UNIVERSITI MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate : ABDULMUHSIN MOSLIM SHAMI
Passport No : (A7221607) Registration/Matric No: (SHC100002)
Name of Degree : Doctor of Philosophy (PhD)
Title of Thesis : “ANTIBACTERIAL AND ANTIOXIDANT PROPERTIES OF
BIOACTIVE EXTRACTS AND PEPTIDES FROM MORINDA CITRIFOLIA,
ANNONA SQUAMOSA, ALSTONIA ANGUSTILOBA AND LACTIC ACID
BACTERIA”

Field of Study: Biology-Microbiology

I do solemnly and sincerely declare that:
(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and
for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and sufficiently
and the title of the Work and its authorship have been acknowledged in this work;
(4) I do not have any actual knowledge nor ought I reasonably to know that the making
of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this work to the University of
Malaya (“UM”), who henceforth shall be owner of the copyright in this work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action or any
other action as may be determined by UM.

______________________________ __________________________
Candidate’s Signature Date

Subscribed and solemnly declared before,

______________________________ __________________________
Witness’s Signature Date

Name:
Designation:
ABSTRACT

Medicinal plants and lactic acid bacteria are used to treat a wide range of disease conditions. The aim of the study was to determine antimicrobial and antioxidant activities of bioactive compounds and peptides from different morphological parts of common medicinal plants namely Morinda citrifolia, Annona squamosa, Alstonia angustiloba, an Australian plant mixture and lactic acid bacteria. In the first part of the study, different methods were used to standardize the extraction of antimicrobial and antioxidant compounds. It was found that methanol extraction of plants tissue showed higher antimicrobial activity than aqueous extracts against the test bacteria Staphylococcus aureus (RF 122), Escherichia coli (UT181), Bacillus cereus (ATCC 14579), Pseudomonas aeruginosa (PA7), methicillin-resistant Staphylococcus aureus (ATCC BA-43) and Helicobacter pylori (ATCC 43504). Furthermore, plant tissues showed significant antioxidant activities using DPPH and SOD assays. GC-MS analysis of extracts revealed bioactive compounds (diterpenes, anthraquinones, alkaloids, organic acids) in these extracts.

In the second part of the study, bioactive compounds were fractionated into anthraquinones, alkaloids, diterpenes and phenolic compounds. Anthraquinones extracts from the fruit, leaf and root of M. citrifolia exhibited significant antibacterial activity against all strain of test bacteria. Anthraquinones extracted from the fruit have higher level of antioxidant activities compared to another parts of the plant. IR spectra of the anthraquinones extracts of M. citrifolia indicated the presence of O-H, C=O, C-H groups. A significant morphological change in cell wall, membrane and destruction of B. cereus was observed in the presence of anthraquinones.
Alkaloid extracts from the medicinal plants showed antibacterial activity against pathogenic bacteria including MRSA and *H. pylori* while *P. aeruginosa* was resistant to alkaloids extracted from *M. citrifolia* fruit. Alkaloid extracts from *A. squamosa* leaves have a high level of antioxidant activities. IR spectra of the alkaloid extracts indicated the presence of O-H, C=O, C-H and N-H groups. SEM observations of the action of alkaloids on bacterial cell wall showed rupture and cell lysis.

Phenolic compounds extract from plant mixture gave antibacterial and antioxidant activities. Diterpens extracts from *A. squamosa* fruit had significant antibacterial activity against pathogenic bacteria and MRSA and significant antioxidant activity. SEM observation of the action on bacterial cells showed disruption of cell wall and swelling of the cells. IR spectra of diterpenes and phenolic compounds indicated the presence of O-H, C-H, C=O and C-H groups. LC-MS analysis of bioactive compounds plants identified specific compounds.

In the third part of the study, antibacterial peptides extracted from lactic acid bacteria by the acidic methanolic method were shown to have activity against pathogenic bacteria including MRSA and *H. pylori* and had antioxidant activity. LC-MS analysis of peptide of *Lactobacillus paracasei* subsp. *paracasei* 8700:2 identified a novel bacteriocin in this extract.

Peptides extracts from the medicinal plants had significant antibacterial and antioxidant activities. LC-MS analysis of Australian plant mixture indicated the presence of Pathogenesis-related protein 2 of *Phaseolus vulgaris*. SEM and TEM analysis of the mechanism of action of purified peptides from lactic acid bacteria and APM showed membrane disruption with bubble-like formations and cell lysis.
ABSTRAK

Tumbuhan ubatan dan bakteria asid laktik digunakan untuk merawat pelbagai penyakit. Tujuan kajian ialah untuk menentukan aktiviti agen antimikrob dan antioksidan sebatian bioaktif dan peptida dari bahagian-bahagian morologikal berbeza tumbuhan ubatan (Morinda citrifolia, Annona squamosa, Alstonia angustiloba dan tumbuhan Australia campuran) dan bakteria asid laktik. Dibahagian pertama kajian, pelbagai kaedah digunakan untuk menstandardkan pengekstrakan sebatian agen antimikrob dan antioksidan. Di rapati pengekstrakan metanol tisu tumbuh-tumbuhan menunjukkan aktiviti antimikrob lebih tinggi daripada ekstrak akues terhadap bakteria ujian, Staphylococcus aureus (RF 122), Escherichia coli (UT181), Bacillus cereus (ATCC 14579), Pseudomonas aeruginosa (PA7), Staphylococcus aureus tahan methicillin (ATCC BA-43) dan Helicobacter pylori (ATCC 43504). Tambahan pula, tisu tumbuh-tumbuhan menunjukkan aktiviti penting antioksidan dengan menggunakan ujian DPPH and SOD. Analisis mergguntttan GC-MS ekstrak mendedahkan sebatian bioaktif (diterpena, anthraquinones, alkaloid, asid organik) dalam ekstrak ini.

Alkaloid dari tumbuhan ubatan menunjukkan aktiviti antibakteria terhadap bakteria patogen termasuk MRSA and H. pylori manakala P. aeruginosa resistan kepada

Dibahagian ketiga kajian, peptida antibakteria dari bakteria asid laktik, diasingkan dengan kaedah methanoli berasid, menunjukkan keattifan terhadap bakteria patogen termasuk MRSA and *H. pylori* dan mempunyai aktiviti antioksidan. Analisis LC-MS peptida *Lactobacillus paracasei* subsp. paracasei 8700:2 mengenal pasti satu bakteriosin novel dalam ekstrak ini.

Ekstrak peptida dari tumbuhan ubatan mempunyai aktiviti antibakteria penting dan aktiviti-aktiviti antipengoksida. Analisis LC-MS tumbuhan Australia campuran menunjukkan kehadiran protein berkaitan dengan Pathogenesis 2 *Phaseolus vulgaris*. Analisis SEM and TEM menunjukkan mekanisme tindakan peptida tulen dari bakteria asid laktik dan APM menunjukkan gangguan membran bakteria dengan formasi seperti gelembung dan lisis sel.
ACKNOWLEDGMENTS

I would like to express my deep appreciation to my supervisor, Associate Professor Dr. Koshy Philip and Co-Supervisor Professor Dr. Sekaran Muniandy for their support, comments and remarks throughout my PhD project. It was a great opportunity to work with them and be under their supervision.

I would like also to express my appreciation to Dato’ Professor Dr. Mohd Sofian Azrium, Dean of Faculty of Science and Professor Dr. Rosli Hashim, Head of Institute of Biological Sciences, Faculty of Science, University of Malaya for favorable environment for research.

I wish to acknowledge the facilities at University of Malaya and the High Impact Research – Ministry of Higher Education Grant UM.C/625/1/HIR/ MOHE/SC/08 account number F000008-21001 and IPPP grant (PV034/2011A).

I also wish to acknowledge the facilities provided at the Malaysian Genome Institute, Bangi, Malaysia and the Proteomics Center at the University of Victoria, Canada to analyse some of my samples.

My special thanks to go to all friends and technician of the Chemistry Department to analyse my samples and providing some facilities to complete this work.

Thanks are due to all the technician and office staff of the Faculty of Science, University of Malaya for providing facilities to complete this research. Special thanks to go Mr. Gaffar and all technicians in Microbiology Division, Institute of Biological sciences, Faculty of Science for his assistance to collect all plants samples during this work.
I am also grateful to my parents and all my family members in Iraq for their continuous support, encouragement and prayers to complete my research. Finally, I would like to make special thanks to my wife and my children’s for patient, encouragement and they help me to all steps of this work.

ABDULMUHSIN MOSLIM SHAMI
TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION FORM...
ABSTRACT.. ii
ABSTRAK... iv
ACKNOWLEDGEMENTS .. vi
TABLE OF CONTENTS ... viii
LIST OF FIGURES .. xiii
LIST OF TABLES .. xxi
LIST OF SYMBOLS AND ABBREVIATIONS ... xxiii
LIST OF APPENDICES ... xxvi

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: LITERATURE REVIEW... 6

2.1. Morinda citrifolia .. 6
 2.1.1. Plant morphology ... 6
 2.1.2 Chemical components and bioactive compounds of *M. citrifolia* 8
 2.1.3. Antibacterial activity of *M. citrifolia* ..14
 2.1.4. Antioxidant activity of *M. citrifolia* ... 15

2.2. Annona squamosa ... 16
 2.2.1. Plant morphology ... 16
 2.2.2. Chemical constitutes of *A. squamosa* ... 18
 2.2.3. Antibacterial activity of *A. squamosa* ... 22
 2.2.4. Antioxidant activity of *A. squamosa* ... 23

2.3. Alstonia angustiloba (plant morphology and chemical components) 24

2.4. Australian plant mixture ... 26

2.5. Mechanism action of bioactive compounds ... 27

2.6. Lactic acid bacteria .. 30

2.7. Antibacterial peptide from lactic acid (Bacteriocin) .. 31
2.8. Mechanism of action of antibacterial peptides from lactic acid bacteria35
2.9. Antibacterial peptides from plants ...38
2.10. Mechanism action of antibacterial peptides from plants ..40

CHAPTER 3: METHODOLOGY ...42
3.1 Part 1: Crude extraction ...42
 3.1.1. Plant collection ...43
 3.1.2. Cold aqueous extraction ..44
 3.1.3. Hot aqueous extraction ...44
 3.1.4. Methanol extraction ..44
 3.1.5. Determination of Antimicrobial Activities of plants ...44
 3.1.5.1. Well diffusion assay ..44
 3.1.5.2. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) ..45
 3.1.6. Determination of antioxidant activities of plants ...46
 3.1.6.1. DPPH radical scavenging assay ..46
 3.1.6.2. SOD activity assay ...46
 3.1.7. GC-MS analysis ..47
 3.1.8. Statistical analysis ..47
3.2. Part 2: Bioactive compounds extraction ..48
 3.2.1. Anthraquinones extracts from *M. citrifolia* fruit and leaves49
 3.2.2. Anthraquinones extracts from *M. citrifolia* root ..49
 3.2.3. Alkaloids extracts from *M. citrifolia* fruit ...49
 3.2.4. Alkaloids extracts from *A. squamosa* leaves and *A. angustiloba* root50
 3.2.5. Diterpens extracts of *A. squamosa* fruit ...50
 3.2.6. Phenolic compounds of Australian plant mixture ..51
 3.2.7. Total phenolic contents ..51
 3.2.8. Thin layer chromatography (TLC) and IR spectrometry52
 3.2.9. LC-MS analysis of bioactive compounds ..52
 3.2.10. Effect of bioactive extracts from selected plants by SEM53
3.2.11. Statistical analysis..53

3.3. Part 3: Peptides extraction..54

3.3.1. Peptides extraction of lactic acid bacteria ...54

3.3.1.1. Isolation of lactic acid bacteria ..55
3.3.1.2. Identification of lactic acid bacteria ...55
3.3.1.3. Peptide extraction by ammonium sulphate precipitation ..55
3.3.1.4. Chloroform extraction method ...56
3.3.1.5. Acidic methanolic method ...56
3.3.1.6. Purification of peptides from lactic acid bacteria by gel filtration57
3.3.1.7. Anion-exchange chromatography of peptides from lactic acid bacteria by fast protein liquid chromatography FPLC ...57
3.3.1.8. Effect of peptide extracts from L. paracasei subsp. paracasei strain 8700:2 examined by SEM...58
3.3.1.9. Statistical analysis ..58

3.3.2. Peptides extracts from medicinal plants ..59

3.3.2.1. Peptide extraction from A. squamosa and M. citrifolia fruit ..60
3.3.2.2. Peptide extraction from the leaves of M. citrifolia and A. squamosa60
3.3.2.3. Peptide extraction from the seeds of M. citrifolia and A. squamosa60
3.3.2.4. Peptide extraction from the selected plant mixture ..61
3.3.2.5. Total protein estimation ..61
3.3.2.6. Purification of peptides of selected plant mixtures by gel filtration and HPLC61
3.3.2.7. LC-MS/MS analysis ..62
3.3.2.8. Effect of peptide extracts from APM by SEM ..63
3.3.2.9. Statistical analysis ...63

CHAPTER 4: RESULTS ...64

4.1. Part 1: Crude extraction ..64

4.1.1. Antibacterial activity of crude extracts ...64
4.1.2. Antioxidant activity of crude extracts ..71
4.1.3. GC-MS analysis ...73

4.2. Part 2: bioactive extracts ..77

4.2.1. Antibacterial activity of bioactive extracts ...77
4.2.2. Antioxidant activity of bioactive extracts ..89
4.2.3. Thin layer chromatography (TLC) and IR spectrometry of bioactive extracts ... 95
4.2.4. LC-MS analysis of bioactive extracts .. 96
4.2.5. Assessment of the lytic effect of bioactive extracts from selected plants with
the utilization of a scanning electron microscope .. 106
4.3. Part 3: Peptides extraction ... 109
4.3.1. Peptides extraction from lactic acid bacteria ... 109
 4.3.1.1. Isolation and identification of lactic acid bacteria 109
 4.3.1.2. Antibacterial activity of peptide extracted from lactic acid bacteria 110
 4.3.1.3. Antioxidant activity of peptide extracted from lactic acid bacteria 124
 4.3.1.4. Assessment of the lytic effect of peptide extracts from lactic acid
 bacteria with the utilization of a scanning electron microscope 126
4.3.2. Peptides extracted from medicinal plants ... 129
 4.3.2.1. Antibacterial activity of peptide extracted from medicinal plants 129
 4.3.2.2. Antioxidant activity of peptide extracted from medicinal plants 134
 4.3.2.3. Bioactivity Guided Purification .. 136
 4.3.2.4. LC-MS/MS analysis and HPLC results of peptide extracted from APM . 137
 4.3.2.5. Attachment of the lytic effect peptide extracts of AMP to B. cereus and
 MRSA cells as examined under SEM ... 145

CHAPTER 5: DISCUSSION ... 147
5.1. Part 1: Crude extracts ... 147
 5.1.1. Antibacterial activity ... 147
 5.1.2. Antioxidant activity ... 150
 5.1.3. GC-MS analysis of crude extracts .. 152
5.2. Part 2: Bioactive extracts ... 154
 5.2.1. Antibacterial activity ... 154
 5.2.2. Antioxidant activity ... 157
 5.2.3. Thin layer chromatography (TLC) and IR spectrometry 158
 5.2.4. LC-MS analysis ... 160
 5.2.5. Assessment of the lytic effect of bioactive extracts from selected plants by
 scanning electron microscopy (SEM) ... 163
5.3. Part 3: Peptides extracts ... 164
LIST OF FIGURES

Figure 2.1. *Morinda citrifolia* plant. Page 7

Figure 2.2. Chemical structure of anthraquinones from *M. citrifolia*. Page 10

Figure 2.3. Chemical structure of xeronine in *M. citrifolia* fruit. Page 13

Figure 2.4. *Annona squamosa* plant. Page 17

Figure 2.5. Chemical structure of alkaloids of *A. squamosa*. Page 19

Figure 2.6. Chemical structure of diterpenes of *A. squamosa*. Page 21

Figure 2.7. *Alstonia angustiloba* plant. Page 24

Figure 2.8. Chemical structure of alkaloids of *A. angustiloba*. Page 25

Figure 2.9. The application of bacteriocin produced by lactic acid bacteria. Page 32

Figure 2.10. Mode of action of bacteriocins produced from lactic acid bacteria. Page 36

Figure 2.11. The multiple functions of plant defensins. Page 39

Figure 2.12. Mechanism action of antibacterial peptides (a) barrel-stave model (b) carpet model. Page 41

Figure 4.1. Inhibition zones of cold aqueous extracts (100 mg/ml) of selected plants on the test microorganisms. Page 64

Figure 4.2. Inhibition zones of hot aqueous extracts (100 mg/ml) of selected plants on the test microorganisms. Page 65

Figure 4.3. Effect of (A) cold aqueous extracts of *A. squamosa* fruit (AFC) and (B) hot aqueous extracts of *A. squamosa* fruit against the test microorganisms. Page 66

Figure 4.4. Inhibition zones of methanolic extracts (100 mg/ml) of selected plants on the test microorganisms. Page 67

Figure 4.5. Effect of different concentration of methanolic extracts from
selected plants on the test microorganisms.

Figure 4.6. Effect of cold aqueous, hot aqueous and methanolic extracts from selected plants on MRSA and *H. pylori.*

Figure 4.7. DPPH scavenging activity with IC_{50} values of crude extracts of selected plants.

Figure 4.8. The rate of inhibition of SOD-like activities of crude extracts of selected plants.

Figure 4.9. Inhibition zones of anthraquinones extracts (100 mg/ml) of different parts from *M. citrifolia* on the test microorganisms.

Figure 4.10. Inhibition zones of different concentrations of anthraquinones extract of *M. citrifolia* fruit on the test microorganisms.

Figure 4.11. Inhibition zones of anthraquinones extracts (100 mg/ml) of the different morphological parts of *M. citrifolia* against (A) *H. pylori* and (B) MRSA.

Figure 4.12. Inhibition zones of different concentration of anthraquinones extracts of *M. citrifolia* leaves on the test microorganisms.

Figure 4.13. Inhibition zones of different concentration of anthraquinones extract of *M. citrifolia* roots on the test microorganisms.

Figure 4.14. Inhibition zones of alkaloid extracts (100 mg/ml) of different part from plants on the test microorganisms.

Figure 4.15. Inhibition zones of different concentrations alkaloids extracts of *M. citrifolia* fruit on the test microorganisms.

Figure 4.16. Inhibition zones of alkaloids extracts (100 mg/ml) of the different selected plants against (A) *H. pylori* and (B) MRSA.

Figure 4.17. Inhibition zones of different concentration of alkaloids extracts of *A. squamosa* leaves on the test microorganisms.
Figure 4.18. Inhibition zones of different concentration of alkaloids extract of *A. angustiloba* roots on the test microorganisms.

Figure 4.19. Inhibition zones of different concentration of phenolic compounds extract of Australian plant mixture on the test microorganisms.

Figure 4.20. Inhibition zones of different concentration of phenolic compounds extract of APM on the test microorganisms.

Figure 4.21. Inhibition zones of diterpenes extract (100 mg/ml) from *A. squamosa* fruit on the test microorganisms.

Figure 4.22. Inhibition zones of different concentration of diterpenes extract from *A. squamosa* fruit on the test microorganisms.

Figure 4.23. DPPH scavenging activity with IC₅₀ of anthraquinones extracts from *M. citrifolia*.

Figure 4.24. The rate of Inhibition of SOD-like activities of anthraquinones extracts from *M. citrifolia*.

Figure 4.25. DPPH scavenging activity with IC₅₀ of alkaloids extracts from different plants.

Figure 4.26. The rate of inhibition of SOD-like activities of alkaloids extracts from selected plants.

Figure 4.27. DPPH scavenging activity with IC₅₀ of phenolic compounds extract from APM and diterpenes extract from *A. squamosa* fruit.

Figure 4.28. The rate of inhibition of SOD-like activities of phenolic compounds extract from APM and diterpenes extract from *A. squamosa* fruit.

Figure 4.29. LC chromatograms of the major compounds of anthraquinones
extracted from the fruit of *M. citrifolia.*

Figure 4.30. LC chromatograms of the major compounds of anthraquinones extracted from the leaves of *M. citrifolia.*

Figure 4.31. LC chromatograms of the major compounds of anthraquinones extracted from the roots of *M. citrifolia.*

Figure 4.32. LC chromatograms of the major compounds of alkaloids extracted from the fruit of *M. citrifolia.*

Figure 4.33. LC chromatograms of the major compounds of alkaloids extracted from the leaves of *A. squamosa.*

Figure 4.34. LC chromatograms of the major compounds of alkaloids extracted from the root *A. angustiloba* roots

Figure 4.35. LC chromatograms of the major phenolic compounds extracted from the Australian plant mixture.

Figure 4.36. LC chromatograms of the major compounds of diterpenes extracted from the fruit of *A. squamosa.*

Figure 4.37. Effect of anthraquinones extracted from the fruit of *M. citrifolia* by scanning electron microscope.

Figure 4.38. Effect of alkaloid extracted from the leaves of *A. squamosa* by scanning electron microscope.

Figure 4.39. Effect of diterpenes extracted from the fruit of *A. squamosa* by scanning electron microscope.

Figure 4.40. Agrose gel electrophoresis of PCR products of *lactobacillus* strains.

Figure 4.41. The inhibition zones of crude peptides extract (1.488 mg/ml) of *Lactobacillus casei* BL 23 on the test microorganisms.

Figure 4.42. Inhibition zones of crude peptides extract (1.488 mg/ml) of
Lactobacillus casei BL 23 on the test microorganisms.

Figure 4.43. Inhibition zones of crude peptide extract (1.488 mg/ml) of Lactobacillus casei BL 23 against (A) *H. pylori* and (B) MRSA.

Figure 4.44. The inhibition zone of crude peptides extracts (1.978 mg/ml) of Lactobacillus casei ATCC 11578 on the test microorganisms.

Figure 4.45. Inhibition zones of crude peptide extract (1.978 mg/ml) of Lactobacillus casei ATCC 11578 on the test microorganisms.

Figure 4.46. Inhibition zones of crude peptides extracts (1.978 mg/ml) of Lactobacillus casei ATCC 11578 against MRSA

Figure 4.47. The inhibition zones of crude peptides extract (1.387 mg/ml) of Lactobacillus paracasei subsp. paracasei 25302 on the test microorganisms.

Figure 4.48. Inhibition zones of crude peptides extract (1.387 mg/ml) of Lactobacillus paracasei subsp. paracasei 25302 on the test microorganisms.

Figure 4.49. Inhibition zones of crude peptides extracts (1.387 mg/ml) of Lactobacillus paracasei subsp. paracasei 25302 against (A) *H. pylori* and (B) MRSA.

Figure 4.50. The inhibition zones of crude peptides extracts (2.502 mg/ml) of Lactobacillus paracasei subsp. paracasei 8700:2 on the test microorganisms.

Figure 4.51. Inhibition zones of crude peptides extract (2.502 mg/ml) of Lactobacillus paracasei subsp. paracasei 8700:2 on the test microorganisms.

Figure 4.52. Inhibition zones of crude peptides extracts (2.502 mg/ml) of Lactobacillus paracasei subsp. paracasei 8700:2 against
MRSA.

Figure 4.53. Fractionations of peptides extracted from *Lactobacillus paracasei* subsp. *paracasei* 8700:2 by Sephadex G-25 gel filtration.

Figure 4.54. Fractionation of peptides extracted from *Lactobacillus paracasei* subsp. *paracasei* 8700:2 by FPLC with inhibition zone of fraction.

Figure 4.55. LC chromatograms of the peptide purified fraction from *L. paracasei* subsp. *paracasei* 8700:2 by FPLC (B) MS/MS spectrum of the active peptide purified fraction from *L. paracasei* subsp. *paracasei* 8700:2.

Figure 4.56. IR spectra of peptide extracted from *L. paracasei* subsp. *paracasei* 8700:2.

Figure 4.57. DPPH scavenging activity IC$_{50}$ values of peptides extracts of lactic acid bacteria.

Figure 4.58. The rate inhibition of SOD-like activities of peptides extracts of lactic acid bacteria.

Figure 4.59. Effect of active peptide extracted from *Lactobacillus paracasei* subsp. *paracasei* 8700:2 by scanning electron microscope.

Figure 4.60. Effect of active peptide extracted from *Lactobacillus paracasei* subsp. *paracasei* 8700:2 by scanning electron microscope.

Figure 4.61. Effect of active peptide extracted from *Lactobacillus paracasei* subsp. *paracasei* 8700:2 by scanning electron microscope.

Figure 4.62. Effect of peptide extracted from *Lactobacillus paracasei* subsp. *paracasei* 8700:2 by transmission electron microscope.

Figure 4.63. Inhibition zones of crude peptides extract of selected plants on
the test microorganisms.

Figure 4.64. Inhibition zones of crude peptides extract of selected plants on the test microorganisms.

Figure 4.65. Inhibition zones of crude peptides extracts of selected plants on MRSA.

Figure 4.66. DPPH scavenging activity with IC$_{50}$ values of peptides extracts of selected plants.

Figure 4.67. The rate of inhibition of SOD–like activities of peptides extracts of selected plants.

Figure 4.68. Fractionation of peptides extracted from selected plant mixture by Sephadex G-75 gel filtration.

Figure 4.69. HPLC chromatogram of F1 of selected plant mixture detected at 254, 215 and 280 nm. Active fraction peak was at 4.181 min.

Figure 4.70. MS/MS spectrum of active fraction of APM with amino acid sequences.

Figure 4.71. Model 3D structure of active fraction (Pathogenesis-related protein 2 of *Phaseolus vulgaris*) of APM.

Figure 4.72. MS/MS spectrum of fraction 2 of APM with amino acid sequences

Figure 4.73. Model 3D Structure of fraction 2 (Oxygen-evolving enhancer protein 2 chloroplastic OS=Triticum aestivum) of APM.

Figure 4.74. MS/MS spectrum of fraction 3 of APM with amino acid sequences.

Figure 4.75. Model 3D Structure of fraction 3 (Calmodulin OS=Fagus sylvatica) of APM.

Figure 4.76. MS/MS spectrum of fraction 4 of APM with amino acid sequences.
sequences.

Figure 4.77. Model 3D Structure of the fraction 4 (Photosystem I reaction center subunit IV, chloroplastic protein) of APM.

Figure 4.78. Effect of F1 fraction peptide extracted from APM by scanning electron microscope. (A) Control: *B. cereus*. (B), (C) and (D) *B. cereus* treated with peptide.

Figure 4.79. Effect of F1 fraction of peptide extracted from APM by scanning electron microscope. (A) Control: MRSA (B), and (C) MRSA treated with active peptide.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1.</td>
<td>Anthraquinones extracted from M. citrifolia fruit.</td>
</tr>
<tr>
<td>Table 2.2.</td>
<td>Anthraquinones extracted from M. citrifolia leaves and roots.</td>
</tr>
<tr>
<td>Table 2.3.</td>
<td>Chemical constitutes of alkaloids of A. squamosa.</td>
</tr>
<tr>
<td>Table 2.4.</td>
<td>Chemical constitutes of diterpenes of A. squamosa.</td>
</tr>
<tr>
<td>Table 2.5.</td>
<td>Classes of bacteriocins of main producers of lactic acid bacteria.</td>
</tr>
<tr>
<td>Table 3.1.</td>
<td>Profile contents of Australian plant mixture.</td>
</tr>
<tr>
<td>Table 4.1.</td>
<td>MIC of cold, hot aqueous and methanolic extracts of Annona squamosa and Morinda citrifolia on the test microorganisms.</td>
</tr>
<tr>
<td>Table 4.2.</td>
<td>MBC of cold, hot aqueous and methanolic extracts of Annona squamosa and Morinda citrifolia on the test microorganisms.</td>
</tr>
<tr>
<td>Table 4.3.</td>
<td>GC-MS analysis of the aqueous extract of the fruit of A. squamosa.</td>
</tr>
<tr>
<td>Table 4.4.</td>
<td>GC-MS analysis of the methanolic extract of the fruit of A. squamosa.</td>
</tr>
<tr>
<td>Table 4.5.</td>
<td>GC-MS analysis of the methanolic extract of the leaves of A. squamosa.</td>
</tr>
<tr>
<td>Table 4.6.</td>
<td>GC MS analysis of the methanolic extract of the fruit of M. citrifolia.</td>
</tr>
<tr>
<td>Table 4.7.</td>
<td>MIC and MBC of anthraquinones extracts of the fruit of M. citrifolia on the test microorganisms.</td>
</tr>
<tr>
<td>Table 4.8.</td>
<td>MIC and MBC of alkaloids extracts of the different selected plants on the test microorganisms.</td>
</tr>
<tr>
<td>Table 4.9.</td>
<td>MIC and MBC of phenolic compounds extract from the APM on</td>
</tr>
</tbody>
</table>
the test microorganisms.

Table 4.10. MIC and MBC of diterpenes extract from A. squamosa fruit on the test microorganisms.

Table 4.11. Total phenolic content of plant mixture extracts (APM).

Table 4.12. Biochemical identification of lactic acid bacteria.

Table 4.13. MIC of peptides extracts of lactic acid bacteria on the test microorganisms.

Table 4.14. MBC of peptides extracts of lactic acid bacteria on the test microorganisms.

Table 4.15. MIC of peptides extracts of selected plants against the test microorganisms.

Table 4.16. MBC of peptides extracts of selected plants against the test microorganisms.
<table>
<thead>
<tr>
<th>Symbol/Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AGC target</td>
<td>Automatic gain control</td>
</tr>
<tr>
<td>APM</td>
<td>Australian plant mixture</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>B. cereus</td>
<td>Bacillus cereus</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated Hydroxyl Toluene assay</td>
</tr>
<tr>
<td>CCl4</td>
<td>Carbon tetrachloride</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DMPD</td>
<td>N.N. dimethyl-p-phenyldiamine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPPH</td>
<td>2, 2'-diphenyl-1-picrylhydrazyl solution</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionization</td>
</tr>
<tr>
<td>FDR</td>
<td>The false discovery rate</td>
</tr>
<tr>
<td>FTC</td>
<td>Ferric thiocyanate assay</td>
</tr>
<tr>
<td>FT-CID method</td>
<td>Fourier transform - Collision-induced dissociation method</td>
</tr>
<tr>
<td>FT-ICR</td>
<td>Fourier transform ion cyclotron resonance</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic acid equivalence</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography–mass spectrometry</td>
</tr>
</tbody>
</table>
\begin{itemize}
 \item \textit{H. pylori} \textit{Helicobacter pylori}
 \item HCl \textit{Hydrochloric acid}
 \item HPLC \textit{High-performance liquid chromatography}
 \item hr \textit{Hour}
 \item IC\textsubscript{50} \textit{The half maximal inhibitory concentration}
 \item IR \textit{Infrared spectroscopy}
 \item KB cells \textit{KERATIN-forming tumor cell line}
 \item KDa \textit{Kilodaltons}
 \item kV \textit{Kilovolt}
 \item \textit{L. casei} \textit{Lactobacillus casei}
 \item \textit{L. paracasei} \textit{Lactobacillus paracasei}
 \item LC-MS \textit{Liquid chromatography–mass spectrometry}
 \item LTQ Orbitrap \textit{Linear ion trap and the proprietary Orbitrap}
 \item m/z \textit{Mass-to-charge ratio}
 \item MBC \textit{Minimum bactericidal concentration}
 \item mg \textit{Milligram}
 \item MIC \textit{Minimum inhibitory concentration}
 \item min \textit{Minute}
 \item \textit{μm} \textit{Micrometer}
 \item mm \textit{Millimeter}
 \item MRS broth \textit{De Man-Rogosa-Sharpe broth}
 \item MRSA \textit{Methicillin-resistant \textit{Staphylococcus aureus}}
 \item ms \textit{Microscan}
 \item MTT \textit{3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide}
 \item NaCl \textit{Sodium chloride}
 \item NADPH \textit{Nicotinamide adenine dinucleotide phosphate}
\end{itemize}
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCIM</td>
<td>National Collection of Industrial Microorganisms</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>O$_2^-$</td>
<td>superoxide anion</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OH</td>
<td>hydroxyl radical</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal RNA</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDE</td>
<td>Simultaneous distillation – solvent extraction</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SOD assay</td>
<td>Superoxide dismutase assay</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbituric acid assay</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>3 D</td>
<td>Tertiary structure</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1.</td>
<td>GC-MS chromatogram of aqueous extract from A. squamosa fruit.</td>
<td>200</td>
</tr>
<tr>
<td>Appendix 2.</td>
<td>GC-MS chromatogram of the methanolic extracts of A. squamosa fruit.</td>
<td>201</td>
</tr>
<tr>
<td>Appendix 3.</td>
<td>GC-MS chromatogram of the methanolic extracts of A. squamosa leaves.</td>
<td>202</td>
</tr>
<tr>
<td>Appendix 4.</td>
<td>GC-MS chromatogram of the methanolic extracts of M. citrifolia fruit.</td>
<td>203</td>
</tr>
<tr>
<td>Appendix 5.</td>
<td>IR spectra of anthraquinones extracted from the fruit of M. citrifolia.</td>
<td>204</td>
</tr>
<tr>
<td>Appendix 6.</td>
<td>IR spectra of anthraquinones extracted from the leaves of M. citrifolia.</td>
<td>204</td>
</tr>
<tr>
<td>Appendix 7.</td>
<td>IR spectra of anthraquinones extracted from the roots of M. citrifolia.</td>
<td>205</td>
</tr>
<tr>
<td>Appendix 8.</td>
<td>IR spectra of alkaloids extracted from the fruit of M. citrifolia.</td>
<td>205</td>
</tr>
<tr>
<td>Appendix 9.</td>
<td>IR spectra of alkaloids extracted from the leaves of A. squamosa.</td>
<td>206</td>
</tr>
<tr>
<td>Appendix 10.</td>
<td>IR spectra of alkaloids extracted from the roots of A. angustiloba.</td>
<td>206</td>
</tr>
<tr>
<td>Appendix 11.</td>
<td>IR spectra of diterpenes extract from the fruit of A. squamosa.</td>
<td>207</td>
</tr>
<tr>
<td>Appendix 12.</td>
<td>IR spectra of the phenolic compounds from Australian plant mixture.</td>
<td>207</td>
</tr>
<tr>
<td>Appendix 13.</td>
<td>MS/MS spectrum of 1-hydroxy-2-methylanthraquinone extracted from the fruit of M. citrifolia at m/z 239.2117.</td>
<td>208</td>
</tr>
</tbody>
</table>
Appendix 1. MS/MS spectrum of hydroxy-1,5-dimethoxy-6-methoxymethyl anthraquinones extracted from the fruit of *M. citrifolia* at m/z 329.3221.

Appendix 15. MS/MS spectrum of morindolin extracted from the fruit of *M. citrifolia* at m/z 345.2424.

Appendix 16. MS/MS spectrum of 1,1-Oi-O-methyl morindol extracted from the fruit of *M. citrifolia* at m/z 315.1353.

Appendix 17. MS/MS spectrum of 1,2-dihydroxyanthraquinone extracted from the fruit of *M. citrifolia* at m/z 241.221.

Appendix 18. MS/MS spectrum of 1,3-6 Trihydroxy-2-methoxyanthraquinone extracted from the fruit of *M. citrifolia* at m/z 287.2385.

Appendix 19. MS/MS spectrum of 1,2-dihydroxyanthraquinone extracted from the leaves of *M. citrifolia* at m/z 241.1434.

Appendix 20. MS/MS spectrum of 1-hygroxy-2,3-methoxyanthraquinone extracted from the leaves of *M. citrifolia* at m/z 285.3341.

Appendix 21. MS/MS spectrum of 2,6-diroxy-1,3-methoxyanthraquinone extracted from the leaves of *M. citrifolia* at m/z 301.1413.

Appendix 22. MS/MS spectrum of 2-hydroxy-1-methoxyanthraquinone extracted from the leaves of *M. citrifolia* at m/z 255.2099.

Appendix 23. MS/MS spectrum of 2-hydroxy-1,5-dimethoxy-6-(methoxymethyl) anthraquinone extracted from the leaves of *M. citrifolia* at m/z 329.2678.

Appendix 24. MS/MS spectrum of 3-hygroxy-2-hydroxymethyl-1-methoxyanthraquinone extracted from the roots of *M. citrifolia* at m/z 285.0785.
Appendix 25. MS/MS spectrum of 6-hydroxy-1,3-dimethoxy-1,7-methylanthraquinone extracted from the roots of *M. citrifolia* at m/z 299.3437.

Appendix 26. MS/MS spectrum of 2-Ethoxy-1-hydroxyanthraquinone extracted from the roots of *M. citrifolia* at m/z 269.2453.

Appendix 27. MS/MS spectrum of 3-hydroxy-1-methoxyanthraquinone-2-aldehyde extracted from the roots of *M. citrifolia* at m/z 283.2653.

Appendix 28. MS/MS spectrum of pelletierine extracted from the fruit of *M. citrifolia* at m/z 142.1201.

Appendix 29. MS/MS spectrum of sedamine extracted from the fruit of *M. citrifolia* at m/z 206.1101.

Appendix 30. MS/MS spectrum of pseudopelletierine extracted from the fruit of *M. citrifolia* at m/z 207.1359.

Appendix 31. MS/MS spectrum of halosine extracted from the fruit of *M. citrifolia* at m/z 173.1413.

Appendix 32. MS/MS spectrum of lycopodine extracted from the fruit of *M. citrifolia* at m/z 267.1764.

Appendix 33. MS/MS spectrum of corydine extracted from the leaves of *A. squamosa* at m/z 342.1366.

Appendix 34. MS/MS spectrum of sanjoinine extracted from the leaves of *A. squamosa* at m/z 328.1750.

Appendix 35. MS/MS spectrum of norlaureline extracted from the leaves of *A. squamosa* at m/z 296.1270.

Appendix 36. MS/MS spectrum of norcodeine extracted from the leaves of *A. squamosa* at m/z 286.2870.
Appendix 37. MS/MS spectrum of oxanalobine extracted from the leaves of
A. squamosa at *m/z* 293.1047.

Appendix 38. MS/MS spectrum of aporphine extracted from the leaves of *A. squamosa* at *m/z* 236.0960.

Appendix 39. MS/MS spectrum of echitamine extracted from the roots of *A. angustiloba* at *m/z* 386.2201.

Appendix 40. MS/MS spectrum of 3-H-indole extracted from the roots of *A. angustiloba* at *m/z* 257.3020.

Appendix 41. MS/MS spectrum of 1-H-indole extracted from the roots of *A. angustiloba* at *m/z* 243.1372.

Appendix 42. MS/MS spectrum of alstilobanine B extracted from the roots of *A. angustiloba* at *m/z* 343.1308.

Appendix 43. MS/MS spectrum alstilobanine E extracted from the roots of *A. angustiloba* at *m/z* 357.2427.

Appendix 44. MS/MS spectrum of hydroxybenzoic acid-hexoside extracted from the Australian plant mixture at *m/z* 300.1060.

Appendix 45. MS/MS spectrum of luteolin extracted from the Australian plant mixture at *m/z* 286.2754.

Appendix 46. MS/MS spectrum of isohamnetin extracted from the Australian plant mixture at *m/z* 316.3205.

Appendix 47. MS/MS spectrum of apigenin-7-O-rutinoside extracted from the Australian plant mixture at *m/z* 578.4190.

Appendix 48. MS/MS spectrum of quercetin extracted from the Australian plant mixture at *m/z* 302.1466.

Appendix 49. MS/MS spectrum of HHDP-gallogluco-pyranoside extracted from the Australian plant mixture at *m/z* 635.4841.
Appendix 50. MS/MS spectrum of dicaffeoyquinic acid extracted from the Australian plant mixture at m/z 516.3569.

Appendix 51. MS/MS spectrum of rosmadial extracted from the Australian plant mixture at m/z 344.3171.

Appendix 52. MS/MS spectrum of caffeic acid extracted from the Australian plant mixture at m/z 342.2722.

Appendix 53. MS/MS spectrum of kuaran-18-al extracted from the fruit of *A. squamosa* at m/z 347.3158.

Appendix 54. MS/MS spectrum of extracted from 16,17,19-kauranetriol the fruit of *A. squamosa* at m/z 322.2053.

Appendix 55. MS/MS spectrum of kauren-18-ol extracted from the fruit of *A. squamosa* at m/z 331.2253.

Appendix 56. MS/MS spectrum of kaur-16-ene extracted from the fruit of *A. squamosa* at m/z 273.1714.

Appendix 57. MS/MS spectrum of stigmasterol extracted from the fruit of *A. squamosa* at m/z 413.2656.

Appendix 58. MS/MS spectrum of annosquamosin B extracted from the fruit of *A. squamosa* at m/z 309.2027.

Appendix 59. 16S rDNA sequences of *Lactobacillus casei* BL 23 isolated from fermented soy milk.

Appendix 60. 16S rDNA sequences of *Lactobacillus paracasei* subsp. *paracasei* 25302 isolated from cow milk.

Appendix 61. 16S rDNA sequences of *Lactobacillus paracasei* subsp. *paracasei* 8700:2 isolated from cow milk.

Appendix 62. Effect of active peptide extracted from *Lactobacillus paracasei* subsp. *paracasei* 8700:2 by scanning electron
microscope. (A) Control: *B. cereus*. (B), (C) and (D) *B. cereus*
treated with peptide.

Appendix 63. Effect of active peptide extracted from *Lactobacillus*
paracasei subsp. *paracasei* 8700:2 by scanning electron
microscope. (A) Control: MRSA. (B), (C) and (D) MRSA
treated with peptide.

Appendix 64. Effect of active peptide extracted from APM by scanning
electron microscope. (A) Control: MRSA (B), and (C) MRSA
treated with active peptide.

Appendix 65. MS/MS spectrum of active fraction of APM with amino acid
sequences.

Appendix 66. MS/MS spectrum of fraction 2 of APM with amino acid
sequences

Appendix 67. MS/MS spectrum of fraction 3 of APM with amino acid
sequences.

Appendix 68. MS/MS spectrum of fraction 4 of APM with amino acid
sequences.