.9 A represents the probability density function derived from the histogram of 

call behavior for a customer collected on the first day ( 1,...,2,1, nixi = ) and B represents 

the histogram of call behavior collected on the second day ( 2,...,2,1, niyi = ). 

 

Other characteristics are described by performing the following processes and 

repeat them 100 times for each 12 nn Ω=  where 025.0,...,925.0,95.0,975.0,0.1=Ω  

(these values are converted into percentage for ease of graphical presentation) and 

10001 =n . 
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We generate 1n  simulation data from ( )1,0N  using Box and Muller 

Transformation (Box and Muller, 1958). We treat the simulation data as training data 

(or td). We calculate the mean (denoted by tdµ ), variance (denoted by 2

tdσ ) and log-

likelihood function (denoted by 
tdllf ). 

 

We generate 2n  simulation data from ( )1,ON µ  using Box and Muller 

Transformation (Box and Muller, 1958) for each 0.10,...,1.0,0.0=Oµ . We treat the 

simulation data as observation (or O). Using tdµ  and 2

tdσ  from the above, we calculate 

the log-likelihood function (denoted by Ollf ) and similarity coefficient 
td

O

llf

llf
.  

 

Figures 4.10(a)-(h) give the plot of similarity coefficient against the percentage of 

sample ratio (i.e. %100×Ω ) for all values of Oµ  considered. Figure 4.10(a) shows for 

the case 0.0=Oµ , 10001 =n , percentage (or %Ω ) equals to 2.4 (i.e. 242 =n ), ix  is a 

training data where 1,...,2,1 ni = , iy  is an observation where 2,...,2,1 ni = , both training 

data and observation are randomly generated, the mean and standard deviation for 

( )( )∑
=

=
2

1

2

1 ,|log
n

i

tdtdiO yfllf σµ  are -34.27 and 3.63, respectively, the mean and standard 

deviation for ( )( )∑
=

=
1

1

2

1 ,|log
n

i

tdtditd xfllf σµ  are -1415.99 and 23.34, respectively and the 

similarity coefficient is close to zero. The similarity coefficient is close to one when 

percentage (or %Ω ) equals to 100 (i.e. 10002 =n ) where the mean and standard 

deviation for ( )( )∑
=

=
2

1

2

1 ,|log
n

i

tdtdiO yfllf σµ  are -1424.43 and 22.36, respectively and the  
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(a) Oµ = 0.0 

 

(b) Oµ = 0.5 

Figure 4.10 Similarity coefficient is plotted against percentage using Box plot for (a) Oµ =0.0, (b) Oµ =0.5, (c) Oµ =1.0, (d) Oµ =2.0, (e) Oµ =4.0, (f) 

Oµ =6.0, (g) Oµ =8.0 and (h) Oµ =10.0. 
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(c) Oµ =1.0 

 

(d) Oµ =2.0 

Figure 4.10 Continued. 
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(e) Oµ =4.0 

 

(f) Oµ =6.0 

Figure 4.10 Continued. 
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(g) 
Oµ =8.0 

 

(h) Oµ =10.0 

Figure 4.10 Continued. 
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mean and standard deviation for ( )( )∑
=

=
1

1

2

1 ,|log
n

i

tdtditd xfllf σµ  are -1419.90 and 19.90, 

respectively. 

 

4.3 Data  

 

The call detail record, which was supplied by Telekom Malaysia Berhad 

(henceforth, TM), consists of calls made by the customers and they were victims of 

fraud activities. Altogether there are 18 customers and they are labeled as A till R to 

ensure confidentiality. We use the same format of call detail record for each TM’s 

customer as described before in Table 4.1. We performed several steps to get the 

desired format e.g. group the real data according to service no, find the country that 

matches with the country code and sort the real data according to seize time. 

 

To make our job of handling the real data for the TM customers easier, we 

divided them into several parts and saved in the following format: (for each customer) 

1, 2, 3, 4,… represent fn(1), fn(2), fn(3), fn(4),… and date(1), date(2), date(3),… where 

fn is a short-form for filename and date(1) < date(2) < date(3) < …. as exemplified in 

Figure 4.11. 

 

Table 4.1 An example of TM’s customer call detail record. 

No 
Service 
No Dialed Digit … Seize Time1 Duration1 Duration2 

281 XXX yyy … 
31/03/2011 

10:07 000255 00 0.0020255 

282 XXX yyy … 
31/03/2011 

15:24 000054 00 6.25E-04 

283 XXX yyy … 
31/03/2011 

16:16 000045 00 5.21E-04 

284 XXX yyy … 
31/03/2011 

16:37 000556 00 0.0041204 
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Figure 4.11 Files created for Customer A. 

 

4.4 Results  

 

TM’s (current) system, which uses non-GMM method and customer’s call 

detail record (details of the system will not be revealed to ensure confidentiality), 

detected fraud activity on the 15th of November 2011 for the customers mentioned in 

Section 4.3. From our analysis of customers D and Q, by studying the duration and real 

data on the 15th of November 2011 that are saved in filename 63, similarity coefficient 

is assigned to High Similarity group. Similar results are obtained when using two 

variables namely duration and call charging (or billing). An example is given in Figure 

4.12. 

 

For each customer mentioned above (using one variable, i.e. duration, and two 

variables, i.e. duration and call charging or billing), we find the number of similarity 

coefficient assigned to Low Similarity group, which we believe they have close 

connection to fraud activity, and convert them into percentage. For example, 
kxx ,...,1  
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represent the percentage of similarity coefficient assigned to Low Similarity group for k 

customers when using one variable and kyy ,...,1  when using two variables where 

18=k . Statistical methods such as summary statistics are applied to 
kxx ,...,1  and 

kyy ,...,1 . The k customers are grouped together based on which group the percentage 

of similarity coefficient is assigned to when using one and two variables on the 15th of 

November 2011. For example, Step Four results for customer D especially on the 15th 

of November 2011 show, when using one variable, log-likelihood function and 

similarity coefficient (after converting into percentage) equal to -5.503 and 86.69%, 

respectively. High Similarity group (denoted by H) is assigned to customer D. Similar 

results are obtained, in terms of assigning High Similarity group (denoted by H) to 

customer D, when using two variables where log-likelihood function and similarity 

coefficient (after converting into percentage) equal to -15.996 and 85.27%, 

respectively.  

 

HH is the group assigned to customers D and Q. By studying the duration, the 

minimum and maximum percentages of similarity coefficients assigned to Low 

Similarity group for all customers mentioned above are 5 and 22, respectively. The 

minimum and maximum percentages are reduced to 3 and 12, respectively, when using 

two variables namely duration and call charging (or billing).  

 

From our (second) analysis of customers H, K, O and P, by studying the 

duration and real data on the 15th of November 2011 that are saved in filename 57, 73, 

51 and 55, respectively, similarity coefficient is assigned to Moderate Similarity group. 

Similarity coefficient is assigned to High Similarity group when using two variables 

namely duration and call charging (or billing) thus upgrading the previous group. MH 

is the group assigned to customers H, K, O and P. By studying the duration, the average 
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percentage of similarity coefficient assigned to Low Similarity group is 8 bounded by 0 

and 14. They spread around the average (or standard deviation) at 5.9. When using two 

variables namely duration and call charging (or billing), the average is lowered to 5.5 

bounded by 0 and 9. The standard deviation equals to 3.9. Note that no similarity 

coefficient is assigned to Low Similarity group for customers O for one variable 

(namely duration) and P for two variables (namely duration and call charging or 

billing). 

 

From our (third) analysis of customers R, E, F and I, by studying the duration 

and real data on the 15th of November 2011 that are saved in filename 68, 75, 67 and 68 

respectively, similarity coefficient is assigned to Low Similarity group. Similar results 

are obtained (i.e. similarity coefficient is assigned to Low Similarity group) when using 

two variables namely duration and call charging (or billing). An example is given in 

Figure 4.13. LL is the group assigned to customers R, E, F and I. The average 

percentage of similarity coefficient assigned to Low Similarity group for duration is 

17.5 where it’s left and right wings are 10 and 21, respectively. They spread around the 

average (or standard deviation) at 5.1. When using two variables namely duration and 

call charging (or billing), most of the values are lowered. For example, the average is 

16.8, minimum and maximum values are 5 and 41, respectively, and standard deviation 

equals to 16.5. The results of the fourth till the seventh analysis can be found in Table 

4.2. For MM, an example is given in Figure 4.14. 

 

4.5 Discussion  

 

In the previous chapters, we introduced the GMM, EM algorithm and algorithm 

for determining the number of components that incorporates kernel method. We also 
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introduced in the previous section an algorithm for detecting fraud calls. We used them 

on two variables namely duration and call charging (or billing) of the real data (TM 

customers), which revealed interesting results. 

 

Table 4.2 Summary statistics for groups HM till MM. Note that customers are given in 

the bracket; SD and Var are short forms for standard deviation and variable, 

respectively.  

Group HM (A,L,N,J) LM (B) 

 1 Var 2 Vars 1 Var 2 Vars 

Min 2 3 14 3 
Average 13 14.5 14 3 

SD 8.1 9.0 - - 
Max 20 25 14 3 

 

Group LH (G) MM (C,M) 

 1 Var 2 Vars 1 Var 2 Vars 

Min 14 7 1 7 
Average 14 7 2.5 9.5 

SD - - 2.1 3.5 
Max 14 7 4 12 

 

TM’s (current) system detected fraud activity on the 15th of November 2011. If 

one variable is used in the proposed algorithm, 33% of 18 TM’s customers used in this 

study support the findings made by TM’s system. The rest i.e. 33% of the customers are 

assigned to Moderate Similarity group and 33% to High Similarity group. If two 

variables are used in the proposed algorithm, 22% of 18 TM’s customers used in this 

study support the findings made by TM’s system. The rest i.e. 39% of the customers are 

assigned to Moderate Similarity group and 39% to High Similarity group. 

 

Furthermore, 22% of 18 TM’s customers are downgraded (i.e. from High Similarity 

group to Moderate Similarity group), 33% of 18 TM’s customers are upgraded (i.e. 6% 

from Low Similarity group to Moderate Similarity group, 6% from Low Similarity 

group to High Similarity group and 22% from Moderate Similarity group to High  
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(b) 

 

Figure 4.12 Similarity coefficient (after converting into percentage) together with its classification for customer Q (using two variables namely 

duration and call charging or billing): (a) Overall and (b) Low Similarity only. 
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(b) 

 

Figure 4.13 Similarity coefficient (after converting into percentage) together with its classification for customer I (using two variables namely duration 

and call charging or billing): (a) Overall and (b) Low Similarity only.  
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(b) 

 

Figure 4.14 Similarity coefficient (after converting into percentage) together with its classification for customer C (using two variables namely 

duration and call charging or billing): (a) Overall and (b) Low Similarity only.   
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Similarity group) and 44% of 18 TM’s customers are unchanged (i.e. 22% at Low 

Similarity group, 11% at Moderate Similarity group and 11% at High Similarity group). 

Similarity group for 11% of 18 TM’s customers depends on whether using one or two 

variables (e.g. Low Similarity group when using one variable). 

 

No similarity coefficient is assigned to Low Similarity group for customer P 

(hence no fraud activity is observed or expected) when using two variables (i.e. 

duration and call charging or billing) and no similarity coefficient is assigned to Low 

Similarity group for customer O (hence no fraud activity is observed or expected) when 

using one variable (i.e. duration).  

 

The average number of similarity coefficient assigned to Low Similarity group 

when using two variables is 11.2% (meaning, fraud activities might happened earlier 

than 15th of November 2011).  

 

The results show the effectiveness of the proposed algorithm in detecting Low 

Similarity group (before and on the 15th of November 2011, which we believe they 

have close connection to fraud activity). Future research work will involve the 

following: the proposed algorithm will be tested on a bigger number of customers, the 

handling of files with small data points, twenty four (24) hours period for collecting 

customer’s call detail record will be divided into 3 parts (sub-periods), similarity 

coefficient that falls under Moderate Similarity group will be further investigated (for 

possible fraud activities) and the use of other variables such as type of call (domestic 

and international) as shown in Figure 4.2. 
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It was mentioned by Schonlau et al. (2001) (computer) intrusion can be detected 

by the statistical methods in any circumstances even in difficult ones and this field of 

study (i.e. computer intrusion detection) offers many challenges and opportunities to 

statistics and statisticians. Bolton and Hand (2002), page 246, generalized by saying 

“Fraud detection is an important area, one in many ways ideal for the application of 

statistical and data analytic tools and one where statisticians can make a very 

substantial and important contribution”.  
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CHAPTER 5 

EXPLORING THE USE OF HYPOTHESIS TESTING IN DETERMINING THE 

NUMBER OF COMPONENTS IN GAUSSIAN MIXED MODEL 

 

5.1 Introduction  

 

The improvement of EM algorithm for GMM involves the use of Kernel 

method (Silverman, 1986) to determine the number of components and to find means as 

initial values to start EM algorithm for GMM has been described in Chapter 3. It also 

involves the calculation of the log-likelihood function and Akaike Information Criteria 

(AIC) (Akaike, 1974) and the comparison of all AICs where the minimum value gives 

the true (or correct) number of components. Details of Gaussian Mixed Model (GMM) 

and Expectation Maximization (EM) algorithm can be found in Chapter 2. 

 

This chapter, via Section 5.2, shows the successful derivation of hypothesis 

testing in the determination of the number of components in GMM, which is an 

important process as highlighted by a number of authors (for example Schlattmann, 

2003, and Wang et al., 2004), and the performance of the hypothesis testing. The 

comparison of its results with those of AIC will be highlighted in Section 5.3. 

 

The development of this method enables one to determine the number of 

components in the GMM in an objective way. 



 74

5.2 Hypothesis testing  

 

5.2.1 Introduction to property 1 and 2 
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An example is given in Figure 5.1. 
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Property 2 (or Prop 2) is defined by 
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5.2.2 The derivation of the hypothesis testing 
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respectively. k and k* are number of parameters where k,k*=1,2,…,K (and preferably 

k*>k). The likelihood ratio statistics for testing the above hypothesis is defined by 
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The right hand side of equation (5.2) can be written as 
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The right-hand-side of equation (5.4) can be written as 
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Applying minus sign to both sides of equation (5.5), we get 
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accepted when λlog2−  (which is now greater than 0) is less than ( )
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*, pkk +αχ . 

 

5.2.3 The performance of the hypothesis testing 

 

The characteristics of the hypothesis testing as mentioned in the previous 

section are described by performing the following processes for ( )∑
=
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2,,
i

iii xa σµφ  where 

( 4.01 =a , 0.01 =µ , 0.12

1 =σ ) and ( 6.02 =a , 0.22 =µ , 25.02

2 =σ ) (refer to Table 3.1 

under Sample 1) and repeat them 1000 times:  

 

We generate 1000 simulation data using Box and Muller Transformation (Box 

and Muller, 1958) and calculate ∑
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. The one thousand 

(1000) simulation data is then plotted as shown in Figure 5.3. Figure 5.4 shows several 
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2χ  distributions for comparison purposes. Note that the histogram displayed in Figure 

5.3 (b) is similar in terms of shape to Figure 5.4 (a). 

 

 

 

(a) 

 

(b) 

Figure 5.3 Simulation data is displayed in the histogram for (a) ∑
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The performance of the hypothesis testing is described by using Box and Muller 

Transformation (Box and Muller, 1958) to generate simulation data for 
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components with the following properties: 1a  is chosen from 0.1,…,0.9, 2a  is derived 

from the following formula 12 1 aa −= , 1µ  is fixed at 0.0; 2µ  is chosen from 

0.25,0.50,0.75,…,3.0, 11σ  and 22σ  are chosen from 10,,3,2,1,
10

1
,,

3

1
,

2

1
LL . A total of 

25 samples, each with 1000 observations, are generated for each model. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.4 2χ -distribution with (a) 2, (b) 3, (c) 4 and (d) 5 degrees of freedom.  

 

Note that  

%
 testingshypothesis ofnumber  Total

components ofnumber  2 accepts that  testingshypothesis ofNumber 








=Percentage  

is calculated and Range is assigned to each model where Range equals to 1 represents 

percentage of overlapping between 0% and 25%, 2 represents percentage of 

overlapping between 25% and 50%, 3 represents percentage of overlapping between 

50% and 75% and 4 represents percentage of overlapping between 75% and 100%. 

 

Example of an output is given in Figure 5.5, which represents 

( 2.01 =a , 0.01 =µ , ( )22

1 707.0=σ ) and ( 8.02 =a , 25.02 =µ , 0.12

2 =σ ).The Range for 

the given example equals to 3 and 0H  is accepted when 3* =k  where p  is greater 
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than 0.05. Note that λlog2−  is given in the first bracket and probability value p  is 

given in the second. 

 

 

Akaike Information Criteria 

 

no_of_components AIC Min 

1 2759.241221463931 2759.241221463931  

2 2742.695779311172 2742.695779311172  

3 2745.7438644121394 2742.695779311172  

 

Hypothesis Testing 

 

H_0:theta,k=1 

H_0:theta,k=1 versus H_1:theta*,k*=2 (22.54544215275928)(p=5.028078782631841E-5) 

H_0:theta,k=1 versus H_1:theta*,k*=3 (25.497357051791823)(p=3.9955836008321434E-5) 

 

H_0:theta,k=2 

H_0:theta,k=2 versus H_1:theta*,k*=3 (2.951914899032545)(p=0.7073991861415829) 

 

 

Figure 5.5 Results of AIC and hypothesis testing for ( )∑
=

2

1

2,,
i

iii xa σµφ  where 

( 2.01 =a , 0.01 =µ , ( )22

1 707.0=σ ) and ( 8.02 =a , 25.02 =µ , 0.12

2 =σ ).  

 

 The results are displayed in Figure 5.6 where the values used can be found in 

Table 5.1. The value under the column titled “(Freq/Tot)%” of Table 5.1 that 

corresponds to Percentage equals to 100 decreases not lower than 50 as the Range 

increases. 

 

Table 5.1 Frequency table for Range equals to (a) 1, (b) 2, (c) 3 and (d) 4. 

  Frequency (Freq/Tot)% 

Valid 0 21 1.2 

 25 1 0.1 

 33.3 24 1.4 

 50 197 11.6 

 66.7 131 7.7 

 75 15 0.9 

 100 1313 77.1 

 Total 1702 100 

(a) 

  Frequency (Freq/Tot)% 

Valid 0 29 4.9 

 33.3 12 2 

 50 121 20.3 

 66.7 37 6.2 

 75 7 1.2 

 100 391 65.5 

 Total 597 100 

(b) 
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Table 5.1 Continued. 

  Frequency (Freq/Tot)% 

Valid 0 13 9.5 

 50 36 26.3 

 66.7 10 7.3 

 75 1 0.7 

 100 77 56.2 

 Total 137 100 

(c) 

  Frequency (Freq/Tot)% 

Valid 0 6 20.7 

 50 6 20.7 

 66.7 2 6.9 

 100 15 51.7 

 Total 29 100 

(d) 

 

 

Figure 5.6 Percentage is plotted against Range in the Box plot.  

 

5.3 Comparison between using the AIC and hypothesis testing in 

determining the number of components in GMM  

 

Akaike Information Criteria (AIC) used in the improvement of EM algorithm 

for GMM is defined by )(22 LLogpmtrAIC −=  where pmtr is the number of 

parameters and )(LLog  is the maximized log-likelihood function. 

Let 
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Where the second term of kAIC  and *kAIC  is taken from equation (5.1), and 62 =Ω  if 

1=p .  

 

In this section, we present two cases. They are: 

Case 1: Let kk AICAIC >*  (according to Step 5, kAIC  is minimum therefore it is 

chosen) where k*>k. Using equations (5.7) and (5.8), we get 
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Equation (5.9) can be written as 

 

( ) β>−Ω kk *2                   (5.10) 

 

where 



 85

 

( ) ( )

( ) ( )
∑ ∑

∑ ∑

=

−

=

= =

−



























 −−
−−



























 −−
−=

n

j

iji

t

ij

i

p

k

i

i

n

j

k

i

iji

t

ij

i

p
i

a

a

1

1

1

1 1

*1**

*

*

2
exp

||)2(

1
log2

2
exp

||)2(

1
log2

*

µxΣµx

Σ

µxΣµx

Σ

π

π
β

 

 

Let ( )
2

*,~ pkk +αχγ . If ( ) γβ >>−Ω kk *2 , we reject 0H , which contradicts the 

AIC results. If ( ) β>−Ω kk *2  and βγ > , we accept 0H .  

 

Case 2: Let kk AICAIC <*  (according to Step 5, *kAIC  is minimum therefore it is 

chosen) where k*>k. By repeating the process in Case 1, that is using equations (5.7) 

and (5.8), we get  

 

( ) β<−Ω kk *2         (5.11) 
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Let ( )
2

*,~ pkk +αχγ . If ( ) β<−Ω kk *2  and γβ > , we reject 0H . If ( ) γβ <<−Ω kk *2 , 

we accept 0H , which contradicts the AIC results.  
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Figure 5.7 (the results shown here are taken from Chapter 4) shows hypothesis 

testing results support those of AIC (note that λlog2−  is given in the first bracket 

whereas probability value is given in the second). Case 1 and 2 can be found in the 

hypothesis testing when ( )3*,2 == kk  and ( )3,2*,1 == kk , respectively. The 

probability value α  is fixed at 0.05. Figure 5.8 shows, especially for the case when k  

and *k  equal to 2 and 3, respectively, hypothesis testing results do not support those of 

AIC. Case 2 can be found in all of the hypothesis testing. 

 

Akaike Information Criteria 

 

no_of_components AIC Min 

1 92.957704551177 92.957704551177  

2 78.93876969062063 78.93876969062063  

3 80.78840789298813 78.93876969062063  

 

 

Hypothesis Testing 

 

H_0:theta,k=1 

H_0:theta,k=1 versus H_1:theta*,k*=2 (20.01893486055637)(Prob=1.6832767836781848E-4) 

H_0:theta,k=1 versus H_1:theta*,k*=3 (24.16929665818887)(Prob=7.386963782137005E-5) 

 

H_0:theta,k=2 

H_0:theta,k=2 versus H_1:theta*,k*=3 (4.150361797632499)(Prob=0.5279773066298088) 

 

Figure 5.7 Results of AIC and hypothesis testing for customer C.  

 

Akaike Information Criteria 

 

no_of_components AIC Min 

1 47.53326292383591 47.53326292383591  

2 35.70610331847866 35.70610331847866  

3 33.64022457875683 33.64022457875683  

 

 

Hypothesis Testing 

 

H_0:theta,k=1 

H_0:theta,k=1 versus H_1:theta*,k*=2 (17.827159605357252)(Prob=4.7764602611496796E-4) 

H_0:theta,k=1 versus H_1:theta*,k*=3 (25.89303834507908)(Prob=3.325553903926139E-5) 

 

H_0:theta,k=2 

H_0:theta,k=2 versus H_1:theta*,k*=3 (8.065878739721828)(Prob=0.15264184961471652) 

Figure 5.8 Results of AIC and hypothesis testing for customer D.  

 

 In addition to the above, the contradiction between AIC and hypothesis testing 

can also be seen in Figure 5.1 and Table 5.1 especially the values under the column 
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titled “(Freq/Tot)%” that correspond to Percentage not equal to 100. The total number 

of Percentage not equal to 100 increases as the Range increases. 

 

Hypothesis testing results depend on log-likelihood function and the choice of 

the probability value α  that gives ( )
2

*, pkk +αχ . AIC results on the other hand depend on 

log-likelihood function only as shown in Figures 5.9 and 5.10. Hypothesis testing 

results are similar to those of AIC if α  is set at different value (i.e. other than 0.05).  

 

Further research on the behavior of the hypothesis testing especially when it 

conflicts with AIC is required that will involve the use of the power of a test (Guenther, 

1977). 
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Figure 5.9 Log-likelihood function against number of components for Customer C.  
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Figure 5.10 Log-likelihood function against number of components for Customer D.  

 

5.4 Summary  

 

In the previous chapters, we showed the effects of fraud activities to 

telecommunication industry and gave a brief introduction to GMM and EM algorithm. 

We also mentioned when would we determine the number of components in GMM and 

gave several examples that are normally used in the determination of the number of 

components in GMM, including the use of AIC in the determination process. 

 

We successfully derived hypothesis testing in the previous sections, which we 

believe can be used as an alternative method to AIC in the determination of the number 

of components in GMM. 
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CHAPTER 6 

“REAL TIME” FRAUD DETECTION ALGORITHM FOR 

TELECOMMUNICATION INDUSTRY USING GAUSSIAN MIXED MODEL 

 

6.1 Introduction 

 

Sain et al. (1999) consider the difficult task of using seismic signals (or any 

other discriminates) for detecting nuclear explosions from the large number of 

background signals such as earth quakes and mining blasts. They used the following 

nonparametric bootstrapping by Efron and Tibshirani (1993) to test Π∈+10 : nH x  

versus Π∉+11 : nH x  for the case in which no events in the training sample are labeled 

and the number of event types represented in the training sample is unknown. 

Step A: Given the training sample Π∈nxxx ,...,, 21  and potential outlier 1+nx , calculate 

W based on 

)(
sup

)(
sup

1

0

θ
θ

θ
θ

L

L

W

Θ∈

Θ∈
=  where );();()( 1

1
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



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
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=

n

s

sfL
1

1 );()( θxθ . 

Step B: For each integer b, b=1,…,B draw a sample of size n with replacement from the 

training data. Additionally, an (n+1)st observation is also drawn from the training data 

(because we are approximating the distribution of W when Π∈+10 : nH x  is true). For 
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each b, re-sampled data is used to compute the statistics in 

)(
sup

)(
sup

1

0

θ
θ

θ
θ

L

L

W

Θ∈

Θ∈
= . The test 

statistics is denoted by *

bW . 

Step C: Define 
aW  to be the (100α)th percentile of all *

bW . Specifically if α =j/(B+1), 

then aW  is the jth smallest value of { }B

bbW
1

*

=
 (see McLachlan, 1987) 

Step D: Π∈+10 : nH x  is rejected and concluded that the (n+1)st point is an outlier if 

aWW ≤ . 

 

This chapter proposes a new algorithm that can be efficiently used to identify 

fraud activities (Section 6.2).  The algorithm is developed by using the above concept 

but instead of using nonparametric bootstrapping, we use likelihood ratio test. It also 

finds the characteristics of historical fraud and non-fraud calls and is consequently used 

in identifying possible fraud call instantly for immediate call verification process. 

Using simulation and data obtained from one of the leading telecommunication 

company in Malaysia, we show that the proposed algorithm has successfully detected 

outgoing fraud calls as suspected by the company (Sections 6.3 and 6.4). 

 

6.2 “Real time” fraud detection algorithm using GMM 

 

The algorithm for detecting fraud activities as mentioned in Chapter 4, which 

include the improved EM algorithm for GMM, involves two steps. The first step finds 

and saves the final estimates of parameters in the database for each of the seven days. 

The second step finds the maximum of log-likelihood function, the similarity 

coefficient and performs the updating of the database process for the eight day 
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onwards. The observations used in the said steps that represent thi  day where 

i=1,2,3,… are collected over a period of 24 hours. The second step is improved to 

include the testing of each observation (as soon as it is available or in “real time”) 

whether it is an outlier or not that is Π∈+10 : nH x  versus Π∉+11 : nH x  (refer to Figure 

6.1). Note that the rest of the second step remains unchanged. 

 

 

Figure 6.1 A represents the probability density function of customer X call detail record 

for the 1st day collected over a period of 24 hours and saved in the database. B 

represents the probability density function of customer X call detail record for the th
i  

day where i=8,9,… collected over a period of 24 hours. C represents customer X call 

detail record for the th
i  day that is classified as an observation belonging to A and D 

represents customer X call detail record for the th
i  day that is classified as an outlier 

(i.e. by using the parameters belonging to A). 

 

The likelihood ratio statistics for testing the above hypothesis is defined by 
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(Mardia et al., 1979). It can be written as  
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Using equations (5.3) and (5.6), we get  
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and  
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For example, replacing k with unity in equations (6.2) and (6.3), we get 
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It can be shown that 
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The characteristics of the hypothesis testing as mentioned above are described 

by performing the following processes for ( )∑
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( 4.01 =a , 0.01 =µ , 0.12
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where ( )2, LLi Nx σµ∈  and 2,1=L . The one thousand (1000) simulation data is then 

plotted as shown in Figure 6.2.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.2 Simulation data is displayed in the histogram for (a) ∑
=








 −2

1

2

L L

Lix

σ

µ
, (b) 

2








 −

L

Lix

σ

µ
 where ( )2, LLi Nx σµ∈  and 2,1=L  and (c) 2χ  distribution with one (1) 

degree of freedom.  

 

Note that the histogram displayed in Figure 6.2 (b) is similar in terms of shape to (c) 

2χ  distribution with one (1) degree of freedom. 
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0H  is accepted when ( )
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, pαχ  

where α =0.0001. The value of α  is chosen such that it follows Sachs (1984) where a 

new observation that falls outside the boundaries derived from the mean and (four 

times) standard deviation of the current observations is an outlier. 

 

6.2.1 The performance of the “real time” fraud detection algorithm using GMM 

 

We generate 1n =1000 simulation data from ( )1,0N  using Box and Muller 

Transformation (Box and Muller, 1958). We treat the simulation data as training data 

(or td). We calculate the mean (denoted by tdµ ), variance (denoted by 2

tdσ ) and log-

likelihood function (denoted by 
tdllf ). The following is repeated 100 times: For each 

0.10,...,1.0,0.0=Oµ , we generate 2n =1000 simulation data from ( )1,ON µ  using Box 

and Muller Transformation (Box and Muller, 1958). We treat the simulation data as 

observation (or O). Using tdµ  and 2

tdσ  from the above, we calculate the log-likelihood 

function (denoted by Ollf ) and similarity coefficient 
td

O

llf

llf
. Each observation of the 

simulation data is tested whether it is an outlier or not by using the likelihood ratio 

statistics as mentioned in Section 6.2. We count the total number of outliers for the 

given simulation data and convert it into percentage (denoted by the percentage of 

outliers or outliers(%)).  

 

Figure 6.3 (a) shows (negative) s-curve where similarity coefficient decreases as 

Oµ  increases and (b) shows, as we expected, (positive) s-curve where the percentage of 

outliers increases as 
Oµ  increases. 
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(a) 

 

(b) 

Figure 6.3 Box plot for (a) similarity coefficient and (b) percentage of outliers where 

the values on the x-axis represent Oµ . 

 

For each of the five hundred customers (they are labeled as 1st, 2nd, 3rd,…,500th 

customer) and for each of the seven days, the number of components are chosen at 

random where the maximum number of components is fixed at three (3). If three 

components are chosen, the values of 1a , 2a  and 3a  are chosen at random from 

0.1,…,0.9 where 1321 =++ aaa ; the values of 1µ , 2µ  and 3µ  are chosen at random 

from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of two or more components are chosen 

such that no two or more means are the same; and the values of 1σ , 2σ  and 3σ  are 

chosen at random from 10,,3,2,1,
10

1
,,

3

1
,

2

1
LL . Similar steps are taken if less than 

three components are chosen. The chosen values (that represent a model) are used in 

1
2

1

2 2cos)log2( +−+= jjj uuz πσµ  and 1
2

1

2

1 2sin)log2( ++ −+= jjj uuz πσµ  where 

)1,0(~, 1 Uuu jj +  (Box and Muller, 1958) to generate (one thousand) simulation data. 

For each day starting the 8th till 28th, simulation data is generated using either one of the 

seven models (which represents the first condition where the performance of the 
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algorithm is evaluated by this condition) or other model derived from repeating the 

steps as mentioned above. 

 

 For each customer, Chapter 4’s algorithm is employed on the models that 

represent 1st till 7th day. Each observation on 8th day onwards that satisfies the first 

condition is tested whether it is an outlier or not by using the likelihood ratio statistics 

as mentioned in Section 6.2. We repeat the steps as mentioned earlier that is we count 

the total number of outliers for the given data set (that represents 8th day onwards and 

satisfies first condition) and convert it into percentage. We find the frequency for each 

Outliers(%)and convert it into percentage (denoted by Freq(%)). Figure 6.4, which is 

derived from Table 6.1, shows the results from the steps taken on the 10th customer and 

Outliers(%) with the highest Freq(%) is zero. There is a huge gap (or difference) 

between Outliers(%) equals to 0.0 with the rest of the Outliers(%). The same pattern 

can also be found in Figure 6.5 (due to its size, only a few of the customers are 

displayed here).  

 

 

Figure 6.4 Box plot for the 10th customer. 
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(a) 

 

(b) 

Figure 6.5 Scatter plot for (a) 10th , 20th ,…,100th customer and (b) 50th ,100th ,150th 

,…,500th customer. 

 

6.3 Data  

 

Two types of data will be used. They are: 

 

(i) Simulation data. For each of the one thousand customers and for each of the seven 

days, the number of components are chosen at random where the maximum number of 

components is fixed at three (3). If three components are chosen, the values of 1a , 2a  

and 3a  are chosen at random from 0.1,…,0.9 where 1321 =++ aaa ; the values of 1µ , 

2µ  and 3µ  are chosen at random from 0.25,0.50,0.75,1.0,2.0,3.0 where the means of 

two or more components are chosen such that no two or more means are the same; and 

the values of 1σ , 2σ  and 3σ  are chosen at random from 10,,3,2,1,
10

1
,,

3

1
,

2

1
LL . 

Similar steps will be taken if less than three components are chosen. The chosen values 

(that represent a model) will be used in 1
2

1

2 2cos)log2( +−+= jjj uuz πσµ  and  
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Table 6.1 Outliers(%) * Freq(%) * 10th customer cross-tabulation. 

Customer     Freq(%)               

   0.1 0.2 0.3 0.4 0.5 0.6 2.4 6.7 7.4 7.8 8.2 8.4 8.7 8.8 10 10.6 

Cust_10.txt Outliers(%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  14.29 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 

  28.57 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 

  42.86 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

  57.14 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 

  71.43 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

  85.71 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

  100 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

 Total  6 5 6 3 1 1 1 1 1 1 1 1 1 1 1 1 

 

               Total 

11.1 11.4 11.6 11.9 12.4 14.1 74.2 75.7 75.8 78 81.4 81.5 82.4 84.8 97.4  

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 9 

0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 9 

1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 9 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 48 
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1
2

1

2

1 2sin)log2( ++ −+= jjj uuz πσµ  where )1,0(~, 1 Uuu jj +  (Box and Muller, 1958) to 

generate (one thousand) simulation data. For each day starting the 8th till 28th, 

simulation data is generated using either one of the seven models or other model 

derived from repeating the steps as mentioned above.  

 

(ii) Phone call data. Call detail record, which was supplied (or provided) by Telekom 

Malaysia Berhad (henceforth, TM), consists of calls made by customers and they were 

victims of fraud activities (altogether there are 18 customers and they are labeled as A 

till R to ensure confidentiality). As mentioned in Chapter 4, we performed several steps 

for each of TM’s customer call detail record to get the desired format; e.g. group the 

real data according to service no, find the country that matches with the country code 

and sort the real data according to seize time. We divided them (i.e. real data for TM 

customers) into several parts and saved in the following format: (for each customer) 1, 

2, 3, 4,… represent fn(1), fn(2), fn(3), fn(4),… and date(1), date(2), date(3),… where fn 

is a short-form for filename and date(1) < date(2) < date(3) < …. 

 

6.4 Results 

 

The results using simulation and real data are presented in the visual format as 

exemplified in Figure 6.6 where, for ease of visual presentation, the times when the 

calls were made are arranged in ascending order (and labeled 1,2,3,…). For each call, 

we calculate equation (6.1) and ( )%100
 testingshypothesis ofnumber   totalThe

rejected is H  timesofnumber  The 0 X







 

where the latter is denoted by Percentage. Percentage that is greater than zero is plotted 

in Figure 6.6.  
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Figure 6.6 Percentage is plotted against Day and Time in the Scatter plot.  

 

Due to its size, only a portion of the results are presented here. For the simulation 

data where we choose Customer 1, Figure 6.7 shows there are lots of calls that are 

classified as outliers.  

 

 

(a) 

 

(b) 

Figure 6.7 For Customer 1 of the simulation data, (a) Percentage is plotted against Day 

and Time in the Scatter plot and (b) Percentage is plotted against Day in the Box plot.  
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This is supported by Figure 6.8 and Table 6.2 for Day equals to 22. For the said Day, 

out of 1000 calls, each of 135 calls has the Percentage equals to 14.29, each of 105 calls 

has the Percentage equals to 42.86 and each of 72 calls has the Percentage greater than 

70. Note that nine calls have the Percentage equals to 100. In other words, the call is 

considered as an outlier by all models saved inside the database. 

 

 

Figure 6.8 Percentage is plotted against Day, which is equals to 22, in the Box plot.  

 

Table 6.2 Frequency table for Day equals to 22. 

 Frequency Percent Valid Percent 
Cumulative 

Percent 

.00 538 53.8 53.8 53.8 

14.29 135 13.5 13.5 67.3 

28.57 95 9.5 9.5 76.8 

42.86 105 10.5 10.5 87.3 

57.14 55 5.5 5.5 92.8 

71.43 47 4.7 4.7 97.5 

85.71 16 1.6 1.6 99.1 

100.00 9 .9 .9 100.0 

Valid 

Total 1000 100.0 100.0   

 

By taking similar steps, we get the following figures and table for Customer A 

of the real telecommunication data. Figure 6.9 shows there are quite a considerable 

number of calls that are classified as outliers and none of them has the Percentage 

equals to 100. Figure 6.10 and Table 6.3 are derived from Figure 6.9 where we are 
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focusing on Day equals to 72 (i.e. 15th of November 2011), the same day TM’s system 

claimed to detect fraud activity. For the said Day, out of 4 calls, one call has the 

Percentage equals to 3, one call has the Percentage equals to 8 and one call has the  

 

 

(a) 

 

(b) 

Figure 6.9 For Customer A of the real telecommunication data, (a) Percentage is plotted 

against Day and Time in the Scatter plot and (b) Percentage is plotted against Day in 

the Box plot.  

 

 

Figure 6.10 Percentage is plotted against Day, which is equals to 72, in the Box plot.  
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Table 6.3 Frequency table for Day equals to 72. 

 Frequency Percent Valid Percent 
Cumulative 

Percent 

.00 1 25.0 25.0 25.0 

2.78 1 25.0 25.0 50.0 

8.33 1 25.0 25.0 75.0 

16.67 1 25.0 25.0 100.0 

Valid 

Total 4 100.0 100.0   

 

Percentage equals to 17. Note that none of the calls has the Percentage equals to 100. 

Fraud call is the one that gives the Percentage equals to 100. 

 

6.5 Summary 

 

In the previous section, we highlighted the approach taken by Sain et al. (1999) in 

detecting nuclear explosions from the large number of background signals. The same 

approach is included in the algorithm for detecting fraud activities as mentioned in 

Chapter 4, which involves the testing of each observation whether it is an outlier or not 

i.e. Π∈+10 : nH x  versus Π∉+11 : nH x . We showed its performance by using real 

telecommunication data and simulation data. The introduction of the “real time” fraud 

detection algorithm using GMM would help telecommunication companies to act upon 

fraud calls instantaneously instead of waiting until the 24 hours period is complete.  
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

 

7.1 Conclusion  

 

The damages caused by fraud activities to telecommunication companies are 

valued at millions (or billions) of dollars (Telecom and Network Security Review, 

1997, Cahill et al., 2002, and Moreau et al., 1996) and the said activities could come in 

many forms. Superimposed fraud, which is the one of our interest, refers to the use of a 

service without permission and it would appear as phantom calls on a bill. 

 

The number of literatures that discuss about pattern recognition method (namely 

Gaussian Mixed Model, GMM) used to detect fraud activities in telecommunication 

industry involving real data other than speech recognition’s format is limited and GMM 

is difficult to apply (or implement) in real practice because we need to find the initial 

estimates of parameters to start Expectation Maximization (EM) algorithm and find the 

exact number of Gaussian components. Telekom Malaysia Berhad, a leading 

telecommunication company in Malaysia, via their current system or application 

believes the real data collected by them (e.g. duration and charging or billing) from its 

exchanges are contaminated by fraud activities and, since GMM is not included on the 

list of methods, there is no knowing if their findings are statistically correct. The 

following objectives for this study were derived based on the above problems. The first 

objective is to improve Gaussian Mixed Model (GMM) from its known (or current) 

weaknesses (or difficulties) such as finding the initial estimates of parameters to start 
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Expectation Maximization (EM) algorithm and finding the exact number of Gaussian 

components. The second objective is to introduce a new algorithm that is capable of 

detecting fraud activities (especially) in telecommunication industry and that 

incorporates the improvement as mentioned in the first objective. The third objective is 

to test the new algorithm (as well improved the EM algorithm for GMM) using 

simulation data and real data (e.g. duration and charging or billing) collected from 

Telekom Malaysia Berhad’s exchanges that are believed to be contaminated by fraud 

activities. 

 

Schlattmann (2003) suggested using a non-parametric bootstrapping approach 

to identify the right number, say k, of components in a GMM and subsequently 

choosing good initial values for the model parameters iµ  and 2
iσ , k21i K,,= , in the 

EM algorithm. Wang et al. (2004) introduced an algorithm called the stepwise-split-

and-merge EM algorithm to solve the said problem and Miloslavsky and Van Der Laan 

(2003) suggested using the minimization of the Kullback-Leiber distance between fitted 

mixture models and the true density as a method for estimating k where the said 

distance was estimated using cross validation. Other works on this topic can also be 

found, for example, in Zhuang et al. (1996), Lee et al. (2006) and Celeux and 

Soromenho (1996). We proposed an improved EM algorithm for GMM to identify the 

number of components of a GMM and estimate the parameters of the model using the 

kernel method. The first step uses kernel method, Silverman (1986), to determine the 

number of components, say K components, and to find Means as initial values to start 

EM algorithm for GMM. The second step executes EM algorithm for GMM to find the 

final estimates of parameters using k=1 number of components, Means obtained from 

the first step, and Variances fixed at 1 as initial values. The third step calculates log-

likelihood function and Akaike Information Criteria (AIC) Akaike (1974) using final 
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estimates of parameters from the second step. The fourth step repeats the second and 

third steps for k=2,….,K number of components. The final step compares all (K) AICs 

obtained from the fourth step and the one that gives the minimum value is chosen 

(which gives the true or correct number of components). The performance of the 

algorithm via simulation is generally good but, as we expected, is affected by 

increasing percentages of overlapping of the Gaussian components. The final number 

of GMM component could clearly be determined via the concave-like shape of the AIC 

plot, which indicates that the AIC decreases to a minimum value and then increases as 

the number of components increases.  

 

The idea used to give “birth” to the algorithm for detecting fraud calls is related 

to speaker identification, which involve the coding of the new speaker’s recorded voice 

into vector, the calculation of the log-likelihood function for each training matrix, the 

comparison of all log-likelihood functions and the selection of the maximum one thus 

revealing the speaker’s true identity. In our case, we use customer’s call behavior in 

place of speaker’s recorded voice. The algorithm for detecting fraud calls involves two 

steps. The first step performs, for each of the first seven days, the improved EM 

algorithm for GMM and save the final estimates of parameters in the database. For the 

8th day onwards, the second step uses the parameters saved in the database on the data 

set to find the maximum log-likelihood function, calculates the percentage of similarity 

coefficient and performs the updating process, which depends on the percentage of 

similarity coefficient. We used them on two variables namely duration and call 

charging (or billing) collected from 18 TM’s customers (that fell victim to fraud 

activities on the 15th of November 2011), which revealed interesting results. The 

percentage of TM’s customers that support the findings made by TM’s system 

decreases as the number of variables used increases. The downgrading, upgrading and 
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unchanging of the similarity group depend on whether using one or two variables. No 

downgrading to Low Similarity group is observed. The unchanging of Low Similarity 

group is observed for more than 10% of TM’s customers. No Low Similarity group is 

observed for several of TM’s customers depending on whether using one or two 

variables. Fraud activities might happen earlier than 15th of November 2011 due to the 

average number of similarity coefficient assigned to Low Similarity group when using 

two variables, which is greater than 10%. The results show the effectiveness of the 

proposed algorithm in detecting Low Similarity group (before and on the 15th of 

November 2011, which we believe they have close connection to fraud activity). Bolton 

and Hand (2002) (and Schonlau et al., 2001) said fraud (and computer intrusion) 

detection offers many challenges and opportunities to statisticians where they could 

make a very substantial and important contribution. 

 

The proposed algorithm uses AIC to determine the number of components in 

GMM and we showed this task could also be performed by the hypothesis testing. The 

comparison between hypothesis testing and AIC using mathematical derivation and real 

telecommunication data revealed conflicting results under certain conditions due to the 

dependence of the former on log-likelihood function and the choice of the probability 

value α  that gives ( )
2

*, pkk +αχ  and the latter on log-likelihood function. Hypothesis 

testing results are similar to those of AIC if α  is set at a different value (i.e. other than 

0.05). 

 

The approach taken by Sain et al. (1999) in detecting nuclear explosions from 

the large number of background signals is included in the algorithm for detecting fraud 

activities that involves the testing of each observation whether it is an outlier or not i.e. 

Π∈+10 : nH x  versus Π∉+11 : nH x  (as shown by several examples using real 
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telecommunication data and simulation data). Thus helping the telecommunication 

companies to act upon fraud calls instantaneously instead of waiting until the day is 

over.  

 

7.2 Future research   

 

Future research work will involve the following: the proposed algorithm will be 

tested on a bigger number of customers, the handling of files with small data points, 

twenty four (24) hours period for collecting customer’s call detail record will be 

divided into 3 parts (sub-periods), similarity coefficient that falls under Moderate 

Similarity group will be further investigated (for possible fraud activities) and the use 

of other variables such as type of call (domestic and international). The suitability of 

the Gaussian Mixed Model Hidden Markov Model (refer to Bilmers, 1998, Rabiner, 

1989, Juang and Rabiner, 1985, Box and Jenkins, 1976, Bidgoli, 2007) for type of call 

will be explored where 1S  and 2S  are the states assigned to the domestic and 

international call, respectively. The power of a test (Guenther, 1977) will be used to 

explain the behavior of the hypothesis testing especially when it conflicts with AIC (in 

terms of the number of components in GMM). 
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APPENDIX A 

 

The results presented in this thesis were produced from using the computer 

facility in the Institute of Mathematical Sciences (University of Malaya) and Telekom 

Research and Development Sdn. Bhd. The applications used were SPSS, Microsoft® 

Excel and NetBeans, which is an Integrated Development Environment, IDE, for 

developing primarily with Java and it is an application platform framework for Java 

desktop applications and others. The first two applications were used for producing 

graphical presentations. Due to its size, only a portion of Java script will be displayed. 

 

class EM { 

         

    double sum1, sum2, sum3, sum4; 

    double maximum; 

    double a_ih,a_il; 

    double eq1,eq2,eq3; 

    double diff1, diff2, diff3; 

    double epsilon=0.000001; 

    double[][]alpha; 

    double[][][]mu; 

    double[][][] sigma; 

    double[][]sigma_determinant; 

    double[][][] sigma_inverse; 

    double[][][]prob; 

    double[][] x; 

    int dim; 

    int h,i,j,k,l; 

    int count; 

    int h1,h2; 

    int N,K; 

    int p, P;     

    int iterate; 

    int Stop; 

    int Stop_limit; 

    // 

    String[][]statement; 

    int count_statement=0;     

    // 

    PrintWriter output=null; 

    BufferedReader input = null; 

    String character=null; 

    StringTokenizer token; 

    // 

    String filename=null; 

    DecimalFormat sixDigits; 
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    public int EM_Algorithm() 

    { 

        //         

        try 

        { 

            // 

            //P=1;//fixed 

            // 

            /*if (Math.abs(Type) == 1) 

            { 

               K=2; dim=1;  

            } 

            else if (Math.abs(Type) == 2) 

            { 

               K=2; dim=1; 

            }  

            else if (Math.abs(Type) == 3) 

            { 

                K=6; dim=1; 

                //original  

               //K=3; dim=1;  

               //original  

                  

            } 

            else if (Math.abs(Type) == 4) 

            { 

               K=3; dim=4;  

            }*/ 

            // 

            // 

            // 

            prob=new double[P+1][][]; 

            for (i=0;i<=P;i++) prob[i]=new double[N+1][]; 

            for (i=0;i<=P;i++) 

                for (j=0;j<=N;j++)  

                    prob[i][j]=new double[K+1]; 

            // 

            // 

            /* 

             1  2  3  4  

             5  6  7  8 

             9  10 11 12 

             13 14 15 16 

             (4X4 matrix) 

             */ 

            // 

            sigma_inverse=new double[P+1][][]; 

            for (i=0;i<=P;i++) sigma_inverse[i]=new double[K+1][]; 

            for (i=0;i<=P;i++) 

                for(j=0;j<=K;j++)  

                    sigma_inverse[i][j]=new double[dim*dim+1];  

            // 

            sigma_determinant=new double[P+1][]; 

            for (i=0;i<=P;i++) 

                sigma_determinant[i]=new double[K+1]; 

            // 

            //Initialize parameters             

            /*for (k=1; k<=K; k++) 

            { 

                            if (Type < 0) 

                            {    

                                // 

                                if (Type == -1) 
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                                { 

                                    // 

                                    if (k==1) 

                                    {     

                                        alpha[0][k]=0.5; 

                                        mu[0][k][1]=0.0; 

                                        sigma[0][k][1]=1.0; 

                                    } 

                                    else  

                                    { 

                                       alpha[0][k]=0.5;  

                                       mu[0][k][1]=2.0; 

                                       sigma[0][k][1]=1.0; 

                                    }  

                                    // 

                                } 

                                else if (Type == -2) 

                                { 

                                    // 

                                    if (k==1) 

                                    {     

                                        alpha[0][k]=0.5; 

                                        mu[0][k][1]=0.0; 

                                        sigma[0][k][1]=1.0; 

                                    } 

                                    else  

                                    { 

                                       alpha[0][k]=0.5;  

                                       mu[0][k][1]=1.5; 

                                       sigma[0][k][1]=1.0; 

                                    }  

                                    // 

                                } 

                                else if (Type == -3) 

                                { 

                                     

                                    if (k==1) 

                                    {     

                                        alpha[0][k]=1.0/6.0; 

                                        mu[0][k][1]=0.0; 

                                        sigma[0][k][1]=1.0; 

                                    }                                     

                                    else if (k==2) 

                                    { 

                                       alpha[0][k]=1.0/6.0;  

                                       mu[0][k][1]=0.0; 

                                       sigma[0][k][1]=1.0;                                

                                    }  

                                    else if (k==3) 

                                    { 

                                       alpha[0][k]=1.0/6.0;  

                                       mu[0][k][1]=0.0; 

                                       sigma[0][k][1]=1.0; 

                                    }                                     

                                    else if (k==4) 

                                    { 

                                       alpha[0][k]=1.0/6.0;  

                                       mu[0][k][1]=0.0; 

                                       sigma[0][k][1]=1.0; 

                                    } 

                                    else if (k == 5) 

                                    { 

                                       alpha[0][k]=1.0/6.0;  

                                       mu[0][k][1]=0.0; 
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                                       sigma[0][k][1]=1.0;                                        

                                    } 

                                    else 

                                    { 

                                       alpha[0][k]=1.0/6.0;  

                                       mu[0][k][1]=0.0; 

                                       sigma[0][k][1]=1.0;                                        

                                    } 

                                     

                                       

                                } 

                                else//Type == -4 

                                { 

                                        if (k==1) 

                                        {     

                                            alpha[0][k]=0.33; 

                                            // 

                                            mu[0][k][1]=4; 

                                            mu[0][k][2]=4; 

                                            mu[0][k][3]=2; 

                                            mu[0][k][4]=1; 

                                            // 

                                            sigma[0][k][1]=1; 

                                            

sigma[0][k][2]=sigma[0][k][5]=0; 

                                            

sigma[0][k][3]=sigma[0][k][9]=0; 

                                            

sigma[0][k][4]=sigma[0][k][13]=0; 

                                            sigma[0][k][6]=1; 

                                            

sigma[0][k][7]=sigma[0][k][10]=0; 

                                            

sigma[0][k][8]=sigma[0][k][14]=0; 

                                            sigma[0][k][11]=1; 

                                            

sigma[0][k][12]=sigma[0][k][15]=0; 

                                            sigma[0][k][16]=1;                                    

                                        } 

                                        else if (k==2) 

                                        { 

                                           alpha[0][k]=0.33;  

                                            // 

                                            mu[0][k][1]=7; 

                                            mu[0][k][2]=2; 

                                            mu[0][k][3]=3; 

                                            mu[0][k][4]=2; 

                                            // 

                                            sigma[0][k][1]=1; 

                                            

sigma[0][k][2]=sigma[0][k][5]=0; 

                                            

sigma[0][k][3]=sigma[0][k][9]=0; 

                                            

sigma[0][k][4]=sigma[0][k][13]=0; 

                                            sigma[0][k][6]=1; 

                                            

sigma[0][k][7]=sigma[0][k][10]=0; 

                                            

sigma[0][k][8]=sigma[0][k][14]=0; 

                                            sigma[0][k][11]=1; 

                                            

sigma[0][k][12]=sigma[0][k][15]=0; 

                                            sigma[0][k][16]=1;                                    



 122

                                        }  

                                        else 

                                        { 

                                           alpha[0][k]=1.0-

(0.33+0.33);  

                                            // 

                                            mu[0][k][1]=8; 

                                            mu[0][k][2]=4; 

                                            mu[0][k][3]=5; 

                                            mu[0][k][4]=3; 

                                            // 

                                            sigma[0][k][1]=1; 

                                            

sigma[0][k][2]=sigma[0][k][5]=0; 

                                            

sigma[0][k][3]=sigma[0][k][9]=0; 

                                            

sigma[0][k][4]=sigma[0][k][13]=0; 

                                            sigma[0][k][6]=1; 

                                            

sigma[0][k][7]=sigma[0][k][10]=0; 

                                            

sigma[0][k][8]=sigma[0][k][14]=0; 

                                            sigma[0][k][11]=1; 

                                            

sigma[0][k][12]=sigma[0][k][15]=0; 

                                            sigma[0][k][16]=1;                                    

                                        }                                                   

                                } 

                                // 

                            }                             

                            else if (Type == 1) 

                            { 

                                if (k==1) 

                                {     

                                    alpha[0][k]=0.4; 

                                    mu[0][k][1]=0.0; 

                                    sigma[0][k][1]=1.0; 

                                } 

                                else  

                                { 

                                   alpha[0][k]=0.6;  

                                   mu[0][k][1]=2.0; 

                                   sigma[0][k][1]=0.25; 

                                }                                  

                            } 

                            else if (Type == 2) 

                            { 

                                if (k==1) 

                                {     

                                    alpha[0][k]=0.85; 

                                    mu[0][k][1]=0.0; 

                                    sigma[0][k][1]=1.0; 

                                } 

                                else  

                                { 

                                   alpha[0][k]=0.15;  

                                   mu[0][k][1]=2.0; 

                                   sigma[0][k][1]=0.25; 

                                }  

                                 

                            } 

                            else if (Type == 3) 

                            { 
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                                if (k==1) 

                                {     

                                    alpha[0][k]=0.33; 

                                    mu[0][k][1]=0.0; 

                                    sigma[0][k][1]=1.0; 

                                } 

                                else if (k==2) 

                                { 

                                   alpha[0][k]=0.33;  

                                   mu[0][k][1]=-1.0; 

                                   sigma[0][k][1]=0.25; 

                                }  

                                else 

                                { 

                                   alpha[0][k]=1.0-(0.33+0.33);  

                                   mu[0][k][1]=4.0; 

                                   sigma[0][k][1]=4.0;                                

                                }                                 

                            }  

                            else//Type == 4 

                            { 

                                if (k==1) 

                                {     

                                    alpha[0][k]=0.33; 

                                    // 

                                    mu[0][k][1]=5.01; 

                                    mu[0][k][2]=3.43; 

                                    mu[0][k][3]=1.46; 

                                    mu[0][k][4]=0.25; 

                                    // 

                                    sigma[0][k][1]=0.12; 

                                    sigma[0][k][2]=sigma[0][k][5]=0.1; 

                                    

sigma[0][k][3]=sigma[0][k][9]=0.02; 

                                    

sigma[0][k][4]=sigma[0][k][13]=0.01; 

                                    sigma[0][k][6]=0.14; 

                                    

sigma[0][k][7]=sigma[0][k][10]=0.01; 

                                    

sigma[0][k][8]=sigma[0][k][14]=0.13; 

                                    sigma[0][k][11]=0.03; 

                                    

sigma[0][k][12]=sigma[0][k][15]=0.01; 

                                    sigma[0][k][16]=0.3;                                    

                                } 

                                else if (k==2) 

                                { 

                                   alpha[0][k]=0.30;  

                                    // 

                                    mu[0][k][1]=5.91; 

                                    mu[0][k][2]=2.78; 

                                    mu[0][k][3]=4.2; 

                                    mu[0][k][4]=1.3; 

                                    // 

                                    sigma[0][k][1]=0.27; 

                                    sigma[0][k][2]=sigma[0][k][5]=0.1; 

                                    

sigma[0][k][3]=sigma[0][k][9]=0.18; 

                                    

sigma[0][k][4]=sigma[0][k][13]=0.05; 

                                    sigma[0][k][6]=0.09; 

                                    

sigma[0][k][7]=sigma[0][k][10]=0.09; 
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sigma[0][k][8]=sigma[0][k][14]=0.04; 

                                    sigma[0][k][11]=0.2; 

                                    

sigma[0][k][12]=sigma[0][k][15]=0.06; 

                                    sigma[0][k][16]=0.03;                                    

                                }  

                                else 

                                { 

                                   alpha[0][k]=1.0-(0.33+0.30);  

                                    // 

                                    mu[0][k][1]=6.54; 

                                    mu[0][k][2]=2.95; 

                                    mu[0][k][3]=5.48; 

                                    mu[0][k][4]=1.98; 

                                    // 

                                    sigma[0][k][1]=0.38; 

                                    

sigma[0][k][2]=sigma[0][k][5]=0.09; 

                                    sigma[0][k][3]=sigma[0][k][9]=0.3; 

                                    

sigma[0][k][4]=sigma[0][k][13]=0.06; 

                                    sigma[0][k][6]=0.11; 

                                    

sigma[0][k][7]=sigma[0][k][10]=0.08; 

                                    

sigma[0][k][8]=sigma[0][k][14]=0.05; 

                                    sigma[0][k][11]=0.32; 

                                    

sigma[0][k][12]=sigma[0][k][15]=0.07; 

                                    sigma[0][k][16]=0.08;                                    

                                }                                                                

                            } 

                            //  

            }//end k  

            */ 

            // 

            // 

            Stop = 0; iterate=0; 

            while (Stop == 0 && (iterate <= Stop_limit))//while (Stop 

== 0 && (iterate <= 200000)) 

            { 

                iterate=iterate+1; 

                //**Expectation** 

                for (i=1;i<=N;i++) 

                {     

                    sum3=0.0; 

                    for (k=1;k<=K;k++) 

                    { 

                        //   

                        if (dim > 1) 

                        { 

                            // 

                            if 

(Cholesky_inverse(sigma[0][k],dim,sigma_inverse[0][k]) != 0) 

                            { 

                                return -1; 

                            }                         

                            

sigma_determinant[0][k]=Determinant(sigma[0][k],dim);                                                 

                            // 

                        } 

                        else 

                        { 
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sigma_inverse[0][k][1]=(1.0/sigma[0][k][1]); 

                            sigma_determinant[0][k]=sigma[0][k][1];// 

                        } 

                        // 

                        sum1=0.0; 

                        for (h1=1;h1<=dim;h1++) 

                        {    

                            sum2=0.0; 

                            for (h2=1;h2<=dim;h2++) 

                            {                                 

                                sum2=sum2+( 

                                (x[i][h1]-mu[0][k][h1])* 

                                (sigma_inverse[0][k][(h1-1)*dim+h2])* 

                                (x[i][h2]-mu[0][k][h2])); 

                            } 

                            sum1=sum1+sum2; 

                        } 

                        eq1=Math.exp(-sum1/2.0); 

                        

eq2=sigma_determinant[0][k]*Math.pow(2.0*Math.PI, dim);                         

                        eq2=1.0/Math.sqrt(eq2);                         

                        //                                                 

                        sum3=sum3+( 

                        alpha[0][k]* 

                        eq1* 

                        eq2);  

                    } 

                    // 

                    // 

                    for (k=1;k<=K;k++) 

                    { 

                        //   

                        if (dim > 1)  

                        { 

                            // 

                            if 

(Cholesky_inverse(sigma[0][k],dim,sigma_inverse[0][k]) != 0) 

                            { 

                                return -1; 

                            }                         

                            

sigma_determinant[0][k]=Determinant(sigma[0][k],dim);                                                                                                 

                            // 

                        } 

                        else 

                        { 

                            // 

                            

sigma_inverse[0][k][1]=(1.0/sigma[0][k][1]); 

                            sigma_determinant[0][k]=sigma[0][k][1];// 

                            // 

                        } 

                        // 

                        sum1=0.0; 

                        for (h1=1;h1<=dim;h1++) 

                        {    

                            sum2=0.0; 

                            for (h2=1;h2<=dim;h2++) 

                            {                                 

                                sum2=sum2+( 

                                (x[i][h1]-mu[0][k][h1])* 

                                (sigma_inverse[0][k][(h1-1)*dim+h2])* 

                                (x[i][h2]-mu[0][k][h2])); 
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                            } 

                            sum1=sum1+sum2; 

                        } 

                        eq1=Math.exp(-sum1/2.0); 

                        

eq2=sigma_determinant[0][k]*Math.pow(2.0*Math.PI, dim); 

                        eq2=1.0/Math.sqrt(eq2);                         

                        prob[0][i][k]=(alpha[0][k]*eq1*eq2)/sum3; 

                        // 

                    } 

                }//end i 

                // 

                //**Maximization** 

                for (k=1; k<=K; k++) 

                { 

                     

                    //1st Equation 

                    sum1=0.0; 

                    for (i=1;i<=N;i++) 

                    { 

                        sum1=sum1+prob[0][i][k]; 

                    } 

                    alpha[1][k]=sum1/((double) N); 

                    // 

                    //2nd Equation 

                    for (j=1; j<=dim; j++) 

                    { 

                        sum1=sum2=0.0; 

                         for (i=1;i<=N;i++) 

                        { 

                            sum1=sum1+(prob[0][i][k]*x[i][j]); 

                        } 

                         for (i=1;i<=N;i++) 

                        { 

                            sum2=sum2+prob[0][i][k]; 

                        }                         

                        mu[1][k][j]=sum1/sum2; 

                    } 

                    // 

                    //3rd Equation 

                    for (h=1;h<=dim;h++) 

                    { 

                        for (l=1;l<=dim;l++) 

                        { 

                            // 

                            sum1=sum2=0.0; 

                            for (i=1;i<=N;i++) 

                            { 

                                a_ih=x[i][h]-mu[1][k][h]; 

                                a_il=x[i][l]-mu[1][k][l]; 

                                sum1=sum1+(prob[0][i][k]*a_ih*a_il); 

                            } 

                            for (i=1;i<=N;i++) 

                            { 

                                sum2=sum2+prob[0][i][k]; 

                            } 

                            sigma[1][k][(h-1)*dim+l]=sum1/sum2;   

                            // 

                        } 

                    } 

                    // 

                                                                                 

                }//end k                

                // 
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                //checking for convergence 

                //iteration iterate and iterate-1 parameters are 

compared. If difference is less than say 1e-6, convergence is 

achieved. 

                count=0; 

                for (k=1; k<=K; k++) 

                {                         

                        //1st equation 

                        diff1=Math.abs(alpha[1][k]-alpha[0][k]); 

                        if (diff1 < epsilon) 

                        { 

                            count=count+1; 

                        }                         

                        //number of alphas = K 

                        //2nd equation 

                        for (j=1; j<=dim; j++) 

                        { 

                            diff2=Math.abs(mu[1][k][j]-mu[0][k][j]); 

                            if (diff2 < epsilon) 

                            { 

                                count=count+1; 

                            }                             

                        } 

                        //number of mus = K*dim 

                        //3rd equation 

                        for (h=1;h<=dim;h++) 

                        { 

                            for (l=1;l<=dim;l++) 

                            { 

                                diff3=Math.abs(sigma[1][k][(h-

1)*dim+l]-sigma[0][k][(h-1)*dim+l]); 

                                if (diff3 < epsilon) 

                                { 

                                    count=count+1; 

                                }                                 

                            }                             

                        } 

                        //number of sigmas = K*dim*dim                                                

                        // 

                }//end k    

                // 

                if (count == (K+(K*dim)+(K*dim*dim))) 

                { 

                        // 

                        Stop = 1; 

                        // 

                        

statement[count_statement][1]=statement[count_statement][1]+"(iteratio

n# "+String.valueOf(iterate)+")"; 

                        // 

                         for (k=1; k<=K; k++) 

                        { 

                                character=null; 

                                //1st equation 

                                

character="(k="+String.valueOf(k)+",alpha="+String.valueOf(alpha[1][k]

);//alpha 

                                // 

                                //2nd equation 

                                for (j=1; j<=dim; j++) 

                                { 

                                    

character=character+",mu_"+String.valueOf(j)+ 
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"="+String.valueOf(mu[1][k][j]);//mu 

                                } 

                                // 

                                //3rd equation 

                                for (h=1;h<=dim;h++) 

                                { 

                                    for (l=1;l<=dim;l++) 

                                    { 

                                        character=character+",sigma_"+ 

                                        String.valueOf(h)+"_"+ 

                                        String.valueOf(l)+ 

                                        

"="+String.valueOf(sigma[1][k][(h-1)*dim+l]);//sigma 

                                    }                             

                                } 

                                // 

                                character=character+")"; 

                                // 

                                

//count_statement++;statement[count_statement][1]=(character); 

                                

statement[count_statement][1]=statement[count_statement][1]+(character

); 

                                // 

                        }//end k    

                        // 

                     

                } 

                else 

                { 

                        // 

                        Stop=0; 

                        // 

                         for (k=1; k<=K; k++) 

                        { 

                                //1st equation 

                                alpha[0][k]=alpha[1][k]; 

                                // 

                                //2nd equation 

                                for (j=1; j<=dim; j++) 

                                { 

                                    mu[0][k][j]=mu[1][k][j]; 

                                } 

                                // 

                                //3rd equation 

                                for (h=1;h<=dim;h++) 

                                { 

                                    for (l=1;l<=dim;l++) 

                                    { 

                                        sigma[0][k][(h-

1)*dim+l]=sigma[1][k][(h-1)*dim+l]; 

                                    }                             

                                } 

                                // 

                                // 

                        }//end k    

                        // 

                }//end if 

                // 

            }//end while 

            // 

            //                     

        } 
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        catch (ArithmeticException arithmeticException) 

        { 

            

count_statement++;statement[count_statement][1]=String.valueOf(arithme

ticException); 

            return -1;                

        }         

        //         

        if (Stop == 1) return -100; 

        // 

        return 0; 

        // 

    } 
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APPENDIX B 

 

Due to its size, we tabulate only a portion of customer’s call detail record (cdr) 

supplied by Telekom Malaysia Berhad. SERVICE NUMBER and DIALED DIGITS 

are not revealed to ensure confidentiality. 

 

SERVICE 
NUMBER 

DIALED 
DIGITS 

AREA  
CODE 

COUNTRY 
CODE 

SEIZE TIME DURATION SYSTEM 
CHARGING 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

null 
null 
null 
19 
19 
19 
16 
16 
null 
null 
16 
12 
19 
19 
null 
19 
19 
3 
19 
84 
19 
19 
13 
13 

675 
675 
675 
60 
60 
60 
60 
60 
675 
675 
60 
60 
60 
60 
675 
60 
60 
60 
60 
60 
60 
60 
60 
60 

1/03/2011 14:05 
1/03/2011 15:44 
1/03/2011 15:56 
31/03/2011 8:41 
31/03/2011 9:27 
31/03/2011 9:43 
31/03/2011 9:50 
31/03/2011 10:54 
31/03/2011 11:26 
31/03/2011 11:27 
31/03/2011 12:46 
31/03/2011 14:03 
31/03/2011 14:29 
31/03/2011 14:40 
31/03/2011 14:47 
31/03/2011 15:37 
31/03/2011 15:42 
31/03/2011 15:55 
31/03/2011 16:04 
31/03/2011 16:22 
30/05/2011 8:50 
30/05/2011 8:54 
30/05/2011 9:20 
30/05/2011 9:27 

000054 00 
000430 00 
000049 00 
000339 00 
000035 00 
000048 00 
000031 00 
000138 00 
000003 00 
000057 00 
000002 00 
000041 00 
000233 00 
000029 00 
000032 00 
000002 00 
000230 00 
000251 00 
000202 00 
000022 00 
000015 00 
000031 00 
000508 00 
000003 00 

3.6 
18 
3.6 
0.8 
0.5 
0.6 
0.2 
0.5 
0.4 
4 
0.1 
0.5 
0.8 
0.4 
2.4 
0.1 
1.8 
2.5 
1.5 
0.1 
0.1 
0.2 
1.6 
0.1 

 


