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Abstract: 

          Cucumber Mosaic Virus (CMV) is a significant plant pathogen affecting various 

crops and plants in Malaysia. A single chain variable fragment (scFv) anti-CMV antibody 

was successfully developed via a scFv library constructed with mRNA from the spleen 

cells of a CMV coat protein-immunized mouse and transformed by Agrobacterium 

tumefaciens into tobacco plants (Nicotiana tabacum L. cv. White burley).  

          In this study, the performance of primary transformants and 3 successive 

generations of Nicotiana tabacum expressing anti-CMV scFv were evaluated. An overall 

of 20% reduction in seed germination was observed as compared to wild type tobacco. 

All 4 generations did not exhibit any unusual phenotype other than delayed flowering 

times. The presence of anti-CMV scFv transgene in all 4 generations was detected by 

polymerase chain reaction (PCR) and confirmed via southern hybridization.              

Western Blot analysis showed low levels of detectable expressed anti-CMV scFv 

transgene in T1 and T2 generations. The binding activities of the expressed scFv were then 

evaluated using ELISA and Dot Blot Assay. Almost no functional activity of trasngenes 

and no expressed genes were detected in T3 generation.  

          In a challenge assay, early disease symptoms including leaf mosaic and chlorosis 

were observed on wild type and sensitive transgenic plants 2 weeks after inoculation with 

CMV.   

          A computer simulation study was carried out via the AutoDock program to reveal 

the potential binding interaction of anti-CMV scFv to CMV.          

           In compliance with the Malaysian Biosafety Act, a pilot framework for risk 

assessment and risk management protocol was developed in this study.  
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Abstrak: 

          Virus Mosaik Ketimun merupakan patogen tumbuhan yang menjangkiti pelbagai 

tumbuhan di Malaysia. Antibodi scFv Virus Mosaik Ketimun berjaya dihasilkan melalui 

perpustakaan scFv yang dibina menggunakan mRNA bahagian limpa tikus yang telah 

diimunkan dengan protein kot Virus Mosaik Ketimun. Antibodi tersebut kemudian 

dibawa oleh Agrobacterium tumefaciens ke dalam pokok tembakau Nicotiana tabacum 

L. cv. White burley) melalui proses transformasi.  

          Dalam kajian ini, prestasi tumbuhan induk Nicotiana tabacum yang 

mengekspreskan antibodi scFv Virus Mosaik Ketimun dan 3 generasi seterusnya diuji. 

Secara keseluruhan, didapati bahawa terdapat pengurangan 20% dalam percambahan 

benih jika berbanding dengan tembakau kawalan (jenis liar). Keempat-empat generasi 

tidak menunjukkan sebarang fenotip luar biasa kecuali masa berbunga dilambatkan. 

Kehadiran antibodi scFv Virus Mosaik Ketimun pada semua generasi telah dikesan 

dengan Polymerase Chain Reaction (PCR) dan pengesahan gen dibuat dengan Southern 

Hybridization. Analisa Western Blot menunjukkan antibodi scFv Virus Mosaik Ketimun 

yang diekspres adalah rendah pada generasi T1 dan T2. Aktiviti pengikatan antibodi yang 

diekspres diuiji dengan ELISA and Dot Blot. Didapati bahawa tiada aktiviti berfungsi 

ataupun gen yang diekspres dikesan dalam generasi T3. 

          Apabila tumbuhan transgenik dicabar dengan Virus Mosaik Ketimun, gejala- gejala 

penyakit seperti daun mosaik dan klorosis telah dikesan.  

          Kajian simulasi komputer dibuat malalui program AutoDock untuk menguji 

potensi interaksi antara antibodi scFv Virus Mosaik Ketimun dengan Virus Mosaik 

Ketimun. 

            Untuk mematuhi Akta Biokeselamatan, rangka kerja untuk protokol taksiran 

risiko dan protokol pengurusan risiko telah dibentangkan dalam eksperimen ini. 
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1.0 Introduction 

1.1 General Introduction 

          The cloning and expression of plantibodies has enormous potential for producing 

transgenic, pathogen resistant plant varieties (Whitelam and Cockburn, 1997). The first 

instance of successful research where part or whole antibodies were expressed in model 

species such as tobacco resulted in the transgenic plants having improved resistance to 

artichoke mottle crinkle virus (Tavladoraki et al., 1993). Many local economically 

important plant viruses are sufficiently well studied. As such, the essential genetic 

sequence information for these viruses is readily available for application using this 

technology.  Additionally, in the case of some viruses which are easily purified, such 

information may not be necessary for the production of antibodies.  

          The production, cloning and analysis of these antibodies in local agronomically 

important plants will not only potentially produce resistant varieties and will also 

enhance the development of antibody and transgenic plant technology. In addition, 

insights into mechanisms of viral pathogenecity and plant resistance in plants can be 

obtained. Transgenic plants expressing scFv antibodies are also a potential means of 

antibody production for use in plant pathogen diagnostics. This has the advantage of 

being less controversial and more cost effective in comparison to the use of laboratory 

animals or cell cultures.  

          A combinatorial scFv library against the coat protein of cucumber mosaic virus, a 

major pathogen of Solanaceous in Malaysia was successfully developed by Chua et al. 

(2003). A functional recombinant scFv antibody was isolated and characterised by 

sequencing and molecular modeling. The construct was then cloned into a plant 

expression vector and transformed via Agrobacterium tumefaciens into tobacco plants. 
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         A series of analytical tools are available to characterize transgenic plants at the 

DNA, RNA and protein level (Sambrook et al., 1989). Every detection method has its 

own advantages and limitations.  

 

1.2 Objectives of study 

              The overall aim of this study was to evaluate the stability and functionality of 

the Nicotiana tabacum expressing anti-CMV scFv antibodies.  This study proposed to 

test the hypothesis that anti-CMV scFv antibody is stable, functional and confer 

protection against CMV.  Additionally, biosafety framework can be developed to ensure 

future application of the technologies in the field. 

 

The specific objectives of the study included, 

1. To generate of T1, T2 and T3  trangenic plants 

2. To perform molecular analysis of transgenic Nicotiana tabacum plants at DNA 

and protein level 

3. To carry out Bioassay test of anti-CMV scFv antibodies for resistance to CMV 

4. To perform molecular Docking studies on the interaction between the 

recombinant scFv and CMV 

5. To development of a framework for Risk Assessment and Risk Management 

Protocols for transgenic plants expressing anti-CMV scFv antibodies  
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2.0 Literature Review 

2.1 History of Plant Pathology 

Plant diseases have been a constant fixture that has plagued mankind since the 

dawn of agriculture. Historical luminaries like Aristotle wrote about plant diseases in 

350 B.C. and Shakespeare mentions wheat mildew in one of his plays. Naturally there 

was great interest to discover the cause of plant diseases, but no breakthroughs were 

made until the 19th century. The fundamental shift in understanding began with the 

publication of a book by Heinrich Anton de Bary (1887), who was widely considered to 

be the founding father of modern plant pathology. There had been description of fungal 

diseases and nematodes known to cause plant diseases in the 18th century, but the 

prevailing belief was that plant diseases arose spontaneously from decay (Kutschera and 

Hossfeld, 2012). De Bary’s contributions disproved the spontaneous generation theory 

and introduced the germ theory of disease. The Great Irish Potato Blight in the 19th 

century further spurred scientists to research plant pathology. Armed with this new 

insight from de Bary, the field of plant pathology took off and eminent scientists like 

Louis Pasteur and Robert Koch made important discoveries regarding crop diseases. In 

the 20th century, further advances were made. One of the crowning achievements during 

this period was the Nobel Prize that was awarded to W.M. Stanley for his work on the 

tobacco mosaic virus (Lucas et al., 1992). 

Currently, 11 organism groups have been identified to cause catatrophic plant 

diseases: parasitic angiosperms, fungi, nematodes, algae, oomycetes, 

plasmodiophromycetes, trypanosomatics, bacteria, phytoplasmas, viruses and viroids 

(Strange 2005). With this wide range of pathogens it is therefore unsurprising that even 

with the advent of modern methods of plant disease control, plant diseases remain a 

major threat to world food security and to the economy of countries dependent on 

agriculture. 
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            Viruses in particular play a significant role in plant diseases. Each year, plant 

viruses cause an estimated USD60 billion loss in crop yields worldwide (Plant virus, 

Wikipedia).  To date, there are approximately 800 species of plant viruses that have 

been discovered (Brown et al., 2012). Recently, the Plant Molecular Pathology journal 

published a review of the 10 most scientifically or economically important viruses. 

They are, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) 

Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) 

Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) 

Bromemosaic virus and (10) Potato virus X (Scholthof et al., 2011). 

 

2.2 Cucumber Mosaic Virus 

            In nearly a century since its first discovery (Doolittle, 1916), the Cucumber 

Mosaic Virus (CMV) has been reported to infect over 1200 species of hosts, including 

members of 100 plant families (Mochizuki and Ohki, 2012). It possesses one of the 

broadest host ranges of any known virus. This is due to its ability to adapt rapidly and 

successfully to new hosts and environments (Roossinck, 2002). Recently, CMV has 

been nominated by the international plant virology community as one of the top ten 

most scientifically/economically important plant viruses (Scholthof et al., 2011). 

CMV belongs to the genus Cucumovirus of family Bromoviridae (Roossinck et 

al., 1999) with a molecular weight in the range of 5.8 to 6.7 million (18 percent RNA 

and 82 percent protein). It consists of three single-stranded messenger sense RNAs 

(RNA 1, 2 and 3) and two subgenomic RNAs (RNA 4A and RNA 4). RNA 1 and RNA 

2 encode components of the replicase complex with 1a and 2a proteins, associated with 

putative helicase and polymerase activities respectively. The bicistronic RNA 3 encodes 

the movement protein (MP) and coat protein (CP), and the latter is expressed from 

subgenomic RNA 4. In addition, the 2b protein is expressed from 3'-proximal sequences 
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of RNA 2 via subgenomic RNA 4A. This protein determines its pathogenicity and plays 

a role in the long-distance movement of CMV (Gal-On et al., 2000; Roossinck, 2001). 

Complete nucleotide sequences of 15 strains and more than 60 sequences of coat protein 

(CP) are available in GenBank. The phylogenetic analysis study on the entire genome of 

CMV has revealed important information about the evolutionary history of this group of 

viruses (Roossinck, 2002). 

Numerous strains of CMV have been characterised from all parts of the world 

with different properties and characteristics such as the diversity of affected hosts, 

manifestation of symptoms and a variety of transmission methods (Agrios, 1978; 

Francki et al., 1979). Recently the M-strain of Cucumber mosaic virus (M-CMV) has 

been shown to be highly virulent to tobacco plants (Lu et al., 2012).  In most host 

plants, CMV causes systemic infection with symptoms of leaf mosaic or mottling, 

chlorosis, ringspots, stunting, reduction of leaf laminae, and leaf, flower and fruit 

distortion (Kaper and Waterworth, 1981). These symptoms do not affect tissues and 

organs that have developed prior to infection; only newly developed cells and tissues 

after the viral infection are affected (Agrios, 1978). Once the plant is infected it will not 

recover. In 1997, Kaplan et al. observed a phenomenon known as cyclic mosaic 

symptom expression in tobacco plants. Also documented by Hull (2002), CMV causes 

mosaic diseases. Lu et al. (2012) discovered that photosynthesis, pigment metabolism 

and plant-pathogen interaction were involved in systemic symptom development in 

tobacco plants.  

CMV disease is spread primarily by aphids, cucumber beetles, humans (during 

the cultivation and handling of the affected plants) and also mechanically (Francki et 

al., 1979). In the field, CMV is transmitted by aphids in a non-persistent manner 

(Jacquemond, 2012).  In a recent study using electrical penetration graph methodology, 
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it is found that higher proportions of aphids showed sustained phloem ingestion on 

CMV-infected plants when compared to mock-inoculated plants. CMV infection has 

also been demonstrated to foster aphid survival (Ziebell, 2011). Transmission through 

seeds and parasitic plants occur at varying degrees. The virus has been reported to stay 

dormant in certain perennial weeds, flowers and crop plants during winter, only to be 

transmitted by aphids to susceptible crop plants when spring arrives (Agrios, 1978). In 

most cases of CMV transmission from seeds of infected plants, the presence of virus 

was detected during symptom development by the germinated plants (Jacquemond, 

2012), though it has been reported that plants infected through seeds can be 

asymptomatic (Ali and Kobayash, 2010). 

CMV attacks a great variety of vegetables, ornamentals and other plants, making 

it one of the most important viruses for its impact on the economy. Each year, additional 

hosts of CMV and new diseases are discovered. Prevention of CMV infection in plants 

has been challenging. It is perhaps justified that CMV is one of the highest placed in 

terms of scientific importance, as a search of the ISI WEB of Science database in 2011 

yielded counts of 1258 for papers with CMV viruses. Though resistance has been found 

in some varieties of vegetables and flowers, the effectiveness of management methods 

against all isolates of CMV leaves much to be desired (Agrios, 1978). From a broad 

perspective, CMV weed hosts should be eradicated from cultivated crop fields to reduce 

the incidences of infection (Rist and Lorbeer, 1989). The use of chemical controls such 

as pesticides on hosts and weeds and insecticides on aphids has shown to be only mildly 

effective in certain situations. Coupled with the fact that management methods are still 

wanting, there is considerable scientific interest in finding effective ways to control 

CMV. With the advancement of genetic engineering, the creation of transgenic plants 

which are resistant to CMV offers the best hope for durable resistance to CMV. 
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2.3 Current strategies in development of CMV resistant plants 

2.3.1 Introduction 

In 1983, the successful incorporation of alien genes into plant cells opened up 

new horizons for the development of virus resistance in plants. Since then, a variety of 

approaches have been applied to confer virus resistance in plants and some have proven 

to be remarkably successful. The concept of pathogen derived resistance (PDR) was 

introduced by Sanford and Johnson in 1985, immediately after the announcement of 

stable transformation of a plant with a viral CP (Bevan et al., 1985). It was proposed 

that a portion of a pathogen’s own genetic material could be used for host defence 

against the pathogen itself, as it was believed that non-functional forms of certain 

pathogen-derived molecules could interfere with virus replication, assembly or 

movement (Sanford and Johnston, 1985). Over the years, several effective strategies of 

PDR have been exploited; namely resistance mediated by viral coat protein (CP), viral 

replicase, post-translational gene silencing (PTGS) and satellite RNA (Lin et al., 2007).  

Apart from that, some efforts have also been devoted to resistance derived from 

non-pathogen sources, including ribosome inactivating proteins, ribonucleases, 

ribozymes, pathogenesis related proteins and plant expressing antibodies against viral 

proteins (Morroni et al., 2008). Of these, the expression of antiviral antibodies has been 

the most prominent. Current knowledge on PDR and non-PDR strategies to combat 

CMV is briefly described below.  

 

2.3.2 Coat Protein-mediated resistance (CPMR) to CMV 

The feasibility of coat protein-mediated resistance (CPMR) was first 

demonstrated by Powell-Abel et al. (1986). CPMR to CMV was reported in the 

following year (Tumer et al., 1987). This technique, which relies on the expression of 

CP to block the progression of viral infection processes, has been widely used to create 
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CMV resistance in tobacco, cucumber, tomato, melon, squash and pepper; some of 

which have been further tested in both laboratory and field for resistance levels (Fuchs 

et al., 1996; Gielen et al., 1996; Jacquemond et al., 2001; Tricoli et al., 1995). 

Numerous studies have been carried out on CMV-CP resistant transgenic plants for the 

past twenty years. As summarised in the review by Morroni et al. (2008), the range of 

resistance obtained is dependent on the donor strain, the challenging strains and the 

plant species (Table 2.1).  

 

Two decades of research have yet to provide a total understanding on the 

molecular mechanism that governs CPMR. The most widely accepted hypothesis so far 

is that transgenic CP prevents viruses from undergoing co-translational disassembly, the 

early event of infection (Shaw et al., 1986). In the case of CMV, Okuno et al. (1993) 

documented a blockage by transgene-derived CP at a somewhat later stage in the 

infection cycle, resulting in the inhibition of the viral transit through the plant. Most 

recently, Pratap et al. (2012) has developed transgenic tomato plants containing the coat 

protein (CP) gene of CMV of subgroup IB through Agrobacterium-mediated 

transformation. They discovered that the CP of CMV subgroup IB strain showed a 

significant level of resistance in transgenic tomato plants against the CMV strain.  

 To date, it is still difficult to identify the ideal CP gene that is most effective to 

combat the virus, due to the inconsistency in the results shown. This is probably due to 

the involvement of multiple mechanisms. Therefore, more studies are needed in order to 

have a clear picture of the effectiveness of any transgene in conferring CP resistance. 
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Table 2.1: Summary of transgenic plants for CMV-CP resistance  

Host  

species 

Donor virus 

strain 

(subgroup) 

Challenging 

virus strain 

(subgroup) 

Degree of  

resistance (%)1 

Reference 

Tobacco D (I) D (I) 40 to 90 Tumer et al. (1987) 

D (I) C (I) 0 to 100 Cuozzo et al. 

(1988) 

WL (II) C 

Chi (I) 

WL (II) 

100 

65 to 85 

75 to 85 

Namba et al. 

(1991) 

C (I) C 

Chi (I) 

WL (II) 

100 

85 

55 

Quemada et al. 

(1991) 

O(I) B 40 Yie et al. (1992) 

O (I) O, Y (I), TAV2 0 to 100 Nakajima et al. 

(1993) 

Y (I) Y, O (I), Pepo, 

CF, FT 

0 to 100 Okuno et al. 

(1993) 

CP91/367, 

SB91/366 (I) 

CP91/367, 

SB91/366 (I) 

LU91/166 (II) 

0 to 66 

37 to 83 

Rizos et al. (1996) 

C (I) 3 strains (I) 

5 strains (II) 

0 to 80 

0 to 80 

Singh et al. (1998) 

R (II) R (II) Recovery  Jacquemond et al. 

(2001) 

Tomato  WL (II) Chi (I) 

WL (II) 

80 to 100 

91 to 100 

Xue et al. (1994) 

WL (II) 9 strains (I) 

3 strains (II) 

100 Provvidenti and 

Gonsalves (1995) 

ZU (I) CMV-117F(I), 

CMV-ARN5(I), 

CMV-A (II) 

NI 

50 to 100 

 

45 to 100 

Gielen et al. (1996) 

WL (II) Fny (I) 100 Fuchs et al. (1996) 

D, 22 (I), PG 

(II) 

22 (I), PG (II) 70 to 100 Kaniewski et al. 

(1999) 

D, 22 (I), PG 

(II) 

22 (I), NI 0 to 100 Tomassoli et al. 

(1999) 

Cucumber  C (I) Cat (I), NI 86 to 100 Gonsalves et al. 

(1992) 

Melon  WL (II) Fny (I) Delay  Gonsalves et al. 

(1994) 

Squash  C (I) C (I) 92 to 100 Tricoli et al. 

(1995) 

Pepper  Kor Kor  10 to 100 Shin et al. (2002) 

NI – natural infection in the field. 
1Percentage of the number of non-infected plants over total number of inoculated plants. 
2Tomato aspermy virus (TAV) i.e. reported as Chrysanthemum mild mottle cucumovirus 

(CMMV) in the original paper. 

 

Adapted from Reports of plants transgenic for Cucumber Mosaic virus (CMV) coat 

protein (CP) where resistance were analysed (Morroni et al., 2008). 

 



10 
 

2.3.3 Replicase-Mediated Resistance (RMR) to CMV 

Groundbreaking research using RNA dependent RNA-polymerases (RdRps) or 

RNA replicase to engineer virus resistance in plants was documented in 1990 by 

Golemboski et al. This technique relies on the expression of the polymerase gene or 

another viral gene which is associated with virus replication in transgenic plants that 

evoke the resistance mechanism, as explained by Palukaitis and Zaitlin (1997). In the 

case of resistance to cucumber mosaic virus (CMV), most studies have centered on 

truncated 2a protein (Anderson et al., 1992). The mechanisms involved were targeting 

the virus replication at the single-cell level and limiting the virus from spreading cell-to-

cell (Hellwald and Palukaitis, 1995). 

The report by Morroni et al. (2008) detailed the degree of resistance for the 

CMV replicase component. In most cases, the resistance obtained was promising 

(Zaitlin et al., 1994; Hellwald and Palukaitis, 1994; Gal-On et al., 1998). In the case of 

RMR engendered by either CMV RNA 1 (Canto and Palukaitis, 1998) or a defective 2a 

polymerase gene encoded by CMV RNA 2 (Carr et al., 1994), virus replication was 

greatly reduced but not totally suppressed.  

With the RMR technique, CMV replication and movement in plants may be 

restricted, but the mechanism involved may not be immediately apparent (Canto and 

Palukaitis, 1999). The interpretation of the role of (modified) replicase proteins or their 

transcripts are still a topic of ambiguity despite derived transgenes being potent sources 

of resistance. In 2011, Azadi et al. reported that the CMV-GDD replicase gene confers 

effective protection against CMV as their results implied increase levels of resistance to 

CMV-O strain in Lilium. 
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2.3.4 Resistance to CMV mediated by PTGS 

Post-transcriptional gene silencing (PTGS) is a RNA degradation mechanism 

that can be induced by viruses. In plants, PTGS is required for innate immunity 

regulating virus accumulation. Two types of small RNAs, i.e. small interfering RNA 

(siRNA) and microRNA (miRNA) have been characterised in PTGS. Both are believed 

to be involved in conferring virus resistance (Lin et al., 2007). In 2000, Wang et al. 

reported that the inverted-repeat transgene encoding hairpin RNA could enhance PTGS-

mediated resistance. Promising results have also been obtained in studies using 

inverted-repeat CP or RNA 2 sequence of CMV (Kalantidis et al., 2002; Chen et al., 

2004). A new study by Kavosipour et al. (2012) has confirmed that 2b- derived PTGS is 

an effective plant defence mechanism against CMV and can be used in breeding 

programs. 

A more recent attempt to engineer resistance to CMV focused on transgenic 

artificial miRNA. This may opens up the possibility of developing even smaller 

transgenes that target specific pathways of the small RNA regulatory network (Niu et 

al., 2006). A study by Qu et al. (2007) discovered that the transgenic expression of 

artificial miRNA target sequence of the 2b protein effectively reduced the expression 

and activity of 2b protein and conferred resistance to CMV. In 2012, Qu et al. reported 

that artificial miRNA-mediated virus resistance is efficient and superior to the long viral 

RNA-based antiviral approaches. They discovered that properly selected artificial 

miRNA sequences would have little chance to target the host plant genes or to 

complement or recombine with other invading viruses. 

To date, PTGS-mediated is by far the most successful method to confer 

resistance, despite the fact that mechanisms of activation and maintenance are still not 

well understood.  
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2.3.5 CMV satellite RNA (satRNA) mediated resistance 

Satellite RNAs (satRNAs) are viral parasites that depend on their helper virus 

for replication, encapsidation and dispersion (Roossinck et al., 1992). CMV satellite 

RNAs (satRNAs) was first discovered in the 1970s as a result of the lethal tomato 

necrosis outbreaks in southern Europe (Simon et al., 2004). So far, more than 100 CMV 

satRNA variants have been found to be associated with over 65 CMV isolates 

(Palukaitis and Garcia-Arenal, 2003). It was understood that the presence of satRNA 

attenuates the symptoms induced by CMV infection, and the presence of CMV-satRNA 

usually reduces the titer of helper virus (Gal-On et al., 1995). These symptoms vary 

with the helper virus, host plant, and satellite. The technique of pre-inoculating plants 

with satRNA prior to infection with CMV has been widely used to protect plants from 

severe symptoms (Sayama et al., 1993). Several reports were published on the case of 

CMV satRNA attenuated symptoms in some plants (Harrison et al., 1987; Kim et al., 

1995; Kim et al., 1997; McGarvey et al., 1994).  

The overall safety of such techniques were questioned in 1996 when Palukaitis 

and Roossinck reported spontaneous shifting of satRNAs from benign to necrogenic and 

the later phenotypes could rapidly dominate the satRNA population within the host. A 

subsequent report by Jacquemond and Tepfer (1998) on minor sequence difference 

distinguishing necrogenic from benign satRNAs was confirmation of the safety 

problems of this technique. The use of transgenic satRNAs has been in steep decline 

from that point onwards (Jacquemond and Tepfer, 1998).  

Since then, due to the inherent dependence on helper virus, majority of studies 

have focused on characterizing various strains of satRNAs and their relationship to 

helper virus’ symptom expression and origin (Hajimorad et al., 2009; Hu et al., 2009; 

Smith et al., 2011). Satellite RNAs’ replication was thought to be completely dependent 

on their helper virus until a recent report proved otherwise. Choi et al. (2012) revealed 
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that a variant of satellite RNA (satRNA) associated with Cucumber mosaic virus strain 

Q (Q-satRNA) has a propensity to localize in the nucleus and be transcribed, generating 

genomic and anti-genomic multimeric forms when expressed autonomously in the 

absence of helper virus.  

 

2.4 Plantibodies 

 

2.4.1 Introduction  

              Antibodies are products of the vertebral immune system whose primary 

function is the assist in eliminating pathogens from the body. Antibodies perform this 

function by recognizing and binding to pathogen-specific antigens. Plantibodies are 

defined as plant-produced antibodies and was first produced by Hiatt and colleagues 

during the late 1980s (Hiatt et al., 1989). This was a major breakthrough as it was 

proven that plants could express and assemble functionally active antibodies. Plants 

have several advantages versus other methods of producing antibodies such as no 

culture media and bioreactors are required and less possibility of microbial 

contamination when compared to antibodies derived from animal systems. 

              Plantibodies can be used to provide antibody-mediated resistance to pathogenic 

infections and to function as bioreactors to produce antibodies for medical or industrial 

use (Stoger et al., 2002). To create plants that are resistant to pathogens, the following 

criteria have to be fulfilled: cloning of the desired antibody, efficient expression of the 

antibody, antibody stabilization and targeting to the appropriate cellular compartments 

(Schillberg et al., 2001). In terms of using plants as biofactories, the first recombinant 

protein to be synthesized in planta was the human growth hormone (Barta et al., 1986). 

Since then, many other proteins have been produced by plant systems and some of them 

have been commercialized (Hood et al., 1997; Witcher et al., 1998).  There are several 

methods to introduce antibody genes into plants – transformation by Agrobacterium and 
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particle bombardment have been successfully used (Stoger et al., 2002). The 

recombinant protein can be deposited throughout the plant or in specific organs. The 

deposition and storage of antibody molecules in seeds of various crop plants has been 

demonstrated (Chester and Hawkins, 1995; Fielder et al., 1997; Stoger et al., 2002).  

            In 2011, Safarnejad et al. published a review on the methods used to create and 

express pathogen-specific antibodies and experiments that have established and 

developed the principle of antibody-mediated disease resistance in plants. Table 2.2 

details the recombinant antibody-mediated disease resistance in plants from 1993 – 

2011 (Safarnejad et al., 2011).  

 

2.4.2 Single chain Fv (scFv) antibodies  

              Single chain Fv (scFv) antibodies consist of variable light chain and variable 

heavy chain domains of an antibody molecule fused by a flexible peptide linker (Bird et 

al., 1988). scFv antibodies retain full antigen-binding activity but lack specific assembly 

requirements. Uses of scFv antibodies include diagnostics and therapeutics (Fielder et 

al., 1997). scFv antibodies have been successfully synthesized in plants and plant cells 

as well as in bacteria. The less stringent requirements for folding and assembly, and also 

the ability to penetrate tissues effectively due to their small size make them suitable for 

expression in various intracellular compartments of plant cells (Owen et al., 1992; 

Safarnejad et al., 2011) 
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Table 2.2: Recombinant antibody-mediated resistance against plant diseases 

 

Year Disease 

 agent  

Targeted 

protein  

Transformed 

species  

rAb 

format  

Cellular 

localization  

1993 ACMV  Coat protein  Nicotiana 

benthamiana  

scFv  Cytosol  

1995 TMV  Coat protein  N. tabacum cv. 

Xanthi  

full size 

IgG  

Apoplast  

1997 BNYVV  Coat protein  N. benthamiana  scFv  ER  

1998 TMV  Coat protein  N. tabacum cv. 

Xanthi  

scFv  Cytosol  

1998 Stolbur 

phytoplasma  

IMP  N. tabacum  scFv  Cytosol  

1998 Maize stunt 

spiroplasma  

IMP  Zea mays  scFv  Cytosol  

2000 TMV  Coat protein  N. tabacum cv. Petite 

Havana SR1  

scFv  Plasma 

membrane 

surface  

2000 PVY strains 

Y&D 

CYVV strain 

300   

Coat protein  N. tabacum cv. W38  scFv  Apoplast, 

cytosol  

2001 TMV  Coat protein  N. tabacum cv. 

Samsun NN  

scFv  Cytosol  

2004 Fusarium 

oxysporum f. 

sp. matthiolae  

Cell-wall bound 

proteins  

Arabidopsis thaliana  scFv-AFP  Apoplast  

2004 TBSV, CNV, 

TCV, 

RCNMV  

RdRp  N. benthamiana  scFv  Cytosol, ER  

2005 Stolbur 

phytoplasma  

IMP  N. tabacum  scFv  Apoplast, 

cytosol  

2005 CMV  Coat protein  N. benthamiana  scFv  Cytosol  

2005 TSWV  Nucleoprotein  N. benthamiana  scFv  Cytosol  

2006 PVY  NIa protein  Solanum tuberosum  scFv  Cytosol  

2008 PLRV  P1 protein  S. tuberosum  scFv  Cytosol  

2008 TSWV  Movement 

protein  

N. tabacum cv. Petit 

Havana SR1  

scFv  Cytosol  

2008 F. asiaticum  Cell-wall bound 

proteins  

Triticum aestivum  scFv-AFP  Apoplast  

2009 GFLV, ArMV  Coat protein  N. benthamiana  scFv  Cytosol  

2009 PVY  NIa protein  S. tuberosum  VH  Cytosol  

2009 TYLCV  Rep  N. benthamiana  scFv-GFP  Cytosol  

2010 CTV  p25 major coat 

protein  

Citrus aurantifolia  scFv  Cytosol  

2010 Sclerotinia 

sclerotiorum  

Hyphal proteins  Brassica napus  scFv  Cytosol  

2011 PPV  NIb protein  N. benthamiana  scFv  Cytosol, ER, 

nucleus  

 

Adapted from Table 1 Recombinant antibody-mediated resistance against plant diseases 

(Safarnejad et al., 2011) 
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2.4.3 Cloning, expressing and targeting of scFv antibodies in plants 

              Monoclonal antibodies are now widely used in disease diagnosis and therapy 

ever since hybridoma technology was developed in 1975 (Kohler and Milstein, 1975). 

Hybridoma technology results in the production of highly specific monoclonal 

antibodies; however the process is labour intensive and requires the use of expensive 

equipment. By comparison, phage display of antibodies has several advantages over 

hybridoma technology. Rapid antibody cloning and flexibility in selecting and 

modifying specific antibodies can be achieved using phage display. Apart from this, 

during library generation, all cloned heavy and light chain gene fragments from a donor 

are recombined and this permits the generation of novel specificities that cannot be 

found in the original donor. Phage display and panning process was first described in 

1985 by Smith to prepare antibody displays used for isolating antibodies that bind with 

the greatest affinity to the target.  In 2003, Chua et al. detailed an anti-CMV scFv gene 

produced from biopanning M13 phage display library.  Later, libraries of scFvs that are 

pre-selected for cytosolic stability were constructed and used to generate stable scFvs 

that bind to Cucumber mosaic virus (CMV) (Villani et al., 2005). 

              Expression systems should be established to allow high-level accumulation of 

antibodies in transgenic plants. Furthermore, if the harvested material is to be 

transported before processing, stable storage of antibodies in plant material is important. 

One method to optimize plant expression is to reduce degradation and improve folding 

conditions for antibody fragments in leaves and seeds. Known issues with scFv 

expression include very low or no expression of scFvs in the cytoplasm of plant cells. 

Directing the scFv through the secretory pathway into the extracellular space or retain 

them in the lumen of the ER is a potential way to overcome this issue. Research has also 

shown that when a KDEL sequence was included in the antibody gene construct, 

accumulation of scFv was increased significantly (Schouten et al., 1996). This held true 
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for both the secreted (ER targeted) and cytosolic forms of the scFv. The KDEL 

sequence is hypothesized to protect the cytosolic scFv from proteolytic degradation or 

may confer protection to the protein through an interaction with the cytosolic side of the 

ER (Schouten et al., 1996). In 2005, Villani et al. reported a high level of accumulation 

of anti-CMV scFv antibodies in Nicotina benthamiana plants, resulting in a high level 

of protection against CMV. The high accumulation level in cytosol may be due to the 

fact that certain scFvs have framework regions that contain important determinants of 

folding efficiency in the cytosol (Safarnejad et al., 2009; Zhang et al., 2008). 

              Fiedler and Conrad (1995) demonstrated that active scFv molecules can be 

targeted to other sections of the plant than only leaves. scFv was shown to accumulate 

in developing and ripe tobacco seeds. The antibody accumulated to 0.67% of total 

soluble protein in the seeds, and was stably stored for one year at room temperature 

(Fiedler and Conrad, 1995). This system therefore offers high expression levels along 

with long-term storage of the protein and does not appear to influence plant growth rate 

or seed development. Exact cellular location was not determined for the antibody, 

although the authors felt it may have accumulated in protein bodies of the seeds (Fiedler 

and Conrad, 1995). Determining the exact cellular location of the stored antibody and 

transferring the system to another crop, such as corn, would make this strategy valuable 

for the commercial production of scFvs (Fiedler and Conrad, 1995). In fact, this system 

would be even more valuable if long-term stable expression could also be achieved for 

full length antibodies. Specifically, such a system would be valuable for delivering large 

quantities of full length antibodies for passive immunization. For instance, it has been 

shown that full length antibodies can be assembled and accumulated in the roots of 

transgenic tobacco (Van Engelen et al., 1994). If this technology could be utilized to 

obtain stable accumulation of these antibodies in edible tissues such as potato tubers, it 
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might allow for long-term storage and easy delivery of antibodies for 

immunotherapeutic applications.  

 

2.5 Molecular and genetic analyses of transgenic plants 

             Various characterizations of transgenic plants at DNA, RNA or protein level are 

well documented in Sambrook et al. (1989). Several detection methods for transgenic 

plants are discussed in the following section. In molecular analysis, standard 

polymerase chain reaction (PCR) is one of the simplest and most convenient 

approaches. Standard polymerase chain reaction (PCR) methods have been utilized to 

detect the presence of recombinant DNA in transformed plants (Ingham, 2005). PCR 

amplification of transgenes are often taken as an indication of transgenic status of re-

generants (Potrykus, 1991). Several conventional or multiplex PCR methods have been 

reported for qualitative analysis of transgenic samples (Padgette et al., 1995; 

Zimmermann et al., 1998; Matsuoka et al., 2001). Other PCR-derived technologies such 

as competitive PCR (Garcia-Canas et al., 2004) or real-time PCR (Terry and Harris, 

2001; Rønning et al., 2003; Windels et al., 2003; Hernandez et al., 2004) allow the 

quantification of transgenes in a sample. Multiplex PCR has also been proposed as a test 

for several transgenic plants (Permingeat, et al., 2002; Germini et al., 2004; Hernandez 

et al., 2005). 

             PCR-derived amplifications are the methods of choice to detect the presence of 

transgenes. Microarrays, also known as DNA chips, allow the analysis of multiple 

sequence targets in one single assay (Leimanis et al., 2006). The main advantages of 

DNA microarray technology are miniaturization, high sensitivity and screening 

throughput. Different DNA microarray approaches have been used in combination with 

multiplex PCRs: a multiplex DNA array-based PCR allowing quantification of 

transgenic maize in food and feed (Rudi et al., 2003); a ligation detection reaction 

coupled with an universal array technology that allows for the detection of Bt176 
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transgenic maize (Bordoni et al., 2004) or five transgenic events (Bordoni et al., 2005). 

A peptide nucleic acid array approach was developed for the detection of five transgenic 

events and two plant species (Germini et al., 2005). The use of fluorescent probes in 

these methods are costly and photosensitive, thus limiting the common use of 

microarrays for transgene detection. To avoid the drawback of fluorescent probes, a cost 

effective, highly sensitive, easy to use assay with reagents was developed (Leimanis et 

al., 2006). The arrays are solid glass supports containing, on their surface, a series of 

discrete regions bearing capture nucleotide probes that are complementary to the target 

nucleotide sequences to be detected (Zammatteo et al., 2000). After target DNA 

amplification in the presence of biotinylated nucleotides, amplicons are allowed to 

directly hybridize onto the arrays and are subsequently detected by a colorimetric 

system (Alexandre et al., 2001).  

             For further confirmation of transgene presence, PCR-Southern hybridization 

can be performed. A labelled specific probe is hybridized with PCR products to check 

for the existence of a complementary sequence in amplified product with the transgene. 

Apart from this, Southern hybridization is useful to assess the number of independent 

insertions of transgene (Southern, 1975). However, this method is difficult to apply in 

the high-throughput screening of putative transformants (Ingham, 2005). The 

development of real-time quantitative PCR (qRT-PCR) methods for determining 

transgene copy number has overcome the limitations of standard PCR-Southern analysis 

(Beer et al., 2001; Mason et al., 2002). qRT-PCR methods provide an accurate, 

quantitative and high-throughput approach for estimating transgene copy number from 

small amounts of sample. These assays can be conducted while putative transgenics are 

still in tissue culture. This allows for the selection of desirable transgenic events prior to 

expending the cost and resources required for transplantation to soil and propagation to 

maturity under greenhouse conditions (Ingham, 2005). 
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             Many techniques exist for the analysis of gene expression at RNA level, in 

particular the quantification and localization of mRNA transcripts. This includes reverse 

transcription-polymerase chain reaction (RT-PCR) and northern hybridization. The 

technique most often used for detection of the transcript is Northern blot hybridization, 

which employs a transgene-specific labelled probe and a variety of detection 

mechanisms depending on the label used. Although this approach does not distinguish 

between translationally active and inactive messages, it is often used reliably to study 

the expression levels of various transcripts (Dean et al., 2002). Although northern blot 

analysis is effective for quantifying gene expression, reverse transcription-polymerase 

chain reaction (RT-PCR) is found to be more sensitive. RT-PCR reflects the 

transcription level of the introduced gene in transgenic plants. It uses standard PCR 

techniques but permits the comparison of transcript quantities between samples by co-

amplifying the gene of interest with a housekeeping gene that acts as an internal control 

(Dean et al., 2002). The accuracy of the results obtained by this method strongly 

depends on accurate transcript normalization using stably expressed genes, known as 

references. Statistical algorithms have been developed to help validate reference 

genes (Gutierrez et al., 2008). 

            Immunoassay is used for the detection and quantification of proteins introduced 

through genetic transformation of plants. It is based on the specific binding between an 

antigen and an antibody. Immunoassays can be highly specific and samples often need 

only a simple preparation before being analysed. Moreover, immunoassays can be used 

qualitatively or quantitatively over a wide range of concentrations (Tripathi, 2005). 

Western blot and ELISA (Enzyme-Linked Immunosorbent Assay) are typical protein-

based immunoassays methods. These techniques are employed to assess the expression 

of the introduced gene.  
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           Western blotting combines the resolving power of protein electrophoresis and the 

specificity of immunology in a rapid and sensitive format for the identification of 

expressed proteins (Lough et al., 1998). Proteins resolved by electrophoresis are 

transferred to a nitrocellulose membrane. A primary antibody is bound to a specific 

antigen on the membrane and this antibody is detected using an enzyme-linked 

antibody. One-dimensional sodium dodecyl sulfate-poly acrylamide gel electrophoresis 

(SDS-PAGE) is most commonly used separation technique in Western Blotting (Smith, 

1994). 

           The ELISA technique has been widely applied for evaluating, at the experimental 

stage, the expression level and functionality of the transgene. Most commonly used 

ELISA methods are the classical plate-based ELISA and the membrane-based lateral 

flow strips. In plate-based ELISA, the antigen-antibody reaction takes place on 

microtiter plates. The antigen and antibody react and produce a stable complex which 

can be visualised by the addition of a second antibody linked to an enzyme. The results 

can then can be measured photometrically (Tripathi, 2005). Bindler et al. (1999) 

highlighted the advantages and drawbacks of immunoassay methods used to detect 

transgenic plants. One of the major drawbacks of this technique is that it often fails to 

detect transgenic proteins expressed at a very low level or those that are degraded and 

denatured by thermal treatment (Laura et al., 2002). It has been revealed that the 

accuracy and precision of ELISA can be adversely affected in complex matrixes. 

Commercially available antibodies have been reported to display poor binding affinity 

for the protein of interest (Laura et al., 2002). Lateral flow strips are marketed as 

‘dipstick’ procedure. It uses strips as opposed to microtiter plates to detect the presence 

of transgenic protein. This technique offers rapid and relatively ease of use and low 

cost, but it cannot quantify the protein of interest (Kole et al., 2010).  
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2.6 Biosafety Issues of Transgenic Crop Plants 

2.6.1 Introduction 

            According to projections by the United Nations, world population exceeded the 

7 billion mark in 2011 and is expected to reach 7.77 billion by 2020 

(http://esa.un.org/wpp/Excel-Data/population.htm). This has obvious implications on 

food security as questions on whether food production can keep pace with population 

growth will inevitably be asked. This is not a new argument as Malthus (1826) has put 

forward his theory in the early 19th century that mankind would essentially starve once 

population growth outgrew agricultural output. The Green Revolution, which increased 

crop yields in the 1960s onwards through use of pesticides and fertilizers, modern 

irrigation and improved crop varieties, put paid to this theory as food output increased 

substantially. However, the world food crisis in 2007 – 2008 which sparked riots and 

unrest in many developing countries raised the spectre of food insecurity again. As Asia 

accounts for more than half of the world’s population, the demand for food in this 

region is expected to be increasingly difficult to meet; governments and policy makers 

are now turning to biotechnology as one of the tools to alleviate this problem.  

            The manipulation of plant reproduction to propagate favourable traits has been 

going on for thousands of years in the form of selective and controlled breeding in crops 

and domesticated animals. The advent of modern biotechnology has resulted in a 

quantum leap in terms of accelerating and refining the genetic modification of 

organisms – giving rise to the creation of genetically modified organisms (GMOs) via 

recombinant DNA (rDNA) and other techniques. GMOs or transgenic organisms have 

the potential of giving higher yields through selection of favourable traits, reduced 

pesticide requirements due to improved pest resistance, increased utilization of marginal 

land, decreased water requirements as drought-resistant GMOs are engineered, enhance 

the shelf-life of crops, increase cost-effectiveness of production, improved nutritional 
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value of crops and function as vehicles to produce new pharmaceuticals and industrial 

products (Bhatia and Mitra, 1998; Singh et al., 2006; Hug, 2008). These benefits could 

translate into sustainable food production and usher in a new Green Revolution.  

 

2.6.2 Why do we need to regulate transgenic crop plants? 

            As with any new and rapidly advancing technology, there are always concerns 

on any potential adverse impacts, particularly with regards to its impact on human 

health and the environment. There is an ethical aspect to consider as well as genetic 

modification can be viewed as unnatural (Grumet and Gifford, 1998).  

            Several threats have been proposed: weediness, gene flow, threats to food safety, 

adverse impact on non-target organisms, pest resistance, negative impact on crop 

diversity and unknown long-term negative impact on the ecosystem (Bhatia and Mitra, 

1998; Krainin, 2004). Weediness occurs when GMOs become more invasive and hardy 

than it would normally be in nature due to the novel traits that they possess. Gene flow 

occurs when there is a movement of genes from one population to another (Slatkin, 

1985). This may have unpredicted consequences in the wild. In terms of threats to food 

safety, increased allerginicity due to introduction of novel proteins has been 

hypothesized (Bhatia and Mitra, 1998). Non-target organisms, i.e. organisms which 

were not intended to be affected by the genetic modification, could be impacted in the 

wild as well; for example predators of pests being affected by GMOs that produce 

insecticides. Apart from this, increased pest resistance due to selection pressure elicited 

by the novel traits presented by GMOs could cause increased pest resistance (Bhatia and 

Mitra, 1998). There is a case for diversity in the wild as different varieties of crops can 

respond differently to different stresses. Due to the unique nature and newness of 

biotechnology, the predictability of the effects of GMOs are not certain to be accurate, 

which is why rigorous testing systems and regulations have been put in place in many 



24 
 

countries. For the purposes of this review, the discussions that follow will concentrate 

on the regulation of transgenic plants.  

 

2.6.3 Cartagena Protocol on Biosafety (agriculture)  

              In view of some of the risks proposed above, the United Nations’ Parties to the 

Convention on Biological Diversity initiated negotiations to draft an agreement in 1995 

to identify and mitigate the potential risks posed by GMOs. In 2000, the Cartagena 

Protocol on Biosafety was adopted (http://www.cbd.int) and came into force in 

September 2003. The Protocol comprises of 40 articles and is a comprehensive 

regulatory system which governs the safe transfer, handling and use of GMOs, with a 

particular focus on transboundary movements (Cartagena Protocol on Biosafety 2000). 

Some important aspects of the protocol are the Advanced Informed Agreement (AIA) 

contained in Article 7, risk assessments (Article 15) and capacity building (Article 22).  

               With regards to the AIA, any country planning to export GMOs needs to 

provide the importing country with detailed information regarding the GMO. The 

competent National Authority of the importing country has the option of either 

authorizing the shipment or rejecting it. An important point to note is that absence of 

consent does not denote approval. This AIA mechanism ensures that countries have the 

possibility of assessing any risks prior to importation.  

              Additionally the Protocol places strong emphasis on risk assessments. The aim 

of risk assessments is to identify and evaluate any potential negative effects of GMOs. 

The principles governing risk assessments are that risk assessment should be carried out 

in a scientifically sound and transparent manner and that risks should be assessed on a 

case-by-case basis. An important point to note is that lack of scientific data or consensus 

must not be interpreted as indicating acceptance of particular level of risk. 

(http://bch.cbd.int/protocol). 
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              The Protocol demonstrates a level of pragmatism towards its implementation as 

developing countries, unlike developed countries, have resource constraints in terms 

effectively implementing all articles successfully. As such, Article 22 states that 

international cooperation should be in place to cooperate and share resources towards 

establishing a national biosafety system (Cartagena Protocol on Biosafety 2000).  

               To be successful, the Cartagena Protocol, like any global protocol, needs the 

active participation of each signatory country. Governments are crucial in terms of 

ensuring GMOs are sustainably developed and safely used. To this end, many countries 

have developed national biosafety regulations – unsurprisingly developed countries like 

the US and EU have led the way and many developing countries have followed suit. It 

is also important to note that while the US participated in the Cartagena Protocol 

negotiations, it is not a party to CBD, so the Cartagena Protocol does not apply to the 

US (Nuffield Council on Bioethics 2004). The following sections will review the 

biosafety regulations of some countries.  

 

2.6.4 US, Canada and European Union Regulations on Biosafety (agriculture) 

United States 

                    The US, being at the forefront of developing biotechnology, was one of the 

first countries to establish biosafety protocols to control the use of GMOs. The US 

framework for regulating GMOs was established in 1986 and is called the Coordinated 

Framework. Instead of developing brand new legislation, the policy makers decided that 

the existing laws covering organisms developed via traditional genetic manipulation 

processes would be sufficient to address the risks posed by GMOs. It was felt that the 

existing laws would provide immediate protection and certainty for the biotechnology 

industry as opposed to developing new legislation (Jaffe, 2004). The task of regulating 

GMOs is mainly divided between three federal agencies: the United States Department 



26 
 

of Agriculture (USDA), the US Food and Drug Administration (FDA) and the 

Environmental Protection Agency (EPA). The Federal Insecticide, Fungicide and 

Rodenticide Act grants the EPA authority over plants that produce their own pesticides 

like Bt corn. The EPA regulates pesticidal GMOs the same way chemical pesticides are 

regulated (Office of Science and Technology Policy, 1986). The USDA has authority 

over all other types of GMOs via the Plant Protection Act. One important point is that 

the Plant Protection Act does not extend to the commercialization stage – i.e. once the 

crop is commercialized, it is exempted from further regulation. This is an important 

difference with other countries (Cranor, 2004). The FDA’s role is governed by the 

Federal Food, Drug and Cosmetic Act (FFDCA). The FDA is responsible for reviewing 

the potential health effects of non-pesticidal transgenic plants that produce 

pharmaceuticals. The USDA’s Animal and Plant Health Inspection Service (APHIS) 

has authority to assess “the potential effects of non-pesticidal transgenic plants on other 

plants and animals in both agricultural and non-agricultural environments” (NRC, 

2002). This creates a scenario where transgenic plants will not be regulated by all three 

agencies, but any of these three agencies have the power to issue a withdrawal order if 

the transgenic crop or its products pose a safety risk to consumers or to the environment 

(Lemaux, 2009). 

              The US principle in regulating transgenic plants is to screen the plants prior to 

environment release and commercial production. The reasoning behind this is that 

harmful substances are identified and prevented from mass exposure. The burden of 

proof that the GMO is safe for use would fall upon on the manufacturer or originator of 

the transgenic organism.  

              Under APHIS regulations, there are three different processes available to 

manufacturers to seek approval: “notification”, “permitting” and “petitions for non-

regulated status” (Jaffe, 2004). For a plant to qualify under the notification procedure, 
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the plant must not be deemed a “weed” according to a federal list, the DNA functions 

must be known and not result in disease; plus the DNA must be stable so the trait is 

inherited in a Mendelian fashion for at least 2 generations. What this means is that 

notification is for plants that do not cause environmental problems.  

               The second pathway, the “permitting” pathway, is meant for the “movement, 

importation and field testing of transgenic plants that do not quality for notification”. 

Examples include commercial pharmaceutical producing plants or plants that pose 

greater risks to the environment versus plants undergoing the “notification” route. 

               The third and final procedure, which is “petition for non-regulated status”, is 

one where APHIS determines that a particular transgenic plant s not a regulated article. 

This procedure is extremely important as this is the only route to commercialize 

transgenic plants (e.g. transgenic soybean seed) and one of the main paths to 

commercialization for transgenic plant products (e.g. protein extract from the transgenic 

plant) (NRC, 2002).  

 

Canada 

              Canadian regulations, similar to the US regulations, focus on the end product 

rather than the process used to create the transgenic product. The Canadian regulations 

govern plants with novel traits (PNT). The classification of PNTs includes those 

modified transgenically or via mutagenesis. This is a major difference when compared 

to the US, where the regulations only cover transgenic plants and not plants created via 

mutagenesis. Another difference is that not all transgenic plants manifest novel traits – 

this means that not all transgenic plants are subject to regulations.  

              The Canadian Food Inspection Agency (CFIA) is the main agency responsible 

for the regulation of GMOs, being responsible for plants, animal feeds, fertilizers and 

animal biologics. 2 other government agencies, Environment Canada and Health 
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Canada share certain responsibilities according to Canadian Law (McHughen and 

Smyth, 2008).  

 

Europe 

                Directive 2001/18/EC, Regulation No. 1829/2003 and Regulation No. 

1830/2003 are the main regulations governing the control of GMOs in Europe. 

Directive 2001/18/EC outlines the principles regulating the deliberate release of GMOs 

into the environment, while Regulation 1829/2003 covers genetically modified food and 

feed and specifies the authorization procedures and labelling requirements. Regulation 

1830/2003 deals with the traceability and labelling of GMOs and their food and feed 

derivatives (Alderborn et al., 2010). The following measures are outlined in the 

regulations: principles for environmental risk assessment, compulsory post-marketing 

monitoring, and mandatory disclosure of information to the public and strict labelling 

/traceability of the products (Directive 2001/18 /EC of the European Parliament and of 

the Council of 12 March 2001). An important point to note is that potential benefits are 

to be excluded from the assessment, which means that the risk assessment does not 

weigh any potential benefits of the transgenic crop (McHughen, 2012). Environmental 

risk assessment is conducted on a case-by-case basis and this causes data requirements 

for each individual submission to vary substantially (Garcia-Alonso et al., 2006). 

              The EU authorization process has 2 phases – risk assessment followed by risk 

management. In the first risk assessment phase, the European Food Safety Authority 

(EFSA) conducts a scientific assessment of the risks posed to human health, animal 

health and the environment. The second phase, risk management, is performed by the 

European Commission and Member States. The authorization process takes into account 

EFSA’s scientific opinions together with other legitimate factors. The approval lasts for 
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10 years and a renewal application is to be submitted at the end of the authorization 

period (EuropaBio, 2011).  

              The EU regulations follow a “precautionary approach”, which means GMOs 

are considered inherently unsafe. The EU regulations are considered to be the strictest in 

the world (Nuffield Council on Bioethics 2004). An indication of this strictness is that 

the average time it takes for a GMO to obtain approval in the EU is 45 months 

compared to 25 months in the US and 30 months for Canada. In terms of GMOs for 

cultivation, only 2 products have been authorized in the past 13 years as of October 

2011 (EuropaBio 2011).  

 

Summary 

              There are several notable differences regarding the US, Canada and European 

regulations. The first is that the US and Canada regulations are product-based whereas 

the EU regulations are process-based (Ramessar et al., 2009). The triggers to initiate 

risk assessment are also different: in Canada the focus is on the novelty of the traits 

presenting in the GMOs, irrespective of whether the product is derived from genetic 

modification or “normal” breeding procedures like mutagenesis. In the US, even if the 

plant was developed using rDNA techniques, this does not automatically trigger the 

requirements for approval under US biosafety regulations (Paoletti et al., 2008). There 

is a difference in terms of the labelling requirements for food produced from or derived 

from GMOs. EU regulations require mandatory labelling whereas the US and Canada 

implements voluntary labelling for GM food. Furthermore the threshold to mandate 

disclosure that the food is genetically modified is different: food and feed can be classed 

as non-GM even if they contain up to 5% GM material. The EU has much lower limits, 

which is 0.9%. This has real implications for the international trade of food and feed as 

what is permissible in the US and Canada will not be in compliance with EU 
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regulations. There is already ongoing dispute between EU and the US with regards to 

the restriction of trade that this mandatory labelling imposes (Carter and Gruère, 2003). 

              In summary, even though the ultimate aim of biosafety regulations remain the 

same, i.e. protection of human, animal and environmental health, the numerous 

differences in terms of regulations and implementation even in developed countries are 

still cause for concern and form a stumbling block for acceptance of the fruits of 

biotechnology and the potential benefits it would bring to the world.  

 

2.6.5 Biosafety regulation of transgenic crop plants in Asia pacific  

              As can be expected from a region ranging from developed countries like 

Australia and Singapore to the developing economies of Indonesia and Philippines, the 

biosafety regulatory systems are at different stages of development and implementation. 

The approaches taken are also different: some countries are developing their biosafety 

systems from scratch while others are making modifications to existing regulatory 

systems (Gupta et al., 2008). In many developing countries, this was in response of the 

ratification of the Cartagena Protocol – unlike the regulations in developed countries 

which were in place when the Cartagena Protocol came into force in 2003 (McLean et 

al., 2012). Apart from the adoption of legislation, administrative systems have to be 

developed in order to enforce and implement the legislation. Developing countries also 

are at different stages of development in this regard (FAO ITC, 2010). The United 

Nations recognized that developing countries would lack the necessary resources and 

know-how to develop national biosafety regulations. In response to this, the Global 

Environment Facility of the United Nations Environment Programme (UNEP-GEF) was 

set up with the aim of assisting these countries in developing national biosafety 

framework (NBFs).  
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            A country’s NBF is a combination of legal and administrative tools that are used 

to ensure the safe and proper use of GMOs and consists of 5 main components: national 

biosafety policy, regulatory regime, administrative system, public awareness and 

participation, and system for follow up. (UNEP-GEF, 2006). Some of the Asia Pacific 

countries who were assisted by UNEP-GEF include China, Indonesia, South Korea, the 

Philippines, Vietnam and Malaysia (UNEP-GEF, 2008). Countries like Indonesia and 

Philippines already had some form of legislation in place before joining the NBF (Gupta 

et al., 2008). 

 

The regulatory systems of different Asia Pacific countries are reviewed below.  

Australia  

            Australia has one of the most developed regulatory systems in Asia Pacific. The 

Office of the Gene Technology Regulator (OGTR), set up under the Gene Technology 

Act, is the main GMO-regulating body. The regulations are share many similarities with 

the EU system: it is process-based rather than product based and labeling/traceability 

are mandatory. The tolerance threshold to trigger labeling is 1%, making Australia one 

of the stricter countries in this regard. All intentional environmental releases (field trials 

and commercial releases) must be licensed. Field trials are restricted to certain limit 

such as size, location and duration. The trigger for regulation is the use of gene 

technology. Licensing decisions are based on case-by-case science-based risk 

assessments. Marketing and trade impacts are outside the scope of assessments required 

by the Act (OGTR, 2008). 

 

China 

               Prior to regulations being implemented in 2001, China had approved several 

GM crops but this has slowed down with the implementation of biosafety legislation 



32 
 

(Baumueller, 2003). According to the “Implementation Regulations on Safety 

Assessment of Agricultural Genetically Modified Organisms 2004”, transgenic plants 

are classified into classes according to their potential risk to human beings, other 

organisms and the environment. Class I signifies no known risk, Class II (low risk), 

Class III (medium risk) and Class IV denotes high risk. The regulations contain 

definitions of each class, for example organisms can only be classified as Class I if no 

negative effects on human health or the environment has been demonstrated or if the 

organism has little possibility of evolving into a hazardous organism. Article 5 states 

that a National Biosafety Committee (NBC) shall be set up to conduct safety 

assessments on GMOs. There are three stages of testing: 1) restricted field-testing 

(small-scale test conducted within a contained system), 2) enlarged field-testing 

(medium-scale test conducted under natural conditions) and 3) productive testing (large-

scale test prior to commercial production and application) (Implementation Regulations 

on Safety Assessment of Agricultural Genetically Modified Organisms, 2004). 

 

Japan  

              The aptly named “Cartagena Law” was promulgated in 2004 as Japan’s 

biosafety legislation. Four ministries are involved the Ministry of Agriculture, Forestry 

and Fisheries (MAFF), the Ministry of Health, Labor and Welfare (MHLW), Ministry 

of Environment (MOE) and the Ministry of Education, Culture, Sports, Science and 

Technology (MEXT).The regulations differentiate between field experiments, import 

and cultivation (type 1 use) and use in laboratories, green house and R&D use (type 2 

use). MEXT is responsible to approve type 2 uses while MAFF & MOE are responsible 

to approve type 1 uses. MEXT needs to grant approval before performing early stage 

agricultural biotech experiments in laboratories and greenhouses – this usually 

constitutes the first step of the approval process. Once this type 2 step is complete, the 
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next step towards approval is planting in an isolated field to assess the transgenic plant’s 

effect on diversity. If the scientific data generated from this field trial is deemed 

satisfactory, risk assessment procedures will begin via field trials (Type 1 use).  A joint 

MAFF and MOE expert panel carries out the environmental safety evaluations 

(http://www.bch.biodic.go.jp/english/law.html; accessed on 26 Aug 2012). MHLW is 

responsible for transgenic plants used as food. Upon the directive of the MHLW 

minister, the Genetically Modified Foods Expert Committee in the Food Safety 

Commission (FSC) conducts scientific risk assessments. 

 

Taiwan 

              Taiwan’s regulatory system is product based and mandatory labelling of GMOs 

is required. The Department of Health (DOH) and Council of Agriculture (COA) are the 

responsible governing agencies. The DOH conducts food safety risk assessment, while 

the Council of Agriculture (COA) has oversight on environmental risk assessments. 

One major difference is that the current Taiwanese GMOs are only applicable to 

soybeans and corn; this is expected to change to cover all GMOs in the future (USDA 

Foreign Agricultural Service 2009).  

 

India 

              GMO regulation is contained in regulations in the Environmental (Protection) 

Act 1956. Three bodies deal with the approval of GMOs: the Institutional Bio Safety 

Committee (IBSC), the Review Committee of Genetic Manipulation (RCGM) and the 

Genetic Engineering Approval Committee (GEAC). The IBSC is established at every 

institution engaged in GMO research. The RCGM is tasked with reviewing the approval 

of ongoing R&D projects on GMOs. The GEAC functions under the purview of 

Department of Environment as the statutory body for review and approval of GMOs and 
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their products in R&D or environmental release and field applications (Gupta et al., 

2008).  

 

Philippines 

             Philippines was the first country in South-East Asia to establish a regulatory 

system for GMOs. The first guidelines for biosafety were promulgated in October 1990 

as Executive Order (EO) 430 EO 430. EO 430 established the National Committee on 

Biosafety of the Philippines. These and other subsequent guidelines were incorporated 

into the Philippines NBF, which was issued as EO 514 in April 2006 (UNEP-GEF 

Biosafety Unit, 2006).  

                    In the Philippines, risk assessments are carried out on a case-by-case basis. 

This is based on the nature of the genetic modification and may vary in nature and level 

of detail depending on the GMO concerned, its intended use and the receiving 

environment (Gupta, 2008). 

 

Thailand 

                In 1992, Thailand was one of the first in the South-East Asia to adopt 

biosafety guidelines. These guidelines were developed under the Ministry of Science, 

Technology and Energy (MOST) by the National Center for Genetic Engineering and 

Biotechnology (BIOTEC). Following this, the National Biosafety Committee (NBC) 

was established in 1993 and BIOTEC served as the coordinating body and secretariat 

(http://www.biotec.or.th/EN/).  

               In 2001, the Thai Ministry of Agriculture banned the field testing for 

transgenic plant products. This ban effectively meant that all GM research conducted 

must be conducted in laboratories or greenhouses (Teng, 2008).  
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             In 2008, the Thai government approved the National Biosafety Act and the 

principles governing risk assessments is that the risk assessment procedure should be 

grounded in science and conducted on a case-by-case basis (Technical Biosafety 

Committee, 2010). 

 

Indonesia 

               In Indonesia, a decree was issued by the Minister of Agriculture 1997 

containing provisions on biosafety of transgenic plants. An amendment in 1999 

expanded the decree’s oversight to both biosafety and food safety aspects for all GMOs 

and not just plants.  

               A National Biosafety and Food Safety Commission was formed to implement 

the regulations. This Commission is assisted by a Technical Team for Biosafety and 

Food Safety which is responsible to assess GMO applications in biosafety containment 

or in a confined field. All transgenic crops must pass through the assessment and 

evaluation in the laboratory of biosafety containment and confined field testing (NBF 

Indonesia 2004).  

 

2.6.6 Malaysian Biosafety Act 

            Malaysia is a signatory to the Cartagena Protocol and ratification occurred in 

Sep 2003. To comply with the Cartagena Protocol, the Biosafety Act 2007 was 

approved on 11 July 2007 and was entered into force in 1 Dec 2009. The Biosafety Act 

is meant to regulate the release, importation and contained use of living modified 

organisms (LMOs) and the products of such organisms. It only covers “modern 

biotechnology”, which means products of mutagenesis will not be subject to this Act. 

The “precautionary approach” is followed – lack of full scientific evidence does not 
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mean lack of harm and preventive steps should be taken to prevent any negative effects. 

(http://www.biosafety.nre.gov.my/).  

             The Act mandates the creation of a National Biosafety Board (NBB). The 

regulatory and the decision-making functions of the NBB are to decide on GMO 

approval matters and to monitor activities related to GMOs. The Act also mandates the 

creation of the Genetic Modification Advisory Committee (GMAC), which is tasked 

with providing scientific assessment of applications for approval and notifications and 

gives recommendations to the NBB. The Act makes a distinction between “contained 

use” and “release and import” activities involving GMOs. Contained use means any 

work on GMOs that is performed in such a manner that contact and impact on GMOs 

on the external environment is prevented. For contained use purposes, only notification 

to the NBB is required and work can commence after an acknowledgment from the 

Director-General of Biosafety is received. In parallel to this, the GMAC and NBB will 

assess the notification and a decision (revoke the approval, make a temporary cessation 

order, impose additional terms and conditions, order the approved person to make 

rectifications or make any other order as the Board thinks fit in the interest of biosafety)  

will be made in 90 days.  

                For release and import activities, submission for approval is required. The 

NBB will make a decision within 180 days and decisions can range from approval, 

approval with terms and conditions or rejection. There is also opportunity to solicit 

public opinion during the approval process via publication in media subject to certain 

conditions like data confidentiality. Public opinion will be taken into account during the 

decision-making process. Consistent with the Cartagena Protocol, a detailed and 

scientific risk assessment process forms the cornerstone of the decision of the NBB. In 

tandem with risk assessment, part V of the Act states that emergency response plans are 

required to mitigate against harm and damage that may arise from GMOs. Section 61 
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states that GMOs and all items containing GMO products must be identified and clearly 

labelled (Biosafety Act 2007).  

               The Biosafety (Approval and Notification) Regulations 2010 complements the 

Biosafety Act and part II of the Regulations are about the establishment of Institutional 

Biosafety Committees (IBCs). IBCs are set up to ensure that use of GMOs at the 

institutional level is in compliance to the Biosafety Act (Biosafety (Approval and 

Notification) Regulations 2010). 

              The Ministry of Natural Resources and Environment (NRE) is responsible to 

develop the risk assessment procedures as stated in the Biosafety Act. The risk 

assessment procedures are broadly in line with the principles of the Cartagena Protocol. 

Applicants are required to submit information on risk assessment, risk management and 

emergency response plans. NBB makes a decision with input from GMAC and the 

Department of Biosafety. [http://www.biosafety.nre.gov.my/, accessed 26 Aug 2012].  

The Biosafety Act does not contain sections on socio-economic and ethical 

considerations and this could potentially complicate public acceptance of biosafety 

decisions by the NBB (Latifah et al., 2011). 

 

 

2.7 Potential risks associated with virus-resistant transgenic plants 

 

2.7.1 Introduction 

 

With the increasing sophistication of genetic engineering techniques and 

subsequent prioritization of biotechnology on national and private research agendas, the 

safety aspects of this burgeoning field has been in focus over the years. Whilst 

promising enormous benefit for agriculture, the potential impacts of virus-resistant 

transgenic plants on the environment and human health have also been raised and 

reviewed regularly since the 1990s. Topics perceived to be of concern include 
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recombination, synergism, gene flow, impact on non-target organisms and allergenicity 

in food safety. 

 

2.7.2 Recombination 

It has been widely acknowledged that recombination between a viral transgene 

mRNA and the genomic RNA of a non-target virus during replication could possibly 

lead to the creation of a novel virus.  

 A few cases of recombination experiments were documented by Allison et al. 

(1996) revealed results which were in contrast to this as recombination was not detected 

in some of CP gene-expressing transgenic plants in the field (Capote et al., 2007; Vigne 

et al., 2004; Lin et al., 2001). Research report by Turturo et al. (2008) showed that a 

similar population of recombinant viruses appeared in transgenic plants expressing a 

CMV CP gene infected by another cucumovirus and equivalent non-transgenic ones 

infected simultaneously with two cucumoviruses. Recently, Zagrai et al. (2011) also 

confirmed that transgenic plums expressing plum pox virus coat protein gene do not 

assist in the development of virus recombinants under field conditions.  

This may suggest that transgenic plants do not contribute to the generation of 

recombinant viruses that would not have been generated in natural double infections 

(Turturo et al., 2008). As such, the significance of recombination between transgenes 

and viruses appears to be very limited with regards to adverse environmental effects 

since there is no clear evidence that this phenomenon constitutes a risk of virus 

emergence. 

 

2.7.3 Synergism 

Synergism can happen in plants when one virus enhances the severity of 

infection by a distinct or unrelated virus (Latham and Wilson, 2008). Vance (1991) 
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reported the occurrence of a synergistic viral interaction between potato virus X (PVX) 

and a potyvirus which led to high accumulation of PVX and associated worsening 

symptoms.  

In VRTPs, numerous studies have showed that synergism may result from the 

inhibition of the plant’s post-transcriptional gene silencing (PTGS) defence response to 

viral infection (Vance et al., 1995; Pruss et al., 1997). In 2011, Siddiqui et al. detailed 

the synergistic interaction between CMV and TMV plus the induction of severe leaf 

malformation in 2b-transgenic tobacco plants. 

It is possible that viral genes expressed in transgenic plants for the purpose of 

protecting the plant could actually confer sensitivity to a synergistic disease. However, 

the significance of synergism is limited as it could be simply avoided by not using viral 

genes in interference with PTGS for pathogen-derived resistance. 

 

2.7.4 Effects on non-target organisms 

VRTPs could potentially influence the diversity and population dynamics of 

non-target organisms, such as insect vectors, bacteria or fungi. An investigation on the 

influence of papaya ringspot virus (PRSV) resistant transgenic papaya showed limited 

impact on soil microorganisms (Hsieh and Pan, 2006). In a more recent article, Capote 

et al. (2008) reported that no significant differences were found in the genetic diversity 

of Plum pox virus (PPV) populations and aphids in PPV-resistant transgenic and 

conventional plums. A report published the following year summarised that transgenic 

Zucchini yellow mosaic virus resistance in cultivated squash affects pollinator behavior 

(Prendeville and Pilson, 2009).  Even so, there has been no concrete evidence to prove 

that VRTPs have a significant impact on non-target organisms so far.  
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2.7.5 Allergenicity  

The question of whether proteins encoded by viral sequences that are expressed 

in transgenic plants have a tendency to provoke allergic reaction has always been at the 

centre of attention. So far, no allergic effects have been attributed to Genetically 

Modified (GM) foods currently on the market. Moreover, no adverse effects have been 

observed in the long history of virus-infected plants as a part of the human and domestic 

animal food supply.  

               In 1994, the U.S. Food and Drug Administration (FDA) announced that ZW-

20 squash appeared to be as safe as its non-engineered counterpart (NBIAP News 

Report, 1995).  In the feature story published online at APSnet, Gonsalves et al. (2004) 

detailed the successful performance of this commercially grown transgenic papaya crop 

in Hawaii. This GM papaya was the first tree to be deregulated by The Animal and 

Plant Health Inspection Service (APHIS) in 1996. At present, VRTPs have been not 

found to pose a risk to allergenic safety in human health, as none of them contain 

known allergens. Reports of allergenicity assessment on virus resistant transgenic 

tomato, papaya, pepper and cabbage have shown negative results on food allergy. (Lin 

et al., 2010; Fermin et al., 2011) 

 

2.7.6 Gene flow 

One of the original concerns that has remained intractable is whether transgene 

escape from a VRTP to its non-transgenic counterpart (crop-to-crop) and wild or weedy 

relatives (crop-to-wild) via gene flow could have a significant impact on the wild 

plant’s fitness and invasiveness/ weediness (Prins et al., 2008). This gene-flow 

phenomenon has been known for decades and is well documented for major 

conventional crop species (Ellstrand et al., 1999). The potential environmental 

consequences created by VRTPs are probably one of the most contested issues 
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internationally. In 1996, Bartsch et al. reported transgenically introduced resistance to 

Rizomania disease in cultivated beet showed no adverse effect on wild sea beet 

populations. Recently, a report of gene flow assessment on transgenic Solanum 

tuberosum spp. tuberosum (cv. Spunta) selected for PVY resistance in Argentina 

suggested that there is an extremely low probability for such an event to occur (Bravo-

Almonacid et al., 2012). 

Though it seems that many wild type plant species are not susceptible to virus 

infection, there are still some exceptional cases where introduction of a new plant virus 

into the environment has had a significant impact on ecosystem structure. In 2005, 

Malmstrom et al. published an article to reveal a true story in California where the 

introduction of cereal yellow dwarf viruses led to a large-scale replacement of native 

perennial grasses by non-native annual species. Another recent study has also predicted 

that transgenic clover harbouring potyvirus resistance genes could also have an effect on 

invasiveness (Godfrey et al., 2007).  

             It is essential to remember that environmental safety issues concerning 

recombination and synergism are relevant for both transgenic crops expressing virus-

derived gene constructs and conventional crops alike. To put this in perspective, it is 

important to ensure that any increased risk posed by VRTPs is more than what one 

would normally expect from natural background events. The same can be said for gene 

flow; as there seems to be limited differences between both genetically engineered or 

bred by conventional techniques. This is due to the fact that it is the resistance trait that 

is being investigated as opposed to the actual crop development strategy itself. The 

likelihood and consequences of gene flow must be assessed on a case-by-case basis. 
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3.0 Materials and Methods  

3.1 Materials  

3.1.1 General chemicals, buffer, solutions 

        All chemicals used in this project were of Analytical Grade. The buffers and 

solutions were prepared as described in the methods section or in accordance with the 

manufacturer’s protocol.            

 

3.1.2 Single chain variable fragments (scFv) antibodies 

          The positive control used throughout this project was pUMSCFV-CMV1 

construct in E. coli H2151. (from Dr Chua Kek Heng, UM).       

 

3.1.3 Cucumber Mosaic virus  

         The local isolate of cucumber mosaic virus was obtained from infected tobacco 

plants courtesy of Dr Mohd. Roff, MARDI. 

 

3.1.4 Tobacco plants and transgenic plants  

         The tobacco plants used in this project were Nicotiana tabacum L. cv. White 

Burley. The parent transgenic plants expressing anti-CMV scFv antibodies were the 

products from Dr Chua Kek Heng’s PhD project. T1, T2 and T3 generations of 

transgenic plants were produced from self-pollination. Wild type tobacco plants were 

grown from purchased seeds.   

 

3.2 Methods 

3.2.1 Sterilization 

          In general, reusable glassware, non-disposable plastic ware, aqueous solutions 

and soil were decontaminated by autoclaving at 121oC (15 psi) for 20 minutes. Non-
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autoclavable substances were filter-sterilized. Planting materials such as flower pots, 

seedling trays, watering cans and gardening tools were sterilized by using 10% bleach 

solution. All solutions and reusable glassware or plastic ware used in RNA work were 

treated with diethyl pyrocarbonate (DEPC) and autoclaved at 121oC (15 psi) for 20 

minutes.  

 

3.2.2 Growth and propagation of tobacco plants 

           Wild type and transgenic tobacco seeds were soaked in distilled water overnight 

prior to being sown in seedling trays containing humus-rich soil for germination. 

Healthy 2-week old seedlings were selected and transplanted into flowering pots with 

humus-rich soil. They were grown in an enclosed room at 27oC with 16-hour day length 

at low light intensity, with top watering every day.  

            The T1 generations of transgenic tobacco plants were produced by self -

pollinating positive T0 plants. T1 transgenic tobacco plants expressing anti-CMV 

antibodies were identified and self-crossed to obtain T2 generations. T2 progenies were 

evaluated for the presence of the desired transgene and were self-pollinated to produce 

T3 generations.  A small paint brush was used to gently brush the inside of the flowers 

to increase the chances of pollination. In order to prevent cross pollination amongst the 

transgenic plants, the flowers were covered with plastic bags during flowering time.  

 

3.2.3 Small scale isolation of plasmid DNA 

           10μl of bacteria stock culture was grown in 10ml of LB broth (Appendix A) 

containing an appropriate antibiotic. After 16 hours growth at 37oC, 1ml of overnight 

culture was transferred into a 1.5ml microcentrifuge tube. The bacterial cells were 

harvested by spinning for a minute at 10,000xg. The supernatant was discarded and the 

pellet was dried. The pellet was then resuspended in 200μl ice-cold Solution 1 
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(Appendix A) and left at room temperature for 5 minutes. Freshly prepared 200μl 

Solution 2 (Appendix A) was then added to the suspension to lyse the cells. This 

mixture was then inverted a few times and incubated on ice. After 5 minutes, 150μl of 

ice-cold Solution 3 (Appendix A) was added and the mixture was inverted a few times. 

Again, the content was incubated on ice for 5 minutes. Following that, the 

microcentrifuge tube was spun at full speed for 5 minutes. The cleared lysate was 

transferred to a new microcentrifuge tube. Equal volume of phenol was added to the 

content and mixed by vortexing. The mixture was spun at full speed for 2 minutes. The 

aqueous phase was pipetted into a new 1.5ml tube and an equal volume of chloroform 

was added to it. The aqueous phase was collected as described previously and was 

transferred to a new 1.5ml tube. After that, 2V of absolute ethanol was added to it to 

precipitate the DNA. The mixture was then vortexed and left at room temperature for 2 

minutes before being spun at full speed for 5 minutes. The supernatant was discarded 

and 1ml of 70% ethanol was added to wash the pellet. Again the supernatant was 

removed after centrifugation at full speed for 5 minutes. After vacuum drying, the pellet 

was resuspended in 50μl TE (pH8.0) (Appendix A) containing 20μg /ml RNase A. The 

resultant DNA was kept at -20oC until further usage.  

 

3.2.4 Molecular characterization of transgenic plants expressing scFv antibodies  

3.2.4.1 Genomic DNA extraction from transgenic plants 

            The extraction of genomic DNA was performed using DNeasy® Plant Mini Kit 

(QIAGEN).  The extraction protocol was derived from the instructions in the kit. 100 

mg of transgenic tobacco leaves were ground in liquid nitrogen. The plant tissue powder 

was then transferred to a 1.5ml microcentrifuge tube (Eppendorf®, Germany). To lyse 

the cells, 400μl of Buffer AP1 and 4μl of RNAase A solution (100mg/ml) were added to 

the plant material. The mixture was vortexed vigorously prior to incubation at 65oC for 
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10 minutes in an incubator (Memmert, Germany). Next, a 130μl of Buffer AP2 was 

added to the lysate and the mixture was incubated on ice for 5 minutes to precipitate 

detergents, proteins and polysaccharides. The lysate was then centrifuged for 5 minutes 

at full speed using the Mini Spin Plus Centrifuge (Eppendorf®, Germany). The 

supernatant was applied to a QIAshredder spin column sitting in a 2ml collection tube. 

After centrifugation at full speed for 2 minutes, 450μl of flow-through was transferred 

to a 1.5ml microcentrifuge tube. 675μl of Buffer AP3/E was pipetted directly onto the 

cleared lysate for mixing. From the mixture, 675μl was applied to the DNeasy mini spin 

column sitting in a 2ml collection tube and centrifuged for 1 minute at 8000rpm. The 

flow-through was discarded. This step was repeated with the remaining sample. 

Following this, the DNeasy column was placed in a new 2ml collection tube. 500μl 

Buffer AW was added to the DNeasy column and centrifuged for 1 minute at 8000rpm. 

The flow-through was discarded and the washing step was repeated to dry the 

membrane. The DNeasy column was then transferred to a 1.5ml microcentrifuge tube. 

100μl of preheated Buffer AE was pipetted directly onto the DNeasy membrane and left 

for 5 minutes at room temperature. Finally, the column sitting in the microcentrifuge 

tube was spun for a minute at 8000rpm to elute the DNA.  

 

3.2.4.2 Detection of scFv gene by Polymerase Chain Reaction (PCR) 

            The Polymerase Chain Reaction (PCR) reaction mixture, with a total volume of 

25 µl, consisted of 1x reaction buffer, 0.3mM dNTP mix, 1U Taq polymerase (NEB), 

1.0 mM MgCl2, 1µM upstream and downstream primers, 20 ng templates and nuclease-

free water (Table 3.1). The PCR conditions used in this study was as follows: 94 0C – 2 

min (1 cycle); 94 0C – 1 min, 69.7 0C – 30 s, 72 0C – 1 min (30 cycles); 72 0C – 10 min 

(1 cycle) (Table 3.2). The reaction was performed on MJ Research PTC200 Peltier 

thermalcycle.  
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Table 3.1: Optimized conditions of PCR to amplify scFv transgene 

Reagent   Volume (µl) 

dH2O 13.8 

10x Rxn Buffer with (NH4)2SO4   2.5 

25 mM MgCl2   1.5 

2 mM dNTP   4.0 

10 μM Primer forward   1.0 

10 μM Primer reverse   1.0 

Taq Polymerase (5 μ/μL)   0.2 

DNA (1 μg)   1.0 

Total Volume 25.0 

 

 

 

Table 3.2: PCR cycling conditions to amplify scFv transgene  

 Conditions 

Initial denaturation 94 0C – 2 min (1 cycle) 

Denaturation  

Annealing  

Extension  

94 0C – 1 min 

69.7 0C – 30 s  (30 cycles) 

72 0C – 1 min 

Final extension  72 0C – 10 min (1 cycle) 
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3.2.4.3 Agarose gel electrophoresis 

            1μl of 6X Loading Buffer (New England, BioLabs Inc.) (Appendix B) was first 

mixed with 5μl of DNA samples. The mixture was then loaded onto 1% agarose gel 

(Appendix B) pre-stained with 1μg /ml ethidium bromide. The gel was run in 1X TBE 

Buffer (Appendix B) for 40 minutes at 100V or until the dye had migrated at least 6.0 

cm. Electrophoresis was carried out using Wide Mini Horizontal Gel Electrophoresis 

System (Major Science, USA) with Power Pac 300 (Bio-Rad, USA). The PCR products 

were analysed along with 100bp DNA Ladder (New England, BioLabs Inc.). The gel 

was then viewed using AlphaImager 2200 Gel Documentation System (Alpha Innotech, 

USA). 

 

3.2.4.4 Purification of PCR products 

            The purification of PCR products was performed using GFX PCR DNA and Gel 

Band Purification Kit (Amersham Biosciences, USA). 300 μl Capture Buffer (Appendix 

C) was added to 300mg of agarose gel slice in a 1.5ml microcentrifuge tube. The tube 

was mixed by vortexing vigorously prior to incubation at 60oC for 5 minutes. The 

dissolved gel was then transferred to the GFX column and placed at room temperature 

for a minute. Following this step, the column was centrifuged at full speed for 30 

seconds. The flow-through collected was discarded and the collection tube was reused. 

500μl of Wash Buffer (Appendix C) was added to the column. Similarly, the tube was 

spun at full speed for 30 seconds. The GFX column was then placed in a fresh 1.5ml 

microcentrifuge tube. 50μl of autoclaved distilled water was applied directly to the glass 

fiber matrix in the column. After l minute, the column was centrifuged at full speed for 

a minute to recover the purified DNA. 
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3.2.4.5 Confirmation of scFv gene by Southern hybridization 

            The specific probe used to hybridize the transgene was labeled according to 

instructions in the DIG DNA Labeling and Detection Kit (Roche) manual. As the first 

step, 15μl of purified DNA plant sample and 15μl Control Labeling Reaction (Appendix 

D) were denatured by heating in boiling water bath for 10 minutes then cooled down 

immediately on ice. Following this, 2μl of Hexanucleotide Mix, 2μl of dNTP Labeling 

Mix and 1μl of Klenow enzyme were mixed into the denatured probe and control DNA. 

The mixtures were incubated overnight at 37oC. The reaction was stopped by heating 

the mixture to 65oC for 10 minutes 

             To quantify the labeled probes, a series of dilutions of DIG-labeled DNA was 

applied to a Hybond-N+ nylon membrane (Amersham Biosciences, USA), with defined 

dilutions of DIG-labeled control DNA as standards. The nucleic acids on the membrane 

were fixed with 1.5 J/cm2 UV light for 3 minutes. The membrane was then transferred 

into a container containing 20ml Maleic Acid Buffer (Appendix D) and incubated by 

gently shaking at room temperature for 2 minutes. It was then incubated with agitation 

in 10ml Blocking Solution (Appendix D) for 30 minutes. Next, the membrane was 

placed in 10ml Antibody Solution (Appendix D) for 30 minutes. It was then washed 

twice, each for 15 minutes. Finally the membrane was equilibrated for 5 minutes in 

Detection Buffer (Appendix D) prior to incubation in the dark with freshly prepared 

Color-substrate solution (Appendix D). The reaction was stopped when the desired spot 

intensity was achieved.  

             Total genomic DNA was first digested with Hha 1 /Nco 1 /Pml 1 restriction 

enzymes (New England BioLabs) according to the manufacturer’s protocol before being 

separated on agarose gel.  Electrophoresis of DNA samples was then carried out 

together with DIG-labeled DNA Molecular Weight Marker as standards, for 40 minutes 
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at 100V.  To avoid uneven background problems, ethidium bromide was not used 

during the preparation of agarose gel. 

              Next, the gel was agitated in Depurination Solution (Appendix D) for 10 

minutes, until the bromophenol blue dye turned yellow. The Depurination Solution was 

then discarded and the gel was rinsed 2 times with distilled water. After this, the gel was 

immersed in Denaturation Solution (Appendix D) with constant shaking for 30 minutes 

to return the bromophenol to blue color. Again, the solution was discarded and the gel 

was washed with distilled water several times. It was then placed in Neutralization 

Solution (Appendix D) for 30 minutes with agitation.  

              The DNA transfer process was carried out immediately. Southern blot was set 

up as described in the following passage. A pre-wetted Hybond-N+ nylon membrane 

(Amersham Biosciences, USA) was immersed into 10X SSC Solutions (Appendix D) 

for 10 minutes before being placed on top of the gel. Previously, the gel was 

equilibrated for at least 10 minutes in 20X SSC (Appendix D).  A container with a glass 

plate supporting platform was filled with 20X SSC. A soaked Whatman paper was 

placed atop the glass plate, functioning as a wick resting in 20X SSC. The gel was 

placed atop of the wick, with the membrane placed over it. The blot assembly was 

completed with 3 sheets of soaked Whatman 3MM paper, a stack of paper towels, a 

glass plate, and a 500g weight. The blot was left overnight at room temperature. Upon 

completion, the membrane was fixed with 1.5J/cm2 UV light for 3 minutes and was 

used immediately for prehybridization. 

              10ml of DIG Easy Hyb (Roche) solution in hybridization tube was preheated to 

68oC in a hybridization oven. The membrane in the DIG Easy Hyb solution was also 

pre-hybridized at 68oC with gentle agitation for 30 minutes. Approximately 25ng/ml of 

DIG-labeled DNA probe was denatured by boiling for 5 minutes and cooled rapidly in 

ice. The denatured probe was then mixed to the pre-warmed DIG Easy Hyb. The pre-
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hybridization solution containing the membrane was discarded and replaced with the 

probe/hybridization mixture. The membrane was then incubated overnight with gentle 

shaking at 68oC. After the hybridization step, the membrane was washed 2 times, each 

time for 5 minutes with 2X SSC/0.1% SDS (Appendix D), at room temperature. Next, 

the membrane was washed twice again, each time for 15 minutes in 0.5X SSC 

(Appendix D) at 68oC before undergoing immunological detection.  

           All the incubation steps described in the following passage were performed at 

room temperature with gentle agitation. Immediately after the stringency washes, the 

membrane was rinsed briefly in Washing Buffer (Appendix D). Next, the membrane 

was incubated for 30 minutes in Blocking Solution (appendix D), followed by 30 

minutes in Anti-DIG-AP Conjugation solution (Appendix D). The membrane was then 

washed 2 times for 15 minutes with Washing Buffer (Appendix D). The membrane was 

equilibrated 3 minutes in Detection Buffer (Appendix D) before incubation in the dark 

using freshly prepared Color-substrate Solution. (Appendix D). The process took 16 

hours to complete. The reaction was stopped with distilled water when the desired 

bands were obtained.  

              

3.2.4.6 Total RNA extraction from transgenic tobacco plants 

           The isolation of RNA from plant tissues was performed using RNeasy○
R
 Plant 

Mini Kit (QIAGEN). All apparatus and glassware used in this experiment were treated 

with DEPC water. 100mg of plant material were ground in liquid nitrogen and 

transferred to 1.5ml microcentrifuge tube. 450µl of Buffer RLT (with β-

mercaptoethanol) was added immediately to the tissue powder. The mixture was then 

mixed by vortexing vigorously. The lysate was transferred to QIAshredder spin column 

sitting in a 2ml collection tube before undergoing centrifugation for 2 minutes at full 

speed. The flow through was then transferred to a 1.5ml microcentrifuge tube. To the 
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cleared lysate, 0.5 volume of absolute ethanol (Sigma-Aldrich, USA) was added and 

mixed by pipetting. 650µl of the sample was transferred to an RNeasy Mini spin column 

sitting in a 2ml collection tube and centrifuged for 15 seconds at 10,000rpm. The flow 

through was discarded. Next, 700μl Buffer RW1 was added to the spin column and 

centrifuged at 8000rpm for 15 seconds. The flow through was discarded. 500μl buffer 

RPE was added to the spin column twice. Both were centrifuged at 8000rpm for 15 

seconds and 2 minutes, respectively. The spin column was centrifuged again for a 

minute at full speed to dry the membrane before being placed in a 1.5ml 

microcentrifuge tube. Finally, 50μl RNase-free water was added directly to the spin 

column membrane and centrifuged for 1 min at 8000rpm to elute the RNA.   

 

3.2.4.7 Detection of transcribed scFv gene by Reverse Transcription (RT-PCR)  

            RT-PCR was performed to detect the transcription level of transgene in the 

tobacco plants. The generation of cDNA from total RNA was carried out according to 

the protocol stated in TaqMan® Reverse Transcription Reagents (Invitrogen™).  A 

master mix with a total volume of 10μL was prepared. It consisted of 2μg of template 

RNA, 1x Taqman RT buffer, 5.5 mM MgCl2, 500μM of each dNTP, 2.5μM random 

hexamers, 0.4U/μL of RNase inhibitor, 1.25U/μL of Reverse Transcriptase and RNase-

free water. The mixture was mixed gently, followed by being briefly spun before 

incubation in the thermacycler. A pre-incubation step for 5 minutes at 25oC was carried 

out to maximize the primer-RNA template binding. Reverse transcription was then 

performed at 48oC for 30 minutes. Finally, the reaction was inactivated at 95oC for 5 

minutes. The cDNAs were used as templates for subsequent PCR reactions.  
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3.2.4.8 Total protein extraction from transgenic plants 

           1g of tobacco leaves were homogenized in liquid nitrogen. 10ml ice-cold PBS 

buffer was added to the samples upon transfer to a 15ml centrifuge tube (BD, FalconTM, 

USA). Following incubation on ice for 20 minutes, centrifugation was performed at 

14,000rpm for 20 minutes at 4oC. The supernatant was transferred to a 50ml centrifuge 

tube (BD, FalconTM, USA) and 3V of ice-cold acetone was added into it. The mixture 

was incubated overnight at -20oC prior to centrifugation at 14,000rpm for 30 minutes at 

4oC. The supernatant was discarded and the pellet was dried. 1ml of ice-cold PBS buffer 

was added to dissolve the protein pellet. 

 

3.2.4.9 Sodium Dodecyl Sulfate Polyacrylamide Gel (SDS-PAGE) Electrophoresis          

            and Staining  

            SDS-PAGE gel with 12% resolving gel (Appendix E) and 4% stacking gel 

(Appendix E) were prepared according to standard protocol in Mini-PROTEAN○R Cell 

(Bio-Rad, USA). Samples in Sample Buffer (pre-added β-mercaptoethanol) (Appendix 

E) were denatured by heating at 100oC for 4 minutes and cooled immediately on ice 

before being loaded into sample wells. The samples to be separated, together with 5μl of 

the Broad Range protein marker (New England Biolabs), were run in 1X SDS Running 

Buffer (Appendix E) at 180V for 50 minutes. Following electrophoresis, the gel was 

placed in a container covered with Fixing Solution (Appendix E) and shaken for 2 hours 

at room temperature. The Fixing solution was then poured off and replaced with 

Coomassie blue staining solution (Appendix E). Again, the gel was incubated by 

shaking for 2 hours at room temperature.  Next, the gel was immersed in Destaining 

solution (Appendix E) until the bands on gel were clearly visible. Finally, the gel was 

viewed using AlphaImager 2200 Gel Documentation System (Alpha Innotech, USA).  
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3.2.4.10 Western blot 

             The samples previously separated by polyacrylamide electrophoresis, together 

with Kaleidoscope Prestained standards (Bio-Rad), were transferred to a Hybond-P 

polyvinylidene difluoride (PVDF) membrane (Amersham Biosciences, USA). The 

membrane which was pre-wetted with distilled water, gel, Whatman filter paper and 

fiber pads were soaked in Transfer Buffer (Appendix F) for 30 minutes. The gel 

sandwich in the cassette was set up according to the instructions stated in the Mini 

Trans-Blot® Electrophoretic Transfer Cell (Bio-Rad).  Ice-cold Transfer Buffer 

(Appendix F) was then added into the tank and the blotting process was carried out at 

100V for an hour with constant stirring. Upon completion, the membrane was immersed 

in Blocking Solution (Appendix F) for an hour accompanied with gentle shaking at 

room temperature. Following that, the membrane was washed 3 times, each for 5 

minutes with TBS-T (Appendix F). The membrane was then incubated by shaking for 

an hour at room temperature using Blocking Solution (Appendix F) containing anti-

FLAG○R antibody (Sigma-Aldrich). Again, the membrane was washed 3 times, each for 

5 minutes with TBS-T. For detection, the membrane was immersed in blocking Solution 

(Appendix F) with Alkaline Phosphatase (AP) conjugated anti-mouse IgG (Promega) 

for an hour at room temperature with agitation. 5 times washing with PBS-T (Appendix 

F) was carried out, each for 5 minutes. Finally, the membrane was developed using 

BCIP/NBT Colour Development solution (Promega) (Appendix F). The reaction was 

stopped with distilled water when the bands on the membrane became visible.  

 

3.2.4.11 Dot blot 

            5μl of sample was spotted slowly on the pre-wetted Hybond-P polyvinylidene 

difluoride (PVDF) membrane (Amersham Biosciences, USA) and allowed to dry at 

room temperature. The membrane was then incubated in Blocking Solution containing 
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CMV CP probe for an hour with gentle shaking. After washing 3 times (5 minutes each) 

with TBS-T buffer, the membrane was immersed into Blocking Solution with anti-

FLAG○R antibody (Sigma-Aldrich) for 30 minutes. The membrane was washed again as 

described previously. Then Alkaline Phosphatase (AP) conjugated anti-mouse IgG 

(Promega) was added into blocking solution which covered the membrane for 30 

minutes. Next, washing was done 3 times, 10 minutes each time with TBS-T buffer.  

Finally, the membrane was incubated in BCIP /NBT solution for colour development. 

The reaction was stopped by distilled water. All the steps described were performed at 

room temperature. 

 

3.2.4.12 ELISA 

             ELISA (enzyme-linked immunosorbent assay) was carried out to study the 

antibody-antigen specific recognition and interaction to detect the target proteins. The 

following details the protocol according to the instructions in the Agdia Reagent Set 

(Agdia, USA). 100μl anti-CMV coating antibody (Agdia, USA) was diluted (1:1000) in 

coating buffer (Appendix G) and coated in the walls of a 96-well microtiter plate 

(Costar). The plate was incubated in a humid box overnight at 4oC.  After this, the wells 

were emptied and then filled to overflowing with 1X PBST solution (Appendix G). This 

step was repeated 7 times. After washing, the plate was held upside down for drying on 

towel paper. 100μl blocking solution (Appendix G) was then added to all wells and 

incubated in a humid box at room temperature for an hour. Plant samples from infected 

plants were ground using general extraction buffer (Appendix G) at a ratio of 1:10 

(tissue weight: buffer volume). 100μl of prepared extracts, 100μl of positive control 

(Agdia, USA), 100μl of negative control (Agdia, USA) and 100μl of extraction buffer 

were dispensed into designated wells, respectively. The sealed plate was set aside in a 

humid box at room temperature for 2 hours. After washing for 8 times with 1X PBST 
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(Appendix G), the plate was dried as previously described. Next, 100μl of prepared anti-

CMV alkaline phosphatase enzyme conjugate in ECI buffer (1:1000) (Appendix G) was 

dispensed into each well and the sealed plate was incubated in a humid box at room 

temperature for 2 hours. The washing steps were performed as described earlier. 

Following that, 100μl of PNP solution (Appendix G) was dispensed into each well and 

the plate was incubated in a humid box for an hour at room temperature. The reaction 

was stopped using 3M sodium hydroxide (50μl /well) (Appendix G) prior to 

measurement at wavelength 405nm using Fisher Scientific Multiskan® MCC/340 

Microplate Reader. 

 

3.2.5 Bioassay studies 

         Experiments were carried out at a greenhouse facility in the Malaysian 

Agricultural Research and Development Institute (MARDI), under the supervision of Dr 

Mohd. Roff.  

 

3.2.5.1 Growing the test plants 

           Transgenic and wild type tobacco seeds were sown in seedling trays containing 

humus rich soil. Upon germination, they were transferred to individual flowering pots. 

All test plants were grown in a greenhouse and watered twice daily. Inoculations were 

performed when they were at 4 leaves stage.  

 

3.2.5.2 Procedure for mechanical inoculation 

            To prepare virus inoculums, approximately 5g of CMV-infected tobacco leaves 

were ground in 20ml 0.05M PBS (pH7.0) (Appendix H) in pre-chilled sterilized mortar. 

0.1% thioglycolic acid was added as a stabilizing agent.  The extract was filtered twice 

through cheesecloth. The suspension was then added with 1% (w/v) of 600-mesh 



56 
 

Carborundum. Healthy tobacco leaves were macerated and prepared as described 

previously for mock inoculation.      

            Immediately, the inoculums were applied on the surface of transgenic young 

leaves by rubbing softly with fingers. The inoculated leaves were then rinsed with 

distilled water. All test plants were placed in a green house. Control plants which were 

not rubbed with inoculums were grown separately under the same environment. 

 

3.2.5.3 Symptoms development and monitoring  

            All plants were monitored and observed for the development of virus symptoms. 

Leaf samples were collected from each plant at 20 days post-inoculation (DPI). They 

were evaluated for the presence of cucumber mosaic virus using ELISA. The inserted 

transgenes were also confirmed by PCR. 

 

3.2.6 Studies of protein-protein binding with Autodock 

3.2.6.1 Homology Modeling of anti-CMV scFv antibodies  

            The structures of VH chain and VL chain of scFv antibody together with 

cucumber mosaic virus were predicted via homology modelling method using SWISS-

MODAL program (Peitsch, M. C., 1995; Guex, N. and Peitsch, M. C., 1997; Schwede, 

et al., 2003; Arnold, K. et al., 2006; Kiefer, F. et al., 2009). This step prepared the 

molecules in pdb files to be used in docking experiments later.  

 

3.2.6.2 Autodock 

             In this study, the Autodock program package developed by Morris et al. (1998) 

was used to find possible binding sites on proteins. The docking experiments of the 

protein molecules were performed using AUTODOCK 4.2 software package introduced 

by Morris et al. (2009). The molecules were prepared according to the instructions in 
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AutoDockTools (ADT) written by Huey, R. and Morris, G. M. (2008). To begin with, 

the CMV (protein), scFv light chain (ligand 1) and scFv heavy chain (ligand 2) 

molecules were added with polar hydrogen atoms.  Next, the non-polar hydrogens were 

merged after the Gasteiger charges and atom types were assigned to both molecules. 

The resulting pdbqt files were saved and were subsequently worked on using AutoGrid 

and AutoDock. Calculation of affinity maps was done by AutoGrid after parameters 

were set. Both ligands were set to be rotatable prior to being run on AutoDock. Docking 

was performed using Lamarckian Genetic Algorithm (LGA) and local search methods. 

Initially, a hundred searches of blind docking with the protein molecule were performed 

on heavy and light chains, respectively. Clustering histograms from both runs were 

analysed and the best 5 confirmations showing the lowest docked energy was chosen. 

Specific dockings were then performed based on the blind docking results. The detail 

process of Autodock is shown in Figure 3.1. The binding interactions were analysed 

using Viewelite 4.2 (Accelrys Software Inc). 
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Figure 3.1: Flow chart of protein-protein blind /specific docking with Autodock: 
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4.0 Results 

4.1 Generation of transgenic tobacco lines 

 

             Five T0 successfully transformed plants carrying anti-CMV scFv transgene and 

2 wild type Nicotiana tabacum L. cv. white burley plants were grown in an 

environmentally-controlled room with a temperature of 27oC and duration of 16-hour 

day length. The plants carrying the transgenes started to flower at about 5 months old 

and were allowed to self-pollinate. A total of 4,689 T1 generation seeds were collected 

from 5 T0 transgenic plant lines in a month. Of the 500 T1 seeds sown, 362 seeds were 

successfully germinated. Details of the seed germination rate in 5 different parental 

lines are presented in Table 4.1. 1,986 seeds were collected from 2 wild type tobacco 

plants which served as negative control plants (Table 4.2). An 87% successful 

germination rate in C1 control plants was observed.  Statistical analysis indicated that 

the germination rate for C1 control plants was significantly higher than T1 transgenic 

plants (Table 4.7).  

 

 

 

 

 

 

 

 

 

 

 



60 
 

Parental 

plant lines  

Total of T1 

seeds collected  

Total of T1 

seeds sown 

Total of T1 seeds 

germinated  

 Percentage 

germination 

T0A 968 100 71 71% 

T0B 873 100 76 76% 

T0C 954 100 68 68% 

T0D 987 100 77 77% 

T0E 898 100 70 70% 

Total 4,689 500 362 72% 

 

Table 4.1: T1 progenies resulting from 5 T0 transgenic plants expressing anti-CMV 

                 scFv antibodies 

 

 

 

Control  

Plant 

Total of C1 

seeds collected  

Total of C1 

seeds sown 

Total of C1 seeds 

germinated  

Percentage 

germination 

C10 975 15 12 80% 

C20        1,011 15 14 93% 

Total         1,986 30 26 87% 

 

  Table 4.2: Successfully germinated C1 wild type tobacco plants 
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4.2   Transgene inheritance in successive generations  

                          

          One hundred positive T1 transgenic plants from 5 different lines were allowed to 

grow and flower to produce the T2 generation. 25,581 T2 seeds were collected from 

these 100 positive T1 transgenic plants. Table 4.3 details the number of T2 seeds 

collected from 5 different T1 lines. 1,783 C2 seeds were collected from 2 C1 wild type 

tobacco plants which served as negative control plants (Table 4.4).  

           Of the 500 T2 seeds randomly picked and sown in soil, 360 T2 seeds were 

successfully germinated. Overall, 72% of T2 seeds and 93% of C2 seeds were 

successfully germinated, as detailed in Table 4.3 and Table 4.4 respectively. Unpaired t-

test was performed and a highly statistically significant P value of 0.0043 obtained 

(Table 4.7). The germination rate for the C2 control plants was significantly higher 

when compared to T2 transgenic plants. 
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Plant 

lines  

Total of 

positive T1 

transgenic 

plants grown 

to flower 

Total of T2 

seeds 

collected 

Total of T2 

seeds sown 

Total of  T2 

seeds 

germinated  

Percentage  

germination 

T1A 20 4,998 100 68 68% 

T1B 20 5,230 100 69 69% 

T1C 20 4,892 100 75 75% 

T1D 20 5,094 100 72 72% 

T1E 20 5,367 100 76 76% 

Total          100    25,581 500           360       72% 

 

Table 4.3: T2 progenies resulting from 5 T1 transgenic plant lines expressing anti-CMV 

                 scFv antibodies 

 

 

 

Control  

Plant 

Total of C2 seeds 

collected 

Total of C2 

seeds sown 

Total of C2 seeds 

germinated  

Percentage 

germination 

C11 866 15 13 87% 

C21 917 15 15 100% 

Total  1783 30 28 93% 

 

 Table 4.4: Successfully germinated C2 wild type tobacco plants 
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          A total of 100 positive T2 transgenic plants from 5 different lines were allowed to 

grow and flower to produce T3 generation (Table 4.5). 26,025 T3 seeds were collected 

from these self-pollinated T2 transgenic plants. 1,852 seeds were collected from 2 C2 

wild type tobacco plants which served as negative control plants, C3 (Table 4.6).  

          Of the 500 T3 seeds randomly picked and sown in soil, 356 T3 seeds were 

successfully germinated. Table 4.5 shows a germination rate of 71% for T3 seeds and 

90% for C3 control plants as shown in Table 4.6. Unpaired T test showed the two-tailed 

P value equals 0.0031 (Table 4.7). By conventional criteria, this difference between C3 

control plants and T3 transgenic plants is considered to be highly statistically significant.  
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Plant 

lines  

Total of 

positive T2 

transgenic 

plants grown 

to flower 

Total of T3 

seeds 

collected 

Total of T3 

seeds sown 

Total of  T3 

seeds 

germinated  

Percentage  

germination 

T2A 20 5,388 100 70 70% 

T2B 20 5,069 100 69 69% 

T2C 20 5,177 100 66 66% 

T2D 20 4,989 100 76 76% 

T2E 20 5,402 100 75 75% 

Total  100    26,025 500 356 71% 

 

Table 4.5: T3 progenies resulting from 5 T2 transgenic plant lines expressing anti-CMV 

                 scFv antibodies 

 

 

Control  

Plant 

Total of C3 seeds 

collected 

Total of C3 

seeds sown 

Total of C3 seeds 

germinated  

Percentage 

germination 

C12 909 15 13 87% 

C22 943 15 14 93% 

Total  1852 30 27 90% 

 

Table 4.6: Successfully germinated C3 wild type tobacco plants 
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Figure 4.1: Summary of seed germination percentage for T1, T2, T3 and control plants 

 

 

 

            As presented in Figure 4.1, higher seed germination rates for wild type tobacco 

plants was achieved as compared to putative transgenic plants for all 3 generations. 

Statistical analysis was performed using GraphPad Software and the details are shown 

in Table 4.7.          

            The details of seed germination rate in 3 generations for individual parental 

lines are illustrated in Figure 4.2 and Figure 4.3. Line T0D in general achieved the 

highest germination percentage amongst all 3 generations. 
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Table 4.7: Unpaired t test results of T1, T2 and T3 compared with control plants 

 

(A) 

 T1 C1 

Total Event Numbers 

Mean Event (Average) 

Standard deviation 

Variance (Standard deviation) 

5 

0.724 

0.03912 

0.00153 

2 

0.865 

0.09192 

0.00845 

 
P value and statistical significance:  

  The two-tailed P value equals 0.0262 

  By conventional criteria, this difference is considered to be statistically significant.  

Confidence interval: 
  The mean of T1 minus C1 equals -0.1410000 

  95% confidence interval of this difference: From -0.2571013 to -0.0248987  

Intermediate values used in calculations: 
  t = 3.1219, df = 5 

  standard error of difference = 0.045  

 
 

 T2 C2 

Total Event Numbers 

Mean Event (Average): 

Standard deviation 

Variance(Standard deviation): 

5 

0.72 

0.03536 

0.00125 

2 

0.935 

0.09192 

0.00845 

 
P value and statistical significance:  

  The two-tailed P value equals 0.0043 

  By conventional criteria, this difference is considered to be very statistically significant.  

Confidence interval: 
  The mean of T2 minus C2 equals -0.2150000 

  95% confidence interval of this difference: From -0.3265492 to -0.1034508  

Intermediate values used in calculations: 
  t = 4.9545, df = 5 

  standard error of difference = 0.043  

 
 

 T3 C3 

Total Event Numbers 

Mean Event (Average): 

Standard deviation 

Variance(Standard deviation): 

5 

0.712 

0.04207 

0.00177 

2 

0.9 

0.04243 

0.0018 

 
P value and statistical significance:  

  The two-tailed P value equals 0.0031 

  By conventional criteria, this difference is considered to be very statistically significant.  

Confidence interval: 
  The mean of T3 minus C3 equals -0.1880000 

  95% confidence interval of this difference: From -0.2786355 to -0.0973645  

Intermediate values used in calculations: 
  t = 5.3320, df = 5 

  standard error of difference = 0.035  
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Figure 4.2: Percentage of seed germination in 3 generations for individual parental  

                  lines 

 

 

 

 
 

Figure 4.3: Percentage of seed germination in individual parental lines for 3  

                  generations 
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4.3 Phenotyping of transgenic tobacco plants 

 

              All test plants were observed daily. The mature transgenic plants did not show 

any morphological differences compared to the wild tobacco plants. First generation of 

wild type tobacco plants are shown in Figure 4.4. Figure 4.5 shows T1 putative 

transgenic plants at 3 months old and figure 4.6 illustrates the T2 generation at 2 months 

old.  

 

 

 

             Figure 4.4:  T1 wild type Nicotiana tabacum L. cv. white burley grown  

                                 in different containment areas under the same environmental  

                                 condition 
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                    Figure 4.5: Healthy putative T1 generation transgenic plants 

 

 

 

    Figure 4.6: The development of different putative T2 transgenic lines in growth room 
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        The flowering time of all test plants was recorded when the first open flower 

appeared. A delayed flowering phenomenon was observed in transgenic plants as 

compared to control plants. The control plants started to flower at about 4 months old. 

The plants carrying the transgenes showed first open flower at about 5 months old 

(Figure 4.7).  

 

 

                        Figure 4.7:  T1 transgenic plant flowering at 5 months old  

 

   

           The flowering time for 5 parental lines in 4 generations are recorded in Table 4.8. 

Table 4.9 shows the flowering time for control plants. The details of flowering time 

across generations are recorded in Table 4.11. Unpaired t-test results yielded a two-

tailed P value of less than 0.0001 in all 4 generations (Table 4.10). By conventional 

criteria, the flowering time difference between transgenic plants and control plants is 

considered to be highly statistically significant. Figure 4.8 illustrates the flowering time 

of transgenic plants and control plants for 4 generations. 
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 Days until first flower 

Parental line T0A T0B T0C T0D T0E Mean 

T0 test plants 150 153 151 152 150 151 

T1 test plants 150 150 149 150 149 150 

T2 test plants 154 155 155 156 157 155 

T3 test plants 158 159 158 158 159 158 

 

Table 4.8: Summary of flowering time for transgenic plants 

 Days until first flower 

Parental line C1 C2 Mean  

C0 test plants 123 124 124 

C1 test plants 121 120 121 

C2 test plants 120 121 121 

C3 test plants 120 123 122 

 

Table 4.9: Summary of flowering time for control plants 

 

 

 

 

Figure 4.8: Flowering time of transgenic plants compared to control plants 
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Table 4.10: Unpaired t test results of transgenic plants compared to control plants 

 

(A) Parental  test plants 

 T0 C0 

Total number events 

Mean events 

Standard deviation  

Variance (Standard deviation) 

5 

151 

1.30384 

1.7 

2 

124 

0.70711 

0.5 

 

P value and statistical significance:  

  The two-tailed P value is less than 0.0001 

  By conventional criteria, this difference is considered to be highly    

  statistically significant.  

 

Confidence interval: 
  The mean of T0 minus C0 equals 27.0000000 

  95% confidence interval of this difference: From 24.4012953 to    

  29.5987047  

 

Intermediate values used in calculations: 
  t = 26.7078, df = 5 

  standard error of difference = 1.011  

 

(B) T1 and C1 test plants  

 

 T1 C1 

Total number events 

Mean events 

Standard deviation  

Variance (Standard deviation) 

5 

150 

0.54774 

0.3 

2 

121 

0.7071 

0.5 

 

 

P value and statistical significance:  

  The two-tailed P value is less than 0.0001 

  By conventional criteria, this difference is considered to be highly    

  statistically significant.  

 

Confidence interval: 
  The mean of T1 minus C1 equals 29.0000000 

  95% confidence interval of this difference: From 27.8417803 to  

  30.1582197  

 

Intermediate values used in calculations: 
  t = 64.363,  df = 5 

  standard error of difference = 0.451  
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(C) T2 and C2 test plants 

 

 T2 C2 

Total number events 

Mean events 

Standard deviation  

Variance (Standard deviation) 

5 

155 

1.14018 

1.3 

2 

121 

0.7071 

0.5 

 

P value and statistical significance:  

  The two-tailed P value is less than 0.0001 

  By conventional criteria, this difference is considered to be highly   

  statistically significant.  

 

Confidence interval: 
  The mean of T2 minus C2 equals 34.0000000 

  95% confidence interval of this difference: From 31.7545912 to  

  36.2454088  

 

Intermediate values used in calculations: 
  t = 38.9238, df = 5 

  standard error of difference = 0.874 

 

(D) T3 and C3 test plants 

 

 

 T2 C2 

Total number events 

Mean events 

Standard deviation  

Variance (Standard deviation) 

5 

158 

0.54772 

0.3 

2 

122 

2.12132 

4.5 

 

P value and statistical significance:  

  The two-tailed P value is less than 0.0001 

  By conventional criteria, this difference is considered to be highly  

  statistically significant.  

 

Confidence interval: 
  The mean of T3 minus C3 equals 36.0000000 

  95% confidence interval of this difference: From 33.7036797 to  

  38.2963203  

 

Intermediate values used in calculations: 
  t = 40.2997, df = 5 

  standard error of difference = 0.893  
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Table 4.11: Flowering time for transgenic plants 

(A) 

 

Parental line 

T1 test 

plants 

Days until first flower  

T1A T1B T1C T1D T1E 

1 149 153 145 149 148 

2 150 147 151 151 150 

3 149 146 149 147 151 

4 148 151 146 149 149 

5 153 152 150 153 149 

6 152 151 150 152 150 

7 155 147 151 150 148 

8 146 149 145 149 148 

9 146 150 148 146 149 

10 148 153 149 150 149 

11 145 153 149 152 149 

12 151 148 150 147 151 

13 150 149 152 150 150 

14 146 151 149 150 150 

15 152 147 151 154 149 

16 154 150 152 153 150 

17 151 150 151 150 149 

18 147 151 149 148 151 

19 153 153 150 151 148 

20 150 152 150 148 148 

 

 

 

 Days until first flower 

Parental line 

C1 Test plants 

C11 C21 

1 119 120 

2 123 120 

3 120 122 

4 119 118 

5 124 121 

6 120 119 

7 118 119 

8 119 117 

9 125 121 

10 119 123 
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 (B) 

 

Parental line 

T2 Test plants 

Days until first flower 

T2A T2B T2C T2D T2E 

1 155 156 155 157 158 

2 153 155 151 155 157 

3 156 156 157 157 159 

4 150 153 158 158 159 

5 153 154 154 153 158 

6 155 153 157 156 157 

7 155 157 155 154 158 

8 152 153 155 157 154 

9 158 156 158 156 156 

10 156 153 154 155 155 

11 153 156 152 155 159 

12 154 153 156 157 154 

13 156 154 154 155 155 

14 150 156 155 156 156 

15 152 157 152 154 158 

16 154 153 156 155 157 

17 153 152 158 158 154 

18 155 156 153 158 157 

19 153 153 152 154 158 

20 152 155 156 155 158 

 

 

 

 Days until first flower 

Parental line 

C2 test plants 

C12 C22 

1 118 122 

2 120 121 

3 120 123 

4 117 119 

5 122 121 

6 121 120 

7 120 124 

8 119 117 

9 123 118 

10 122 124 
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(C) 

 Days until first flower  

Parental line 

T3 test 

plants 

T3A T3B T3C T3D T3E 

1 160 158 155 159 162 

2 156 157 155 161 157 

3 159 156 159 157 161 

4 158 161 156 160 159 

5 157 162 160 156 159 

6 160 161 160 157 160 

7 155 157 156 160 159 

8 156 159 155 159 160 

9 156 160 158 156 155 

10 158 155 159 157 158 

11 158 155 159 155 159 

12 159 158 160 157 156 

13 154 159 159 160 160 

14 161 157 156 159 159 

15 159 157 161 154 159 

16 157 160 162 158 155 

17 156 160 154 158 159 

18 157 161 159 160 161 

19 159 159 160 157 160 

20 160 162 157 158 158 

 

 

 Days until first flower 

Parental line 

C3 test plants 

C13 C23 

1 118 123 

2 117 119 

3 121 122 

4 119 124 

5 120 124 

6 122 123 

7 120 125 

8 119 121 

9 123 123 

10 120 125 
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4.4 Genomic DNA extraction of transgenic plants 

 

            Genomic DNA extraction was successfully performed using QIAGEN DNeasy 

Plant Mini Kit. Figure 4.9 shows the quality of genomic DNA extracted from the T0 

primary transformant plants and wild type tobacco plants on 1% agarose gels. Genomic 

DNA of T1, T2 and T3 putative transgenic plants are detailed in Figures 4.10, 4.11 and 

4.12 respectively. 

 

 

 

 

                                           1      2     3     4     5     6     7 

                                                                                      

                              Figure 4.9: Genomic DNA of T0 putative transgenic  

                                                                           plants and wild type tobacco plants 

 

 

 

 

 

 

 

 

Land 1: T0A 

Lane 2: T0B 

Lane 3: T0C 

Lane 4: T0D 

Lane 5: T0E 

Lane 6, 7: T0 control plants 
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                 Figure 4.10: Genomic DNA of T1 putative transgenic plants and control plant 

 

 

 

    

      Figure 4.11: Genomic DNA of T2 putative transgenic plants and control plant 

 

 

                                            1    2   3    4    5    6    7    8    9   10   11  12  13  14 15  16  17  18  19  20 

Lane 1: T1 control plant 

Lane 2- 20: T1A1  – T1A19 

 

   27 28 29 30 31 32 333435 36 37 38 39 40 4142 43 44 45 46 47 48 49 

    1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26   

Lane 1: T2 control plant 

Lane 2- 26: T2A putative transgenic plants 

Lane 27 – 49: T2B putative transgenic plants 
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  Figure 4.12: Genomic DNA of T3 putative transgenic plants and control plant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     1    2    3     4      5     6     7     8     9   10    11   12    13   14 

Lane 1: T3 control plant 

Lane 2-14: T3A putative transgenic plants 
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4.5 Detection of scFv transgene by PCR 

          

            PCR analysis was carried out with scFv forward (5’-GTG CAG CTG CAG 

GAG TCA GCA ACT- 3’) and scFv reverse (5’-CCG TTT GAG CTC CAG CTT GGT 

GCC-3’) primers respectively. All reactions were replicated to reconfirm the results. 

The genomic DNA of wild type plant was isolated and used in PCR analysis as negative 

control. A blank control containing all the elements of a typical PCR reaction but 

containing only distilled water as DNA sample was also used. 

            For the positive control, pure plasmid pUMSCFV-CMV1 was isolated and used. 

Figure 4.13 (A) outlines the vector. After double digestion using Nco 1 and Pml 1 

endonucleases, the Gus second exon cassette was removed and replaced with anti-CMV 

scFv fragment to form pUMSCFV-CMV1 construct. The expected size ~797 bp of PCR 

products amplified using scFv forward and scFv reverse primers as shown in (B). 

Figure 4.16 demonstrates the presence of transgene in the positive control samples.      

           PCR analysis confirmed the presence of the transgene in T0, T1 and T2 transgenic 

plants with an expected ∼797 bp DNA fragment (Figure 4.14). PCR analysis of T3 

transgenic plants detected positive by scFv primers is shown in Figure 4.15.  
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Figure 4.13: pCAMBIA 1301 vector and pUMSCFV-CMV1 Construct and PCR 

analysis of inserted anti-CMV scFv. 

 (A)          

 

 

(B)  

 

 

 

 

 

 

 

 

 

 

Source: Chua, 2002  

 

Primer scFv reverse Primer scFv forward 

Inserted anti-CMV scFv 

             ~ 797bp 

pUMSCFV-CMV1 
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                                                                          0     1      2      3     4     5     6     7     8 

 

 

 

   

                                                                         

Lane 0: 100 bp DNA ladder            

Lane1: positive control 

Lane 2: negative control 

Lane 3: T0 sample 

Lane 4: blank control 

Lane 5, 6: T1 samples   

Lane 7, 8: T2 samples       

                                                                             

                                                  

                                            Figure 4.14: PCR analysis of T0, T1 and T2 transgenic plants 

    

 

                  

 

 

 

 

~797 bp 

   Figure 4.15: PCR analysis of T3 transgenic plants 

~797 bp 

   0       1        2        3       4       5       6             

1k bp 

 500 bp 

Lane 0: 100 bp DNA ladder           

Lane 1: positive control 

Lane 2: negative control 

Lane 3: blank control 

Lane 4-6: T3 samples   

  

  500 bp 

      1k bp 
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                                                         A1      A2       C      B1      B2 

                                                       

              Figure 4.16: The presence of scFv transgene in the positive control samples 

A1 and A2: Plasmid isolation of E. coli H215 containing pUMSCFV-CMV1  

B1 and B2: scFv transgenes in E. coli H2151  

C: 100 bp DNA ladder    

                                                                           

 

           It was observed that in the selected transgenic lines, 797 bp of scFv fragments 

were amplified as expected and this showed that scFv transgenes have been successfully 

integrated and inherited into the genome of selected T1, T2 and T3 lines. Table 4.12 

summarizes the percentage of detectable anti-CMV scFv transgenes in transgenic 

primary transformant and progenies. 58% of T1 tobacco plants were detected positive 

with an expected ∼797 bp DNA fragment using scFv primers.  In T2 transgenic plants, 

64% were found positive and 53% of T3 transgenic plants were confirmed to be carrying 

the anti-CMV scFv gene. All wild type tobacco plants did not show the presence of 

transgene. The summary of detectable gene via PCR in 4 generations is presented in 

Figure 4.17. The details of the PCR analysis of T1, T2 and T3 transgenic plants are 

tabulated in Table 4.14.  

 

~797 bp 
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Generation  

 

Number of 

plants  

analysed 

          

PCR analysis 

 

     

Percentage  Positive Negative 

T0 5 5 0 100% 

T1 362 211 151 58% 

T2 200 127 73 64% 

T3 100 53 47 53% 

Total  667 396 271 59% 

 

Table 4.12: Summary of PCR analysis of scFv in transgenic primary transformant and  

                   progenies  

 

 

 

 
 

Figure 4.17: Summary of detectable gene via PCR in 4 generations 
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          The inheritance of transgene over the generations is presented in Figure 4.18 and 

Figure 4.19. In general, we observed the lowest detectable percentage via PCR in line 

T0A for 3 generations. Line T0E appeared to be the most promising line with the highest 

percentage for detectable gene (Table 4.13). 

 

 

 Percentage anti-CMV scFv transgene detected via PCR 

    Parental line 

Progenies 

 

T0A 

 

T0B 

 

T0C 

 

T0D 

 

T0E 

T1 44% 67% 47% 61% 71% 

T2 48% 64% 59% 74% 65% 

T3 47% 53% 53% 56% 55% 

 

Table 4.13: Summary of PCR analysis of scFv for Parental line T0A - T0B 
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Figure 4.18: Percentage of detectable gene via PCR for 5 parental lines  

                                   in 3 generations 

 

 

 

 
 

           Figure 4.19: Percentage of detectable transgene via PCR for 3 generations  

                               in 5 parental lines 
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Table 4.14: PCR analysis of progenies from parental lines T0A - T0E 

Parent 

Line 

T0A 

Anti-

CMV 

scFv 

Parent 

Line 

T0B 

Anti-

CMV 

scFv 

Parent 

Line 

T0C 

Anti-

CMV 

scFv 

Parent 

Line 

T0D 

Anti-

CMV 

scFv 

Parent 

Line 

T0E 

Anti-

CMV 

scFv 

T1A1 - T1B1 + T1C1 - T1D1 + T1E1 + 

T1A2 + T1B2 + T1C2 - T1D2 + T1E2 - 

T1A3 + T1B3 + T1C3 - T1D3 + T1E3 - 

T1A4 + T1B4 - T1C4 - T1D4 + T1E4 + 

T1A5 + T1B5 - T1C5 - T1D5 + T1E5 + 

T1A6 + T1B6 + T1C6 + T1D6 + T1E6 + 

T1A7 - T1B7 - T1C7 + T1D7 + T1E7 + 

T1A8 + T1B8 + T1C8 + T1D8 + T1E8 + 

T1A9 + T1B9 + T1C9 + T1D9 + T1E9 - 

T1A10 + T1B10 + T1C10 + T1D10 + T1E10 - 

T1A11 + T1B11 - T1C11 + T1D11 - T1E11 + 

T1A12 + T1B12 + T1C12 + T1D12 - T1E12 + 

T1A13 + T1B13 + T1C13 - T1D13 - T1E13 + 

T1A14 - T1B14 - T1C14 + T1D14 - T1E14 + 

T1A15 - T1B15 - T1C15 + T1D15 - T1E15 + 

T1A16 - T1B16 + T1C16 + T1D16 + T1E16 + 

T1A17 - T1B17 + T1C17 - T1D17 + T1E17 + 

T1A18 - T1B18 + T1C18 + T1D18 + T1E18 + 

T1A19 - T1B19 + T1C19 + T1D19 + T1E19 - 

T1A20 + T1B20 + T1C20 - T1D20 + T1E20 - 

T1A21 - T1B21 + T1C21 + T1D21 - T1E21 - 

T1A22 + T1B22 + T1C22 + T1D22 + T1E22 + 

T1A23 - T1B23 + T1C23 - T1D23 + T1E23 + 

T1A24 - T1B24 - T1C24 - T1D24 + T1E24 + 

T1A25 + T1B25 + T1C25 - T1D25 - T1E25 + 

T1A26 + T1B26 + T1C26 - T1D26 - T1E26 + 

T1A27 + T1B27 + T1C27 - T1D27 - T1E27 + 

T1A28 + T1B28 + T1C28 + T1D28 + T1E28 - 

T1A29 + T1B29 + T1C29 + T1D29 + T1E29 - 

T1A30 + T1B30 + T1C30 + T1D30 + T1E30 - 

T1A31 - T1B31 - T1C31 + T1D31 - T1E31 + 

T1A32 - T1B32 + T1C32 + T1D32 + T1E32 + 

T1A33 - T1B33 + T1C33 + T1D33 + T1E33 + 

T1A34 - T1B34 + T1C34 + T1D34 + T1E34 + 

T1A35 - T1B35 - T1C35 + T1D35 + T1E35 + 

T1A36 - T1B36 - T1C36 - T1D36 + T1E36 + 

T1A37 + T1B37 + T1C37 - T1D37 - T1E37 + 

T1A38 - T1B38 + T1C38 - T1D38 + T1E38 + 

T1A39 - T1B39 + T1C39 - T1D39 - T1E39 + 

T1A40 - T1B40 + T1C40 - T1D40 + T1E40 + 

T1A41 - T1B41 + T1C41 - T1D41 + T1E41 + 

T1A42 - T1B42 + T1C42 - T1D42 + T1E42 + 

T1A43 - T1B43 + T1C43 + T1D43 + T1E43 + 

T1A44 - T1B44 - T1C44 - T1D44 - T1E44 - 

T1A45 + T1B45 + T1C45 - T1D45 - T1E45 + 

T1A46 + T1B46 - T1C46 + T1D46 - T1E46 + 
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T1A47 + T1B47 + T1C47 - T1D47 - T1E47 + 

T1A48 + T1B48 - T1C48 + T1D48 - T1E48 + 

T1A49 + T1B49 - T1C49 - T1D49 - T1E49 + 

T1A50 + T1B50 + T1C50 - T1D50 - T1E50 + 

T1A51 - T1B51 - T1C51 - T1D51 - T1E51 - 

T1A52 - T1B52 + T1C52 + T1D52 + T1E52 + 

T1A53 - T1B53 + T1C53 + T1D53 + T1E53 + 

T1A54 - T1B54 - T1C54 - T1D54 - T1E54 - 

T1A55 - T1B55 - T1C55 + T1D55 - T1E55 + 

T1A56 + T1B56 + T1C56 + T1D56 + T1E56 - 

T1A57 - T1B57 - T1C57 - T1D57 + T1E57 + 

T1A58 - T1B58 - T1C58 - T1D58 + T1E58 + 

T1A59 - T1B59 + T1C59 + T1D59 - T1E59 - 

T1A60 - T1B60 + T1C60 + T1D60 + T1E60 + 

T1A61 - T1B61 + T1C61 - T1D61 + T1E61 + 

T1A62 + T1B62 + T1C62 - T1D62 + T1E62 + 

T1A63 + T1B63 + T1C63 + T1D63 + T1E63 + 

T1A64 + T1B64 + T1C64 - T1D64 + T1E64 - 

T1A65 - T1B65 + T1C65 - T1D65 + T1E65 + 

T1A66 + T1B66 + T1C66 - T1D66 - T1E66 - 

T1A67 - T1B67 - T1C67 - T1D67 - T1E67 - 

T1A68 - T1B68 - T1C68 - T1D68 - T1E68 - 

T1A69 - T1B69 +   T1D69 - T1E69 - 

T1A70 - T1B70 -   T1D70 + T1E70 - 

T1A71 - T1B71 -   T1D71 -   

  T1B72 +   T1D72 +   

  T1B73 +   T1D73 +   

  T1B74 -   T1D74 -   

  T1B75 -   T1D75 -   

  T1B76 +   T1D76 +   

      T1D77 +   

T2A2 - T2B1 + T2C6 + T2D1 - T2E1 + 

T2A3 + T2B2 + T2C7 + T2D2 + T2E4 - 

T2A4 + T2B3 - T2C8 + T2D3 - T2E5 - 

T2A5 - T2B6 + T2C9 - T2D4 + T2E6 + 

T2A6 - T2B8 + T2C10 - T2D5 + T2E7 + 

T2A8 - T2B9 + T2C11 + T2D6 + T2E8 + 

T2A9 - T2B10 - T2C12 + T2D7 + T2E11 + 

T2A10 + T2B12 + T2C14 + T2D8 + T2E12 + 

T2A11 + T2B13 - T2C15 - T2D9 + T2E13 - 

T2A12 + T2B16 + T2C16 + T2D10 - T2E14 - 

T2A13 + T2B17 - T2C18 - T2D16 - T2E15 + 

T2A20 + T2B18 - T2C19 + T2D17 + T2E16 - 

T2A22 - T2B19 + T2C21 - T2D18 - T2E17 + 

T2A25 + T2B20 - T2C22 + T2D19 + T2E18 - 

T2A26 - T2B21 - T2C28 + T2D20 + T2E22 + 

T2A27 + T2B22 + T2C29 - T2D22 + T2E23 + 

T2A28 - T2B23 + T2C30 + T2D23 - T2E24 + 

T2A29 + T2B25 + T2C31 - T2D24 - T2E25 - 

T2A30 + T2B26 + T2C32 + T2D28 + T2E26 + 
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+ anti-CMV scFv transgene detected 

-  anti-CMV scFv transgene not detected 

 

 

 

T2A37 - T2B27 - T2C33 - T2D29 + T2E27 + 

T2A45 + T2B28 - T2C34 + T2D30 + T2E31 - 

T2A46 + T2B29 - T2C35 + T2D32 - T2E32 - 

T2A47 - T2B30 + T2C43 + T2D33 + T2E33 + 

T2A48 - T2B32 + T2C46 + T2D34 + T2E34 + 

T2A49 - T2B33 + T2C48 - T2D35 + T2E35 + 

T2A50 - T2B34 + T2C52 + T2D36 + T2E36 - 

T2A56 - T2B37 + T2C53 - T2D38 + T2E37 + 

T2A62 - T2B38 + T2C55 - T2D40 - T2E38 - 

T2A63 - T2B39 - T2C56 + T2D41 + T2E39 + 

T2A64 + T2B40 - T2C59 - T2D42 - T2E40 + 

T2A66 + T2B41 - T2C60 - T2D43 + T2E41 - 

  T2B42 + T2C63 + T2D52 + T2E42 + 

  T2B43 +   T2D53 + T2E43 + 

  T2B45 -   T2D56 + T2E45 + 

  T2B47 +   T2D57 + T2E46 + 

  T2B50 -   T2D58 + T2E47 + 

  T2B52 -   T2D60 + T2E48 + 

  T2B53 +   T2D61 + T2E49 + 

  T2B56 +   T2D62 + T2E50 + 

  T2B59 +   T2D63 - T2E52 - 

  T2B60 +   T2D64 + T2E53 - 

  T2B61 +   T2D65 + T2E55 - 

  T2B62 +   T2D70 + T2E57 - 

  T2B63 +   T2D72 + T2E58 + 

      T2D73 + T2E60 + 

      T2D76 + T2E61 + 

      T2D77 -   

T3A3 + T3B1 + T3C6 - T3D2 - T3E1 + 

T3A4 + T3B2 - T3C7 - T3D4 + T3E6 + 

T3A10 + T3B6 + T3C8 - T3D5 + T3E7 + 

T3A11 - T3B8 - T3C11 - T3D6 + T3E8 - 

T3A12 - T3B9 + T3C12 - T3D7 - T3E11 - 

T3A13 - T3B12 + T3C14 - T3D8 - T3E12 - 

T3A20 + T3B16 - T3C16 + T3D9 - T3E15 + 

T3A25 + T3B19 + T3C19 + T3D17 + T3E17 + 

T3A27 + T3B22 - T3C22 + T3D19 + T3E22 + 

T3A29 - T3B23 - T3C28 + T3D20 + T3E23 - 

T3A30 - T3B25 - T3C30 + T3D22 + T3E24 - 

T3A45 + T3B26 + T3C32 - T3D28 + T3E26 - 

T3A46 - T3B30 + T3C34 + T3D29 + T3E27 - 

T3A64 - T3B32 + T3C35 - T3D30 - T3E33 + 

T3A66 - T3B33 - T3C43 - T3D33 - T3E34 - 

  T3B34 - T3C46 + T3D34 - T3E35 + 
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4.6 Confirmation of anti-CMV scFv transgenes by Southern Blot  

 

 

          A total of 155 transgenic plants were analysed by Southern Blot hybridisation to 

further confirm insertion of the anti-CMV scFv transgene. Anti-CMV scFv transgene 

was detected in 60% of transgenic plants from T0, T1, T2 and T3 generations (Table 

4.15). The detailed results of the Southern analysis are shown in Table 4.17. A higher 

detectable percentage was observed in T2 progenies as compared to T1 and T3 (Figure 

4.20). As for individual line performance, Line T0A was confirmed to have the lowest 

percentage which was consistent with the PCR analysis results. Line T0D achieved the 

highest percentage of detectable gene (Figure 4.21 and Figure 4.22). The details of the 

Southern analysis of T1, T2 and T3 transgenic plants are tabulated in Table 4.17. 

 

 

 

 

Generation  

 

Number of 

plants  

analysed 

          

Southern  analysis 

 

Percentage 

  
Detectable  Undetectable  

T0 5 5 0 100% 

T1 50 29 21 58% 

T2 50 33 17 66% 

T3 50 26 24 52% 

Total  155 93 62 60% 

 

Table 4.15: Summary of Southern Blot Hybridization analysis for T0, T1, T2 and T3   

                   transgenic plants 
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Figure 4.20: Summary of detectable gene via Southern Blot analysis in 4 generations 

 

 

  

 Percentage anti-CMV scFv transgene detected via Southern Blot 

    Parental line 

Progenies 

 

T0A 

 

T0B 

 

T0C 

 

T0D 

 

T0E 

T1 30% 50% 60% 70% 80% 

T2 40% 80% 60% 80% 70% 

T3 14% 64% 30% 73% 64% 

 

Table 4.16: Summary of Southern Blot analysis for Parental line T0A - T0B  
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                Figure 4.21: Percentage of detectable transgene via Southern analysis for  

                                     3 generations in 5 parental lines 

 

 

 

 

 

            
 

                 Figure 4.22: Percentage of detectable gene via Southern analysis for  

                                      5 parental lines in 3 generations 
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Table 4.17: Southern analysis of progenies from parental lines T0A - T0E 

 

 

+ anti-CMV scFv transgene detected 

- anti-CMV scFv transgene not detected 

 

 

 

 

Parent 

Line 

T0A 

Anti-

CMV 

scFv 

Parent 

Line 

T0B 

Anti-

CMV 

scFv 

Parent 

Line 

T0C 

Anti-

CMV 

scFv 

Parent 

Line 

T0D 

Anti-

CMV 

scFv 

Parent 

Line 

T0E 

Anti-

CMV 

scFv 

T1A2 + T1B1 - T1C6 - T1D1 + T1E1 + 

T1A3 + T1B2 + T1C7 - T1D2 - T1E4 + 

T1A4 - T1B3 + T1C8 - T1D3 - T1E5 - 

T1A5 - T1B6 + T1C9 + T1D4 - T1E6 + 

T1A6 - T1B8 - T1C10 + T1D5 + T1E7 + 

T1A8 - T1B9 + T1C11 + T1D6 + T1E8 + 

T1A9 - T1B10 - T1C12 - T1D7 + T1E11 + 

T1A10 + T1B12 + T1C14 + T1D8 + T1E12 + 

T1A11 - T1B13 - T1C15 + T1D9 + T1E13 - 

T1A12 - T1B16 - T1C16 + T1D10 + T1E14 + 

T2A3 + T2B1 + T2C6 + T2D2 + T2E1 + 

T2A4 + T2B2 + T2C7 + T2D4 + T2E6 + 

T2A10 - T2B6 - T2C8 - T2D5 + T2E7 + 

T2A11 + T2B8 - T2C11 - T2D6 - T2E8 - 

T2A12 - T2B9 + T2C12 - T2D7 - T2E11 + 

T2A13 - T2B12 + T2C14 + T2D8 + T2E12 - 

T2A20 - T2B16 + T2C16 + T2D9 + T2E15 + 

T2A25 + T2B19 + T2C19 + T2D17 + T2E17 - 

T2A27 - T2B22 + T2C22 - T2D19 + T2E22 + 

T2A29 - T2B23 + T2C28 + T2D20 + T2E23 + 

T3A3 - T3B1 + T3C16 - T3D4 + T3E1 + 

T3A4 + T3B6 + T3C19 + T3D5 + T3E6 + 

T3A10 - T3B9 + T3C22 - T3D6 + T3E7 - 

T3A20 - T3B12 - T3C28 - T3D17 - T3E15 + 

T3A25 - T3B19 - T3C30 - T3D19 + T3E17 + 

T3A27 - T3B26 + T3C34 + T3D20 - T3E22 - 

T3A45 - T3B30 + T3C46 - T3D22 + T3E33 + 

  T3B32 + T3C52 + T3D28 + T3E35 - 

  T3B37 - T3C56 - T3D29 - T3E39 + 

  T3B38 - T3C63 - T3D36   + T3E40 - 

  T3B42 +   T3D41 + T3E42 + 
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          Figure 4.23 (A) illustrates the total genomic DNA (2µg) of transgenic plant 

samples that were digested with Hha 1/Nco 1 /Pml 1 restriction enzymes. They were 

then separated on 1% agarose gel before being blotted to a positive charge nylon 

membrane. Southern hybridisation was done using DIG-labelled anti-CMV scFv probe. 

The expected ~ 797 bp fragment was detected in the transgenic plants as shown in 

Figure 4.23 (B). 

 

 

 

                                           1      2      3      4      5      6     7      8 

   
 

Figure 4.23 (A) Hha 1/Nco 1 /Pml 1 digested genomic DNA in test plants 

 

 

Lane 1: DIG- labelled marker VI  

Lane 2: Pure plasmid pUMSCFV-CMV1 (positive control) 

Lane 4, 5, 6 and 7: T0, T1, T2 and T3 transgenic samples 

Lane 8: Wild type tobacco (negative control) 

 

 

 

1033 bp 

  653 bp 
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 Figure 4.23 (B):  ~ 797 bp fragment detected via Southern Blot in the transgenic plants 

 

 

 

Lane 1: DIG- labelled marker VI  

Lane 2: Pure plasmid pUMSCFV-CMV1 (positive control) 

Lane 4, 5, 6 and 7: T0, T1, T2 and T3 transgenic samples 

Lane 8: Wild type tobacco (negative control) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1033 bp 

   653 bp 

       1      2     3      4      5      6      7      8 

 

797 bp 
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4.7 Detection of expressed anti-CMV scFv by Western Blot  

 

         

            The expressed plant-derived anti-CMV scFv antibodies were detected by 

Western Blot. Only 30% of the 155 transgenic plants were found to express anti-CMV 

antibodies to a detectable level over the 4 generations (Table 4.18). The percentage was 

reduced from 80% in T0 generation to 26% in T2 generation. We did not find detectable 

expressed gene in T3 generations for all 5 lines. Figure 4.24 represents the detectable 

percentage of antibody in T0, T1, T2 and T3 plants. The details of the results are 

tabulated in Table 4.20. From Figure 4.25 and Figure 4.26, we conclude that T0D is the 

best performing line. As expected, T0A had the lowest detectable percentage amongst 

the generations. Table 4.19 shows the summary of Western Blot results for Parental line 

T0A - T0E. 

 

 

 

 

Generation  

 

Number of 

plants  

analysed 

          

Western  analysis 

 

Percentage  

Detectable  Undetectable  

T0 5 4 1 80% 

T1 50 29 21 58% 

T2 50 13 37 26% 

T3 50 0 50 0% 

Total  155 46 109 30% 

 

Table 4.18: Summary of Western analysis for T0, T1, T2 and T3 transgenic plants 
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Figure 4.24: Summary of detectable gene via Western analysis in 4 generations 

 

 

 

 

 

 

 

 

 Percentage anti-CMV scFv transgene detected via Western Blot 

    Parental line 

Progenies 

 

T0A 

 

T0B 

 

T0C 

 

T0D 

 

T0E 

T1 30% 50% 60% 80% 70% 

T2 10% 30% 20% 40% 30% 

T3 - - - - - 

 

Table 4.19: Summary of Western Blot analysis for Parental line T0A - T0E  

 

- not detectable 
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Figure 4.25: Percentage of detectable gene via Western analysis for 

                                     5 parental lines in 3 generations 

 

 

 

 

 
 

 

           Figure 4.26: Percentage of detectable transgene via Western analysis for  

                                3 generations in 5 parental lines 
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Table 4.20: Western analysis of progenies from parental lines T0A - T0E 

 

 

+ anti-CMV scFv transgene detected 

- anti-CMV scFv transgene not detected 

 

 

 

 

 

 

 

 

Parent 

Line 

T0A 

Anti-

CMV 

scFv 

Parent 

Line 

T0B 

Anti-

CMV 

scFv 

Parent 

Line 

T0C 

Anti-

CMV 

scFv 

Parent 

Line 

T0D 

Anti-

CMV 

scFv 

Parent 

Line 

T0E 

Anti-

CMV 

scFv 

T1A2 + T1B1 - T1C6 - T1D1 + T1E1 + 

T1A3 + T1B2 + T1C7 - T1D2 + T1E4 - 

T1A4 - T1B3 + T1C8 - T1D3 - T1E5 - 

T1A5 - T1B6 + T1C9 + T1D4 - T1E6 + 

T1A6 - T1B8 - T1C10 + T1D5 + T1E7 + 

T1A8 - T1B9 + T1C11 + T1D6 + T1E8 + 

T1A9 - T1B10 - T1C12 - T1D7 + T1E11 + 

T1A10 + T1B12 + T1C14 + T1D8 + T1E12 + 

T1A11 - T1B13 - T1C15 + T1D9 + T1E13 - 

T1A12 - T1B16 - T1C16 + T1D10 + T1E14 + 

T2A3 + T2B1 + T2C6 - T2D2 + T2E1 + 

T2A4 - T2B2 - T2C7 - T2D4 - T2E6 - 

T2A10 - T2B6 - T2C8 - T2D5 + T2E7 - 

T2A11 - T2B8 - T2C11 - T2D6 - T2E8 - 

T2A12 - T2B9 - T2C12 - T2D7 - T2E11 + 

T2A13 - T2B12 - T2C14 - T2D8 - T2E12 - 

T2A20 - T2B16 + T2C16 - T2D9 - T2E15 - 

T2A25 - T2B19 - T2C19 + T2D17 + T2E17 - 

T2A27 - T2B22 + T2C22 - T2D19 - T2E22 + 

T2A29 - T2B23 - T2C28 + T2D20 + T2E23 - 

T3A3 - T3B1 - T3C16 - T3D4 - T3E1 - 

T3A4 - T3B6 - T3C19 - T3D5 - T3E6 - 

T3A10 - T3B9 - T3C22 - T3D6 - T3E7 - 

T3A20 - T3B12 - T3C28 - T3D17 - T3E15 - 

T3A25 - T3B19 - T3C30 - T3D19 - T3E17 - 

T3A27 - T3B26 - T3C34 - T3D20 - T3E22 - 

T3A45 - T3B30 - T3C46 - T3D22 - T3E33 - 

  T3B32 - T3C52 - T3D28 - T3E35 - 

  T3B37 - T3C56 - T3D29 - T3E39 - 

  T3B38 - T3C63 - T3D36 - T3E40 - 

  T3B42 -   T3D41 - T3E42 - 
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           In Figure 4.27 (A), total protein samples from 4 selected T0 (Lane 1 and 2) and 

T1 (Lane 3 and 4) transgenic plants and wild type tobacco plant (Lane 5) were extracted 

and separated on 12% SDS-PAGE followed by Coomassie Blue staining. Protein 

sample from E.coli was isolated to serve as positive control (Lane 6). Broad range 

protein marker (NEB) (Lane 7) was used as ladder. 32 kDa anti-CMV scFv antibodies 

were detected as shown in Figure 4.27 (B).  

 

 

 

 

 

         (A) 

                   
 

 

                  Figure 4.27 (A): Total protein samples separated on 12% SDS-PAGE 

 

 

 

Lane 1, 2: T0 transgenic plants 

Lane 3, 4: T1 transgenic plants 

Lane 5: Wild type tobacco plant  

Lane 6: Positive control  

Lane 7: Broad range protein marker (NEB) 

 

 

 

 

 

 

66.4 kDa 

55.6 kDa 

42.7 kDa 

34.6 kDa 

27.0 kDa 

             1          2           3           4            5            6            7 

32 kDa 
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          Figure 4.27 (B): 32 kDa anti-CMV scFv antibodies detected on membrane 

 

 

 

Lane 1, 2: T0 transgenic plants 

Lane 3, 4: T1 transgenic plants 

Lane 5: Wild type tobacco plant  

Lane 6: Positive control  

Lane 7: Kaleidoscope Pre-stained Standards (Bio Rad) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 1          2           3         4        5        6          7 

 

78 kDa 

45 kDa 

32 kDa 

 

18 kDa 

32 kDa 
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4.8 Functionality Test with Dot Blot Assay 

 

 

          A more sensitive dot blot test was performed on all 155 plant protein samples to 

test the functionality of the expressed transgenes. CMV coat protein from bacteria was 

used as a probe to bind to the test samples. Anti-FLAG antibody (Sigma-Aldrich) and 

Alkaline Phosphatase (AP) conjugated anti-mouse IgG were used to detect the anti-

CMV scFv antibodies. Anti-CMV scFv derived from E.coli as positive control showed 

high signal intensity. Figure 4.28 demonstrates the functionality of expressed anti-CMV 

scFv in transgenic plants. 

 

 

     (A)                    (B)                    (C)                 (D)                    (E)                   (F) 

                                               
 

Figure 4.28: Different intensity signals indicate the expression level of anti-CMV scFv  

                     antibodies. 

 

 

(A) Positive Control 

(B) T0 transgenic plants 

(C) T1 transgenic plants 

(D) T2 transgenic plants 

(E) T3 transgenic plants 

(F) Wild type tobacco plants 
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            Table 4.21 demonstrates the number of detectable dot in the transgenic plants. 

The results of detected functional genes are presented in Figure 4.28. These results 

reveal that Line T0A has the least detectable functional gene. Line T0D remained the most 

promising candidate. A detectable functional gene at T3 generation was discovered 

(Table 4.21). Table 4.23 shows the summary of Dot Blot analysis of progenies from 

parental lines T0A - T0E. 

 

 

 

 

 

 

Generation  

 

 

Number of 

plants  

analysed 

          

Dot Blot analysis 

 

Percentage 

  
Detectable  Undetectable  

T0 5 5 0 100% 

T1 50 32 18 64% 

T2 50 18 32 36% 

T3 50 2 48  4% 

Total  155 57 98 38% 

 

Table 4.21: Summary of Dot Blot analysis for T0, T1, T2 and T3 transgenic plants 
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Figure 4.29: Summary of detected functional gene via Dot Blot analysis in  

                                4 generations 

 

 

 

 

 

 

 Percentage anti-CMV scFv transgene detected via Dot  Blot 

    Parental line 

Progenies 

 

T0A 

 

T0B 

 

T0C 

 

T0D 

 

T0E 

T1 30% 60% 60% 90% 80% 

T2 10% 50% 20% 60% 40% 

T3 - - - 9% 9% 

 

Table 4.22: Summary of Dot Blot analysis for Parental line T0A - T0B  

 

- not detectable 
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              Figure 4.30: Percentage of detectable gene via Dot Blot analysis for 5  

                                   parental lines in 3 generations 

 

 

 

 
 

           Figure 4.31: Percentage of detectable transgene via Dot Blot analysis for 3  

                                generations in 5 parental lines 
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Table 4.23: Dot Blot analysis of progenies from parental lines T0A - T0E 

 

 

+ anti-CMV scFv transgene detected 

- anti-CMV scFv transgene not detected 

 

 

 

 

 

 

 

 

 

 

Parent 

Line 

T0A 

Anti-

CMV 

scFv 

Parent 

Line 

T0B 

Anti-

CMV 

scFv 

Parent 

Line 

T0C 

Anti-

CMV 

scFv 

Parent 

Line 

T0D 

Anti-

CMV 

scFv 

Parent 

Line 

T0E 

Anti-

CMV 

scFv 

T1A2 + T1B1 - T1C6 - T1D1 + T1E1 + 

T1A3 + T1B2 + T1C7 - T1D2 - T1E4 + 

T1A4 - T1B3 + T1C8 - T1D3 + T1E5 - 

T1A5 - T1B6 + T1C9 + T1D4 + T1E6 + 

T1A6 - T1B8 + T1C10 + T1D5 + T1E7 + 

T1A8 - T1B9 + T1C11 + T1D6 + T1E8 + 

T1A9 - T1B10 - T1C12 - T1D7 + T1E11 + 

T1A10 + T1B12 + T1C14 + T1D8 + T1E12 + 

T1A11 - T1B13 - T1C15 + T1D9 + T1E13 - 

T1A12 - T1B16 - T1C16 + T1D10 + T1E14 + 

T2A3 + T2B1 + T2C6 - T2D2 + T2E1 + 

T2A4 - T2B2 - T2C7 - T2D4 - T2E6 - 

T2A10 - T2B6 - T2C8 - T2D5 + T2E7 - 

T2A11 - T2B8 - T2C11 - T2D6 - T2E8 - 

T2A12 - T2B9 + T2C12 - T2D7 - T2E11 + 

T2A13 - T2B12 + T2C14 - T2D8 + T2E12 - 

T2A20 - T2B16 + T2C16 - T2D9 - T2E15 - 

T2A25 - T2B19 - T2C19 + T2D17 + T2E17 - 

T2A27 - T2B22 + T2C22 - T2D19 + T2E22 + 

T2A29 - T2B23 - T2C28 + T2D20 + T2E23 + 

T3A3 - T3B1 - T3C16 - T3D4 - T3E1 - 

T3A4 - T3B6 - T3C19 - T3D5 - T3E6 + 

T3A10 - T3B9 - T3C22 - T3D6 - T3E7 - 

T3A20 - T3B12 - T3C28 - T3D17 - T3E15 - 

T3A25 - T3B19 - T3C30 - T3D19 - T3E17 - 

T3A27 - T3B26 - T3C34 - T3D20 - T3E22 - 

T3A45 - T3B30 - T3C46 - T3D22 - T3E33 - 

  T3B32 - T3C52 - T3D28 - T3E35 - 

  T3B37 - T3C56 - T3D29 - T3E39 - 

  T3B38 - T3C63 - T3D36   - T3E40 - 

  T3B42 -   T3D41 + T3E42 - 
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4.9 Functionality Test of anti-CMV scFv antibodies with ELISA 

  

 

         Total plant protein was successfully isolated from 155 transgenic tobacco leaves 

of 4 generations. ELISA method was performed to determine the functionality of anti-

CMV scFv antibodies. In this study, expressed CMV coat proteins served as antigen 

coating the ELISA wells. Anti-CMV scFv antibodies from plant extracts were used as 

the capture antibody. Detection was carried out using anti-FLAG as the primary 

antibody and Alkaline Phosphatase (AP) conjugated anti-mouse IgG was used as the 

second antibody. The positive control used was E. coli H2151 carrying anti-CMV scFv 

construct. Wild type tobacco plants were used as negative control.   

 

          Colour development (yellow) and colour intensity were observed after the 

addition of PNP substrate. Table 4.25 (A) – (G) shows the absorption value on ELISA 

microplate measured at 405 nm wavelength. The results shown in the Table 4.24 are 

ratios obtained from absorbance at wavelength 405 over the blank control for different 

generations of transgenic plants. The overall results are presented in Figure 4.32. These 

results reveal that detectable functional gene decreased by successive generations. 

Strong intensity of yellow colour was observed for T0 and T1 transgenic plants. A mild 

yellow colour was obtained for T2 plant samples. ELISA assays for T3 transgenic plants 

did not show any colour development. The raw data tabulated in Table 4.29 (A) – (C) 

were used to perform Analysis of Variance (ANOVA) which is used to compare the 

difference between the groups of data. 
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Plant 

samples 

Absorbance at 405 nm 

Replicate 

1 

Replicate 

2 

Mean Mean – blank Standard 

Deviation 

Positive 

Control 

2.326 2.178 2.252 2.079 0.1047 

Negative 

Control 

0.310 0.313 0.312 0.139 0.0021 

Blank  0.179 0.168 0.173 0.000  

T0 1.963 1.954 1.959 1.786 0.0064 

T1 1.859 1.886 1.873 1.700 0.0191 

T2 1.364 1.343 1.339 1.166 0.0148 

T3 0.516 0.522 0.519 0.346 0.0042 

 

Table 4.24: Ratio obtained from absorbance of test samples over the mean of blank at   

                   405nm 

 

 

 

 
 

Figure 4.32: Ratio obtained from absorbance of test samples at 405nm is presented in   

                     the bar chart above 
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Table 4.25: Absorbance values at 405nm 

 

(A) Microtiter plate 1 (T0)  

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 2.365 0.192 0.308 1.851 2.133 1.843 1.974 2.016     

B             

C 2.271 0.216 0.286 1.926 2.111 1.869 1.786 2.078     

D             

E             

F             

G             

H             

 

 

(B) Microtiter plate 2 (T1) 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 2.302 0.187 0.278 1.987 2.002 1.765 1.945 1.879 1.989 1.766 2.023 1.833 

B 1.725 1.590 1.874 1.932 2.003 1.992 1.926 1.768 1.945 1.893 1.835 1.879 

C 1.693 1.087 1.900 2.114 1.892 1.691 1.907 1.954 2.017 1.945 1.682 1.754 

D 1.989 1.786 1.745 1.809 1.732 1.893 2.035 1.789 1.882 1.673 2.071 1.826 

E 1.932 1.880 1.915 1.708 2.102        

F             

G             

H             

 

 

 

 

(C) Microtiter plate 3 (T1) - R 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 2.376 0.157 0.318 2.007 2.134 1.990 1.893 1.995 1.873 1.908 1.997 1.903 

B 1.745 1.306 2.082 2.145 1.890 1.986 1.836 1.745 1.962 1.882 1.892 1.994 

C 1.859 2.053 2.052 1.854 1.967 2.012 1.795 1.982 2.200 1.565 1.490 2.006 

D 1.651 1.793 1.654 1.576 1.732 1.893 2.035 1.915 1.882 1.708 2.071 1.826 

E 1.988 1.945 1.837 1.804 2.005        

F             

G             

H             
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(D) Microtiter plate 4 (T2) 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 2.381 0.128 0.298 1.587 1.143 1.463 1.564 1.113 1.298 1.234 1.219 1.439 

B 1.436 1.624 1.119 1.108 1.127 1.378 1.743 1.553 1.236 1.345 1.198 1.256 

C 1.213 1.327 1.431 1.116 1.002 1.342 1.521 1.507 1.554 1.578 1.335 1.442 

D 1.289 1.209 1.961 1.235 1.589 1.456 1.865 1.673 1.234 1.201 1.115 1.310 

E 1.238 1.267 1.281 1.350 1.365        

F             

G             

H             

 

 

 

 

 

(E) Microtiter plate 5 (T2) R 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 1.997 0.109 0.310 1.501 1.256 1.382 1.286 1.078 1.184 1.371 1.199 1.234 

B 1.198 1.871 1.078 1.267 1.212 1.528 1.482 1.397 1.120 1.376 1.318 1.389 

C 1.498 1.327 1.431 1.116 1.002 1.342 1.521 1.213 1.554 1.578 1.323 1.598 

D 1.304 1.389 1.442 1.176 1.327 1.335 1.478 1.983 1.119 1.210 1.273 1.584 

E 1.280 1.209 1.107 1.311 1.382        

F             

G             

H             

 

 

 

 

 

(F) Microtiter plate 6 (T3) 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 2.254 0.208 0.354 0.504 0.476 0.433 0.564 0.429 0.601 0.447 0.309 0.567 

B 0.513 0.528 0.623 0.498 0.402 0.519 0.434 0.593 0.546 0.506 0.599 0.487 

C 0.623 0.629 0.507 0.428 0.503 0.607 0.576 0.604 0.602 0.472 0.572 0.430 

D 0.527 0.567 0.499 0.525 0.578 0.653 0.406 0.663 0.497 0.390 0.561 0.498 

E 0.492 0.510 0.439 0.402 0.440        

F             

G             

H             
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(G) Microtiter plate 7 (T3) - R 

 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 2.067 0.189 0.337 0.525 0.493 0.479 0.525 0.477 0.567 0.423 0.606 0.538 

B 0.474 0.499 0.596 0.505 0.452 0.549 0.427 0.608 0.598 0.479 0.465 0.521 

C 0.601 0.387 0.555 0.390 0.574 0.633 0.528 0.589 0.583 0.494 0.578 0.489 

D 0.583 0.504 0.526 0.498 0.599 0.642 0.612 0.633 0.502 0.590 0.441 0.533 

E 0.505 0.477 0.473 0.390 0.400        

F             

G             

H             

 

 

 

A1 – Positive Control 

A2 – Blank Table 4.11 (A) - (G) 

A3 – Negative Control 

 

C1 - Positive Control 

C2 – Blank                                 Table 4.11 (A) 

C3 – Negative Control 
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            Analysis of Variance (ANOVA) was performed using Statistica® program to 

compare the difference between the data obtained. Levene’s test was carried out to test 

the homogeneity of the variances of the groups (Table 4.27) using the data shown in 

Table 4.26. Unequal HSD (Honest Significant Difference) Test was applied in this case 

as the sample sizes were unequal. The F statistic is used to reveal whether the means 

across the groups are significantly different. Significant differences occur between test 

plants if P ≤ 0.05, is rejected. Overall, the results indicated that p = 0.136 (Table 4.27), 

therefore there were no statistically significant differences amongst test plants. Table 

4.28 shows test samples in 3 homogenous groups according to their significance 

differences. The visual presentation of the results is shown in Figure 4.33. 
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Table 4.26: Descriptive Statistics of Absorbance Test  

 

 

 

 

 

Descriptive Statistics 

Effect
Level of
Factor

N Log10Abs
Mean

Log10Abs
Std.Dev.

Log10Abs
Std.Err

Log10Abs
-95.00%

Log10Abs
+95.00%

Total

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

Test Plants

156 0.298914 0.137632 0.011019 0.277147 0.320682

T1A 10 0.438455 0.015181 0.004801 0.427595 0.449315

T1B 10 0.430889 0.028817 0.009113 0.410275 0.451504

T1C 10 0.434465 0.023931 0.007568 0.417346 0.451584

T1D 10 0.417228 0.020817 0.006583 0.402337 0.432120

T1E 10 0.433544 0.019110 0.006043 0.419873 0.447214

T2A 10 0.336881 0.027331 0.008643 0.317329 0.356432

T2B 10 0.347625 0.040832 0.012912 0.318416 0.376834

T2C 10 0.344134 0.033838 0.010700 0.319928 0.368340

T2D 10 0.365762 0.031412 0.009933 0.343291 0.388232

T2E 10 0.342186 0.036454 0.011528 0.316108 0.368264

T3A 7 0.113742 0.018639 0.007045 0.096504 0.130981

T3B 11 0.119774 0.020877 0.006295 0.105749 0.133800

T3C 10 0.123905 0.019802 0.006262 0.109739 0.138070

T3D 11 0.130681 0.018025 0.005435 0.118572 0.142790

T3E 11 0.111753 0.021095 0.006361 0.097581 0.125925

P 3 0.486504 0.014547 0.008399 0.450368 0.522641

N 3 0.079967 0.031780 0.018348 0.001020 0.158914
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Table 4.27: Levene’s Test indicates P = 0.136 

 

 

 

 

Unequal N HSD; variable Log10Abs 
Homogenous Groups, alpha = .05000 (Non-Exhaustive Search)
Error: Between MS = .00068, df = 139.00

Cell No.
Test Plants Log10Abs

Mean
1 2 3

17

15

11

12

13

14

6

10

8

7

9

4

2

5

3

1

16

N 0.079967 ****

T3E 0.111753 ****

T3A 0.113742 ****

T3B 0.119774 ****

T3C 0.123905 ****

T3D 0.130681 ****

T2A 0.336881 ****

T2E 0.342186 ****

T2C 0.344134 ****

T2B 0.347625 ****

T2D 0.365762 ****

T1D 0.417228 ****

T1B 0.430889 ****

T1E 0.433544 ****

T1C 0.434465 ****

T1A 0.438455 ****

P 0.486504 ****  
 

Table 4.28: Tukey Unequal Honest Significant Test  

 

 

 

 

 

 

 

 

 

 

 

 

Levene's Test for Homogeneity of Variances 
Effect: "Test Plants"
Degrees of freedom for all F's: 16, 139

MS
Effect

MS
Error

F p

Log10Abs 0.000357 0.000250 1.430194 0.136044
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Figure 4.33: Graph Log10 Mean for all test samples  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Plants; LS Means

Current effect: F(16, 139)=260.16, p=0.0000

Effective hypothesis decomposition

Vertical bars denote 0.95 confidence intervals
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Table 4.29 (A): ELISA assay of progenies from parental lines T0A - T0E (Replica 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parent 

Line 

T0A 

Anti-

CMV 

scFv 

Parent 

Line 

T0B 

Anti-

CMV 

scFv 

Parent 

Line 

T0C 

Anti-

CMV 

scFv 

Parent 

Line 

T0D 

Anti-

CMV 

scFv 

Parent 

Line 

T0E 

Anti-

CMV 

scFv 

T1A2 1.800 T1B1 1.403 T1C6 1.692 T1D1 1.758 T1E1 1.602 

T1A3 1.815 T1B2 1.687 T1C7 1.506 T1D2 1.495 T1E4 1.695 

T1A4 1.578 T1B3 1.745 T1C8 0.900 T1D3 1.567 T1E5 1.486 

T1A5 1.758 T1B6 1.816 T1C9 1.713 T1D4 1.802 T1E6 1.884 

T1A6 1.692 T1B8 1.805 T1C10 1.927 T1D5 1.599 T1E7 1.639 

T1A8 1.802 T1B9 1.739 T1C11 1.703 T1D6 1.558 T1E8 1.745 

T1A9 1.579 T1B10 1.581 T1C12 1.504 T1D7 1.622 T1E11 1.693 

T1A10 1.836 T1B12 1.758 T1C14 1.720 T1D8 1.545 T1E12 1.728 

T1A11 1.646 T1B13 1.706 T1C15 1.767 T1D9 1.706 T1E13 1.521 

T1A12 1.538 T1B16 1.648 T1C16 1.830 T1D10 1.848 T1E14 1.915 

T2A3 1.459 T2B1 1.496 T2C6 1.128 T2D2 1.450 T2E1 1.545 

T2A4 1.015 T2B2 0.991 T2C7 1.085 T2D4 1.207 T2E6 1.106 

T2A10 1.335 T2B6 0.980 T2C8 1.199 T2D5 1.314 T2E7 1.073 

T2A11 1.436 T2B8 0.999 T2C11 1.303 T2D6 1.161 T2E8 0.987 

T2A12 0.985 T2B9 1.250 T2C12 0.988 T2D7 1.081 T2E11 1.182 

T2A13 1.170 T2B12 1.615 T2C14 0.874 T2D8 1.833 T2E12 1.110 

T2A20 1.106 T2B16 1.425 T2C16 1.214 T2D9 1.107 T2E15 1.139 

T2A25 1.019 T2B19 1.108 T2C19 1.393 T2D17 1.461 T2E17 1.153 

T2A27 1.311 T2B22 1.217 T2C22 1.379 T2D19 1.328 T2E22 1.222 

T2A29 1.085 T2B23 1.070 T2C28 1.426 T2D20 1.737 T2E23 1.237 

T3A3 0.296 T3B1 0.101 T3C16 0.298 T3D4 0.396 T3E1 0.198 

T3A4 0.268 T3B6 0.359 T3C19 0.391 T3D5 0.394 T3E6 0.455 

T3A10 0.225 T3B9 0.305 T3C22 0.279 T3D6 0.264 T3E7 0.289 

T3A20 0.356 T3B12 0.320 T3C28 0.415 T3D17 0.364 T3E15 0.182 

T3A25 0.221 T3B19 0.415 T3C30 0.421 T3D19 0.222 T3E17 0.353 

T3A27 0.393 T3B26 0.290 T3C34 0.299 T3D20 0.319 T3E22 0.290 

T3A45 0.239 T3B30 0.194 T3C46 0.220 T3D22 0.359 T3E33 0.284 

  T3B32 0.311 T3C52 0.295 T3D28 0.291 T3E35 0.302 

  T3B37 0.226 T3C56 0.399 T3D29 0.317 T3E39 0.231 

  T3B38 0.385 T3C63 0.368 T3D36 0.370 T3E40 0.194 

  T3B42 0.338   T3D41 0.445 T3E42 0.232 
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Table 4.29 (B): ELISA assay of progenies from parental lines T0A - T0E (Replica 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parent 

Line 

T0A 

Anti-

CMV 

scFv 

Parent 

Line 

T0B 

Anti-

CMV 

scFv 

Parent 

Line 

T0C 

Anti-

CMV 

scFv 

Parent 

Line 

T0D 

Anti-

CMV 

scFv 

Parent 

Line 

T0E 

Anti-

CMV 

scFv 

T1A2 1.850 T1B1 1.149 T1C6 1.837 T1D1 1.408 T1E1 1.758 

T1A3 1.977 T1B2 1.925 T1C7 1.702 T1D2 1.333 T1E4 1.725 

T1A4 1.833 T1B3 1.988 T1C8 1.896 T1D3 1.849 T1E5 1.551 

T1A5 1.736 T1B6 1.733 T1C9 1.895 T1D4 1.494 T1E6 1.914 

T1A6 1.838 T1B8 1.829 T1C10 1.697 T1D5 1.636 T1E7 1.669 

T1A8 1.716 T1B9 1.679 T1C11 1.810 T1D6 1.497 T1E8 1.831 

T1A9 1.751 T1B10 1.588 T1C12 1.855 T1D7 1.419 T1E11 1.788 

T1A10 1.840 T1B12 1.805 T1C14 1.638 T1D8 1.575 T1E12 1.680 

T1A11 1.746 T1B13 1.725 T1C15 1.825 T1D9 1.736 T1E13 1.647 

T1A12 1.588 T1B16 1.735 T1C16 2.043 T1D10 1.878 T1E14 1.848 

T2A3 1.392 T2B1 1.762 T2C6 1.280 T2D2 1.469 T2E1 1.874 

T2A4 1.147 T2B2 0.969 T2C7 1.389 T2D4 1.214 T2E6 1.010 

T2A10 1.273 T2B6 1.158 T2C8 1.218 T2D5 1.489 T2E7 1.101 

T2A11 1.177 T2B8 1.103 T2C11 1.322 T2D6 1.195 T2E8 1.164 

T2A12 0.969 T2B9 1.419 T2C12 1.007 T2D7 1.280 T2E11 1.475 

T2A13 1.075 T2B12 1.373 T2C14 0.893 T2D8 1.333 T2E12 1.171 

T2A20 1.262 T2B16 1.288 T2C16 1.233 T2D9 1.067 T2E15 1.100 

T2A25 1.090 T2B19 1.011 T2C19 1.412 T2D17 1.218 T2E17 0.998 

T2A27 1.125 T2B22 1.267 T2C22 1.104 T2D19 1.226 T2E22 1.202 

T2A29 1.089 T2B23 1.209 T2C28 1.445 T2D20 1.369 T2E23 1.273 

T3A3 0.378 T3B1 0.417 T3C16 0.290 T3D4 0.400 T3E1 0.423 

T3A4 0.304 T3B6 0.349 T3C19 0.276 T3D5 0.394 T3E6 0.444 

T3A10 0.290 T3B9 0.285 T3C22 0.332 T3D6 0.305 T3E7 0.313 

T3A20 0.336 T3B12 0.310 T3C28 0.412 T3D17 0.389 T3E15 0.401 

T3A25 0.288 T3B19 0.407 T3C30 0.198 T3D19 0.300 T3E17 0.252 

T3A27 0.378 T3B26 0.316 T3C34 0.366 T3D20 0.394 T3E22 0.344 

T3A45 0.234 T3B30 0.263 T3C46 0.201 T3D22 0.315 T3E33 0.316 

  T3B32 0.360 T3C52 0.385 T3D28 0.337 T3E35 0.288 

  T3B37 0.238 T3C56 0.444 T3D29 0.309 T3E39 0.284 

  T3B38 0.419 T3C63 0.339 T3D36 0.410 T3E40 0.201 

  T3B42 0.409   T3D41 0.453 T3E42 0.211 

          



117 
 

Table 4.29 (C): ELISA assay of progenies from parental lines T0A - T0E (Mean) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parent 

Line 

T0A 

Anti-

CMV 

scFv 

Parent 

Line 

T0B 

Anti-

CMV 

scFv 

Parent 

Line 

T0C 

Anti-

CMV 

scFv 

Parent 

Line 

T0D 

Anti-

CMV 

scFv 

Parent 

Line 

T0E 

Anti-

CMV 

scFv 

T1A2 1.825 T1B1 1.276 T1C6 1.765 T1D1 1.583 T1E1 1.680 

T1A3 1.896 T1B2 1.806 T1C7 1.604 T1D2 1.414 T1E4 1.710 

T1A4 1.706 T1B3 1.867 T1C8 1.398 T1D3 1.708 T1E5 1.519 

T1A5 1.747 T1B6 1.775 T1C9 1.804 T1D4 1.648 T1E6 1.899 

T1A6 1.765 T1B8 1.817 T1C10 1.812 T1D5 1.618 T1E7 1.654 

T1A8 1.759 T1B9 1.709 T1C11 1.757 T1D6 1.528 T1E8 1.788 

T1A9 1.665 T1B10 1.585 T1C12 1.680 T1D7 1.521 T1E11 1.741 

T1A10 1.838 T1B12 1.782 T1C14 1.679 T1D8 1.560 T1E12 1.704 

T1A11 1.696 T1B13 1.716 T1C15 1.796 T1D9 1.721 T1E13 1.584 

T1A12 1.563 T1B16 1.692 T1C16 1.937 T1D10 1.863 T1E14 1.882 

T2A3 1.426 T2B1 1.629 T2C6 1.204 T2D2 1.460 T2E1 1.710 

T2A4 1.081 T2B2 0.980 T2C7 1.237 T2D4 1.211 T2E6 1.058 

T2A10 1.304 T2B6 1.069 T2C8 1.209 T2D5 1.402 T2E7 1.087 

T2A11 1.307 T2B8 1.051 T2C11 1.313 T2D6 1.178 T2E8 1.076 

T2A12 0.977 T2B9 1.335 T2C12 0.998 T2D7 1.181 T2E11 1.329 

T2A13 1.123 T2B12 1.494 T2C14 0.884 T2D8 1.583 T2E12 1.141 

T2A20 1.184 T2B16 1.357 T2C16 1.224 T2D9 1.087 T2E15 1.120 

T2A25 1.055 T2B19 1.060 T2C19 1.403 T2D17 1.340 T2E17 1.076 

T2A27 1.218 T2B22 1.242 T2C22 1.242 T2D19 1.277 T2E22 1.212 

T2A29 1.087 T2B23 1.140 T2C28 1.436 T2D20 1.553 T2E23 1.255 

T3A3 0.337 T3B1 0.259 T3C16 0.294 T3D4 0.398 T3E1 0.311 

T3A4 0.286 T3B6 0.354 T3C19 0.334 T3D5 0.394 T3E6 0.450 

T3A10 0.258 T3B9 0.295 T3C22 0.306 T3D6 0.285 T3E7 0.301 

T3A20 0.346 T3B12 0.315 T3C28 0.414 T3D17 0.377 T3E15 0.292 

T3A25 0.255 T3B19 0.411 T3C30 0.310 T3D19 0.261 T3E17 0.303 

T3A27 0.386 T3B26 0.303 T3C34 0.333 T3D20 0.357 T3E22 0.317 

T3A45 0.237 T3B30 0.229 T3C46 0.211 T3D22 0.337 T3E33 0.300 

  T3B32 0.336 T3C52 0.340 T3D28 0.314 T3E35 0.295 

  T3B37 0.232 T3C56 0.422 T3D29 0.313 T3E39 0.258 

  T3B38 0.402 T3C63 0.354 T3D36 0.390 T3E40 0.198 

  T3B42 0.374   T3D41 0.449 T3E42 0.222 
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4.10 Bioassay studies for transgenic plants 

 

            The transgenic plants containing anti-CMV scFv antibodies were assayed for 

resistance to cucumber mosaic virus. The bioassay experiment was designed as 

described by Boonham and Wood (1998). 3 batches of bioassays were performed in the 

greenhouse in MARDI, with each batch using T1, T2, T3 transgenic plants (10 each) and 

10 seedlings of wild type tobacco plants as control. Two week-old young seedlings (at 

four leaves stage) of putative transgenic plants were inoculated with cucumber mosaic 

virus.               

           All test plants were observed for degree of infection, ranging from healthy 

(symptomless), tolerant (showing delayed symptoms) and susceptible (severely 

infected) during a 3-week period. No symptoms were observed for all mock inoculated 

test plants. On the other hand, virus inoculated plants showed some degree of infection 

as shown in the Table 4.30. In all 3 batches, almost all wild type test plants developed 

severe infection symptoms. The first and second generation of progenies showed the 

highest tolerance percentage and the symptoms were more localised and did not spread 

to all leaves. The T3 generation test plants recorded a higher degree of susceptibility to 

CMV. As presented in Figure 4.34, the wild control plants showed a systemic mosaic 

after 15 days post-inoculation. On the contrary, no mosaic symptoms were observed in 

the transgenic plants.  

             All the plants tested positive for cucumber mosaic virus with ELISA assay 

(Table 4.31). The amount of CMV present indicates the degree of resistance. As shown 

in Figure 4.35, the degree of resistance decreases with generations. Transcription of 

scFv transgene was confirmed with RT-PCR in the test plants (Figure 4.38).  
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 Figure 4.34: Reaction of T1 transgenic plant (A) and control plant (B) to CMV   

                      infection at two-months after virus inoculation 
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Table 4.30: Degree of infection for transgenic and control plants after infection with  

                   cucumber mosaic virus  

 

Batch 1 

 

Generation  

 

Number of  

test plants  

 

Symptomless 

 

Delayed 

symptoms  

 

Severe 

Symptoms 

 

T1 10 - 8 2 

T2 10 - 7 3 

T3 10 - 4 6 

Control 10 - 2 8 

 

Batch 2 

 

Generation  

 

Number of  

test plants  

 

Symptomless 

 

Delayed 

symptoms  

 

Severe 

Symptoms 

 

T1 10 - 7 3 

T2 10 - 8 2 

T3 10 - 5 5 

Control 10 - 1 9 

 

Batch 3 

 

Generation  

 

Number of  

test plants  

 

Symptomless 

 

Delayed 

symptoms  

 

Severe 

Symptoms 

 

T1 10 1 7 2 

T2 10 - 6 4 

T3 10 - 4 6 

Control 10 - - 10 
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4.10.1 Spectrophotometric analysis of ELISA assay 

 

 

Plant 

samples 

Absorbance at 405 nm 

Batch 

1 

Batch  

2 

Batch  

3 

Mean Mean – 

blank 

Standard 

Deviation 

Positive 

Control 

 

2.926 

 

3.154 

 

2.875 

 

2.985 

 

2.800 

 

0.1486 

Negative 

Control 

 

0.265 

 

0.217 

 

0.234 

 

0.239 

 

0.054 

0.0243 

Blank 0.174 0.194 0.188 0.185         0.0103 

Wild type 2.089 2.157 1.944 2.052 1.867 0.1088 

T1 1.423 1.606 1.332 1.457 1.272 0.1396 

T2 1.811 1.733 1.806 1.783 1.598 0.0437 

T3 1.983 1.960 1.895 1.946 1.761 0.0456 

 

Table: 4.31: The results shown in the table were ratios obtained from absorbance at  

                     wavelength 405nm  

 

 

 
 

 

Figure 4.35: Ratio obtained from absorbance of test samples at 405nm is presented in                  

                     the bar chart above 
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Table 4.32: Absorbance at 405 nm wavelength  

 

(A) Microtiter plate 1: Batch 1 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 2,926 0.265 0.174          

B 1.256 1.378 1.502 1.148 1.345 2.032 1.110 2.119 1.211 1.145   

C 1.645 2.212 1.632 1.598 2.187 1.700 1.689 2.296 1.523 1.623   

D 2.304 1.784 1.997 2.095 1.790 1.833 1.769 2.265 1.916 2.080   

E 1.376 1.903 2.235 2.187 2.543 2.338 1.576 2.288 2.302 2.200   

F             

G             

H             

 

(A) Microtiter plate 2: Batch 2 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 3.154 0.217 0.194          

B 1.339 1.423 1.342 2.256 2.076 1.549 1.432 1.234 2.131 1.276   

C 1.980 1.675 1.590 1.690 1.597 1.633 1.721 2.233 1.599 1.613   

D 1.798 1.990 2.031 1.823 2.323 1.690 2.102 1.734 1.883 2.221   

E 2.232 2.314 2.512 1.465 2.335 2.178 2.325 2.193 1.980 2.032   

F             

G             

H             

 

 

(C) Microtiter plate 3: Batch 3 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

A 2.875 0.234 0.188          

B 1.910 1.234 1.189 1.278 1.356 1.234 1.989 1.325 1.234 0.574   

C 1.832 2.138 1.764 1.973 1.507 1.698 2.008 1.540 1.490 2.115   

D 1.875 2.034 1.862 1.782 1.786 1.976 1.690 1.820 2.020 2.106   

E 1.997 2.076 1.834 2.121 1.890 1.867 1.924 1.932 1.799 2.003   

F             

G             

H             

 

A1: Positive Control       C1 - C10: T2 plants 

A2: Negative Control                       D1 - D10: T3 plants 

A3: Blank                                          E1 - E10: Wild type plants 

B1 - B10: T1 plants 
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            Analysis of Variance (ANOVA) was performed using Statistica® program to 

compare differences between the data obtained. All raw data were uploaded to generate 

the Descriptive Statistic (Table 4.33).  Levene’s test was then carried out to test the 

homogeneity of the variances of the groups (Table 4.34). The Tukey HSD (Honest 

Significant Difference) Test shows the grouping of the test samples (Table 4.35). The F 

statistic is used to reveal whether the means across the groups are significantly different. 

Significant differences occur between test plants if P ≤ 0.05, is rejected. The results 

indicated that p = 0.393. This means there are no statistically significant differences. 

Hence the values are not rejected. The visual presentation of the results is shown in 

Figure 4.36. 

 

 

  

N 
  
Log10Mean 

  

Log10SD 

  

Log10SE 

  
Log10-95 

  

Log10+95 

Level of 

factor 

  18 0.378597 0.178450 0.042061 0.289855 0.467338 

positive ctrl 3 0.579544 0.016171 0.009336 0.539372 0.619715 

negative ctrl 3 0.022411 0.014195 0.008196 -0.012852 0.057674 

WT 3 0.458883 0.016497 0.009525 0.417902 0.499864 

T1 3 0.355197 0.025727 0.014853 0.291289 0.419106 

T2 3 0.414581 0.008732 0.005041 0.392890 0.436272 

T3 3 0.440964 0.008068 0.004658 0.420921 0.461007 

      

Table 4.33: Descriptive Statistics for the test samples 

 

 

 

Table 4.34: Levene's Test for Homogeneity of Variances. P = 0.393 

 

Absorbance at 405nm 

Degrees of freedom for all F's: 5, 12 

MS effect MS error F p 

Log10 Abs 
0.000061 0.000054 1.136387 0.393232 

p> 0.01  

ACCEPT 

ANOVA 

Effect SS Df MS F p 

Abs 0.538 5 0.108 419.9 .000* 
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Table 4.35: Tukey Honest Significant Test with variables Log10 Absorbance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.36: Graph showing Log10 Means for all test samples 
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4.10.2 Detection of anti-CMV scFv gene transcripts in transgenic tobacco plants by 

           RT-PCR 

 

          

           RT-PCR analysis was employed to detect the expression of the anti-CMV scFv 

mRNA in transgenic tobacco lines. The total RNA was extracted from leaf tissues of 

tobacco lines transformed with anti-CMV scFv transgene (Figure 4.37). As shown in 

Figure 4.38, an amplification product of expected size (797 bp) was detected following 

reverse transcription of total RNA. No RT-PCR products were detected using the total 

RNA from the wild-type tobacco plants.  

 

 

 

                                                                     
 

                         Figure 4.37: Total RNA was extracted from leaf tissues of  

                                                         individual transgenic lines 

 

 

 

    1         2         3        4 

Lane 1: wild type tobacco 

Lane 2: T1 plant 

Lane 3: T2 plant 

Lane 4: T3 plant 
28S 

18S 
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          Figure 4.38: Confirmation of anti-CMV scFv transgenes via RT-PCR 

 

 

   Lane 1: 100bp ladder 

   Lane 2: Positive Control (plasmid pUMSCFV-CMV1) 

   Lane 3: Positive Control (confirmed transgenic plant) 

   Lane 4: T1 wild type tobacco (batch 1) 

   Lane 5 - 9: T1 plants (batch 1) 

   Lane 10: T1 wild type tobacco (batch 2) 

   Lane 11-15: T1 plants (batch 2) 

    

 

 

 

 

 

 

 

 

 

 

 

   1      2       3     4      5     6      7      8     9     10    11    12   13    14    15 

797 bp 
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4.11 Protein-protein binding with Autodock  

4.11.1 Homology modeling of molecules     

 

          In this study, SWISS-MODEL software was applied to predict the structure of 

light chain and heavy chain of anti-CMV scFv antibody. For heavy chain (VH), the input 

sequence is uploaded to compare the heavy chain of a mouse antibody (lae6H.pdb). As 

for light chain (VH), mouse antibody (1bafL.pdb) was used as a template to predict the 

protein structure. BLAST analysis was applied to both sequences (Figure 4.39 and 

Figure 4.40). The predicted models of both proteins are displayed using DeepView 

Project (SWISS MODEL) and Accelrys Discovery Studio Visualizer 2.5. The predicted 

structure of VH chain and VL chain are showed in Figure 4.42 and 4.43, respectively. 

The structure of Cucumber Mosaic Virus used in the docking program was extracted 

from Gene bank 1f15 pdb (Figure 4.44). 
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Figure 4.39:  BLAST Analysis of VH chain sequence 

The analysed results show that the input sequence is 85% similar to the heavy chain of a 

mouse antibody (lae6H.pdb). 

 

Model info:  
 

Modelled residue range: 16 to 121  

Based on template  1ae6H (2.90 Å) 

Sequence Identity [%]:  85.047  

Evalue:  5.93e-38  

 

 

TARGET    16      EIVLTQSP AIMSASPGER VTMTCSASSS IRYIYWYQQK PGSSPRLLIY 

1bafL     1       qivltqsp aimsaspgek vtmtcsasss vyymywyqqk pgssprlliy 

                                                                       

TARGET              sssss  sssss      ssssssss     sssssss       sssss 

1bafL               sssss  sssss      ssssssss     sssssss       sssss 

 

 

TARGET    64    DTSNVAPGVP FRLSGSGSGT SYSLTINRTE AEDAATYYCQ EWS-GYPYTF 

1bafL     49    dtsnlasgvp vrfsgsgsgt sysltisrme aedaatyycq qwssyppitf 

                                                                       

TARGET             sss      sssssss s sssssss        ssssss ss      ss 

1bafL              sss      sssss   s sssssss        ssssss ss      ss 

 

 

TARGET    113   GGGTKLELK  ---------- ---------- ---------- ---------- 

1bafL     99    gvgtklelkr adaaptvsif ppsseqltsg gasvvcflnn fypkdinvkw 

                                                                       

TARGET          s  ssssss                                              

1bafL           s  ssssss       sssss    hhhhh s sssssssss        ssss 

 

 

TARGET          ---------- ---------- ---------- ---------- ---------- 

1bafL     149   kidgserqng vlnswtdqds kdstysmsst ltltkdeyer hnsytceath 

                                                                       

TARGET                                                                 

1bafL           sss sss  s ssssss          sssss ssssshhhh   ssssssss  

 

 

TARGET          ---------- ------                                      

1bafL     199   ktstspivks fnrnec                                      

                                                                       

TARGET                                                                 

1bafL                 ssss sss            
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Figure 4.40: BLAST Analysis of VL chain sequence 

The analysed results show that the input sequence is 85% similar to the light chain of a 

mouse antibody (1bafL.pdb) 

 

 

 

Model info:  
 

Modelled residue range: 1 to 106  

Based on template  1bafL (2.90 Å) 

Sequence Identity [%]:  85.047  

Evalue:  3.02e-36  

 

 
TARGET    1       EIVLTQSP AIMSASPGER VTMTCSASSS IRYIYWYQQK PGSSPRLLIY 

1bafL     1       qivltqsp aimsaspgek vtmtcsasss vyymywyqqk pgssprlliy 

                                                                       

TARGET              sssss  sssss      ssssssss     sssssss       sssss 

1bafL               sssss  sssss      ssssssss     sssssss       sssss 

 

 

TARGET    49    DTSNVAPGVP FRLSGSGSGT SYSLTINRTE AEDAATYYCQ EWS-GYPYTF 

1bafL     49    dtsnlasgvp vrfsgsgsgt sysltisrme aedaatyycq qwssyppitf 

                                                                       

TARGET             sss      sssssss s sssssss        ssssss ss      ss 

1bafL              sss      sssss   s sssssss        ssssss ss      ss 

 

 

TARGET    98    GGGTKLELK  ---------- ---------- ---------- ---------- 

1bafL     99    gvgtklelkr adaaptvsif ppsseqltsg gasvvcflnn fypkdinvkw 

                                                                       

TARGET          s  ssssss                                              

1bafL           s  ssssss       sssss    hhhhh s sssssssss        ssss 

 

 

TARGET          ---------- ---------- ---------- ---------- ---------- 

1bafL     149   kidgserqng vlnswtdqds kdstysmsst ltltkdeyer hnsytceath 

                                                                       

TARGET                                                                 

1bafL           sss sss  s ssssss          sssss ssssshhhh   ssssssss  

 

 

TARGET          ---------- ------                                      

1bafL     199   ktstspivks fnrnec                                      

                                                                       

TARGET                                                                 

1bafL                 ssss sss      
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Figure 4.41: The deduced amino acid sequence of VH chain (A) and VL chain (B) were 

obtained through TRANSLATE program 

 

(A) 

VQLQESATEL VKPGASVKIS CKASGYSFIV HYINWVKQKP GQGLEWIGCF 

FPGSGNSKYI ENFRGKATLT VDTSSSTAYM QLSSLTSEDT AVYFCARDDS 

DGAMDYWGQG  TTVTVSS 

 

(B) 

EIVLTQSPAI MSASPGERVT MTCSASSSIR YIYWYQQKPG SSPRLLIYDT 

SNVAPGVPFR LSGSGSGTSY SLTINRTEAE DAATYYCQEW SGYPYTFGGG 

TKLELKR 
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Figure 4.42: Predicted structure of VH chain (SWISS MODEL) 

 

          The structure of VH chain of anti-CMV antibody was predicted through homology 

modelling using SWISS-MODEL program. The structure presented in (A) was viewed 

with DeepView software (formerly called the Swiss PDB Viewer). DeepView colours 

helical residues red, beta sheet residues (strands) yellow, and all loops grey /white. The 

green regions represent a turn. VH chain in (B) ribbon form and (C) ball and stick are 

also shown using Accelrys Discovery Studio Visualizer 2.5. The α-helices are shown in 

red, and the β-sheets are shown in cyan.  

 

(A) 
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(B) 

   

 

 

(C) 
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Figure 4.43: Predicted structure of VL chain (SWISS MODEL) 

 

          The structure of VL chain of anti-CMV antibody was predicted through homology 

modelling using SWISS-MODEL program. Protein structure presented in (A) was 

viewed using Deep View software (formerly called the Swiss PDB Viewer). DeepView 

colours helical residues red, beta sheet residues (strands) yellow, and all loops grey 

/white. The green regions represent a turn. The models of VL chain in (B) ribbon form 

and (C) ball and stick form are also displayed using Accelrys Discovery Studio 

Visualizer 2.5. The α-helices are shown in red, and the β-sheets are shown in cyan.  

 

(A) 
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(B) 

 

  
 

 (C) 
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Figure 4.44: Structure of Cucumber Mosaic Virus 

 

 

           The structure of Cucumber Mosaic Virus used in the docking program was taken 

from Gene bank 1f15 pdb (A).  The coat protein used in the docking program to bind to 

heavy and light chains of anti-CMV scFv antibody is highlighted in yellow (B). The 

structure was viewed using Accelrys Discovery Studio Visualizer 2.5. 

 

(A) 

 

 
 

(B) 
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Figure 4.45: The deduced amino acid sequence of CMV (A) and CMV coat protein (B) 

were obtained through TRANSLATE program   

 

 

(A) 

ERCRPGYTFTSITLKPPKIDRGSYYGKRLLLPDSVTEYDKKLVSRLQIRVNPLPKFDST

VWVTVRKVPASSDLSVAAISAMFADGASPVLVYQYAASGVQANNKLLYDLSAMRADIGD

MRKYAVLVYSKDDALETDELVLHVDIEHQRIPTSGVLPV/DANFRVLSQQLSRLNKTLA

AGRPTINHPTFVGSERCRPGYTFTSITLKPPKIDRGSYYGKRLLLPDSVTEYDKKLVSR

LQIRVNPLPKFDSTVWVTVRKVPASSDLSVAAISAMFADGASPVLVYQYAASGVQANNK

LLYDLSAMRADIGDMRKYAVLVYSKDDALETDELVLHVDIEHQRIPTSGVLPV/ADANF

RVLSQQLSRLNKTLAAGRPTINHPTFVGSERCRPGYTFTSITLKPPKIDRGSYYGKRLL

LPDSVTEYDKKLVSRLQIRVNPLPKFDSTVWVTVRKVPASSDLSVAAISAMFADGASPV

LVYQYAASGVQANNKLLYDLSAMRADIGDMRKYAVLVYSKDDALETDELVLHVDIEHQR

IPTSGVLPV 

 

 

 

 

(B) 

 

 
DATLRVLSQQLSRLNKTLAAGRPTINHPTFVCSERCKPGYTFTSITLKPPKIDKGSYCG

KRLLLLIQVTEFDKKLVSRIQIRVNPLPKFDSTRVGDGRKVPASSDLSVSAISAMLRTD

LPVWFISTLHLAFKPTQMVDDLSVMRADIGDMRKYAVLVYSKDDALETDELVLHLTLST

NAFPHLGCSQ 
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4.11.2 Autodock 

 

4.11.2.1 Blind Docking 

 

           

          In this study, blind docking was performed separately for heavy and light chain 

due to the large molecule size of the scFv antibody.  Blind docking was carried out by 

scanning the entire surface of light chain and heavy chain of Anti-CMV scFv antibody 

to detect the possible binding sites with Cucumber Mosaic Virus.  

          

           The results for the blind docking calculations on the light chain and heavy chain 

are shown in Table 4.36 and Table 4.37 respectively. In both cases, a population size of 

150 and 10 millions energy evaluations were used for 100 times searches, with a 60 x 

60 x 60 dimension of a grid box size. For light chain, out of all 100 runs, 11 distinct 

conformational clusters were found. 24 distinct conformational clusters were discovered 

in heavy chain (Figure 4.46 and 4.47).  

           

          The best 5 conformations in the clustering histogram with the lowest docked 

energy were chosen to perform specific dockings, with highest numbers of molecules in 

a particular cluster not more than 2.0 A root-mean square deviation (rmsd). Graphical 

interpretation and representation of results were performed using Accelrys Discovery 

Studio Visualizer 2.5. 
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Cluster  

Rank 

Lowest 

Binding 

Energy 

 

Run 

Mean 

Binding 

Energy 

Number  

  in  

cluster 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

+1.67e+06 

+1.67e+06 

+1.75e+06 

+1.79e+06 

+1.80e+06 

+1.83e+06 

+1.91e+06 

+1.92e+06 

+2.02e+06 

+2.02e+06 

+2.14e+06 

82 

32 

40 

87 

97 

73 

58 

43 

22 

53 

47 

+1.67e+06 

+1.69e+06 

+1.75e+06 

+1.80e+06 

+1.82e+06 

+1.83e+06 

+1.91e+06 

+1.92e+06 

+2.02e+06 

+2.02e+06 

+2.14e+06 

51 

27 

3 

7 

5 

1 

1 

2 

1 

1 

1 

 

                 Table 4.36: Clustering Histogram showing conformations of docked  

                                     energy for ligand light chain scFv  

 

 

Figure 4.46: Clustering Histogram showing mean binding energy (VL chain) 

 

 

  +1.69e+06 

+1.75e+06 

+1.80e+06 

 
+1.82e+06 

              +1.83e+06 

+1.91e+06 

 
+1.92e+06 

+2.02e+06 
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Cluster  

Rank 

Lowest 

Binding 

Energy 

 

Run 

Mean 

Binding 

Energy 

Number  

  in  

cluster 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

+1.98e+06 

+2.30e+06 

+2.48e+06 

+2.58e+06 

+2.68e+06 

+2.69e+06 

+2.78e+06 

+2.81e+06 

+2.88e+06 

+2.91e+06 

+2.91e+06 

+2.92e+06 

+2.92e+06 

+3.02e+06 

+3.02e+06 

+3.12e+06 

+3.21e+06 

+3.22e+06 

+3.28e+06 

+3.29e+06 

+3.33e+06 

+3.33e+06 

+3.51e+06 

+3.61e+06 

19 

61 

41 

32 

57 

49 

47 

52 

11 

95 

80 

25 

56 

48 

82 

28 

31 

64 

39 

20 

60 

67 

8 

72 

+2.23e+06 

+2.45e+06 

+1.64e+06 

+2.66e+06 

+2.80e+06 

+2.74e+06 

+2.78e+06 

+2.81e+06 

+2.88e+06 

+2.91e+06 

+2.91e+06 

+3.01e+06 

+2.94e+06 

+3.10e+06 

+3.02e+06 

+3.20e+06 

+3.21e+06 

+3.22e+06 

+3.28e+06 

+3.31e+06 

+3.35e+06 

+3.34e+06 

+3.51e+06 

+3.61e+06 

4 

6 

32 

2 

2 

16 

1 

1 

1 

1 

1 

6 

2 

7 

1 

2 

1 

1 

1 

5 

2 

2 

2 

1 

 

                 Table 4.37: Clustering Histogram showing conformations of docked  

                                    energy for ligand heavy chain scFv 
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Figure 4.47: Clustering Histogram showing mean binding energy (VH chain). 
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4.11.2.2 Specific Docking 

 

 

          The best 5 conformations in the clustering histogram (Figure 4.46 and Figure 

4.47), with the lowest docked energy were chosen to perform specific dockings, with 

highest numbers of molecules in a particular cluster not more than 2.0 A root-mean 

square deviation (rmsd). 

 

          Specific docking for VH chain was successfully completed in 32 hours. The 

binding interaction of VH chain with CMV (highlighted) is shown in Figure 4.48.  

 

 

 
 

 

Figure 4.48: Predicted binding site of VH chain to CMV 
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          Specific docking for VL chain was successfully completed in 23 hours. The 

binding interaction of VL chain with CMV (highlighted in yellow) is shown in Figure 

4.49.   

 

 

  

 
 

 

Figure 4.49: Predicted binding site of VL chain to CMV 
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5.0 Development of framework for risk assessment and risk management  

      protocol for transgenic plants expressing scFv antibodies 

 

            The field application of transgenic tobacco plants expressing scFv antibodies 

requires compliance to biosafety regulations and licensing conditions. This involves the 

development of a risk assessment framework which will enable the systematic process 

of generating the appropriate data that will ensure the safe release of the transgenic 

plants into the environment. 

In Malaysia the approval of transgenic plants is regulated under the Malaysian 

Biosafety Act which was approved in Parliament in 2007. Core concepts contained in 

this legislation include the requirement for systemic evaluation of a genetically 

modified organism (GMO) prior to its approval in Malaysia. The law follows closely 

the principles stated in Annex III of the Cartagena protocol on Biosafety. This protocol 

states that the purpose of risk assessment, is to identify and evaluate the potential 

adverse effects of living modified organisms on the conservation and sustainable use of 

biological diversity in the likely potential receiving environment, taking also into 

account risks to human health (Secretariat of the CBD, 2000). A summary of annex III 

is presented in Figure 5.1.         

              Risk assessment covers a comprehensive range of science-based methods and 

tools to identify and mitigate potential risks that the GMO may pose to the environment. 

A pilot risk assessment and management framework is presented here to evaluate 

transgenic tobacco plants expressing recombinant scFv antibodies. The risk assessment 

is based on the following methodology: hazard identification, exposure characterization, 

exposure assessment and risk characterization (IPCS, 2004). After characterization of 

potential risks, risk mitigation steps are identified and these methods will form a 

comprehensive plan to manage the risks. 
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    Figure 5.1: Annex III of the Cartagena Protocol on Biosafety 
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      Source: Secretariat of the Convention on Biological Diversity (2000) 
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5.1 Malaysian Biosafety Act 

            In accordance with the Malaysian Biosafety Act, this project needs to undergo a 

notification process to the National Biosafety Board. Once the application of 

notification has been received and acknowledged by the Director General (DG) of the 

Department of Biosafety, the project can commence. The notification form 

(NBB/CU/10/FORM E) is attached in Appendix. For field trials, an approval for release 

activity form (NBB/A/ER/10/FORMA) needs to be submitted to the Director General 

(DG) of the Department of Biosafety.  After acknowledgement of receipt, the DG will 

forward the application to the Genetic Modification Advisory Committee (GMAC). The 

GMAC is tasked with providing a recommendation on the notification application to the 

National Biosafety Board (NBB). The NBB will make a decision based on the 

recommendation of the GMAC. The outcome of the NBB may range from no order, 

which amounts to an approval to the notification, or issue a cessation order or impose 

changes in the interests of biosafety.  

             The information required for the notification process include overall project 

information such as the objective of the project, list of people involved in the project 

and the detailed description of the transgenic organisms. The risk assessment and risk 

management procedures will ultimately result in the formulation of an emergency 

response plan.  

            Based on the Biosafety Regulations 2010, three types of risks need to be 

assessed: risks to the health and safety of humans from the activities associated with 

genetic modification, risks to the health and safety of humans from an unintentional 

release of the genetically modified organism and risks to the environment from an 

unintentional release of the genetically modified organism.  

            In terms of risk management, information regarding precautions taken in the 

event of transport outside of contained use premises needs to be provided. Proper 
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disposal procedures of the transgenic organism and the decontamination of equipment 

used during the project needs to be elucidated as well.  

            The emergency response plan will need to detail the procedures to be followed 

in the event of unintentional release of the transgenic organism beyond the contained 

use premises. Plans to protect human health and the environment, procedures to remove 

the transgenic organism in the affected areas, disposal methods for contaminated 

organisms and isolation of the affected area should be detailed in the emergency 

response plan. In the event that adverse effects manifest as a result of contained use or 

unintentional exposure, steps to correct the adverse effects should be demonstrated.  

 

5.2 Risk assessment:  

          Risk assessment is the process whereby risk is measured. The measurements can 

be qualitative, quantitative or a mixture of both. The ultimate goal of risk assessment is 

to decide on how to manage the risk: either by tolerating, mitigating or avoiding the risk 

altogether. In this context, to assess the risk of the transgenic tobacco, several risk 

assessment procedures should be performed. Biosafety Guidelines (2012) was referred 

to develop the framework for Risk Assessment and Risk Management Protocol for 

Transgenic Plants expressing scFv Antibodies. 

 

Formulation of problem & hazard identification 

          As with any assessment process, the starting point should be to identify areas for 

concern and to formulate the datasets required to address the problem. To formulate the 

problem, complete scientific and regulatory information should be available so that all 

relevant areas are covered and no significant lapses arise due to incomplete information. 

The assessment is carried out as a data intensive, scientifically sound and transparent 

analysis of all available information. The methodology is based on a comparison with 
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non-modified recipients and in the context of the receiving environment and its intended 

use (Wolt et al., 2010).  

          It is important to differentiate between hazard and risk. Hazard is the adverse 

effects on the environment that occurs with the usage of transgenic tobacco and risk is 

the likelihood that the hazard will occur. Hazard identification is the process to 

determine whether or not the novel gene products in the genetically modified plant 

cause adverse effects. Hazard is usually determined experimentally with controlled 

doses (Poppy, 2000) 

          Potential adverse effects associated with transgenic plants include toxicity and 

allergenicity to humans, animals and microorganisms. Apart from this, the cultivation of 

transgenic crops in the environment poses several risks such as weediness of the 

transgene plant and gene flow of novel genes to other organisms. It is important to 

determine whether the genetic modification used to produce the transgenic tobacco 

produced any unwanted alterations at the molecular level. Furthermore, it has to be 

ensured that the new genetic material is stably inserted and maintained over several 

generations. If the inserted genetic modification is unstable or produces unwanted 

alterations, then it will be very difficult to predict how the transgenic crop will behave 

when it is released into the wild (Biosafety Guidelines, 2012). 

 

Exposure characterization  

          Exposure characterization is the determination of the relationship between the 

magnitude of exposure and the probability of occurrence of the adverse effect. It can be 

used to identify the severity of the hazard. Many substances lead to adverse effects at 

high doses and less adverse effects at lower doses.  

          As the transgenic tobacco will not be used for human consumption, the possibility 

of the modified plants causing toxicity and allergenicity in humans is deemed to be very 
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low. There is a chance of ingestion by organisms such as insects in the wild so the 

hazard level, while still low, are judged to be higher than the possibility of human 

consumption. 

          As mentioned previously, gene flow should be investigated as well and 

information on whether the new transgenes can transfer to other crops should be 

investigated. Gene flow to other tobacco plants is a real possibility and this should be 

emphasized in the risk management plan. Gene flow to other plants could occur and 

gene flow to animals, humans and microorganisms are unlikely.   

 

Exposure assessment 

          Exposure assessment is the determination of how the extent of exposure to 

transgenic tobacco leads to environmental and human health risks, if any. Exposure 

assessment of transgenic tobacco should shed some light on how much of the novel 

genetic material / proteins that are released into the environment (Biosafety Guidelines, 

2012). 

          To investigate whether the transgenic tobacco is harmful to the environment 

because of inherent weediness or some other trait conferred to it by its transgenes, 

information such as decreased ecological diversity, decreased yield of crops, decreased 

growth rate or increased abundance of organisms should be investigated. The impact of 

the transgene on soil organisms should also be investigated. 

          To determine the stability of the genes on a genetic level, tests like ELISA, PCR, 

Southern and Western blot could elucidate the genetic information of the inserted gene.  

Southern Blot could be used to determine the location of the insert in the plant cells and 

can also be used to determine the genetic stability of the insert. ELISA could be used to 

determine the amounts of the novel protein levels in the cells and hence measure the 

expression of the insert.  
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          On an observational basis, information on the morphology, seeding, pollen 

dissemination, disease susceptibility, insect damage, reproduction, survivability can be 

obtained via data collected in field trials. 

 

Risk characterization 

          Risk characterization takes into account all the steps mentioned above and is 

often reported as a quantitative assessment. Hazard identification, exposure 

characterization and exposure assessment are all essential elements of risk 

characterization. It ultimately results in the estimation of the risk posed by transgenic 

tobacco. 

 

5.3 Risk/benefit analysis of transgenic scFv antibody products.  

The approach will be to evaluate benefits of the crop in relation to existing production 

systems against risks identified earlier.  

         Factors to be considered in applying such analysis: 

- the magnitude of each potential harm or benefit involved 

- the likelihood that it will occur 

 

5.4 Risk management 

          Risk management is meant to identify mitigation options for any risk identified.  

The mitigations options are then evaluated for efficiency, feasibility and impact. Once 

the evaluation is complete, the relevant recommendations are developed. Any 

uncertainties for formulation of the final risk management report should be mentioned 

as well. The development of standardized molecular testing kits for traceability and 

quality control assays would be desirable (Biosafety Guidelines, 2012). 
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          With regards to the characterized risks mentioned earlier, there are several 

possible risk management strategies. Overall, there is a need to limit the scale of release 

of the transgenic tobacco plants. There is a need to enclose the plants in a secure trial 

area to prevent unintended exposure. Proper handling protocols should be in place and 

in the event that plant materials need to be transferred, proper security measures should 

be taken. Another point to consider is that the destruction of unusable plant materials 

should be handled in accordance with established protocols.  
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Figure 5.2 Flowchart of risk assessment and risk management 

 

 

 

Source: EFSA, 2010; Wolt et al., 2010.  

 

 

(A)   Risk Assessment:  

(B) Risk Management: 

Identifies the potential adverse effects 

Estimate the likelihood of exposure  
 

Evaluates the magnitude of consequences  
 

Culminates in the estimation of risk 
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Toxicity and allerginicity 

          As the transgenic tobacco in this project is not meant for human or animal 

consumption, human toxicity through ingestion is likely to be low. For animals there is 

a slightly higher risk of ingestion. The risk management principle in this instance is to 

prevent accidental exposure of the plant to humans and animals. One other possibility is 

the transfer of transgenes to microorganisms, which occurs mostly in the gut of 

livestock. Again this possibility is remote as the tobacco is not used as feed (Gonsalves 

et al., 2004) 

          This can be achieved by ensuring that the test area is secure and only authorized 

personnel have access to the test area. Furthermore, if there is a necessity to transfer 

plants or plant materials from the test site, utmost care should be taken to ensure that the 

plant is secure and there is no chance for accidental exposure of the plant to the general 

environment. Unusable plant material should also be disposed properly.  

 

Gene Flow 

          Gene flow is defined as the incorporation of genes into the gene pool of one 

population from one or more other populations (Futuyma, 1998). If transgenic crop 

genes replace wild genes, the genetic diversity of wild plants will be compromised. If 

the hybrid offspring are better suited to the environment than their parents then there is 

a possibility that the hybrid could become an invasive pest. Naturally if the reverse were 

true the survival of the population in wild could be under threat (Levin et al., 1996). 

Gene flow occurs via normal plant propagation mechanisms such as seeds, pollen and 

other propagules. It can occur via humans or animals or via normal environmental 

vectors like wind, water and air. Methods to control gene flow include physical isolation 

and plant destruction (NRC 2004b). There have been some suggestions that crops have 

inherently different rates of gene flow and transgenic plants can be managed by 
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stratification (Stewart et al., 2003). An alternative view is that ecological factors such as 

locality and seasonality come into play as well and should be taken into account when 

devising a management plan (NRC 2004b).  

          Compared to other plants, tobacco can be classified to have a low probability of 

gene flow to wild type counterparts. The tobacco crop has difficulty reproducing with 

the wild type tobacco and even if reproduction is successful the hybrids are sterile, 

which reduces the likelihood of the transgene escaping into the environment (Ahl Goy 

and Duesing, 1996). Despite this, steps should be taken to minimize the possibility of 

gene transfer. Some available methods are to use sterile male plants or to remove the 

flower. Apart from this, establishing buffer zones around the transgenic plants is also an 

option. Gene flow to other plants is less likely than gene flow to wild type tobacco and 

steps should also be taken to minimize this possibility. Gene flow to animals and 

microorganisms are judged to be negligible so no further precautions are deemed 

necessary.  

          In terms of weediness, the modified tobacco plant could potentially be more 

hardy than normal. An interesting finding from this study was that the transgenic 

tobacco plant took a longer time to flower so other possibilities relating to the overall 

weediness should not be dismissed.  

          The risk management procedures to limit exposure to the environment are to limit 

the scale of release, enclose and secure the trial area and to destroy unusable plant 

materials according to proper procedures.  
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5.5 Framework and suggested protocol for assessment of risks 

The following table represents a summary of the full risk assessment and its associated 

risk management options:  

 

Potential  

adverse effect  

Consequences 

of  

potential 

effects  

Estimation of  

likelihood  

Evaluation of  

identified 

risk  

Consideration of 

risk management  

Toxicity & 

allergenicity  
 

1. Human 

 

2. Other organisms:  

    

    Mammals &      

    wildlifes  

(fishes and birds) 

 

 

     Invertebrates  

(beneficial   

   insects) 

 

 

   Microorganisms 

  

 

 

Very low  

 

 

 

Low 

 

 

 

 

Low  

 

 

 

 

Low  

  

 

 

Highly unlikely 

 

 

 

Unlikely  

 

 

 

 

Unlikely   

 

 

 

 

Unlikely  

 

 

 

Very low  

 

 

 

Low   

 

 

 

 

Low  

 

 

 

 

Low  

 

 

 

• Limit scale of 

release 

 

• Enclose and 

secure trial area 

to prevent 

unintended 

exposure 

• Destroy 

unusable plant 

materials in 

proper manner 

• Ensure secure 

transfer of plant 

materials 

Environment  

 

1. Weediness 

 

2. Gene transfer 

     Other tobacco  

      plants 

 

 

 

      Other plants 

 

 

 

        Animals  

(including 

human) 

 

 

      Microorganisms 

 

 

Low  

 

 

 

Medium   

 

 

 

 

Low  

 

 

 

 

Negligible  

 

 

 

 

Negligible  

  

 

Unlikely  

 

 

 

Likely     

 

 

 

 

Unlikely  

 

 

 

 

Negligible  

 

 

 

 

Negligible  

 

  

 

Low  

 

 

 

Medium   

 

 

 

 

Low  

 

 

 

 

Negligible  

 

 

 

 

Negligible 

 

 

• Limit scale of 

release 

• Enclose and 

secure trial area 

to prevent 

unintended 

exposure 

• Destroy 

unusable plant 

materials in 

proper manner 

• Ensure secure 

transfer of 

plants materials 

 

•  Not required 
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6.0 Discussion  

Introduction 

           The Cucumber Mosaic Virus (CMV) is a significant plant pathogen affecting 

various crops and plants in Malaysia. In 2002, a single chain variable fragment (scFv) 

antibody, targeted to CMV coat protein, was successfully constructed with mRNA from 

the spleen of a CMV coat protein-immunized mouse (Chua, 2002). The nucleotide 

sequence of the variable heavy (VH) and variable light (VL) framework regions of the 

mouse spleen cDNA were used to design and construct primers for scFv library 

construction via RT-PCR (Chua et al., 2003). Using the coat protein of a locally isolated 

chilli strain CMV, a novel soluble Flag-tagged scFv antibody was synthesised after 

several rounds of panning of the scFv library. The desired anti-CMV scFv fragment was 

then cloned into a plant expression vector and transformed via Agrobacterium 

tumefaciens into Nicotiana tabacum L. cv. White burley tobacco plants (Chua, 2002). In 

this study, 5 successfully transformed plants were used as individual parental lines to 

produce progenies for further analysis. 

 

Generations of transgenic plants  

          Transgenic T0 tobacco plants were generated by the leaf disc transformation 

procedure using agrobacteria harbouring recombinant anti-CMV scFv constructs. The 

plants were grown in a growth room and out of these a total of 5 transgenic plants were 

allowed to self-pollinate to establish the next generation (T1). Germination tests were 

used to study seed viability. Germination rate of 90% was obtained in wild type tobacco 

plants. Transgenic seeds showed a reduction in germination rate. 72% of T1 tobacco 

lines were successfully grown in soil. In subsequent generations, 72% and 71% 

germination success rates were obtained for T2 and T3 progenies respectively. In 

general, high germination rates were achieved in wild type tobacco plants. These results 
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suggest that N. tabacum has a low level of dormancy consistent with the findings by 

Finch-Savage and Leubner-Metzger (2006).  

 

Phenotypic characterization of transgenic plants  

           In comparison to wild type tobacco plants, the T0, T1, T2 and T3 transgenic plants 

did not exhibit any unusual physical appearance despite the production of transgenes. 

However, the flowering time was delayed for transgenic plants as compared to wild type 

plants. All genetically modified plants took about 5 months to flower while the wild 

type plants started to flower by 4 months. Soitamo et al. (2011) reported that the genes 

involved in flower induction have been altered in the transgene expressing plants. It is 

also well documented that the differences observed among transgenics and non-

transgenic plants are attributed to the methods employed to generate transgenics and 

those resulting from breeding (Bhat and Srinivasan, 2002). In transgenic rice plants, R2 

generation were reported to be significantly shorter, flowered later and partially sterile 

as compared with non-transgenic controls (Phillips et al., 1994). Liu et al. (1996) also 

observed morphologically abnormal flowers that failed to set seeds in soybeans. 

Research carried out by Filipecki and Malepszy (2006) indicated that these unexpected 

phenotypes could be due to pleiotropic effects of DNA integration on the host genome 

and the side effects of various stresses on the transgenic plants.  

 

Stability and functionality of anti-CMV scFv antibodies 

          In this study, the putative transgenic plants were analyzed for transgene 

integration, expression, stability and functional integrity. DNA analysis for transgene 

integration is one of the basic requirements used to evaluate transgenic plants. The 

polymerase chain reaction (PCR) is widely used for this purpose. It is one of the most 

sensitive and simplest methods for detecting integrated genes in transgenic plant 
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genomes (McGarvey and Kaper, 1991). PCR amplifies specific DNA sequences using 

designed primers. In this study, the presence of anti-CMV scFv transgene in all 3 

generations were observed at a relatively high percentage but in a non-Mendelian 

segregation manner. It has been reported that transgenes are inherited sexually as a 

dominant trait (Theuns et al., 2002), with inheritance conforming to a 3:1 Mendelian 

ratio (Shrawat et al., 2007). Budar et al. (1986) revealed that Agrobacterium-mediated 

transformation produces transgenic plants with a low copy number and the transgenes 

are transmitted to progeny according to Mendelian inheritance. However, in some cases 

non-Mendelian inheritance has been reported (Deroles and Gardner, 1988). The non-

Mendelian inheritance of a transgene has been recorded with a frequency of between 

10% and 50% in transgenic plants (Yin et al., 2004). The causes of non-Mendelian 

segregation have been described as due to unstable transmission or poor expression of 

the transgene results (Limanton-Grevet and Jullien, 2001). Recently, Tizaoui and 

Kchouk (2012) reported some genetic approaches for studying transgene inheritance 

and genetic recombination in the successive generations of transformed tobacco can be 

based on calculation of the theoretical segregation ratios. In the future, in-depth studies 

are recommended on the mode of transgene inheritance and the recombination 

frequencies of linked inserts in the generations of transgenic lines.                

            The integration of anti-CMV scFv gene(s) in the tobacco plants were further 

confirmed via Southern Hybridization. In this study, at least one copy number of the 

transgene was detected in 58% of T1 generation. A slightly elevated percentage of 66% 

in T2 generation was observed, but only 52% of the transgene was detected in T3 

generation. Probing the blot with the transgene showed a single band with the size of 

~797 bp in all positive test plants. An accurate estimate of the transgene copy number 

can be made by measuring the signal intensity with an equal amount of DNA from each 

transgenic plant. Simultaneous probing of the blot with a single copy host gene will 
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provide an internal standard to determine the single copy transgenic plants (Bhat and 

Srinivasan, 2002). 

          Traditionally, Southern Hybridization is one of the conventional methods for 

transgene copy number determination. However, this technique is time consuming and 

requires tens of microgram quantities of high-quality DNA (Ingham et al., 2001). Real-

time PCR has emerged to be the method of choice for fast and efficient estimation of 

copy number. External standard curve based method and the ΔCt method involving an 

internal reference gene were applied to improve the accuracy of real-time PCR (Yuan et 

al., 2007). 

            Western blot analysis results revealed that the 32 kDa anti-CMV scFv transgene 

was expressed at varying levels in 5 transgenic lines across the 3 generations. Of the 5 

parental lines analysed, expressed transgene protein was not detected in T3 generation. 

In T1 generation, the T1D line produced the highest amount of detectable transgene 

proteins, while the T1A line accumulated the lowest amount of protein. In this study, an 

overall lower expression level was observed in T2 generation as compared to the 

previous generation. Apart from this, the T2D line had the highest detectable expressed 

protein amongst the T2 generation and the T2A line had the lowest detectable expressed 

protein. Filipecki and Malepszy (2006) have indicated that independent transgenic lines 

produce different transgene expressions due to the different position of T-DNA 

integration or copy number of insertion in the plant genome. Transgene protein was not 

detected in T3 generation.  

         Transgene expression in plants is highly variable. Shrawat et al. (2007) reported 

several factors that influence transgene expression, including the transgene itself, the 

host genome and the interaction between them. Apart from this, factors such as the 

tendency of exogenous DNA to undergo rearrangement prior to integration, position 

effects, the effects of transgene copy number, and the effects of DNA methylation was 
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reported (Meyer, 1998). The function of genes on a genome-wide scale can be 

understood via expression profiling by microarrays using formats that include 

complementary DNA, oligonucleotides or amplicons, as suggested by Xiao et al. 

(2010). Several attempts to improve the expression level of transgenes have been 

reported. Schouten et al. (1996) revealed that the addition of KDEL sequence to an 

antibody construct improved the accumulation of transgenes significantly. The high 

accumulation level in cytosol resulting in a high level of protection against CMV has 

also been reported (Safarnejad et al., 2009).  

          To further determine the functionality of tobacco expressed scFv, crude leaf 

extracts of test plants were applied for detection by ELISA and Dot Blot assay. The 

ELISA results showed that crude extracts containing scFv in T1 and T2 generations 

could specifically bind to CMV coat proteins but failed to do so in T3 generation as 

expected. A decrease in functional integrity was observed with subsequent generations 

based on the results of the Dot Blot Assay. Surprisingly, some positive results were 

obtained in T3 generation with Dot Blot Assay.  This may be regarded as a false positive 

as expressed transgene was not detected in T3 generation. The reason for this could be 

due to silencing. The phenomenon of gene silencing leading to poor or non-expression 

of transgene has been shown to be associated with multiple insertions, DNA 

rearrangements, position effects and over expression (Stam et al., 1997; Vaucheret and 

Fagard, 2001). In addition to this, the relation of transgene to host gene sequences could 

be an important factor leading to co-suppression (Dorlhac et al., 1994). If this is indeed 

the case, the goal of generating virus-resistant plants will not be successful as RNA 

viruses will be prevented from accumulating by post-transcriptional process (Stam et 

al., 1997). Additional successive generations will be needed to study the silencing 

phenomena.  
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            Bhat and Srinivasan (2002) have suggested picking single copy transgenics to 

simplify analysis. It was reported that 10 or more independently transformed lines 

should be included for any kind of meaningful analysis (Birch, 1997). The general 

practice is to select the progenies (T1 plants) obtained after self-fertilization of the 

primary transgenics (T0 plants) for analysis. However, in most cases, back cross-

progenies (BC1F1 plants) would be a better option for analysis, as suggested by Bhat 

and Srinivasan (2002). The BC1F1 population offers a greater chance of obtaining 

single copy insertions and allows better comparison among progeny plants to 

distinguish transgene effect from other effects.  

          Tissue culture, transformation and breeding are three aspects that need to be 

considered while analyzing the results. Additionally, it is very important to have 

appropriate controls in experimentation. Plants regenerated from tissue culture are 

physiologically very different from their counterparts obtained from traditional 

propagules (vegetative or seedlings). Flowering and other physiological behaviour have 

been found to be affected in tissue culture regenerated plants (Bhat and Srinivasan, 

2002). To separate the tissue culture effects and transgene effects, untransformed, tissue 

culture regenerated plants should be used as controls. In addition, non-transgenic 

controls may be insufficient to identify and exclude effects due to transgene-linked 

sequences such as the effect of markers (Bhat and Srinivasan, 2002). It has been 

reported that GUS expressing plants have recorded increased larval growth and up to 

50% increase in mean foliage consumption, even though the marker gene introduced 

along with the gene of interest is generally considered not to affect plant performance or 

contribute to variation. (Lecardonnel et al., 1999). In progeny generations, Bhat and 

Srinivasan (2002) also recommended that non-transgenic plants derived from primary 

transgenics to be used as controls.  
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Challenge of T1, T2 and T3 transgenic plants against CMV   

          The N. tabacum plant is regarded as one of the hosts which are very susceptible to 

CMV infection due to the high levels of virus accumulation in infected young plants 

(Safarnejad et al., 2009). Tavladoraki et al., (1993) have reported that scFv antibodies 

against plant viruses cause a reduction of infection incidence and delay in symptom 

development by expression in transgenic plants. In this study, the test plants were 

challenged with CMV to reveal the functionality of the transgene. A bioassay test was 

performed according to procedure described by Zhang et al. (1991). 30 individual 

transgenic plants at the 4 leaf stage from each generation were inoculated by gently 

rubbing CMV on the wounded surface. All inoculated plants were kept under similar 

conditions and a weekly inspection was performed to monitor for symptom 

development. Early symptoms were discovered 2 weeks after inoculation. The sensitive 

transgenic lines and wild type plants showed clear symptoms of infection including leaf 

mosaic and chlorosis. The symptoms induced by CMV on the susceptible test plants 

were identical to those reported induced by CMV isolates on tobacco plants (Hu et al., 

2011; Mazidah et al., 2012).  

          To evaluate viral accumulation within the tobacco plants, symptomless plants as 

well as symptomatic ones were analyzed by ELISA assay. The results showed that only 

one symptomless plant contained no detectable CMV. In contrast, plants with delayed 

and severe symptoms showed detectable CMV levels. The ELISA assay demonstrated a 

direct relationship between symptom severity and the accumulation of CMV. All test 

plants showed detectable transcripted scFv transgenes. Detectable transcripted scFv 

transgenes was not found in wild type plants.  

          Symptomless test plants and those with significant delay of disease symptoms 

were regarded as resistant. Generally, T1 and T2 generations showed high resistance to 

CMV. This indicates that the resistance phenotype is inherited through T0 to T2 
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generations. A reduction in resistance was observed in T3 generation. Further studies 

were conducted on the only symptomless T1 test plant. It was observed that the T1 

transgenic plant in question remained symptomless. But those initially resistant plants 

were unable to prevent CMV invasion in the long term. Failure to detect CMV in the 

plants at early stage was probably due to very low concentration of the virus (Mazidah 

et al., 2012). A few previous studies on the expression of scFv antibodies in transgenic 

plants have shown that targeting the viral coat protein can lead to improved but 

incomplete resistance against the challenge virus (Tavladoraki et al., 1993; 

Zimmermann et al., 1998). Similar results have also been reported for transgenic 

resistant plants challenged with tomato yellow leaf curl virus (Norris et al., 1998; 

Zrachya et al., 2007; Safarnejad et al., 2009). 

 

Homology Modeling (HM) and docking 

          The molecular basis of how proteins function is determined by a number of 

factors and one important factor is the three-dimensional (3D) structures of the protein. 

However, it is not easy to determine the 3D structure of a protein from its amino acid 

sequence. Several methods have been developed to this end. One of the most accurate 

methods is homology modeling, also known as comparative modelling (Cavasotto et al., 

2009). Alternative methods like X-ray crystallography and NMR spectroscopy are 

inaccurate and time-consuming (Floudas et al., 2006). Homology modeling is based on 

the fact that proteins which share a similar evolutionary history will have similar 

structures (Vitkup et al., 2001) and it is the only method which can reliably generate a 

3D model of a protein from its amino acid sequence (Tramontano, 2001).  

          The automated SWISS-MODEL software, available since 1993, was one of the 

first software in the field of automated modeling and is continuously updated (Schwede, 

2003). In this study, SWISS-MODEL program has been applied to predict the VH and 
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VL structures. The analysed results with BLAST show both the input sequences are 85% 

similar to the template structure in the gene bank. The quality of the homology model 

therefore is dependent on the quality of the sequence alignment and template structure. 

A report by Panahi et al. (2012) suggested optimization of the predicted model by 

Modeler 9v8. The predicted protein can be further evaluated using Q-mean score 

(Benkert et al., 2008) and Ramachandran plot statistics. Structure prediction by HM can 

help in understanding the 3D structure of a given protein and to elucidate the 

mechanisms of protein function (Wade et al., 1990). It is important to have a high 

quality homology model since the function of the protein is determined by its 3D 

structure. Other programs such as Hidden Markov Model (Karplus, 2009) or Phyre 

server (Kelley and Sternberg, 2009) could also be used to compare the results.  

          Molecular docking was carried out in this study to find the potential binding 

interactions between the anti-CMV scFv antibody and CMV. The Autodock program 

was selected for use due to its free academic licence and user-friendly software. The 

newest version of the Autodock package has proved to be efficient even for problematic 

protein-peptides complex (Hetenyi and Van der Spoel, 2002). The Autodock-based 

blind docking approach was applied to search the entire surface of VL chain and VH 

chain for binding sites while simultaneously optimizing the conformations of the 

molecules. The specific binding process was then performed to predict the potential 

binding sites. We obtained a positive value for lowest energy. This suggests close 

contact between the anti-CMV antibody and CMV. Due to the limitations of the 

AutoDock program, other docking programs may need to be used to obtain a better 

understanding of the interaction between the molecules.  
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Framework for Safety Assessment of virus resistant transgenic plants 

          A pilot framework of risk assessment and risk management protocol was 

presented in compliance with the Malaysia Biosafety Act. As the scFv transgene had 

not been released for field testing in Malaysia prior to this study, there was no precedent 

in terms of risk assessment and risk management. With this in mind, the framework 

developed for this study drew on guidelines from other countries. As the understanding 

of biosafety improves in Malaysia, the expertise of the scientific community will 

improve as well. Therefore the safety assessment should be reviewed periodically as 

new information becomes available.  
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7.0 Conclusion 

          The objective of the present study was to evaluate the stability and functionality 

of the Nicotiana tabacum expressing anti-CMV scfv antibodies.  

          In this study, primary transformants and 3 generations of transgenic tobacco were 

evaluated for stability and functionality of transgenes. Taken together, all results of T0, 

T1, T2 and T3 showed that scFv transgenes have been stably integrated into the plant 

genome and inherited by successive generations. Even though low expression levels 

were detected in all test plants, functionality of the transgenes was achieved. The 

bioassay study provides confirmation of preliminary success in obtaining plants that are 

resistant to CMV.  Overall, areas for improvement for the study include the use of Real-

time PCR to determine the expression level and copy number of transgenes. In addition, 

gene expression studies could also be carried out using microarrays.  

         In the molecular modeling study, the prediction of binding interaction between 

CMV and anti-CMV scFv was successfully carried out using the AutoDock program. 

This prediction should be further evaluated and confirmed with other available Docking 

programs.   

         A pilot framework for risk assessment and risk management protocol has been 

developed within the context of the Malaysian Biosafety Act. The aim of the safety 

evaluation is to assess if there are any effects on the environment or human health when 

transgenic tobacco plants are released for field testing.  

          This proof of concept paves the way for applications to produce diagnostic 

antibodies to CMV. Future work would include the generation of T4 for further analysis. 

In addition, using the guidelines as a reference, biosafety issues on gene flow, toxicity 

and allergenicity test can be further studied.  
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9.0 Appendices 

 

Appendix A:  

Buffers and Solutions for small scale isolation of plasmid DNA  

LB broth 

10g Tryptone   

5g Yeast Extraxt 

5g NaCl 

Dissolved in 1L distilled water 

Autoclaved  

 

Solution 1: 

50mM glucose 

10mM EDTA (pH8.0) 

25mM Tris-HCl (pH8.0) 

Stored at 4oC 

 

Solution 2: 

0.2N NaOH 

1% SDS 

Prepared freshly 

 

Solution 3: 

3M potassium acetate 

1.15% (v/v) glacial acetic acid  

Stored at 4oC 

 

TE buffer 

10mM Tris-HCl, pH 8.0 

1.0mM EDTA, pH 8.0 
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Appendix B 

Buffers and stock solutions for Agarose gel electrophoresis 

 

6X Loading Buffer 

6ml Glycerol 

1.2ml EDTA (0.5M) 

2.8ml ddH2O (sterile) 

Bromophenol blue 

 

1% Agarose Gel 

0.1g Agarose gel powder 

Dissolved in 10ml 1X TBE 

 

5X TBE Buffer 

54.0g Tris-base 

27.5g Boric Acid  

20ml 0.5M EDTA (pH 8) 

Dissolve in 1L distilled water 

 

 

1X TBE Buffer 

200ml 5X TBE Buffer 

800ml distilled water  

Stored at room temperature 
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Appendix C 

Buffers for Purification of PCR products 

Capture buffer  

Buffered solution containing acetate and chaotrope 

 

Wash Buffer 

10 mM Tris-HCl, pH 8.0  

1mM EDTA 

80% (v/v) Absolute Ethanol 
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Appendix D 

Buffers and stock solutions for Southern Blot 

Control Labeling Reaction 

5μl control DNA2 

10μl distilled water  

 

DNA Dilution Buffer 

50μg /ml herring sperm DNA 

Dissolved in 10mM Tris-HCl and 1 mM EDTA, pH8.0 

 

Depurination Solution 

0.25M Hydrochloric acid 

 

Denaturation Solution 

1.5M Sodium Chloride 

0.5M Sodium Hydroxide 

 

Neutralization Solution 

1M Tris (pH7.5) 

1.5M Sodium Chloride 

20X SSC, pH7.0 

175.3g Sodium Chloride 

88.2g Sodium Citric acid 

Dissolved in 1L distilled water 

 

Stopping Buffer 

0.2M Ethylene-Diamino-Tetracetic acid (EDTA), pH 8.0 

Dissolved in distilled water  

Stored at room temperature 

 

Maleic acid Buffer, pH 7.5 

0.1M Maleic acid 

0.15M Sodium Chloride 

Stored in room temperature 
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Washing Buffer, pH7.5 

0.3% (v/v) Tween 20 

Dissolved in Maleic acid buffer 

Stored at room temperature 

 

Detection Buffer, pH9.5 

0.1M Tris-HCl 

0.1M Sodium Chloride 

Stored at room temperature 

 

TE-buffer, pH8.0 

10mM Tris-HCl 

1mM EDTA 

Stored at room temperature 

 

10X Blocking Stock solution 

10% (w/v) Blocking reagent 

Dissolved in Maleic acid buffer 

Autoclaved and stored at 4oC 

 

1X Blocking Solution 

100ml 10X Blocking Stock Solution 

Dissolved in 900ml Maleic acid Buffer 

Always freshly prepared  

 

Antibody solution 

Anti-Digoxigenin-AP  

Diluted 1:5000 in Blocking Solution 

Stored at 4oC 

 

Colour-substrate solution 

40μl Nitro Blue Tetrazolium (NBT)/ 5-bromo-4-chloro-3-indolyl-phosphate (BCIP)  

Added to 2ml of Detection Buffer 

Always freshly prepared 
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Appendix E: 

Buffers and stock solutions for SDS-PAGE Electrophoresis and Staining  

 30% Acrylamide solution (Bio-Rad) 

Acrylamide: bis (37.5:1) 

Stored in the dark, at 4oC 

 

10% (w/v) Sodium Dodecyl Sulfate (SDS) 

10g SDS 

Dissolved in 100ml of distilled water 

 

1.5M Tris-HCl, pH8.8 

22.73g Tris base 

Dissolved in 150ml distilled water 

Stored at 4oC 

 

0.5M Tris-HCl, pH6.8 

6g Tris base 

Dissolved in 100ml distilled water 

Stored at 4oC 

 

Sample Buffer 

1.25ml 0.5M Tris-HCl (pH 6.8) 

2.0ml 10% SDS 

2.5ml Glycerol 

0.2ml 0.5% (w/v) bromophenol blue 

Stored at room temperature 

 

10X SDS Running buffer 

30.3g Tris Base 

144.0g Glycine 

10.0g SDS 

Dissolved in 1L distilled water 

Stored at room temperature 
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1X SDS Running buffer 

100ml 10XSDS Running buffer 

900ml distilled water 

 

10% Ammonium Persulphate (APS) 

0.1g APS  

Dissolved in 1ml of distilled water 

Freshly prepared 

 

4% Stacking Gel 

6.1ml Distilled water 

2.5ml 0.5M Tris HCl (pH6.8) 

1.3ml 30% Polyacrylamide ready-made gel solution 

0.1ml 10% SDS 

50 μl 10% APS 

10μl TEMED 

 

12% Resolving Gel 

3.4ml distilled water 

2.5ml 1.5M Tris HCl (pH8.8) 

4.0ml 30% Polyacrlyamide ready-made gel solution 

0.1ml 10% (w/v) SDS 

50μl 10% APS 

5μl TEMED 

 

Fixing solution 

40% Ethanol 

7% Glacial acetic acid 

Dissolved in distilled water 

 

Coomassie Blue Staining solution 

40% Methanol 

7% Acetic acid 

0.025% Coommasie brilliant blue 

Dissolved in distilled water 
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Destaining solution 

20% Ethanol 

7% Acetic acid 

Stored at room temperature 
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Appendix F:  

Buffers and stock solutions for Western Blot 

Transfer Buffer, pH 8.3 

3.03g Tris base 

14.4g glycine  

20ml methanol 

Dissolved in 1L distilled water 

Stored at 4oC 

 

TBS-T Buffer, pH7.4 

3.0g Tris base 

8.0g Sodium Chloride 

0.2g Potassium Chloride 

0.05% (v/v) Tween 20 

Dissolved in 1L distilled water 

 

Blocking solution 

5% Skimmed Milk 

Dissolved in TBS-T buffer 

 

Alkaline Phosphatase (AP) buffer 

1.58g Tris-HCl, pH9.0 

0.75g Sodium Chloride 

0.10g Magnesium Chloride 

Dissolved in 100ml distilled water 

 

Colour Development Solution  

33μl Nitro Blue Tetrazolium (NBT) 

16.5μl 5-bromo-4-chloro-3-indolyl-phosphate (BCIP)  

Added in 5ml AP Buffer 
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Appendix G:  

Buffers and stock solutions for ELISA 

General Extraction Buffer, pH 7.4 

1.3g Sodium sulfite (anhydrous) 

20.0g Polyvinylpyrrolidone (PVP)  

0.2g Sodium azide 

2.0g Powdered egg albumin 

20.0g Tween-20 

Dissolved in 1L 1X PBST 

Stored at 4oC 

 

Coating Buffer, pH9.6 

1.59g Sodium Carbonate (anhydrous) 

2.93g Sodium Bicarbonate 

0.2g Sodium Azide 

Dissolved in 1L distilled water 

Stored at 4oC 

 

PBS Buffer, pH7.4 

8.0g Sodium Chloride 

1.15g Sodium Phosphate (anhydrous) 

0.2g Potassium Phosphate, monobasic (anhydrous) 

0.2g Potassium Chloride 

Dissolved in 1L distilled water 

 

PBST Buffer, pH7.4 

0.5g Tween-20 

Dissolved in 1L PBS Buffer 

 

Blocking Buffer 

2% non-fat milk 

Dissolved in PBS-T buffer 

 

ECI Buffer, pH7.4 

2.0g Bovine serum albumin (BSA) 
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20.0g Polyvinylpyrrolidone (PVP)  

0.2g Sodium azide  

Dissolved in 1L PBS-T buffer 

Stored at 4oC 

 

PNP Buffer  

0.1g Magnesium Chloride Hexahydrate  

0.2g Sodium Azide 

97.0ml Diethanolamine 

Dissolved in 1L distilled water 

Stored at 4oC 
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Appendix H:  

Buffers and stock solutions for Mechanical Inoculation  

 

0.05M PBS, pH7.0 

Stock solution A: 1M Potassium dihydrogen phosphate  

Stock solution B: 1M Dipotassium hydrogen phosphate  

21.1ml of stock A and 28.9 ml of stock B were mixed and diluted to 1L with distilled 

water. 
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4 Project Title:  

5 Date of the IBC Assessment:  

6 

Does the IBC consider that the principal investigator and every other 

person(s) authorized to be involved in the field experiment with the LMO 

have adequate training and experience for the task? 

  Yes        No 

7 The following information related to this project has been checked and approved 

a)     The objective of the project  Yes            No 

b)     The description and genetics of the LMO   

 
 Yes            No 

c) The risk assessment and risk management, taking into account the 

risks to the health and safety of people and the environment from 

the release of the LMO. 

 Yes            No 
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d) The emergency response plan  Yes            No 

8 Has the information been checked by the IBC and found to be complete?     Yes         No 

 

9 Has the IBC assessed the proposed project?                                 Yes         No 

If yes, please append a copy of the IBC’s assessment report and indicate the attachment in which 

details are provided. 
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Signatures and Statutory Declaration 

 

The proposed release of LMO (Research and development purposes in all field experiments) or 

importation of LMO that is a higher plant (not for contained use activities) has been assessed as above 

and endorsed by the IBC. We declare that all information and documents herein is true and correct. We 

understand that providing misleading information to the NBB, deliberately or otherwise, is an offence 

under the Biosafety Act 2007. 

 

Applicant: 

 

Signature: ______________________ Date: ______________________________  

 

Name as in Identity Card/Passport: ______________________________________  

 

Official Stamp: 

 

 

IBC Chairperson: 

 

Signature: ______________________ Date: ______________________________  

 

Name as in Identity Card/Passport: ______________________________________  

 

Official Stamp: 

 

Head of organization/Authorized representative: 

 

Signature: ______________________  Date: ______________________________  

 

Name as in Identity Card/Passport: ______________________________________  

 

Official Stamp: 
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Part A Risk Assessment  

 

A1 General Information 

 

1. Project Title. 

 

2. Rationale of Project. 

 

3. Project objectives: 

 a)  Overall Objective 

 b)  Specific Objective 

 

4. Details of the LMO to be released:  

a) Genus and species  

b) Common name  

c) Modified trait(s) 

 

5. Release site(s) : 

(If more than one location is involved, then the information required in numbers 5, 6, 7, 8 & 9, 10, 

11) should be repeated for each location(s) of release) 

a) District(s) 

b) State(s) in which the release(s) will take place 

 

6. Scale of release per release site. 

 (Number of LMO involved, size of plot/site etc) 

 

7. Date when the release(s) is expected to commence. 

8. Frequency of releases. 

9. Date when release(s) is expected to end. 

 

10. For an imported LMO – the date of importation or intended importation, including, if possible, a 

copy of documentation of clearance or assessment from the relevant authorities like Department 

of Agriculture (DOA). 

 

11. Description of the proposed activities with the LMO. 
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12. Name of person(s) authorized to undertake activities with the LMO. 

 

 

A2 Risk Assessment Information - Parent Organism  

(If more than one parent organism of the same species is involved then the information required 

in this part should be repeated for each parent organism) 

 

13. Details of the parent organism 

If the LMO is the result of a crossing event between more than one species/cultivar/breeding 

line/variety please include relevant information (for example, LMO crossed with non-LMO or 2 

LMOs crossed) 

a) Family name 

b) Genus 

c) Species  

d) Subspecies  

e) Cultivar/Breeding line/Variety  

f) Common name  

14. A statement about whether the parent organism has an extended history of safe use in agriculture 

or in other industries.  

15. Information concerning the reproduction of the parent organism:  

a) The mode or modes of reproduction 

b) Any specific factors affecting reproduction 

c) Generation time  

16  Information regarding the sexual compatibility of the parent organism with other cultivated or wild 

plant species.  

17.  Information concerning the survivability of the parent organism: 

a) Ability to form structures for survival or dormancy including seeds, spores and sclerotia  

b) Any specific factors affecting survivability, for example seasonability 

18.  Information concerning the dissemination of the parent organism: 

a) The means and extent of dissemination  

b) Any specific factors affecting dissemination 

19. Details of the natural habitat of the parent organism and its range. 
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20. Is the parent organism exotic in Malaysia?   

 Yes        No 

 
21. Is the parent organism naturalized in Malaysia? 

  Yes        No 

 

22. Is the parent organism, or a closely related organism, present at, or near, the site of the proposed 

release(s)?             

(If more than one location is involved, then the information required in numbers 22 & 23 should be 

repeated for each location(s) of release) 

 

 Yes        No 

 

23. If yes, please provide details of the population(s) and the estimated distances between them from 

the proposed release(s). 

 

24. The potentially significant interactions of the parent organism with organisms other than plants in 

the ecosystem where it is usually grown, including information on toxic effects on humans, 

animals and other organisms.  

 

25. An assessment of whether the parent organism is capable of causing disease or other ill-health in 

human, plants or animals and, if so, the details of the possible effects. 

 
26. Details of any known predators, parasites, pests or diseases of the parent organism in Malaysia. 

 

27. Details of pathogenicity, including infectivity, toxigenicity, virulence, allergenicity, carrier (vector) 

of pathogen, possible vectors, host range including non-target organisms and possible activation 

of latent viruses (proviruses) and ability to colonize other organisms. 

 

28. Is the parent organism resistant to any known antibiotic and if yes, what is the potential use of 

these antibiotics in humans and domestic organisms for prophylaxis and therapy? 

 

29. Is the parent organism involved in environmental processes including primary production, nutrient 

turnover, decomposition of organic matter and respiration? 
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A3 Risk Assessment Information - LMO 

30. Details of the modified trait(s) and how the genetic modification will change the phenotype of the 

LMO to be released. 

31. What are the gene(s) responsible for the modified trait(s)? 

 

32. Give details of the organism(s) from which the gene(s) of interest is derived: 

(If more than one gene is involved then the information required in numbers 32, 33, 34, 35, 36 
and 37 should be repeated for each gene) 

a) Family name  

b) Genus  

c) Species  

d) Subspecies  

e) Cultivar/Breeding line/Variety 

f) Common name 

33. Indicate whether it is a: 

a) viroid  

b) RNA virus  

c) DNA virus  

d) bacterium  

e) fungus  

f) animal  

g) plant 

h) other (please specify)  

34. Does the gene(s) of interest come from an organism that causes disease or other ill-health in 

humans, plants or animals? Provide details of the possible effects. 

35. Please provide the following information about the gene(s) of interest(s): 

a) Size of sequence of the gene(s) of interest inserted 

b) Sequence of the gene(s)of interest inserted 

c) Intended function of the gene(s) of interest 

d) Number of copies of the gene(s) of interest in the construct 

e) Details of the steps involved in the construction 
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f) Provide the map(s) of construct(s) indicating the gene(s) of interests and all other 

regulatory elements that will finally be inserted in the LMO 

 

36. Please provide the following information about the deleted sequence(s): 

a) Size of the deleted sequence(s) 

b) Function of the deleted sequence(s) 

c) Details of the steps involved in the deletion of sequences from the parental organism 

d) Provide the map(s) of construct(s) 

 

37. The following information is on the expression of the gene(s) of interest: 

a)  Level of expression of the gene(s) of interest and methods used for its characterization 

b)  The parts of the plant where the gene(s) of interest is expressed, such as roots, stem or 

pollen  

c)  Indicate the part(s) of the vector(s) that remains in the LMO 

d) The genetic stability of the gene(s) of interest 

38. A description of the methods used for the genetic modification: 

a) How gene(s) of interest was introduced into the parent organism, or 

b) How a sequence of a gene was deleted from the parent organism 

39. If no vector was used for the genetic modification please provide details of how the gene(s) of 

interest is introduced. 

40. If vector(s) was used, please provide the following information: 

(If more than one vector was used, then the information required in 40 should be repeated for 

each vector). 

a) Type of vector 

i. plasmid  

ii. bacteriophage  

iii. virus  

iv. cosmid  

v. phasmid  

vi. transposable element  

vii. other, please specify  
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b) Identity of the vector(s) 

c) Information on the degree of which the vector(s) contains sequences whose product or 

function is not known  

d) Host range of the vector(s) 

e) Potential pathogenicity of the vector(s) 

f) The sequence of transposons and other non-coding genetic segments used to construct 

the LMO and to make the introduced vector(s) and insert(s) function in those organisms 

41. Details of the markers or sequences that will enable the LMO to be identified in the laboratory and 

under field conditions. Provide appropriate evidence for the identification and detection 

techniques including primer sequences of the detection of the inserted gene(s) including marker 

gene(s). 

42. Information (biological features) on how the LMO differs from the parent organism in the following 

respects: 

a) Mode(s) and/or the rate of reproduction  

b) Dissemination  

43. If there is any possibility that the inserted gene(s) in the LMO could be integrated into other 

species at the release site(s) and the surrounding environment and if so, please provide the 

following details: 

a) The organism(s) to which the modified trait(s) can be transferred to and the frequency at 

which it can be transferred 

b) The transfer mechanism involved and the techniques that have been used to 

demonstrate transfer 

c) Any possible adverse effects of the transfer including 

i. Any advantages the affected organism(s) are likely to have over the number of 

the species that do not contain the inserted gene(s) 

ii. Environmental risks posed by such an advantage 

44. The identification and description of the target organism(s), if any. 

45. The anticipated mechanism and result of interaction between the released LMO and the target 

organism(s). 

46. The known or predicted interaction on non-target organisms in the release site(s) and the impact 

on population levels of competitors, prey, hosts, symbionts, predators, parasites and pathogens. 
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47. A statement on whether the modified trait(s) of the LMO will change the capacity of the plant to 

add substances to, or subtract substances from, soil (for example, nitrogen or toxic compounds) 

and, if so, details of all such changes. 

48. Details of any other possible adverse consequences. 

49. Details whether the LMO compared to the parent organism that will confer a selective advantage 

that can impact on survival in the release site(s), including a statement on how stable those 

features are. 

50. Details of whether the modified trait(s) will confer a selective advantage on the LMO compared to 

the parent organism and if so, the nature of the advantages including a statement on how stable 

those features are and under what conditions.  

51. Details of whether the gene(s) of interest or any part of the vector(s) has the ability to reproduce 

or transfer to other hosts and, if so, details of the host range.  

52. In relation to human health: 

a) The toxic or allergenic effects of the non-viable organisms and/or their metabolic products  

b) The comparison of the organisms to the donor, or (where appropriate) parent organism 

regarding pathogenicity  

c) The capacity of the organisms for colonization  

d) If the organisms are pathogenic to immunocompetent persons: 

i. diseases caused and mechanisms of pathogenicity including invasiveness and 

virulence,  

ii. communicability,  

iii. infective dose,  

iv. host range and possibility of alteration,  

v. possibility of survival outside of human host,  

vi. presence of vectors or means of dissemination,  

vii. biological stability,  

viii. antibiotic-resistance patterns,  

ix. allergenicity, and  

x. availability of appropriate therapies.  

 



 
 

16 
 

 NBB REF.NO    : 
(For Office Use) 

53. Details of unintended pleiotropic effects (if any), including undesirable effects on agronomic 

characteristics of the plant which may result from the expression of the gene of interest(s) in the 

LMO (for example, reduced fertility, increased prevalence, production losses, grain shedding), 

including an indication of the likelihood of these events. 

54. The description of genetic traits or phenotypic characteristics and in particular any new traits and 

characteristics which may be expressed or no longer expressed. 

55. Details of how the genetic modification will change the phenotype of the LMO to be released, 

including information to demonstrate the effect of the genetic modification. 

56. Details of the mechanism of pollen spread (by insect vectors or by other means) in the plant 

population: 

a) Details of pollen viability for the parent organism and of the LMO 

b) Details of any potential pollinators and their range and distribution in Malaysia 

c) Quantitative data on successful cross-pollination between the parent organism, the LMO 

and its wild relatives, if available 

 

A4 Information about weeds 

 

57. Details of the members of the family of parent organism that are known to be weeds in any 

environment. 

 

58. Details of cross-pollination between the species to which the LMO belongs and wild relatives 

known to be weeds, including a copy of any literature reports that support the information. 

 

A5 Information about the seeds of the LMO 

 

59. A statement on whether the LMO proposed to be released will be allowed to set seed and, if not, 

whether setting seed is planned for a later release. 

 

60. If the LMO is to be allowed to set seed, will the mature seed normally remain contained within an 

ear, capsule or pod, so that practically all of the seed can be readily harvested, or is the seed 

shed soon after it matures?  

If the latter, provide an indication of the proportion of seed likely to remain in the release site(s) 

following harvest. 

61. Details of the length of time that the seeds are capable of being dormant and whether it differs 

from the parent organism. 
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A6 Characteristics affecting survival of LMO  

62.  The predicted habitat of the LMO. 

63. The biological features which affect survival, multiplication and dispersal. 

64.  The known or predicted environmental conditions which may affect survival, multiplication and 

dispersal, including wind, water, soil, temperature, pH. 

65.  The sensitivity to specific agents (e.g. disinfectant, pesticides, fertilizers, wind, water). 

A7 Information about any secondary ecological effects that might result from the release 

 

66 An assessment of possible effects of the proposed release on: 

a) Native species 

b)  Resistance of insect populations to an insecticide 

c)  Abundance of parasites 

 

 

A8 Information about resistance of the LMO to a chemical agent (other than selective agents, such 

as antibiotics, used in strain construction) 

 

67. Details of any environmental risks related specifically to the resistance of the LMO to a chemical 

agent (for example, a herbicide, but not a selective agent, such as an antibiotic, used in strain 

construction), where the resistance is a result of the genetic modification. 

 

 

A9 Information about resistance of the LMO to a biological agent 

 

68. Details of any environmental risks related specifically to the resistance of the LMO to a biological 

agent (for example, an insect or a fungal disease), where the resistance is a result of the genetic 

modification. 
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A10 Information relating to the release site(s) 

(If more than one release site is involved, then the information required in this part should be repeated for 

each release site) 

69. The size of the proposed release site(s).  

70. The location of the proposed release site(s). Provide site map(s) with national grid reference(s). 

71. Details of the reasons for the choice of the release site(s). 

72.  Details of the arrangements for conducting any other activities in association with the proposed 

release(s), such as importation of the LMO and transportation of the LMO, to or from the release 

site(s). 

73.        The preparation of the release site(s) before the release(s). 

74. The methods to be used for the release(s). 

75. The quantity of the LMO to be released. 

76.        The physical or biological proximity of the release site(s) to humans and other significant biota or 

protected areas. 

77.        The size of local human population. 

78.        The local economic activities which are based on the natural resources of the area. 

79.         The distance to the nearest drinking water supply zone areas and/or areas protected for 

environmental purposes. 

80.        The flora and fauna, including crops, livestock and migratory species in the release site(s). 

81.        The comparison of the natural habitat of the parent organism(s) with the proposed release site(s). 

82. Any known planned developments or changes in land use in the region which could influence the 

environmental impact of the release. 

 

 



 
 

19 
 

 NBB REF.NO    : 
(For Office Use) 

Part B Risk Management 

B1 Information on control, monitoring, post-release plans  

83.  A description of measures (if any) to minimize the effects of any transfer of the modified genetic 

trait(s) to other organisms.  

84.  Details of the proposed release site(s) supervision procedures and if necessary any relevant 

safety procedures designed to protect staff, including a description of procedures for onsite 

supervision of the release if the release site(s) is located at some distance from the location of the 

applicant. 

85.  Details of proposed measures (if any) for monitoring any risks posed by the LMO(s), including 

monitoring for: 

a) The survival or presence of the LMO, or transferred genetic material, beyond the 

proposed release site(s), including specificity, sensitivity and reliability of detection 

methods 

b) Impacts on the characteristics, or abundance, of other species 

c) Transfer of the gene(s) of interest to other species 

d) Any other hazards or deleterious effect 

86.  Details of proposed procedures for auditing, monitoring and reporting on compliance with any 

conditions imposed by the NBB. 

87.  Details of ongoing monitoring to be undertaken after the release(s) are completed. 

88.  Details of proposed measures to minimize the possible adverse consequences. If no measures 

have been taken, please give reasons. 

89.  The methods for elimination or inactivation of the organisms at the end of the experiment and the 

measures proposed for restricting the persistence of the LMO or its genetic material in the 

release site(s).  

 

B2 Waste treatment plans 

90. Type of waste generated. 

91.  Expected amount of waste. 

92.  Possible risks resulting from the waste. 
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93.  Description of waste treatment envisaged and its disposal. 

Part C Emergency response plan 

94.  Methods and procedures for controlling/removing the LMO in case of unintentional release or any 

adverse effects being realized.  

95.  Methods for isolation of the area affected. 

96.  Methods for disposal of other plants, animals and any other thing exposed to the adverse effects 

 

Part D Data or results from any previous release(s) of the LMO 

 

97. Give the following information from the previous applications and releases of the LMO for which 

the applicant is seeking an approval: 

i.  Reference number of each application 

ii. Date of the certificate of approval issued 

iii. Terms and conditions (if any) attached to the approval 

iv. Data and results of post-release monitoring methods and effectiveness of any risk 

management procedures, terms and conditions and other relevant details 

v. Relevant data if the previous release is on a different scale or into a different ecosystem 

vi. Any other relevant details 

 

98. Details of results of any applications made for approval of the LMO in other countries, including 

information about conditions (if any) attached to the approval. 

 

99. Details of any previous notifications for contained use activities according to the Biosafety Act 

2007 from which the work in this present application has been developed. 

 

100. If the LMO has been previously released overseas, details of any adverse consequences of the 

release, including identifying references and reports of assessments if any. 
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BIOSAFETY ACT 2007 

 

BIOSAFETY REGULATIONS 2010 

 

NBB/N/CU/10/FORM E 

 

NOTIFICATION FOR CONTAINED USE AND IMPORT FOR CONTAINED USE ACTIVITIES 

INVOLVING LIVING MODIFIED ORGANISM (LMO) FOR BIOSAFETY LEVELS 1, 2, 3 AND 4 

 

NBB/N/CU/10/FORM E shall be submitted to the Director General as a notification for contained use 

and import for contained use (not involving release into the environment of Living Modified Organism 

(LMO) as specified in Second Schedule of the Act). Any organization undertaking modern 

biotechnology research and development shall submit the notification through its Institutional Biosafety 

Committee (IBC) that is registered with the National Biosafety Board (NBB). The IBC should do an 

assessment prior to submission. Not all parts in this form will apply to every case. Therefore, 

applicants will only address the specific questions/parameters that are appropriate to individual 

applications. 

 

 In each case where it is not technically possible or it does not appear necessary to give the 

information, the reasons shall be stated. The risk assessment, risk management plan, emergency 

response plan and the fulfillment of any other requirements under the Biosafety Act 2007 will be the 

basis of the decision by the NBB.  

 

The applicant shall submit 1 original and 6 copies of the notification to the Director General. A soft 

copy of the submitted notification (including all supporting documents/attachments, if any) shall also be 

provided in the form of a CD by the applicant. However, all information that has been declared as 

Confidential Business Information (CBI) should be omitted from the CD 
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Providing information 

The information provided in this notification will be used to evaluate the emergency response plan as 

specified in section 37 of the Biosafety Act 2007 and specific measures to be taken in relation to a 

contained use activity involving LMO. Thus it is important to provide accurate and timely information 

that is as comprehensive as existing scientific knowledge would permit, and supported by whatever 

data available. 

 

The NBB may require additional information, and the applicant will be notified should this be the case. 

If the applicant fails to provide the additional information requested, the notification shall be deemed to 

have been withdrawn but it shall not affect the right of the applicant to make a fresh notification. 

 

Accuracy of information 

The notification should also be carefully checked before submission to ensure that all the information 

is accurate. If the information provided is incorrect, incomplete or misleading, the NBB may issue a 

withdrawal of the acknowledgement of receipt of notification without prejudice to the submission of a 

fresh notification 

 

Confidentiality 

Any information within this notification which is to be treated as CBI, as described in the Biosafety Act 

2007 in section 59(3) should be clearly marked “CBI” in the relevant parts of the notification by 

providing the justification for the request for CBI. The following information shall not be considered 

confidential: 

a) The name and address of the applicant 

b) A general description of the LMO 

c)             A summary of the risk assessment of the effects on the conservation and sustainable 

  use of biological diversity, taking also into account risks to human health; and 

d) Any methods and plans for emergency response 

 

Authorization 

Please ensure that if this notification is being completed on behalf of the proposed user, that the 

person completing this notification holds proper authority to submit this notification for the proposed 

user. Please provide written proof of authorization.  
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For further information 

Please contact the Director General by: 

Telephone: 603-8886 1579  

E-mail: biosafety@nre.gov.my 

   

The completed forms to be submitted as follows: 

The Director General  

Department of Biosafety  

Ministry of Natural Resources and Environment Malaysia 

Level 1, Podium 2 

Wisma Sumber Asli, No. 25, Persiaran Perdana 

Precinct 4, Federal Government Administrative Centre  

62574 Putrajaya, Malaysia. 

 

Acknowledgment of Receipt 

Upon receipt of the notification, the Director General shall send to the applicant an acknowledgement 

of receipt with an assigned reference number. The reference number should be used in all 

correspondence with respect to the notification. 

 

 

Exemption 

The First Schedule of the Biosafety (Approval and Notification) Regulations 2010 allows exemptions 

for some types of techniques and contained use activities in relation to LMO posing a very low risk (i.e. 

contained research activities involving very well understood organisms and processes for creating and 

studying LMO). Exempted activities should be carried out under conditions of standard laboratory 

practice. Appropriate biosafety levels as according to Second Schedule of the Biosafety (Approval and 

Notification) Regulations 2010 should be used for the exempted activities and personnel should have 

appropriate training. Principal Investigators who believe that the work falls into any of the exemptions 

should nevertheless notify their IBC of the proposed project. The IBC may review all submitted 

research projects to determine their exemption or non-exemption status. 

 

Please retain a copy of your completed notification. 
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Notification Check List  

1. Form NBB/N/CU/10/FORM E is completed with relevant signatures obtained  

 

2. Notification assessed and to be sent through the IBC (if relevant)  

 

3. A copy of clearance documents from the relevant Government agencies (if 

required) 

 

4. Any information to be treated as confidential business information should be 

clearly marked “CBI” in the notification 

 

 

5. 1 original and 6 copies of the completed notification submitted. A soft copy of the 

submitted notification (including all supporting documents/attachments, if any) 

that do not contain any CBI. 

 

 

 

 

 
Preliminary information 

1. Organization: 
 

2. Name of Applicant: 
 

 

3. Position in Organization: 

Telephone (office): 

Telephone (mobile): 

Fax number: 

Email: 

Postal Address: 

 

 

 

4. Project Title: 
 

5. IBC Project Identification No: 
 

 

 

6. Is this the first time the activity 

is being notified? 

 

 

Yes 

 

No             If no, please provide information in number 7 
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7. I) Please provide the NBB 

reference number of your 

previous notification. 

  

II) How is this notification 

different from the previous 

notification submitted for this 

activity? 

(please provide an 

attachment if additional space 

is required) 

 

 

 

 

Details of Agent / Importer 

 

8. Organization: 

 

 

9. Contact Person: 

 

 

10. Position in Organization: 

Telephone (office): 

Telephone (mobile): 

Fax number: 

Email: 

Postal Address: 

 

 

 

 

 

 

 

 

 

 

 



NBB/N/CU/10/FORM E  
 

6 
 

 NBB REF.NO    : 
(For Office Use) 

Institutional Biosafety Committee (IBC) Assessment Report for the contained use and import for  

contained use of LMO 

 

This must be completed by the registered IBC of the Applicant’s organization 

 

Section A – IBC Details 

1 
Name of 

organization:: 

 

2 
Name of IBC 

Chairperson: 

 

 
Telephone 

number: 

 
Fax:  

 Email address:  

 

Section B – IBC Assessment 

3 
Name of principal 

investigator: 
 

4 Project Title:  

5 
Date of the IBC 

Assessment: 
 

6 

Does the IBC consider that the principal investigator and every 

other person(s) authorized to be involved in contained use of the 

LMO have adequate training and experience for the task? 

  Yes          No 

7 The following information related to this project has been checked and approved 

a)     The objective of the project  Yes           No 

b)     The description and genetics of the LMO  

 
 Yes           No 

c) The emergency response plan and the specific measures to be 

taken in relation to a contained use activity involving LMO. 
 Yes           No 

8 Has the information been checked by the IBC and found to be complete?   
 

 Yes        No 
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9 
Has the IBC assessed the biosafety of the proposed project?                                            

 Yes        No 

If yes, please append a copy of the IBC’s assessment report and indicate the attachment in which 

details are provided. 

 

Signatures and Statutory Declaration 

The contained use of LMO within this project has been assessed as above and endorsed by the IBC. 

We declare that all information and documents herein is true and correct. We understand that 

providing misleading information to the NBB, deliberately or otherwise, is an offence under the 

Biosafety Act 2007. 

 

Applicant: 

 

Signature: ______________________ Date: ______________________________  

 

Name as in Identity Card/Passport: ______________________________________  

 

Official Stamp: 

 

IBC Chairperson: 

 

Signature: ______________________ Date: ______________________________  

 

Name as in Identity Card/Passport: ______________________________________  

 

Official Stamp: 

 

Head of organization/Authorized representative: 

 

Signature: ______________________  Date: ______________________________  

 

Name as in Identity Card/Passport: ______________________________________  

Official Stamp: 
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 NBB REF.NO    : 
(For Office Use) 

Part A General Information 

 
A1 Information 

1.  The name and address of the applicant and the name, qualifications and experience of the 

scientist and of every other person who will be responsible for planning and carrying out the 

contained use activities and for the supervision, monitoring and safety of the activity. 

 

A2 Project Introduction 

 

In this Part, the applicant is required to describe the proposed activities with the LMO within the 

context of the project.  

 

2. Project Title: 

 

3. Biosafety Level (BSL) : 
 
 BSL 1        BSL2         BSL3     BSL4    
 

4. Rationale of activity: 

 

5. Overall Project/Programme Objective: 

Specific Objective(s): 

 

6. Include an estimated time schedule to achieve the objectives: 

 

7. Intended Date of Commencement: 

 

8. Expected Date of Completion: 

 

9. For an imported LMO– the date of importation or intended importation, including, if possible, a 

copy of documentation of clearance or assessment from the relevant authorities like Department 

of Agriculture (DOA), Ministry of Health, Malaysia, etc... 

 

10. Categories of people (Research staff, technicians, students etc) authorised to undertake 

activities with the LMO: 
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 NBB REF.NO    : 
(For Office Use) 

11. Briefly describe the project using non-technical terms: 

 

12. If the experiments are successful are there plans for an application for field experiment?  

Yes    No    

 

13. If yes, where would the proposed field experiment take place? 

 

14. Who will undertake the unconfined release? 

 

 
 
A3 Description of the LMO 
 

The information requested in the following section is required to help identify any possible hazards 

associated with the proposed activities with the LMO. Some questions in this section may also relate 

to risk assessment and risk management, which are addressed in A4. 

(If more than one LMO is involved, then the information required in A3 should be repeated for each 

LMO). 
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 NBB REF.NO    : 
(For Office Use) 

Please fill the specific information in a tabulated form as below 

 

Table 1 Description of the LMO for contained use activities 

 

LMO 

Common and 

scientific  

name of donor 

organism 

Common and 

scientific 

name of  

parent 

organism 

Vector(s) or 

method of 

genetic 

modification 

Class of 

modified trait 

(Refer to Box 1 ) 

Modified 

trait 

Identity and 

function of 

gene(s)of donor 

organism 

responsible for 

the modified trait 

Target 

organism(s) 

of the LMO  

Target 

tissues for 

genetic 

modification 

1         

    

    

2         
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 NBB REF.NO    : 
(For Office Use) 

      Box 1 : Various Classes or Types of Traits  

 

NO Class (type) of trait 

1 Abiotic stress resistance 

2 Altered agronomic characteristics 

3 Altered nutritional characteristics 

4 Altered pharmaceutical characteristics 

5 Altered physical product characteristics 

6 Antibiotic resistance 

7 Foreign antigen expression 

8 Attenuation 

9 Bacterial resistance 

10 Disease resistance 

11 Flower colour 

12 Fungal resistance 

13 Herbicide tolerance 

14 Immuno-modulatory protein expression 

15 Pest resistance e.g. insect 

16 Protein expression 

17 Reporter/marker gene expression 

18 Virus resistance 

19 Other (provide details) 

20 Unknown 

 

NOTE: 

1. If the LMO has more than one modified trait please list all, as according to the list in the Box 1. 

2. If the modified trait is not listed in the Box 1, please list it as “other” and provide details of the 

modified trait. 
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 NBB REF.NO    : 
(For Office Use) 

A4 Risk assessment and management 
(If more than one LMO is involved, then the information required in A4.1, A4.2 & A4.3 should be 

repeated for each LMO) 

 
In order to prepare the Emergency Response Plan, an assessment of any possible risks or 

potential harm that may be posed by the LMO and the level of risk posed by such hazards based 

on an assessment of the likelihood and consequence of the hazard occurring must be carried out.  

The risks that the IBC is required to assess are: 

a) risks to the health and safety of humans from the activities associated with genetic 

modification 

b) risks to the health and safety of humans from an unintentional release of the LMO; and 

c) risks to the environment from an unintentional release of the LMO 

 

The risk management plan details how any risks posed by the LMO will be managed to ensure 

that unacceptable risks are not realised. 

 

Summaries of any protocols and/or standard operating procedures can be included to specifically 

answer the individual questions. 

 

A4.1 Risk Assessment (Basic information) 

 

15. Is there any risk to health and safety of humans occurring from the proposed activity over and 

above those posed by the donor/parent organism? 

 No known hazard      Not relevant     Yes  

 If yes, please provide information in question below. 

 

16. What are the possible hazard(s) and the likelihood and consequence of the hazard(s) 

occurring (i.e. the risk) from the proposed genetic modification(s)? 

 

17. In regard to the health and safety of humans, what are the possible hazard(s) and the 

likelihood and consequence of the hazard(s) occurring (i.e. the risk) from an unintentional 

release of the LMO into the environment? 

 

18. In regard to the environment, what are the possible hazard(s) and the likelihood and 

consequence of the hazard(s) occurring (i.e. the risk) from an unintentional release of the 

LMO into the environment? 
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 NBB REF.NO    : 
(For Office Use) 

A4.2 Risk Management 

 

19. Do you propose to transport the LMO outside the premises? If yes, describe the precautions 

taken. 

 

20. How will the LMO be disposed of? 

 

21. What are the procedures for decontaminating equipments used during the proposed activities 

in order to render any LMO unviable? 

 

A4.3 Emergency Response Plan  

22. Plans for protecting human health and the environment in case of the occurrence of an 

undesirable effect observed during contained use activities. 

23.  Methods for removal of the LMO in the affected areas in the case of an unintentional release. 

24.  Methods for disposal of other plants, animals and any other organisms exposed during 

the unintentional release. 

25.  Methods for isolation of the area affected by the unintentional release. 

26.  Details of any other contingency measure that will be in place to rectify any unintended 

consequences if an adverse effect becomes evident during the contained use activities or 

when an unintentional release occurs.  
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 NBB REF.NO    : 
(For Office Use) 

A5 The Premises 
 
Please provide information for all of the facilities being used for the confined activities in the table below.  

Information required  Premise 1 Premise 2* Premise 3* 

1.Name of premises: 

 

   

2.Premises type: 

(e.g. animal containment premise, 

laboratory, insect containment premise, etc) 

 

   

3.Biosafety level (BSL): 

 

   

4.Who undertook the inspection: 

(indicate whether it was NBB, IBC or its 

representative) 

 

   

5.Date of most-recent inspection : 

 

   

6.Fill the following if the BSL level is 3 or 4: 

 

Date of certification by competent authority 

(If any) 

 

Certificate reference no: 
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 NBB REF.NO    : 
(For Office Use) 

7.Premises address: 

 

 

 

 

 

   

8.Premises contact person details/ Biosafety 

Officer Name: 

 

   

9.Business phone number: 

 

   

10.Mobile phone number: 

 

   

11.Fax number: 

 

   

12.Email address: 

 

   

 

Note:  

* For notifications with more than one premise; use additional columns if necessary. 

 

A6. Confidential Business Information 

 

Enter in this section any information required in Part A 1 - A 5 for which confidentiality is claimed together with full justification for that claim. 
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 NBB REF.NO    : 
(For Office Use) 
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