ABSTRACT

Methane (CH_4) a potent greenhouse gas (GHG), has more than doubled in past decades and continues to rise. Historically, landfills have been the largest source of anthropogenic CH₄ emission from the waste sector with 6,875 million metric tonnes of CO_2 -eq in year 2010. Therefore, it is important to quantify CH_4 emissions from landfills to evaluate measures for reduction of GHG emission which contributes to global warming and climate change. At present, CH₄ emission rates from landfills have been estimated using mathematical and empirical models and among them, the firstorder-decay (FOD) models are often credited for its estimation. The objective of this study is to quantify the CH₄ emission from Jeram Sanitary Landfill (JSL) in Kuala Selangor using the IPCC Waste Model. The output was verified using error function analysis (EFA) and later was used to calculate CH₄ emission from a temporarily closed cell. Quantification of CH₄ surface emission was also estimated using the flux chamber technique. Next, the influence of meteorological parameters such as rainfall, temperature, humidity and atmospheric pressure on CH₄ surface emission from landfill was also studied. As a part of the climate change mitigation effort, two cover materials to enhance CH_4 oxidation were designed for JSL using organic waste; (1) from a mixture of brewery spent grain (BSG) and compost of grass and cow manure; (2) BSG which was made into compost. Batch experiments were conducted to determine the ratio of BSG to compost, amount of material and optimum parameters for pH, moisture content and temperature. Column experiment to determine the best height/thickness of the biocover material was conducted subsequently. From the model verification exercise, it was noted that the IPCC Waste Model overestimated CH₄ emission at JSL

by 7% to 60%. The model input values which showed the least deviation from EFA was used as the site specific value for JSL. In terms of the meteorological parameters, only rainfall had a strong positive linear correlation to the surface emission of CH₄ during the wet period. As for the biocover performance, BSG and compost mixture was better at oxidizing CH₄ than the composted BSG. The 7:3 ratio of BSG to compost mixture with pH 6, 65% moisture and temperature at 35°C had the highest CH₄ oxidation in the batch experiment. In terms of the column experiment with laboratory condition, complete CH₄ oxidation was the fastest at 50cm height (within 5 days). While in the landfill, complete CH₄ oxidation was the fastest at 60cm height and it took 6 days to achieve it. On the other hand, BSG compost did not show good CH₄ oxidation potential. In conclusion, the two methods used to quantify CH₄ emission at JSL was a complement of each other. The influence of rainfall on the CH₄ flux emission was significant. Besides that, the use of BSG and compost mix as a biocover material had enhanced CH₄ oxidation through microbial activity thus reducing the CH₄ emission to the atmosphere.

ABSTRAK

Gas metana (CH₄) iaitu gas rumah hijau (GHG) yang aktif, telah dan sedang meningkat lebih dua kali ganda sejak beberapa dekad yang lalu. Sektor sisa, terutama dari tapak pelupusan sisa menjadi sumber pembebasan gas CH_4 antropogenik terbesar dengan anggaran persamaan gas karbon dioksida (CO_2) 6,875 juta tan metrik dalam tahun 2010. Oleh itu, sebagai salah satu langkah mengurangkan pembebasan GHG yang menyumbang kepada pemanasan global dan perubahan iklim, adalah penting untuk menghitung kuantiti pembebasan CH₄ dari tapak pelupusan sisa. Dewasa ini, kadar pembebasan CH₄ dari tapak pelupusan sisa dianggar dengan menggunakan modelmodel matematik dan empirikal. Di antara model-model ini, model First Order Decay (FOD) memberikan anggaran CH₄ yang baik. Ekoran itu, objektif kajian ini adalah untuk menghitung kadar pembebasan CH₄ dari Tapak Pelupusan Sisa Sanitari Jeram (JSL) di Kuala Selangor menggunakan IPCC Waste Model. Dapatan model itu disahkan dengan menggunakan Error Function Analysis (EFA) dan kemudiannya digunakan untuk mengira pembebasan CH₄ dari sebuah sel yang ditutup sementara di JSL. Kuantifikasi CH₄ permukaan juga dianggarkan menggunakan teknik *flux chamber*. Seterusnya, kesan faktor meteorologi terhadap pembebasan CH₄ dari tapak pelupusan sisa seperti hujan, suhu, kelembapan udara dan tekanan atmosfera juga dikaji. Sebagai salah satu usaha mitigasi perubahan iklim, dua biocover untuk meningkatkan pengoksidaan CH₄ kepada CO₂ telah diformulasikan menggunakan sisa organik yang diperbuat daripada; (1) campuran hampas bijirin dari kilang alkohol (BSG) dan kompos rumput dan najis lembu; (2) BSG yang telah dikomposkan. Ujikaji berkala telah dijalankan untuk menentukan nisbah BSG kepada kompos, jumlah bahan dan parameter

optimum untuk pH, kandungan kelembapan dan suhu. Kemudian, eksperimen turus untuk menentukan ketebalan bahan biocover juga dijalankan. Daripada proses pengesahan model, dapat dinyatakan bahawa IPCC Waste Model telah terlebih menganggar (7% hingga 60%) pembebasan CH₄ di JSL. Nilai input model yang menunjukkan sisihan piawai terkecil di EFA telah digunakan sebagai nilai penentu untuk JSL. Dari segi faktor meteorologi, hanya jumlah hujan mempunyai korelasi linear positif yang kuat terhadap pembebasan CH₄ permukaan semasa tempoh hujan. Dari segi keberkesanan biocover, campuran BSG dan kompos menunjukkan pengoksidaan CH₄ yang lebih baik pada daripada BSG yang dikomposkan. Nisbah 7:3 campuran BSG kepada kompos dengan pH 6, kandungan lembapan sebanyak 65% dan suhu 35 ° C mempunyai pengoksidaan CH₄ yang tertinggi. Eksperimen turus dalam keadaan makmal pula menunjukkan pengoksidaan CH₄ paling cepat pada ketinggian 50cm (dalam masa 5 hari) manakala pada ketinggian 60cm di tapak pelupusan sisa 6 hari diperlukan. BSG yang dikomposkan tidak menunjukkan potensi pengoksidaan CH₄ yang baik. Kesimpulannya, kedua-dua kaedah yang digunakan untuk mengkuantifikasi pembebasan CH₄ di JSL adalah pelengkap antara satu sama lain. Pengaruh hujan terhadap pembebasan fluks CH₄ adalah penting. Selain itu, penggunaan campuran BSG dan kompos sebagai *biocover* telah meningkatkan pengoksidaan CH₄ melalui aktiviti mikrob di samping mengurangkan pembebasan CH₄ ke atmosfera.

ACKNOWLEDGEMENT

First and foremost, by God's Grace I have completed my Master of Science by Dissertation and I would like to thank all individuals directly or indirectly involved in my research project for their academic and technical support. My greatest appreciation goes to my supervisor, Professor Dr. P. Agamuthu for his guidance and support throughout my research candidacy.

I also like to acknowledge *Jabatan Perkhidmatan Awam* (JPA) Malaysia for giving me the *Hadiah Latihan Persekutuan* (HLP) scholarship, the Malaysian Meteorological Department (MetMalaysia) for granting me study leave during my candidacy and also University of Malaya's UMRG grant (RG143/11SUS), as well as, the Postgraduate Research Fund (PPP-PV009/2012A) for funding my research work.

Further gratitude is also extended to Worldwide Holdings Berhad and Jeram Sanitary Landfill for allowing me to conduct my field work at their premise and Carlsberg Brewery (M) Berhad for providing me materials for my research. Not forgetting all my laboratory mates at the Centre for Research in Waste Management, University of Malaya for their moral support.

A special thanks to my parents, Mr. and Mrs. Govindan, and siblings, Nantha, Jothi and Deivanai for their endless support during my studies. Finally I also extend my heartfelt appreciation to all those who have contributed in one way or another in the compiling of this thesis.

CONTENTS

Abstract	ii
Abstrak	iv
Acknowledgement	vi
Contents	vii
List of Figures	xiv
List of Tables	xvii
List of Plates	XX
List of symbols and abbreviations	xxi
1.0 Chapter 1: Introduction	
1.1 Global warming and climate change	1
1.2 Greenhouse gases and its sources	1
1.3 Methane as a potent GHG	3
1.4 Methane from the waste sector	4
1.5 Waste generation	5
1.6 Landfills	6
1.7 Landfill gas production and quantification	7
1.8 Methane oxidation	8
1.9 Biocover	9
1.10 Problem statement	10
1.11 Research objectives	11
2.0 Chapter 2 : Literature Review	
2.1 Waste	13
2.2 Waste generation	13

	2.2.1 Globa	1	13
	2.2.1 Malay	sia	15
2.3 W	aste composit	tion	17
2.4 Sc	lid waste mai	nagement	18
2.5 W	aste managen	nent practices	19
2.6 Cl	imate change	and waste	22
2.7 La	ndfilling as a	MSW disposal option	25
	2.7.1 Non	-sanitary landfills and dumpsites	26
	2.7.2 Sani	tary landfill	27
2.8 La	ndfill output		28
2.9 La	ndfill gas		29
	2.9.1 Landfi	ill gas generation	29
	2.9.2 LFG c	omposition	30
	2.9.3 Factor	s influencing gas generation	32
2.10	Impact of la	ndfill gas emission	34
	2.10.1 Gree	enhouse effect and global warming	35
	2.10.2 Odo	ur and weather impact	37
	2.10.3 Grou	undwater pollution	38
2.11	Landfill CH	⁴ mass balance, controlling process and factors	38
2.12	Quantificati	on and estimation of LFG	40
	2.12.1 The	IPCC Waste Model	41
	2.12.2 The	TNO-Model	43
	2.12.3 The	GasSim Model	44
	2.12.4 The	LandGEM	44

	2.12.5 The Afvalzorg – model	45
	2.12.6 The French E-PRTR or EPER model	46
	2.12.7 Comparison of models for CH ₄ generation	47
2.13	Validation of model performance	47
2.14	LFG collection and utilization	48
2.15	Surface emission of landfill gas	51
	2.15.1 Methods used to measure surface emission of CH_4	
	from landfills	52
	2.15.2 The flux chamber measurement	55
2.16	Meteorological factors influencing the surface emission of LFG	57
	2.16.1 Atmospheric pressure	58
	2.16.2 Rainfall	59
	2.16.3 Temperature	60
2.17	Landfill cover	62
	2.17.1 Different types of cover material	63
	2.17.2 Biocover	63
2.18	Methane oxidation in landfill cover	64
2.19	Methanotrophic activity in landfill cover	64
2.20	Factors influencing methanotrophic activity in landfill cover	65
	2.20.1 Temperature	66
	2.20.2 Moisture content	67
	2.20.3 pH	67
	2.20.4 Methane concentration	68
	2.20.5 Oxygen supply	68

		2.20.6	Organic content and nutrient	69
	2.21	Organ	ic waste as biocover	69
		2.21.1	Compost	70
	2.22	Respo	nse Surface Modelling	71
3.0 C	hapter	3 : Mat	erials and method	
	3.1	The IF	PCC Waste Model	72
		3.1.1	The IPCC formula(s)	72
		3.1.2	Key parameters of the model	75
			3.1.2.1 Decay rate, <i>k</i>	75
			3.1.2.2 Degradable organic carbon, <i>DOC</i>	76
			3.1.2.3 Decomposable organic carbon fraction, DOC_f	77
			3.1.2.4 Methane correction factor, <i>MCF</i>	78
			3.1.2.5 Fraction of CH_4 generated in LFG, F	79
		3.1.3	Site Description	79
		3.1.4	MSW data collection	80
		3.1.5	Manual sorting of waste	81
		3.1.6	Approaches to calculate CH ₄ from landfill	82
			3.1.6.1 The bulk waste approach	82
			3.1.6.2 Waste composition approach	82
		3.1.7	Model validation	82
			3.1.7.1 Measured LFG from JSL	83
			3.1.7.2 Error function analysis, EFA	83
		3.1.8	Model calibration	84
	3.2 Fi	eld mea	surement of LFG	84

х

	3.2.1	Grid points setup at landfill	85
	3.2.2	Design of flux chamber	87
	3.2.3	Method of flux sampling	88
	3.2.4	Calculation of CH ₄ flux	89
	3.2.5	Flux contour analysis	90
3.3 Co	ollectior	n of meteorological data	90
	3.3.1	Types of meteorological parameters used	90
	3.3.2	Instruments used to measure meteorological parameters	91
	3.3.3	Duration of observation	92
3.4 Ma	aterials	and methods used for biocover	93
	3.4.1	Compost	93
	3.4.2	Fresh brewery spent grain (BSG)	93
	3.4.3	Composting	94
		3.4.3.1 Compost from grass clippings and cow manure	94
		3.4.3.2 Compost from fresh BSG and cow manure	95
	3.4.4	Batch experiment on CH ₄ oxidation with different ratio	
		of fresh BSG and compost	96
	3.4.5	Response surface modelling for parameter setting	99
	3.4.6	Batch experiment on CH ₄ oxidation using best ratio of	
		BSG and compost	99
		3.4.6.1 Influence of temperature on CH ₄ oxidation	99
		3.4.6.2 Influence of pH on CH ₄ oxidation	99
		3.4.6.3 Influence of moisture content on CH_4 oxidation	100
	3.4.7	Batch experiment on CH4 oxidation using composted BSG	100

	3.4.7.1 Influence of temperature on CH_4 oxidation	100
	3.4.7.2 Influence of pH on CH ₄ oxidation	100
	3.4.7.3 Influence of moisture content on CH ₄ oxidation	101
3.4.8	Column experiment	101
	3.4.8.1 Column experiment using fresh BSG and	
	compost in laboratory condition	102
	3.4.8.2 Column experiment using fresh BSG and	
	compost in landfill condition	103
4.0 Chapter 4 : Resu	lts and Discussion	
4.1 The input	parameters for IPCC Waste Model	106
4.2 Measured	LFG from JSL	109
4.3 Waste data	a	109
4.4 The bulk v	waste and waste composition approach	112
4.4.1	Influence of DOC	114
4.4.2	Influence of DOC_f	117
4.4.3	Influence of <i>k</i>	120
4.4.4	Influence of F	123
4.4.5	Influence of <i>MCF</i>	125
4.5 Error func	tion analysis	127
4.6 Flux meas	urements of CH ₄	131
4.7 Surface pl	ots of CH ₄	135
4.7.1	Surface plot for the wet period	136
4.7.2	Surface plot for the dry period	138
4.8 Calculatio	n of CH ₄ generation at the partially closed cell	142

	4.9 Cr	ross verification of surface emission and model calculation	142
	4.10	Influence of meteorological parameters on CH ₄ emission	145
	4.11	The meteorological observation and results	146
		4.11.1 The rainfall pattern at JSL	146
		4.11.2 Temperature pattern at JSL	147
		4.11.3 Atmospheric humidity pattern at JSL	149
		4.11.4 Atmospheric pressure at JSL	150
	4.12	Effects of meteorological parameters on CH ₄ surface emission	151
		4.12.1 Influence of rainfall on CH ₄ flux	152
		4.12.2 Influence of ambient temperature on CH ₄ flux	154
		4.12.3 Influence of atmospheric humidity on CH ₄ flux	156
		4.12.4 Influence of atmospheric pressure on CH ₄ flux	158
	4.13	Bioremediation of landfill CH ₄ using biocover	161
		4.13.1 The physico-chemical characteristics of biocover material	161
		4.13.2 Results of Batch Experiments Stage I	166
		4.13.3 Results of Batch Experiment Stage II	168
	4.14	Optimization and model validation	177
	4.15	Results of column experiment: laboratory and landfill studies	178
	4.16	Conclusion for the biocover material	182
5.0 Co	onclusio	DNS	183
6.0 Re	eferenc	es	185

LIST OF FIGURES

Figure 1.1: Main drivers of climate change	2
Figure 1.2: Estimated global anthropogenic methane emissions by source	3
Figure 1.3: Global trend of methane emissions from landfilling and wastewater	4
Figure 2.1: Waste composition by income level (a,b,c) and in Malaysia (d)	18
Figure 2.2: The waste management hierarchy	21
Figure 2.3: Waste management practices in various countries	22
Figure 2.4: A sanitary landfill	28
Figure 2.5: The major stages of waste degradation in landfills	30
Figure 2.6: Different scales of landfill effects	35
Figure 2.7: Global average of CH ₄ from 1978 to 2011	36
Figure 2.8: Instantaneous growth rate of globally averaged atmospheric CH_4	36
Figure 2.9: Temporal distribution of odour complaints and selected weather	
conditions from Jan 1997 to Feb 2001 at Bisasar Rd Landfill	37
Figure 2.10: Landfill CH ₄ balance	39
Figure 2.11: LFG collection and utilization system	51
Figure 2.12: Conceptual diagram on the regulation of LFG emission in a landfill	58
Figure 2.13: CH ₄ emissions vs atmospheric pressure.	59
Figure 2.14: Variation of LFG flux according to the time of the day	61
Figure 2.15: The pathway for methane oxidation and assimilation of	
formaldehyde by Methanotrophs	65
Figure 3.1: Grid points overlay on Phase 2 at JSL	86
Figure 3.2: Static flux chamber	88
Figure 3.3: Column experiment setup in the laboratory	102

Figure 3.4: Column experiment setup in the landfill	103
Figure 4.1: Comparison between measured and calculated CH ₄ production	113
Figure 4.2: CH ₄ generation from different DOC ranges using the bulk waste	
approach	116
Figure 4.3: CH ₄ generation from different DOC ranges using the	
waste composition approach	116
Figure 4.4: CH_4 generation from DOC_f ranges using the bulk waste approach	118
Figure 4.5: CH_4 generation from DOC_f ranges using the waste composition	
approach	118
Figure 4.6: CH ₄ generation from different decay rates using the bulk waste	
approach	122
Figure 4.7: CH ₄ generation from different decay rates using the	
waste composition approach	122
Figure 4.8: CH ₄ generation from different CH ₄ fraction in LFG, using the	
bulk waste approach	124
Figure 4.9: CH ₄ generation from different CH ₄ fraction in LFG, using the	
waste composition approach	124
Figure 4.10: CH ₄ generation from different values of MCF using the	
bulk waste approach	126
Figure 4.11: CH ₄ generation from different values of MCF using the	
waste composition approach	126
Figure 4.12: Average rainfall & temperature reading for JSL from 2001-2013	132
Figure 4.13: Histogram for flux measurement during the wet period of October	
to December 2012	133

Figure 4.14: Histogram for flux measurement during the dry period of May	
to July 2013	135

to July 2013	135
Figure 4.15: Contour map of flux measurement during the wet period (Oct-Dec	
2012) using Kriging method overlaid on the Phase 2 cell at JSL	137
Figure 4.16: Contour map of flux measurement during the wet period (Oct-Dec	
2012) using IDW method overlaid on the Phase 2 cell at JSL	137
Figure 4.17: Contour map of flux measurement during the dry period (May-July	7
2012) using Kriging method overlaid on the Phase 2 cell at JSL	139
Figure 4.18: Contour map of flux measurement during the dry period (May-July	7
2012) using IDW method overlaid on the Phase 2 cell at JSL	139
Figure 4.19: Annual rainfall at JSL from 2003 to 2012	147
Figure 4.20: Annual temperature at JSL from 2003 to 2012	148
Figure 4.21: Monthly mean temperature at JSL from 2003 to 2012	149
Figure 4.22: Monthly mean humidity pattern at JSL from 2003 to 2012	150
Figure 4.23: Monthly mean atmospheric pressure at JSL from 2003 to 2012	151
Figure 4.24: CH ₄ emission at JSL as a function of rainfall and CH ₄ flux during	
wet period	153
Figure 4.25: CH ₄ emission at JSL as a function of rainfall and CH ₄ flux during	
dry period	153
Figure 4.26: CH ₄ emission at JSL as a function of ambient temperature and	
CH ₄ flux during wet period	155
Figure 4.27: CH_4 emission at JSL as a function of ambient temperature and	
CH ₄ flux during the dry period	156

Figure 4.28: CH_4 emission at JSL as a function of humidity and CH_4 flux	
during wet period	157
Figure 4.29: CH_4 emission at JSL as a function of humidity and CH_4 flux	
during dry period	158
Figure 4.30: CH_4 emission at JSL as a function of atmospheric pressure and	
CH ₄ flux during wet period	159
Figure 4.31: CH_4 emission at JSL as a function of atmospheric pressure and	
CH ₄ flux during dry period	160
Figure 4.32: Results of batch experiment set up in different ratio	167
Figure 4.33: Response surface plot on CH ₄ oxidation by BSG and compost mixture	
with response to pH and moisture content as biocover material	174
Figure 4.34: Response surface plot on CH ₄ oxidation by BSG and compost mixture	
with response to pH and temperature as biocover material	175
Figure 4.35: Response surface plot on CH ₄ oxidation by composted BSG	
with response to pH and moisture content as biocover material	175
Figure 4.36: Concentration of CH ₄ in column experiments performed in the	
laboratory	180
Figure 4.37: Concentration of CH ₄ in column experiments performed in the	
landfill	181

LIST OF TABLES

Table 2.1: Per capita generation of waste in different countries and cities	14
Table 2.2: Daily generation of MSW in Malaysia from 2003 to 2012	16
Table 2.3: Waste management practices and GHG emissions and savings	24
Table 2.4: Total landfills in Malaysia according to states	26
Table 2.5: The composition and characteristics of LFG	31
Table 2.6: Factors affecting the LFG transport in a landfill	40
Table 2.7: The 3 tiers of the IPCC Waste Model	42
Table 2.8: Comparisons of models for CH_4 generation potential L_o and	
half-lives for biodegradation for household waste	47
Table 2.9: Comparison between passive and active LFG collection system	49
Table 2.10: Types of measurement methods used to measure surface emissions	
of CH ₄	53
Table 3.1: Summary of decay rates, k , from different models and literature	75
Table 3.2: DOC values of various waste composition	76
Table 3.3: Values of Methane Correction Factor, MCF	78
Table 4.1: Values used in IPCC Waste Model for the bulk waste approach	107
Table 4.2: Values used in IPCC Waste Model for the waste composition	
approach	108
Table 4.3: CH_4 fraction and LFG_{CH_4} flow rate in JSL	109
Table 4.4: MSW disposed into JSL from 2007 to 2013	110
Table 4.5: Description of waste component categories in JSL	111
Table 4.6: Percentage of error from different measures of EFA	128
Table 4.7: New set of parameters proposed for JSL with reduced error	130

Table 4.8: Descriptive statistics of CH ₄ flux emission	141
Table 4.9: Physico-chemical properties of raw BSG	163
Table 4.10: Physico-chemical properties of raw compost	164
Table 4.11: Physico-chemical properties of composted BSG	165
Table 4.12: CH ₄ oxidation by different amount of biocover material	168
Table 4.13: Experimental design runs and percentage of CH ₄ oxidation for BSG	
and compost mix	169
Table 4.14: Experimental design runs and percentage of CH ₄ oxidation	
for composted BSG	170
Table 4.15 Statistical analysis of ANOVA for CH ₄ oxidation by for BSG	
and compost mix	172
Table 4.16 Statistical analysis of ANOVA for CH ₄ oxidation by for composted	
BSG	173
Table 4.17 Model optimization and validation	178

LIST OF PLATES

Plate 3.1: Jeram Sanitary Landfill entrance	80
Plate 3.2: The weighing bridge facility at JSL	81
Plate 3.3: JSL aerial view	85
Plate 3.4: Wooden sticks used to mark the grid points at 50m distance	87
Plate 3.5: Gas extraction from flux chamber	89
Plate 3.6: Meteorological instruments (a) aneroid barometer; (b) check gauge;	
(c) Stevenson screen & rain gauge; (d) wet and dry thermometer	92
Plate 3.7: The texture of fresh BSG	94
Plate 3.8: Compost pile from grass clippings and cow manure (before & after)	95
Plate 3.9: Matured BSG compost	96
Plate 3.10: Preparation of sample and Wheaton bottle experiments	97
Plate 3.11: Gas Chromatograph Machine	98
Plate 3.12: Injection of gas sample to GC	98
Plate 3.13: The PVC columns used for laboratory and landfill experiments	101
Plate 3.14: The LFG is pumped into the column for the CH ₄ supply	104
Plate 3.15: The Dwyer Rate Master flow meter is adjusted according to the	
amount of CH ₄ and O ₂ supply needed	104
Plate 3.16: The gas sampling ports of columns are sealed with plastic	
tubes and septa to avoid air intrusion at the ports	105
Plate 3.17: Gas sampling using air tight syringe and vacuum vials	105
Plate 4.1: Visible bubbles from the surface of JSL during wet period	144
Plate 4.2: Visible cracks on cover soil at JSL surface during dry period	144

LIST OF SYMBOLS AND ABBREVIATIONS

ASTM - American society for testing and materials

- C Carbon
- CH₄ Methane
- CO₂ Carbon dioxide
- DOC Degradable organic carbon
- $\ensuremath{\text{DOC}_{\mathrm{f}}}\xspace$ Fraction of decomposable organic carbon
- GHG Greenhouse gas
- GWP Global warming potential
- H_20 Water
- H₂S Hydrogen sulphide
- IDW Inverse distance weight
- LFG Landfill gas
- MCF Methane correction factor

N - Nitrogen

- NH₃ Ammonia
- NH₄ Ammonium
- NIMBY Not in my back yard
- NMVOC's Non methane volatile organic compounds
- O₂ Oxygen
- VOC Volatile organic compound