ABSTRACT

Nitrate ion-selective sensors (ISE) was fabricated for the purpose of small, low cost, onthe-go and real-time nitrate ion monitoring for precision agriculture (PA) and the performance was evaluated. The sensor was constructed on two types of printed circuit board (PCB) which are PCB with and without silver (Ag) layer. Two different carbons *i.e.* Electrodag (ED) and Jujo (J) were printed on these PCB electrode surface. All these carbon boards were characterized using potentiostat. PCB without Ag layer which modified with ED followed by J carbon paste had shown current peak of 0.0055 mA. Conducting polymer polypyrrole (PPy) was deposited on each different types of electrodes and once again cyclic voltammetry shown that PCB without Ag layer which modified ED and J carbon give the highest anodic peak current *i.e.* 0.43 mA. The nitrate recognition sensor membrane was prepared by using tetraoctylammonium nitrate (TOAN) as ionophore with methyl methacrylate (MMA) and *n*-butyl acrylate (nBA) as plasticizer. The sensor performance was checked in different concentration of nitrate solution varied from 1 X 10⁻⁴ M to 1 X 10⁻¹ M. PCB sensor tip without Ag layer with ED and J carbon pastes displayed slope value of -61.153 mV/decade, slightly exceed the Nernstian slope value for single ion detection which is -59.16 mV/decade. The linear range for the nitrate ISE is up to 1×10^{-5} M and limit of detection (LOD) is at 6.3 X 10^{-5} ⁷ M of nitrate concentration. Temperature test was performed to study the nitrate ISE performance depreciation. It was found that at 10 °C, the slope of the ISE sensor is around -50 mV/decade, which is below Nernstian response whereas sensor tip tested at 50 °C shown super Nernstian behavior.

ABSTRAK

Pengesan terpilih untuk ion nitrat telah dibina untuk tujuan pengesanan yang bersaiz kecil, kos rendah dan boleh digunakan di mana-mana dan pada bila-bila masa untuk pemantauan ion nitrat bagi kegunaan pertanian tepat. Pengesan ini telah dibina di atas dua jenis papan litar bercetak; iaitu yang tiada lapisan perak dan juga mengandungi lapisan perak. Dua karbon yang berbeza iaitu Electrodag (ED) dan Jujo (J) telah dicetak pada permukaan elektrod papan litar bercetak ini. Pencirian dilakukan pada semua jenis karbon di atas papan litar bercetak ini dengan menggunakan potentiostat. Papan litar bercetak tanpa lapisan perak yang diubahsuai dengan ED diikuti oleh J bancuhan karbon telah menghasilkan puncak arus sebanyak 0.0055 mA. Polimer polypyrrole (PPy) telah didepositkan pada setiap jenis elektrod dan sekali lagi voltammetri berkitar menunjukkan bahawa papan litar bercetak tanpa lapisan perak yang diubahsuai dengan ED dan J karbon memberi puncak arus tertinggi iaitu 0.43 mA. Membran pengesan untuk pemilihan ion nitrat telah disediakan dengan menggunakan tetraoctylammonium nitrat (TOAN) sebagai ionophore dengan metyl methacrylate (MMA) dan n-butyl acrylate (nBA) sebagai bahan pemplastik. Prestasi sensor telah diperiksa dalam kepekatan nitrat yang berbeza dari 1 X 10⁻⁴ M sehingga ke 1 X 10⁻¹ M. Pengesan tanpa lapisan perak dengan ED dan J karbon memaparkan nilai kecerunan sebanyak -61.153 mV/dekad yang sedikit melebihi nilai kecerunan Nernst untuk pengesanan ion tunggal iaitu -59.16 mV/dekad. Julat linear untuk pengesan terpilih untuk ion nitrat ialah sehingga 1 X 10⁻⁵ M dan had pengesanan adalah pada kepekatan nitrat sebanyak 6.3 X 10⁻⁷ M. Ujian suhu telah dijalankan untuk mengkaji prestasi pengesan. Keputusan menunjukkan bahawa pada 10 °C, kecerunan pengesan adalah pada sekitar -50 mV/dekad, iaitu di bawah kecerunan optima Nernst manakala pada 50 °C pengesan menunjukkan nilai kecerunan jauh lebih besar dari Nernst.

ACKNOWLEDGEMENTS / DEDICATION

I would like to impress my gratitude to Dr. Woi Pei Meng for being my supervisor and for her valuable guidance and encouragement in completing this research.

I would like to thank Prof. Dr. Tan Guan Huat for his helps in coordinating, guiding and providing information required for my research and write up.

Last but not least, I dedicate this work to my parents and my sister and brother. I would like to express my heartfelt thanks to them for their moral support, love and encouragement during my research.

TABLE OF CONTENTS

	Content	Page
ABS	TRACT	ii
ABS	TRAK	iii
ACK	KNOWLEDGEMENTS / DEDICATION	iv
TAB	SLE OF CONTENT	v
LIST	Γ OF FIGURES	viii
LIST	Γ OF TABLES	X
LIST	Γ OF ABBREVIATIONS	xi
CHA	APTER 1 INTRODUCTION	1
1.1	Overview on precision agriculture	1
1.2	Importance of the study	2
1.3	Objectives of the study	3
1.4	Scope of study	3
CHA	APTER 2 LITERATURE REVIEW	4
2.1	Role of nitrogen and its derivatives in soil	4
2.2	Electrochemical sensor	5
	2.2.1 Reference electrode, RE	6
	2.2.2 Ion-selective electrode, ISE	6
2.3	Liquid polymeric membrane	8
2.4	Carbon electrode surface	10
2.5	Conducting polymer	11

CHA	PTER 3	B EXPERIMENTAL	14
3.1	Chem	ical and reagents	14
3.2	Equipment		15
3.3	Apparatus		16
3.4	Nitrat	e sensor fabrication process flow	16
	3.4.1	Electrode characterization	18
	3.4.2	Pyrrole electropolymerization	18
	3.4.3	Polypyrrole characterization	19
	3.4.4	Membrane preparation	19
	3.4.5	Membrane dispensing and curing	20
	3.4.6	Membrane condition	20
3.5	Nitrat	e sensor performance test process flow	20
	3.5.1	Ion selective electrode (ISE) Nernstian slope test	21
	3.5.2	Linear range and limit of detection, LOD	22
	3.5.3	Temperature test	22
CHA	PTER 4	RESULTS AND DISCUSSIONS	23
4.1	Carbo	on electrode observations	23
4.2	Carbo	on electrode characterization	26
	4.2.1	Electrodag carbon paste on PCB with Ag layer	26
	4.2.2	Jujo carbon paste on PCB without Ag layer	26
	4.2.3	Electrodag carbon paste on PCB without Ag layer	27
	4.2.4	Electrodag and Jujo carbon pastes on PCB without Ag layer	28
4.3	Pyrrol	e chronopotentiometry	30
4.4	Polyp	yrrole cyclic voltammetry	32
	4.4.1	Electrodag carbon paste on PCB with Ag layer	32

vi

	4.4.2	Jujo carbon paste on PCB without Ag layer	33
	4.4.3	Electrodag carbon paste on PCB without Ag layer	34
	4.4.4	Electrodag and Jujo carbon pastes on PCB without Ag layer	35
4.5	Electr	ode with nitrate sensor membrane	37
4.6	Senso	r with Nernstian response	39
	4.6.1	Electrodag carbon paste on PCB with Ag layer	39
	4.6.2	Jujo carbon paste on PCB without Ag layer	40
	4.6.3	Electrodag carbon paste on PCB without Ag layer	40
	4.6.4	Electrodag and Jujo carbon pastes on PCB without Ag layer	41
4.7	Senso	r linear range and limit of detection	42
4.8	Senso	r temperature test	44

CHAI	PTER 5	CONCLUSION AND RECOMMENDATION	47
5.1	Conclusion a	nd recommendation	47

REFERENCES

49

LIST OF FIGURES

Figure 2.1:	Measurement setup for ion-selective potentiometric cell	7
Figure 2.2:	Polymerization of pyyrole monomer to polypyrrole	13
Figure 3.1:	Fabrication steps for nitrate sensor	17
Figure 3.2:	Test flow for nitrate sensor	21
Figure 3.3:	Measurement setup for ion-selective electrode	22
	potentiometric cell	
Figure 4.1:	PCB element with wells covered with cured carbon	23
Figure 4.2:	The construction of the nitrate sensor	24
Figure 4.3:	Exposed Ag on PCB (with Ag) and Electrodag carbon layer	25
Figure 4.4:	No exposed Ag on PCB (without Ag) and Electrodag carbon layer	25
Figure 4.5:	Cyclic voltammogram of Electrodag carbon paste on	26
	PCB with Ag layer	
Figure 4.6:	Cyclic voltammogram of Jujo carbon paste on PCB without Ag layer	r 27
Figure 4.7:	Cyclic voltammogram of Electrodag carbon paste on	28
	PCB without Ag layer	
Figure 4.8:	Cyclic voltammogram of Electrodag and Jujo carbon	29
	pastes on PCB without Ag layer	
Figure 4.9:	Electrodag and Jujo carbon layers on top of PCB	29
Figure 4.10:	Chronopotentiometry profile of Electrodag carbon paste on	30
	PCB with Ag layer	
Figure 4.11:	Chronopotentiometry profile of Jujo carbon paste on PCB	31
	without Ag layer	
Figure 4.12:	Chronopotentiometry profile of Electrodag carbon paste on	31
	PCB without Ag layer	

Figure 4.13: Chronopotentiometry profile of Electrodag and Jujo carbon	32
pastes on PCB without Ag layer	
Figure 4.14: Cyclic voltammogram of Electrodag carbon paste on	33
PCB with Ag layer	
Figure 4.15: Cyclic voltammogram of Jujo carbon paste on PCB	34
without Ag layer	
Figure 4.16: Cyclic voltammogram of Electrodag carbon paste on	35
PCB without Ag layer	
Figure 4.17: Cyclic voltammogram of Electrodag and Jujo carbon on	36
PCB without Ag layer	
Figure 4.18: Electrode with cured membrane	37
Figure 4.19: TOAN chemical structure	38
Figure 4.20: Nitrate membrane mechanism	38
Figure 4.21: ISE slope for Electrodag carbon paste on PCB with Ag layer	39
Figure 4.22: ISE slope for Jujo carbon paste on PCB without Ag layer	40
Figure 4.23: ISE slope for Electrodag carbon paste on PCB without Ag layer	40
Figure 4.24: ISE slope for Electrodag and Jujo carbon pastes on PCB	41
without Ag layer	
Figure 4.25: Boxplot of all four electrode types with Nernstian slopes values	41
Figure 4.26: Nitrate sensor linear range and LOD for well 1	43
Figure 4.27: Nitrate sensor linear range and LOD for well 2	44
Figure 4.28: Nitrate sensor Nernstian response at 10 °C	44
Figure 4.29: Nitrate sensor Nernstian response at 50 °C	45
Figure 4.30: Nitrate sensor Nernstian response vs. temperature	46

LIST OF TABLES

Table 3.1: Types of prepared solutions	15
Table 4.1: Cyclic voltammogram data comparison between	36
four types of electrode	

LIST OF ABBREVIATIONS

DI	Distilled
ED	Electrodag
J	Jujo
ISE	Ion-selective electrode
LOD	Limit of detection
NHE	Normal hydrogen electrode
PA	Precision agriculture
PCB	Printed circuit board
PPy	Polypyrrole
RE	Reference electrode
SCE	Saturated calomel electrode
SHE	Standard hydrogen electrode
WE	Working electrode