
 

107 
 

Chapter 6 

 

 

The evolutionary study of -Scorpii 
 

 

 

 

 

 

6.1 SOME PREVIOUS WORK ON THE EVOLUTIONARY STAGE OF BE 

STARS 

 In general, the evolutionary stage of a Be star at the centre is uncertain owing to the 

presence of the surrounding circumstellar envelope, which forms at the equatorial region of 

the star. There are two general phenomenological mechanisms of envelope formation; 

firstly, in the case of a binary star and secondly, for a single star.  

 

For binary stars, which had a potential of mass transfer, the Be phenomenon could 

arise after a Roche-lobe overflow event, when one of the components gains mass and 

angular momentum from the donor (Packet, 1981; Harmanec, 1987; Gies, 2000). The 

envelope formation in some interacting binaries such as a Be/X-ray binary is well explained 

by this mechanism (Coe, 2000). In this case, the evolutionary stage of the Be star would 

depend on the evolutionary stage of the mass-losing star as well as on the properties of the 

circumstellar envelope (Harmanec, 2000). 

 

Not all Be stars are binaries and not all Be binaries are interacting binaries that 

enable the Roche-lobe overflow to occur. Thus, the Be phenomenon not only occur in 
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binaries but also in single stars. In the case of a single Be star, the circumstellar envelope is 

formed by the process of mass ejection at the equatorial region of the stars at the centre. For 

the mass to be ejected equatorially, certain velocities need to be attained in order to launch 

the material into orbit, which demands that the star’s rotation rate reaches a certain limit. 

Be stars have long been known as fast rotators; rotating at least 1.5 to 2 times faster than 

normal B stars (Slettebak, 1979; Zorec, 2004). Much work has been done on determining 

the rotation rate of Be stars. Slettebak (1949, 1966) and Slettebak, Collins &Truax (1992) 

have scrutinised the hypothesis of the critical velocity of the star by Struve (1931), stating 

that the rotation of Be stars is supposed at a subcritical rate with e/c 0.7–0.8 (Porter, 

1996; Chauville, et al., 2001). Townsend, et al. (2004) suggest that the rotation must be 

much closer to the critical value than e/c 0.7, if rotation does play a direct causal role in 

the Be phenomenon. In fact, the rotation rate of e/c 0.95 should be reached for launching 

material into the orbit. The study of rotational effects on fundamental stellar parameters by 

Frèmat et al. (2005) shows that Be stars rotate at a higher average of rotational rate,   

0.9. Owing to the fast rotation, the stars will be flattened at the polar region and bulge at 

equatorial regions, which in turn induces the gravity darkening effect (Zeipel, 1924). This 

non-uniform surface gravity and temperature distribution reduces the central temperature 

and total bolometric luminosity that causes the star to burn its available nuclear fuel more 

slowly and the duration of the main sequence evolutionary phase is longer than that of a 

slowly rotating star of the same mass (Sackmann, 1070; Clement, 1979; Smith, 1986; 

Meynet&Maeder, 2000). 

 

Previous work of the evolutionary status of Be stars suggested that the stars start to 

appear in cluster age around 10 Myr and show the highest frequency in cluster age 13–25 
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Myr (Fabregat&Torrejon, 2000). After this age, the frequency of Be stars decreased. The 

decreased frequency was found consistent with the dependence of the Be stars abundance 

to the spectral type, which reaches a maximum at the spectral type of B1–B2 (Zorec&Briot, 

1997). Feinstain (1990) also studied Be stars in open clusters and noticed that the frequency 

of these stars was maximum near the middle age of the MS phase. Fabregat&Torrejon 

(2000) found that clusters younger than 10 Myr and without associated nebulosity are 

almost completely lacking of Be stars. They had suggested that the Be phenomenon is an 

evolutionary effect that appears in the second half of the main sequence lifetime of a B star. 

 

6.2 AIM OF THE EVOLUTIONARY STUDY 

 The evolutionary stage of -Scorpii is studied through the model of stellar evolution 

process of this star created using EV stellar evolution code developed by Eggleton (2002). 

The main purpose is to find a correlation between the evolutions of the star’s rotation rate 

from zero age main sequence (ZAMS) to terminal age main sequence (TAMS) and the 

variation of the observed FWHM of the photospheric line, HeIIλ4686 for this study. The 

rotational velocity of -Sco,  sin i = 165 km/s (Abt, etal., 2002) was adopted for this study. 

From the speckle interferometric observations by Miroshnichencko et al. (2001), the 

inclination angle i = 385. If the inclination angle and rotational velocity of this star are 

true, then the rotation speed of this star on its axis is about 268 km/s. This value will then 

be compared with the rotation calculated from the evolutionary model.  
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6.3 THE PARAMETERS 

 In this section, we discuss the parameters that have been used in the evolution 

process. There are two types of parameters: the initial input parameters and the output 

parameters. The initial input parameters are the main constituents that generate the 

evolution process where the values are varied randomly, namely the initial mass and initial 

rotation at a given metallicity. There are many other main constituents involved in the 

evolution process; however, their values were maintained when the evolution process 

began. 

 

 The evolving output parameters that we considered in this study are actually the 

star’s physical characteristics, particularly the temperature, luminosity, age, mass, radius, 

rotation and radiation pressure. In each step of the evolutionary track models, there exist 

eighty-eight (88) parameters used for subsequent analysis. We show some parts of the 

output file that lists the output values of every step in the evolution process in Appendix C. 

A simple script in Fortran (Appendix D) has been written to tabulate a few parameters from 

several thousand of generated data. We will explain our interest in the parameters of the 

evolutionary process in the following sections. 

 

6.3.1 Mass 

 In this study, the initial mass of the star is the mass when it starts burning hydrogen 

and the value is randomly determined. The initial mass is supposed slightly higher than its 

current mass as -Sco is still at the main sequence phase. A value in the range of 12.5 to 

13.2 M


 was chosen for the initial mass, which is slightly higher than its current mass, 12.4 

 0.8 M


(Tycner, 2011).  
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6.3.2 Rotation  

Rotation is one of the important characteristics for distinguishing between Be and 

normal B stars. In this case, rotation is referred to the surface rotation of the star and the 

value can be increased or decreased up to certain limits depending on the stellar mass. The 

evolution process at ZAMS of a star can be run with some acceptable rotation speeds at the 

mass given, as long as the angular momentum of the star is conserved during the evolution. 

The initial rotation speed would be decreased if we found that the evolutionary process 

cannot be initialised or run for the given stellar mass for conserving the angular 

momentum. This value can be changed in the configuration file, fort.23 at P1 parameter 

(refer to Appendix B). The rotation speed is given in day units that can be converted into 

km/s unit by the following relation: 

 

    𝜈𝑟𝑜𝑡 =
2𝜋𝑅

𝑃_𝑟𝑜𝑡
     (6.1) 

 

where rot and P_rot are the rotation speed in km/s and days or seconds per rotation, 

respectively and R is the radius of the star in km. 

 

In this study, we used code that produces a star that is in uniform rotation, i.e., the 

rotation period is the same throughout the star at a given time. However, this uniform 

rotation rate varies with time as the star evolves because the moment of inertia increases 

(mostly but not always) with time and because the angular momentum drops as the stellar 

wind carries off some of the angular momentum.  
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Our program star -Sco, is an early type star that is still burning hydrogen in its 

core; thus, we only extend the evolution process up to the core helium-burning phase, as we 

are focusing only on the changes of the parameters understudy, particularly the star’s 

rotation rate from ZAMS to TAMS. The initial rotation has been chosen in such a way that 

the rotation rates of the star could not exceed its critical ratio rot/cr 1 during the main 

sequence phase. 

 

6.3.2.1 Critical velocity 

 At critical velocity, the modulus of the centrifugal force becomes equal to the 

modulus of the gravitation attraction at the equator. The maximum angular velocity reached 

gives the effective gravity geff = 0 at the equator and thus, 

 

    Ω𝑐𝑟𝑖𝑡
2 =

𝐺𝑀

𝑅𝑒,𝑐𝑟𝑖𝑡
3      (6.2) 

where Re,crit is the equatorial radius at break-up, which is also equal to 1.5 times the polar 

radius at critical Rp,crit. For a star with a highly condensed centre, a solid body rotation can 

thus be applied in eq.(6.2). Therefore, the critical velocity at the equator of the star is 

deduced as follows, 

 

   𝜈𝑐𝑟𝑖𝑡
2 = Ω𝑐𝑟𝑖𝑡

2 𝑅𝑐𝑟𝑖𝑡
2 =

𝐺𝑀∗

𝑅𝑒,𝑐𝑟𝑖𝑡
=

2𝐺𝑀∗

3𝑅𝑝 ,𝑐𝑟𝑖𝑡
   (6.3) 

For the case of rotating stars with a high radiation pressure, the break-up velocity is written 

as: 

    𝜈𝑐𝑟𝑖𝑡
2 =

𝐺𝑀

𝑅
(1 − Γ)     (6.4) 
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where Γ is the Eddington factor. This is the ratio of the stellar to the Eddington luminosity, 

which can be expressed as  

    Γ =
𝜅𝐿

4𝜋𝑐𝐺𝑀
      (6.5) 

where the Eddington luminosity is𝐿𝐸𝑑𝑑 =
4𝜋𝑐𝐺𝑀

𝜅
     (6.6) 

andκ is the opacity or absorption coefficient.  

For a fast rotating star of mass M, the upper layers of the star are no longer bound if the 

Eddington luminosity is reached at the surface. This would cause high mass loss but it still 

depends on the mass and rotational velocities. At critical velocity, the total gravity 

somewhere on the stellar surface is zero. From eq.(6.7) 

 

    𝑔𝑡𝑜𝑡  = 𝑔𝑒𝑓𝑓  1 − Γ(Ω, 𝜗)     (6.7) 

Thus,    𝑔𝑒𝑓𝑓  1 − ΓΩ(ϑ)  = 0    (6.8)  

 

There are two solutions given for eq.(6.8): 1) geff= 0 and 2) ΓΩ()=1. The former implies 

that the centrifugal acceleration is equal to the Newtonian gravity at the equator, i.e., 

    

    Ω2𝑅𝑒,𝑐𝑟𝑖𝑡
3 = GM     (6.9) 

 

Thus, this gives the critical velocity at the equator as 

   

   𝜈𝑐𝑟𝑖𝑡 ,1 = Ω𝑅𝑒,𝑐𝑟𝑖𝑡 = (
2

3

𝐺𝑀

𝑅𝑝 ,𝑐𝑟𝑖𝑡
)1/2    (6.10) 

 

where the polar radius at the critical velocity 𝑅𝑝,𝑐𝑟𝑖𝑡 =
2

3
𝑅𝑒,𝑐𝑟𝑖𝑡  
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It is clear from eq.(6.10) that the critical velocity is independent of the Eddington factor, 

except for Γ values above 0.639 (Maeder, 2009a) owing to von Zeipel’s theorem. This 

theorem says that the radiative flux at the surface of a rotating star is proportional to the 

local effective gravity at the considered colatitude, which means that when the rotation of 

the star increases, the radiative flux at the equator decreases, the same way as does the 

effective gravity. Therefore, the decrease of the effective temperature at the equator 

prevents significant radiation pressure effects for stars with moderate rotation and is only 

true if the value of Γ is small. 

 

The other solution of eq.(6.8) is ΓΩ()=1. This solution is for the case of critical velocity 

near the Eddington limit. Γ(Ω,) is defined as the local Eddington ratio at the surface of a 

rotating star where 

    Γ Ω, 𝜗 =
𝜅 Ω,𝜗 𝐿(𝑃)

4𝜋𝑐𝐺𝑀  1−Ω
2

2πG ϱM    
  

   (6.11) 

For ΓΩ()=1, eq.(6.11) can then be written as  

    
𝜅 Ω,𝜗 𝐿(𝑃)

4𝜋𝑐𝐺𝑀
= 1 −

Ω2

2𝜋𝐺𝜚 𝑀
    (6.12) 

 

Substituting eq.(6.5) in eq.(6.12), it can then be simplified as 

    
Ω2

2𝜋𝐺𝜚 𝑀
= 1 − 𝛤     (6.13) 

   where 𝜚 𝑀 =  
𝑀

𝑉
; thus, 

    
Ω2𝑉

2𝜋𝐺𝑀
= 1 − 𝛤      (6.14) 
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Given that 𝑉 ′ 𝜔 =
𝑉(𝜔)

4
3
𝜋𝑅𝑝 ,𝑐𝑟𝑖𝑡

3  
    and   𝜔2 =

Ω2𝑅𝑒,𝑐𝑟𝑖𝑡
3

𝐺𝑀
 , the term   

Ω2𝑉

2𝜋𝐺𝑀
   in eq.(6.14)  

can be written as  

   
16

81
𝜔2𝑉 ′ 𝜔 =  1 − 𝛤      (6.14) 

 

From eq.(6.14), the rotation parameter  (= Ω/Ωc) can be determined for a given value of Γ. 

The star had a maximum Γ ratio when it reached break-up velocity. The maximum value of 

16

81
𝜔2𝑉 ′ 𝜔  is 0.3607 when =1 (Meader, 2009b). If Γ happened to be larger than 0.6393, 

then the maximum value of  is smaller than 1.0. Thus, the critical velocity of Γ is larger 

than 0.6393 andcrit,2 is given by 

 

   𝜈𝑐𝑟𝑖𝑡 ,2
2 =  Ω2𝑅𝑒

2 𝜔 =
8

27

𝐺𝑀𝜔2

𝑅𝑝 ,𝑐𝑟𝑖𝑡
3 𝑅𝑒

2(𝜔)    (6.16)  

 

where Ω2 =
8

27

𝐺𝑀𝜔2

𝑅𝑝 ,𝑐𝑟𝑖𝑡
3  and 𝑅𝑒(𝜔) is the equatorial radius of the corresponding rotation 

parameter. The above expression of crit,2 can be correlated with crit,1 (eq. (6.10)) and an 

Eddington factor (eq. (6.15)) as follows 

 

   𝜈𝑐𝑟𝑖𝑡 ,2
2 =  

9

4
𝜈𝑐𝑟𝑖 𝑡,1

2 𝑅𝑒
2(𝜔)

𝑅𝑝 ,𝑐𝑟𝑖𝑡
2

1−Γ

𝑉 ′ (𝜔)
    (6.17) 

 

Eq.(6.17) shows the critical velocity of stars having an Eddington factor larger than 0.6393. 

The stellar mass at this condition was calculated to be much higher than 100 M


 

(Maeder, 2009c). Based on this relation, it shows that stars with high Γ have a lower value 

of critical velocity compared withcrit,1. In the extreme condition, if Γ = 1, the stars might 
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reach their critical velocity even if the surface velocity is zero, which means that the surface 

is unbound. However, the critical velocity of this second solution of eq. (6.8) was not the 

aim of this study. As the mass of -Sco is 12.4  0.8 M


(Tycner, 2011), the value of Γ is 

calculated within the range of 0.039 to 0.060 (Meader, 2009c) and therefore, the critical 

velocity at the equator with condition of geff = 0 is applied in this study.  

 

The most massive stars experience high mass loss that will also remove a lot of 

angular momentum, which causes a huge decrease in their surface velocities during the 

main sequence phase. However, for stars with masses 12M


 with an initial high rotation 

speed, they might easily reach break-up velocities near the end of the main sequence phase 

(Meynet&Maeder, 2000). This circumstance could be related to the appearance of Be stars 

during the main sequence phase.  

 

6.3.3 Effective temperature Teff 

Effective temperature is one of the output parameters that have been used to 

estimate the position of the star on its evolutionary track. This temperature is actually the 

surface temperature of the star label as log T in Table 6.2. In this study, the surface 

temperature of 27,000 K (log T = 4.4314) for -Sco has been adopted from Grigsby et al. 

(1992).  

 

6.3.4 Radius 

 The other output parameter that we considered in locating the position of the star on 

the evolutionary track is that of the star’s radius. The radius parameter log R (as in Table 

6.2) generated from the evolution process was an average of the star’s surface radius. As 



 

117 
 

for the estimation of the current radius of the star, one of the methods derived from the 

definition of the effective temperature and the distance modulus has been employed, as 

explained below. 

 

The radius of -Sco in this study is deduced based on its effective temperature and 

distance via the bolometric flux method, which operates using the following equation 

(Harmanec, 2000), 

 

logR/R


 = 7.474 – 2 log Teff – 0.2 BC – 0.2 m– log   (6.18) 

 

where R is the radius of the star, Teff is the estimated effective temperature, BC is the 

bolometric correction, mis the observed visual magnitude and  is parallax (in seconds of 

arc). The value of the associated BC is derived from the relationship between the corrected 

Teff and BC (Flower, 1996), as depicted in Figure 6.1. 

 

              

 

 

Figure 6.1 – Correlation of BC and log Teff(Flower, 1996) 
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Because of the specific curve of BC versus log Teff, we divided the curve into three regions: 

log Teff 3.9, 3.6  log Teff 3.9 and log Teff 3.6. The estimated Teff of -Scorpii of 27,000K 

(Grigsby et al., 1992) was employed in this study. The correlation of log Teff and BC in the 

region of log Teff 3.9 is expressed in eq. (6.19), as follows: 

 

 BC = 1.1919 log Teff
3
 – 17.119 log Teff

2
 + 75.244 log Teff – 103.66  (6.19)  

 

From eq.(6.19), the corresponding BC for log Teff of 4.43 is -2.67, which gives 5.99 R


(log 

R = 0.77) as the radius of -Sco by eq. (6.18) with = 8.12 mas and m= 2.29 (Perryman, 

1997). Hence, this radius value has been used as a guide or clue to estimate the current 

position of the star on the evolutionary track. 

 

 

 

 
 
 


