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ABSTRACT 

The work presented in this thesis consists of two parts, focusing on the synthesis and 

characterization of modified mesoporous MCM-41 with macrocyclic compounds and their 

application as an adsorbent for organotin compounds removal. The first part of work dealt 

with the modification of mesoporous silica MCM-41 with macrocyclic compound via a 

post-synthesis grafting method with calix[4]arene, calix[4]arene sulfonate, para-tert-

butylcalix[4]arene and β-cyclodextrin by using toluene-2,4-diisocyanate as the coupling 

agent (MCM-TDI-C4, MCM-TDI-PC4, MCM-TDI-C4S and MCM-TDI-β-CD) in the first 

method, and also by using toluene-2,4-diisocyanate and organosilane (3-chloropropyl 

triethoxysilane-ClPTS) as coupling agents in the second method (MCM-PS-TDI-C4, 

MCM-PS-TDI-PC4, MCM-PS-TDI-C4S, and MCM-PS-TDI-β-CD). Different techniques 

such as infrared (FTIR), elemental analysis, thermal gravimetric analysis (TGA) and X-ray 

powder diffraction (XRD) were used to confirm the production of the desired products. The 

surface area, pore size and pore size distribution were determined using the surface area 

analysis (BET) method. The functionalized mesoporous materials with calix[4]arene 

derivatives and toluene diisocyanate as coupling agent (MCM-TDI-C4, MCM-TDI-PC4 

and MCM-TDI-C4S) possessed high surface areas, large pore sizes and narrow pore size 

distributions compared to other synthetic materials. The screening study of the adsorption 

of organotin compounds (tributyltin TBT, triphenyltin TPT and dibutyltin DBT) onto 

prepared materials showed that functionalized mesoporous materials with calix[4]arene 

derivatives by using toluene-2,4-diisocyanate as coupling agent materials have a higher 
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adsorption capacity compared to the other prepared materials. A percentage removal for 

TBT, TPT and DBT from aqueous solution of 98, 95 and 97 %, respectively, by MCM-

TDI-PC4 were produced in this study. Isotherms, kinetics and thermodynamics of the 

adsorption of TBT, TPT and DBT on the prepared mesoporous materials (MCM-TDI-C4, 

MCM-TDI-PC4 and MCM-TDI-C4S) were investigated. The effect of operating 

parameters, such as contact time, adsorbate initial concentration, initial pH and temperature 

were studied. The adsorption capacity was affected by these parameters. The contact time 

of adsorbent reached equilibrium within 2 h. The maximum adsorption capacity of TBT, 

TPT and DBT occurred at pH 6. It was found that the maximum adsorption capacities of 

TBT, TPT and DBT were 16.42, 19.31 and 18.82 mg/g, respectively, for the prepared 

material MCM-TDI-PC4. Equilibrium modelling of the adsorption isotherm showed that 

adsorption of those three organotin compounds was able to be described by the three-

parameter  model  better  than  the  two-parameter  model.  The  empirical  kinetic  data  of  the  

adsorption of TBT, TPT and DBT by prepared materials were well described by the second 

order  model.  Values  of  ∆G° indicate  that  the  adsorption  of  TBT,  TPT and  DBT onto  all  

adsorbents were spontaneous processes. 
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ABSTRAK 

Kajian yang terkandung dalam tesis ini terdiri daripada dua bahagian yang memberi 

tumpuan kepada sintesis dan pencirian mesoliang MCM-41 yang diubahsuai dengan bahan 

makrosiklik serta penggunaannya sebagai penjerap bagi penyingkiran kompaun 

organotimah. Bahagian pertama kajian ini berkaitan dengan pengubahsuaian silika 

mesoliang MCM-41 dengan bahan makrosiklik menggunakan kaedah cantuman pos-

sintesis, di mana kaedah pertama menggunakan kaliks[4]arene, kaliks[4]arene sulfonat, 

para-tert-butil kaliks[4]arene and β-siklodekstrin dengan toluena menggunakan 2,4-

diisosianat sebagai agen gandingan (MCM-TDI-C4, MCM-TDI-PC4, MCM-TDI-C4S dan 

MCM-TDI-β-CD), manakala toluena 2,4-di-iso-sianat dan organosilana (3-

kloroprofiltrimetoksisilana-CIPTS) digunakan dalam kaedah kedua (MCM-PS-TDI-C4, 

MCM-PS-TDI-PC4, MCM-PS-TDI-C4S, dan MCM-PS-TDI-β-CD). Pelbagai kaedah 

seperti spektroskopi inframerah (FTIR), analisis unsur, analisis gravimetri terma (TGA) dan 

pembelauan serbuk sinar-X (XRD) telah digunakan untuk mengesahkan penghasilan 

produk yang dikehendaki. Keluasan permukaan, saiz liang dan taburan saiz liang telah 

ditentukan dengan menggunakan kaedah analisis keluasan permukaan (BET). Bahan 

mesoliang dengan derivatif kaliks[4]arene dan toluena diisosianat sebagai agen gandingan 

(MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S) mempunyai luas permukaan yang 

tinggi, saiz liang yang besar dan taburan saiz liang yang sempit berbanding dengan bahan-

bahan sintetik yang lain. Kajian pemeriksaan mengenai penjerapan kompaun-kompaun 

organotin (tributiltimah TBT, trifeniltimah TPT dan dibutiltimah DBT) terhadap bahan-

bahan yang disediakan menunjukkan bahawa bahan-bahan mesoliang berfungsikan 
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derivatif-derivatif kaliks[4]arene dengan menggunakan toluena 2,4-di-iso-sianat sebagai 

agen gandingan mempunyai kapasiti penjerapan yang lebih tinggi berbanding dengan 

bahan-bahan lain yang disediakan. Peratusan penyingkiran bagi TBT, TPT dan DBT 

daripada larutan akueus dengan menggunakan MCM-TDI-PC4 yang dihasilkan dalam 

kajian ini adalah masing-masing 98, 95 dan 97%. Kajian mengenai isoterma, kinetik dan 

termodinamik bagi penjerapan TBT, TPT dan DBT bagi bahan-bahan mesoliang yang 

disediakan (MCM-TDI-C4, MCM-TDI-PC4 dan MCM-TDI-C4S) telah dilakukan. Kesan 

parameter-parameter operasi seperti masa sentuhan, kepekatan awal bahan terjerap, pH 

awal dan suhu telah dikaji. Kapasiti penjerapan telah didapati dipengaruhi oleh parameter-

parameter ini. Masa sentuhan bagi penjerap untuk mencapai keseimbangan adalah dalam 

tempoh 2 jam. Kapasiti penjerapan maksima bagi TBT, TPT dan DBT berlaku pada pH 6. 

Kapasiti penjerapan maksima bagi TBT, TPT dan DBT dengan menggunakan MCM-TDI-

PC4 yang telah dihasilkan adalah masing-masing 16.42, 19.31 dan 18.82 mg/g. Model 

keseimbangan bagi isoterma penjerapan menunjukkan bahawa penjerapan bagi ketiga-tiga 

sebatian organotimah telah berjaya diterangkan lebih baik oleh model dengan tiga 

parameter berbanding model dengan dua parameter. Data kinetik empirikal bagi penjerapan 

TBT, TPT dan DBT dengan menggunakan bahan-bahan yang disediakan telah diterangkan 

dengan baik oleh model tertib kedua. Nilai-nilai ∆G° menunjukkan bahawa penjerapan 

TBT, TPT dan DBT ke atas semua penjerap adalah merupakan proses spontan. 
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1 CHAPTER 1 

INTRODUCTION 

1.1 Background of the research  

In the past thirty years, there was a notable increase in the use of organotin compounds as 

evidenced by their widespread applications (Hoch, 2001). Organotin compounds are 

basically utilized in the form of fungicides, bactericides, pesticides, biocides, preservatives 

of wood and stabilizing agents in polymers and catalysts (Fent, 1996a; Forsyth & Jay, 

1997). They are also utilized as an antifouling agent in paints in the form of tributyltin 

(TBT)  and  triphenyltin  (TPT),  where  they  are  released  into  marine  and  freshwater  

environment in a continuous manner that contaminate the environment.  

Several legislation efforts have been undertaken to minimize the release of such compounds 

but to date, there are still significant concentrations and metabolites of such compounds in 

the water (Reader & Pelletier, 1992) along with suspended matters (Fent & Mueller, 1991), 

sediments (Jantzen & Prange, 1995) and sewage sludge (Fent, 1996b).  

Dibutyltin (DBT) is defined as an organotin compound found in polyvinyl chloride (PVC) 

plastics, agricultural pesticides and other consumer products such as a plastic stabilizer (e.g. 

carpet, textiles and wallpaper) (Fent, 1996a). Due to the popular use of consumer and 

agricultural products, DBT has been found on the surface water and drinking water at the 
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level of 2 ppb and 53 ng/L, basically from leaching of PVC piping (Jones-Lepp, Varner, & 

Heggem, 2004; Sadiki & Williams, 1999).  

In the USA and other countries, PVC piping is extensively utilized for water transportation 

to and from residential places and according to research, DBT is leached from PVC pipes in 

a continuous indefinite manner (Forsyth & Jay, 1997; Quevauviller, Donard, & Bruchet, 

1991). DBT is also known to be utilized as an anti-helminthic for poultry prior to 1992, 

resulting in agricultural runoff from soil contamination as a secondary DBT exposure 

source (Epstein, 1991; Jones-Lepp, et al., 2004). While DBT has lower toxicity compared 

to TBT, the former has higher toxicity when it comes to immune systems (Bouchard, 

Pelletier, & Fournier, 1999; St-Jean, Pelletier, & Courtenay, 2002). TBT degrades into 

DBT and monobutyltin (MBT), which are more polar and less toxic compounds to aquatic 

living organisms. Because of this degradation, DBT reaches the same or even higher 

concentrations compared to its parent compound (TBT) in coastal waters (H Frouin, 

Pelletier, Lebeuf, Saint-Louis, & Fournier, 2010) along with sediments (Berto et al., 2007). 

As these compounds (TBT, TPT and DBT) are the most toxic compounds among 

organotins owing to their widespread use. Efficient methods of their removal have been 

given priority and have led to the increasing research and technological interest over the 

last few years.  

In the past thirty years, three methods have been used for the removal of organotin 

compounds involving physical (Ayanda, Fatoki, Adekola, & Ximba, 2013; Behra, 

Lecarme-Théobald, Bueno, & Ehrhardt, 2003; Fang, Borggaard, Christensen, Holm, & 
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Hansen, 2012; Fang, Borggaard, Marcussen, Holm, & Bruun Hansen, 2010), chemical 

(Gabbianelli, Falcioni, & Lupidi, 2002; R. Prasad & Schafran, 2006; Schafran, Prasad, 

Thorn, Ewing, & Soles, 2003; Stichnothe, Thöming, & Calmano, 2001; Yvon, Hécho, & 

Donard, 2011) and biological methods (Gadd, 2000; Jin et al., 2011; S. E. Lee, Chung, 

Won, Lee, & Lee, 2012; Luan, Jin, Chan, Wong, & Tam, 2006; N. Tam, Chong, & Wong, 

2003; N. F. Y. Tam, Chong, & Wong, 2002).  

From many methods that were brought forward to remove pollutants, adsorption is gaining 

a significant attention because of its effectiveness in removing various types of pollutants 

and producing high quality treated water (Sze, Lee, & McKay, 2008). It is also known for 

its simplicity of design, ease of operation, insensitivity to toxic pollutants (Tamez Uddin, 

Rukanuzzaman, Maksudur Rahman Khan, & Akhtarul Islam, 2009) and its resulting in the 

absence of harmful substances (Ahmad & Hameed, 2010). Moreover, the most attracting 

element of adsorption is the veritable array of adsorbents selection with an extensive 

functionalization potential, which makes adsorption suitable to be used in removing 

pollutants. Basic cases are created through the use of chelating resins, chemically-modified 

activated carbon, nanotubes, biomass or functionalized silica gel as materials for 

adsorption.  

Back in 1992, Mobil scientists proposed the synthesis, characterization and mechanism that 

leads to the formation of a new family of silica and alumino-silica mesoporous molecular 

sieves known as M41S (Beck, Vartuli, et al., 1992). They stated that MCM-41, a member 
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of the said family indicates a hexagonal arrangement of uniform cylindrical mesopores that 

may be engineered in the range of 20Å to higher than 100Å. 

Following the discovery of M41S, increasing interest has been shown for the material 

synthesis of well-defined mesoporous structure due to their potential catalysis applications 

(Armengol, Corma, Fernández, García, & Primo, 1997; Morey, Davidson, & Stucky, 1998; 

Pater, Jacobs, & Martens, 1999; Reynhardt, Yang, Sayari, & Alper, 2004; Sayari, 1996), in 

separation science (Hata, Saeki, Kimura, Sugahara, & Kuroda, 1999; Mattigod, Feng, 

Fryxell, Liu, & Gong, 1999; Newalkar, Choudary, Kumar, Komarneni, & Bhat, 2002; 

Shiraishi, Nishimura, Hirai, & Komasawa, 2002) and environmental protection, including 

the adsorption of heavy metals from aqueous solutions (Antochshuk & Jaroniec, 2002; A. 

Liu, Hidajat, Kawi, & Zhao, 2000; Mercier & Pinnavaia, 1998; Pinnavaia, 1999), 

adsorption of carbon dioxide (Harlick & Sayari, 2006; Zeleňák et al., 2008) and adsorption 

of organic pollutants (Sayari, Hamoudi, & Yang, 2005; Serna-Guerrero & Sayari, 2007). 

The increasing interest in the materials stems from their flexibility of synthetic conditions, 

pore sizes, particle geometry and advanced materials applications. 

For the purpose of applications for the environment, mesoporous materials often undergo 

appropriate surface modification to provide the specific surface chemistry and bonding 

sites. The occurrence of high density of functional groups while retaining its open structure 

would lead to high performance. Hence, to achieve a high load of functional groups, 

mesoporous silica has been receiving increasing attention. Several researchers have 
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revealed surface modification with various functional groups through the use of various 

routes and for various purposes (Sayari & Hamoudi, 2001).  

In the previous decades, supramolecular chemistry has been developed in the scientific 

triangular field of chemistry, physics and biology. As a concept, supramolecular chemistry 

was proposed by Lehn et al. (1978). It refers to the area of chemistry defined as the 

‘chemistry  beyond  the  molecule’  on  the  basis  of  organized  entities  of  higher  complexity  

resulting from the association between two or more chemical species bound together by 

intermolecular forces (Lehn, 1988). 

While molecular chemistry concentrates on molecules, supramolecular chemistry handles 

supramolecular  species  known  as  ‘molecular  receptor’  and  ‘substrate’  (Figure   1.1).  A  

receptor’s binding of a substrate produces supramolecules and this process of binding 

presents molecular recognition (the particular inter-action between two molecules, which 

complement each other in terms of geometric and electronic features like two fitting pieces 

of a jigsaw puzzle). The substrates may be anything from cations, anions, neutral organic 

molecules or even gases, whereas receptor molecules should complement the substrates in 

terms of their size, shape and architecture in order to create non-covalent binding 

interactions (Lehn, 1995). In addition, macrocyclic compounds have various branches, 

bridges and linkages, which in majority of cases have intramolecular cavities for various 

substances and therefore have become common receptors. The most extensively examined 

macrocyclic compounds include crown ethers, cyclodextrins and calixarenes (Atwood & 

Lehn, 1996). 
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Figure  1.1 From molecular to supramolecular chemistry 

Meanwhile, cyclodextrins, which consist of 6, 7 and 8 glucose units, are described as 

bucket-shaped oligosaccharides generated from starch. Owing to their molecular structure 

and shape, they have a distinct ability to be molecular containers by capturing guest 

molecules in their internal cavities. The produced inclusion complexes are one of the most 

common host-guest supramolecules categories in academic research and they provide 

various potential benefits to the pharmaceutical formulations (Uekama, Hirayama, & Irie, 

1998). 
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Gutsche & Muthukrishnan (Gutsche & Muthukrishnan, 1978) were the pioneering 

researchers to introduce calixarenes and described them as cup-like shapes, having the 

ability of complexing guest molecules. Since their introduction, they have proliferated in 

the extensive field of molecular recognition. Previous work dedicated to functionalizing 

calixarenes  on  the  upper  as  well  as  the  lower  rims  that  offer  various  cavities  of  different  

sizes and shapes. These calixarenes were commonly studied regarding their receptor 

capability for metal cations.  

The combined physical properties of mesoporous materials, along with the molecular 

recognition ability of macrocyclic molecules, have encouraged researchers to explore new 

adsorbents that can be applied in various fields. For a more extensive field of applications, 

recognition structures have to be created in a way that they reversibly interact and are 

highly selective with any desired analyte. Accordingly, Figure 1.2 presents a monolayer 

architecture of a recognition structure that is capable of interacting with analytes in the 

liquid stage. Because of various interactions, several adsorption positions are possible. For 

instance, supramolecular inclusion of analyte or solvent (A), interaction with the linker that 

links recognition structure to the surface (B), or surface adsorption (C). Macrocyclic 

compounds like crown ethers, calixarenes and cyclodextrins are incorporated in particular 

substrates (polymeric resin, silica gel, supported liquid membrane, and others) and selective 

recognition of various analytes is achieved on the basis of interaction between host and 

guest (M. Chen, Ding, Wang, & Diao, 2013).  
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Figure  1.2 Schematic representation of a sensitive layer of receptor molecules in the vicinity of the 
 liquid of the analyte 

Summarily, further requirements for a clean environment will result in superior standards 

for air and water pollutants. The challenges entailed call for better sorbents that have not 

been made available commercial-wise. Therefore, in order to provide the solution, tailored 

sorbents have to be created based on fundamental principles prompting the interest for the 

present  study  to  come  up  with  an  in-depth  understanding  of  the  topic  and  to  create  new  

advanced materials having chemical functionalities for the elimination of pollutants from 

the environment.  

1.2 Research objectives 

The purpose of this research is to modify ordered mesoporous silica with functionalized 

macrocyclic compound for removal of organotin compounds from aqueous solutions. This 

mesoporous silica has been synthesised by tailoring the surface chemistry of ordered 
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mesoporous silica with toluene-2,4-diisocyanate (TDI) and 3-chloropropyl triethoxysilane 

(ClPTS) as linkers, while calix[4]arene derivatives and β-cyclodextrin as organic hosts. 

Tributyltin, triphenyltin and dibutyltin were selected as the model target pollutants to 

evaluate the efficiency of new adsorbents. Emphasis was focused on studying the 

adsorption equilibrium, kinetics and thermodynamics in a single component system. The 

equilibrium data were fitted into two-parameter models and three-parameter models. The 

objectives of this research can be summarized as follows: 

(1) to functionalize ordered mesoporous silica MCM-41 with calix[4]arene, p-

sulfonatocalix[4]arene and p-tert-butylcalix[4]arene; 

(2) to characterize functionalized MCM-41 with calix[4]arene derivatives; 

(3) to functionalize ordered mesoporous silica MCM-41 with β-cyclodextrin; 

(4) to characterize functionalized MCM-41 with β-cyclodextrin; 

(5) to screen the prepared materials as adsorbent for the removal of organotin 

compounds (tributyltin TBT, triphenyltin TPT and dibutyltin DBT);  

(6) to investigate and compare the adsorption capacity of prepared materials (MCM-

TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S) for organotin compounds from 

aqueous solution, and different isotherm models (two- and three-parameter models) 

will be compared and evaluated; 

(7) to evaluate the kinetics and thermodynamics parameters of adsorption, i.e. free 

energy, enthalpy and entropy of adsorption.  
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1.3 Structure of the thesis 

This thesis consists of eight chapters. In Chapter 1, the background information about this 

research is presented. Chapter 2 contains a literature review on the fundamentals and major 

findings related to the research project. The achievements from the dissertation work are 

mainly presented in Chapters 3 to 7, followed by conclusions in Chapter 8. 

Chapter  3  and  Chapter  4  deal  with  the  synthesis  and  characterization  of  modified  

mesoporous silica MCM-41 with calix[4]arene derivatives and β-cyclodextrin, respectively. 

Study on the characterization of these new materials was carried out in details in order to 

observe the surface and structure evolution of the modified mesoporous silica MCM-41 

materials. The adsorption of organotin compounds from aqueous solution was conducted to 

evaluate the performance of these new materials.  

Based on the screening findings in Chapter 4, the adsorption equilibrium of tributyltin on 

the adsorbent synthesized was studied in Chapter 5. The effect of solution pH, adsorption 

temperatures and initial concentrations on the adsorption behavior was investigated to 

understand the adsorption mechanism. Two-parameter isotherm models, namely 

Freundlich, Langmuir, Temkin, and Dubinin-Radushkevitch and three-parameter isotherm 

models, namely Redlich–Peterson and Koble–Corrigan, were used to correlate the 

experimental data in order to gain a better understanding of the adsorption behavior and the 

surface heterogeneity of the adsorbent. The batch kinetic data were simulated using the 

pseudo-first order, pseudo-second order and intraparticle diffusion models. The study of the 
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thermodynamics for the adsorption of tributyltin on synthesized adsorbents can be used for 

evaluation of the free energy, enthalpy and entropy of adsorption.  

Following the study of adsorption, kinetics and thermodynamics of tributyltin onto 

functionalized materials, study of adsorption, kinetics and thermodynamics of triphenyltin 

and dibutyltin were conducted in Chapter 6 and 7, respectively. Finally, the main 

conclusions of this research work, as well as the recommendations for future studies were 

presented in Chapter 8. 
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2 CHAPTER 2  

LITERATURE REVIEW AND THEORY 

2.1 Literature review 

2.1.1 Organotin compounds and organotin compounds pollution 

2.1.1.1 Organotin compounds in the aquatic environment 

The pioneering synthesis of the organotin compound was conducted by Frankland 

(Frankland, 1852). Throughout 160 years following his initial study, a variety of organotin 

compounds have been synthesized through numerous procedures. Consequently, in the 

current times, tin has more organometallic derivatives uses compared to other metals 

(Maguire, 1991). Organotin is utilized in the form of RnSnX(4-n) (R = alkyl or aryl group, X 

= anionic group). This type of compound possess a wide variety of industrial applications, 

where they are used as thermal stabilizers in the PVC polymers productions and as catalysts 

in the polyurethane foams preparation besides their use in the vulcanization of silicone 

rubbers. 

Moreover, they are also applied for wood preservations and as antifouling agents in marine 

paints, where their utilization entails slow but on-going release and accumulation of the 

compounds in water, sediments and aquatic organisms (Morabito, Chiavarini, & Cremisini, 

1995; Strand & Jacobsen, 2005). Furthermore, their application extends to biocides, where 

organotin compounds (OTCs) are immediately spread in the environment and affects target 
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as well as non-target organisms. Due to their wide variety of uses, organotin compounds 

have a multitude of ways to be introduced into the environment. The sources and possible 

ways of OTCs seeping into the environment are provided in Table  2.1 (Becker van Slooten, 

Merlini, Stegmueller, Alencastro, & Tarradellas, 1994). 

In hindsight, due to their toxic characteristic, the use of organotin compounds was regulated 

in some developed nations including England, France and the U.S. in the 1980s. However, 

tributyltin (TBT) is still being detected in marine environment of the same countries at a 

dangerous level and negatively impacts the environment. No controls of the utilization of 

OTCs in the developing countries have been reported. The International Maritime 

Organization adopted the internal convention on the control of harmful antifouling systems 

in October 2001. The convention prohibits the use of OTCs as ingredients of antifouling    

systems for ships.  

Table  2.1 Sources and possible pathways for the introduction of organotins to the environment 

Compound Application 

Monobutyltin (MBT) PVC stabilizer, catalyst and  precursor 
for glass treatment 

Dibutyltin (DBT) PVC stabilizer, catalyst for polyurethane 
foams and silicones 

Tributyltin (TBT, biocide, used mainly 
against fungi and molluscs) 

Antifouling and water paints, wood and 
stone treatment, textile preservation, 
industrial water systems, paper and 
leather industry, breweries and anti-
parasite 

Triphenyltin (TPT, fungicide) Agrochemical pesticide and  antifouling 
paints 
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2.1.1.2 Toxicity of organotin compounds 

The continuous addition of organic groups into the tin atom in any RnSn(4-n) series leads to 

the increased biological activity to the maximum against almost all organisms when n=3 

(i.e., for the triorganotin compounds) (Cremer, 1958; Maguire, 1991; P. Wong, Chau, 

Kramar, & Bengert, 1982). In this class of compounds, there is a variety of toxicity based 

on terms of the organic substituent’s nature, with the C4H9 groups having the most toxicity. 

Moreover, tributyltin is considered to be the most toxic compound that has been introduced 

by human into the environment (Cooney & Wuertz, 1989). However, regardless of the 

various toxic impact of this compound, only little is known regarding the mechanisms that 

underlie the impact particularly at the molecular level.  

Tributyltin compounds are considered to restrict energy production in cells by attacking and 

minimizing ATP levels (Chow, Kass, McCabe, & Orrenius, 1992; Marinovich, Viviani, & 

Galli, 1990) and in turn negatively impacts the macromolecular synthesis (Girard, Ferrua, 

& Pesando, 1997; Marinovich, et al., 1990). This constriction seems to be stemming from 

the action against the membrane-bound ATPases (A. Singh & Bragg, 1979; Tseng & 

Cooney, 1995) and the attack upon the mitochondria and chloroplasts (Matsuno-Yagi & 

Hatefi, 1993; Rugh & Miles, 1996).  

According to Chicano et.al., (2001) and Tseng and Cooney (1995), organotin compounds 

also adversely impact the cellular membranes and inhibit ion pumps (Kodavanti, Cameron, 

Yallapragada, Vig, & Desaiah, 1991), resulting in the modification of calcium homeostasis 

(Kass & Orrenius, 1999; Orrenius, McCabe, & Nicotera, 1992).  
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Organotin compounds are categorized into immunotoxins (Cooke et al., 2004; Whalen, 

Loganathan, & Kannan, 1999), neurotoxins (Oberdörster & McClellan-Green, 2002; Weis 

& Perlmutter, 1987) and hepatotoxins (Cooke, et al., 2004; Kawanishi et al., 1999). 

Moreover, tributyltin compounds may not be considered as inhibitors of enzymes, but they 

inhibit various enzymatic activity (Girard, et al., 1997; Y. M. Kim et al., 2002; Tseng & 

Cooney, 1995) through their interaction with thiol groups present in the proteins 

(Marinovich, et al., 1990; Stridh, Orrenius, & Hampton, 1999). Due to the tributyltin toxic 

actions occurrence at the concentrations that are one hundred times lower than those 

required for necrotic mode of action (Meador, 1997; Zaucke, Zöltzer, & Krug, 1998), they 

are considered to have high toxicity at low environmental concentrations, specifically to 

organisms having high uptake and low elimination rate constants.  

Research concerning genotoxic and carcinogen activity of tributyltin compounds reveals 

inconsistent  results  (Hamasaki,  Sato,  Nagase,  &  Kito,  1993;  Jensen,  O.  Andersen,  &  

Ronne., 1991; Mirisola et al., 1997). Nevertheless, it seems literature is of the consensus 

that the compounds above can lead to the enhancement of the impact of DNA-damaging 

agents (Nirmala et al., 1999; Sasaki, Yamada, Sugiyama, & Kinae, 1993), even if they do 

not damage their own. 

On the other hand, in Vivo, TBT is primarily metabolized into DBT inside the liver with the 

help of cytochrome P450 enzymes (Ohhira, Watanabe, & Matsui, 2003; Ueno et al., 2003). 

As DBT is utilized in the production of polyvinyl chloride (PVC) plastic tubes and bottles 

(J.-y. Liu & Jiang, 2002), this exposes humans to DBT through their direct uptake from 
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drinking water, which is leached from PVC water distribution pipes (Sadiki & Williams, 

1999). Due to the assertions of the DBT’s lower eco-toxicity to aquatic organisms 

compared to TBT (Gumy et al., 2008; Vighi & Calamari, 1985), DBT constantly enters into 

ecosystems but with little attention. However, some studies have shown that among 

butyltin compounds, DBT has the highest immunotoxicity to mammals (Héloïse Frouin et 

al., 2008; Gumy, et al., 2008), while other studies have shown that DBT is highly 

neurotoxic and immunotoxic (Jenkins, Ehman, & Barone Jr, 2004; Seinen et al., 1977; 

Whalen, et al., 1999).  

DBT concentrations ranging from 11-401 nM were reported in human blood (Whalen, et 

al., 1999). To this end, DBT has to be viewed as potentially toxic. The toxicity of TBT and 

DBT stems causes thymus involution by inhibiting the proliferation of immature 

CD4−/CD8+ thymocytes and in high concentrations, they lead to induced thymocyte 

apoptosis (Gennari et al., 2000). The DBT’s immunotoxic effects are quicker and more 

pronounced as compared to the effects of TBT, which indicates that some TBT effects stem 

from metabolite (DBT) (Snoeij, Penninks, & Seinen, 1988). Additionally, the DBT 

immunotoxic actions target(s) has still not been determined. 

OTCs have also been largely viewed to disrupt endocrines by studies dedicated to aquatic 

organisms, among which imposex of marine gastropods is the most structured endocrinal 

impact of OTCs. Hence, imposex overseeing in neogastropod species has become the 

widespread technique to monitor OTCs effect in coastal marine environment on a global 

scale.  
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Imposex is considered as the development of vas deferens and penis in females (Gibbs, 

Bebianno, & Coelho, 1997), which may result in failure to reproduce and eventually 

minimizes the populations where imposex is present (Gibbs, Bryan, Pascoe, & Burt, 1987; 

Gibbs, Pascoe, & Burt, 1988). It was initially related with TBT in the earlier parts of 1980s 

and it has been revealed to be present in 195 gastropods species (Lima et al., 2011), 

including Nucella lapillus, Nassarius reticulates, Thais bronni and Thais clavigera (Bryan, 

Gibbs, & Burt, 1988; Gibbs & Bryan, 1986; Horiguchi, Shiraishi, Shimizu, Yamazaki, & 

Morita, 1995).  

Despite the occurrence of TPT in coastal areas, triphenyltin compounds causing imposex in 

gastropods was not known until the mid-1990 by Japanese scientists (Horiguchi, Shiraishi, 

Shimizu, & Morita, 1994). Currently, imposex occurrence in marine gastropods gathered 

from various countries’ coastal areas has been related with TPT (Japan: (Horiguchi, et al., 

1994); Spain: (Solé, Morcillo, & Porte, 1998); Korea:(Shim et al., 2000)). Study findings of 

laboratory experiments in which TPT was injected into T. clavigera showed TPT causing 

imposex (Horiguchi, Shiraishi, Shimizu, & Morita, 1997). Similarly, the same result was 

revealed for Bolinus brandaris (M. M. Santos, Armanda Reis-Henriques, Natividade 

Vieira, & Solé, 2006). Also, reports have been brought forward regarding TPT-induced 

effects on fish endocrine system through their reproduction. Fish reproduction is 

suppressed by spawning frequency and the number of eggs produced by female Medaka, 

Oryzias latipes is reduced (Z. Zhang, Hu, Zhen, Wu, & Huang, 2008), or the testicular 

development of male rockfish, Sebastiscus marmoratus is inhibited (Sun et al., 2011). 
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Besides gastropods and fish, TPT also induces malformation in amphibian embryos 

including the African clawed frog, Xenopus tropicalis (Yuan et al., 2011). 

Humans are exposed to various chemicals in the environment and in their diet such as 

OTCs and hence, their potential toxicity to humans should be considered (Golub & 

Doherty, 2004). OTCs sources are multitude and commonly present in food containers 

made from PVC polymers (Kannan, Tanabe, & Tatsukawa, 1995), seafood sold in markets 

(Guérin, Sirot, Volatier, & Leblanc, 2007) and even from tap water distributed by PVC 

pipes (Sadiki, Williams, Carrier, & Thomas, 1996). This is specifically true for seafood and 

fishery products, which are the primary sources of OTCs for humans (Guérin, et al., 2007).  

Additionally to oral uptake through contaminated foodstuffs, cutaneous absorption through 

the respiratory tract has a high potential of occurring and should be considered (Colosio et 

al., 1991). Two reports have been brought forward concerning the negative impact of TPT 

compounds to human (Colosio, et al., 1991; Manzo, Richelmi, & Sabbioni, 1981) through 

the  accidentally  exposure  of  farmers  to  TPT-based  pesticides.  The  patients  showed  

symptoms of TPT poisoning, such as dizziness and nausea. Moreover, TPT may also result 

in the central nervous system’s impairment and liver damage. 

Owing to the absence of quantitative toxicological data on humans, potential toxic effects 

on humans can be taken from other mammals tests such as rats, rabbits or pigs and thus the 

human intake of the chemicals are estimated. For instance, a diet containing 50 mg of 

TPTOH kg-1 of diet did not negatively affect rats even following 276 day of the constant 
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dietary exposure (Kimbrough, 1976). On the other hand, on guinea pigs, the most sensitive 

species, growth inhibition was reported in as little as 1 mg concentration of TPT kg-1 

(Stoner, 1966). TPT compounds are also eliminated slowly from rats and guinea pigs 

(Stoner, 1966; Verschuuren, Kroes, Vink, & Van Esch, 1966).  

In the context of mammals, aromatase may be a toxicological target of TPT just as it is in 

marine organisms. For instance, rats exposed to TPT reveal negative impact on brain and 

gonadal aromatase activity in a sex-dependent manner (Hobler et al., 2010). 

Immunotoxicity is viewed as the highly sensitive critical endpoint of mammal exposure to 

TPT  (Boyer,  1989).  On  the  basis  of  immunological  reaction  of  experimental  animals,  an  

acceptable daily intake of TPT is set at 0.5 lg kg-1 body weight d-1 for humans (Lu, 1994). 

As TBT, DBT and TPT share common modes of immunotoxic impacts upon organisms, it 

is logical to derive an acceptable daily intake for the whole group compounds (Guérin, et 

al., 2007).  

On the basis of the notion that the toxic effects of the compounds are additive, the 

European Food Safety Authority laid down the value of tolerable daily intake of the group 

of OTCs at 0.25 lg kg-1 body weight d-1 (EFSA, 2004).  

Most surveys concerning OTCs in foodstuff revealed the daily uptake from food is lower 

than the acceptable daily intake or tolerable daily intake values and their risks are negligible 

to average consumers. These surveys are, however, not without limitations. For example, 

OTCs source may also be from other products like potatoes, fruits and vegetables and is not 
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confined to seafood (Rantakokko, Kuningas, Saastamoinen, & Vartiainen, 2006). Also, the 

surveys failed to estimate the dietary intakes of OTCs among children of less than average 

bodyweights. Moreover, the daily intake may be higher for those consuming large portions 

of the contaminated food.  

OTCs have been reported to be present in human blood and liver. The first detection was in 

human blood in the late 1990s (Kannan, Senthilkumar, & Giesy, 1999) and the detection in 

human liver in the latter came from samples from Japanese and Polish population (Kannan 

& Falandysz, 1997; S. Takahashi et al., 1999). Average concentrations of butyltin 

compounds found in livers of Polish people (2.4–11 ng g-1 wet weight) were not as high as 

those found in Japanese (59–96 ng g-1 wet weight). TPT concentrations in human blood are 

higher for people consuming more seafood (Rantakokko et al., 2008). Hence, from the 

public health view point, it is logical to expend more effort to minimize OTCs presence in 

the environment. Advocates have also stressed for the OTCs and degradants monitoring in 

human blood and breast milk samples, particularly in a population that consumes great 

amounts of seafood like fishermen and people living near the coast.  

2.1.2 Techniques available for organotin compounds removal 

About thirty years ago, three types of organotin compounds removal methods have been 

proposed to remove organotin compounds from effluents; these methods are biological, 

chemical and physical methods. Each method has its own benefits and drawbacks. 
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2.1.2.1 Biological methods 

Inorganic tin types have relatively low toxicity towards microorganisms, but more lipid-

soluble organotin compounds are highly toxic. In a general sense, trisubstituted organotin 

compounds are highly toxic compared to its di- and monosubstituted forms. Nevertheless, 

several microorganisms show resistance against organotin compounds, a fact that is 

significant to the organotin compounds environmental cycle and to the biological 

approaches of treatment. The degradation of organotin can entail the step-by-step removal 

of organic moieties that results in less toxic derivatives, such as debutylation of tributyltin 

compounds to di- and monobutyltins. This type of degradation may occur in algae, fungi 

and bacteria and this offers a way for detoxification. 

Additionally, microorganisms are able to accumulate tributyltin compounds, which are 

considered another process of removal from solution. The high lipid solubility organotin 

compounds guarantees cell penetration and relation with intracellular sites, although the 

cell wall components have an equal role to play. Among the components of the fungal wall, 

melanin pigments are able to achieve TBT binding and the extra melanin to grow cultures 

can eradicate the toxicity. In addition, melanised strains are more sensitive as compared to 

albino strains of the same species of organism (Gadd, 2000).  

In a related study Luan et.al., (2006) examined the TBT removal and degradation through 

the alginate-immobilized Chlorella vulgaris beads,  where  they  revealed  that  over  90% of  

TBT was expediently removed in a day. The spiked nutrient concentrations impact upon the 

removal capacity and degradation of TBT in the alginate immobilized C. vulgaris were 
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examined. The nutrients addition in the contaminated water encouraged the growth and 

physiological activity of C. vulgaris immobilized in alginate beads and enhanced its TBT 

degradation enhancement (Jin, et al., 2011). 

Similarly, the TBT removal from artificial wastewater through dead and live cells of four 

microalgal species namely Chlorella miniata, C. sorokiniana, Scenedesmus dimorphus and 

S. platydiscus was examined. Dead cells were revealed to be better in eradicating TBT after 

three days of exposure. The degradation products, DBT and MBT, were noted primarily 

within the cells, and intracellular MBT concentrations were higher as compared to DBT. 

With  regards  to  the  removal  of  TBT,  Scenedesmus cells were better in removal as 

compared to Chlorella due  to  the  significant  sizes  of  cell  and  biomass.  However,  the  

specific uptake and degradation of TBT through Chlorella proved to be greater as 

compared to Scenedesmus. The greatest specific TBT uptake values and the greatest 

degradation was revealed in C. miniata, a Hong Kong isolate (N. Tam, et al., 2003; N. F. Y. 

Tam, et al., 2002). 

More recently, a study by Lee et.al., (2012) isolated a marine species of bacteria capable of 

degrading tributyltin contaminants. The findings showed that Shewanella putrefaciens 

bacteria degraded 88% of tributyltin in real wastewater in a duration of 36 h, indicating the 

efficient decomposition strength of S. putrefaciens of the targeted substances and the same 

species may be employed in a real wastewater. 
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2.1.2.2 Chemical methods 

The treatment of organotins-containing effluent with the use of chemical methods entails a 

series of reactions with the attempt to break down the triorganotin molecules into simpler 

and less toxic substances such as monoorganotin compounds.  

The electrochemical treatment of sediment is able to decompose both dibutyltin and 

tributyltin. Two distinct processes were described and compared, and the findings showed 

that  a  slurry  electrolysis  of  the  suspended  sediment  appeared  to  be  more  efficient  as  

compared to the column leaching and electrolysis. Under oxidizing and under reduced 

process conditions, tributyltin was destroyed and the detoxification process appears to 

follow a step-by-step elimination of the butyl groups. Moreover, a partial debutylation of 

tri- and dibutyltin could be reached although monobutyltin was not impacted (Stichnothe, et 

al., 2001).  

The eradication of triphenyltin chloride from water through the use of photoinduced 

degradation was looked into and it was revealed that the photoredox process took place in 

iron (III) aquacomplexes. In addition, aquacomplexes were utilized to cause the overall 

degradation of triphenyltin. The initial step was the formation of an adduct between 

hydroxyl radicals and the benzene ring. The primary process was a step-by-step 

dephenylation of the TPT. The formation of hydroxylated phenyltin derivatives also 

occurred but merely as minor photoproducts. The process was efficient for both artificial 

and solar light (Gabbianelli, et al., 2002). 
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The  removal  of  TBT with  the  help  of  the  current  full-scale  treatment  plant  to  the  degree  

complying with a 50 parts per trillion (ppt) discharge limit was carried out by Schafran et 

al., (2003). This was conducted through the use of ultraviolet irradiation or ozonation, 

where both processes were significantly enhanced by adding hydrogen peroxide to 

encourage the formation of hydroxyl radical. 

In 2006, R. Prasad and his colleague examined the tributyltin removal through laboratory 

and full-scale treatment (R. Prasad & Schafran, 2006). Laboratory studies and operation of 

a full-scale treatment plant were utilized to investigate options of TBT removal treatment 

with the inclusion of physicochemical treatment processes of coagulation-clarification, 

filtration, and granular activated carbon adsorption. Laboratory tests with aluminum sulfate 

along with ferric sulfate revealed that at an average level, 90% of TBT in shipyard waters 

could be eliminated through coagulation-flocculation-clarification under optimum 

environment. A significantly lower removal was shown for the coagulation-flocculation-

clarification part for the full-scale plant, while the complete full-scale treatment plant 

showed an average of 99.8% of TBT removal over a 3-year period.  

Furthermore, in a more recent study, Yvon et.al., (2011) investigated tributyltin 

solubilization and degradation from spiked kaolin through various reagents. The best results 

were revealed under acidic conditions (2 < pH < 5) characterized by up to 87% TBT 

removal from the spiked kaolin. Acids having reducing properties were shown to be much 

more effective, such as ascorbic and formic acid, which reached 87% and 82% of TBT 

removal, respectively. In addition, final concentrations of monobutyltin and dibutyltin were 
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examined to pinpoint the species that predominate in the solid matrix following batch 

experiments. Speciation of OTCs revealed that TBT degradation happened simultaneously 

with solubilization in the existence of several reagents. The findings enable the selection of 

favorable/optimal operating conditions for the elimination of OTCs.  

2.1.2.3 Physical methods 

Some of the physical methods used to remove pollutants are membrane filtration, ion 

exchange and adsorption. The first method (membrane filtration) involves the physical 

separation  of  dissolved  pollutant  molecules  from  the  effluent  with  the  help  of  permeable  

membranes under pressure (Mui, 2009), and it includes various separation processes 

ranging from filtration, ultra-filtration to osmosis. The method’s main drawback is the 

issues concerning concentrated residue disposal that is left over following the separation, 

the expensive cost and the probability of clogging that often occurs when concentrated 

pollutant layer builds up, which consequently minimizes the overall removal efficiency. 

The second method (ion exchange) is used for the removal of cationic and anionic pollutant 

by having effluents passing through the ion exchange resin until the saturation of the 

available exchange sites (Robinson, McMullan, Marchant, & Nigam, 2001). The ion 

exchange resins comprise of organic/inorganic network structure along with functional 

groups. The majority of ion exchange resins utilized in the treatment of effluents are 

synthetic resins originating from the organic compounds polymerization into a porous three 

-dimensional structure. The major disadvantage of this method is the utilization of pricey 

organic solvents for regeneration of the ion-exchanger.  
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Pollutants adsorption on adsorbents is described as a phenomenon in which molecules of 

pollutant attach onto the adsorbent surface as influenced by different forces of adsorption. 

This method is popular due to its ability to remove various types of pollutants and generate 

a good quality of treated water (Sze, et al., 2008), for its simple design, operational ease, 

insensitivity to toxic pollutants and its resulting in no formation of toxic substances 

(Ahmad & Hameed, 2010; Tamez Uddin, et al., 2009). It is described as an economically 

feasible process that could be impacted by various factors including adsorbate structure, 

textural properties and adsorbents surface chemistry, and specific interactions between the 

adsorbate and the adsorbent surface (Dabrowski, 2001).  

The most commonly utilized adsorbent for the pollutants removal from effluents is 

activated carbon due to its great degree of porosity and expended surface area (Chiu & Ng, 

2012; Chowdhury, Zain, Khan, & Ashraf, 2011; Mamun et al., 2009; Marwani, Albishri, 

Soliman, & Jalal, 2012; Revathi, Ramalingam, Subramaniam, & Ganapathi, 2011; Treviño-

Cordero et al., 2013). Nevertheless, its microporous characters greatly confine its 

applications as an adsorbent, especially for cases of bulky molecules or macromolecule 

adsorption (Zhuang, Wan, Feng, Shen, & Zhao, 2009). Furthermore, its widespread use is 

restricted due to high cost. 

The triorganotin compounds (TOTCs) sorption from aqueous solution to mineral surfaces 

was studied in batch sorption experiments using homoionic clay minerals including 

kaolinites, montmorillonites, illites, aluminum, iron, and silicon (hydr) oxides 

(Weidenhaupt, Arnold, Müller, Haderlein, & Schwarzenbach, 1997). Triorganotin 
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compounds sorption was led by cation exchange of the TOT+ species with clay minerals. 

TOTCs adsorption at homoionic clays was heightened with the decrease in selectivity 

coefficients of the exchangeable cations (Na+ > K+ ≈ Rb+ Cs+, Ba2+, Ca2+, Mg2+). On the 

basis  of  surface  area,  the  sorption  of  TOTCs  to  montmorillonite  and  illite  was  lower  as  

compared to kaolinite, which is consistent with the densities of the surface charge of clays 

and the lack of intercalation of TOT+. Because the leading TOTCs interaction with every 

mineral  was  the  sorption  of  TOT+ cations  to  negatively  charged  surface  sites,  XO-, the 

sorption was significantly pH dependent and sorption maximum appeared at the TOT+ 

maximum overlap with XO- concentrations. Hence, high sorption of TOTCs to hydroxide 

or oxide minerals happens if a significant fraction of negatively charged surface sites exist 

at pH values where TOT+ species predominate, i.e., minerals possessing low values of 

pHZPC. 

Various parameters impact, including the TBT concentration and the sorbents nature were 

examined by a study for the sorption of tributyltin on a natural quartz sand through 

traditional batch experiments (Behra, et al., 2003; Bueno, Astruc, Astruc, & Behra, 1998). 

The main species of TBT at pH<6 was the cation TOT+. In addition, owing to the existence 

of the cationic part as well as the butyl chains, it comes to reason that TBT should exhibit 

amphiphilic features. TBT sorption happens as homovalent 1:1 cation exchange between 

H+ or  Na+ and  TOT+ for concentrations less than 40 μM. TBT’s increasing affinity with 

various materials was according to the following series; kaolinite<<natural sand<treated 

sand<pure quartz.  
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TBT adsorption on soot and two charcoals having certain surface area range from 62–111 

m2 g−1 have been examined while concentrating on the impacts of pH (Fang, et al., 2010). 

The charcoals were found to have an acidic function group but not those that were not soot. 

The adsorption of TBT reached its highest at pH 6-7 for charcoals and for soot at pH > 6. 

Additionally, soot has 1.5-15 times greater density of adsorption (0.09–1.77 μmol m−2) as 

compared to charcoals but the latter exhibited up to 17 times higher sorption affinities 

compared to the former.  

Zhang and his colleagues (2009) examined the adsorption behaviour of multiple-wall 

carbon nanotubes to tributyltin. They studied several factors such as pH and salinity, and 

concluded that multiple-wall carbon nanotubes showed strong adsorption to TBT. 

Moreover, the efficiency of activated carbon-fly ash-nanometal oxide composite materials 

for the removal of tributyltin were studied and compared (Ayanda, et al., 2013). The 

findings revealed that activated carbon, nSiO2 activated carbon-fly ash, activated carbon-fly 

ash-nFe3O4, activated carbon-fly ash-nSiO2 and activated carbon-fly ash-nZnO composite 

materials revealed a net negative charge on the surfaces. On the other hand, fly ash, nFe3O4 

and nZnO revealed a net positive charge. The relative higher removal efficiency (>99%) of 

TBT was noted for the entire composite materials and compared to their precursors with the 

exception of activated carbon. The composite materials provide higher potentials for the 

TBT remediation in wastewaters.  
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The dibutyltin sorption behavior of four kinds of natural clay-rich sediments in comparison 

to the highly toxic tributyltin was examined (Burton, Phillips, & Hawker, 2004; Hoch, 

Alonso-Azcarate, & Lischick, 2003). The most significant DBT affinity was revealed to be 

the montmorillonite-rich sediment, which is known for having the highest specific surface 

area and cation exchange capacity of the four utilized sediments. At a salinity of 0% with 

pH 6, a maximum DBT adsorption was revealed. With a higher pH of 8, the butyltin 

compounds affinity of the sediment phase shifts towards the sequence TBT>DBT, which is 

consistent to the hydrophobicity order of the compounds. It is therefore suggested that the 

hydrophobic feature is the factor that drives the adsorption when butyltin compounds 

primarily arises as neutral hydroxides in the water phase (Hoch, et al., 2003). 

The adsorption of mono- and dibutyltin (MBT and DBT) onto wheat charcoal was also 

examined (Fang, et al., 2012). The behavior of adsorption was showed to be dependent on 

pH owing to butyltin speciation and the pH-dependent charcoal surface charge. The 

adsorption of MBT to the charcoal showed a dip with the pH increase from 4-8. 

Meanwhile, for DBT, the greatest adsorption appeared at pH 6.  

Many commercial adsorbents were examined for their ability to get rid of organotin 

compounds (TBT and DBT) from the artificial contaminated wastewater, as well as actual 

dockyard wastewater (Vreysen, Maes, & Wullaert, 2008). There are three kinds of 

adsorbents namely bentonite-based adsorbent, powdered activated carbon and granular 

activated carbons were utilized. The second type of adsorbent revealed a more significant 

organotin compounds adsorption ability as compared to the final type, which is due to its 
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larger surface area. The greater ability of activated carbon adsorbents to eliminate organotin 

compounds from wastewater shows that organotin compounds are primarily eliminated 

from water by hydrophobic adsorption on the activated carbon. In addition, the organically-

modified bentonite adsorbent revealed the highest ability to remove organotin, which 

indicates the significance of the hydrophobic adsorption mechanism.  

An imprinting approach based adsorbent with high retention capacity and pre-concentration 

factor has been examined for organotin compounds retention (TBT, DBT, MBT and TPT) 

(Puri, Muñoz-Olivas, & Cámara, 2004). These compounds may be retained in a quantitative 

manner on the adsorbent over a wide pH range and following elution, these compounds 

were determined by graphite furnace atomic absorption spectrometry. The process of 

screening has been employed to determine organotin compounds in natural sediments and 

samples of seawater, with the recovery between 82%-90% for TBT, DBT and TPT and 

50%-55%  for  MBT  in  the  samples  of  sediment.  On  the  other  hand,  it  was  97–103%  

recovery for the entire organotin compounds in samples of seawater. This process has been 

validated through the use of a standard sediment reference material. 

2.1.3 Adsorption study  

2.1.3.1 Background history 

Adsorption is found to be more effective as compared to the various techniques proposed 

for  the  removal  of  pollutants  because  of  the  reasons  stated  above  (Section   2.1.2.3).  

Adsorption is a process first proposed by Kayser in 1881 to explain his observations of the 
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gases condensation on free surfaces, a process that was independently discovered by 

Scheele in 1773 and Fontana in 1777 (Sykut, Saba, & Dabrowski, 1999; Tien, 1994). 

Currently, adsorption is described as the change in concentration of a given substance at the 

interface in comparison to the next phases (Sykut, et al., 1999). A summary of the history 

of the adsorption development and application is provided in Table  2.2 (Inglezakis & 

Poulopoulos, 2006).  

 

Table  2.2 Brief history of adsorption development and application 

Year Scientist (s) Name (s) Significance 

1773-
1777 

C.W. Scheele,  

F. Fontana 
Experiments on the uptake of gases by 
charcoal and clays. 

1776-
1778 T. Lowitz Decolorization of tartaric acid utilizing 

charcoal. 

1793 D.D. Kehl 

Application of carbons of animal origin for the 
removal  of  colors  from  sugar.  The  English  
sugar industry used charcoal as a 
decolorization agent in 1794. 

1814 T. de Saussure 
Systematic studies on adsorption. The author 
discovered the exothermic character of 
adsorption. 

1881 H. Kayser Introduced the term “adsorption”. 

1888 
Van Bemmelen, 

H. Freundlich 

The Freundlich equation was first proposed by 
Van Bemmelen and popularized by 
Freundlich. 

1901 R. Von Ostreyko Set the basis for the commercial development 
of activated carbons. 
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1903 M.S. Tswett 
Discovered selective adsorption. The author 
used the term and technology of “column 
solid-liquid adsorption chromatography”. 

1904 J. Dewar 
Found selective adsorption of oxygen from a 
mixture with nitrogen during the uptake of air 
by charcoal. 

1915 W.A. Zelinsky 
Applied  the  use  of  active  carbon  as  an  
adsorption medium in a gas mask for the 
needs during World War I. 

1918 I. Langmuir 

Derived the concept of monolayer adsorption 
formed on energetically homogeneous solid 
surfaces. Was awarded the Nobel Prize in 
chemistry in 1932. 

Table 2.2 (Continued) 

1938 

S. Brunauer, 

P.H. Emmet, 
E. Teller 

The milestone in the development of 
adsorption science was the multilayer 
isotherm equation known as BET. 

1941 
A.J.P. Martin 
B.L.M. Synge 

Introduced to laboratory practice about the 
solid-liquid partition chromatography, both in 
column and planar form. 

1956 
R.M. Barrer 

D.W. Breck 

Invented the method of zeolite synthesis. The 
Linde Company started the production of 
synthetic zeolites on a commercial scale. 

A species existing in the fluid phase is revealed to be adsorbed on the solid surface in cases 

where the species concentration in the fluid-solid boundary is greater as compared to the 

bulk fluid (Tien, 1994). The adsorbed species is known as adsorbate, where in one 

adsorption situation, there may be a single or more adsorbates. In addition, adsorbent is the 

solid substance upon whose surfaces adsorption takes place.  
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Adsorption is described as a surface phenomenon that occurs due to the interaction between 

adsorbate and adsorbent (Tien, 1994). Based on the interaction’s strength, the adsorption 

processes can be categorized into two; physical and chemical adsorption (Lowell, Shields, 

Thomas, & Thommes, 2006; Sykut, et al., 1999). The extent of adsorption of an adsorbate 

on an adsorbent that takes place under a certain condition is attributable to the adsorbate-

adsorbent system and depends on the way in which the adsorbate and adsorbent interact. 

The  different  adsorptive  affinity  of  various  chemical  species  with  respect  to  a  certain  

adsorbent  lays  down  the  basis  of  the  removal  or  separation  of  the  species  from  their  

mixtures through the application of this adsorbent. 

2.1.3.2 Types of adsorption  

There are two adsorption categories; physical adsorption (physisorption)/van der Waals 

adsorption, and chemical adsorption (chemisorption) where the occurrence of chemical 

bonds can be determined during the process. Physisorption can be applied to all adsorbate-

adsorbent systems on the condition that the pressure and temperature situations are 

appropriate, while chemisorption may only take place if the system creates a chemical 

bond.  

I. Physical adsorption 

This  type  of  adsorption  is  known  as  a  dynamic  process,  where  an  equilibrium  state  is  

present with molecules and the adsorbate and adsorbent interaction. The compatible 

interaction between the adsorbent and adsorbate comes from the intermolecular 
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electrostatic force, London dispersion force or van der Waals force from induced dipole-

dipole interactions. It may depend sometimes on the physical configuration of the adsorbent 

such as porosity.  

Adsorbent molecules/atoms should have an expanded specific surface area in order to have 

the optimum capacity for adsorption. Therefore, most adsorbents utilized are known for 

their high porosity and adsorption takes place on the specific sites on the walls of internal 

particles.  In  addition,  both  size  and  distribution  of  micropores  within  the  particles  are  

considered as significant characteristics, which impact the adsorbent’s adsorption capacity 

(McCabe, Smith, & Harriott, 1956; Sohn & Kim, 2005). Another property that affects the 

adsorption capacity is the surface polarity, as polar surfaces have the affinity with polar 

substances like water. Surfaces like zeolites, porous alumina, silica gel or silica-alumina are 

considered hydrophilic, while non-polar surfaces like carbonaceous adsorbents, polymer 

adsorbents and silicate are considered hydrophobic, and they are characterized as more 

likely to be adsorbents of non-aqueous solutions as opposed to aqueous solutions like water 

(McCabe, et al., 1956; Sohn & Kim, 2005). 

Differences in surface area and polarity provide adsorbents with the ability to separate 

various compounds from the primary solution. In addition to the adsorption surface 

properties,  mass,  size,  shape  and  polarity  of  different  adsorbate  molecules  results  in  the  

irreversible adsorption of some molecules to the surface so that separation takes place 

(McCabe, et al., 1956). 
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The physical adsorption process is always exothermic with the physisorption increased with 

a decrease in temperature or increase in pressure. Meanwhile, adsorption occurs on a 

heterogeneous  surface  at  the  sites  of  the  greatest  potential  of  adsorption.  In  addition,  

according to Lamond & Marsh (1964), physical adsorption does not depend on the 

adsorbent surface chemistry. 

 

II. Chemical Adsorption 

This type of adsorption entails the creation of chemical bonds between the adsorbate and 

adsorbent  through  a  chemical  reaction.  It  is  not  as  common  compared  to  physical  

adsorption. The adsorbent regeneration for subsequent reuse is almost always challenging 

or impossible due to the developed chemical bonds (Cheremisinoff & Cheremisinoff, 

1993). 

The differences between the two adsorption types are enumerated in Table  2.3 (O'Malley, 

1983). The level of adsorption on a surface is primarily a function of the temperature, 

pressure and nature of both adsorbent and adsorbate.  

Table  2.3 Characteristics associated with physical/chemical adsorption 
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Physical Adsorption Chemical Adsorption 

Heat of adsorption  
(kJmol-1) 

2.1-20.9 (low heat of 
adsorption) c.f. heat of 
vaporization 

20.9-418.4 (High heat of 
adsorption) c.f. bulk-phase 
chemical reactions 

Kinetics of adsorption      (at 
273 K) Fast Slow 

Temperature dependence of 
uptake (with Increasing T) Decreases Increases or decreases 

Desorption Adsorbate unchanged May be different from 
original adsorptive 

Specificity Non-specific Highly specific 

Monolayer coverage Mono- or multilayer, 
depending on conditions Monolayer only 

 

2.1.3.3 Adsorption isotherms 

Adsorption isotherm is a basic concept in the field of adsorption science (Dabrowski, 

2001). It is described as an equilibrium relation between the amount of adsorbed substance 

and its concentration or pressure in the bulk fluid phase at a controlled temperature 

(Dabrowski, 2001). These adsorption isotherms are commonly utilized to describe the 

adsorption capacity of a particular adsorbent for a particular molecule (Moreno-Castilla, 

2004). The basic experimental information comprised of these isotherms are generally 

utilized to distinguish different types of adsorbents; in other words, the selection of one that 

fits most for a specific application (Moreno-Castilla, 2004).  

The first experimental tool used to analyze specific adsorption phenomenon and to organize 

the most frequent types phenomenologically is the isotherms shape (Lyklema, 1995). On 
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the basis of the initial isotherm part, adsorption isotherms frequently noted in adsorption of 

solutes from aqueous solution have five categories; linear, S, L, H and F types (Lyklema, 

1995). The shapes of these five common types of isotherms are depicted in Figure  2.1 

(Moreno-Castilla, 2004). 

 
Figure  2.1 Most common adsorption isotherms for dilute aqueous solutions on carbon materials 

The effectiveness of adsorption isotherm model in aqueous systems depends on various 

factors including the surface functional groups, temperature, solution pH and equilibrium 

contact time (Kumar, Kumar, Kumar, & Gupta, 2007). Two or more parameters are 

available to describe the experimental data of adsorption isotherm. 
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2.1.3.4 Adsorbent 

In an adsorption process, the adsorbent is an important variable because the process success 

or  failure  depends  on  the  way  the  solid  performs  in  kinetics  as  well  as  equilibrium  (Do  

Duong, 1998). A solid having a great capacity of adsorption but low kinetics and a solid 

having fast kinetics but low capacity of adsorption are both ineffective. Slow kinetics refers 

to the long duration of time that adsorbate molecules take to reach the interior of the 

particle and this result in long residence time in a column and consequently, low 

throughput.  Similarly,  due  to  the  low  capacity  for  adsorption,  a  high  solid  amount  is  

required to achieve a specific throughput. Hence, an effective adsorbent is the one that 

shows a reasonable high surface area per unit mass (or volume), which offers good capacity 

of adsorption and has relatively huge pore network for the transference and diffusion of 

adsorbate molecule that gives good kinetics (Do Duong, 1998; Tien, 1994). 

There are four types of adsorbents that dominate the commercial use of adsorption; they are 

activated carbon, silica gel, activated alumina and zeolites (Do Duong, 1998; R. T. Yang, 

2003). Activated carbon is considered to be the most versatile adsorbent and it has been 

widely used for many purposes owing to its extensively high surface area and micropore 

volume (Do Duong, 1998; R. T. Yang, 2003). It is utilized for the removal of negative 

odor, color, taste and other organic materials, as well as inorganic impurities existing in the 

domestic and industrial wastewater, solvent recovery, air purification and pollution control, 

and finally various applications of gas-phase (Bansal, 2005).  
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Both silica gel and activated alumina are utilized primarily for desiccants, even though 

several modified forms are utilized for the specific process of purification (Do Duong, 

1998; R. T. Yang, 2003). Meanwhile, zeolite, or specifically synthetic zeolite, is a 

significant  type  of  solid  utilized  as  widely  as  activated  carbon.  It  is  primarily  utilized  as  

adsorbents for their specific surface chemistries and crystalline pore structures (Do Duong, 

1998; R. T. Yang, 2003). 

The adsorption applications are confined as only some generic adsorbents are commercially 

available (R. T. Yang, 2003). A new development in adsorbent is required in order to 

enhance its performance and satisfy current challenges. In the last 20 years, there has been 

a marked development in the new nanoporous materials such as the ordered mesoporous 

silica (Beck, Vartuli, et al., 1992; Tanev & Pinnavaia, 1995, 1996; D. Zhao et al., 1998; D. 

Zhao, Huo, Feng, Chmelka, & Stucky, 1998). Nevertheless, the wide utilization of new 

materials as adsorbents is not extensively explored.   

2.1.4 Ordered mesoporous silica 

Porous material is a term utilized for all materials that are characterized as full of pores, 

channels, vessels, holes or cavities, which are deep and wide and allow the fluid or gases 

movement (Rouquerol, Rouquerol, & Sing, 1998). 

This type of material has been synthesized in a successful way with pore diameters 

encompassing the whole nanometer size range. For the purpose of a specific working term, 

the International Union of Pure and Applied Chemistry (IUPAC) has categorized porous 
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supports into three main types according to pore diameter; microporous (<2 nm), 

mesoporous (2-50 nm), and macroporous (>50 nm) (McCusker, Liebau, & Engelhardt, 

2001). A few examples of porous materials that fit into the aforementioned pore types are 

presented in Figure  2.2 (X. S. Zhao, Lu, & Millar, 1996). 

 
Figure  2.2 Schematic illustrating pore size distribution of some porous materials 

Moreover, porous materials are categorized according to their properties of adsorption. The 

‘adsorption’ terminology refers to the gas condensation on a free surface and not its entry 

into the bulk (absorption). This distinction is often not observed and the porous materials 

taking up gas is often described as adsorption or sorption, no matter what the physical 

mechanism involved. Gas adsorption by a porous material is described quantitatively by an 

adsorption  isotherm,  which  is  the  amount  of  gas  adsorbed  by  the  material  at  a  fixed  
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temperature as a function of pressure. Porous materials are often described according to 

pore sizes gauged through data of gas sorption, and IUPAC conventions have been brought 

forward to classify pore sizes and gas sorption isotherms that reflect the relationship 

between porosity and sorption (Rouquerol, et al., 1998).  

The classification of IUPAC for adsorption isotherms is presented in Figure  2.3 

(Rouquerol, et al., 1998). There are six types of isotherms that characterize adsorbents, 

namely microporous (type I), non-porous or macroporous (types II, III, and VI) or 

mesoporous (types IV and V) (Rouquerol, et al., 1998). 

 

Figure  2.3 The IUPAC classification of adsorption isotherms showing both adsorption and 
desorption pathways. Note the hysteresis in types IV and V 
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The hysteresis of adsorption presented in Figure  2.4 (IV and V) are categorized and 

commonly acknowledged to have a correlation based on the shape of the hysteresis loop 

and  texture  (for  instance  pore  size  distribution,  pore  geometry,  and  connectivity)  of  a  

mesoporous material. The IUPAC provided the empirical classification of hysteresis loops 

according to the previous classification by De Boer (Broekhoff, 1979; Sing et al., 1985).  

 

Figure  2.4 The relationship between the pore shape and the adsorption-desorption isotherm 

The IUPAC classification is depicted in Figure  2.4. Type H1 is frequently related with 

porous materials comprising well-defined cylindrical-like pore channels or agglomerates of 

uniform spheres, while H2 describes materials that are frequently disordered with not well-

defined pore size and shape indicating bottleneck constrictions. On the other hand, H3 
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hysteresis possess slit-shaped pores and isotherms showing no constricting adsorption at 

high P/Po, which is often prevalent in non-rigid aggregates of plate-like particles. The 

desorption curve of H3 hysteresis has a steep related with a forced hysteresis loop due to 

the tensile strength impact, which shows an occurrence of nitrogen at 77 K in the pressure 

ranging from 0.4-0.45. Type H4 hysteresis is often linked with slit pores that are narrow 

(Lowell, et al., 2006).  

The dashed curves in the hysteresis loops presented in Figure  2.4 indicate low-pressure 

hysteresis which may be linked with the volume change of the adsorbent; for instance, the 

swelling of non-rigid pores or the irreversible uptake of molecules in pores having similar 

width with the adsorptive molecule (Lowell, et al., 2006). 

2.1.4.1 History and synthesis of mesoporous silica type MCM-41 

The ordered mesoporous silica materials or OMS were synthesized for the first time in the 

early years of 1990s by Mobil Corp. scientists (Beck, Vartuli, et al., 1992). Their main 

characteristics are high surface areas, narrow pore size distribution and uniform pore size 

that commonly ranges from 3-10 nm. Three mesophases were synthesized in a collective 

way called the M41S materials and are mesoporous according to the nomenclature of 

IUPAC owing to their pore diameters, which differ from 2 nm<d<50 nm (McCusker, et al., 

2001). The most commonly utilized OMS is the MCM-41 (a Mobil code for mesoporous 

catalytic material) having a regular hexagonal pore structure. The remaining two phases 

possess cubic pore shapes (MCM-48) or lamellar structures (MCM-50).  
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Under basic conditions, the synthetic protocol makes use of quaternary alkylammonium 

salts like cetyltrimethylammonium bromide in an aqueous solution. These conditions 

facilitate the formation of spherical micelles of ionic surfactants, which in turn form the 

supramolecular aggregates of micellular rods that serve as structure-directing agents or 

templates through the formation of a liquid crystalline phase (Sayari, 1996). In addition, the 

hydrolysis and condensation of silica precursors like tetraethylorthosilicate (TEOS) or 

tetramethylorthosilicate (TMOS) create a solid silicate mesostructure surrounding the 

template (Path 1 in Figure  2.5) owing to the electrostatic interactions between the silica 

species that are negatively charged and the head groups of the surfactant, or by the 

interactions of the hydrogen bonding. It is also brought forward that the process of liquid 

crystalline formation phase is promoted through the introduction of the silicate species 

(Path 2 in Figure  2.5) (Beck, Vartuli, et al., 1992). 

 

Figure  2.5 Proposed mechanism of MCM-41 formation 

Following  the  formation  of  the  silicate  mesostructure,  the  template  is  taken  off  either  by  

extraction using solvents such as ethanol or diethyl/ethanol ether mixtures, or by high 

temperature calcinations at 400-550°C. Changes in the experimental parameters in terms of 
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alkyl chain length, pH and surfactant concentration has led to mesoporous silicates having 

hexagonal pore structure, cubic pore shapes and laminar structures (Figure  2.6 (Barton et 

al., 1999)), resulting in MCM-41, MCM-48 and MCM-50 respectively, which possessed 

different distributions of pore size, wall thickness of pore and surface areas (Stucky et al., 

1994). 

 

Figure  2.6 The X-ray diffraction patterns and proposed structures of MCM-41, MCM-48, and  

MCM-50 

2.1.4.2 Surface modification of MCM-41  

Several approaches have been applied in the modification of the surface of mesoporous 

silica materials. Functionalization of the surface with inorganic or organic groups tries to 

modify the surface properties accordingly for appropriate particular applications.  

Inorganic modification, particularly direct doping of the silica surface with metal ions is 

also important but it is external to the present research scope and will not be dealt with. 
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Through the introduction of organic groups in the MCM-41, accessible pores facilitate the 

manipulation of the chemical and physical properties of these materials while keeping the 

basic geometry and mechanical strength. Surface modification may be carried out 

chemically (covalent attachment) or physically by the adsorption of the functional group 

(Price, Clark, & Macquarrie, 2000).  

The MCM-41 silica material framework has SiO2 tetrahedra that is terminated in siloxane 

(Si-O-Si) or silanols (Si-OH) on the surface. These two groups are characterized as reactive 

to functionalization but their reaction to silanols is the core modification pathway (Price, et 

al., 2000). Covalent attachment of organic moieties on the surface is referred to as 

chemisorptions and can be carried out through two main methods, namely co-condensation 

and post-synthetic modification or grafting. 

2.1.4.2.1 Grafting method 

Grafting is referred to as a post-synthesis method and it is the most popular 

functionalization method used due to its synthetic simplicity and the flexibility of the 

introduction of surface groups. This is done following the removal of surfactant and the 

drying of mature MCM-41. The existence of silanols on the surface in high concentration is 

an important criterion in this method. Surface functionalization with organic groups 

through grafting is the most generally employed by silylation and carried out through any 

of the three procedures; (Eq.  2.1,  2.2 and  2.3) (Anwander, Palm, Stelzer, Groeger, & 

Engelhardt, 1998). In addition, esterification is another reaction that could be employed for 
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surface modification (Beck, Calabro, et al., 1992; Kimura, Saeki, Sugahara, & Kuroda, 

1999).  

  2.1 

  2.2 

  2.3 

As previously mentioned, high concentration of silanols is important for chemisorptions 

reaction. The surface silanols may be single (isolated or hydrogen bonded) or geminal (two 

hydroxyls on a single silicon) as depicted in Figure  2.7 (Jal, Patel, & Mishra, 2004). 

Silylation is carried out on the entire surface groups of the silica, even on the free or 

geminal silanols. However, hydrogen-bonded silanol groups are not as accessible to the 

modification due to the formation of hydrophilic networks (X. Zhao & Lu, 1998). 

 

Figure  2.7 Different types of silanols on the surface  
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The calcinations process of the creation of ordered mesoporous silica leads to the loss of 

majority of the surface silanols due to high temperature exposure. According to the study 

by X. S. Zhao et.al., (1997), the calcination temperature during the MCM-41 materials 

synthesis impacts the silanols’ surface density. In ideal situations, a greater concentration of 

silanol groups is desired because they play a role as active sites to anchor organic groups on 

the surface. However at lower degrees of calcinations temperature, a huge number of 

silanols were not available for the purpose of covalent grafting owing to the hydrogen 

bonding between them. On the other hand, exposure to higher temperature may result in the 

loss of many silanols because of the condensation reactions.  

The surface may be rehydrated by boiling ordered mesoporous silica (e.g. MCM-41) in 

water and then by azeotropic distillation using benzene or toluene for the removal of excess 

water. In the direct method, on the basis of the surface area of MCM-41, a stoichiometric 

amount  of  water  is  added,  where  an  approach  created  by  Pacific  Northwest  National  

Laboratory scientists through the addition of just enough water for the formation of 

monolayer on the pore surface resulting in a more uniform coat of organosilane (Stein, 

Melde, & Schroden, 2000) in a process known as ‘self-assembled monolayer on 

mesoporous supports’. This is followed by the hydrolization of organosilanes to form 

trihydroxysilanes, which carries out self-assembly leading to dense silica coverage on the 

surface (X. Feng et al., 1997).  

Excess water should not be added as it may lead to the formation of non-surface bound 

silanol clumps of the organosilane reagent, which may lead to pore blockage owing to the 
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polymerization of silane. The difference in coverage between hydrated and non-hydrated 

surfaces is depicted in Figure  2.8. (Fryxell, 2006). 

R-Si(OR)3 R-Si(OR)3

Stoichiometric
water

Silanol capping Calcined mesoporous
silica pore surface

Self-assembled
monolayer  

Figure  2.8 Difference in the coverage between hydrated and non-hydrated surfaces 

2.1.4.2.2 Co-condensation method 

The co-condensation method was pioneered by Mann et al. (Burkett, Sims, & Mann, 1996). 

It  is  a  one-pot  synthetic  method analogous  to  MCM-41 synthesis,  where  incorporation  of  

trialkoxyorganosilane species is carried out into TEOS (or TMOS) solution to undergo 

hydrolysis and condensation with structure directing agents or templates. This process 

results in mesostructures with organic functionalities that are attached covalently on the 

pore walls.  

In comparison to the grafting method in which the functional groups distribution is 

frequently inhomogeneous, the co-condensation provides homogeneously distributed 

organic groups on all the surfaces of the inner pore. The organosilane may be buried into 

the silica matrix walls and becomes inaccessible. However, every functionalized 
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organosilane group is a defect of the silica matrix and therefore, negatively impacts the 

silica structure’s stability. This confines the concentration of surface silane groups due to 

the fact that the greater the silane concentration, the more unstable will be the silica 

structure. 

There  are  some  evident  disadvantages  of  this  method.  One  of  the  main  issues  is  the  

resulting templating agent removal. Calcination is considered to completely remove the 

structure directing agent but such high temperatures will damage the covalently attached 

organic functionality. This means the only recourse is the solvent extraction. The co-

condensation is also superior to the post-synthesis grafting because of its easy control of the 

particle morphology of final mesoporous silicate (Ozin, 2000; H. Yang, Coombs, & Ozin, 

1997). 

The methodologies to characterize the modified MCM-41 are structural analyses like gas 

sorption  studies,  powder  X-ray  diffraction  and  transmission  electron  microscopy.  In  

addition, compositional studies comprising of solid-state NMR, Fourier transform infrared, 

and X-ray photoelectron spectroscopic methods along with elemental and 

thermogravimetric analyses. The MCM-41’s various surface modifications (organic 

modification) in the recent years for the adsorption application are presented in Table  2.4.  

 

Table  2.4 Surface modification of MCM-41 in the recent years (2000–2013) for the adsorption  
application 
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Modified group Adsorbate  Reference 

Amino group (NH2 -) 

Ni(II), Cd(II), Pb(II), 
Cr(VI), CO2, remazol red 
dye, heparin, 
chlorophenols and plasmid 
DNA  

(Anbia & Lashgari, 2009; 
Heidari, Younesi, & 
Mehraban, 2009; M. L. Kim, 
Stripeikis, & Tudino, 2009; 
Klinthong, Chao, & Tan, 
2013; Marília, Delphine, 
Gleiciani, Philip, & Célia, 
2011; D. O. Santos et al., 
2013; Wan et al., 2012; H. 
Yang et al., 2012) 

Ionic liquid CO2  (G. H. Fu, Lv, & Ma, 2013) 

2-mercaptobenzothiazole Lead  (Pu, Ren, Tan, & Jiang, 2012) 

Glycopyranose Borate  (Fried, Schlossbauer, & Bein, 
2012) 

Iminodiacetamide  Ce(III), Nd(III), Eu(III), 
Gd(III), and Lu(III) 

(Fryxell, Chouyyok, & 
Rutledge, 2011) 

Polyacrylonitrile-derived 
carbon Methyl–ethyl ketone (R. Janus et al., 2011) 

Lanthanum (III)-
coordinated diamino 
modified MCM-41 

Phosphate  (J. Zhang, Shen, Shan, Mei, 
& Wang, 2011) 

   

Table 2.4 (Continued)   

Trimethylchlorosilane 
and 
methyltrimethoxysilane 

Phenol and hydroquinone  (J. Fu, He, Wang, Liu, & Hu, 
2011) 
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5-nitro-2-furaldehyde 
(fural) 

Uranium(VI) and 
thorium(IV) 

(Yousefi, Ahmadi, 
Shemirani, Jamali, & 
Salavati-Niasari, 2009) 

5-mercapto-1-
methyltetrazole Zn(II)  

(Pérez-Quintanilla, Sánchez, 
del Hierro, Fajardo, & Sierra, 
2007) 

3-phenyl-4-benzoyl-
isoxazol-5-one  Cu(II) (Miloudi et al., 2007) 

Thiophene-2-
carbaldehyde Palladium(II) (Jamali, Assadi, Shemirani, 

& Salavati-Niasari, 2007) 

Salicylaldehyde Uranium (Jamali et al., 2006) 

N-methylglucamine Boron (Kaftan et al., 2005) 

2.1.4.3 Applications of mesoporous silica  

Mesoporous silicates provide various favorable properties with possibilities for use in a 

range of applications. The main applications that will be explained are catalysis, chemo and 

biosensing, and chemical separations.  

I. Catalysis 

Mesoporous silica offers a one-of-a-kind platform for catalytic processes with various 

benefits compared to traditional homogenous catalysis. Pore size distributions and 

arrangements characterized as highly tunable (e.g. hexagonal, lamellar, cubic, spherical and 

others) enable size and shape selective catalysis. In addition, high surface areas and site 

isolation techniques enable the covalent attachment of huge amounts of non-interacting 
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catalytic sites. Also, homogenous materials like organometallic compounds are too pricey 

to synthesize and they require time and/or unique recovery approaches.  

Catalytic reagents like acids/basic in acid or base catalyzed reactions may confine the 

selection of solvent systems and call for an extensive work-up procedure. However, silica 

mesostructure may be altered (i.e. hydrophilicity/-phobicity, size and shape) for stability 

unlike homogenous catalysts, in a varying range of reaction media, temperatures and 

pressures, and they may be conveniently separated from the reaction mixture through 

vacuum or gravity filtration and recycled for recurring use with little or no catalytic activity 

loss. Currently, there has been a variety of organic, inorganic and organometallic catalysts 

immobilized on highly ordered mesoporous silica. For instance, 3-aminopropyl 

functionalized mesoporous silicates have been revealed to be an efficient heterogeneous 

base catalyst for nitroaldol and Michael addition (D. J. Macquarrie, Maggi, Mazzacani, 

Sartori, & Sartorio, 2003; Sharma & Asefa, 2007). 

II. Mesoporous chemosensors 

Among the many major applications of mesoporous silica, one of them is their potential as 

platforms for chemosensing applications. The detection of metal ion through fluorescence 

and ultraviolet-visible spectroscopic measures has been extensively examined to create 

functionalized mesoporous silicates having high metal ion specificities (Gao et al., 2006).  

Additionally, mesoporous silica has also been shown as an invaluable scaffold for volatile 

organic compound and applications of explosive chemosensing (Sasahara, Kido, Ishihara, 
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Sunayama, & Egashira, 2005). Moreover, various studies have made use of mesoporous 

silica as a scaffold in gas sensing applications in addition to fabricating sensors for metal 

ions and volatile organic compounds (Yuliarto, Honma, Katsumura, & Zhou, 2006).  

III. Mesoporous biosensors 

Intensive studies making use of mesoporous silica as a scaffold for many biological sensing 

methods are already existed. Huge surface areas and pore diameters enable the 

incorporation of biomolecules toward the fabrication of bioelectrochemical sensors 

(Chouyyok, Panpranot, Thanachayanant, & Prichanont, 2009; X. Xu, Lu, Zhou, Zhao, & 

Guo, 2009). Imaging biological processes are allowed through the surface functionalization 

with target specific compounds and the high biocompatibility of mesoporous silica. 

Currently, there are various studies concerning the immobilization of biological species.  

IV. Chemical separations 

Mesoporous silicates are widely examined for chemical separations and absorbents because 

of their large surface areas, easily tunable pore size distributions, mechanical and thermal 

stabilities and their resistance to decomposition in a wide pH range. Moreover, their ability 

to change the hydrophilicity/-phobicity through the addition of non-polar organic groups 

(alkyl, vinyl, or phenyl substituents), or the incorporation of reactive functional groups, for 

instance amines, thiols, or specialized chelating agents, enable the specific reactivity for 

size, shape and functionality. These properties are leveraged in the separation or the 

adsorption of heavy metals, organic compounds possessing high target material specificities 
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and efficiencies; for example, N- (2-aminoethyl) dithiocarbamate functionalized MCM-41 

has been developed by Stathi et al., (2010). These materials are effective heavy metal 

adsorbents due to the existence of an effective dithiocarbamate group and the low pH value 

(3.2) of the point of zero charge.  

As previously mentioned, functionalized mesoporous silicates are revealed to be as 

effective as chromatographic packings when used in organic compounds separation. 

Yasmin and Muller (2010) showed that several n-butyl and n-octyl functionalized MCM-41 

spheres were examined for their separation of five organic components; uracil, toluene, 

ethylbenzene, quinizarin and amitriptyline.  

In addition, the separation of chiral compound has also been performed successfully. Zhu et 

al., (2008) separated enantiomeric mixtures of R/S-1,10-bi-2-naphthol with the help of 

mesoporous organic-inorganic spheres possessing covalently bridged trans-(1R, 2R)-bis-

(ureido)-cyclohexane synthesized by co-condensation of N,N’-bis [triethoxysilyl)propyl]-

trans-(1R,2R)-bis-(ureido)-cyclohexane and 1,2-bis (trimethoxysilyl) ethane.  

2.1.5 Macrocyclic compounds  

2.1.5.1 Calix[4]arene 

The pioneering study dedicated to phenol-formaldehyde chemistry was attributed to Adolf 

Von Baeyer in 1872 (Takemura, 2002). However, the reaction products were not isolated 

and remained in its original form, and it was not characterized accurately due to the 
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limitations of available analytical methods. Following this pioneering study were the steps 

taken by Lederer (1894) and O. Manasse (1894) to introduce the method of hydroxylmethyl 

phenol preparation under mild and well-controlled basic conditions in 1894. Baekeland 

(1908) then prepared phenol-formaldehyde resins in 1902 under its commercial name 

“Bakelite” under controlled basic condensation of phenol and formaldehyde, resulting in 

cross-linked polymers.  

However, in 1944, the story took an unexpected turn when Alois Zinke and Eric Zeigler 

(1944) produced a crystalline compound as opposed to resin with controlled cross-linking 

using p-substituted phenols. In addition, Joseph Niederl and Heinz Vogel (1940) managed 

to synthesize a cyclic-tetrameric compound from acetaldehyde and resorcinol. Then, 

Cornforth and his colleagues repeated Zinke reactions and unearthed the potential of 

calixarenes as basket analogues of enzymes. X-ray crystallography concluded that Zinke 

reaction produced only cyclic tetramers (Cornforth, Hart, Nicholls, Rees, & Stock, 1955; 

Cornforth, Morgan, Potts, & Rees, 1973). 

The term ‘calixarene’ was proposed by David Gutsche in 1975 and it stems from the Greek 

word, ‘calix’ which means ‘vase’ or ‘chalise’ and ‘arene’, indicating the existence of aryl 

rings, as shown in Figure  2.9. Calixarenes are defined as a class of cyclooligomers having 

distinct upper and lower rims and central annulus (Gutsche, 1991; Stewart & Gutsche, 

1999). 
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Figure  2.9 Calix[4]arenes 

Calixarenes are categorized according to their number of aryl units as major, minor and 

large calixarenes (Gutsche, Rogers, Stewart, & See, 1990) (the major one has aryl units = 4, 

6, 8; the minor one has aryl units = 5, 7, and the large one has aryl units = 9-20 ).  

Currently, calixarenes are also known as the third generation supramolecules after 

cyclodextrins and crown ethers (Gutsche, 2008). The features of p-substituted 

calix[n]arenes are high melting points, potential for many functionalization at both the 

upper and lower rims and the methylene bridge (Gutsche, Iqbal, & Stewart, 1986), and 

frequently very low solubility in general organic solvents. Enough solubility of calixarenes 

in CHCl3, CS2 and pyridine enables their use in NMR solvents for the characterization of 

calixarenes. David Gutsche was the pioneering researcher who first optimized the synthetic 

procedure of p-tert-butylcalix[4]arene (Eq.  2.4) by condensing p-tert-butyl phenol and 37% 

of formaldehyde (initially heated at the temperature of 100-120°C and afterwards refluxed 

in diphenyl ether) (Gutsche, Dhawan, No, & Muthukrishnan, 1981). 
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 2.4 

Calixarenes chemistry is a curious combination of academic and industrial research. The 

varying calixarenes applications are attributed to their cup-like shape, selective 

complexation with several metal ions and neutral molecules, stability, solubility and their 

large scale availability (Izatt, Christensen, & Hawkins, 1984). 

Calixarenes have been commonly utilized for the purpose of separation. Separation of Cs+ 

and  K+ from alkali metal ions mixture was carried out by incorporating a calix[4]arene-

crown compound upon silica gel for the purpose of column chromatography (Arena et al., 

1996). 

Other  calixarenes  applications  are  the  selective  removal  of  actinum-125 (X.  Chen,  Ji,  M.  

Wai, & R. Fisher, 1998) by p-tert-butylcalix[4, 6]arenes with OCH3COOH-groups upon 

endo-rim, the extraction of Ra2+ by tert-butylthiacalix[4]arene-derived hosts (van Leeuwen 

et al., 2005), and the Hg(II) (over Cd(II), and Pb(II)) separation through the selection of 

strong complexation with (mercapto)thiocalix[4]arenes (Rao et al., 2000).  
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They have also been utilized in several chemical sensor devices including ion and 

molecule-selective electrodes for ions and molecules (Gale, Chen, Drew, Heath, & Beer, 

1998; Gupta, Ludwig, & Agarwal, 2005), fluorescent sensors (H. Liu, Xu, Li, Yin, & Xu, 

2001; Narita, Higuchi, Hamada, & Kumagai, 1998), and non-linear optical sensors 

(Regayeg et al., 2002). The applications of modified calix[4]arene as adsorbent in the 

recent years are presented in Table  2.5. 

Table  2.5 Applications of modified calix[4]arene as adsorbent in the recent years (2000 –2013) 

Modified calix[4]arene Adsorbate  Reference 

Thiacalixarenes-based silica 
nanoparticles 

Oligonucleotides and 
proteins 

(Yuskova, Ignacio-De Leon, 
Khabibullin, Stoikov, & 
Zharov, 2013) 

p-sulfonated calix[4,6]arene 
derivatives immobilized onto 
magnetic nanoparticles 

Aromatic amines (Aksoy, Erdemir, Yildiz, & 
Yilmaz, 2012)  

para-sulphonato-
thiacalix[4]arene Cadmium (Cd)  (Y. Li, Hu, Song, & Sun, 

2012) 

p-tert-butylcalix[4]-aza-crown 
immobilized sporopollenin 

Cu(II), Pb(II) and 
Zn(II)  

(Gubbuk, Gürfidan, Erdemir, 
& Yilmaz, 2012) 

Calix[4]arene appended resins  As(III) and As(V) (Qureshi et al., 2011) 

   

   

Table 2.5 (Continued) 

Calixarene-based magnetic 
nanoparticles 

Cr(VI), As(V) and 
U(VI) 

(Sayin & Yilmaz, 2011a, 
2011b) 

Polyvinylcalix[4]arene 
tetraacetic acid resin Lead  

(Adhikari, Kanemitsu, 
Kawakita, Jumina, & Ohto, 
2011) 
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p-tert-butylcalix[4]arene 3-
diethylaminopropyl diamide Cr(VI) (Alpaydin, Saf, Bozkurt, & 

Sirit, 2011) 

Functioned calix [4] arene 
and calix [4] resorcarene 
derivative 

Mercury (Danil De Namor et al., 2011) 

Diamine substituted 1,3-distal 
calix[4]arene-based magnetite 
nanoparticles 

Uranyl ions (Sayin, Yilmaz, & Tavasli, 
2011) 

p-tetraaminocalix[4]arene- 
and p-
tetrathioureacalix[4]arene-
based resins  

Fluoride  (Solangi, Bhatti, Kamboh, 
Memon, & Bhanger, 2011) 

Diamide derivatives of p-tert-
butylcalix[4]arene 
immobilized onto [3-(2,3-
epoxypropoxy)-propyl]-
trimethoxysilane-modified 
Fe3O4 magnetite nanoparticles 

Arsenate and 
dichromate anions 

(Sayin, Ozcan, & Yilmaz, 
2011) 

p-tert-butyl-calix[4]arene-
based silica resin 

Reactive black-5 and 
reactive red-45 azo 
dyes 

(M. A. Kamboh, B. Solangi, S. 
T. H. Sherazi, & S. Memon, 
2011a; M. A. Kamboh, I. B. 
Solangi, S. T. H. Sherazi, & S. 
Memon, 2011b) 

Calix[4]arene-based silica Endosulfan  (Memon, Memon, & Latif, 
2011) 

Starch grafted p-tert-butyl-
calix[n]arene 

Butyl Rhodamine B 
solution 

(M. Chen, Shang, Fang, & 
Diao, 2011) 

Table 2.5 (Continued) 

Calix[4] arene containing 
PBT- poly(dimethylsiloxane) 
copolyester 

Benzene (G. Xu, Zhu, Gou, Zhu, & 
Shen, 2010) 

Calix[4]arene amide 
ionophores 

Chromate and 
phosphate anion 

(Ertul, Bayrakci, & Yilmaz, 
2010) 
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N-methylglucamine 
derivative of calix[4]arene 
immobilized onto 
poly[(phenyl glycidyl ether)-
co-formaldehyde] 

Oxonians 
(dichromate/arsenate) 

(Sayin, Ozcan, Memon, & 
Yilmaz, 2010) 

N-methylglucamine 
derivative of calix[4]arene 
immobilized onto magnetic 
nanoparticles 

Chromate and 
arsenate 

(Sayin, Ozcan, & Yilmaz, 
2010) 

Calix[4]arene modified 
Amberlite XAD-4 resin 

Reactive Black-5, 
Reactive Red-45 and 
Congo Red  

(Kamboh, Solangi, Sherazi, & 
Memon, 2009) 

Tetraester calix[4]arene 
(TC4)-based resin Pb (II) (Solangi, Memon, & 

Bhanger, 2009) 

Amino calix[4]arene 
derivative Chromium anions  (Tabakci, Erdemir, & Yilmaz, 

2007) 

Cellulose-grafted with 
calix[4]arene polymers 

Heavy metals (Co(II), 
Ni(II), Cu(II), Cd(II), 
Hg(II)and Pb(II)) and 
dichromate anions 

(Tabakci, et al., 2007) 

Calixarene-filled 
poly(dimethylsiloxane) 
composite membranes 

Benzene (Wu, Liu, Pan, Hu, & Jiang, 
2006) 

Calix[4]arene-based 
polysiloxane resin 

Heavy metals and 
dichromate anion 

(Tabakci, Ersoz, & Yilmaz, 
2006) 

Butylcalix[4]arene to cross-
linked poly(dimethylsiloxane)  Benzene (Ohshima, Miyata, & 

Uragami, 2005) 

Table 2.5 (Continued) 

Butylcalix[4]arene to cross-
linked poly(dimethylsiloxane)  

Volatile organic 
compounds 

(Uragami, Ohshima, & Miyata, 
2005) 

p-tert-butyl-calix[4]arenes Aluminum 
(Gartner, Berends, & 
Witkamp, 1999; Gärtner, 
Berends, & Witkamp, 2002) 
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Anion-exchange resin with 
thiacalix[4]arenetetrasulfonate  

Co(II), Ni(II), Cu(II), 
Zn(II), Cd(II), Hg(II), 
and Pb(II) 

(Gärtner, et al., 2002) 

Calixarene amide ionophores Strontium ion (Casnati et al., 2001) 

2.1.5.2 β-cyclodextrin  

Cyclodextrins have been in the limelight of research in the past five decades. The most 

commonly isolated compounds are α-, β-, γ- and δ- cyclodextrins (comprising respectively 

of 6, 7, 8, and 9 glucopyranose units). Cyclodextrins have led to the stimulation of 

innumerable investigations. They have unique chemical structure of three various hydroxyl 

groups in each 1, 4–linked glucopyranose structural unit and a spatial arrangement in a 

hollow truncated cone-shaped molecule, allowing the formation of inclusion complexes.  
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Figure  2.10 Structural representation of β-cyclodextrin  

They have cylindrical shapes along with an axial cavity as presented in Figure  2.10. A part 

of the cavity is hydrophilic due to the existence of hydroxyl groups at the smaller cavity lip, 

as well as the larger cavity lip (Bender & Komiyama, 1978). The primary hydroxyl group 
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can freely rotate and interact with each other through hydrogen bonds that are not present 

among secondary hydroxyl groups. The latter is rigidly bonded. The internal part of the 

cavity is formed by C-H groups and glycosidic oxygen bridges and because of this, it is 

characterized as hydrophobic. The internal cavity also presents a Lewis base character 

stemming from the glycosidic oxygen. Some of the cyclodextrin properties are listed in 

Table  2.6 (Osa & Suzuki, 1996). 

Table  2.6 Physical properties of cyclodextrin  

 α- cyclodextrin β-cyclodextrin γ -cyclodextrin 
Molecular weight 972 1134 1296 
Inner cavity diameter (pm) 500 620 800 
Outer diameter (pm) 1460 1540 1750 
Volume cavity (106 pm3) 174 262 427 
Surface tension 71 71 71 
Number of water molecule in cavity 6 11 17 
Crystal water content 10.2 13-15 8-18 

 

Currently, the preparation of cyclodextrins is carried out through the action of bacterial 

(Cyclodextrin glycosyl transferase) upon linear gelatinized starch. Because the enzymes do 

not present length specificity, the cyclodextrins comprise of 6-12 glucose units in each ring. 

There have been notable developments in the examination of novel enzymes for the 

cyclodextrin production (Seltzer, 1987).  

The  derivatives  of  cyclodextrin  posses  much greater  scope  and  a  more  common range  of  

applications  (Croft  &  Bartsch,  1983).  The  relative  functionalities  in  all  α-,  β-,  and  γ-

cyclodextrins are the primary (position 6) hydroxyls and secondary (position 2 and 3) 

hydroxyls.  The  cyclodextrin  derivatives  are  then  allowed  to  react  at  either  these  three  

positions  or  selectively  at  one  of  them.  Some derivatives  that  were  prepared  are  acylated  
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cyclodextrins (Czarniecki & Breslow, 1978; Ogawa & Matsui, 1977), alkylated 

cyclodextrins (Casu, Reggiani, & Sanderson, 1979), amino and azido derivatives of 

cyclodextrins (Fujita, Yamamura, Egashira, & Imoto, 1992; Petter, Salek, Sikorski, 

Kumaravel, & Lin, 1990), halogen derivatives (Debouzy, Crouzier, & Gadelle, 2007), and 

derivatives with alcohols, aldehydes, and ketones (Furue, Harada, & Nozakura, 1975; 

Tabushi, Kuroda, Yokota, & Yuan, 1981). If cyclodextrins are related to polyethers, they 

produce soluble polymers (Akira, 1996, 1997). 

The ability of the cyclodextrins to form inclusion complexes with various molecules is their 

most unique property (Figure  2.11). The guest compounds are situated in the cyclodextrins’ 

cavity and this involves non-covalent bonding in the process known as complexation. 

Various molecular interactions are responsible for the cyclodextrin inclusion complexes 

formation in an aqueous solution such as hydrophobic interaction, hydrogen bonding and 

the relief of high energy water from the cyclodextrin cavity on substrate inclusion.  

 
Figure  2.11 Proposed schematic of the inclusion compound 
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Some of the practical applications of cyclodextrin are cosmetics, personal care (N. Prasad, 

Strauss, & Reichart, 1999; Tatsuya, 1999; Trinh et al., 1999), food preservation (Hedges, 

1998; Muñoz-Botella, Del Castillo, & Martın, 1995), catalysis (Badi et al., 2010; Cabou, 

Bricout, Hapiot, & Monflier, 2004; Tilloy, Bertoux, Mortreux, & Monflier, 1999), 

pharmaceuticals (Brewster & Loftsson, 2007; Hermens, Deurloo, Romeyn, Verhoef, & 

Merkus, 1990; Kristmundsdóttir, Loftsson, & Holbrook, 1996; Uekama et al., 1992), 

agriculture (Hedges, 1998; Szejtli, 1998) and chromatography (Cucinotta, Contino, 

Giuffrida, Maccarrone, & Messina, 2010; Rodríguez-Bonilla, López-Nicolás, Méndez-

Cazorla, & García-Carmona, 2011; Schurig, 2010) The applications of modified β-

cyclodextrin as adsorbent in the recent years are presented in Table  2.7. 

Table  2.7 Applications of modified β-cyclodextrin as adsorbent in the recent years (2000–2013) 

Modified β-cyclodextrin Adsorbate  Reference 

SiO2- β-cyclodextrin Azo dye-Congo red (M. Chen, et al., 2013) 

β-cyclodextrin-
carboxymethylcellulose-based 
hydrogels 

Bisphenol A (Kono, Onishi, & 
Nakamura, 2013) 

β-cyclodextrin modified graphene 
oxide Co(II) (Song, Hu, Zhao, Shao, 

& Li, 2013) 

β-cyclodextrin grafting wood flour 
copolymer Methylene blue (Si, Wang, & Xu, 2013) 

β-cyclodextrin-chitosan  

Azo dyes, phenol, 
m-cresol, m-
catechol, bisphenol 
and puerarin 

(Q. Y. Chen et al., 2006; 
Karim, Adnan, & Husain, 
2012; Q. Lin, Huo, Su, & 
Wang, 2013; Nishiki, 
Tojima, Nishi, & Sakairi, 
2000) 
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Polysulfone-β-cyclodextrin Endocrine (Choi, Chung, Priestley, 
& Kwak, 2012) 

Glycine-β-cyclodextrin Atrazine (Wang, Xu, Wang, & 
Huang, 2012) 

Cross-linking β-cyclodextrin Cholesterol 

(Dias, Berbicz, Pedrochi, 
Baesso, & Matioli, 2010; 
Han, Kim, Ahn, & Kwak, 
2005; S. H. Kim, Ahn, & 
Kwak, 2004; S. H. Kim, 
Kim, & Kwak, 2007; 
Kwak, Kim, Kim, Choi, 
& Kang, 2004; J. E. Lee, 
Seo, Chang, & Kwak, 
2010; Y. K. Lee, 
Ganesan, & Kwak, 2012) 

Magnetic β-cyclodextrin-chitosan 
nanoparticles Methyl blue (Fan et al., 2012) 

Table 2.7 ( Continued) 

β-cyclodextrin modified zeolites Nitrophenols 
(X. Li, Zhao, Zhu, & Hao, 
2011; X. Li, Zhu, & Hao, 
2009) 

β-cyclodextrin and phospholipase Soy protein 
(Arora & Damodaran, 
2011) 

 

β-cyclodextrin conjugated magnetic 
nanoparticles 

Diazepam, copper 
ions and methylene 
blue 

(Cai et al., 2011) 

(Badruddoza, Tay, Tan, 
Hidajat, & Uddin, 2011) 

(Badruddoza, Hazel, 
Hidajat, & Uddin, 2010) 

β-cyclodextrin/attapulgite 

2,4-
didichlorophenol 
and 2,6-
didichlorophenol 

(J. Pan et al., 2011) 

Glycine-β-cyclodextrin Phenanthrene and 
lead (Wang et al., 2010) 
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β-cyclodextrin polymer 

Estrogen, Phenol, 
azo dyes, aromatic 
amines and 
bilirubin 

(Oishi & Moriuchi, 2010; 
Yamasaki, Makihata, & 
Fukunaga, 2008; A. 
Yilmaz, Yilmaz, Yilmaz, 
& Bartsch, 2006; E. 
Yilmaz, Memon, & 
Yilmaz, 2010; Zheng, 
Huang, Kong, Li, & Zou, 
2004) 

β-cyclodextrin-ionic liquid polymer 

P-nitrophenol, 
2,4,6-
trichlorophenol, 
2,4-dichloropheno 
and Cr(VI) 

(Mahlambi, Malefetse, 
Mamba, & Krause, 2010; 
Raoov, Mohamad, & 
Abas, 2013) 

β-cyclodextrin grafted multi-walled 
carbon nanotubes 

Polychlorinated 
biphenyls 

(Shao, Sheng, Chen, 
Wang, & Nagatsu, 2010) 

Table 2.7 ( Continued) 

Polyester β-cyclodextrin and 
polycarboxylic acids 

Pb(II), Cd(II), 
Zn(II) and Ni(II) 

(Ducoroy, Bacquet, 
Martel, & Morcellet, 
2008) 

β-cyclodextrin polyurethanes 

Geosmin, 2-
methylisorboneol, 
Pb(II) and Azo Dye 
Eriochrome Black 
T 

(Dong et al., 2013; 
Mamba et al., 2007; 
Mirzajani, Pourreza, & 
Najjar, 2013) 

β-cyclodextrin modified 
poly(hydroxyethylmethacrylate-
ethyleneglycoldimethacrylate) 

O-chloro phenol, p-
nitro phenol, p-
chloro phenol, o-
nitro phenol, and 
phenol 

(Abay, Denizli, Bişkin, & 
Salih, 2005) 

Quaternary ammonium β-cyclodextrin Palmitic acid 
(Zhong, Ohvo-Rekilä, 
Ramstedt, Slotte, & 
Bittman, 2001) 
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2.2 Theory  

2.2.1 Two-parameter adsorption isotherms models 

In predictive modelling, an equilibrium isotherm has a critical role in analyzing and 

designing adsorption systems. The resulting adsorption isotherm is an important tool to 

theoretically evaluate and interpret thermodynamic parameters such as heats of adsorption.  

For the purpose of creating a reliable predictive modelling of adsorption systems and a 

quantitative comparison of their behavior, an accurate mathematical description of 

equilibrium adsorption capacities is required. This applies for various adsorbent systems 

and for different conditions within a given single system. It is imperative to lay down the 

most suitable correlation for the description of equilibrium curves for optimum design of a 

system in order to remove the pollutants from the water. In the present study, a two-

parameter models (Langmuir, Freundlich, Temkin and Dubinin-Radushkevitch) and three-

parameter models (Redlich-Peterson and Koble-Corrigan) are utilized to correlate the 

organotins compound (TBT, TPT, DBT) adsorption onto modified mesoporous silica with 

calix[4]arene derivatives. 

2.2.1.1 Langmuir isotherm 

Langmuir (1916, as cited by Ho and Porter (2002)) proposed theoretical equilibrium 

isotherm that links the amount of gas sorbed to the gas pressure. The Langmuir isotherm is 

described as an equilibrium model developed on the basis of evaporation and condensation 

rates of gas molecules at solid surfaces (Weber Jr & DiGiano, 1996). It is also useful for the 
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characterization  of  the  equilibrium  adsorption  of  analytes  from  aqueous  to  solid  systems  

according to the following assumptions:  

(1) Energy of adsorption is constant and independent of surface coverage. 

(2) Adsorption happens only on sites that are localized, with no interaction between 

adsorbate molecules.  

(3) Adsorption is limited by the presence of monolayer of solute on the surface. 

A point of saturation is achieved at equilibrium where adsorption can no longer occur. The 

Langmuir isotherm appears to be the most commonly employed sorption isotherm. It may 

be represented as follows: 

qୣ =
q୫ୟ୶ ܭܥ
1 + Kܥ

 
 2.5 

qmax (mg/g) represents the concentration of solid phase that corresponds to a condition 

where the entire sites are filled or maximum adsorption capacity is attained, while KL 

(L/mg) is the adsorption equilibrium constant and Ce is the equilibrium liquid phase 

concentration (mg/L).  

The model parameters can be determined by using linearization methods using various 

approaches: 
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Cₑ
qₑ =

1
q୫ୟ୶K

+
Cₑ
q ୫ୟ୶

Langmuir I  2.6 

1
qₑ =

1
q୫ୟ୶KCₑ

+
1
q୫ୟ୶

Langmuir II  2.7 

qₑ = q୫ୟ୶ − ቂ
ଵ
ై
ቃ ୯ₑ
େₑ

      Langmuir III  2.8 

qₑ
Cₑ = K q୫ୟ୶ − Kqୣ Langmuir IV  2.9 

All these approaches are equivalent although one specific form may offer a more 

dependable fit to specific data set compared to others according to the range and spread of 

the data to be described (Weber Jr & DiGiano, 1996).  

The Langmuir model is suitable for homogeneous sorption and is consistent with Henry’s 

law at low concentrations (Allen, McKay, & Porter, 2004). The essential characteristics of 

the Langmuir isotherm can be expressed in terms of a dimensionless separation factor (RL) 

(Hall, Eagleton, Acrivos, & Vermeulen, 1966), which is defined by Eq.  2.10  

R =
1

1 + KC₀ 
 2.10 

where KL is the Langmuir constant and C0 is the initial concentration (mg/L) of adsorbate. 

The value of RL indicates the type of the isotherm to be either unfavorable (RL > 1), linear 

(RL = 1), favorable (0 < RL <1) or irreversible (RL = 0). 
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2.2.1.2 Freundlich isotherm 

Freundlich (1906, as cited by Ho and Porter (2002)) proposed the pioneering sorption 

isotherm equation.  He,  along  with  other  authors  recommended that  data  of  sorption  from 

solutions are accurately represented by a general exponential concentration that depends on 

the form’s relationship: 

qୣ = KCୣ
ଵ/୬  2.11 

where qe (mg/g) is the amount of solute adsorbed per unit weight of adsorbent at 

equilibrium, Ce  (mg/L) is the equilibrium liquid phase concentration, and KF  (L/g) and n 

are Freundlich empirical constants. KF represents the specific capacity showing the capacity 

of sorption at a particular solution phase concentration. The value 1/n, ranging between 0 

and 1, is a measure of the adsorption intensity or surface heterogeneity, which becomes 

more  heterogeneous  as  its  value  gets  closer  to  zero.  A  value  for  1/n below  1  indicates  a  

normal Langmuir isotherm, while 1/n exceeding 1 is indicative of cooperative adsorption. 

Despite the wide use of this model, critics have highlighted its lack of basic thermodynamic 

as it fails to reduce to the linear model (Henry’s law) at low levels of concentration (Weber 

Jr & DiGiano, 1996). The linearity of data by logarithmic transformation can solve the 

determinants of the coefficients of Eq.  2.12: 

log qୣ = log K +
1
n  log Cୣ  2.12 
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2.2.1.3 Temkin isotherm 

The impact of adsorbent-adsorbate interactions upon the adsorption isotherms was 

examined by Temkin and Pyzhev (1940), and they stated that the heat of adsorption would 

decrease linearly with coverage. This type of isotherm has been utilized in the function of 

temperature:  

qୣ = ൬
RT
b
൰ ln (KCୣ)  2.13 

where KT and bT are Temkin isotherm constant and energy constant (J/mol), respectively. R 

(8.314 J/ mol K) is the gas constant and T (K) is the absolute temperature. The Eq.  2.13 is 

able to transform to a linear form: 

qୣ = ൬
RT
b
൰   ln K + ൬

RT
b
൰ ln Cୣ  2.14 

A =
RT
b

  2.15 

A plot of qe versus ln Ce enables the determination of the constants KT and AT.  

2.2.1.4 Dubinin-Radushkevitch isotherm 

The Dubinin-Radushkevitch (D-R) equation has been utilized in an effective manner to 

provide a description of adsorption by microporous solids (Huber, Stoeckli, & Houriet, 

1978). The D-R equation represents an adaptation of the prior Polanyi potential theory of 
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adsorption,  which  is  also  considered  as  the  theory  of  volume  filing  of  micropores.  It  

postulates that adsorption is characterized by multi-layer involving van der Waals forces 

and is suitable for physical process of adsorption (Hutson & Yang, 1997). The expression 

of linear form of D-R isotherm model is represented as: 

ln qୣ = ln qୢ − β ɛ²  2.16 

where qd is  the  D-R  constant  which  refers  to  maximum  adsorption  capacity  (mg/g),  β 

(mol2/kJ2) is the constant related to free energy and ɛ is the Polanyi potential which is 

defined as: 

ɛ = R T ln ൬1 +
1
Cୣ
൰  2.17 

where  R is  the  gas  constant  (8.31  J/mol  K)  and  T  (K)  is  the  absolute  temperature.  The  

constant β gives the mean free energy E of adsorption per molecule of the adsorbate when 

it is transferred to the surface of the solid from infinity in the solution and can be computed 

by using the relationship: 

E =
1
ඥ2β

  2.18 
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E values that are between 1-16 kJ/mol facilitate physical adsorption, while values over 16 

kJ/mol facilitate chemisorptions (Apiratikul & Pavasant, 2008; Vijayaraghavan, Padmesh, 

Palanivelu, & Velan, 2006). 

2.2.2 Three-parameter adsorption isotherm models 

2.2.2.1 Redlich-Peterson isotherm 

Redlich and Peterson (1959) brought forward an empirical equation including three 

parameters which may be useful in representing adsorption equilibria over a wide range of 

concentration and the equation can be employed in either homogeneous or heterogeneous 

systems due to its versatility. The Redlich-Peterson equation is represented by Eq.  2.19. 

qୣ =
AୖCୣ

1 + BୖCୣ
  2.19 

This equation can be converted to a linear form by taking logarithms: 

ln (Aୖ
Cୣ
qୣ
− 1) = g ln Cୣ + ln Bୖ  2.20 

where qe is  the  concentration  of  solid  phase  sorbate  in  equilibrium  (mg/g),  Ce is the 

concentration of liquid phase sorbate in equilibrium (mg/L), AR (L/g) and BR (L/mg) are R-

P isotherm constants, and g is the exponent which lies between 0 and 1. 
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The isotherm combines both Langmuir and Freundlich equations elements and the 

adsorption mechanism is described as a hybrid that does not follow an ideal monolayer 

adsorption. The isotherm is linearly dependent on the concentration in the numerator and 

has an exponential function in the denominator. The value ‘g’ is between 0 and 1 and 

characterizing the isotherm as; if g=1, the Langmuir is the preferable isotherm while if it is 

zero, then the Freundlich will be the isotherm preferred (Özer, Akkaya, & Turabik, 2005).  

Despite the fact that the two-parameter equations may be determined graphically, Redlich-

Peterson constants are not suitable due to the three unknown parameters. Normally, a 

minimization process is employed in solving the equations through the maximization of the 

correlation  coefficient  between  the  experimental  data  points  and  the  predictions  of  the  

theoretical model with Solver add-in of the Microsoft Excel function (Y. Wong, Szeto, 

Cheung, & McKay, 2004). 

2.2.2.2 Koble-Corrigan isotherm 

Koble-Corrigan model is described as a three-parameter empirical model that represents the 

equilibrium adsorption data. This equilibrium relation is significantly non-linear in 

comparison to the Redlich-Peterson model. Similar to the isotherm above, it is a 

combination of the Langmuir and Freundlich isotherm models and is represented by Eq. 

 2.21 (Koble & Corrigan, 1952): 

qୣ =
A Cୣ

1 − B Cୣ
  2.21 
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The linear form of this equation is   

1
qୣ

= ൬
1

A Cୣ
൰ +

B
A

  2.22 

where AK, BK and p are the Koble-Corrigan parameters. The Koble-Corrigan model’s three 

isotherm constants are also evaluated through the use of Solver add-in function of the 

Microsoft Excel.  

2.2.3 Adsorption kinetics 

The adsorption kinetics reveals the rate of adsorbate uptake by the adsorbent during the 

timeframe  (Ho  &  McKay,  1999a).  There  are  some  specific  models  that  are  normally  

utilized to represent the adsorption kinetics, and the most common models among them are 

pseudo-first-order, pseudo-second order and intra-particle diffusion models. In the 

comparison of the adsorption kinetics of one compound on different adsorbents, it can be 

found which adsorbent has been adsorbed to a greater extent, or which adsorbent shows the 

faster rate of adsorbate adsorption.  

2.2.3.1 Pseudo-first order model 

The pseudo-first order model of Lagergren (Lagergren, 1898) is the pioneering equation 

that  describes  the  rate  of  adsorption  on  the  basis  of  the  capacity  of  adsorption.  The  

differential equation is commonly expressed as follows: 
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௧ݍ݀
݀௧

=  kଵ (qୣ − q୲)  2.23 

where qe and  qt (mg/g) are the adsorption capacities at equilibrium and at time t (min), 

respectively, and k1 is the equilibrium rate constant of pseudo-first order adsorption 

(min−1). Integrating Eq.  2.23 for the boundary conditions t=0 to t and qt =0 to qt gives: 

log
qୣ

(qୣ − q୲)
=  

kଵ
2.303  t  2.24 

which is the integrated rate law for a pseudo-first order reaction. Eq.  2.24 can be rearranged 

to obtain the linear form: 

log  (qୣ − q୲) = log  qୣ −  
kଵt

2.303  2.25 

The slope and intercept of plot of log (qe −qt) versus t are then used to determine the first-

order rate constant, k1. In most cases, the first order equation of Lagergren is unfit with the 

whole range of contact time but is generally suitable over the initial stage of the processes 

of adsorption (Ho & McKay, 1999b). 

2.2.3.2 Pseudo-second order model 

This  model  also  has  its  basis  on  the  sorption  capacity  of  the  solid  phase  (Ho  &  McKay,  

1999a). It is however distinct from the first model as it predicts the behavior throughout the 
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whole range of adsorption and it agrees with an adsorption mechanism as the rate 

controlling step: 

௧ݍ݀
݀௧

=  ݇ଶ (ݍ −  ௧)ଶ  2.26ݍ

where k2 is the equilibrium rate constant of pseudo-second order adsorption (g/mg min). 

Integrating Eq.  2.26 for the boundary condition t=0 to t and qt =0 to qt gives:  

1
(qୣ − q୲)

=  
1
qୣ

+ kଶ t  2.27 

which is the integrated rate law for a pseudo-second order reaction. Eq.  2.27 can be 

rearranged to obtain a linear form: 

t
q୲

=  
1

kଶqୣଶ
+

1
qୣ

  t  2.28 

The slope and intercept of plot t/qt versus t are then used to calculate the second order rate 

constant, k2. 

2.2.3.3 Intraparticle diffusion model 

The adsorption of adsorbate from an aqueous to a solid phase comprises of many steps and 

involves  the  transport  of  adsorbate  from  the  aqueous  phase  to  the  solid  particles  surface  

(bulk diffusion), and then the diffusion of adsorbate through the boundary layer to the solid 
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particles surface (film diffusion), and followed by the transport of adsorbate from the solid 

particles surface towards the interior pores (pore diffusion or intraparticle diffusion). This is 

likely to be a slow process, hence it may be the rate-determining step. In cases in which the 

experiment is a batch system with rapid stirring, the possibility of that intraparticle 

diffusion to be the rate-determining step arises (McKay, 1983). According to Weber & 

Morris (1963), the rate for intraparticle diffusion is represented by the relationship between 

qt and the square root of time, t1/2, as presented in Eq.  2.29.  

q = k୧tଵ/ଶ + C  2.29 

Where Ki (mg/g min1/2)  is  the  intraparticle  diffusion  rate  constant  and  C is  related  to  the  

thickness of the boundary layer. Ki and C values are calculated from the slope and intercept 

of  qt versus t1/2 plots, respectively. With C=0, the adsorption rate is controlled by the 

intraparticle diffusion for the whole period of adsorption. However, the plot of qt against t1/2 

often reveals more than a single linear portion and if the first portion slope is not equal to 0, 

then film diffusion or boundary layer controls the rate of adsorption at the initial stage. 

2.2.4 Thermodynamic studies 

The parameters of isotherm and kinetics are significant in the process of adsorption. It has 

to be noted that the parameters of thermodynamics like the change in standard enthalpy 

(ΔH°), change in standard free energy (ΔG°) and the change in standard entropy (ΔS°) have 

a key role in this process. Through these parameters, the adsorption type can be discerned 
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which is primarily either physisorption or chemisorption, and the process can be estimated 

as endothermic or exothermic.  

Thermodynamic studies concerning adsorption process need to determine whether or not 

the process is spontaneous. The change of Gibbs free energy, ΔG°, indicates the 

spontaneity of chemical reaction and thus it is an important criterion for spontaneity. The 

energy and entropy factors must be kept into consideration for the determination of the 

Gibbs free energy of the process. Spontaneous reactions occur at a given temperature if 

ΔG° is a negative quantity.  

The thermodynamic parameters can be determined from the thermodynamic equilibrium 

constant Kc. The standard Gibbs free energy ΔG° (kJ/ mol), standard enthalpy change ΔH° 

(kJ/ mol), and standard entropy change ΔS° (J/mol K) can be calculated using the following 

equations: 

ln Kୡ =
ΔS°
R −

ΔH°
RT   2.30 

ΔG° = ΔH° − TΔS°  2.31 

where R (8.314 J/mol K) is the gas constant, T (K) is the absolute temperature and Kc (L/g) 

is the standard thermodynamic equilibrium constant defined by qe/Ce. 

The  positive  ΔH° value indicates that the adsorption is endothermic, while the negative 

value indicates that the adsorption is exothermic in nature. Furthermore, the ΔH° magnitude 
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gives  information  on  the  type  of  sorption,  which  can  be  either  physical  or  chemical.  

Physisorption is distinguished from chemisorption by considering the absolute value of a 

physisorption process that is lower than 20.9 kJ/mol, while the adsorption heat of a 

chemisorption process ranging from 20.9 to 418.4 kJ/mol (Deng, Su, Su, Wang, & Zhu, 

2007; Smith, 1981) . 
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3 CHAPTER 3  

SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED 

ORDERED MESOPOROUS SILICA MCM-41 WITH CALIX[4]ARENE 

DERIVATIVES 

3.1 Introduction  

Since the discovery of a new family of mesoporous molecular sieves M41S (Beck, Vartuli, 

et al., 1992; Kresge, Leonowicz, Roth, Vartuli, & Beck, 1992) with tailorable pore sizes 

ranging from 2.0 to 10 nm and with the surface areas often exceeding 1000 m2/g, these 

materials have attracted much attention in the field of catalysis, separation and adsorption. 

As mentioned before, mesoporous silica usually have very high surface and their surfaces 

are covered by silanol groups, which makes the functionalization of the pore surface of the 

mesoporous materials adjustable. Additionally, the surface functionalization of mesoporous 

silicates could change the chemical and physical properties of these materials dramatically.  

Therefore, the surface functionalization of mesoporous silica has been intensively 

investigated (Stein, et al., 2000). Several kinds of surface modification have been 

conducted for providing new functions for the surfaces. Chemical surface modification of 

periodic mesoporous silica by covalent bonding of organic molecules has been achieved 

using two general strategies. The post-synthesis procedure was the first method to be used 

as it was already described in the early work by Mobil on M41S silica (Beck, Vartuli, et al., 

1992). Subsequently, co-condensation procedures were introduced by Burkett et al.,(1996) 
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and Macquarrie (1996). Both methods were discussed in details in Chapter two Section 

2.1.4.2. 

The use of organosilanes in the surface functionalization of several materials such as 

MCM-41, MCM-48 and silica gels (Okutomo, Kuroda, & Ogawa, 1999; X. Zhao & Lu, 

1998; X. S. Zhao, et al., 1996) is a well-known approach to control and change the surface 

characteristics of the underlying material. Among the great variety of different 

organosilanes that can be used for surface functionalization, monofunctional organosilanes 

(R3Si X) with only one hydrolyzable group (X = CI, OR, NR2, and OH) are far superior in 

terms of reproducibility as only one type of reaction is possible, which is the covalent 

attachment of the silane to the underlying substrate through M-O-Si bonds (Fadeev & 

McCarthy, 2000). 

Isocyanates are considered to highly react with –OH groups to produce urethane bonds 

(Chun et al., 2002; Xia & Song, 2006). The high reactivity of isocyanate groups towards 

nucleophilic reagents is mainly due to the pronounced positive character of the C atom in 

the cumulative double bond sequence consisting of nitrogen, carbon and oxygen, especially 

in aromatic systems. The electronegativity of the oxygen and nitrogen imparts a large 

electrophilic character to the carbon in the isocyanate group. Isocyanate can be aromatic, 

aliphatic or cycloaliphatic in structure. Aromatic isocyanates have high reactivity than 

aliphatic or cycloaliphatic diisocyanates. Based on the utilization of isocyanate, the binding 

strength to the surface of the support can be greater or at least equal to those obtained for 

the organosilane binders (Chun, et al., 2002). 
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Calixarenes are described as supramolecules that come after the second generation crown 

ethers and cyclodextrins, and are based on phenol macrocycles which are capable of 

creating stable and selective complexes with the following; cations, anions, or neutral 

molecules. 

Here, we report a novel kind of mesoporous silica MCM-41 adsorbent with the macrocyclic 

compound calix[4]arene derivatives covalently attached on the substrate using: a linking 

agent consisting of an organosilane (3-chloropropyl trimethoxysilane-ClPTS) and a 

diisocyanate (TDI) for the adsorption of organotin compounds. Organic functionalizations 

of mesoporous silica were synthesized via a post-synthesis grafting method.  

3.2 Experimental  

3.2.1 Materials 

The  chemicals  used  in  this  part  of  the  thesis  are  as  follows:  Mesoporous  silica  [Aldrich,  

surface area of 993 m2/g, average diameter of 2.9 nm] as silica source. Calix[4]arene 

[C28H24O4, Acros] and p-tert-butylcalix[4]arene [C44H56O4,  Fluka]  were  the  organic  

modifier, while 3-chloropropyl triethoxysilane (ClPTS) [C9H21ClO3Si, Aldrich] and 

toluene-2,4-diisocyanate (TDI) [C9H6N2O2, Aldrich ] were the organic linker. 

Triethylamine [C6H15N, SAFC] was used as catalyst. The structures of Di-n-butylamine 

[C8H19N, Acros] and hydrochloric acid [HCl, Fisher] were used for the determination of 

isocyanate groups. Dichloromethane (CH2Cl2, Sigma Aldrich), chlorosulfonic acid 

(HSO3Cl, Merck) and methanol were utilized for the synthesis of p-sulfonatocalix[4]arene 
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as described in the literature (Makha & Raston, 2001). Toluene [Fisher, dried before use by 

using molecular sieves], ethanol [Fisher] and acetone [Fisher] were used as solvents. Water 

was purified using Milli-Q purification equipment. Some of these compounds are shown in 

Figure  3.1. 

 

Figure  3.1 Molecular structures of some materials 
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3.2.2 Instrumentation 

Fourier transform infrared spectra (FTIR) were recorded on a Perkin Elmer FTIR Spectrum 

RX1 ATR. The spectra were collected for all samples in the range from 400 to 4,000 cm-1. 

The samples were ground to powders and diluted with potassium bromide in an 

approximate ratio of 1:6.  

Thermogravimetric analyses (TGA) were performed on a Perkin Elmer TGA 4000 

TG/DTA instrument using 2-3 mg samples and a flow of nitrogen of 100 ml/min. The 

temperature was ramped from 45 °C to 900 °C at a rate of 20 °C/min.  

Chemical elemental analysis for C, H, N and S was carried out using a Perkin Elmer 

CHNS-2400 analyzer. 

The X-ray powder diffraction (XRD) patterns were obtained on a Bruker AXS D-8 advance 

diffractometer using Cu K radiation (λ = 0.154056 nm) at 40 kV and 30 mA within the 2θ 

range of 2 to 10. The samples were prepared as a thin, flat layer in a plastic holder. 

Textural properties (surface areas, pore sizes, pore volumes and pore size distribution) were 

determined at 76.53°K using Brunauer-Emmett-Teller (BET) multilayer nitrogen 

adsorption method by a quantachrome autosorb automated gas sorption system. The 

Brunauer–Emmett–Teller surface area (SBET) was calculated from the linearity of the BET 

equation. The surface area, volume and pore diameter were calculated from the pore size 

distribution curves using the density functional theory method. 
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3.2.3 Synthesis methods 

3.2.3.1 Synthesis of p-sulfonatocalix[4]arene  

The calixarene was sulfonated by chlorosulfonation method as described in the literature 

(Makha & Raston, 2001). To a solution of calix[4]arene (1.0 g, 2.4 mmol) dissolved in 30 

ml of dry dichloromethane, 1.0 ml of chlorosulfonic acid was added dropwise at 0°C. The 

mixture was stirred at room temperature for 5 h to form a bright rose biphasic mixture. The 

reaction mixture was poured over ice, and the aqueous phase was evaporated to remove 

dichloromethane and boiled for 2 h. Water was evaporated to produce a light green solid, 

which was crystallized from acetone to obtain the acidic product. Water was added and the 

mixture was neutralized to pH=7. Water was then evaporated to produce a deliquescent 

green solid and upon addition of methanol, a fine gray precipitate formed which was then 

filtered to obtain p-sulfonatocalix[4]arene. The structure of this compound was 

characterized by FTIR analyses. 

3.2.3.2 Functionalization of MCM-41 mesoporous surfaces with calix[4]arene 
derivatives  

Calix[4]arene derivatives were chemically attached to the mesoporous MCM-41 material 

surfaces by means of the post-synthesis grafting method. Two synthetic procedures were 

applied, which are based on a combination of different synthetic methods used by previous 

researchers. 
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I. Surface functionalization of MCM-41 using toluene-2,4-diisocyanate (TDI) as a 

linker  

The functionalization of isocyanate groups onto MCM-41 surface was carried out by 

refluxing of the activated mesoporous silica with excess of TDI (M. Yang, Gao, He, & Li, 

2007). 5.0 g of mesoporous silica (150°C, overnight) and 200 ml TDI (1.41 mol, dried by 

molecular sieve for 24 h) were mixed in a 400 ml round-bottom flask using magnetic 

stirrer, and the functionalization was conducted in a dry nitrogen atmosphere at 80°C for 4 

h. The chemical reaction is shown in Figure  3.2. The refluxed mixture was then cooled 

down to room temperature. In order to remove all the substances physically adsorbed on the 

surface of the particles, the sample of MCM-TDI was separated by centrifugation and 

sequentially rinsed with toluene three times (3 X 20 ml), and followed by acetone to wash 

away any excess TDI. Toluene and TDI were dried using molecular sieves (5A, beads, 4-8 

mesh)  prior  to  use.  The  white  solid  was  then  dried  at  80°C for  24  h  and  the  sample  was  

marked as MCM-TDI. 
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Figure  3.2 Schematic diagram for the functionalization of MCM-41 mesoporous silica material 
surface with of calix[4]arene derivatives using toluene-2,4-diisocyanate as linker 

Functionalizeation of  mesoporous silica with the calix[4]arene derivatives was carried out 

as follows (Figure  3.2): 1.0 g of the modified mesoporous silica MCM-TDI was stirred 

with 2.0 mmol of calix[4]arene (calculated from Section  3.2.3.3) derivatives in dry toluene 

and few drops of triethylamine was added into a 125 ml round-bottom flask for 24 h around 
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70°C under reflux. After cooling, the solid product was isolated by filtration and washed 

with toluene and acetone and dried for a day. The samples were marked as MCM-TDI-C4 

for calix[4]arene, MCM-TDI-C4S for calix[4]arene sulfonate and MCM-TDI-PC4 for para-

tert-butylcalix[4]arene. 

II. Surface functionalization of MCM-41 using 3-chloropropyltriethoxysilane (ClPTS) 

and toluene-2,4-diisocyanate(TDI) as a linker  

Surface functionalization of MCM-41 with ClPTS was carried out by a procedure described 

by Feng et. al., (1997), whereby the concentration of surface silanols was calculated based 

on the surface area and an estimate of 5 x 1018 surface silanols/m2. This is achieved by 

multiplying the number above with the surface area to give the number of silanols per gram 

of the MCM-41, followed by dividing the number by Avogadro's number to get the total 

number  of  moles  of  surface  silanols.  The  amount  of  the  silane  to  be  used  was  calculated  

accordingly. To optimize the functionalization process, hydration of the surface was carried 

out  with  approximately  two  monolayers  (calculated  based  on  the  surface  area  by  the  

procedure described above) of deionized water (DI). 

In a general procedure, a self-assembled monolayer of the initial silane was produced by 

suspending 1.0 g of MCM-41 in 40 ml of toluene in a 100 ml round-bottom flask. The 

suspension was stirred vigorously for 5 min before adding 0.30 ml of DI water (calculated 

based on the surface area of 993 m2/g), and the stirring was resumed for 2 h. A slight excess 

of silane (10 % v/v), 2.18 ml of 3-chloropropyl triethoxysilane corresponding to 9.07 

mmol, was added and the solution was refluxed for 6 h. The solids were then filtered and 



91 

 

washed copiously with toluene and ethanol to remove un-reacted silane and the dried 

overnight. For convenience, the following term ClTPS-MCM will be used. The chlorine 

groups present in the ClPTS-MCM were hydrolysed into hydroxyl groups (OHPTS–MCM) 

by heating the solid material with a solution of methanol: water (1:1) for 2 h and at 60°C 

(Xia & Song, 2006) (Figure  3.3). After cooling to room temperature, the reaction mixture 

was filtered with a fine filter funnel and dried at 110°C overnight. 

The functionalization MCM-41 with ClPTS and TDI was prepared by refluxing the 

hydroxyl modified material, OHPTS–MCM with excess of TDI (dried by molecular sieve 

for 24 h) in a dry nitrogen atmosphere at 80°C for 4 h (M. Yang, et al., 2007) (Figure  3.3). 

After cooling down, the material was filtered, washed and dried overnight and marked as 

MCM-PS-TDI. 

Mesoporous silica-supported calix[4]arene derivatives were prepared by refluxing 1.0 g of 

the functionalized mesoporous silica (MCM-PS-TDI) with 1.8 mmol of calix[4]arene 

(calculated from Section  3.2.3.3) derivatives and few drops of triethylamine in 100 ml of 

dry toluene in a 250 ml round-bottom flask and the reaction temperature was kept at 80°C 

for 24 h under continuous stirring, as shown in Figure  3.3. The mixture was then cooled to 

room temperature and then the resulting white mixture was filtered with a fine filter funnel. 

The  solid  was  washed  three  times  with  toluene  (3  X 20  ml)  and  then  acetone.  The  white  

solid was then dried at 80°C for 24 h. The samples were marked as MCM-PS-TDI-C4 for 

calix[4]arene, MCM-PS-TDI-C4S for calix[4]arene sulfonate and MCM-PS-TDI-PC4 for 

para-tert-butylcalix[4]arene. 
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Figure  3.3 Schematic diagram for the functionalization of MCM-41 mesoporous silica material 
surface with calix[4]arene derivatives using 3-chloropropyl triethoxysilane (ClPTSand toluene-2,4-
diisocyanate (TDI) as linker 

3.2.3.3 Determination of isocyanate groups of the reaction system 

The content of isocyanate groups of the reaction system was determined by titration. 200 

mg of MCM-TDI and MCM-PS-TDI samples and 20 ml of 0.1 mol/L di-n-butylamine in 



93 

 

toluene were charged into a flask and the mixture was stirred at room temperature for 1 h. 

The unreacted di-n-butylamine was backtitrated with 0.1 mol/L HCl using bromophenol 

blue as an indicator. The content of isocyanate groups was calculated using Equation  3.1: 

Isocyanate group ቀmmol gm ൗ ቁ = 0.1 ( V − Vୱ)  
f

w  3.1 

where V0 (ml) is the titer of 0.1 mol/L HCl for blank, Vs (ml) is the titer of 0.1 mol/L HCl 

for the sample, f is the factor of 0.1 mol/L HCl and w (g) is the weight of the sample. 

3.3 Results and discussion 

3.3.1 Characterization of functionalized MCM-41with TDI as linker  

In this part of this study, three mesoporous silica modified with calix[4]arene derivatives 

have been prepared via modification of activated mesoporous silica with toluene-2,4-

diisocyanate (TDI) as linker and C4, C4S and PC4 as organic modifier. Toluene-2,4-

diisocyanate was utilized to establish a bridge between the surface of mesoporous silica and 

calix[4]arene derivatives. TDI has highly unsaturated bonds and two isocyanate groups 

with different activities towards hydroxyl groups, located at a para-position and an ortho-

position, respectively, and consequently, it is very active towards hydroxyls.  

The isocyanate groups at para-positions would react with the hydroxyl groups on the 

surface of mesoporous silica preferentially, whereas those at the ortho-positions would be 

preserved due to the steric hindrance within the TDI molecule (R. Arnold, Nelson, & 
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Verbanc, 1957; Simons & Arnold, 1956). The mole amount of the isocyanate groups that 

reacted with mesoporous silica can be regarded as TDI that reacted with mesoporous silica. 

The amounts of TDI that reacted with mesoporous silica are largely dependent on the 

amount  of  hydroxyls  on  the  mesoporous  silica  surface,  therefore  in  the  case  of  excess  of  

TDI, the amounts of TDI that reacted with silica were invariable (Che et al., 2007). Excess 

TDI was used to  serve  two  functions;  as  a  solvent  to  disperse silica  and  as  a  reactant  in  

order  to  drive  the  reactions  to  completion,  and  it  was  easily  removed  after  reaction  by  

centrifugation and prolonged washing with anhydrous toluene. 

I. Fourier transform infrared spectroscopy (FTIR) 

FTIR spectroscopic analysis provided the evidence that the mesoporous silica surface 

reaction proceeded as illustrated in Figure  3.4. Figure  3.4 shows the FTIR spectra of 

activated mesoporous silica and MCM-TDI. The FTIR spectrum of unmodified 

mesoporous silica is relatively simple and well assigned as shown in Figure  3.4 A (Boven, 

Oosterling, Challa, & Jan Schouten, 1990).  

The spectra of MCM-41 and MCM-TDI were dominated by strong bands characteristic of 

the support matrix. These bands are due to the surface hydroxyl groups in the range of 

3770–3300 cm-1, and to lattice vibrations in the range of 1300–750 cm-1. Two strong bands 

were present at about 1085 cm-1 and 801 cm-1, which can be assigned to the asymmetrical 

Si-O-Si  stretching  and  symmetrical  Si-O-Si,  respectively.  The  band  present  at  about  970  

cm-1 was attributable to Si-OH vibrations (Alba, Luan, & Klinowski, 1996; Kureshy et al., 

2005; Shylesh & Singh, 2004). Any adsorbed water on the surface was seen in the region of 
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,3400 – 3500 cm-1 (Vansant, Van Der Voort, & Vrancken, 1995). The bending O-H mode 

of any adsorbed molecular water was found around 1625 cm-1.  

Addition of excess TDI to the mesoporous silica resulted in the incorporation of isocyanate 

functionalities on the surface of the mesoporous silica. This was evidenced by the 

appearance of a clearly discernible band at 2275 cm−1 corresponding to the asymmetric 

stretching of the appended terminal isocyanate groups, and the appearance of an aromatic 

C–C stretch at 1549 cm−1 in the FTIR spectrum Figure  3.4 B.  

The signals corresponding to the C=O and C–N stretches of the formed carbamate linkages 

between the mesoporous silica and the isocyanate functionality in the compound 

mesoporous silica-TDI at 1647 cm−1 and 1197 cm−1 may be merged with the band of 

surface hydroxyl groups of mesoporous silica and Si–O–Si band, respectively. Other bands 

at 1522 cm−1 and 1560 cm−1 are referred to -CO-NH-. Also, a decrease in the peak intensity 

at about 970 cm−1 was observed, and when compared with the parent material, it is 

suggested that the silanol surface groups were functionalized (Oliveira et al., 2007). 
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Figure  3.4 Fourier transform infrared spectroscopy (FTIR) spectra of MCM-41 (A) and MCM-TDI 
(B) 

II. Elemental analysis  

Elemental analysis provided further evidence of the successful modification of mesoporous 

silica. The carbon, hydrogen, nitrogen and sulfur contents of MCM-TDI were 18.64, 3.04, 

5.93 and 0.0 respectively. It can be observed that the amount of carbon and nitrogen in 

mesoporous silica increased after the modification with TDI. 

 

III. Thermogravimetric analysis (TGA) 
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Thermogravimetric analysis of mesoporous silica and MCM-TDI were determined (             

Figure  3.5). The unmodified MCM-41 exhibited a weight loss at about 50°C, corresponding 

to the loss of physically adsorbed water and suggesting the surface to be hydrophilic in 

nature (Iler, 1979; Jaroniec, Gilpin, & Jaroniec, 1997). With increase in the temperature, 

the weight loss remains constant, indicating no appreciable condensation of silanol groups 

on the surface (Iler, 1979; Jaroniec, et al., 1997).  

 
             Figure  3.5 Thermogravimetric analysis (TGA) of MCM-41(...) and MCM-TDI (__) 

There is a significant change in the weight loss curve with modification of MCM-41 (             

Figure  3.5). The decrease in weight from 50-100°C was due to the physically adsorbed 

water. A slight weight loss from 220-280°C was due to the decomposition of the organic 

moiety. The third sharp decrease in weight at 280°C was because of loss of the carbamate 

group. The last region of the weight loss curve, above 600°C, may be due to the 

dehydroxylation of the silicate network (Hashemi, Yarahmadi, Azizi, & Sabouri, 2008). 
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3.3.2 Characterization of functionalized MCM-TDI with calix[4]arene derivatives 

I. Fourier transform infrared spectroscopy (FTIR) 

Three mesoporous silica modified with calix[4]arene derivatives have been prepared via 

functionalization of modified mesoporous silica with toluene-2,4-diisocyanate (TDI) as 

linker and C4, C4S and PC4 as organic modifier. Toluene-2,4-diisocyanate was utilized to 

establish a bridge between the surface of mesoporous silica and calix[4]arene derivatives.  

The remaining isocyanate groups at ortho-positions in modified mesoporous silica (MCM-

TDI) reacted with hydroxyl groups at the lower rim of calix[4]arene derivatives to form 

modified mesoporous silica with toluene-2,4-diisocyanate (TDI) as linker and C4, C4S and 

PC4 as organic modifier. These functionalization reactions were again examined by FTIR 

spectroscopy to monitor the appearance and disappearance of some peaks. In detail, by 

comparison  with  the  spectrum  of  MCM-TDI,  MCM-TDI-C4  (Figure   3.6  A)  present  a  

strong band at 3423 cm−1 and its shoulder near 3198 cm−1, which correspond to the -OH 

group of the mesoporous silica surface and the aromatic OH, respectively. There were two 

bands at 1420 and 1379 cm−1, and both bands seem to belong to COH bending vibration. 

The medium-intensity peak and the weak intensity peaks at 1449 cm−1, 2941 and 2862 

cm−1, respectively, corresponds to methylene bridges –CH2–. The band at 1078–1229 cm−1 

of mesoporous silica-TDI spectra, which was referred to Si–O–Si, was broadened with Car-

O stretching at 1241 cm−1. The bands at 807 and 755 cm−1 were related to aromatic torsion 

vibrations (Furer, Borisoglebskaya, Zverev, & Kovalenko, 2006). The band at 487 cm−1 

may be assigned to the macrocycle torsion (Furer, et al., 2006). 
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The spectra of MCM-TDI-C4S (Figure  3.6 B) shows three main bands at 3449, 1446 and 

1051 cm−1 assigned to the N–H and -OH groups of both hydroxides for the mesoporous 

silica and the C4S molecule, the weak absorption peak of methylene bridges –CH2– and the 

strong absorption peak of S–O which broadened the peak of Si–O–Si, respectively. 

From Figure  3.6 C, it can be seen that the spectra of MCM-TDI-PC4 presents a strong band 

at 1542 cm−1 and its shoulder near 1424 cm−1, which correspond to the phenyl vCar–Car and 

methylene bridges –CH2–, respectively. The results were closely in agreement with the 

published data (Huang et al., 2010; Su et al., 2011) and indicated that para-tert-

butylcalix[4]arene was successfully bonded on the surface of the MCM-TDI material. 

The  efficiency  of  the  grafting  process  was  demonstrated  by  a  significant  decrease  in  the  

isocyanate group band at around 2270 cm-1, with an associated increase of new bands 

characteristics of the immobilized calix[4]arene derivatives. Meanwhile, the absorption at 

2275 cm−1 in the spectra of MCM-TDI-C4 and MCM-TDI-C4S disappeared. This indicates 

that the unattached isocyano groups reacted with calix[4]arene derivatives, and 

calix[4]arene derivatives were successfully bonded on the surface of the MCM-TDI. But in 

the case of MCM-TDI-PC4, the weak absorption peak of the isocyanate group still appears 

and this may be due to the steric hindrances. 
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Figure  3.6 FTIR spectra of MCM-TDI-C4 (A), MCM-TDI-C4S (B) and MCM-TDI-PC4 (C) 

II. Elemental analysis  

Elemental analysis provided further evidence of the successful modification of mesoporous 

silica. Table  3.1 gives the carbon, hydrogen, nitrogen and sulfur contents of MCM-TDI and 

mesoporous silica modified with calix[4]arene derivatives. It can be observed that the 
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amount of carbon in mesoporous silica modified with calix[4]arene derivatives was higher 

compared to the carbon contents in MCM-TDI. 

Table  3.1 Results of elemental analysis for mesoporous silica-TDI, MCM-TDI-C4, MCM-TDI-C4S 
and MCM-TDI-PC4 

Sample %C %H %N %S 
MCM-TDI 18.64 3.04 5.93 - 
MCM-TDI-C4 42.64 3.05 1.06 - 
MCM-TDI-C4S 33.31 4.16 3.97 4.04 
MCM-TDI-PC4 40.53 4.84 4.30 - 

 

III. Thermogravimetric analysis (TGA) 

Thermogravimetric analysis of MCM-TDI-calix[4]arene derivatives were determined (   

Figure  3.7). The weight loss of MCM-TDI-calix[4]arene derivatives occurred at many 

regions (Table  3.2), and every curve exhibited a stage of weight loss that referred to the loss 

of  a  carbamate  group.  Based  on  these  data,  it  was  proven  that  the  silica  was  successfully  

modified with calix[4]arene derivatives. 

Table  3.2 Thermogravimetric analysis results of MCM-TDI-C4, MCM-TDI-C4S and MCM-TDI-
PC4 

Sample Region °C Weight-loss % Assignment 

MCM-TDI-C4 

45–150 4.9 Moisture 
150–280 8.4 Calix[4]arene 
280–380 21.4 Carbamate group and calix[4]arene 
380–800 32.49 Calix[4]arene 

MCM-TDI-C4S 
45–150 4.7 Moisture 
150–280 5.9 Carbamate group 
350–800 37.9 Calix[4]arene sulfonate 

MCM-TDI-PC4 

45–150 2.4 Moisture 

200–350 44.9 Carbamate group and para-tert-
butylcalix[4]arene 

400–800 15.7 Para-tert-butylcalix[4]arene 
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   Figure  3.7 TGA analysis of MCM-TDI-C4, MCM-TDI-C4S and MCM-TDI-PC4 

As previously discussed (Chapter two, Section 2.1.4), the physical structure of mesoporous 

silica (high surface area, large pore volume, and others) is one of the major reasons for their 

effectiveness as a support material. Variations in surface areas, pore volumes and pore sizes 

have a significant effect on the resulting material. It is therefore necessary to accurately 

characterize the physical nature of the resulting material. 

IV. X-ray powder diffraction (XRD) 

                  Figure  3.8 shows the low angle range X-ray powder diffraction (XRD) patterns 

of the modified mesoporous silica with calix[4]arene derivatives MCM-TDI-C4, MCM-

TDI-C4S and MCM-TDI-PC4. The pure MCM-41 starting material exhibited the peak 

patterns characteristic of mesoporous silica materials with a hexagonal symmetry (Kresge, 

et al., 1992): three well-resolved Bragg reflections for 2h values between 2, 4 and 5Ө, one 
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very intense due to the (100) reflection and two weaker peaks due to (110) and (200) 

reflections.  

 
                  Figure  3.8 X-ray powder diffraction (XRD) analysis of MCM-TDI-C4, MCM- 

                  TDI-C4S and MCM-TDI-PC4 

Upon functionalization of MCM-41 with calix[4]arene derivatives, the XRD patterns of the 

samples showed strong (100) peaks and smaller (110) and (200) peak intensities, 

suggesting that the modification process did not strongly affect the framework integrity of 

the ordered mesoporous MCM-41. The change in the (100) peak intensities and the small 

shift to higher 2θ values suggests that calix[4]arene derivatives were present on the internal 

pore walls of MCM-41 (Sauer, Marlow, & Schuth, 2001). The peaks (110) and (200) 

showed a decrease in the overall intensities of XRD reflections of MCM-41 after 

calix[4]arene derivatives functionalization (Figure 3.8). This may be due to the difference 

of scattering contrast between the amorphous silicate framework and organic moieties, which 
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are located inside the channels of MCM-41 (Lim & Stein, 1999; Marler, Oberhagemann, 

Vortmann, & Gies, 1996). 

V. Nitrogen adsorption-desorption measurements 

In order to further investigate the channel structure of the prepared materials, the 

characterization of the nitrogen adsorption-desorption was also carried out. The 

corresponding isotherms are presented in Figure 3.9. They all exhibit the typical Type IV 

isotherms according to the IUPAC classification (H. Yang, Zhang, Hong, & Zhu, 2004), 

which correspond to the characteristics of mesoporous materials with highly uniform size 

distributions.  

 
                 Figure  3.9 Nitrogen adsorption-desorption isotherms of MCM-TDI-C4, MCM- 

                 TDI-C4S, and MCM-TDI-PC4 
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The BET isotherms of the modified samples MCM-TDI-C4 and MCM-TDI-C4S in Figure 

3.9 show small hysteresis loops type H1, which is a typical characteristic of mesoporous 

materials with well-defined cylindrical-like pore channels (Broekhoff, 1979). In case of 

MCM-TDI-PC4, the BET isotherm shows hysteresis loops type H2, which describes the 

materials are frequently disordered with not well-defined pore size and shape indicating 

bottleneck constrictions (Broekhoff, 1979). This may be due to the bulky organic group 

located inside the pore channel (Caps & Tsang, 2003; Lim & Stein, 1999; Sakthivel, Hijazi, 

Hanzlik, Chiang, & Kühn, 2005). The structure data of modified mesoporous materials 

MCM-TDI-C4, MCM-TDI-C4S and MCM-TDI-PC4 (surface area, total pore volume, and 

pore diameter) are summarized in Table  3.3.  

Table  3.3 Structural parameters of MCM-41, MCM-TDI-C4, MCM-TDI-C4S and MCM-TDI-PC4 

Sample SBET 
(m2/g) 

Pore volume 
(cm3/g) 

Pore diameter 
(nm) 

MCM-41 993 0.86 2.9 
MCM-TDI-C4 733 0.67 3.6 
MCM-TDI-C4S 452 0.43 3.8 
MCM-TDI-PC4 339 0.32 3.9 

 

The surface area and the total pore volume of all samples have dropped significantly 

compared with the unfunctionalized sample, MCM-41. The grafted materials also exhibited 

a broader pore diameter (Table  3.3). The decrease of the pore value and the broad 

distribution of pore size showed that the calix[4]arene derivatives in the grafted 

mesoporous samples were mainly located on the internal surfaces of the mesoporous 

materials (Caps & Tsang, 2003; Lim & Stein, 1999; Sakthivel, et al., 2005). The decrease 

in the surface area and pore volume were more significant in the case of MCM-TDI-PC4, 
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and this can be explained as mentioned before due to the presence of bulky organic group, 

which could lead to partial blockage of the pore channel (Ernst & Selle, 1999). 

3.3.3 Characterization of functionalized MCM-41with ClPTS and TDI as a linker  

In this procedure, the MCM-41 was functionalized through a post-synthetic method with 3-

chloropropyl triethoxysilane (ClPTS). The chlorine groups were hydrolysed into hydroxyl 

groups, which react with one of the terminal isocyanate groups of the linking agent (TDI) 

and forming urethane links. The isocyanate groups at para-positions in TDI would bind 

with the hydroxyl groups on the surface of OHPTS-MCM preferentially, whereas those at 

the ortho-positions would be preserved due to steric hindrance within the TDI molecule (R. 

Arnold, et al., 1957; Simons & Arnold, 1956). The mole amount of the isocyanate groups 

that reacted with OHPTS-MCM can be regarded as that of TDI that reacted with OHPTS-

MCM. The amounts of TDI that reacted with OHPTS-MCM largely depend on the amount 

of hydroxyls on the surface, therefore in the case of excess of TDI, the amounts of TDI that 

reacted with OHPTS-MCM were invariable (Che, et al., 2007).  

I. Fourier transform infrared spectroscopy (FTIR) 

The functionalization of MCM-41 using ClPTS and TDI can be identified using FTIR. 

Figure  3.10 shows the FTIR spectra of unmodified mesoporous silica and functionalized 

mesoporous  silica  with  ClPTS  and  TDI  samples,  MCM-41  and  MCM-PS-TDI,  

respectively. The spectrum of the unmodified MCM-41 (Figure  3.10 B), as well as the 
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modified materials (Figure  3.10 A), was dominated by strong bands characteristic of the 

support matrix, indicating that the support framework remained unchanged.  

These bands were present due to the surface hydroxyl groups in the range of 3770–3300 

cm-1, and to lattice vibrations in the range 1300–750 cm-1. Bands at about 1215, 1085, 807 

and 480 cm-1 were  assignable  to  the  asymmetric  and  symmetric  stretching  (νas(Si–O–Si) 

and  νs(Si–O–Si))  of  the  support  framework.  The  band  present  at  about  970  cm-1 was 

attributable to ν (Si–OH) vibrations (Alba, et al., 1996; Kureshy, et al., 2005; Shylesh & 

Singh, 2004). 

After anchoring of 3-chloropropyl triethoxysilane (MCM-ClPTS) and subsequent 

hydrolysis (MCM-OHPTS), the new weak bands arose at 2960 and 2850 cm-1 were 

probably due to the aliphatic (-CH2) stretching of the propyl chain of the silylating agent 

(Bhatt et al., 2006), which suggest that the modification of the support material was 

achieved. 

Addition of excess TDI to the MCM-OHPTS resulted in the incorporation of isocyanate 

functionalities on the surface (MCM-PS-TDI) (Figure  3.10 A). This was evidenced by the 

appearance of a clearly discernible band at 2282 cm-1 corresponding to asymmetric 

stretching of the appended terminal isocyanate groups, and the appearance of an aromatic 

C-C stretch at 1560 cm-1 in the FTIR spectrum. The signals corresponding to the C=O and 

C-N stretches of the formed carbamate linkages between the hydroxyl group and the 
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isocyanate functionality at 1637 cm-1 and 1202 cm-1 merged  with  the  band  of  surface  

hydroxyl groups of mesoporous silica and Si-O-Si band respectively. 

 

Figure  3.10 Fourier transform infrared spectroscopy (FTIR) spectra of MCM-PS-TDI (A) and 
MCM-41 (B) 

II. Elemental analysis  

The carbon and nitrogen content of MCM-PS-TDI increased when compared with the 

MCM-OHPTS sample, from 3.13% to 20.82% for the total carbon and from 0.14% to 

5.03% for the total nitrogen. These data confirmed the attachment of the TDI to the MCM-

OHPTS. 
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III. Thermogravimetric analysis (TGA) 

The TGA weight loss curve for MCM-PS-TDI is presented in Figure  3.11. The unmodified 

MCM-41 (Figure 3.5) as previously established, exhibit a weight loss at about 50 °C 

corresponding to the loss of physically adsorbed water and with an increase in temperature, 

the weight loss remained constant, indicating no appreciable condensation of silanol groups 

on the surface (Iler, 1979; Jaroniec, et al., 1997). 

There  was  a  significant  change  in  the  weight  loss  curve  with  modification  of  MCM-41  

(Figure  3.11). There are three distinct weight-loss regions; the first depicting the loss of any 

adsorbed water on the surface (between 35 to about 120°C). This was followed by the 

thermal removal of the organic material in the region of 160-600°C.  The  removal  of  

organic material took place during the two mass loss steps; the first step was abrupt in the 

region 160-350°C, which refer to the losses of carbamate group and the organic group in 

the silylating agent. The second step was broader and considered to complete the 

decomposition of the remaining organic groups in the region of 400-600°C. The last region 

of the weight loss curve, above 600°C, may be due to dehydroxylation of the silicate 

network (Hashemi, et al., 2008). 
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Figure  3.11 Thermogravimetric analysis (TGA) of MCM-PS-TDI 

3.3.4 Characterization of functionalized MCM-PS-TDI with calix[4]arene 
derivatives 

I. Fourier transform infrared spectroscopy (FTIR) 

Infrared spectroscopy was employed as an important tool to characterize the functional 

groups of the products. The vibrational spectra obtained from solid samples confirmed the 

success  of  the  grafting  reactions  since  they  displayed  bands  that  are  very  close  to  those  

observed when TDI was used as a linker. 

The infrared spectra obtained for MCM-PS-TDI-C4, MCM-PS-TDI-C4S and MCM-PS-

TDI-PC4 are shown in Figure  3.12. Typical silica bands associated with the main inorganic 

backbone can be clearly observed, such as a large, broad band between 3400 and 3200 cm−1 

attributed to the presence of the O-H stretching frequency of silanol groups bonded to the 

inorganic structure, and also the intense band related to the Si–O–Si stretching of these 
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groups at 1080 -1225 cm−1. All spectra showed a large band around 1500- 1650 cm-1 due to 

Car–  Car stretching, which confirmed the presence of calix[4]arene derivatives in these 

materials. The band at 1418 cm−1 and 1448 cm−1 of MCM-PS-TDI-C4 spectra (Figure  3.12 

A),  which  are  referred  to  Car-OH and methylene bridges –CH2– groups, were broadened 

with Car– Car stretching at 1541 cm−1. Based on these data, it was proven that the MCM-PS-

TDI was successfully modified with calix[4]arene. 

The spectrum of MCM-PS-TDI-C4S (Figure  3.12 B) presents new peaks compared to 

MCM-PS-TDI (Figure  3.10 A). Car-S peaks and methylene bridges –CH2– groups were 

confirmed by the strong absorptions at 660 and 632 cm-1, and 1443 cm-1, respectively. In 

addition, the strong absorption peaks for SO3
- present at 1048 and 1188 cm-1(Xiong, Chen, 

& Li, 2008). These peaks validated the immobilization of the para-sulfonatocalix[4]arene 

active groups to the isocyanate functional groups.  

In the case of MCM-PS-TDI-PC4, Figure  3.12 C generally shows a strong band at 1542 

cm−1 and its shoulder near 1418 cm−1, which correspond to the phenyl vCar–Car and 

methylene bridges –CH2–, respectively, and methyl (CH3) asymmetric stretching and 

symmetric vibrations at 2969 and 2862 cm−1, respectively. The weak absorption peak of the 

isocyanate group appeared in all spectra and this may be due to steric hindrance. 
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Figure  3.12 FTIR spectra of MCM-PS-TDI-C4 (A), MCM-PS-TDI-C4S (B) and MCM-PS-TDI-
PC4 (C) 

II. Elemental analysis  

Covalent attachment of the calix[4]arene derivatives to MCM-PS-TDI, according to Figure 

 3.3, was monitored by several techniques. The elemental analysis of the samples (Table 
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 3.4) showed a gradual increase in the carbon content after the modification step. After the 

reaction of MCM-OHPTS with TDI, the percent of C and N increased from 3.13% and 

0.14% to 20.82% and 5.03% respectively, indicating the success of the modification step. 

After reaction with C4, C4S and PC4, the C content further increased to 30.93%, 25.83% 

and 33.63% respectively, showing that the calix[4]arene derivatives were attached to the 

surface.  

Table  3.4 Results of elemental analysis for MCM-PS-TDI functionalized with calix[4]arne 
derivatives 

Sample %C  %H  %N %S 
MCM-PS-TDI-C4 30.93 3.62 5.21 - 
MCM-PS-TDI-C4S 25.83 3.23 2.11 3.71 
MCM-PS-TDI-PC4 33.63 3.97 4.46 - 

 

III. Thermogravimetric analysis (TGA) 

Through the formation of a covalent bond between the calix[4]arene derivatives and the 

isocyanate group, the calix[4]arene derivatives successfully modified the framework of 

MCM-PS-TDI materials.  Thermal gravimetric analysis was carried out on MCM-PS-TDI-

C4, MCM-PS-TDI-C4S and MCM-PS-TDI-PC4 (Figure 3.13). 

The functionalized MCM-PS-TDI with calix[4]arene derivatives exhibited a weight loss at 

about 50°C, which correspond to the loss of physically adsorbed water. With increase in the 

temperature, there was a significant change in the weight loss curves with functionalized 

MCM-PS-TDI with calix[4]arene derivatives (MCM-PS-TDI-C4, MCM-PS-TDI-C4S and 

MCM-PS-TDI-PC4) (Table  3.5). The removal of the organic moiety started at 180-240°C 
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and continued up to 400 and 600°C. The sharp decrease in weight at 280°C was due to loss 

of the carbamate group. An additional weight loss occurred at higher temperatures was due 

to dehydroxylation of the silicate network (Hashemi, et al., 2008). 

 
              Figure  3.13 TGA analysis of MCM-PS-TDI-C4, MCM-PS-TDI-C4S and MCM-PS 

             -TDI-PC4 

 

Table  3.5 Results of thermogravimetric analysis for MCM-PS-TDI-C4, MCM-PS-TDI-C4S and 
MCM-PS-TDI-PC4 

Sample Region °C Weight-loss % Assignment  
MCM-PS-TDI-C4 45–120  3.4 Moisture  

120–200  2.4  Calix[4]arene  
200–350  42.1  Linkers and calix[4]arene 
350–800  14.1  Calix[4]arene  

MCM-PS-TDI-C4S 45–150  8.3  Moisture  
280–350 21.8 Linkers 
350–800  19.8  Calix[4]arene sulfonate 

MCM-PS-TDI-PC4 45–150  3.3 Moisture  

150–350  34.5  Linkers and para-tert-
butylcalix[4]arene 

400–700  10.4  Para-tert-butylcalix[4]arene 
 

IV. X-ray powder diffraction (XRD) 
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The functionalized ordered mesoporous material, MCM-PS-TDI-C4, MCM-PS-TDI-C4S 

and MCM-PS-TDI-PC4 were characterized by XRD. The diffraction patterns are shown in 

Figure 3.14. The XRD patterns of the samples show weak (100) peaks and weaker (110) 

and (200) peaks. The (100) peak gradually shifts to higher angles, and loss of the peak 

intensity indicating the presence of the organic moieties on the internal pore walls of MCM-

41 (Sauer, et al., 2001). The peaks (110) and (200) showed a decrease in the overall 

intensities of XRD reflections of MCM-41 after calix[4]arene derivatives functionalization 

(Figure 3.14). This may be due to the difference of scattering contrast between the 

amorphous silicate framework and organic moieties, which was located inside the channels of 

MCM-41 (Lim & Stein, 1999; Marler, et al., 1996). 

 
             Figure  3.14 XRD analysis of MCM-PS-TDI-C4, MCM-PS-TDI-C4S and MCM-PS- 

             TDI-PC4 

V. Nitrogen adsorption-desorption measurements 
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Nitrogen adsorption-desorption experiments yielded Brunauer-Emmett-Teller (BET) 

surface area of 993 m2/g for MCM-41 and total pore volume of 0.86. After reaction with 

the coupling agent and modification with the calix[4]arene derivatives, both the surface 

area and the total pore volume dropped significantly (Table  3.6). 

Figure 3.15 shows the nitrogen adsorption-desorption isotherms for the modified 

mesoporous silica. All curves presented a Type II isotherm, the characteristic of non-porous 

or macroporous adsorbent with strong adsorbate–adsorbent interactions. Furthermore, 

adsorption isotherms were of Type II in the IUPAC classification that represents 

monolayer/multilayer adsorption. Similar results obtained by Li et al., (H. Li et al., 2008) 

and they concluded that the presence of a large amount of organic molecule will partially 

disrupt the assembly process and leading to a decrease in the ordering degree of 

mesoporous structure.  

Type II adsorption isotherm suggests that adsorption of N2 for the adsorbent materials was 

moderate or, on the other hand, that the main adsorption process may be ascribed to the van 

der Waals force. Generally, the isotherm shows that the amount of N2 adsorbed increased as 

the relative pressure increased up to a saturation point. A complete adsorption of N2 as a 

monolayer onto the surface of adsorbent material is shown by the plateau of the adsorption 

isotherm.  After  this  point,  a  large  uptake  of  N2 was observed close to the saturation 

pressure and it was assumed that multilayer adsorption took place (i.e. implying the 

presence of mesopores) (Carmody, Frost, Xi, & Kokot, 2007). 
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           Figure  3.15 Nitrogen adsorption-desorption isotherms of MCM-PS-TDI-C4 (Δ), MCM 

           -PS-TDI-C4S (□) and MCM-PS-TDI-PC4 (◊) 

The grafted materials exhibited a broader pore diameter and also displayed a decrease in 

surface area and pore volume (Table  3.6). The decrease of the pore volume and the surface 

area were the evidence that the calix[4]arene derivatives in the grafted mesoporous samples 

were located mainly on the internal surface of the mesoporous materials (Caps & Tsang, 

2003; Lim & Stein, 1999; Sakthivel, et al., 2005) 

There are commonalities between the three sorbents, namely the low surface area and 

limited pore volume available for the adsorption processes in the micropores (Table  3.6). 

This  suggests  that  the  main  adsorption  mechanism  for  these  sorbents  occurred  on  the  

external surface of the material in the diffusion region (Carmody, et al., 2007). 

Table  3.6 Structural parameters of MCM-41, MCM-PS-TDI-C4, MCM-PS-TDI-C4S and MCM-
PS-TDI-PC4 
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Sample SBET 
(m2/g) 

Pore volume 
(cm3/g) 

Pore diameter 
(nm) 

MCM-41 993 0.86 2.9 
MCM-PS-TDI-C4 32.1 0.45 11.8 
MCM-PS-TDI-C4S 30.6 0.38 9.7 
MCM-PS-TDI-PC4 10.4 0.11 22.1 

 

In comparison to mesoporous silica functionalized with only TDI, these materials showed 

different isotherm shape in addition to the lower surface area and pore volume. This can be 

explained due to the modification steps, as the modification using ClPTS and TDI as a 

linkers were performed in three steps. Furthermore, the organic bulky modifier 

(calix[4]arene derivatives, ClPTS and TDI) may block the pore channel, which resulted in 

lower surface area and pore volume. Previous studies of functionalization of mesoporous 

silica have reported similar changes (Blasco, Corma, Martínez, & Martínez-Escolano, 

1998; S. Kim, Ida, Guliants, & Lin, 2005). 

3.4 Summary  

In this chapter, we report the successful anchoring of calix[4]arene derivatives onto the 

MCM-41 surface using toluene-2,4-diisocyanate (TDI) and 3-chloropropyl triethoxysilane 

(ClPTS). In the first method, calix[4]arene derivatives were covalently attached to the 

unmodified MCM-41 support using (TDI) as linker. The isocyanate groups at para-

positions in TDI would bind with the hydroxyl groups on the surface of mesoporous silica 

preferentially, whereas those at the ortho-positions would react with the hydroxyl groups at 

calix[4]arene derivatives. In the second method, MCM-41 was functionalized through a 

post-synthetic method with 3-chloropropyl triethoxysilane (ClPTS) and TDI. The chlorine 
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groups were hydrolysed into hydroxyl groups, which then react with one of the terminal 

isocyanate groups of the linking agent (TDI), forming urethane links. The other terminal 

isocyanate functionality reacts with the free hydroxyl group present in the calix[4]arene 

derivatives. Different characterization techniques such as FTIR, XRD, CHN, BET and 

TGA analyses showed evidences that the calix[4]arene derivatives were covalently attached 

to the MCM-41 surface and that its channel structure remained unchanged. 
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4 CHAPTER 4  

SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED 

ORDERED MESOPOROUS SILICA MCM-41 WITH β- 

CYCLODEXTRIN 

4.1 Introduction  

Synthesized porous materials possessing tailored properties is among the most attractive 

areas of study in material science (Davis, 1993; Holland, Blanford, & Stein, 1998; Imhof & 

Pine, 1997; Wijnhoven & Vos, 1998; D. Zhao, Feng, et al., 1998). The pioneering 

mesoporous silica material having regular pore channels ranging from 20-100 Å was 

reported in 1992 (Beck, Vartuli, et al., 1992; Kresge, et al., 1992). From then on, the 

mesoporous inorganic materials synthesized through the use of a structure-directing 

template has been in the limelight (van Bommel, Friggeri, & Shinkai, 2003).  

Currently, a new generation of the mesoporous hybrid silica possessing organic groups on 

their surface of ordered mesoporous silica was created through grafting or anchoring 

organic guests on the surface of the mesopore channel (X. Feng, et al., 1997; Fryxell et al., 

1999; Y. Lin, Fryxell, Wu, & Engelhard, 2001; J. Liu et al., 1998) or directly to the organic 

groups by condensation of organo-trialkoxysilanes along with tetra-alkoxysilanes (TEOS or 

TMOS) (Kruk, Asefa, Jaroniec, & Ozin, 2002; Lebeau, Fowler, Hall, & Mann, 1999; Lim, 

Blanford, & Stein, 1998; C. Liu, Lambert, & Fu, 2003; Duncan J Macquarrie, 1996; 

Mercier & Pinnavaia, 2000; Mori & Pinnavaia, 2001). This novel group of hybrid 
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mesoporous materials holds an attractive interest in the field of environmental remediation 

and chromatographic separation because of the presence of high surface areas and organic 

functional groups.  

β-cyclodextrins (β-CDs) are described as cyclic oligosaccharides comprising of six D-

glucopyranose units linked by α-(1,4)-linkage. They can be represented in a spatial way as 

a torus having wide and narrow openings that respectively correspond to secondary and 

primary hydroxyl groups and can encapsulate many compounds because of the 

hydrophobic character of the internal cavity (Szejtli, 1998). This unique feature has been 

used in pharmaceutical, food, cosmetic and textile industries, and has long been utilized in 

the field of catalysis, environmental remediation, chemical sensing and enantiomeric 

separations (Hashimoto, 2002; Szejtli, 1998; K. Takahashi, 1998). Particular applications 

call for the immobilization of cyclodextrins or cyclodextrin derivatives in an insoluble 

support. Various studies have been conducted with the help of organic materials (Cserháti, 

1994; L. Janus et al., 1999; Ma & Li, 1999), metal surfaces (Hill, Fallourd, & Klockow, 

1999; Nelles et al., 1996) and inorganic oxide supports. 

For the latter supports, mesoporous silica is the most commonly utilized for the production 

of functionalized materials owing to their great physical strength and chemical inertness 

(Bibby & Mercier, 2003; Y.-Q. Feng, Xie, & Da, 2000; Guo et al., 2010; Huq, Mercier, & 

Kooyman, 2001; H. Kim et al., 2010; C. Liu, et al., 2003; C. Liu, Lambert, & Fu, 2004; 

Park, Lee, & Kim, 2009). 
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A variety of coupling agents have also been utilized to functionalize mesoporous silica such 

as organosilanes with particular functional groups; for instance, chloride, carboxylic acid, 

thiol and amine. Isocyanates are considered to be highly reactive with –OH groups, leading 

to the formation of urethane bonds (Chun, et al., 2002; Xia & Song, 2006), which depend 

on the diisocyanate utilized and at least as strong as those obtained with the organosilane 

binders (Chun, et al., 2002).  

In this part, mesoporous silica MCM-41 was functionalized with β-cyclodextrins molecule 

by post-grafting methods using linking agents consisting of an organosilane (3-

chloropropyl triethoxysilane-ClPTS) and a diisocyanate (TDI). Both methods used toluene-

2,4-diisocyanate (TDI) as a coupling agent, where one of the isocyanate endings attached to 

the organosilane -OH ending (method 1), or to the silica surface (method 2), while the other 

isocyanate ending remains available for the reaction with β-cyclodextrins. Another main 

purpose  of  this  chapter  is  to  identify  and  select  an  effective  adsorbent  from  prepared  

materials at chapters three and four for removal of organotin compounds (tributyltin TBT, 

triphenyltin TPT and dibutyltin DBT). 

4.2 Experimental  

4.2.1 Materials 

The  chemicals  used  in  this  part  of  the  thesis  are  as  follows:  Mesoporous  silica  [Aldrich,  

surface area of 993 m2/g, average diameter of 2.9 nm] as silica source while β-

cyclodextrins [C42H70O35, Acros] was the organic modifier. 3-chloropropyl triethoxysilane 
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(ClPTS) [C9H21ClO3Si, Aldrich] and toluene-2,4-diisocyanate (TDI) [C9H6N2O2, Aldrich] 

were the organic linker. Triethylamine [C6H15N, SAFC] was used as the catalyst. Toluene 

[Fisher, dried before use by using molecular sieves], ethanol [Fisher] and acetone [Fisher] 

were used as solvents. Water was purified using Milli-Q purification equipment. The 

structures of some of these compounds are shown in Figure  4.1. For screening experiments, 

tributyltin chloride (C12H27ClSn, Aldrich), triphenyltin chloride (C18H15ClSn, Fluka) and 

dibutyltin dichloride (C8H18Cl2Sn, Aldrich) concentrations were adjusted by successive 

dilutions with Milli-Q water of an 8.42 mM solutions in methanol stored at 4°C in the dark.  

 
Figure  4.1 Molecular structures of some materials 

http://www.chemspider.com/Molecular-Formula/C12H27ClSn
http://www.chemspider.com/Molecular-Formula/C18H15ClSn
http://www.chemspider.com/Molecular-Formula/C8H18Cl2Sn
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4.2.2 Instrumentation 

In addition to the characterization techniques that were discussed previously in detail in 

Chapter three Section 3.2.2, inductively coupled plasma mass spectrometry (ICP-MS) was 

used for the adsorption measurements. 

All the adsorption measurements were carried out using an Agilent Technology 7500 series 

inductively coupled plasma mass spectrometry ICP-MS for the determination of organotin 

compounds in aqueous solutions. The ICP-MS condition was shown in Table  4.1. A series 

of Sn standard solutions were used to construct the calibration curve, where a good linear 

relationship was observed.  

Table  4.1 ICP-MS conditions 

Parameter Value 
RF power (W) 1550 
Sampling depth (mm) 8 
Carrier gas flow (L/min) 0.9 
Make-up gas flow (L/min) 0.28 
O2/Ar mixed gas 0 
Chamber temperature 2°C 
Nebuliser Babington 
Cones Ni 

 

4.2.3 Synthesis methods 

4.2.3.1 Preparation of 3-hydroxypropyl triethylsilyl functionalized MCM-41 

Surface functionalization of MCM-41 with ClPTS was carried out by a procedure described 

by  Feng  et  al. (X.  Feng,  et  al.,  1997).  The  modification  of  the  surface  of  MCM-41  was  

performed according to Figure  4.2 (route a).  
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The MCM-41 support was dehydrated (150°C, overnight) and a self-assembled monolayer 

of the initial silane was produced by suspending 1.0 g of MCM-41 in 40 ml of toluene in a 

100 ml round-bottom flask. The suspension was stirred vigorously for 5 min before adding 

0.30 ml of DI water and the stirring was continued for 2 h. A slight excess of the silane (10 

%), 2.18 ml of 3-chloropropyl triethoxysilane corresponding to 9.07 mmol was then added 

and the solution was refluxed for 6 h. The solids were then filtered and washed copiously 

with toluene and acetone to remove the unreacted silane and then dried overnight. The 

obtained modified material was denoted as ClPTS-MCM. The chlorine groups present in 

the ClPTS-MCM were hydrolysed into hydroxyl groups by heating 1.0 g of the solid 

material with a solution of methanol: water (1:1) for 2 h at 60°C. The hydrolysed material 

(OHPTS-MCM) was filtered and dried at 110°C overnight. 

4.2.3.2 Immobilizing β-cyclodextrins onto the functionalized MCM-41 

β-cyclodextrin was anchored on the MCM-41 surface by using TDI as a linking agent 

(Figure  4.2, route (a) and (b)). The materials were prepared by refluxing the hydroxyl 

modified material, OHPTS-MCM (route a), and the unmodified MCM-41 (route b) with 

excess of TDI (dried by molecular sieve for 24 h) in a dry nitrogen atmosphere at 80°C for 

4 h (M. Yang, et al., 2007). After cooling down, the material was filtered, washed and dried 

overnight.   
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Figure  4.2 Preparation of modified mesoporous silica with β-cyclodextrin 
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1.8 mmol and 2.0 mmol β-cyclodextrin (calculated from Section  3.2.3.3) were added into 

the modified mesoporous silica with TDI (route a and b respectively) (1.0 gm) suspension 

with toluene (dried by molecular sieve for 24 h). Subsequently, few drops of triethylamine 

were added and the reaction temperature was kept at 80°C for 24 h under continuous 

stirring. The obtained modified materials were filtered, washed by toluene and acetone and 

was later dried. The materials obtained from the OHPTS/TDI-method (route a) were 

denoted as MCM-PS-TDI-β-CD, and those obtained from the TDI-method (route b) were 

labeled as MCM-TDI-β-CD. 

4.2.3.3 Screening experiments 

The screening experiments were performed according to the batch method. Eight samples 

(MCM-TDI-C4, MCM-TDI-PC4, MCM-TDI-C4S, MCM-PS-TDI-C4, MCM-PS-TDI-

PC4, MCM-PS-TDI-C4S, MCM-TDI-β-CD and MCM-TDI-β-CD) were screened for their 

ability in organotin compounds removal (tributyltin TBT, triphenyltin TPT and dibutyltin 

DBT). The screening experiments were repeated 3 times and the average of the resulting 

removal efficiency was reported.  

In this method, 0.01 g of modified mesoporous silica with calix[4]arene derivatives and β-

cyclodextrin were mixed with 10 ml organotin solutions at 2 mg/L into 50-ml Teflon 

reactors (FEP, Nalgene). The mixtures were sealed and shaken at 180 rpm and 30°C for 3 

h. The mixtures were then filtered using 0.45 µm microporous membrane filters. The 

concentration of organotin remaining (Ce) in aqueous phase after the sorption was then 
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determined by ICP-MS. The amount of organotin sorbed by modified mesoporous silica 

with calix[4]arene derivatives and β-cyclodextrin (qe) was calculated as: 

ݍ =
ܥ)  − ܸ(ܥ 

ݓ   4.1 

where qe is the amount of organotin adsorbed (mg/g), Co is the initial aqueous concentration 

of organotin (mg/L), Ce is the concentration of organotin after shaking for a certain period 

of time (mg/L), V is the volume of the solution (L) and w is the mass of the modified 

mesoporous silica (g). Experiments were performed in triplicate and the results were 

averaged. 

4.3 Results and discussion 

β-cyclodextrin was anchored on the MCM-41 support using TDI as a linking agent. 

However,  two different  methodologies  were  used.  In  the  first  method (Figure  4.2,  (a))  of  

OHPTS/TDI-method, MCM-41 was functionalized through a post-synthetic method with 3-

chloropropyl triethoxysilane (ClPTS). The chlorine groups were hydrolysed into hydroxyl 

groups, which react with one of the terminal isocyanate groups of the linking agent, 

forming urethane links. The other terminal isocyanate functionality reacts with the free 

hydroxyl groups present in the β-cyclodextrin. In the second method (Figure 4.2, (b)) of 

TDI method, β-cyclodextrin was covalently attached to the unmodified MCM-41 support 

using (TDI) as linker. The isocyanate groups at para-positions in TDI would bind with the 



129 

 

hydroxyl groups on the surface of mesoporous silica preferentially, whereas those at the 

ortho-positions would react with hydroxyl group at β-cyclodextrin. 

4.3.1 Characterization of functionalized MCM-41 with β-cyclodextrin 

I. Fourier transform infrared spectroscopy (FTIR)  

Infrared spectroscopy was employed to characterize the functional groups of the products. 

The vibrational spectra obtained from solid samples confirmed the success of the grafting 

reactions.  

The typical MCM-41 silica bands associated with the main inorganic backbone that have 

been discussed previously in Chapter 3 Sections 3.3.1 and 3.3.3 were present. Additional 

bands were also observed in both spectra that confirmed the presence of organic pendant 

groups. After anchoring of 3-chloropropyl triethoxysilane (MCM-ClPTS) and subsequent 

hydrolysis (MCM-OHPTS), new weak bands arose at 2960 and 2850 cm-1, probably due to 

the aliphatic (-CH2) stretching of the propyl chain of the silylating agent, which suggest that 

the modification of the support material was achieved (Bhatt, et al., 2006; Caps & Tsang, 

2003). 

Addition of excess TDI to the MCM-OHPTS and MCM-41 resulted in the incorporation of 

isocyanate functionalities on the surface of the MCM-OHPTS (Figure  4.3 B) and 

mesoporous silica (Figure  4.3 C). This was evidenced by the appearance of a clearly 

discernible band at 2282 cm-1 corresponding to the asymmetric stretching of the appended 
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terminal isocyanate groups, and the appearance of an aromatic C-C stretch at 1560 cm-1 in 

the FTIR spectrum. The signals corresponding to the C=O and C-N stretches of the formed 

carbamate linkages between the hydroxyl group and the isocyanate functionality at 1637 

cm-1 and 1202 cm-1 merged with the band of surface hydroxyl groups of mesoporous silica 

and Si-O-Si band, respectively. The surface isocyanate functionalities could then be treated 

with β-cyclodextrin in dry toluene at 80°C for 24 h.  

These functionalization reactions were again followed by FTIR spectroscopy to monitor the 

appearance and disappearance of some peaks (Figure  4.3 D and Figure  4.3 E). In detail, the 

absence of the -NCO characteristic band at about 2282 cm-1, indicates that both functional 

groups of toluene-2,4-diisocyanate have reacted (Oliveira, et al., 2007). In addition, the 

bands at 2927 and 2850 cm-1 were more intense and a new band arose at 1425 cm-1, which 

may be due to the (-CH2) bending (Bhatt, et al., 2006).  

The  efficiency  of  the  grafting  process  was  demonstrated  by  a  significant  decrease  in  the  

isocyanate group band at around 2280cm-1, with an associated increase of new bands 

characteristics of the immobilized β-cyclodextrin. Meanwhile, the absorption at 2282 cm−1 

in the spectra of MCM-PS-TDI-β-CD and MCM-TDI-β-CD disappeared. This indicates 

that the unattached isocyano groups reacted with β-cyclodextrin, and β-cyclodextrin was 

successfully bonded on the surface of the MCM-TDI and MCM-PS-TDI.  
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Figure  4.3 FTIR spectra of MCM-41 (A), MCM-PS-TDI, (B) MCM-TDI (C), MCM-PS-TDI-β-CD 
(D) and MCM-TDI-β-CD (E) 

II. Thermogravimetric analysis 

Thermogravimetric analysis of functionalized mesoporous silica MCM-PS-TDI-β-CD, and 

MCM-TDI-β-CD were determined (Figure  4.4). Functionalized mesoporous silica curves 

exhibited a stage of weight loss below 100°C due to the loss of the adsorbed water. After 
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the initial loss of adsorbed water, the removal of the linkers occurred (Table  4.2). The 

removal of β-cyclodextrin started at 310°C and continued up to 600°C. An additional 

weight loss occurred at higher temperatures due to further condensation of the silicate 

walls, as observed in other mesoporous silicates. 

 
Figure  4.4 TGA analysis of MCM-PS-TDI-β-CD and MCM-TDI-β-CD 

 

 

 

Table  4.2 Thermogravimetric analysis results of MCM-PS-TDI-β-CD and MCM-TDI-β-CD 

 Region° C  Weight-
loss % 

Assignment  

MCM-PS-TDI- β-CD 50-120  6.7 Moisture  
150-400 53.2 PTS, carbamate group and β-CD 
400-600  20.1 β-CD 

MCM-TDI- β-CD 50-120  
240-310 

9.2 
3.5 

Moisture 
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III. Elemental analysis  

Covalent attachment of β-cyclodextrin to MCM-PS-TDI, according to Figure  4.2, was 

monitored by several techniques. The elemental analysis of the samples (Table  4.3) showed 

a gradual increase in the carbon content after the modification step. After reaction of 

MCM-PS with TDI, the percent of C and N rose from 3.13% and 0.14% to 20.82% and 

5.03%, respectively, indicating the success of the modification step. After reaction with β-

cyclodextrin, the carbon content further increased (Table  4.3), showing that β-cyclodextrin 

was attached to the silicate surface.  

Table  4.3 Results of elemental analysis for MCM-PS, MCM-PS-TDI, MCM-PS-TDI-β-CD, MCM-
TDI, MCM-TDI-β-CD 

 %C  %H   %N 
MCM-PS 3.13 3.24 0.14 
MCM-PS-TDI 20.82 4.21 5.03 
MCM-PS-TDI-β-CD 39.01 6.60 3.61 
MCM-TDI 18.64 3.04 5.93 
MCM-TDI-β-CD 36.41 5.21 4.72 

 

IV. XRD diffraction 

Figure  4.5 shows the low angle range of XRD patterns for the modified mesoporous silica 

MCM-41 with β-cyclodextrin materials. The XRD patterns of the samples show strong 

(100) peaks and smaller (110) and (200) peak intensities, suggesting that the modification 

process did not strongly affect the framework integrity of the ordered mesoporous MCM-

41. The change in the (100) peak intensities and the small shift to higher 2θ values suggests 

that β-cyclodextrin was present on the internal pore walls of MCM-41 (Sauer, et al., 2001), 

which leads to an increase of phase cancellation between scattering from the walls and the 
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pore regions (Hammond, Prouzet, Mahanti, & Pinnavaia, 1999; Köhn & Fröba, 2001), and 

this was significant in the case of MCM-PS-TDI-β-CD. It can also be noticed that the (100) 

peak has become broader in the case of MCM-TDI-β-CD, indicating a slight alteration of 

the order of the mesoporous structure. 

 

Figure  4.5 XRD analysis of MCM-PS-TDI-β-CD and MCM-TDI-β-CD 

V. Nitrogen adsorption-desorption measurements 

In order to further investigate the channel structure of these materials, the characterization 

of the nitrogen adsorption–desorption was also carried out. The corresponding isotherms 

are presented in Figure 4.6. MCM-TDI-β-CD exhibited the typical type Type IV isotherm 

according to the IUPAC classification, but MCM-PS-TDI-β-CD exhibited Type III 

isotherm (describing adsorption on non-porous or macroporous adsorbent with weak 

adsorbate–adsorbent interactions). In addition, the modified sample MCM-TDI-β-CD 

showed hysteresis loops type H2, which described that materials were frequently disordered 
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with not well-defined pore size and shape, indicating bottleneck constrictions (Broekhoff, 

1979). 

The structure data of these mesoporous materials (BET surface area, total pore volume and 

pore diameter) are summarized in Table  4.4. The prepared materials showed a decrease in 

the BET surface area and pore volume, which suggests the presence of bulky materials 

inside the support porous system (H. Yang, et al., 2004). 

Table  4.4 Structural parameters of MCM-41, MCM-PS-TDI-β-CD and MCM-TDI-β-CD 

Sample  SBET  
(m2/g)  

Pore volume 
(cm3/g) 

Pore diameter 
(nm) 

MCM-41 993 0.86 2.9 
MCM-PS-TDI-β-CD  14 0.023 6.7 
MCM-TDI-β-CD  147 0.17 4.48 

 

 

 
                    Figure  4.6. Nitrogen adsorption-desorption isotherms of (◊) MCM-PS-TDI- 

                    β-CD, and (□)MCM-TDI-β-CD 
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In comparison to mesoporous silica functionalized with calix[4]arene derivatives, these 

materials showed different isotherm shape in addition to the lower surface area and pore 

volume. This can be explained by the organic bulky modifier (β-cyclodextrin) that may 

block the pore channel, which result in lower surface area and pore volume (Blasco, et al., 

1998; S. Kim, et al., 2005). Furthermore, Li et al., (H. Li, et al., 2008) confirmed that the 

presence of bulky organic molecule will partially disrupt the assembly process and leading 

to a decrease in the ordering degree of mesoporous structure.  

4.3.2 Screening results 

To  identify  and  select  an  efficient  adsorbent,  a  total  of  eight  samples  were  screened  for  

organotin compounds removal. The removal percentages of the eight modified mesoporous 

silica MCM-41 were calculated and presented in Figure  4.7. Some of the samples showed 

an efficient adsorption of organotin compounds, as the organotin compounds removal 

percentages in three samples (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S) were 

more than 80%. Furthermore, the removal percentages of MCM-TDI-PC4 were more than 

95%.  

Although SBET for MCM-TDI-PC4 was lower (339 m2/g) in comparison with other 

mesoporous silica modified with calix[4]arene derivatives using TDI as linker (MCM-TDI-

C4 and MCM-TDI-C4S, 733 and 452 m2/g, respectively), however its adsorption capacity 

was higher. This can be attributed to the nature of the adsorbent, including the surface area, 

pore size distribution and hydrophobicity, which can be defined as the concentration of 

carbon atoms in the matrix, density and type of functional groups present on the surface. 
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On the other hand, the nature of the adsorbate (polarity, hydrophobicity and size of the 

molecule) also plays an important role in the adsorption process (Salame & Bandosz, 

2003). 

 
Figure  4.7 Removal percentage of TBT, TPT and DBT by modified mesoporous silica MCM-41 
with calix[4]arenes derivatives and β-cyclodextrin adsorbents 

The first layer capacity was defined as the calixarene loading, while the second layer 

inherently represents all external adsorption sites, including those on the residual oxide 

surface,  as  well  as  any  non-cavity  sites  associated  with  calixarenes  (for  example,  on  the  

outer surface of the tert-butyl groups). The latter also includes interstitial sites between 

adjacent grafted calixarenes (Thompson, J. Cope, Swift, & Notestein, 2011). 
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A comparison of materials MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, in which 

the only difference in calixarene structure is the R group, shows that the uptake increased as 

the size of the hydrophobic R group changes from H to tert-butyl. This suggests that the 

upper-rim calixarene functional groups contribute substantially to the degree of uptake, but 

the pore diameter could also play an important role.  

These results suggested that differences in the adsorption between materials were largely 

influenced by the non-specific van der Waals interactions occurring between the n-butyl 

chain of butyl group in TBT and DBT, as well as the alkyl R groups on the calixarene 

upper rim. This is consistent with the result found by Thompson et.al.,(2011). Their results 

displayed that most of the butanol uptake occured at the calixarene sites and the activity 

depends on the calixarene chemical structure. The butanol uptake increased with grafted 

silica with calixarenes containing tert-butyl groups, which provide hydrophobic cavities 

capable of hydrophobic interactions with n-butyl chains. 

Furthermore, the higher TBT capacities of the MCM-TDI-PC4 compared to MCM-TDI-C4 

and MCM-TDI-C4S can be explained by the fact that MCM-TDI-PC4 contains a broader 

pore size distribution (Figure 4.8). The nitrogen sorption isotherms Figure 3.9 were Type 

IV for all samples, confirming their mesoporous nature. However, slightly different 

hysteresis loop were noted for MCM-TDI-PC4 compared with MCM-TDI-C4 and MCM-

TDI-C4S. The broader hysteresis loop for MCM-TDI-PC4 suggested that this material 

contained pores with different shapes and size (Idris et al., 2013). Despite having a similar 
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average pore size to MCM-TDI-C4 and MCM-TDI-C4S, MCM-TDI-PC4 differed in a 

sense that it has a broader pore size distribution (Figure 4.8). 

 
                  Figure  4.8 BET pore size distribution patterns of the MCM-TDI-C4, MCM- 

                  TDI-PC4 and MCM-TDI-C4S. 

However, modified mesoporous silica with calix[4]arene using ClPTS and TDI as linking 

agent (MCM-PS-TDI-C4, MCM-PS-TDI-PC4 and MCM-PS-TDI-C4S) have reported 40% 

removal percentages, and thus were considered unsuitable as organotin compounds 

adsorbents. The low sorption efficiency of the former material can be attributed to the low 

surface area and limited pore volume available for adsorption processes, and this suggests 

that the main adsorption mechanism for these sorbents occurs only on the external surface 

(Carmody, et al., 2007).  
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Moreover, MCM-TDI-β-CD and MCM-PS-TDI-β-CD showed low sorption efficiency for 

TBT and moderate sorption efficient for DBT. The sorption behavior of organotin 

compounds was considered to be primarily due to the organic modifier. The reduction in 

sorption behaviour was due to the presence of β-cyclodextrin, which blockage the porous 

and resulted in low surface are and pore volume. In addition, β-cyclodextrin may have low 

affinity towards organotin compounds sorption.  

4.4 Summary 

In this part, we report the successful anchoring of β-cyclodextrin onto the MCM-41 surface 

using two methods. In the first method, MCM-41 surface was functionalized with 3-

chloropropyl triethoxysilane (ClPTS). The chlorine groups were hydrolysed into hydroxyl 

groups, which reacted with one of the terminal isocyanate groups of the linking agent, 

forming urethane links. The other terminal isocyanate functionality reacts with the free 

hydroxyl group present in the β-cyclodextrin. In the second method, TDI was directly used 

as a binder. Urethane bonds were formed between the terminal isocyanate group and the 

silanol groups present on the unmodified MCM-41 surface. Different characterization 

techniques such as FTIR, XRD, CHN, BET and TGA showed evidences that the β-

cyclodextrin was covalently attached to the MCM-41 surface. 

Modified mesoporous silica MCM-41 with calix[4]arenes derivatives and β-cyclodextrin 

adsorbents  were  screened  to  remove  organotin  compounds  (TBT,  TPT  and  DBT)  from  

aqueous solution, and the removal percentage of MCM-TDI-C4, MCM-TDI-PC4 and 

MCM-TDI-C4S were more than 80%.  
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The  adsorption  process  was  mainly  contributed  by  the  chemical  structure  of  calixarenes.  

The prepared material MCM-TDI-PC4 has the lowest BET surface area compared to other 

mesoporous silica modified with calix[4]arene derivatives using TDI as linker, nevertheless 

it has the highest adsorption efficiency. This was attributed to the hydrophobic R group 

present on the upper rim of calix[4]arene. Furthermore, the van der Waals interactions 

between the adsorbent surface and tert-butyl group might be related to this adsorption. 

Mesoporous silica modified with calix[4]arenes derivatives showed higher affinity than 

mesoporous silica modified with β-cyclodextrin. These results probably due to both 

supramolecules (calix[4]arenes and β-cyclodextrin) have different cavity size and 

properties.  

Recent findings suggested that the modified mesoporous silica MCM-41 with calix[4]arene 

derivatives using TDI as linker, which has good adsorption efficiency for organotin 

compounds, could potentially be used as adsorbents. 
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5 CHAPTER 5 

ISOTHERMS, KINETICS AND THERMODYNAMICS OF 

TRIBUTYLTIN (TBT) ADSORPTION ON MODIFIED MESOPOROUS 

SILICA WITH CALIX[4]ARENE DERIVATIVES 

5.1 Introduction  

Organotin compounds (OTCs) are the most commonly used organometallic compounds in 

agricultural, industrial and biomedical applications like PVC stabilizers, industrial catalysts, 

wood preservatives, fungicides and pesticides (Hoch, 2001). Nevertheless, their notoriety 

probably stems from the use of tributyltin (TBT) as the active biocide in antifouling paints 

ingredients. TBT is one of the most toxic compounds that is deliberately released into the 

environment (Goldberg, 1986) and is referred to as a potent endocrine disruptor exhibiting 

immunotoxic and genotoxic capabilities to a wide range of organisms from bacterial to 

human beings (Antizar-Ladislao, 2008).  

The adverse TBT affects on aquatic ecosystems, in worse cases, is accompanied by the 

extinction of local mollusc populations (Bryan & Gibbs, 1991), and has eventually led to its 

usage restriction. Following several unsuccessful legislative measures (Barroso & Moreira, 

2002), TBT was consequently banned in Europe in 2003 (Directive 2002/62/EC) and in all 

the countries in 2008, with the enforcement of the “International Convention on the Control 

of Harmful Antifouling systems”. However, even with this ban, OTCs sediments level is 
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still quite high due to the TBT’s affinity to particulate matter and its slow process of 

degradation under anaerobic conditions (Hoch, 2001).  

Various processes have been proposed to remove TBT through conventional treatment 

technologies such as biodegradation (Chong, 2001; Luan, et al., 2006; N. Tam, et al., 2003; 

N. F. Y. Tam, Chong, & Wong, 2004) and adsorption process. However, adsorption using 

sorbents is among the widely employed methods to remove pollutants. Systematic 

examinations of the TBT adsorption through various absorbents like natural sediments 

(Brändli, Breedveld, & Cornelissen, 2009; Burton, et al., 2004; Hoch, et al., 2003), pure 

minerals (Hoch & Weerasooriya, 2005; Weidenhaupt, et al., 1997), organic matters (C. G. 

Arnold, Ciani, Müller, Amirbahman, & Schwarzenbach, 1998) and black carbons (Brändli, 

et al., 2009; Fang, et al., 2010) have been carried out.  

The adsorption technique is considered to be among the most effective approaches to 

remove pollutants from effluents. The process is more advantageous over other methods 

because of the flexibility of the system, low energy consumption and low operating costs. 

The recent publications concerning adsorption of toxic compounds revealed an increasing 

interest in the adsorbent synthesis that is capable of completely eliminating organic 

pollutants. In this regard, supramolecular chemistry has offered more effective solution to 

determine molecular structures that can serve as building blocks for the production of 

sophisticated molecules by anchoring functional group in a manner that they offer an 

appropriate binding site. This was brought about by the creation of macrocyclic molecules 

including synthetic crown ethers, cryptands, spherands (Feber, 1978), natural cyclodextrins 



144 

 

(Crini & Morcellet, 2002) and calixarenes (Aksoy, et al., 2012; Ertul, et al., 2010; Kamboh, 

Akoz, Memon, & Yilmaz, 2013; Qureshi, et al., 2011). 

The objective of this chapter is to investigate the adsorption efficiency of a prepared 

sorbents, MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, and specifically to 

investigate the adsorption behavior of TBT on prepared sorbent. 

Widely accepted adsorption equilibrium isotherm models were used to correlate the 

experimental data. Two-parameter adsorption isotherm models namely Langmuir, 

Freundlich, Temkin and Dubinin-Radushkevitch isotherm models and three-parameter 

adsorption isotherms models namely Redlich-Peterson isotherm and Koble–Corrigan 

isotherm were used to correlate the adsorption of TBT onto modified MCM-41. 

Conventional kinetic models, such as the pseudo-first order, pseudo-second order models 

and intraparticle diffusion have been used to correlate the experimental data in the current 

study. 

5.2 Experimental  

5.2.1 Materials 

5.2.1.1 Adsorbents 

It was found in Chapter 4, Section 4.3.2 that mesoporous silica MCM-41 modified with 

calix[4]arene derivatives using TDI as linker (MCM-TDI-C4, MCM-TDI-PC4 and MCM-
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TDI-C4S) gave the highest removal percentage for TBT. Therefore, these materials were 

selected as adsorbents to investigate the adsorption parameters of TBT in this chapter.  

5.2.1.2 Adsorbate 

Tributyltin  TBT  was  chosen  as  the  representative  adsorbate  for  this  part  of  research.  

Tributyltin was obtained from Aldrich and used as received. Its molecular formula is 

illustrated in Figure  5.1. 

 
Figure  5.1 Tributyltin molecular formula 

Stock solutions were prepared by dissolving tributyltin TBT in methanol and stored at 4°C 

in the dark, followed by serial dilutions with Milli-Q water of an 8.42 mM. A methanolic 

stock solution of organotin compound was used due to very low organotin compounds 

solubility in water. 
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5.2.2 Adsorption studies 

5.2.2.1 Equilibrium contact time 

Prior to the equilibrium sorption studies, the equilibrium contact time required for each 

adsorbent was determined by agitating 10 ml of TBT solution in the prepared materials at 

predetermined time intervals. The uptake of TBT at any time t (qt mg/g) was calculated 

using the following equation: 

q୲ =
(C୭  −  C୲)V

w   5.1 

where qt is the amount of TBT adsorbed at time t (mg/g). Co and Ct (mg/L) are the liquid 

phase concentrations at initial and any time t, respectively determined by ICP-MS. V is the 

volume of the solution (L) and W is the mass of adsorbent (g). 

The TBT removal efficiency in aqueous solution was calculated by using Equation 5.2: 

Removal efϐiciency % =
C୭ − Cୣ

C୭
 100  5.2 

where Co and Ce are the initial and final concentrations of TBT (mg/L) in the solution. 

5.2.2.2 Effect of pH 

To  study  the  effect  of  pH  on  the  sorption  equilibrium  of  TBT  compound  on  modified  

mesoporous silica with calix[4]arene derivatives, the pH of the TBT solutions was initially 
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adjusted to the range from pH=3 to 8 by the addition of diluted hydrochloric acid (0.01 M, 

0.1 M and 1 M) or diluted sodium hydroxide (0.01 M, 0.1 M and 1 M) and the pH was 

measured with a digital pH meter (Hanna Instruments HI 2213 pH Meter). Other 

parameters were kept constant. 

The concentration of TBT remaining (Ce) in aqueous phase after the sorption was 

determined by ICP-MS. The amount of TBT sorbed by modified mesoporous silica with 

calix[4]arene derivatives (qe) was calculated using Eq. 4.1: 

5.2.2.3 Effect of initial TBT concentration 

A series of TBT solutions with different initial concentration (3-10 mg/L) were added to 

0.01  mg  of  MCM-TDI-C4,  MCM-TDI-PC4  and  MCM-TDI-C4S.  The  pH  of  the  TBT  

solutions was initially adjusted to optimum pH. These reactors were then sealed and 

agitated in a shaker bath with a speed of 180 rpm for 2 h at different temperatures; 30, 40 

and 50°C. The concentration of TBT remaining (Ce) in aqueous phase after the sorption 

was then determined by ICP-MS. 

5.2.2.4 Effect of temperature on the adsorption of TBT 

The  effect  of  temperature  on  the  equilibrium  adsorption  of  TBT  on  the  modified  

mesoporous silica with calix[4]arene derivatives was studied at different temperatures; 30, 

40 and 50°C using a temperature controlled water bath (Wise Bath WSB-18). The solution 

preparation, agitation speed and contact time were similar to those in Section 5.2.2.3. The 
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concentration of TBT remaining (Ce) in aqueous phase after the sorption was then 

determined by ICP-MS. 

5.2.3 Analytical procedure 

All samples were analyzed with an Agilent Technology 7500 series Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS). The ICP-MS condition is shown in the previous 

Table   4.1.  A series  of  Sn  standard  solutions  were  used  to  construct  the  calibration  curve,  

where a good linear relationship was observed.  

5.3 Results and discussion 

5.3.1 Effect of contact time 

Prior to conducting the batch uptake equilibrium experiments, the determination of contact 

time needed for adsorption equilibrium was required. The TBT uptake by the synthesized 

mesoporous silica MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S is shown in Figure 

5.2 as a function of contact time at 30, 40 and 50°C. It is apparent from Figure 5.2 that in 

the  first  10  min,  the  percentage  removal  of  TBT from aqueous  solution  increased  rapidly  

and reached up to 81%, 98% and 80% for MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-

C4S,  respectively.  After  that,  the  percentage  removal  of  TBT  increased  slowly  until  120  

min and then subsequently became constant.  

The results indicated that the rate of adsorption of TBT was faster in the initial time of 

adsorption and has less effect  on the rate of adsorption in the latter half  of the process.  It  
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was due to the nature of the adsorbent and the available adsorption sites, which affect the 

rate of adsorption of TBT. This difference in the rate of adsorption may be due to the fact 

that initially, all adsorbent sites were vacant so the adsorption was high. Later, due to the 

decrease in the number of adsorption sites on the adsorbents, as well as TBT concentration, 

the adsorption of TBT became slow. Furthermore, the remaining vacant surface sites were 

difficult to be occupied due to the repulsive forces, as well as the competition between TBT 

molecules on the adsorbent surface (Srivastava, Swamy, Mall, Prasad, & Mishra, 2006).  

The equilibrium time required for the adsorption of TBT was 2 h for all adsorbents. Prior 

literature provided varying duration of equilibrium in batch experiments. For instance, 

Unger et al (Unger, MacIntyre, & Huggett, 1988) revealed that the equilibrium state for 

TBT was reached after a few minutes to a few hours, while Langston & Pope (Langston & 

Pope, 1995) revealed that 85.7% of the added TBT amount adsorbed to the solid phase in 2 

h.  
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                            Figure  5.2 Effect of contact time on removal of TBT onto MCM- 

                            TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c)  
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5.3.2 Effect of pH 

System pH during adsorption has an important role on the surface characteristics of the 

adsorbent particles, and consequently the overall adsorption performance. Illustrated in 

Figure  5.3 is the effect of pH on TBT adsorption onto MCM-TDI-C4, MCM-TDI-PC4 and 

MCM-TDI-C4S. The adsorption behavior can be explained through the TBT species and 

the functional group existing in the surface of the adsorbent. 

TBT is characterized as a weak acid having a pKa of 6.3 (C. G. Arnold et al., 1997), 

comprising of cationic form (TBT+ , (C4H9)3Sn ) in equilibrium with a neutral form 

(TBTOH, (C4H9)3SnOH) as evident from Equation 5.3; 

TBTା + HଶO ⇄ TBTOH + Hା  5.3 

At pH<pKa, the adsorption process of TBT+ is governed by electrostatic attraction. 

However, it is postulated that the major driving force of adsorption at pH>pKa is the 

hydrophobic character of the TBT compound, which is less effective than the electrostatic 

interaction (Hoch, Alonso‐Azcarate, & Lischick, 2002). With a pH of over 6, the superior 

species  are  TBTOH,  while  the  superior  species  of  tributyltin  at  acidic  pH  are  the  TBT+. 

However,  in  acidic  conditions,  adsorbent  surface  becomes  a  significantly  protonated  

surface that goes against the uptake of TBT+ form due to electrostatic repulsion. 

The TBT maximum adsorption took place at a medium pH for all adsorbents, and this is in 

analogous to the TBT adsorption by the beech charcoal and soot black carbon (Fang, et al., 
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2010). At higher pH (pH>pKa), the adsorption decreased due to the TBT species 

(TBTOH), which are not favorable for those three materials. 

 
Figure  5.3 Effect of pH on removal of TBT 
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stability  of  calixarenes  was  attributed  to  a  great  extent  to  van  der  Waals  forces  and  

hydrophobic interaction (CH–π) for all materials. In addition, electrostatic interaction could 

be  considered  when  MCM-TDI-C4S  material  was  used  as  adsorbent  (the  presence  of  

sulfonated anion). 

5.3.3 Effect of initial TBT concentration  

The adsorption experiments at initial TBT concentrations from 3 to 10 mg/L were also 

performed with maintaining the adsorbent amount of 0.01g at optimum pH, and the results 

are represented in Figure 5.4. The results indicate that the percentage removal decreased 

and the adsorption capacity  increased with an increase in the initial TBT concentration for 

all adsorbents (at 30°C). The decrease in the percentage removal of TBT can be explained 

with  the  fact  that  all  adsorbents  have  a  limited  number  of  active  sites,  which  would  have  

become saturated above a certain concentration. The decrease in the percentage removal 

was  significant  in  the  case  of  MCM-TDI-C4 and  MCM-TDI-C4S.  This  indicates  that  the  

MCM-TDI-PC4 materials have higher active sites for adsorption of TBT compared to other 

materials. 
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                             Figure  5.4 Effect of initial TBT concentration on the TBT removal  

                             efficiency and uptake capacity by MCM-TDI-C4 (a), MCM-TDI- 

                             PC4 (b) and MCM-TDI-C4S (c) 
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5.3.4 Effect of solution temperature  

The temperature influences the adsorption equilibrium and its variations produce a 

displacement from or toward the phase adsorbed. Also, an increase in temperature generally 

improves the solubility of the molecules (if in the liquid phase) and their diffusion within 

the pores of the adsorbent materials (Cotoruelo et al., 2012). The effect of varying 

temperature on the adsorption of TBT by MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-

C4S was examined under temperatures of 30, 40 and 50°C, and the experimental results are 

listed in Figure 5.5.  

The bigger adsorptive capacities of TBT were observed in the higher temperature range for 

MCM-TDI-C4 and MCM-TDI-C4S materials. This was due to the increasing tendency of 

TBT to adsorb from the solution to the interface with an increase in temperature. The 

continuous increase in the adsorption capacity indicated that the adsorption process was 

endothermic. The TBT adsorption uptakes by MCM-TDI-PC4 were found to decrease with 

increase in the solution temperature from 30 to 50°C. The decrease in adsorption capacity 

with the increase in temperature is known to be due to the enhancement of the desorption 

step in the sorption mechanism. It is also due to the weakening of sorptive forces between 

the active sites on the prepared material and TBT, and also between adjacent TBT 

molecules on the sorbed phase (Tan, Ahmad, & Hameed, 2008). This result indicated that 

the  adsorption  reaction  of  TBT  adsorbed  by  MCM-TDI-PC4  is  an  exothermic.  A  further  

discussion of temperature in light of the thermodynamic parameters is provided in Section 

5.3.7. 
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                            Figure  5.5 Adsorption isotherm for TBT on MCM-TDI-C4 (a), MCM 

                            -TDI-PC4 (b) and MCM-TDI-C4S (c) at different temperatures 
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5.3.5 Adsorption isotherm models 

Various isotherm equations have been proposed and utilized, with some of them are 

characterized by a strong theoretical base, while others are empirical in nature. In the 

current study, because of the novelty of the adsorbent developed, it is imperative to reach 

the right equilibrium relationship between solid and liquid phase concentrations of TBT. It 

also requires the examination of the obtained experimental TBT removal equilibrium data 

by MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S with various isotherm models 

proposed in literature in order to determine which one is the most suitable among them. In 

the current study, two-parameter isotherms proposed by Freundlich, Langmuir, Temkin, 

and Dubinin-Radushkevitch (D–R), and three-parameter isotherms proposed by Redlich–

Peterson and Koble–Corrigan were examined with the equilibrium data obtained from the 

experiments.  

I. Freundlich isotherm  

To account for the possible multilayer adsorption and non-linear energy distribution for the 

adsorption sites, the Freundlich isotherm was studied. The Freundlich constants, KF and n 

(Eq.  2.12) were calculated from Figure 5.6. The highest KF values referred to MCM-TDI-

PC4, which indicate the highest TBT uptake from aqueous solution by this adsorbent 

(Table  5.1).  
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                             Figure  5.6 Freundlich isotherm of TBT adsorbed onto MCM-TDI 

                            -C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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values of n in the case of MCM-TDI C4S indicates the formation of relatively strong bond 

between TBT and the adsorbent (Ramu, Kannan, & Srivathsan, 1992). 

Table  5.1 Isotherm constants and correlation coefficient of determination for various adsorption 
isotherms for the adsorption of TBT onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-
C4S (c) 

Adsorbent  Adsorption isotherm Isotherm 
parameter Temperature   

 
  30 40 50 

(a) 

Freundlich KF(L/g) 4.2815 4.7588 5.4225 
 n 2.0354 2.1322 1.7879 
 R2 0.9845 0.9309 0.9307 
Langmuir (II) qm(mg/g) 8.4104 9.1659 12.1212 
 KL(L/mg) 1.1009 1.1693 0.8629 
 R2 0.9992 0.9609 0.9719 
Temkin AT 2.0189 2.0038 2.4706 
 KT(L/mg) 8.8305 11.3189 9.1593 
 R2 0.997 0.9735 0.9704 
Dubinin-Radushkevitch qd(mg/g) 6.0376 6.4967 7.3075 
 β(mol2/kJ2) 3.01x10-3 2.6x10-3 2.6x10-3 
 E(kJ/mol) 12.8689 13.6495 13.6495 
 R2 0.9823 0.9898 0.9957 
Redlich–Peterson g 0.9301 0.9689 0.8918 
 BR(L/mg) 1.2792 1.3577 1.1522 
 AR(L/g) 10.0043 11.5734 11.9312 
 R2 0.9986 0.9554 0.924 
Koble–Corrigan p 1.0176 2.1208 1.8879 
 AK 9.4697 35.4609 30.8642 
 BK 1.1468 5.9397 4.4907 
 R2 0.9992 0.9959 0.9986 

(b) 

Freundlich KF(L/g) 17.8525 16.4626 15.0038 
 n 1.8205 1.7422 1.7382 
 R2 0.9365 0.9928 0.9814 
Langmuir (II) qm(mg/g) 16.4204 14.2653 13.9276 
 KL(L/mg) 4.5111 4.5226 3.9888 
 R2 0.9875 0.9975 0.9852 

 

Table 5.1 (Continued) 

 Temkin AT 3.3637 3.4397 3.427 
 KT(L/mg) 48.1922 36.8125 31.3889 

  R2 0.9731 0.9945 0.9832 
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Dubinin-Radushkevitch qd(mg/g) 12.8559 11.8829 11.4662 
 β(mol2/kJ2) 6.7x10-4 1.01x10-3 1.01x10-3 
 E(kJ/mol) 27.2991 22.2896 22.2896 
 R2 0.9861 0.9937 0.9788 
Redlich–Peterson g 0.998 0.9992 0.9883 
 BR(L/mg) 4.8264 4.4406 3.8395 
 AR(L/g) 76.1627 64.2147 55.2684 
 R2 0.9657 0.9943 0.971 
Koble–Corrigan p 1.383 0.849 0.742 
 AK 238.0952 40.4858 25.4453 
 BK 21.0238 2.1053 0.9033 
 R2 0.9958 0.9988 0.9897 

(c) 

Freundlich KF(L/g) 4.3631 5.2396 5.6572 
 n 3.4507 3.4602 3.7439 
 R2 0.9526 0.8943 0.8919 
Langmuir (II) qm(mg/g) 6.6577 7.593 7.5757 
 KL(L/mg) 2.1396 2.6552 3.6666 
 R2 0.9952 0.9881 0.9875 
Temkin AT 1.2949 1.3988 1.3319 
 KT(L/mg) 30.9003 45.1689 73.7734 
 R2 0.9801 0.9367 0.9366 
Dubinin-Radushkevitch qd(mg/g) 5.7552 6.5463 6.7282 
 β(mol2/kJ2) 2.3x10-3 1.6x10-3 1.0x10-3 
 E(kJ/mol) 14.5919 17.2655 22.2896 
 R2 0.9866 0.9993 0.9979 
Redlich–Peterson g 0.9893 0.999 0.9937 
 BR(L/mg) 2.2506 2.8092 3.9357 
 AR(L/g) 14.7273 20.9121 29.1639 
 R2 0.9989 0.9968 0.9972 
Koble–Corrigan p 1.1583 1.4241 1.4278 
 AK 16.8919 35.5872 54.6448 
 BK 2.6892 5.3594 8.1366 
 R2 0.9964 0.9993 0.9984 
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The coefficients of determination were revealed to be good for the three prepared materials 

(Table  5.1). To determine a better fit with other isotherms, the results were analyzed with 

the other six isotherms proposed in literature. 

II. Langmuir isotherm  

The Langmuir isotherm and their corresponding linearized forms are shown in Chapter 2, 

Section  2.2.1.1.  It  was  observed  that  the  Langmuir  isotherm  can  be  linearized  to  at  least  

four different types. Out of the four different types of linearized Langmuir isotherm 

equations, Langmuir I (Eq.  2.6) and Langmuir II (Eq.  2.7) are the most commonly used by 

several researchers because of the minimized deviations from the fitted equation resulting 

in the best error distribution (Ho, 2004).  

The maximum monolayer capacity, qm obtained from Langmuir model II (Figure 5.7) and 

KL were shown in Table  5.1. The higher TBT capacities of the MCM-TDI-PC4 compared 

to MCM-TDI-C4 and MCM-TDI-C4S was explained previously in Chapter 4, Section 

4.3.2. Since a high KL value indicates a high affinity (Y. J. Pan, Hsieh, & Yen, 2011), thus 

MCM-TDI-PC4 showed the highest affinity for TBT adsorption. 
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                            Figure  5.7 Langmuir isotherm Type II of TBT adsorbed onto MCM 

                           -TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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The significantly high values of the determination coefficients (Langmuir II) for all 

materials indicate a good agreement between the values obtained from the experiments and 

isotherm parameters. This reinforces TBT monolayer adsorption onto the surface of MCM-

TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S. Moreover, the Freundlich isotherm has a 

lower  R2 values in comparison to the best fit Langmuir (II) isotherm, indicating the 

unsuitable use of the Freundlich isotherm relation for TBT onto MCM-TDI-C4, MCM-

TDI-PC4 and MCM-TDI-C4S surfaces. 

It was observed that the separation factor RL (Figure 5.8) are between 0 and 1, which 

indicated that these three adsorption processes were favorable, and the degree of 

favorability was in the order of MCM-TDI-PC4>MCM-TDI-C4S>MCM-TDI-C4, which 

was consistent with the KL values (indicator of the affinity) order for the three adsorbents. 

The RL values decreased with an increase in initial TBT concentration, indicating that the 

adsorption was more favorable at higher TBT concentration. 
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                    Figure  5.8 Values of RL for adsorption of TBT onto MCM-TDI-C4, MCM- 

                    TDI-PC4 and MCM-TDI-C4S 

III. Temkin isotherm 

The Temkin isotherm assumes that the fall in the heat of sorption is linear and the 

distribution of binding energies as uniform. The Temkin isotherm plot for MCM-TDI-C4, 

MCM-TDI-PC4 and MCM-TDI-C4S adsorbents is presented in Figure 5.9 and the 

corresponding isotherm parameters are given in Table  5.1.  
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                            Figure  5.9 Temkin isotherm of TBT adsorbed onto MCM-TDI-C4 

                            (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 

The correlation coefficients obtained from Temkin isotherm model were comparable to 

those obtained from Langmuir model linear forms II, and they were slightly higher than 

those obtained from Freundlich isotherm model. This result indicates that the experimental 

data fitted well to Temkin model and since the Temkin R2 values were found to be higher 

than  Freundlich,  therefore  the  adsorbent  seemed  to  show  more  affinity  towards  linear  

energy distribution than the non-linear. 
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Dubinin-Radushkevitch equation can be used to estimate the characteristic porosity and the 

apparent free energy of adsorption. Figure 5.10 shows Dubinin-Radushkevitch isotherm 

generated using Eq. ( 2.16) by plotting ln qe versus  ɛ2 of  the  experimental  data  for  the  

adsorption of TBT by MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S. The constants 

β and  qd were calculated from the slope and the intercept, respectively, and reported in 

Table  5.1. The mean free energy of adsorption (E) is the free energy change when one mole 

of ion transferred from infinity in the solution to the surface of the sorbent (T. S. Singh & 

Pant, 2004). 

The calculated mean energy values (Eq.  2.18) of TBT adsorption by MCM-TDI-C4, MCM-

TDI-PC4 and MCM-TDI-C4S adsorbents implies that the type of adsorption appears to be 

physical, chemical and chemical processes, respectively.  
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                            Figure  5.10 Dubinin–Radushkevitch isotherm of TBT adsorbed onto  

                             MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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V. Redlich-Peterson isotherm 

Since the adsorbents mostly follow Langmuir and Freundlich models, an attempt was made 

to  test  its  validity  with  respect  to  the  Redlich-Peterson  model,  which  is  essentially  a  

combination of the Langmuir and Freundlich models. 

Using the Redlich–Peterson model (Eq. 2.20), the parameters AR,  BR, and g were 

determined. Since there were three unknowns of Redlich-Peterson model, the unknown 

constants in this equation need to be obtained by using trial and error method (Solver add-

in with Microsoft Excel (Y. Wong, et al., 2004)). The isotherm and its parameters are 

presented in Figure 5.11 and Table  5.1. 

The values of correlation coefficients indicate that Redlich-Peterson isotherm has a good fit 

to the experimental data. The exponent values of g were close to 1, signifying the 

applicability of Langmuir model for explaining the obtained equilibrium data, and this 

indicates that the three adsorption processes were more homogenous than heterogeneous. 
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                            Figure  5.11 Redlich–Peterson isotherm of TBT adsorbed onto MCM 

                            -TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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The R2 values at all temperatures and for the three adsorbents were found to be consistently 

very high by showing the best adherence to this model of all the models studied, which 

signifies an occurrence of the combination of heterogeneous and homogenous uptake for 

TBT through the synthesized MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S 

adsorbents. The correlation coefficient values for Langmuir (II) model was more than 

Freundlich model, which imply that the primary mechanism of the TBT adsorption process 

was the homogeneous uptake. 
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                            Figure  5.12 Koble–Corrigan isotherm of TBT adsorbed onto MCM 

                           -TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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At the evaluated experimental temperatures, k1 and qe (Eq.  2.25) were calculated using the 

slope and intercept of plots of ln (qe −qt) versus t (Figure 5.13, Table  5.2). Despite the high 

correlation coefficients obtained from the pseudo-first order model, the calculated qe was 

not consistent with the experimental values, suggesting that the TBT adsorption on MCM-

TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S was not guided by the pseudo-first order 

kinetics. 
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                            Figure  5.13 Pseudo-first order model plot for the adsorption of TBT 

                            onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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 50 5.136 0.0431 1.1864 0.9551 0.1051 5.1813 2.8225 1 
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 30 6.007 0.011 0.3885 0.9288 0.8932 6.0096 32.2581 1 

(b) 40 5.960 0.0126 0.3556 0.88 0.9405 5.963 33.4448 1 

 50 5.928 0.0086 0.2723 0.9084 1.6356 5.9276 57.4713 1 

 30 5.792 0.0171 1.0029 0.9914 0.1312 5.8275 4.4563 1 

(c) 40 6.013 0.0167 0.7993 0.911 0.1625 6.0423 5.9347 1 

 50 6.174 0.0138 0.9249 0.9716 0.1353 6.2073 5.2138 1 
 

II. Pseudo-second order kinetic  

The model’s adsorption parameters qe and  k2 in Eq.  2.28 were calculated by plotting t/qt 

versus t (Figure 5.14, Table  5.2). The linear plot of t/qt versus  t revealed a good fit of 

consistency to the experimental data with the pseudo-second order kinetic model. The 

correlation coefficients (R2) for the second order kinetic model were close to 1, while the 

values of qe were consistent with the experimental data. These results showed that the TBT 

adsorption from aqueous solution on all materials follows the pseudo-second order kinetic 

model. It can also be seen from the pseudo-second order data that the adsorption rate of 

TBT, K2, was found to be in the order of MCM-TDI-PC4>MCM-TDI-C4S>MCM-TDI-C4. 

Additionally, the initial adsorption rates, h, were consistent with this order (Table  5.2). 
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                            Figure  5.14 Pseudo-second order model plot for the adsorption of TBT 

                            onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 

 

III. Intraparticle diffusion model 

Adsorption of any ions from aqueous phase onto the solid phase consists of many steps 

which include bulk diffusion, film diffusion and intraparticle diffusion. Because of TBT’s 

probable transportation from aqueous solution to MCM-TDI-C4, MCM-TDI-PC4 and 

MCM-TDI-C4S  by  intraparticle  diffusion,  this  type  of  diffusion  is  considered  as  another  
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kinetic model that should be utilized to examine the rate-determining step for TBT 

adsorption. 

The intraparticle diffusion model’s fit with the experimental data is depicted in Figure 5.15 

comprising of the plot of qt versus t 1/2 and  the  Ki values (Eq.  2.29), along with the 

correlation coefficients, are tabulated in Table  5.3. Based on the results, the TBT uptake by 

the synthesized MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S took place in two 

parts. The first part was an instant adsorption process resulting from the significant 

attraction between TBT and the adsorbent’s external surface. The second part entailed the 

gradual adsorption which stems from the intraparticle diffusion of TBT molecules through 

the adsorbent pores. The plots referred to in Figure 5.15 were not linear throughout the 

whole time range, indicating that intraparticle diffusion was not the only rate limiting 

mechanism  in  the  process  of  adsorption.  In  addition,  the  plots  failed  to  pass  through  the  

origin, which shows that intraparticle diffusion was involved in the uptake process but it 

did not act as the rate-controlling step. 
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                            Figure  5.15 Intraparticle diffusion model plot for the adsorption of TBT 

                            Onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 

 

Table  5.3 Calculated kinetic parameters for intraparticle diffusion model for the adsorption of TBT 
using MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) as adsorbents 

 T(°C) 
Ki1  

(mg/g min 1/2) 

C1 R1
2 

Ki2 

 (mg/g min 1/2) 

C2 R2
2 

 30 0.1537 3.564 0.681 -0.0036 5.0422 0.7471 

(a) 40 0.1588 3.7078 0.8776 0.0002 5.0878 0.2937 

 50 0.1662 3.7818 0.9168 0.0004 5.1292 0.9976 

 30 0.5876 5.7025 0.5876 0.002 5.9768 0.8672 
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(b) 40 0.0036 5.8944 0.6065 0.0002 5.9557 0.7913 

 50 0.008 5.8587 0.898 0.0022 5.8945 0.86 

 30 0.2525 4.2215 0.9414 0.0147 5.5854 0.7363 

(c) 40 0.0964 5.1347 0.9822 0.0016 5.9896 0.9499 

 50 0.1322 5.1352 0.9981 0.0113 6.0095 0.9363 
 

5.3.7 Adsorption thermodynamic  

It is widely acknowledged that parameters of thermodynamic are capable of evaluating the 

physiochemical adsorptive reaction’s orientation and feasibility. Three such parameters 

used are standard enthalpy (ΔH°), standard free energy (ΔG°) and standard entropy (ΔS°). 

The values of ΔH° and ΔS° can be calculated from the slope and intercept of ln Kc versus 

1/T plot (Eq. 2.30, Figure 5.16), respectively. ΔG° can then be calculated using Eq.  2.31. 

The calculated values of ΔH°, ΔS° and ΔG° for the adsorption of TBT on MCM-TDI-C4, 

MCM-TDI-PC4  and  MCM-TDI-C4S  are  shown  in  Table   5.4.  An  important  difference  

between the three adsorbents is the magnitude values of thermodynamic parameters. The 

higher magnitude values of ΔH°, ΔS° and  ΔG°  for  MCM-TDI-C4S  compared  to  MCM-

TDI-C4 and MCM-TDI-PC4 may be related to the difference in the mechanisms of 

adsorption. The TBT adsorption by MCM-TDI-C4S occurred through strong electrostatic 

interactions, thus the process can lead to significant modifications of the surface groups and 

of the TBT molecule. In contrast, the TBT adsorption by MCM-TDI-PC4 and MCM-TDI-

C4 was more related to the hydrophobic interactions and the process was just the formation 

of a dense layer of molecules on the surface of the adsorbents material. 
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The  positive  ΔH° values for MCM-TDI-C4 and MCM-TDI-C4S and the negative ΔH° 

value for MCM-TDI-PC4 indicated that the adsorption process was endothermic and 

exothermic in nature, respectively, which is consistent with the results obtained earlier in 

the effect of temperature in Section 5.3.4. In addition, the magnitude values of ΔH° indicate 

that  the  adsorption  of  TBT on  MCM-TDI-C4 was  a  physisorption,  and  the  adsorption  of  

TBT on MCM-TDI-PC4 and MCM-TDI-C4S was chemisorption. Additionally, the energy 

value taken from the D-R model was consistent with these results.  

The ΔS° positive values for MCM-TDI-C4 and MCM-TDI-C4S indicate the increased 

randomness at the interface of solid-solution during the process of sorption. Meanwhile, the 

negative ΔS° value suggests a decrease in the randomness at the solid/solution interface 

during the adsorption of TBT onto MCM-TDI-PC4. Furthermore, the solubility of MCM-

TDI-C4S adsorbent plays an important role in the magnitude values of ΔS°. As in an 

aqueous solution, water molecules easily wet hydrophilic MCM-TDI-C4S adsorbent, TBT 

must received some heat and replace the water molecules and then it could be adsorbed on 

the MCM-TDI-C4S adsorbent surface. The action is called “solvent replacement”(Gökmen 

&  Serpen,  2002).  For  TBT  molecule  with  larger  molar  volume  than  water  molecule,  the  

number of water molecule replaced was larger than that of TBT molecule adsorbed. Hence, 

the solvent replacement results in the increase of entropy. 

The ΔG° values for all  adsorbents were negative,  which reflect  the spontaneous nature of 

the adsorption processes. The spontaneous adsorption of TBT onto MCM-TDI-PC4 was 

mainly driven by the enthalpy change, while MCM-TDI-C4 and MCM-TDI-C4S was 
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mainly driven by the entropy change. Compared to MCM-TDI-C4 and MCM-TDI-PC4, the 

largest absolute value of ΔG° for MCM-TDI-C4S suggests the most spontaneous nature of 

the  adsorption  processes  of  TBT  to  MCM-TDI-C4S.  It  was  probably  attributed  to  the  

electrostatic attraction that occurs at the upper rim of the calix[4]arene (the presence of 

sulfonated anion) in addition to the hydrophobic interaction with the host cavity (CH–π). 

The values of ΔG° for  MCM-TDI-C4 and  MCM-TDI-C4S were  found to  increase  as  the  

temperature increased, indicating high driving force and hence resulting in high adsorption 

capacity. 

 
                            Figure  5.16 Plot of ln Kc versus 1/T for TBT adsorption 

 

Table  5.4 Thermodynamic parameters of TBT adsorption on MCM-TDI-C4, MCM-TDI-PC4 and 
MCM-TDI-C4S  

 T (°C) Thermodynamic parameters 

MCM-TDI-C4
y = -1042.7x + 5.2585

R² = 0.9997

MCM-TDI-PC4
y = 2573.4x - 4.5069

R² = 0.9981

MCM-TDI-C4S
y = -3721.5x + 14.037

R² = 0.9956
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  ΔG° (kJ/mol) ΔH° (kJ/mol) ΔS° (J/mol K) 

 30 -4.5779 8.669 43.7192 

MCM-TDI-C4 40 -5.0151   

 50 -5.4523   

 30 -10.0418 -21.3952 -37.4704 

MCM-TDI-PC4 40 -9.6671   

 50 -9.2924   

 30 -36.5595 30.8066 120.7609 

MCM-TDI-C4S 40 -37.7671   

 50 -38.9747   
 

5.4 Summary  

In this chapter, the application of modified mesoporous silica for batch adsorption of TBT 

has been investigated. Several factors that affect the adsorption efficiency were studied. In 

order to determine the equilibrium time for maximum uptake, a contact time study was 

performed and it showed that increasing the contact time increased the adsorption capacity 

of various adsorbents. It was noted that the adsorption increased rapidly in the initial stages 

and  then  became  slow  at  the  latter  stages  until  the  equilibrium  was  reached.  The  

equilibrium  time  required  for  the  adsorption  of  TBT  was  2  h  for  all  adsorbents.  At  

equilibrium, with the optimum condition (pH, time and temperature), 93% of TBT was 

adsorbed by MCM-TDI-C4, 98% adsorbed by MCM-TDI-PC4 and 88% of TBT was 

adsorbed onto MCM-TDI-C4S. 

The pH of a solution is generally recognized as a very effective parameter that governs the 

adsorption  process.  The  results  showed  sensitive  trends  that  depended  on  the  type  of  
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adsorbent and pH values. TBT species at low pH lead to the decreased in the adsorption 

efficiency due to the repulsion forces occurred between the TBT+ and the protonated active 

binding sites. However, a significant increase in the adsorption capacity of TBT on the 

adsorbents  was  observed  when  the  solution  pH  was  raised.  At  higher  pH  (pH>pKa),  the  

adsorption decreased may be due to the TBT species (TBTOH), which are not favorable for 

the modified mesoporous silica with calix[4]arene derivatives. 

The equilibrium adsorption of TBT on modified mesoporous silica with calix[4]arene 

derivatives at various temperatures was studied and the adsorption equilibrium was well 

described using different adsorption models. The three-parameter isotherm models showed 

better correlation with the experimental adsorption data than the two-parameter isotherm 

models, indicating that the surface of the three modified mesoporous silica samples was 

heterogeneous and calix[4]arene derivatives functional groups created on the mesoporous 

silica surface make the mesoporous silica surface more heterogeneous. Furthermore, the 

porosity factors β from Dubinin-Radushkevitch isotherm for TBT were <1 for the three 

adsorbents. This demonstrates the existence of micropores in addition to mesopores, which 

confirms the heterogeneity of the surface which arose from the pore structure, as well as 

adsorbate adsorbent interaction.  

Upon comparing the TBT uptake capacities of the different adsorbents as listed in Table 

 5.5, it is challenging to compare the TBT uptake of the functionalized mesoporous silica in 

the present study to those done by other researchers because the experiments by different 

authors were conducted under their own conditions. Nevertheless, it was reasonable to state 
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that the functionalized mesoporous silica in the present study was equipped with a strong 

ability for TBT uptake.  

 

 

Table  5.5 Comparison of adsorption capacities of various materials for TBT 

Adsorbent  qmax (µg/ g ) Reference  
MWNT 
(multiple-wall carbon nanotubes) 

2084 (J. b. Zhang, et al., 2009) 

MWNT-COOH 1444 (J. b. Zhang, et al., 2009) 
Polymeric adsorbent 3350 (Puri, et al., 2004) 
Organosorb 200-1 7996 (Vreysen, et al., 2008) 
Organosorb 100-1 7986 (Vreysen, et al., 2008) 
Norit SAE Super 7998 (Vreysen, et al., 2008) 
MCM-TDI-C4 12121 Current study  
MCM-TDI-PC4 16420 Current study 
MCM-TDI-C4S 7575 Current study 

 

In order to investigate the adsorption processes of TBT on MCM-TDI-C4, MCM-TDI-PC4 

and MCM-TDI-C4S, three kinetic models were used, including the pseudo-first order, 

pseudo-second order and intraparticle diffusion models. 

The determination coefficients of the pseudo-second order rate model were larger than 

0.9998, and the calculated qe values also agreed very well with the experimental data. This 

indicates that the kinetic modeling of TBT adsorbed by the three adsorbents belongs to the 

pseudo-second order kinetic model. It can also be seen from the pseudo-second order data 
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that the adsorption rate of TBT, K2,  was  found  to  be  in  the  order  of  MCM-TDI-PC4>  

MCM-TDI-C4S >MCM-TDI-C4. Additionally, the initial adsorption rates, h, were 

consistent with this order. 

The intraparticle diffusion model was performed to explore the applicability of the model to 

the TBT-functionalized mesoporous silica system. The intraparticle diffusion model data 

indicated that the sorption removal of the TBT from aqueous phase on to MCM-TDI-C4, 

MCM-TDI-PC4 and MCM-TDI-C4S were rather complex process, which involved both 

boundary layer diffusion and intraparticle diffusion.  

The  effect  of  temperature  on  adsorption  was  studied  and  the  thermodynamic  parameters;  

free energy, enthalpy, and entropy of adsorption, were calculated. All the adsorption 

processes were spontaneous at all temperatures (negative free energy), and the enthalpy and 

entropy values were dependent on the type of adsorbent used. 
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6 CHAPTER 6  

ISOTHERMS, KINETICS AND THERMODYNAMICS OF 

TRIPHENYLTIN (TPT) ADSORPTION ON MODIFIED 

MESOPOROUS SILICA WITH CALIX[4]ARENE DERIVATIVES 

6.1 Introduction  

Throughout the years, the environment has been the recipient of huge amounts of toxic 

compounds from natural resources, as well as human activities. Based on the intensity, the 

impact duration, the system resilience and whether the small quantities of substances are 

toxic, the results could be monumentally adverse. Organotins are considered as a type of 

pollutant (e.g., butyltin and phenyltin) utilized in the applications such as antifouling paints, 

PVC stabilizers, timber treatment and others. In particular, triphenyltin (TPT), an organotin 

compound (OTC) like tributyltin (TBT), is utilized as an antifouling agent in ship paints 

since the 1960s. Additionally, OTCs wide utilization as pesticides on high-value food crops 

is well known (Golub & Doherty, 2004) and also as antifungal agent in the treatments of 

wood and textiles before they were banned in various countries. Despite the restriction of 

their use, OTCs may still be present in human dietary sources like fish and seafood (Appel, 

Bohme, Platzek, Schmidt, & Stinchcombe, 2000).  

In the present decade, the removal of TPT from the natural environment is being treated by 

biological degradation. Along with bacteria and fungi, microalgae are also considered to 

biosorb and biodegrade TPT (Stasinakis, Thomaidis, Nikolaou, & Kantifes, 2005; Ye et al., 
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2013; Yen, Tsai, Su, & Wang, 2001). Systematic examinations of the TPT adsorption 

through various absorbents like natural sediments (Brändli, et al., 2009; Burton, et al., 

2004; Hoch, et al., 2003), pure minerals (Hoch & Weerasooriya, 2005; Weidenhaupt, et al., 

1997), organic matters (C. G. Arnold, et al., 1998), black carbons (Brändli, et al., 2009; 

Fang, et al., 2010) and recently wheat charcoal (Fang, et al., 2012) have been carried out.  

Adsorption isotherm is the most important and fundamental source of information in 

understanding an adsorption process (Do Duong, 1998; Sykut, et al., 1999). It provides 

valuable information on how the organotin molecules distribute between the liquid phase 

and the solid phase when the adsorption process reaches an equilibrium state, which is 

critical in optimizing the use of adsorbents. 

The  objectives  of  this  chapter  are  to  investigate  the  adsorption  of  TPT  from  aqueous  

solution by modified mesoporous silica with calix[4]arene derivatives (MCM-TDI-C4, 

MCM-TDI-PC4 and MCM-TDI-C4S) at different temperatures and hence to evaluate the 

thermodynamic parameters of adsorption, i.e. free energy, enthalpy and entropy of 

adsorption in order to achieve a better understanding of the adsorption process. The effects 

of  various  operating  parameters  such  as  initial  concentration,  contact  time and  pH of  the  

solution were also studied in detail. The kinetic parameters were calculated to determine the 

adsorption mechanism. 
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6.2 Experimental  

6.2.1 Materials 

6.2.1.1 Adsorbents 

Since mesoporous silica MCM-41 modified with calix[4]arene derivatives using TDI as 

linker (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S) gave the highest percentage 

removal for TPT, therefore these materials were selected as adsorbents to investigate the 

adsorption parameters of TPT in this chapter.  

6.2.1.2 Adsorbate 

Triphenyltin chloride TPT was used as an adsorbate in this part of research. Triphenyltin 

was obtained from Aldrich and used as received. Its molecular formula is illustrated in 

Figure 6.1. 

 

                                   Figure  6.1 Molecular structure of triphenyltin chloride  
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Stock solutions were prepared by dissolving triphenyltin TPT in methanol and stored at 4°C 

in the dark, followed by serial dilutions with Milli-Q water of an 8.42 mM. A methanolic 

stock solution of organotin compound was used due to very low solubility in water. 

6.2.2 Equilibrium isotherm and kinetics studies 

Batch studies were performed to examine TPT adsorption onto modified mesoporous silica 

with calix[4]arene derivatives (MCM-TDI-C4, MCM-TDI-C4S and MCM-TDI-PC4) by 

agitating 10 ml of TPT with 0.01 of adsorbent materials using a shaker bath (Wise Bath 

WSB-18) at 180 rpm. After the equilibrium state of adsorption was reached (determined 

through laboratory tests), samples were taken, filtered through a 0.45 µm membrane filter 

and  TPT concentrations  were  determined  by  ICP-MS,  and  the  amount  of  TPT sorbed  by  

modified mesoporous silica with calix[4]arene derivatives (qe) were calculated from Eq. 

 4.1. Experiments were conducted to evaluate the effects of pH, temperature, TPT initial 

concentration and contact time. The pH of the suspensions of TPT and adsorbent materials 

was maintained at the desired range by the addition of diluted hydrochloric acid (0.01 M, 

0.1 M and 1 M) or diluted sodium hydroxide (0.01 M, 0.1 M and 1 M) during adsorption 

tests. All adsorption tests were carried out in triplicate. 

For the adsorption isotherm study, 0.01 g of adsorbent materials were added to a series of 

TPT solutions (10 ml) with different initial concentrations ranging from 3-10 mg/L and 

agitated in a shaker bath (Wise Bath WSB-18) with a speed of 180 rpm for 2 h at different 

temperatures; 30, 40 and 50°C.  The  pH  of  the  solutions  was  initially  adjusted  to  the  

optimum pH.  

http://www.witeg.de/1749797951/120/AD61/REhXU0IwMTAxOA==/Witeg%20DHWSB01018%20Witeg.html?sid=g2ccsbufmkle3tkibhlh1stct7
http://www.witeg.de/1749797951/120/AD61/REhXU0IwMTAxOA==/Witeg%20DHWSB01018%20Witeg.html?sid=g2ccsbufmkle3tkibhlh1stct7
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To examine the adsorption kinetics, 0.01 g of adsorbent materials were added to 10 ml of 

TPT solutions and agitated for periods of time ranging from 5 to 240 min before the 

samples were taken to determine TPT concentrations. The solution pH, agitation speed and 

temperature were similar as in the adsorption isotherm study.  

50 ml Teflon reactors (FEP, Nalgene) were used in all experiments since other studies have 

shown  that  this  material  did  not  compete  for  OTCs  sorption  and  did  not  leach  OTCs  

compounds (Behra, et al., 2003). All reactors used were thoroughly washed with a 

laboratory detergent (Sparkleen Fisher Scientific Ltd.) and rinsed with tap water. This was 

followed by rinsing with 10% nitric acid, (prepared from reagent grade nitric acid - BDH 

chemicals) and deionized water. In order to avoid TPT degradation by photolysis, the 

samples  were  covered  during  the  entire  experiment.  A  control  was  set  to  which  no  

adsorbent was added in order to determine if TPT was adsorbed by the walls of the 

reactors. All experiments were triplicated and the average values were used in the analysis. 

6.2.3 Analytical procedure 

Analytical procedure for adsorption of triphenyltin TPT on modified mesoporous silica 

with calix[4]arene derivatives (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S) were 

similar to the procedures mentioned in Chapter 5. 
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6.3 Results and discussion 

6.3.1 Effect of contact time 

The TPT removals by the synthesized mesoporous silica MCM-TDI-C4, MCM-TDI-PC4 

and MCM-TDI-C4S are shown in Figure 6.2 as a function of contact time at 30, 40 and 

50°C. It can be seen from the graph that 88%, 90% and 55% of the initial concentration of 

TPT was adsorbed onto MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively 

in the first 10 min. The TPT removal efficiency increased rapidly during the first 10 min 

and remained nearly constant after 2 h of adsorption, suggesting that the adsorption was 

fast and reached saturation within 2 h. After this equilibrium period, the amount of 

adsorbed TPT did not change significantly with time. 
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                            Figure  6.2 Effect of contact time on removal of TPT by MCM-TDI- 

                            C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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6.3.2 Effect of pH 

The pH of the solution from which adsorption occurs influences the extent of adsorption. 

The  effect  of  pH  on  the  adsorption  of  TPT  onto  MCM-TDI-C4,  MCM-TDI-PC4  and  

MCM-TDI-C4S was studied in the pH range of 3 to 8 (Figure 6.3). 

The dependence of TPT adsorption on the pH can be attributed to two reasons, namely 

surface charge and species of TPT in aqueous solution. TPT is characterized as a weak acid 

having a pKa of 5.2 (C. G. Arnold, et al., 1997), composed of a cationic form (TPT+ , 

(C18H15)3Sn  )  in  equilibrium with  a  neutral  form (TPTOH,  (C18H15)3Sn OH) according to 

Eq.  6.1:  

TPTା + HଶO ⇄ TPTOH + Hା  6.1 

At  a  low  pH  (pH<pKa),  the  superior  species  are  TPT+ and the adsorption process is 

governed by electrostatic attraction. However, it is postulated that with a pH of over 5 

(pH>pKa), the superior species are TPTOH and the major driving force of adsorption is the 

hydrophobic character, which is less effective than the electrostatic interaction (Hoch, et al., 

2002). However, in acidic conditions, adsorbent surface becomes a significantly protonated 

surface that goes against the uptake of TPT+ form due to electrostatic repulsion.  

As seen from Figure 6.3 the adsorption of TPT onto MCM-TDI-C4 and MCM-TDI-C4S 

increased with pH up to 4.0 and then declined with further increase in pH. This could be 

because of the easier adsorption of TPT ions (TPT+) into these adsorbents compared to TPT 

molecules (TPTOH) at high pH. On the other hand, in case of MCM-TDI-PC4 adsorbent, 
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TPT exhibited high removal percentage value in the pH region higher than their 

corresponding pKa, which was consistent with the assumption that the complexation of the 

TPTOH species by MCM-TDI-PC4 was primarily responsible for the sorption of TPT. The 

maximum removal percentage value was found as 95 % at pH 4.0, 93 % at pH 6.0 and 87 

% at pH 4.0 for MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively. 

As mentioned before in the previous chapter (Section 5.3.2), the immobilization of 

calixarenes onto solid surfaces plays an important role in adsorption behavior and the 

concept of size-shape fit has a key role in forming host compounds inclusion complexes 

with guest molecules. Hydrophobic interaction of CH–π and the π–π interaction between 

aromatic  ring  in  calix[4]arene  and  aromatic  ring  in  TPT  and  van  der  Waals  forces  were  

considered to determine the complex stability to a large extent. Furthermore, electrostatic 

interaction could be considered between TPT+ and MCM-TDI-C4S adsorbent. 

 

                           Figure  6.3 Effect of pH on removal of TPT by MCM-TDI-C4, MCM- 

                           TDI-PC4 and MCM-TDI-C4S 
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6.3.3 Effect of initial TPT concentration  

The initial TPT concentration plays an important role in the process of adsorption. In order 

to show the effect of the initial concentration of TPT on the adsorption, sorption 

experiments were carried out at different initial TPT concentrations which varied from 3 to 

12 mg/L (Figure 6.4). The removal efficiency decreased with the increase in the initial 

concentration of the TPT for all adsorption process. At low initial concentrations, TPT in 

the solution interacted with the binding sites and thus facilitated high adsorption. At higher 

concentrations, more TPT have been left un-adsorbed in the solution due to the saturation 

of binding sites. The TPT adsorption capacity first increased rapidly with increasing of the 

initial concentration of TPT and then started to decrease sharply in the case of MCM-TDI-

C4 and MCM-TDI-C4S, which indicate that these adsorbents have a limited number of 

binding sites, which would have become saturated above a certain concentration compared 

to MCM-TDI-PC4 adsorbent. 
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                             Figure  6.4 Effect of initial TPT concentration on the TPT removal  

                             efficiency and uptake capacity by MCM-TDI-C4 (a), MCM-TDI- 

                             PC4 (b) and MCM-TDI-C4S (c) 
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6.3.4 Effect of solution temperature  

The  temperature  of  the  adsorption  medium  could  be  an  important  factor  affecting  the  

adsorption process. Most adsorption process is an exothermic process, whereas some 

examples  of  endothermic  adsorption  have  also  been  reported.  The  adsorption  of  TPT  by  

MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S appears to be temperature dependent 

over the temperature range tested (30-50°C) (Figure 6.5). The adsorption capacity of TPT 

onto all adsorbents decreased significantly with the increasing temperature, and this 

revealed the exothermic nature of the adsorption processes which was later utilized for the 

determination of changes in Gibbs free energy (ΔG°), heat of adsorption (ΔH°) and entropy 

(ΔS°) of the adsorption of TPT from aqueous solutions as provided in Section 6.3.7. 
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                            Figure  6.5 Adsorption isotherms for TPT on MCM-TDI-C4 (a), MCM- 

                            TDI-PC4 (b) and MCM-TDI-C4S (c) at different temperature 
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6.3.5 Adsorption isotherm models 

The values of isotherm model constants and their respective correlation coefficients are 

presented in Table  6.1. The experimental data of TPT produced a higher value of 

correlation coefficients with Langmuir II model (Figure 6.6) than Freundlich model (Figure 

6.7), indicating the acceptability of the model of homogeneous sorption phenomena. The 

values of n, were more than unity, which represents a favorable adsorption condition. The 

maximum monolayer adsorption capacity qm from Langmuir were 17.7305, 19.305 and 

18.9393 mg/g for MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively.  
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                            Figure  6.6 Langmuir isotherm Type II of TPT adsorbed onto MCM- 

                            TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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                            Figure  6.7 Freundlich isotherm of TPT adsorbed onto MCM-TDI-C4  

                            (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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Table  6.1 Isotherm constants and correlation coefficient of determination for various adsorption 
isotherms for the adsorption of TPT onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-
C4S (c) 

Adsorbents  Adsorption isotherm Isotherm 
parameter Temperature    

   30 40 50 

(a) 

Freundlich KF(L/g) 9.9908 8.091 7.2577 
 n 1.9091 2.0292 1.7671 
 R2 0.9158 0.9419 0.9935 
Langmuir (II) qm(mg/g) 17.7305 14.2857 12.7064 
 KL(L/mg) 1.4921 1.5351 1.4283 
 R2 0.9835 0.9923 0.9857 
Temkin AT 3.3102 2.9828 3.2869 
 KT(L/mg) 19.3098 16.4466 10.2755 
 R2 0.9856 0.9925 0.9688 
Dubinin-Radushkevitch  qd(mg/g) 11.3782 10.2308 9.4056 
 β(mol2/kJ2) 1.006x10-3 1.67x10-3 2.01x10-3 
 E(kJ/mol) 22.2939 17.3032 15.772 
 R2 0.9672 0.9925 0.9226 
Redlich–Peterson g 0.985 0.9915 0.8086 
 BR(L/mg) 1.7303 1.6547 1.8081 
 AR(L/g) 28.1757 22.7213 20.9664 
 R2 0.9471 0.9836 0.9835 
Koble–Corrigan p 1.503 1.3165 0.6362 
 AK 75.7576 40 8.5251 
 BK 6.6439 3.636 0.1671 

  R2 0.9997 0.9988 0.9968 

(b) 

Freundlich KF(L/g) 9.9586 8.3657 6.9823 
 n 1.5837 1.587 1.6664 
 R2 0.935 0.9473 0.9471 
Langmuir (II) qm(mg/g) 19.305 16.2866 15.8227 
 KL(L/mg) 1.1359 1.1103 0.9106 
 R2 0.9953 0.997 0.9944 
Temkin AT 3.2484 3.131 2.9162 
 KT(L/mg) 17.3739 14.0139 12.1462 
 R2 0.9856 0.9737 0.9977 
Dubinin-Radushkevitch qd(mg/g) 10.5603 9.6282 9.1011 
 β(mol2/kJ2) 1.67x10-3 1.67x10-3 2.01x10-3 
 E(kJ/mol) 17.265 17.265 15.772 
 R2 0.9924 0.9748 0.9905 
Redlich–Peterson g 0.9525 0.9304 0.986 
 BR(L/mg) 1.2553 1.1985 1.0061 
 AR(L/g) 22.7742 18.8305 14.9335 

 
 
 
 
Table 6.1 (Continued) 
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  R2 0.9525 0.9726 0.9623 
 Koble–Corrigan p 1.2219 1.0532 1.2922 

 AK 37.7358 20.4498 25.7069 
 BK 2.9584 1.4069 2.4318 
 R2 0.9987 0.9972 0.9997 

(c) 

Freundlich KF(L/g) 5.9006 4.6580 4.0169 
 n 1.8242 1.4710 1.5033 
 R2 0.841 0.9571 0.9603 
Langmuir (II) qm(mg/g) 18.9393 18.7266 18.587 
 KL(L/mg) 0.4986 0.3421 0.278 
 R2 0.9564 0.9894 0.9862 
Temkin AT 2.9731 3.4893 3.2767 
 KT(L/mg) 8.2698 4.2274 3.6959 
 R2 0.8952 0.9745 0.9942 
Dubinin-Radushkevitch qd(mg/g) 9.5401 8.6547 8.2771 
 β(mol2/kJ2) 9.1x10-4 1.8x10-3 1.8x10-3 
 E(kJ/mol) 23.4161 16.5577 16.5577 
 R2 0.9858 0.9576 0.987 
Redlich–Peterson g 0.7096 0.5352 0.5275 
 BR(L/mg) 1.4080 1.2412 1.3461 
 AR(L/g) 14.7029 10.5369 9.4684 
 R2 0.8068 0.8657 0.87 
Koble–Corrigan p 1.7981 1.1232 1.5387 
 AK 23.31 7.2886 7.6687 
 BK 2.4569 0.5066 0.8014 
 R2 0.9942 0.9902 0.9983 
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The RL parameters (Eq.  2.10) maintained between 0 and 1, which showed consistency with 

the requirement for a favorable adsorption process (Figure 6.8). The order of favorability 

was consistent with the KL values order. 

 
                      Figure  6.8 Values of RL for adsorption of TPT onto MCM-TDI-C4, MCM- 

                      TDI-PC4 and MCM-TDI-C4S 

The results were also fitted by the Temkin model (Figure 6.9), which suggested a reduction 

in the heat of adsorption along with coverage due to adsorbent–adsorbate interactions. As a 

result, adsorption of TPT could be characterized by a uniform distribution of binding 

energies up to a maximum value. 
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                            Figure  6.9 Temkin isotherm of TPT adsorbed onto MCM-TDI-C4 

                            (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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The Dubinin-Radushkevitch isotherm model is a semi-empirical equation where the 

adsorption is characterized by multilayer involving van der Waals forces (Hutson & Yang, 

1997). The model is also utilized in the estimation of the mean free energy adsorption, E. 

The mean free energies of adsorption of TPT onto MCM-TDI-C4, MCM-TDI-PC4 and 

MCM-TDI-C4S were almost 16 kJ/mol or more, indicating that the TPT adsorption on all 

adsorbents took place through chemical adsorption. The values of the porosity factors β 

(mol2/kJ2 ) were less than unity (Table  6.1, Figure 6.10) imply that all adsorbents consist of 

micropores, which was consistent with the result in previous chapter and indicated a surface 

heterogeneity may arise from the pore structure, as well as adsorbate-adsorbent interaction 

(Negrea, et al., 2011).  

The Redlich-Peterson isotherm combines both Langmuir and Freundlich equations 

elements and the adsorption mechanism is described as a hybrid (homogeneous and 

heterogeneous) model, which is distinct from an ideal monolayer adsorption. The Redlich–

Peterson isotherm constants (Eq.  2.20) were determined through the Solver add-in of 

Microsoft Excel and are listed in Table  6.1. The coefficients of determination for Redlich–

Peterson isotherm model (Figure 6.11) showed a moderate applicability of this model for 

the  adsorption  of  TPT  using  MCM-TDI-C4,  MCM-TDI-PC4  and  MCM-TDI-C4S.  The  

exponent values of g were close to 1, signifying the fit of the Langmuir model for 

explaining the obtained equilibrium data. 
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                            Figure  6.10 Dubinin–Radushkevitch isotherm of TPT adsorbed onto 

                            MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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                            Figure  6.11 Redlich-Peterson isotherm of TPT adsorbed onto MCM 

                            -TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 

 

-1.5

-1

-0.5

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

ln
 (A

(C
e/

q e
)-1

)
ln Ce

30°C

40°C

50°C

(a)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-3 -2 -1 0 1

ln
 (A

(C
e/

q e
)-1

)

ln Ce

30°C

40°C

50°C

(b)

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

-1.5 -1 -0.5 0 0.5 1 1.5

ln
 (A

(C
e/

q e
)-1

)

ln Ce

30°C

40°C

50°C

(c)



208 

 

Moreover, the Koble–Corrigan model (Figure 6.12) seemed to agree very well with the 

experimental data of TPT (R2 > 0.9902). This indicates that a combination of 

heterogeneous and homogeneous uptake occurred for TPT uptake by the prepared MCM-

TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S. By comparing the coefficients of 

determination of the Langmuir and Freundlich models, we inferred that homogenous uptake 

was the main mechanism of the TPT adsorption process. The corresponding Koble–

Corrigan parameters of AK,  BK and p for different temperatures along with correlation 

coefficients are also given in Table  6.1. 
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                            Figure  6.12 Koble-Corrigan isotherm of TPT adsorbed onto MCM 

                           -TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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6.3.6 Adsorption kinetic  

In order to clarify the adsorption kinetics of TPT onto MCM-TDI-C4, MCM-TDI-PC4 and 

MCM-TDI-C4S adsorbents, three kinetic models, which are pseudo-first order, pseudo-

second order and intraparticle diffusion models, were applied to the experimental data. 

I. Pseudo-first order kinetic 

Figure 6.13 shows a plot of the linearized form of the pseudo-first order model for the 

sorption of TPT at various temperatures. Although the correlation coefficients for the linear 

plots of ln (qe−qt) against time from the pseudo-first order model were greater than 0.916, 

the experimental data deviated considerably from the theoretical data (Table  6.2), 

confirming that the pseudo-first order model was not appropriate for describing the 

adsorption kinetics of TPT onto adsorbents. 
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                            Figure  6.13 Pseudo-first order model plot for the adsorption of TPT 

                            onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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models for the adsorption of TPT using MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-
C4S (c) as adsorbents 

 T 
(°C) 

qe,exp 
(mg g-

1) 
Pseudo-first order Pseudo-second order 

   K1 
(min-1) 

qe,cal  
(mg g-1) 

R1
2 

K2 
(g mg-

1min-1) 

qe,cal  
(mg g-

1) 

h 
(mg g-

1min-1) 
R2

2 

 30 5.491 0.0276 0.874 0.9838 0.1101 5.5248 3.363 0.9999 

(a) 40 5.373 0.0191 0.506 0.9436 0.153 5.3966 4.4267 1 

 50 5.341 0.0231 0.593 0.9405 0.142 5.3648 4.0749 1 

 30 9.257 0.0087 0.286 0.9166 1.422 9.259 9.259 1 

(b) 40 8.954 0.0132 0.4129 0.9736 0.8589 8.9605 8.961 1 

 50 8.628 0.0123 0.42029 0.9775 0.7367 8.6355 8.6355 1 

 30 8.18 0.0421 3.9129 0.9321 0.0294 8.34 2.0433 0.9998 

(c) 40 7.925 0.0404 3.6466 0.915 0.0262 8.0645 2.0483 0.9996 

 50 7.278 0.0386 3.9964 0.8571 0.0217 7.4239 1.4263 0.999 
 

II. Pseudo-second order kinetic  

The pseudo-second order rate constant K2,  qe and R2 are given in Table  6.2 (Figure 6.14). 

From Table  6.2, it was evident that the calculated qe values agreed with the experimental qe 

values well, and also, the correlation coefficients for the pseudo-second order kinetic plots 

at all the studied adsorbents and temperatures were higher than 0.999. It can thus be easily 

concluded that the ongoing reactions proceeds via a pseudo-second order mechanism rather 

than a pseudo-first order mechanism. Furthermore, the adsorption rate of TPT, K2, was 

found to be in the order of MCM-TDI-PC4>MCM-TDI-C4>MCM-TDI-C4S. Additionally, 

the initial adsorption rates, h, were consistent with this order. 
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                            Figure  6.14 Pseudo-second order model plot for the adsorption of  

                           TPT onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI 

                           -C4S (c) 
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III. Intraparticle diffusion model 

The intraparticle diffusion model’s fit with the experimental data is depicted in Figure 6.15, 

which consists of the plot of qt versus t1/2 and the Ki values (Eq.  2.29), and the correlation 

coefficients are tabulated in Table  6.3. Based on the results, the TPT uptake by the 

synthesized adsorbents took place in two phases, namely the surface sorption and 

intraparticle diffusion. The initial linear portion occurred due to the boundary layer 

diffusion effect, while the final part was due to the intraparticle diffusion effect. 

Nevertheless, the correlation coefficients of the intraparticle model were less compared to 

the pseudo-second order model. The plots failed to pass through the origin, which shows 

that intraparticle diffusion was involved in the uptake process but it did not act as the rate-

controlling step. 

Table  6.3 Calculated kinetic parameters for intraparticle diffusion model for the adsorption of 
TPT using MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) as adsorbents 

 T 
(°C) 

Ki1 
(mg/g min ½) 

C1 R1
2 Ki2 

(mg/g min ½) 
C2 R2

2 

 30 0.0095 4.7849 0.933 0.0005 5.375 0.8361 
(a) 40 0.0078 4.8227 0.9529 8E-06 5.3713 0.7913 

 50 0.0078 4.8227 0.9909 0.0006 5.2067 0.8581 
 30 0.01 9.1795 0.9571 0.0021 9.2248 0.924 

(b) 40 0.019 8.7908 0.9678 0.0019 8.9274 0.8792 

 50 0.024 8.45 0.9982 0.0048 8.5607 0.7508 

 30 0.5688 3.8232 0.9999 0.0203 7.8776 0.9016 

© 40 0.1975 5.3489 0.9997 0.0317 7.4582 0.9319 
 50 0.1093 5.3547 0.8396 0.1225 5.5349 0.8408 
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                          Figure  6.15 Intraparticle diffusion model plot for the adsorption of 

                         TPT onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI 

                        -C4S (c) 
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6.3.7 Adsorption thermodynamic  

Thermodynamic parameters such as standard free energy (ΔG°), enthalpy (ΔH°), and 

entropy (ΔS°) of adsorption were calculated in order to explain the thermodynamic nature 

involved in the adsorption process. 

The values of ΔH° and ΔS° were calculated from the slope and intercept of plot between ln 

Kc versus 1/T (Figure 6.16). The calculated values of ΔH°, ΔS° and ΔG° are listed in Table 

 6.4.  

 
                                 Figure  6.16 Plot of ln Kc versus 1/T for TPT adsorption 

All values for the change in ΔG° were negative, implying the thermodynamic feasibility 

and spontaneous nature of the adsorption of TPT. A decrease in the negative values of ΔG° 

with the increasing temperatures confirms an increase in the feasibility of adsorption at a 

low temperature, indicating that high temperatures play a negative role in the adsorption.  
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Besides, the negative values of the enthalpy (ΔH°) demonstrated that the adsorption process 

of the TPT onto MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S were exothermic, 

which was consistent with the previous results in the section regarding the temperature 

effect studies (Section 6.3.4). The decrease in the adsorption capacity with increase in the 

temperature was known to be due to the enhancement of the desorption step in the sorption 

mechanism. It was also due to the weakening of sorptive forces between the active sites on 

the prepared material and the TPT, and also between adjacent TPT molecules on the sorbed 

phase (Tan, et al., 2008). The magnitude values of ΔH° indicated that the adsorption of 

TPT on MCM-TDI-C4 and MCM-TDI-PC4 was physisorption and the adsorption of TPT 

on MCM-TDI-C4S was chemisorption. Otherwise, the energy values taken from the D-R 

model showed that the adsorption of TPT on all adsorbents was mostly chemisorption. This 

can be explained as the adsorption processes were a combination of chemisorption and 

physisorption, and this was confirmed by the better fitting of the three-parameter models 

than the two-parameter models (Yi et al., 2011).  

The negative ΔS° value corresponds to a decrease in randomness at the solid-liquid 

interface during the adsorption of TPT. The higher magnitude value of ΔS° for MCM-TDI-

C4S compared to other adsorbents may be attributed to the difference in the mechanisms of 

adsorption processes and to the solubility of MCM-TDI-C4S adsorbent, which was resulted 

by the solvent replacement phenomena as previously mentioned in Chapter 5 Section 5.3.7. 

Table  6.4 Thermodynamic parameters of TPT adsorption on MCM-TDI-C4, MCM-TDI-PC4 and 
MCM-TDI-C4S 

 T (◦C) Thermodynamic parameters 
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  ΔGº (kJ/mol) ΔHº (kJ/mol) ΔSº (J/mol K) 

 30 -7.6639 -16.4924 -29.137 

MCM-TDI-C4 40 -7.3725   

 50 -7.0812   

 30 -5.0949 -19.2552 -46.734 

MCM-TDI-PC4 40 -4.6275   

 50 -4.1602   

 30 -4.7257 -31.1087 -87.0725 

MCM-TDI-C4S 40 -3.8549   

 50 -2.9843   
 

6.4 Summary 

The use of modified mesoporous silica MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-

C4S in the adsorption of TPT from aqueous solution were investigated in this chapter and 

the following conclusions can be drawn: 

· TPT  uptakes  by  the  three  adsorbents  were  rapid  and  the  equilibrium  was  reached  

within 2 h.  

· The adsorption capacity increased with the increasing of the initial concentration of 

TPT and the adsorption efficiency decreased with the increasing of the initial 

concentration of TPT for all adsorbents. These results may be explained by the 

increased in the number of TPT competing for the available binding sites and also 

because of the lack of active sites on the adsorbents at higher concentrations. 
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· The pH of the media affected the adsorption by the sorbents.  The optimum pH of 

the medium was found to be 4.0 for MCM-TDI-C4 and MCM-TDI-C4S. However, 

TPTOH uptake by MCM-TDI-PC4 was evident. 

· Isotherm studies confirmed the combination of heterogeneous and homogenous 

uptake for TPT through the synthesized adsorbents MCM-TDI-C4, MCM-TDI-PC4 

and MCM-TDI-C4S. Furthermore, the porosity factors β from the Dubinin-

Radushkevitch isotherm were <1 for the three adsorbents. This demonstrates the 

existence of micropores in addition to mesopores that confirms the heterogeneity of 

the surface.  

· It was observed that the calculated values of the dimensionless constant separation 

factor RL ranged between 0 and 1, which means that the adsorption of TPT onto 

synthesized adsorbents was favorable over the range of initial TPT concentrations 

that were applied. 

· The adsorption capacities of TPT onto MCM-TDI-C4, MCM-TDI-PC4 and MCM-

TDI-C4S were 17.7305, 19.305, and 18.9393 mg/g, respectively, and followed the 

order of MCM-TDI-PC4>MCM-TDI-C4S>MCM-TDI-C4. 

· The mean free energies of adsorption E calculated from Dubinin-Radushkevitch 

isotherm indicated that the TPT adsorption on MCM-TDI-C4, MCM-TDI-PC4 and 

MCM-TDI-C4S took place through chemical adsorption.  

· Two adsorption mechanisms, i.e. van der Waals forces and hydrophobic interactions 

(CH-π nad  π-π)  involved  in  the  adsorption  of  the  TPT.  Furthermore,  electrostatic  

interaction could be considered between TPT+ and MCM-TDI-C4S adsorbent. 
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· The  adsorption  of  TPT  onto  MCM-TDI-C4,  MCM-TDI-PC4  and  MCM-TDI-C4S  

could be best fitted by the pseudo-second order kinetic model. The intraparticle 

diffusion model was used to find both the boundary and intraparticle diffusion rate 

constants. The sorption data indicated that the mechanism of TPT adsorption by all 

adsorbents was rather complex and is probably a combination of external mass 

transfer, intraparticle diffusion and sorption process. 

· Adsorptions of TPT onto all adsorbents were spontaneous and the negative values 

of ΔH° and ΔS° showed the exothermic nature and increase in order of TPT 

adsorption, respectively.   
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7 CHAPTER 7 

ISOTHERMS, KINETICS AND THERMODYNAMICS OF 

DIBUTYLTIN (DBT) ADSORPTION ON MODIFIED MESOPOROUS 

SILICA WITH CALIX[4]ARENE DERIVATIVES 

7.1 Introduction  

The search for efficient and economical control strategy for a pollutant is one of the most 

challenging jobs due to increasingly stringent regulations on environmental pollution. 

Much effort has been focused on the macrocyclic compound as adsorbent.  

Organized studies dedicated to organotin compounds are primarily confined to tributyltin 

(TBT). TBT is described as a notable environmental pollutant that enters directly to water 

through industrial employment of organotin biocides and because it is significantly toxic, it 

also impacts non-target aqueous organisms (C. C. Lee, Wang, Hsieh, & Tien, 2005). As 

such, several papers have focused on the TBT sorption behaviour by different adsorbents. 

On the other hand, adsorption of the less alkylated derivative dibutyltin (DBT) is largely 

overlooked (Dowson, Bubb, & Lester, 1993). In addition, systematic laboratory studies that 

look into the DBT partitioning between solid and liquid phase are very few and far 

between. Despite evidence to the fact that the butyltin compounds highest toxicity is 

presented by the trisubstituted species, it should be noted that DBT also falls under the 

category  of  toxic  compounds  that  are  highly  toxic  to  rats  given  a  dose  of  LD50 of 100 

mg/kg (Merian, 1991). Moreover, several studies of organisms reported DBT’s 
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accumulated in fish bodies and tissues (Kannan, Corsolini, Focardi, Tanabe, & Tatsukawa, 

1996), bird (Kannan, Senthilkumar, Elliott, Feyk, & Giesy, 1998), and even mammals 

(Kannan, Guruge, Thomas, Tanabe, & Giesy, 1998), and hence making it an environmental 

concern.  

Because of sorbents’ low sorption efficiency and regeneration issues, their use is quite 

limited and hence a more innovative, regenerable and significantly efficient sorbent is 

required. Accordingly, synthetic materials in the form of calixarenes have generated much 

interest  due  to  their  ability  to  be  platforms  for  the  preparation  of  macrocyclic  hosts  that  

recognized harmful and toxic species (Aksoy, et al., 2012; Ertul, et al., 2010; Kamboh, et 

al., 2013; Qureshi, et al., 2011). As a result, the chemical immobilization of calixarene 

framework on the silica surface improves its reusability and results in materials that are 

significant in the field of separation science (M. A. Kamboh, I. B. Solangi, S. T. H. Sherazi, 

& S. Memon, 2011c).  

The objective of the work in this chapter is to investigate the adsorption behaviour of the 

modified MCM-41 (MCM-TDI-C4, MCM-TDI-C4S and MCM-TDI-PC4) for dibutyltin 

DBT.  Six  isotherm  models  were  compared  in  order  to  find  out  and  explain  the  ‘best-fit’  

model. 
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7.2 Experimental 

7.2.1 Materials 

The prepared material MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S were used as 

adsorbents to investigate the adsorption parameters of DBT in this chapter. 

Dibutyltin DBT was used as an adsorbate in this part of research. Dibutyltin was obtained 

from Aldrich and used as received. Its molecular formula is illustrated in Figure 7.1. 

 

                                          Figure  7.1 Dibutyltin molecular formula 

7.2.2 Equilibrium isotherm and kinetics studies 

Adsorption studies of dibutyltin DBT on modified mesoporous silica with calix[4]arene 

derivatives (MCM-TDI-C4, MCM-TDI-C4S and MCM-TDI-PC4) were similar to the 

procedures mentioned in Chapter 5. 

Batch adsorption studies were performed to examine adsorption of DBT onto modified 

mesoporous silica with calix[4]arene derivatives (MCM-TDI-C4, MCM-TDI-C4S and 

MCM-TDI-PC4) by agitating 10 ml of solution containing DBT of desired concentration 

with 0.01 g of adsorbent using a shaker bath (Wise Bath WSB-18) at different 
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temperatures; 30, 40 and 50°C for 2 h at 180 rpm. The resulting mixture was filtered 

through a 0.45 μm membrane filter and the DBT concentration was measured using ICP-

MS. All the adsorption tests were carried out in triplicates. 

The effect of pH on DBT removal was studied using a series of 10 ml solutions containing 

DBT  with  0.01  g  adsorbent  materials  at  30ºC.  The  pH  of  the  solutions  was  adjusted  

between pH 3 to pH 8 with an interval of 1 by adding dilute solutions of HCl and NaOH 

and then shaken for 2 h. To test the effect of contact time, a series of 50 ml Teflon reactors 

(FEP, Nalgene) with 10 ml DBT solutions and 0.01 g adsorbent materials were shaken for 

periods of time ranging from 5 to 240 min at different temperatures before the samples 

were taken from the designated reactors and filtered for DBT measurement using ICP-MS. 

To examine the effect of temperature on DBT adsorption, adsorbent materials were added 

to batches of 10 ml DBT solutions at different concentration and shaken for 2 h at a 

temperature ranging from 30 to 50°C. For the adsorption isotherm study, 0.01 g of 

adsorbents were added to 10 ml of DBT solutions with different concentrations ranging 

from 2-8 mg /L and shaken for 2 h at three different levels of temperature ranging from 30 

to 50°C at optimum pH.  
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7.2.3 Analytical procedure 

Analytical procedure for adsorption of dibutyltin DBT on modified mesoporous silica with 

calix[4]arene derivatives (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S) was 

similar to the procedures mentioned in Chapter 5. 

7.3 Results and discussion 

7.3.1 Effect of contact time 

The relationship between contact time and DBT sorption onto MCM-TDI-C4, MCM-TDI-

PC4 and MCM-TDI-C4S at different temperature is presented in Figure 7.2. The rate of 

DBT adsorption was very rapid, reaching almost 98, 97 and 81%, respectively within 10 

min of contact time at 30 °C. Equilibrium was established in 180 min at the end of a rapid 

adsorption for all adsorbents. 
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                             Figure  7.2 Effect of contact time on removal of DBT onto MCM- 

                             TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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7.3.2 Effect of pH 

The pH of solution greatly influences DBT dissociation. Furthermore, pH influences 

surface properties of the adsorbent through functional group dissociation and also surface 

charges. At pH 3, the adsorption of DBT onto all adsorbents was found to be very low. It 

has been suggested that at low pH, H+ ions were close to the binding sites of the sorbent 

and this restricts the approach of DBT ions due to repulsion. Adsorption of DBT by MCM-

TDI-C4 has been found to increase with the increase in pH and reached maximum at 5.0 

(96%), and then decreased with further increase in pH up to 7.0 (Figure 7.3). This conduct 

can be explained through the DBT species and the functional group existing in the surface 

of the adsorbent. 

 
                  Figure  7.3 Effect of pH on removal of DBT onto MCM-TDI-C4, MCM-TDI- 

                  PC4 and MCM-TDI-C4S  
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The hydrolytic reactions in aqueous solution for dibutyltin (DBT), together with the 

potentiometrically estimated pKa values recorded by Fang et.al. (Fang, et al., 2012). 

ଶାܶܤܦ + ଶܱܪ ⇄ ା(ܪܱ)ܶܤܦ +  ା  pKa1= 3.0  7.1ܪ 

ା(ܪܱ)ܶܤܦ + ଶܱܪ ⇄ ଶ(ܪܱ)ܶܤܦ +  ା pKa2= 5.1  7.2ܪ 

At pH <5.1±0.5, the adsorption process of DBT (DBT2+ and DBT(OH)+) was governed by 

electrostatic attraction. However, the major driving force of adsorption at higher pH was the 

hydrophobic character of the DBT (DBT(OH)2). 

The  increase  of  the  maximum  removal  for  DBT  from  pH  3 to 5 can be attributed to the 

enhancement of the deprotonated surface of the MCM-TDI-C4, and hence increasing the 

adsorption capacity of MCM-TDI-C4 for the positively charged DBT(OH)+ species 

dominating at pH 5, which is in analogous to the DBT adsorption by the charcoal (Figure 

7.4, Fang et al., 2012). Due to the formation of neutral DBT species at pH>5, the dominant 

DBT(OH)2 species showed a weaker adsorption to the MCM-TDI-C4 than that at acidic 

condition (Figure 7.3).  
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                     Figure  7.4 Predicted adsorption edges of DBT, calculated by using the pH- 

                     dependent Dual Langmuir model  

As seen from Figure 7.3 adsorption of DBT onto MCM-TDI-PC4 and MCM-TDI-C4S 

exhibited a maximum removal at pH 6, and then the removals declined sharply with further 

increase in pH. This is in good agreement with the result documented for DBT adsorption 

to  clay-rich  sediments  (Hoch,  et  al.,  2003).  In  case  of  MCM-TDI-C4,  the  removal  

percentage increased until pH 5 (adsorption of DBT(OH)+) and then start to decrease, may 

be due to the decreasing concentration of DBT(OH)+. After that, the removal percentage 

started to increase and this can be attributed to the DBT species at pH>7 (DBT(OH)2). 

Another key factor that affects the DBT uptake was the presence of calix[4]arenes on the 

surface  of  adsorbents.  In  the  current  part,  the  complex  stability  of  calixarenes  with  DBT  

was attributed to a great extent to van der Waals forces and hydrophobic interaction (CH–

π). Furthermore, calix[4]arenes containing tert-butyl groups provide a more hydrophobic 
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cavities capable of the hydrophobic interactions with n-butyl chains at DBT (Thompson, et 

al., 2011). In case of MCM-TDI-C4S adsorbent, the adsorption process was also governed 

by electrostatic attraction with the sulfonate group present at calix[4]arene sulfonate on the 

surface of the adsorbent. 

7.3.3 Effect of initial DBT concentration  

The initial concentration provides an important driving force to overcome all mass transfer 

resistance of DBT between the aqueous and solid phases. Hence, a higher initial 

concentration  of  DBT  will  increase  the  adsorption  capacity,  whereas  the  DBT  removal  

percentage decreased slightly. Such effect is clearly demonstrated in Figure 7.5. The 

increase of DBT adsorption capacity at higher initial DBT concentration was due to higher 

availability of DBT ions in the solution. On the other hand, the decrease in removal 

percentage was due to the increase in the number of DBT ions competing for the available 

binding sites in the adsorbents and also due to the lack of binding sites at higher 

concentration. 
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                            Figure  7.5 Effect of initial DBT concentration on the DBT removal 

                            efficiency and uptake capacity by MCM-TDI-C4 (a), MCM-TDI-PC4  

                            (b) and MCM-TDI-C4S (c) 

7.3.4 Effect of solution temperature  

The effect of temperature on the equilibrium sorption capacity of MCM-TDI-PC4 for DBT 

was investigated in the temperature range of 30–50ᵒC. As shown in Figure 7.6, the 

adsorption of DBT was inversely proportional to the increase of temperature, i.e. increasing 

the temperature lead to a decrease in the equilibrium uptakes, which suggested that the 

adsorption was characterized as an exothermic process. The decreased in adsorption 

capacity at higher temperature may be attributed to the deactivation of the adsorbent 
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surface or the destruction of some active sites on the adsorbent surface due to bond rupture 

(Aksu & İşoğlu, 2005). Moreover, the heteroporous structure of the adsorbent, the 

considerable interactions among the molecules of adsorbent and adsorbate, and the 

cooperative adsorption in the context of significant concentrations of equilibrium resulted 

in the observation of the whole isotherm shapes that were noted to be similar to Type V at 

various temperatures (Rosen, 2004). Through the employment of a typical Langmuir 

treatment as the base, Giles et.al., (Giles, Smith, & Huitson, 1974) revealed that the S-shape 

arose when a considerable interaction occurred between the adsorbed molecules 

encouraging cooperative adsorption, while the L type isotherms arose when a considerable 

adsorbate-surface interaction occurs.   
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                             Figure  7.6 Adsorption isotherms for DBT on MCM-TDI-C4 (a), MCM 

                            -TDI-PC4 (b) and MCM-TDI-C4S (c) at different temperatures 
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solutions, it is important to establish the most appropriate correlation for the equilibrium 
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represents a cooperative adsorption. Seliem et.al., also reported that the adsorption of 

nitrate  by  synthetic  organosilicas  (MCM-41)  was  a  cooperative  adsorption  (Seliem et  al.,  

2013). 

 

 

 

 

 

Table  7.1 Isotherm constants and correlation coefficients of determination for various adsorption 
isotherms for the adsorption of DBT onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-
C4S (c) 

Adsorbent  Adsorption isotherm Isotherm 
parameter Temperature    

   30 40 50 

(a) 

Freundlich KF(L/g) 41.3809 27.0022 27.5043 
 n 0.9549 0.9981 0.91024 
 R2 0.9634 0.9468 0.9662 
Langmuir (II) qm(mg/g) -26.6666 -31.8471 -19.6463 
 KL(L/mg) -1.2097 -0.7494 -0.9714 
 R2 0.9518 0.9612 0.9618 
Temkin AT 4.3935 4.1604 4.5205 
 KT(L/mg) 25.2107 19.2433 15.2215 
 R2 0.9987 0.9838 0.9962 
Dubinin-Radushkevitch qd(mg/g) 16.9404 14.4313 14.8902 
 β(mol2/kJ2) 1.3 x10-3 1.3x10-3 1.7x10-3 
 E(kJ/mol) 19.3034 19.3034 17.2655 
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 R2 0.985 0.9814 0.9894 
Redlich–Peterson g -0.0472 -0.0019 -0.0986 
 BR(L/mg) 1.2x108 1.3x108 1.12x108 
 AR(L/g) 5.0x109 3.6x109 3.1x109 
 R2 0.0507 0.0404 0.1869 
Koble–Corrigan p 2.6568 2.1233 2.2801 
 AK 5000 500 476.1905 
 BK 646 55.65 53.9048 
 R2 0.9982 0.9968 0.9969 

(b) 

Freundlich KF(L/g) 41.1149 29.3697 23.9662 
 n 0.8527 0.9754 0.9825 
 R2 0.9533 0.9127 0.9114 
Langmuir (II) qm(mg/g) -15.6985 -25.7069 -30.581 
 KL(L/mg) -1.4543 -0.9239 -0.6606 
 R2 0.9653 0.9291 0.9419 
Temkin AT 5.2407 4.6313 4.5313 
 KT(L/mg) 16.6564 17.7676 15.0830 
 R2 0.9828 0.969 0.9535 
Dubinin-Radushkevitch qd(mg/g) 18.8196 16.1642 14.7626 
 β(mol2/kJ2) 1.67x10-3 1.67x10-3 1.67x10-3 
 E(kJ/mol) 17.2655 17.2655 17.2655 
 R2 0.9802 0.9561 0.9523 
Redlich–Peterson g -1.7779 -0.0252 -0.0178 
 BR(L/mg) 2.92x1013 7.3x107 4.63x1012 
 AR(L/g) 3.22x109 2.14x109 1.11x1014 

 
 
 
Table 7.1 (Continued)  

  R2 0.3073 0.0063 0.0031 

 

Koble–Corrigan p 2.4345 3.0272 2.0072 
 AK 1000 3333.33 232.0952 
 BK 103.8 417.666 22.7143 
 R2 0.9973 0.9967 0.9642 

(c) 

Freundlich KF(L/g) 3.422 2.1938 1.501 
 n 0.80411 0.781 0.6411 
 R2 0.9555 0.9733 0.9258 
Langmuir (II) qm(mg/g) -0.21867 -0.17645 -0.4205 
 KL(L/mg) -1.8945 -1.4848 -0.8222 
 R2 0.5059 0.6268 0.6962 
Temkin AT 4.042 3.7599 4.2556 
 KT(L/mg) 2.5723 1.9236 1.4256 
 R2 0.9805 0.9947 0.9757 
Dubinin-Radushkevitch qd(mg/g) 8.4748 7.3544 8.292 
 β(mol2/kJ2) 2.7x10-3 2.7x10-3 4.6x10-3 
 E(kJ/mol) 13.5193 13.5193 10.472 
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 R2 0.994 0.9972 0.9777 
Redlich–Peterson g -0.3036 -0.3144 -0.6206 
 BR(L/mg) 3.75955 8.2846 10.5045 
 AR(L/g) 16.3276 20.3966 17.3260 
 R2 0.4449 0.6354 0.6126 
Koble–Corrigan p 2.3729 2.3253 3.2216 
 AK 7.3746 3.4317 1.8018 
 BK 0.94469 0.46945 0.2827 
 R2 0.9987 0.9998 0.9879 
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                            Figure  7.7 Freundlich isotherm of DBT adsorbed onto MCM-TDI-C4  

                            (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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7.8)  confirmed that  the  Langmuir  type  II  isotherm was  not  suitable  for  the  expression  of  

removal rate of DBT (Kayranli, 2011). 

 
                  Figure  7.8 Values of RL for adsorption of DBT onto MCM-TDI-C4, MCM-TDI 

                 -PC4 and MCM-TDI-C4S 

Redlich–Peterson exponents g were revealed to be less than 0, which showed the 

inapplicability of this model for the adsorption of DBT using these adsorbents. 

The prediction of adsorption isotherms of DBT at 30, 40 and 50°C has also been shown by 

Temkin isotherm (Figure 7.9, Table  7.1). The equation showed good fit to the experimental 

results due to the obtained correlation coefficient value. In addition, the Temkin isotherm 

constant (KT) was found to be in the order of MCM-TDI-C4>MCM-TDI-PC4>CM-TDI-

C4S, suggesting the highest interaction between sorbet and sorbent on MCM-TDI-C4. 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
0 2 4 6 8

R L

C₀(mg/L)

MCM-TDI-C4

MCM-TDI-PC4

MCM-TDI-C4S



239 

 

The values of the porosity factors β from Dubinin-Radushkevitch isotherm model (Figure 

7.10) were less than unity (Table  7.1) which implied that all adsorbents consist of 

micropores and indicated a surface heterogeneity may arise from the pore structure, as well 

as adsorbate adsorbent interaction (Negrea, et al., 2011). The mean free energies of 

adsorption E were higher than 16 kJ/mol, indicating that DBT adsorption on MCM-TDI-C4 

and MCM-TDI-PC4 adsorbents took place through chemical adsorption and lower than 16 

kJ/mol, indicating that the adsorption of DBT on MCM-TDI-C4S was physisorption 

(Apiratikul & Pavasant, 2008; Vijayaraghavan, et al., 2006). 

Based on the correlation coefficient, R2, the equilibrium data could be well interpreted by 

the Koble-Corrigan isotherm model (Figure 7.11), which showed an occurrence of the 

combination of heterogeneous and homogenous uptake for DBT through the synthesized 

adsorbents. 
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                             Figure  7.9 Temkin isotherm of DBT adsorbed onto MCM-TDI-C4 

                            (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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                            Figure  7.10 Dubinin–Radushkevitch isotherm of DBT adsorbed onto  

                            MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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                            Figure  7.11 Koble–Corrigan isotherm of DBT adsorbed onto MCM 

                           -TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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7.3.6 Adsorption kinetic  

In order to further expose the adsorption mechanism of DBT onto MCM-TDI-C4, MCM-

TDI-PC4 and MCM-TDI-C4S and rate-controlling steps, a kinetic investigation was 

conducted. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic 

models have been used for testing the experimental data. 

The  constants  qe and  K1 from the pseudo-first order kinetic equation were determined 

experimentally by plotting ln (qe−qt) vs. t (Figure 7.12) and the values are listed in (Table 

 7.2). The theoretical values (qe,cal)  were  far  lower  than  those  experimental  data,  qe,exp, 

implying that the adsorption process did not fully follow the pseudo-first order adsorption 

rate expression. 

Table  7.2 Calculated kinetic parameters for pseudo-first order and pseudo-second order kinetic 
models for the adsorption of DBT using MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-
C4S (c) as adsorbents 

 T 
(°C) 

qe,exp 
(mg g-1) 

Pseudo-first order Pseudo-second order 

   K1 
(min-1) 

qe,cal  
(mg g-1) 

R1
2 K2 

(g mg-1min-1) 

qe,cal  
(mg g-1) 

h(mg g-1 
min-1) 

R2
2 

 30 4.98 0.0102 0.1063 0.7217 0.37966 4.9801 9.4162 1 

(a) 40 4.877 0.0188 0.03 0.7745 2.7288 4.878 64.9351 1 
 50 4.832 0.0122 0.0709 0.7885 0.71465 4.8333 16.6944 1 
 30 8.065 0.0076 0.1061 0.924 0.6006 8.0645 39.0625 1 

(b) 40 7.924 0.0311 0.1772 0.923 0.5483 7.9302 34.4827 1 

 50 7.833 0.0407 0.4721 0.8793 0.2463 7.8493 15.1745 1 
 30 5.868 0.0185 0.1717 0.9668 0.412 5.8754 14.2246 1 

(c) 40 5.848 0.0173 0.2334 0.9539 0.2988 5.8582 10.2564 1 

 50 5.777 0.02 0.3521 0.8616 0.2069 5.787 6.93 0.999 
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                           Figure  7.12 Pseudo-first order model plot for the adsorption of DBT 

                           onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) 
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By plotting t/qt against t, straight lines were obtained in all cases and by using pseudo- 

second order kinetic equation, the second order rate constant (K2)  and  qe values were 

determined from the plots (Figure 7.13). A comparison of the pseudo-first order and 

pseudo-second order adsorption rate constant on different adsorbents and temperatures is 

presented in Table  7.2. It is important to note that for a pseudo-first order model, the 

correlation coefficient was less than the pseudo-second order coefficient. The values of 

correlation coefficient for the pseudo-second order were very high (R2 > 0.9999), and the 

theoretical qe,cal values  were  closer  to  the  experimental  qe,exp values. In the view of these 

results, it can be said that the pseudo-second order kinetic model provided a good 

correlation for the adsorption of DBT onto adsorbents at different temperatures in contrast 

to the pseudo-first order model. 
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                            Figure  7.13 Pseudo-second order model plot for the adsorption of  

                            DBT onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI- 

                            C4S (c) 
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The intraparticle diffusion coefficient for the sorption of DBT was calculated from the 

slope of the plot between the amounts of DBT sorbed, qt vs.  t1/2 (Figure 7.14, Table  7.3). 

According to this model, if the plot of qt versus t1/2 gives a straight line, then the adsorption 

process is controlled by intraparticle diffusion, whereas if the data exhibit multi-linear 

plots,  then  two  or  more  steps  influence  the  adsorption  process.  In  the  present  study,  the  

plots presents multi-linearity (Figure 7.14), indicating two steps took place in the process. 

At first, the sharper portion may be considered as an external surface adsorption or faster 

adsorption stage. The second portion described the gradual adsorption stage, where the 

intraparticle diffusion was rate-controlled. Since the plots failed to pass through the origin, 

the intraparticle diffusion model did not act as the rate-controlling step. 

Table  7.3 Calculated kinetic parameters for intraparticle diffusion model for the adsorption of DBT 
using MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI-C4S (c) as adsorbents 

 T 
(°C) 

Ki1 
(mg/g min ½) 

C1 R1
2 Ki2 

(mg/g min ½) 
C2 R2

2 

 30 0.0013 4.8982 0.7033 0.0121 4.7974 0.9582 

(a) 40 0.0126 4.7986 0.8605 0.0005 4.8686 0.3954 

 50 0.0126 4.7319 0.7353 0.006 4.7401 0.9377 

 30 0.0067 7.9458 0.9296 -0.0018 8.0842 0.9911 
(b) 40 0.0111 7.7835 0.9847 0.0007 7.914 0.7913 

 50 0.0212 7.541 0.9678 0.0002 7.8288 0.2937 
 30 0.0176 5.6684 0.7073 0.0031 5.8201 0.9976 

(c) 40 0.0278 5.5509 0.91 0.0041 5.7822 0.9034 
 50 0.0353 5.4083 0.9836 0.0203 5.4758 0.83 
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                            Figure  7.14 Intraparticle diffusion model plot for the adsorption of  

                            DBT onto MCM-TDI-C4 (a), MCM-TDI-PC4 (b) and MCM-TDI- 

                            C4S (c) 
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7.3.7 Adsorption thermodynamic  

The  ln  Kc value versus 1/T plot (Figure 7.15) was used to determine the thermodynamic 

parameters, and the values are given in Table  7.4. The negative value of ΔG° indicated the 

feasibility of the process and indicated the spontaneous nature of the adsorption. ΔG° value 

was more negative with decreasing temperature, which suggests that lower temperature 

makes the adsorption easier. This was also supported by the decrease in the value of uptake 

capacity of the sorbent with the rise in temperature (Section 7.3.4).  

The negative value of ΔH° implied that the adsorption phenomenon was exothermic. The 

magnitude of ΔH° indicated that the adsorption of DBT on MCM-TDI-C4 and MCM-TDI-

PC4 was physisorption, and the adsorption of DBT on MCM-TDI-C4S was chemisorption, 

which was inconsistent with results from the D-R model energy value. This can be 

explained as the adsorption processes were a combination of chemisorption and 

physisorption, and this was confirmed by the better fitting of the three-parameter models 

than the two-parameter models (Yi, et al., 2011).  

The negative value of ΔS° suggested a decrease in the randomness at the solid-liquid 

interface  during  the  adsorption  of  DBT on  all  adsorbents.  The  higher  magnitude  value  of  

ΔS° for MCM-TDI-C4S compared to other adsorbents may be attributed to the difference 

in the mechanisms of adsorption processes and to the solubility of MCM-TDI-C4S 

adsorbent, which resulted in the solvent replacement phenomena as mentioned previously 

in Chapter 5 Section 5.3.7. 
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                              Figure  7.15 Plot of ln Kc versus 1/T for DBTadsorption  
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7.4 Summary 

This chapter investigated the adsorption of DBT onto the prepared materials MCM-TDI-

C4, MCM-TDI-PC4 and MCM-TDI-C4S from aqueous solution as a function of adsorption 

time,  initial  DBT  concentration,  temperature  and  pH.  In  addition,  thermodynamic  

parameters such as free energy, enthalpy and entropy of adsorption were evaluated. The 

amounts  of  DBT  adsorbed  by  these  adsorbents  were  strongly  influenced  by  the  initial  

concentration of the adsorbate, contact time, solution pH and temperature. The main 

findings of this chapter could be summarized as follows: 

· All the adsorption isotherms exhibited asymptote (S) shape, which resulted from the 

heteroporous structure of the adsorbent and the strong interaction exists between the 

adsorbed molecules, which encourages cooperative adsorption. 

· Two-parameter and three-parameter models were used to evaluate the adsorption 

isotherms. The Koble–Corrigan equation described the experimental data better than 

the other models, which indicated a combination of heterogeneous and homogenous 

uptake for DBT. 

· The adsorption capacity increased with the increasing of the initial concentration of 

DBT. The adsorption equilibrium time was found to be approximately 180 min, 

indicating a rapid adsorption has occurred. The adsorbed DBT decreased with rising 

temperature, indicating an exothermic process. 

· Over the whole pH range investigated, sorption was governed by complexation of 

the corresponding DBT cation (DBT(OH)+)  by  MCM-TDI-C4  and  DBT(OH)2 by 
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MCM-TDI-PC4 and MCM-TDI-C4S. The determining factors of the DBT binding 

were postulated as (i) van der Waals forces, (ii) hydrophobic interactions and (iii) 

electrostatic attraction. 

· The  batch  kinetic  studies  showed  that  the  kinetic  adsorption  of  DBT  onto  MCM-

TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S fitted well by the pseudo-second 

order model, and the steps of film diffusion and intraparticle diffusion were not the 

rate-limiting step 

· All thermodynamic parameters were negative. This indicated that the adsorption of 

DBT onto prepared materials was an exothermic and spontaneous process, and the 

mobility of the adsorbate on the surface of the adsorbent becomes more restricted 

compared with those in the solution. 
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8 CHAPTER 8  

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

The research presented in this thesis summarizes works toward the synthesis and 

characterization of macrocyclic compound functionalized on mesoporous silica as efficient 

adsorbents for the complexation of organotins compound. These materials were synthesized 

using highly ordered mesoporous silicas MCM-41 with calix[4]arene and β-cyclodextrin as 

organic modifier via post-synthetic modification strategies. A two-step chemical 

modification was shown to be an effective way to immobilize the macrocyclic compounds 

that possessed a cone-shaped molecule. The use of 3-chloropropyl triethoxysilane and 

toluene-2,4-diisocyanate as an organic linker was explored. The physiochemical properties 

of the prepared materials were characterized. The choice of the aforementioned strategy 

and organic modifier were essential for increasing the organotin compounds adsorption 

capacity. 

Following these successful approaches, a screening study for organotin compounds 

removal using the modified samples prepared in this work was performed. In general, 

modified samples with calix[4]arene as organic modifier and toluene-2,4-diisocyanate as 

organic linker exhibited the highest organotin compounds uptake than other samples. 
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The equilibrium sorption studies of tributyltin (TBT), triphenyltin (TPT) and dibutyltin 

(DBT) on functionalized mesoporous silica with calix[4]arene, p-tert-butylcalix[4]arene 

and p-sulfonatocalix[4]arene were investigated by studying the effect of solution pH, initial 

organotin compounds concentration, contact time and temperature. Adsorption isotherms, 

using the two-parameter isotherm models and three-parameter isotherm models were 

determined.  Finally,  kinetics  and  thermodynamics  parameters  of  TBT,  TPT and  DBT for  

these three adsorbents were also investigated. 

Experimental parameters such as adsorbate initial concentration, adsorption contact time, 

solution pH and temperature have considerable effects on the adsorption process. Organotin 

compounds compound uptake increased as adsorbate initial concentration increases for all 

adsorbents. The rate of organotin compounds adsorption was very rapid and the equilibrium 

states were attained at almost 120-180 min. The optimal pH, temperature, maximum 

adsorption capacity, the most fitted isotherm and kinetic models and thermodynamic 

parameters are summarized in Table  8.1. 

In general, the results obtained in this work confirmed that the mesoporous silica 

functionalized with calix[4]arene derivatives prepared in this work can be applied for 

organotin compounds removal and is superior to the other adsorbents that have been used in 

literature. 
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Table  8.1 Summarized results for adsorption of TBT,TPT, and DBT onto MCM-TDI-C4, MCM-
TDI-PC4 and MCM-TDI-C4S 

Adsorbate   MCM-TDI-
C4 

MCM-TDI-
PC4 

MCM-TDI-
C4S 

TBT 

Maximum capacity  12.1212 16.4204 7.5757 
Removal % 88 98 93 
Temperature effect Endothermic  Exothermic  Endothermic 
pH 5 6 5 
Best fitting isotherm K-C > D-R K-C > L(II) K-C > R-P 
Best fitting kinetic second order  second order second order 
ΔH° + 8.6 -21.4 +30.9 
ΔG°(at 30°C) -4.5779 -10.0418 -36.5595 
ΔS° 43.7192 -37.4704 120.7609 

TPT 

Maximum capacity  17.7305 19.305 18.9393 
Removal % 96 95 88 
Temperature effect  Exothermic Exothermic Exothermic 
pH 4 6 4 
Best fitting isotherm K-C > L(II) K-C > L(II) K-C >D-R  
Best fitting kinetic second order second order second order 
ΔH° -16.5 -19.3 -31.1 
ΔG°(at 30°C) -7.6639 -5.0949 -4.7257 
ΔS° -29.137 -46.734 -87.0725 

DBT 

Maximum capacity  16.9404 18.8196 8.4748 
Removal % 97 97 80 
Temperature effect  Exothermic Exothermic Exothermic 
pH 5 6 6 
Best fitting isotherm K-C > T K-C > T K-C > D-R 
Best fitting kinetic second order second order second order 
ΔH° -18.9 -13.6 -28.3 
ΔG°(at 30°C) -9.245 -8.5 -2.9949 
ΔS° -31.83 -16.7302 -83.3908 
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8.2 Recommendations for future work 

The followings are the recommendations for future work: 

· Synthesis of calix[4]arene derivatives functionalized onto different support material 

such as nanoparticles and magnetic nanoparticles for other potential applications is 

worth trying. 

· Application of the novel ordered mesoporous silica with calix[4]arene 

functionalities deserves to be further explored due to its attractive physical and 

chemical properties. It is expected that this new material will show remarkable 

improvement in adsorbing phenol, aromatic amines and dyes. 

· Application of the β-cyclodextrin-loaded mesoporous silica is significant in some 

adsorption and separation process. The β-cyclodextrin-loaded on the mesoporous 

silica may modify the mesoporous silica and hence show much higher adsorption 

capacity for some organic pollutants which arise from the inclusion complex. 

· More work is necessary to understand the adsorption mechanism behind as the 

competitive  adsorption  of  DBT  on  the  adsorbents  appears  to  be  an  uncommon  

behavior. 

· Regeneration of the adsorbents and desorption study need to be attempted in order 

to reuse the adsorbents. 
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