LIST OF FIGURES

Figure		Page
2.1	A simple illustration on how a basic atom absorbing energy and becoming excited, then releasing the energy to return to the original state.	6
2.2	An illustration demonstrates on Kirchhoff's Law of Spectroscopy	18
2.3	Hydrogen Balmer or H α lines are strongest for medium-temperature stars	20
2.4	Lines of ionized calcium are strongest at lower temperatures compared to the hydrogen lines	20
2.5	The lines of each atom or molecule are strongest at a particular temperature	20
2.6	An example on spectral profile variations from F6/7V to K5V by Silva and Cornell (1992) of University of Oregon	23
2.7	Spectral sequences according to classes with labels on elements	27
	Source: California State Polytechnic University, Pomona	
2.8	Hertzsprung-Russell diagram always used as an aid for astronomer to understand the stellar evolutionary track	29
3.1	A schematic drawing of 20RC Truss Telescope in Langkawi.	34
3.2	Paramount ME Robotic Mounting.	35
3.3	A simple illustration on photodetector.	37
3.4	Typical 512 x 512 CCD	38
3.5	CCD readout process	39
3.6	The ST-7E CCD camera with spectrograph coupling	40
3.7	The position configuration of two CCD detectors in ST-7E	41
3.8	The spectrograph without the cover	50
3.9	The plan view illustrating the path of light from the input (telescope - below) to the output (CCD - above). Red is the light path for imaging while yellow is the light path for guiding CCD	52
3.10	The illustration of the path of light from the source (left) to the output (right). Red is the light path for imaging while yellow is the light path for guiding CCD	52
3.11	The micrometer screw outside the spectrograph	53

3.12	The software interface that shows the interactive star chart.	56
3.13	The software option to connect with telescope. The telescope cable has to be made sure is connected first with the telescope.	56
3.14	The information on celestial objects popped up whenever the object is being clicked	57
3.15	The CCDSoft software interface with popped up camera control operating windows	58
3.16	Camera Control windows have various options to control the CCD.	59
3.17	The CCDSoft already have various options of camera to be integrated with	59
3.18	Frame option in the software	60
3.19	Various commands and packages are offered in the software	61
3.20	Tasks within 'noao' package	62
3.21	The telescope, the spectrograph and the CCD camera are all attached together in Langkawi National Observatory	64
4.1	The process procedure on the raw images in order to get clean data.	66
4.2	The parameter for 'imarith' task	68
4.3	The parameter for 'apsum' task	69
4.4	The two-dimensional neon profile lines image for wavelength reference	70
4.5	The neon profile lines seen in three dimensions	70
4.6	The extracted spectrum of neon profile lines before the calibration	70
4.7	The "identify" task which is to identify the reference wavelength in the calibration process	71
4.8	The wavelength that has been marked and labelled	72
4.9	The "refspectra" task in assigning the wavelength calibration onto the spectrum	73
4.10	The spectrum of Alphecca after been wavelength calibrated	74
4.11	The "continuum" task for spectrum normalization under "onedspec" package	75
4.12	The illustration of equivalent width	78
4.13	The illustration of full width at half maximum	79

4.14	FWHM and EW value can be determined by using IRAF package	81
4.15	Spectrum of HD 139006 (A0 V) from 6950 to 7700 Å	83
4.16	Spectrum of HD 80493 (M0 IIIvar) from 6950 to 7700 Å	84
4.17	Spectrum of HD 141477 (M1 III) from 6950 to 7700 Å.	84
4.18	Spectrum of HD 148478 (M1.5Iab) from 6950 to 7700 Å.	85
4.19	Spectrum of HD 39801 (M2 Iab) from 6950 to 7700 Å	85
4.20	Spectrum of HD 167618 (M2 III) from 6950 to 7700 Å.	86
4.21	Spectrum of HD 44478 (M3 III) from 6950 to 7700 Å.	86
4.22	Spectrum of HD 112300 (M3 III) from 6950 to 7700 Å.	87
4.23	Spectrum of HD 133216 (M3/M4III) from 6950 to 7700 Å.	87
4.24	Spectrum of HD 156014 (M5 IIvar) from 6950 to 7700 Å.	88
4.25	Spectrum of HD 148783 (M6 IIIvar) from 6950 to 7700 Å.	88

LIST OF TABLES

Table		Page
2.1	Energy level of hydrogen atom	9
2.2	The pattern of Spectral Type and temperature	21
3.1	The comparison of two CCD detectors	41
4.1	The results of the analysis based on the observed stars spectra	88

APPENDICES

Table		Appendix
А	CCD camera ST-7E specification	А
B1	Spectrograph specification	В
B2	Spectrograph's dispersing specification	В

LIST OF GRAPHS

Graph		Page
2.1	The graph of intensity of the star. Star A is hotter than the sun while star B is cooler compared to both star A and the sun. The curve peak of star A tends to the blue while star B inclines to red.	14
5.1	The proportionality of EW and R_c	91
5.2	The relationship of B-V colour index with EW of H α spectral line profiles	92

LIST OF SYMBOLS AND ABBREVIATIONS

α	Alpha
β	Beta
γ	Gamma
δ	Delta
Å	Angstrom
UV	Ultra Violet
IR	Infrared
CCD	Charge-Coupled Device
IRAF	Image Reduction and Analysis Facility
NOAO	National Optical Astronomy Observatory (of the United States)
RC	Ritchey-Chrétien
LED	Light Emitting Diode
SBIG	Santa Barbara Instrument Group