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Abstract 

 

MicroRNAs (miRNAs) are endogenous 18-25nt RNAs that regulate genes at the protein 

translation level. They can act as tumor suppressors or oncogene and are often dysregulated 

in various cancers. ANXA7 is a tumor suppressor gene that encodes for a Ca
2+

-dependent 

membrane-binding protein and its expression was found to be reduced or lost in advanced 

androgen-independent prostate cancers. This research aims to identify miRNAs that are 

regulated by the ANXA7 tumor suppressor gene and the putative pathways involved in 

prostate cancer. The overexpression of wild-type ANXA7 was achieved by using a 

mammalian expression vector harboring the gene. From our miRNA microarray expression, 

a total of 16 miRNAs were found to be significantly differentially expressed in response to 

increased ANXA7. These include hsa-miR-874, hsa-miR-1284, hsa-miR-543 and hsa-miR-

409-5p. All of these miRNAs have predicted targets that are involved in calcium signaling. 

In conclusion, the altered miRNA expression induced upon increased expression of 

ANXA7 suggests that miRNAs and the calcium signaling pathways are regulated by 

ANXA7 and could be manipulated for therapeutic purposes. 
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Abstrak 

 

MikroRNA adalah RNA endogen dengan panjang 18-25 nukleotida yang mengawal protein 

pada tahap translasi. Mereka boleh mengambil tugas sebagai penindas tumor atau onkogen 

dan sering mengalami disregulasi dalam pelbagai kanser. ANXA7 adalah gen untuk 

penindas tumor yang mengkod untuk protein bergantung-Ca
2+

 yang mengikat membrane 

dan tahapnya di dalam kanser prostat peringkat maju adalah kurang atau tiada sama sekali. 

Kajian kami ingin mengetahui apakah mikroRNA yang di kawal of ANXA7 dan laluan 

biologi yang dikawal oleh mikroRNA tersebut didalam kanser prostat. Peningkatan tahap 

gen normal ANXA7 dikecapi dengan vektor-ekspressi mammalia yang mengandungi gen 

tersebut. Dari miRNA microarray kami, mikroRNA berjumlah 16 didapati telah mengalami 

pengubahan ekspressi yang ketara setelah tahap ANXA7 di tingkatkan. Ini termasuk hsa-

miR-874, hsa-miR-1284, hsa-miR-543 dan hsa-miR-409-5p dengan sasaran yang dijangka 

terlibat dalam pengisyaratan kalsium. Kesimpulannya, pengubahan ekspressi mikorRNA 

setelah peningkatan tahap ANXA7 mencadangkan bahawa mikroRNA dan laluan 

pengisyaratan kalsium yang terlibat adalah di regulasi oleh ANXA7 dan boleh 

dimanipulasikan untuk tujuan terapeutik.  
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Chapter 1: Introduction 

 

 MicroRNAs (miRNAs) are endogenous 18-25nt RNAs that regulate genes at the 

post transcriptional level via complementary base-pairing with mRNAs and the triggering 

of two posttranscriptional events; mRNA cleavage and translational repression (Bartel, 

2004).  MicroRNAs are known to play key roles in carcinogenesis and their expression is 

often dysregulated in various cancers (Calin et al., 2002; Michael et al., 2003, Takamizawa 

et al., 2004; Metzler et al., 2004). MicroRNAs can also act as tumor suppressors 

(Takamizawa et al., 2004) or oncomirs (Meng et al., 2007) in cancer. The expression of 

miRNAs are regulated by various transcription factors such as c-Myc (O’Donnell et al., 

2005) and p53 (Suzuki et al., 2009) in addition to epigenetic factors (Lodygin et al., 2008) 

or hormones (Shi et al., 2007). 

 Prostate cancer is the second most frequent cancer to occur in men worldwide after 

lung cancer (Ferlay et al., 2008). Even though current treatment options such as surgery 

and radiation therapy are effective against early stages of prostate cancer, patients with 

hormone-independent advanced stage prostate cancers typically faces a poor prognosis with 

limited treatment options (Damber and Aus, 2008). Therefore there is a need to search for 

alternative therapeutic options. 

 Human ANXA7, located at chromosome 10q21 was recently identified as a tumor 

suppressor gene in prostate cancer and various cancers (Srivastava et al., 2007). ANXA7 

levels were decreased markedly or even lost in metastatic and recurrent hormone-

independent CaP, while still remaining high in less advance stages (Srivastava et al., 

2001b).   
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 Our study aimed to look at whether the tumor suppressive effect of ANXA7 in 

prostate cancer involves regulation of miRNAs and whether the miRNAs regulated are 

involved in distinct signaling pathways. In order to do so, we tried to restore the wild-type 

ANXA7 (wtANXA7) function in hormone-independent prostate cancer cell lines by 

transfecting the cells with a mammalian expression vector harboring the wtANXA7 gene. A 

global expression pattern of miRNAs was then obtained using miRNA microarrays. Genes 

potentially targeted by the dysregulated microRNAs was predicted in silico and putative 

signaling pathways involved were identified.   
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Chapter 2: Literature Review 

 

2.1 MicroRNAs (miRNAs) 

 

2.1.1 Discovery of miRNAs  

 

 Before the discovery of small regulatory ribonucleic acids (RNA), we only know 

the existence and functions of the messenger RNA (mRNA), transfer RNA (tRNA) and 

ribosomal RNA (rRNA). However, researchers realized that the picture was still 

incomplete when Fire et al in 1998 discovered that the introduction of double-stranded 

RNA (dsRNA) into the nematode Caenorhabditis elegans (C. elegans) interfered with 

functions of endogenous gene expression. Therefore, the term RNA interference (RNAi) 

was coined. This then led to many more classes of RNAs being discovered; short 

interfering RNAs (siRNAs), tiny non-coding RNAs (tncRNAs), small regulatory RNAs 

(smRNAs) and also microRNAs (miRNAs) (Novina and Sharp, 2004).   

 The first member of what is considered now a growing class of miRNAs was the 

lin-4 RNA which was discovered by Victor Ambros and colleagues (Lee, Feinbaum and 

Ambros, 1993). They found that the lin-4 gene code for a pair of small RNAs but does not 

code for protein. This gene is involved in the translational repression of the lin-14 mRNA. 

The lin-14 gene is involved in the transition of early larval stage 1 (L1) to L2 (Wightman et 

al., 1991). The developmental transition occurs due to the sharp change of relatively high 

levels of lin-14 gene activity during L1 to lower levels. This is to allow the switch to L2. 
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 The second member of this family is the let-7 miRNA which was also discovered in 

C. elegans long after the discovery of lin-4 (Reinhart et al., 2000). This miRNA is also 

involved in the heterochronic pathway (temporal control of developmental events) similar 

to lin-4. Loss of let-7 causes the larval cell fates to be reproduced during the adult stage 

while overexpression of let-7 causes early expression of adult cell fates during larval 

stages. There are five heterochronic genes namely lin-14, lin-28, lin-41, lin-42 and daf-12 

that were identified as let-7 targets suggesting its (let-7) role in regulating their expression. 

In the same year, Pasquinelli and colleagues found the expression of let-7 RNAs in a wide 

range of species but not the lin-4 expression (Pasquinelli et al., 2000). This indicates that 

some miRNAs can be highly conserved and plays a significant role in development. lin-4 

and let-7 were called small temporal RNAs (stRNAs).  

  A year after the discovery of let-7, researchers discovered an abundant number of 

highly conserved miRNA genes in both vertebrates and invertebrates (Lagos-Quintana et 

al., 2001). In this study, they identified 16 novel Drosophila melanogaster (Drosophila) 

miRNAs and 21 novel human miRNAs, strengthening the idea of a large class of small 

non-coding RNAs (ncRNAs) with regulatory roles. Several of the miRNAs exist in clusters 

and some have repeated genomic copies. Besides regulation of developmental timing, 

miRNAs are suggested to have tissue specification functions as well. This is due to the 

absence of expression of some miRNAs in some tissue types while present in others. In the 

same issue of the journal, two other groups also reported their findings on such small 

regulatory RNAs. The first group discovered more than 50 new miRNAs in C.  elegans 

(Lau et al., 2001) while the second group reported the identification of 15 novel miRNA 

genes in the nematode (Lee and Ambros, 2001). The three groups together at that time put 

forth about nearly a hundred new miRNAs through various cloning, sequencing and 
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informatics approaches. They proposed that more miRNA genes were yet to be uncovered 

as their screening had yet to reach saturation levels.  

More rigorous screening efforts have indeed yielded an abundant class of miRNA 

gene in most model eukaryotic species such as Arabidopsis thaliana (Llave et al., 2002a; 

Park et al., 2002; Reinhart et al., 2002), mouse (Lagos-Quintana et al., 2002, 2003), 

zebrafish (Giraldez et al., 2005; Wienholds et al., 2005) and in humans (Lagos-Quintana et 

al., 2003; Bentwich et al., 2005). From then onwards, the pace of miRNA discovery has 

been increasing. Until the year 2009, the miRNA count in miRBase database reached 

almost a total (all genomes included in the database) of 1500 with 721 miRNAs found in 

humans (Griffiths-Jones et al., 2006).  

 

2.1.2 Annotation of miRNAs 

 

 In order to avoid confusion and distinguish miRNAs from other molecules in the 

genome, there has to be a set of guidelines for researchers to follow in identifying and 

naming miRNAs. Therefore the annotation of miRNAs will be discussed here briefly in 

two parts; the criteria required for a molecule to be identified as miRNA and the 

nomenclature of the miRNA itself. Readers are referred to these papers (Ambros et al., 

2003; Griffiths-Jones et al., 2003; Griffiths-Jones, 2004; Griffiths-Jones et al., 2006) for 

more details on the subject. 

 In identifying a miRNA from a sample of size-fractioned RNA, one must address 

the issue of distinguishing an authentic miRNA sequence from other ncRNAs such as 

rRNA, tRNA, small nuclear RNA (snRNA) and some mRNA. Filtering away of such 
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ncRNAs from possible miRNA sequences can be done through informatics screening in 

available established databases. The more difficult part would be to differentiate a miRNA 

from a siRNA sequence and annotating sequences based on evolutionary conservation as 

addressed by Ambros et al. The criteria for a sequence to be identified as a miRNA comes 

not from its functions and biochemical compositions (both indistinguishable from those of 

siRNAs) but from its biological synthesis and expression. These set of criteria are stated in 

detail in the mentioned paper (Ambros et al. 2003). The criteria are based on the fact that 

precursor miRNAs are endogenous transcripts that have fold-back (hairpin) structures. The 

hairpins are processed in a way where miRNAs are only formed from one arm of the 

hairpin molecule (siRNAs are formed from both arms). In addition, precursor molecules 

can be in the form of multiple hairpins where each hairpin produces a different miRNA.  

 In naming miRNAs, scientists have agreed to use the letter prefix “miR” to 

designate  mature miRNAs while “mir” is used for precursor hairpins for example primary 

transcripts are pri-mir while precursor transcripts are pre-mir. Following the letter prefix, 

miRNAs are also given unique numerical identifiers and in sequence for example miR-1, 

miR-2, miR-3 and so on. In order to show which species the miRNA originated from, there 

are also letter prefixes preceding the miR designation. For example, human miR-1 would 

be written as hsa-miR-1 (hsa stands for Homo sapiens) and mouse miR-1 as mmu-miR-

1(mmu stands for Mus musculus) (Griffiths-Jones et al., 2006). The naming system also 

takes into account orthology and paralogy. MiRNA genes that are orthologous and very 

similar in sequence can be given the same number (for example hsa-miR-101 and mmu-

miR-101) while paralogs can also be given the same number but in addition are given a 

letter after the same number designated (for example mmu-miR-10a and mmu-miR-10b). 
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However, naming can be complicated and in the end it (miRNA name) comes down to the 

decision of the authors who submit the sequence (Griffiths-Jones et al., 2006). 

 

2.1.3 Defining miRNAs 

 

 MicroRNAs are a class of small regulatory RNAs that have a size of 20-23 

nucleotides. They are transcribed from endogenous genes but as mentioned before, they do 

not code for a protein like other genes. Some miRNAs are found within an intron while a 

number of them are in polycistronic transcription units. MiRNAs also show evolutionary 

conservation within closely related species such as human and mouse (Lagos-Quintana et 

al., 2003) and distant lineages such as C. elegans and human (Lim et al., 2003). The 

definitive feature of a miRNA would be its interaction with mRNAs via complementary 

base-pairing and the triggering of two posttranscriptional events; mRNA cleavage and 

translational repression (Bartel, 2004). The two events make miRNAs one of the most 

abundant classes of regulatory genes in human. Prediction studies show that about 30% of 

protein-coding genes are miRNA-regulated (Lewis et al., 2005).   

 

2.1.4(a) Biogenesis of miRNA: Transcription 

 

 The synthesis of a mature miRNA molecule from its endogenous gene involves a 

flow of cellular processes, intermediate molecules such as primary-miRNA (pri-miRNA) 

and precursor-miRNA (pre-miRNA) and the participation of key molecules (Figure 2.1). 

The first step involved in the synthesis is the transcription of the miRNA gene by a RNA 
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polymerase to produce a long pri-miRNA transcript. However, there was no evidence of 

which RNA polymerase that played a major role in miRNA transcription and initially it 

was thought to be RNA polymerase III (pol III). This view was conceived from the 

observation that pol III was involved in the transcription of most small RNAs like tRNAs, 

5S rRNA and U6 snRNA (Lee et al., 2004).  

 In contrast, there were several findings from experiments that disputed pol III as the 

main player in miRNA transcription. First, pri-miRNA transcripts can be quite long (~1kb) 

and are longer than what pol III normally transcribes. The long transcripts therefore contain 

stretches of Uridine and this would lead to the formation of prematurely terminated pri-

miRNAs by pol III (Lee et al., 2002). Second, differential expression of many miRNAs 

during development is often observed for RNA polymerase II (pol II) and not pol III 

products (Bartel, 2004). Third, a couple of studies done on miRNA regulation proposed 

that the miRNA precursors are 5’ capped, polyadenylated and spliced (Aukerman and 

Sakai, 2003; Tam, 2001) which are typical of pol II gene processing. Direct evidence to 

show that miRNA genes are transcribed by RNA pol II then came in 2004 by Lee and 

colleagues. Through affinity purification they were able to selectively enrich capped and 

polyadenylated pri-miRNAs from mammalian total RNA (Lee et al., 2004). They also 

confirmed that treatment of α-amanitin (a pol II inhibitor) on cells directly decreased the 

expression of pri-miRNAs while expression of pol I- and pol III–transcribed genes were 

not affected. In addition, chromatin immunoprecipitation (ChIP) assays confirmed the 

physical presence of pol II on promoter regions of a pri-miRNAs. 
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 Two years later, a paper published (Borchert et al., 2006) provided evidence that 

pol III is needed for miRNA transcription instead of pol II. They found a miRNA cluster to 

be dispersed among Alu repeats and transcription of these repeats required pol III. ChIP 

and cell-free transcription assays also revealed the presence of pol III on the miRNA 

genomic sequence and not pol II. In addition, other miRNAs were also found to be located 

within Alu repeats and other repetitive elements, proving the significance of pol III in 

miRNA transcription. 

 Figure 2.1: Biogenesis of microRNAs in mammals. The processing of miRNA from its gene in the 

nucleus into a mature miRNA that is incorporated into the RISC to form a miRNA 

ribonucleoprotein (miRNP) complex in the cytoplasm that exerts its function in mRNA regulation 

and the involvement of intermediate molecules is shown. Adapted from Winter et al., 2009. 
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 As evidence accumulates, we will see studies supporting both pol II and pol III 

being equally important in miRNA transcription. MiRNA transcription appears to be a 

process that seems to be carried out without the restriction to only one type of RNA 

polymerase.  

    

2.1.4(b) Biogenesis of miRNA: the Microprocessor complex 

 

 Pri-miRNA, which can be in the range of several hundred to several kilobases, are 

predicted to form a hairpin secondary structures which will undergo further processing to 

form a pre-miRNA. The biogenesis of miRNAs requires this important pri-miRNA 

processing step as it predetermines the sequence of the final mature miRNAs (Lee et al., 

2003).  

  The processing is initiated by a nuclear RNase III called Drosha (Lee et al., 2003). 

Drosha belongs to the class II of RNase III endonuclease family where they bind and 

cleave dsRNA in a staggered manner. Precursor molecules that undergo in vitro processing 

with immunoprecipitated Drosha gave fragments of 60-70 nt which correlate to pre-

miRNAs. RNAi on Drosha resulted in the accumulation of pri-miRNAs and decrease in 

pre-miRNA (Lee et al., 2003). The paper also proposed a model whereby Dicer functions 

to process substrates provided by Drosha and both enzymes work in a stepwise manner. 

This stepwise model is supported by the evidence that Drosha and Dicer are differentially 

localized in the nucleus (Wu et al., 2000) and cytoplasm (Provost et al., 2002), 

respectively. In addition, the model allows for both enzymes to work synergistically and 
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increases the efficiency and accuracy of miRNA production as compared to the Dicer 

working alone.  

In the following year, Denli’s group found that Drosha functions in a complex along 

with other proteins. They named this complex as the Microprocessor due to its role in 

microRNA processing. Their study in Drosophila cells identified a dsRNA binding protein 

called Pasha (Partner of Drosha) together with Drosha in a functional 500kDa 

Microprocessor (Denli et al., 2004). In the same issue of Nature, Gregory’s group also 

found evidence that human Drosha associates with other proteins to carry out its biological 

role (Gregory et al., 2004). In addition, human Drosha was also found in two forms; a large 

complex and a small complex. The former might have a function in other RNA processing 

reactions but for pri-miRNA processing the smaller complex is the major player. It consists 

of Drosha and a protein called DGCR8 (DiGeorge syndrome critical region gene 8). This 

smaller complex is known as the Microprocessor in humans and is needed for the 

processing of pri-miRNAs as the lost of both Drosha and DGCR8 results in pri-miRNA 

accumulation and absence of either one result in inefficient processing. In order to identify 

the mechanism of action of Drosha, Han and colleagues conducted site-directed 

mutagenesis studies of key residues on both Ribonuclease (RNase) III domains (a and b) of 

human Drosha. They identified two residues important for catalytic staggered cleavage of 

the pri-miRNA hairpin where one cleaves at the 3’ site while the other at the 5’ site (Han et 

al., 2004). Besides that, they concluded that Drosha works in a complex together with 

DGCR8 which supports the findings of others (Gregory et al., 2004) and the complex 

might contain multiple copies of both Drosha and DGCR8. Due to their association with 

Drosha, Pasha and DGCR8 might have similar functions and hence there is a possibility of 
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them being orthologs but nonetheless, their role in pri-miRNA processing is undeniably 

important.   

2.1.4(c) Biogenesis of miRNA: Export to the cytoplasm 

 

 Once the pri-miRNA has been processed by the Microprocessor to become a pre-

miRNA, it will be exported from the nucleus to the cytoplasm for further downstream 

processing by Dicer. Exchange of substances between the nucleus and the cytoplasm 

proceeds through nuclear pore complexes either by passive diffusion or facilitated 

translocation. The second mode of exchange involves mediators known as exportins and 

importins, as their names suggest, function in exporting substances to the cytoplasm and 

importing them to the nucleus, respectively.  

The key player in pre-miRNA export from the nucleus is Exportin5 (Exp5) (Lund et 

al., 2004). The export occurs in a RanGTP-dependent manner just as how other smaller 

cellular RNAs are exported as depletion of RanGTP results in export inhibition (Lund et 

al., 2004 and Bohnsack et al., 2004). Exp5 binds to pre-miRNAs without any sequence 

specificity to dsRNAs (Bohnsack et al., 2004) and efficient export might depend on the 

precise ends of the pre-miRNA produced by Drosha (Lund et al., 2004). 

 Another group examined the structural requirements for pre-miRNA binding by 

Exp5 (Zeng and Cullen, 2004). They found that a minimum pre-miRNA stem length of 

18bp is required for high-affinity binding and the presence of a 5’ overhang at the stem 

inhibited binding to Exp5. In addition, the formation of a pre-miRNA/Exp5/RanGTP 

complex protected the pre-miRNA from digestion by cellular RNases. This “protecting 

complex” ensures the delivery of the pre-miRNA to the cytoplasm in an intact form.     
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2.1.4(d) Biogenesis of miRNA: Dicer processing to form mature miRNAs  

 

 After going through the nuclear pore, dissociation of pre-miRNA from Exp5 is 

triggered by the hydrolysis of RanGTP to RanGDP in the cytoplasm (Cullen 2004). The 

process of miRNA maturation is then continued by another enzyme called Dicer, due to its 

ability to “dice” dsRNA into small RNAs uniformly (Bernstein et al., 2001). It belongs to 

the third class of RNase III enzymes and has two RNase III (RIIIa and RIIIb) domains and 

an amino-terminal helicase domain. The Dicer family is evolutionarily conserved as 

homologues and are found in C. elegans, Arabidopsis, Schizosaccharomyces pombe and in 

humans. Bernstein’s group first identified Dicer to be involved in the initiation of the RNAi 

pathway in Drosophila. 

 The Dicer homolog in C. elegans known as dcr-1 (K12H4.8) was proposed by two 

groups (Grishok et al., 2001 and Ketting et al., 2001) to be involved in RNAi and also the 

maturation of small RNAs related to developmental timing in the worm. A similar study in 

Drosophila, led by Hutvagner presented evidence of the let-7 stRNA being produced by 

cleaving a precursor RNA in a RNA interference-like fashion. They then found that an 

RNase III was involved in the processing of this stRNA due to the existence of a terminal 

structure with 5’ monophosphate and 2’- and 3’-terminal hydroxyls. This terminal structure 

is a characteristic of RNase III-cleaved products. The involvement of Dicer in miRNA 

maturation was then confirmed when siRNA knockdown of Dicer resulted in the 

accumulation of pre-let-7 in Drosophila (Hutvagner et al., 2001).  
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 A single processing center model was then proposed for Human Dicer where the 

RIIIa and RIIIb domains functions as an intramolecular dimer. Both domains contribute to 

the processing center while the catalytic activity of each domain is independent. The PAZ 

domain and the dsRNA binding domain (dsRBD) domain are both involved in helping 

Dicer function where the former is responsible in recognizing the 3’ overhang of the 

Drosha-processed substrate (Zhang et al., 2004).   

 

2.1.4(e) Biogenesis of miRNA: Incorporation into the RISC (RNA-induced silencing  

 complex) 

 

 Once the pre-miRNA has been processed by Dicer, the miRNA now has a duplex 

miRNA:miRNA* structure. Central mismatches in the duplex favor RISC loading while 

seed region or 3’-mid mismatches promote unwinding (Yoda et al., 2010). The miRNA 

strand or the ‘guide strand’ will then be retained to form the mature RISC while the 

miRNA* strand or the ‘passenger strand’ will be discarded and degraded (Kawamata and 

Tomari 2010).  

 This complex (RISC) known as miRNA ribonucleoprotein (miRNP) complex was 

first reported by Mourelatos et al. The complex consists of Gemin3, Gemin4 , eukaryotic 

initiation factor 2C  (eIF2C) 2 as the major components with the possible involvement of 

other proteins as well (Mourelatos et al., 2002). The eIF2C2 being a human 

Argonaute(Ago) homolog was found together with eIF2C1 in a RISC complex, supporting 

the association of RISC with miRNAs (Martinez et al., 2002).  
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 In determining the canonical pathway of human RISC assembly involving miRNAs, 

there were two events that were in question. The first was whether small RNA duplexes 

unwind before or after it has bound to Ago proteins and how it is unwound. The next was 

whether the process of dicing and RISC formation is coupled or independent (Kawamata 

and Tomari 2010; Yoda et al., 2010).  

 There are two models to explain when small RNA duplexes unwind during RISC 

assembly. One is the ‘helicase’ model and another, the ‘duplex-loading’ model. For the first 

model, a putative ATP-dependent helicase is proposed to unwind the small RNA duplexes 

before loading the guide strand to Ago2 (Bartel, 2004). However, the existence of such 

helicase has not been validated. The second model with supporting evidence by some 

groups (Kawamata et al., 2009; Rand et al., 2005) suggests that the 

miRNA:miRNA*duplex and siRNA duplex is loaded onto Ago1 and Ago2 proteins in 

Drosophila, respectively. The mechanism of unwinding probably could be through a slicer-

independent unwinding (Matranga et al.,2005). Considering the similarities in feature 

between fly Ago1 and human Ago2 (Yoda et al., 2010), this model would more likely suit 

the human pathway.    

 Previously, it was proposed that the process of pre-miRNA dicing and RISC 

formation are both coupled in humans (Gregory et al., 2005; Maniataki and Mourelatos, 

2005). A more recent study (Yoda et al., 2010) reexamined the RISC assembly process and 

reported that dicing and RISC assembly are uncoupled and independent of each other. They 

also found that RISC loading requires ATP but is not necessary for unwinding of the small 

RNA duplexes. This finding is contrary to previous evidence that show an ATP-

independent RISC assembly. The reason could be due to the usage of a ‘bypass pathway’ 
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that can function only with single-stranded RNAs (reviewed in Kawamata and Tomari, 

2010).  

  

RISC assembly is still a process that warrants more study due to the discovery of 

many proteins that associates with this complex such as Mov10, Imp8 and GW182 

(Carthew and Sontheimer, 2009). Elucidation of the function of these proteins would 

provide a better understanding on this process.  

 

2.1.5 Mechanism of miRNAs 

  

 A microRNA is able to exert its function of posttranscriptional gene regulation by 

guiding the RISC in the cytoplasm to the target mRNA. In most cases, the miRNA will 

bind to the 3’ untranslated region (UTR) region of the mRNA via complementary base-

pairing. Gene regulation could also be achieved by binding of the microRNA to the 5’ UTR 

or the open reading frame (ORF) of the gene (Lewis et al., 2005). There is a region in the 

miRNA that consists of 2 to 8 nucleotides known as the seed region which binds to the 

target mRNA (Carthew and Sontheimer, 2009). The target mRNA could either be cleaved 

or translationally repressed. The factor that determined one of the two regulatory events to 

occur would be the degree of miRNA complementarity to the target mRNA.  

 In order for a target mRNA to be cleaved, the miRNA has to be an exact 

complement to the target sequence. The structure of the miRNA precursor and the intrinsic 

sequence of the miRNA produced do not prevent the miRNA from entering the RNAi 

pathway (Hutvagner and Zamore, 2002). The nuclease activity of the miRNA let-7 was 
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confirmed in-vitro and in-vivo. This siRNA-like event was found to involve the PPD (Paz 

and Piwi Domain) protein eIF2C2. This PPD protein is found associated to the RISC and 

RISC-like complexes in other organisms and associated to miRNP complex. Hence, the 

proposed involvement of RISC programmed by miRNAs in the cleavage of target RNAs in 

an RNAi fashion. The miRNA-programmed cleavage site of the target RNA occurs in 

between nucleotides pair 10 and 11 which is identical to the site during siRNA-directed 

cleavage (Llave et al., 2002b). After the target mRNA has been cleaved, the miRNA can be 

reused again to guide the cleavage of additional target mRNAs (Hutvagner and Zamore, 

2002).  

 Translational repression occurs when the miRNA:target complex forms bulges due 

to central mismatches. The quantity of the target mRNA will not decrease unlike in the 

above mechanism. Only the expression of the target mRNA-encoded protein will be 

reduced. A concern for this mechanism was whether the repression occurs during initiation 

or after initiation (postinitiation). Experimental evidences showed that either event could 

occur during translational repression (Carthew and Sontheimer, 2009). Several models 

were also proposed by different groups to explain how the repression would work in vivo 

such as i) miRNA competition for binding at mRNA cap or poly(A) tail (Humphreys et al., 

2005) ii) premature ribosomal dropping from translational complex (Petersen et al., 2006), 

iii) prevention of the circularization of the mRNA during translation (Wakiyama et al., 

2007) However, each model also suffers contradiction from other studies and hence the 

when and how translational repression occurs still remain as questions unanswered.   
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2.2 Prostate Cancer 

 

2.2.1 Facts and Figures 

 

 Prostate cancer is the second most frequent specified cancer to occur in men 

worldwide after lung cancer in the year 2008  and is the sixth leading cause of death due to 

cancer in men (Figure 2.2a). Prostate cancer is the fifth most frequent cancer to occur in 

both men and women worldwide (Figure 2.2b). The incidence of prostate cancer in Asia 

with an age-standardized rate (ASR) of 7.2 per 100,000 and in Southeast Asia (ASR of 8.3 

per 100,000) is among the lowest in the world (Figure 2.2c). This is probably due to the 

less widespread use of prostate specific antigen (PSA) testing as compared to other more 

developed regions. However, mortality rates are similar between less developed and more 

developed regions (Ferlay et al., 2008).  

 In Malaysia, the number of reported cases of prostate cancer for the years 2002, 

2003, 2003-2005 and 2006 were 671, 602, 2150 and 735 cases, respectively. As for the 

ASR, the data also showed no obvious pattern of increase or decrease with age-

standardized rates of 11.6, 10.3, 12 and 11 for the same years (National Cancer Registry 

2002-2006). Although both total number of incidence and ASR shows fluctuation, a pattern 

of increase is expected for the following years. This is because the life expectancy at birth 

of male increased from 70.8 years in 2002 to 71.6 years in 2008 and the number of 

population that exceeds the age of 65 shows an increase from 993,900 in 2002 to 1,286,200 

in 2009 (Depart of Statistics Malaysia, 2009) which put Malaysian males at a higher risk of 

getting prostate cancer since old age is the main risk factor. 
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 Even though current treatment options such as surgery and radiation therapy are 

effective against early stages of prostate cancer, patients with hormone-independent 

advanced stage prostate cancers typically face a poor prognosis with limited treatment 

options (Damber and Aus, 2008) and therefore the need to search for alternative therapeutic 

options.  
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Figure 2.2 a & b : Prostate Cancer Statistics based on Age-Standardized Rate (ASR) 

per 100,000 population. a) Prostate cancer incidence and mortality in men worldwide 

among various other cancers. b) Prostate cancer incidence and mortality compared with 

various cancers in both men and women worldwide. Figure adapted from GLOBOCAN 

2008. http://globocan.iarc.fr/factsheet.asp . Retrieved September 26, 2013. 

b) 

Incidence 

Mortality 

a) 

Incidence 

Mortality 



 

21 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2 c: Prostate Cancer Statistics based on Age-Standardized Rate (ASR) per 

100,000 population. c) Prostate cancer incidence and mortality among different 

populations. Figure adapted from GLOBOCAN 2008. http://globocan.iarc.fr/factsheet.asp 

Retrieved September 26, 2013 
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2.2.2 Defining the Prostate and Prostate Cancer 

According to the National Cancer Institute (NCI), prostate cancer or also known as 

carcinoma of the prostate (CaP) is a cancer that forms in the tissues of the prostate 

(National Cancer Institute, 2008). The prostate is a small walnut-sized gland found in the 

male reproductive system (Figure 2.3). 

 

  

 

Figure 2.3: Side view of the prostate and the male reproductive system. Adapted from 

http://www.webmd.com/urinary-incontinence-oab/picture-of-the-prostate. Retrieved 

September 26, 2013. 
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It envelops the section of the urethra that carries the urine from the bladder to the penis. 

The gland is also divided into peripheral and transition zones with the former being near 

the rectum. The gland has a function of producing a thick clear fluid which becomes an 

important component for the semen (Cancer Research UK, 2010; Prostate Cancer 

Foundation, 2010). There are at least three types of cells that can be found in the epithelium 

of the prostate: i) Secretory luminal epithelial cells- the predominant androgen-dependent 

cells that secrete prostatic proteins, (ii) neuroendocrine cells- the small population 

androgen-independent cells dispersely located at the same stratum with the basal cells and 

believed to provide paracrine signals that support the growth of luminal cells, iii) basal 

cells- situated in between the first cell type layer and the basement membrane. Each cell 

type in the prostate also expresses specific molecules that allow for their molecular 

characterization. The fourth cell type would be prostate cancer stem cells which are yet 

proven to exist (Abate-Shen and Shen, 2000; Lee et al., 2008).  

Prostate cancer should not be confused with benign prostatic hyperplasia (BPH) or 

the enlargement of the prostate. BPH is a non-cancerous condition which starts from the 

transition zone and it grows inwards to the core of the prostate. The growth forces the 

urethra to constrict, resulting in pain. On the other hand, prostate cancer originates from the 

outer peripheral zone and it grows outward, invading neighbouring tissue (Prostate Cancer 

Foundation, 2010).  
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2.2.3 Molecular Pathway in Prostate Cancer Progression 

 

 There are many factors associated with prostate cancer. Some of the factors that 

might increase a person’s risk of getting prostate cancer would be; i) old age.  ii) family 

history of prostate cancer iii) diet iv) diabetes v) ethnicity. Early stages of prostate cancer 

are often curable by conventional treatments such as surgery and radiotherapy. However, 

most cases of prostate cancer remain relatively benign or ‘silent’ and this poses a high risk 

of only detecting it when it is at an advanced stage, often fatal within 24 months. Such 

aggressive and hormone-independent stage, as a result of androgen-ablation therapy, is 

often associated with seminal vesicles invasion and followed by a lethal stage of metastasis, 

primarily to the bone. (Altieri et al., 2009; Abate-Shen and Shen, 2000).   

In order for carcinogenesis to occur and progress to more aggressive states, it 

requires multiple molecular changes. A study by Rhim et al. clearly shows the evidence to 

support this multistep pathway. They transfected normal prostate epithelial cells with a 

plasmid containing the human papilloma virus (HPV) 18 genome and it resulted only in the 

immortalization of the cells but not malignancy. Cells only become tumorigenic after a 

second oncogene, Ki-ras was introduced via Kirsten murine sarcoma virus (Ki-MuSV) 

infection (Rhim et al., 1994).   

 

Chromosomal aberrations are often the event that can be observed in most prostate 

cancer tissue. Some of the common chromosomal abnormalities include losses at 

chromosome, 6q (Cooney et al., 1996), 7q (Takahashi et al., 1995; Zenklusen et al., 1994), 

8p (Nupponen et al., 1998), 10q (Isaacs and Carter, 1991), 13q (Hyytinen et al., 1999), 16q 

(Latil et al., 1997), 17p and 18q (Latil et al., 1994). Besides chromosomal losses, gains in 



 

25 

 

chromosome 7p, 7q, 8q, and Xq are also associated with prostate cancer (Nupponen et al., 

1998).      

 Such aberrations are proposed to contribute to carcinoma of the prostate (CaP) due 

to existence of putative tumor suppressors or oncogenes in these regions. It is suggested by 

several groups that alteration of each region and its associated gene/s are involved in each 

stage of CaP, from initiation to progression and finally to advance carcinoma and 

metastasis (Isaacs and Kainu, 2001; Abate-Shen and Shen, 2000). 

 The event preceding prostate cancer initiation involves the formation of prostatic 

intraepithelial neoplasia (PIN). PIN lesions form once basal cells are lost and luminal cells 

start to invade to the periphery zone (Lee et al., 2008). Prostate cancer initiation is strongly 

associated to loss of chromosome 8p12-21 and 8p22 which occurs in high percentage 

(~80%) of prostate tumors and other cancers (Chang et al., 1994; Matsuyama et al., 1994). 

A putative tumor suppressor gene (TSG), NKX3.1 is suggested to reside in this 

chromosomal region and its loss causing prostate cancer initiation (Bhatia-Gaur et al., 

1999).       

 Several factors are thought to be involved in the progression stage of CaP. Some of 

them include i) the loss of chromosome 10q and the PTEN candidate gene, ii) loss of 

chromosome 13q and the Retinoblastoma (Rb) gene, iii) Change of expression in cell-cycle 

regulatory genes such as p27 and p16, iv) Telomere length and telomerase dysfunction 

(Abate-Shen and Shen, 2000).  

 Progression of CaP to advance carcinoma and metastatic state involves androgen 

receptor (AR) signaling. Androgen ablation therapy is the common treatment for advance 

prostate cancer and it could provoke the recurrence of a more aggressive androgen-

independent state of CaP in most cases, possibly through the selection for survival of 
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androgen-independent cells (Gingrich et al., 1997; Huggins and Hodges, 1941). Androgen 

independence could also be acquired through changing AR function by making it more 

sensitive to low androgen levels or allowing it to bind to other steroid hormones (Elo et al., 

1995; Veldscholte et al., 1992). In addition, AR was also found to be activated by various 

growth factors in prostate tumors (Culig et al., 1994). Loss of chromosome 17p and the 

residing p53 gene is also an event detected in advance and metastatic CaP (Saric et al., 

1999) although the frequency of p53 mutation in CaP is less common compared to other 

cancers (Kleihues et al., 1997). Such an observation could be explained by the possibility 

that most patients die from other carcinoma before CaP develops. It could also be due to 

difficulty in detecting frequenct p53 mutations occurring in more aggressive forms and in 

hard to get tissues (Abate-Shen and Shen, 2000). Another feature found in advanced, 

hormone-refractory CaP would be the alteration of the Bcl2 gene. Overexpression of the 

gene was found to confer resistance to apoptosis (Colombel et al., 1993) and also resistance 

to chemotherapy (Tu et al., 1995). 

 

 

 

2.3 Annexin VII (ANXA7) and Prostate Cancer.  

 

 Annexin VII (ANXA7) or also known as synexin was first discovered and reported 

in 1978 by Creutz and colleagues. The protein was isolated from the bovine adrenal 

medulla. Synexin got its name from the Greek word synexis which means “meeting” due to 

its ability of making chromaffin granules aggregate or “meet” (Creutz et al., 1978). The 



 

27 

 

human synexin was later on isolated and its sequence and structure elucidated by Burns et 

al. (Burns et al., 1989). Synexins was also then identified in different organisms such as the 

frog Xenopus laevis (Srivastava et al., 1996), mouse (Zhang-Keck et al., 1993) and 

Dictyostelium slime mold (Doring et al., 1991).  

 In order to distinguish the different origins of Annexin VII, the gene in human is 

written in italics and with uppercase letters (ANXA7) while the gene from mouse in italics 

and first letter uppercase (Anx7). The gene from other species is written in italics with 

lowercase letters (anx7) (Srivastava et al., 2001).  

 Human ANXA7 gene is located at chromosome 10q21 and has a molecular weight 

of approximately 51 kilo Dalton (kDa) (Srivastava et al., 2001). When compared with 

human ANXA7, proteins such as endonexin II, bovine calpactin I heavy chain, lipocortin I, 

protein II and calelectrin 67K, all belonging to a family of calcium-dependent membrane 

binding proteins showed major homology. This could mean that ANXA7 also belonged to 

this group of membrane binding proteins. ANXA7 has a unique N-terminal region that is 

hydrophobic with repetitive motifs in the protein sequence that may act as “structural 

stabilizers”. The C-terminal is more conserved and has four imperfect repeats which do not 

have any known function but due to its highly anionic character, the repeats could be the 

calcium binding sites (Burns et al., 1989). The synexin did not follow the usual structure of 

membrane channel proteins formed by non-amphipathic helical regions, therefore a 

secondary structure for the ANXA7 was proposed by Burns and colleague which places the 

hydrophobic regions exposed to and the hydrophilic regions hidden from the membrane. 

The model accounts for the voltage gating feature of the synexin (Burns et al., 1989). 

ANXA7 was proposed to be involved in exocytosis as an intracellular receptor for Ca
2+

 

from the observation of calcium-dependent aggregation of chromaffin granules (Creutz et 
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al., 1978). Direct association of ANXA7 with calcium occurs when ANXA7 undergoes 

self-association in the presence of calcium. This correlates with chromaffin granule 

aggregation (Creutz et al., 1979). Involvement of ANXA7 in exocytosis was confirmed 

when it catalyzed the fusion of phospholipid vesicles (Hong et al., 1981) and fusion of 

specific phospholipid membranes (Hong et al., 1982). ANXA7 membrane fusion activity 

was augmented by binding to GTP and deactivated upon GTP hydrolysis (Caohuy et al., 

1996). This finding suggest that ANXA7 is a Ca
2+

-dependent GTP binding protein and 

further supports its role as a direct mediator of exocytosis in cells.  

   A study conducted to find out the involvement of ANXA7 in pancreatic β-cell Ca
2+

 

signaling produced two types of Anx7 mutant mouse, one with a null(-/-) mutation and the 

other a heterozygous (+/-) mutation. The null mutant was found to be lethal while the 

heterozygous mutant was viable with hyperplastic islets of Langerhans and β cell 

hypertrophy phenotypes (Srivastava et al., 1999). Production of this Anx7(+/-) knockout 

mouse brought about the notion that it (Anx7) is involved in carcinogenesis due to the high 

frequency of tumor formation in older mice (Srivastava et al., 2001a). Another study 

carried out in the same year looked at the possible role of ANXA7 as a tumor suppressor 

gene (TSG) in prostate cancer. It showed that ANXA7 was able to suppress growth of 

various tumor cell lines with effects comparable to well known TSG, p53. An inverse 

correlation was seen between ANXA7 protein expression and CaP progression. ANXA7 

levels were decreased markedly or even lost in metastatic and recurrent hormone-

independent CaP, while still remained high in less advance stages.  The pattern observed in 

the gene expression correlated with other TSGs such as p53, CD44, KAI-1 and PTEN. In 

addition, loss of heterozygosity (LOH) and even homozygous deletion of the gene was 



 

29 

 

found in CaP tissues tested. Several of these observed features strongly support the idea of 

ANXA7 as a TSG crucial in prostate cancer progression pathway (Srivastava et al., 2001b).  

Further investigations have been carried out to determine the mechanism of tumor 

formation driven by mutation in the Anx7 gene. The Knudson two-hit model and the 

haploinsufficiency model was tested. From their data, Srivastava et al. observed the 

presence of normal Anx7 allele even in hepatocellular carcinoma heterozygous mice and 

this suggests that happloinsufficiency is the more suitable model. Several prominent Anx7 

downstream targets have been identified from cDNA microarray experiments which 

include BRCA1 and BRCA2, WT1 and DCC (significantly down-regulated) and APC, 

TSG101 and VHL (up-regulated) in malignant tissue as compared to normal tissue. Genetic 

instability and abnormalities in the DNA-repair mechanism is a result from Anx7 

haploinsufficiency. Such widespread effect of Anx7 loss and other characteristics of the 

gene strongly suggest it as a TSG with “gatekeeper” features (Srivastava et al., 2003).  

ANXA7 is also involved in breast carcinogenesis and was found to be significantly 

up-regulated in metastatic and HER-2 negative breast cancers as compared to primary 

breast tumors. This led to the suggestion that ANXA7 expression is associated with the 

most aggressive forms of HER-2 negative breast cancers. Thus it is postulated to be used as 

a biomarker for early detection of this form of breast cancer by monitoring the levels of 

ANXA7 in those suspected of having breast cancer. (Srivastava et al., 2004). However, the 

increased expression levels of ANXA7 in breast cancers conflicts with its TSG role in 

prostate cancers. A possible explanation for this could be the different types of ANXA7 

that is expressed in HER-2 negative breast cancers and in prostate cancers. HER-2 negative 

breast cancers could be expressing high levels of non-functional ANXA7. In prostate 

cancers the ANXA7 might be still functional but its expression is inhibited.   
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The role of ANXA7 as a TSG and a biomarker was further supported by a large scale 

study involving 4061 samples. The study aimed at looking into the involvement of ANXA7 

in hormonal dysregulation in prostate and breast cancer (Srivastava et al., 2007). By using 

human tissue microarrays (TMA), the group found that most of the neoplastic tissue types 

had reduced ANXA7 protein levels as compared to their normal counterparts and reduction 

increases as the tumor progresses to more advance stages. The reduced expression supports 

the role of ANXA7 as a TSG. ANXA7 expression that does not follow this pattern would 

probably reflect its other functions such as exocytosis and membrane fusion being exerted 

on those tissues. Reduced ANXA7 expression was also seen in tumors of glandular and 

non-glandular origin when compared to their respective normal tissues, supporting its 

tumor suppressive function. In comparing the ANXA7 expression between carcinoid 

(neuroendocrine derived) tumors and non-carcinoid tumors, they found that carcinoids have 

high expression level of ANXA7 while non-carcinoid tumors have varied expression levels 

from undetectable in some to present at high levels in others (Srivastava et al., 2007). This 

suggests a more probable association between ANXA7 and neuroendocrine biomarkers and 

not epithelial type biomarkers. Identification of several NKX binding sites in the analysis 

of the ANXA7 promoter suggests that the gene was coregulated by NKX3.1. However, 

further analysis via cDNA microarray of both ANXA7 and NKX3.1 did not support this 

notion. Instead two other genes involved in steroidogenesis, steroid sulfatase (STS) and 

SRY-box5 (SOX5) were suspected to be involved in the same transcriptional program as 

ANXA7. This correlation together with the presence of lipid and steroid hormone regulatory 

sites found in the ANXA7 promoter strongly points to the hormone-dependent tumor 

suppression features of ANXA7.   
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2.4 MicroRNA and cancer 

 

2.4.1 Dysregulation of microRNAs in cancer 

 

One of the foremost evidences of miRNAs being involved in tumorigenesis was the 

discovery of frequent deletion of miR15 and miR16 at a region in chromosome 13 of 

chronic lymphocytic leukemia (CLL) patients where previous studies failed to identify 

other coding genes in the region (Calin et al., 2002). From then on, many more findings 

directly linking miRNAs and various cancers such as colorectal neoplasia (Michael et al., 

2003), lung (Takamizawa et al., 2004) carcinomas and Burkitt’s lymphoma (Metzler et al., 

2004) were reported. A large scale genome analysis conducted in 2004 revealed that 

miRNA genes are non-randomly distributed in the genome and are frequently found in 

chromosomal fragile sites or near HPV integration sites (Calin et al., 2004). In addition to 

the dysregulation of individual miRNAs, clusters of miRNAs could also be dysregulated as 

well. MiR-17-92 cluster located in chromosome 13 that consists of seven miRNAs was 

found to be significantly overexpressed in lung cancers (Hayashita et al., 2005). These 

studies show the relevance of miRNAs in the process of tumorigenesis. 

  

In order to study the global expression of genes, microarray and gene profiling 

techniques are used. Similarly, the expression of hundreds or even thousands of miRNAs 

can also be simultaneously determined with miRNA microarrays and various profiling 

methods to get a more comprehensive list of the miRNAs that are dysregulated. A large 

scale profiling study of miRNAs in several types of human tissues and tumors was carried 
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out by Lu and colleagues. They profiled the expression of 217 miRNAs in 334 samples 

using a bead-based profiling system. Results from their study showed that miRNA 

expression profiles could be used to identify tumor origin and distinguish normal from 

cancerous tissue accurately (Lu et al., 2005). A microarray-based expression profiling of 

lung, breast, stomach, prostate, colon and pancreatic tumors was carried out on a total of 

363 samples and 177 normal samples. Data analysis showed that the miRNA signature 

tested in a majority of the tumors shared expression of several miRNAs (Volinia et al., 

2006). A compelling miRNA expression pattern was also observed in microarray profiles 

of primary glioblastomas tissues and cell lines (Ciafre et al., 2005). Likewise, other cancers 

such as lymphomas (Metzler et al., 2004), thyroid cancers (He et al., 2005) and liver 

cancers (Murakami et al., 2006) also have dysregulated miRNA expression profiles. Real-

time PCR is also another technique that has been used for miRNA expression profiling. A 

total of 222 human miRNA precursors were profiled from 32 human cell lines from 

prostate, lung, colorectal, breast, hematologic, pancreatic and head and neck cancers. The 

study introduced a new method to quantify individual members of identical miRNA 

isoforms (Jiang et al., 2005).  

 Several miRNA expression profiling has been conducted using the microarray 

platform to study prostate cancer (Mattie et al., 2006; Ozen et al., 2008; Porkka et al., 2007; 

Ambs et al., 2008). However, the data does not agree with one another and some of the 

miRNAs even show opposite expression. This could partly be due to the different 

measurement platforms used, selection of samples and purification of the RNA from the 

samples (reviewed by Schaefer et al., 2009). These confounding data might also be due to 

intricate relationships in the regulatory networks in the cells that we have yet to understand.
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2.4.2 microRNAs as tumor suppressors and oncogenes 

 

 Once the idea of various cancers having widespread dysregulation of miRNAs was 

established, studies moved on to elucidate the function of these (ncRNAs). MiRNAs can 

act as tumor suppressors by negative regulation of oncogenes or as oncogenes (also known 

as oncomirs) by inhibiting tumor suppressors (Morris and McManus, 2005). One of the 

early evidences of a miRNA being a tumor suppressor was the let-7 family of miRNA. 

Johnson and colleagues found that there were let-7 complementary binding sites in the 3’ 

UTR of the let60/ras which is a nematode ortholog for the human Ras genes and this led 

them to discover similar sites in all three human RAS (HRAS, KRAS and NRAS) 3’ UTRs. 

They then went on to experimentally prove the negative regulation of Ras by let-7 (Johnson 

et al., 2005). Concurrently, an inverse correlation was observed between let-7 and Ras 

expression in lung cancers (Takamizawa et al., 2004). Another example of miRNAs acting 

as tumor suppressors would be the modulation of c-Myc-induced proliferation by miR-17-

5p and miR-20a in a negative feedback loop mechanism. Both miRNAs tightly control cell 

proliferation induced by c-Myc by limiting the expression of a transcription factor, E2F1. 

This transcription factor which is involved in the promotion of cell cycle progression is also 

a target of c-Myc (O’Donnell et al., 2005).  

 Since miRNAs were found to be tumor suppressors, it raises the question of 

whether this class of small RNAs could also act as oncogenes? A study carried out by Tam 

and colleagues hint to the possibility for miRNAs to be oncogenes. Their study found that 

bic, a gene that codes for a ncRNA (Tam, 2001) is a collaborator of c-Myc during 

oncogenesis. The coexpression of both bic and c-Myc increased the proliferation of chicken 

embryo fibroblasts (CEFs) (Tam et al., 2002). The well studied miR-21 is a fine example of 
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an oncomir. It was found that this miRNA was overexpressed in hepatocellular carcinoma 

(HCC) as compared to normal liver tissue and targets the tumor suppressor gene, PTEN. By 

down-regulating PTEN, phosphorylation of downstream targets such as FAK and Akt 

increases and expression of matrix metalloproteases (MMPs) 2 and 9 which leads to cell 

growth, invasion and migration (Meng et al., 2007). A couple of other examples of 

oncomirs are miR-10b that promotes metastasis by suppressing HOXD10 (Ma et al., 2007) 

and the miR-17-92 cluster where its overexpression promotes proliferation, angiogenesis 

and cell survival while inhibiting differentiation (Olive et al., 2010).  

 There is no doubt that the list of miRNAs that belong to the class of tumor 

suppressors and oncogenes will increase as research intensifies but it should be cautioned 

that the characterization of miRNAs by just comparing their expression between cancer and 

normal cells are inaccurate. This is because some miRNAs could have both tumor 

suppressive and oncogenic functions in different cancers. Several miRNAs that have this 

duality of function are miR-125b (Le et al., 2009; Ozen et al., 2008), miR-181a, miR-181c 

and miR-220 (Fabbri et al., 2007). Therefore it is important to specify their function 

specific to the types of cancer (Cortez et al., 2011).   

 

2.4.3 Regulation of microRNAs  

 

As the role of microRNA in cancer becomes more evident, studies moved on to unveil the 

complex regulatory circuit of these small RNAs. This was done by identifying members of 

the genome that were regulating the miRNAs or being regulated by the miRNAs. The first 

account of a transcription factor being involved in regulating miRNAs was reported by 
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O’Donnell et al. Their examination of c-Myc, a transcription factor often dysregulated in 

cancers, revealed the activation of 6 miRNAs by this oncoprotein. Acitivation was achieved 

by direct binding of c-Myc to the miRNA cluster in vivo.  The group then found E2F1 

transcription factor to be the target of two miRNAs; miR-17-5p and miR-20a. This led 

them to propose a model where precise gene modulation is achieved via transcription 

activation and translation inhibition (O’Donnell et al., 2005). Another transcription factor 

that was identified to regulate miRNAs is the TSG p53. Doxorubicin-induced increase of 

p53 expression also saw the upregulation of several mature miRNAs while knockdown of 

p53 by siRNAs saw the predictable weakened expression of those miRNAs. Following 

DNA damage, several miRNAs are also post-transcriptionally upregulated in a p53-

dependent and p68/p72-dependent manner. Processing of pri-miRNAs is promoted by the 

association of p53 to Drosha or p68 (Suzuki et al., 2009). Besides transcription factors, 

other epigenetic factors such as aberrant CpG methylation was also found to be able to 

affect miRNA expression in cancers. CpG methylation of the miR-34a (a known p53 

target) promoter was found in multiple types of cancer cell lines (Lodygin et al., 2008). 

Hormones such as androgens also affect miRNA expression in different stages of CaP (Shi 

et al., 2007).  

 MiRNA targets are genes that are regulated post-transcriptionally by miRNAs. One 

example is the Bcl-2 gene that is often found to be overexpressed in several cancers. The 

Bcl-2 expression was repressed by direct interaction of miR-15 and miR-16 with the 3’ 

UTR of the gene. Repression of Bcl-2 results in apoptosis via the intrinsic pathway in 

leukemic cells (Cimmino et al., 2005). The proapoptotic Bak1 is another example of a 

miRNA target. It was found to be regulated by miR-125b in CaP. Downregulation of Bak1 
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together with other miR-125b targets can cause androgen independent (AI) cell growth (Shi 

et al., 2007).  

The findings reveal the complexity of the miRNA regulatory circuit in cancer and 

more studies should be carried out to complete this circuit and relate it to other regulatory 

networks for a deeper understanding of cancer. 

 

2.4.4 MicroRNAs and ANXA7 

 Currently there are no reports associating the regulation of miRNAs to the 

expression of ANXA7. Expression of miRNAs could be affected by various factors such as 

epigenetics and hormone regulation, thus it is postulated that dysregulation in homeostatic 

cellular processes such as calcium signaling would also affect the expression of miRNAs. 

ANXA7 is a Ca
2+

-dependent mediator of exocytosis and a hormone-dependent tumor 

suppressor. Therefore it is postulated that the dysregulation of ANXA7 in prostate cancers 

would also dysregulate the global miRNA expression pattern. 
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2.5 Study Objectives 

 

The roles of microRNAs in cancer regulation are growing. Future applications in 

the treatment of cancer as biotherapeutics and biomarkers are promising. It is our hope that 

this study brought new insights into the role of a recently discovered tumor suppressor 

gene, ANXA7 in the regulation of prostate cancer through the regulation of microRNAs. 

We also hoped that the global microRNA expression profile obtained from the altered 

expression of ANXA7 would reveal non-canonical target genes and signaling pathways 

that are dysregulated in prostate cancer. Hence, our objectives for this study were: 

1. To overexpress wild-type ANXA7 in PC-3 and DU 145 cells. 

2. To investigate the effect of ANXA7 overexpression on the global microRNA expression 

in PC-3 cells.  

3. To predict genes that are targeted by microRNAs that have altered expression due to 

overexpression of ANXA7. 

4. To postulate putative cancer-related pathways associated with microRNAs and ANXA7.  



 

38 

 

Chapter 3: Methodology 

3.1 Materials 

 

3.1.1 Cancer Cell Culture Growth Media and Reagents 

 

3.1.1.1 RPMI 1640 

 

RPMI 1640 liquid medium (1x) with phenol red (containing 2.05mM L-Glutamine) was 

purchased from a commercial supplier (HyClone
®
, USA). The medium was supplemented 

with 10% (v/v) Fetal Bovine Serum (JR Scientific, Inc., USA) and 100 u/100 μg 

Penicillin/Streptomycin and stored in 4°C. 

The RPMI 1640 culture medium used during stable transfection was prepared the same 

way as above except the Penicillin/Streptomycin was replaced with G-418 sulfate solution 

to a final working concentration of 0.8mg/ml.  

 

3.1.1.2 Fetal Bovine Serum (FBS) 

 

 Fetal Bovine Serum was purchased from a commercial manufacturer (JR Scientific, 

Inc., USA). Aliquots were made and stored in -20°C.  
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3.1.1.3 Dulbecco’s Phosphate Buffered Saline (D-PBS) 

 

 A 1L 10x D-PBS stock solution was prepared, filtered, autoclaved and stored in 

room temperature. The stock consists of 26.67mM KCl, 14.71mM KH2PO4, 1379.31mM 

NaCl and 80.6mM Na2HPO4. The pH of the stock was adjusted to pH 7.4. A 1x working 

solution was made by dissolving 1/10 of stock with dH2O and autoclaved at 121°C, 15psi 

for 15 minutes to sterilize. 

 

3.1.1.4 0.53mM EDTA solution  

 

 A 0.53mM (w/v) EDTA solution in 1L was prepared by dissolving 197.3mg EDTA 

(Gibco
®
, USA) in 1L of 1X PBS solution and autoclaved at 121°C, 15psi for 15 minutes to 

sterilize.      

 

3.1.1.5 0.25% Trypsin-0.53mM EDTA solution 

 

Trypsin of porcine pancreas origin was purchased from manufacturer (SAFC 

Biosciences, USA). The trypsin comes in 10x concentration of 2.5% (v/v). A 0.25% (v/v) 

Trypsin, 0.53mM EDTA working solution was prepared by diluting the 10x stock in 

0.53mM EDTA solution under aseptic conditions and stored in room temperature.  
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3.1.1.6 10,000 u per ml/10, 000 μg per ml Penicillin/Streptomycin solution 

 

 The Penicillin/Streptomycin antibiotic solution was purchased from manufacturer 

(Lonza, USA). The antibiotic solution comes in 100x concentration of 10,000 u/ml of 

Penicillin and 10, 000 μg/ml of Streptomycin. The antibiotic solution was added into RPMI 

1640 medium as shown above. 

3.1.1.7 Antibiotic G-418 Sulfate 

 

 The antibiotic G-418 Sulfate was purchased from a commercial supplier (Promega, 

USA) in powder form and was stored in room temperature. A 50mg/ml stock solution was 

prepared by dissolving the powder in distilled H2O and sterile filtered before being stored 

at -20°C. The stock solution was used to prepare RPMI 1640 culture medium (Section 

3.1.1.1) for antibiotic selection during stable transfection. 

 

3.1.2 Bacterial Culture Growth Media and reagents 

 

3.1.2.1 Luria-Bertani (LB) Medium 

 

 The LB medium (Laboratorios CONDA, Spain) was purchased from a distributor. 

The LB medium contained 1% (w/v) Tryptone, 0.5% (w/v) Yeast Extract and 0.5% (w/v) 

NaCl with final pH 7.0 ± 0.2 at 25°C. The powdered media was dissolved in 1 Liter 

distilled water (dH2O) and sterilized by autoclaving at 121°C, 15psi for 15 minutes. The 

medium was stored in 4°C for up to a month. 
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3.1.2.2 LB Agar 

 

 The LB Agar was obtained from the same manufacturer as the LB medium. The 

components are all the same with the addition of 1.5% (w/v) bacteriological agar. LB Agar 

was also dissolved in 1 Liter dH2O and autoclaved at 121°C, 15psi for 15 minutes. It was 

then cooled to approximately 50°C and added with antibiotics if necessary before being 

poured into plates. Plates were then sealed and stored upside down in 4°C for up to a month.  

 

3.1.2.3 Antibiotics 

 

 Stock 100x liquid Kanamycin Sulfate (GIBCO
®

, USA) with a concentration of 

10mg/ml was purchased, aliquot and stored in -20°C, in the dark. Growth media and agar 

plates were supplemented with 50μg/ml Kanamycin and stored in 4°C for up to a month. 

 Powder Ampicillin Sodium Salt (GIBCO
®
, USA) was purchased. The Ampicillin 

powder was rehydrated in sterile dH2O to obtain a concentration of 10mg/ml and stored in 

4°C. Growth media and agar plates were supplemented with 100μg/ml Ampicillin and 

stored in 4°C for up to a month.  
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3.1.2.4 Restriction enzymes (RE) and T4 DNA Ligase 

 

 FastDigest
®

 BamHI, FastDigest
® 

BglII, FastDigest
®
 EcoRV and FastDigest

® 
NotI 

restriction enzymes were purchased from manufacturer (Fermentas, Canada) and stored in -

20°C. The T4 DNA Ligase enzyme was bought from the supplier in the form of 20,000 

units (New England Biolabs, USA) and stored in -20°C. EcoRI enzyme was obtained from 

Vivantis Technologies, Malaysia.  

 

3.1.3 Buffers and stock solutions 

 

3.1.3.1 10x Tris borate EDTA buffer (TBE) 

 

 The TBE buffer was bought in a 10x liquid concentrate form (Amresco
®
, USA). A 

1x working solution was prepared by dissolving in DEPC-treated H2O. The 1x working 

TBE buffer contains 89mM Tris, 89mM Borate and 2mM EDTA.  

 

3.1.3.2 25x Tris Acetate EDTA buffer (TAE) 

 

 The TAE buffer was obtained in a 25x liquid concentrate form (Amresco
®
, USA). 

A 1x working solution was prepared by dissolving in dH2O. The 1x working TAE buffer 

contains 40mM Tris-Acetate and 1mM EDTA.    
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3.1.3.3 6x DNA loading dye 

 

 The 6x Orange DNA loading dye was purchased from manufacturer (Fermentas, 

Canada) and stored in -20°C.  

 A loading dye with denaturing conditions were made by adding 1% SDS solution 

into the 6x Orange DNA loading dye and stored in -20°C. This loading dye is used to 

resolve products of ligation.   

 

3.1.3.4 2X RNA loading dye 

 

 The 2X RNA loading dye was obtained from Fermentas, Canada and stored in -

20°C.  

 

3.1.3.5 Ethidium Bromide (EtBr) Solution  

 

 Ethidium Bromide stock solution was bought from the manufacturer (Sigma-

Aldrich, USA) in a concentration of 10mg/ml (v/v). The EtBr working solution is prepared 

by dissolving the stock solution in dH2O (for DNA agarose gel) or DEPC-treated H2O (for 

RNA agarose gel) into a working concentration of 0.5μg/ml (v/v).  
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3.1.4 Commercial Kits 

 

 Commercial Kits obtained and used for this study were: 

1. RNeasy Plus Mini Kit (Qiagen, Germany). 

2. High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, USA). 

3. GoTaq
®
 Flexi DNA Polymerase Kit (Promega, USA). 

4.  Pfu DNA Polymerase (Fermentas, Canada). 

5. QIAquick Gel Extraction Kit (Qiagen, Germany). 

6. pENTR
™

/D-TOPO
®
 Cloning Kit (Invitrogen, USA). 

7. PureYield™ Plasmid Miniprep System (Promega, USA). 

8. pcDNA3.1/nV5-DEST™™ Gateway™™ Vector Pack (Invitrogen, USA). 

9. Agilent RNA 6000 Nano Kit (Agilent Technologies, USA). 

10. FlashTag
™

 Biotin RNA Labelling Kit for Affymetrix
®
 GeneChip

®
 miRNA Arrays 

(Genisphere, USA). 

11. GeneChip
®

 miRNA Array (Affymetrix, USA) 

12. mirVana
™

 qRT-PCR miRNA Detection Kit (Ambion, USA) 

3.1.5 Chemical Reagents 

 

 Chemical Reagents were purchased from various manufacturers which include 

Sigma-Aldrich
®
, USA; Promega Corp., USA; Merck, Germany; Thermo Fisher Scientific, 

USA; GIBCO
®
 Invitrogen, USA; AMRESCO, USA and Roche, Germany. 
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3.1.6 Bacterial strains, plasmid vectors and oligonucleotides 

 

3.1.6.1 Bacterial Strains  

 

 The bacterial strains used in this study is shown in the table below: 

Table 3.1: Bacterial strains used. 

Name Description Reference/Source 

One Shot
®
 TOP10 E. 

coli  

F- mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacΧ74 recA1 araD139 

Δ(araleu) 7697 galU galK rpsL (StrR) 

endA1 nupG 

Invitrogen, USA 

Library Efficient
®
 

DB3.1™  E. coli 

F
-
 gyrA462 endA1 (sr1-

recA) mcrB mrr hsdS20(rB-, mB-

) supE44 ara-

14 galK2 lacY1 proA2 rpsL20(Sm
R
) xyl-

5 - leu mtl1 

Invitrogen, USA 
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The plasmid vectors used for this research are pENTR™/D-TOPO
®
 (Invitrogen, USA), 

pcDNA3.1/nV5-DEST™ (Invitrogen, USA) and pIRES2-AcGFP1 (Clontech USA). Maps 

of the plasmids are as follow: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Map and features of pENTR™/D-TOPO® vector (www.Invitrogen.com) 

 



 

47 

 

 

 

 

 

  

Figure 3.3: Map and features of pcDNA3.1/nV5-DEST™ vector 

(www.Invitrogen.com) 

Figure 3.2 Map and features of pIRES2-AcGFP1 vector (www.Clontech.com) 
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3.1.6.3 Oligonucleotides 

 Oligonucleotides were designed using Primer3 and Primer-BLAST software and 

synthesized by commercial manufacturer (First BASE Laboratories, Malaysia). 

Table 3.2: Oligonucleotides used in this study. Underlined sequence represents a RE 

recognition site. 

Name Sequence 5’ to 3’ 

Length and 

Description 

ANXA7 Forward 

Primer 2 (A7P2F) 

CACCAGAATGTCATACCCAGGCTA 24nt 

ANXA7 Reverse 

Primer 2 (A7P2R) 

TTACCCTGATACGGTCCTTGACAG 24nt 

ANXA7 Forward 

Primer 3 (A7P3F) 

CACCTGGGCTGTGACGCTGCT  21nt 

ANXA7 Reverse 

Primer 3 (A7P3R) 

CCCTCCTACTGGCCCACAATAGCC  24nt 

F_EcoRI_pcDNA3.

1/ANXA7 

TAACATGAATTCTGGGCTGTGACGCTGCT

GCT  

32nt 

R_BamHI_pcDNA

3.1/ANXA7 

ATTCCTGGATCCCCCTCCTACTGGCCCAC

AATA 

33nt 

β-actin Forward 

Primer 3 (B3F) 

AGCCTCGCCTTTGCCGATCC  

 

20nt 

β-actin Reverse 

Primer 3 (B3R) 

 GGGCAGCGGAACCGCTCATT   

 

20nt 
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pcDNA3.1/nV5-

DEST Forward 

Primer 

(FpcD3.1_778) 

 GCGGTAGGCGTGTACGGTGG  20nt 

pcDNA3.1/nV5-

DEST Reverse 

Primer 

(RpcD3.1_2790) 

 AAGGAAGGCACGGGGGAGGG  20nt 

F_pIRES2_528 GCGGTAGGCGTGTACGGTGG 20nt 

R_pIRES2_1029 ACGTGGCACTGGGGTTGTGC 20nt 

M13F (-20)  GTAAAACGACGGCCAGT  

17nt Universal 

Primer 

M13R-pUC (-26) CAGGAAACAGCTATGAC  

17nt Universal 

Primer 

T7 promoter TAATACGACTCACTATAGGG  

20nt Universal 

Primer 

BGH reverse CTAGAAGGCACAGTCGAGGC  

20nt Universal 

Primer 

Table 3.2, continued 
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3.1.7 DNA ladder marker 

 

 The DNA ladder marker used was the O'GeneRuler™ 1 kb DNA Ladder, ready-to-

use (Thermo Scientific, USA) unless stated otherwise and had fragment sizes from 250 bp 

to 10,000 bp. The marker was stored in -20°C. The ladder is as shown in Figure 3.4.  

 

 

 

Figure 3.4:  Molecular weight, mass and percentage of the O’GeneRuler 1kb DNA 

Ladder ready-to-use marker fragments after an agarose gel electrophoresis. Adapted 

from http://www.thermoscientificbio.com/nucleic-acid-electrophoresis/generuler-1-kb-

dna-ladder-ready-to-use-250-to-10000-bp/ . Retrieved September 27, 2013. 
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3.1.8 RNA ladder marker 

 

 The RNA ladder marker used was the RiboRuler™ High Range RNA Ladder, 

ready-to-use (Thermo Scientific, USA) unless stated otherwise. It had fragment size 

ranging from 200bp to 6000bp. The marker was stored in -20°C. The ladder is as shown in 

Figure 3.5. 

 

 

 

Figure 3.5: Molecular weight and mass of the RiboRuler™ High Range RNA Ladder, 

ready-to-use marker fragments after a native agarose gel (left) and a formaldehyde 

agarose gel (right) electrophoresis. Adapted from 

http://www.thermoscientificbio.com/nucleic-acid-electrophoresis/riboruler-high-range-rna-

ladder-ready-to-use/ . Retrieved September 27, 2013. 
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3.1.9 Cancer cell lines 

 

 PC-3 (cat. no. CRL-1435) and DU 145 (cat. no. HTB-81) prostate cancer cell lines 

were purchased from American Type Culture Collection (ATCC).  PC-3 cell line originated 

from the bone metastasis of a prostatic adenocarcinoma from a 62 years old Caucasian 

male and the cells are epithelial adherent cells. Meanwhile, DU 145 cell line originated 

from a brain metastasis of a prostate carcinoma from a 69 years old Caucasian male and the 

cells are also adherent epithelial cells.   

 

3.1.10 Normal Prostate Epithelial cDNA 

 

 Human Prostate Epithelial Cell cDNA [HPrEpiC cDNA] (cat. no. 4414) was 

purchased from ScienCell™ Research Laboratories. The cDNA was prepared by reverse 

transcription of RNA extracted from normal human primary cells.  
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3.2 Methods 

 

3.2.1 Cell Culture 

 

 Cells were cultured according to supplier’s protocol. Briefly, cells were cultured in 

RPMI 1640 with 10% FBS and 100 u/100 μg Penicillin/Streptomycin, at 37°C in a 

humidified, 5% CO2 environment for 2 to 3 days until about 70-80% confluency before 

being used for downstream work or subcultured. Subculturing into a new flask was 

performed after media was discarded and cells washed twice with 1x PBS. Trypsin-EDTA 

was used as the dissociating agent.  

 

3.2.2 Total RNA Extraction 

 

 Total RNA was isolated using two methods. The first method was by using the 

RNeasy Plus Mini Kit (Qiagen, Germany) and according to manufacturer’s 

recommendation. The second method was by using the TRIZOL reagent according to 

manufacturer’s instructions (Invitrogen, USA). Purity and integrity of RNA was 

determined by spectrophotometry and Tapestation 2200 (Agilent Technologies, Inc, USA) 

respectively.  
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3.2.3 Agarose Gel Electrophoresis 

 

3.2.3.1 DNA Agarose Gel Electrophoresis (AGE) 

 

 Agarose gels were prepared according to previously (Sambrook and Russell., 2001). 

Briefly, a solution of agarose in 1x TAE at a percentage appropriate to separate the DNA 

fragments of the expected size was prepared. For example, a 1% (w/v) gel was prepared by 

dissolving 300mg of agarose powder in 30ml of 1x TAE. Agarose in the solution was then 

dissolved by heating in a microwave and cooled to 55°C before the gel was poured into a 

casting tray. Once the gel hardens after about 45 minutes, a small amount of buffer was 

poured on the gel and the comb removed carefully. The gel was then placed in the 

electrophoresis tank and covered in sufficient buffer to a depth of approximately 1mm.  

 DNA samples are mixed with the 6x Orange DNA loading dye (Fermentas, Canada). 

After mixing, the sample was loaded carefully into the slots of the prepared gel. The 

O’GeneRuler™ 1kb DNA Ladder (Fermentas, Canada) was then loaded into the left or 

right slots of the gel. The gel was then run at 1-5V/cm length of the gel until the dye front 

has reached the appropriate distance through the gel. Gels were stained in EtBr solution for 

10 minutes and destained with dH2O for 15 minutes. The gel was then viewed and 

annotated with AlphaImager
®
 2200 Gel Documentation System (Cell Biosciences, USA). 
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3.2.3.2 Native RNA Agarose Gel Electrophoresis (AGE) 

 

 The Agarose Gel was prepared according to DNA Agarose Gel method except that 

the buffer is substituted with 1x TBE. The RNA samples were mixed with the 2x RNA 

Loading Dye (Fermentas, Canada). The RiboRuler™ High Range RNA Ladder (Fermentas, 

Canada) was use as size standards. Eletrophoresis settings and staining are according to 

DNA AGE. Viewing is also done with the same gel documentation system as in section 

3.2.3.1.   

 

3.2.4 Reverse Transcription (RT) 

 

 The total RNA was reverse transcribed to cDNA using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, USA) and according to manufacturer’s 

protocol. The concentration of total RNA used for each RT-PCR reaction was 0.1μg/μl, 

obtained by diluting stock total RNA extracted with nuclease-free H2O.  

  

3.2.5 PCR Amplification of Annexin VII (ANXA7) gene 

 

 PCR amplification of the human ANXA7 gene was first optimized from the cDNA 

obtained from the RT reaction of PC-3 total RNA. Once conditions were optimized, 

amplification was then carried out on the normal human prostate epithelium cDNA 

purchased commercially (Sciencell, USA). The oligonucleotide primers used were: 

Forward primer (A7P3F) - 5’ CAC CTGGGCTGTGACGCTGCT 3’ and Reverse primer 
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(A7P3R) - 5’ CCCTCCTACTGGCCCACAATAGCC 3’. All PCR was carried out in 

0.20mM dNTPs, 2.0mM MgSO4, 0.1μM of each primer and 0.625u of Pfu DNA 

Polymerase (Fermentas, Canada) in a final reaction volume of 25μl. Amplification was 

performed with an initial denaturation temperature of 94°C for 3min followed by 30 cycles: 

denaturation at 94°C for 1min, annealing at 61°C for 1min, extension at 72°C for 4min and 

1 cycle of final extension at 72°C for 15min. PCR products were resolved by agarose gel 

electrophoresis and purified with QIAquick Gel Extraction Kit (Qiagen, Germany) 

according to manufacturer’s protocol.  

 

3.2.6 pENTR/ANXA7 Vector Construction and Transformation of Construct into E. 

coli 

 

 The ANXA7 PCR product was inserted to pENTR™/D-TOPO
®
 vector according to 

manufacturer’s instructions (Invitrogen, USA) and will be known as pENTR/ANXA7. 

Briefly, purified ANXA7 PCR product was mixed with the vector and incubated at room 

temperature for 30 minutes. The mix was then added into a vial of chemically competent 

One Shot
®
 TOP10 E. coli and was incubated on ice for 30min. Cells were heat shocked 

before being added with S.O.C. medium or LB medium. Cells were then incubated at 37°C 

with shaking for 1 hour before being spread on a prewarmed LB selective plate. Plate was 

incubated overnight at 37°C before being checked for presence of single colonies.  
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3.2.7 Colony PCR of Putative Clones 

 

 Colony PCR was carried out on transformed clones found on the selective plates. 

The PCR was carried out in 0.3mM dNTPs, 3mM MgCl2, 0.1μM of each A7P3F and 

A7P3R primers and 0.5u of GoTaq
®
 Flexi DNA Polymerase (Promega, USA) in a final 

volume of 20μl. Using a sterile pipette tip, a colony was picked and rubbed on the bottom 

of the PCR reaction tube. The cells sticking to the wall of the tube acted as the template for 

the PCR reaction. Amplification was carried with initial denaturation temperature of 95°C 

for 5min, followed by 30 cycles: denaturation at 95°C for 1min, annealing at 55°C for 1min, 

extension at 72°C for 2min and 1 cycle of final extension at 72°C for 5min. PCR products 

were resolved with agarose gel electrophoresis and positive transformant/s (putative clones) 

were identified and selected to be used in downstream steps.     

 

3.2.8 pcDNA3.1/ANXA7 Vector Construction and Transformation of Construct into E. 

coli 

  

The pcDNA3.1/nV5-DEST™ expression vector containing the ANXA7 gene 

(pcDNA3.1/ANXA7) was constructed via a recombination reaction according to 

manufacturer’s protocol (Invitrogen, USA)  and transformed into One Shot
®
 Chemically 

Competent TOP10 E. coli cells according to section 3.2.6. Positive transformants were then 

screened using colony PCR according to section 3.2.7. 
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3.2.9 Plasmid Purification 

 

  Positive putative E. coli clones were cultured overnight in LB medium with added 

antibiotics, shaking at approximately 225rpm and at a temperature of 37°C for about 16 

hours (until the O.D.600 of a tenfold dilution of the culture was 0.1-0.35) before the 

plasmids were isolated using the PureYield™ Plasmid Miniprep System according to 

manufacturer’s recommendations (Promega, USA). Briefly, cells were collected by 

centrifugation and resuspended again in water before being lysed with lysis buffer. 

Neutralization buffer was added to neutralize the lysis buffer in the lysate. Lysate was then 

collected and plasmids were bound on the membrane in the spin column. The endotoxin 

removal wash step and column wash step was each incubated for 1 minute at room 

temperature. The plasmid was then eluted from the column membrane with water.     

 

3.2.10 Restriction Enzyme (RE) Digestion and Analysis 

 

 Based on the Restriction Map of pENTR™/D-TOPO
®
 vector obtained from 

www.invitrogen.com and analysis using the NEBcutter V2.0 software (New England 

BioLabs, USA), restriction endonucleases that cut once in the vector and once in the 

ANXA7 gene fragment were chosen for ease of downstream analysis and in this case EcoRV 

was selected.  

 

 

http://www.invitrogen.com/
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 Restriction enzyme digestion of 0.25μg or 0.5μg of purified plasmid was carried out 

using half the volume recommended of the FastDigest
®
 EcoRV enzyme (Fermentas, 

Canada) in a final reaction volume of 20μl. The product of the RE digest was then resolved 

with agarose gel electrophoresis and its restriction pattern determined.  

 

3.2.11 Sequencing of Plasmid Constructs and Nucleotide Sequence Analysis 

 

 Constructs extracted from liquid culture of putative clones confirmed to have the 

ANXA7 gene cloned in the correct orientation with RE digest were then sent to a 

sequencing facility (First BASE Laboratories, Malaysia). The forward and reverse 

sequencing primers used to sequence the ANXA7 gene in the cloning constructs were the 

M13F (-20) and the M13R-pUC (-26) universal primers, respectively. The forward and 

reverse sequencing primers used to sequence the ANXA7 gene in the pcDNA3.1/nV5-

DEST™ vector were the T7 promoter and the BGH reverse universal primers, respectively. 

All universal primers were provided by the sequencing facility. The primers to sequence 

ANXA7 construct inserted into the pIRES2-AcGFP1 vector were forward (F_pIRES2_528) 

– 5’ GCGGTAGGCGTGTACGGTGG 3’ and reverse (R_pIRES2_1029) – 5’ 

ACGTGGCACTGGGGTTGTGC 3’.    

 To view the chromatogram and check the quality of the sequences returned, the 

Sequence Scanner version 1.0 software was used (Applied Biosystems, USA). After 

analyzing the chromatogram, the nucleotide  sequences were trimmed and aligned using 

the BioEdit software (Hall., 1999). The nucleotide sequences was then compared to two 

genomic contig assemblies (Accession number NT 030059.13 and NW 001837987.2) in 
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the National Center for Biotechnology Information (NCBI) database 

(www.ncbi.nlm.nih.gov) using their BLAST program. Sequences were also manually 

compared to GenBank reference sequences i) Homo sapiens annexin A7, transcript variant 

1, mRNA (asession number: NM_001156.3) and ii) Homo sapiens annexin A7, transcript 

variant 2, mRNA (asession number: NM_ 004034.2) using Bioedit software to check 

whether or not sequences were identical to the reference sequence. Clones containing 

vector with sequence identical to the reference sequence will be used for further 

downstream work.    

 

3.2.12 Propagation of pcDNA3.1/nV5-DEST™ and pIRES2-AcGFP1 vectors 

 

 The pcDNA3.1/nV5-DEST™ vector (Invitrogen, USA) was transformed into 

Library Efficient
®

 DB3.1™ competent E. coli (Invitrogen, USA) while the pIRES2-

AcGFP1 vector (Clontech, USA) was transformed into One Shot
®
 TOP10 E. coli 

(Invitrogen, USA) according to manufacturer’s protocol. Briefly, the vector was added to 

thawed competent cells. The cells were then incubated on ice for 30 minutes before being 

heat shocked and returned to ice for 2 minutes. Cells were then cultured in S.O.C. medium 

or LB medium for 1 hour with shaking at 37°C before it was spread on a prewarmed 

selective plate and incubated overnight at 37°C. Colonies were observed the next day and 

picked for screening via colony PCR according to section 3.2.7 with some modifications. 

 The PCR to screen for pcDNA3.1/nV5-DEST™ vector was carried out using forward 

primer (FpcD3.1_778) - 5’ GCGGTAGGCGTGTACGGTGG 3’ and reverse primer 

(RpcD3.1_2790) - 5’ AAGGAAGGCACGGGGGAGGG 3’.  
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The PCR to screen for pIRES2-AcGFP1 vector meanwhile uses F_pIRES2_528 forward 

and R_pIRES2_1029 reverse primers with a 58°C annealing temperature and an extension 

time of 3min each cycle for a PCR reaction of 25 cycles.   

Positive transformants were further cultured and the expression vector isolated according to 

section 3.2.9.       

   

3.2.13 Transfer of ANXA7 gene from pcDNA3.1/ANXA7 to pIRES2-AcGFP1 vector 

  

 The ANXA7 gene inserted into pcDNA3.1/nV5-DEST™ was PCR amplified 

according to section 3.2.5 but using F_EcoRI_pcDNA3.1/ANXA7 and 

R_BamHI_pcDNA3.1/ANXA7 forward and reverse primers, respectively. These primers 

are designed with an RE recognition site within each; EcoRI on the forward primer and 

BamHI on the reverse primer (Table 3.3 under Materials). The RE site facilitates the 

cloning of the PCR product into the corresponding RE sites in the pIRES2-AcGFP1 vector. 

The cycling conditions were the same except for the annealing temperature used which was 

between 53-68°C and amplification was done with 35 cycles. 

 A 0.2μg of purified ANXA7 PCR product were restricted with FastDigest
®

  BamHI 

(Fermentas, Canada) and EcoRI (Vivantis Technologies, Malaysia) in a 30μl reaction 

incubated in FastDigest
®

 buffer for 1 hour in 37°C while 0.2μg of pIRES2-AcGFP1 vector 

were also restricted with both enzymes in a 20μl reaction under the same conditions. 

Enzymes were inactivated by heat at 80°C for 20min. Ligation was then carried out in a 

20μl reaction with 1μl of T4 DNA Ligase (New England Biolabs, USA) mixed with 

restricted ANXA7 PCR product and restricted pIRES2-AcGFP1 vector in a 3:1 insert to 
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vector molar ratio. Reaction was incubated in room temperature for 1 hour and the product 

of the ligation was resolved with agarose gel electrophoresis. Ligation product was then 

transformed into E.coli according to Section 3.2.6 and colony PCR was carried out to 

confirm the presence of pIRES2-AcGFP1 vector with ANXA7 insert according to Section 

3.2.7 but using F_pIRES2_528 forward and R_pIRES2_1029 reverse primers. The 

annealing temperature used was 58°C and the time for the extension step was 3min each 

cycle and the PCR was carried out for 25 cycles. Products of the PCR were resolved with 

agarose gel electrophoresis. 

 Clones containing the desired construct (pIRES2-AcGFP1-ANXA7) were cultured 

and plasmids were then purified according to Section 3.2.9. The plasmids were subjected to 

BamHI digestion in 20μl reaction incubated at 37°C for 1 hour and analyzed using agarose 

gel electrophoresis. Plasmids were then sent for sequencing according to Section 3.2.11. 

  

3.2.14 Stable Transfection of Cell Line 

 

 PC-3 cells and DU 145 cells were seeded at 1 x 10
5
 cells/well and 2 x 10

5
 cells/well, 

respectively in a 6-well plate, in 2 ml of growth medium and cultured for about 48 h until 

90% confluency. Transfection was performed using X-tremeGENE HP transfection reagent 

(Roche, Penzberg, Germany). The ratio between transfection reagents and vectors were 

optimized using the empty vector pIRES2-AcGFP1 (Roche, Penzberg, Germany), and was 

found that a ratio of 3:1 for PC-3 cells and a ratio of 2:1 for DU 145 yielded maximum 

transfection efficiency. Cells were transfected for approximately 48 h and expression of 

green fluorescence protein (GFP) was observed. Cells were then selected with medium 
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containing G418 (Promega, Madison, WI, USA) at 600 μg/ml. for 14 days or longer until a 

stable population of cells was established. Cells that were transfected with empty vectors 

were used as negative controls. Total RNA was extracted and used for miRNA microarray, 

qRT-PCR analysis.   

 

3.2.15 RT-qPCR of ANXA7 

 

Total RNA was extracted from cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 

according to manufacturer’s protocol. The integrity of the total RNA was determined with 

the Agilent 2200 Tapestation (Agilent Technologies, Santa Clara, CA, USA) and samples 

with RIN value of ≥7 were used. For ANXA7 mRNA detection, RT-qPCR was performed 

with SuperScript III SYBR Green One-Step RT-qPCR Kit with ROX (Invitrogen, Carlsbad, 

CA, USA) in 10 μl reactions with CFX96™ Real Time PCR Detection System (Bio-Rad, 

Hercules, CA, USA). β-actin mRNA levels were detected for normalization and 

quantification purposes. PCR primers used were: (ANXA7 forward)-5’- 

TTACCCTAGTCAGCCTGCCA-3’,  

(ANXA7 reverse)-5’-GCCTGCTCATCTGTCCCAAA-3’,  

(β-actin forward)-5’-AAGCCACCCCACTTCTCTCTAA-3’ and  

(β-actin reverse)-5’-ACCTC CCCTGTGTGGACTTG-3’.  

All RT-qPCR experiments were performed with two biological replicates and three 

technical replicates. 
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3.2.16 MicroRNA microarray expression analysis 

 

 MiRNA expression profiles were obtained using GeneChip miRNA Array 

(Affymetrix, Santa Clara, CA, USA) according to manufacturer’s protocol. Each array 

containing 46,228 probes, representing over 6703 miRNA sequences (71 organisms) from 

the Sanger miRNA database v. 11. Briefly, 1 μg of PC-3 total RNA was extracted from 

cells transfected with pIRES2-AcGFP1-ANXA7 (sample group) and cells transfected with 

empty vector (reference group). The total RNA was poly (A) tailed and biotinylated. 

Labeled RNA samples were hybridized on arrays at 48°C and 60 rpm for 16 h. A total of 4 

arrays (2 for pIRES2-AcGFP1-ANXA7-transfected cells and 2 for empty vector-

transfected cells) were washed, stained and scanned by GeneChip scanner 3000 7G 

(Affymetrix, USA). Scanned images were subjected to quality control checks using the 

miRNA QC tool (Affymetrix, USA). Significant differentially expressed miRNAs between 

the sample group arrays and the reference group were generated using 1-way ANOVA 

analysis in Partek Genomics Suite 6.6. An unadjusted p-value of <0.05 and a fold 

expression threshold of ≥1.5-folds between samples overexpressing ANXA7 and samples 

transfected with empty vectors were used. MicroRNA microarray was performed with two 

biological replicates.  
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3.2.17 Validation of miRNA microarray data 

 

MiRNAs were first reversed transcribed from PC-3 and DU 145 total RNA using 

Taqman
®
  miRNA Reverse Transcription Kit in 10 µl reactions (Applied Biosystems, 

Carlsbad, CA, USA). A miRNA qPCR was then performed using the Taqman
® 

Fast 

Advanced Master Mix together with Taqman
®
 miRNA assays (hsa-miR-1284 assay ID: 

002903, hsa-miR-409-5p assay ID: 002331, hsa-miR-543 assay ID: 002376). Expression of 

all miRNAs were normalized to the small nuclear RNA RNU6B (assay ID: 001093) 

(Applied Biosystems, Carlsbad, CA, USA). Amplification was performed at 50°C for 2 

min with an initial enzyme activation temperature of 95°C for 20 sec followed by 45 cycles 

of denaturation at 95°C for 3 sec and an annealing/extension step at 60°C for 20 sec using 

the CFX96™ Real Time PCR Detection System (Bio-Rad, Hercules, CA, USA). All 

miRNA qPCR experiments were performed with two biological replicates and three 

technical replicates. 

 

3.2.18 Bioinformatic analysis 

 

Gene targets of dysregulated miRNAs were predicted with the online algorithm 

TargetScan Release 6.2 using default settings (http://www.targetscan.org) (Lewis et al., 

2005). Shortlisted miRNA targets with total context score of ≤ -0.25 were then selected for 

gene enrichment involving cancer-related pathways using the online Database for 

Annotation, Visualization and Integrated Discovery (DAVID v6.7) functional annotation 

tool (http://david.abcc.ncifcrf.gov/tools.jsp) using default settings of minimum gene count 
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threshold of 2 and maximum EASE score/P-value threshold of 0.1  (Huang et al., 2009a & 

2009b) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway tool 

(http://www.genome.jp/kegg/pathway.html) (Kanehisa and Goto, 2000; Kanehisa et al., 

2012). 

 

3.2.19 Statistical analysis 

 

Statistically significant comparisons were performed using the Student’s T-test. A 

p-value threshold of ≤ 0.05 was set for all experiments with the exception of DAVID v6.7 

gene target analysis and qPCR validation of shortlisted miRNAs, where a ≤ 0.10 p-value 

cutoff threshold was used. Validation of miRNA microarray data using qPCR was 

performed using the Pearson’s correlation coefficient value. All experiments were 

performed on a minimum of two biological replicates and two technical replicates, and 

presented as mean ± S.D.  
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Chapter 4: Results 

 

4.1 Full length PCR Amplification of the ANXA7 gene 

 

High grade prostate tumors have a low ANXA7 protein expression (Srivastava et al., 

2001) and therefore the prostate cancer cell lines PC-3 and DU 145 were chosen for this 

study. Due to the limited amounts of normal prostate epithelium cDNA that was obtained 

from the commercial supplier (Sciencell, USA), the PCR amplification of the ANXA7 gene 

was first optimized using cDNA obtained from PC-3 cells. Intact and pure total RNA 

extracted from PC-3 cell line was observed using agarose gel electrophoresis (Figure 4.1a 

and b) and was used for the reverse transcription and PCR reaction.  
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In order to determine the optimal conditions for the full length amplification of the 

ANXA7 from a cDNA template, a range of annealing temperatures (Ta) for the two pair of 

primers designed (A7P2 and A7P3) was tested (Figure 4.2a & b). The different 

temperatures tested for A7P2 gave similar yield of the product except for Ta of 62°C which 

had lesser yield (Figure 4.2a). For the case of A7P3, all the annealing temperatures were 

able to give satisfactory yield. 

1      2      3 
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18S 
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Figure 4.1 a & b: Intact total RNA extracted from PC-3 cell line. a)  Total RNA was 

extracted using the TRIZOL reagent and different amount of RNA was loaded, with 

increasing amounts from lane 1 to lane 3. b) Two samples of RNA was extracted using the 

RNeasy Plus Mini Kit and ran beside a RiboRuler™ High Range RNA Ladder with sizes 

of marker (in bp) shown on the left. RNA samples were resolved by 1% TBE agarose gel 

electrophoresis. The expected pattern of two distinct bands were observed; 28S rRNA (top) 

and 18S rRNA (bottom) with an intensity ratio of 2:1. 
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Figure 4.2 a & b: Determination of optimum annealing temperature (Ta) for primers 

flanking ANXA7. The annealing temperatures for two primer pairs; A7P2 (a) and A7P3 

(b) designed to amplify ANXA7 were tested. a) The annealing temperatures tested were 

50.0 ºC (lane 1), 52.5 ºC (lane 2), 54.8 ºC (lane 3), 57.9 ºC (lane 4), 60.4 ºC (lane 5) and 

62.0 ºC (lane 6). b) The annealing temperatures tested were 45.0 ºC (lane 1), 46.2 ºC (lane 

2), 48.9 ºC (lane 3), 52.7 ºC (lane 4), 57.6 ºC (lane 5), 61.6 ºC (lane 6), 63.8°C (lane 7) and 

65°C (lane 8).  The expected product size is approximately 1500 bp.  A no-template 

amplification acted as negative control (lane 7 in a and lane 10 in b). Lane 9 was left 

empty. 
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To establish a positive control for the subsequent amplifications of ANXA7 gene, 

two pair of primers (B1 and B3) were designed to amplify a housekeeping gene, β-actin. 

Different annealing temperatures (49°C - 63°C) were also tested for these set of primers to 

determine the optimal conditions for the amplification of this control gene (Figure 4.3). 

Primer pair B1 was able to amplify β-actin with the expected product size of ~1400bp from 

Ta of 49°C-59°C. At Ta 63°C, the expected product size was not seen. However, 

amplification was not specific and multiple bands were observed in all the Ta tested. Hence, 

primer pair B1 was not used in subsequent PCR reactions. Primer pair B3 was not able to 

amplify β-actin with the expected product size of ~800bp at Ta of 49°C but successful 

amplification was observed from Ta of 52°C-63°C. Primer pair B3 was chosen for 

Figure 4.3: Determination of optimum β-actin PCR amplification annealing 

temperature. Amplification of β-actin gene using primer pair B1 (lanes 1-6) and primer 

pair B3 (lanes 8-13) with different annealing temperatures. The annealing temperatures 

tested were 49°C (lanes 1 & 8), 52°C (lanes 2 & 9), 55°C (lanes 3 & 10), 57°C (lanes 4 & 

11), 59°C (lanes 5 & 12) and 63°C (lanes 6 & 13). A no-template amplification acted as 

negative controls (lane 7) for primer pair B1 and (lane 14) primer pair B3. Amplification of 

diluted PCR products from previous ANXA7 amplification acted as a positive control (lane 

15). 
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following downstream PCR reactions as it produced less multiple bands compared to 

primer pair B1 and a Ta of 62°C (one degree lower) were chosen as it has less non-specific 

amplification compared to other temperatures tested.   

 

 After optimizing the conditions for PCR amplification of full length ANXA7 gene 

was done using prostate cancer cell line cDNA, the normal prostate epithelium cDNA was 

then used as a template for PCR. Amplification using both pair of primers were carried out 

but the yield obtained using A7P2 primer pair was not satisfactory (Figure S4.1.1), whereas 

amplification using A7P3 primer pair gave reasonable yield of the desired product. 

However, no amplification was observed on a replicate reaction that was performed (Figure 

4.4).   
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Figure 4.4: PCR amplification of full length ANXA7 from normal prostate epithelium 

cDNA. Primer pair A7P3 was able to amplify ANXA7 from the normal prostate epithelium 

cDNA (lane 1). A replicate reaction was also carried out (lane 2) but no amplification was 

observed. Amplification of β-actin acted as a positive control for the PCR reaction (lane 5) 

while no-template amplification acted as negative controls (lane 3 & 6). Lane 4 was left 

empty. 
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4.2 Construction of pENTR/ANXA7 and pcDNA4.1/ANXA7 Vectors. 

 

Once the full length ANXA7 was inserted into the cloning vector (pENTR™/D-TOPO
®
, 

screening of clones that contained the pENTR/ANXA7 vector was done using colony PCR. 

All the clones picked for colony PCR showed the presence of the vector (Figure 4.2.1). 

Once the colonies picked were confirmed to contain the construct (Figure 4.5), the 

orientation of the ANXA7 inserted in the construct was determined with a restriction 

enzyme (RE) digestion on some of the cultured colonies.  

 

 

 

 

 

 

  

Figure 4.5: Screening of clones containing the pENTR/ANXA7 construct. Several 

colonies found on the plate containing the transformed E. coli were picked for colony PCR. 

Primers flanking ANXA7 were used and positive transformants were indicated by an 

amplified product at ~1500bp (lanes 2-6). Amplification of β-actin acted as a positive 

control (lane 9) and no-template amplification acted as negative controls (lanes 8 & 11). 

Lanes 1, 7 & 10 was left empty. 
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pENTR/ANXA7 constructs with ANXA7 inserted in the correct orientation were then 

sequenced (Figure S4.2.1). The full sequence of the ANXA7 insert was analyzed and found 

to match a region in chromosome 10 of the human genome. The sequence was found to 

contain features of both ANXA7 mRNA variant 1 and ANXA7 mRNA variant 2 (Figure 4.7a 

& Figure S4.2.2). Manual alignment of construct sequences with both ANXA7 variants 

using Bioedit software showed that the sequence inserted in the construct was ANXA7 

variant 1 (Figure S4.2.3). The insert in the pENTR/ANXA7 was then transferred to an 

expression vector (pcDNA3.1/nV5-DEST™) to generate a pcDNA3.1/ANXA7 construct.  

Figure 4.6: Determination of ANXA7 insert orientation in pENTR/ANXA7 construct. 

Plasmid extraction was carried out to obtain the construct from colonies cultured in liquid 

media (lanes 1 & 4). The constructs in lanes 1 and 4 were then subjected to EcoRV 

restriction enzyme digestion to give the expected bands with size of about 2500bp and 

1500bp in lanes 2 and 5, respectively. Lane 3 was left empty. 
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The construct was also sent for sequencing after screening via colony PCR and RE 

digestion analysis (Figure 4.8a & b). Sequence analysis showed that the ANXA7 sequence 

in pcDNA3.1/ANXA7 construct was identical to a region in human chromosome 10 (Figure 

4.7b & Figure S4.2.4a & b). Thus, the sequence was successfully subcloned without errors. 

a) 

b) 

Figure 4.7 a & b: Analysis of sequenced ANXA7 in vector constructs using NCBI 

BLAST. The sequence of the pENTR/ANXA7 cloning construct, T5c1 in (a) and the 

pcDNA3.1/ANXA7 expression construct, LR1b4 in (b) was compared to sequences in the 

Human BLAST Assembled RefSeq Genomes. Both sequence had a complete match (Max 

ident: 100%) to a region in Homo sapiens chromosome 10. The human genome build 37.3 

with two genomic contig assemblies was used as a reference during the analysis (Accession 

number NT 030059.13 and NW 001837987.2).  
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Figure 4.8 a & b: Isolation and identification of ANXA7 from pcDNA3.1/ANXA7 

construct following transfer from pENTR/ANXA7 construct. (a) Colonies (lanes 1-5) 

picked for colony PCR to screen for the presence of ANXA7 in pcDNA3.1/ANXA7 

construct (lanes 4 & 5) transferred from the cloning construct via a recombination reaction. 

No-template amplification (lanes 7 & 11) and β-actin amplification (lane 9) was carried out 

as positive control for the PCR reaction. Lanes 6, 8 & 10 were left empty. (b) Purified 

expression construct from a liquid culture of colony 5 in (a) (lane 1) was then double 

digested with BglII and NotI (lane 2) to give three expected bands with sizes of 

approximately 5000bp, 1000bp and 700bp. A 0.7% agarose gel was used.  
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4.3 Transfer of ANXA7 from pcDNA3.1/ANXA7 to pIRES2-AcGFP1 vector 

 

 In order to conveniently determine whether successful transfection occurred and 

the transcripts in the vector was expressed, a vector that also expresses a fluorescent 

protein such as GFP was acquired and in this case a pIRES2-AcGFP1 vector. The ANXA7 

sequence in pcDNA3.1/ANXA7 was cloned into the EcoRI and BamHI sites of the 

pIRES2-AcGFP1 vector (Figue 4.9 & Figure S4.3.1a-d) and ANXA7 sequence was found 

to be identical to the reference sequence (asession number: NM_001156.3) of Homo 

sapiens annexin A7, transcript variant 1, mRNA (Figure S4.3.2a & b). Therefore the 

ANXA7 in the pIRES2-AcGFP1-ANXA7 construct generated was error-free and could be 

used for further downstream work.  

 

  

 

 

 

 

Figure 4.9: Screening of colonies to determine presence of ANXA7 insert in pIRES2-

AcGFP1 vector.  Colonies (lanes 3, 5, 6 and 9) that contained the insert with the correct 

size have the expected band size of about 2kbp and colonies (lanes 1, 2, 7, 8, 10) that did 

not have any insert have the expected band size of about 500bp. No template amplification 

(lanes 11 & 13) and β-actin amplification (lane 12) was carried out as PCR reaction 

negative and positive controls, respectively. 
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4.4 Stable transfection of PC-3 and DU 145 cells with pIRES2-AcGFP1-ANXA7 

 

 Once the pIRES2-AcGFP1-ANXA7 construct was obtained, it was transfected into 

PC-3 and DU 145 cells. Successful transfection was observed through the expression of 

GFP after 48h using fluorescence microscopy (Figure 4.10a).  

 The concentration of G418 antibiotic needed to be used for selecting cells 

containing the expression vector (antibiotic-resistant) was determined using untransfected 

PC-3 and DU 145 cells (Figure S4.4.1). The minimum concentration that killed all 

untransfected cells after incubation in G418 for 7 days was 600 μg/ml for both PC-3 and 

DU 145 cells. After the successful transfection of cell lines was confirmed using 

fluorescence microscopy, the selection was carried out until stable populations of antibiotic 

resistant cells were obtained. In order to confirm that expression of ANXA7 was elevated 

in these cells, qRT-PCR assay quantifying ANXA7 transcripts was performed. The purified 

RNA was confirmed based on a RNA Integrity Value (RIN) of ≥7 before using the RNA 

for other downstream work (Figure S4.4.2).  A significant increase in ANXA7 expression 

was observed in both ANXA7 expression vector (pIRES2-AcGFP1-ANXA7) transfected 

cell lines, whereby a 4.8-fold and 1.6 fold increase was recorded in the PC-3 and DU 145 

cells, respectively. No increase in expression was observed in untransfected cells and 

empty-vector transfected cells (pIRES2-AcGFP1) (Figure 4.10b).    
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Figure 4.10 a & b: Transfection of PC-3 and DU145 prostate cancer cells with 

pIRES2-AcGFP1-ANXA7 expression vector increased ANXA7 expression levels. (a) 

Transfection was performed using the X-tremeGENE HP transfection reagent, followed by 

the observation of GFP expression after 48 h. NTC denotes untransfected control. All 

representative images were taken under 100X magnification. (b) A significant increase in  

the expression of ANXA7 mRNA in PC-3 cells transfected with vector carrying ANXA7 

was observed using qRT-PCR. All experiments were performed in biological triplicates 

with two technical replicates, and presented as mean normalized fold expression ±S.D. 

Statistically significant differences in expression between ANXA7-transfected cells and 

empty vector control groups was confirmed (*p ≤ 0.05). 
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4.5 MicroRNA Profile of PC-3 and DU 145 Cells following ANXA7 Overexpression 

 

 Once the increased expression levels of ANXA7 was confirmed, the same purified 

RNA samples were hybridised in a microRNA microarray to identify altered miRNAs due 

to increased levels of ANXA7. A list of dysregulated miRNAs in ANXA7-overexpressed 

PC-3 cells as compared to cells transfected with the empty vector was constructed (Table 

4.1). A total of 16 miRNAs were found to be dysregulated where eight of them were up-

regulated and eight of them were down-regulated.  Hsa-miR-346 showed the highest up-

regulation with a 4.8-fold increase in expression while hsa-miR-543 showed the most 

down-regulation with a 2-fold decrease in expression. In order to validate the miRNA 

microarray results, miRNA qPCR was performed for three miRNAs (hsa-miR-1284, hsa-

miR-409-5p and hsa-miR-543) in PC-3 stably transfected cells. The miRNA qPCR results 

positively correlated with the microarray results (R = 0.8413 and R
2
 = 0.71) (Figure 4.11a). 

All the microRNAs tested showed a significant change in expression either being up-

regulated (hsa-miR-1284) or down-regulated (hsa-miR-409-5p and hsa-miR-543) as 

compared to the empty vector-transfected cells (Figure 4.11b). The expression pattern of 

the three miRNAs was also determined in DU 145 cells using miRNA qPCR. All three 

miRNAs also showed a significant change in expression levels as compared to the empty 

vector-transfected cells (Figure 4.11c). However, when the expression patterns of the three 

miRNAs were compared between both cell lines, only hsa-miR-1284 had the same pattern 

of up-regulated expression. Hsa-miR-409-5p and hsa-543 on the other hand had opposing 

expression patterns (Figure 4.11b & c).  
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Table 4.1: List of miRNA expression fold-change alterations following the 

overexpression of ANXA7 on PC-3 cells. Experiments were performed using 

Affymetrix® GeneChip® miRNA arrays followed by data analysis using the Partek® 

Genomics Suite™ 6.6. † Positive values denote up-regulation, while negative values denote 

down-regulation relative to groups transfected with empty vectors, fold change threshold 

was set at 1.5. ‡ p-values ≤ 0.05 were considered significant. 

 

miRNA miRBase No. Fold change
†
 p-value

‡
 

hsa-miR-346 MI0000826 4.77 ± 2.16 0.030 

hsa-miR-1237 MI0006327 2.18 ± 0.00 0.010 

hsa-miR-363 MI0000764 2.14 ± 0.38 0.035 

hsa-let-7b MI0000063 1.69 ± 0.39 0.045 

hsa-miR-874 MI0005532 1.91 ± 0.48 0.039 

hsa-miR-133a MI0000450 1.56 ± 0.14 0.036 

hsa-miR-551a MI0003556 1.56 ± 0.17 0.025 

hsa-miR-1284 MI0006431 1.52 ± 0.02 0.027 

hsa-miR-448 MI0001637 -1.50 ± 0.00 0.009 

hsa-miR-382 MI0000790 -1.50 ± 0.09 0.028 

hsa-miR-487b MI0003530 -1.60 ± 0.01 0.005 

hsa-miR-940 MI0005762 -1.60 ± 0.12 0.045 

hsa-miR-376a MI0000784 -1.70 ± 0.00 0.008 

hsa-miR-193a-3p MI0000487 -1.80 ± 0.04 0.008 

hsa-miR-409-5p MI0001735 -1.80 ± 0.00 0.026 

hsa-miR-543 MI0005565 -2.0 ± 0.10 0.029 
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Figure 4.11 a- c: Validation and correlation of selected miRNA fold-expression 

between microarray and qPCR data. (a) Pearson correlation coefficient value, R was 

0.8413 with an R
2
 of 0.7078, indicating a positive correlation between both sets of data. A 

total of three significantly differentially expressed miRNAs were selected and expressed as 

relative normalized fold change expression values using qPCR in (b) PC-3 cells, and (c) 

DU-145 cells. Statistically significant differences between the empty vector control cells 

and transfected cells are presented as (*p ≤ 0.05) and (**p ≤ 0.1). 
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4.6 Predicted Genes and Pathways Targeted by ANXA7 Dysregulated miRNAs. 

 

 Each miRNA in the list of dysregulated miRNAs were subsequently subjected to in 

silico target prediction and pathway enrichment analysis (Table 4.2). In order to identify 

miRNAs that were most relevant to this study, miRNAs that did not show involvement in 

cancer-related pathways after gene enrichment were not used for further analysis. After 

filtering, five of the up-regulated miRNAs and six of the down-regulated miRNAs passed 

our selection. Short listing of miRNA targets according to their target gene binding strength 

were conducted by eliminating those with a context score of > -0.25. A lower context score 

indicates a higher binding strength between the miRNA and the predicted target. Among 

the cancer-related pathways enriched for these miRNAs were the MAPK, Wnt, TGF-β, 

Notch and VEGF signaling pathways. Several miRNAs such as hsa-miR-133a, hsa-miR-

1284, hsa-miR-448, hsa-miR-940 and hsa-miR-193a-3p were predicted to be involved in 

multiple pathways while others such as hsa-miR-874 and hsa-miR-543 were predicted to be 

involved in a single pathway targeting one or several genes (Table 4.2 & Table S4.6.1). 

Since four out of five predicted target genes for hsa-miR-874 were involved in forming 

calcium voltage-gated channels and calcium binding, we also postulated the possible 

implications of the calcium signaling pathway. ANXA7 is a Ca
2+

-dependent membrane-

binding protein involved in exocytosis. Its tumor suppression role would thus potentially 

involve the regulation of calcium signals and therefore our focus was on predicted targets 

that are related to calcium signaling. Hsa-miR-543 was predicted to interact with a calcium-

dependent enzyme known as phospholipase A2, group IVA (PLA2G4A). Hsa-miR-409-5p 

targets were not enriched in any cancer-related pathways but it was predicted to bind 

strongly to calmodulin binding transcription activator 1 (CAMTA1). Since miRNAs are 
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negative gene regulators, these highlighted gene targets are expected to be downregulated 

by these upregulated miRNAs.  

 

Table 4.2: List of validated miRNA gene targets and related pathways as obtained 

using TargetScan 6.2 software and KEGG pathway. A full list of validated and 

unvalidated miRNAs can be found in Table S4.6.1. * Targets obtained from TargetScan 6.2, 

with total context scores ≤ -0.2. ** Pathways obtained from KEGG Pathway Database. 

†
 Strength of binding, -0.25 ≥ + ≥ -0.39, -0.40 ≥ ++ ≥ -0.59.  

††
 False discovery rate, with 

FDR ≤ 50.0 

 

miRNA 
Target Genes (Gene 

symbol) * 

Total 

Context 

Score * 

Binding
 

Strength
†
 

KEGG 

Pathways** 

FDR
††

 

hsa-

miR-874 

calcium channel, voltage-

dependent, beta 2 subunit 

(CACNB2); R type, 

alpha 1E subunit 

(CACNA1E); L type, 

alpha 1D subunit 

(CACNA1D) 

-0.4 / -

0.36 / -

0.39 

++ / + / + hsa04010:MAPK 

signaling 

pathway 

0.38 

calcium binding protein 

P22 (CHP) 

-0.31 + 

protein phosphatase 5, 

catalytic subunit (PPP5C) 

-0.35 + 

hsa-

miR-

1284 

notch 3 (NOTCH3) -0.34 + hsa04330:Notch 

signaling 

pathway 

hsa04010:MAPK 

signaling 

pathway 

hsa04310:Wnt 

signaling 

pathway 

hsa04350:TGF-

beta signaling 

pathway 

0.84 

 

0.91 

 

2.56 

 

40.9

9 

E1A binding protein 

p300 (EP300) 

-0.28 + 

myocyte enhancer factor 

2C (MEF2C) 

-0.43 ++ 

TAO kinase 1 (TAOK1) -0.43 ++ 

frizzled family receptor 5 

(FZD5) 

-0.29 + 

inhibitor of DNA binding 

4, dominant negative 

helix-loop-helix protein 

(ID4) 

-0.28 + 

hsa- phospholipase A2, group -0.26 + hsa04370:VEGF 32.9
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miR-543 IVA (cytosolic, calcium-

dependent) (PLA2G4A) 

signaling 

pathway 

2 

hsa-

miR-

409-5p 

calmodulin binding 

transcription activator 1 

(CAMTA1) 

-0.51 ++ 

N/A N/A 

Table 4.2, continued 
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Chapter 5: Discussion 

5.1 ANXA7 potentially Regulates a Specific Set of MiRNAs 

 

 From the microarray miRNA results, it was found that the 16 microRNAs that had 

altered expression due to increased ANXA7 expression have not been identified previously 

in miRNA profiling studies of prostate cancer. In addition, neither among these studies had 

overlapping miRNAs (Volinia et al., 2006; Porkka et al., 2007; Ambs et al., 2008; Ozen et 

al., 2008). The seemingly conflicting results between our data and data from other studies 

could possibly be due to the different approaches and methodology, for example platforms 

of microarray, type of samples and method for purification of RNA from samples 

(reviewed by Schaefer et al., 2009). Another possible explanation for this perhaps would be 

that each condition or altered gene expression (such as the case of ANXA7 in this study) 

would affect a specific set of microRNAs acting as a unique ‘signature’. However, current 

miRNA data in prostate cancer is lacking as most profiling studies were only able to 

validate the dysregulation of a few microRNAs from microarray experiments with the more 

sensitive qRT-PCR (three in Ozen et al., 2008, four in Ambs et al., 2008, one in Porrka et 

al., 2007). The number of studies looking at microRNAs that affect calcium signaling to 

date is very limited and the only one has been reported thus far (Wang et al., 2011). 

Expression of microRNAs in androgen-dependent LNCaP cells was studied. In this study, 

we used hormone-refractory prostate cancer cells. None of the miRNAs in the Wang’s 

study (Wang et al., 2011) were common with this study and others mentioned previously 

(Volinia et al., 2006; Ambs et al., 2008; Ozen et al., 2008; Porkka et al., 2007). Therefore 

further studies involving groups of samples that are more stringently classified coupled 
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with high-throughput validation of miRNAs are warranted in order to accurately identify 

potential miRNA biomarkers.       

 

5.2 Potential Regulation of Calcium Signaling by ANXA7 via Hsa-miR-874 

 

Dysregulation in calcium signaling has been implicated in cancer progression where 

one of the key alterations is the change in the expression level of calcium channel and 

pump genes (Legrand et al., 2001). Examples of these alterations include the 

overexpression of TRPM8, a Ca
2+

-permeable ion channel in some prostate cancers 

(Tsavaler et al., 2001; Zhang and Barritt, 2004). Calcium plays a dual function by acting as 

both a regulator of cell proliferation and an initiator of cell death during calcium overload 

(Monteith et al., 2012). Even though overexpression of calcium channels often leads to a 

high turnover of calcium influx and reflux, unique calcium dysregulation mechanisms in 

cancer cells prevents a calcium overload from occurring which can lead to cell death. 

Based on previous reports, ANXA7 is a member of the annexin family of membrane 

proteins which operates in a Ca
2+

-dependent manner and plays a major role in exocytosis 

(Geisow and Walker, 1986). In the current study, it was postulated that voltage-dependent 

Ca
2+

 channels are overexpressed in PC-3 and DU 145 prostate cancer cells due to mutated 

ANXA7 copies which indirectly regulates Ca
2+

 channel expression via miR-874 (Figure 

5.1). A study by Nohata et al., 2011 indicated miR-874 as a tumor suppressor miRNA in 

maxillary sinus squamous cell carcinoma. In their study, they found miR-874 to have 

inhibitory effects on cell proliferation and invasion by directly regulating the PPP1CA 

(protein phosphatase 1, catalytic subunit, alpha isozyme) gene (Nohata et al., 2011). This 
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gene was also predicted as one of the targets of miR-874 in this study but was not included 

in our analysis as it did not pass the DAVID pathway enrichment filtering (section 3.2.18 

and Table S4.6.1) and the focus of this study was on calcium signaling. However, this 

reinforced the possibility of miR-874 as a tumor suppressor miRNA in prostate cancer as 

well. Transfection of wtANXA7 copies into PC-3 and DU 145 cells increased the levels of 

miR-874 which suppress voltage-dependent Ca
2+

 channel overexpression. This was 

supported by in silico prediction of translational inhibition of calcium channel (CACNB2, 

CACNAE1, CACNA1D) and calcium binding protein p22 (CHP) mRNAs. A single 

microRNA could interact and regulate expression of multiple targets (Yun J. et al, 2011; 

Dong Q. et al, 2010).  As a result of this inhibition, the rate of calcium influx was reduced 

and calcium-dependent transcription factors such as nuclear factor of activated T 

lymphocytes (NFAT) were deactivated. All these events have been reported to be involved 

in the control of cell cycle progression (Caetano et al., 2002; Lehen'kyi et al., 2007). 

 

5.3 Putative modulation of MEF2C by miR-1284 and miR-874 

 

The Myocyte Enhancer Factor 2 (MEF2) family of proteins which has four isoforms 

(MEF2A-D) was initially identified as a transcription factor that is involved in muscle cell 

differentiation. However, it was also found to be involved in the regulation of cell 

proliferation by functioning as a downstream player in signaling pathways activated by 

elevated levels of intracellular Ca
2+

 (Black and Olson, 1998). One member of this family, 

MEF2C, was a top predicted target that binds strongly to miR-1284 (Table 1). Elevated 

levels of MEF2C was associated with an aggressive leukemia phenotype (Schwieger et al., 
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2009) and hepatocellular carcinoma phenotype (Bai et al., 2008). Another miR-1284 

predicted target of interest was the transcriptional coactivator of MEF2C, the E1A binding 

protein p300 (EP300/p300). The p300 activates the transcription of MEF2 through its 

histone acetyltransferase activity (Ogryzko et al., 1996). Transcriptional corepressors on 

the other hand suppresses MEF2 activity by recruiting histone deacetylases. The histone 

deacetylase 4 (HDAC4) and p300 competes for binding to MEF2.The transcriptional 

repression activity of HDAC4 on MEF2 is regulated by Ca
2+

 (Youn et al., 2000). When 

Ca
2+

 is present, it competes with HDAC4 to bind to MEF2. Therefore MEF2 escapes from 

the inhibitory effects of HDAC4 and thus leads to increased transcriptional activity of 

MEF2 (Youn et al., 2000). Up-regulation of miR-1284 due to the overexpression of 

ANXA7 may inhibit transcriptional activity of MEF2C by directly inhibiting the expression 

of MEF2C itself or indirectly by inhibiting its transcriptional coactivator partner p300. It 

also allows transcription by releasing MEF2C from HDAC4 due to the presence of Ca
2+

. 

Expression inhibition of voltage-dependent Ca
2+

 channels by miR-874 as mentioned above, 

leads to low level of Ca
2+

 and thus inhibition of MEF2C activity. The transcriptional 

activity of MEF2C is thereby putatively modulated indirectly by ANXA7 via the up-

regulation of miR-1284 and miR-874 (Figure 5.1) leading to the magnified inhibition of 

MEF2C. Decreased transctiptional activity of MEF2C also reduces the transcription of c-

jun (Kato et al., 1997) thus resulting in tumorigenesis inhibition. 
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5.4 Hsa-miR-543 and Phospholipase A2 Group 4A (PLA2G4A) 

 

MiRNA-543 which was the most down-regulated miRNA in our list was predicted 

to target Phospholipase A2 Group IVA (PLA2G4A/hGIVA, cPLA2-α).  PLA2G4A is a 

member of a sub-group of lipid mediator enzymes (Ghosh et al., 2006) that is involved in 

the production of intracellular arachidonic acid for the production of eicosanoids (Laye and 

Gill, 2003). Production of biologically active eicosanoids such as prostaglandins (PGs) and 

hydroxyeicosatetraenoic acids (HETEs) are carried out by cyclooxygenase (COX) and 

lipoxygenase (LOX) and leads to various intracellular signal transduction (Patel et al., 

2008a). The eicosanoid pathway was found to be activated in prostate cancer (Patel et al., 

2008b; Nie et al., 2001). The Group IV PLA2 enzymes are regulated by calcium and binds 

to intracellular proteins such as the annexins (Scott et al., 2010). It has been shown that 

PLA2G4A seems to have an oncogenic role (Sved et al., 2004) and the loss of PLA2G4A 

inhibitors such as ANX2 (Chetcuti et al., 2001) and ANX1 (Paweletz et al., 2000) has been 

found in prostate cancer. Inhibition of this enzyme slows the growth of prostate cancer cells 

both in vitro and in vivo with the corresponding reduction in cyclin D1 and Akt expression. 

The up-regulation of the phosphorylated form of PLA2G4A (p-PLA2G4A) was also found 

in three out of seven hormone-refractory prostate cancer samples examined (Patel et al., 

2008). It would be interesting to elucidate this seemingly oncogenic effect of elevated 

levels of ANXA7 in PC-3 cells which lead to down-regulation of miR-543 and potential 

up-regulation of its putative target PLA2G4A which is oncogenic in prostate cancer. A key 

to explaining this relationship would be to investigate whether ANXA7 would also bind to 

and negatively regulate PLA2G4A like Annexins I and II (Wallner et al., 1986; Chetcuti et 

al., 2001) therefore suppressing the oncogenic effect of PLA2G4A. Down-regulation of 
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miR-543 via increased ANXA7 expression occurred possibly as a “balancing effect” to 

keep PLA2G4A levels at homeostatic levels (Figure 5.1). Further investigation is also 

needed to find out why only certain tissue samples showed increased levels of p-PLA2G4A 

when they acquire androgen-independence. A study with more samples and also looking at 

the expression levels of ANXA7 in relation to PLA2G4A expression levels could be 

carried out in the future to address this issue. However, it is interesting to note that 

increased ANXA7 led to the up-regulation of hsa-miR-543 in DU 145 cells which could 

potentially lead to the down-regulation of PLA2G4A and further investigation is required 

to explain the opposing expression pattern of hsa-miR-543 in PC-3 and DU 145 cells.   

 

5.5 MicroRNA-409-5p and Calmodulin binding transcription activator 1 (CAMTA1) 

 

  CAMTAs are a family of proteins that can bind to calmodulin (CaM) and activate 

transcription in plants. They are also found in other multicellular organisms including 

humans but their physiologic roles remain to be elucidated (Bouché et al., 2002). The 

possible role of CAMTA1 in cell proliferation came from a study carried out in 

neuroblastomas whereby the reduced expression of CAMTA1 correlated with a poor 

prognosis suggesting a possible tumor suppressive role of CAMTA1 (Henrich et al., 2006).  

In this study, hsa-miR-409-5p was predicted to bind to CAMTA1 and increased 

expression of ANXA7 led to hsa-miR-409-5p down-regulation in PC-3 cells. The down-

regulation of hsa-miR-409-5p potentially reduces the negative regulatory effect of hsa-

miR-409-5p on CAMTA1. This leads to increased expression of the CAMTA1 putative 

tumor suppressor gene. Calmodulin is a calcium-binding protein that regulates various 
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downstream transcription factors via the activation of Ca
2+

/CaM-dependent kinase cascade 

when intracellular Ca
2+

 level increases (Ikura et al., 2002) and was found to bind to 

CAMTAs (Bouché et al., 2002). Modulation of CaM is recognized as an important event in 

malignant cell transformation (Sherbet 2001; Liu et al., 1996). Levels of CaM are elevated 

in various cancers as compared to their normal tissue counterparts (Liu et al., 1996; 

Takemoto and Jilka, 1983; Wei et al., 1982) or unchanged (Moon et al., 1983). It is 

intriguing that there are currently no known functions for the binding of CaM to CAMTAs 

in humans. CaM binding is only postulated to act as a direct control of transcriptional 

activation, control of transport of CAMTA to the nucleus or control of DNA binding 

(Bouché et al., 2002). Further studies into the identification of the functions of CaM 

binding to CAMTA and the levels of CaM in PC-3 cells and DU 145 cells would be crucial 

to explain the pattern of up-regulation of hsa-miR-409-5p in DU 145 cells upon increased 

expression of ANXA7 as compared to PC-3 cells (Figure 5.1). Another interesting point to 

note would be the possible implications of miR-409-5p as a tumor suppressor whereby its 

expression was found to be lower in gliomas (Lages et al., 2011). However, more evidence 

is needed before miR-409-5p could be truly classified as a tumor suppressor and a clearer 

picture of ANXA7’s relationship with miR-409-5p could be drawn.  
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Figure 5.1: A hypothetical network illustrating the interaction of hsa-miR-874, hsa-

miR-1284, hsa-miR-543 and hsa-miR-409-5p and their predicted targets following 

overexpression of wtANXA7 in PC-3 prostate cancer cells. Green denotes up-regulated 

miRNAs, whereas red denotes down-regulated miRNAs. Inhibitory relationships are 

denoted as flat arrow heads, direct interactions are denoted as solid arrows and in-direct 

interactions are denoted as dashed arrows.  
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Chapter 6: Conclusion 

 

This study has demonstrated that ANXA7 leads to dysregulation in microRNA 

expression in prostate cancer cells. We also showed that the regulated microRNAs affected 

non-canonical pathways such as the calcium signaling pathways which are less studied 

compared to other well-known cancer-related pathways but are becoming more important 

in the study of cancer. The roles of non-canonical pathways are becoming more prominent 

in cancer as researchers are currently focusing their attention on novel biotherapeutics and 

biomarkers for development of more efficacious cancer treatment. Therefore our study 

provides a platform to methodically study the roles of these miRNAs in modulating 

calcium signaling in prostate cancer.  

One limitation of this study is the use of cancer cell lines without tumor biopsy 

samples in the miRNA microarray. Prostate tumor biopsies with adjacent normal prostate 

biopsies allow for pairwise comparisons to be carried out. Pairwise comparison would give 

a more accurate representation of the miRNA expression in patients. Another limitation is 

the use of constitutive expression vector instead of inducible expression vector. Use of the 

latter allow for a time-point study of the change in miRNA expression levels when ANXA7 

expression levels changes from low to high and maintained at high levels.  

A better understanding in the interactions between miRNAs with their specific gene 

targets by experimentally confirming the relationship between the microRNA and their 

targets in the future can help us to delineate the molecular mechanism underlying the loss 

of ANXA7 in prostate cancer.  
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Future studies involving animal model and prostate cancer tissue samples would 

give a more comprehensive picture in vivo.  It is our hope that our findings could be taken 

into a pre-clinical setting and to be ultimately developed into a potential therapeutic and/or 

diagnostic options and help in our war against cancer.   
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Appendix A 

 

Supplementary Materials 

S4.1 Full length PCR Amplification of the ANXA7 gene 

 

 

 

 

 

 

 

 

Figure S4.1. 1: PCR amplification of ANXA7 using A7P2 primer pair. Successful 

amplification of ANXA7 was carried out using the A7P2 primers on PC-3 cell line cDNA 

(lane 3) but the attempt to amplify ANXA7 using the same primers on normal prostate 

epithelium cDNA (lane 2) failed. An amplification from a previous successful 

amplification reaction was also carried out (lane 1) as a positive control. To ensure the 

integrity of both normal prostate epithelium cDNA and PC-3 cell line cDNA, amplification 

of β-actin was carried out in parallel (lane 5 & 6, respectively). No-template amplification 

was carried out as negative controls (lane 4 & 7).   
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S4.2 Construction of Cloning and Expression Vectors containing ANXA7. 

 

Figure S4.2. 1: Quality check on pENTR/ANXA7 construct sequences returned from 

sequencing. The sequence files of each cloning construct (T5c1-T5c4 & T5d1) was 

exported into Sequence Scanner (Applied Biosystems, USA) to generate a quality control 

report containing information on Trace score and Contiguous Read Length (CRL) of each 

clone. Each clone is sequenced in the forward (M13F) and in the reverse (M13F) directions 

as shown in the Trace File Name. All clones had sequences that are called accurately 

(Trace score >40) and able to cover whole ANXA7 insert (CRL >600) Trace Score 

represents the accuracy of the basecall, Trace score >40 is equivalent to 99.99% accuracy. 

CRL represents the longest stretch of bases with high QV (quality value) QV>20 is 

equivalent to a high quality base. The full length sequence of the ANXA7 in each construct 

was obtained by combining the forward and the reverse sequence of each construct. 

pGEM_M13F acted as a sequencing control.  
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Figure S4.2. 2: Analysis of ANXA7 sequence in pENTR/ANXA7 constructs using 

NCBI BLAST. The full length sequences of the pENTR/ANXA7 cloning constructs 

(T5c2-T5c4 & T5d1) was compared to sequences in the Human BLAST Assembled 

RefSeq Genomes. All sequences had a 100% identity (Max ident: 100%) to a region in 

Homo sapiens chromosome 10. The human genome build 37.3 with two genomic contig 

assemblies was referred to during the analysis (Accession number NT 030059.13 and NW 

001837987.2) 
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Figure S4.2. 3: Alignment of ANXA7 sequences with cloning construct sequences 

using Bioedit. The full length sequences from the cloning constructs (T5c1-T5c4 & T5d1) 

were aligned with both ANXA7 variant 1 (top) and ANXA7 variant 2 (second from top) 

sequences using the ClustalW Multiple Alignment option. All cloning constructs (T5c1-

T5c4 & T5d1) had ANXA7 variant 1 sequence and not the variant 2 sequence. ANXA7 

variant 2 contains a region (base 508 to base 575) not present in variant 1. Only the region 

that matches to variant 1 but not to variant 2 was shown. The numbers above the sequences 

indicate the base number in the sequence. 
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a) 

b) 

Figure S4.2. 4a & b: Quality check of sequencing results and analysis of ANXA7 

sequence in pcDNA3.1/ANXA7 construct. a) The clone LR1B4 containing the ANXA7 

sequence inserted into the pcDNA3.1/nV5-DEST™ vector was sequenced for a second time 

(run 2) to ensure accuracy of the sequencing and each clone is sequenced in the forward (T7 

promoter) and reverse (BGH reverse) direction and checked according to Figure S4.2.1. b) 

The full length sequence of the clone was then subjected to BLAST according to Figure 

S4.2.2.  
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S4.3 Transfer of ANXA7 from pcDNA3.1/ANXA7 to pIRES2-AcGFP1 vector 

 

 

Figure S4.3. 1: Cloning of the ANXA7 insert in pcDNA3.1/ANXA7 into pIRES2-

AcGFP1 vector. a) PCR amplification of ANXA7 from pcDNA3.1/ANXA7 vector with 

annealing temperatures of 53°C (lane 1), 56°C (lane 2), 59°C (lane 3), 62°C (lane 4), 65°C 

(lane 5) and 68°C (lane 6). The expected PCR product has a band size of about 1500bp. 

No-template amplification (lanes 8 & 10) and β-actin amplification (lane 9) was carried out 

as controls. Lane 7 was left empty. 
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Figure S4.3. 1 continued,: b) BamHI and EcoRI enzyme digestion of purified PCR 

product from a) (lane 1) and pIRES2-AcGFP1 vector (lane 2). A no-enzyme digestion (lane 

3) was carried out as a control. A 0.8% agarose gel was used. c) Restricted PCR product 

and vector from b) was then ligated (lane 2) with the desired product of about 6800bp. A 

no-ligase reaction (lane 4) was carried out as a control. A 0.8% agarose gel was used. Lane 

3 was left empty. d) EcoRI restriction enzyme digestion (lanes 2 & 5) of plasmids purified 

from colonies that carry a vector with the correct insert size screened via colony PCR 

(Figure 3.3.1). Restricted plasmids have an expected linear size of 6800bp.   
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Figure S4.3. 2a & b: Quality check of sequencing results for pIRES2/ANXA7 clones 

and ANXA7 sequence analysis.  

a) 

b) 
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Figure S4.3. 2a & b, continued: The sequencing covers the full length of the ANXA7 

sequence using four primers (F-pIRES2, F-EcoRI, R-BamHI and R-pIRES2 in 5’ to 3’ 

direction of ANXA7) and each clone sequenced twice (run 1 & run 2). One of the sequence 

returned had a CRL of less than 600 (marked as yellow) but the quality of the sequence was 

not affected and the full length of the ANXA7 could still be covered by other sequences that 

have sequences which overlapped with this sequence. b) Both clones were subjected to 

BLAST according to Figure S4.2.2.
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S4.4 Stable transfection of PC-3 and DU 145 cells with pIRES2/ANXA7 

 

 

 

  

 

 

BL 0 100 200 400 600 

800 1,000 1,200 1,400 1,600 empty 

BL 0 100 200 400 600 

800 1,000 1,200 1,400 1,600 empty 

DU 145 

PC-3 

Figure S4.4. 1: Determination of G418 antibiotic concentration for selection of stable 

transfected cells. DU 145 (top two row of wells) and PC-3 (bottom two row of wells) cells 

were grown in a 24-well plate with an initial seeding number of 5 x 10
4
 cells and allowed 

to attached overnight. Cells were then grown in complete medium with the addition of 

different G418 antibiotic concentration (100 μg/ml to 1,600 μg/ml) for 7 days with medium 

change every 3 days. After seven days, cell viability was visually assessed using MTT. 

Viable cells are indicated by the formation of purple solution. Concentration of G418 (in 

μg/ml) used are shown by the numbers at the top left of each well. BL, blank control; 

empty, empty well; 0 μg/ml, cells grown in medium without addition of G418.  
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4.5 MiRNA Profile of PC-3 and DU 145 Cells following ANXA7 Overexpression 

 

 

 

 

 

 

 

28S 
18S 

Figure S4.4. 2: Assessment of total RNA Integrity. The quality of the total RNA purified 

was determined using the Agilent 2200 Tapestation system according to manufacturer’s 

protocol (Agilent Technologies, USA). Intact RNA is observed from the presence of two 

rRNA bands in each lane (top: 28S; bottom: 18S) in addition to a RNA Integrity Number 

(RIN) being assigned to each sample RNA (bottom of each lane). The RIN value ranges 

from 0 to 10 with a larger number indicating a high quality RNA.    
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S4.6 Predicted Genes and Pathways Targeted by ANXA7 Dysregulated miRNAs 

 

Table S4.6. 1: List of miRNA gene targets and related pathways as obtained using 

TargetScan 6.2 software and KEGG pathway. MiRNA with gene targets that do not 

meet various score threshold criteria were designated as (N/A). * Targets obtained from 

TargetScan 6.2, with total context scores ≤ -0.25. ** Pathways obtained from KEGG 

Pathway Database. 
†
 Strength of binding where, -0.25 ≥ + ≥ -0.39 and -0.40 ≥ ++ ≥ -0.59.  

††
 False discovery rate, with FDR ≤ 50.0. 

 

miRNA 
Target Genes (Gene 

symbol) * 

Total Context 

Score * 

Binding 

Strength † 
KEGG Pathways** FDR†† 

hsa-miR-

346 
N/A N/A N/A N/A N/A 

hsa-miR-

1237 
N/A N/A N/A N/A N/A 

hsa-miR-

363 
N/A N/A N/A N/A N/A 

hsa-let-

7b 
N/A N/A N/A N/A N/A 

hsa-miR-

874 

calcium channel, voltage-

dependent, beta 2 subunit 

(CACNB2); R type, alpha 

1E subunit (CACNA1E); 

L type, alpha 1D subunit 

(CACNA1D) 

-0.4 / -0.36 / -

0.39 
++ / + / + 

hsa04010:MAPK 

signaling pathway 
0.38 

calcium binding protein 

P22 (CHP) 
-0.31 + 

protein phosphatase 5, 

catalytic subunit (PPP5C) 
-0.35 + 

hsa-miR-

133a 

protein phosphatase 2, 

catalytic subunit, alpha 

isozyme (PPP2CA); beta 

isozyme (PPP2CB) 

-0.49 / -0.41 ++ / ++ 

hsa04310:Wnt signaling 

pathway 

hsa04010:MAPK 

signaling pathway 

19.58 

45.50 

transducin (beta)-like 1X-

linked (TBL1X) 
-0.25 + 

epidermal growth factor 

receptor (EGFR) 
-0.28 + 

TAO kinase 1 (TAOK1) -0.38 + 

transforming growth 

factor, beta 2 (TGFB2) 
-0.25 + 

fibroblast growth factor 1 

(acidic) (FGF1) 
-0.35 + 
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hsa-miR-

551a 
N/A N/A N/A N/A N/A 

hsa-miR-

1284 

notch 3 (NOTCH3) -0.34 + 

hsa04330:Notch signaling 

pathway 

hsa04010:MAPK 

signaling pathway 

hsa04310:Wnt signaling 

pathway 

hsa04350:TGF-beta 

signaling pathway 

0.84 

0.91 

2.56 

40.99 

E1A binding protein p300 

(EP300) 
-0.28 + 

myocyte enhancer factor 

2C (MEF2C) 
-0.43 ++ 

TAO kinase 1 (TAOK1) -0.43 ++ 

frizzled family receptor 5 

(FZD5) 
-0.29 + 

inhibitor of DNA binding 

4, dominant negative 

helix-loop-helix protein 

(ID4) 

-0.28 + 

hsa-miR-

448 

serine/threonine kinase 4 

(STK4) 
-0.25 + 

hsa04010:MAPK 

signaling pathway 

hsa04350:TGF-beta 

signaling pathway 

11.94 

30.44 

mitogen-activated protein 

kinase kinase kinase 7 

(MAP3K7) 

-0.47 ++ 

growth differentiation 

factor 6 (GDF6) 
-0.46 ++ 

SMAD specific E3 

ubiquitin protein ligase 1 

(SMURF1) 

-0.31 + 

hsa-miR-

382 
N/A N/A N/A N/A N/A 

hsa-miR-

487b 
N/A N/A N/A N/A N/A 

hsa-miR-

940 

 

 

 

 

 

v-src sarcoma (Schmidt-

Ruppin A-2) viral 

oncogene homolog (avian) 

(SRC) 

-0.55 ++ 

hsa04012:ErbB signaling 

pathway 

hsa04010:MAPK 

signaling pathway 

hsa04310:Wnt signaling 

pathway 

0.58 

3.04 

4.27 

calcium binding protein 

P22 (CHP) 
-0.32 + 

mitogen-activated protein 

kinase 8 interacting 

protein 1 (MAPK8IP1) 

-0.30 + 

dishevelled, dsh homolog 

3 (Drosophila) (DVL3) 
-0.45 ++ 

frizzled family receptor 4 

(FZD4) 
-0.37 + 

calcium binding protein 

P22 (CHP) 
-0.32 + 

Table S4.6.1, continued 
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hsa-
miR-
376a 

N/A N/A N/A N/A N/A 

hsa-
miR-
193a-3p 

v-Ki-ras2 Kirsten rat 
sarcoma viral oncogene 
homolog (KRAS) 

-0.41 ++ 

hsa04010:MAPK 
signaling pathway 

hsa04310:Wnt signaling 
pathway 

1.06 
15.59 

mitogen-activated 
protein kinase kinase 
kinase 3 (MAP3K3) 

-0.30 + 

TAO kinase 1 (TAOK1) -0.26 + 

son of sevenless 
homolog 2 (Drosophila) 
(SOS2) 

-0.53 ++ 

stathmin 1 (STMN1) -0.34 + 

dual specificity 
phosphatase 7 
(DUSP7) 

-0.29 + 

transforming growth 
factor, beta 2 (TGFB2) 

-0.28 + 

transducin (beta)-like 1 
X-linked receptor 1 
(TBL1XR1) 

-0.30 + 

presenilin 1 (PSEN1) -0.30 + 

seven in absentia 
homolog 1 (Drosophila) 
(SIAH1) 

-0.36 + 

hsa-
miR-
409-5p 

calmodulin binding 
transcription activator 1 
(CAMTA1) 

-0.51 ++ N/A N/A 

hsa-
miR-543 

phospholipase A2, 
group IVA (cytosolic, 
calcium-dependent) 
(PLA2G4A) 

-0.26 + 
hsa04370:VEGF 
signaling pathway 

32.92 

Table S4.6.1, continued 

 

    


