Configuration files

Below are configuration files of fort.23 and fort.22:

Fort.23:

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>16</th>
<th>1</th>
<th>16</th>
<th>1</th>
<th>2650</th>
<th>2650</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.102E+00</td>
<td>3.000E-01</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000E-02</td>
<td>5.000E-02</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.000E+00</td>
<td>3.000E-01</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000E+00</td>
<td>1</td>
<td>0.00D+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26400E+01</td>
<td>-1.00000E+00</td>
<td>0.00E+00</td>
<td>-1.00E+00</td>
<td>-1.00E+00</td>
<td>0.00E+00</td>
<td>0.55E+00</td>
<td>-1.00E+00</td>
<td>0</td>
</tr>
<tr>
<td>1.00E-01</td>
<td>2.00E+10</td>
<td>1.00E+07</td>
<td>0.00E+00</td>
<td>3.00E+00</td>
<td>5.30E+00</td>
<td>1.20E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.30E+00</td>
<td>3.00E+02</td>
<td>1.00E+04</td>
<td>1.50E-01</td>
<td>1.00E-04</td>
<td>0.00E+00</td>
<td>1.00E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00E+03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First line: 3rd/2nd last nos: no more than 20000 timesteps allowed at present.

Last five lines:
- ROT KS EX : KS=1 -> P1 = Pcrit1*10**ROT;
- KS=2 -> P1 = Porb*10**ROT
- KS=3 -> choose init. Porb so final PER, ECC => init. Porb, EX

Alternative initial conditions if JMX >= 0, and if any item is non-negative:

<table>
<thead>
<tr>
<th>SM</th>
<th>DTY</th>
<th>AGE</th>
<th>PER</th>
<th>BMS</th>
<th>ECC</th>
<th>P1</th>
<th>ENC</th>
<th>JMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lrf1</td>
<td>age</td>
<td>LCarb</td>
<td>Lrf2</td>
<td>LHe</td>
<td>rho</td>
<td>MCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rho</td>
<td>mdot</td>
<td>dtmin</td>
<td>XHe</td>
<td>eps</td>
<td>eps'</td>
<td>vmh8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sm8</td>
<td>rest</td>
<td>of</td>
<td>line</td>
<td>not</td>
<td>yet</td>
<td>used</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions for termination:

Notes - Bold parameters are marking for:

Time step of the evolution : 2650
Log SM : 1.102E+00
SM – stellar mass : 1.26400E+01 (Msun)
P1 – rotation speed : 0.55E+00 (d)
Above set is for single-star evolution, including a model of dynamo-activity-driven mass loss and magnetic braking. It also includes hot, luminous wind following de Jager et al (1988), and a model of superwind with Mdot prop. to L/(env. binding energy).
Task job of the evolution process (this work)

run04

The following template identifies the numbers used in the above input file:

KH2 JCH KTH KK KY KZ - 1 line
 KX = 0: pp chain not in =m; KX = 1: pp chain in =m
 KY: max. no. of abundances used (better be 12)
 KZ = 0: use simple TF approx; = 1: use integral approx.
KCL KION KAM KOP KCC KNUC KCN - 1 line
KT1 KT2 KT3 KT4 KT5 KO - 1 line
KR1 KR2 EPS DEL DH0 - 1 line
KSX(1 - 45) - 3 lines
CT1 CT2 CT3 CDC(1 - 5) - 1 line
CT(1) .. CT(10) - 1 line
CC CN CO CNE CMG CSI CFE C2H C3He CC13 - 1 line
 CALP CU COV CPV CDR CXB CGR CGF CDF
 CRM CTF CBT CEA CMS CMT CMI CMJ CMK
 CMR CML CHL CLT CPA CBR CSU CSD plus 10
 more values not yet used
KXT(1 - 40) - 1 line: which burning rates used - 1 line
KEN(1 - 40) - 1 line: which energy gen. rates used - 1 line
KE2 KE1 KEV KBC KL JH1 JH2 JH3 JH4 JH5 - 1 line
 ID(11 - 250) - 12 lines

KT1=100 - print internal details at every 100th timestep only
KT2=2 - print these details at every 2nd meshpoint only
KT3=1,2,3 - print 1, 2 or 3 'pages' of these details
KT4=4 - print a short summary of every 4th model only
KT5=5 - print convergence details after 5 iterations at each timestep
KO - save the structural details every KO timesteps.

Each 'page' has a selection of 15 columns, chosen from 45 variables computed
in PRINTB.F. These are:

 1 psi 2 P 3 rho 4 T 5 kappa 6 grada 7 grad
 8 gr-ga 9 m 10 H1 11 He4 12 C12 13 N14 14 O16 15 Ne20
 16 Mg24 17 Si28 18 Fe56 19 H2 20 He3 21 C13 22 O18 23 Ne22
61, 62 and 63 are homology invariants, dlog rho/dlog P, dlog r/dlog P and dlog m/dlog P; L/Edd is the ratio of local luminosity to local Eddington luminosity; w is convective velocity, l is mixing-length. The 3 lines of KSX above give the selections to be printed.