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ABSTRACT 

 

A review on statistical tolerance intervals shows that the derivation of two-sided 

tolerance intervals is far more challenging than that of their one-sided counterparts. 

Much of the existing construction of two-sided tolerance intervals are through a 

numerical approach. This study addresses the problems of constructing two-sided 

tolerance intervals in balanced one-way random effects models and for a general family 

of distributions. The Bayesian tolerance interval developed by Ong and Mukerjee 

(2011) using probability matching priors (PMP) is compared via Monte Carlo 

simulation with the modified large sample (MLS) tolerance interval of  Krishnamoorthy 

and Mathew (2009) for normal and non-normal experimental errors with respect to 

coverage probabilities and expected widths. Data generated from normal and non-

normal experimental errors were studied to see the effects on the tolerance intervals 

since real data may not necessarily follow the normal distribution. Results show that the 

PMP tolerance interval appears to be less conservative for data with moderate and large 

number of classes while the MLS tolerance interval is preferable for smaller sample 

sizes. For the second part of the study, the PMP as well as frequentist two-sided 

tolerance intervals are constructed for a general family of parametric models. 

Simulation studies show that the asymptotic results are well-reflected in finite sample 

sizes. The findings are then applied to real data. The results obtained in this research are 

a contribution to the area of statistical tolerance regions. 
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ABSTRAK 

 

Kajian tentang selang toleransi statistik menunjukkan bahawa penerbitan selang 

toleransi dua bahagian adalah jauh lebih mencabar berbanding penerbitan selang 

toleransi satu bahagian. Kebanyakan kaedah penerbitan selang toleransi dua bahagian 

yang sedia ada menggunakan pendekatan berangka. Penyelidikan ini memberi perhatian 

kepada masalah pembinaan selang toleransi dua bahagian bagi model kesan rawak 

sehala berimbang dan famili umum taburan. Kaedah simulasi Monte Carlo digunakan 

untuk membandingkan selang toleransi Bayesian yang dibina oleh Ong dan Mukerjee 

(2011) yang menggunakan prior berpadanan kebarangkalian (PBK) dengan selang 

toleransi hampir berbentuk tertutup melalui kaedah sampel besar terubahsuai (SBT) 

oleh Krishnamoorthy dan Mathew (2009). Ini melibatkan ralat eksperimen bertaburan 

normal dan tidak normal berdasarkan kebarangkalian liputan serta jangkaan lebar. Data 

yang dijana daripada ralat eksperimen bertaburan normal dan tidak normal dikaji bagi 

melihat kesan terhadap selang-selang toleransi ini kerana data sebenar tidak semestinya 

bertaburan normal. Hasil kajian menunjukkan bahawa selang toleransi PBK kelihatan 

kurang konservatif bagi data dengan bilangan kelas yang sederhana dan besar manakala 

selang toleransi SBT disyorkan bagi sampel bersaiz kecil. Dalam bahagian kedua 

penyelidikan ini, selang toleransi dua bahagian PBK serta frekuentis dibina bagi famili 

umum model-model berparameter. Kajian simulasi menunjukkan bahawa hasil-hasil 

asimptotik yang diperoleh dicerminkan dengan baik oleh sampel terhingga. Hasil-hasil 

yang diperoleh daripada kajian ini turut diaplikasi dalam data sebenar.  Hasil-hasil 

penyelidikan ini merupakan satu sumbangan kepada bidang kajian yang melibatkan 

rantau toleransi statistik. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of study 

 

The prior distribution plays a vital role in Bayesian analysis. It represents 

information regarding the uncertainty about a parameter, say  , which is combined 

with the probability distribution of a new data resulting the posterior distribution. We 

are able to obtain the posterior distribution by multiplying the prior distribution and 

likelihood distribution. The posterior distribution is used in making future inferences 

related to  . The prior distribution is an important asset since we will never be able to 

perform any Bayesian inference without it. However, the choice of prior distributions is 

the most crucial and criticized point in Bayesian analysis. Undeniably, selecting the 

prior distribution which is the key to Bayesian inference is a challenging task. 

According to Ghosh et al. (2008), with sufficient information from past experience, 

expert opinion or previously collected data, subjective priors are ideal, and indeed 

should be used for inferential purposes. However, we can use Bayesian techniques 

efficiently even without adequate prior information with some default or objective 

priors. A specific objectivity criterion for such priors known as the probability matching 

criterion has found appeal to both frequentists and Bayesians. Based on Datta and 

Sweeting (2005), a probability matching prior (PMP) in the context of credible regions 

is a prior distribution under which the posterior probabilities of certain regions coincide 

with their coverage probabilities, either exactly or approximately. 
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According to Ong and Mukerjee (2011), probability matching priors play an 

important role with regard to the Bayesian versus frequentist inference in statistical 

inference which is gaining significant attention in recent years. Ong and Mukerjee 

(2011) also mentioned that the problem of ensuring approximate frequentist validity of 

Bayesian credible sets namely those based on posterior quantiles for a parameter or 

parameteric function of interest is a substantial body of work concerning the probability 

matching priors. Hence, this appears to be appealing to Bayesians as noninformative or 

objective priors with an external validation and frequentists as means to obtain precise 

frequentist confidence sets with a Bayesian interpretation. 

 

On the other hand, the computation of statistical intervals based on random 

samples has wide applicability. The choice of interval to be constructed depends on the 

underlying problem and application (Krishnamoorthy and Mathew, 2009). The 

commonly used statistical intervals consist of the confidence intervals, tolerance 

intervals and prediction intervals. Contrary to the confidence interval which provides an 

estimated range of values concerning an unknown population parameter such as the 

population mean and population variance, the tolerance interval gives information on 

the entire population where it captures at least a certain proportion of the population 

with a given confidence level. A prediction interval based on a random sample provides 

bounds for future observations (Krishnamoorthy and Mathew, 2009). We illustrate the 

distinction among a confidence interval, tolerance interval and prediction interval to get 

a clearer picture of their applications. For example, the 95% confidence interval 

estimated for a population mean indicates that 95% of the intervals in repeated sampling 

include the population mean. The prediction interval is interpreted similarly to the 

confidence interval where it provides information concerning a single value 

(Krishnamoorthy and Mathew, 2009). The tolerance interval is implemented in 
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situations where we intend to use the sample to conclude at least 90% of the population 

is within the bounds with a certain confidence level, say 95%. 

 

Tolerance intervals have a wide range of applications in diverse fields such as 

engineering, quality control, pharmaceutical studies, manufacturing, environmental 

monitoring and so on. The theory of statistical tolerance intervals has undergone vast 

development since the pioneering works by Wilks in 1941 and 1942. Various methods 

were implemented in constructing tolerance intervals within the framework of random 

effects models, regression models, multivariate normal populations, continuous 

distributions as well as discrete distributions.  

 

The two-sided ),(   frequentist tolerance interval, say (L, U), contains at least 

a specified proportion  of the sampled population with a specified confidence  , 

where L and U are called respectively the lower and upper tolerance limits. On the other 

hand, an equal-tailed tolerance interval ),( ee UL  is constructed so that it includes the 

interval 











2

1

2

1 ,  qq , where pq  is the p quantile of the sampled population. Note that 

the equal-tailed tolerance interval ),( ee UL  is constructed so that no more than 

%
2

1
100 







  
 of the population is less than eL , and no more than %

2

1
100 







  
 is 

greater than eU . Because of this constraint, an equal-tailed tolerance interval is wider 

than the corresponding two-sided tolerance intervals. Furthermore, the problem of 

finding an equal-tailed tolerance interval simplifies to simultaneous estimation of 

quantiles, and so Bonferroni method could be used to find and approximate equal-tailed 

tolerance interval in cases where the exact ones are difficult to obtain. 
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The formal definitions of one- and two-sided tolerance intervals are as follows:  

Let X  be a continuous random variable with cumulative distribution function (c.d.f) 

 ;XF  where   is a possibly vector valued unknown parameter. Let L and U be 

respectively the lower and upper bounds of a tolerance interval such that UL  . Let 

[.]P  denote the probability set function.  

i. The one-sided (β,γ) tolerance interval associated with the lower tolerance limit, 

L of the form ),[ L  is required to satisfy the condition 

    );(1 LFP X       

                                                                                           

ii. The one-sided (β,γ) tolerance interval associated with the upper tolerance limit, 

U of the form ],( U  is required to satisfy the condition 

   );(UFP X                                                                                                     

iii. The two-sided (β,γ) tolerance interval [L,U] satisfies 

    );();( LFUFP XX                                                                                   

The construction of two-sided tolerance intervals is more challenging than that of its 

one-sided counterpart. 

 

Ong and Mukerjee (2011) explored matching priors in the context of tolerance 

intervals in balanced one-way and two-way nested random effects models. They have 

derived matching conditions for both models which characterize priors under which a 

 content two-sided Bayesian tolerance interval with posterior credibility level 

)( 1 nOp  which also has frequentist confidence level )( 1 nO  for every   and  , 

where n  is the sample size. Wolfinger (1998) and Van der Merwe and Hugo (2007) 

studied the models mentioned using non-informative priors where the analysis was done 

on matching prior for the posterior quantiles of the error variance. It is yet unknown if 
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these priors enjoy the matching property specifically for the tolerance intervals. Besides 

using the Bayesian approach, Krishnamoorthy and Mathew (2009) applied the modified 

large sample (MLS) method in constructing tolerance interval based on the procedure 

by Graybill and Wang (1980) for the aforementioned models. Krishnamoorthy and Lian 

(2012) studied the merits of these intervals in their work. 

 

Previous studies have shown that most of the tolerance intervals from various 

distributions are one-sided since the computation of two-sided intervals is rather a 

daunting task. So far, there are no general formulae that can be readily invoked to obtain 

a two-sided Bayesian or frequentist tolerance interval in a general framework of 

parametric models. In an attempt to address this problem, we first explore via higher 

order asymptotic considerations, two-sided Bayesian tolerance intervals under a fairly 

general framework of parametric models.  

 

1.2 Objective of research 

 

Ong and Mukerjee (2011) developed two-sided Bayesian tolerance intervals, 

with approximate frequentist validity, in balanced one-way and two-way nested random 

effects models using probability matching priors (PMP). On the other hand, 

Krishnamoorthy and Lian (2012) examined closed-form approximate tolerance intervals 

by the modified large sample (MLS) approach which was proposed by Krishnamoorthy 

and Mathew (2009). The objective in the first part of this work is to evaluate and 

perform a comparative study via Monte Carlo simulation between the PMP and MLS 

tolerance intervals for both normal and non-normal error distributions when the 

balanced one-way random effects models are of concern. The non-normal error 

distributions which are applied include the t-distribution, skew-normal (see Azzalini, 



6 

1985) and the generalized lambda distribution (see Karian and Dudewicz, 2000). Both t- 

and skew-normal distributions have heavier tails than the normal distribution while the 

generalized lambda distribution is a versatile four-parameter distribution which is able 

to produce distributions with various shapes and skewness.  

 

The second part of the research aims at developing two-sided tolerance intervals 

in a fairly general framework of parametric models. Higher order asymptotics are 

developed to obtain explicit analytical formulae for these intervals in both Bayesian and 

frequentist setups. This, in turn, leads to a characterization of probability matching 

priors for the two-sided tolerance intervals and paves the way for the development of 

the corresponding frequentist results. For instances where the probability matching 

priors are difficult to be obtained, we develop purely frequentist tolerance intervals 

which cater to situations of this kind. The results are then applied to real life examples. 

The software MATLAB was used for the simulations and data analysis. 

 

1.3 Outline of research 

 

Chapter 2 of this thesis involves the literature review of this study where all the 

significant academic literature related to the study is discussed. In the first part, we will 

examine the development of probability matching priors. This is followed by the 

background and progress of statistical tolerance intervals in the balanced one-way 

random effects models. We shall also look into the development of tolerance intervals 

using the modified large sample (MLS) method as well as the tolerance intervals 

involving probability matching priors (PMP). The final part of this chapter focuses on 

the development of tolerance intervals in a fairly general framework of parametric 

models. 
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In Chapter 3, we study the two-sided tolerance intervals for the balanced one-

way random effects models which include the Bayesian tolerance intervals with 

approximate frequentist validity (Ong and Mukerjee, 2011). We also look into the 

probability matching prior and examine if other priors satisfy the probability matching 

condition for the two-sided tolerance interval. 

 

In Chapter 4, we study the modified large sample (MLS) tolerance intervals 

(Krishnamoorthy and Mathew, 2009). We also conduct a comparative study between 

the probability matching priors (PMP) discussed in Chapter 3 and the modified large 

sample (MLS) tolerance intervals by varying the error distributions for the balanced 

one-way random effects models. The distributions of interest include the normal, t-, 

skew-normal and the generalized lambda distributions. We examine the merits such as 

the expected widths, expected contents and the coverage probabilities of the tolerance 

intervals computed using these distributions. 

 

Chapter 5 of this thesis emphasizes on the construction of two-sided tolerance 

intervals in a general framework of parametric models. We derive asymptotic results 

leading to explicit formulae for two-sided Bayesian and frequentist tolerance intervals. 

This process characterizes the probability matching priors for such intervals and 

indicates their roles in finding frequentist tolerance intervals via the Bayesian approach. 

We also develop purely frequentist tolerance intervals in situations where the matching 

priors are difficult to be obtained. These intervals are applied to real data. Simulation 

studies are conducted to provide backing to the asymptotic results in finite samples. 
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Chapter 6 provides the concluding remarks as well as some significant 

contributions of this research. Suggestions on extending research works related to this 

research are also included in this chapter. 

 

1.4 Contributions of research 

 

Research results obtained in Chapter 4 and Chapter 5 for this thesis have respectively 

led to the acceptance of the following research papers for publication: 

 

Pathmanathan, D., & Ong, S. H. (2013). A Monte Carlo simulation study of two-sided 

tolerance intervals in balanced one-way random effects model for non-normal errors. 

Journal of Statistical Computation and Simulation, (ahead-of-print), 1-16. doi: 

10.1080/00949655.2013.792820 

 

Pathmanathan, D., Mukerjee, R., & Ong, S. H. (2013). Two-sided Bayesian and 

frequentist tolerance intervals: general asymptotic results with applications. Statistics, 

(ahead-of-print), 1-15. doi: 10.1080/02331888.2012.748774 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Probability matching priors 

 

 The selection of priors is the most critical and controversial task in Bayesian 

analysis. In order to form the joint posterior distribution of the parameters given the 

data, the information provided in the prior distribution which should represent what is 

known about the unknown parameters before the data is available is combined with the 

information given by the data via the likelihood function (Box and Tiao, 1973). 

Continuous research has contributed in reducing the controversies due to this topic. 

(Van Boekel et al., 2004). According to Robert (2007), rarely the available prior 

information is accurate enough to lead to determining the exact prior distribution in 

practice. This is due to the sense that many probability distributions maybe compatible 

with this information.  Some of the common techniques in determining prior 

distributions include the conjugate prior approach which requires a limited amount of 

information and the non-informative approach which can directly be derived from the 

sampling distribution (Robert, 2007). The use of these priors as well as the probability 

matching priors has greatly contributed in overcoming some of the issues surrounding 

the choice of prior distribution in Bayesian analysis (Hugo, 2012). Jeffreys’ (1946) 

work on non-informative priors was a gift to the Bayesians because it shows a method 

to derive the prior distribution from the sampling distribution (Robert, 2007). However, 

some Bayesians were not in favour of such automated methods. Based on Scricciolo 

(1999), the Jeffreys’ prior is given by  )(det)(  j  where )(det   is the 

determinant of the per observation )( nn  expected Fisher information matrix. This was 

designed primarily as a remedy for the lack of invariance to reparameterization of 
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uniform priors. Therefore, we may consider the uniform prior as the distribution 

corresponding to that parameterization making )(  independent of  . 

 

 The probability matching criterion has found appeal to both Bayesians and 

frequentists (Ghosh et al., 2008). This criterion amounts to the requirement that the 

coverage probability of a Bayesian credible region is asymptotically equivalent to the 

coverage probability of the frequentist confidence region up to a certain order (Ghosh et 

al., 2008).  These priors are attractive to frequentists as they are able to produce accurate 

frequentist confidence intervals with Bayesian interpretation while to the Bayesians, 

these priors can be considered as objective priors (Ong and Mukerjee, 2010). Datta and 

Sweeting (2005) defined a probability matching prior as a prior distribution under 

which the posterior probabilities coincide either exactly or approximately with their 

coverage probabilities. Situations where probability matching priors exist are very 

limited. Most of the literature on this topic focuses on approximate probability matching 

priors, usually for large n, based on the asymptotic theory of the maximum likelihood 

estimator. (Datta and Sweeting, 2005) 

 

An example which illustrates the probability matching priors is as follows (Datta 

and Sweeting, 2005): 

We consider an observation X  from a )1,(N  distribution where the parameter   is 

unknown. When we take an improper uniform prior   over the real line of  , the 

posterior distribution of XZ    becomes exactly the same as its sampling 

distribution. Thus,        )(|)( XPXXP ,  

where  zXX )( and z  represents the  quantile of a standard normal 

distribution. Hence, every credible interval based on the pivotal quantity Z  with 
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posterior probability  , is also a confidence interval with confidence level  . 

Therefore, the uniform distribution represents a probability matching prior. 

 

It is mentioned in Datta and Sweeting (2005), that Lindley (1958) was one of the 

pioneers to review the probability matching problem in a different setup.  He attempted 

to provide a Bayesian interpretation of Fisher's (1956) fiducial distribution for a scalar 

parameter. Under the assumption of a single sufficient statistic, Lindley (1958) showed 

that if a suitable transformation results in a location model with a location parameter 

)( g , then exact matching holds by using a uniform prior on the location parameter 

  (Datta and Sweeting, 2005). 

 

The construction of probability matching priors has been actively studied for the 

past two decades. Scricciolo (1999) mentioned that Welch and Peers (1963) were 

among the first to study frequentist coverage properties of Bayesian intervals in cases 

involving scalar and vector parameters. Welch and Peers (1963) extended the study by 

Lindley (1958) to any location family model and developed the corresponding 

asymptotic theory. An explicit proof of these results was provided by Datta, Ghosh and 

Mukerjee (2000) and Datta and Mukerjee (2004, p.22). Datta and Mukerjee (2004) 

provided an excellent monograph on probability matching priors which stated that these 

priors are appealing to Bayesians as objective priors with an external validation, and to 

frequentists as a means of getting accurate intervals with a Bayesian interpretation. 

Among others who studied this topic are Mukerjee and Dey (1993) and Mukerjee and 

Ghosh (1997) who investigated higher order matching conditions. Along the same lines, 

Ghosh and Mukerjee (1998) examined the latest developments on probability matching 

priors. Some of the other review papers include Kass and Wasserman (1996) and 

Mukerjee and Reid (1999).  
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A prior is known as first- or second-order matching if it ensures approximate 

frequentist validity of posterior quantiles with margin of error )( 2/1no  or  )( 1no  

respectively (Ong and Mukerjee, 2010), where n  is the sample size. Following Ong and 

Mukerjee (2010), the prior )(  is called first- or second-order probability matching if 

the relationship 

      )(1),( 2/)1( rnoXP    
      (2.1) 

holds for r 1 or 2 and for each   )10(   , 

where niX i 1, , are independent and identically distributed possibly vector-valued 

absolutely continuous random variables with common density );( xf , indexed by a 

scalar parameter  . Given ),...,( 1
 nXXX , let ),()1( X   be the )1(  -th posterior 

quantile of   under a prior )( . Let P  denote the frequentist probability measure 

with respect to  . The Jeffreys’ prior was characterized as first-order probability 

matching by Welch and Peers (1963). They also studied model conditions under which 

it is second-order matching (Mukerjee and Reid, 1999). 

 

According to Ghosh et al. (2008), there are several probability matching criteria 

which are achieved through: 

a) posterior quantiles 

b) distribution functions 

c) highest posterior density (HPD) regions 

d) inversion of certain test statistics 

However priors based on (a)-(d) need not always be identical. A phenomenon where 

any prior satisfying all four criteria does not exist may occur (Ghosh et al., 2008). 

Mukerjee and Reid (2001) applied probability matching priors in computing Bayesian 

tolerance limits. 
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Ong and Mukerjee (2011) derived probability matching conditions in relation to 

tolerance intervals for both balanced one-way and two-way nested random effects 

models. These conditions enable us to evaluate if the priors satisfy the matching 

property for tolerance intervals. 

 

2.2 The shrinkage argument 

 

The derivation of a frequentist property from a Bayesian property usually 

proceeds by the introduction of an auxiliary prior distribution which is allowed to shrink 

in the true parameter value and thus producing the required frequentist probability. 

According to Datta and Mukerjee (2004), the shrinkage argument which plays a 

significant part in the development of matching priors was the brainchild of J.K. Ghosh 

who suggested to Ghosh and Mukerjee (1991) and Ghosh (1994, Ch. 9). Early 

applications of the shrinkage argument are foreshadowed in Bickel and Ghosh (1990) 

and Dawid (1991). The argument is presented in detail in Mukerjee and Reid (2000), 

the unpublished thesis of Li (1998) and Datta and Mukerjee (2004).  

 

We shall closely follow this argument based on Mukerjee and Reid (2001) and 

Datta and Mukerjee (2004). Let X  be a possibly vector-valued random variable with a 

probability density function, pdf );( f . The parameter   belongs to the 

p dimensional Euclidean space p  or some open subset. Suppose we intend to find 

an expression of the expectation )},({  XhE  where h  is a measurable function. This 

expectation is known to exist and is continuous for all  . In the present context, h  is an 

indicator function in the case where )},({  XhE  represents a frequentist probability. 

As given in Datta and Mukerjee (2004), the following steps show a Bayesian approach 

for evaluating )},({  XhE . 
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Step 1: Consider a proper prior density )(  for   where the support of )(  is a 

compact rectangle in the parameter space. )(  vanishes on the boundary of support 

while remaining positive in the interior. The support of )(  is a closure of the set on 

which it is positive. Thus, obtain }|),({ XXhE   which is the expectation of ),( Xh  

in the posterior setup. (Datta and Mukerjee, 2004) 

 

Step 2: Find }|),({ XXhEE 
 ( )(  say), for   in the interior of the support of  

)( . (Datta and Mukerjee, 2004) 

 

Step 3: Integrate )(  with respect to )(  and then allow )(  to converge weakly to 

the degenerate prior at  . This yields )},({  XhE . (Datta and Mukerjee, 2004) 

 

We justify the above steps as follows. As shown in Datta and Mukerjee (2004), we note 

that the posterior density of   under the prior )(  is given by );( Xf /)( )(XN  

where  

 );()( XfXN )( d       (2.2) 

 

Therefore, Step 1 yields 

         }|),({ XXhE  )(/)( XNXK ,     (2.3) 

where 

       )(XK );(),(  XfXh )( d      (2.4) 

 

In view of (2.3), Step 2 yields 

)( dxxfXNXK );()}(/)({   
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Thus in Step 3, integrating )(  with respect to )( , we get 

 )( )( d   );()}(/)({ xfXNXK )( dx d  

  )}(/)({ XNXK dxdxf })();({   

dxXK )(  

 );(),(  xfxh )( d dx  

  });(),({ dxxfxh  )( d  

)}],({[  XhE )( d         (2.5) 

using (2.2) and (2.4). By the assumed continuity of )},({  XhE  for all  , as well as 

the compactness of the support of )( , the validity of the claim made in Step 3 is 

proven in the last line of (2.5).  

 

We observe in Step 3 that )(  is allowed to converge weakly to a degenerate 

prior. Due to this, the present Bayesian approach is said to be based on the shrinkage 

argument (Datta and Mukerjee, 2004). The shrinkage argument is extensively used in 

Datta and Mukerjee (2004).  It simplifies the derivation of matching priors in various 

contexts and also plays an important role in purely frequentist problems. Thus, it is 

applied in constructing Bayesian and frequentist tolerance intervals. 

 

2.3 Statistical tolerance intervals: Introduction 

 

The computation of tolerance intervals for continuous distributions was 

extensively studied since the pioneering work of Wilks (1941, 1942). Early works 

contributed by Wald and Wolfowitz (1946) demonstrated the construction of tolerance 

limits for normal distribution. Burrows (1963) gave a general introduction to tolerance 
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intervals which played the role as a starting point to enhance the understanding of the 

utility of tolerance intervals. Apart from that, Patel (1986) provided a fairly 

comprehensive review at that time of publication which discussed tolerance intervals for 

various univariate distributions. The problem with the work by Patel (1986) is that there 

are many inconsistencies with the notations used. Hence, it is advised to refer to the 

primary sources for a clearer picture of when studying the formulae. Easterling and 

Weeks (1970) proposed and illustrated an accuracy criterion for a Bayesian approach 

for the exponential and normal densities. According to Krishnamoorthy and Mathew 

(2009), the last three decades have shown a vast development in the theory of statistical 

tolerance intervals and tolerance regions. The derivation of tolerance intervals in the 

framework of random effects models and simultaneous tolerance intervals for regression 

was only implemented during the 1980s and 1990s while satisfactory tolerance regions 

for multivariate normal populations and multivariate regression models were only 

accomplished in the last decade (Krishnamoorthy and Mathew, 2009).   

 

Guttman (1970) and Hahn and Meeker (1971) provided informative reviews up 

to various stages while Krishnamoorthy and Mathew (2009) did an excellent and up-to-

date study on tolerance intervals. Jilek (1981) compiled a bibliography which lists about 

270 articles related to this topic and Jilek and Ackerman (1989) listed an additional 130 

articles. Since then, the literature on this topic has shown a significant increase. The 

computation of tolerance intervals associated with continuous distributions has been 

studied extensively. Some examples of the literature on discrete cases include Zacks 

(1970), Hahn and Chandra (1981) and Cai and Wang (2005).  
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2.3.1 Tolerance intervals for variance component models 

 

Several authors explored tolerance intervals for the one-way random effects 

model for both balanced and unbalanced cases as well as the two-way nested random 

effects model. Sahai and Ojeda (2004) gave a comprehensive and detailed study on 

fixed, random and mixed analysis of variance (ANOVA) models.  

 

The work by Fertig and Mann (1974) who discussed the point estimations of the 

percentiles of the observations in the balanced one-way random effects model was a 

motivation to the derivation of one-sided tolerance intervals for the balanced one-way 

random effects model (Krishnamoorthy and Mathew, 2009). Lemon (1977) made the 

first attempt in formally deriving a lower tolerance limit for the distribution 

),( 321  N  which turned out to be quite conservative; see Krishnamoorthy and 

Mathew (2009).  The construction of one-sided tolerance limits has been well addressed 

by Mee and Owen (1983), Mee (1984), Vangel (1992), Bhaumik and Kulkarni (1996), 

Krishnamoorthy and Mathew (2004) and Liao et al. (2005). The methods available in 

order to obtain one-sided tolerance intervals are approximate; see Krishnamoorthy and 

Mathew (2004) for a comparative study of some approximate methods. Chen and Harris 

(2006) discussed numerical approach by conditioning on an estimator of the unknown 

expected mean squared ratio. Undoubtedly, constructing the one-sided tolerance 

intervals is much easier than that of the two-sided case. 

 

Our concern in this research is with the two-sided tolerance intervals. Mee 

(1984) extended the procedures in Mee and Owen (1983) to find two-sided tolerance 

intervals; see Beckman and Tietjen (1989) for further results in this direction. Some 

methods are required to make these methods less conservative. Hoffman and Kringle 
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(2005) constructed two-sided tolerance intervals for general random-effects model for 

both balanced and unbalanced cases. Rebafka, Clémencon and Feinberg (2007) derived 

the new nonparametric bootstrap approach for two-sided mean coverage and guaranteed 

coverage tolerance limits for a balanced one-way random effects model. A solution to 

the tolerance interval problem (from the frequentist perspective) is given in the recent 

work of Sharma and Mathew (2012), under a very general mixed or random effects 

model.  

 

Wolfinger (1998) presented the Bayesian simulation approach which handles 

different types of Bayesian tolerance intervals. The three kinds of commonly used 

tolerance intervals proposed by Wolfinger (1998) are as follows: 

1. The ),(   tolerance interval, where   represents the content or the proportion 

of the population to be included in the interval and   is the confidence level 

(reliability of the interval). Both   and   lie between 0 and 1 and are typically 

assigned values of 0.90, 0.95 or 0.99 (Wolfinger, 1998). 

2. The  expectation tolerance interval, where   represents the expected 

coverage of the interval.   is again measured on a probability scale and is 

typically set to a value close to 1. This interval focuses on prediction of one or a 

few future observations from the process and consequently tends to be narrower 

than the corresponding ),(   intervals (Wolfinger, 1998). 

3. The fixed-in-advance tolerance interval is the one that is specified in advance, 

and the intent is to estimate the actual proportion of the population that is 

included in the interval. (Wolfinger, 1998). 

The intervals (1)-(3) can take forms of a lower limit ),( L , an upper limit ),( U  or a 

two-sided limit ),( UL (Wolfinger, 1998).  
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Recently, Ong and Mukerjee (2011) studied two-sided Bayesian tolerance 

intervals with approximate frequentist validity, in balanced one-way and two-way 

nested random effects models using probability matching priors (PMP). Ong and 

Mukerjee (2011) derived probability matching conditions specific to the aforementioned 

problem via a technique involving inversion of approximate posterior characteristic 

functions. These conditions are beneficial in the evaluation of some other priors which 

have been applied. It was unknown whether the priors employed by Wolfinger (1998) 

(balanced one-way random effects model) and Van der Merwe and Hugo (2007) (two-

way nested random effects model) enjoy matching properties specifically for tolerance 

intervals until Ong and Mukerjee (2011) showed that these priors did not meet the 

requirements of the matching criterion. 

 

Krishnamoorthy and Lian (2012) studied closed-form approximate tolerance 

intervals by the modified large sample (MLS) approach which was introduced by 

Krishnamoorthy and Mathew (2009). The MLS approach is based on the procedure by 

Graybill and Wang (1980) for finding upper confidence limits for a linear combination 

of variance components. Krishnamoorthy and Lian (2012) also compared the MLS 

tolerance intervals with the tolerance intervals constructed using the generalized 

variable approach which was introduced by Liao et al. (2005). The MLS method in 

computing tolerance intervals in various models was illustrated by Krishnamoorthy and 

Mathew (2009). They found that the MLS approach produced results similar to the 

generalized variable case. Moreover, the MLS tolerance intervals are easier to be 

computed as they are in closed-form (Krishnamoorthy and Lian, 2012). 

 

In the first part of this research, both PMP and MLS intervals were applied for 

non-normal errors and the distributions of interest are the t-distribution, skew-normal 
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(Azzalini, 1985) and generalized lambda distributions. Karian and Dudewicz (2000) 

extensively studied the generalized lambda distribution. 

 

2.3.2 Two-sided Bayesian and frequentist tolerance intervals for a general framework 

of parametric models 

 

In the second part of the study, we develop two-sided Bayesian and frequentist 

tolerance intervals for a general framework of parametric models. Probability matching 

priors for one-sided tolerance intervals were characterized in Mukerjee and Reid (2001). 

The tolerance intervals which will be studied involve the normal, Weibull and inverse 

Gaussian distributions.  

 

As mentioned earlier, Wolfinger (1998) came up with an approach based on 

Bayesian simulation whereas in our work we give analytical formulae applicable to 

wide ranging parametric models, based on the foundation of higher order asymptotic 

theory. His approach cannot be easily adapted for frequentist tolerance intervals. The 

development of general results on such frequentist tolerance intervals is a main thrust of 

our research. We explicitly try to ensure posterior credibility level )( 1 nOp  for a 

 content two-sided tolerance interval, where n is the sample size. 

 

Young (2010) gave a useful R package for obtaining tolerance intervals 

involving discrete and continuous cases as well as regression tolerance intervals. 

Krishnamoorthy and Mathew (2009) discussed non-normal tolerance intervals such as 

log-normal, gamma, two-parameter exponential, Weibull and other related distributions. 

There is no general method available for constructing a two-sided tolerance interval. 

However, Krishnamoorthy and Xie (2011) provided a general framework for a 
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symmetric location-scale family which can be readily applied to find tolerance intervals 

and equal tailed tolerance intervals. These authors illustrated the approach to find 

tolerance intervals for normal, Laplace and logistic distributions with censored data. For 

the Weibull distribution, tolerance limits were constructed using the generalized 

variable method. Statistical problems concerning the Weibull distribution are not simple 

due to the MLEs not being in closed form.  Thus, they are computed numerically. 

Monte Carlo procedures were applied by Thoman, Bain and Antle (1969) based on the 

distributions of certain pivotal quantities involving the maximum likelihood estimators, 

MLEs (see Krishnamoorthy and Mathew, 2009). The results obtained for the MLEs 

enable the empirical finding of the distributions of some pivotal quantities. This is done 

according to the inferential procedures for Weibull parameters (Krishnamoorthy and 

Mathew, 2009). This approach contributed to the development of methods for 

confidence limits for reliability and one-sided tolerance limits based on the MLEs of the 

Weibull distribution; see Thoman et al. (1970). Approximate methods were proposed in 

constructing one-sided tolerance intervals for the Weibull case and these do not require 

simulation. Some of the works include Mann and Fertig (1975, 1977), Mann (1978), 

Engelhardt and Bain (1977) and Bain and Engelhardt (1981). Krishnamoorthy and 

Mathew (2009) discussed Monte Carlo procedures for the computation of one-sided 

tolerance limits, estimating a survival probability and for constructing lower limits for 

the stress-strength reliability involving the Weibull distribution. Tang and Doug (1994) 

proposed one-sided tolerance limits for the inverse Gaussian model and carried out 

Monte Carlo simulations to evaluate these limits in terms of coverage probability and 

average values.  

 

The tolerance intervals for the Weibull, inverse Gaussian and other models in 

the literature are mainly one-sided since it is difficult to construct two-sided tolerance 
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intervals. Guenther (1972) and Hahn and Meeker (1991) mentioned that one-sided 

tolerance limits can be used to obtain approximate equal-tailed tolerance intervals via 

the Bonferroni’s inequality. The Bonferroni’s approximation is used to control the 

central %100   of the sampled population while controlling both tails to achieve at 

least %100   confidence (Young, 2010). Studies have shown that no procedure to 

compute two-sided tolerance intervals for the parametric models is available in the 

literature. 

 

We apply the two-sided tolerance intervals to real data. For the Weibull 

tolerance interval, we consider the shelf life data in Gacula and Kubala (1973). As for 

the inverse Gaussian case, it is mentioned in Chhikara and Folks (1989) that the inverse 

Gaussian model fits the failure of ball bearings data in Lieblin and Zelen (1956). 
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CHAPTER 3 

 

PROBABILITY MATCHING TOLERANCE INTERVAL FOR 

BALANCED ONE-WAY RANDOM EFFECTS MODEL 

 

3.1 Introduction 

 

Recently, Ong and Mukerjee (2011) studied the  content tolerance interval 

with posterior credibility level  )( 1 nOp  which also has frequentist confidence level 

)( 1 nO  for balanced one-way and two-way nested random effects models. These 

were computed via probability matching priors (PMP). Wolfinger (1998) presented the 

two-sided tolerance intervals obtained via Bayesian simulation. In this chapter, we 

discuss the PMP two-sided tolerance intervals for balanced one-way random effects 

model. We shall also study if the prior used by Wolfinger (1998) satisfies the 

probability matching criteria for tolerance intervals given by Ong and Mukerjee (2011). 

 

3.2 Balanced one-way random effects model 

 

The balanced one-way random effects model is defined as follows: 

      ijiij evY  1        (3.1) 

for ni ...,,2,1 , where n represents the number of classes and tj ...,,2,1 , where t 

represents the number of observations per class. Here ijY
 
denotes the 

thij  observation 

and 1  is the population mean. iv  is a random effect for the 
thi  class and ije  is the 
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experimental error associated with ijY . iv  and ije  are independent with ),0(~ 2Nvi  and 

),0(~ 3Neij .  

  is the intra-class correlation coefficient and 

32

2







  .       (3.2) 

By fixing the value of  , the relationship between the variance of iv , 2  and the 

variance of ije , 3  is given by  

32
1








 .      (3.3) 

 

3.3 Preliminaries 

 

Let ),...,( 1
 itii YYY  where ni ...,,2,1 . Under the model assumption, iY ’s are 

independent with the same t-variate normal distribution. 

The maximum likelihood estimator (MLE) of ),,( 321    is given by 

)ˆ,ˆ,ˆ(ˆ
321   where  

   Y1̂ , 
t

)MSWMSB(ˆ
2


 , 3̂ MSW,     (3.4) 

Note: The MLE is calculated without imposing the non-negativity constraint on 2 . 

Y  is the grand mean of ijY  while MSW and MSB are the usual mean squares within 

and between classes, that is,  
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(3.5) 

iY  denotes the mean of the thi  class. In the following sections we consider asymptotics 

as n  so as to ensure the consistency of these MLEs. 
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nYYY ...,,, 21  are independent and identically distributed (i.i.d) ),( 321 tttt IJLN    
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tL  is 1n  matrix with each element equals to 1. tI  is an identity matrix of order n and 

tJ  is a nn  matrix with every element equals to 1. The variance of iY  is 

tt IJV 32    .           (3.6) 

Following Sahai and Ojeda (2004) and applying Result A.1 and Result A.2 from 

Appendix A, we get 
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Applying the definition of the multivariate normal distribution, 

Recall that the probability density function of iY  is given by 
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Therefore, the likelihood function of Y  is given by 
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For the exponent of the function in (3.9), we have 
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Furthermore, 
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We substitute (3.12) into (3.11) and hence the exponent term reduces to 
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Therefore, 
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Solutions to the likelihood equation 

Let )(l 
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where 
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Equating these first partial derivatives with zero, we get the maximum likelihood 

estimators (MLE) 
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 , 3̂ MSW as given in Equation (3.4).  

 

3.4 Bayesian tolerance interval with approximate frequentist validity 

3.4.1 The setup 

 

Following Ong and Mukerjee (2011), let )(.;f  be the common t-variate 

normal density of nYYY ...,,, 21  where ),...,( 1
 itii YYY , ni 1 . For 3,,1  wus , we 

define   
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where ssD  /  and the matrix )( sucC  is positive definite. The derivation of suc  

and suwa  is available in Appendix A. 

 

)(1 sucC   can be found almost instantly by using MATLAB symbolic computation. 

Hence, 
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From Appendix A, 
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3.4.2 Joint posterior density 

 

Consider 

)()()( 



 s

s

s D , 3,2,1s  

where )(  is a smooth prior. Let  ˆ)ˆ(  , s

s

s 







ˆ)()ˆ(
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. 

 

Let )ˆ( sss nh    3,2,1s . )( ijYY   ni ...,,2,1 , tj ...,,2,1  (collection of all 

the observations). According to Datta and Mukerjee (2004, Ch. 2), the posterior density 

of ),,( 321
 hhhh  is given by 
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   (3.19) 

where ),0(~);( 1
3

1
3

 CNC  (trivariate normal with null mean vector and covariance 

matrix 1C .  

 

Remark 3.1: In (3.19) and the rest of Section 3.4, the summation convention is followed 

with implicit sums over repeated sub- or superscripts ranging over }3,2,1{   (Ong and 

Mukerjee, 2011) i.e. wussuw hhha  in (3.19) represents 
  

3

1

3

1

3

1s u w
wussuw hhha .  

 

Under the balanced one-way random effects model in Equation (3.1), each 

),(~ 321  NYij . Ong and Mukerjee (2011) considered a Bayesian tolerance interval, 

under a prior )(  for the ),( 321  N . The limits, 2/1
321 )(  z  cover a 

proportion   of this distribution where     1
2
11z

 
and )(  is a )1,0(N  

distribution function. This motivates a tolerance interval with limits of the form 



30 

2/1
2

1
1

2/1
1 )(ˆ gngnbz   , where 32

ˆˆ  b . 1g , 2g  are )1(pO  functions of 

),...,( 1 nYYY   which are determined so that the interval has  content with posterior 

credibility level )( 1 nOp . Thus, the two-sided tolerance interval in Ong and 

Mukerjee (2011), is given by 
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Here d , 1g  and 2g  are functions of the observations }{ ijY  which can potentially 

involve the prior )(  and are of order )1(pO . The tolerance interval in (3.20) is 

centered around 
n

d
1̂ . The presence of d  in (3.20) induces flexibility in centering the 

interval; see Ong and Mukerjee (2011). We can center it at 1̂  by choosing 0d  or 

around the posterior mean or the posterior mode of 1  which are both of the form 

n

d
1̂  with d  being of order )1(pO . Interestingly, the probability matching condition 

to be obtained in what follows, does not depend on the choice of d . 

 

Let R be the content of the tolerance interval in (3.20) following the 

),( 321  N  distribution. Therefore, R is given by 

)()( 12 WWR  ,     (3.21) 

 

where  

2/1
32

12
1

1
2/11

1
2

)(

)(ˆ










 gngnbzdn
W , 

2/1
32

12
1

1
2/11

1
1

)(

)(ˆ










 gngnbzdn
W  

1g  and 2g  are determined such that 
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)()|( 1 nOYRP p ,    (3.22) 

where )|( YP   is the posterior probability measure under the prior )( . 
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Using the expansion above, we express 
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By multiplying out and rearranging the terms above, 
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From  Equation (3.21),  
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By using the Taylor expansion and applying the fact )()( zzz
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We retain the terms up to 1n  for the Taylor expansion above. 
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XP p . To 

that effect, we consider the approximate posterior characteristic function and hence an 

expansion for the posterior density of X in the next section. This will facilitate the fact 

that the leading term in the posterior density of X is the standard univariate normal 

density. This is how the above representation of R  in terms of X helps. 

 

Posterior density of X 

 

Let  2/1)1(  where   is an auxiliary variable. Then, 
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 C  is the trivariate normal density with mean vector   and covariance 

matrix 1C . 
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Then by applying (3.29), we integrate Equation (3.27) with respect to h to obtain the 

approximate posterior characteristic function of X  under )(  that is (note that 01  ) 
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We write (3.30) in the form  
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After some simplification (see Appendix A), we get 
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Note that, 11L , 21L  and 3L  do not involve 1g  and 2g  while 12L  does. Retaining this 

distinction helps in simplifying the notations later. The prior only appears in 11L  

through the term s
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x ,  where )(  is the standard univariate normal density 

and )(jH  is the Hermite polynomial of degree j, inverting (3.31), we now get the 

posterior density of X, under )(  as: 
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3.4.3 Matching condition 

 

Applying 1g  and 2g  in (3.39), the tolerance interval in (3.20) has  content 

with posterior credibility level )( 1 nOp .  We now characterize priors for which it 

has  content also with frequentist confidence level )( 1 nO . Such priors will be 

probability matching in the present context of two-sided tolerance limits.  

 

 With the above objective, we now study the frequentist coverage 

)(  RP )/( 1 kgXP   , with 1g  and 2g  in (3.39). Ong and Mukerjee (2011) 

employed the shrinkage argument as shown in Datta and Mukerjee (2004) which 

involves the following steps: 

 

Step 1: Consider an auxiliary prior )(*   which vanishes on the boundaries of a 

rectangle containing the true   and obtain )|(* YRP    with margin of error )( 1nOp . 

As in the previous section, the posterior density of X, under )(*  , turns out to be 
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and  12L , 21L , 3L  are as in equations (3.34)-(3.36), with 1g  and 2g  as shown in (3.39). 

As usual ** ˆ)ˆ(   , ** ˆ)ˆ( ss   , with )()( **  ss D . 

Integrating the posterior density of X under )(*  , 
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Before proceeding further, we are required to obtain 1 , 2  and 3  explicitly. From 
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The required notations are summarized as follows 
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Hence via substituting (3.43), Equation (3.42) becomes 
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We resume to the next step of the shrinkage argument. 
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Step 2: Find )]|([
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   with margin of error )( 1nO . 
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Step 3: Integrate )]|([
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   by parts with respect to )(*   and finally allow 

)(*  to converge weakly to the degenerate prior at the true  ; see Datta and Mukerjee, 

2004, Ch. 1. These steps yield the frequentist confidence level of our tolerance interval 
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Equation (3.44) becomes  )( 1 nO  provided 

0)(
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sD     (3.45) 

where 3,2,1s . 

Therefore, the two-sided tolerance interval in (3.20) has  content with posterior 

credibility level )( 1 nOp  as well as frequentist confidence level )( 1 nO . This is 

only possible if and only if the prior )(  satisfies (3.45). It is interesting to see that the 

matching condition given in (3.45) is free from   and  . Moreover, we cognize that 
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(3.45) does not depend on the quantity d i.e. the matching condition works irrespective 

of the centering. This is anticipated because neither 1g  nor 2g in (3.39) involves d. 

We proceed to solving Equation (3.45). Using (3.43), it is not difficult to see that 
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solves (3.45). In fact, as mentioned in Ong and Mukerjee (2011), the solution in (3.46) 

belongs to a more general class of solutions as given by  
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proceeding along the lines in Datta and Mukerjee (2004, pp. 51-52), it can be shown 

that the solution in (3.46) ensures the propriety of the posterior for every 2n . 

However, not all solutions of the form (3.47) do so. For instance, the solution  
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Next, we verify that any prior of the form (3.47) satisfies the condition (3.45). 
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For any such prior in (3.47), the left-hand side, LHS of Equation (3.45) is: 
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After some simplification, from (3.50), we can see that, 
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satisfies the matching condition in (3.45). 

We proceed to show that the prior 
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We next show that the prior )(
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3.4.4 On other priors 

 

 The elements of the Fisher information matrix for the balanced one-way random 

effects model are as follows:  
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 and the modified version of the Jeffreys’ prior based 

on the principal sub-matrix of I  associated with 2  and 3  is given by 
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Wolfinger (1998) considered the non-informative prior  
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 ,    (3.52) 

based on the modified version of the Jeffreys’ prior. )(W  enjoys the matching 

property of both 3  and 
2

3




 (Datta and Mukerjee, 2004, pp.39). However, the priors in 

(3.51) and (3.52) do not satisfy the matching conditions given in (3.45) and thus, are not 

probability matching for tolerance intervals. (Ong and Mukerjee, 2011). 

 

 We show that neither Jeffreys’ prior nor the non-informative prior by Wolfinger 

(1998) satisfies (3.45). It would suffice to show that they do not satisfy (3.45) when 

132   . From (3.45),  
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Hence the LHS of (3.54) becomes 
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Hence the LHS of (3.54) becomes 

022)2)(3(872  ttttt , 2t . 

The priors )( J  and )(W  do not satisfy the probability matching conditions given in 

(3.45) and thus are not probability matching for tolerance intervals.  

 

 According to the numerical study by Ong and Mukerjee (2011), the prior )(W  

comes close to being probability matching for tolerance intervals. We explore the 

expressions for the frequentist probability )(  RP  as shown in (3.44) under the prior 

)(W . Applying (3.43), Ong and Mukerjee (2011) gave the expression under )(W  

for the term of order 2/1n  on the right-hand side of (3.44) i.e. 
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Derivation of (3.55) 

For the balanced one-way random effects model, the term (3.44) is of the form 
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As a result, 
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i.e. the term of order 2/1n  in the frequentist coverage is 
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, as given in (3.55). 

 

The quantity 1V  is of order )( 1tO for any fixed n ,   and q . Even for small values of t 

it turns out to be small for moderately large values of n. To illustrate this point, let 

95.0  i.e. 6449.1q . Ong and Mukerjee (2011) presented a table of values (see 

Table 3.1) for fixed values of t with smallest n denoted by )(0 tn  such that 02.01 V  for 

every   where 
3

2




    in the set }3,5.2,2,5.1,1,5.0{ . Table 3.1 gives the values 

of )(0 tn  for 102  t  in order to achieve  02.01 V  for every   in  . Based on this 

table, if 2t , then 02.01 V  for every   in   when 16n . Similarly, the same 

occurs if 3t , 12n  and so on. 
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Table 3.1: Values of )(0 tn  corresponding to t .  

t 2 3 4 5 6 7 8 9 10 

)(0 tn  16 12 10 9 8 7 6 6 5 

 

 The numerical study by Ong and Mukerjee (2011) revealed that although the 

prior )(W  is not probability matching for tolerance intervals, it comes close to being 

so. If one is not too particular about the probability matching criteria, the simplicity of 

this prior makes a strong case in their favour. Ong and Mukerjee (2011) suggested the 

use of the relatively more complex matching prior shown in (3.46) if the matching 

property is compulsory. They also remarked that the results for the tolerance intervals in 

(3.20) are heavily dependent on balance in classes. We can see that t appears in the 

matching prior given in (3.46) for the balanced one-way random effects model. 

Denoting the number of observations in n  classes by ntt ...,,1 , some version of the 

present higher order asymptotics should go through provided the lower order moments 

of ntt ...,,1  remains bounded as n  tends to infinity. 
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CHAPTER 4 

 

TOLERANCE INTERVALS IN BALANCED ONE-WAY RANDOM 

EFFECTS MODEL WITH NON-NORMAL ERRORS: A 

COMPARATIVE STUDY 

 

 

4.1 Introduction 

 

In Chapter 3, we discussed the two-sided Bayesian tolerance intervals with 

approximate frequentist validity, via the use of probability matching priors (PMP). As 

mentioned in Chapter 3, these intervals, constructed from higher order asymptotic 

considerations, have  content with posterior credibility level )( 1 nO p  and have 

a frequentist confidence level )( 1 nO , where n is the number of classes. Thus, the 

method by Ong and Mukerjee (2011) depends heavily on the balance in the classes and 

is meaningful when the number of classes is large.   

 

Krishnamoorthy and Mathew (2004) introduced the modified large sample 

(MLS) approach in constructing two-sided tolerance intervals for balanced one-way 

random effects model based on the procedure by Graybill and Wang (1980) for finding 

an upper confidence limit for a linear combination of variance components. The MLS 

tolerance intervals are in closed-form and this makes them easy to be computed. The 

merits of this tolerance interval were evaluated by Krishnamoorthy and Lian (2012) 

based upon the expected widths as well as coverage probabilities. 
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In this chapter, we evaluate and compare the performance of the PMP and MLS 

tolerance intervals, in particular when the errors are non-normal. Non-normal error 

distributions are represented by the t-distribution, skew-normal distribution with various 

shape parameters (Azzalini, 1985) and the generalized lambda (GLD) distribution 

(Karian and Dudewicz, 2000). The t-distribution and skew-normal distribution have 

heavier tails than the normal case. The GLD family is considered because of its 

versatility to produce distributions with wide range of shapes and skewness. The effects 

of non-normal experimental errors are studied by considering the expected widths as 

well as their standard errors and coverage probabilities. 

 

4.2 Tolerance intervals for balanced one-way random effects model 

 

We recall the balanced one-way random effects given in Equation (3.1) of 

Chapter 3 i.e.       

ijiij evY  1  

for ni ...,,2,1 , where n represents the number of classes and tj ...,,2,1 , where t 

represents the number of observations per class. Here ijY
 
denotes the 

thij  observation 

and 1  is the population mean. iv  and ije  are independent with ),0(~ 2Nvi  and 

),0(~ 3Neij . As mentioned in Equation (3.2) and Equation (3.3) of Chapter 3,  , the 

intra-class correlation coefficient, given by 
32

2









 and the relationship between 

2  and 3  is 32
1








 . 
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Using (3.4) from Chapter 3, the maximum likelihood estimator (MLE) of 

),,( 321    is given by )ˆ,ˆ,ˆ(ˆ
321   where  

MSW.ˆ,/)MSWMSB(ˆ,ˆ
321   tY  

In the above, Y is the grand mean of the ijY ’s, while MSW and MSB in (3.5) are the 

usual mean squares within and between classes, that is,  
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4.2.1 Bayesian tolerance interval with approximate frequentist validity 

 

Summarizing the results in Chapter 3, under the balanced one-way random 

effects model, each ).,(~ 321  NYij  
From Equation (3.20) of Chapter 3, the 

Bayesian tolerance interval under a prior (.) , having the same ),( 321  N
 which 

has  content with posterior credibility level )( 1 nO p , is given by: 
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By choosing 0d , the tolerance interval in (3.20) becomes (4.1) where 
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)(1 q  

)(1 sucC   and suwa  are respectively given in (3.17) and (3.18) of Chapter 3. 

Summation convention is followed with implicit sums over repeated sub- or 

superscripts ranging over {1, 2, 3}. 

 

The interval in (4.1) has approximate frequentist validity, i.e., it has  content 

with frequentist confidence level )( 1 nO , when )(  is taken as a probability 

matching prior (PMP). Based on Ong and Mukerjee (2011) and as shown in Chapter 3, 

such a prior is given by  
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In our comparisons, we will consider the interval (4.1) based on the aforesaid PMP. 

 

4.2.2 Modified large sample tolerance intervals 

 

Following Krishnamoorthy and Lian (2012), the modified large sample (MLS) 

tolerance intervals constructed are functions of  
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It is also noted that Y , SSB and SSW are independent with 
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Y , 2
1̂  and 2

2̂  are mutually independent. 

Note that tr /11  , tr /112  , )/(11 nts   and 02 s . 

The construction of the ),(   tolerance interval simplifies to the construction of an   

upper confidence limit for tnsrn /)/11(111   and )./11(222 tsrn    

 

The MLS tolerance interval is given by: 
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4.3 Monte Carlo simulation study and discussion 

 

In this section, we conduct a Monte Carlo simulation study to compare the 

performance of the two-sided Bayesian PMP tolerance interval by Ong and Mukerjee 

(2011) and the MLS tolerance interval by Krishnamoorthy and Mathew (2009) for the 

balanced one-way random effects model with the experimental error following the 

standard normal distribution and non-normal distributions such as the t-distribution, 

skew-normal distribution and generalized lambda distribution (GLD). We note in 

passing that if the error ije  follows the Student’s t-distribution, then ijY  in (3.1) is the 

sum of a normal )( iv  and a Student’s t )( ije  random variables, and an explicit 

expression for the probability density function (pdf) is given by Nason (2006). By 

fixing the value of , the relationship between the variance of iv , 2  and the variance 

of ije , 3  
is given by 32

1








 ; see  (3.3) of Chapter 3. 

 

The PMP and MLS tolerance intervals were used for all cases as if the 

assumptions where all underlying distributions are normal are justified even though the 

data comes from another distribution. Our purpose is to see the effect on the expected 

width as well as the coverage probability when the distribution generating the data 

deviates from the normal. 

 

Since the small sample behavior of the Bayesian tolerance intervals using 

probability matching priors (PMP) was never studied, it is of interest to examine its 

performance. As mentioned earlier, this approach depends heavily on balance in the 

classes and is meaningful when the number of classes n is large. On the other hand, if 

the number of observations t per class is large but n is small, then this approach is not 
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expected to behave well because it draws its strength from the consistency of ̂ , which 

holds as n . From this perspective, various combinations of (n, t), were considered 

in the simulation and a comparative study was done between the PMP and MLS 

tolerance intervals. The cases of non-normal error distributions were of particular 

interest in order to see the behavior of both tolerance intervals when there is a departure 

from normality in the data.  

 

The following distributions are used to represent the non-normal experimental errors in 

our study: 

 

Experimental error following the t-distribution 

 

The experimental error is taken to follow the t-distribution, with mean 0  and variance 

2,
2








 where  is the degrees of freedom. It is known that the t-distribution 

approaches the standard normal distribution when   increases.  

The pdf of the t-distribution is: 
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Experimental error following the skew-normal distribution 

 

The pdf for the skew-normal distribution (Azzalini, 1985) is  

  

 

dtee
x tx
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(4.8) 

where  ,   and   are the location, scale and shape parameters respectively. 
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The data generated has ije  following a skew normal distribution with 0 , 1  and 

shape= . The error distribution reduces to a standard normal when 0 . 

The mean of the skew-normal distribution is given by 

       


2
  where 

21 







      

(4.9) 

The mean of the skew-normal distribution is no longer 0 when 0 .  

 

Experimental error following the generalized lambda distribution 

 

The generalized lambda distribution (GLD) family with 

parameters 4321  and ,,  , denoted as GLD( ),,, 4321  , is most easily specified in 

terms of its percentile function (Karian and Dudewicz, 2000). The following percentile 

function uses the Ramberg and Schmeiser’s parameterization  

        2

14321

43 )1(
),,,;()(




 yy
yQyQ




   

(4.10) 

where 10  y . 1  and 2  are respectively the location and scale parameters while 3  

and 4   jointly determine the shape (with 3  mostly affecting the left tail and 4  the 

right tail).  

The pdf of the GLD is given by 

      )(at
)1( 1

4
1

3

2

43
yQx

yy


   


   (4.11) 

We shall utilize the parameters estimated in Karian and Dudewicz (2000) to generate 

our data whose error distribution follows the GLD. We consider parameters fitted using 

the method of moments approach which approximately fit the standard normal 

distribution. The parameter estimates are given as GLD (0, 0.1975, 0.1349, 0.1349). 
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The two-sided PMP and MLS tolerance intervals were constructed for 90.0  

and 95.0  for data from both normal and non-normal experimental error 

distributions. For each simulated interval, the content was calculated as )()( LU   

where U and L respectively represent the upper and lower bounds of the tolerance 

intervals.  We found that 2500 simulation runs were sufficient for our study and hence 

this number of runs was used for various combinations of (n, t) and  , the intra-class 

correlation coefficient. The coverage probability or the proportion of times the content 

of the simulated intervals was at least   was computed. The coverage probability 

depends on parameters estimated via  . We will not vary the mean, 1  in the balanced 

one-way random effects model as it has no impact on the interval. The tables in Section 

4.3.1 show the coverage probabilities and expected widths with their respective standard 

errors (bracketed) for the PMP and MLS tolerance intervals applying various error 

distributions.  
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4.3.1 Simulation results 

 

Table 4.1: Simulated coverage probabilities of the PMP and MLS tolerance intervals. 

Experimental error: standard normal distribution. 

 

      (n,t)      

ρ  (15,2) (25,2) (40,2) (50,2) (75,2) (45,3) (60,3) (60,4) (80,4) (75,5) 

0.100 PMP 0.949 0.950 0.958 0.951 0.963 0.962 0.970 0.972 0.977 0.974 

 
MLS 0.973 0.971 0.975 0.974 0.978 0.980 0.975 0.976 0.978 0.981 

0.300 PMP 0.938 0.947 0.959 0.957 0.966 0.966 0.963 0.966 0.972 0.973 

 
MLS 0.970 0.975 0.974 0.963 0.976 0.977 0.976 0.970 0.976 0.976 

0.500 PMP 0.932 0.948 0.946 0.954 0.966 0.952 0.958 0.965 0.966 0.967 

 
MLS 0.968 0.964 0.968 0.971 0.967 0.966 0.967 0.972 0.971 0.973 

0.700 PMP 0.912 0.940 0.960 0.947 0.964 0.951 0.964 0.957 0.964 0.968 

 
MLS 0.964 0.964 0.964 0.964 0.969 0.968 0.966 0.962 0.968 0.965 

0.900 PMP 0.924 0.920 0.948 0.954 0.956 0.952 0.955 0.958 0.957 0.962 

 
MLS 0.950 0.955 0.966 0.963 0.968 0.963 0.962 0.964 0.963 0.964 

0.990 PMP 0.924 0.945 0.947 0.950 0.963 0.948 0.954 0.958 0.952 0.958 

 
MLS 0.958 0.959 0.963 0.958 0.965 0.959 0.963 0.965 0.963 0.960 

0.999 PMP 0.924 0.946 0.952 0.953 0.960 0.952 0.951 0.949 0.954 0.954 

 
MLS 0.958 0.953 0.958 0.960 0.966 0.953 0.954 0.957 0.962 0.964 
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Table 4.2: Expected widths of the PMP and MLS tolerance intervals. Experimental error: standard normal distribution. 

 

      (n,t)      

ρ  (15,2) (25,2) (40,2) (50,2) (75,2) (45,3) (60,3) (60,4) (80,4) (75,5) 

0.100 
PMP 4.423 

(0.584) 
4.143 

(0.427) 
3.997 

(0.324) 
3.919 

(0.289) 
3.829 

(0.223) 
3.857 

(0.243) 
3.811 

(0.208) 
3.758 

(0.176) 
3.721 

(0.151) 
3.697 

(0.142) 
 
 

MLS 4.686 
(0.644) 

4.305 
(0.455) 

4.068 
(0.333) 

4.002 
(0.285) 

3.881 
(0.229) 

3.909 
(0.243) 

3.838 
(0.207) 

3.787 
(0.181) 

3.730 
(0.152) 

3.716 
(0.138) 

0.300 
PMP 5.062 

(0.716) 
4.759 

(0.531) 
4.565 

(0.395) 
4.488 

(0.349) 
4.363 

(0.264) 
4.435 

(0.306) 
4.361 

(0.264) 
4.311 

(0.240) 
4.260 

(0.199) 
4.248 

(0.193) 

 
MLS 5.414 

(0.786) 
4.931 

(0.542) 
4.649 

(0.389) 
4.545 

(0.350) 
4.412 

(0.272) 
4.489 

(0.309) 
4.394 

(0.263) 
4.343 

(0.244) 
4.278 

(0.203) 
4.266 

(0.194) 

0.500 
PMP 6.088 

(0.969) 
5.749 

(0.690) 
5.449 

(0.520) 
5.359 

(0.447) 
5.233 

(0.348) 
5.326 

(0.429) 
5.222 

(0.354) 
5.202 

(0.344) 
5.114 

(0.286) 
5.115 

(0.280) 

 
MLS 6.499 

(1.028) 
5.888 

(0.716) 
5.562 

(0.522) 
5.436 

(0.446) 
5.248 

(0.353) 
5.412 

(0.444) 
5.267 

(0.363) 
5.245 

(0.349) 
5.142 

(0.296) 
5.142 

(0.289) 

0.700 
PMP 8.109 

(1.441) 
7.530 

(1.005) 
7.168 

(0.723) 
7.007 

(0.638) 
6.821 

(0.491) 
7.017 

(0.636) 
6.876 

(0.531) 
6.840 

(0.524) 
6.735 

(0.445) 
6.731 

(0.456) 

 
MLS 8.573 

(1.447) 
7.765 

(0.995) 
7.252 

(0.729) 
7.097 

(0.626) 
6.850 

(0.497) 
7.106 

(0.630) 
6.926 

(0.550) 
6.877 

(0.531) 
6.769 

(0.451) 
6.758 

(0.458) 

0.900 
PMP 14.339 

(2.679) 
13.198 
(1.903) 

12.533 
(1.360) 

12.360 
(1.209) 

11.947 
(0.959) 

12.439 
(1.267) 

12.122 
(1.080) 

12.126 
(1.057) 

11.837 
(0.882) 

11.913 
(0.930) 

 
MLS 15.228 

(2.873) 
13.678 
(1.933) 

12.814 
(1.400) 

12.504 
(1.209) 

12.030 
(0.929) 

12.587 
(1.263) 

12.234 
(1.094) 

12.228 
(1.052) 

11.899 
(0.899) 

11.966 
(0.923) 

0.990 
PMP 45.776 

(8.700) 
42.596 
(6.076) 

40.212 
(4.549) 

39.220 
(3.975) 

37.928 
(3.091) 

39.647 
(4.228) 

38.620 
(3.605) 

38.772 
(3.556) 

37.795 
(3.003) 

38.006 
(3.105) 

 
MLS 48.573 

(9.173) 
43.674 
(6.303) 

40.847 
(4.542) 

39.745 
(4.063) 

38.225 
(3.135) 

40.105 
(4.364) 

38.954 
(3.611) 

38.898 
(3.597) 

37.964 
(3.008) 

38.182 
(3.182) 

0.999 
PMP 143.763 

(27.904) 
134.439 
(19.097) 

127.150 
(14.378) 

124.289 
(12.726) 

120.190 
(9.828) 

125.290 
(13.237) 

122.287 
(11.524) 

122.451 
(11.780) 

119.616 
(9.731) 

119.924 
(9.766) 

 
MLS 154.145 

(29.291) 
137.831 
(20.420) 

128.586 
(14.502) 

125.985 
(12.773) 

121.127 
(9.972) 

126.710 
(13.437) 

122.970 
(11.606) 

123.539 
(11.630) 

120.140 
(9.703) 

120.745 
(9.962) 
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Table 4.3: Simulated coverage probabilities of the PMP and MLS tolerance intervals. 

Experimental error: t-distribution. 

 

   

(n,t) 0.900 0.990 0.999 

 PMP MLS PMP MLS PMP MLS 

degrees of freedom=3       
(15,2) 0.957 0.976 0.929 0.954 0.925 0.952 
(25,2) 0.978 0.984 0.946 0.960 0.950 0.953 
(40,2) 0.987 0.988 0.955 0.968 0.947 0.952 
(45,3) 0.992 0.994 0.954 0.962 0.955 0.960 
(60,3) 0.993 0.996 0.964 0.966 0.956 0.960 
(60,4) 0.994 0.993 0.967 0.966 0.947 0.958 
(80,4) 0.996 0.998 0.968 0.971 0.962 0.962 

       
degrees of freedom=5       

(15,2) 0.941 0.970 0.926 0.952 0.920 0.952 
(25,2) 0.958 0.973 0.946 0.952 0.938 0.962 
(40,2) 0.965 0.978 0.948 0.965 0.945 0.953 
(45,3) 0.975 0.976 0.951 0.970 0.959 0.955 
(60,3) 0.981 0.981 0.948 0.962 0.957 0.960 
(60,4) 0.981 0.979 0.958 0.965 0.955 0.953 
(80,4) 0.986 0.989 0.964 0.971 0.958 0.962 

       
degrees of freedom=10       

(15,2) 0.930 0.956 0.926 0.956 0.930 0.953 
(25,2) 0.949 0.959 0.936 0.958 0.943 0.953 
(40,2) 0.961 0.968 0.954 0.959 0.956 0.954 
(45,3) 0.962 0.964 0.955 0.962 0.959 0.958 
(60,3) 0.962 0.973 0.958 0.964 0.951 0.962 
(60,4) 0.971 0.973 0.953 0.964 0.954 0.965 
(80,4) 0.972 0.972 0.960 0.966 0.962 0.965 

       
degrees of freedom=15       

(15,2) 0.934 0.959 0.923 0.953 0.926 0.950 
(25,2) 0.940 0.963 0.936 0.959 0.945 0.961 
(40,2) 0.955 0.961 0.956 0.957 0.945 0.960 
(45,3) 0.950 0.967 0.946 0.958 0.956 0.954 
(60,3) 0.963 0.962 0.951 0.962 0.956 0.960 
(60,4) 0.961 0.968 0.960 0.955 0.948 0.963 
(80,4) 0.963 0.966 0.957 0.964 0.959 0.969 

       
degrees of freedom=25       

(15,2) 0.918 0.953 0.926 0.958 0.921 0.950 
(25,2) 0.944 0.957 0.952 0.956 0.942 0.962 
(40,2) 0.951 0.962 0.957 0.959 0.950 0.955 
(45,3) 0.958 0.965 0.953 0.960 0.953 0.958 
(60,3) 0.960 0.961 0.957 0.964 0.954 0.966 
(60,4) 0.958 0.959 0.962 0.962 0.958 0.963 
(80,4) 0.965 0.968 0.962 0.963 0.955 0.968 
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Table 4.4: Expected widths of the PMP and MLS tolerance intervals. Experimental error: t-distribution. 

 

 ρ 

(n,t) 0.900 0.990 0.999 

 PMP MLS PMP MLS PMP MLS 

degrees of freedom=3       
(15,2) 15.247 (2.964) 16.220 (3.134) 45.737 (8.504) 48.971 (9.357) 145.031 (27.222) 153.337 (29.473) 
(25,2) 14.316 (2.453) 14.730 (2.328) 42.744 (6.088) 43.935 (6.335) 134.556 (19.298) 138.342 (20.112) 
(40,2) 13.612 (1.886) 13.780 (1.740) 40.308 (4.524) 41.167 (4.611) 127.419 (14.424) 128.946 (15.012) 
(45,3) 13.384 (1.497) 13.584 (2.273) 39.876 (4.265) 40.494 (4.381) 125.807 (13.322) 126.879 (13.603) 
(60,3) 13.089 (1.370) 13.198 (1.461) 38.949 (3.514) 39.243 (3.574) 122.520 (11.440) 123.205 (11.324) 
(60,4) 13.009 (1.366) 13.096 (1.267) 39.135 (3.881) 39.127 (3.565) 122.460 (11.270) 122.932 (11.396) 
(80,4) 12.812 (1.226) 12.832 (1.049) 38.129 (3.011) 38.220 (3.080) 120.102 (9.587) 120.061 (9.761) 

       
degrees of freedom=5       

(15,2) 14.691 (2.696) 15.595 (2.782) 45.780 (8.730) 48.409 (9.170) 143.845 (27.686) 154.586 (29.299) 
(25,2) 13.615 (1.895) 14.083 (1.943) 42.741 (6.248) 43.761 (6.462) 133.181 (19.606) 138.870 (19.915) 
(40,2) 12.970 (1.418) 13.190 (1.406) 40.263 (4.631) 40.826 (4.532) 126.741 (14.415) 128.958 (14.952) 
(45,3) 12.807 (1.270) 12.887 (1.290) 39.703 (4.260) 40.418 (4.227) 125.810 (13.049) 127.317 (13.955) 
(60,3) 12.443 (1.064) 12.518 (1.054) 38.817 (3.635) 38.948 (3.616) 122.447 (11.066) 123.216 (11.331) 
(60,4) 12.443 (1.067) 12.526 (1.066) 38.872 (3.564) 38.980 (3.527) 122.452 (11.294) 123.036 (11.436) 
(80,4) 12.158 (0.895) 12.223 (0.890) 37.882 (2.931) 38.074 (3.007) 119.565 (9.634) 120.397 (9.533) 

       
degrees of freedom=10       

(15,2) 14.402 (2.671) 15.307 (2.833) 45.578 (8.531) 48.868 (9.122) 144.004 (27.065) 154.151 (29.196) 
(25,2) 13.477 (1.901) 13.811 (1.949) 42.159 (6.077) 43.713 (6.234) 134.008 (18.967) 138.231 (20.286) 
(40,2) 12.711 (1.392) 12.915 (1.420) 40.170 (4.449) 40.741 (4.514) 127.442 (14.426) 128.933 (15.156) 
(45,3) 12.544 (1.239) 12.731 (1.308) 39.770 (4.235) 38.988 (3.556) 125.847 (13.147) 127.049 (13.650) 
(60,3) 12.239 (1.087) 12.365 (1.076) 38.764 (3.592) 39.083 (3.603) 121.814 (11.442) 123.147 (11.398) 
(60,4) 12.241 (1.068) 12.350 (1.057) 38.635 (3.562) 39.034 (3.504) 122.245 (11.266) 123.355 (11.380) 
(80,4) 11.982 (0.888) 12.052 (0.924) 37.708 (2.997) 38.001 (2.953) 119.772 (9.520) 120.466 (9.665) 
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(Table 4.4 continued) 
 

      

 
degrees of freedom=15 

      

(15,2) 14.385 (2.626) 15.263 (2.884) 45.614 (8.596) 48.628 (9.285) 144.412 (27.135) 153.590 (29.337) 
(25,2) 13.341 (1.863) 13.785 (1.934) 42.354 (6.097) 43.686 (6.289) 134.329 (19.441) 137.961 (19.585) 
(40,2) 12.670 (1.365) 12.865 (1.436) 40.251 (4.471) 40.707 (4.577) 127.329 (14.514) 128.735 (14.508) 
(45,3) 12.465 (1.293) 12.669 (1.285) 39.727 (4.282) 40.115 (4.299) 125.375 (13.440) 126.775 (13.621) 
(60,3) 12.182 (1.040) 12.292 (1.095) 38.692 (3.562) 39.042 (3.555) 122.401 (11.373) 123.089 (11.249) 
(60,4) 12.173 (1.080) 12.300 (1.105) 38.718 (3.510) 38.835 (3.583) 122.146 (11.403) 123.564 (11.475) 
(80,4) 11.907 (0.880) 11.988 (0.904) 37.819 (2.959) 38.057 (3.019) 119.684 (9.622) 120.736 (9.528) 

       
degrees of freedom=25       

(15,2) 14.282 (2.701) 15.185 (2.869) 45.544 (8.819) 48.789 (9.324) 144.915 (28.321) 153.884 (28.911) 
(25,2) 13.336 (1.863) 13.762 (1.907) 42.599 (6.061) 43.805 (6.270) 133.964 (19.020) 138.966 (19.987) 
(40,2) 12.667 (1.369) 12.875 (1.427) 40.228 (4.465) 40.669 (4.610) 127.017 (14.318) 128.531 (14.725) 
(45,3) 12.502 (1.268) 12.587 (1.297) 39.710 (4.137) 40.274 (4.315) 125.359 (13.013) 127.103 (13.778) 
(60,3) 12.167 (1.050) 12.251 (1.071) 38.611 (3.526) 38.857 (3.510) 122.074 (11.140) 123.494 (11.449) 
(60,4) 12.143 (1.054) 12.224 (1.080) 38.746 (3.461) 39.036 (3.595) 119.915 (9.722) 123.238 (11.425) 
(80,4) 11.902 (0.872) 11.972 (0.914) 37.850 (2.923) 38.009 (3.002) 119.748 (9.681) 120.145 (9.559) 
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Table 4.5: Simulated coverage probabilities of the PMP and MLS tolerance intervals. 

Experimental error: skew-normal distribution. 

 

 ρ 

(n,t) 0.900 0.990 0.999 

 PMP MLS PMP MLS PMP MLS 

shape parameter=0.4       
(15,2) 0.913 0.947 0.916 0.947 0.932 0.947 
(25,2) 0.934 0.946 0.946 0.959 0.938 0.959 
(40,2) 0.940 0.962 0.952 0.966 0.942 0.966 
(45,3) 0.944 0.952 0.952 0.957 0.957 0.960 
(60,3) 0.949 0.951 0.953 0.959 0.955 0.964 
(60,4) 0.949 0.952 0.956 0.966 0.952 0.963 
(80,4) 0.951 0.955 0.964 0.968 0.960 0.965 

       
shape parameter=1.0       

(15,2) 0.888 0.936 0.913 0.955 0.920 0.956 
(25,2) 0.915 0.929 0.940 0.952 0.939 0.955 
(40,2) 0.916 0.925 0.945 0.956 0.948 0.960 
(45,3) 0.922 0.928 0.947 0.958 0.943 0.959 
(60,3) 0.916 0.919 0.952 0.960 0.958 0.962 
(60,4) 0.909 0.922 0.950 0.959 0.962 0.950 
(80,4) 0.910 0.918 0.954 0.960 0.956 0.957 

       
shape parameter=2.0       

(15,2) 0.884 0.927 0.923 0.953 0.921 0.954 
(25,2) 0.895 0.921 0.934 0.955 0.932 0.947 
(40,2) 0.887 0.895 0.944 0.954 0.948 0.958 
(45,3) 0.886 0.912 0.943 0.956 0.949 0.959 
(60,3) 0.883 0.898 0.953 0.958 0.962 0.960 
(60,4) 0.880 0.902 0.956 0.954 0.949 0.966 
(80,4) 0.873 0.888 0.953 0.960 0.959 0.962 

       
shape parameter=5.0       

(15,2) 0.869 0.927 0.913 0.956 0.926 0.953 
(25,2) 0.884 0.921 0.940 0.948 0.948 0.960 
(40,2) 0.874 0.895 0.948 0.958 0.951 0.956 
(45,3) 0.864 0.912 0.943 0.955 0.946 0.957 
(60,3) 0.856 0.898 0.946 0.962 0.953 0.955 
(60,4) 0.855 0.902 0.947 0.958 0.951 0.969 
(80,4) 0.826 0.888 0.949 0.953 0.957 0.958 

       
shape parameter=10.0       

(15,2) 0.879 0.920 0.922 0.953 0.923 0.959 
(25,2) 0.882 0.910 0.948 0.950 0.940 0.954 
(40,2) 0.872 0.910 0.943 0.953 0.946 0.959 
(45,3) 0.856 0.883 0.949 0.954 0.952 0.954 
(60,3) 0.853 0.874 0.950 0.957 0.956 0.962 
(60,4) 0.850 0.884 0.946 0.964 0.954 0.956 
(80,4) 0.841 0.858 0.948 0.959 0.956 0.963 
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   Table 4.6: Expected widths of the PMP and MLS tolerance intervals. Experimental error: skew-normal distribution. 

 

 ρ 

(n,t) 0.900 0.990 0.999 

 PMP MLS PMP MLS PMP MLS 

shape parameter=0.4       
(15,2) 14.249 (2.650) 15.071 (2.814) 45.362 (8.723) 48.383 (9.308) 145.011 (27.457) 154.328 (29.955) 
(25,2) 13.198 (1.842) 13.661 (1.933) 42.474 (6.144) 43.537 (6.215) 134.006 (19.313) 138.478 (20.094) 
(40,2) 12.546 (1.403) 12.809 (1.388) 40.178 (4.542) 40.764 (4.571) 127.199 (14.551) 129.144 (14.327) 
(45,3) 12.404 (1.266) 12.534 (1.302) 39.673 (4.237) 40.114 (4.329) 125.830 (13.573) 127.000 (13.640) 
(60,3) 12.086 (1.056) 12.139 (1.055) 38.600 (3.522) 38.904 (3.604) 122.370 (11.321) 123.418 (11.451) 
(60,4) 12.031 (1.041) 12.154 (1.071) 38.621 (3.520) 38.985 (3.502) 122.352 (11.330) 123.144 (11.260) 
(80,4) 11.843 (0.890) 11.873 (0.882) 37.737 (2.967) 38.014 (2.968) 119.903 (9.639) 120.566 (9.550) 

       
shape parameter=1.0       

(15,2) 14.026 (2.625) 15.065 (2.833) 45.593 (8.739) 48.769 (9.413) 144.454 (27.706) 154.504 (29.901) 
(25,2) 13.133 (1.844) 12.368 (1.295) 42.440 (6.100) 43.650 (6.175) 134.436 (19.747) 137.961 (20.015) 
(40,2) 12.430 (1.386) 12.582 (1.401) 40.115 (4.536) 40.643 (4.610) 126.692 (14.397) 129.144 (14.806) 
(45,3) 12.279 (1.225) 12.363 (1.289) 39.681 (4.282) 40.130 (4.256) 124.810 (13.752) 126.787 (13.411) 
(60,3) 11.955 (1.060) 12.052 (1.081) 38.608 (3.547) 38.836 (3.476) 122.955 (11.158) 123.191 (11.391) 
(60,4) 11.959 (1.055) 12.034 (1.047) 38.649 (3.620) 38.841 (3.584) 122.258 (11.222) 123.050 (11.612) 
(80,4) 11.711 (0.904) 11.779 (0.901) 37.648 (2.945) 37.922 (3.073) 119.467 (9.600) 119.961 (9.549) 

       
shape parameter=2.0       

(15,2) 14.013 (2.664) 14.859 (2.810) 45.711 (8.663) 48.489 (9.200) 144.196 (27.358) 153.727 (29.149) 
(25,2) 13.017 (1.845) 13.402 (1.895) 42.368 (6.173) 43.520 (6.233) 134.558 (19.745) 137.891 (20.612) 
(40,2) 12.327 (1.405) 12.446 (1.383) 40.104 (4.508) 40.651 (4.655) 127.209 (14.689) 128.878 (14.831) 
(45,3) 12.164 (1.267) 12.337 (1.256) 39.604 (4.232) 40.116 (4.322) 125.220 (13.581) 127.210 (13.580) 
(60,3) 11.871 (1.079) 11.950 (1.059) 38.584 (3.562) 39.047 (3.549) 122.454 (11.047) 123.168 (11.460) 
(60,4) 11.865 (1.042) 11.948 (1.058) 38.501 (3.503) 38.795 (3.556) 122.081 (11.454) 123.504 (11.219) 
(80,4) 11.631 (0.891) 11.681 (0.897) 37.679 (2.999) 37.930 (2.920) 119.526 (9.424) 120.319 (9.571) 
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(Table 4.6 continued) 
 
     

shape parameter=5.0     
(15,2) 13.975 (2.701) 14.806 (2.788) 45.459 (8.574) 48.360 (8.887) 144.138 (26.991) 154.672 (29.416) 
(25,2) 12.972 (1.800) 13.334 (1.916) 42.337 (6.129) 43.413 (6.350) 134.156 (19.101) 138.212 (19.483) 
(40,2) 12.284 (1.375) 12.451 (1.327) 40.090 (4.581) 40.722 (4.583) 126.939 (14.155) 128.827 (14.632) 
(45,3) 12.110 (1.275) 12.240 (1.302) 39.599 (4.300) 39.964 (4.271) 125.649 (13.843) 127.087 (13.772) 
(60,3) 11.833 (1.087) 11.905 (1.094) 38.534  (3.522) 38.804 (3.525) 122.171 (11.312) 123.007 (11.438) 
(60,4) 11.801 (1.064) 11.908 (1.069) 38.449 (3.579) 38.895 (3.571) 122.707 (11.344) 123.297 (11.020) 
(80,4) 11.523 (0.905) 11.609 (0.903) 37.628 (3.062) 37.859 (3.052) 119.668 (9.590) 120.170 (9.655) 

       
shape parameter=10.0       

(15,2) 13.958 (2.574) 14.864 (2.793) 45.282 (8.506) 48.539 (9.429) 144.751 (27.533) 154.434 (29.631) 
(25,2) 12.986 (1.849) 13.216 (1.887) 42.633 (5.946) 43.523 (6.421) 134.051 (19.424) 138.230 (20.357) 
(40,2) 12.274 (1.351) 12.434 (1.396) 40.118 (4.590) 40.657 (4.590) 126.779 (14.261) 128.785 (15.055) 
(45,3) 12.031 (1.272) 12.237 (1.254) 39.554 (4.221) 39.921 (4.236) 125.605 (13.412) 126.890 (13.476) 
(60,3) 11.807 (1.104) 11.867 (1.091) 38.535 (3.461) 38.825 (3.586) 122.537 (11.487) 123.701 (11.208) 
(60,4) 11.786 (1.081) 11.871 (1.079) 38.483 (3.549)  38.866 (3.498) 122.064 (11.060) 123.143 (11.539) 
(80,4) 11.537 (0.863) 11.612 (0.898) 37.730 (3.025) 37.812 (2.969) 119.455 (9.597) 119.968 (9.629) 
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Table 4.7: Simulated coverage probabilities of the PMP and MLS tolerance intervals.  

Experimental error:  GLD where λ1 = 0, λ2 = 0.1975. 

 

 ρ 

(n,t) 0.900 0.990 0.999 

 PMP MLS PMP MLS PMP MLS 
 
Normal approximation: 

λ3 =  λ4 = 0.1349 
      

(15,2) 0.910 0.958 0.924 0.954 0.927 0.952 
(25,2) 0.945 0.964 0.940 0.959 0.945 0.961 
(40,2) 0.947 0.958 0.954 0.955 0.946 0.960 
(45,3) 0.955 0.956 0.948 0.962 0.944 0.963 
(60,3) 0.953 0.959 0.956 0.961 0.952 0.959 
(60,4) 0.959 0.963 0.957 0.968 0.956 0.960 
(80,4) 0.952 0.963 0.958 0.966 0.960 0.960 

       
λ3 = λ4 = 0.30       

(15,2) 0.975 0.985 0.934 0.951 0.924 0.952 
(25,2) 0.980 0.989 0.940 0.967 0.945 0.964 
(40,2) 0.990 0.996 0.955 0.968 0.952 0.952 
(45,3) 0.996 0.996 0.958 0.970 0.946 0.960 
(60,3) 0.996 0.998 0.961 0.978 0.954 0.963 
(60,4) 0.998 1.000 0.961 0.976 0.951 0.968 
(80,4) 0.999 1.000 0.963 0.976 0.960 0.966 

       
λ3 = 0.1349, λ4 = 0.50       

(15,2) 0.930 0.963 0.924 0.949 0.930 0.953 
(25,2) 0.950 0.964 0.945 0.954 0.940 0.956 
(40,2) 0.962 0.968 0.952 0.961 0.940 0.959 
(45,3) 0.960 0.960 0.952 0.954 0.954 0.960 
(60,3) 0.967 0.978 0.960 0.963 0.960 0.957 
(60,4) 0.972 0.974 0.948 0.956 0.952 0.962 
(80,4) 0.970 0.978 0.957 0.960 0.964 0.963 

       
λ3 = 0.1349, λ4 = 1.00       

(15,2) 0.879 0.934 0.920 0.954 0.929 0.955 
(25,2) 0.891 0.917 0.941 0.954 0.946 0.954 
(40,2) 0.892 0.906 0.940 0.957 0.952 0.957 
(45,3) 0.878 0.890 0.942 0.955 0.958 0.960 
(60,3) 0.883 0.896 0.956 0.946 0.945 0.962 
(60,4) 0.870 0.890 0.947 0.954 0.952 0.967 
(80,4) 0.870 0.881 0.956 0.960 0.958 0.959 
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Table 4.8: Expected widths of the PMP and MLS tolerance intervals. Experimental error: GLD where λ1 = 0, λ2 = 0.1975. 

 

 ρ 

(n,t) 0.900 0.990 0.999 

 PMP MLS PMP MLS PMP MLS 
 

Normal approximation: 

λ3 =  λ4 = 0.1349 
      

(15,2) 14.216 (2.663) 14.688 (1.944) 45.510 (8.671) 48.397 (9.120) 144.831 (27.263) 154.111 (28.942) 
(25,2) 13.243 (1.868) 13.677 (1.882) 42.397 (5.961) 43.584 (6.386) 134.257 (13.215) 138.684 (19.919) 
(40,2) 12.598 (1.375) 12.740 (1.395) 40.124 (4.434) 40.858 (4.695) 127.376 (14.523) 128.754 (14.653) 
(45,3) 12.468 (1.252) 12.584 (1.290) 39.583 (4.177) 40.240 (4.214) 125.186 (13.492) 127.187 (13.668) 
(60,3) 12.126 (1.057) 12.213 (1.077) 38.720 (3.588) 38.883 (3.603) 122.259 (11.490) 122.874 (11.270) 
(60,4) 12.127 (1.043) 12.205 (1.068) 38.572 (3.538) 39.093 (3.622) 122.297 (11.320) 123.091 (11.282) 
(80,4) 11.833 (0.902) 11.893 (0.887) 37.753 (2.958) 37.926 (2.987) 119.824 (9.392) 120.182 (9.650) 

       
λ3 = λ4 = 0.30       

(15,2) 15.455 (2.670) 16.428 (2.861) 46.173 (8.687) 49.004 (9.574) 145.554 (28.053) 153.888 (29.309) 
(25,2) 14.458 (1.944) 14.846 (1.990) 42.621 (6.147) 44.106 (6.319) 134.666 (19.224) 138.361 (20.136) 
(40,2) 13.682 (1.409) 13.980 (1.418) 40.450 (4.558) 41.125 (4.536) 127.383 (14.519) 129.061 (14.948) 
(45,3) 13.487 (1.269) 13.638 (1.285) 39.897 (4.147) 40.476 (4.231) 125.453 (13.621) 126.925 (13.673) 
(60,3) 13.163 (1.041) 13.296 (1.075) 39.003 (3.508) 39.407 (3.450) 122.526 (11.313) 123.172 (11.267) 
(60,4) 13.112 (1.009) 13.251 (1.048) 39.024 (3.630) 39.369 (3.541) 122.008 (11.332) 123.385 (11.194) 
(80,4) 12.850 (0.881) 12.958 (0.862) 37.989 (3.032) 38.394 (3.014) 119.694 (9.566) 120.075 (9.392) 
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(Table 4.8 continued) 
       

λ3 = 0.1349, λ4 = 0.50       

(15,2) 15.237 (2.756) 16.229 (2.876) 46.037 (8.679) 48.764 (9.234) 145.226 (28.319) 155.172 (29.960) 
(25,2) 14.272 (1.934) 14.681 (1.963) 42.610 (6.070) 43.893 (6.418) 134.152 (19.403) 137.564 (19.568) 
(40,2) 13.524 (1.392) 13.735 (1.411) 40.570 (4.528) 41.060 (4.587) 127.275 (14.581) 129.036 (14.911) 
(45,3) 13.301 (1.290) 13.400 (1.262) 40.054 (4.225) 40.251 (4.306) 125.848 (13.167) 127.358 (13.677) 
(60,3) 12.998 (1.071) 13.112 (1.034) 38.944 (3.521) 39.235 (3.522) 122.755 (11.235) 123.334 (11.605) 
(60,4) 12.029 (0.943) 13.079 (1.047) 38.881 (3.595)  39.206 (3.670) 122.427 (11.363) 123.139 (11.549) 
(80,4) 12.727 (0.869) 12.776 (0.871) 38.005 (2.990) 38.200 (2.985) 119.875 (9.457) 120.046 (9.607) 

       
λ3 = 0.1349, λ4 = 1.00       

(15,2) 15.739 (2.675) 16.894 (2.910) 46.157 (8.592) 49.103 (9.246) 145.380 (27.889) 153.122 (28.782) 
(25,2) 14.782 (1.904) 15.228 (1.961) 43.052 (6.012) 44.198 (6.350) 134.836 (19.458) 137.380 (20.310) 
(40,2) 14.102 (1.400) 14.248 (1.419) 40.655 (4.558) 41.257 (4.556) 127.099 (14.412) 128.452 (14.610) 
(45,3) 13.787 (1.257) 13.943 (1.282) 40.240 (4.233) 40.628 (4.229) 126.280 (13.372) 127.423 (13.847) 
(60,3) 13.205 (1.052) 13.645 (1.061) 39.238 (3.451) 39.396 (3.563) 121.962 (11.382) 123.247 (11.340) 
(60,4) 13.416 (1.013) 13.554 (1.042) 39.061 (3.546) 39.419 (3.540) 122.588 (11.364) 123.200 (11.193) 
(80,4) 13.205 (0.875) 13.258 (0.873) 38.122 (2.904) 38.406 (2.945) 120.029 (9.444) 120.379 (9.570) 
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Figure 4.1: The density shapes produced by GLD (0, 0.1975, λ3, λ4)  

 

 

Figure 4.1 (a) λ3 =  λ4 = 0.1349 (standard normal fit) 

Figure 4.1 (b) λ3 = λ4 = 0.30 

Figure 4.1 (c) λ3 = 0.1349, λ4 = 0.50  

Figure 4.1 (d) λ3 = 0.1349, λ4 = 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 (a) Figure 4.1 (b) 

Figure 4.1 (c) Figure 4.1 (d) 
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4.3.2 Discussion 

 

Experimental error following the standard normal distribution 

 

Tables 4.1 and 4.2 give the coverage probabilities and expected widths for 

various   and some combinations of n and t when the error distribution is standard 

normal. Both PMP and MLS tolerance intervals show conservatism in terms of 

coverage probabilities for small and moderate values of   but the PMP method is 

slightly less conservative for moderate  . The MLS tolerance interval seems to work 

well for smaller sample sizes and shows slight conservatism as the number of classes 

increases. The PMP tolerance interval appears to be more accurate for larger values of 

  and has coverage probability close to the nominal value 0.95 when the number of 

classes is around 25 to 50, when t remains as 2. It is necessary to maintain the balance 

between n and t to achieve coverage probability close to 0.95. The ratio n: t is 

approximately 12.5:1 to 25:1 to attain this for the PMP case. The expected widths for 

the MLS tolerance interval are wider than that of the PMP for sample sizes less than 50. 

The wider expected widths for the MLS case enable it to cover a proportion closer to 

0.95 for smaller sample sizes.  

 

Experimental error following the t- distribution 

 

Tables 4.3 and 4.4 show the coverage probabilities and expected widths for data 

generated with experimental error following the t-distribution with degrees of freedom 

3, 5, 10, 15 and 25. The results for small and moderate   were not reported as they are 

conservative and have coverage probabilities close to 1. Since 2 3 /(1 )     , when 


 is small, the distribution of the experimental error following the t-distribution 
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(variance 3 ) dominates the distribution of the normal random effects (variance 2 ). 

This will have an effect on both PMP and MLS tolerance intervals which have been 

derived under the assumption that the underlying distribution is normal (Gaussian). We 

noticed that the coverage probabilities tend to 1 for small and moderate  . This is due 

to the wider expected widths since the t-distribution has heavier tail than the normal 

distribution. When 900.0 , the coverage probabilities for both PMP and MLS 

tolerance intervals get closer to 0.95 as the degrees of freedom increase from 15 

onwards. It seems that the coverage probabilities happen to be close to the nominal level 

0.95 for degrees of freedom as small as 3 for both cases as 990.0  and 0.999. The 

expected widths for both instances are comparable to the standard normal case. 

 

Experimental error following the skew-normal distribution 

 

We study the tolerance intervals for the skew-normal distribution whose tail is 

heavier than the normal distribution involving different shape parameters. Both PMP 

and MLS tolerance intervals seem to have coverage probabilities close to 0.95 when 

 is small i.e. 0.40 for 900.0 . The results become conservative as   increases and 

are still acceptable for 00.1 . However, the results involving the expected widths and 

coverage probabilities tend to be comparable to that of the standard normal case when 

990.0  and 0.999. The results for negative shape are very similar to the positive 

shape parameters. 

 

 The results for small and moderate   were not reported here since they are 

conservative and the coverage probabilities are very close to 0. The convergence of the 

coverage probability to 0 is more rapid for larger sample sizes as the number of classes 

increase and the skew-normal characteristics in the data become more dominant. The 



76 

non-symmetrical behavior of the skew-normal distribution, where one tail is pulled in 

one direction, affects the coverage probability as the data becomes non-centred when   

becomes smaller. Hence, both PMP and MLS tolerance intervals for symmetrical 

distributions such as the normal case become conservative for the skew-normal case for 

small and moderate  . 

 

Experimental error following the generalized lambda distribution 

 

 As for the experimental error following the generalized lambda distribution, we 

refer to Equation (4.10) and use the normal approximation parameters suggested by 

Karian and Dudewicz (2000). Tables 4.7 and 4.8 clearly show that the results for these 

estimates are comparable with the standard normal case.  

 

 We examine the performance of the GLD error distribution by varying the 

parameters 43  and  . Here 01   and 02   for all the cases studied. According to 

Karian and Dudewicz (2000), the GLD density has limited support given by 

]/1,/1[ 2121   . In our study, the support of the GLD density is [-5.063, 5.063].  

Figure 4.1 shows the shapes produced by the pdf plots by varying these parameters. For 

30.0 43   , the distribution is symmetrical with flatter and heavier tail than the 

normal distribution. For 50.04   and 1.00 where 1349.0,1975.0,0 321   , the 

distribution is no longer symmetrical. The distribution for 50.04   is also flatter and 

has a heavier tail than that of the normal distribution. Generally, the standard normal fit 

in Figure 4.1(a) produces outputs close to the standard normal case. The results 

involving PMP and MLS tolerance intervals are conservative for 900.0  and more 

accurate for 990.0  and 0.999. We did not report the outputs for 900.0  in the 
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tables as the distributions in Figure 4.1(b) and Figure 4.1(d) have coverage probabilities 

very close to 1. This is due to the aforementioned characteristics of these distributions 

which dominate the normal random effect and result in wider expected widths than the 

normal case. The coverage probabilities for Figure 4.1(d) which is S-shaped with 

limited support and no longer symmetrical are conservative for 900.0  as they stay 

slightly lower than that reported for 900.0 . The PMP and MLS tolerance intervals 

seem to be comparable with the normal case when 990.0  and 0.999.   

 

The simulation results in Tables 4.1-4.8 show that both PMP and MLS tolerance 

intervals are comparable for large number of classes, n and small number of 

observations per class, t with coverage probability closer to the nominal value, 0.95. 

The MLS tolerance interval appears to be good for small sample sizes. For non-normal 

distributions whose tails are heavier than the normal distribution, both PMP and MLS 

tolerance intervals appear to be less conservative for large values of intra-class 

correlation coefficient,  . 
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CHAPTER 5 

 

BAYESIAN AND FREQUENTIST TOLERANCE INTERVALS IN A 

GENERAL CASE 

 

5.1 Introduction 

 

 It is an unquestionable fact that the study of two-sided tolerance intervals is 

more challenging than that of its one-sided counterpart. To appreciate the reason, 

consider a random sample from a univariate population characterized by a cumulative 

distribution function (c.d.f.) );( xF , where   is a possibly vector valued unknown 

parameter. Then a one-sided  content tolerance interval, associated with a lower 

tolerance limit, is of the form ),[ T , where T is a statistic so chosen that the 

relationship  

  );(1 TF ,    (5.1) 

holds with credibility or confidence level  . On the other hand, a two-sided  content 

tolerance interval is of the form ],[ 21 TT , the statistics 1T  and 2T being such that the 

relationship  

  );();( 12 TFTF .    (5.2) 

holds with credibility or confidence level  . If we write );( q for the  th quantile of 

the population, then clearly (5.1) holds if and only if  

 

);1(  qT     (5.3) 

Therefore we can regard T as the )1(  th posterior quantile of );1( q  in the 

Bayesian setup, or as a lower confidence limit for );1( q  with confidence 
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coefficient   in the frequentist setup, and this simplifies the study of one-sided 

tolerance intervals (Pathmanathan et al., 2013). However, no such reduction occurs for 

the inequality (5.2) arising in the two-sided case. This makes the construction of two-

sided tolerance intervals intrinsically difficult. So far, no direct method for this purpose, 

which works under reasonable generality, is available.  

 

 Earlier, Mukerjee and Reid (2001) characterized the probability matching priors 

for one-sided tolerance intervals by taking note of the equivalence between (5.1) and 

(5.3). The corresponding results in the two-sided case were so far unknown. The results 

obtained in this chapter enable us to fill in this gap. In contrast, as indicated above, we 

give analytical formulae for such intervals, applicable to a wide range of parametric 

models and based on the foundation of higher order asymptotics. Moreover, the main 

idea of this chapter concerns the development of general results in the frequentist setup, 

where the Bayesian simulation approach in Wolfinger (1998) does not work. We aim at 

exploring two-sided tolerance intervals in a fairly general framework of parametric 

models. Explicit analytical formulae for these tolerance intervals in both Bayesian and 

frequentist setups were obtained by developing higher order asymptotics. The Bayesian 

results lead to a characterization for probability matching priors ensuring approximate 

frequentist validity of two-sided Bayesian tolerance intervals. We also examine such 

matching priors and their role in finding frequentist tolerance intervals via a Bayesian 

route. Based on our observation, we take cognizance of the fact that it is difficult to 

obtain matching priors in some situations. Hence, we formulate purely frequentist   

tolerance intervals that cater to situations of this kind. We address computational issues 

as well and note that it is straightforward to write programs for easy implementation of 

our explicit formulae. Finally, applications to real data from Gacula and Kubala (1975) 

for the Weibull case and Lieblin and Zelen (1956) for the inverse Gaussian tolerance 
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intervals are presented. Simulation studies were conducted to investigate if the 

asymptotic results are well reflected in finite samples. 

 

5.2 Two-sided Bayesian tolerance intervals 

 

Let nXX ,...,1  be independent and identically distributed scalar-valued 

observation from a population specified by a density );( xf . Here ),...,( 1
 p  is an 

unknown parameter that belongs to the p-dimensional Euclidean space or some open 

subset thereof. We work under the assumptions in Johnson (1970) for the Bayesian 

tolerance intervals. The Edgeworth assumptions in Bhattacharya and Ghosh (1978) will 

be applied for the frequentist calculation reported later. These two sets of assumptions 

hold under wider generality for models belonging to the exponential and curved 

exponential families and also for many other models such as Cauchy, Student’s t and so 

on; see Datta and Mukerjee (2004) for more details. In what follows, for any 0t , we 

write )( t
p nO   to represent a quantity which, even when multiplied by tn , remains 

bounded in probability as n  tends to infinity; see Rao (1973). 

 

 Let );( xF  be the cumulative distribution function (cdf) corresponding 

to );( xf . );( q  is the  th quantile of the population represented by );( xF .  

The interval )];1(),;([ 12  qq , covers a proportion   of  this population for a 

known θ where 1 , 2 (>0) satisfy   211 . For notational simplicity, we write 

)(b );1( 1 q  and );()( 2  qd   which motivates us to consider a two-sided 

Bayesian tolerance interval of the following form: 

   ])ˆ(,)ˆ([ )()( nn gbgd         (5.4) 
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where )ˆ...,,ˆ(ˆ
1

 p  is the maximum likelihood estimator for )...,,( 1
 p for the 

data ),...,( 1 nXXX  , and 

      )( 2/3
2

1
1

2/1)(   nOgngng p
n      (5.5) 

where 21, gg  are )1(pO functions of data X (which may as well involve the prior). We 

have to choose 21, gg  so that interval (5.5) has  content and posterior credibility 

level )( 1 nOp , that is,  

          )(}|);)ˆ(();)ˆ(({ 1)()(  nOXgdFgbFP p
nn                        (5.6) 

)|(. XP  is the posterior probability measure under the prior )( . 

Further details on the precise form of )(ng  in Equation (5.5) will be discussed in 

Remarks 5.1 and 5.5. We note that in most applications, especially with a symmetric 

density );( xf , taking 21    is fine since our results go through for arbitrary 1 , 

2 (>0) satisfying   211 . 

One may want to choose 21    if being at the upper extreme is considered more 

atypical than being at the lower extreme or 21    if it is the other way round. 

 

 Theorem 5.1 gives explicit formulae for 1g  and 2g  which ensures the attainment 

of Equation (5.6). Some of the notations used in presenting Theorem 5.1 as well as the 

rest of this chapter are summarized below. 

For pwus  ,,1 , 

    )(l 



n

i

n
1

1 log );( iXf ,      (5.7) 

      sD  s / , suD  us /2 , suwD  wus  /3     (5.8) 

         


 ˆ)}({


 lDDc ussu , 


 ˆ)}({


 lDDDa wussuw     (5.9) 
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C  )( suc  is the per observation observed information matrix at ̂ . We write 

)(1 sucC  ,          (5.10) 

)ˆ(ˆ   , )( s )(sD , )ˆ(ˆ  ss  ,      (5.11) 

);(
~

xf = xxf  /);(  , );( xfs );( xfDs [ xxFs  /);(  ], 

);( xFs );( xFDs , );( xFsu );( xFDD us , 

df )ˆ);ˆ(( df ,  df
~

)ˆ);ˆ((
~

df ,  d
sf )ˆ);ˆ(( dfs , 

d
sF )ˆ);ˆ(( dFs , d

suF )ˆ);ˆ(( dFsu , 

bf )ˆ);ˆ(( bf , bf
~

)ˆ);ˆ((
~

bf , b
sf )ˆ);ˆ(( bfs , 

b
sF )ˆ);ˆ(( bFs ,  b

suF )ˆ);ˆ(( bFsu , 

)(sK ));(());((  bFdF ss  , sK̂ )ˆ(sK b
s

d
s FF  . 

 

Let )(K  and K̂  be 1p  vectors with sth elements given by )(sK  and sK̂ , 

respectively. We assume that )(K  is non-null for every  . This implies that K̂  is also 

non-null and that, as a result, the quantity  M 2/1)ˆˆ( us
su KKc  is positive. When defining 

M and also in the rest of this chapter, the summation convention is followed, with 

implicit sums on repeated sub- or superscripts in a product ranging over 1,…, p i.e.  


 

p

s

p

u
us

su KKc
1 1

ˆˆ is written as us
su KKc ˆˆ . 

For pus  ,1 , let 

  sA 


M

FF b
s

d
s )(

M

Ks
ˆ

,  sB
M

ff b
s

d
s )( 

,   

suV
M

FF b
su

d
su )( 

,  s  u
su Ac     (5.12)
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THEOREM 5.1 The tolerance interval [ )()ˆ( ngd  , )()ˆ( ngb  ] has  content with 

posterior credibility level  + )( 1nOp , i.e. Equation (5.6) holds, provided 1g  and 2g  in 

the expression (5.5)  for )(ng  satisfy  

1g  
)( bd ff

zM


   and  2g 4

2
1

2
321 )}1()({

)(
LgzLLL

ff

M
bd











 , 

where z  is the  th quantile of the standard univariate normal distribution, and 

)(1 L s
s 





ˆ

ˆ
,    2L )(

2

1
su

susu
wsuw Vcca  , 

       3L suuswussuw Va 
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1

6

1
 ,        4L ssbd
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ff

ff
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 (5.13) 

 

Proof of Theorem 5.1: 

We define ),...,( 1
 phhh  = )ˆ(2/1  n . Thus, 

n

h
 ˆ . Invoking Equation (5.5), we 

find that by Taylor’s expansion, 
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Next, we expand with respect to )()ˆ( ngb   and ignore terms higher than n1  for 
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          b
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In a similar manner, we obtain 
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Since   211)ˆ);ˆ(()ˆ);ˆ(( dFbF , by the definitions of )(b  and )(d , 

recalling the definition of R , we get 

 

 );)ˆ(( )(  ngbFR );)ˆ(( )(  ngdF   
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From (5.14) above, on rearranging the terms, 
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Let 1G
M

ffg db )(1 
,   2G




















M
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1
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2
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                             (5.15)  

sA , sB  and suV  are as given in (5.12) 

Therefore, we write              

YG

nOGVhhBhgnAhG
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Rn
psuusssss
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where  

     )(
2

1 1
21
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 nOGVhhBhgnAhY psuusssss    (5.17) 

In view of Equation (5.16), we next consider the posterior density of Y. Following 

chapter 2 of Datta and Mukerjee (2004), note that, the posterior density of h, )( , can 

be expressed as 

)|(post Xh  )(
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ˆ
1);( 12/11  
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where );(. 1Cp represents the p-variate normal density with null mean vector and 

covariance matrix 1C .  

 

Let  2/1)1( , with   as an auxiliary variate. Then, by Equation (5.17) we get 
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        (Taylor series expansion, ...
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)|()exp( post XhY 
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Hence, recalling the definition of s  from Equation (5.12), 

let ACp
1

21 ),...,,(   , ),...,,( 21
 pAAAA . 
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AhChh

CChChhhCh
 

where ACCAC   )( 1  and 

1)()( 111   ACAACCCAC  1us
su AAc  

 ),;()exp();()exp( 12
2
11   ChChAh ppss   

where ),;( 1Chp   is a p-variate normal density with mean vector   and covariance 

matrix 1C . 

)|()exp( post XhY  ),;(
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)( 1 nOp                  (5.18) 

If ),...,( 1
 phhh  has density ),;( 1Chp  , then  
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                (5.19) 

    

Then by applying (5.19), we integrate Equation (5.18) with respect to h to obtain the 

approximate posterior characteristic function of Y which is 
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 sssuus
su

ss GVcBgn  )ˆ/ˆ()(1)exp( 2
2

2
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1
22/12

2
1    

           )(3

6
1 su

w
sw

u
uw

swussuw ccca   )( 1 nOp  

   ])()([1)exp( 3
3

2
1221

2/12

2
1  LBgGLLn ss   )( 1 nOp  

Inverting the approximate posterior characteristic function of Y as noted above, we now 

get the posterior density of Y, under )( , as given by 

)|(~ Xy )()}]3()1)(())({(1)[( 13
3

2
1221

2/1   nOyyLyBgyGLLny pss , 

After some simplification, )(1 L , 2L  and 3L  are as shown in Equation (5.13).  

 

From Equation (5.16), we observe that 

R  if and only if 1GY    where  );)ˆ(( )(  ngbFR );)ˆ(( )(  ngdF   

Therefore, the integration of )|(~ Xy  over 1GY   yields 

}|);)ˆ(();)ˆ(({ )()( XgdFgbFP nn    

}|{ 1 XGYP    

)()()}1()()({)( 1
1

2
1311221

2/1
1

  nOGGLGBgGLLnG pss             (5.20) 

where  )(  is the standard univariate normal cdf.  

 

The right hand side of (5.20) equals )( 1 nOp  provided 

zG 1  and )1()()( 2
31212   zLzBgLLG ss     (5.21) 

i.e. recalling Equation (5.15), provided 1g  and 2g  are as in the statement of Theorem 

5.1. 
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Remark 5.1 

Based on Theorem 5.1, 1g  is free from the prior while 2g  involves the prior only via 

the term )(1 L . It is easy to find )(ng  satisfying Equation (5.5) with 1g  and 2g  as in 

Theorem 5.1. For instance, we can simply take 2
1

1
2/1)( gngng n   . However, other 

choices of )(ng  are possible and may be helpful in certain situations. We will come back 

to this point in the next section.  

 

Remark 5.2 

It is noted that Theorem 5.1 is applicable even to models, such as the inverse Gaussian, 

which do not admit analytical expressions for )(d  and )(b . We only require the 

values of these functions at  ˆ , i.e. )ˆ(d  and )ˆ(b  and these can be found 

computationally. The quantities in Equations (5.12) and (5.13) as well as the 

expressions for 1g  and 2g  in Theorem 5.1 involve the partial derivatives of );( xf  and 

);( xF , as evaluated at  ˆ  and x )ˆ(d  or )ˆ(b . It is easy to obtain these partial 

derivatives via symbolic computation via the software MATLAB which calculates 1g  

and 2g  almost instantaneously, given the data X . 

 

5.3 Frequentist tolerance intervals via probability matching prior 

 

We consider the frequentist behaviour of the Bayesian tolerance interval in 

Theorem 5.1 with a view of characterizing priors under which it has  content not 

only with posterior credibility level )( 1 nOp  but also with frequentist confidence 

level )( 1 nO . Such a prior is referred to as probability matching prior for a two-

sided tolerance interval. Therefore, the Bayesian tolerance interval in Theorem 5.1, 

when constructed using a prior of this kind, is also frequentist. A consideration of these 
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priors provides a Bayesian route for obtaining two-sided frequentist tolerance intervals. 

To achieve this, we let )( suII   denote the per observation Fisher information matrix at 

 , and write 2/1
0 )}()({  ussu KKIM  , where )(1 suII  . We note that 00 M  

because of our assumption that the vector )(K  is non-null for every  . Then the 

following results characterizing probability matching priors in the present context, 

holds. A shrinkage argument which is popular in Bayesian asymptotics will be 

employed in proving Theorem 5.2 and Theorem 5.3 (Datta and Mukerjee, 2004, Ch. 4). 

 

The following will be useful in proving Theorem 5.2 and Theorem 5.3. 

From Datta and Mukerjee, 2004, pp.5-7, 

 )...,,,( 21 phhhh )ˆ(2/1  n   

hn 2/1ˆ   

)(ˆ 2/1 nOp           (5.22) 

From (5.7), 



n

i
iXfnl

1

1 );(log)(  . 

From (5.9) and (5.10), 


 ˆ)}({


 lDDc ussu  and )(1 sucC  . 

)}];(log[{)(   iussusu XfDDEII   is the Fisher information matrix at  . Define 

)(1 suII   

)()ˆ( 2/1 nOE                      (5.23) 

Comment: (5.23) follows from (5.22) noting that the expectations of both sides of (5.22) 

follow the same pattern as (5.22) itself under very general conditions such as those in 

Bhattacharya and Ghosh (1978). 
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Expanding )ˆ(lDD us  about  , we get  

)( 2/1 nOIc susu  

)( 2/1 nOIc susu  

)()( 2/1 nOIcE susu
         (5.24) 

Comment: Since suc and suI  are the observed and expected information elements and 

suc  and suI are the (s, u)-th elements of the inverses of )( sucC   and )( suII   , we 

readily have )( 2/1 nOIc susu  and )( 2/1 nOIc susu  . Again under very general 

conditions such as those in Bhattacharya and Ghosh (1978), the same pattern holds for 

the expectations of both sides of these equations. 

 

THEOREM 5.2 The Bayesian tolerance interval in Theorem 5.1 has  content with 

frequentist confidence level )( 1 nO  if and only if the prior )( satisfies the partial 

differential equation 

    0)}()({ 1
0  u

su
s KIMD            (5.25) 

 

Proof of Theorem 5.2: 

Take an auxiliary prior )(  which vanishes along the boundaries of a rectangle 

containing the true  . Then, with )(ng , 1g  and 2g  as in Theorem 5.1, analogously to 

(5.20),    

  

 }|);)ˆ(();)ˆ(({ )()( XgdFgbFP nn    

 = )( 1G )()}1()()({ 1
2

1311221
2/1 GGLGBgGLLn ss    + )( 1nOp  
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From (5.21), 

 }|);)ˆ(();)ˆ(({ )()( XgdFgbFP nn     

    = )()}()({ 11
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 zLLn   + )( 1nOp                 (5.26) 

 

As in (5.13), here )(1
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K
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Comment: Therefore, 

)]([ *
1  LE  )()( 2/11

0






 nOKIM pu
sus 




,                           (5.28)  

where  2/1
0 )}()({  us

su KKIM  .  We are simply replacing each term in )( *
1 L  by its 

population analogue. Hence, recalling the forms of s and sA  as shown in (5.12), it 

follows from (5.26) and (5.28) that    

  }]|);)ˆ(();)ˆ(({[ )()( XgdFgbFPE nn 
   

  = )()(
)(

)(

)(

)( 1
0
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 zKIMn u

suss
















 




 + )( 1nO .             (5.29) 
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The last step of shrinkage argument involves integrating the E expectation in (5.29) 

by parts with respect to )(   and then allowing )(   to converge weakly to the 

degenerate prior at the true  . After some simplification, this shows that the tolerance 

interval in Theorem 5.1 has  content with frequentist confidence level   

      

 });)ˆ(();)ˆ(({ )()(   nn gdFgbFP  

  )()}()({)}({ 1
0

12/1
 zKIMDn u

su
s

 + )( 1nO .   

   

The above equals )( 1 nO  if and only if )(  satisfies the partial differential 

equation (5.25). 

 

Remark 5.3 

The matching condition in (5.25) has a striking similarity with that for the posterior 

quantiles of a parametric function )( , with margin of error )( 1nO , as given by 

(Datta and Mukerjee, 2004, p.42), 

      )}()({ 1
0  u

su
s IHD  0                   (5.30) 

where 0H 2/1)}()({  us
suI  and )( u )(uD , pu 1 . Although for 2p , 

it is difficult to find an example of a )(  satisfying )( u )(uK , pu 1 , in 

many situations, the suI are such that a solution to (5.25) also meets (5.30) for some 

)( . For instance, the solutions to (5.25) in the location-scale and Weibull models 

below satisfy (5.30) as well for 2)(   . This is a bit surprising because posterior 

quantiles give one-sided credible sets while we are considering two-sided tolerance 

intervals here. Moreover, there is no obvious link between a two-sided tolerance interval 

and the posterior quantiles of a parametric function.  
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Remark 5.4  

In particular, if p = 1, i.e.,   is a scalar, then both )(K and I are scalars. In this case, if 

the parameter space is an interval then the assumption that )(K is nonnull for every   

implies that )(K is either positive for all   or negative for all  . Hence, by the 

definition of 0M , the matching condition (5.25) reduces to   dId /)}({ 2/1  0, with 

unique solution 2/1
0 )( I , the Jeffreys’ prior. Thus, we obtain a probability 

matching property of Jeffreys’ prior for two-sided tolerance intervals in the case of 

scalar  . 

 

Remark 5.5 

Returning to the case of general p, if a matching prior, say )(0  , satisfying (5.25) is 

available, then as hinted earlier, Theorem 5.1 readily yields a two-sided tolerance 

interval which has  content with frequentist confidence level )( 1 nO . For this 

purpose, one only needs to work with the prior )(0   in Theorem 5.1, and this amounts 

to keeping 1g  as stated there while replacing )(1 L  by )( 01 L  in the expression for 

2g . With 1g  and 2g  so determined, there are numerous choices of )(ng satisfying (5.5). 

These include )(ng = )1( ng , )2( ng and )3( ng , where 

)1( ng 2
1

1
2/1 gngn   ,    )2( ng = 







 


1

2
2/1

1
2/1 exp

g

gn
gn , 

  )3( ng  
)/1( 12

2/1

1
2/1

ggn

gn





 ,  if  1

1

2
2/1




g

gn
, 

                   )2( ng , otherwise.      (5.31) 

 

Typically, 5.0 , so that by Theorem 5.1, 01 g . Therefore, )3()2()1( nnn ggg  , as 

xex 1  for every real x. As a result, tolerance intervals given by )(ng = )1( ng , )2( ng  
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and )3( ng  have  content with progressively higher exact frequentist confidence 

levels, but this comes at the cost of progressively higher expected widths. Simulation 

studies enable us to get the suitable choice of )(ng  for a given model. For j = 1, 2, 3 and 

sample size n, write )( jn  for the simulated frequentist coverage probability for the 

tolerance interval given by )(ng )( jng . Take )(ng )1( ng  if )1( n converges fast to the 

target  .  In this case, taking )(ng )2( ng  or )3( ng  will make the interval unnecessarily 

long. If, however, )1( n  falls short of   even for moderate n, then take )2()( nn gg   

provided )2( n  converges fast to  . On the other hand, if )2( n  too falls short of   even 

for moderate n, then try )(ng = )3( ng . In our examples and also others not shown here, the 

above strategy works well and one of )1( ng , )2( ng  and )3( ng  leads to a fast convergence 

to the target  ; e.g., as seen in Section 5.5, in the setups of the univariate normal model 

with both mean and variance equal to )0(  and the Weibull model below which 

happens with )(ng )1( ng  and )(ng  )2( ng , respectively.    

 

(a) Univariate normal model with mean=variance= θ 

 

Let );( xf represent the univariate normal model with mean and variance both equal to 

 (> 0). Here  , and hence )(K , are scalars. Suppose 
2
1 , as in most practical 

situations. This implies that 
2

1
j  ( j = 1, 2), as  = 211   . The standard 

univariate normal density is written as )( . For notational simplicity, let )( jz  be its 

)1( j th quantile ( j = 1, 2). Then )(b =  )1(z , )(d =  )2(z . 
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 xxf ,  x   (5.32) 
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Note that )1(z  and )2(z  are both positive, because 2
1j  ( j = 1, 2). Thus, )(1 K does 

not change sign over   > 0 if and only if )2()1( zz  , or equivalently, 21   . The lack 

of symmetry in the condition just obtained is not totally unexpected even though 

);( xf  is symmetric about   in this case while the quantity );(1 xF =  dxdF /);(  is 

not so. At any rate, following Remark 5.4 when 21   , the Jeffreys’ prior, 

)(0   121    satisfies the matching condition in (5.25). 

 

The Jeffreys’ prior is easily obtained by noting that for );( xf  in (5.32), 
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Hence, Jeffreys’ prior is given by )(0  
22
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  i.e. )(0   121    

 

(b) Location scale model 

 

Consider the location-scale model  
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where ),( 21
  ,  1 , 02  , where (.)  is a density on the real line with 

0)( t ,  t . Let 
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Define aq  as )( aqQ . Then the  th quantile of );( xF  is given by 21  q  

Let 1q  and 2q  denote respectively the )1( 1 th and 2 th quantiles of the distribution 

represented by (.) . Then )(b = 211  q  and )(d = 221  q . 
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)(1 K )}()({ 21
1

2 qq    ,  )}()({))( 2211
1

22 qqqqK      (5.35) 

Therefore, the assumption that )(K  is non-null for every   holds. If )(K  is null, 

)()( 21 qq    and )()( 2211 qqqq   . These imply that  21 qq  , i.e.,  = 211   = 

0, which is impossible. For the location-scale model, 2
2suI  for every ,, us  and hence 

by Equation (5.35), 0M  is a constant free from  . As a result, 1
20 )(  emerges as 

a solution to the matching condition (5.25). As mentioned previously in Mukerjee and 

Reid (2001), the same prior also enjoys the probability matching property for one-sided 

tolerance intervals in this case. 

 

(c) Weibull Model 

 

Consider the Weibull model given by 

);( xf
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2 exp





 xx
, 0x ,         (5.36) 

where ),( 21
   and  1 , 02  .  

Here )(b 2/1
11

  and )(d 2/1
21

 , where 11 log    and )1log( 22   . 
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1

2 )( 



   

));((2 dF 222
1

2 log)1(    and  ));((2 bF 111
1
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Therefore, 

})1({)( 2211

1

2
1 




 K ,  }loglog)1{()( 111222

1
22   K , (5.37) 

2
21

11 )/( I , 1
2112 )(  II  and 2

2
22 I  (see section 5.5 for details). Therefore by 

(5.37), 0M  is a constant free from  . As a result, 1
210 )()(    appears as a solution 

to the matching condition (5.25).   

 

 Solutions to the matching condition (5.25) were available for the three models 

discussed in (a)-(c). However, there are instances where finding a solution to Equation 

(5.25) can be a daunting task and one example is the inverse Gaussian model. This is 

mainly because such models do not seem to admit analytical expressions for )(b  and 

)(d , and consequently do not allow us to explicitly write Equation (5.25). Hence, it is 

not always possible for us to obtain a two-sided frequentist tolerance interval using a 

matching prior in Theorem 5.1, and a direct method is employed. We will discuss this in 

the following section. Interestingly, although this is a purely frequentist problem, 

Bayesian arguments continue to be handy. 

 

5.4 Purely frequentist two-sided tolerance intervals  

 

 As mentioned in Remark 5.1, the Bayesian tolerance interval obtained in 

Theorem 5.1 depends on the prior )(  only via the term )(1 L , of order )1(pO , in the 

expression for 2g . This leads us to consider a purely frequentist tolerance interval of the 

same form, with )(1 L  substituted appropriately by a term which is also of order 

)1(pO but does not involve any prior. Theorem 5.3 encapsulates the results so obtained. 
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We write )(susu II   to make explicit the dependence of suI on  , and define 

suÎ )ˆ(suI  and )ˆ(ˆ su
w

su
w II  , where )()(  su

w
su
w IDI  , pwus  ,,1 .  

Also, let sû )ˆ(su , where )(su )()(  b
su

d
su  , with, 

 )(d
su

));((

));(());((
));((






df

dfdF
dF us

su  ,               (5.38) 

)(b
su is similarly defined by replacing )(d by )(b  in (5.38). 

  

Lemma 5.1 fL1 )( + )( 2/1nOp , where  

    )( )}({ 1
0 u

su
s KIMD  .    (5.39) 

Lemma 5.1 plays a crucial role in proving Theorem 5.3 

 

THEOREM 5.3. The tolerance interval [ )()ˆ( n
fgd  , )()ˆ( n

fgb  ], where  

)(n
fg = )( 2/3

2
1

1
2/1   nOgngn pf , 

1g
)( bd ff

zM





 and fg2   4

2
1

2
321 )1(

)(
LgzLLL

ff

M
fbd











  , 

with 2L , 3L , 4L   as in (5.13), and 

fL1 )ˆˆˆ2ˆˆˆ(ˆˆ
2

1 3
swv

vw
wv

vw
su

su KIKKIKIM   )ˆˆˆˆ(1
su

su
u

su
s IKIM   ,   (5.40) 

has  content with frequentist confidence  level  + )( 1nO .    

 

Although the expression for fL1  in (5.40) seems a bit involved, it has a simple 

interpretation. Thus, in a sense fL1  can be considered as the sample analogue of )( . 

The advantage of the form in (5.40) is that it allows calculation of fL1  even when 
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analytical expressions for )(d  and )(b are not available, because we only require 

)ˆ(d  and )ˆ(b  for this purpose.  

 

Proof of Lemma 5.1: 

With a view to writing )(  explicitly, we first note that 2));((  dF , by the 

definition of )(d . Upon partial differentiation with respect to s , we have 

 )}(){);(());((  dDdfdF ss 0 

)(dDs  
));((

));((





df

dFs  

 

Thus, by Equation (5.38),  

));((
));((

));((
));((

)}(){);(());(());((
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df
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dDdfdFdFD

u
s
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susuus





  

           )(d
su         (5.41) 

We obtain a similar expression for ));(( bFD us  i.e. )(b
su  

Since )(uK ));(());((  bFdF uu  , 

)()()(  b
su

d
suusKD   

    )(su          (5.42) 

 

Recalling that 0M = 2/1)}()({  us
su KKI , 

Here 2/11
0 )}()({    wv

vw KKIM  

)]()[(

)()]([)()()[()}()({
2

1 2/31
0





wsv
vw

wvs
vw

wv
vw

swv
vw

s

KDKI

KKDIKKIDKKIMD
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 )]()(2)()([
2

1 3
0  swv

vw
wv

vw
s KIKKIM    

 

)}({)( 1
0  u

su
s KIMD   

        )}()(2)()(){(
2

1 3
0  swv

vw
wv

vw
su

su KIKKIKIM    

                )}()({1
0  su

su
u

su
s IKIM         (5.43) 

From (5.40) and (5.43), the conclusion of the lemma is evident.   

 

Proof of Theorem 5.3: 

We use Lemma 5.1 and the shrinkage argument to find an expression for 

});)ˆ(();)ˆ(({ )()(   n
f

n
f gdFgbFP , the frequentist confidence interval 

considered. 

 

We take an auxiliary prior (.)  which vanishes on the boundaries of a rectangle 

containing the true  .  Then, we get as in the derivation of the Bayesian tolerance 

interval, 

}|);)ˆ(();)ˆ(({ )()(* XgdFgbFP n
f

n
f    

= )( 1G )()}1()()({ 1
2

1311221
2/1 GGLGBgGLLn ssf    + )( 1nOp  

where 1G  and fG2  are given in (5.21).                              

By using the expressions for 1g  and fg2 , 

}|);)ˆ(();)ˆ(({ )()(* XgdFgbFP n
f

n
f    

)( 1G )()}1()()({ 1
2
1311221

2/1 GGLGBgGLLn ssf    )( 1 nOp  

   zBgzLzBgLLLLn ssssf )()]1()([)({ 1
2

312121
2/1    

   )()}1( 2
3   zzL  )( 1 nOp  
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 )()()}({ 1
11

2/1   nOzLLn pf  ,                 (5.44) 

which is analogous to Equation (5.26).  

From Equation (5.28), )]([ *
1  LE )()( 2/11

0






 nOKIM pu
sus 




.  

 

Hence by Equation (5.44) and Lemma 5.1,  

}]|);)ˆ(();)ˆ(({[ )()(* XgdFgbFPE n
f

n
f 

   

)()(
)(

)(
)}({ 1

0*

*
1

0
2/1





 zKIMKIMDn u

sus
u

su
s 

















  + )( 1nO   (5.45) 

We shall integrate the E expectation in the above by parts with respect to )(*   and 

then allow )(*  to converge weakly to the degenerate prior at the true  . Then it is 

immediate that the tolerance interval in Theorem 5.3 has  content with frequentist 

confidence level, 

});)ˆ(();)ˆ(({ )()(   n
f

n
f gdFgbFP  

= )()}]({)}({[ 1
0

1
0

2/1
 zKIMDKIMDn u

su
su

su
s

  + )( 1nO  

= + )( 1nO . 

All the other points stated in Remark 5.2 in the context of Theorem 5.1 also hold for 

Theorem 5.3. Consequently, it is not difficult to write a program which almost 

instantaneously computes the values of 1g  and fg2  in Theorem 5.3 for a given model 

and a given data set.  
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Analogues to Equation (5.31), the choices for )(n
fg  include )(n

fg )1( n
fg , )2( n

fg  and )3( n
fg , 

where 

)(n
fg )1( n

fg = fgngn 2
1

1
2/1   ,    )(n

fg )2( n
fg =













 



1

2
2/1

1
2/1 exp

g

gn
gn f

 

   )(n
fg )3( n

fg
)/1( 12

2/1
1

2/1

ggn

gn

f





 if 1

1

2
2/1




g

gn f     

                  )2( n
fg , otherwise.      (5.46)

  

Along the lines of Remark 5.5, consideration of simulated frequentist coverage 

probabilities can again throw light on a suitable choice of )(n
fg  for a given model. For 

the inverse Gaussian model, the choice )(n
fg )3( n

fg  works reasonably well.  

 

 While concluding this section, we note the strong similarity between the 

expression for )(  in (5.39) and the matching condition (5.25). This suggests that 

Bayesian arguments should be useful even in proving Theorem 5.3 which is a purely 

frequentist result. The proof above shows that this is, indeed, the case.   

 

5.5 Simulation study and application to real data 

 

In this section, the numerical studies relate to normal models whose mean and 

variance are equal, the Weibull model and the inverse Gaussian model. The derivation 

of expressions required while applying Theorem 5.1 and Theorem 5.3 are shown in (I)-

(III). 
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(I) The normal model with equal mean and variance 

 

For the normal model whose mean and variance are equal, it can be seen that maximum 

likelihood estimate MLE is ̂ 
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where the constant is free from  . 





n

i
ix

n
l

1

2

22

1
log

2

1
=)(




        (5.47) 
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   11c =
2ˆ2

1ˆ2
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(II) The Weibull model 

 

The pdf of the Weibull distribution is shown in (5.36). The closed-form expression for 

the MLE, ̂ = )ˆ,ˆ( 21
  is not available but ̂  can be readily calculated for a given data 

set using standard statistical software.  

Here p = 2, and we can check that  
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Derivation of expressions for the Weibull distribution: 
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Fisher information matrix, susu II ))((   

The Fisher information matrix, where 2,1, us  
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                (5.50) 

)( suII   is the Fisher information matrix. We write )(1 suII   
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(III) The inverse Gaussian model 
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where (.)  is as usual the standard univariate normal density, ),( 21
   and 

1 , 02  . Here p = 2. 1̂ = X , 2̂ = )/()( harhar XXXX  , where X and harX are the 

arithmetic and harmonic means, respectively, of nXX ,...,1 .  

 

It can be seen that: 
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The expression (5.40) for fL1  under the inverse Gaussian model is simplified to some 

extent as 0ˆˆˆ 12
2

12
1

12  III . 

 

Derivation of expressions for suc  and suwa  are as follows: 
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Second derivatives: 
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Information matrix 
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Using (5.50), the Fisher information matrix, 
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Similarly using (5.50),  we obtain 
2
2

22 ˆ2

1ˆ


I  and 0ˆˆ
2112  II . 

Therefore, as mentioned earlier, the fact that 0ˆˆˆ 12
2

12
1

12  III  simplifies, to some 

extent expression (5.40) for fL1  under the inverse Gaussian model.  
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5.5.1 Simulation study 

 

We carried out a simulation study to examine the finite sample implications of 

our results by taking 1  0.05, 2  0.05, i.e.,   0.90, and   0.90 and 0.95. The 

following tolerance intervals were studied in our simulation study: 

 (i)  The Bayesian-cum-frequentist interval ])ˆ(,)ˆ([ )1()1( nn gbgd    for the 

univariate normal model with both mean and variance  , under the matching 

prior )(0   121   .           

(ii)  The Bayesian-cum-frequentist interval ])ˆ(,)ˆ([ )2()2( nn gbgd    for the 

Weibull model under the matching prior 1
210 )()(   . 

(iii)  The purely frequentist interval ])ˆ(,)ˆ([ )3()3( n
f

n
f gbgd    for the inverse   

Gaussian model. 

(iv)  The Bayesian tolerance interval ])ˆ(,)ˆ([ )3()3( nn gbgd     for the inverse 

Gaussian model using the highest posterior density regions prior 

1
2

2
1 )()(    (see pp. 72, Datta and Mukerjee, 2004). 

 

Simulation studies showed that the best choice of )(ng  to ensure the fastest 

convergence to the nominal value of the confidence levels for the normal model is )1( ng  

and Weibull model is )2( ng .  For the inverse Gaussian model, )3()( n
f

n
f gg    (refer Tables 

B1 to B18 in the Appendix for results). We have also taken the expected width and 

expected content into consideration to obtain the tolerance interval.   The Bayesian 

tolerance interval ])ˆ(,)ˆ([ )3()3( nn gbgd    for the inverse Gaussian model was 

computed for the purpose of comparing its performance with the frequentist case (see 

Equation (5.31)). We shall use the prior 1
2

2
1 )()(    (see pp. 72, Datta and 
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Mukerjee, 2004). This prior does not enjoy the matching property in our context but it 

does so for highest posterior density regions for   (see Table B19 and Table B20 in 

Appendix B). 

 

The expected content, confidence levels and expected widths were computed 

based on 10000 simulation runs. For each simulated interval, we calculated the content 

as );();(  LFUF   where U and L are respectively the upper and lower limits of the 

interval and );( xF  is the cumulative distribution function (cdf) where   is a possibly 

vector valued unknown parameter. The confidence level is the proportion of time the 

content of the simulated tolerance intervals was at least  . As mentioned earlier, the 

intervals in (i)-(iv) resulting from higher order asymptotic considerations, have 

 content with frequentist confidence level )( 1 nO . We also include the simulated 

coverage probabilities of the naive interval ])ˆ(,)ˆ([ 1
2/1

1
2/1 gnbgnd    , where 1g  = 

)/( db ffzM   as in Theorem 5.1 or 5.3 for comparative purposes. It is very obvious 

that this naive interval, based on simpler asymptotics, has  content with frequentist 

confidence level )( 2/1 nO  rather than )( 1 nO .   
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Note: The top entry of Table 5.1 to Table 5.3 shows the naive tolerance interval while 

the bottom entry shows the higher order asymptotic tolerance interval. 

 

Table 5.1: Simulated coverage probabilities: univariate normal model with mean  variance θ      

   0.90   0.95 

  Sample size  Sample size 
   15 20 25 30 50  15 20 25 30 50 
             

4  0.795 0.806 0.817 0.822 0.834  0.839 0.853 0.860 0.867 0.882 
  0.888 0.889 0.892 0.893 0.894  0.942 0.945 0.946 0.948 0.948 
             

8  0.767 0.777 0.793 0.803 0.813  0.813 0.829 0.842 0.859 0.865 
  0.895 0.895 0.890 0.901 0.896  0.944 0.947 0.945 0.947 0.949 
             

12  0.749 0.760 0.775 0.790 0.805  0.791 0.812 0.829 0.834 0.850 
  0.890 0.897 0.899 0.899 0.899  0.944 0.948 0.950 0.946 0.947 
             

16  0.720 0.736 0.766 0.774 0.790  0.767 0.797 0.808 0.820 0.843 
  0.887 0.890 0.891 0.891 0.896  0.940 0.950 0.944 0.946 0.945 
             

 

 

Table 5.2: Simulated coverage probabilities: Weibull model. 

   0.90   0.95 

  Sample size  Sample size 

),( 21    15 20 25 30 50  15 20 25 30 50 

             
(1,2)  0.717 0.749 0.770 0.777 0.816  0.791 0.827 0.845 0.855 0.882 
  0.878 0.882 0.884 0.892 0.894  0.916 0.927 0.936 0.937 0.940 
             
(5,5)  0.709 0.740 0.757 0.774 0.810  0.787 0.818 0.834 0.850 0.878 
  0.889 0.890 0.893 0.895 0.899  0.931 0.939 0.941 0.940 0.942 
             
(10,3)  0.726 0.749 0.764 0.787 0.813  0.797 0.816 0.834 0.853 0.878 
  0.886 0.890 0.893 0.894 0.899  0.934 0.939 0.942 0.941 0.942 
             
(15,6)  0.708 0.736 0.762 0.777 0.804  0.795 0.813 0.827 0.843 0.876 
  0.887 0.892 0.890 0.895 0.896  0.934 0.933 0.941 0.943 0.947 
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Table 5.3: Simulated coverage probabilities: inverse Gaussian model. 

   0.90   0.95 

  Sample size  Sample size 

),( 21    15 20 25 30 50  15 20 25 30 50 

             
(7,14)  0.768 0.796 0.812 0.823 0.864  0.693 0.726 0.759 0.765 0.805 
  0.873 0.883 0.885 0.893 0.901  0.891 0.907 0.918 0.923 0.937 
             
(8,12)  0.755 0.791 0.815 0.827 0.858  0.694 0.735 0.753 0.765 0.798 
  0.857 0.871 0.883 0.886 0.896  0.869 0.889 0.909 0.915 0.926 
             
(15,25)  0.755 0.789 0.812 0.828 0.866  0.703 0.725 0.750 0.768 0.780 
  0.865 0.871 0.883 0.889 0.897  0.881 0.895 0.908 0.917 0.933 
             
(20,50)  0.771 0.792 0.817 0.833 0.867  0.695 0.732 0.754 0.766 0.805 
  0.895 0.892 0.895 0.895 0.899  0.930 0.920 0.925 0.930 0.940 
             

 

 

 

Table 5.4: Simulated coverage probabilities for the higher order asymptotic Bayesian tolerance 

interval: inverse Gaussian model.  

   0.90   0.95 

  Sample size  Sample size 

),( 21    15 20 25 30 50  15 20 25 30 50 

             
(7,14)  0.876 0.887 0.886 0.893 0.893  0.893 0.908 0.915 0.924 0.939 
             
(8,12)  0.861 0.865 0.880 0.887 0.887  0.875 0.896 0.898 0.912 0.935 
             
(15,25)  0.858 0.874 0.879 0.889 0.890  0.882 0.896 0.903 0.919 0.934 
             
(20,50)  0.887 0.891 0.892 0.896 0.899  0.911 0.923 0.927 0.930 0.941 
             

 

For the for the univariate normal model with both mean and variance  , the 

convergence of the simulated frequentist coverage probability to the nominal value   is 

quite rapid as shown in Table 5.1. It is also reasonably fast for both   0.90 and 0.95 

in Table 5.2 and for   0.90 in Table 5.3, though slightly slow for   0.95 in Table 

5.3. The outputs in our tables show that our higher order asymptotic results are well 

reflected in finite samples. It is interesting to see that, despite not working with a 

matching prior for the two-sided tolerance intervals, the Bayesian interval for the 
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inverse Gaussian model comes quite close to the frequentist case for both   0.90 and 

0.95 (see Table 5.4). Based on the results, the convergence to the target for the naïve 

interval is much slower. Hence, considering higher order asymptotics as shown here 

results in significant gains.  

 

5.5.2 Application to real data 

 

Data set 1: The data from (Gacula and Kubala, 1975) represent shelf life (in days) of a 

food product. 

 

24 24 26 26 32 32 33 33 33 35 41 42 43 

47 48 48 48 50 52 54 55 57 57 57 57 61 

 

As mentioned by Gacula and Kubala (1975), the Weibull model fits the data 

well; see also Chhikara and Folks (1989). Our results are applied to this data set under 

the framework of the Weibull model. The prior 1
210 )()(    meets the matching 

condition in (5.25). As a result, the two-sided Bayesian tolerance interval in Theorem 

5.1, obtained based on this prior, is also frequentist. We shall calculate this interval by 

choosing )2()( nn gg   (refer to Equation (5.31)). The Bayesian cum frequentist tolerance 

interval reported here is ])ˆ(,)ˆ([ )2()2( nn gbgd   . 

 

Here, the sample size, 26n . We take 1 0.05, 2  0.05, i.e.,   0.90, and 

  0.90 and 0.95. For the present data set under the Weibull model, we obtain , 1̂  

47.2816 and 2̂  4.3329,  so that )ˆ(b  60.9067 and )ˆ(d 23.8223. Then, applying 

Equation (5.13) as well as the facts shown in (II) for the Weibull model, we get: 
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M = 0.2425, )( 01 L 0.7191, 2L  2.0224, 3L 0.8436, 4L – 0.0219,  

upon symbolic computation of the required partial derivatives of );( xF  and );( xf .  

Thus, using Theorem 5.1, for  0.90 and 0.95, the pair ),( 21 gg  and the corresponding  

Bayesian-cum-frequentist tolerance interval as specified above turns out to be as 

follows: 

  0.90: ),( 21 gg  (15.9195, 35.2285), tolerance interval = [19.0037,  65.7253]. 

  0.95: ),( 21 gg  (20.4324, 42.7722), tolerance interval = [17.7811,  66.9480]. 

 

The two-sided Bayesian tolerance interval in Theorem 5.1, obtained based on 

this prior, is also frequentist. Based on the findings for   0.95, a frequentist may 

assert with about 0.95 confidence that at least 90% of the food product lasts between 

17.7811 and 66.9480 days while a Bayesian may conclude with about 0.95 credibility 

that at least at least 90% of the food product lasts between 17.7811 and 66.9480 days. 

We interpret the results for   0.90 similarly. 

 

Data set 2: The following data originally from Lieblin and Zelen (1956) represents the 

number of million revolutions before failure for each of 23 ball bearings. 

 

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12 

55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 

127.92 128.04 173.40        

 

We apply our results to this data set under the framework of the inverse 

Gaussian model since it is mentioned in Chhikara and Folks (1989) that this model fits 

the data well. Since it is difficult to obtain a solution to the matching condition (5.25), 
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we obtain a purely frequentist two-sided tolerance interval ])ˆ(,)ˆ([ )()( n
f

n
f gbgd    as 

given by Theorem 5.3 by choosing )3()( n
f

n
f gg   (refer to Equation (5.46)) a choice which 

the simulation studies prove to work well for the inverse Gaussian model. We have also 

reported the Bayesian tolerance interval ])ˆ(,)ˆ([ )3()3( nn gbgd    using the prior 

1
2

2
1 )()(   .  

 

 Here, the sample size, 23n . We take 1 0.05, 2  0.05, i.e.,   0.90, and 

  0.90 and 0.95. For the present data set under the inverse Gaussian model, 1̂  

72.2243 and 2̂  231.6741, so that )ˆ(b 150.1856 and )ˆ(d  26.9034. Therefore, 

using (5.13), (5.40) and the facts noted in (III) above, we get: 

        M  0.2397,  fL1  1.0385,  )(1 L 0.9493, 

        2L 1.7643,  3L  0.8377,  4L – 0.0098, 

upon symbolic computation of the required partial derivatives of );( xF  and );( xf . 

Thus, applying Theorems 5.3 and 5.1, for  0.90 and 0.95, the pairs ),( 21 fgg  and 

),( 21 gg , and the corresponding frequentist and Bayesian tolerance intervals as 

mentioned above are as follows: 

 0.90: ),( 21 fgg  (32.9318, 75.2455), ),( 21 gg = (32.9318, 72.9541),  

Frequentist tolerance interval = [13.7880,  163.3009], 

Bayesian tolerance interval =    [14.1417,  162.9473]. 

  0.95: ),( 21 fgg  (42.2675, 91.2664), ),( 21 gg (42.2675, 88.9750),  

Frequentist tolerance interval = [10.8721,  166.2168],  

Bayesian tolerance interval =    [11.1951,  165.8938].  
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Hence, on the basis of the findings for   0.95, a frequentist may claim with 

0.95 confidence that at least 90% of the ball bearings went through between 10.8721 

and 166.2168 million revolutions before failure. In the Bayesian viewpoint, with about 

0.95 credibility, at least 90% of the balls bearings underwent between 11.1951 and 

165.8938 million revolutions before failing. We shall interpret the results for   0.90 

in the similar manner. As shown in the simulation results earlier, the Bayesian interval 

here comes quite close to the frequentist case for both   0.90 and 0.95. 
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CHAPTER 6 

 

CONCLUDING REMARKS AND FUTURE RESEARCH 

 

6.1 Concluding remarks 

 

In Chapter 3 of this thesis, we studied the two-sided Bayesian tolerance interval 

with approximate frequentist validity by Ong and Mukerjee (2011), in balanced one-

way random effects model. This tolerance interval uses probability matching priors 

(PMP) and thus we refer to it as the PMP tolerance interval here. Studies by Ong and 

Mukerjee (2011) reveal that the modified Jeffreys’ prior by Wolfinger (1998) is not 

probability matching but it comes quite close to being so. The simplicity of this prior 

makes a strong case in its favour if one is not too particular about the probability 

matching criteria. It is recommended to use the relatively more complex matching prior 

given in Equation (3.46) if one considers the probability matching criteria a must. (Ong 

and Mukerjee, 2011) 

 

As discussed in Chapter 4, we examined the results in Chapter 3 for two-sided 

Bayesian tolerance intervals in the balanced one-way random effects model derived via 

probability matching priors. The effect of non-normal experimental errors on these 

intervals is examined by simulation. We also did a comparative study with the MLS 

tolerance intervals proposed by Krishnamoorthy and Mathew (2009) and studied by 

Krishnamoorthy and Lian (2012). We applied these aforesaid tolerance intervals for all 

cases as if the assumptions where all underlying distributions are normal are justified 

even though the data comes from other distributions. We also note that the probability 
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matching prior for the normal case is used for the PMP tolerance interval for all 

instances. For normal error distributions where moderate intra-class correlation 

coefficient,   is concerned, the PMP tolerance intervals are slightly less conservative 

compared to the MLS case. The outputs appear to be more accurate for larger intra-class 

correlation coefficients  . Both PMP and MLS tolerance intervals are comparable for 

non-normal error distributions when all the underlying distributions for the tolerance 

intervals are assumed to be normal.  The MLS tolerance interval has confidence level 

close to the nominal value for smaller sample sizes and is comparable to the PMP case 

for large number of classes. We recommend the MLS tolerance interval for smaller 

sample sizes (less than 50). The PMP and MLS intervals can be used for sample sizes 

larger than 50 by noting that the results for the PMP tolerance intervals are heavily 

dependent on the balance in the classes. The PMP interval works well when the ratio n:t 

is approximately 12.5:1 to 25:1. This criterion is important because it ensures the 

consistency of the maximum likelihood estimator. Expanding the margin of error of the 

frequentist confidence helps to achieve improvement in the PMP tolerance interval for 

smaller sample sizes. However, the underlying algebra will be extremely tedious and 

difficult. 

 

 In Chapter 5, we derived asymptotic results leading to explicit formulae for two-

sided Bayesian and frequentist tolerance intervals in a general framework of parametric 

models. We also identified the probability matching priors for such intervals and studied 

their roles in determining frequentist tolerance intervals via the Bayesian route. For 

instances when the solution to the matching condition given in Equation (5.25) is 

difficult to be obtained such as for the inverse Gaussian model, the purely frequentist 

tolerance interval was employed and interestingly Bayesian arguments were very 

helpful. The convergence of the simulated frequentist  confidence level to the nominal 



123 

value is quite fast for the univariate normal model, reasonably fast for the Weibull 

model and slightly slower for the inverse Gaussian model. Interestingly, although we 

did not work with the matching prior for the inverse Gaussian case, the Bayesian 

tolerance interval here produces comparable results with its purely frequentist 

counterpart. Our higher order asymptotic results are well reflected in finite samples. 

Hence, consideration of higher order asymptotic as studied here entails significant 

gains. 

 

6.2 Future research 

 

We discussed the two-sided Bayesian tolerance interval with approximate 

frequentist validity for the balanced one-way random effects model. We hope to extend 

this study for models with smaller sample sizes. Currently, the only method of doing so 

is by extending the margin of error of the frequentist confidence level. This process can 

be excruciating. We intend to explore other priors which can help us to make the higher-

order asymptotic tolerance intervals favourable for finite sample sizes. It is of interest to 

strengthen this work in terms of robustness study of the tolerance intervals since no 

such study has been done. 

 

Ong and Mukerjee (2011) also discussed the two-way nested random effects 

model. We would also like to study the effects of non-normality on these probability 

matching tolerance intervals. We hope to extend the results in Chapter 3 to find the 

probability matching tolerance intervals for the one-way random model with unbalanced 

data in future works as it is a difficult task. Some of the satisfactory tolerance intervals 

for this case are reported in book by Krishnamoorthy and Mathew (2009).  
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Gupta and Kundu (1999) introduced the generalized exponential distribution 

which can be used quite effectively in analyzing lifetime data. This distribution is 

definitely a good alternative in replacing the gamma and Weibull distribution. 

According to Gupta and Kundu (1999), the gamma distribution has its drawback where 

the distribution function or the shape function is difficult to be computed if the shape 

parameter is not an integer. It is of great interest to compute the two-sided tolerance 

intervals for the generalized exponential model as it will be a good alternative to both 

gamma and Weibull distributions in life data analysis. We also intend to work with 

other distributions such as the Rayleigh, Pareto etc.  

 

Currently, many resort to combining two one-sided tolerance intervals via 

Bonferonni’s inequality to obtain approximate two-sided tolerance intervals. However, 

this approach is rather conservative and the tolerance intervals computed are unduly 

long. We hope that our work will significantly contribute towards computation of 

tolerance intervals since computing two-sided tolerance intervals is very challenging.  
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APPENDIX A 

 

We present two results on the determinant of a matrix A  and its inverse 1A  by Sahai 

and Ojeda (2004). These frequently occur in many linear model problems. 

Let the matrix A  be 
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,               (A.3.1) 

where a and b are either scalars or square matrices of the same order. If a and b are 

scalars, the matrix A is written as  

nn aJbIA                (A.3.2) 

where nI  is an nn  identity matrix while nJ  is an nn  matrix with every element 

equal to unity. 

 

Result A.1 (Sahai and Ojeda, 2004) 

For matrix A defined by (A.1),  

)||)(|(||| 1 nbnabA  and )|)(||(||| 111 nbnabA                      (A.3.3) 

where || A  and  || 1A  denote the determinants of the matrix A  and 1A  respectively. 

 

Result A.2 (Sahai and Ojeda, 2004) 

For the matrix A  shown in (A.2.2),  

nn JIA 21
1   ,              (A.3.4) 

where 
b

1
1   and b/11   for 0b , nab  . 
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Derivation of suc : 
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Derivation of suwa  : 

From equation (3.16),    ˆ)(
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Hence, we can see that 
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Derivation of simplified notation in equations (3.33)-(3.36)  
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APPENDIX B 

 

OTHER TABLES FOR CHAPTER 5 

Tables B1 to B20 show the simulated expected widths, expected contents and their 

respective standard errors; and coverage probabilities for the higher order asymptotic 

tolerance intervals where 05.021   . 

Table B1: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )1()1( nn gbgd    where 

90.0 : univariate normal model with mean= variance=  

 

θ 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

4 15 7.419 0.434 0.927 0.025 0.888 

 20 7.271 0.369 0.923 0.020 0.889 

 25 7.179 0.326 0.921 0.018 0.892 

 30 7.105 0.293 0.919 0.016 0.893 

 50 6.955 0.226 0.915 0.012 0.894 

8 15 10.326 0.435 0.923 0.021 0.895 

 20 10.128 0.374 0.919 0.017 0.894 

 25 9.999 0.333 0.917 0.015 0.890 

 30 9.927 0.299 0.916 0.012 0.901 

 50 9.737 0.229 0.912 0.009 0.896 

12 15 12.533 0.441 0.920 0.019 0.890 

 20 12.317 0.374 0.917 0.015 0.897 

 25 12.176 0.335 0.915 0.013 0.899 

 30 12.072 0.303 0.913 0.011 0.897 

 50 11.867 0.232 0.910 0.008 0.899 

16 15 14.391 0.442 0.918 0.018 0.887 

 20 14.147 0.377 0.916 0.015 0.890 

 25 13.996 0.337 0.914 0.012 0.891 

 30 13.891 0.307 0.912 0.011 0.890 

 50 13.660 0.233 0.909 0.007 0.896 
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Table B2: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )1()1( nn gbgd    where 

95.0 : univariate normal model with mean= variance= . 

 

θ 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

4 15 7.789 0.444 0.940 0.022 0.942 

 20 7.562 0.373 0.935 0.018 0.945 

 25 7.423 0.332 0.931 0.016 0.946 

 30 7.332 0.297 0.928 0.014 0.948 

 50 7.107 0.227 0.921 0.011 0.948 

8 15 10.788 0.452 0.935 0.019 0.944 

 20 10.492 0.379 0.930 0.015 0.947 

 25 10.309 0.337 0.926 0.013 0.945 

 30 10.188 0.307 0.923 0.012 0.947 

 50 9.919 0.232 0.917 0.009 0.949 

12 15 13.081 0.455 0.932 0.018 0.944 

 20 12.740 0.383 0.927 0.014 0.948 

 25 12.528 0.340 0.924 0.012 0.950 

 30 12.380 0.307 0.921 0.011 0.946 

 50 12.070 0.233 0.915 0.008 0.947 

16 15 14.997 0.463 0.930 0.017 0.940 

 20 14.627 0.385 0.926 0.013 0.950 

 25 14.390 0.347 0.922 0.012 0.944 

 30 14.231 0.311 0.920 0.010 0.946 

 50 13.883 0.241 0.914 0.008 0.945 
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Table B3: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )2()2( nn gbgd    where 

90.0 : univariate normal model with mean= variance= . 

 

θ 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

4 15 7.589 0.445 0.933 0.023 0.918 

 20 7.372 0.378 0.927 0.020 0.911 

 25 7.248 0.329 0.924 0.017 0.913 

 30 7.163 0.298 0.922 0.012 0.910 

 50 6.986 0.223 0.916 0.011 0.910 

8 15 10.664 0.469 0.932 0.020 0.932 

 20 10.346 0.393 0.925 0.017 0.927 

 25 10.152 0.342 0.921 0.014 0.918 

 30 10.033 0.307 0.919 0.012 0.918 

 50 9.792 0.231 0.913 0.009 0.917 

12 15 13.096 0.488 0.933 0.018 0.943 

 20 12.657 0.396 0.925 0.015 0.940 

 25 12.410 0.348 0.921 0.013 0.932 

 30 12.253 0.312 0.918 0.011 0.928 

 50 11.946 0.237 0.912 0.008 0.920 

16 15 15.198 0.512 0.934 0.017 0.951 

 20 14.639 0.409 0.926 0.014 0.946 

 25 14.318 0.354 0.921 0.012 0.937 

 30 14.132 0.316 0.918 0.011 0.937 

 50 13.769 0.235 0.912 0.007 0.926 
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Table B4: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )2()2( nn gbgd    where 

95.0 : univariate normal model with mean= variance= . 

 

θ 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

4 15 8.147 0.495 0.950 0.021 0.965 

 20 7.790 0.407 0.942 0.018 0.963 

 25 7.570 0.353 0.936 0.017 0.957 

 30 7.436 0.314 0.932 0.015 0.956 

 50 7.158 0.232 0.923 0.011 0.959 

8 15 11.599 0.540 0.952 0.016 0.982 

 20 10.988 0.427 0.942 0.015 0.976 

 25 10.642 0.366 0.935 0.013 0.974 

 30 10.427 0.327 0.930 0.012 0.967 

 50 10.023 0.238 0.921 0.009 0.962 

12 15 14.418 0.586 0.956 0.015 0.988 

 20 13.546 0.443 0.944 0.013 0.985 

 25 13.066 0.379 0.935 0.012 0.978 

 30 12.774 0.332 0.930 0.011 0.974 

 50 12.239 0.243 0.920 0.008 0.972 

16 15 16.964 0.634 0.959 0.014 0.991 

 20 15.771 0.468 0.945 0.012 0.989 

 25 15.161 0.391 0.937 0.011 0.984 

 30 14.784 0.344 0.931 0.010 0.979 

 50 14.120 0.245 0.919 0.007 0.976 
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Table B5: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )3()3( nn gbgd    where 

90.0 : univariate normal model with mean= variance= . 

 

θ 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

4 15 8.336 0.654 0.954 0.024 0.960 

 20 7.713 0.447 0.939 0.020 0.948 

 25 7.441 0.366 0.931 0.018 0.940 

 30 7.293 0.316 0.926 0.015 0.934 

 50 7.030 0.229 0.918 0.011 0.923 

8 15 15.405 946.584 0.604 0.758 0.778 

 20 12.242 0.964 0.963 0.018 0.989 

 25 10.953 0.489 0.942 0.015 0.977 

 30 10.484 0.375 0.931 0.013 0.966 

 50 9.915 0.243 0.917 0.009 0.945 

12 15 8.066 1.543 0.733 0.111 0.000 

 20 4.069x104 4.068x106 0.011 0.795 0.260 

 25 16.397 2.500 0.975 0.016 0.997 

 30 13.639 0.577 0.947 0.012 0.990 

 50 12.211 0.255 0.919 0.008  0.964 

16 15 11.569 0.611 0.838 0.032 0.000 

 20 10.261 0.986 0.787 0.056 0.000 

 25 89.376 1.0874x103 0.206 0.549 0.041 

 30 30.908 970.354 0.969 0.195 0.989 

 50 7.033 0.230 0.918 0.012 0.923 
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Table B6: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )3()3( nn gbgd    where 

95.0 : univariate normal model with mean= variance= . 

 

θ 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

4 15 16.803 202.124 0.978 0.168 0.990 

 20 9.078 0.796 0.971 0.018 0.992 

 25 8.200 0.478 0.955 0.016 0.990 

 30 7.820 0.376 0.945 0.014 0.984 

 50 7.273 0.243 0.928 0.011 0.975 

8 15 6.100 2.083 0.693 0.126 0.000 

 20 -24.210 1886.100 -0.024 0.605 0.057 

 25 13.859 1263.100 0.893 0.437 0.947 

 30 13.086 1.120 0.975 0.013 0.999 

 50 10.432 0.285 0.932 0.009 0.990 

12 15 9.963 0.571 0.836 0.034 0 

 20 9.315 0.663 0.809 0.040 0 

 25 7.823 1.218 0.726 0.090 0 

 30 -0.878 145.508 0.153 0.511 0.019 

 50 13.458 0.411 0.945 0.009 0.998 

16 15 12.176 0.496 0.859 0.026 0 

 20 11.915 0.458 0.854 0.022 0 

 25 11.519 0.485 0.842 0.023 0 

 30 10.842 0.602 0.816 0.029 0 

 50 20.162 3.028 0.984 0.011 1.000 
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Table B7: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )1()1( nn gbgd    where 

90.0 : Weibull model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(1, 2) 15 1.799 0.305 0.945 0.049 0.850 

 20 1.756 0.263 0.943 0.043 0.859 

 25 1.731 0.230 0.943 0.038 0.876 

 30 1.704 0.211 0.939 0.036 0.867 

 50 1.656 0.157 0.934 0.028 0.884 

(5,5) 15 4.406 0.766 0.946 0.049 0.857 

 20 4.257 0.646 0.943 0.043 0.864 

 25 4.151 0.554 0.941 0.038 0.869 

 30 4.099 0.496 0.940 0.034 0.876 

 50 3.934 0.363 0.934 0.028 0.887 

(10,3) 15 13.348 2.224 0.946 0.050 0.849 

 20 12.941 1.838 0.944 0.043 0.860 

 25 12.689 1.607 0.942 0.038 0.869 

 30 12.499 1.436 0.940 0.035 0.875 

 50 12.071 1.080 0.934 0.028 0.891 

(15,6) 15 11.231 2.037 0.945 0.049 0.854 

 20 10.872 1.690 0.943 0.043 0.861 

 25 10.619 1.474 0.941 0.039 0.865 

 30 10.449 1.303 0.939 0.035 0.876 

 50 10.073 0.945 0.934 0.027 0.887 
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Table B8: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )1()1( nn gbgd    where 

95.0 : Weibull model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(1, 2) 15 1.886 0.314 0.955 0.044 0.899 

 20 1.830 0.263 0.954 0.038 0.916 

 25 1.794 0.233 0.953 0.035 0.919 

 30 1.768 0.211 0.951 0.032 0.928 

 50 1.701 0.159 0.943 0.026 0.935 

(5,5) 15 4.679 0.810 0.959 0.042 0.910 

 20 4.496 0.669 0.956 0.037 0.924 

 25 4.379 0.584 0.953 0.034 0.927 

 30 4.280 0.513 0.951 0.031 0.928 

 50 4.077 0.376 0.943 0.025 0.940 

(10,3) 15 14.152 2.307 0.959 0.043 0.907 

 20 14.172 2.288 0.960 0.042 0.913 

 25 13.298 1.656 0.954 0.034 0.926 

 30 13.074 1.476 0.952 0.031 0.932 

 50 12.479 1.103 0.944 0.025 0.938 

(15,6) 15 11.996 2.154 0.958 0.042 0.910 

 20 11.469 1.771 0.955 0.037 0.914 

 25 11.190 1.516 0.953 0.033 0.930 

 30 10.962 1.360 0.951 0.031 0.928 

 50 10.415 0.994 0.943 0.026 0.933 
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Table B9: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )2()2( nn gbgd    where 

90.0 : Weibull model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(1, 2) 15 1.840 0.310 0.951 0.046 0.878 

 20 1.777 0.260 0.947 0.041 0.882 

 25 1.746 0.234 0.945 0.038 0.884 

 30 1.723 0.209 0.943 0.034 0.892 

 50 1.662 0.158 0.935 0.028 0.894 

(5,5) 15 4.552 0.795 0.953 0.045 0.889 

 20 4.357 0.653 0.949 0.040 0.890 

 25 4.232 0.568 0.946 0.036 0.893 

 30 4.143 0.499 0.943 0.033 0.895 

 50 3.958 0.363 0.936 0.027 0.899 

(10,3) 15 13.739 2.253 0.953 0.046 0.886 

 20 13.222 1.858 0.949 0.041 0.890 

 25 12.882 1.619 0.946 0.037 0.893 

 30 12.626 1.433 0.943 0.034 0.894 

 50 12.108 1.062 0.935 0.027 0.899 

(15,6) 15 11.636 2.078 0.953 0.045 0.887 

 20 11.128 1.721 0.949 0.040 0.892 

 25 10.815 1.497 0.945 0.036 0.890 

 30 10.605 1.313 0.943 0.033 0.895 

 50 10.147 0.963 0.936 0.027 0.896 

 

 

 

 

 

 

 



146 

Table B10: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )2()2( nn gbgd    where 

95.0 : Weibull model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(1, 2) 15 1.927 0.316 0.959 0.041 0.916 

 20 1.860 0.267 0.036 0.036 0.927 

 25 1.818 0.236 0.956 0.033 0.936 

 30 1.782 0.210 0.953 0.030 0.937 

 50 1.708 0.161 0.944 0.026 0.940 

(5,5) 15 4.826 0.839 0.964 0.039 0.931 

 20 4.606 0.686 0.961 0.034 0.939 

 25 4.459 0.592 0.957 0.032 0.941 

 30 4.337 0.526 0.954 0.030 0.940 

 50 4.098 0.379 0.945 0.025 0.942 

(10,3) 15 14.610 2.331 0.965 0.038 0.934 

 20 13.948 1.934 0.961 0.035 0.939 

 25 13.519 1.678 0.958 0.032 0.942 

 30 13.206 1.503 0.954 0.030 0.941 

 50 12.528 1.103 0.945 0.025 0.942 

(15,6) 15 12.408 2.225 0.964 0.038 0.934 

 20 11.767 1.809 0.960 0.035 0.933 

 25 11.383 1.547 0.956 0.032 0.941 

 30 11.120 1.375 0.954 0.030 0.943 

 50 10.511 1.005 0.945 0.025 0.947 
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Table B11: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )3()3( nn gbgd    where 

90.0 : Weibull model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(1, 2) 15 1.946 0.309 0.962 0.039 0.931 

 20 1.838 0.261 0.956 0.036 0.922 

 25 1.779 0.232 0.951 0.036 0.909 

 30 1.744 0.208 0.947 0.033 0.913 

 50 1.672 0.159 0.937 0.027 0.904 

(5,5) 15 4.997 0.847 0.970 0.035 0.952 

 20 4.589 0.670 0.960 0.034 0.939 

 25 4.375 0.576 0.954 0.033 0.929 

 30 4.246 0.513 0.949 0.031 0.922 

 50 3.997 0.367 0.938 0.026 0.918 

(10,3) 15 14.881 2.312 0.969 0.035 0.948 

 20 13.813 1.888 0.959 0.035 0.933 

 25 13.260 1.624 0.953 0.033 0.926 

 30 12.922 1.463 0.949 0.032 0.920 

 50 12.246 1.076 0.939 0.026 0.914 

(15,6) 15 12.847 2.242 0.970 0.034 0.954 

 20 11.749 1.818 0.959 0.035 0.935 

 25 11.197 1.523 0.953 0.033 0.929 

 30 10.878 1.340 0.949 0.031 0.929 

 50 10.218 0.962 0.938 0.026 0.915 
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Table B12: Higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )3()3( nn gbgd    where 

95.0 : Weibull model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(1, 2) 15 2.035 0.318 0.968 0.035 0.950 

 20 1.918 0.266 0.964 0.032 0.951 

 25 1.849 0.232 0.960 0.031 0.950 

 30 1.806 0.210 0.956 0.029 0.956 

 50 1.721 0.160 0.947 0.025 0.950 

(5,5) 15 5.323 0.897 0.979 0.028 0.975 

 20 4.872 0.700 0.971 0.028 0.971 

 25 4.606 0.603 0.964 0.029 0.960 

 30 4.457 0.532 0.959 0.027 0.963 

 50 4.143 0.379 0.947 0.024 0.953 

(10,3) 15 15.758 2.390 0.978 0.030 0.971 

 20 14.563 1.949 0.970 0.030 0.964 

 25 13.881 1.693 0.963 0.029 0.957 

 30 13.497 1.503 0.959 0.028 0.960 

 50 12.649 1.108 0.948 0.024 0.953 

(15,6) 15 13.750 2.381 0.979 0.027 0.977 

 20 12.512 1.874 0.970 0.028 0.969 

 25 11.860 1.604 0.964 0.028 0.965 

 30 11.429 1.409 0.959 0.027 0.961 

 50 10.613 0.988 0.947 0.024 0.957 
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Table B13: Purely frequentist higher order asymptotic tolerance interval, 

])ˆ(,)ˆ([ )1()1( n
f

n
f gbgd   where 90.0 : inverse Gaussian model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(7, 14) 15 16.476 4.599 0.935 0.052 0.803 

 20 16.185 3.912 0.937 0.044 0.828 

 25 16.024 3.510 0.937 0.039 0.842 

 30 15.856 3.207 0.936 0.036 0.846 

 50 15.602 2.426 0.933 0.028 0.876 

(8, 12) 15 20.749 6.353 0.934 0.052 0.793 

 20 20.430 5.386 0.936 0.044 0.819 

 25 20.236 4.828 0.936 0.039 0.839 

 30 20.086 4.408 0.936 0.037 0.850 

 50 19.748 3.420 0.932 0.029 0.864 

(15, 25) 15 37.490 11.170 0.933 0.053 0.795 

 20 37.134 9.509 0.937 0.044 0.826 

 25 36.570 8.481 0.936 0.040 0.843 

 30 36.412 7.595 0.937 0.035 0.859 

 50 35.774 5.946 0.963 0.028 0.875 

(20, 50) 15 43.702 11.269 0.937 0.050 0.821 

 20 42.742 9.729 0.938 0.043 0.832 

 25 42.339 8.596 0.938 0.038 0.849 

 30 41.761 7.840 0.937 0.036 0.856 

 50 40.870 6.037 0.932 0.029 0.874 
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Table B14: Purely frequentist higher order asymptotic tolerance interval, 

])ˆ(,)ˆ([ )1()1( n
f

n
f gbgd   where 95.0 : inverse Gaussian model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(7, 14) 15 17.105 4.676 0.942 0.046 0.846 

 20 16.802 3.988 0.944 0.040 0.874 

 25 16.472 3.504 0.944 0.035 0.891 

 30 16.280 3.185 0.944 0.033 0.900 

 50 15.894 2.460 0.940 0.026 0.923 

(8, 12) 15 21.365 6.365 0.939 0.048 0.826 

 20 20.924 5.449 0.941 0.041 0.859 

 25 20.728 4.885 0.942 0.036 0.881 

 30 20.538 4.459 0.942 0.033 0.892 

 50 20.076 3.386 0.940 0.026 0.922 

(15, 25) 15 38.814 11.022 0.940 0.047 0.840 

 20 38.087 9.491 0.943 0.040 0.866 

 25 37.556 8.469 0.943 0.036 0.882 

 30 37.221 7.826 0.943 0.033 0.896 

 50 36.288 5.966 0.940 0.027 0.916 

(20, 50) 15 45.486 11.537 0.944 0.046 0.857 

 20 44.400 9.880 0.945 0.040 0.879 

 25 43.610 8.726 0.945 0.035 0.892 

 30 43.062 7.846 0.945 0.032 0.907 

 50 41.842 6.027 0.941 0.026 0.926 
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Table B15: Purely frequentist higher order asymptotic tolerance interval, 

])ˆ(,)ˆ([ )2()2( n
f

n
f gbgd    where 90.0 : inverse Gaussian model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(7, 14) 15 16.810 4.593 0.939 0.050 0.830 

 20 16.361 3.912 0.940 0.042 0.846 

 25 16.173 3.563 0.939 0.039 0.857 

 30 15.944 3.212 0.938 0.036 0.861 

 50 15.609 2.449 0.934 0.028 0.884 

(8, 12) 15 20.949 6.355 0.936 0.050 0.811 

 20 20.640 5.452 0.938 0.043 0.832 

 25 20.358 4.825 0.938 0.039 0.854 

 30 20.167 4.451 0.937 0.035 0.856 

 50 19.825 3.389 0.933 0.028 0.877 

(15, 25) 15 38.230 11.092 0.938 0.049 0.823 

 20 37.234 9.575 0.938 0.043 0.836 

 25 36.861 8.585 0.938 0.040 0.849 

 30 36.540 7.697 0.938 0.035 0.866 

 50 35.718 5.988 0.933 0.028 0.876 

(20, 50) 15 44.790 11.552 0.941 0.049 0.839 

 20 43.489 9.858 0.941 0.042 0.856 

 25 42.701 8.666 0.940 0.037 0.867 

 30 42.170 7.920 0.939 0.035 0.870 

 50 40.975 5.977 0.934 0.028 0.883 

 

 

 

 

 

 



152 

Table B16: Purely frequentist higher order asymptotic tolerance interval, 

])ˆ(,)ˆ([ )2()2( n
f

n
f gbgd    where 95.0 : inverse Gaussian model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(7, 14) 15 17.491 4.670 0.945 0.044 0.860 

 20 16.976 3.968 0.946 0.038 0.885 

 25 16.629 3.510 0.946 0.034 0.906 

 30 16.404 3.218 0.945 0.032 0.907 

 50 15.953 2.474 0.942 0.026 0.928 

(8, 12) 15 21.644 6.336 0.941 0.046 0.842 

 20 21.255 5.594 0.943 0.040 0.866 

 25 20.797 4.917 0.943 0.036 0.884 

 30 20.664 4.451 0.944 0.033 0.904 

 50 20.122 3.436 0.940 0.027 0.920 

(15, 25) 15 39.553 11.352 0.942 0.046 0.850 

 20 38.491 9.562 0.944 0.039 0.877 

 25 37.904 8.553 0.945 0.035 0.899 

 30 37.447 7.761 0.945 0.032 0.908 

 50 36.518 5.999 0.941 0.026 0.929 

(20, 50) 15 46.713 11.648 0.948 0.043 0.884 

 20 45.195 9.965 0.948 0.038 0.897 

 25 43.999 8.709 0.947 0.034 0.908 

 30 43.353 7.939 0.946 0.031 0.913 

 50 41.968 6.081 0.942 0.026 0.930 
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Table B17: Purely frequentist higher order asymptotic tolerance interval, 

])ˆ(,)ˆ([ )3()3( n
f

n
f gbgd     where 90.0 : inverse Gaussian model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(7, 14) 15 17.784 4.730 0.947 0.043 0.873 

 20 16.909 3.958 0.946 0.038 0.883 

 25 16.430 3.532 0.944 0.036 0.885 

 30 16.222 3.180 0.943 0.033 0.894 

 50 15.715 2.426 0.936 0.027 0.901 

(8, 12) 15 22.104 6.363 0.943 0.045 0.857 

 20 21.195 5.521 0.943 0.040 0.871 

 25 20.723 4.881 0.942 0.036 0.883 

 30 20.423 4.439 0.941 0.034 0.886 

 50 19.888 3.389 0.936 0.027 0.896 

(15, 25) 15 40.086 11.101 0.944 0.044 0.865 

 20 38.455 9.449 0.944 0.039 0.871 

 25 37.504 8.559 0.943 0.036 0.883 

 30 36.985 7.688 0.942 0.034 0.889 

 50 35.990 5.983 0.936 0.027 0.897 

(20, 50) 15 47.546 11.655 0.950 0.041 0.895 

 20 45.011 9.974 0.948 0.038 0.892 

 25 43.690 8.720 0.946 0.035 0.895 

 30 42.754 7.938 0.943 0.033 0.895 

 50 41.269 6.055 0.936 0.028 0.899 
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Table B18: Purely frequentist higher order asymptotic tolerance interval, 

])ˆ(,)ˆ([ )3()3( n
f

n
f gbgd     where 95.0 : inverse Gaussian model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(7, 14) 15 18.447 4.788 0.950 0.041 0.891 

 20 17.434 3.972 0.949 0.036 0.907 

 25 16.987 3.555 0.949 0.032 0.918 

 30 16.643 3.209 0.948 0.030 0.923 

 50 16.015 2.463 0.943 0.025 0.937 

(8, 12) 15 22.703 6.422 0.946 0.042 0.869 

 20 21.724 5.501 0.946 0.037 0.889 

 25 21.233 4.871 0.947 0.033 0.909 

 30 20.882 4.414 0.946 0.031 0.915 

 50 20.233 3.479 0.942 0.026 0.926 

(15, 25) 15 41.630 11.230 0.948 0.041 0.881 

 20 39.506 9.577 0.947 0.037 0.895 

 25 38.510 8.593 0.947 0.033 0.908 

 30 37.877 7.764 0.947 0.031 0.917 

 50 36.545 5.985 0.943 0.026 0.933 

(20, 50) 15 39.490 6.931 0.942 0.026 0.930 

 20 46.741 10.103 0.953 0.034 0.920 

 25 45.059 8.895 0.951 0.032 0.925 

 30 44.232 8.052 0.950 0.030 0.930 

 50 42.278 6.101 0.944 0.025 0.940 
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Table B19: Bayesian higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )3()3( nn gbgd     

where 90.0 : inverse Gaussian model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(7, 14) 15 17.874 4.738 0.948 0.042 0.876 

 20 16.998 4.006 0.946 0.038 0.887 

 25 16.472 3.535 0.944 0.036 0.886 

 30 16.206 3.197 0.942 0.033 0.893 

 50 15.684 2.453 0.936 0.028 0.893 

(8, 12) 15 22.166 6.484 0.943 0.044 0.861 

 20 21.229 5.548 0.943 0.040 0.865 

 25 20.749 4.849 0.943 0.036 0.880 

 30 20.473 4.432 0.942 0.034 0.887 

 50 19.867 3.408 0.935 0.028 0.887 

(15, 25) 15 40.202 11.412 0.944 0.045 0.858 

 20 38.212 9.460 0.943 0.040 0.874 

 25 37.534 8.508 0.943 0.036 0.879 

 30 36.928 7.691 0.942 0.033 0.889 

 50 35.893 5.927 0.935 0.028 0.890 

(20, 50) 15 47.391 11.685 0.950 0.041 0.887 

 20 44.767 9.772 0.947 0.038 0.891 

 25 43.503 8.767 0.945 0.035 0.892 

 30 42.765 7.870 0.943 0.032 0.896 

 50 41.153 6.040 0.936 0.028 0.899 
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Table B20: Bayesian higher order asymptotic tolerance interval, ])ˆ(;)ˆ([ )3()3( nn gbgd     

where 95.0 : inverse Gaussian model. 

 

(θ1, θ2) 
Sample 

size 

Expected 

width 

Standard 

error of 

width 

Expected 

content 

Standard 

error of 

content 

Coverage 

probability 

(7, 14) 15 18.473 4.800 0.850 0.041 0.893 

 20 17.516 4.049 0.950 0.036 0.908 

 25 16.976 3.596 0.949 0.033 0.915 

 30 16.615 3.209 0.948 0.030 0.924 

 50 16.023 2.488 0.943 0.025 0.939 

(8, 12) 15 22.827 6.488 0.946 0.042 0.875 

 20 21.863 5.565 0.947 0.037 0.896 

 25 21.208 4.961 0.946 0.035 0.898 

 30 20.854 4.466 0.946 0.032 0.912 

 50 20.295 3.425 0.943 0.026 0.935 

(15, 25) 15 41.562 11.346 0.948 0.042 0.882 

 20 39.597 9.830 0.947 0.037 0.896 

 25 38.528 8.749 0.947 0.034 0.903 

 30 37.818 7.767 0.947 0.031 0.919 

 50 39.583 5.956 0.943 0.025 0.934 

(20, 50) 15 49.455 11.878 0.954 0.039 0.911 

 20 46.630 10.000 0.953 0.034 0.923 

 25 45.129 8.902 0.951 0.032 0.927 

 30 44.037 8.003 0.949 0.031 0.930 

 50 42.129 6.028 0.944 0.025 0.941 

 


