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ABSTRACT

Photoionization of Atom by Intense Laser Fields

This research is devoted to a detailed study of the interaction between atom and in-

tense laser field, which mainly focusing on the photoionization spectra of hydrogenlike

atom. The main theoretical model which is involved in order to describe the photoion-

ization phenomenon is Keldysh’s model. Firstly, the Keldysh’s formalism is derived in

details and its physical significance is explored. We have presented the extension of the

Keldysh’s theory further into a semianalytical expression to study the characteristics of

ionization rate of atom by intense lasers. In particular, the generalization of Keldysh’s

model is obtained for linear polarized light from small photoelectron momentum to arbi-

trary value of momentum. By applying different type of the laser field, i.e. linear, circular

and elliptical, we have shown the variation of spectrum of the ionization rate and compare

the features of the exact rates with Keldysh analytical result as functions of frequency and

electric field strength. Next, the Keldysh’s model is further extended in order to describe

the photoionization of hydrogenlike atom from arbitrary initial energy level, which is not

only restricted to the initial ground state energy level. A general analytical expression for

arbitrary n00 energy level is obtained where n is the principal quantum number. Mean-

while, semianalytical expression is obtained for arbitrary nlm energy level where l is the

azimuthal quantum number and m is the magnetic quantum number. Furthermore, we

have also extended the Keldysh’s theory to study the interaction between the hydrogen-

like atoms with ultra intense laser where the relativistic effect is taken consideration in

the model. The extension of the theoretical model into relativistic regime will provide a

significant insight into the real world study since experimental works are deal with highly

intense pulsed laser such as Ti:Sa laser for research study. The theory developed in this

research will particularly benefit the future development of attoseconds laser, thus pro-

viding new tools for imaging and requiring further the development of electron control

through intense light-matter interaction.
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ABSTRAK

Pengionan Atom secara Foto dalam Medan Laser Sengit

Kajian ini ditumpukan kepada analisis interaksi antara atom dan medan laser sengit

secara terperinci, di mana fokus utama diberikan kepada spektra pengionan hidrogenik

atom secara foto. Model teori utama yang terlibat untuk menjelaskan fenomena pengio-

nan secara foto ini adalah model Keldysh. Pertamanya, formalisme Keldysh diterbitkan

secara terperinci dan kepentingan fizikalnya diterokai. Kami telah mempersembahkan

perlanjutan model Keldysh ini kepada unggapan analisis separa untuk mengkaji ciri-ciri

kadar pengionan atom dalam medan laser sengit. Khususnya, model Keldysh telah digen-

eralisasi untuk cahaya polarisasi linear daripada momentum foto elektron kecil kepada se-

barang nilai momentum. Dengan mengaplikasikan medan laser yang berlainan, misalnya

linear, bulatan dan elips, kami telah menunjukkan perubahan spektra daripada kadar pen-

gionan dan membuat perbandingan antara kadar tepat dengan unggapan analisasi Keldysh

secara fungsi frekuensi dan kekuatan medan elektrik. Seterusnya, model Keldysh telah

dilanjutkan sekali lagi untuk menjelaskan pengionan hidrogenik atom secara foto dari-

pada sebarang tahap tenaga awal, di mana tidak tertakluk kepada tahap tenaga dasar sa-

haja. Unggapan analisasi umum untuk sebarang tahap tenaga n00 telah didapati di mana

n adalah nombor kuantum utama. Sementara itu, unggapan analisasi separa telah didap-

ati untuk sebarang tahap tenaga nlm di mana l adalah nombor kuantum azimuthal dan m

adalah nombor kuantum magnetik. Tambahan pula, kami juga melanjutkan teori Keldysh

untuk mengkaji interaksi antara hidrogenik atom dengan laser berkuasa sengit di mana

faktor kerelatifan diambil kira dalam pertimbangan. Perlanjutan model teori ini kepada

bidang kerelatifan menyediakan pengetahuan fizikal yang penting kepada kajian dunia

sebenar di mana kajian eksperimen biasanya berurusan dengan laser gelombang nadi un-

tuk kajian laser sengit. Teori yang dibangunkan daripada kajian ini akan memberi manfaat

kepada pembangunan masa depan kepada laser attoseconds, justeru menyediakan perala-

tan baru untuk pengimejan dan memerlukan pembangunan pengawalan elektron daripada

interaksi jasad-cahaya sengit.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Strong Field Ionization

Over the past few decades, the invention of laser has brought a remarkable advance-

ment (Raymond Ooi & Seow, 2013) for the development of technologies such as fem-

tosecond mid-infrared lasers (Popmintchev et al., 2012), intense few-cycle pulse (Hu &

Collins, 2005), carrier-to-envelope phase control (Jones et al., 2000) and extreme ultravi-

olet laser (Richter et al., 2009). The recent technologies dates back the past 15 years such

as X-ray free electron laser (Yu et al., 2000), attosecond pulses (Antoine, L’Huillier, &

Lewenstein, 1996), high harmonic generation (Bandrauk & Shon, 2002) and molecular

imaging (Peters et al., 2011) adopt the non-perturbative theory as the main theoretical

engine. Strong field ionization of atom can no longer be described by the ordinary per-

turbation theory, loose definition since the ionization process requires multiphotons to be

absorbed or emitted. In the past decade, the research by H. R. Reiss (Reiss, 1992) had

introduce a new range of parameter which is the ratio of ponderomotive energy to the

photon energy. This familiar metrics is defined as z ≡Up/h̄ω where the ponderomotive

energy

Up = E2/4ω
2 (1.1)

in atomic unit is the cycle-average kinetic energy of a free electron in an intense laser field

with the laser amplitude E and the laser frequency ω . The z-value is having the dimension

which is proportional to ω−3 and the physical meaning of this particular value gives the

idea of how much is the photons exchanged during the interaction between the atom and

the intense laser field. The invention of the intense femtosecond mid-infrared laser enable

the finding of the z-value of several hundreds. Later on, following by the invention of X-

ray free electron laser (XFEL) (Huang & Kim, 2007) allows the sequential removal of all

the electrons from the parent atom although the particular z-value is practically zero.

In this field of research, strong field ionization requires a certain amount of painstak-
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ing works where the experiments are driving all along the time while the theory is being

developed. For instance in the earlier theoretical work, even the Schrodinger equation for

eliminating the single electron from the binding force of the strong external electromag-

netic field and also the Coulomb potential of the particular atom cannot be solved exactly.

In 1987, a new effect which is known as Stark-induced Rydberg resonances was observed

and reported by Freeman (Freeman et al., 1987). Later on, the theoretical treatment in

order to describe this phenomenon had been established, which is known as the Floquet’s

theory (Rottke et al., 1994). However, the method is still depending on the perturbation

theory where low intensity of the laser field and short wavelength are taken into consid-

eration. Perturbation theory starts to lose its significance when as soon as the photon

energy is smaller compared to the larger Stark shifts effect. On the contrary, the solution

of Schrodinger equation has to seek for other approximations beyond perturbation theory

such as Keldysh’s theory (Keldysh, 1965), and later by Faisal’s theory (Faisal, 1973) and

also Reiss’s theory (Reiss, 1980, 1992). Additionally, the detailed comparison between

the three different approaches always known as the Keldysh-Faisal-Reiss (KFR) theory

(Popov, 2004). By using the non-perturbative approach in Keldysh’s theory, where high

intensity of the laser field and long wavelength limit are taken into consideration, hence

the total ionization (R. Ooi, Ho, & Bandrauk, 2012) (In the later chapter, it is denoted as

w) is behaving like the rate of dc-tunneling.

The Keldysh theory of describing the simple tunneling ionization has gain its popu-

larity over years; even so, in the recent review of Reiss mentions that the concept of the

tunneling ionization has a limited range of applications. Tunneling ionization has been

playing the main role in the strong field ionization until the new theory, “The simple man

model” developed by Corkum in 1993 followed by the high harmonic generation theory

by Lewenstine (Lewenstein, Balcou, Ivanov, L’Huillier, & Corkum, 1994) and Becker

(Becker, Lohr, Kleber, & Lewenstein, 1997) lead the strong field ionization to a new era

of laser, which is known as attosecond physics. Corkum’s model provides a classical de-

scription of the electron in the strong electromagnetic field, tunnel to the continuum and

recollide with the parent ion, hence resulting in the maximum energy,

Nmh̄ω = Ip +3.17Up (1.2)
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where Ip is the ionization potential energy and Up is the ponderomotive potential as de-

fined above. Furthermore, in the later work of M. Lein incorporates recolliding electrons

for molecular imaging (Lein, 2007; N. Milosevic, Corkum, & Brabec, 2004). These

works provide important foundations leading to the development of the intense light mat-

ter interactions (Bandrauk & Yu, 1999; E. Leorin & Bandrauk, 2007).

More experimental works right after the establishment of the theoretical models lead

to the generation of high-energy attosecond light sources (G. Sansone & Nisoli, 2011)

from gas. The attosecond light generation is based on the theory of high-harmonics gen-

eration where the electron is driven to the Volkov continuum state, returns and recollide

to the parent ion (Lein & Rost, 2003), emitting a plateau of harmonics where the cutoff

is located at Ip +3.17Up. A vast number of works are still trying to figure out the nature

of the cutoff and whether other values beside Ip + 3.17Up are possible. Recent work by

D. B. Milošević and A. F. Starace (B. & Starace, 1999) showed that the linearly polarized

laser with the static field perpendicular to the laser field can induce a plateau towards high

energy X-ray photons. K. J. Yuan and A. D. Bandrauk (K.-J. Yuan & Bandrauk, 2010,

2011b) had performed numerical results that showed the molecular high-order harmonic

generation (Kamta & Bandrauk, 2005) can have the maximum elliptically polarized har-

monic energies of Ip + 13.5Up (K.-J. Yuan & Bandrauk, 2010, 2011a), for certain inter-

nuclear distances and also relative pulse carrier envelope phase. The model shows that

high-harmonic generation is not only contributed by the recollision of the electron to the

parent ion of H+
2 but also recollision with the neighbouring ion as well. Some work by D.

B. Milošević, W. Becker, and R. Kopold has shown that circularly polarized harmonics

(B., Becker, & Kopold, 2000) can be generated if the superposition of a linearly polarized

laser field is orientated at an appropriate angle with a static electric field.

Since the past two decades, more applications (R. Ooi & Khoo, 2012; R. Ooi & Lee,

2013b; Ng & Ooi, 2013) in the strong field ionization have been developed base on the

experiment findings such as Above Threshold Ionization (ATI), Multiphoton Ionization

(MPI), resonant Multiphoton Ionization (RMPI) and the non-sequential double ionization.

As a result of this, the new technology for instance, laser generating ultrafast light pulses

becomes a surprise and a big gift by entering the millennium. Since then, more new tools

are invented for the purpose of strong field investigation such as intense mid-infrared
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lasers, few-cycle pulses, carrier-to-envelope phase control and COLTRIMS devices. After

the millennium year, following by a plethora of discovery such as attosecond generation

and attochirp (Kohler, Keitel, & Hatsagortsyan, 2011), ion recoil momentum distributions

(Weber et al., 2000), absolute phase effects (Stockman & Hewageegana, 2007), long-

wavelength scaling of ATI (Corkum, Burnett, & Brunel, 1989), nonlinear optics (R. Ooi

& Lee, 2013a) in the XUV (Van Dao, Teichmann, Davis, & Hannaford, 2008) and X-

ray regime (Zhuang, Miranda, Kim, & Shen, 1999), non-sequential multiple ionization

(Guo, Li, & Gibson, 1999), attosecond measurements of the ionization time delay and

a universal strong field low-energy structure. In the evolution of strong field ionization,

more and more concerns are focusing on controlling the electron dynamics so that new

imaging tools can be developed base on high harmonics generation.

The new millennium imaging (Chen et al., 2009) tools are very important to explore

the wonder of nature for our better understanding, for instance the chemical process.

Since the chemical interaction is involving basically the electromagnetism force which is

the transferring process of electron between atoms or molecules. In order to capture such

a fast movement of chemical process (in the range around femtosecond, ≈ 10−15s ), we

need a faster imaging tool to breakthrough such as the attosecond generation (≈ 10−18s).

However, the invention of such a great technology requires a combination of knowl-

edge from various aspects such as photoionization (R. Ooi et al., 2012), recombination

(Zimmermann, Lein, & Rost, 2005) and re-collision (D. B. Milosevic & Ehlotzky, 2003)

with parent ion in order to control the electron dynamics well. Hence, recent works start

to focus back on these aspects such as photoionization and high harmonic generation

(Clatterbuck et al., 2004) of different kind of laser fields, i.e. linear, circular and elliptical

polarizations, photoelectron momentum distributions (K.-J. Yuan, Chelkowski, & Ban-

drauk, 2013); in order to provide a complete, well established theoretical model and also

experimental justifications for a better understanding of the fundamental. By combining

all these great works, the invention of this new millennium imaging (Teichmann, Chen,

Dilanian, Hannaford, & Van Dao, 2010) tool can be achieved soon.
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1.2 Motivations of the Research

As what we have discussed in the introduction, it is clear that the evolution of the

strong field ionization and the world starts to concern on understanding the electron dy-

namics of an atom during the interaction with intense laser so that the controlling of

electron can be done. However, many new findings recently are reporting the incomplete-

ness of the past theories such as Keldysh and Ammosov-Keldysh-Delone (ADK) model.

For example, in the recent work of Y. Z. Fu (Fu Yan-Zhuo, 2012), they found that the

incompleteness of the ADK theory which overestimates the ionization rate and fails to

give the correct ionization probability in the over-the-barrier (OBI regime). Without the

establishment of a complete theoretical model, we can never fully understand physics

phenomenon behind; as a result, a lot of new experiment findings meet bottleneck be-

cause these phenomenon cannot be well explained by the past theory. Consequently, we

are motivated to develop a more general and well established theory for the better under-

standing of photoionization spectra of the hydrogen atom.

In our research, we study the Keldysh model in details and found that the incom-

pleteness of the theory due to certain aspects, for example in the process of the interaction

between hydrogen and the laser field, the laser field strength is not intense enough base

on the new era perspective (perhaps it is considered very intense in the olden day). Be-

sides, during the calculation, we found that Keldysh’s assumption on the photoelectron

is having a small momentum, where the low frequency of the laser field is considered

since the direct proportionality of the photoelectron momentum and the laser frequency.

In spite of that, Keldysh model has a limitation of setting the hydrogen ground state as

the initial state of the tunneling ionization. Nevertheless, this is consider as an ideal case

because the electron of the hydrogen atom cannot be in the exactly ground state in the real

world. It might get excited to certain level due to some external factors with surroundings

or interaction between other atoms.

In the later part, we will make an outline in details for each chapter and explain

our method to overcome the issues as mentioned. This thesis is concerning on establish

a more general and better theoretical model to describe the photoionization of atom in

intense laser field for the sake of future technology such as the attosecond imaging tool.
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1.3 Objectives

In this thesis, there are several important objectives to achieve. Firstly, we will study

and discuss the past theoretical model of Keldysh on photoionization in details. Next, we

set our focus to establish a general model on photoionization by considering arbitrary

momentum of the photoelectron. Emphasize is made on the laser frequency and the

momentum of photoelectron, comparison with our exact model and Keldysh model will

be made and discussed in further. The next objective is to calculate and further extend

the Keldysh’s formalism to incorporate arbitrary energy level of the hydrogen atom to be

the initial state of the photoionization. Last but not least, we will set the focus to consider

the interaction of hydrogen atom with highly intense laser, where to relativistic effect is

taken consideration in the system.

1.4 Thesis Organization and Outline

This thesis is roughly arranged into six chapters. In the first chapter we will discuss

the literature review and past researches which have done in the strong field ionization.

Moreover, we will briefly explain the motivations of research, objectives and the thesis

outline in this chapter. Chapter 2 is devoted to the introduction of some basic theory and

calculations that are involved in the strong field ionization. Besides, we will briefly in-

troduce the other processes such as Above Threshold Ionization, Multiphoton Ionization

and Corkum’s simple man model to enable the readers to have a better understanding and

perspective of the strong field physics.

In chapter 3, we explore the reasons of the breakdown of the perturbative theory

and derive the theoretical formalism and calculation of the non-perturbative theory. By

understanding the formalism of non-perturbative calculation, we will further explore the

Keldysh model and spell out the formalism in details. The result of the photoionization

rate will be discussed. Chapter 4 is concerning on generalize the Keldysh’s model to

adopt arbitrary momentum of photoelectron. The derivation of our exact model will be

shown and further compared with the Keldysh’s result.

Chapter 5 is devoted to the extension of Keldysh’s formalism so that the initial state

of the photoionization can be arbitrary energy level of the hydrogen wavefunction, mean-

while Keldysh only consider the hydrogen ground state wavefunction as the initial state.
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Thus, we generalized the theoretical model for photoionization so that the pulse enve-

lope function is included and the model can adopt arbitrary electric field strength of the

laser field. Relativistic effect is taken consideration into our generalized model as the

intensity of the laser field is getting higher. In the discussion, the photoionization results

are plotted in angular distribution and comparison has been made on the relativistic and

non-relativistic photoionization. We will show that the result can be retrieved back to

Keldysh’s result which is non-relativistic by reducing the intensity of the intense laser

field.

The last chapter is where the thesis is concluded with a short recap and several

thoughts of future works about photoionization. The works in this thesis have been pub-

lished in well known ISI journals such as Phys. Rev. A and J. Opt. Soc. Am. B, as shown

in Appendix A.
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CHAPTER 2

THE FORMALISM OF LIGHT-MATTER INTERACTION

2.1 Introduction

The idea of intense laser field started from the first most relevant empirical finding

in the development of intense-field science was the observation of breakdown of atomic

gases in air when a laser was shone on it. In 1965, Voronov and Delone were using a

ruby laser (Voronov & Delone, 1966) with photons of about 2eV which is much smaller

than the ionization potentials of noble gas atoms Ar and Xe ( >10eV ) which served as

targets. They reported not only the observation of ions but also a nonlinear dependence of

the ions yields on the laser intensity. In the later work by Hall, Branscomb and Robinson,

they observed the photo-detachment effect (Robinson & Geltman, 1967), in which a neg-

ative ion emitteed an electron by interaction with a beam of subthreshold laser photons.

Following by many interesting findings which develope the intense laser field to become

the pioneer study in the world.

In this chapter, the important formalism that involed in light-matter interaction (Federov,

1991) will be described in details. Those formalism such as gauge transformation, non-

perturbative theory, atom field interaction in semi-classical approach (J.-M. Yuan & George,

1978), the perturbative formalism for strong field ionization are playing the important

roles as the main engines that drive the development of the interaction between atom and

intense laser field. The details study and derivation of these formalism will be shown for

a better understanding to the readers.

The Hamiltonian is the main formalism in the atom field interaction and it is very

important in order to describe an atom whose interaction with the electromagnetic field

results from the fact that the nucleus is moving with instantaneous position α (t). (which

is one of the four Hamiltonian where we will discuss in the following section.) This is

the essential coordinate for a classical free electron when moving in the field without any

interaction. In the next section, we will discuss the gauge transformation on four different

Hamiltonians which is very useful in order to understand the photoionization models in

8



the later part.

2.2 Gauge Transformation

The gauge transformation (Mittleman, 1993) is an important process for understand-

ing each photoionization model in order to preserve the invariance of the equations. For

instance, the following equation consists a phase transformation of the wavefunction,

Ψ→ exp i
(

∑
n

ϒn (rn, t)
)

Ψ, (2.1)

and a corresponding shift in the vector potential A j
(
r j, t
)

and also the scalar potential V ,

A j
(
r j, t
)
→ A j

(
r j, t
)
+

h̄c
en

∇nϒn (rn, t) , (2.2)

V →V − 1
h̄∑

n

d
dt

ϒn (rn, t) . (2.3)

Hence, the Schrödinger equation remains unchanged. The constraint on the poten-

tials and the Maxwell equations which are governing the field are unchanged provided

that the ϒn satisfies the wave equation as following

(
∇

2− 1
c2

d2

dt2

)
ϒn (rn, t) = 0. (2.4)

Gauge transformation is also known as a unitary transformation of the wavefunction

and provide an altered form of the Hamiltonian which is very useful for the calculation in

the later chapter. The Hamiltonian of the Schrödinger equation is defined as below,

H1 =
Z

∑
j=1

1
2µ

(
pi +

e
c

A(t)
)2

+
1

MN

Z

∑
i 6= j=1

(
pi +

e
c

A(t)
)
·
(

p j +
e
c

A(t)
)
+V (Xi...XZ) ,

(2.5)

where µ is the reduced mass of the electron and pi is the canonical momentum. The

Schrödinger equation is defined as

(
ih̄

d
dt
−H1

)
Ψ1 = 0, (2.6)
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and the unitary transformation is applied on the wavefunction

Ψ1 = exp
(
−iΦ j

)
Ψ j. (2.7)

where the function Φ j can be arbitrary function. The new wavefunction is having the

same physical meaning as the old wavefunction. In other word, we can say that the

wavefunction is invariant and it satisfies

(
i

d
dt
−H j

)
Ψ j = 0, (2.8)

where

H j = eiΦ jH1e−iΦ j − Φ̇ j. (2.9)

By setting Φ j, it is obviously shown that the Hamiltonian remains unchanged.

However, the purpose of Φ j is designed to eliminate the second order of the vector

potential, A2 from

Φ2 =
Ze2

2mc2
MA

MN

∫ t
dt ′A2 (t ′) . (2.10)

As a result, the Hamiltonian becomes

H2 =
Z

∑
j=1

p2
j

2µ
+

Z

∑
i> j=1

pi ·p j

2MN
+

e
mc

MA

MN
A(t)×

Z

∑
j=1

p j +V. (2.11)

In general, the coupling to the field is only in the p ·A term, nevertheless it can still

contribute A2 terns when the second order is taken into consideration. Meanwhile, we

introduce another choice of Φ j which will remove the p ·A term

Φ3 =
e
c

Z

∑
j=1

X j ·A(t) , (2.12)

and hence, the new Hamiltonian is obtained without the p ·A term,

H3 =
Z

∑
j=1

p2
j

2µ
+

Z

∑
i> j=1

pi ·p j

MN
+ eE(t)×

Z

∑
j=1

X j +V, (2.13)

where the classical electric field, E(t) is defined as

E(t) =− d
dt

A(t) . (2.14)
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Next, we would like to introduce an infinite possible number of Φ’s which takes the

form of

Φ4 =
e

mc
MA

MN

∫ t

−∞

dt ′A2 (t ′)× Z

∑
j=1

p j +Φ2. (2.15)

In order to remives the p ·A coupling, we introduce a transformation to the Kramers’

gauge (refer to appendix D). The equation is expressed as

eiΦ4X je−iΦ4 = X j−α (t) , (2.16)

where f(t) is defined as

α (t) =
e

mc
MA

MN

∫ t

−∞

dt ′A(t) , (2.17)

and shows that this transformation is also can be known as a space translation or an

acceleration transformation in the accelerated frame.

Hence, the new Hamiltonian is

H4 =
Z

∑
j=1

p2
j

2µ
+

Z

∑
i> j=1

pi ·p j

MN
+V (X1−α (t) , ...XZ−α (t)) . (2.18)

In other word, the above Hamiltonian as in Eq. 2.18 which is generated by Φ4 in Eq.

2.15 has a physical meaning where the free electron is space translated to a frame which

is unaccelerated, but the nucleus is still moving in the field itself.

The four Hamiltonian that we have discussed are all equally meaningful thus pro-

viding identical physical results when the Schrödinger equation is solved exactly. Gauge

transformation (Brown & Kibble, 1964) may cause the result to be different if the gauge

is not chosen wisely. Therefore, we shall understand that the different gauges may be

useful in different system.

2.3 Interaction between Atom and Field

Atom field interaction (Claude Cohen-Tannoudji, 2012) involves coupling between

the atom and the mode of the electromagnetic field. Description of the interaction is valid

when the atomic levels involved are resonant with the driving field while other levels are

highly detuned. The semiclassical theory treats the atom as a quantum three-level system
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and the radiation field classically. The three level atom undergoes optical Rabi oscillations

(R. Ooi, Hazmin, & Singh, 2013) induced by the driving electromagnetic field. The

oscillations experience damping as the atomic levels decay. A better understanding of

this simple model of the atom-field interaction is crucial before engaging in more complex

problems involving an ensembles of atoms interacting with the field such as laser. This

also provides a platform for studying complicated atoms ensembles such as biomolecules.

The atom and field interaction can be described by two different theory which is the

semiclassical theory and the quantum theory. The semiclassical theory predicts Rabi os-

cillations for atomic inversion ignoring decay process while the quantum theory predicts

certain collapse and revival phenomena due to the quantum aspects of the field.

2.3.1 Semi-Classical Theory

Atom field interaction involves coupling between the atom and the mode of the elec-

tromagnetic field. Description of the interaction is valid when the atomic levels involved

are resonant with the driving field while other levels are highly detuned (V. M. Akulin &

Sartakov, 1977). The semiclassical theory treats the atom as a quantum three-level system

and the radiation field classically. The three level atom undergoes optical Rabi oscilla-

tions induced by the driving electromagnetic field. The oscillations experience damping

as the atomic levels decay. A better understanding of this simple model of the atom-field

interaction is crucial before engaging in more complex problems involving an ensembles

of atoms interacting with the field such as laser. This also provides a platform for studying

complicated atoms ensembles such as biomolecules.

2.3.1 (a) Atom Field Interaction Hamiltonian

The minimal coupling Hamiltonian depicts about the interaction of an electron of

charge e and mass m with an external electromagnetic field

H =
1

2m
[p− eA(r, t)]2 + eU (r, t)+V (r) , (2.19)

where p is the canonical momentum operator, A(r, t) and U (r, t) are the vector and scalar

potentials of external electromagnetic field respectively and V (r) is the electrostatic po-

tential which acts as atomic binding potential. From here, we can see several approaches

of the Hamiltonian.
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1. Local Gauge (phase) Invariance and Minimal-Coupling Hamiltonian The mo-

tion of a free electron can be explained by the Schrodinger equation

−h̄2

2m
∇

2
ψ = ih̄

dψ

dt
. (2.20)

The probability density for finding an electron at position r and time t is

P(r, t) = |ψ (r, t)|2 .

If the solution is ψ (r, t), so does ψ (r, t) = ψ (r, t)exp(iχ) where χ is an arbitrary

constant phase and the probability density is unaffected by the choice of χ . This means

two functions that differ by a constant phase factor still represents the same physical state.

However, thing changes if phase is allowed to vary locally, by means to be a function

of space and time variables such that ψ (r, t)→ ψ (r, t)eiχ(r,t). Hence, the Scrodinger

equation had to be modified to satisfy the local gauge invariance (Vanne & Saenz, 2009)

by adding new terms to Eq. 3.114{
−h̄2

2m

[
∇− i

e
h̄

A(r, t)
]2

+ eU (r, t)
}

ψ = ih̄
dψ

dt
, (2.21)

where A(r, t)→ A(r, t)+ h̄
e ∇χ (r, t) and U (r, t)→U (r, t)− h̄

e
dχ

dt (r, t). The scalar and

vector potnetial are gauge dependent potentials. The gauge-independent quantities are

electric fields E = −∇U − dA
dt and magnetic fields B = ∇×A. Take note that RHS of

equation below is actually the Hamiltonian of Eq. 2.19. Thus, Scrodinger can be rewritten

in terms of gauge-dependent quantities{
1

2m
[−ih̄∇− eA(r, t)]2 + eU (r, t)

}
ψ = ih̄

dψ

dt
(2.22)

by using p = −ih̄∇. The electrons are described by wavefunction ψ (r, t) whereas the

field is depicted by the vector and scalar potentials A and U , respectively.

2. Dipole Approximation & r ·E Hamiltonian Consider that the electron is bound by

a potential V (r) to the nucleus located at r0. Dipole approximation (Kylstra et al., 2000)

simplifies the minimal-coupling Hamiltonian. The entire atom is immersed in a plane of

electromagnetic wave depicted by a vector potential A(r0 + r, t) which is expressed in
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dipole approximation k · r << 1 as

A(r0 + r, t) = A(t)exp(ik · (r0 + r)) (2.23)

= A(t)exp(ik · r0)(1+ ik.r+ ...) (2.24)

' A(t)exp(ik · r0) . (2.25)

From Eq. 3.124, let A(r, t) = A(r0, t) and binding potential V (r) that denotes elec-

trostatic potential that binds electron to nucleus, getting

{
−h̄2

2m

[
∇− i

e
h̄

A(r0, t)
]2

+V (r)
}

ψ (r, t) = ih̄
dψ (r, t)

dt
. (2.26)

In the radiation gauge, U (r, t) = 0 and ∇ ·A = 0. A new wave function φ (r, t) is

defined which is in the form of

ψ (r, t) = exp
(

i
e
h̄

A(r0, t) · r
)

φ (r, t) . (2.27)

We pluck the Eq. 2.27 into Eq. 3.14 to get{
−h̄2

2m

[
∇− i

e
h̄

A(r0, t)
]2

+V (r)
}

exp
(

i
e
h̄

A(r0, t) · r
)

φ (r, t)

= ih̄
d
dt

exp
(

i
e
h̄

A(r0, t) · r
)

φ (r, t) , (2.28)

then we reduce Eq. 2.28 into

exp
(

i
e
h̄

A · r
)[ p2

2m
+V (r)

]
φ (r, t) = ih̄

[
·
φ (r, t)+ i

e
h̄

·
A · rφ (r, t)

]
exp
(

i
e
h̄

A · r
)
, (2.29)

and obtain the following expression

ih̄
·
φ (r, t) =

[(
p2

2m
+V (r)

)
+ e

·
A · r

]
φ (r, t) . (2.30)

Next, we define unperturbed Hamiltonian of the electron as H0 =
p2

2m +V (r) and use

E =−Ȧ yielding

ih̄
·
φ (r, t) = [H0− er ·E(r0, t)]φ (r, t) . (2.31)

The total Hamiltonian is

H = H0 +H1,
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with

H1 =−er ·E(r0, t) . (2.32)

is in terms of gauge-independent field E.

3. p ·A Hamiltonian Hamiltonian can also be expressed in terms of canonical momen-

tum p and vector potential A. The radiation gauge (Bauer, Milosevic, & Becker, 2005)

is followed where U (r, t) = 0 and ∇ ·A = 0. In quantum mechanics, [p,A] = 0 due to

∇ ·A = 0. The total Hamiltonian is

H ′ = H0 +H2 (2.33)

where H0 =
p2

2m +V (r). In the dipole approximation of Eq. 2.25

H2 =−
e
m

p.A(r0, t)+
e2

2m
A2 (r0, t)

The Scrodinger equation becomes

Hψ (r, t) = ih̄
d
dt

ψ (r, t) (2.34)[
H0−

e
m

p.A(r0, t)+
e2

2m
A2 (r0, t)

]
ψ (r, t) = ih̄

d
dt

ψ (r, t) (2.35)

The A2 term is usually small and is ignored. Thus

ih̄
d
dt

ψ (r, t) =
[
H0−

e
m

p ·A(r0, t)
]

ψ (r, t) (2.36)

such that H2 =− e
mp ·A(r0, t). H1 and H2 give different physical results because the ma-

trix elements of these Hamiltonians calculated between the eigenstates of the unperturbed

Hamiltonian H0 are dissimilar. Next, we consider linearly polarized monochromatic plane

wave field interacting with an atom placed at r0 = 0,

E (0, t) = Ẽ cosvt (2.37)

A(0, t) =−1
v

Ẽ sinvt (2.38)

and the time-independent amplitudes associated with H1 and H2

W1 =−er.Ẽ (2.39)
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W2 =
e

mv
p.Ẽ (2.40)

The initial eigenstate |i〉 of H0 = H0 |i〉 = h̄ωi |i〉 and a final eigenstate | f 〉 ,H0 | f 〉 =

h̄ω f | f 〉 with the frequency transformation, ω = ω f −ωi.

2.4 Non-perturbative theory

For pedagogical reason, the wavefunction of a single particle moving in three dimen-

sions can be described by the following equation,

ih̄Ψ(r, t) = H(r, t)Ψ(r, t), (2.41)

where the Hamiltonian (Tong & Chu, 1997) is defined as

H(r, t) = Tk +V (r, t) =− h2

2m
∇+V (r, t). (2.42)

Before proceed to the Schrödinger equation, firstly we have to introduce the equation

of continuity which is defined as

ρ(r, t) =−∇ j(r, t), (2.43)

with the so-called probability density

ρ(r, t) = |Ψ(r, t)|2 , (2.44)

and the probability density flux which is described as the following expression

j(r, t) =
h̄
m

Im{(r, t)}=− 1
m

Re{Ψ∗(r, t)pΨ(r, t)}. (2.45)

We refer to the above equation 2.45, both LHS and RHS of this equation must be

equal to a constant, which we name as E. Hence, we thus arrive at the two equations,

ih̄
·
ϕ(t) = Eϕ(t), (2.46)

H(r)ψe(r) = Eψe(r). (2.47)
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The first of these equations, equation 2.46 can be solved immediately and yields,

ϕ(t) = ϕ0e−iEt/h. (2.48)

Next, the solution for time-dependent Schrödinger equation is obtained as following,

Ψ(r, t) = ψE(r)ϕ0eiEt/h. (2.49)

We would rewrite a general solution of the time-dependent Schrödinger equation

which is a linear combination of eigenfunctions,

Ψ(r, t) =
∞

∑
n=0

anψn(r)e−iEt/h (2.50)

or another expression,

Ψ(r, t) =
∫

dEa(E)ψe(r)eiEt/h (2.51)

Next, we shall rewrite the time-dependent schrodinger equation 2.41 into the opera-

tor form and ket, which is

ih̄
∣∣Ψ(t)〉= Ĥ

∣∣Ψ(t)〉. (2.52)

A formal solution of this equation is given by

∣∣∣Ψ(t)〉= eiH(t−t0)/h
∣∣∣Ψ(t0)〉=U(t, t0) |Ψ(t0)|〉, (2.53)

and it can be shown that the integral as following expression

〈Ψ(t)Ψ(t)〉=
〈

Ψ(t0)
∣∣∣eiĤt(−t0)/he−iH(t−t0)/h

∣∣∣Ψ(t0)
〉
= 〈Ψ(t0)Ψ(t0)〉 , (2.54)

which is equivalent to the time-evolution operator being unitary

U(t, t0) =U−1(t, t0). (2.55)
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Let us recall the composition property of the time-evolution operator (Bandrauk,

1994)

U(t, t0) =U(t, t ′)U(t ′, t0). (2.56)

Hence, the wavefunction can be shown by insertion

|Ψ(t)〉=|Ψ(t0)〉−
1
h

∫
t0

dt ′Ĥ(t ′)Ψ(t ′). (2.57)

On the contrary, let us introduce a special wavefunction, the closure relation, which

is defined as

K(r, t;r′0) =
∫

d3r′′K(r, t;r′′, t ′)K(r′′, t ′′;r′,0), (2.58)

and also the Feynman-Kac formula (Moral, 2004),

E0 = − lim−InG(−ihr,0), (2.59)

Ť
[
Ă(t1)B(t2)

]
≡

{
B(t2)A(t1)
A(t1)B(t2)

}
. (2.60)

Therefore, the time-ordering operator can be shown as

Ŭ(t, t0) = Ť e−i/h
∫ t

dt ′Ĥ(t ′). (2.61)

As a result, the propagated wavefunction becomes

Ψ(r, t) =
∫

d3r′
〈
r |U(t,0)|r′

〉
Ψ(r′,0), (2.62)

After replacing the time-ordering operator into the closure relation, hence the posi-

tion matrix element of the time-evolution operator would be

K(r, t;r′,0) =
〈
r |U(t,0)|r′

〉
. (2.63)

Let us define another special wavefunction, the closure relation which is defined as

K(r, t;r′,0) =
∫

d3r′′K(r, t;r′′, t ′′)K(r′′, t ′′;r′,0), (2.64)
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thus, at the spectral representation, it can be rewritten as

K(r, t; ,r′,0) =
∞

∑
n=0

Ψ
∗
n(r
′)Ψn(r). (2.65)

By considering the auto-correlation function of an initial wavefunction, therefore,

Ψα = ∑
n
|n〉〈n|∑

n
cn, (2.66)

which is defined according to

Cαα(t) =
〈

Ψα

∣∣∣e−iHt/h
∣∣∣Ψα

〉
= ∑

n
|Cn|2 e−iEnt/h

. (2.67)

Hence, one gains the local spectrum by Fourier transformation

S(ω) =
1

2πh

∫
dteiwt

αα(t)

=
∞

∑
n=0
|Cn|2 δ (En−hω ). (2.68)

To this end, we perform the time evolution on equation 2.67 and yield,

Ψα(−ihτ) = ∑
n0

Cn|n〉e−rEn, (2.69)

and we perform the Taylor expansion of the potential around = qt accoding to

V (, t)V (qt, t)+V ′(qt, t)(−qt)+
1
2!

V ′′(qt, t)(−qt)2. (2.70)

By using the time-dependent Schrödinger equation again, after the insertion of the

time and position derivatives of the wavefunction, we can get the first and second deriva-

tive of the wavefunction as the following expression,

Ψ(x, t) = −αt(x−qt)2 +2αtqt(x−qt)+
i
h

pt(x−qt)− i
h

ptqt +
i
h

δ t}, (2.71)

Ψ
′(r, t) = [−2αt(x−qt)+

i
h

pt]2}Ψ(x, t), (2.72)

Ψ
′′(x, t) = {−2αt +[−2αt(x−qt)+

i
h

pt]2}Ψ(x, t). (2.73)
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The wavefunction along the straight lines originating from i = 0 can thus be written

as

Ψ(2kτ,τ) =

√
2

LN
1
2i

q−(k/2)2
N

∑
n=1
{q(n+k/2)2

−q(n−k/2)2
},√

2
LN

1
2i

q−(k/2)2
. (2.74)

To this end a simplified version of the short-time propagator with a simple end point

rule for the discretization of the potential part of the action by replacing

V (
x j+ x j−1

2
), (2.75)

with

V (x j−1). (2.76)

By defining the deviation from the classical path as

η(t ′) = x(t ′)− xcl(t ′), (2.77)

the second-order expansion needed for the SPA is given by

S[x] = S[xcl]+
1
2

∫
dt ′η(t ′)Ŏη(t ′), (2.78)

with

Ŏ =−m
d2

dt2 −V ′′. (2.79)

From basic classical mechanics we have the identity which is defined as

∂ 2S[xcl

∂x f ∂xi
=−∂ pi

∂x f
. (2.80)

Hence, we have the Schrödinger equation in the interaction picture, where the per-

turbation Hamiltonian in the interaction picture is given by

Ŵ1(t,0) := Ŭ0(t,0)Ŵ (t)Ŭ0(t,0). (2.81)
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Thus, the total Hamiltonian shall be of the form

Ĥ =
2

∑
n−1

Ĥn(xn)+V12(xn), (2.82)

with single particle operators

Ĥn(xn) =−
h2

2m
∂ 2

∂x2
n
+Vn(xn), (2.83)

and the coupling potential V12 depending on the two coordinates in a non additive manner.

The so-called Hartree Ansatz (Caillat et al., 2005) for the wavefunction is of the form

Ψ(x1,x2,t) = Ψ1(x1,t)Ψ2(x2,t). (2.84)

This Ansatz is exact in the case that the coupling V12 vanishes, the single particle

functions then fulfill

ihΨn(xn, t) = ĤnΨn(xn,t). (2.85)

We now plug the Hartree Ansatz into the full time-dependent Schrödinger equation

and find

ih(Ψ2Ψ1 +Ψ1Ψ2) = Ψ2Ĥ1Ψ1 +Ψ1Ĥ2Ψ2 +V12Ψ1Ψ2. (2.86)

By using the single particle equations of zeroth order with the index 2, the second

terms on the LHS and the RHS cancel each other and one finds

ihΨ1(x1,t) =
(
− h2

2m
41 +V1,o f f (x1,t)

)
Ψ1(x1, t) (2.87)

with an effective, time-dependent potential

V1,o f f (r1,t) =V1(x1)+(Ψ2 |V12|Ψ2)2. (2.88)

An analogous equation can be derived for particle 2

ihΨ2(x2,t) =
(
− h2

2m
42 +V2,o f f (x2,t)

)
Ψ2(x2,t), (2.89)
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and thus having the full solution of the time-independent Schrödinger equation

Ĥψn(x,X) = Enψn(x,X), (2.90)

with the Hamiltonian

Ĥ =
p̂2

2m
+

p̂2

2M
+ v(r,X)+V (X). (2.91)

2.5 Time-Dependent Quantum Theory

Time-dependent quantum theory(Kulander, 1988) is the main engine that drives the

non-perturbative theory, we shall start with the Hamiltonian as the following

Ĥ0(x
∣∣X)φ j(x

∣∣X) = ε
0
j (X)φ j(xX), (2.92)

where

Ĥ0(xX) =
p̂2

2m
+ v(x,X), (2.93)

depends parametrically on X and j is the quantum number of the light particle. By using

the product Ansatz (Reiss, 2008), we have

ψn(x,X)φ j(xX)x1, j(X), (2.94)

and one arrives at equations of the form

Ĥ1
j (X)x1, j(X) = ε

1
l x1, j(X), (2.95)

with the Hamltonian

Ĥ1
j (X) =

p̂2

2M
+V (X)+ ε

0
j (X). (2.96)

As a result, this yields coupled differential equations for the coefficients

ihc j(t) = ε
0
j c j− ihX ∑

k
d j,kck. (2.97)
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In dealing with laser driven systems the problem of time-periodic Hamiltonians is of

central importance. However in this case, we have

Ĥ(t +T ) = Ĥ(t). (2.98)

In order to solve the time-dependent Schrödinger equation, we prove that the Hamil-

tonian is extended by the time derivative

Ĥ(t)≡ Ĥ(t)− ihθt , (2.99)

and the time-derivative of the exponential part yields

Ĥ(x, t)ψα(r, t) = εαψα(r, t). (2.100)

Hence, the wavefunction is written as a superposition of quasi-eigenfunctions

Ψ(t) = ∑
α ′

cα ′ψα ′(t)exp
{
− i

h
εα ′t
}
, (2.101)

with appropriate coefficients

ca′ = 〈ψα ′(0)Ψ(0)〉 . (2.102)

The eigenfunctions of a certain (simple) Hamiltonian, as an example, the harmonic

oscillator as the following expression

ĤHO =− h2

2m
d2

dx2 +
1
2

mω
2
e x2. (2.103)

The alternative representation of the harmonic oscillator Hamiltonian

ĤHO = hωe

(
ă′ă+

1
2

)
. (2.104)

An arbitrary time-dependent wavefunction can now be expanded into eigenfunctions

of the harmonic oscillator according to

Ψ(t) =
∞

∑
l=0

dl(t)l. (2.105)
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Due to the periodic timedependence of the Floquet functions they can be Fourier

expanded according to

|ψα(t)〉=
∞

∑
n=−∞

|ψn
a 〉einωt . (2.106)

The Fourier coefficients on the RHS of equation 2.106 can in turn be expanded in an

orthogonal system {|k}

|ψn
a 〉=

∞

∑
k=0

ψ
n
k,α |k〉, (2.107)

and the time integration yields

Ĥ [m−n] = Ĥ0δm,n +
Ĥ1

2i
{δmn−1−δmn+1}. (2.108)

Then, this leads to the fact that the exponentiated operator of kinetic energy becomes

local and can be applied easily via

〈
x′′
∣∣∣e−iτk4t/h

∣∣∣ p′
〉

=
〈
x′′p′

〉
eτk(p′)4t/h

=
1√
2πh

eip′r′′/heiT k(p′)4t/h. (2.109)

The discrete version of the Fourier transform is

Φ(xi) =
N/2

∑
k=−N/2−1

ake2πikr1/X , (2.110)

ak =
1
N

N

∑
n=1

Φ(xn)e−2πikxn/X . (2.111)

The maximal momentum that can be described is

pmax = h/(24x) = Nh/(2X). (2.112)

This can be avoided by adding a negative imaginary potential of the form

V (x) =−i f (x)Θ(x− xa). (2.113)
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An at least conditionally stable method can be constructed by application of the

second-order formula

Ψ(t)
Ψ(t +4t)−Ψ(t−4t)

24 t
. (2.114)

The condition under which it is stable can be derived by considering the eigenvalues

of the propagation matrix that appears by using the discrete form of the time-derivative

(
Ψn+1

Ψn

)
=

(
1−4Ĥ24 t2/h2−2iĤ4 t/h

−2iĤ4 t/h

)(
Ψn−1

Ψn−2

)
. (2.115)

By replacing the operator Ĥ with E, the eigenvalues of the matrix are

λ1,2 = 1−2E24 t2/h2± 2E4 t
h

√
E24 t2

h2 −1, (2.116)

and the first-order formula is

Ŭ(4t)1̂− iĤ4 t/h. (2.117)

Hence, equating the gained expressions yields

(1̂+ iĤ4 t/h)|Ψn+1〉= (1̂− iĤ4 t/h)|Ψn−1〉. (2.118)

Due to its implicit nature the method requires a matrix inversion and formally leads

to the prescription (also referred to as Cayley approximation)

|Ψn〉=
1̂− iĤ4 t/(2h)

1̂+ iĤ4 t/(2h)
|Ψn−1〉. (2.119)

The idea behind polynomial methods is the expansion of the time-evolution operator

in terms of polynomials, according to

e−iHt/h = ∑
n

an pn(Ĥ). (2.120)

Formally, the equation above can be integrated over a small time step, yielding

η(t +4t) = exp{−4 tĤ}η(t). (2.121)
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The basis for the reformulation of the semiclassical propagator is the matrix element

of the time-evolution operator 1 and 3 between coherent states

K(z f , t;zi;0)≡
〈

z f

∣∣∣e−iĤt
∣∣∣zi

〉
, (2.122)

which is known as the Herman–Kluk Propagator. This procedure yields

KHK(x f ,t;xi,0≡
∫ dN pidNqi

(2πh)N

〈
x f |žt |

〉
R(pi,qi,t)exp{ i

h
S(pi,qi,t)}〈ži |xi|〉 . (2.123)

Definitions that are used in the expression above are the classical action functional,

that depends on the initial phase space variables and for this reason is written (and de-

noted) as a function here according to

S(pi,qi,t)≡t
0 dt ′[pt ′qt ′−H]. (2.124)

Furthermore,

R(pi,qi,t)≡
∣∣∣∣12
(

m11 +m22− ihγm21−
1

ihγ
m12

)∣∣∣∣1/2

, (2.125)

and the mixed matrix element

K(x f ,t; žα ,0)≡
〈

x f

∣∣∣e−iĤt/
∣∣∣ žα

〉
=
∫

dNxiK(x f , t; ,xi,0)〈xi |žα|〉 , (2.126)

with the time-dependent N× N width parameter matrix

γt = γ(m11 +
1

iγh
m12)(m22 + iγhm21)

−1, (2.127)

with the width parameter which is

αt = α0
m11 +

1
2iα0hm12

m22 +2iα0hm21
. (2.128)

The displayed quantity is the auto-correlation function

c(t)≡ 〈Ψ(0)Ψ(t)〉 . (2.129)
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As a result, we obtain the Morse potential with dimensionless Hamiltonian

Ĥ =
p̂
2
+D(1− exp{−λx})2. (2.130)

Nevertheless, we introduce the Weyl transformation which is defined as the follow-

ing

A(p,q) =
∫

dueiqu/h 〈p+u/2
∣∣Ă∣∣ p−u/2

〉
, (2.131)

and the inverse transformation is

Ă =
1
h

∫
d pdqA(p,q)4̂(p,q), (2.132)

4̂ =
∫

dveipv/h |q+ v/2 >< q− v/2| . (2.133)

Hence, we apply Weyl transformation on the Hamiltonian and yield,

H(p,q) =
p2

2m
+V (q). (2.134)

In general, the variation of a functional is defined via

δΦ≡Φ[h] =
∫

dx
δΦ

δh(x)
δh(x). (2.135)

For the specific cases which are

Φ1[h] =
∫

dxh(x) f (x), (2.136)

Φ2[h] =
∫

dxF(x,h(x)), (2.137)

Φ3[h] =
∫

dxF
(

x,h(x),
dh(x)

dx

)
. (2.138)

After perform the second variation, we obtain the following expression

δ
2S[xcl] = δS[xcl +η ]−δS[xcl]

∫
dt ′{−m

d2

dt2 (xcl +η)−V ′(xcl +η)}η−
∫

dt ′{−mxcl−V ′(xcl)}η

=
∫

dt ′{−mη−V ′′(xcl)η}η

=
∫

dt ′ηŎη . (2.139)
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The determinant as defined as det (M) = det (m22)× det(m11m12−m12m21) is

only valid for block matrices which is

δ [x f −qt(pi,XI)] = ∑
j

1
‖∂qt/∂ pi‖

δ (pi− p j). (2.140)

2.6 Light Matter Interaction in Weak Field

The Hamiltonian in the dipole approximation depicts the interaction of a radiation

field E with a single electron atom which is in the form of

H = HA +HF − er ·E (2.141)

HA and HF are the energies of the atom and the radiation field, respectively, without

interaction and r is the position vector of the electron. The field is assumed to be uniform

over the whole atom for dipole approximation.

The energy of free field HF in terms of creation and destruction operators is defined

as

HF = ∑
k

h̄vk

(
a+k ak +

1
2

)
(2.142)

The atom transition operators is σi j = |i〉〈 j|. Since {|i〉} represents a complete set of

atomic energy eigenstates as ∑i |i〉〈i| = 1. The eigenvalue equation HA |i〉 = Ei |i〉 equals

to

HA = ∑
i

Ei |i〉〈i|= ∑
i

Eiσii (2.143)

The final term of Hamiltonian is

er = ∑
i, j

e |i〉〈i|r | j〉〈 j|= ∑
i, j

e〈i|r | j〉 |i〉〈 j|= ∑
i, j

℘i jσi j (2.144)

where ℘i j = e〈i|r | j〉 is the electric-dipole transition matrix element. Assume ℘i j to be

real.

The electric field operator is determined in the dipole approximation at the position

of the point atom. Considering atom at origin

E = ∑
k

ε̂kξk
(
ak +a+k

)
(2.145)
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where ξk = (h̄vk/2ε0V )1/2 (Scully, 1997). Consider a linear polarization basis and real

polarization unit vectors for simplification.

2.6.0 (b) Interaction of a Single Atom with a Single-Mode Field

The Hamiltonian elucidates the interaction of single mode (Pegg & Barnett, 1989)

quantized field of frequency v with a single 2 level atom which is in the form of

H = H0 +H1, (2.146)

where

H0 = h̄va+a+
1
2

h̄ωσz, (2.147)

H1 = h̄g
(
σ+a+a+σ−

)
. (2.148)

The atom-field interaction is explained in the dipole and rotating-wave approximations.

In the interaction picture, the Hamiltonian is in the form of

V = eiH0t/h̄H1e−iH0t/h̄ (2.149)

= ei(va+a+ 1
2 ωσz)t h̄g

(
σ+a+a+σ−

)
e−i(va+a+ 1

2 ωσz)t . (2.150)

The mathematical relation eαABe−αA = B+α [A,B]+ α2

2! [A, [A,B]]+ .. is used to get

eiva+atae−iva+at = ae−ivt and eiωσzt/2σ+e−iωσzt/2 = σ+eiωt .

eiva+atae−iva+at = a+ ivat
[
a+,a

]
+

(ivat)2

2!
[
a+,
[
a+,a

]]
+ ...

= a

(
1− ivt +

(ivt)2

2!

)
= ae−ivt , (2.151)

and the second relation yields

eiωσzt/2
σ+e−iωσzt/2 = σ++ iωt/2 [σz,σ+]

= σ+ (1+ iωt)

= σ+eiωt . (2.152)
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Then, for the creatian operator, we have

eiva+ata+e−iva+at = a++ iva+t
[
a,a+

]
= a+ (1+ ivt)

= a+eivt , (2.153)

and

eiωσzt/2
σ−e−iωσzt/2 = σ−+

iωt
2

[σz,σ−]

= σ− (1− iωt)

= σ−e−iωt . (2.154)

as [σz,σ+] = 2σ+ and [σz,σ−] =−2σ− .

All the above expressions are then pluck into the relations to get Hamiltonian

V = ei(va+a+ 1
2 ωσz)t h̄g

(
σ+a+a+σ−

)
e−i(va+a+ 1

2 ωσz)t

= h̄g
[
eiva+atae−iva+ate

iωσzt
2 σ+e−

iωσzt
2 + eiva+ata+e−iva+ate

iωσzt
2 σ−e−

iωσzt
2

]
= h̄g

[
σ+aei(ω−v)t +a+σ−ei(v−ω)t

]
. (2.155)

The detuning is defined as ∆ = ω− v yielding

V = h̄g
(

σ+aei∆t +a+σ−e−i∆t
)
. (2.156)

The are three equivalent methods to solve for the evolution of the atom-field system

expressed by Hamiltonian which are probability amplitude method, Heisenberg operator

method and unitary time-evolution operator method.

2.6.0 (c) Interaction of a single two-level atom with a single-mode field

1. Probability Amplitude method Consider the interaction of a single-mode radiation

field (Glauber, 1963) of frequency v with a 2 level atom. |a〉 and |b〉 indicates the upper

level and lower level states of the atom where they are eigenstates of the unperturbed part
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of Hamiltonian H0 with the eigenvalues h̄ωa and h̄ωb respectively. The wavefunction of

the two-level atom can be expressed in the form of

|ψ (t)〉=Ca (t) |a〉+Cb (t) |b〉 , (2.157)

where Ca and Cb are the probability amplitudes of finding the atom in states |a〉 and |b〉,

respectively. The Scrodinger equation is

|ψ̇ (t)〉=− i
h̄

H |ψ (t)〉 , (2.158)

H = H0 +H1 where H0 is the unperturbed Hamiltonian and H1 represents the interaction

parts of the Hamiltonian. The completeness relation of |a〉〈a|+ |b〉〈b|= 1 is used to write

H0 as

H0 = (|a〉〈a|+ |b〉〈b|)H0 (|a〉〈a|+ |b〉〈b|) (2.159)

= (H0 |a〉〈a| |a〉〈a|+H0 |b〉〈b| |b〉〈b|)

= h̄ωa |a〉〈a|+ h̄ωb |b〉〈b| , (2.160)

where H0 |a〉= h̄ωa |a〉 and H0 |b〉= h̄ωb |b〉.

As for interaction of atom and radiation field, H1 is rewritten as

H1 = −exE (t)

= −e(|a〉〈a|+ |b〉〈b|)x(|a〉〈a|+ |b〉〈b|)E (z, t)

= −e(〈a|x |b〉 |a〉〈b|+ 〈b|x |a〉 |b〉〈a|)E (z, t) . (2.161)

The matrix element of the electric dipole moment℘ab = e〈a|x |b〉 =℘∗ba and E (t) is the

electric field at the atom. Thus

H1 =−(℘ab |a〉〈b|+℘ba |b〉〈a|)E (t) . (2.162)

The electric field is assumed to be linearly polarized along the x-axis as expressed

as E (t) = Ẽ cosvt in dipole approximation where E is the amplitude and v = ck is the

frequency of the field. Pluck in relevant equations into Scrodinger equation

|ψ̇ (t)〉 = − i
h̄

H |ψ (t)〉 (2.163)

Ċa (t) |a〉+Ċb (t) |b〉 = − i
h̄
{(h̄ωa |a〉〈a|+ h̄ωb |b〉〈b| (2.164)

−(℘ab |a〉〈b|+℘ba |b〉〈a|)E (t)) [Ca (t) |a〉+Cb (t) |b〉]},
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and hence

Ċa |a〉+Ċb |b〉 = − i
h̄
[h̄ωaCa |a〉〈a| |a〉+ h̄ωaCb |a〉〈a| |b〉+ h̄ωbCa |b〉〈b| |a〉(2.165)

+h̄ωbCb |b〉〈b| |b〉−℘abECa |a〉〈b| |a〉−℘abECb |a〉〈b| |b〉

−℘baECa |b〉〈a| |a〉−℘baECb |b〉〈a| |b〉].

Then we substitute E (t) = Ẽ cosvt

Ċa |a〉+Ċb |b〉 = − i
h̄
[h̄ωaCa |a〉+ h̄ωbCb |b〉−℘abẼ cosvtCb |a〉 (2.166)

−℘baẼ cosvtCa |b〉], (2.167)

and multiply with 〈a|

Ċa 〈a| |a〉+Ċb 〈a| |b〉 = − i
h̄
[h̄ωaCa 〈a| |a〉+ h̄ωbCb 〈a| |b〉 (2.168)

−℘abẼ cosvtCb 〈a| |a〉−℘baẼ cosvtCa 〈a| |b〉],

with

Ċa =−iωaCa + i
℘abẼ

h̄
cos(vt)Cb. (2.169)

The Rabi frequency is defined as ΩR = |℘ba|Ẽ
h̄ and φ is the phase of the dipole matrix

element ℘ba = |℘ba|exp(iφ). Hence, the equation of motion for amplitude Ca is

Ċa = −iωaCa + i
|℘ab| Ẽ

h̄
exp(−iφ)cos(vt)Cb

= −iωaCa + iΩRe−iφ cos(vt)Cb, (2.170)

Similarly, for Ċb

Ċb = −iωbCb + i
|℘ba| Ẽ

h̄
eiφ cos(vt)Ca

= −iωbCb + iΩReiφ cos(vt)Ca. (2.171)

The solutions are obtained by expressing the equations of motion for the slowly

varying amplitudes

ca =Caeiωat , (2.172)
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cb =Cbeiωbt , (2.173)

From Eq. 2.170

Ċa = −iωaCa + iΩRe−iφ cos(vt)Cb (2.174)

Ċaeiωat + iωaCaeiωat = iΩRe−iφCbeiωat 1
2
(
eivt + e−ivt) (2.175)

·
Caeiωat = i

ΩR

2
e−iφ cbei(ωa−ωb)t

(
eivt + e−ivt) , (2.176)

and hence

·
ca = i

ΩR

2
e−iφ cb

(
ei(ω+v)t + ei(ω−v)t

)
(2.177)

= i
ΩR

2
e−iφ cbei(ω−v)t (2.178)

= i
ΩR

2
e−iφ cbei∆t , (2.179)

where
·

Caeiωat = Ċaeiωat + iωaCaeiωat and the atomic transition frequency is defined as

ω =ωa−ωb. Detuning is ∆=ω−v. In the rotating wave approximation, counter rotating

terms e±i(ω+v)t are ignored because they are highly oscillating. Similar steps is performed

on Eq. 2.171 getting

Ċb = −iωbCb + iΩReiφ cos(vt)Ca, (2.180)

Ċbeiωbt + iωbCbeiωbt = iΩReiφ cae−iωateiωbt 1
2
(
eivt + e−ivt) , (2.181)

hence,

·
cb = i

ΩR

2
eiφ ca

(
e−i(ω−v)t + e−i(ω+v)t

)
(2.182)

= i
ΩR

2
eiφ cae−i∆t . (2.183)

The solution for ca and cb are found using Laplace transform as below. Changes of

variables are made.

c̃a = cae−
i∆t
2 , (2.184)

c̃b = cbe
i∆t
2 . (2.185)
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From Eq. 2.179

·
cae

−i∆t
2 = i

ΩR

2
e−iφ cbe

i∆t
2 (2.186)

·

cae
−i∆t

2 = − i∆
2

cae
−i∆t

2 + i
ΩR

2
e−iφ cbe

i∆t
2 (2.187)

·
c̃a = − i∆

2
c̃a + i

ΩR

2
e−iφ c̃b, (2.188)

using
·

cae
−i∆t

2 =
·

cae
−i∆t

2 − i∆
2 cae

−i∆t
2 . Similarly, we have

·
cbe

i∆t
2 = i

ΩR

2
eiφ cae−

i∆t
2 (2.189)

·

cbe
i∆t
2 =

i∆
2

cbe
i∆t
2 + i

ΩR

2
eiφ cae−

i∆t
2 (2.190)

·
c̃b =

i∆
2

c̃b + i
ΩR

2
eiφ c̃a. (2.191)

By performing Laplace transform, let use the identity L{ f ′ (x)}= sF (s)− f (0) and

yield

·
c̃a = − i∆

2
c̃a + i

ΩR

2
e−iφ c̃b (2.192)

sc̃a (s)− c̃a (0) = − i∆
2

c̃a (s)+ i
ΩR

2
e−iφ c̃b (s) (2.193)[

s+
i∆
2

]
c̃a (s) = c̃a (0)+ i

ΩR

2
e−iφ c̃b (s) . (2.194)

Meanwhile, the expression for c̃b (s) is obtained

·
c̃b =

i∆
2

c̃b + i
ΩR

2
eiφ c̃a (2.195)

sc̃b (s)− c̃b (0) =
i∆
2

c̃b (s)+ i
ΩR

2
eiφ c̃a (s) (2.196)

c̃b (s) =
c̃b (0)(
s− i∆

2

) + i
ΩR

2
(
s− i∆

2

)eiφ c̃a (s) , (2.197)

Then, we insert Eq. 2.197 to Eq. 2.194 and yield(
s+

i∆
2
+

Ω2
R

4
(
s− i∆

2

)) c̃a (s) = c̃a (0)+ i
ΩR

2
(
s− i∆

2

) c̃b (0)e−iφ (2.198)(
4s2 +∆2 +Ω2

R
4s−2i∆

)
c̃a (s) = c̃a (0)+ i

ΩR

(2s− i∆)
c̃b (0)e−iφ , (2.199)

and the expression for c̃a (s) is
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c̃a (s) = c̃a (0)

(
s− i∆

2

)[
s2 +

(
1
2

√
∆2 +Ω2

R

)2
] (2.200)

+i
ΩR

2

[
s2 +

(
1
2

√
∆2 +Ω2

R

)2
] c̃b (0)e−iφ .

Let us define a new relation to connect the detuning and the Rabi frequency as the

following expression

Ω =
√

∆2 +Ω2
R, (2.201)

and hence we substitute Eq. 2.201 into Eq. 2.200

c̃a (s) = c̃a (0)

(
s− i∆

2

)
s2 +

(1
2Ω
)2 + i

ΩR

2
[
s2 +

(1
2Ω
)2
] c̃b (0)e−iφ (2.202)

= c̃a (0)

 s

s2 +
(1

2Ω
)2 −

(i∆/2) 1
2Ω

1
2Ω

[
s2 +

(1
2Ω
)2
]
 (2.203)

+i
ΩR
(1

2Ω
)

Ω

[
s2 +

(1
2Ω
)2
] c̃b (0)e−iφ ,

with

c̃a (t) = c̃a (0)
[

cos
Ωt
2
− i∆

Ω
sin

Ωt
2

]
+ i

ΩR

Ω
c̃b (0)e−iφ sin

Ωt
2
.

Since ca = c̃ae
i∆t
2 , then we expand it as

ca =

{
ca (0)

[
cos

Ωt
2
− i∆

Ω
sin

Ωt
2

]
+ i

ΩR

Ω
cb (0)e−iφ sin

Ωt
2

}
e

i∆t
2 (2.204)

In order to find cb, we perform the operation[
s− i∆

2
+

Ω2
R

4
(
s+ i∆

2

)] c̃b (s) = c̃b (0)+ i
ΩR

2
(
s+ i∆

2

)eiφ c̃a (0) ,

and yield

c̃b (s) =

(
s+ i∆

2

)
s2 + 1

4

(
∆2 +Ω2

R
) c̃b (0) (2.205)

+i
ΩR

2
(
s2 + 1

4

(
∆2 +Ω2

R
))eiφ c̃a (0)
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Again, we substitute Eq. 2.201 into Eq. 2.205

c̃b (s) =

(
s+ i∆

2

)
s2 +

(1
2Ω
)2 c̃b (0)+ i

ΩR

2
(

s2 +
(1

2Ω
)2
)eiφ c̃a (0) (2.206)

= c̃b (0)

 s

s2 +
(1

2Ω
)2 +

i∆
Ω

1
2Ω(

s2 +
(1

2Ω
)2
)
 (2.207)

+i
ΩR

Ω

1
2Ω(

s2 +
(1

2Ω
)2
)eiφ c̃a (0)

= c̃b (0)
[

cos
Ωt
2

+
i∆
Ω

sin
Ωt
2

]
+ i

ΩR

Ω
eiφ c̃a (0)sin

Ωt
2

(2.208)

Since cb = c̃be−
i∆t
2 , then

cb =

{
cb (0)

[
cos

Ωt
2

+
i∆
Ω

sin
Ωt
2

]
+ i

ΩR

Ω
eiφ ca (0)sin

Ωt
2

}
e−

i∆t
2 (2.209)

• Note that conservation of probability |ca (t)|2 + |cb (t)|2 = 1 since the atom is in

state |a〉 or |b〉. If the atom is assumed to be in state |a〉 initially, ca (0) = 1 and

cb (0) = 0. The probabilities of the atom being in states |a〉 and |b〉 at time t are

defined by |ca (t)|2 and |cb (t)|2 respectively. The inversion is

W (t) = |ca (t)|2−|cb (t)|2 (2.210)

=

∣∣∣∣[cos
Ωt
2
− i∆

Ω
sin

Ωt
2

]
e

i∆t
2

∣∣∣∣2− ∣∣∣∣iΩR

Ω
eiφ sin

Ωt
2

e−
i∆t
2

∣∣∣∣2 (2.211)

=

(
∆2−Ω2

R
Ω2

)
sin2

(
Ωt
2

)
+ cos2

(
Ωt
2

)
(2.212)

A dipole moment is induced between the two atomic levels as a response to interac-

tion towards incident field and it is depicted by the expectation value of dipole moment

operator

P(t) = e〈ψ (t) |r|ψ (t)〉 (2.213)

= e [〈a|C∗a (t)+ 〈b|C∗b (t)]r [Ca (t) |a〉+Cb (t) |b〉] (2.214)

= e〈a|r |b〉C∗a (t)Cb (t)+ e〈b|r |a〉Ca (t)C∗b (t) (2.215)

= C∗aCb℘ab + c.c.= c∗acb℘abeiωt + c.c. (2.216)

We use |ψ (t)〉 = Ca (t) |a〉+Cb (t) |b〉 and ℘ab = e〈a|x |b〉 =℘∗ba. For an atom ini-
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tially in the upper level

P(t) =

{[
cos

Ωt
2

+
i∆
Ω

sin
Ωt
2

]}
e
−i∆t

2

{
i
ΩR

Ω
eiφ sin

Ωt
2

}
e−

i∆t
2 ℘abeiωt + c.c.

= i
ΩR

Ω
℘ab

[
cos

Ωt
2

+
i∆
Ω

sin
Ωt
2

]
sin

Ωt
2

eiφ eivt + c.c.

= 2Re
{

iΩR

Ω
℘ab

[
cos
(

Ωt
2

)
+

i∆
Ω

sin
(

Ωt
2

)]
sin
(

Ωt
2

)
eiφ eivt

}
(2.217)

The dipole moment therefore oscillates with the frequency of the incident field. For

case where atom is at resonance with the incident field ∆ = 0, causing Ω = ΩR. Hence

W (t) = −sin2
(

Ωt
2

)
+ cos2

(
Ωt
2

)
= 2cos2

(
Ωt
2

)
−1

= cos(ΩRt) (2.218)

which indicates that the inversion oscillates between−1 and 1 at frequency ΩR. The atom

experiences Rabi (Brune et al., 1996) flopping between the upper and lower levels due to

interaction with electromagnetic field.

2. Unitary Transformation in Interaction Picture The Scrodinger equation is ex-

pressed in the form of
∂

∂ t
|ψ (t)〉=− i

h̄
H |ψ (t)〉 , (2.219)

where it can be integrated to give

|ψ (t)〉 = − i
h̄

∫
HU (t) |ψ (t)〉∂ t (2.220)

= U (t) |ψ (0)〉 , (2.221)

as the unitary time-evolution operator (Yuen, 1976) is defined to be

U̇ (t) =− i
h̄

HU (t) , (2.222)

where U (0) = 1. In the interaction picture, the time dependence is assigned to the state

vector due to the interaction energy. The state vector |ψI〉 in the interaction picture

|ψI (t)〉=U+
0 (t) |ψ (t)〉 , (2.223)

with

U0 (t) = exp
(
− i

h̄
H0t
)
. (2.224)
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Thus, we have

∂

∂ t
|ψI (t)〉 =

∂

∂ t

[
U+

0 (t) |ψ (t)〉
]

(2.225)

=

[
∂

∂ t
U+

0 (t)
]
|ψ (t)〉+U+

0 (t)
∂

∂ t
|ψ (t)〉 , (2.226)

and hence

∂

∂ t
|ψI (t)〉 =

[
i
h̄

H0 exp
(

i
h̄

H0t
)]
|ψ (t)〉− i

h̄
HU+

0 (t) |ψ (t)〉 (2.227)

=
i
h̄

H0U+
0 (t) |ψ (t)〉− i

h̄
H |ψI (t)〉 (2.228)

=
i
h̄
|ψI (t)〉(H0−H) (2.229)

= − i
h̄

U+
0 (t)H1U0 (t) |ψI (t)〉 . (2.230)

In other word, we can express the derivative in this form

∂

∂ t
|ψI (t)〉=−

i
h̄

V (t) |ψI (t)〉 (2.231)

and the interaction picture Hamiltonian is defined as

V (t) =U+
0 (t)H1U0 (t) , (2.232)

The transformation of an operator O in the Scrodinger picture follows as OI (t) =

U+
0 (t)OU0 (t). The expectation value is

〈O〉 = 〈ψ(t)|O|ψ(t)〉 (2.233)

=
〈
ψ(t)|U+

0 (t)OU0 (t) |ψ(t)
〉

(2.234)

= 〈ψ(t)|OI|ψ(t)〉 . (2.235)

The solution for Eq. 2.231

|ψI (t)〉 = |ψI (0)〉Γexp
(
− i

h̄

∫ t

0
V (τ)∂τ

)
(2.236)

= UI (t) |ψI (0)〉 , (2.237)

where the time-evolution operator in the interaction picture is UI (t)=Γexp
[
− i

h̄
∫ t

0 V (τ)dτ
]

and Γ is the time ordering operator. Γexp
(
− i

h̄
∫ t

0 V (τ)∂τ
)

is a shorthand notation of

Γexp
[
− i

h̄
∫ t

0 V (τ)dτ
]
= 1− i

h̄
∫ t

0 dt1V (t1)+
(
− i

h̄

)2 ∫ t
0 dt1

∫ t1
0 dt2V (t1)V (t2)+ .... Let us
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consider interaction between two level atom and a monochromatic field with frequency v,

where the Hamiltonian is described by H = H0 +H1

H0 = h̄ωa |a〉〈a|+ h̄ωb |b〉〈b| (2.238)

Hn
0 = (h̄ωa)

n |a〉〈a|+(h̄ωb)
n |b〉〈b| (2.239)

H1 =−(℘ab |a〉〈b|+℘ba |b〉〈a|)E (t) , (2.240)

Hence, the transformation operator becomes

U0 (t) = exp
(
− i

h̄
H0t
)

(2.241)

= exp
(
− i

h̄
[h̄ωa |a〉〈a|+ h̄ωb |b〉〈b|] t

)
(2.242)

= exp(−iωat) |a〉〈a|+ exp(−iωbt) |b〉〈b| . (2.243)

The interaction picture Hamiltonian, V (t) for an atom at z = 0 is

V (t) = U+
0 (t)H1U0 (t) (2.244)

= U+
0 (t) [−(℘ab |a〉〈b|+℘ba |b〉〈a|)E (t)]U0 (t) (2.245)

= U+
0 (t)

[
−℘abeiφ e−iφ |a〉〈b| Ẽ−℘bae−iφ eiφ |b〉〈a| Ẽ

]
(2.246)

×cos(vt)U0 (t) ,

and we further expand Eq. 2.246 and yield

V (t) = U+
0 (t)

[
−h̄
|℘ab| Ẽ

h̄
e−iφ |a〉〈b|− h̄

|℘ba| Ẽ
h̄

eiφ |b〉〈a|
]

(2.247)

×cos(vt)U0 (t)

= −h̄ΩRU+
0 (t)

[
e−iφ |a〉〈b|+ eiφ |b〉〈a|

]
U0 (t)cos(vt) . (2.248)

Then, the unitary operator as in Eq. 2.243 is plucked into Eq. 2.248

V (t) = − h̄ΩR

2
(
eiωat |a〉〈a|+ eiωbt |b〉〈b|

)[
e−iφ |a〉〈b|+ eiφ |b〉〈a|

]
(2.249)

×
[
e−iωat |a〉〈a|+ e−iωbt |b〉〈b|

](
eivt + e−ivt)

= − h̄ΩR

2
{(ei(ω+v)t |a〉〈a| |b〉〈b|+ e−i∆t |b〉〈b| |a〉〈a|+ ei∆t |a〉〈a| |b〉〈b|

+e−i(ω+v)t |b〉〈b| |a〉〈a|)×
[
e−iφ |a〉〈b|+ eiφ |b〉〈a|

]
}, (2.250)
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by expanding Eq. 2.250

V (t) = − h̄ΩR

2
{ei(ω+v)te−iφ |a〉〈a| |a〉〈b| |b〉〈b|+ e−i∆te−iφ |b〉〈b| |a〉〈b| |a〉〈a|

+ei∆te−iφ |a〉〈a| |a〉〈b| |b〉〈b|+ e−i(ω+v)te−iφ |b〉〈b| |a〉〈b| |a〉〈a|

+ei(ω+v)teiφ |a〉〈a| |b〉〈a| |b〉〈b|+ e−i∆teiφ |b〉〈b| |b〉〈a| |a〉〈a|

+ei∆teiφ |a〉〈a| |b〉〈a| |b〉〈b|+ e−i(ω+v)teiφ |b〉〈b| |b〉〈a| |a〉〈a|}. (2.251)

Finally, after simplify the above expression, we have

V (t)=− h̄ΩR

2

{
ei(ω+v)te−iφ |a〉〈b|+ ei∆te−iφ |a〉〈b|+ e−i∆teiφ |b〉〈a|+ e−i(ω+v)teiφ |b〉〈a|

}
,

(2.252)

where E (t) = Ẽ cos(vt)℘ba = |℘ba|exp(iφ), ℘ab = |℘ab|exp(−iφ), Rabi frequency is

ΩR = |℘ba|E
h̄ , ω = ωa−ωb, and ∆ = ω − v. The term proportional to exp(i(ω + v) t)

vary very rapidly can be dropped in the rotating wave approximation. Therefore, with

resonance ∆ = 0,

V (t) =− h̄ΩR

2

(
e−iφ |a〉〈b|+ eiφ |b〉〈a|

)
. (2.253)

3. Rotating-Wave Approximation Rotating wave approximation (Zaheer & Zubairy,

1988) is used to keep only energy conserving terms in the Hamiltonian. The counter-

rotating terms are always dropped out because they never show up om exact situations.

Consider atom is placed at the origin such that R = 0, the interaction picture Hamiltonian

can be obtained using dipole approximation

H1 =−er.E(r0, t) , (2.254)

then we can perform the unitary transformation on Eq. 2.254

V (t) = U+
0 (t)H1U0 (t) (2.255)

= −ee
i
h̄ H0tre−

i
h̄ H0t ·E(t) (2.256)

= −er(t) ·E(t) (2.257)
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where the unitary operator is defined as

U0 (t) = e−
i
h̄ H0t , (2.258)

and the vector r is

r(t) = e
i
h̄ H0tre−

i
h̄ H0t . (2.259)

Hence, two equations can be obtained, which is

Vab (t) = −erab (t) .E(t) (2.260)

= −erab.E(t)eiωt , (2.261)

and

Vba (t) = −erba (t) .E(t) (2.262)

= −erba.E(t)e−iωt , (2.263)

where ω is the atomic frequency. Consider for the case of linear polarization where

E(t) = x̂Ẽ cosvt, then Eq. 2.261 becomes

Vab (t) = −erab.x̂Ẽ cosvteiωt (2.264)

= −exab
Ẽ
2

(
ei(v+ω)t + e−i(v−ω)t

)
(2.265)

' −exab
Ẽ
2

e−i(v−ω)t . (2.266)

Similarly, Eq. 2.263 becomes,

Vba (t) = −erba.x̂Ẽ cosvte−iωt (2.267)

= −exba
Ẽ
2

(
ei(v−ω)t + e−i(v+ω)t

)
(2.268)

' −exba
Ẽ
2

ei(v−ω)t . (2.269)

The rotating wave approximation is established by neglecting the counter rotating

terms which is fast rotating, exp [±i(v+ω) t]. For the case of left-circular polarization,

the electric field is given by E(t) = x̂Ẽ cosvt− ŷẼ sinvt. Thus

Vab (t) =
[
−erab.x̂Ẽ cosvt + erab.ŷẼ sinvt

]
eiωt (2.270)

= −eẼ (xab cosvt− yab sinvt)eiωt , (2.271)
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and

Vba (t) =
[
−erba.x̂Ẽ cosvt + erba.ŷẼ sinvt

]
e−iωt (2.272)

= −eẼ (xba cosvt− yba sinvt)e−iωt . (2.273)

As exba =℘ and eyba = i℘, we get the final expression for Vab (t)

Vab (t) = −℘Ẽ (cosvt− isinvt)eiωt (2.274)

= −℘Ẽe−i(v−ω)t (2.275)

and in the meantime, the final expression for Vba (t) is

Vba (t) = −℘Ẽ (cosvt + isinvt)e−iωt (2.276)

= −℘Ẽei(v−ω)t (2.277)

As can be seen, the counter rotating terms does not appear in both expression.
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CHAPTER 3

HIGH FIELD PROCESSES

In this chapter, a brief description on the development that leads to the discovery of the

natural phenomenon which occurred during the interaction between intense light fields

and matter. These basic phenomenon include above threshold ionization (ATI), multi-

photon ionization (MPI) and high harmonic generation (HHG) (Sheehy et al., 1999). The

theory of each phenomenon will be discussed in the following sections. In the previous

chapter, we have discussed the perturbation theory (Simon, 1973) on transition ampli-

tudes. Nevertheless, in this chapter the limit of perturbation theory will be shown and as a

result, a new description which is known as non-perturbative theory is needed in order to

interpret the phenomenon by intense laser field (Federov, 1991). In the following section

we will consider the main ideas of the conventional perturbation theory and its failure

when the field becomes very strong due to the appearance of the relativistic effect. We

will discuss this in chapter 5 on generalizing the perturbative photionization model by

taking consideration of the relativistic effect.

In spite of that, the nonperturbative model for the intense-field processes (Mittleman,

1993) and point out several important nonlinear parameters that emerge naturally from it

and the significance of the so-called "single active electron" (SAE) hypothesis in single-

electron processes in intense fields.

3.1 Above Threshold Ionization

In quantum mechanics ionization of the atom with the electromagnetic radiation,

with violation of Einstein formula, i.e. when kinetic energy of the emitted electrons is

larger than the difference between the photon energy and the ionization energy or the

work function. In that case the generalized Einstein formula is valid

nh̄ω =W +Ek (3.1)
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Figure 3.1: Several processes occured in the Strong Field Ionization

where n is the arbitrary integer number, W is the ionization energy (work function) and

Ek is the electron kinetic energy.

This phenomenon is measurable if and only if the electromagnetic field is compa-

rable with the field which keeps the electrons in the atom, for example generated with a

very strong laser.

In principal, ATI (Corkum et al., 1989) is a process in which atoms absorb more than

the minimum number of photons required to be ionized. The ATI (Freeman et al., 1987)

spectrum consists of a series of peaks equally separated by the photon energy. Hence ATI

may be explained by solving the time-dependent Schrödinger equation in the approximate

manner. The Schrödinger equation for the free electron in the field of the electromagnetic

wave in one dimension and in the radiation gauge is given by

ih̄
∂Ψ

∂ t
=

1
2m

[
h̄
i
∇− eA(t)

]2

Ψ, (3.2)

where

A(t) =
E0

ω
cos(ωt) . (3.3)

and the electric field is given by
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E (t) = −∂A
∂ t

= E0 sin(ωt) (3.4)

We make an approximation that the wavefunction Ψ = e−C(t)+ikx, then we substitute

into the Schrödinger equation and yield

ih̄
∂

∂ t
eiC(t)+ikx =

1
2m

[
h̄
i
∇− eA(t)

]2

eiC(t)+ikx. (3.5)

In one-dimensional case, we have

.
iC (t) ih̄eiC(t)+ikx =

1
2m

[
−h̄2

∇
2− h̄

i
e∇ ·A(t)− h̄

i
eA(t)∇+ e2A(t)2

]
eiC(t)+ikx (3.6)

=
1

2m

[
−h̄2 (ik)2− h̄

i
e∇ ·A(t)− h̄

i
eA(t) ik− h̄

i
eA(t) ik+ e2A(t)2

]
×eiC(t)+ikx. (3.7)

However, in Coulomb gauge where ∇ ·A(t) = 0, equation 3.6 becomes,

−
.

C (t) h̄eiC(t)+ikx =
1

2m

[
h̄2k2−2

h̄
i
eA(t) ik+ e2A(t)2

]
eiC(t)+ikx, (3.8)

−
.

C (t) h̄ =
1

2m

[
h̄2k2−2h̄eA(t)k+ e2A(t)2

]
. (3.9)

After expanding, we obtain

−
.

C (t) h̄ =
1

2m

[
h̄2k2− eA(t)

]2
. (3.10)

3.2 Tunneling Ionization

In order to understand the tunneling ionization (Fittinghoff, Bolton, Chang, & Ku-

lander, 1994) process, firstly, the length-gauge Hamiltonian (Fabrikant & Gallup, 2009)

for such system is

HLG =
p2

2m
+ eF · z, (3.11)
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Figure 3.2: The process of tunneling ionization

where p is the kinetic momentum, F is the electric field strength and z is the direction of

the field.

The boundary condition as below states that at some point z0 the WKB wave function(Muth-

Böhm, Becker, & Faisal, 2000) must match with the wave function of the bound system

Ψ(z0) = Ψ0 (z0) . (3.12)

The mixed representation wave function (WKB wave function near a caustic)

Ψ(x,y,z) =
1

2π

∫
d px

∫
d pyΦ(px, py, pz)exp

(
ixpx + iypy

h̄

)
, (3.13)

where

Φ(px, py, pz) =
1

2π

∫
dx
∫

dyΨ(x,y,z)exp
(
−ixpx− iypy

h̄

)
. (3.14)

We insert the Eq. 3.124 into Schrödinger eqn and yield

HLGΨ(x,y,z) =−IpΨ(x,y,z) . (3.15)

where Ip is the ionization potential (the binding energy of the bound state).
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For a short-range potential, the 3-dimentional equation is reduced to a single dimen-

sion (z-direction)

Φ(px, py,z) =
1

2π

∫
dx
∫

dyexp
(
−ixpx− iypy

h̄

)
Ψ(z)

=
1

2π
Ψ(z)

ih̄
px

ih̄
py

exp
(
−ixpx− iypy

h̄

)
= − 1

2π

h̄2

px py
Ψ(z)exp

(
−ixpx− iypy

h̄

)
, (3.16)

where the wavefunction is defined as

Ψ(z) =−
2π px py

h̄2 Φ(px, py,z)exp
(

ixpx + iypy

h̄

)
. (3.17)

Then, the Hamiltonian of the system is

HLGΨ(z) =

[
− h̄2

2m
∇

2 + eF · z
]

Ψ(z) (3.18)

=
h̄2

2m
∇

2
[

2π px py

h̄2 Φ(px, py,z)exp
(

ixpx + iypy

h̄

)]
(3.19)

−eF · z
[

2π px py

h̄2 Φ(px, py,z)exp
(

ixpx + iypy

h̄

)]
.

After expanding, Eq. 3.18 becomes,

HLGΨ(z) =

[
− p2

x
2m
−

p2
y

2m

]
2π px py

h̄2 exp
(

ixpx + iypy

h̄

)
Φ(px, py,z) (3.20)

+
1

2m
2π px py exp

(
ixpx + iypy

h̄

)
∂ 2

∂ z2 Φ(px, py,z)

−eF · z
2π px py

h̄2 exp
(

ixpx + iypy

h̄

)
Φ(px, py,z) .

Since that

HLGΨ(x,y,z) = −IpΨ(x,y,z)

= Ip
2π px py

h̄2 exp
(

ixpx + iypy

h̄

)
Φ(px, py,z) , (3.21)

imply that

47



IpΦ(px, py,z) =

[
− p2

x
2m
−

p2
y

2m

]
Φ(px, py,z) (3.22)

+
h̄2

2m
∂ 2

∂ z2 Φ(px, py,z)− eF · zΦ(px, py,z)

and

h̄2

2m
∂ 2Φ(px, py,z)

∂ z2 =

[
p2

x
2m

+
p2

y

2m

]
Φ(px, py,z)+ IpΦ(px, py,z)+ eF · zΦ(px, py,z)

=

[
p2

x
2m

+
p2

y

2m
+ Ip + eF · z

]
Φ(px, py,z) , (3.23)

with the second order derivative take the form of

∂ 2Φ(px, py,z)
∂ z2 =

2m
h̄2

[
p2

x
2m

+
p2

y

2m
+ Ip + eF · z

]
Φ(px, py,z) (3.24)

=
2m
h̄2

[
E ′+ eF · z

]
Φ(px, py,z) ,

where the expression

E ′ =
p2

x
2m

+
p2

y

2m
+ Ip. (3.25)

Then, we solve equation 3.24 and yield

∂ 2Φ(px, py,z)
∂ z2 =

2m
h̄2

[
E ′+ eF · z

]
Φ(px, py,z) , (3.26)

where

Φ(px, py,z) =
C√
pz (z)

eiS(px,py,z)/h̄, (3.27)

with S (px, py,z) is the classical action and pz (z) =
∣∣∂S (px, py,z)/∂ z

∣∣ is the kinetic mo-

mentum in the z-direction.

By using the WKB approximation, we imagine a particle of energy E moving through

a region where the potential V (x) is constant. If E >V , the wave function is of the form:

ψ (x) = Ae±ikx, (3.28)

k =

√
2m(E−V )

h̄
. (3.29)
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We must take note that the essential idea of this method is suppose that V (x) is not

constant, but varies rather slowly in comparison to λ , so that the region containing many

full wavelengths and the potential is essentially constant. Hence it is reasonable to sup-

pose that ψ remains practically sinusoidal, except that the wavelength and the amplitude

change slowly with x.

If E <V and V is constant, then ψ is exponential

ψ (x) = Ae±κx, (3.30)

κ =

√
2m(V −E)

h̄
. (3.31)

Meanwhile, if V (x) is not a constant but varies slowly in comparison with 1/κ , then

the solution remains practically exponential, except that A and κ are now slowly-varying

functions of x. Besides, there exists two classical turning point, where E ≈ V . For here,

λ or 1/κ goes infinity, and V (x) can hardly be said to vary "slowly" in comparison.

In the classical region, the Schrödinger equation is defined as

[
− h̄2

2m
∂ 2

∂x2 +V (x)
]

ψ = Eψ, (3.32)

and the second order derivative is known as

∂ 2ψ

∂x2 =− p2

h̄2 ψ, (3.33)

where

p(x) =
√

2m [E−V (x)]. (3.34)

For this equation, we always take E >V (x), so that p(x) is always real and we call

"this" as classical region where classically the particle is confined to this range of x. In

general, ψ is some complex function so that we can retain the sinusoidal form

ψ (x) = A(x)eiφ(x), (3.35)

where both A(x) and φ (x) are real.
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Notation: using a prime to denote the derivative with respect of x

dψ

dx
= A′eiφ(x)+ iφ ′Aeiφ(x) (3.36)

d2ψ

dx2 = A′′eiφ(x)+ iA′φ ′eiφ(x)+ i
(
φ
′′A+φ

′A′
)

eiφ(x)−
(
φ
′)2 Aeiφ(x) (3.37)

=
[
A′′+2iA′φ ′+ iAφ

′′−A
(
φ
′)2
]

eiφ(x).

Hence we make comparison with Eq. 4.107, imply that

[
A′′+2iA′φ ′+ iAφ

′′−A
(
φ
′)2
]

eiφ(x) = − p2

h̄2 A(x)eiφ(x), (3.38)

A′′−A
(
φ
′)2

+ i
[
2A′φ ′+Aφ

′′] = − p2

h̄2 A. (3.39)

This can be separated into two equations, one for real part

A′′−A
(
φ
′)2

= − p2

h̄2 A,

A′′ = A
[(

φ
′)2− p2

h̄2

]
, (3.40)

and one for imaginary part

2A′φ ′+Aφ
′′ = 0, (3.41)(

A2
φ
′)′ = 0. (3.42)

Eq. 3.41 is obviously and easy to solve, this imply A2φ ′ must be a real constant

A2
φ
′ = C2 (3.43)

A =
C√
φ ′
. (3.44)

However, Eq. 3.44 cannot be solved in general, hence we make a simple approxima-

tion. We assume that A varies slowly, so that the A′′ term is negligible. More precisely,

we should say that A′′/A is much more smaller than both (φ ′)2 and p2/h̄2
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A′′

A
=

(
φ
′)2− p2

h̄2 (3.45)

A′′

A
= 0, (3.46)

and

(
φ
′)2

=
p2

h̄2 (3.47)

φ
′ = ± p

h̄
. (3.48)

Therefore, the function φ takes the form of

φ =±1
h̄

∫
p(x)dx. (3.49)

Hence, the final form for the wavefunction is

ψ (x) =
C√
φ ′

e±
i
h̄
∫

p(x)dx. (3.50)

After obtaining the expression for the wavefunction, let us recall the expression as

in Eq. 3.24 which is

∂ 2Φ(px, py,z)
∂ z2 =

2m
h̄2

[
E ′+ eF · z

]
Φ(px, py,z) . (3.51)

In order to solve the second order derivative, firstly we have to define the WKB

wavefunction as the following expression

Φ(px, py,z) =
C√
pz (z)

exp
[

i
h̄

S (px, py,z)
]
, (3.52)

with the momentum in z-direction

pz (z) =
∣∣∣∣∂S (px, py,z)

∂ z

∣∣∣∣ . (3.53)

The first task is to get the C constant, we take the initial value z0

Φ(px, py,z0) =
C√

pz (z0)
exp
[

i
h̄

S (px, py,z0)

]
, (3.54)

51



and then the C constant becomes

C = Φ(px, py,z0)
√

pz (z0)exp
[
− i

h̄
S (px, py,z0)

]
.

Next, we substitute into Eq. 3.52 and get

Φ(px, py,z) = Φ(px, py,z0)

√
pz (z0)

pz (z)
exp
[

i
h̄

S (px, py,z)−
i
h̄

S (px, py,z0)

]
. (3.55)

Then, we perform the differentiation operation on the wavefunction Φ(px, py,z) and

yield

∂Φ(px, py,z)
∂ z

=
∂

∂ z

{
Φ(px, py,z0)

√
pz (z0)exp

[
− i

h̄
S (px, py,z0)

]
1√

pz (z)
exp
[

i
h̄

S (px, py,z)
]}

= Φ(px, py,z0)
√

pz (z0)exp
[
− i

h̄
S (px, py,z0)

]
(3.56)

× ∂

∂ z

{
1√

pz (z)
exp
[

i
h̄

S (px, py,z)
]}

.

After computing some complicated algebra, we obtain the solution for the second

order derivative of Φ(px, py,z), which is shown as in Eq. 3.24

∂ 2Φ(px, py,z)
∂ z2 =

2m
h̄2

[
E ′+ eF · z

]
Φ(px, py,z) , (3.57)

with

E ′ =
p2

x
2m

+
p2

y

2m
+ Ip. (3.58)

Next, we perform some algebra manipulations as the following

1
2

(
∂S (px, py,z)

∂ z

)2

−Fz = E ′, (3.59)

(
∂S (px, py,z)

∂ z

)2

= 2
(
E ′+Fz

)
, (3.60)

p2
z (z) = 2

(
E ′+Fz

)
. (3.61)
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Eq. 3.59 is known as Hamilton-Jacobi equation(Salamin & Faisal, 1997) and the

solution should be

S (px, py,z)−S (px, py,z0) =
1

3F

(
2E ′+2Fz

) 3
2 − 1

3F

(
2E ′+2Fz0

) 3
2 , (3.62)

then,

[
∂S (px, py,z)

∂ z

]2

= 2m
(
E ′+Fz

)
, (3.63)

∂S (px, py,z)
∂ z

=
√

2m(E ′+Fz). (3.64)

By solving the integral of the action part,

∫
∂S (px, py,z)

∂ z
dz =

∫ z

z0

[
2m
(
E ′+Fz

)] 1
2 dz, (3.65)

we get the final expression as

S (px, py,z)−S (px, py,z0) =
1

3mF

[
2m
(
E ′+Fz

)] 3
2 |zz0

(3.66)

=
1

3mF

(
2mE ′+2mFz

) 3
2 − 1

3mF

(
2mE ′+2mFz0

) 3
2 .

Next, we derive the action at exit point, where

z = ze

=
Ip

F
, (3.67)

and then the action becomes

S (px, py,ze)−S (px, py,z0) =
1

3mF

[(
2m

(
p2

x
2m

+
p2

y

2m
+ Ip

)
+2mIp

)] 3
2

(3.68)

− 1
3mF

(
2mE ′+2mFz0

) 3
2

=
1

3mF

(
p2

x + p2
y +4mIp

) 3
2 − 1

3mF

(
p2

x + p2
y +2mIp +2mFz0

) 3
2 .

Let us set p2
⊥ = p2

x + p2
y , hence
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S (px, py,ze)−S (px, py,z0) =
1

3mF

(
p2
⊥+4mIp

) 3
2 − 1

3mF

(
p2
⊥+2mIp +2mFz0

) 3
2

=
1
F
(Ip−Fz0)

(√
−2mIp

)3
[

1+
3
2
(

p2
⊥+6mIp

)]
=

(
−iκ3)(Ip

F
− z0

)[
1+

3
2

p2
⊥+

9
2

κ

]
, (3.69)

and yields

S (px, py,z)−S (px, py,z0) = i
κ3

3F
+ i

κ p2
⊥

2F
− iκz0. (3.70)

As a result, we get

[
1

3F

(
p2

x
2m

+
p2

y

2m
+ Ip +Fz

)] 3
2

−

[
1

3F

(
p2

x
2m

+
p2

y

2m
+ Ip +Fz0

)] 3
2

(3.71)

=

√
−2Ip

F

(
2
3

Ip +
p2
⊥
2
−Fz0

)
.

Next, we substitute Eq. 3.70 into Eq. 3.55 and yield

Φ(px, py,z) = Φ(px, py,z0)

√
pz (z0)

pz (z)
exp
[

i
h̄

S (px, py,z)−
i
h̄

S (px, py,z0)

]
, (3.72)

imply that

Φ(px, py,z) = Φ(px, py,z0)

√
pz (z0)

pz (z)
exp
[

i
h̄

(
i
κ3

3F
+ i

κ p2
⊥

2F
− iκz0

)]
,

= Φ(px, py,z0)

√
pz (z0)

pz (z)
exp
[

1
h̄

(
− κ3

3F
−

κ p2
⊥

2F
+κz0

)]
. (3.73)

Then, the tunnel ionization amplitude for a short range potential in a DC field is

obtained

aT (F, p⊥) =

√
pz (z0)

pz (z)
exp
[

1
h̄

(
− κ3

3F
−

κ p2
⊥

2F
+κz0

)]
(3.74)

=

√
κ

pz (z)
exp
[

1
h̄

(
− κ3

3F
−

κ p2
⊥

2F
+κz0

)]
.
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The momentum pz (z0) is replaced with κ , since z0� ze. Next, let us make a strong-

field eikonal approximation and the resulting correction to the action is defined as below:

∆S =
∫ z

z0

dz′
V (z′)
pz (z′)

, (3.75)

where the momentum is pz (z) =
√

κ2−2Fz.

When Coulomb potential is short range potential, V (z) = Q
z , then

∆S =
∫ z

z0

dz
Q

z
√

κ2−2Fz
. (3.76)

Hence, the action takes the solution in the form of

∆S =
Q
κ

ln

(
1+
√

1−2Fz0/κ2

1−
√

1−2Fz0/κ2

)
. (3.77)

Next, we set that the x takes the value of 2Fz0/κ2, imply that

∆S =
Q
κ

ln
(

1+
√

1− x
1−
√

1− x

)
=

Q
κ

ln
(

2κ2

Fz0
−2
)
. (3.78)

In the work of (Murray, Liu, & Ivanov, 2010), they discuss that F
κ
� κ in the condi-

tion of F � 1, then the action is approximated as

∆S≈ Q
κ

ln
(

2κ2

Fz0

)
. (3.79)

Eqn 3.79 is known as the Coulomb correction as for the zero order contribution

coresponding to the short-range potential. Hence, the Coulomb correction is included

in aT as in eqn 3.74 to get the final expression for the tunnel ionization amplitude of a

hydrogen atom in a static field

aT (F, p⊥) =
√

κ

pz (z)

(
2κ2

Fz0

)Q/κ

exp
[

1
h̄

(
− κ3

3F
−

κ p2
⊥

2F
+κz0

)]
. (3.80)

This is the final result of the calculation of the tunneling amplitude. The only missing

component is the bound wave function in the mixed coordinate-momentum representa-

tion.
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3.2.1 Mixed representation for a bound wave function

1.) Mixed representation is obtained by simple application of the numerical Fourier

transform with respect to the two dimensions orthogonal to the direction of tunneling.

2.) Analytical expression for the bound wave function in mixed representation

(Sheehy et al., 1998).

The atomic wave function with quantum numbers l, m has a form of:

Ψ(x,y,z) =
1√
2π

eimφ
Ψm (ρ,z) , (3.81)

where φ ,ρ and z are the usual cylindrical coordinates.

Besides, eqn 3.81 does not include the polarization of the field-free bound state and

also "unaware" of the modified potential barrier where the effect depend on z0.

From eqn 3.14 and substitute the wavefunction inside:

Φ(px, py,z0) =
1

2π

∫
dx
∫

dyΨ(x,y,z)exp
(
−ixpx− iypy

h̄

)
=

1
2π

∫
dx
∫

dy
1√
2π

eimφ
Ψm (ρ,z)exp

(
−ixpx− iypy

h̄

)
=

1

(2π)3/2

∫
dx
∫

dyΨm (ρ,z)exp
(
−ixpx− iypy

h̄
+ imφ

)
(3.82)

Next, we transform equation 3.82 into polar coordinates and yield

Φ(px, py,z0) =
1

(2π)3/2

∫
dx
∫

dyΨm (ρ,z)exp
(
−ixpx− iypy

h̄

)
eimφ (3.83)

=
eimφ0

(2π)3/2

∫
∞

0
ρdρΨm (ρ,z0)

∫ 2π

0
dφ exp

−i
√

p2
x + p2

yρ cosφ

h̄
+ imφ

 ,

following by

Φ(px, py,z0) =
eimφ0

(2π)3/2

∫
∞

0
ρdρΨm (ρ,z0)

∫ 2π

0
dφ exp

(
−ip⊥ρ cosφ

h̄
+ imφ

)
, (3.84)
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where p⊥ is the perpendicular momentum
√

p2
x + p2

y and φ0 is the angle of the perpen-

dicular makes with the z axis.

Let us recall the identity of Bessel function which is defined as the following expres-

sion

Jm (x) =
1

2π

∫ 2π

0
cos(mφ − xsinφ)dφ , (3.85)

and another identity of Bessel function which is defined as

exp
[(x

2

)(
t− 1

t

)]
=

∞

∑
n=−∞

Jn (x) tn. (3.86)

Refer to our eqn, what we need is the representation of the form as the following

expression

∫ 2π

0
exp
(
−ip⊥ρ cosφ

h̄
+ imφ

)
dφ =

∫ 2π

0
exp
(
−ip⊥ρ

h̄
cosφ

)
eimφ dφ . (3.87)

Hence, by making a substitution of

exp
[(x

2

)(
t− 1

t

)]
= exp

(
−ip⊥ρ

h̄
cosφ

)
, (3.88)

then we can recover equation 3.84 into the Bessel function form

∫ 2π

0
exp
(
−ip⊥ρ

h̄
cosφ

)
eimφ dφ =

∫ 2π

0

∞

∑
m=−∞

Jm (x) tmeimφ dφ

=
∞

∑
m=−∞

Jm (x)
∫ 2π

0

(
−ie−iφ

)m
eimφ dφ

=
∞

∑
m=−∞

(−i)m Jm (x)
∫ 2π

0
dφ

= 2π (−i)m Jm (x) , (3.89)

and subsequently we have

Φ(px, py,z0) =
eimφ0

(2π)3/2

∫
∞

0
ρdρΨm (ρ,z0)

∫ 2π

0
dφ exp

(
−ip⊥ρ cosφ

h̄
+ imφ

)
. (3.90)
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Hence, calculate the φ integral to obtain

Φ(px, py,z0) =
eimφ0

(2π)1/2 (−i)m
∫

∞

0
ρdρΨm (ρ,z0)Jm

(
ρ p⊥

h̄

)
. (3.91)

When the value x is very small, the approximate formula for Bessel Function would

be

Jn (x) =
1

Γ(n+1)

(x
2

)n
+O

(
xn+2) , (3.92)

imply that

Jm

(
ρ p⊥

h̄

)
=

1
Γ(m+1)

(
ρ p⊥
2h̄

)m
+O

(
xm+2)

=
1

m!

(
ρ p⊥
2h̄

)m
. (3.93)

Hence, the exponential suppression of tunneling with nonzero p⊥ (to replace the

Bessel function with its limit for small arguments)

Φ(px, py,z0) =
eimφ0

(2π)1/2
(−i)m

m!

∫
∞

0
ρdρΨm (ρ,z0)

(
ρ p⊥

2

)m
. (3.94)

Let us define the asymtotic form of the hydrogen wave function

Ψasymp (x,y,z) =
κ3/2eimφ

√
2π

CκlNlm (κr)Q/κ−1 e−κrPm
l (cosθ) , (3.95)

where

Cκl
(−1)n−l−1 2n√

n(n+1)!(n− l−1)!
, (3.96)

Nlm =

√
(2l +1)(l +m)!

2(l−m)!
1

2mm!
, (3.97)

and

κ =
√

2Ip, (3.98)

where Ip is the ionization potential.

In order to simplified Eq. 3.95, the asymtotic assumptions are
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1. Legendre polynomial can be replaced with the limit for small angles,

Pm
l (cosθ) ∝ sinm

θ (3.99)

2. Asymtotic region where ρ � z and z > z0, imply that

sinθ ≈ ρ

z0
(3.100)

r ≈ z0 +
ρ2

2z0
(3.101)

We insert Eq.3.95 into Eq.3.94 and yield,

Φ(px, py,z0) =
eimφ0

(2π)1/2
(−i)m

m!

∫
∞

0
ρdρΨm (ρ,z0)

(
ρ p⊥

2

)m
(3.102)

=
eimφ0

(2π)1/2
(−i)m

m!

∫
∞

0
ρdρ

κ3/2eimφ

√
2π

CκlNlm (κr)Q/κ−1 e−κr
(

ρ

z0

)m(
ρ p⊥

2

)m

following by

Φ(px, py,z0) =
(−i)m eimφ0

(2π)1/2 CκlNlm

( p⊥
2

)m 1
m!zm

0

κ3/2eimφ

√
2π

(κ)Q/κ−1 (3.103)

×
∫

∞

0
dρ (r)Q/κ−1 e−κr

ρ (ρ)m (ρ)m

=
(−i)m eimφ0

(2π)1/2 CκlNlm

( p⊥
2

)m 1
m!zm

0

κ3/2eimφ

√
2π

(κ)Q/κ−1 (3.104)

×
∫

∞

0
dρ

(
z0 +

ρ2

2z0

)Q/κ−1

e−κ(z0+ρ2/2z0)ρ2m+1

Then, by applying a simple transformation on the integral and we get the following

expression

Φ(px, py,z0) =
(−i)m eimφ0

(2π)1/2 CκlNlme−κz0
( p⊥

2

)m
κ

Q/κ−1/2zQ/κ

0
1
z0

κ

m!zm
0

eimφ

√
2π

∫
∞

0
dρρ

2m+1

=
(−i)m eimφ0

(2π)1/2 CκlNlme−κz0
( p⊥

2

)m
κ

Q/κ−1/2zQ/κ

0 (3.105)

Finally, we obtain the tunneling ionization amplitude which is

Φ(px, py,z0) =
(−i)m eimφ0

(2π)1/2 CκlNlme−κz0
( p⊥

2

)m
κ

Q/κ−1/2zQ/κ

0 (3.106)
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3.3 Multiphoton Ionization (MPI)

There exist an ionization process even though when the photons energy is less than

the ionization potential. This phenomenon was first described by Maria Goeppert-Mayer

about the idea of two-photon absoprtion "in one quantum act" effectively introduced the

concept of a virtual absorption. Usually, for the absorption of a photon by an atom, one

requires that the photon energy be equal to the difference in the energy levels between the

ground state and a real excited state. If the photon energy does not match or "resonate"

with a pair of stationary eigen-states of the atom, the absorption cannot occur.

Even if the real states do not exist for the resonance condition to be satisfied, the

electron can for a very brief period of time (Kulander, 1987b) (as permitted by the un-

certainty principle) absorb a photon temporarily and thus be excited to a "virtual state"-

that is a state having the energy equal to the photon energy above the ground state of the

atom.

If the field is strong enough to have a sufficient number of photons per unit volume,

then the virtually excited electron may absorb another available photon even during the

very short "lifetime" of the virtual state.

In principle, after one or more successive virtual absoprtions, the electron can always

reach the continuous stationary (long-lived or real) eigen-states of the atom above the ion-

ization threshold. Therefore, if the light field is strong enough, i.e. the number of density

of photons is high enough, laser photons of any frequency and polarization can ionize the

atom by successive intermediate virtual absorptions followed by the final transition to the

real continuum states.

Some modifications from old Einsteinian photoelectric effect:

K.E.= n× (photon energy)− Ip,> 0, for any integer n

first treated by Geoppert-Mayer using the second order perturbation theory, to the

n-th order.

The lifetimes of the virtual states are typified by the difference-energy between a

virtual state and the nearest stationary state.
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When an atom is placed in an intense laser field (Krause, Schafer, & Kulander, 1992),

there exists an interesting phenomenon where more than one photon is absorbed during

the ionization process. It was first observed by ... For the N-photon case, the general

expression of the transition rate for N number of photons from an initial state (i) to a final

state ( f ) is

w(N)
i→ f =

∣∣∣∣∣ab...yz

µiaµab . . .µyzµz f

h̄N (
ωa f − (N−1)ω

)(
ωb f − (N−2)ω

)
. . .
(
ωy f −2ω

)(
ωz f −ω

)EN

∣∣∣∣∣
×2πρ f

(
ωi f −Nω

)
(3.107)

Let us consider n number of photons were absorbed during a nonresonant multipho-

ton ionization (Gribakin & Kuchiev, 1997). The celebrated ionization rate would be

wn ' (σ1Iτ)n−1
σ1I (3.108)

= σnIn

3.3.1 Resonance-Enhanced Multiphoton

For certain special case where the transition of the electron to a resonant state in

the first hand then only ionized again from the particular excited state by absorbing a

certain amount of photons again. For simplicity, let say the ground state electron absorbs

k number of photons to be excited to a resonant electronic state, then by absorbing l

amount of photons in order to be ionized from those resonant state. Hence, the total

number of photons involve in this ionization process is n = k + l. Although the same

number of photons are absorbed in the both multiphoton ionization (Kulander, 1987a),

however the ionization rate for both processes are different.

Ordinary nonresonant MPI is limited by the lifetimes of the intermediate states (vir-

tual states), if the system relaxes to its ground state before the absorption of the next

photon, then the transition does not happen. Meanwhile, for the REMPI, the system is

limited by the pulse duration of the laser, ∆tpulse and the ionization rate, w′ for this process

is given by
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Figure 3.3: One-photon ionization (PI), non-resonant three-photon ionization (MPI), and
resonance enhanced three-photon ionization ([2+1]-REMPI)

w′n '
{
(σ1Iτ)k−1

σ1I
}

∆tpulse

{
(σ1Iτ)l−1

σ1I
}

(3.109)

= wn
∆tpulse

τ
.

As what we can understand from the equation 3.109, the ionization rate for REMPI

is greater than the ordinary MPI due to the factor of ∆tpulse
τ

. The main reason here is

stationary state which is also known as eigenstate is having a greater lifetime than virtual

states, as a result, the rate of REMPI is enhanced in comparison to the nonresonant MPI.

However, the enhancement is not applicable for all range of laser intensities. For

a certain intensity which is high enough, the atom will reach the maximum ionization

probability of 1 for both process. Let us define the MPI probability as

P = 1− exp
(
−
∫

∞

−∞

σNINdt
)
, (3.110)

where the I term is absorbing the spatial and temporal intensity distributions because same

amount of photons are absorbed in both resonant and non-resonant cases. Therefore, we

assume the probability only takes consideration of the single transition of the electron
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between the initial and final states, and thus generalize into two separate electronic tran-

sitions. Henceforth, the new probability in this REMPI would be

P = Pexcitation×Pionization (3.111)

=

[
1− exp

(
−
∫

∞

−∞

σNINdt
)][

1− exp
(
−
∫

∞

−∞

σMIMdt
)]

(3.112)

=
(

1− e−σN IN
0 τ

)(
1− e−σMIM

0 τ

)
. (3.113)

3.4 Corkum’s Model

In 1993, P. B. Corkum (Corkum, 1993) had introduced a model which is known as

"The Simple Man Model" to explain the phenomenon where the electron is excited to the

continuum state under the intense laser field, then recollide and recombine with the parent

ion thus emit an amount of energy Ip +3.17Up where Up is the ponderomotive potential

energy. These idea inspires the evolution of the high harmonic generation, which is a

famous and pioneer research topic in the recent year.

In the dipole approximation, for a linearly polarized laser field, the interaction po-

tential energy for an electron at position r = (x,y,z) is

V (r, t) =Vatom (r)+ xeEL (t) , (3.114)

where we assume that the laser electric field

EL (t) = E0 cos(ωLt +ρ) . (3.115)

EL (t) is polarized along the x axis and positive when pointing in the direction of

increasing x coordinate.The electron motion during the oscillation depends on the phase

of the electric field EL (t) at which ionization has occured,

φ0 = ωLt0 +ρ. (3.116)

Consequently, the Coulomb interaction to the parent ion becomes a small perturba-

tion compared to the laser field. The simplest approximation is to neglect the Coulomb
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field after ionization. Once, Vatom (r) is dropped from equation 3.114, the center-of-mass

motion of the quantum wave packet is described by

··
x = − e

m
EL (t) (3.117)

= − e
m

E0 cos(ωLt +ρ) . (3.118)

The vector potential AL (t) is defined by then following expression

EL (t) =−
dAL

dt
, (3.119)

and hence

AL (t) = −
∫

EL (t)dt (3.120)

= −
∫

E0 cos(ωLt +ρ)dt

= − eE0

mωL
sin(ωLt +ρ) . (3.121)

This implies that the velocity of the electron:

v(t) = AL (t)−AL (t0) (3.122)

= − eE0

mωL
sin(ωLt +ρ)+

eE0

mωL
sin(ωLt0 +ρ) (3.123)

and

v
(
t f
)

= v0−
eE0

mωL
sin(ωLt +ρ)+

eE0

mωL
sin(ωLt0 +ρ) (3.124)

= v0 +
eE0

mωL

[
sin(φ0)− sin

(
φ f
)]
. (3.125)

Since the velocity is the rate of changes in the propagation direction

·
x = − eE0

mωL
sin(ωLt +ρ)+

eE0

mωL
sin(ωLt0 +ρ) (3.126)

= − eE0

mωL
sinφ +

eE0

mωL
sinφ0, (3.127)
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then we can retrieve the position of the electron by

x =
∫ t

t0
v0−

eE0

mωL
sin(ωLt +ρ)+

eE0

mωL
sin(ωLt0 +ρ)dt ′ (3.128)

= v0 (t− t0)+
[

eE0

mω2
L

cos(ωLt +ρ)

]t

t0

+
eE0

mωL
sin(ωLt0 +ρ)(t− t0)

=

[
v0 +

eE0

mωL
sin(ωLt0 +ρ)

]
(t− t0)+

eE0

mω2
L
[cos(ωLt +ρ)− cos(ωLt0 +ρ)]

=

[
v0 +

eE0

mωL
sinφ0

] (
φ f −φ0

)
ωL

+
eE0

mω2
L

[
cosφ f − cosφ0

]
, (3.129)

where φ ’s are the laser phases at t = t0, t = t f , φ0 = ωLt0 and φ f = ωt f .

From Eq. 3.124, one obtains a maximum final velocity

v f = v0 +2
eE0

mωL
. (3.130)

For the case where φ0 =
π

2 and φ f =
3π

2 , if v0 = 0, the maximum energy E f is

E f =
mv2

f

2
(3.131)

= 2
e2E2

0

mω2
L

(3.132)

= 8Up (3.133)

where

Up =
e2E2

0

4mω2
L

(3.134)

=
Io

4ω2
L
,

Up is called the ponderomotive energy. This maximum energy can only be reached at

x 6= 0,

∣∣x(t f
)∣∣= E0

ω2 (2n−1)π , n = 1,2, ... (3.135)

If the electron initial velocity is v0 = 0 at time t0, then the maximum energy that

the electron can acquire at its return to the parent ion, i.e. when x
(
t f
)
= 0 is E f =

v2
f

2 =

3.17Up.
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3.5 Perelomov Popov Terent’ev (PPT) model

In 1966, Perelomov, Popov and Terent’ev (Perelomov, Popov, & Terent’ev, 1966)

had formulated a theoretical model to explain the ionization rate of atom in laser field.

This well known model is named after them which is known as the PPT model. To begin

with this formalism, firstly the external electric field and subsequently the vector potential

are given as the following expressions

E(t) = Ecosωt, (3.136)

A(t) = −E
ω

sinωt. (3.137)

In the velocity gauge, v→ v(t), we have

v(t) = p+ eA(t)

= p− eE
ω

sinωt. (3.138)

We define the Volkov wavefunction, starting with time-dependent Schrodinger equa-

tion

ih̄
∂

∂ t
Ψ =

h̄2

2m
[p+ eA(t)]2 Ψ. (3.139)

p is canonical momentum, different from kinetic energy.

Let Ψ = Nρ (t)exp
(

ip·r
h̄

)

ih̄
∂

∂ t
ρ (t)exp

(
ip · r

h̄

)
=

h̄2

2m
[p+ eA(t)]2 ρ (t)exp

(
ip · r

h̄

)
(3.140)

lnρ (t) =
∫ t

t0

h̄2

2mih̄

[
p+ eA

(
t ′
)]2 dt ′. (3.141)

Then

ρ (t) = exp
[∫ t

0
− ih̄

2m

[
p+ eA

(
t ′
)]2 dt ′

]
= exp

[∫ t

0
− ih̄

2m

[
p2t ′+

e2E2

2ω2 t +2e
p ·E
ω2 cosωt ′− e2E2

8ω3 sin2ωt ′
]

dt ′
]
.(3.142)
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In this case, we focus on the length gauge,

ΨdE (r, t) = exp
(

i
h̄

eA(t) · r
)

Nρ (t)exp
(

ip · r
h̄

)
=

1√
(2π)3

exp
[

i
h̄
(p+ eA(t)) · r

]
exp
[∫ t

0
− ih̄

2m

[
p+ eA

(
t ′
)]2 dt ′

]

=
1√
(2π)3

exp
[

i
h̄

v(t) · r
]

exp
[∫ t

0
− ih̄

2m
v
(
t ′
)2 dt ′

]
. (3.143)

The transition amplitude in time-dependent perturbation theory

ap (t) =−ih̄
∫ t

ti
dt ′
〈

Ψ
(p)
f

∣∣VL
(
t ′
)∣∣Ψi

〉
exp
[

i
h̄

(
E f −Ei

)
t
]
, (3.144)

where Ψ
(p)
f indicates the final state with momentum p at the detector and Ψi indicates

the initial bound state.

However, in Keldysh case

ap (t) =−ih̄
∫ t

ti
dt ′
〈

Ψ
(p)
f

∣∣VL
(
t ′
)∣∣Ψi

〉
exp
[∫ t

t ′
− ih̄

2m
v(τ)2 dτ

]
exp
[

i
h̄

Ipt ′
]
. (3.145)

This time dependent part represents the action

eiS(t) = exp
[∫ t

t ′
− ih̄

2m
v(τ)2 dτ

]
exp
[

i
h̄

Ipt ′
]
, (3.146)

S (t) =
∫ t

t ′
− ih̄

2m
v(τ)2 dτ +

i
h̄

Ipt ′. (3.147)

Let us define

ωt ′′0 = sinh−1
γ, (3.148)

then the action becomes

S
(
t, t ′
)
=−

∫ t

t ′

ih̄
2m

v(τ)2 dτ +
i
h̄

Ipt ′. (3.149)

We can see that only the imaginary part of action contributes to the decay rate which

is shown by

ImS
(
0, it ′′0

)
=
∫ t

t ′

h̄
2m

v(iτ)2 dτ− 1
h̄

Ipt ′′0 . (3.150)
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Since the momentum

mv(t) = p+ eA(t)

= p− eE
ω

sinωt, (3.151)

then we have after defining an imaginary time t→ it

mv1 (it) = p+ eA(it)

= p− i
eE
ω

sinhωt. (3.152)

The ponderomotive potential part of the solution

h̄
2m

∫ t

t ′′0
v(iτ)2 dτ =

h̄
2m

∫ t

t ′′0
v(iτ)2 dτ (3.153)

=
h̄

2m

[
e2E2

2ω2

sinh
(
2ωt ′′0

)
2ω

− e2E2

2ω2 t ′′0

]

=
h̄
m

[
e2E2

4ω2
2γ
√

1+ γ2

2ω
− e2E2

4ω2 t ′′0

]
, (3.154)

and

sinh
(
2ωt ′′0

)
= 2sinh

(
ωt ′′0
)

cosh
(
ωt ′′0
)

= 2γ

√
1+ γ2. (3.155)

Since we have the relation between Keldysh parameter γ and ωt ′′0

ωt ′′0 = sinh−1
γ, (3.156)

this implies that

ImS
(
0, it ′′0

)
=

∫ t

t ′

h̄
2m

v(iτ)2 dτ− 1
h̄

Ipt ′′0

=
h̄

2m

[
e2E2

4ω2
2γ
√

1+ γ2

2ω
− e2E2

4ω2 t ′′0

]
− 1

h̄
Ipt ′′0

= −
Ip

h̄ω

[(
1+

h̄2

2γ2

)
sinh−1

γ− h̄2
√

1+ γ2

2γ

]
(3.157)
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where the Keldysh parameter, γ takes the form of

γ =

√
2mIpω

eE
(3.158)

Hence,

ImS
(
0, it ′′0

)
=−

Ip

h̄ω

[(
1+

h̄2

2γ2

)
sinh−1

γ− h̄2
√

1+ γ2

2γ

]
(3.159)

For the first case where γ � 1, then we have sinh−1
γ ≈ γ meanwhile for the case

γ � 1, we have sinh−1
γ ≈ ln2γ . Henceforth, when the Keldysh parameter γ � 1, the

exponential function of Eq. 3.157 would be

exp
[
ImS

(
0, it ′′0

)]
= exp

{
−

Ip

h̄ω

[(
1+

h̄2

2γ2

)
sinh−1

γ− h̄2
√

1+ γ2

2γ

]}

= exp

{
−

Ip

h̄ω

[(
γ +

h̄2

2γ2

)
− h̄2

√
1+ γ2

2γ

]}

= exp

[
−
(2Ip)

3/2

3F

]
, (3.160)

Then, when γ � 1, we have

exp
[
ImS

(
0, it ′′0

)]
= exp

{
−

Ip

h̄ω

[(
1+

h̄2

2γ2

)
sinh−1

γ− h̄2
√

1+ γ2

2γ

]}

=

(
1
2γ

)Ip/h̄ω

≈ EIp/h̄ω . (3.161)

Note for the propagation operator : Evolution operator propagates vector from t0 to

t and it can be described by

|k, t〉=U (t, t0) |k, t〉, (3.162)

where the propagation operator is defined by

U0 (t, t0) = e−iH0(t−t0)

= ∑
n
|n〉e−iEn(t−t0)〈n|. (3.163)
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As a result, this imply that

|k, t〉= ∑
n
|n〉e−iEn(t−t0)〈n|k, t0〉. (3.164)

Time-evolution problem is solved once initial vector is expanded in terms of eigen-

vectors of stationary problem

ih̄
∂

∂ t
Ψ = H0Ψ (3.165)

with

Ψ(t0) = Ψ0 (3.166)

H0ρn = Enρn (3.167)

Hence, we can rewrite the wavefunction as the summation of all states

Ψ(x, t) = ∑
n

ρn (x)e−iEn(t−t0) 〈ρn|Ψ0〉 , (3.168)

and yield

〈x|k, t〉= ∑
n

∫
dx′〈x|n〉e−iEn(t−t0)〈n|x′〉〈x′|k, t0〉. (3.169)

Next, let us rewrite again for the expression of the wavefunction in term of Green

function in one dimension, along x

Ψ
(
x′′, t

)
=
∫

dx′G
(
x′′, t;x′, t0

)
Ψ0
(
x′, t0

)
(3.170)

where

G
(
x′′, t;x′, t0

)
= ∑

n
〈x′′|n〉〈n|x′〉e−iEn(t−t0) (3.171)

Hence, for the propagation of an electron in the laser field, let us reconstruct the

Volkov wavefunction as a basis
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ΨdE (r, t) =
1√
(2π)3

exp
[

i
h̄
(p+ eA(t)) · r

]
exp
[∫ t

0
− ih̄

2m

[
p+ eA

(
t ′
)]2 dt ′

]

=
1√
(2π)3

exp
[

i
h̄

v(t) · r
]

exp
[∫ t

0
− ih̄

2m
v
(
t ′
)2 dt ′

]
(3.172)

In three dimensional space, the Green function propagator would be

G
(
r′′, t;r′, t ′

)
=

θ (t− t ′)

(2π)3

∫
d3pexp

[
i
h̄

(
v(t) · r−v

(
t ′
)
· r′
)]

exp
[
− ih̄

2m

∫ t

t ′
v(τ)2 dτ

]
(3.173)

and we obtain the final expression for ionization rate

w =C2
n∗,l∗

(
3ξ

πξ0

) 1
2

E
(2l +1)(l + |m|)!

2|m| (|m|)!(l−|m|)!

(
2ξ0

ξ

)2n−|m|−1

exp
(
−2ξ0

3ξ

)
(3.174)

where

n∗ = Z (2E)−1/2 (3.175)

ξ0 = (2E)1/2 (3.176)
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CHAPTER 4

PERTURBATIVE SEMI-ANALYTICAL (KELDYSH TYPE) THEORY

4.1 Introduction

Over the past century, there exist several models to describe the photoioniza-

tion rate of an atom in an intense laser field, such as Smirnov and Chibisov’s model,

ADK (Ammosov, Delone and Krainov) theory, PPT (Perelomov, Popov and Terent’ev)

and Keldysh’s theory. In this chapter, the Keldysh’s formalism is introduced where it

describes the transition rate of an electron from ground state to Volkov state when an

atom is placed in an intense laser field. The pioneering work of Leonid Keldysh was first

introduced in 1965 which provides a complete theoretical description of the tunnel ion-

ization by intense linearly polarized light where the photon energy, h̄ω is lower than the

ionization potential, Ip. In this chapter, detail derivation on the Keldysh’s formalism and

the extension of the model is outlined. We will discuss the output and the comparison of

both model.

4.2 Keldysh’s Ionization Rate in Linear Field

In variable electric field which is defined by the equation below,

E (t) = E cosωt, (4.1)

and the adiabatic parameter, γ

γ =
ω

ωt

(4.2)

=
ω
√

2mI
eE

(4.3)

=
1

2K0F
. (4.4)

On the other hand, γ is also known as the ratio between frequency of laser light, ω

and frequency of electron tunneling, ωt through a potential barrier where I is the ioniza-
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tion potential of atomic level.

I =
κ2me4

2h̄2 , (4.5)

while E is the amplitude of electric wave field and F is the reduced field

F =
E

κ3εa
(4.6)

The multiquantumness parameter of the process is given by K0 i.e. the minimal

number of photons required for ionization,

K0 =
I

h̄ω
. (4.7)

From here, we note that

κ =

√
I

IH
. (4.8)

There are some important points to take note, which is F , K0 and γ are dimensionless

quantities. Here, IH is the ionization potential of the hydrogen atom,

IH =
me4

2h̄2 = 13.6eV, (4.9)

and εa is the atomic unit of electric field intensity

εa =
m3e5

h̄4 = 5.14×109 Vcm-1 (4.10)

and the ionization rate w of a level is measured in the unit

w =
me4

h̄3 = 4.13×1016 s-1 (4.11)

Tunnel ionization take place when γ � 1 , while for γ � 1 the ionization is a mul-

tiphoton process. We will discuss these two important processes in the following section

where the Keldysh’s formalism will be presented in details.

For a linearly polarized monochromatic electromagnetic wave, the differential ion-

ization probability , i.e the momentum photoelectron spectrum , is of the form,

dw(p) = Pexp
{
−2K0

[
f (γ)+ c1(γ)q2

‖+ c2(γ)q2
⊥

]} d3 p
(2π)3 , (4.12)

where q=p/κ and f (γ) is the keldysh function
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f (γ) =

(
1+

1
2γ2

)
arcsinγ−

√
1+ γ2

2γ
(4.13)

=


2
3γ− 1

15γ3 , γ � 1

ln2γ− 1
2 , γ � 1

 .

The coefficients of the photoelectron momentum distribution are

c1(γ) = arcsinγ− γ(1+ γ
2)−1/2 (4.14)

c2(γ) = arcsinγ, (4.15)

and P(γ) is the pre-exponential factor while the definition for arcsinγ is

arcsinγ ≡ ln(γ +
√

1+ γ2. (4.16)

Note that p =(p‖, p⊥) is the photoelectron momentum, with p‖ being the momentum

component along the direction of the electric field E , p⊥ being perpendicular to it and

κ =
√

2I being the characteristic momentum of the bound state.

For the ionization rate of a level (i.e , the probability of ionization per unit time) we

have with an exponential accuracy

w(F,ω)

 exp
{
− 2

3F

[
1− 1

10

(
1− 1

3ξ 2)γ2]} , γ � 1

(K0F)2K0 ∼ JK0 , γ � 1

 , (4.17)

where J is the intensity of laser radiation and ξ is the elilipticity [ξ 21] expressed by the

following expression

J =
( c

8π

)(
1+ξ

2)E2 (4.18)

For γ� 1 the ionization rate of a state |lm〉 with the orbital abgular momentum l by

linearly polarized light (ξ = 0) is

wlm = κ
2

√
3
π
(2l +1)

(l +m)!
2mm!(l−m)!

C2
κl2

2n∗−m×Fm+1.5−2n∗ exp
[
− 2

3F

(
1− 1

10
γ

2
)]

(4.19)

with wl,−m = wlm and m0.
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From here, we can understand that m = 0,±1, ....is the projection of the angular

momentum l on the electric field and n∗ is the effective principal quantum number of the

level which is calculated from the experimentally measured energy E0 =−I of the atomic

state:

n∗ =
Z
κ
=

Z√
2I
, (4.20)

where Z is the atomic or ion core charge, and Cκl is the dimensionless asymptotic coeffi-

cient of the atom wave function away (κr� 1) from the nucleus.

The sufficiently precise expression for this coefficient is

C2
κl =

22n∗−2

n∗(n∗+ l)!(n∗− l−1)
, x!≡ Γ(x+1) (4.21)

The equation of ionazation rate wlmis valid for low -frequency laser radiation, i.e.

for ω � ωt .

For an arbitrary γ , we obtain the final expression of the rate of ionization for the s

level bound by a short-range (Z = 0) potential is represented in the form of the sum of n-

photon process probabilities:

w(ε,ω) = ∑
n>nth

wn , nth = K0(1+
1

2γ2 ), (4.22)

where l = 0, wn is the partial probability of n-photon ionization:

wn =
κ2

π
|Cκ |2 K−3/2

0 β
1/2F(

√
β (n−nth)× exp

{
−
[

2
3F

g(γ)+2c1(n−nth)

]}
(4.23)

with

g(γ) =
3 f (γ)

2γ
, (4.24)

f (γ) =

(
1+

1
2γ2

)
arcsinγ−

√
1+ γ2

2γ
(4.25)

=


2
3γ− 1

15γ3 , γ � 1

ln2γ− 1
2 , γ � 1

 ,

c1(γ) = arcsinγ− γ(1+ γ
2)−1/2. (4.26)
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The value nth is the photoionization threshold for linearly polarized radiation, and

the β value is

β = 2(c2− c1) (4.27)

=
2γ√
1+ γ2

,

and the function F is defined as

F(x) =
∫ x

0
exp
[
−(x2− y2)

]
dy (4.28)

=

 x− 2
3x2 + .... , x−→ 0

1
2x +

1
4x3+

+ ...... , x−→ ∞

 .

4.2.1 The Keldysh Function

The frequency dependence of the ionization rate of an atom is determined primarily

by the function f (γ,ξ ). This function was calculated by L.V Keldysh (1964) for ξ = 0

which referred to as the Keldysh function.

For ξ = 0 we have

f (γ) =
∞

∑
n=0

(−1)n fnγ
2n+1, (4.29)

and

fn =
2
3

gn =
(2n−1)!!

m!2n−1(2n+1)(2n+3)
, (4.30)

which is a similar series for coefficients of the momentum spectrum c1,2(γ).

Since fn ∝ n−5/2 for n −→ ∞, the series converge for |γ|1. In the antiadiabatic

domain, Eq. 4.29 becomes

f (γ) =
(

1+
1

2γ2

)
lnγ +

∞

∑
n=0

anγ
−2n as γ −→ ∞ (4.31)

where
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a0 = ln2−1/2, (4.32)

a1 = ln2/2, (4.33)

a2 = 3/32, (4.34)

a3 = −5/192, (4.35)

and so on.

Then, Eq. 4.12 becomes

dw(p) = Pexp
{
−2K0

[
f (γ)+ c1(γ)q2

‖+ c2(γ)q2
⊥

]} d3 p
(2π)3 , (4.36)

which can be shown to remain valid in the case of linear polarization, with

f (γ) =
∫

γ

0
χ(u)

(
1− u2

γ2

)
du, (4.37)

and

c1(γ) = c2− γ ć2 =
∫

γ

0
[χ(u)−χ(γ)]du, (4.38)

c2(γ) =
∫

γ

0
χ(u)du, (4.39)

where the function χ(u) is being completely defined by the shape of the laser pulse.

In the case where the external field is spatially uniform and is linearly polarized,

E(t) = Eϕ(ωt) , −∞t∞ , ϕ(±∞)−→ 0 (4.40)

It is possible to suggest a simple analytical procedure for determining χ(u) from the

pulse shape. For instance, χ(u) = (1+ u2)−1/2 correspond to the monochromatic laser

light with ϕ(t)= cos t, χ(u)= 1/(1+u2) to a soliton-like pulse with ϕ(t)= 1/cosh2 t.,etc.

When χ(u) is known in the analytical form, from expression

f (γ) =
∫

γ

0
χ(u)

(
1− u2

γ2

)
du. (4.41)

It is easy to obtain adiabatic expansion. In particular, by setting

χ(u) = (1+u2)−ρ , (4.42)
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and hence, we obtain

f (γ) =
2
3

γ2F1

(
1
2
,ρ;

5
2
,−γ

2
)
, (4.43)

fn =
2Γ(n+ρ)

n!(2n+1)(2n+3)Γ(ρ)
∝ nρ−3, (4.44)

where ρ is the ellipticity of light andfor γ −→ ∞

f (γ)−→
√

πΓ(ρ−1/2)
2Γ(ρ)

, ρ >
1
2

(4.45)

Meanwhile for ρ = 1/2 the function f (γ) grows as lnγ. Then the shape of the field

pulse corresponding to formula

χ(u) = (1+u2)−ρ , (4.46)

is characterized by the asymptotics

ϕ(t) = 1−ρt2 +
1
6
(7ρ

2−3ρ)t4 + ......, t −→ 0, (4.47)

ϕ(t)≈

 [2(ρ−1)t]−ρ/(ρ−1) , ρ > 1,

4exp(−2t) , ρ = 1

 , (4.48)

with ϕ(t) = cos t , 1/cosh2 t , and (1 + t2)−3/2 correspondin to the values of ρ =

1/2,1,and 3/2, respectively.

For an arbitrary ϕ(t) we have the expension

χ(u) = 1− 1
2

a2u2 +
5

12
(a2

2−0.1a4)u4− 7
18

(
a3

2−
1
5

a2a4 +
1

280
a6

)
u6 + ... (4.49)

which give, upon substitution into expression

f (γ) =
∫

γ

0
χ(u)

(
1− u2

γ2

)
du. (4.50)

The expansion of g(γ) and the coefficients of the momentum spectrum b1,2(γ) in the

adiabatic domain. From here, an are the coefficients of the series

ϕ(t) = 1− a2

2!
t2 +

a4

4!
t4− ......, a2 > 0 (4.51)

The Keldysh function for the case of linear polarization can be written in the form

f (γ,0) = τ0−
1

4γ2 (sinh2τ0−2τ0) (4.52)

where τ0 = arcsinh γ .
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4.3 Atom in linear polarized intense laser field

Attempting to calculate the photoionization rate is prohibitively complicated if

done in a rigidly formal sense. In this section, we will study the interaction of a hydrogen

atom with the intense linear polarized laser field in z-direction, which is described by the

following equation

E = E cosωt ẑ (4.53)

where E defines the electric field strength, ω is the frequency of the intense laser and ẑ

represents the unit vector in z-direction. The derivation is consisted of two main parts

which is:

1.)Matrix element prefactor : An integral that represents the transition of an electron

from hydrogen ground state to continuum state.

2.)Action part : The integral over time that show the action process for the transition

of electron from hydrogen ground state to continuum state.

Next, we will introduce the Volkov wavefunction in details where it plays an impor-

tant role in the Keldysh’s formalism.

4.3.1 Volkov wavefunction

The Volkov wavefunction is defined as the following expression

ψp (r, t) = exp

{
i
h̄

[
Π(t) · r− 1

2m

∫ t

0

(
p+

eE
ω

sinωτ

)2

dτ

]}
(4.54)

where it describe the free electron in the continuum state after the interaction with an

intense laser field.

From here, we will show how Eq. 4.54 is derived. In an external electric field

E = E cosωt ẑ. (4.55)

We recall the Maxwell equations as define in the following expressions,

E = −∂A
∂ t
−∇φ , (4.56)

B = ∇×A. (4.57)
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Note that if A is tranverse vector potential, implies that coulomb gauge ∇ ·A = 0.

Hence,

∇ ·E =
∂

∂ t
∇ ·A−∇

2
φ (4.58)

then,

ET =−∂A
∂ t

(4.59)

E is the external electric field which is depending on the travelling time t at fix

direction ẑ, hence,

A = −
∫

ET dt (4.60)

= −
∫

Ecosωt dt

= −E
ω

sinωt (4.61)

Next, we substitute the vector potential A into the Schrödinger’s equation and yield,

ih̄
∂

∂ t
Ψ(r, t) =

1
2m

(
h̄
i
∇− e

c
A
)2

Ψ(r, t)

=
1

2m

(
h̄
i
∇+

eE
ω

sinωt
)2

Ψ(r, t) . (4.62)

Then, by using separation of variables, let us define the wavefunction as

Ψ(r, t) = exp
(

ip · r
h̄

)
f (t) , (4.63)

and the Schrödinger’s equation is expanded

ih̄
∂

∂ t
exp
(

ip · r
h̄

)
f (t) =

1
2m

(
h̄
i
∇+

eE
ω

sinωt
)2

exp
(

ip · r
h̄

)
f (t) (4.64)

=
1

2m

{
−h̄2

∇
2 +

[
eE
ω

]2

sin2
ωt +

h̄
i
∇ · eE

ω
sinωt +

h̄
i

eE
ω

sinωt ·∇

}

×exp
(

ip · r
h̄

)
f (t) . (4.65)
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In the coulomb gauge, we know that the dot product of the vector potential is

∇ ·A = 0 (4.66)

therefore,

∇ ·AΨ(r, t) = Ψ(x, t)∇ ·A+A ·∇Ψ(r, t)

= A ·∇Ψ(r, t) , (4.67)

and we back to the Schrödinger’s equation with the substitution of Eq. 4.67, and yield,

ih̄exp
(

ip · r
h̄

)
∂ f (t)

∂ t
=

1
2m

{
p2 +

[
eE
ω

]2

sin2
ωt +2p

eE
ω

sinωt

}

×exp
(

ip · r
h̄

)
f (t) (4.68)

=
1

2m

(
p+

eE
ω

sinωt
)2

exp
(

ip · r
h̄

)
f (t) . (4.69)

Then, by solving the differential equation,

∫
∂ f (t)
f (t)

= − i
h̄

{
1

2m

∫ (
p+

eE
ω

sinωt
)2

dt

}
, (4.70)

ln f (t) = − i
h̄

{
1

2m

∫ t

0

(
p+

eE
ω

sinωτ

)2

dτ

}
, (4.71)

obviously we can obtain the solution of the time-dependent function

f (t) = exp

{
− i

h̄

[
1

2m

∫ t

0

(
p+

eE
ω

sinωτ

)2

dτ

]}
. (4.72)

Next, we retrieve the Volkov wavefunction by substitute the time-dependent function

f (t) into Eq. 4.63,

Ψ(r, t) = exp
(

ip · r
h̄

)
f (t)

= exp
(

ip · r
h̄

)
exp

{
− i

h̄

[
1

2m

∫ t

0

(
p+

eE
ω

sinωτ

)2

dτ

]}
(4.73)

Furthermore, we apply the length gauge transformation on Eq. 4.73 and yield

81



ΨP (r, t) = exp
[
− i

h̄
A(t) · r

]
Ψ(r, t) (4.74)

= exp
i
h̄

{[
p+

eE
ω

sinωt
]
· r−

[
1

2m

∫ t

0

(
p+

eE
ω

sinωτ

)2

dτ

]}
(4.75)

Finally, the Volkov wavefunction as in Eq. 4.54 is obtained.

4.3.2 Keldysh’s formalism

As the starting of Keldysh’s formalism, firstly, we use the hydrogen s-th bound state

at n = 1, l = 0 and m = 0 as the initial state for the tunnelling ionization

ψ (r) → ψ100 (r,θ ,φ)

=

(
1

πa3

)
exp
(
−r

a

)
(4.76)

where a = a0/Z

For the transition matrix, we have

V0s (p, t) =
∫

Ψ
∗
p (r, t)eE(r, t) · rΨs (r, t)d3r, (4.77)

r-vector take r (sinθ cosφ ,sinθ sinφ ,cosθ) and the dot product for the electric field E

and directionality vector r is

E · r = E (ax,ay,az) · r (sinθ cosφ ,sinθ sinφ ,cosθ) (4.78)

= Er [(ax cosφ +ay sinφ)sinθ +az cosθ ] (4.79)

We make an assumption so that the momentum of the photoelectron is parallel to the

direction of the electric field, E. Hence,

p · r = pr [(ax cosφ +ay sinφ)sinθ +az cosθ ]

Since our case is for linearly polarized laser field, therefore we choose the propaga-

tion is along the z-direction. Next, we separate Eq. 4.77 into two parts, the matrix element

prefactor (spatial part) and also the action part (time dependent part).
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The matrix element is defined as the following expression

V0 (Π(t)) =

(
1

πa3

) 1
2

×∫
exp
[
− i

h̄
Π(t) · r

]
eE · rexp

(
−r

a

)
d3r (4.80)

meanwhile the action part is defined as

eiS(p,t) = eiΩ(p)t×

exp
{
− i

h̄

[
ep ·E
mω

(cosωt−1)+
e2E2

8mω2 sin2ωt
]}

(4.81)

where

Ω(p) =
1
h̄

(
I0 +

p2

2m
+

e2E2

4mω2

)
(4.82)

=
1
h̄
(I0 +K +Up) (4.83)

Next, we solve for the matrix element prefactor. By using the transformation u =

sinωt, the result yields

V0

(
p+

eE
ω

u
)
=−i

2π

h̄

√
1

πa3 e16a5I3
0

E ·
(
p+ eE

ω
u
)[

h̄2

2ma2 +
(p+ eE

ω
u)

2

2m

]3 (4.84)

Meanwhile, for the action part, we set

Ĩ0 = I0 +Up (4.85)

hence,

S (p, t) =
1
h̄

[(
Ĩ0 +

p2

2m

)
t− ep ·E

mω
(cosωt−1)

− e2E2

8mω2 sin2ωt
]

(4.86)

We perform the same transformation as in matrix element prefactor Eq. 4.86 can bee

expressed as
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S (p,u) =
1

h̄ω

[(
Ĩ0 +

p2

2m

)
sin−1 u

−ep ·E
mω

(√
1−u2−1

)
− e2E2

8mω2 u
√

1−u2
]

= N sin−1 u−a
(√

1−u2−1
)
−bu

√
1−u2 (4.87)

where N is the number of photon

N =
Ĩ0

h̄ω
+

χ2I0

h̄ω

=
Ĩ0

h̄ω
+2γ

2
χ

2b, (4.88)

with the coefficient a is defined as

a =
1

h̄ω

ep ·E
mω

=
2I0

γ h̄ω
ξ χ

= (4bγ)ξ χ, (4.89)

and the coefficient b which is

b =
1

h̄ω

e2E2

8mω2

=
Up

h̄ω
, (4.90)

and

ξ = cosθ . (4.91)

The momentum depends on n through the following expression

χ =
pn√
2mI0

=

√
h̄ω

I0
(n−n0), (4.92)

where n0 =
I0+Up

h̄ω
and pn =

√
2mh̄ω(n−n0).
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For linearly polarized, the ionization rate is for small momentum was first derived

by Keldysh in (Keldysh, 1965) . The theory is valid for small momenta such that terms

higher than ( p√
2mI0

)2 are negligible. This restriction also implies a limitation to the laser

field E (since dp
dt ' eE) and hence the Keldysh parameter γ .

The Keldysh parameter has the alternative statements,

γ =

√
EB

2Up
(4.93)

=
ω

I1/2

√
2EB (4.94)

=

√
I0

2Up
, (4.95)

where EB is the field free binding energy of the electron in the atom or I0 the ionization

potential of the atom.

Up is the ponderomotive energy (the interaction energy during the transition) of the

free electron in the field, and ω is the frequency of the ionization field of intensity I.

We combine the matrix element prefactor and the action and rewrite it in the form

L(p) =
1

2π

∮
V0

(
p+

eE
ω

u
)

exp

{
i

h̄ω

∫ u

0
I0 +

1
2m

(
p+

eE
ω

u
)2
}
. (4.96)

4.3.3 Saddle Point Solution

By defining the transformation

u = sinx, (4.97)

du
dx

= cosx, (4.98)

with x = ωt. Then we can rewrite the L(p) function as

L(p) =
1

2π
V0

(
p+

eE
ω

u
)

(4.99)

×exp
{∫ u

0

1√
1− v2

[
I0 +

1
2m

(
p+

eE
ω

v
)]

dv
}

du,
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with the saddle point us which depends on ps.

Next, we apply Saddle point method on Eq. 4.96,

dS (p, t)
dt

=
1
h̄

[
I0 +

1
2m

(
p+

eE
ω

sinωt
)2
]

(4.100)

= 0.

Two saddle point are obtain from Eq. 4.100, which are

u± =
1
4b

[
−a±

√
(a2−8bN +8b2)

]
= −y±

√
y2 +

b−N
2b

≈ γ

[
−xcosθ ± i

(
1+ x2 1

2
sin2

θ

)]
, (4.101)

and the relation of both saddle points are

u− = u∗+. (4.102)

Similarly, we obtain the expression for x = ωt subsequently from the result of both

saddle points,

ωt+ ' isinh−1
γ− γ cosθ√

1+ γ2
x+

1
2

iγ
sin2

θ + γ2(√
1+ γ2

)3 x2, (4.103)

ωt− ' π + isinh−1
γ +

γ cosθ√
1+ γ2

x+
1
2

iγ
sin2

θ + γ2(√
1+ γ2

)3 x2. (4.104)

The first term in Eq. 4.103 dominants the imaginary part isinh−1
γ must be posi-

tive so that exponential of the function exp [iS (t+)] will decay exponentially instead of

blowing up. Therefore, we calculate for the following expression

cosωt+ =
√

1+ γ2 + i
γ2 cosθ√

1+ γ2
x+

1
2

γ
2

(
1+ γ2)sin2

θ − cos2 θ(√
1+ γ2

)3 x2, (4.105)

cosωt− = −
√

1+ γ2 + i
γ2 cosθ√

1+ γ2
x− 1

2
γ

2

(
1+ γ2)sin2

θ − cos2 θ(√
1+ γ2

)3 x2. (4.106)
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After that, we proceed to the second order of the action part and yield

S′′ (u) =
e

mω
E ·
(
p+ eE

ω
u
)

h̄ω
√

1−u2
+

u
[
I + 1

2m

(
p+ eE

ω
u
)2
]

(1−u2)
3/2 . (4.107)

Then, we rewrite the expression Eq. 4.107 and get

S′′ (us) =
e

mω
E ·
(
p+ eE

ω
us
)

h̄ω
√

1−u2
s

= ±4
Up

h̄ω

iγ
√

1+χ2s2√
1−u2

±

= ±
2Up

h̄ω

u+−u−√
1−u2

±

(4.108)

In view of the delta function δ (h̄A(p)−nh̄ω) where us depends on n only and the

momenta which is satisfying it are finite. Hence we rewrite it as

un± = un± (pn) (4.109)

= −ξ

√√√√ p2
n

2m
2Up
± i

√√√√I0 +
p2

n
2m (1−ξ 2)

2Up
, (4.110)

where χ = pn√
2mI0

contains all the n dependence. Then the action part with repect of each

saddle point becomes

S (u±) =

(
Ĩ0

h̄ω
+2γ

2x2b

)
ωt±− (4γχξ + sinωt±)bcosωt±+4γξ xb (4.111)

=

(
Ĩ0

h̄ω
+2γ

2x2b

)
sin−1

[
γ

(
−ξ x± i

√
1+ x2s2

)]
+4γξ xb (4.112)

−
(

4ξ x−ξ x± i
√

1+ x2s2
)

b

√
1− γ2

(
−ξ x± i

√
1+ x2s2

)2

with

S (u+) = i
(

I0 +Up

h̄ω
sinh−1

γ−
Up

h̄ω
γ

√
1+ γ2

)
(4.113)

+4γ cosθ
Up

h̄ω

(
1−
√

1+ γ2x
)
+ i2γ

2 Up

h̄ω

(
sinh−1

γ− γ cos2 θ√
1+ γ2

)
x2

= −A+(B−C)x+ iDx2 (4.114)
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and

S (u−) = i
(

I0 +Up

h̄ω
sinh−1

γ−
Up

h̄ω
γ

√
1+ γ2

)
(4.115)

+4γ cosθ
Up

h̄ω

(
1+
√

1+ γ2x
)
+ i2γ

2 Up

h̄ω

(
sinh−1

γ− γ cos2 θ√
1+ γ2

)
x2

+π

(
I0 +Up

h̄ω
+2γ

2 Up

h̄ω
x2
)

= −A+(B+C)x+ iDx2 +πF (4.116)

Next, by using the following expression

S′′ (u) =
dS (p,u)

du
(4.117)

=
e

mω
E ·
(
p+ eE

ω
u
)

h̄ω
√

1−u2
, (4.118)

and

I0 =
h̄2

2ma2 , (4.119)

then the L(p) is rewritten as

L(p) =
16ieI3

0

√
πa7

h̄2
ω

∑
s

E ·
(
p+ eE

ω
us
)

(h̄ω)2 S′′ (us)
2
(√

1−u2
s

)3 eiS(p,us) (4.120)

=
4h̄ωI0

√
πa

eE ∑
s=±

eiS(p,us)

cosΘs cosωts
(4.121)

As a result, we have

|L(pn)|2 =
(

4h̄ωI0

eE

)2

πa

∣∣∣∣∣ eiS(p,u+)

cosΘ+ cosωt+
+

eiS(p,u−)

cosΘ− cosωt−

∣∣∣∣∣
2

, (4.122)

where

cosΘ
s =±

√
1+

p2 sin2
θ

2mI0
. (4.123)
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4.4 Rate for small momentum

In Keldysh’s work in 1965, he made an assumption so that in the photoionization

system, the momentum of the photoelectron is very small. Following by the Eq. 4.122, if

we only consider the first order of the photoelectron momentum after expanding, then we

have

L(p) =
4h̄ωI0

√
πa

eE
eiS(p,u+)+ eiS(p,u−)√

1+ γ2
, (4.124)

and subsequently

|L(pn)|2 =
(

4h̄ωI0

eE

)2
πa

1+ γ2

∣∣∣eiS(p,u+)+ eiS(p,u−)
∣∣∣2 . (4.125)

Therefore, the integral of Eq. 4.125 yields

∫
π

0
|L(pn)|2 sinθdθ =

(
4h̄ωI0

eE

)2 2πa
1+ γ2 exp

(
−2n0 sinh−1

γ +2bγ

√
1+ γ2

)
(4.126)

×exp

[
−(n−n0)

(
sinh−1

γ− γ cos2 θ√
1+ γ2

)]

=

(
4h̄ωI0

eE

)2 4πa
1+ γ2

( √
1+ γ2

2γ (n−n0)

) 1
2

(4.127)

×exp

{
2(n−n0)

[
γ√

1+ γ2
− sinh−1

γ +2n0

(
γ
√

1+ γ2

2γ2 +1
− sinh−1

γ

)]}
Consequently, the celebrated formula for ionization rate written as

w = 8ω

√
2I0

h̄ω
ξ

3/2 exp[2n0(
γ
√

1+ γ2

2γ2 +1
− sinh−1

γ)]

×
∞

∑
n=n0

exp
[
2∆n(ξ − sinh−1

γ)
]
D(
√

2ξ ∆n) (4.128)

where ∆n = n− n0, ξ = γ√
1+γ2

, I0 =
h̄2

2ma2 is the ionization energy with the Bohr radius

a, Up =
e2E2

4mω2 is the ponderomotive energy, n0(E,ω) =
I0+Up

h̄ω
with the Dawson integral

D(y) =
∫ y

0
exp(z2− y2)dz (4.129)

y2 = 2ξ ∆n (4.130)

Eq. 4.128 is two times larger than that in Eq. 4.177 because the two poles are included.

We will discuss this matter further in the following section.
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4.4.1 Exact rate for arbitrary momentum

In this case, we have extended the limit of Keldysh’s model by taking considera-

tion of the higher order term (Long & Liu, 2011) of the photoelectron momentum. In

other word, our exact model can adopt arbitrary value for the photoelectron momentum.

Therefore, we continue from the L(p, t) function which is

L(p, t) = V0

(
p+

eE
ω

u
)

exp

{
i

h̄ω

∫ u

0
I0 +

1
2m

(
p+

eE
ω

u
)2
}

(4.131)

= V0

(
p+

eE
ω

u
)

eiS(p,t), (4.132)

where S (p, t) is the action part

S (p, t) = Ω(p) t− 1
h̄ω

[
ep ·E
mω

(cosωt−1)+
e2E2

8mω2 sin2ωt
]
, (4.133)

with the conservation of energy term

Ω(p) =
1
h̄

(
I0 +

p2

2m
+

e2E2

4mω2

)
(4.134)

=
1
h̄
(I0 +K +Up) . (4.135)

Next, we perform the Fourier series on L(p, t) function by expanding on the t term

and yield

L(p, t) =
∞

∑
n=−∞

Ln (p)exp [i(Ω−nω) t] (4.136)

= V0

(
p+

eE
ω

u
)

eiS(p,t), (4.137)

with

V0

(
p+

eE
ω

u
)
=−i

2π

h̄

√
1

πa3 e16a5I3
0

E ·
(
p+ eE

ω
u
)[

h̄2

2ma2 +
(p+ eE

ω
u)

2

2m

]3 . (4.138)

Hence, we find the new expression for Ln (p) is a n-dependent function where the n

is the number of photon which is proportional to the intense laser source
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Ln (p) =
1

2π

∫ T/2

−T/2
L(p, t)exp [−i(Ω−nω) t]ωdt (4.139)

=
1

2π

∫ T/2

−T/2
V0

(
p+

eE
ω

u
)

eiS(p,t) exp [−i(Ω−nω) t]ωdt (4.140)

In order to expand the new Ln (p) function with respect of the number of photon, n,

note that

Ln±1 (p) =
1

2π

∫ T/2

−T/2
V0

(
p+

eE
ω

u
)

e±iωt (4.141)

×exp
{

1
h̄

[
nh̄ω− ep ·E

mω
(cosωt−1)+

e2E2

8mω2 sin2ωt
]}

ωdt,

and

Ln+1 (p)+Ln−1 (p) =
1

2π

∫ T/2

−T/2
(2cosωt)V0

(
p+

eE
ω

u
)

e±iωt (4.142)

×exp
{

1
h̄

[
nh̄ω− ep ·E

mω
(cosωt−1)+

e2E2

8mω2 sin2ωt
]}

ωdt

=
1

2π

∫ T/2

−T/2
(2cosωt)L(p, t)exp [i(nω−Ω) t]ωdt. (4.143)

Then, the inversion of the Eq. 4.143 gives us

L(p, t)cosωt =
1
2

∞

∑
n=−∞

Λn (p)exp [i(Ω−nω) t] (4.144)

=
1
2

∞

∑
n=−∞

Ln (p)
[
ei[(Ω−(n+1)ω)]t + ei[(Ω−(n−1)ω)]t

]
, (4.145)

where

Λn (p) = Ln+1 (p)+Ln−1 (p) . (4.146)

4.4.1 (a) Residue Theorem

From Eq. 4.138, obviously we can see that V0
(
p+ eE

ω
u
)

has singularity, hence we

might rewrite the L(p) function as the following expression

L(p) =−16i
eI3

0
h̄

√
a7

π

E ·
(
p+ eE

ω
u
)[

h̄ωS′ (u)
√

1−u2
]3 eiS(p,u)du. (4.147)
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Then, we further expand on S′ (u) and yield

L(p) =−
16i eI3

0
h̄

√
a7

π

[h̄ωS′′ (us)]
3

f (u)

(u−us)
3 du, (4.148)

with

f (u) =
E ·
(
p+ eE

ω
u
)

eiS(p,u)(√
1−u2

)3 . (4.149)

Next, we apply residue theorem to find the singularities. For simplification purpose,

let us define X = eiS(p,u), then the first order differentiation on function f (u) with respect

of u is

d f (u)
du

=
E ·
(
p+ eE

ω
u
)(√

1−u2
)3

dX
du

+XE
Ee+2eEu2 +3upω

ω

(√
1−u2

) 5
2

, (4.150)

and the second order differentiation yields

d2 f (u)
du2 = J+K +L, (4.151)

with

J =
E ·
(
p+ eE

ω
u
)(√

1−u2
)3

d2X
du2 , (4.152)

K = 2
dX
du

E
Ee+2eEu2 +3upω

ω

(√
1−u2

) 5
2

, (4.153)

L = 3XE

(
p+ eE

ω
u
)(

3+2u2)− (1−u2)2p

(1−u2)
3
(√

1−u2
) . (4.154)

As we look at the Eq. 4.151, we can see that

dX
du

= iS′X (4.155)

= 0, (4.156)
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hence, Eq. 4.151 becomes

d2

du2 f (u) = iS′′eiS(p,u)E ·
(
p+ eE

ω
u
)(√

1−u2
)3 . (4.157)

Then, we obtain the final expression for L(p) function which is

L(p) =
16i eI3

0
h̄

√
πa7

(h̄ω)3 ∑
s

E ·
(
p+ eE

ω
us
)

S′′ (us)
2
(√

1−u2
s

)3 eiS(p,us). (4.158)

4.4.1 (b) Transition Probability and Ionization Rate

Before we further proceed, let us define a new term cb (p, t) which is known as

the transition coefficient. It describes the process where the electron is transited from

the hydrogen ground state to the continuum state in the period of time t. We recall the

transition matrix V0s (p, t) as in Eq. 4.77 and yield

cb (p, t) =
1
ih̄

∫ t

−∞

V0s
(
p, t ′
)

dt ′ (4.159)

=
1
ih̄

∫ t

−∞

L
(
p, t ′
)

cosωt ′dt ′ (4.160)

=
1
ih̄

∫ t

−∞

V0

(
p+

eE
ω

sinωt ′
)

cosωt ′ (4.161)

×exp

{
i
h̄

∫ t ′

0

[
I0 +

1
2m

(
p+

eE
ω

sinωτ

)2

dτ

]}
dt ′

Next, we expand on the coefficient and get

cb (p, t) =
1
ih̄

∫ t

−∞

{∫
exp
[
− i

h̄
Π
(
t ′
)
· r
]

eE · rψsd3r
}

(4.162)

×cosωt ′ exp

{
i
h̄

∫ t ′

0

[
I0 +

1
2m

(
p+

eE
ω

sinωτ

)2

dτ

]}
dt ′

Then, we compute for the probability of the transition process through the following

relation

P = |cb (p, t)|2 (4.163)

=
1
h̄2

∫ t

−∞

V0s
(
p, t ′
)

dt ′
∫ t

−∞

V0s
(
p, t ′′

)
t ′′ (4.164)
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Subsequently, the ionization rate is obtained via applying differentiation on the prob-

ability with respect of the transition time

w =
dP
dt

(4.165)

=
∫

∞

−∞

d3 p

(2π h̄)3

{
dc∗b (p, t)

dt
cb (p, t)+ c∗b (p, t)

dcb (p, t)
dt

}
(4.166)

=
1
h̄2

∫
∞

−∞

d3 p

(2π h̄)3

[∫ t

−∞

L∗ (t)L
(
t ′
)

cosωt cosωt ′dt ′ (4.167)

+
∫ t

−∞

L∗
(
t ′
)

L(t)cosωt cosωt ′dt ′
]

By expanding the L(t) function, the ionization rate becomes

w = 2Re
1
h̄2

∫
∞

−∞

d3 p

(2π h̄)3

∫ t

−∞

V ∗0 (Π(t))V0
(
Π
(
t ′
))

(4.168)

×exp
{

i
h̄

∫ t ′

t

[
I0 +

1
2m

Π(τ)2
]

dτ

}
cosωt cosωt ′dt ′,

and we may write Eq. 4.168 as

w =
∫

∞

−∞

d3 p

(2π h̄)3
1

4h̄2

∞

∑
n=−∞

|Λn (p)|2 2πδ (A−nω) (4.169)

=
2π

h̄

∫
∞

−∞

d3 p

(2π h̄)3

∞

∑
n=−∞

1
4
|Ln+1 (p)+Ln−1 (p)|2 δ (h̄A−nh̄ω) . (4.170)

Let us derive an identity for the function Λn (p) which is

1
2

Λn (p) =
1
2
[Ln+1 (p)+Ln−1 (p)] (4.171)

=
1

2π
V0 (Π(u))eiS(p,u)ei(nω−Ω) 1

ω
sin−1 udu. (4.172)

In the aftermath of Eq. 4.172, we have

w =
2π

h̄

∫
∞

−∞

∞

∑
n=−∞

|L(p)|2 δ (h̄Ω(p)−nh̄ω)
d3 p

(2π h̄)3 (4.173)

=
2π

h̄
m
∫

∞

0

∫
π

0

∞

∑
n=−∞

∣∣∣∣12Λn (p)
∣∣∣∣2 δ (h̄Ω(p)−nh̄ω) pdE

2π sinθdθ

(2π h̄)3 . (4.174)

Next, integration over the energy and the delta function yields
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w =
2π

h̄
m
∫

π

0

∞

∑
n=−∞

|L(pn)|2 pn
2π sinθdθ

(2π h̄)3 (4.175)

=
m

2π h̄4

∫
π

0

∞

∑
n=−∞

|L(pn)|2 pn sinθdθ (4.176)

As a result, we have extended the Keldysh’s theory to arbitrary momenta, giving the

exact result that is semi-analytical,

w =
m

(2π h̄2)2
2π

∫
π

0

∞

∑
n=n0

|L(pn)|2 pn sinΘdΘ (4.177)

where

|L(pn)|2 = (
4h̄ωI0

eE
)2

πa

∣∣∣∣∣ eiS(pn,u+)

η+ cosωt+
+

eiS(pn,u−)

η− cosωt−

∣∣∣∣∣
2

(4.178)

with double saddle points

η± = ±
√

1+χ2 sin2
Θ+ i

u3
±
γ

(4.179)

u± = −γχaz± γ

√
(χaz)2− (1+χ2) (4.180)

ωt+ = sin−1 u+, (4.181)

ωt− = π− sin−1 u− (4.182)

and az = cosΘ.

4.5 Elliptical Polarized

For elliptical polarized light E = E(α cosωt,β sinωt,0) = 1
2E[(x̂α + iŷβ )e−iwt +

c.c.] where α and β determine the ellipticity, the integration over Φ should be included

w =
m

(2π h̄2)2

∫ 2π

0

∫
π

0

∞

∑
n=n′0

|L(pn)|2 pn sinΘdΘdΦ, (4.183)

where

L(pn) =
1

2π

∮ V0(Πn(u))√
1−u2

eiS(pn,u)du

=
1

2π

∫
π

−π

V0(Π(x))exp iS(pn,x)dx. (4.184)

Then, the action part for this case would be
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S (p,x) = nx+
eE

h̄mω2 [α px (1− cosx)−β py sinx] (4.185)

−
Up

h̄ω

[(
α2−β 2)sin2x

2

]

Here, n′0 =
I0+Up(α

2+β 2)
h̄ω

and pn =
√

2mh̄ω(n−n′0) where u = sinx and B =
Up
h̄ω

.

The variable momentum components p = p(sinΘcosΦ,sinΘsinΦ,cosΘ). The subse-

quent electron momentum of the electron might follow the field predominantly confined

in the x-y plane, with p(ax,ay,az) that can be found from dp
dt = e

(
E+ 1

mp×B
)

which is

approximately dp
dt ≈ eE, giving az = 0, and finite transverse components ay

ax
≈ β

α

u√
1−u2 that

corresponds to setting Θ = π/2 in the unit vector of p, i.e. ax =
1√

1+( βu
αv )

2
,ay =

1√
1+(αv

βu )
2
.

The transition matrix element between the bound state and the Volkov state is

V0(t) = e
∫

ψs(r)Er sinθC(t,φ)e−iΨr2dr sinθdθdφ (4.186)

where

Ψ(θ ,φ) =
1
h̄
[Qr sinθ +Pr cosθ ] (4.187)

C(t,φ) = M cosφ +N sinφ , (4.188)

M = α cosωt,N = β sinωt (4.189)

P = pz (4.190)

Q(t,φ) = (px +
eE
ω

α sinωt)cosφ (4.191)

+(py−
eE
ω

β cosωt)sinφ

For hydrogenic atom, ψs(r)=R(r)Y (θ ,φ)=R(r)Θ(θ) 1√
2π

eimφ . Assuming the atom

in 1s state, ψs(r)=
√

1
πa3 e−r/a

(
R(r) =

√
4
a3 e−r/a

)
we may perform the r integration and

obtain a semi-analytical expression

V0(Π(t)) =

√
1

πa3 eE6a4
∫
{M cosφ +N sinφ}G(φ)dφ (4.192)

with

G(φ) =
∫ sin2

θdθ[
1+ ia

h̄ (Qsinθ +Pcosθ)
]4 (4.193)

=
26Q′− 4Q′3

P′2−1 +3π

[
4Q′2

(P′−1) − (1+P′)
]
(P′−1)

i
√

A

6A3 (4.194)

+

(
−1+P′2−4Q′2

)
tanh−1

(
Q′√

A

)
A

7
2

96



Figure 4.1: Ionization rate versus frequency, ω and electric field, E for positive pole.

where

A = P′2 +Q′2−1 (4.195)

P′ =
ia
h̄

P,Q′ =
ia
h̄

Q (4.196)

The above expressions have been computed numerically to obtained results without

using the saddle point method from

S′ =
Ω

ωB
−w+2wu2

s +4γχ{αaxus−βay

√
1−u2

s}= 0 (4.197)

which gives four saddle points us with the corresponding derivatives

S′′(us) =

√
4Up
m (α px +β py

us√
1−u2

s
)+4Upus(α

2−β 2)

h̄ω
√

1−u2
s

(4.198)
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Figure 4.2: Ionization rate versus frequency, ω and electric field, E for negative pole.

4.6 Discussions

In Fig. 4.1, we can see the rate of tunnelling ionization due to the positive pole during

the saddle point calculation as in Eqn. 4.128. It is clearly showed that the rate increases

with the frequency and electric field strength. We observe the oscillations at the frequency

around 1016 s−1 with the change of electric field. Meanwhile, Fig. 4.2 has shown the rate

of tunnelling ionization due to the negative pole. However, the oscillations pattern in Fig.

4.2 is almost having the same shape as in Fig. 4.1. In Fig. 4.3, the exact rate of the

tunnelling ionization is computed by taking account of the two poles was shown as the

function of frequency and electric field strength. Interesting feature was found due to the

interference of the two terms eiS(pn,u+)

cosωt+
and eiS(pn,u−)

cosωt−
in Eq. 4.128 associated with the two

saddle points u±. The inteference in Fig. 4.3 has a increment of a ratio 2
√

π/2 which

is obviously as a result of Eq. 4.177. These multiple poles mainly contribute after tak-

ing the consideration of higher order term of momentum in our calculation meanwhile in

Keldysh’s original work, small momentum approximation was taken for the elimination

of higher order momentum term in order to simplify the calculation. In our understand-
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Figure 4.3: Ionization rate versus frequency, ω and electric field, E for both poles in-
cluded.

ing, for the first time this interference pattern predominantly appears in the tunnelling

ionization rate of photoelectron. Therefore, it would be interesting and also challenging

for the further experimental verification. Consequently, our result can take arbitrary value

of momentum into account to produce a more accurate photoionization rate.

For linear polarized laser field, we can see that the differential photoionization rate

dw/dΩ via different detection angle Θ as shown in Fig. 4.4. The ionization rate is the

maximum as the output source facing the detector which is Θ = 0. As the photoelectron

beam is away from the detector as in Fig. 4.4b and Fig. 4.4c, the ionization rate magnitude

is decreasing. In the direction of Θ = π/2 which mean the direction is perpendicular with

the detector, the ionization rate of the photoelectron is still detectable, but in a very low

magnitude which is mainly focusing on the regime of high frequency and low electric

field strength.

Meanwhile, for circular polarized laser, the differential photoionization rate dw/dΩ
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(a) Detection direction Θ = 0. (b) Detection direction Θ = π/4.

(c) Detection direction Θ = π/2.

Figure 4.4: Differential ionization rate dw/dΩ for linear polarized laser field, at different
detection angle Θ.

in Fig. 4.5 has the same order of magnitude as the linear polarization. However, the

oscillations are more rapid due and this can be traced back to the fourth order root in

the saddle point formula Eq. 4.197. The spectra varies little with direction, and quite

isotropic.

The ellipticity has significant effect on the differential ionization rate spectra and the

intensity dependence as in Fig. 4.6. There is a clear minimum threshold frequency of the

laser required for photoionization for each value of electric field. The electron is ejected

mainly in the x-y plane (when Θ = π/2), as expected. The rate along x-direction (Φ = 0)

is larger than y-direction, in agreement with recent analysis (Barth & Smirnova, 2011).
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(a) Detection direction Θ = π/4 and 3π/4. (b) Detection direction Θ = π/3 and 2π/3.

(c) Detection direction Θ = π/2 and 3π/2.

Figure 4.5: Differential ionization rate dw/dΩ for circular polarized laser field, α = β =
1/
√

2 at different detection directions Θ and Φ.

In our calculation, we have generalize the Keldysh’s formalism for arbitrary mo-

mentum of the photoelectron whereby Keldysh has neglected the higher order term of

the momentum. Fig. 4.7 has shown the comparison between my result with Keldysh’s

result. As we can see, the photoionization rate is totally agree at the low frequency regime

(small momentum due to the proportionality of the frequency and momentum). However,

the photoionization rate is totally disagree at the high frequency regime which is higher

momentum for the photoelectron.

To conclude, the Volkov wavefunction and Keldysh’s formalism is studied as in the

previous section. We have obtained the semi-analytical expressions for photoionization
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(a) Detection direction Θ = π/2 and Φ = 0.
(b) Detection direction Θ = π/2 and π/4.

(c) Detection direction Θ = π/2 and π/2.

Figure 4.6: Diferential Ionization rate dw/dΩ for elliptic polarized laser field, α =
1/
√

5,β = 2/
√

5 at different detection directions Θ and Φ.
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Figure 4.7: Comparison between the exact photoionization rate with Keldysh’s result.

rates driven by circular and linearly polarized light. The exact result for linear polarized

is qualitative different from the Keldysh’s theory only at high field regime. In the low

field regime, the results agree. Besides, the multiple saddle points in the linear polar-

ized case give rise to the interference feature. Such feature also appears in the circular

polarized case. We have also generalized the Keldysh’s formalism for arbitrary momen-

tum of the photoelectron. The comparison between the exact photoionization rate and

Keldysh’s original result has been done. The theory developed can be extended to calcu-

late higher order terms in the perturbative formalism. For example, the second order term

in the transition amplitude gives the effects of recollision and high harmonic generation

(HHG) driven by circular polarized laser. The semianalytical results provide some physi-

cal insights and can be compared with the results obtained by solving the time dependent

Schrodinger equation (K.-J. Yuan & Bandrauk, 2011b).
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CHAPTER 5

GENERALIZED MODEL OF PHOTOIONIZATION

5.1 Introduction

Over the past few decades, a lot of significant researches and efforts have been done

in order to compute a complete theoretical model to describe the photoionization rate

(Zhou & Chu, 2011) of atoms by considering various aspects and factors. One of the

main concern is the initial energy state problem. In previous chapter, we have further

extended the Keldysh’s theory by taking consideration of arbitrary momentum of the

photoelectron. By using the residue theorem, the exact photoionization rate of arbitrary

momenta is obtained

w =
m

(2π h̄2)2 2π

∫
π

0

∞

∑
n==n0

|L(pn)|2 pn sinΘdΘ, (5.1)

where the ionization amplitude

|L(pn)|2 = (
4h̄ωI0

eE
)2

πa

∣∣∣∣∣ eiS(pn,u+)

η+ cosωt+
+

eiS(pn,u−)

η− cosωt−

∣∣∣∣∣
2

, (5.2)

with double saddle points

u± = −γχ cosΘ± γ

√
(χ cosΘ)2− (1+χ2) (5.3)

ωt+ = sin−1 u+, (5.4)

ωt− = π− sin−1 u−, (5.5)

and the phase for each saddle point is η± = ±
√

1+χ2 sin2
Θ+ iu3

±
γ

and the parameter

= pn√
2mI0

=
√

h̄ω

I0
(n−n0) depends on the frequency ω and photon number n.

However, the result is restricted to the initial energy level at the ground state hy-

drogen atom. In this chapter, we have extented the exact model to adapt arbitrary initial

energy level of hydrogen atom. A general analytical expression for arbitrary n00 energy

level is obtained where n is the principal quantum number. Meanwhile, semianalytical

expression is obtained for arbitrary nlm energy level where l is the azimuthal quantum

number and m is the magnetic quantum number. We compare the features of the angular
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distribution for different orbital angular momentum and magnetic states. Polarization of

the laser has significant effects on the ionization pattern by intense laser field.

5.2 Literature Review

In the early development of the theoretical framework, Smirnov and Chibisov (Smirnov

& Chibisov, 1966) obtained an analytical result for the photoionization rate of an atom

of arbitrary energy level in the year of 1965. However, they only consider the interaction

of atom with laser field, but not intense laser field. Further enhancement had been done

by M. Perelomov, V. S. Popov, and M. V. Terent’ev (Perelomov et al., 1966) in the later

year 1966 by improving the model to take in consideration of the strong ionization of an

atom in intense laser field but anyway the model is not generalized for arbitrary energy

level of the atom. In the later work of M. V. Ammosov, N. B. Delone and V. P. Krainov

(Ammosov, Delone, & Krainov, 1986) in 1986, their work is also known as the famous

ADK theory which is the most complete analytical model of photoionization rate for ar-

bitrary energy level of an atom in intense linearly polarized laser field. Meanwhile, in

recent work of M. Protopapas, D. G. Lappas and P. L. Knight (Protopapas, Lappas, &

Knight, 1997), they formulate the numerical model of strong field ionization in arbitrary

laser polarizations. However, their work is restricted to numerical result only. Currently,

analytical model of photoionization in strong field for arbitrary laser polarizations would

a challenge for recent theoretical research.

In the following section, a new extension has been introduced into Keldysh’s formal-

ism where the theoretical model has been generalized to adopt pulsed laser as the energy

source. The past models such as Keldysh, ADK and PPT’s model only consider the con-

tinuous wave (CW) laser as the energy source. However, in this new era, pulsed laser such

as Ti-Sa laser is a common tools for experimental usage. In spite of this, the modification

on the theoretical model is a must so that a complete and general model is always ready

for experimental verification. The theoretical model will be derived and discuss the result

in details.
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5.2.1 Pulse Envelope function

In Keldysh’s work, the formalism of photoionization rate was introduced with the

continuous wave (CW) laser as the energy source.

E = E0 cos(ωt +ϕ) (5.6)

However in this paper, we consider the pulse laser as the main energy source by

applying modification on the external electric field with a pulse envelope function, it may

define as

Elipulse = E0g(t)cos(ωt +ϕ) ẑ (5.7)

for linear polarized laser field and

where g(t) may define as a general function for pulse envelope, i.e. Gaussian pulse

envelope, Lorentzian pulse envelope, etc.

The vector potential, Al of the linear polarized laser field can be obtained via the

expression E = −dA
dt . After perform the integration by part, we get the vector potential

with the following expression

Al =−E0hl (t) (5.8)

where h(t) is general function of vector potential with respect of t

hl (t) =
[

g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt
]

ẑ (5.9)

We notice that when the pulse envelope function is a constant, say g(t) = 1 and the

phase difference ϕ = 0, then we have dg(t)
dt = 0 and the vector potential is reduced to the

continuous wave laser case as in our previous work (R. Ooi et al., 2012).

A =−E0

ω
sin(ωt +ϕ) ẑ (5.10)

Meanwhile, for circular polarized laser field, the electric field will be redefined as

Ecirpulse = E0g(t) [α cos(ωt +ϕ) x̂+β sin(ωt +ϑ) ŷ] (5.11)
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By using the same equation E = −dA
dt , we can obtain the vector potential of the

circular polarized electric field,

Acir =−E0hcir (t) (5.12)

where

h(t) =
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt (5.13)

5.2.2 New Volkov state

Since the new vector potential includes the pulse envelope, hence the minimal cou-

pling of the Schrödinger equation is also being modified,

ih̄
∂

∂ t
Ψ(r, t) =

1
2m

(
h̄
i
∇− eA

)2

Ψ(r, t) (5.14)

=
1

2m

(
−h̄2

∇
2 + e2A2− h̄

i
∇ ·A− h̄

i
eA·∇

)
Ψ(r, t)

Consequently, the Volkov wavefunction is obtained

Ψ(r, t) = exp
(

ip · r
h̄

)
exp
[
− i

h̄

∫ 1
2m

(p− eA)2 dt
]

(5.15)

By applying the length gauge transformation, the Volkov wavefunction can be ob-

tained

Ψp (r, t) = exp
{

i
h̄

[
Π(t) · r−

∫ 1
2m

Π(τ)2 dτ

]}
(5.16)

= f (r, t)b(t)

where Π(t) is defined as

Π(t) = p− eA(t) (5.17)

and the vector potential

A =−E0

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt
]

(5.18)

107



5.3 Linear Polarized Pulsed Laser

In the first case, let us analyze the ionization rate of the linear polarized pulse laser

field via

Elipulse = E0g(t)cos(ωt +ϕ) ẑ (5.19)

5.3.1 Matrix Element Prefactor

The transition of the electron of hydrogen atom from arbitrary energy level, ψnlm to

Volkov state, Ψp (r, t) under the interaction of pulse laser source, Epulse can be described

by computing the matrix element prefactor. In the linear polarized laser field, the general

matrix element prefactor is written as

V0p (p, t) =
∫

Ψ
∗
Prel (r, t)eElipulse · rΨnlmd3r (5.20)

= ψnlm (t)b∗ (t)g(t)cos(ωt +ϕ)
∫

ψnlm (r) f ∗ (r, t)eE0r cosθd3r

= ψnlm (t)b∗ (t)g(t)cos(ωt +ϕ)V0 (Π(t)) (5.21)

In order to simplify the initial calculation, we set the special case for hydrogen

ground state

V0p (p, t) =
∫

Ψ
∗
Prel (r, t)eElipulse · rΨnlm (r, t)d3r (5.22)

= ψs (t)b∗ (t)g(t)cos(ωt +ϕ)
∫

ψnlm (r) f ∗ (r, t)eE0r cosθd3r

= ψs (t)b∗ (t)g(t)cos(ωt +ϕ)V0 (Π(t)) (5.23)

Ψnlm (r, t) = ψnlm (r)ψnlm (t) (5.24)

Since pulse has a large bandwidth we might have to include the first few excited

states in addition to the ground state. So the initial wavefunction should be a superposition

of a few states,

Ψnlm (r, t) =g Cgψg (r, t) (5.25)
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where V0 (Π(t)) is the general transition matrix

V0 (Π(t)) =
∫

ψnlm (r)exp
{
− i

h̄
Π(t) · r

}
eE0r cosθd3r (5.26)

= A
∫

rle−r/na0

[
L2l+1

n−l−1

(
2r

na0

)]
eimφ Pm

l (cosθ)exp
{
− i

h̄
Π(t) · r

}
r cosθd3r

where A = eE0

(
2

na0

)l
√(

2
na0

)3 (n−l−1)!
2n[(n+1)!]3

σ

√
(2l+1)

4π

(l−|m|)!
(l+|m|)! and Π(t) = p− eA(t).

In order to simplify the matrix element prefactor, we make an assumption that the

direction of polarization is just parallel to the electric field E

A(t) =−E0

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt
]

ẑ (5.27)

and the dot product yields

A(t) · r = −E0

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt
]
· r (cosθ)(ẑ · ẑ)

= −E0

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt
]

r cosθ (5.28)

Similarly, we use the classical approximation that assume only z-momentum part pz

contribute since p is parallel to E

Π(t) · r = [p− eA(t)] · r (5.29)

=

{
E0

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt
]
+ pz

}
r cosθ(5.30)

Hence, we reduce the matrix element prefactor

V0 (Π(t)) =
∫

ψnlm (r)exp
{
− i

h̄
Π(t) · r

}
eE0r cosθd3r (5.31)

= A
∫

∞

0

∫
π

0

∫ 2π

0
rle−r/na0

[
L2l+1

n−l−1

(
2r

na0

)]
eimφ Pm

l (cosθ) (5.32)

×exp
{
− i

h̄
Π(t) · r

}
r cosθr2 sinθdφdθdr

= A
∫ 2π

0
F (θ , t)eimφ dφ (5.33)
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where

F (θ , t)=
∫

∞

0

∫
π

0
rl+3e−r/na0 exp

{
− i

h̄
Π(t) · r

}[
L2l+1

n−l−1

(
2r

na0

)]
Pm

l (cosθ)cosθ sinθdθdr

(5.34)

By refering to the Eq. 5.33, we note that for any other value of m 6= 0,

∫ 2π

0
F (r,θ)eimφ dφ = F (θ , t)

∣∣∣∣eimφ

im

∣∣∣∣2π

0
(5.35)

= F (θ , t)
∣∣∣∣cosmφ + isinmφ

im

∣∣∣∣2π

0

= 0

However, for the case m = 0, we obtain the following expression

∫ 2π

0
F (θ , t)eimφ dφ = 2πF (θ , t) (5.36)

5.3.1 (a) General solution for energy level n00

Equation 5.33 will give the value of 2π only for m = 0. Hence, from here we can

conclude that in linear polarized pulsed laser field, m can only take value of 0 since there

is no any circular or elliptical moment of the electron. The matrix element becomes

V0 (Π(t)) = 2πF (θ , t) (5.37)

= 2πA
∫

∞

0

∫
π

0
rl+3e−r/na0 exp

{
− i

h̄
Π(t) · r

}[
L2l+1

n−l−1

(
2r

na0

)]
(5.38)

×Pm
l (cosθ)cosθ sinθdθdr

The semi-analytical function F (θ , t) can be solved exactly if we set a condition so

that l can take the value of 0 only. Consequently,

F (θ , t) =
∫

∞

0

∫
π

0
r3e−r/na0 exp{−iBr}

[
L1

n−1

(
2r

na0

)]
cosθ sinθdθdr (5.39)

with B = 1
h̄

{
E0

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt+ϕ)

ω
dt
]
+ pz

}
cosθ .
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In order to get an analytical solution for F (θ , t), we perform a little trick to make a

transformation on r, say x = 2r
na0

, hence

r =
na0x

2
, (5.40)

b =
na0B

2
, (5.41)

then we have

F (θ , t) =
∫

∞

0

∫
π

0
r3e−r/na0 exp{−iBr}

[
L1

n−1

(
2r

na0

)]
cosθ sinθdθdr (5.42)

=
(na0

2

)4 ∫ ∞

0

∫
π

0
e−x/2 [L1

n−1 (x)
]

x3 exp [−ibx]cosθ sinθdθdx

= −
(na0

2

)4 ∫ π

0

32n
(
−1+3n2a2

0B2−2n2 +6in2a0B
)
(−1+ ina0B)n−3

(1+ ina0B)n+3 (5.43)

×cosθ sinθdθ .

Hence, the matrix element is simplified as

V0 (Π(t))=−2π

(na0

2

)4
A
∫

π

0

32n
(
−1+3n2a2

0B2−2n2 +6in2a0B
)
(−1+ ina0B)n−3

(1+ ina0B)n+3 cosθ sinθdθ .

(5.44)

Eq. 5.44 is quite complicated with the θ term, let make another simplification on B

B =
1
h̄

{
E0

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt
]
+ pz

}
cosθ

= Dcosθ ,

with D = 1
h̄

{
E0

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt+ϕ)

ω
dt
]
+ pz

}
.

Let us introduce a dimensionless quantity,

X = cosθ , (5.45)

and the differentiation of it yields

dX
dθ

=−sinθ .
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Hence, by making a substitution in to the equation 5.44, we obtain the analytical

solution of the matrix element prefactor for the electron energy level n00.

V0 (Π(t)) = −2π

(na0

2

)4
A
∫

π

0

32n
(
−1+3n2a2

0B2−2n2 +6in2a0B
)
(−1+ ina0B)n−3

(1+ ina0B)n+3 (5.46)

×cosθ sinθdθ

= 2π

(na0

2

)4
A
∫

π

0

32n
(
−1+3n2a2D2X2−2n2 +6in2aDX

)
(−1+ inaDX)n−3

(1+ inaDX)n+3 XdX

= 64nπ

(na0

2

)4
A

[
− (−1)n

2a2D2n2 +

( i+aDnπ

−i+aDnπ

)n (1+2iaDn2π +3a2D2n2π2)
2(naD+a3D3n3π2)

2

]
. (5.47)

5.4 L(p, t) function and the action part

Next, we redefine the entire function of matrix element prefactor V0p (p, t)=
∫

Ψ∗Prel (r, t)eE·

rΨs (r, t)d3r as L(p, t)cos(ωt +ϕ), hence

L(p, t) = V0 (Π(t))ψs (t)b∗ (t)g(t) (5.48)

= V0 (Π(t))g(t)eiS(p,t),

where the S (p, t) function is the action of the transition process

S (p, t) =−1
h̄

∫ t

0

[
In− eElipulseρ− 1

2
e2E2

lipulse−
√

(p− eAl)
2 c2 +m2c4 +mc2

]
dt,

(5.49)

with

In =
I0

n2 , (5.50)

Elipulse = E0g(t)cos(ωt +ϕ) ẑ, (5.51)

Al = −E0hl (t) , (5.52)

hl (t) =

[
g(t)
ω

sin(ωt +ϕ)−
∫ dg(t)

dt
sin(ωt +ϕ)

ω
dt
]

ẑ, (5.53)

where g(t) is arbitrary pulse envelope function such as lorentzian function, gaussian func-

tion, etc.

Next, we introduce another function to replace the matrix element prefactor,
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L(p) = V0p (p, t) (5.54)

= V0 (Π(t))g(t)cos(ωt +ϕ) (5.55)

×exp
{

i
h̄

[
Ω(p)−

e2E2
0

4mω2 t +
e(p ·E0)

m

[∫ t

0
h(t)dt

]
+

e2E2
0

2m

[∫ t

0
h(t)2 dt

]]}
.

By applying fourier transformation on L(p) function

L(pn) =
1

2π

∫ T/2

−T/2
L(p)exp

{
i
h̄
[nh̄ω−Ω(p)] t

}
dt (5.56)

=
1

2π
V0 (Π(t))g(t)cos(ωt +ϕ) (5.57)

×exp
{

i
h̄

[
nh̄ωt−

e2E2
0

4mω2 t +
e(pn ·E0)

m

[∫ t

0
h(t)dt

]
+

e2E2
0

2m

[∫ t

0
h(t)2 dt

]]}
dt.

The conservation of energy is satisfied by the expression nh̄ω =Ω(p) = I0+K+Up,

where I0 is the ionization potential, K = p2

2m is the kinetic energy of the photoelectron and

Up =
e2E2

0
4mω2 is the ponderomotive energy.

The contour integration V0 (Π(t))g(t)cos(ωt +ϕ)eiS(pn,t)dt will be solved fully nu-

merically, and finally the semi-analytical expression of the photoionization rate of pulse

laser yields

w =
m

2π h̄4

∫
π

0

∞

∑
n=n0

|L(pn)|2 pn sinΘdΘ. (5.58)

5.4.1 General Rate Of Elliptical Polarized Field

For a hydrogenic atom in an elliptical polarized intense laser field E=E (α cosωt,β sinωt,0)

where the coefficient α and β determine the ellipticity ε = α/β of the laser field, the gen-

eral photoionization rate of (as shown in our previous result) is defined as:

w =
m(

2π h̄2)2

∫ 2π

0

∫
π

0
∞

n=n′0
|L(pn)|2 pn sinΘdΘdΦ, (5.59)

where

L(pn) =
1

2π

V0 (Πn (u))√
1−u2

eiS(pn,u)du (5.60)

=
1

2π

∫
π

−π

V0 (Π(s))exp iS (pn,s)ds,
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with the transition matrix element V0 (Π(s)) represents the transition of the photoelectron

from initial state ψs (r) to the continuum Volkov state ψp (r, t)= exp
{

i
h̄

[
Π(t) · r−

∫ t
0

Π(τ)2

2m dτ

]}
with Π(τ) = p− eA(t),

V0 (t) = e
∫

ψs (r)Er sinθC (t,φ)e−iΞr2dr sinθdθdφ (5.61)

Meanwhile, S (pn,s) represents the action phase during the photoionization,

S (p,s) = ns−
Up

h̄ω

(
α2−β 2)sin2s

2
− eE

h̄mω2 [α px coss+β py sins] (5.62)

with u = sins and s = ωt.

However, the angular dependence of the photoionization rate is obtained by differ-

entiate Eq. 5.59 with respect of the polar angle Θ and azimuthal angle Φ

dw
dΩa

=
m(

2π h̄2)2
∞

n=n0
|L(pn)|2 pn. (5.63)

5.4.1 (a) Volkov State in Elliptical Polarized Laser Field

For a hydrogenlike atom which is placed in the elliptical polarized laser field as

defined as following

E = E (α cosωt,β sinωt,0) . (5.64)

In this case, the elliptical polarized laser is located in xy-plane for simplicity purpose

where the coefficient α and β determine the ellitipcity of the laser field, where

ε = α/β . (5.65)

When the ellipticity ratio ε = 1, the laser field will result a circularly polarized laser

field which satisfy the condition α = β = 1. To obtain a vector potential A(t) for the

elliptical polarized laser field above, firstly we have to make sure that the Maxwell’s

equation is satisfied

E =−∂A(t)
∂ t
−∇φ , (5.66)
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B = ∇×A(t) . (5.67)

The dot product of the electric field is defined as

∇ ·E =− ∂

∂ t
∇ ·A(t)−∇

2
φ . (5.68)

Since this process is an electromagnetic field interaction, hence we also have to

consider the Coulomb gauge for this interaction, where ∇ ·A = 0 and hence imply that

the vector potential expression to be

A(t) = −
∫ t

−∞

E
(
t ′
)

dt ′ (5.69)

= −
∫ t

−∞

E (α cosωtx̂+β sinωtŷ)dt ′

=
E
ω
(−α sinωtx̂+β cosωtŷ) .

For such an intense laser field, the electron of the particular hydrogenic atom will be

excited to the continuum level. Hence, by applying the minimal coupling, the system is

described by the Schrödinger’s equation as below

ih̄
∂

∂ t
Ψ(r, t) =

1
2m

(
h̄
i
∇− eA(t)

)2

Ψ(r, t) (5.70)

=
1

2m

(
h̄
i
∇+

eE
ω

(α sinωtx̂−β cosωtŷ)
)2

Ψ(r, t) .

Next, the equation 5.70 can be simplified by using the separation of variables method,

this imply that

Ψ(r, t) = exp
(

ip · r
h̄

)
(t) , (5.71)

where exp
(

ip·r
h̄

)
is the spatial dependence part meanwhile (t) is a function of time de-

pendent. We substitute the equation 5.84 into equation 5.70 and yield

ih̄
∂

∂ t
exp
(

ip · r
h̄

)
(t) =

1
2m

[
h̄
i
∇− eA(t)

]2

exp
(

ip · r
h̄

)
(t) (5.72)

ih̄exp
(

ip · r
h̄

)
∂

∂ t
(t) =

1
2m

[
−h̄2

∇
2− eA(t)

]2
exp
(

ip · r
h̄

)
(t) (5.73)
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5.4.1 (b) Initial State with Arbitrary n-Energy Level

In this chapter, the general hydrogen wavefunction is considered, in which is defined

as following

Ψn,l,m (r) =

√(
2

na0

)3 (n− l−1)!

2n [(n+1)!]3
Rnl (r)Y m

l (θ ,φ) (5.74)

with the radial wavefunction is defined as

Rnl = e−r/na
(

2r
na0

)l [
L2l+1

n−l−1

(
2r

na0

)]
(5.75)

and the angular wavefunction is defined as

Y m
l (θ ,φ) = σ

√
(2l +1)

4π

(l−|m|)!
(l + |m|)!

eimφ Pm
l (cosθ) (5.76)

where L(a)
n (x) = n

j=0
(−1) j

 n+a

n− j

 x j

j! is the associated Laguarre polynomials,

σ =

 σ = (−1)m if m≥ 0

σ = 1 if m < 0

 is the piecewise function,

Pm
l (x) = (−1)m

2l l!

(
1− x2)m/2 dl+m

dxl+m

(
x2−1

)l is the associated Legendre polynomi-

als.

Hence, the transition matrix element of the initial state of arbitrary energy level to

the continuum Volkov state is redefined as

V0 (Π(t)) =
∫

∞

0

∫
π

0

∫ 2π

0
exp
(
− i

h̄
p · r
)

exp
(
− i

h̄
eE · r

ω
sinωt

)
eE · rΨn,l,m (r)r2 sinθdφdθdr

= A
∫

π

0

∫ 2π

0
W (r)C (t,φ)sin2

θdφdθ , (5.77)

where A = eE
(

2
na0

)l
√(

2
na0

)3 (n−l−1)!
2n[(n+1)!]3

σ

√
(2l+1)

4π

(l−|m|)!
(l+|m|)! is the coefficient factor vary-

ing with the different n-energy level, C (t,φ) = (α cosωt cosφ +β sinωt sinφ)eimφ is the

function of the laser pulse time, t and the azimuthal angle φ , and

W (r) =
∫

∞

0

{
e−r/na0

[
L2l+1

n−l−1

(
2r

na0

)]}
rl+3 exp [−iBr]dr is the integration over the radial

part that consists of

116



B =
1
h̄
(Qsinθ +Pcosθ) (5.78)

Q =

(
px +α

eE
ω

sinωt
)

cosφ +

(
py−β

eE
ω

cosωt
)

sinφ (5.79)

P = pz (5.80)

5.5 Generalized formalism

In this section, we will formulate the model as general as possible by considering

the arbitrary initial state of hydrogen atom. The initial state is playing the role of the

starting point where it interacts with the laser source at the first place, thus it depends on

the quantum number nlm. We start with the Schrödinger equation as following

ih̄
∂

∂ t
Ψnlm (r, t) =

[
− 1

2m
h̄2

∇
2 +V (r)− eEρ− 1

2
e2E2

]
Ψnlm (r, t) (5.81)

where the coefficients ρ and describe the Stark shift effect in the external electric field as

defined in the work of (Kim & Cho, 2000)

ρ =
3/2

∑
J=1/2

κ0 (J)∑
k

〈
r
(
6S1/2,kPJ

)〉2

(
1

ω6S1/2−ωkPJ +ω1
+

1
ω6S1/2−ωkPJ −ω2

)
,

(5.82)

with κ0
(1

2

)
= 1

9 and κ0
(3

2

)
= 2

9 , and

=
3/2

∑
J=1/2

κ1 (J)∑
k

〈
r
(
6S1/2,kPJ

)〉2

(
1

ω6S1/2−ωkPJ +ω1
+

1
ω6S1/2−ωkPJ −ω2

)
, (5.83)

with κ1
(1

2

)
= 1

9 and κ1
(3

2

)
=−1

9 .

Next, by using the separation of variables, let

Ψnlm (r, t) = ψnlm (r)ψnlm (t) (5.84)

We insert equation 5.84 into equation B.1, the Schrödinger equation becomes,

ih̄
∂

∂ t
ψnlm (r)ψnlm (t) =

[
− 1

2m
h̄2

∇
2 +V (r)− eEρ− 1

2
e2E2

]
ψnlm (r)ψnlm (t) (5.85)
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In hyperfine model, it is well known that

[
− 1

2m
h̄2

∇
2 +V (r)

]
ψnlm (r) = Inψnlm (r) (5.86)

In =

[
me

2h̄2

(
e2

4πε0

)2
]

1
n2 (5.87)

=
I0

n2

In is the ionization energy that varies with the energy level, n. For instance, at the

hydrogen level ground state where n = 0, the ionization energy is I0 = 13.6eV . Hence,

equation 5.85 becomes,

ih̄
∂

∂ t
ψnlm (t) =

[
In− eEρ− 1

2
e2E2

]
ψnlm (t) , (5.88)

and

1
ψnlm (t)

∂

∂ t
ψnlm (t) =− i

h̄

(
In− eEρ− 1

2
e2E2

)
.

Next, by solving the differential equation,

∫ dψnlm (t)
ψnlm (t)

=− i
h̄

∫ (
In− eEρ− 1

2
e2E2

)
dt, (5.89)

following by

lnψnlm (t) =− i
h̄

[
Int−

∫ (
eEρ +

1
2

e2E2
)]

dt. (5.90)

Hence, we obtain the solution of the time dependent wavefunction

ψnlm (t) = exp
{
− i

h̄

[
Int−

∫ (
eEρ +

1
2

e2E2
)]

dt
}
. (5.91)

Meanwhile, the spatial part of the hydrogen general wavefunction may define as,

ψnlm (r) =

√(
2

na0

)3 (n− l−1)!

2n [(n+1)!]3
Rnl (r)Y m

l (θ ,φ) . (5.92)
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The radial wavefunction 5.92 is consisted of radial wavefunction which is defined as

Rnl = e−r/na0

(
2r

na0

)l [
L2l+1

n−l−1

(
2r

na0

)]
, (5.93)

and the angular wavefunction where

Y m
l (θ ,φ) = σ

√
(2l +1)

4π

(l−|m|)!
(l + |m|)!

eimφ Pm
l (cosθ) , (5.94)

with

L(a)
n (x) = n

j=0
(−1) j

 n+a

n− j

 x j

j! is the associated Laguarre polynomials,

σ =

 σ = (−1)m if m≥ 0

σ = 1 if m < 0

 is the piecewise function,

and Pm
l (x) = (−1)m

2l l!

(
1− x2)m/2 dl+m

dxl+m

(
x2−1

)l is the associated Legendre polynomi-

als.

The indices of the wavefunction consists the principle quantum number, n, the az-

imuthal quantum number, l and also the magnetic quantum number, m. The modification

on the intense laser atom interaction will be elaborated in the following section where we

generalize our model into the relativistic case.

5.5.1 Relativistic Volkov State

The investigation of the electron of hydrogenlike atom in a more intense laser field

would be interesting. Hence, for the electric field strength exceeds the limit of≈ 1014V m−1,

the electron is beyond the classical limit and relativistic correction need to be done on the

Schrödinger equation. In our general model, the Stark effect is not taken into considera-

tion due to the complexity of the hyperfine splitting. However, we will extend the study

of Stark effect on the photoionization in the future project.

Firstly, we define the external electric field for our case, which is a general intense

laser field with both linear and elliptical polarization,

Egeneral = E0

 x̂α cosωt + ŷβ sinωt

ẑcosωt

 (5.95)
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Since the expression is relativistic, we introduce the kinetic energy correction for the

Schrödinger equation,. In non-relativistic limit, it is defined as

K =
1

2m

(
h̄
i
∇− eA

)
. (5.96)

For the relativistic case, we need to do some modification for the kinetic energy term

which give us the result as following

Krel =

√(
h̄
i
∇− eA

)2

c2 +m2c4−mc2 (5.97)

= mc2


√

1+

( h̄
i ∇− eA

)2

m2c2 −1


= mc2


√

1+
[

1
mc

(
h̄
i
∇− eA

)]2

−1


≈ mc2

{
1+

1
2

[
1

mc

(
h̄
i
∇− eA

)]2

+
1
2!

1
2

(
−1

2

)[
1

mc

(
h̄
i
∇− eA

)]4

+ . . .+−1

}

By referring to the above expression, if the second and higher order expansion is

removed due to the low velocity limit, we will get back the non-relativistic case which is

1
2m

[( h̄
i ∇− eA

)]2
. Next, we make the correction for the relativistic Schrödinger equation

of electron at continuum state:

ih̄
d
dt

Ψrel (r, t) = mc2

{
1+

1
2

[
1

mc

(
h̄
i
∇− eA

)]2

+
1
2!

1
2

(
−1

2

)[
1

mc

(
h̄
i
∇− eA

)]4

+ . . .+−1

}
×Ψrel (r, t) (5.98)

Firstly we make an assumption on the wavefunction so that

Ψrel (r, t) = exp
(

ip · r
h̄

)
f (t) . (5.99)

Hence, the Schrödinger equation becomes

ih̄exp
(

ip · r
h̄

)
∂

∂ t
f (t) = mc2 {1+ J+K + . . .+−1}Ψrel (r, t) (5.100)

= mc2 {1+ J+K + . . .+−1}exp
(

ip · r
h̄

)
f (t) ,(5.101)
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with

J =
1
2

[
1

mc

(
h̄
i
∇− eA

)]2

, (5.102)

K =
1
2!

1
2

(
−1

2

)[
1

mc

(
h̄
i
∇− eA

)]4

. (5.103)

In order to make the above eqn E.20 less complicated, let’s break it into two major

parts

Y =
f (t)
2m

[(
h̄
i
∇− eA

)]2

exp
(

ip · r
h̄

)
(5.104)

=
f (t)
2m

[
−h̄2

∇
2−eh̄

i
∇ ·A−eh̄

i
A ·∇+ e2A2

]
exp
(

ip · r
h̄

)
We recall the coulomb gauge ∇ ·A = 0 and yield

∇ ·AΨ(r, t) = Ψ(x, t)∇ ·A+A ·∇Ψ(r, t) (5.105)

= A ·∇Ψ(r, t) , (5.106)

imply that the first part

Y =
f (t)
2m

[
−h̄2

∇
2−2eh̄

i
A ·∇+ e2A2

]
exp
(

ip · r
h̄

)
(5.107)

=
f (t)
2m

[
p2−2e(A ·p)+ e2A2]exp

(
ip · r

h̄

)
= exp

(
ip · r

h̄

)
f (t)
2m

[p− eA]2 ,

and the second part where

Z =
f (t)

8m3c2

[(
h̄
i
∇− eA

)]4

exp
(

ip · r
h̄

)
(5.108)

= f (t)
[
(p− eA)4

]
exp
(

ip · r
h̄

)
,

and so on.

Hence, we can rewrite the 5.98 again with this new expression
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ih̄exp
(

ip · r
h̄

)
∂

∂ t
f (t) = mc2 f (t){1+ J+K + . . .+−1}exp

(
ip · r

h̄

)
= f (t)

{√
(p− eA)2 c2 +m2c4−mc2

}
exp
(

ip · r
h̄

)
(5.109)

The solution of the time dependent part of the Schrödinger equation can be obtained

by solving the differential equation

∫ 1
f (t)

d f (t) =− i
h̄

∫ {√
(p− eA)2 c2 +m2c4−mc2

}
dt (5.110)

following by

ln f (t) =− i
h̄

[∫ √
(p− eA)2 c2 +m2c4dt−

∫
mc2dt

]
(5.111)

As a result, the solution obtained is

f (t) = exp
{
− i

h̄

∫ [√
(p− eA)2 c2 +m2c4dt−mc2

]
dt
}

(5.112)

Then we transform the time-dependent part back and obtain the new relativistic

Volkov wavefunction

Ψrel (r, t) = exp
(

ip · r
h̄

)
f (t) (5.113)

= exp
(

ip · r
h̄

)
exp
{
− i

h̄

∫ [√
(p− eA)2 c2 +m2c4dt−mc2

]
dt
}

By using length gauge transformation, the Volkov wavefunction becomes

ΨPrel (r, t) = exp
[
− i

h̄
A(t) · r

]
Ψrel (r, t) (5.114)

= exp
[
− i

h̄
eA(t) · r

]
exp
(

ip · r
h̄

)
exp
{
− i

h̄

∫ t

0

[√
(p− eA)2 c2 +m2c4−mc2

]
dt
}

= exp
i
h̄

{
Π(t) · r− i

h̄

∫ t

0

[√
Π(t)2 c2 +m2c4−mc2

]
dt
}

with Π(t) = p− eA(t).
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5.6 Generalization of Transition Matrix Element

In this case, we set the angular quantum number l = 0 and the magnetic quantum

number m = 0, we may perform the transformation x = 2r/na0 and b = na0B/2 in the

radial integration and obtain

V0 (Π(t)) = A
∫

π

0

∫ 2π

0
F (B)C (t,φ)sin2

θdφdθ (5.115)

The function F (B) is a b dependent function which is a solution of the integrand

W (r)

F (b) = −
(na0

2

)3
(−1)n 23+n [i(−i+2b)]−n−3 (n+1)(n+2) (5.116)

×hypergeom
(
[−n,−n+1] , [−2−n] ,

1
2

i(−i+2b)
)

n

The hygeometry function in Eq. 5.116 can be further simplified and a new solution

is obtained

F (b) = −
(na0

2

)3 16in(−1)n 2n [−i(i−2b)]−n (1
2 − ib

)n−1

(i−2b)3 (−1+4ib+4b2)(−1+2ib)
(5.117)

×
(
1−2ib−4in2b+2n2−12b2−12inb+24ib3−24nb2)

After transform back to B =
(

2
na0

)
b, the new expression for F (B) is

F (B) =−
(na0

2

)3 32n
(
−1+3n2a2B2−2n2 +6in2aB

)
(−1+ inaB)n−3

(1+ inaB)n+3 (5.118)

The theta integration can be simplified by applying transformation z = eiθ = cosθ +

isinθ , hence we obtain an semianalytical expression of the transition matrix element

V0 (Π(t)) = A
∫ 2π

0
G(φ)C (t,φ)dφ (5.119)

where G(φ) is the theta integrand of the following expression
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G(φ) =
∫

π

0
sin2

θF (B)dθ (5.120)

= Y
∫ M(z)

(z−E)n+3 (z−F)n+3 dz

with Y = i23n
An+3 and the double poles (from the residue theorem) is obtained

E =
−1+

√
1+4AR

2A
(5.121)

F =
−1−

√
1+4AR

2A
(5.122)

The coeffiecient A = (Q′+P′) and R = (Q′−P′) are connected to the momentum in

x,y and z-plane with the following transformation

Q′ =
na
2h̄

Q (5.123)

P′ =
ina
2h̄

P (5.124)

Eq. 5.120 can be solved analytically by applying residue theorem and hence the final

expression is obtained

G(φ) = 2πi∑
n

f (zn) (5.125)

= Y
2πi

(n+2)!

[
lim
z→E

d(n+2)

dz(n+2)
M(z)

(z−F)n+3 + lim
z→F

d(n+2)

dz(n+2)
M(z)

(z−E)n+3

]
(5.126)

5.7 Discussions

We have formulated a general model to describe the photoionization of hydrogenic

atom via arbitrary initial energy level n, l,m and various intensity of the intense laser

source up to the relativistic regime. Firstly, the angular distributions of the differential

photoionization rate, dw
dΘdΦ

= m
(2π h̄2)

2

∞

∑
k=k0

|L(pk)|2 pk sinθ are plotted by using Eq. (1) at =

0 for linear and circular polarizations with relativistic and nonrelativistic results in Fig. 1.

The four scenarios of high and low electric field strength, E and intense laser frequency,
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Figure 5.1: (Color online) Angular distributions of photoionization from relativistic (left)
and nonrelativistic (right) results for linear and circular polarizations on atom in state
n, l,m = 3,0,0. The plots are shown for large and small combinations of E0 and ω .
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Figure 5.2: (Color online) Angular distribution of photoionization rate for linear polar-
ization with different initial excited atomic states in level n = 3.

ω for n, l,m = 3,0,0 show that the relativistic and non-relativistic results agree very well

only for sufficiently small Keldysh parameter γ ≈ ω

E

√
2mIp

e2 , as in case Fig. 1c where

the electric field is strong field at low frequency. At high frequency and even with low

field, the relativistic effect is significant, as clearly shown in Fig. 1b. This also provides

good results on the relativistic photoelectric effect where larger photon energy translates

to photoelectron with higher speed. Thus, in the case of larger Keldysh parameter γ , the

photoelectron emission probability is much smaller than in the nonrelativistic case and

the case of small γ .

Next, we analyze the angular distributions of photoelectron from different orbitals

in the excited states. For linear polarized intense laser field as in (Fig. 2), the angular

distributions do not depend on the sign of the magnetic quantum number, m. However,

for circular polarized(Fig. 3), additional more rounded lobes can be seen for positive

m, the emission profiles are non symmetrical against m. In general, the lobes for linear
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Figure 5.3: (Color online) Angular distribution of photoionization rate for circular polar-
ization with different initial excited atomic states in level n = 3.

polarization are almost complementary to the lobes for circular polarization, for instance

the minimum in linear case corresponds to the maximum in circular case and vice versa.

For linear polarized with m = 0,±2 the photoelectron emission rate is the highest mainly

at around Θ = π/2 and it reduces with l. On the contrary, for the case m = 1, there

is zero emission towards Θ = π/2. This result is counter-intuitive as one would expect

that higher excited state would be more likely to be ionized and the electron is ejected

predominantly along Θ = 0. For the case of circular polarized intense laser field as in

(Fig. 3) with m = 0, the are emission is highly directional with twin peaks which are

close to Θ = π/2.

Subsequently, we look at the angular distributions in excited states for different val-

ues of Keldysh parameter, γ . We have plotted the angular distributions of spherically

symmetric states n00 with n = 1 to n = 4 in Figs. 4 and 5 for linear and circularpolar-

izations, respectively. For the case where γ << 1, multiphoton ionization (MPI) regime,
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Figure 5.4: (Color online) Angular distributions of photoionization for linear polarization
of the first four states |nlm〉= |n00〉 (n = 1,2 . . .4) with: a) γ ∼ 1 b) γ << 1 c) γ >> 1.
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Figure 5.5: (Color online) Angular distributions of photoionization for circular polariza-
tion of the first four states |nlm〉 = |n00〉 (n = 1,2 . . .4) with: a) γ ∼ 1 b) γ << 1 c)
γ >> 1.
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the photoelectron emission basically follows the direction of the linear polarized electric

field, and close to the field direction of the circularly polarized light, especially for higher

excited levels where the ionization energies are smaller. Meanwhile for the case where

γ ≈ 1, the photoelectron can be emitted into several other directions, especially for lower

levels. For γ >> 1, the tunnel ionization (TI) process plays the dominant, where the pho-

toelectron is emitted into various directions and it becomes hard to distinguish the angular

distributions between linear from circular polarized lights. The increased isotropicity in

the emission reflects the nature of tunnelling process, which is probabilistic.

We can see that the general trend shown in Figs. 4 and 5 is that the emission rates

are typically much larger for linear polarization and the rates increase with the electric

field. However, the angular distributions do not change significantly with the electric

field strength. The photoionization rate increases with the initial state n up to n = 3 and

then reduces for larger n. The shape is cosΘ-like for linear case and sinΘ-like for circular

polarization case to unidirectional, bidirectional close to Θ = π/2±ε , where ε is a small

positive value.

In the previous section, we have shown that the relativistic effect on the angular

distribution becomes more significant for larger Keldysh parameter γ . In the case of

large γ and n, the photoelectrons can be emitted into many discrete directions, with no

simple angular distribution. The results also show that photoelectron angular distribution

is sensitive to the magnetic quantum number m, which enables us to distinguish the state

of a degenerate atom in different internal magnetic states. This could be a useful tool to

identify the polarization of the atom by the angular distribution of the photoelectron in

the absence of magnetic field, since the different magnetic states cannot be distinguished

by spectroscopic data. These results are published in our recent paper (C. H. R. Ooi, Ho,

& Bandrauk, 2014).
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CHAPTER 6

CONCLUSION AND OUTLOOK

Throughout this research, we have studied the atom-photon interaction and the pho-

toionization of hydrogenic atom in various aspects. It was first learned that the non-

perturbative theory main engine to describe the interaction of the atom and intense laser

field. Later on, several different interpretations of semi-classical theories which contain

different approaches of Hamiltonians were discussed. In particular, the process of light-

matter interaction in weak field is studied, where the excitation of an electron due to a

less intense laser field, giving a picture of how is the process of electron transition in an

atom.

In pursuit of the interaction of atom with weak field, henceforth we have presented

several processes on interaction of atom with intense laser field. These phenomenon

include above threshold ionization, tunnelling ionization, multiphoton ionization and

Corkum’s “The Simple Man Model”. We discussed the formalism of these processes

in details to enable the readers to understand the phenomenon occurred when the intense

laser field is playing the major role in the system.

In the second half of this research, we have investigated the process of photoioniza-

tion through the perturbative approach. We derived the Keldysh’s formalism and further

extended it to adapt arbitrary momentum of the photoelectron, whereby in Keldysh’s

model, only the small momentum is considered. Furthermore, we have shown the pho-

toionization spectra of the hydrogenic atom in various fields, for instance linear, circular

and elliptical polarized intense laser fields. Later, we made a comparison between our

exact model and Keldysh’s model. We showed the highly directionality dependence of

the photoionization spectra in our model, which provide a very useful information for the

experimental setup in detecting the photoionization spectra.

Thus, we have also further generalized our photoionization model by considering

arbitrary initial state of the energy level and intense laser field strength. Henceforth, the

model has a coverage up to relativistic regime as the electric field strength is increasing.
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We have proved the validity of the generalized model agrees with Keldysh’s model for

certain parameters. Angular distribution of the photoionization spectra is shown and we

compare the non-relativistic and relativistic effect on the photoionization spectra. To

be surprised, the Keldysh parameter, γ is playing an important role to distinguish the

tunnelling ionization regime and multiphoton ionization regime, and hence affecting the

directionality of the photoelectron emission.

The generalized theoretical model for photoionization will bring the realization of

strong field ionization closer to reality and enhance the field of light matter interaction.

The theoretical results would provide useful information and basic prediction as a prepa-

ration for experimental verification.

6.1 Research Significances

This research provides a new description of the photoionization spectra in various

intense laser fields by using Keldysh-like perturbative approach. The establishment of

a complete general model is always a great challenge for a theorist from time to time.

Henceforth, this model is very important because it could provide more information for

the experimentalist where they meet the bottleneck in experiment due to the lacking of

information in the past models.

The generalized model can adapt arbitrary energy level, n,l,m as the initial state of

the system. This is very important for the experimental convenience because the initial

system is not restricted in the ground state energy level anymore as in the past models. In

experiment, the gas sample might be in some excited state after certain process, hence ex-

perimentalist can reuse the sample as the initial state of the photoionization system since

the theoretical explanation of arbitrary initial energy level is possible. Our model also ex-

plain the highly directionality of the photoionization spectra due to various intense laser

field. This provide a very good information in experimental setup, so that the detector can

be located at the optimized direction to detect the ejected photoelectron.

Furthermore, not to be doubted, the world is concerning on more and more intense

laser and higher power facilities such as the Extreme Light Infrastructure (ELI) project.

Our research will provide useful physical insight on such project, thus leading to sig-

nificant knowledge on strong field ionization, in particular enhancing the understanding
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the connection with the properties of intense light source and the interaction with atom.

By using the ultra-intense energy source such as petawatt laser, the relativistic effect is

prominent and the photoelectrons are having very high momentum. Our model can ex-

plain well for such phenomenon because it adapts arbitrary value of the photoelectron

momentum and the relativistic effect is included.

Besides, our research is an important contribution to the future laser system, the

attoseconds laser. This laser system is using high harmonic generation as the main driving

engine, whereby our model can be further extended into high harmonic generation by

taking consideration of the second order perturbation. In spite of that, it provides quite

useful information in the excitation process, and plays a good role as the part of the

system. In the other word, this research will highly benefit to the intense light-matter

interaction and also the development of ultrafast laser.

6.2 Future Works

Given that the advancement of intense laser at a fast pace now, it is expected that the

light matter interaction will be a great impediment towards further development. Hence,

it is important, both theoretically and experimentally, to understand the photoionization

which is a significant process in light matter interaction. With this in mind, the idea of

photoionization should be expanded beyond our proof of concept in the paper by (R. Ooi

et al., 2012). For instance, a better model should be further developed to include other

factors such as the Stark shift effect due to the external electric field. Besides, we are try-

ing to include the magnetic field effect on the photoionization system. The next challenge

would be the incorporation of the current model into high harmonic generation. This can

be done by taking consideration of the second order perturbation to explain the recollision

and recombination process of the photoelectron and its parent ion.

We hope that this idea would transform not only a theoretical framework, but into an

experimental verified theory so that it could provide a better physical insight in the future

development of intense laser atom interaction.
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APPENDIX B

TIME DEPENDENT PERTURBATION THEORY

It is well known that the time dependent Schrödinger equation is defined by the following

expression

ih̄
∂

∂ t
|Ξ(t)〉= {H0 + sV (t)}|Ξ(t)〉. (B.1)

In the perturbation ansatz (Langhoff, Epstein, & Karplus, 1972), the wavefunction is

written in the form of

|Ξ(t)〉= ∑
0

sm|Ξ(m) (t)〉, (B.2)

where |Ξ(t)〉 is consisted of all quantum states (Simon, 1973). Hence, the Eq. B.1 be-

comes

ih̄∑
0

sm ∂

∂ t
|Ξ(m) (t)〉= ∑

0
smH0|Ξ(m) (t)〉+∑

1
smV (t) |Ξ(m−1) (t)〉. (B.3)

For m = 0 , we notice that

ih̄
∂

∂ t
|Ξ(m) (t)〉= H0|Ξ(0) (t)〉, (B.4)

subsequently it gives

∑
n

anEnun (r)e−iEnt/h̄ = ∑
n

anH0un (r)e−iEnt/h̄. (B.5)

As a result, the zeroth order wavefunction takes the form of

|Ξ(0) (t)〉= ∑
n

anun (r)e−iEnt/h̄, (B.6)

where H0un (r) = Enun (r) and an is a time independent coefficient.

However, for the case where m≥ 1, the time dependent Schrödinger equation is

ih̄
∂

∂ t
|Ξ(m) (t)〉= H0|Ξ(m) (t)〉+V (t) |Ξ(m−1) (t)〉. (B.7)
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Generally, we let,

|Ξ(m) (t)〉= ∑
n

a(m)
n (t)un (r)e−iEnt/h̄ (B.8)

where a(m)
n (t) is the time dependent n-th component coefficient of the m-th order pertur-

bation wavefunction (Stratmann, Scuseria, & Frisch, 1998).

Now, the new expression for Eq. B.7 would be

ih̄∑
n

∂a(m)
n (t)
∂ t

un (r)e−iEnt/h̄ = ∑
n

a(m−1)
n (t)V (t)un (r)e−iEnt/h̄, (B.9)

and thus it gives us

ih̄
∂a(m)

n (t)
∂ t

= ∑
n

a(m−1)
n (t)Vkn (t)ei(Ek−En)t/h̄ (B.10)

ih̄a(m−1)
k (t) = ∑

n

∫ t

∞

a(m−1)
n

(
t ′
)

Vkn
(
t ′
)

ei(Ek−En)t ′/h̄dt ′ (B.11)

where the potential of the system is

Vkn (t) = 〈k |V |n〉 (B.12)
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APPENDIX C

THE KRAMERS-HENNEBERGER FRAME

When an atom is placed in a strong field, the Kramers-Henneberger (Reed & Burnett,

1990) is a very important unitary transformation (Sugny et al., 2004) as an approach in

order to solve the Schrödinger equation. This transformation is also known as "wiggling"

frame (Bhatt, Piraux, & Burnett, 1988). We may start with the minimal coupled time-

dependent Schrödinger equation as following

ih̄
∂

∂ t
Ψ(r, t) =

[
1

2m

(
h̄
i
∇− eA

)2

+V (r)

]
Ψ(r, t) (C.1)

=

[
− h̄2

2m
∇

2 +
ieh̄
m

A ·∇+
e2

2m
A2 +V (r)

]
Ψ(r, t)

By introducing two unitary tranformations which are defined as

Û1 = exp
{

ie2

2mh̄

∫ t

−∞

dt ′A2
}

(C.2)

Û2 = exp
{
− e

m

∫ t

−∞

dt ′A ·∇
}

(C.3)

We perform both transformations on the wavefunction according to the following

sequence

ΨKH (r, t) = Û2Û1Ψ(r, t) (C.4)

where ΨKH (r, t) is defined as a wavefunction in the Kramers-Henneberger gauge (Grossman,

2008).

Both unitary transformation is very important because the first transformation as in

equation C.2 eliminates the squared vector potential. Meanwhile, the second transforma-

tion as in equation C.3 locates the coupling into the argument of the potential.
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Hence, the new transformed Schrödinger equation in the Kramers-Henneberger frame

is shown as below

ih̄
∂

∂ t
ΨKH (r, t) =

[
− h̄2

2m
∇

2 +V [r+α (t)]
]

Ψ(r, t) (C.5)

where

α (t) =− e
m

∫ t

−∞

dt ′A
(
t ′
)

(C.6)
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APPENDIX D

THE SADDLE POINT METHOD

The saddle point method is used to approximate the asymptotic behavior of integrals, it

can be used to approximate n! for large n and also for certain integral such as

∫
∞

−∞

enρ(x)dx and
∫

C
enρ(z)dz (D.1)

On the other hand, this method is also known as steepest descent method. Since

our purpose is to perform a contour integration on a complex plane, before entering the

steepest descent method, we must understand the basic of the complex analysis such as

Cauchy Riemann (Folland & Kohn, 1972) condition and analytic function.

D.1 Stirling’s approximation

To begin with the saddle point method, firstly we must understand the Stirling’s

approximation (Kittel & Shore, 1965), where it is used to approximate n! for large n. The

Gamma function is defined as below,

Γ(z) =
∫

∞

0
tz−1e−tdt, (D.2)

since n ∈ N, by using integration by parts, let

u = tn, (D.3)

dv
dt

= e−t , (D.4)

hence, the derivative of the above expression would be

du
dt

= ntn−1, (D.5)

v = −e−t . (D.6)
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Next, we perform the integration by parts to simplify the Gamma function, yielding

Γ(n+1) =
∫

∞

0
tne−tdt (D.7)

= nΓ(n)

= n× (n−1)!Γ(1)

= n!. (D.8)

Then the relation between n! and Gamma function is clearly stated as following

n! = Γ(n+1) (D.9)

=
∫

∞

0
tne−tdt. (D.10)

By introducing the change of variables t = nz and substitute into the equation D.9,

therefore,

n! =
∫

∞

0
(nz)n e−nzndz (D.11)

= nn+1
∫

∞

0
exp{n ln(z)}e−nzdz (D.12)

= nn+1
∫

∞

0
exp(n [ln(z)− z])dz. (D.13)

From the expression above, obviously we can see that [ln(z)− z] < 0 for z ∈ (0,∞)

and [ln(z)− z] has maximum at z = 1. Hence, [ln(z)− z] is maximum at z = 1 imply that

exp(n [ln(z)− z]) has the maximum value at z = 1

As n becomes larger, the difference is becoming more extreme, then the expected

dominant contribution is coming from z = 1. Therefore, we make a Taylor expansion for

the integrand at z = 1, letting g(z) = [ln(z)− z],

n! = nn+1
∫

∞

0
exp(n [ln(z)− z])dz (D.14)

≈ nn+1
∫

∞

0
exp
(

n
[

g(1)+
1
2
(z−1)2 g′′ (1)

])
dz (D.15)

≈ nn+1e−n
∫

∞

0
exp
(

n
s2

2

)
ds (D.16)

≈ nn+1e−n

√
2π

n
, (D.17)
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where

s = z−1. (D.18)

D.2 Generalization: Steepest Descent Method

Subsequently from the Stirling approximation, next we consider the integrals of the

form

∫
enρ(x)dx. (D.19)

As the value n→ ∞, we have to take an approximation (Battiti, 1992) so that

∫ x0+ε

x0−ε

enρ(x)dx≈
∫

R
enρ(x)dx. (D.20)

By the exponential decay of the integrand, Eq. D.20 can be shown that for a< x0 < b,

∫ b

a
enρ(x)dx ≈ enρ(x0)

√
2π

n|ρ ′′ (x0) |
. (D.21)

However, if x0 is an endpoint, then Eq. D.20 would be

∫ b

a
enρ(x)dx ≈ enρ(x0)

√
π

2n|ρ ′′ (x0) |
. (D.22)

Next, we consider

I (n) =
n

∑
k=0

 n

k

k!n−k, (D.23)

and we notice that

∫
∞

0
e−nxxkdx (D.24)

Again, we let t = nx, dt = ndx so that
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∫
∞

0
e−nxxkdx =

∫
∞

0
e−t
( t

n

)k
n−1dt (D.25)

= n−k−1
Γ(k+1) (D.26)

= k!n−k−1 (D.27)

Therefore, I (n) can be writen in the summation form,

I (n) =
n

∑
k=0

 n

k

k!n−k (D.28)

=
n

∑
k=0

 n

k

n
∫

∞

0
e−nxxkdx (D.29)

=
∫

∞

0
e−nxn

 n

∑
k=0

 n

k

xk

dx, (D.30)

henceforth, Eq. D.28 can be further reduced as the following expression

I (n) =
∫

∞

0
e−nxn(1+ x)n dx (D.31)

= n
∫

∞

0
exp(n [ln(1+ x)− x])dx. (D.32)

Now, we take ρ (x) = ln(1+ x)− x and imply that

ρ
′ (x) =

1
(1+ x)

−1, (D.33)

such that x0 = 0 (an endpoint).

ρ (0) = ln(1)−0 (D.34)

= 0, (D.35)

and the second derivative would be

|ρ ′′ (0) | =

∣∣∣∣∣ −1

(1+0)2

∣∣∣∣∣ (D.36)

= |−1| (D.37)

= 1. (D.38)
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Hence, by using Laplace’s method, we obtain the value for In

I (n) =
n

∑
k=0

 n

k

k!n−k (D.39)

≈ enρ(x0)

√
π

2n|ρ ′′ (x0) |
(D.40)

=

√
nπ

2
. (D.41)

Consequently, we extend the formalism onto the complex plane so that

∫
C

enρ(z)dz =
∫

C
enReρ(z)eniImρ(z)dz, (D.42)

where ρ (z) is an analytic function on C.

The strategy for Reρ is analogous to the real case as previous note. The main impor-

tance here is to solve the Imρ part. Furthermore, the main idea for this is to deform the

contour C to C′ so that Imρ is a constant on C′. Then,

∫
C

enρ(z)dz = eniImρ(z)
∫

C′
enReρ(z)dz (D.43)

After getting this formation, Laplace method is applied to find C′,

ρ (z) = u(x,y)+ iv(x,y) (D.44)

= u(x,y)+ iv(x0,y0) (D.45)

where z0 = x0 + iy0 and ρ ′ (z0) = 0. (The dominant contribution is contributed by z0.

Let us recall from the expression from Steepest descent, for v(x,y) = v(x0,y0) ,

∇v =

(
∂v
∂x

,
∂v
∂y

)
(D.46)

=

(
−∂u

∂y
,
∂u
∂x

)
(D.47)

The direction tangent to this curve is

(
∂u
∂x

,
∂u
∂y

)
= ∇u, (D.48)
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where this is the steepest descent in u. Next, we consider the asymptotics of

1
Γ(z)

=
1

2πi

∫
C

t−zetdt. (D.49)

The expression is similar to the Hankel contour (Arfken & Weber, 2005).

1
Γ(z)

=
1

2πi

∫
C

t−zetdt (D.50)

=
1

2πi

∫
C

exp
(
ln t−z)etdt (D.51)

=
1

2πi

∫
C

exp [t− z(ln t)]dt. (D.52)

Again, we let t = sz, dt = zds, and yield

1
Γ(z)

=
1

2πi
z
∫

C
exp [sz− z(lnsz)]ds (D.53)

=
1

2πi
zz−z

∫
C

exp [sz− z lns]ds (D.54)

=
1

2πizz−1

∫
C

exp [z(s− lns)]ds. (D.55)

Now, we take ρ (s) = (s− lns) and the derivative would be

ρ
′ (s) = 1− 1

s
, (D.56)

such that ρ ′ (1) = 0

If we deform C to pass through z = 1 and hold Imρ (z) constant then the dominant

contribution will be around z = 1.In order to hold Imρ (z) as a constant, henceforth, we

set the variable ρ (z) only in the imaginary direction. We let z = 1+ iv, then

ρ (v) = 1+ iv− ln(1+ iv) (D.57)

= 1− v2

2
+

iv3

3
+ ... (D.58)

≈ 1− v2

2
(D.59)

Next, by letting g(v) = 1− v2

2 , we have
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1
Γ(z)

=
1

2πizz−1

∫
C

exp [z(s− lns)]ds (D.60)

≈ 1
2πizz−1

∫
ε

−ε

exp [zg(v)]dv (D.61)

≈ 1
2πizz−1 ez

∫
∞

−∞

exp
[(
−z

v2

2

)]
dv, (D.62)

and

1
Γ(z)

=
1

2πzz−1 ez

√
2π

z
(D.63)

=

(
e
z

)z√ z
2π

, (D.64)

where |ρ ′′ (z0)|= 1.

In generalization, it can be shown that to leading order:

∫
C

enρ(z)dz≈ eiθ enρ(z0)

√
π

k|ρ ′′ (z0) |
(D.65)

where

θ =−α

2
+

π

2
,−α

2
+

3π

2
, (D.66)

is the direction of steepest descent, and

|ρ ′′ (z0) = |ρ ′′ (z0) |e−iα (D.67)
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APPENDIX E

MOMENTUM SPACE WAVEFUNCTION TRANSFORMATION

The general equation for hydrogen ground state wavefunction is defined as the following

Ψn,l,m (r,θ ,φ) =

{
1

(2π)1/2 e±imφ

}{(
(2l +1)(l−m)!

2(l +m)!

) 1
2

Pm
l (cosθ)

}
(E.1)

×

{
(2Y )l+1

(n+ l)!

(
Y (n− l−1)!

n(n+ l)!

) 1
2

exp(−Y r)rlL2l+1
n+l (2Y r)

}
,

where the definition for Y = Z
na0

.

Pm
l (cosΘ) is called Ferrers’ associated Legendre function and L2l+1

n+l (2Y r) is called

associated Laguarre polynomial which is defined by the identity

∞

β=0

Lα

α+β
(ξ )

(α +β )!
uβ = (−1)α

exp
(
− ξ u

1−u

)
(1−u)α+1 . (E.2)

Next, we define the direction vector x,y and z as

x = r sinθ cosφ x̂, (E.3)

y = r sinθ sinφ ŷ, (E.4)

z = r cosθ ẑ, (E.5)

and the momentum vector according to each direction

px = PsinΘcosΦx̂, (E.6)

py = PsinΘsinΦŷ, (E.7)

pz = PcosΘẑ, (E.8)

where the magnitude of the momentum is

P =
√

p2
x + p2

y + p2
z . (E.9)
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Subsequently, the dot product between the momentum and the direction vector would

be

P · r = rP [sinΘcosΦsinθ cosφ (x̂ · x̂)+ sinΘsinΦsinθ sinφ (ŷ · ŷ)+ cosΘcosθ (ẑ · ẑ)]

= rP [sinΘsinθ (cosΦcosφ + sinΦsinφ)+ cosΘcosθ ]

= rP [sinΘsinθ cos(Φ−φ)+ cosΘcosθ ] (E.10)

By using the trigonometry identities

cos(Φ∓φ) = cosΦcosφ ± sinΦsinφ , (E.11)

then the transformation of momentum eigenfunction is given by

Ψn,l,m (P,Θ,Φ) =
∫

exp
[
− i

h̄
P · r

]
×Ψn,l,m (r,θ ,φ)d3r (E.12)

=
∫

∞

0

∫
π

0

∫ 2π

0
Ψn,l,m (r,θ ,φ) (E.13)

×exp
[
− i

h̄
(sinΘsinθ cos(Φ−φ)+ cosΘcosθ)rP

]
r2 sinθdrdθdφ

=
∫

∞

0

∫
π

0

∫ 2π

0
LMNr2 sinθdrdθdφ , (E.14)

with

L =

{
1

(2π)1/2 e±imφ

}{(
(2l +1)(l−m)!

2(l +m)!

) 1
2

Pm
l (cosθ)

}
, (E.15)

M =

{
(2Y )l+1

(n+ l)!

(
Y (n− l−1)!

n(n+ l)!

) 1
2

exp(−Y r)rlL2l+1
n+l (2Y r)

}
, (E.16)

N = exp
[
− i

h̄
(sinΘsinθ cos(Φ−φ)+ cosΘcosθ)rP

]
. (E.17)

We introduce an important transformation which is

I1 =
∫ 2π

0
exp [±imφ + ibcos(Φ−φ)]dφ , (E.18)

b = −rP
h̄

sinθ sinΘ, (E.19)
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and

I2 =
∫

π

0
I1Pm

l (cosθ)sinθ exp [id cosθ cosΘ]dθ ,

d = −rP
h̄
.

Therefore, let us rearrange the momentum eigenfunction after introducing the re-

placing I1 and I2 into Eq. E.14

Ψn,l,m (P,Θ,Φ) =
1

(2π)1/2

(
(2l +1)(l−m)!

2(l +m)!

) 1
2 (2Y )l+1

(n+ l)!

(
Y (n− l−1)!

n(n+ l)!

) 1
2

(E.20)

×
∫

∞

0
I2 exp(−Y r)rl+2L2l+1

n+l (2Y r)dr

Next, we evaluate the I1 by introducing a new transformation φ −Φ = w, hence

I1 =
∫ 2π

0
exp [±imφ + ibcos(Φ−φ)]dφ (E.21)

=
∫ 2π

0
exp [±im(w+Φ)+ ibcosw]dw (E.22)

= e±imΦ2πi±mJ±m (b) (E.23)

The Sommerfield’s integral gives the solution of Bessel function of order ±m. Note

that this expression

J−m (b) = i2mJm (b) , (E.24)

give us the negative m solution

I1 = e−imΦ2πi−mJ−m (b) (E.25)

= e−imΦ2πi−mi2mJm (b) (E.26)

= e−imΦ2πimJm (b) . (E.27)

Consequently, we can generalize the solution for the integral I1 as

I1 = 2πimJm (b)e±imΦ (E.28)

150



where

b = d sinθ sinΘ (E.29)

d = −rP
h̄

(E.30)

Next, our upcoming task is to evaluate the I2 integral. Firstly, let us define the gen-

erating function of the Gegenbauer’s polynomial

Qν ≡ 1
(1+ut +u2)

ν (E.31)

≡ ∞

k=0
Cν

k (t)uk (E.32)

When we set ν = 1
2 , then the function reduce to the Legendre polynomials. By

putting ν = 1
2 and differentiate the function m times with respect of t, then we obtain

Pm
l (t) = 1 ·3 ·5 · · ·(2m−1)

(
1− t2)m/2

Cm+1/2
l−m (t) (E.33)

In 1877, Gegenbauer evaluate the following integral

∫
π

0
eizcosθ cosψJν−1/2 (zsinθ sinψ)Cν

r (cosθ)sinν+1/2
θdθ (E.34)

=

(
2π

z

)1/2

ir
(

sinν−1/2
ψ

)
Cν

r (cosψ)Jν+r (z)

By multiplying a factor of 1 ·3 ·5 · · ·(2m−1)
(
1− t2)m/2 and putting ν = m+1/2;

z = d; x = Θ and r = l−m

1 ·3 ·5 · · ·(2m−1)
(
1− t2)m/2

∫
π

0
eid cosθ cosΘJm (d sinθ sinΘ)Cm+1/2

l−m (cosθ)sinm+1
θdθ

= 1 ·3 ·5 · · ·(2m−1)
(
1− t2)m/2

(
2π

d

)1/2

il−m (sin0
ψ
)

Cm+1/2
l−m (cosΘ)Jl+1/2 (d) (E.35)

=

(
2π

d

)1/2

il−mPm
l (cosΘ)Jl+1/2 (d) (E.36)

With the aid of equation E.34, we can solve for the integral I2, yielding
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I2 =
∫

π

0
I1Pm

l (cosθ)sinθ exp [id cosθ cosΘ]dθ (E.37)

=
∫

π

0
2πimJm (b)e±imΦPm

l (cosθ)sinθ exp [id cosθ cosΘ]dθ (E.38)

= 2πime±imΦ

∫
π

0
exp [id cosθ cosΘ]Jm (d sinθ sinΘ)Pm

l (cosθ)sinθdθ(E.39)

By reducing I2 into 2πime±imΦ

[
1 ·3 ·5 · · ·(2m−1)

(
1− t2)m/2

]
×
∫

π

0 exp [id cosθ cosΘ]Jm (d sinθ sinΘ)Cm+1/2
l−m (cosθ)sinθdθ , then we obtain the

solution for I2, which is

I2 = 2πime±imΦ

(
2π

d

)1/2

il−mPm
l (cosΘ)Jl+1/2 (d) (E.40)

= 2πile±imΦ

(
−2π h̄

rP

)1/2

Pm
l (cosΘ)Jl+1/2

(
−rP

h̄

)
(E.41)

= −2π (−i)l e±imΦ

(
2π h̄

P

)1/2

r−1/2Pm
l (cosΘ)Jl+1/2

(
rP
h̄

)
(E.42)

After that, the final task would be the solution of the radial integral. We refer to

equation E.20, the main part for the radial integral

Ψn,l,m (P,Θ,Φ) = A
∫

∞

0
I2 exp(−Y r)rl+2L2l+1

n+l (2Y r)dr (E.43)

= A
∫

∞

0
r−1/2Jl+1/2

(
rP
h̄

)
exp(−Y r)rl+2L2l+1

n+l (2Y r)dr, (E.44)

where A is the coeficient

A =
1

(2π)1/2

(
(2l +1)(l−m)!

2(l +m)!

) 1
2 (2Y )l+1

(n+ l)!

(
Y (n− l−1)!

n(n+ l)!

) 1
2

(E.45){
−2π (−i)l e±imΦ

(
2π h̄

P

)1/2

Pm
l (cosΘ)

}
.

We focus on the main part of the radial integral that contains

∫
∞

0
rl+3/2Jl+1/2

(
rP
h̄

)
exp(−Y r)L2l+1

n+l (2Y r)dr. (E.46)

Then, we introduce a new transformation by substitution
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η = 2Y r (E.47)

ζ =
P

Y h̄
(E.48)

and

dη

dr
= 2Y (E.49)

Henceforth, we have

∫
∞

0
rl+3/2Jl+1/2

(
rP
h̄

)
exp(−Y r)L2l+1

n+l (2Y r)dr (E.50)

= (2Y )−(l+5/2)
∫

∞

0
η

l+3/2Jl+1/2

(
1
2

ζ η

)
exp
(
−η

2

)
L2l+1

n+l (η)dη .

In order simplify the above expression, let us define the η integral by

Inl (ζ ) =
∫

∞

0
exp
(
−η

2

)
η

l+3/2Jl+1/2

(
1
2

ζ η

)
L2l+1

n+l (η)dη . (E.51)

By introducing a new function U with the following identity

U ≡ Ul (ζ ,u) (E.52)

≡ ∞

n=l+1

Inl (ζ )

(n+ l)!
un−l−1 (E.53)

Then we evaluate the function by using the generating function for the associated

Laguarre polynomials and thus obtaining Inl (ζ ) as coeffiecients of th expansion of Ul (ζ ,u)

as a power series in u

U = ∞

n=l+1

Inl (ζ )

(n+ l)!
un−l−1 (E.54)

=
∫

∞

0
∞

n=l+1

exp
(
−η

2

)
η l+3/2Jl+1/2

(1
2ζ η

)
L2l+1

n+l (η)

(n+ l)!
un−l−1dη (E.55)

=
∫

∞

0
exp
(
−η

2

)
η

l+3/2Jl+1/2

(
1
2

ζ η

)
∞

n=l+1

L2l+1
n+l (η)

(n+ l)!
un−l−1dη (E.56)
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Since we know that the identity as following

∞

β=0

Lα

α+β
(ξ )

(α +β )!
uβ = (−1)α

exp
(
− ξ u

1−u

)
(1−u)α+1 , (E.57)

then we have

∞

n=l+1

L2l+1
n+l (η)

(n+ l)!
un−l−1 = (−1)2l+1 exp

(
− ηu

1−u

)
(1−u)2l+2 . (E.58)

We substitute Eq. E.58 into Eq. E.56 and yield

U =
∫

∞

0
exp
(
−η

2

)
η

l+3/2Jl+1/2

(
1
2

ζ η

)
∞

n=l+1

L2l+1
n+l (η)

(n+ l)!
un−l−1dη (E.59)

=
∫

∞

0
exp
(
−η

2

)
η

l+3/2Jl+1/2

(
1
2

ζ η

)
(−1)2l+1 exp

(
− ηu

1−u

)
(1−u)2l+2 dη (E.60)

=
(−1)2l+1

(1−u)(2l+2)

∫
∞

0
η

l+3/2Jl+1/2

(
1
2

ζ η

)
exp
[
−η

1+u
2(1−u)

]
dη . (E.61)

The integral in Eq. E.61 had been evaluated by Hankel and Gegenbauer once upon a

time, and it can be declared as an identity here

∫
∞

0
xµ−1Jν (zx)exp [−αx]dx =

(z/2α)ν
Γ(µ +ν)

αµ+νΓ(ν +1)
F
(

µ +ν

2
,

µ +ν +1
2

;ν +1;− z2

α2

)
.

(E.62)

Again, we perform a transformation and let

z =
1
2

ζ , (E.63)

ν = l +
1
2
, (E.64)

µ = l +
5
2
, (E.65)

α =
1
2

1+u
(1−u)

, (E.66)

therefore, we have
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U =
(−1)2l+1

(1−u)(2l+2)

∫
∞

0
η

l+3/2Jl+1/2

(
1
2

ζ η

)
exp
[
−η

1+u
2(1−u)

]
dη (E.67)

=
(−1)2l+1

(1−u)(2l+2)
Γ(2l +3)

Γ(l +3/2)

(
ζ

4

)l+1/2[2(1−u)
1+u

]2l+3

(E.68)

×F

(
2l +3

2
,
2l +4

2
; l +

3
2

;−1
4

ζ
24
(

1−u
1+u

)2
)

= (−1)2l+1 4(2l +2)!
Γ(l +3/2)

ζ
l+1/2 (1−u)

(1+u)2l+3 (E.69)

×F

(
l +

3
2
, l +2; l +

3
2

;−ζ
2
(

1−u
1+u

)2
)
.

We note that the hypergrometric series F is a degenerate one:

F

(
l +

3
2
, l +2; l +

3
2

;−ζ
2
(

1−u
1+u

)2
)

=

{
1+ζ

2
(

1−u
1+u

)2
}−l−2

(E.70)

=

{
(1+u)2 +ζ 2 (1−u)2

(1+u)2

}−l−2

(E.71)

=

{
(1+u)2

(1+u)2 +ζ 2 (1−u)2

}l+2

, (E.72)

and hence, Eq. E.69 becomes

U = (−1)2l+1 4(2l +2)!
Γ(l +3/2)

ζ
l+1/2 (1−u)

(1+u)2l+3

{
(1+u)2

(1+u)2 +ζ 2 (1−u)2

}l+2

(E.73)

= (−1)2l+1 4(2l +2)!
Γ(l +3/2)

ζ
l+1/2 1−u2

(1+ζ 2)
l+2
[

1+2(
1−ζ 2)
(1+ζ 2)

u+u2
]l+2 (E.74)

= A
1−u2

[1+2xu+u2]
l+2 , (E.75)

where

x =
1−ζ 2

1+ζ 2 , (E.76)

A = (−1)2l+1 4(2l +2)!
Γ(l +3/2)

ζ l+1/2

(1+ζ 2)
l+2 . (E.77)

This is the final step where we introduce another identity first, we recall the Gegen-

bauer polynomail identity as shown in Eq. E.31
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Qν ≡ 1
(1+ut +u2)

ν (E.78)

≡ ∞

k=0
Cν

k (t)uk (E.79)

By performing operation both side with u−ν+1 ∂

∂uuν , we have

u−ν+1 ∂

∂u
uν

(1+ut +u2)
ν = u−ν+1 ∂

∂u
uν ∞

k=0
Cν

k (t)uk (E.80)

u−ν+1
ν

uν−1 + tuν +uν+1− tuν −2uν+1

(1+ut +u2)
ν+1 = ∞

k=0
(ν + k)Cν

k (t)uk (E.81)

u−ν+1
ν

uν−1 (1−u2)
(1+ut +u2)

ν+1 = ∞

k=0
(ν + k)Cν

k (t)uk (E.82)

ν
(
1−u2)

(1+ut +u2)
ν+1 = ∞

k=0
(ν + k)Cν

k (t)uk (E.83)

Hence, we declare this as a new identity

ν
(
1−u2)

(1+ut +u2)
ν+1 = ∞

k=0
(ν + k)Cν

k (t)uk (E.84)

By setting ν = l +1 and t = x, we may rewrite our U function as

U = A
1−u2

[1+2xu+u2]
l+2 (E.85)

=
A

l +1
∞

k=0
(l +1+ k)Cl+1

k (x)uk (E.86)

=
A

l +1
∞

n=l+1
nCl+1

n−l−1 (x)un−l−1. (E.87)

As a result, we finalize the definition of our U function

U = ∞

n=l+1

Inl (ζ )

(n+ l)!
un−l−1 =

A
l +1

∞

n=l+1
nCl+1

n−l−1

(
1−ζ 2

1+ζ 2

)
un−l−1, (E.88)

with

Inl (ζ ) =
An(n+ l)!
(l +1)

Cl+1
n−l−1

(
1−ζ 2

1+ζ 2

)
.

Finally, the radial integral is solved, and the momentum transformation wavefunction

is completed
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Ψn,l,m (P,Θ,Φ) = A(2Y )−(l+5/2) Inl (ζ ) (E.89)

= A(2Y )−(l+5/2) An(n+ l)!
(l +1)

Cl+1
n−l−1

(
1−ζ 2

1+ζ 2

)
(E.90)

=

{
1

(2π)1/2 e±imΦ

}{(
(2l +1)(l−m)!

2(l +m)!

) 1
2

Pm
l (cosΘ)

}
(E.91)

×

{
Bζ l

(1+ζ 2)
l+2Cl+1

n−l−1

(
1−ζ 2

1+ζ 2

)}

where ζ = P
Y h̄ , B=−(−1)2l+1 (−i)l 22l+4l! π

Y 3/2

(
n(n−l−1)!
(n+l)!

) 1
2 and Γ(m+1/2)= (2m)!

4mm!
√

π.

Obviously, we can see that he imaginary part and negative factor can be omitted,

and yielding the final expression of the momentum-space distribution of the hydrogen

wavefunction.

Ψn,l,m (P,Θ,Φ) =

{
1

(2π)1/2 e±imΦ

}{(
(2l +1)(l−m)!

2(l +m)!

) 1
2

Pm
l (cosΘ)

}
(E.92)

×

{
π22l+4l!

Y 3/2

(
n(n− l−1)!

(n+ l)!

) 1
2 ζ l

(1+ζ 2)
l+2Cl+1

n−l−1

(
1−ζ 2

1+ζ 2

)}
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