Table A.1: Fractional atomic coordinates and isotropic or equivalent isotropic

	x	у	z	Uiso*/Ueq
Cr1	0.40542 (6)	0.60336 (5)	0.62841 (5)	0.0131 (2)
Cr2	0.17034 (6)	0.56625 (5)	0.73703 (5)	0.0135 (2)
Cr3	0.18005 (6)	0.73269 (6)	0.58877 (5)	0.0140 (2)
01	0.4536 (3)	0.6151 (3)	0.7549 (2)	0.0198 (8)
O2	0.2966 (3)	0.5724 (3)	0.8261 (3)	0.0205 (8)
O3	0.3914 (3)	0.4689 (3)	0.6374 (3)	0.0184 (7)
O4	0.2208 (3)	0.4442 (3)	0.6949 (3)	0.0198 (8)
O5	0.1056 (3)	0.6751 (3)	0.7966 (3)	0.0195 (7)
O6	0.0969 (3)	0.7819 (3)	0.6894 (3)	0.0195 (8)
O7	0.0316 (3)	0.5543 (3)	0.6608 (3)	0.0189 (7)
O8	0.0452 (3)	0.6588 (3)	0.5512 (3)	0.0192 (7)
O9	0.3030 (3)	0.8221 (3)	0.6195 (2)	0.0174 (7)
O10	0.4560 (3)	0.7309 (3)	0.6132 (3)	0.0193 (8)
O11	0.2517 (3)	0.7039 (3)	0.4743 (2)	0.0176 (7)
O12	0.3748 (3)	0.5871 (3)	0.4972 (2)	0.0172 (7)
O13	0.2517 (3)	0.6341 (2)	0.6511 (2)	0.0147 (7)
O1W	0.5731 (3)	0.5752 (3)	0.6032 (2)	0.0172 (7)
O2W	0.0843 (3)	0.4914 (3)	0.8268 (3)	0.0200 (8)
O3W	0.1111 (3)	0.8387 (3)	0.5119 (3)	0.0222 (8)
C1	0.3976 (4)	0.6011 (3)	0.8241 (3)	0.0161 (9)
C2	0.4557 (5)	0.6207 (4)	0.9128 (4)	0.0213 (10)
C3	0.3122 (4)	0.4166 (4)	0.6615 (3)	0.0163 (9)
C4	0.3268 (5)	0.3144 (4)	0.6485 (4)	0.0233 (11)
C5	0.0764 (4)	0.7537 (4)	0.7646 (4)	0.0175 (10)
C6	0.0117 (5)	0.8165 (4)	0.8254 (4)	0.0213 (11)
C7	-0.0024(4)	0.5925 (4)	0.5887 (3)	0.0173 (10)
C8	-0.1111 (4)	0.5551 (4)	0.5464 (4)	0.0217 (11)
C9	0.4087 (4)	0.8085 (4)	0.6238 (3)	0.0163 (9)
C10	0.4856 (5)	0.8895 (4)	0.6411 (4)	0.0214 (11)
C11	0.3182 (4)	0.6420 (3)	0.4472 (3)	0.0154 (9)
C12	0.3291 (5)	0.6330 (4)	0.3480 (3)	0.0213 (10)

displacement parameters (Å²) of CI[1]

Table A.2: Atomic displacement parameters (Å²) of CI[1]

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U ²³
Cr1	0.0129 (4)	0.0149 (4)	0.0115 (4)	0.0003 (3)	0.0011 (3)	0.0001 (3)
Cr2	0.0135 (4)	0.0149 (4)	0.0123 (4)	0.0005 (3)	0.0018 (3)	-0.0001 (3)
Cr3	0.0134 (4)	0.0149 (4)	0.0136 (4)	0.0010 (3)	0.0001 (3)	-0.0013 (3)
01	0.0163 (16)	0.029 (2)	0.0142 (17)	-0.0013 (14)	0.0007 (13)	0.0001 (15)
O2	0.0194 (18)	0.027 (2)	0.0154 (17)	-0.0023(15)	0.0007 (14)	0.0032 (15)
O3	0.0155 (16)	0.0158 (17)	0.0241 (19)	0.0014 (13)	0.0044 (14)	0.0029 (14)
O4	0.0209 (18)	0.0149 (17)	0.0239 (19)	-0.0013 (14)	0.0088 (15)	-0.0018 (14)
05	0.0207 (17)	0.0184 (18)	0.0194 (18)	0.0023 (14)	0.0033 (14)	-0.0001(15)
06	0.0187 (17)	0.0204 (18)	0.0196 (19)	0.0021 (14)	0.0020 (14)	-0.0027(15)
07	0.0152 (16)	0.0233 (19)	0.0182 (18)	-0.0021 (14)	0.0017 (13)	0.0031 (15)
08	0.0177 (17)	0.0194 (18)	0.0205 (18)	0.0000 (14)	-0.0014 (14)	-0.0024 (15)
09	0.0172 (17)	0.0167 (17)	0.0182 (17)	-0.0009(13)	-0.0010 (13)	0.0004 (14)
O10	0.0164 (17)	0.0166 (17)	0.025 (2)	0.0004 (13)	0.0038 (14)	0.0010 (15)
011	0.0204 (17)	0.0190 (18)	0.0136 (17)	0.0005 (14)	0.0010 (13)	0.0003 (14)
O12	0.0171 (17)	0.0208 (18)	0.0136 (16)	0.0012 (14)	0.0011 (13)	-0.0022 (14)
013	0.0131 (15)	0.0175 (17)	0.0135 (16)	0.0007 (13)	0.0020 (12)	-0.0006(13)
O14	0.0195 (18)	0.029 (2)	0.029 (2)	-0.0017 (16)	0.0010 (16)	-0.0053(17)
O15	0.022 (2)	0.042 (3)	0.025 (2)	0.0091 (18)	-0.0012 (16)	-0.0096 (19)
O16	0.0219 (19)	0.026 (2)	0.032 (2)	-0.0049 (16)	-0.0010 (17)	0.0024 (18)
O17	0.043 (2)	0.028 (2)	0.0164 (19)	0.0016 (18)	0.0006 (17)	0.0017 (16)
O18	0.051 (3)	0.026 (2)	0.030 (2)	-0.017(2)	-0.010(2)	0.0036 (19)
O1W	0.0153 (16)	0.0180 (17)	0.0184 (18)	-0.0002(13)	0.0038 (13)	-0.0010 (14)
O2W	0.0204 (17)	0.0196 (18)	0.0205 (18)	0.0039 (14)	0.0079 (14)	0.0009 (15)
O3W	0.0213 (18)	0.0214 (19)	0.024 (2)	0.0047 (15)	-0.0029 (15)	-0.0008 (16)
N1	0.028 (2)	0.021 (2)	0.016 (2)	-0.0016 (18)	0.0057 (18)	-0.0024 (18)
C1	0.018 (2)	0.017 (2)	0.013 (2)	0.0040 (18)	-0.0013 (18)	-0.0018 (18)
C2	0.020 (2)	0.025 (3)	0.018 (3)	0.001 (2)	-0.0008 (19)	-0.005(2)
C3	0.017 (2)	0.018 (2)	0.013 (2)	0.0020 (18)	-0.0011 (18)	-0.0007 (18)
C4	0.023 (3)	0.016 (2)	0.032 (3)	-0.001(2)	0.008 (2)	-0.004(2)
C5	0.013 (2)	0.019 (2)	0.020 (2)	-0.0014 (18)	-0.0020 (18)	-0.005(2)
C6	0.025 (3)	0.023 (3)	0.016 (2)	0.007 (2)	0.002 (2)	-0.006(2)
C7	0.013 (2)	0.022 (2)	0.017 (2)	0.0019 (18)	0.0024 (18)	-0.0037 (19)
C8	0.018 (2)	0.023 (3)	0.024 (3)	0.0000 (19)	-0.001 (2)	-0.003(2)
C9	0.018 (2)	0.021 (2)	0.010 (2)	-0.0031 (18)	0.0006 (17)	0.0007 (18)
C10	0.020 (2)	0.021 (3)	0.023 (3)	-0.004(2)	0.001 (2)	-0.002(2)
C11	0.014 (2)	0.016 (2)	0.016 (2)	-0.0016 (17)	0.0007 (17)	-0.0026 (18)
C12	0.026 (3)	0.027 (3)	0.011 (2)	0.004 (2)	0.0006 (19)	-0.001 (2)
C13	0.019 (2)	0.018 (2)	0.022 (3)	-0.0010 (18)	-0.002 (2)	0.001 (2)
C14	0.024 (3)	0.027 (3)	0.015 (2)	-0.002 (2)	-0.001 (2)	-0.002 (2)

I	Atom	Distance (Å)	Atom	Distance (Å)
_	Cr1—013	1.893 (3)	01—C1	1.260 (6)
	Cr1—O10	1.959 (4)	O2—C1	1.255 (7)
	Cr1—O3	1.962 (4)	O3—C3	1.259 (6)
	Cr1—01	1.978 (4)	O4—C3	1.259 (6)
	Cr1—012	2.010 (4)	O5—C5	1.281 (7)
	Cr1—O1W	2.049 (4)	O6—C5	1.233 (7)
	Cr2—013	1.901 (4)	O7—C7	1.272 (6)
	Cr2—O2	1.969 (4)	O8—C7	1.254 (7)
	Cr2—07	1.970 (4)	О9—С9	1.254 (6)
	Cr2—O5	1.976 (4)	О10—С9	1.267 (7)
	Cr2—O4	1.977 (4)	011—C11	1.263 (6)
	Cr2—O2W	2.022 (4)	O12—C11	1.269 (6)
	Cr3—013	1.894 (4)	C1—C2	1.509 (7)
	Cr3—O6	1.956 (4)	C3—C4	1.506 (7)
	Cr3—08	1.978 (4)	С7—С8	1.508 (7)
	Cr3—011	1.980 (4)	C9—C10	1.498 (7)
	Cr3—09	1.982 (4)	C11—C12	1.507 (7)
	Cr3—O3W	2.075 (4)		

Table A.3: Bond length of CI[1]

Table .	A.4 :	Bond	angles	of	CI [1]]
---------	--------------	------	--------	----	---------------	---

Atom	Atom	Atom	Angle (⁰)	Atom	Atom	Atom	Angle(⁰)
1	4	<u>J</u>	05.17 (16)	1 011	4	3	01.10 (1.6)
013	Crl	010	95.17 (16)	011	Cr3	09	91.12 (16)
013	CrI	03	98.06 (15)	013	Cr3	03W	1/5.13(16)
010	Crl	03	166.//(16)	06	Cr3	03W	88.07 (16)
013	Crl	01	93.10 (15)	08	Cr3	03W	86.97 (16)
010	Crl	01	87.24 (17)	011	Cr3	03W	80.73 (16)
03	Crl	01	92.37 (17)	09	Cr3	03W	85.05 (16)
013	Cr1	012	93.38 (15)	C1	01	Cr1	129.8 (3)
O10	Cr1	012	92.45 (16)	C1	O2	Cr2	133.6 (3)
03	Cr1	O12	86.44 (16)	C3	03	Cr1	133.1 (3)
01	Cr1	012	173.51 (15)	C3	O4	Cr2	132.6 (3)
013	Cr1	O1W	177.86 (16)	C5	O5	Cr2	130.0 (4)
O10	Cr1	O1W	82.69 (15)	C5	06	Cr3	134.5 (4)
O3	Cr1	O1W	84.09 (15)	C7	O7	Cr2	133.8 (3)
01	Cr1	O1W	86.87 (15)	C7	08	Cr3	130.4 (3)
O12	Cr1	O1W	86.66 (15)	C9	09	Cr3	128.2 (3)
013	Cr2	O2	93.38 (15)	C9	O10	Cr1	133.7 (3)
013	Cr2	O7	93.98 (15)	C11	011	Cr3	135.2 (3)
O2	Cr2	O7	172.47 (16)	C11	O12	Cr1	125.8 (3)
O13	Cr2	O5	95.72 (16)	Cr1	013	Cr3	119.96 (19)
O2	Cr2	05	86.87 (17)	Cr1	013	Cr2	119.74 (18)
07	Cr2	05	90.83 (16)	Cr3	013	Cr2	120.30 (18)
013	Cr2	O4	94.97 (16)	O2	C1	01	125.7 (5)
O2	Cr2	O4	91.88 (17)	O2	C1	C2	116.4 (5)
07	Cr2	04	89.05 (17)	01	C1	C2	117.9 (5)
05	Cr2	O4	169.29 (17)	O4	C3	O3	124.2 (5)
013	Cr2	O2W	178.67 (16)	04	C3	C4	117.7 (5)
02	Cr2	O2W	87.02 (16)	03	C3	C4	118.0(5)
07	Cr2	O2W	85.66 (16)	06	C5	05	125.8 (5)
05	Cr2	O2W	85 56 (16)	06	C5	C6	117.9 (5)
04	Cr2	O2W	83.75 (16)	05	C5	C6	116.3 (5)
013	Cr3	06	96 66 (16)	08	C7	07	125 8 (5)
013	Cr3	08	94 10 (15)	08	C7	C8	123.8(5) 117.8(5)
015	Cr3	08	90 55 (16)	07	C7	C8	117.0(5) 116.4(5)
013	Cr3	011	94.52(15)	09	C_{0}	010	124.6(5)
015	Cr3	011	168 70 (16)	0	C_{0}	C10	124.0(5) 118.2(5)
00	Cr3	011	80 /3 (16)	010	C_{0}	C10	110.2(3) 117.2(4)
013	Cr^{2}	00	07.43(10) 04.02(15)	010	C11	012	117.2(4) 12/10(5)
013	Cr^2	09	74.02(13) 87.22(16)	011	C_{11}	C12	124.7 (J) 116 7 (5)
00	Cr2	09	07.33(10) 171.90(16)	012		C12	110.7(3)
08	Cr3	09	1/1.80 (16)	012	CH	CI2	118.4 (4)

 Table A.5: Fractional atomic coordinates and isotropic or equivalent isotropic

	x	у	Z	Uiso*/Ueq
Fe1	0.40419 (2)	0.60220 (2)	0.129438 (17)	0.00843 (7)
Fe2	0.17888 (2)	0.73247 (2)	0.090068 (16)	0.00844 (7)
Fe3	0.16926 (2)	0.56560 (2)	0.236988 (17)	0.00858 (7)
01	0.25064 (10)	0.63291 (10)	0.15059 (8)	0.0092 (3)
O2	0.45619 (11)	0.73084 (10)	0.11201 (9)	0.0146 (3)
O3	0.30503 (11)	0.82349 (10)	0.11945 (8)	0.0122 (3)
O4	0.37105 (11)	0.58560 (10)	-0.00509 (8)	0.0117 (3)
O5	0.25122 (11)	0.70406 (10)	-0.02709 (8)	0.0121 (3)
06	0.09731 (11)	0.78451 (10)	0.19119 (8)	0.0123 (3)
O7	0.10095 (12)	0.67591 (10)	0.29677 (9)	0.0153 (3)
08	0.03982 (11)	0.66008 (10)	0.05222 (8)	0.0127 (3)
O9	0.02914 (11)	0.55304 (10)	0.15840 (8)	0.0137 (3)
O10	0.39230 (11)	0.46557 (10)	0.13640 (9)	0.0142 (3)
011	0.22475 (11)	0.44121 (10)	0.19769 (9)	0.0147 (3)
O12	0.29657 (12)	0.57476 (11)	0.32827 (9)	0.0182 (3)
013	0.45411 (11)	0.61259 (11)	0.25732 (8)	0.0162 (3)
C1	0.41120 (16)	0.80855 (15)	0.12314 (11)	0.0106 (4)
C2	0.48869 (17)	0.88825 (15)	0.14216 (13)	0.0164 (4)
C3	0.31601 (15)	0.64213 (14)	-0.05454 (12)	0.0096 (4)
C4	0.32829 (18)	0.63401 (16)	-0.15304 (12)	0.0175 (5)
C5	0.07364 (15)	0.75476 (15)	0.26715 (12)	0.0114 (4)
C6	0.00862 (17)	0.81694 (16)	0.32566 (12)	0.0145 (4)
C7	-0.00686 (15)	0.59229 (14)	0.08820 (12)	0.0107 (4)
C8	-0.11353 (16)	0.55361 (16)	0.04538 (13)	0.0153 (4)
C9	0.31398 (16)	0.41317 (15)	0.16228 (12)	0.0115 (4)
C10	0.32888 (18)	0.31191 (15)	0.14963 (14)	0.0178 (4)
C11	0.39815 (16)	0.60130 (14)	0.32672 (12)	0.0116 (4)
C12	0.45624 (17)	0.62180 (16)	0.41426 (12)	0.0164 (5)

displacement parameters (Å²) of CI[4]

 U^{22} U^{11} U^{33} U^{12} U^{13} U^{23} Fe1 0.00752(13)0.00877(17)0.00907(13)0.00070(10)0.00138(9)0.00040(10)Fe₂ 0.00876(13)0.00801(17)0.00090(11)0.00096(9)0.00010(10)0.00860(12)0.00028(10)Fe3 0.00827(13)0.00836(17)0.00923(13)0.00028 11) 0.00205(9)01 0.0077(6)0.0108 (8) 0.0090(6)0.0001(5)0.0011 (5) 0.0008(5)**O**2 0.0105(7) 0.0233(7)0.0010(6) 0.0047(5)0.0104 (9) 0.0012(6)03 0.0114(7)0.0106 (9) 0.0147(7)0.0003(5)0.0011(5)0.0001(5)**O**4 0.0132(7)0.0104 (9) 0.0114 (6) 0.0028(5)0.0008(5)0.0002(5)O5 0.0134(7)0.0128(9)0.0101(6)0.0023(6)0.0020(5)0.0001(5)06 0.0129(7)0.0121 (9) 0.0120(6)0.0027(6)0.0025(5)-0.0008(5)07 0.0195(7)0.0102(9)0.0167(7)0.0031(6)0.0073(6)0.0002(5)08 0.0116(7) 0.0133 (9) -0.0007(6)-0.0011(5)0.0009(5)0.0130(7)09 0.0107(7)0.0149 (9) 0.0154(7)-0.0014(6)-0.0005(5)0.0041(6)**O10** 0.0111(7) 0.0104 (9) 0.0216(7)0.0010(6) 0.0062(5)0.0016(6) 011 0.0141(7)0.0088(9)0.0217(7)0.0006(6)0.0082(6)-0.0008(6)012 0.0154(7)0.0268(10)0.0123(7)-0.0057(6)-0.0026(5)0.0053(6)O13 0.0120(7)0.0262(10)0.0106(6)0.0006(5)-0.0012(6)0.0016(6)**O**14 0.0394(10)0.0156(10)0.0212(8)-0.0138(8)-0.0051(7)0.0023(6)015 0.0202 (11) 0.0149 (7) 0.0340(9)0.0032(6)0.0005(7)0.0013 (6) 016 0.0165 (7) 0.0191 (10) 0.0275 (8) -0.0056(6)-0.0013(6)0.0007 (6) 017 0.0119(7)0.0193(10)0.0176(7)-0.0011(6)0.0023(5)-0.0044(6)**O18** 0.0154(7) 0.0295(11) 0.0207(8)0.0064(7)-0.0003(6)-0.0086(7)N1 0.0132(11) -0.0021(7)-0.0019(7)0.0205(9)0.0147 (8) 0.0061(7)C1 0.0134(9)0.0122 (12) 0.0063(8)-0.0019(8)0.0014(7)0.0013(7)0.0144 (13) C20.0163(10)0.0186(10)-0.0054(8)0.0003(8)-0.0023(8)C3 0.0090(8)0.0092(12)0.0107 (9) -0.0042(7)0.0011(7)0.0003(7)C4 0.0226 (14) 0.0201 (10) 0.0099(9)0.0045(9)0.0015 (8) -0.0005(8)C5 0.0075 (8) 0.0133 (12) 0.0136(9)-0.0018(7)-0.0003(7)-0.0023(7)C6 0.0185(10)0.0135 (13) 0.0115 (9) 0.0068(8)0.0018(7)-0.0029(7)C7 0.0092(8)0.0122 (12) 0.0109 (9) 0.0018(7)0.0019(7)-0.0031(7)C8 0.0113 (9) 0.0155 (13) 0.0189(10)-0.0016(8)-0.0014(7)-0.0029(8)C9 0.0124 (9) 0.0121 (12) 0.0098(8)0.0010(8) -0.0007(7)-0.0010(7)C10 0.0177 (10) 0.0100(13) 0.0262(11) -0.0003(8)0.0076 (8) -0.0030(8)C11 0.0141 (9) 0.0080(12)0.0126 (9) 0.0037(8)-0.0011(7)-0.0005(7)C12 0.0216(14)0.0161(10)0.0115 (9) 0.0026(9)-0.0010(7)-0.0027(8)C13 0.0201 (10) 0.0161 (13) 0.0159 (10) -0.0024(9)-0.0001(8)-0.0020(8)C14 0.0147 (9) 0.0095(12)0.0167(10)-0.0015(8)0.0026(7)0.0021(8)O1W 0.0027 (5) 0.0099 (6) 0.0111 (9) -0.0006(6)-0.0014(6)0.0173 (7) O2W 0.0158(7) 0.0157 (9) 0.0156(7) 0.0058(6)0.0012 (6) 0.0036(6) O3W 0.0149(7) 0.0116 (9) 0.0158 (7) 0.0041 (6) 0.0063 (6) 0.0036(6)

Table A.6: Atomic displacement parameters $(Å^2)$ of CI[4]

Atom	Distance (Å)	Atom	Distance (Å)
Fe1—O1	1.8982 (13)	O18—H18	0.8400
Fe1—O2	1.9867 (15)	C1—C2	1.496 (3)
Fe1—O10	1.9928 (15)	C2—H2A	0.9800
Fe1-013	2.0069 (13)	C2—H2B	0.9800
Fe1—O4	2.0714 (13)	C2—H2C	0.9800
Fe1—O1W	2.0820 (13)	C3—C4	1.504 (3)
Fe2—O1	1.8951 (13)	C4—H4A	0.9800
Fe2—O6	1.9800 (13)	C4—H4B	0.9800
Fe2—O8	2.0126 (13)	C4—H4C	0.9800
Fe2—O3	2.0266 (14)	C5—C6	1.492 (3)
Fe2—O5	2.0308 (13)	С6—Н6А	0.9800
Fe2—O2W	2.1158 (14)	C6—H6B	0.9800
Fe3—O1	1.9124 (13)	C6—H6C	0.9800
Fe3—O12	2.0078 (13)	С7—С8	1.503 (3)
Fe3—O9	2.0090 (13)	C8—H8A	0.9800
Fe3—O11	2.0174 (15)	C8—H8B	0.9800
Fe3—O7	2.0190 (14)	C8—H8C	0.9800
Fe3—O3W	2.0392 (14)	C9—C10	1.494 (3)
O2—C1	1.260 (2)	C10—H10A	0.9800
O3—C1	1.267 (2)	C10—H10B	0.9800
O4—C3	1.273 (2)	C10—H10C	0.9800
O5—C3	1.258 (2)	C11—C12	1.499 (3)
O6—C5	1.266 (2)	C12—H12A	0.9800
O7—C5	1.268 (2)	C12—H12B	0.9800
O8—C7	1.259 (2)	C12—H12C	0.9800
O9—C7	1.265 (2)	C13—C14	1.495 (3)
O10—C9	1.267 (2)	C13—H13A	0.9800
011—С9	1.261 (2)	C13—H13B	0.9800
O12—C11	1.257 (2)	C13—H13C	0.9800
O13—C11	1.267 (2)	O1W—H1WA	0.8353
O14—N1	1.275 (2)	O1W—H1WB	0.7748
O15—N1	1.227 (2)	O2W—H2WA	0.8628
O16—N1	1.253 (2)	O2W—H2WB	0.7826
O17—C14	1.226 (2)	O3W—H3WA	0.7807
O18—C14	1.307 (2)	O3W—H3WB	0.7437

Table A.7: Bond length of CI[4]

Atom	Angle (⁰)	Atom	Angle (⁰)
01—Fe1—O2	95.74 (6)	O12—Fe3—O7	86.51 (6)
O1—Fe1—O10	99.00 (6)	O9—Fe3—O7	90.32 (6)
O2—Fe1—O10	165.11 (6)	O11—Fe3—O7	168.51 (6)
O1—Fe1—O13	94.08 (5)	O1—Fe3—O3W	177.84 (6)
O2—Fe1—O13	88.57 (6)	O12—Fe3—O3W	87.29 (6)
O10-Fe1-O13	92.46 (6)	O9—Fe3—O3W	86.00 (5)
O1—Fe1—O4	92.42 (5)	O11—Fe3—O3W	83.11 (6)
O2—Fe1—O4	91.64 (6)	O7—Fe3—O3W	85.53 (6)
O10—Fe1—O4	85.67 (6)	Fe2—O1—Fe1	120.67 (7)
O13—Fe1—O4	173.45 (6)	Fe2—O1—Fe3	119.63 (7)
O1—Fe1—O1W	176.64 (6)	Fe1—O1—Fe3	119.66 (7)
O2—Fe1—O1W	81.36 (6)	C1	133.83 (13)
O10—Fe1—O1W	83.85 (6)	C1—O3—Fe2	127.73 (13)
O13—Fe1—O1W	87.56 (5)	C3—O4—Fe1	125.23 (13)
O4—Fe1—O1W	86.00 (5)	C3—O5—Fe2	135.07 (12)
O1—Fe2—O6	97.97 (6)	C5—O6—Fe2	134.06 (14)
O1—Fe2—O8	94.81 (6)	C5—O7—Fe3	131.26 (12)
O6—Fe2—O8	90.51 (6)	C7—O8—Fe2	130.38 (12)
O1—Fe2—O3	94.61 (6)	C7—O9—Fe3	134.50 (13)
O6—Fe2—O3	87.23 (6)	C9—O10—Fe1	131.90 (13)
O8—Fe2—O3	170.53 (6)	C9—O11—Fe3	134.10 (14)
O1—Fe2—O5	94.17 (5)	C11—O12—Fe3	134.15 (12)
O6—Fe2—O5	167.72 (6)	C11-O13-Fe1	130.04 (13)
O8—Fe2—O5	90.33 (5)	O15—N1—O16	122.30 (19)
O3—Fe2—O5	89.94 (5)	O15—N1—O14	120.46 (17)
O1—Fe2—O2W	173.01 (6)	O16—N1—O14	117.24 (17)
O6—Fe2—O2W	88.95 (6)	O2—C1—O3	124.41 (18)
O8—Fe2—O2W	86.02 (6)	O2—C1—C2	117.57 (17)
O3—Fe2—O2W	84.74 (6)	O3—C1—C2	118.02 (19)
O5—Fe2—O2W	78.88 (5)	C1-O2-Fe1	133.83 (13)
O1—Fe3—O12	93.22 (6)	O5—C3—O4	124.76 (17)
O1—Fe3—O9	93.58 (5)	O5—C3—C4	117.42 (17)
O12—Fe3—O9	172.79 (6)	O4—C3—C4	117.82 (18)
O1—Fe3—O11	94.78 (6)	O6—C5—O7	124.61 (18)
O12—Fe3—O11	91.15 (6)	O6—C5—C6	117.55 (18)
09—Fe3—O11	90.68 (6)	O7—C5—C6	117.84 (17)
O1—Fe3—O7	96.59 (6)		

Table A.8: Bond angles of CI[4]

Calculation for Maximum Initial Activity

i. Actual pressure drop (atm)

Actual pressure drop =	{(Initial reading – final reading) x 2} – controlled pressure drop
= =	$[{(77.50 - 76.90) \times 2} - 4.00] \text{ cmHg}$ 2.60 cmHg
Actual pressure drop =	2.60 cmHg (1/76 atm/cmHg)

(in atm)

= 0.0342 atm

ii. Weight of PE (gPE)

By using the ideal gas law, $\Delta n = \Delta P(V/RT)$, and $\Delta n = weight/molar$ mass. So;

Weight =
$$\Delta P(V/RT) \times (\text{molar mass})$$

= (0.0342 atm) x (2.906 L / (0.0821 L atm K⁻¹ mol⁻¹ x
303 K)) x (48 g mol⁻¹)
= 0.1122 g

iii. Weight of Cr in catalysts (gCr)

Based on elemental analysis, there are 22.19 % of Cr in CI[1]

Weight = 22.19 % (0.0207 g)= 0.0046 g

iv. Catalytic activity (gPE/gCr/hr/atm)

Example for 0.5 minutes of polymerization process.

0.5 minutes = 0.0083 hours

Activity = gPE/gCr/hr/atm = 0.1122 g / 0.0046 g / 0.0083 hours / 1 atm = 2931 gPE/gCr/hr/atm

Figure A.1: Kinetic curve for the polymerization of ethylene using CI[2] at 30°C with

different Al/Cr molar ratios

Figure A.2: Kinetic curve for the polymerization of ethylene using CI[3] at 30°C with

different Al/Cr molar ratios

Figure A.3: Kinetic curve for polymerization of ethylene using CI[5] at 30°C with

different Al/Cr molar ratios

Figure A.4: DSC thermogram of PE-CI[1] (Al/Cr=11.2)

Figure A.5: DSC thermogram of PE-CI[1] (Al/Cr=30.0)

Figure A.6: DSC thermogram of PE-CI[1] (Al/Cr=33.7)

Figure A.7: DSC thermogram of PE-CI[2]

Figure A.8: DSC thermogram of PE-CI[3]

Figure A.9: DSC thermogram of PE-CI[5]